

Backbase 4 RIA Development

Create Enterprise-grade Rich Internet Applications
using the Backbase Client Framework

Ghica van Emde Boas

Sergey Ilinsky

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Backbase 4 RIA Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Production Reference: 1041209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-12-6

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Credits

Authors
Ghica van Emde Boas

Sergey Ilinsky

Reviewers
Deepak Vohra

Jerry Spohn

Peter Svensson

Acquisition Editor
Douglas Paterson

Development Editor
Dilip Venkatesh

Technical Editor
Wilson D'souza

Copy Editor
Ajay Shanker

Indexer
Hemangini Bari

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Priya Mukherji

Project Coordinator
Ashwin Shetty

Proofreader
Lynda Sliwoski

Graphics
Nilesh R. Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

About the Authors

Ghica van Emde Boas is an independent IT Consultant. She was employed
by IBM in the Netherlands for 30 years as a relational database developer, as an
IT Architect, and as a Java developer involved with the largest Java framework
ever written—the IBM SanFrancisco Framework. She has been taking part in the
development of object-oriented methodologies within IBM. She has been teaching
these at IBM's Object Technology University in Belgium and the USA.

Ghica has co-organized several workshops on Generative Model Transformations
at OOPSLA (Object-oriented Programming, Systems, Languages, and Applications)
conferences, the place where it all happened: objects, design patterns, modeling wars
(UML), eXtreme programming, and Agile development. She now specializes in PHP,
MySQL, and web application development. She helped write the client framework
documentation for Backbase.

Ghica has written two books in Dutch about PHP and MySQL for Pearson Education,
and has contributed considerably to the Dutch translation of "Foundations of Ajax",
by Ryan Asleson and Nathaniel T. Schutta, Apress. While at IBM, Ghica participated in
writing two Redbooks and published two articles, one in the IBM Journal of Research
and Development and the other in the IBM Systems Journal.

Ghica lives and works in the Netherlands. She is married and has three children.
She likes rowing on the Spaarne River.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

First of all, I would like to thank Dimitra Retsina, Jouk Pleiter, and
Gerbert Kaandorp from Backbase for their enthusiasm about this
book-writing project and for supporting me by allowing access to all
information about the Backbase framework that I needed.

Sergey Ilinsky deserves my gratitude for his spontaneous offer to
be a co-author and for the fierce discussions we had, which were
always interesting.

Without the help of the R&D crew at Backbase, this book would
contain a lot more errors and fewer examples. Thanks!

The Planning & Scores group at the ROC Eindhoven (a very large
school in the Netherlands) helped me by developing widgets that I
could use in the sample application, while Geert Broekmans wrote the
PHP database framework used in the sample application of the book.

I am truly grateful for the help and useful comments from the
reviewers and the staff at Packt Publishing.

Of course writing this book would not have been possible without
the ongoing support for my information technology related
adventures, from my husband, Peter.

Sergey Ilinsky is a senior UI engineer at Nedstat BV and a Tech Lead for an
open source project at Clientside OY. He has worked for Backbase for three years,
evangelizing open-standards based software development, while engineering and
developing core parts of the Backbase Client Framework.

Having been heavily involved with client-side development since 2003, he became an
expert in many standard and proprietary web technologies. He is also a contributor
to some of the modern web-related specifications. Sergey can frequently be found
on AJAX or client-side technology related forums, or he can be met at international
developers' conferences where he occasionally gives talks.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

I would like to thank Backbase for the opportunity they gave me to
work and improve on this beautiful piece of software—the Backbase
Ajax Client Framework—and later for letting me join the project of
writing this book.

Thanks to Ghica van Emde Boas, the main writer of the book, who I
had the pleasure to work with and who never sent me a third email
reminder whenever I delayed my part.

Thanks to the staff of Packt Publishing involved in this book project.

I would like to express special gratitude to my girlfriend, Elena O.,
for her tolerance and ongoing support.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

About the Reviewers

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. Deepak is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML and Java programming and J2EE
for over five years. Deepak is the co-author of the book "Pro XML Development with
Java Technology", Apress and was the technical reviewer for the book WebLogic: The
Definitive Guide", O'Reilly. Deepak was also the technical reviewer for the book "Ruby
Programming for the Absolute Beginner", Course Technology PTR and the technical
editor for the book "Prototype and Scriptaculous in Action", Manning Publications.
Deepak is also the author of the books "JDBC 4.0 and Oracle JDeveloper for J2EE
Development", Packt Publishing and "Processing XML Documents with Oracle JDeveloper
11g", Packt Publishing.

Jerry L. Spohn is a Manager of Development for a medium-sized software
development firm in Exton, Pennsylvania. His responsibilities include managing a
team of developers and assisting in architecting a large, multilingual, multi-currency
loan accounting system, written in COBOL and Java. He is also responsible for
maintaining and tracking a system-wide program database documentation web site,
for which he uses DotNetNuke as the portal.

Jerry is also the owner of Spohn Software LLC, a small consulting firm that helps
small businesses in all aspects of maintaining and improving their business
processes. This includes helping with the creation and maintenance of websites,
general office productivity issues, and computer procurement. Spohn Software, as a
firm, prefers to teach their clients how to solve their own problems internally, rather
than require a long-term contract, thereby making the business more productive and
profitable in the future.

Jerry currently resides in Fleetwood, Pennsylvania. He enjoys spending time with
his two sons, Nicholas and Nolan.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Peter Svensson is a developer, architect, father, and runs his own
company—Greener Grass AB. When he's not arranging the Scandinavian
Web Developer Conference or managing the Stockholm Google Technology
User Group, he develops rich web applications using the Dojo AJAX Toolkit and
no Flash whatsoever. He's also the author of "Learning Dojo", Packt Publishing.

Thanks to my loving family for supporting my crazy stunts, frequent
flights, and benevolent maniacal schemes.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents
Preface 1
Chapter 1: Hello Backbase! 9

What is Backbase? 10
What can Backbase do for me? 10

The Backbase Explorer 12
Setting up a web development environment 14

The web server and a server scripting language 14
The browser 15
Using an IDE 16

Download the Backbase framework 16
The Backbase page skeleton 18
"Hello Backbase" in four variations 21

Verifying the installation of the Backbase framework 22
"Hello World" using a Backbase balloon 24

The JavaScript balloon 25
The XEL balloon 27

Hello Server! 29
The page with the form 30
The PHP response 31

XML and namespaces 32
Why do we need XML namespaces? 32
Declaring XML namespaces 33
Use of namespaces with Backbase 34

A basic page layout 35
Summary 39

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[ii]

Chapter 2: User Interface Development 41
Squaring the circles of web applications 43
The Backbase Reference 43
UI markup languages 44

Where is the source code? 46
XHTML 47
The Backbase Tag Library 49

Backbase Tag Library widget overview 50
The BTL abstract elements 51

Abstract element inheritance structure 51
element 53
visualElement 53
positionElement 54
dimensionElement 55
cardStack and card 55

The layout widgets 58
Accordion 58
Box 61
deck 61
navBox 63
panelSet 64
tabBox 67
The BTL utility elements 69
codeHighlighter 69
label 69
populator 70
skinSettings 70
xhtml and xml 70

Styling techniques for GUI widgets 71
Using CSS 72
Skinning 72

The BTL skinSettings widget 73
Height problems 74

A BTL Exerciser 76
The application structure 76
index.html 77
app.xml 78
Tab panel content 79
The menu in each tab panel 80

Summary 82

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[iii]

Chapter 3: Writing the Application Logic 83
The application programming model 84
Overview of the Backbase APIs 85

The bb object 85
Low level APIs—the W3C DOM family 86

The Document Object Model 87
Events 89

DOM event flow and cancelable events 89
Registering event handlers 90

Using markup with an XEL handler element 90
Using markup with XEL handler attributes 91
Using JavaScript and the DOM events API 91

APIs relevant for dealing with events 92
Event types 93
BTL widget custom events 93
Custom event creation 94

Backbase utility functions 94
The bb object utility functions 95
Backbase Commands 95

The Backbase XML Execution Language (XEL) 96
XEL features 97

Variables in XEL 98
Conditional execution in XEL 101
Functions in XEL 104
Passing context 108
Using JavaScript in XEL 109

XPath 110
Evaluating attribute values 110

String mode 111
XPath mode 111

Commands to manipulate the DOM or elements 111
Manipulating elements 112

focus and blur 112
fireEvent 113
position 113
scrollTo 114
setText 114
show, hide, and showHide 115
sort 116
tile 118
transform 119

Manipulating the DOM 120
copy 120
create 121
destroy 123
move 124

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[iv]

Info and Notify BTL widgets 125
balloon 125
infoBox 126
loadingMessage 127
toolTip 128

A Backbase Command Exerciser 128
Summary 132

Chapter 4: Client-server Communication and Forms 133
AJAX 135
Asynchronous communication 136

The XMLHttpRequest object 137
The JSONRequest object 138
The load command 138

header 141
The JavaScript load command 141

Working with forms 142
The forms profiles 143
Form elements 143

The extended form element 144
The extended input element 144
fileInput 145

The abstract BTL form elements 146
focusableElement 146
dropDown 147
formField, formList, and rangeFormField 147

The BTL form widgets 148
calendar 148
checkBoxGroup 149
comboBox 152
listBox 154
slider 155
spinner 157
suggestBox 158

Validating input fields 159
Required fields 160
Data type validation 161

AJAX and architecture 163
Model-View-Controller 164
Implementing MVC on the server 165

The server controller 166
The server model 166
The server view 166

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[v]

The C3D travel blog site 167
Requirements for the C3D site 169
Design 169
Data model 170
Page layout 171

Good use of IDs 173
Server application structure 174

The C3D controller 175
The C3D model 176
The C3D view 176
Login and logout 177

Add a trip 178
Summary 182

Chapter 5: Data-bound Widgets 183
Why is data binding important? 185

The server-side of data binding 190
Data-binding fundamentals 192

dataSource 194
Local data sources 195
Remote data sources 196
Static data sources 198

dataObserver 198
The dataUpdate method 198

Make an HTML element data bound 199
Creating the data source 199
Define the new widget 200
The dataUpdate method 201
Show the data-bound bulleted list 202

The data-bound widgets 202
dataGrid 203
Grid editing and fieldEditor 204
The eleven features of dataGrid 206

Common header menu 207
Header context menu 211
Data paging 213
Column drag-and-drop 214
Column freezing 215
One-click editing 217
Editing and focusing together 222
Instant editing 223
Collapsible info block 224
Form editing 227

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[vi]

Live scrolling 228
Continue the development of the C3D application 229

Adding a trip entry 230
Show trips and trip entries 236

Summary 238
Chapter 6: More Dynamic Behavior 239

Behaviors 240
Drag-and-drop 242

dragBase 242
drag 243
dragTarget 244
Basic dragging and dropping with widgets 245
Advanced dragging and dropping with widgets 253

Resize 256
Using the resize behavior 257
Resize custom events 259

Commands for the behaviors 263
addBehavior 263
removeBehavior 264
setBehavior 264

Broadcaster/observer 265
Animating the UI 268

SMIL animation 268
Adding animation to the C3D example application 272

Summary 273
Chapter 7: Creating UI Components 275

Component models and technologies 276
Introduction to the Tag Definition Language (TDL) 276

Widgets 277
The advantages of using TDL 277

Object-orientation 277
OO and TDL 279
OO and web applications 280

Model-View-Controller 280
Widget creation with TDL 282

Overview of the TDL elements 282
Simple widgets 283

Building a TDL widget definition 283
The template, attribute, and resource tags 285

Templates 285
Attributes 293
Resources 296

Widget event handling 299

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[vii]

The handler tag 299
Updatable yellow notes 300

Widgets as objects 303
Defining classes with TDL 303

Inheritance 304
Composition 304
The element tag 304

Properties 305
Property definition 306
Property getters 307
Property setters 308
A web lamp example 308

Methods 310
The argument tag 311
The body tag 311
Sliding thumbnails 311

Constructors and destructors 316
Composite widgets 317

Compose a pedestrian light 317
Order form building blocks 319

Inheritance 325
Yellow notes using inheritance 328
Interfaces 330
Extending BTL 331

Behaviors 332
Behavior example 333

Uses 335
The limits of creating UI components 336

TDL as a macro language 336
TDL as an object-oriented language 336
Squaring the circles 337
Namespaces 337
Conclusion 338

Summary 338
Chapter 8: Widget Wrap-up 339

Action and menu widgets 340
button 340
contextMenu 341
menuBar 343
menuPopUp 346
toolBar 346
pager 348

Data-bound menus 350

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[viii]

The dataSource for a menu 350
The menuActivate event 350
dataContextMenu 350
dataMenu 352

Windows and dialogs 353
window 354
windowArea 355
taskbar 356
modal 357

Multimedia widgets 359
applet 359
flash 360

An example with menus and windows 360
Is the sq:windowMenu widget useful? 366

Miscellaneous commands 367
trace 367
alert 368
bookmark 368

Summary 370
Chapter 9: Debugging, Optimization, and Deployment 371

Debugging 372
The Backbase debugger 373

Overview 373
The information/error bar 373
The debugger window 374

Console tab 375
The Model and View tabs 376
TDL tab 378
Network tab 378
Reports tab 379
Preferences tab 379
Help tab 379

Application optimization 379
Optimizing content 381

Making fewer HTTP requests 381
Making AJAX cacheable 382
Post- or preloading components 382
Reducing the number of DOM elements 383

Optimizing the server 383
Compression 384
Flushing the buffer early 385
Using GET for AJAX requests 385

Optimizing cookies 385

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[ix]

Optimizing JavaScript and CSS 386
Placing JavaScript code at the end of the page and CSS at the top 386
Minify JavaScript and CSS 387
Removing duplicate scripts 388
Minimizing DOM access 388
Developing smart event handlers 388

Optimizing images 388
The TDL Optimizer 389

Creating a configuration file for the optimizer 389
Running the TDL Optimizer 390
Deploying the optimized bindings 390

Deployment on a server 391
Install 392
Installation in a Java environment 393
Defining alias locations 393

Summary 394
Chapter 10: Framework Comparison 395

The landscape of client-side technologies 396
Server-side and client-side 396
Client-side libraries and frameworks 397
Flash, Silverlight, and JavaScript-based frameworks 398
Client-side GUI framework and application framework 398

Backbase and other client-side GUI frameworks 399
Programming model 400
Widgets 401
Component model 401
Data binding 402
Standards support 402
Internationalization 402
Performance 403
Long-term viability 403
Conclusion 404

An integration example 404
AJAX toolkit reference 413

ASP.NET AJAX 413
Bindows 413
Cappuccino 414
Ext JS 414
The Dojo toolkit 415
Google Web Toolkit 415
Javeline 416

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Table of Contents

[x]

jQuery 416
MooTools 416
Prototype and Script.aculo.us 417

Prototype 417
Script.aculo.us 417

PureMVC 418
qooxdoo 418
SproutCore 418
The Yahoo User Interface (YUI) library 418
ZK 419

Summary 419
Chapter 11: The Square Web Application 421

What is a square web application? 422
No global JavaScript functions 424
Make widgets data bound 424
Do not generate HTML at the server 425
Send only XML data from server to client 425
Make the layout modular 425
Use MVC throughout 425
The client is the view 425
Place the controller at the server 426
No business logic at the client 426

Complete the C3D example 426
C3D: make it work 427

The photo upload form 427
C3D: make it right 434
C3D: make it fast 439

Initial page loading 439
Optimizing client runtime processing 439
Server-side issues 440

Usability aspects 441
Legacy integration 441
Progressive enhancement 442
Internationalization and localization 443
Accessibility 443

What will the future bring? 444
A square puzzle 445
Summary 449

Index 451

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface
This book is about squaring the circles of web applications. It deals with the
Backbase Client Framework.

Before you put this book away because you think that squaring circles is rather
vague and mathematically impossible, let's hasten to say that this book will give
you a solid foundation in web application programming using the Backbase
Client Framework.

Now, before you again think of putting this book away because you are not sure why
you should use the Backbase framework instead of one of the many other JavaScript
frameworks or libraries out there, give us a chance to briefly explain what squaring
the circles of web applications means and what the Backbase framework has to do
with this.

Here is a set of rhetorical questions: Would it not be nice if you have an extensive
library of UI widgets that could be used in the same way as HTML? If you could
extend HTML with new widgets and components in any way you like? If you could
use AJAX almost transparently? If you could bind data retrieved dynamically from a
server in flexible ways to any widget, in particular to complex data grids?

Of course, that would be nice for a number of reasons. First of all, XML-based UI
definition languages such as HTML have been proven to be a very effective and
natural way to lay out web pages. UI designers are familiar with them and have
good tools to help them make good designs.

Therefore, the UI designer or the developer who plays this role should be able to
define the UI using an XML-based UI definition language directly. It should not be
necessary to generate the HTML or UI definition in complex ways using a server
scripting language such as PHP or JSP; even worse is constructing the DOM tree to
define the UI using JavaScript. This is because it is very hard to predict what the final
result on the web page will be from the perspective of the UI designer. Yet, this is a
common practice today.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface

[2]

Rich UI widgets will have rich interaction with each other and with a server. For
example, to retrieve new data dynamically from a database to be displayed in a table,
a drop-down list, or a report, and so on. Common interaction patters involve also
submitting form data that can be used for updates on a server.

Creating rich interaction is a programmer's job. On the client side, you will want to
use JavaScript and on the server side, you have a choice of options according to your
preference or that of your developers. The question is how do you prevent polluting
your nice, clean, square-bracketed XML-based UI definition language with the round
JavaScript objects that you need to implement the desired behavior?

The answer is the Backbase Client Framework. For details of how this happens and
how you really square the circles, we refer to the rest of this book. But let's briefly
introduce the framework here: the Backbase Client Framework is a standards-based,
server independent, cross-browser framework to create Rich Internet Applications
(RIAs).

RIA development is usually associated with either Adobe Flex or Microsoft
Silverlight. Although both have similar XML-based UI definition languages, the
main difference with the Backbase framework is that they need a plugin to run,
whereas the Backbase framework does not because it is developed in JavaScript.

Backbase allows the development of web applications that run within all major
browsers, whereas developers are able to use established standards for XHTML,
DOM, CSS, XPath, and XSLT, even if the browser used does not support them. The
transparent use of AJAX technologies, for example to submit forms or to retrieve
updates for data grids, can be taken for granted with the Backbase framework.

This book teaches you how to use the Backbase framework effectively from Hello
Backbase to complex custom-defined UI components. The book contains a complete
overview of all UI libraries available within the Backbase framework and shows
examples for each element described. It teaches you how to develop your own
widgets, providing a comprehensive overview of the Backbase Tag Definition
Language (TDL) and by showing interesting, non-trivial examples.

Significant attention is given to the architectural aspects of designing a
web application, showing sample applications using a Model-View-Controller
approach.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface

[3]

What this book covers
Here is a summary of the chapter contents:

Chapter 1: Hello Backbase!, walks you through the steps to set up your
development environment.

The famous Hello World is shown in many variations: with only basic JavaScript, a
Backbase UI widget together with basic JavaScript, a Backbase Tag Library widget
together with the Backbase XML Execution Language, and finally using AJAX
communication with a server script.

This chapter teaches you something about XML namespaces.

Chapter 2: User Interface Development, provides a closer look at the Backbase
UI markup languages and their XML namespaces. We give an overview of the
Backbase Tag Library (BTL) and details about the UI layout widgets in BTL.

The proper layout of an application user interface involves styling with CSS. We
describe how CSS can interact with the BTL widgets and how you can go about
styling in your web application.

Chapter 3: Writing the Application Logic, provides more details about the execution
logic of a web application. We look at the Backbase programming model and the
various APIs it provides. In particular, we look at the Backbase XML Execution
Language and at the Command Functions.

We add a few new BTL widgets to our repertoire: the Info and Notify widgets.

Chapter 4: Client-server Communication and Forms, covers subjects that range from low
level details about asynchronous communication between client and server, to high
level web application architecture.

We show you the details of forms support, including validation options, in the
Backbase framework and list the widgets available in this category.

We will start applying the knowledge acquired in these four chapters to design
and develop a sample application for a travel blog site, the C3D sample application.

Chapter 5: Data-bound Widgets, deals with data binding which is an interaction
between a data source, usually residing on a server (for example, a database), and a
data observer is usually an object on the client that can map this data to a UI widget.

In this chapter we discuss data binding, the data-bound widgets in the Backbase
framework, and how you can make your own widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface

[4]

The most powerful data-bound widget in the Backbase framework is the dataGrid.
With 11 examples, we explore many details of using this grid.

Chapter 6: More Dynamic Behavior, talks about:

Behaviors: Generic functionality that you can attach to any Backbase element.

The built-in behaviors, in particular the drag-and-drop behavior: how you can
influence the dragging of elements and the things you can do when the element is
dropped. We also discuss the resize behavior with its options.

Command functions to add, remove, or set behaviors dynamically.

The broadcaster/observer elements and functions.

Animation with the Synchronized Multimedia Integration Language (SMIL).

Chapter 7: Creating UI Components, gives a lot of detail about the Tag Definition
Language (TDL), the most interesting and unique feature of the Backbase framework.
We show that you can build powerful UI components using TDL, which promises
new ways of doing web application development.

Chapter 8: Widget Wrap-Up, covers almost all the remaining BTL widgets and
command functions. We will look in detail at actions, menus, and windows.

Chapter 9: Debugging, Optimization, and Deployment, shows that the Backbase tool set,
especially the debugger, has an advantage over other tools because it works with all
browsers. In addition, the Backbase debugger allows you to inspect your Backbase
application structure and all custom built widgets easily.

Using the guidelines set forth by the YSlow tool, we describe what you can do
to optimize a Backbase web application.

We look at deploying the Backbase framework libraries, optimizing the TDL
bindings, and using the optimized versions of the bindings delivered with the
Backbase package.

Chapter 10: Framework Comparison, is a rather theoretical chapter that will show
you a way to look at the various JavaScript frameworks available and how to
categorize them.

We illustrate with an example the difference in coding style for a pure JavaScript
framework as opposed to the Backbase framework using XML for UI layout. We also
illustrate how easy it is to integrate other frameworks into the Backbase framework.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface

[5]

Chapter 11: The Square Web Application, formulates what a square web application is
and how to develop one.

This last chapter provides a last look at the C3D travel blog sample application.
It shows changes and updates according to the make it work, make it right, make it
fast principle. The details of uploading an image and of including a Google map
are included.

We end the chapter by developing a square puzzle.

What you need for this book
This book includes many examples. All examples are provided in the sample code
for this book in an easily operational form. Many examples only require a browser
to run. You will need a web development environment, as explained in Chapter 1,
to run the examples where server interaction is involved. Later in the book, you will
need to set up a database to run the C3D sample application.

Who this book is for
This book is for web developers who want to develop applications using the
Backbase Client Framework. It may also be interesting for web developers and
web application architects who want to know more about XML-based web
application architectures.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<div xmlns="http://www.w3.org/1999/xhtml">
 <p>
 The server says: Hello John Doe! - on:
 Friday 30th of May 2008 12:50:43 PM
 </p>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<div>
 <e:handler
 xmlns:e="http://www.backbase.com/2006/xel"
 event="click" type="text/javascript">
 alert('Backbase says hello!');
 </e:handler>
 Click me
</div>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Preface

[7]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/9126_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!
In this chapter, we will say "hello!" to the Backbase Client Framework. We will
explain how to download the framework and how to install it. Then, we will
discuss how to set up a new application that'll show "Hello World!". At the end
of this chapter, we will also show a simple page layout using a Backbase panelSet
widget. We will expand this page into a client web application in later chapters.

In each chapter, we will cover some background information that will help you
understand how the Backbase framework works. In this chapter we will look at
the following subjects in more detail:

•	 What are Backbase, AJAX, and RIA?
•	 Setting up your development environment, downloading the Backbase

Client Framework, and installing it
•	 The Backbase Explorer
•	 The Backbase page skeleton that is needed to load the client runtime

of the framework
•	 "Hello Backbase" examples
•	 Namespaces and how they are used in the Backbase framework
•	 A basic page with a panelSet

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[10]

What is Backbase?
The Backbase Client Framework is a standards based, server independent,
cross-browser solution to creating web applications, ranging from traditional
to desktop-like. It uses AJAX technologies to easily develop and deploy Rich
Internet Applications.

This is a mouthful of a definition. Let's look at the meaning of those terms first:

•	 Standards based: XHMTL, CSS, XML, and JavaScript are used according
to defined standards.

•	 Server independent: The Backbase Client Framework is server agnostic,
as it does not know which server or which server language it is
communicating with.

•	 AJAX: Asynchronous JavaScript and XML is an enabling technology
for creating Rich Internet Applications. We will provide an overview
in Chapter 4.

•	 RIA (Rich Internet Applications): This is what you can build using the
Backbase Client Framework—web applications that have a rich user
interface, and allow a user to interact with the application. In addition to
AJAX as a communication enabler, there is also an extensive library with
UI widgets available.

In addition to the Client Framework, Backbase offers a set of extensions for the Java
environment. It includes a JavaServer Faces (JSF) extension, a generic connector for
JSP or Struts, and a Data Services extension. These extensions are not discussed in
this book.

What can Backbase do for me?
If you are like us and like many web developers, you may have started writing
simple HTML when developing web applications. After a while, you may have
decided to separate presentation from structure and to give your web pages a better
look using CSS. The next thing in your evolution as a web developer would have
been making your pages more user friendly and interactive, by creating tool tips,
pop-up windows, tab boxes, and by validating forms before submitting. Maybe you
did this using little pieces of JavaScript downloaded from the Web or by building
your own JavaScript function libraries. On top of this, you may have tried to give
your web applications the look and feel of a desktop application by using AJAX,
requiring more JavaScript everywhere.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[11]

Now, what happened to the source code of your web pages? Again, if you are like
us, over time the HTML code became littered with many pieces of JavaScript. It
became difficult to see what the structure of the page was, even more so when you
tried to generate the HTML code from PHP or JSP or some other server-side scripting
language. Perhaps, you found out too that it is really hard to make a web page that
will show well in all major browsers.

Would it not be nice if there was...

•	 A framework that has the tool tips and the tab boxes readily available for
you and will allow you to code these widgets as if they were HTML tags?

•	 A framework that has AJAX support almost transparently built in?
•	 A framework that allows you to bind data from a database to widgets on

your page, such as a data grid with paging, sorting, and more?
•	 A framework that allows you to extend the provided widgets or build your

own widgets, and then use these widgets in exactly the same way as the
widgets provided with the framework?

•	 And finally, a framework that runs in standard browsers without requiring
a plugin?

The Backbase Client Framework is such a framework. We will call it Backbase
most of the time, which is also the name of the company that built the framework.
Backbase can be used freely. There is no difference between the commercial and the
community edition, except for the license, which states that you should not deploy
it commercially on a server with more than two processors.

This book is intended to make you an expert in using the Backbase framework. We
will cover just enough of AJAX, XML, XHTML, namespaces, XPath, CSS, and the
Document Object Model (DOM) to make the Backbase framework easier to use,
and to understand why Backbase is built like it is. While doing so, we hope that
we can increase your knowledge of the core client web technologies and how they
relate to each other. With this knowledge, you can evaluate Backbase against other
frameworks and decide which one suits your purpose the best.

To round off this introduction, let's summarize the advantages of using the Backbase
Client Framework:

•	 The framework is written in JavaScript. Therefore, it runs on all modern
browsers and requires no plugin or prior installation.

•	 The framework is XML based. This means that you can define your GUIs
using XML tags. This is very important for clarity of code and design, and
is more familiar to UI developers.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[12]

•	 The widgets that are built-in or that you create are objects, in the meaning
of being object oriented. This means that you can use object-oriented
design methods effectively to design a Backbase application.

•	 The framework itself is built using a Model-View-Controller (MVC)
architecture. You are encouraged to similarly design your applications
using MVC.

•	 The framework is standards based and provides cross-browser functionality.
This means that the Backbase framework allows you to use standards, such
as DOM 3 events or SMIL that may not be available in all browsers.

•	 Another transparent feature is the AJAX communication built into several UI
widgets. For example, you do not need to create XMLHttpRequest objects to
submit a form. The framework will do this automatically for you if and when
you tell it where the response should go.

•	 There is an Eclipse IDE plugin available to help with the syntax of
UI widgets.

•	 The framework easily integrates with third-party widgets.

The Backbase Explorer
Let us first take a look at what the Backbase framework contains. On the Developer
Network site of Backbase, there is a set of demos that you can view online or
download for further inspection. The URL for this site is http://bdn.backbase.
com/client/demos.

These demos include Sample Application Layouts, a Progressive Enhancement
Demo, a Rich Forms Demo, and Coexistence Demos. You can take a look at those
and run them online, but according to our opinion, they are only mildly interesting,
except for the Backbase Explorer.

The Backbase Explorer allows you to view all UI widgets from the Backbase Tag
Library (BTL); you can see the source code that is needed to show the example,
and you can change the source code to see what happens. For example, if you click
on Windows & Dialogs | window management | windowArea, you can see
something like this:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[13]

The Backbase Explorer is an interesting and useful application that can be used
to learn more about the Backbase framework and about the widgets it offers.

Also, take a look at the Sample Application Layouts on the same online demo page.
This will give you an idea of the kind of layouts you can easily make using Backbase.
We will use a simplified version of one of these as the starting point for the example
application that we will be developing throughout the book.

Each of the demos is downloadable and contained in a ZIP file. When unzipped, it
can execute immediately on your local PC because the essential parts of the Backbase
framework are included with it.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[14]

Setting up a web development
environment
Before we start looking at the Backbase Client Framework, you may want to consider
the setting up of a development environment that you will need to execute the
examples provided in the book or to develop your own applications. We assume that
you already have experience with web application development. Therefore, we will
keep it short.

To try out the application we are developing, you will need a web server, a language
environment that you can use to develop the server side of your application, and a
browser in which you can execute your application.

The web server and a server scripting
language
To serve web pages locally, you need to have a web server installed on your local PC.
You can use any web server you like in combination with the Backbase framework.
For example, popular web servers are Apache and IIS.

Also, you will need a server scripting language, such as JSP or PHP. Backbase will
work with all server languages, therefore the choice is yours. Just remember that
Backbase can communicate with any web server and any server scripting language
that outputs the right XHTML to the browser.

If you already have a local development environment set up, then that is fine. Keep
using it! Otherwise, you could obtain the XAMPP package, which you can download
from: www.apachefriends.org. This package is really easy to install and includes
Apache, PHP, MySQL, PHPMyAdmin, and more. It is available for several operating
systems including various types of Linux, Mac OS, and Windows.

Examples in this book that require communication with a server will mostly use PHP
because that is the easiest environment to set up, and also easy to understand, even if
you are not familiar with it.

There exists a JSF version of Backbase framework, which offers tight
integration with JavaServer Faces (JSF). We are not discussing the JSF
version of the Backbase framework in this book.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[15]

The browser
To execute and view the application we are developing, you need a browser. The
browser landscape is changing very fast. A year ago, there would have been only
one recommendation that we would have made here: use Mozilla Firefox! Not only
because it is a good browser, but mainly because of Firebug, the debugging plugin
for Firefox. Firebug gives you the ability to edit, debug, and monitor CSS, XHTML,
JavaScript, and network traffic live in any web page viewed in the browser. You can
find Firebug at http://www.getfirebug.com.

Today, there are a lot more browsers that do a good job at implementing web
standards and that offer good debugging facilities such as Google Chrome, Safari,
and Microsoft Internet Explorer 8.

A handy plugin to use for Microsoft Internet Explorer prior to version 8 is the MSIE
Developer Toolbar. It provides a variety of tools for quickly creating, understanding,
and troubleshooting web pages in the MSIE browser. Search for Developer Toolbar
at http://www.microsoft.com/downloads/.

We should specifically mention the Backbase debugger. This is a Firebug style
debugger that will work across all supported browsers. It will start automatically
in the Backbase development environment when something goes wrong. It will
help you to debug applications in browsers for which no good tools are available.

Although many examples shown in this book and in the Backbase
documentation do not really require communication with a server, you
may not be able to execute them locally by typing the file location as URL
in the browser because of security restrictions in the browser you are using.

Firefox is an example of such a browser. You can lift this restriction in
Firefox by placing a file with the name user.js (if it does not exist) in
the defaults/pref folder of the browser and adding the following line:
pref("security.fileuri.strict_origin_policy", false);

If you are a Windows user, you may be able to find this folder here: C:\
Program Files\Mozilla Firefox\defaults\pref.
Be aware of the security risks you are taking though!

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[16]

You will need more than one browser to test your application. A considerable
percentage of the users of your web application will be using browsers other than the
one you chose to develop with, and unfortunately, even Backbase cannot guarantee
that your application will look the same in all browsers. At the minimum, you
should have Mozilla Firefox and Microsoft Internet Explorer available for testing.

Using an IDE
In addition to a web server, you will need a tool that you can use to edit your
application source code. Although any text editor such as Notepad is sufficient, you
will be more productive if you use a suitable Integrated Development Environment
(IDE). Again, if you already use an IDE that you are comfortable with, please keep
using it. Otherwise, we would recommend installing the Eclipse IDE. Eclipse is an
open source IDE with many plugins available for specific development tasks. One
of those is a Backbase plugin that will help with code completion. This plugin is
included in the package when you download the Backbase framework. However,
Eclipse can be downloaded from http://www.eclipse.org. Be sure to download a
version of Eclipse with web development capabilities already included. A plugin that
supports PHP, of which there are several available, is useful too.

As an alternative, you could consider Aptana Studio, an Eclipse-based IDE that is
targeted at AJAX developers. Among many features, it has support for Adobe Air
application development. It has many plugins for all kinds of handy development
tasks. You can download Aptana as a standalone application or as an Eclipse IDE
plugin from http://www.aptana.com.

Download the Backbase framework
Your development environment is now set up; therefore, it is time to download
Backbase Client Framework from http://www.backbase.com/download.

Once you have downloaded the package, which comes as a ZIP file, you can unzip
it to a convenient location. The unzipped package should look similar to this:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[17]

Warning: What we describe here is the structure of the Backbase
package as you can find it on the Web at the time of writing.
Changes have occurred in the past and may happen again.

In order to use the Backbase framework, your web server must send it to a browser.
Therefore, we must copy the framework to a location where the web server can
find it. Your web server serves its pages from its document root. Its default location
for the document root can be very different depending on the web server you are
using and by configuring the web server, you can have multiple roots at almost any
location in the file system on the host of your web server.

Let's assume that your development web server is Apache from the XAMPP package
and that you have installed it on the C: drive. The default document root is then:
c:\xampp\htdocs. The easy way to install the Backbase framework is to copy the
backbase folder found in the web folder and paste it as a subfolder of htdocs. For
the time being, you can delete the 4_4_1_optimized folder that you just copied.
You will need the optimized version of the framework only when you are actually
deploying your application on a publicly visible server.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[18]

The Backbase page skeleton
There is one more thing we would like to take care of before we really start. It will
save a lot of useless book space if we can explain what a typical starter page for the
Backbase framework looks like and then forget about it. Of course, the examples that
are supplied with this book are all ready to execute and therefore this source code
will repeat the skeleton page code where required.

For any Backbase enabled page, you need an HTML file, usually named index.html,
which looks like this:

<!-- -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xi="http://www.w3.org/2001/XInclude">
 <head>
 <meta http-equiv="Content-Type"
 content="text/xhtml; charset=UTF-8" />
 <title>The Title of your Application</title>
 <script type="text/javascript"
 src="../../backbase/4_4_1/engine/boot.js" >
 </script>
 </head>
 <body>
 <script type="application/backbase+xml">
 <xi:include
 href="../../backbase/4_4_1/bindings/config.xml">
 </xi:include>
 <!-- YOUR APPLICATION CODE GOES HERE -->
 </script>
 </body>
</html>

The version number of the Backbase Client Framework release is specified
in the [version] folder name (for example, 4_4_1). If your version of the
Backbase Client Framework is different from the one shown here, you
must adapt the code samples accordingly.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[19]

There are some interesting points:

•	 If you are including third-party libraries or your own JavaScript
libraries, you should include them in the head section of the HTML
document, as usual.
At the place where it says: <!-- YOUR APPLICATION CODE GOES HERE -->, you
can put your application code. We will call this a Backbase area. The code
that you can put here can be ordinary XHTML, widgets that are provided by
Backbase, or widgets that you have built yourself.
The <!-- YOUR APPLICATION CODE GOES HERE --> part is contained within
script tags with type="application/backbase+xml". The type attribute
signals the Client Runtime that it should process the contents. The xml part
of the type attribute says that the contents should be proper XML.

•	 There can be multiple Backbase area's areas. In fact, there can be as many
areas as you like. This is convenient if you are converting an older web
application to a Backbase application or when you have large chunks of
conventional HTML in your application. As the Backbase framework takes
some overhead to process this HTML, there is a performance advantage to
put code that does not require processing by the Client Runtime outside a
Backbase area.

•	 The code in a Backbase must adhere to XHTML standards and most
importantly, all tags must be properly closed. This can be a source of errors
if you are converting an older application where for example <input>
and tags are often not closed. Another XHTML violation to watch
out for is that attribute values in tags must be enclosed in quotes and all
attributes specified must have a value. For example, you should code
selected="selected" instead of just selected in a select box.

•	 The Backbase JavaScript engine in boot.js is loaded in the header of the
HTML page. It is very important to make sure that you have a proper path
specification here. Many times, when you set up a new application, you get
an empty page at your first try to see your application. The cause is almost
always that your path specification is wrong. If this happens to you, it is
convenient to use a tool like Firebug to see what the server returns and why
it cannot find the Backbase libraries.

•	 To use the Backbase widgets, you must include the configuration files, also
called implementation bindings for the tags:
<xi:include href="../../backbase/4_4_1/bindings/config.xml">

</xi:include>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[20]

•	 The config.xml file contains an additional include for the specific skin you
want to use. The default is the chameleon skin. As an alternative, you can
use the system skin. Similar to the earlier point, your path specification must
be correct; otherwise your page will most likely stay empty.

•	 The inclusion of the configuration files is done with the statement:
xi:include. We make use here of XInclude, or XML Inclusions, which is a
W3C standard for merging XML files. This facility makes it possible to code
your web pages in a more modular way by dividing your code in smaller
chunks, which can be combined at runtime. See http://www.w3.org/TR/
xinclude/ for details. Backbase has implemented the XInclude standard in
its framework according to the standard and you see it used here to include
the configuration files. We will see more of it later in this chapter.
The HTML tag contains two namespace declarations—xmlns="http://
www.w3.org/1999/xhtml" and xmlns:xi="http://www.w3.org/2001/
XInclude". The XHTML namespace is the default namespace and therefore
you do not need to add a prefix in front of the XHTML tags. The XInclude
namespace is declared with the xi prefix, which you saw used in front of
the include statement that was used to include the Backbase configuration
files. For now, just remember that you need them and that it is important to
declare namespaces appropriately in your code. Later in this chapter, there
is a section that explains what you really need to know about XML, XHTML,
and namespaces. The Backbase Client Framework uses several specific
Backbase XML namespaces in addition to providing implementation for
several standard ones like the XInclude. We will see some examples in the
next section.

The document starts with: <!-- -->. This is done to enforce quirks mode in the
Microsoft Internet Explorer browser. This is a requirement for the Backbase Tag
Library widgets to allow box elements to be rendered consistently across browsers.

As we said earlier, the startup index.html file is very similar for all applications.
All you have to do when you set up a new application is copy the starter skeleton
to a proper place in the file system where your server can find it, and adjust the
path settings in such a way that the Backbase libraries can be found. Also, give your
HTML document the proper title and meta-information in the head section.

From now on, we will usually take for granted that you
know how to surround our example code shown in the book
with the right skeleton code.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[21]

"Hello Backbase" in four variations
In the previous sections, we talked about downloading the Backbase package
and about trying out the demos on the Developer Network site of Backbase. We
also showed what a Backbase starter page looks like, so finally, we can show real
Backbase code.

It is time to say "Hello Backbase!" We will do so by showing typical "Hello World"
examples as follows:

•	 The first example shows a simple alert when you click on the Click me text.
It serves to make sure that we have the right setup for our applications.

•	 The second and third examples are a bit more interesting: a balloon from the
Backbase Tag Library is shown, with the text that you typed in an input field.
The difference between the two is the use of JavaScript or the XML Execution
Language, as you will see.

•	 The fourth example is an AJAX example. It involves communication with
a server, which echoes the text typed in, together with a timestamp. The
response is added to earlier responses without refreshing the page.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/9126_Code.zip
to directly download the example code.
The downloadable files contain instructions on how to use them.

We assume that you have a web development environment set up now and that you
have put the Backbase libraries at the right place. We will take a follow-along approach
for explaining the "Hello World!" examples, but of course you can also just execute the
ready-to-run downloaded source code instead of typing the code yourself.

Start with creating a new folder named bookApps, or whatever name you like better.
Next, create a subfolder of the bookApps folder named helloWorld.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[22]

Verifying the installation of the Backbase
framework
Create an HTML file named hello1.html and put this file in the helloWorld
folder. Copy the skeleton file that we saw in the previous section into hello1.html.
Remember the following:

•	 In this file, we made sure that the Backbase Framework Client Runtime
will be loaded because of the <script> tag in the head section of the
HTML document.

•	 The <script> tag in the body section of the HTML document has a type
declaration, application/backbase+xml, which tells the client runtime
to process whatever is contained within the tag.

•	 The first thing that the client runtime is asked to process is the inclusion of
the config.xml file, which contains the bindings that define the UI widgets.

The position where <!-- YOUR APPLICATION CODE GOES HERE --> is placed tells
the runtime that it should process whatever we replace this with.

Namespace declarations are needed for all the namespaces used, in the tag where
they are used, or a parent tag within the document.

Replace <!-- YOUR APPLICATION CODE GOES HERE --> with the following content:

<div>
 <e:handler

 xmlns:e="http://www.backbase.com/2006/xel"
 event="click" type="text/javascript">
 alert('Backbase says hello!');
 </e:handler>

 Click me
</div>

To see your first "Hello" example in action, you can either double-click on
hello1.html in the Windows explorer (if you are running Windows), or, if you
have started your local server, you can open a browser and type something like
this in the address bar: http://localhost/bookApps/helloWorld/hello1.html.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[23]

After clicking on the Click me text, you should see a result that is similar to what is
shown in the following picture:

What if you do not see anything? The most common problem that could be the cause
is that the path to boot.js or config.xml is not correct. If you are running with a
server, check that it is running properly, and that it can find your hello1.html.

When all is well: Congratulations! The Backbase Client Framework is
running successfully.

Let us look at the code:

•	 The interesting part of the code is the event handler for the div element
that contains the Click me text. The e:handler tag is part of the XML
Execution Language (XEL), a custom markup language that is provided
with the Backbase Client Framework, and that can be used as a replacement
for JavaScript in many cases.

•	 The namespace that we need for using XEL is declared in the e:handler
tag itself; it could also have been declared in the <div> or <html> tags.

•	 Between the start and end e:handler tags, you can code either JavaScript,
as in this example, or XEL, as we will see in the next "Hello World!" example.

You could have coded the example also as "Hello World" without the Backbase event
handler: <div onclick="alert('Backbase says hello!');"> Click me! </div>.
At first sight, this is shorter, so why would we need Backbase for this? Well, usually,
you need more in the event handler than just a short alert. In such case, you have two
choices: either clutter your page with hard to read JavaScript or create a JavaScript
function that you put in the head section. Before you know it, you will have many of
these functions, which become hard to maintain and organize. In the case of the XEL
event handler, you can write well-formatted and well-structured JavaScript code
that stays local to the widget where you put the event handler. Of course, you can
define more global functionality as well and you will see examples of this in several
variations later in the book.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[24]

XML namespaces! In this first example, you saw again a new XML
namespace, this time for XEL. We already saw the XHTML and the
XInclude namespace declaration in the page skeleton; in the next section
you will see the Backbase Tag Library, the Commands, and the Forms
namespace. Yes, that is a lot of namespaces and we will see a few more in
the rest of the book. We promise that you will find out how useful these
are and that you will get used to it.

This was a very simple example that made sure the Backbase framework is working
right. In the next three examples, we will expand your knowledge by demonstrating
a personalized "Hello World", using a tag from the Backbase Tag Library. The last
"Hello World" example will demonstrate the AJAX functionality of the Backbase
Client Framework by showing a form with one input field, which, when submitted,
causes a response to be displayed somewhere in the page without a page refresh.

"Hello World" using a Backbase balloon
This section contains a pair of examples showing how to create a BTL balloon that
is filled with custom text.

The balloon widget displays an image similar to that of a dialogue box
in a comic book. The balloon can contain text, images, or other widgets.
The user can click on the x icon in the balloon to close it or the balloon can
be displayed for a limited amount of time. The balloon is positioned in
relationship to its parent widget.

The balloon widget is similar to a toolTip because they represent information
that becomes available only after an action is performed. Most often, these widgets
are used to present contextual information about a widget in your application.

This is not the easiest example for showing a Backbase GUI widget from the
Backbase Tag Library. However, we have chosen it because we wanted to show
an example that illustrates the power of using pre-built widgets.

The example is done twice, to show that BTL can be coded in two ways, either by
using an event handler with JavaScript content, or by using no JavaScript at all.
The second version of the example shows the Backbase-specific XML Execution
Language (XEL) and Backbase Commands instead of JavaScript. Any combination
of these two styles is also possible, as many examples in the Backbase documentation
and in this book will show.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[25]

Below is a picture of what the result of trying the example will look like:

The user will type a name, and after clicking OK, the balloon will appear. The user
can click on the x to close it. Otherwise, it will disappear automatically after a while.

The JavaScript balloon
The first balloon example uses JavaScript in the event handler of the button, similar
to the previous example, which had an event handler on the div element using the
XML Execution Language.

We saw the XEL namespace before. The Backbase Tag Library (BTL) namespace is
new; we need it because the balloon widget belongs to it.

Create a file in the helloWorld folder that you created in the first tutorial, name
it hello2.html, and then add a copy of the starter skeleton as content. Make sure
that you understand what the contents of the hello2.html file represent. Look
back if needed.

Because we need more namespace declarations than in the previous example, it is
more convenient to add them to the <html> tag of the skeleton page:

xmlns:b="http://www.backbase.com/2006/btl"
xmlns:e="http://www.backbase.com/2006/xel"

Replace the part where it says <!-- YOUR APPLICATION CODE GOES HERE --> in the
starter page skeleton with the following code:

<div style="margin: 80px 0 0 20px; width: 300px;">
 <p> Please type your name and click OK: </p>
 <input id="myInput" type="text" />
 <button style="margin-left: 10px;">
 OK
 <e:handler event="click" type="text/javascript">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[26]

 var oBalloon =
 bb.document.getElementById('myBalloon');
 var oInput =
 bb.document.getElementById('myInput');
 var sValue = bb.getProperty(oInput,'value');
 bb.command.setText(oBalloon,
 'Hello: ' + sValue,'replaceChildren');
 oBalloon.setAttribute('open', 'true');
 </e:handler>
 </button>
 <b:balloon label="Backbase says:"
 id="myBalloon" mode="top-center"
 timeout="10s" width="250px" />
</div>

Save your work and type this in the address bar: http://localhost/bookApps/
helloWorld/hello2.html. After typing your name in the input field and clicking
OK, you should see the balloon appear.

Let's examine the code:

•	 You will see that there are two namespace prefixes present: the e: prefix
for XML Execution Language that we saw before and the b: prefix for the
Backbase Tag Library, which contains the balloon widget. We chose this
time to add the namespace declarations to the <html> tag.

•	 There is a b:balloon widget on the page. Initially, you do not see it because
the open attribute is false by default. We need the event handler on the OK
button to set the open attribute to true.

•	 The balloon will stay visible for 10 seconds after it appears and will be
positioned at the top left of its parent widget, the div in this case. We
specified a margin for the div, to give the b:balloon enough space.

•	 The balloon in our code has a label, but no content. We want to build the
content of the balloon dynamically, using the value in the input field at the
time the OK button is clicked.

•	 The event handler for the click event of the button is specified in the same
way as in the "Backbase says hello!" alert example, except that it contains
a lot more JavaScript code. Now the usefulness of the XEL event handler
becomes more convincing—if you would have placed the code in a single
onclick="..." line, it would have become rather unreadable. By the way,
you can still use your old ways of coding JavaScript if you prefer.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[27]

•	 The bb object that is used in the code is of particular interest. The Backbase
Client Runtime creates an additional DOM-like layer that shields you from
browser incompatibilities. You can address the Backbase elements on this
layer in the same way as the elements in the original DOM layer by using the
bb object. The bb object is instantiated when the Client Runtime is loaded.

•	 In our example, we need to find two elements by ID in the Backbase space.
To do so, you should use the bb.document object provided by the Client
Runtime, instead of the document object provided by the browser. The
variable oBalloon receives a reference to the balloon, by looking up its ID
using bb.document.getElementById().

•	 Although the input widget looks like a normal HTML widget, it is in fact
also a Backbase widget because it is placed in the Backbase area. Therefore,
we use the bb object again to find it by ID.

•	 We find the value of what is typed in the input field by using
bb.getProperty. The next line requires some explanation: we need to have
the text that is displayed in a text node. We create the text node by using the
command functions, bb.command.setText.

•	 Finally, the open attribute is set to true and the balloon will be shown.

We will have more information about the bb object and the commands later in the
book. For specific details, the Backbase documentation is a good source, in particular,
the Backbase Reference at http://download.backbase.com/docs/client/
current/Reference.chm.

You have now seen that the BTL widgets can be used and extended in a
straightforward way using JavaScript. The next example looks exactly the same
when you try it out, but the event handler now uses XEL instead of JavaScript.

The XEL balloon
As in the previous example, create a file in the helloWorld folder and this time name
it hello3.html. Add a copy of the starter skeleton as content and replace <!-- YOUR
APPLICATION CODE GOES HERE --> with the following content:

<div xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:c="http://www.backbase.com/2006/command"
 xmlns:e="http://www.backbase.com/2006/xel"
 style="margin: 80px 0 0 20px; width: 300px;">
 <p> Please type your name and click OK: </p>
 <input id="myInput" type="text" />
 <button style="margin-left: 10px;">
 OK
 <e:handler event="click">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[28]

 <c:setText
 select="concat('Hello: ',
 id('myInput')/property::value,'!')"
 destination="id('myBalloon')"
 mode="replaceChildren" />
 <c:setAttribute
 with="id('myBalloon')"
 name="open"
 select="'true'" />
 </e:handler>
 </button>
 <b:balloon label="Backbase says:"
 id="myBalloon" mode="top-center"
 timeout="10s" width="250px" />
</div>

In this example, using the Backbase Tag Library (BTL), XML Execution Language
(XEL), and Command Functions libraries may look daunting to you. While in the
later chapters of the book we will fill in the details, we want you to look at the code
here, see that it is more compact than the JavaScript version and that it is pure XML
instead of JavaScript encapsulated within XML tags. We will explain now what is
going on from a higher level:

•	 In this example, the <div> tag contains the namespace declarations that
we put at the <html> tag in the previous example. This is done not only
to show you that you can put namespace declarations in any parent tag
of the tag where the namespace is used, but also to prepare ourselves for
modularization of the code. We could carve out the <div> tag with its
contents and put it in a separate file. We could then put an XInclude instead.
If you do this, the declaration on the <html> tag would be useless, while the
declaration on the <div> tag would be just what you need, except that you
would have to add the default namespace for XHTML again to make the file
a self-contained proper XML.

•	 The e:handler tag does not have a type attribute here because using
XML as content is the default.

•	 When the button is clicked, the value in the text node is concatenated from
three string parts, where the middle part is an XPath expression that extracts
the value from the input field.

•	 The destination of the newly created text node is the balloon.
•	 A setAttribute function from the Backbase Command Functions language

is used to open the balloon.
•	 The b:balloon itself is the same as in the previous example.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

v@v
Text Box
Download at WoweBook.com

Chapter 1

[29]

We have now said "Hello!" using real Backbase BTL widgets and we peeked into XEL
to see how we can code event handlers in a more structured way, choosing between
JavaScript and XEL. You can use either, depending on your preferences.

The next example is a real AJAX example: we will communicate with a server
asynchronously, and the updates are placed on the page doing a partial page reload,
without refreshing the whole page.

Hello Server!
To many people, AJAX is almost synonymous with XMLHttpRequest, the API that
allows client programs to communicate asynchronously with a server. This example
page shows the "Hello World" example communicating via AJAX using a Backbase
form. If you are using the Backbase AJAX framework, it is possible that you will
never use an XMLHttpRequest object directly, because its use is made transparent to
you. If you wish however, it is possible to use it.

Here, we will look at using an ordinary looking form, still the most common means
to enter information to be sent to a server. Instead of refreshing the whole page,
AJAX is used when you tell the framework that you want to put the response to the
form submitted at a particular spot on your page, by using the bf:destination
attribute. As a server scripting language, we use PHP in our example because we
assume that the majority of developers will be able to understand it. In addition,
we show what the response file that PHP generates looks like. You can see from its
structure how you could code an AJAX response in other languages.

Below you can see a snapshot of what the result could be of executing the example:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[30]

The page with the form
By now, you know the drill: create a file in the helloWorld folder, name it
helloServer.html, and add a copy of the starter skeleton as content of this file.

Replace the part where it says <!-- YOUR APPLICATION CODE GOES HERE --> in
the starter page skeleton, with the following code:

<div style="margin-left: 20px;">
 <p>Please type your name and click OK:</p>
 <form xmlns:bf="http://www.backbase.com/2007/forms"
 action="response.php"
 bf:destination="id('server-response-area')"
 bf:mode="appendChild" method="post">
 <input id="name" name="name" type="text" />
 <input type="submit" style="margin-left: 10px;"
 value="OK" />
 </form>
 <div id="server-response-area" style="background: #FFFFC8;"></div>
</div>

This form is not very interesting, except a few things that are as follows:

•	 Adding a bf:destination attribute to the form will cause the submitted
data to be sent asynchronously. Instead of refreshing the complete page,
the contents of the response will be put at the defined destination by the
Client Runtime, at the div element with ID server-response-area in
our example.

•	 We have also coded a bf:mode attribute with the value appendChild. This
means that the response of the server will be put as the last child node of the
div element. Every click of the OK button will add one more response line to
the page, leaving intact what was there before. The appendChild value is the
default. Therefore, we could have omitted it here.

We will be looking at the server side next.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[31]

The PHP response
From the action that is specified in the form, you can see that response.php will
be invoked when the form is submitted. Therefore, you should create a file in the
helloWorld folder and name it response.php. Add the following as content:

<?php
 header('Content-type: application/xml');
 echo '<?xml version="1.0" encoding="UTF-8"?>';
?>
<div xmlns="http://www.w3.org/1999/xhtml">
 <?php
 $myname = $_POST['name'];
 echo " <p>";
 echo "The server says: Hello $myname ! - on: ";
 echo date('l jS \of F Y h:i:s A');
 echo " </p>\n";
 ?>
</div>

To see this "Hello Server" example in action, open a browser and type something like
this in the address bar: http://localhost/bookApps/helloWorld/helloServer.
html. Type something in the input field and click on OK. Change the input field and
click on OK again. Repeat this a few times. You will see the list of responses grow,
while the rest of the page is not touched. Some points to note are:

•	 This time you cannot execute the example from the file system by double
clicking on the helloServer.html file, because the web server needs to be
activated to interpret the PHP script.

•	 The server script that receives the request should be aware that it should
not send a complete page in return, and that the response should be valid
XHTML.

In order for the browser to recognize that it is XML that it receives, the response
header must be set appropriately. Using PHP, you can do this as follows:
header('Content-type: application/xml');. If your scripting language is JSP,
you could code: response.setHeader("Content-Type", "application/xml");.

For those of you who are not so familiar with PHP, we show here an example of
a response file that might have been generated by response.php, as an actual
response file:

<?xml version="1.0" encoding="UTF-8"?>
<div xmlns="http://www.w3.org/1999/xhtml">
 <p>
 The server says: Hello John Doe! - on:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[32]

 Friday 30th of May 2008 12:50:43 PM
 </p>
</div>

The server response includes a timestamp of when the response is sent. We did this
to show that the page really stays put and is only partially changed. By entering new
information in the input field and clicking the Submit button, a new line will be
appended in the yellow box where the server messages are shown.

XML and namespaces
If you know HTML, you also know XML, the Extensible Markup Language—just
think of it as HTML where you can invent and specify your own tags.

To be more specific, XML is a general-purpose markup language, which means
that you can describe and annotate the structure or formatting of text with it.
HTML is a particular example of XML used to describe the structure and formatting
of a web page.

Using XML, you can define a set of tags that together form a vocabulary for a specific
subject. This is great if in all XML documents you would only need tags from one
vocabulary, but probably you can imagine that this would be rather restrictive.

In this section, we give some background for the use of XML namespaces in the
Backbase framework. As the W3C standard puts it, XML namespaces provide
a simple method for qualifying element and attribute names used in Extensible
Markup Language documents by associating them with namespaces identified
by URI references.

Why do we need XML namespaces?
When XML was invented, there was no such thing as a namespace concept. The
steadily increasing volume of XML data that was exchanged between different
groups of people and different companies revealed a series of problems. One was
that it was difficult to properly combine parts of different XML documents into new
documents. Basically, these are the causes:

•	 An XML vocabularies collision problem. This means that two XML
documents could have tags with the same name, while in each document this
tag could have a different meaning or structure. For example, a <language>
tag could have an attribute version if it is a programming language, or
else an attribute region, to indicate where this particular form of natural
language is spoken.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[33]

•	 An intended content recognition problem. This means that if I see a tag in a
document that has tags from more than one vocabulary, I need to know to
which vocabulary it belongs. For example, if you see a <title> tag, is this
the title of a book, the title in an HTML document, or the title of a person,
such as "Mrs." or "professor"? Similarly, is a <border> the border of a country
or a border of an element on a web page?

In order to solve these issues, the mechanism of namespaces was introduced into
XML. If you are familiar with a programming language like Java, the namespace
concept is similar to the package concept in that language. It enabled authors to
determine, on markup, vocabularies for their content and facilitated governance.

Declaring XML namespaces
You can recognize an XML namespace when you see an attribute that starts with
xmlns. The part of the attribute that follows xmlns: is called a prefix. It is that part of
the namespace declaration that actually sets up a link between a convenience token
and a namespace. The namespace declaration scope is limited to the element where
it was done and to the element's sub-tree. The names of these attributes are reserved:
you cannot use an xmlns attribute or prefix for another purpose.

Let's consider a sample XML document that uses namespaces:

<?xml version="1.0"?>
<catalog
 xmlns="http://www.library.com/ns/catalog"
 xmlns:isbn="http://www.isbn.com/ns/isbn">
 <book isbn:id="1847196705" id="1">
 <title>Learning jQuery</title>
 <author>Karl Swedberg</author>
 <author>Jonathan Chaffer </author>
 <isbn:datePublished>February 2009</isbn:datePublished>
 </book>
 <book isbn:id="1847191444" id="2">
 <title>Joomla! Template Design</title>
 <author>Tessa Blakeley Silver</author>
 <isbn:datePublished>June 2007</isbn:datePublished>
 </book>
 <!-- More books -->
</catalog>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[34]

The catalog could serve as a description of books in a local library. The meaning
and structure of the tags can be whatever the local library thinks is practical. In this
document there is also the isbn namespace, which is used for tags that are relevant
to the worldwide book register that the International Standard Book Number
(ISBN) represents.

Use of namespaces with Backbase
The Backbase Client Runtime processes all the tags that are placed between script
tags that have type="text/backbase+xml" as attribute. To the Backbase Client
Runtime, the combination of the namespace and the tag name will determine what
the engine will do to interpret the tag.

We call a set of tags that belong to a specific namespace a markup language. In the
Backbase point of view, XHTML is just another markup language. It belongs to the
http://www.w3.org/1999/xhtml namespace, which you must declare just like the
specific Backbase namespaces.

We have already seen several namespaces in our examples. Below is a list of
namespaces you can expect to be using with Backbase, together with their
preferred prefixes:

xmlns = "http://www.w3.org/1999/xhtml"
xmlns:xi = "http://www.w3.org/2001/XInclude"
xmlns:xs = "http://www.w3.org/2001/XMLSchema"
xmlns:smil = "http://www.w3.org/2005/SMIL21/"
xmlns:b = "http://www.backbase.com/2006/btl"
xmlns:c = "http://www.backbase.com/2006/command"
xmlns:d = "http://www.backbase.com/2006/tdl"
xmlns:e = "http://www.backbase.com/2006/xel"
xmlns:bf = "http://www.backbase.com/2007/forms"

Although it is legal to use different prefixes bound to the same namespace URI in
different documents as well as within the same document, it is often convenient to
stick to using similar ones.

For each markup language in your application, you must add a namespace
declaration. For example, if you are using BTL UI widgets, you will need to add a
BTL namespace declaration to your document.

The engine does recognize namespace declarations placed outside its processing
space. This means that the best place to declare namespaces for all languages
processed by the Client Runtime is as high as possible in the DOM tree, for example
the <html> tag.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[35]

Each XML document, even if it will be included into another document,
must contain appropriate namespace declarations.

Here is an example of namespace declarations that you could use with some of the
Backbase markup languages:

<script xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:e="http://www.backbase.com/2006/xel"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 type="application/backbase+xml">
 <div>
 Given the correct widget prefixes,
 the Client Runtime can now
 process all XHTML, BTL, XEL, and XInclude elements.
 XHTML is the default namespace, so we don't have to give a
 prefix to the parent div tag.
 </div>
</script>

Using namespaces in your application can be confusing at first and can be a source
of problems for a Backbase beginner. A good piece of advice is to check your
namespaces if you have an error that you do not understand. Soon, adding the right
namespaces will become second nature.

A basic page layout
After having installed the Backbase framework and after having said "Hello World!"
so many times, we would like to finish this chapter by doing real work.

Every web application page design starts with a basic page layout. This layout
usually involves a part where menu items are shown, sometimes a row of tabs at the
top of the page, sometimes a list of links as a column on the left, sometimes both.

In the olden days, we would partition a web page using HTML frames, where you
could have a table-like layout. The advantage of using frames is that each frame
contains its own document, allowing you to make your application more modular.
This was a big disadvantage at the same time because the communication between
multiple frames can become a problem and also you cannot easily print such
a page.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[36]

As an alternative, you could use a pure HTML table layout. That is still the easiest
way to design a page if the page is simple, but if you use a number of nested tables
to layout your page, things can become tricky when you try to change something.
Nowadays, most people say that tables should be used to display tables and that
CSS should be used for layout. If you ever struggled with div elements floating in
ways you could not imagine, you may still agree in principle, but hope for something
better in practice.

The Backbase panelSet widget and related elements are designed to offer the best
of both worlds—easy layout as with tables and modularity as with frames.

The panelSet widget partitions the screen layout into rows and
columns. When subdividing the panelSet, you use the panel element,
or you can use another panelSet widget to further subdivide that row/
column. You can specify a panelSet to have rows, columns, or both. By
using the splitter="splitter" attribute/value pair, you can add a
resizable border to your panelSet.

The Backbase framework has a set of example layouts that use panelSets available
for you to use. You can find them in the demos folder of the Backbase package, or
you can view them online at http://demo.backbase.com/layouts/.

If you would like to use one of these as a starting point for your own application,
you will find you need to strip the application first. This is because they contain a lot
of static information that is there to show what the page could look like. We made
a very simple page layout that is inspired by these example layouts. However, we
will start from the ground and work our way up so that we can expand the page
to evolve to a real web application page later in the book. Below is a picture of this
sample application:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[37]

We will put our application in a new folder. Create a subfolder of the bookApps
folder named myApp1, or whatever name you like better. Create a file in the app1
folder, name it index.html, and add a copy of the starter skeleton as content.

Add a CSS file reference to the head section in order to keep the styling we use:

<link rel="stylesheet" type="text/css" href="resources/app.css" />

The CSS file is not very interesting at this point. We suggest that you copy it from
the downloaded source and put it into its own resources folder.

Replace <!-- YOUR APPLICATION CODE GOES HERE --> with the following content:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:e="http://www.backbase.com/2006/xel">
 <div id="appHeader">
 <div class="appHeaderText">Backbase Basic Layout</div>
 </div>
 <b:panelSet columns="260px *" splitter="true">
 <b:panel>
 <xi:include href="menu.xml" />
 </b:panel>
 <b:panel class="btl-border-left">
 <xi:include href="content.xml" />
 </b:panel>
 </b:panelSet>
</div>

You see a simple panelSet, where its structure is clearly visible because the menu
and the real content are included with the XInclude mechanism. This allows you to
make a very modular setup of your application.

There are two files that are included by the XInclude mechanism: menu.xml and
content.xml. For now, these files contain nothing interesting. Remember though
that these files must have proper namespace declarations because their contents
are loaded into Backbase space. Therefore, the menu.xml file looks like this:

<div xmlns="http://www.w3.org/1999/xhtml">

 Menu item 1
 Menu item 2
 Menu item 3
 Menu item 4
 Menu item 5

</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Hello Backbase!

[38]

What is interesting is that when we expand this application in the following
chapters, the index.html file will stay the same, while the development effort
can concentrate on various modularized parts of the application.

Even if modularizing your application using XInclude from Backbase will be the
only facility you'd use, this will be an important step in writing better applications.
You could argue that you can achieve the same effect by using the include()
function of PHP, or a similar function in another server scripting language. You
should realize though, that this will make your client application dependent on the
server language you are using.

Another disadvantage you may think of is that it requires extra communication with
the server to use XInclude in this way. That is true, but if you have a performance
problem with your application, probably something else is the cause. Kent Beck,
the well-known inventor of Extreme Programming, says on this issue: "First make it
right, then make it fast".

The code we have put in menu.xml and content.xml is just dummy text. Therefore,
we are not repeating it here. In later chapters, we will start putting meaningful
content into our basic application.

Your web directory structure could look as follows:

In your whole application, there is only one file that contains references to your
Backbase installation. That makes it a lot easier to set up a new application and
to upgrade your Backbase installation for a new release.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 1

[39]

To conclude this section, look back at what we have achieved. With very little code
we have set up a structure for an application that we can easily extend or use as a
skeleton for new applications.

Summary
What have we done so far?

•	 We have made sure that our development environment is right.
•	 We have downloaded and installed the Backbase framework.
•	 We have seen what we have to add to an HTML page to make it Backbase

framework enabled.
•	 We have seen the famous "Hello World" in many variations: with only basic

JavaScript, with a Backbase Tag Library widget and basic JavaScript, with a
Backbase Tag Library widget and the Backbase XML Execution Language,
and finally, using AJAX communication with a server script.

•	 We have started on a basic page layout for our web application using
a panelSet.

•	 We learned something about XML and namespaces.

With only these few concepts and just a few Backbase widgets, you will be able to
develop new web applications with improved results.

In the next chapter, we will expand our knowledge and take a look at the GUI
widgets that are available in Backbase.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development
The Backbase Tag Library (BTL) contains about fifty UI widgets—UI components
that can be embedded in an HTML page—that help you to build a web page quickly.
In this chapter, we will give an overview of BTL and a list of all elements available.
We will briefly describe the structure of BTL, showing the base elements from which
BTL widgets inherit, depending on their function.

Widget, element, control, and UI component are terms that are almost
synonymous and that can cause confusion. The Backbase documentation
is sometimes vague about their meaning. We try to use widget for visible
things on a page and element in a more generic way for things that can
also be abstract or behavioral. We will avoid control, but the word is used
sometimes in the Backbase documentation.

There are six BTL widgets intended to do the major work when laying out a web
page. We will describe those in more detail, with examples. To make this work, we
need some utility tasks, for which a special set of elements is available and we will
describe those too.

With the layout widgets that we'll describe, we'll have enough knowledge to build a
sample application specific for this chapter. This sample application, a BTL Exerciser,
will show and execute all BTL examples that we'll show in this, and the following,
chapters. The BTL Exerciser is built upon the basic layout that we showed at the end
of the previous chapter.

Another topic will be styling of the web page and what you can do to make the
Backbase widgets fit your style.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[42]

You are not expected to read this chapter as if it were a novel. Depending on your
skill and interest, you can glance through the pages to see what widgets are available
and find out how to code them, or you can read about the object-oriented structure of
the widgets and their relationships.

Here is a complete list of subjects that we will discuss in this chapter:

•	 Squaring the circles: why an XML-based framework
•	 The Backbase Reference
•	 An overview of the Backbase markup languages
•	 XHTML within Backbase
•	 Overview of the Backbase Tag Library (BTL)
•	 The BTL abstract elements
•	 The BTL layout widgets
•	 The BTL utility elements
•	 Styling techniques
•	 A sample application that can show all BTL examples

As we cannot describe all the BTL widgets in this chapter, here is a table that lists
where each category can be found:

Category Chapter
Layout 2
Info & Notify 3
Actions & Menu 8
Grids & Trees 5
Forms 4
Multimedia 8
Windows & Dialogs 8
Utilities & Tools 2

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[43]

Squaring the circles of web applications
There is an old saying that expresses the difficulty of trying to match things that
inherently do not match: "Try to fit round pegs into square holes". In IT circles, the
saying became popular to describe the difficulty of storing programming objects
created, for example in Java, in a relational database table. If you think about it, this
is exactly what many AJAX developers try to do: fit round JavaScript objects in
square HTML tags.

The Backbase framework solves this problem by allowing you to write JavaScript
code that is encapsulated as data within XML tags. This causes the pieces of
JavaScript that you need in your application to become smaller and easier to write.
The problem of unwanted global objects interfering in unexpected ways with other
parts of your application, or with other frameworks that you may want to use, is
solved in this way. We will discuss the background for these ideas in Chapter 7,
which is about the Backbase Tag Definition Language.

Now, our task is to explain what the squares or the XML tags look like in
the Backbase framework. We'll start with the tags that allow you to build a
UI: XHTML and the built-in UI widgets, the Backbase Tag Library.

The Backbase Reference
The best source of information for all details concerning the Backbase framework is
the API Reference. The content of the Reference is generated from the source code
of the Backbase framework. This means that the API Reference is up-to-date, but
also that its format may not be clear at first. We suggest that you take your time to
become familiar with the API Reference, because the amount of detail it contains can
be intimidating. There are two versions of the API Reference, one in the Windows
Help format and one in HTML format.

From experience, we know that you will have the API Reference open on your
desktop most of the time while developing, to look up widgets or functions you
are using. Although, by having this book available, the need to search the Reference
will be much less.

After opening the reference, click on the Markup Languages book, then on BTL (b:),
and next on Elements. You will see an alphabetical list of the widgets that
are available in the BTL. Click on one and you will see its attributes, properties,
methods, and events. You can click on almost anything to get more details, and
to see inheritance, derived elements, attributes, and events.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[44]

Here is a typical API Reference page:

UI markup languages
As we have explained in Chapter 1, the Backbase framework implements a set of
XML markup languages for the purpose of developing web applications. In this
section, we will give an overview of those markup languages that are used to
develop the visual part of your web application.

Believe it or not, after reading just the first chapter you will have a sound background
to start developing Backbase web applications. So far, you have seen how to:

•	 Set up an application UI skeleton
•	 Specify the namespace definitions needed

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[45]

•	 Put Backbase Tag Library widgets on the page
•	 Interact with a widget through an event handler

The key insight into understanding how to develop web applications with the
Backbase framework is that you will develop XHTML documents as before, using
familiar XHTML syntax and technology. In addition to what you could use before,
you have a set of XML markup languages available that use their own XML
namespaces. Not only can you use the languages that Backbase has developed, you
can also develop your own markup language using the Tag Definition Language, as
we will see in a later chapter.

For UI development, we need XHTML, forms, and BTL markup languages.
Here is an overview of these:

Language Standard Description
Backbase
Tag
Library

No The BTL (Backbase Tag Library) is a set of extensible UI
widgets that shield you to a large extent from cross-browser
problems and that you can use out of the box. These widgets
use a declarative model familiar to anyone who knows
standard HTML.
Namespace:
xmlns:b = "http://www.backbase.com/2006/btl"

Forms No The forms namespace contains a number of interfaces and
base implementations for submission of forms and validation
functionality that is shared between XHTML, BTL, and custom
client controls.
Namespace:
xmlns:bf = "http://www.backbase.com/2007/forms"

XHTML Yes XHTML, as provided by Backbase, has methods,
properties, and attributes that correspond almost exactly
to XHTML 1.1 standards. For more information, refer to
the W3C http://www.w3.org/1999/xhtml, the
XHTML specification.
Namespace:
xmlns = "http://www.w3.org/1999/xhtml"

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[46]

Language Standard Description
XInclude Yes XInclude is a mechanism to include other files, which facilitates

the modularity of applications. For more information, refer to
the W3C http://www.w3.org/TR/XInclude, the XInclude
specification.
Namespace:
xmlns:xi = "http://www.w3.org/2001/XInclude

There are other markup languages as well, as you may have guessed from the list
in Chapter 1. We will see details about these in later chapters.

Where is the source code?
The source code of the Backbase framework is available for you to view. In the
package, you will find two versions of the code—a development version and an
optimized version. The difference between the two is that the optimized version
has all white space filtered out to minimize file size. For the same reason, the
development version source code has no comments, but most of these comments
can be found in the Reference.

If you open the package and then the web folder, you will see a structure as in
the picture below (the release number may differ):

You may have guessed that the BTL definitions are in:

web/backbase/4_4_1/bindings/www.backbase.com.2006.btl

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[47]

When you open this folder, you will see (we are showing only a part of the list):

There is a folder for every element in BTL. Many folders have subfolders: chameleon
and system, to accommodate the two skins that the Backbase framework provides
for BTL, the chameleon, and the system skin.

Widgets' definitions are loaded in a lazy manner, which means only those definitions
are loaded that are actually used.

XHTML
The overview in the previous section shows XHTML as one of the markup languages
that you will need for UI development. Are we kicking in an open door here? Maybe,
maybe not.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[48]

We hope you remember that all the Backbase code is contained within script tags
with type="application/backbase+xml"; we called this a Backbase area. This
means that a browser will not process any tags placed within this area directly.
Instead, the Backbase Client Runtime will process them before being presented to
the browser. This is the reason why XHTML is a markup language for the Client
Runtime just like the other markup languages that it processes.

If you place a tag in a Backbase area that looks like an XHTML tag, in reality, it is a
tag from the XHTML markup language implemented by Backbase. This offers some
interesting possibilities: an XHTML language that complies fully with the W3C
standards on all browsers, for example. There is some sugar on top of this, which
adds a very important feature: AJAX support for form submission, form validation,
and more.

The processing of the XHTML tags Backbase Client Runtime also has a drawback
because it takes extra time. If you are not using any specific Backbase framework
facility, this would just be a performance penalty. Therefore, if you have pieces of
code where no Backbase markup language is involved, you should place it outside
the Backbase area. You can have as many Backbase areas as you like.

As XHTML is just another markup language, you must declare its namespace while
using it, which will almost always be the case. Therefore, the XHTML namespace is
usually the default namespace that does not require a prefix.

We don't have to tell you what XHTML looks like because we assume that you
already know it. We spend some time on it here anyway. The reason is that the
Backbase Client Runtime is much less forgiving for sloppy code than most browsers
are. If you see errors in your application, it is usually a good idea to check first for
unclosed tags. In many cases, the Backbase debugger will give you a good indication
of what is wrong.

XHTML 1.1 is in fact a refined version of HTML 4 with proper XML syntax enforced.
We briefly hinted at what you should keep in mind when discussing the page
skeleton. Here it is again, as a short checklist:

•	 Tags should be closed
•	 Element names as well as attribute names should be lowercase
•	 Attribute values should be enclosed in quotes, preferably double quotes

by convention

An example of valid XHTML markup, where these things are used is:

<form action="action.php" method="post">
 Your email:
 <input name="email" type="text" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[49]

 <input id="flag" name="subscribe"
 type="checkbox" checked="checked" />
 <label for="flag"> Send me updates</label>
 <input type="submit" value="Subscribe" />
</form>

Developing true client-side applications with pure XHTML is not an easy task,
because the technology was designed to markup hypertext, not to develop
Application User Interfaces. XHTML lacks sophisticated components for user input,
interaction, and layout. The Backbase Tag Library is adding these building blocks.
Let us take a closer look.

The Backbase Tag Library
The focus of this chapter is the Backbase Tag Library (BTL). BTL concerns itself
with the visible aspect of a web application user interface. For its dynamic behavior,
we need JavaScript, or the XML Execution Language and Command Functions tag
libraries that we will cover in the next chapter.

When you are developing a user interface, you will find that you are solving the
same problems over and over again:

•	 Create a layout
•	 Show a menu of options
•	 Have tabs to structure the space on a page
•	 Provide pop ups and tool tips
•	 Do form validation

These are just a few examples from a long list. The BTL is a set of UI widgets that
can be used out of the box, which are extensible, and should appear the same in all
browsers. By using these, you should be able to develop your website faster with a
more robust result.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[50]

Backbase Tag Library widget overview
There are eight categories of BTL widgets for every aspect of layout and user
interaction. If that is not enough, you can extend the BTL widgets to add new
behavior or new looks. You can also develop your own widgets as we'll see in
detail in the chapter about the Tag Definition Language.

The following schema shows an overview of the widgets that are available:

There is also a ninth category of BTL elements. They are special because they can
appear as attributes on other tags to specify extra behaviors that can be applied to
any UI element. An example of such a behavior is drag-and-drop. We will cover
drag-and-drop in Chapter 6.

If you are using the Backbase Explorer that we encountered in the previous chapter
to find examples for the BTL widgets (http://demo.backbase.com/explorer/), the
schema shown above may be a handy reference to find widgets you are looking for.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[51]

We always use the b prefix when referring to BTL widgets, although you can use
whatever (nonconflicting) prefix you want.

The BTL abstract elements
If you are interested mainly in learning what BTL widgets look like, then the subject
of this section about abstract elements maybe a little too abstract. Feel free to skip it,
but before you do, take a look at the picture of the inheritance relationships between
abstract elements. The picture shows the attributes that are available on many
BTL elements.

Most of these attributes will be familiar to you and remind you of a
not so distant past when you were still coding HTML instead of XHTML.
While coding XHTML instead of HTML, you should use class and
style instead of more specific attributes like width or margin.
However, while using BTL, you must partly unlearn this for the BTL
elements because using class or style could upset the styling that is
done for the BTL elements, to make them look as they do.

Abstract element inheritance structure
The BTL markup language was developed using the Backbase Tag Definition
Language. This means that BTL widgets are objects that can inherit properties
from other TDL objects. It also means that you are able to extend the BTL objects
into customized objects suitable for your application.

The BTL objects that we are looking at in this chapter, the layout objects, inherit from
more basic, abstract objects. It is useful to look at some of these abstract elements
because their attributes can be used by inheritance on the layout objects. The BTL
elements we will be looking at are element, containerElement, dimensionElement,
postionElement, and visualElement. All layout BTL elements inherit from these.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[52]

Here is a diagram of the inheritance structure:

element

id
xml:base

visualElement

class
display
opacity
style
title
visibility

positionElement

bottom
left
margin
position
right
top
zIndex

dimensionElement

height
width

containerElement

backgroundColor
overflow
padding

card

selected

cardStack

loop0..*

For those of you who are not so familiar with object-oriented models: the picture
says that element is the object from which all others inherit. Therefore, for all BTL
widgets, you can use the id and xml:base attributes, because these are defined on
the element element.

The Backbase Tag Definition Language supports multiple inheritance. Therefore,
a cardStack element can use the attributes of both dimensionElement and
positionElement, and by looking further up in the tree, also of visualElement
and element.

The relationship between card and cardStack says that a cardStack can contain
zero or more card elements.

The picture does not describe the methods available. The only public methods that
are interesting, belong to cardStack, which has the next and previous methods.

Now, let's look at some of the BTL elements in detail:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[53]

element
Base element from which all the elements in the BTL namespace are derived.

Attribute Description
id Unique ID of the element.
xml:base Specifies a base URI other than the base URI of the document or external

entity. The value of this attribute is interpreted as a URI reference.

Although element has no parent within the BTL namespace, it derives from
the element JavaScript object in the DOM Core of the Backbase framework. The
element JavaScript object implements the node interface, which means that all
familiar DOM-related attributes and methods to append and remove children, and
to navigate the DOM tree, are available. See the Backbase Reference for more details.

visualElement
An element from which all the visual elements in the BTL namespace are derived.
This element takes care of some of the visual and interaction aspects.

visualElement inherits from element.

Attribute Description
class Used to set CSS classes to BTL elements. It is not recommended that this

attribute be used, as it might break the styling of controls. More specific
attributes are implemented to take care of certain styling properties. Font-
related styling can be used safely.

display Sets how the element is displayed. It works like the CSS display property.
Because setting display can be tricky in some cases, the true and false
values have been added. False does exactly the same as none, and true will
reset the display property of the viewNode. The result is that the element is
displayed according to the default rules or according to settings specified in
the CSS classes.

opacity Sets the opacity of the element, allowing you to see through it. It works like
the CSS3 opacity property. It (decimal) ranges between 0.0 (not visible) to
1.0 (100% visible).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[54]

Attribute Description
style Used to set styles to BTL elements. It is not recommended that this attribute

be used because it might break the styling of controls. More specific attributes
are implemented to take care of certain styling properties. Font-related
styling can be used safely.

title Sets the title of the element.
visibility Sets the visibility of the element. It works like the CSS visibility property.

As opposed to setting the display, setting the visibility of the element does
not change its dimensions. It will not disappear from the layout.

positionElement
This element implements attributes that can position the elements that inherit
from it.

positionElement inherits from visualElement.

Attribute Description
bottom Sets the distance from the bottom of the element to the bottom of the offset

parent. It works like the CSS bottom property. You must add the proper CSS
unit type.

left Sets the distance from the left side of the element to the left side of the offset
parent. It works like the CSS left property. You must add the proper unit
type.

margin Sets the margin around the element. It works like the CSS margin property.
You must add the proper unit type.

position Sets the position of the element. It works like the CSS position property.
right Sets the distance from the right side of the element to the right side of the offset

parent. It works like the CSS right property. You must add the proper CSS
unit type (for example, px).

top Sets the distance from the top of the element to the top of the offset parent. It
works like the CSS top property. You must add the proper CSS unit type (for
example, px).

zIndex Sets the z-index of the element. It works like the CSS z-index property.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[55]

dimensionElement
This element implements attributes that set the dimensions of the elements that
inherit from it.

dimensionElement inherits from visualElement.

Attribute Description
height Sets the height of the widget. The widget height is relative to the height

of its container.
width Sets the width of the widget. The widget width is relative to the width

of its container.

cardStack and card
There is a set of layout widgets that have a container—containment relationship.
They use cardStack and card to inherit from. The widgets involved are:

•	 accordion and accordionItem
•	 deck and deckItem
•	 tabBox and tab

cardStack is the parent element for all widgets that represent a stack of cards.
It allows users to navigate through items (cards). The content of the card on top
will be visible.

cardStack has one attribute and a set of methods that can be called to navigate
through the stack.

cardStack inherits from disableElement, dimensionElement,
and positionElement.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[56]

Attribute Description
loop When set to true, the previous or next methods will, when called,

continue to select either the last or first item. If set to false, these methods
will not continue to select an item when reaching the beginning or end of
the list.

Method Description
next Selects the next item in the cardStack (that is not disabled). If the loop

attribute is set to false, it will not select an item when the end of the list is
reached. If set to true, it will continue with the first item in the list.

previous Selects the previous item in the cardStack (that is not disabled). If the loop
attribute is set to false, it will not select an item when the beginning of the
list is reached. If set to true, it will continue with the last item in the list.

A card is an abstract element that provides the ability to enable and disable a
widget. When the selected attribute is set to true, this card is the one that is
shown when the cardStack is loaded into the page.

card inherits from disableElement, dimensionElement,
and containerElement.

Attribute Description
selected The selected state of the item (true/false).

This section does not sum up all the basic abstract elements implemented in BTL.
For example, disableElement or focusableElement may interest you, for which
you can find the details, as always, in the Reference.

There is another set of abstract elements that you will find mentioned in the
Reference—the base element for each widget. Many widgets have a generic
implementation that is common to both the system and the chameleon skin,
and then specific implementations for each skin. The file structure for the
tabBox widget, for example, is as follows:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[57]

For both the chameleon and the system skin, there is a tabBox BTL object, which
inherits from the tabBoxBase BTL object. In fact, it is the tabBoxBase object that
inherits from all basic elements as described before. The tabBox itself conveniently
inherits everything from its base object.

Just for fun, we created the previous picture from the following code snippet:

<b:tree xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl">
 <b:treeBranch open="true">
 <b:label>../www.backbase.com.2006.btl/tabBox</b:label>
 <b:treeBranch label="chameleon">
 <b:treeBranch label="media" open="true">
 <b:treeLeaf label="tabHead.png" />
 </b:treeBranch>
 <b:treeLeaf label="tabBox.xml" />
 </b:treeBranch>
 <b:treeBranch label="system" open="true">
 <b:treeLeaf label="tabBox.xml" />
 </b:treeBranch>
 <b:treeLeaf label="tabBoxBase.xml" />
 </b:treeBranch>
</b:tree>

This code hardly needs explanation by now.

From now on, we will usually take the existence of the base element for granted
and ignore it in our description of inheritance relationships.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[58]

Now, we have all the background we need to know how the layout widgets are
constructed. With this in mind, you can use the information in the next section
without needing to look into the Backbase API Reference because we will mention
the specific attributes for each widget. By looking at the inheritance information that
we showed earlier, you will know what inherited attributes you can use.

The layout widgets
BTL has a number of widgets that are intended to perform the most common
layout tasks while developing an application user interface.

We will describe these widgets in this section and give you examples of their use.
You can see the widgets in action by using the BTL Exerciser described at the end
of this chapter.

We will look at the layout widgets in an alphabetical order. Therefore, the first one
is accordion.

Accordion
An accordion efficiently groups together content, only showing the selected
accordionItem.

accordion and accordionItem inherit from cardStack and
card. They do not have local attributes or methods.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[59]

When a user clicks on one of the header panes in an accordion, the body pane of
the accordion is revealed. All header elements are always visible. The sequence of
panes is determined by the order of the child accordionItem elements. By setting
the selected attribute to true, you can determine which accordionItem is selected
when the widget is put on the page.

An accordion always has one and only one item open. If you open another item, the
item that was open before will be automatically closed. The navBox is very similar to
an accordion in appearance, but it can have as many items open as you like.

The accordion has previous and next methods (inherited from cardStack),
to navigate between accordionItems. Note the loop attribute (inherited from
cardStack) set on the accordion. When the loop attribute is set to a value of
true, the previous and next methods will loop after reaching the first/last
accordionItem.

The example that follows shows an accordion. The first snippet shows the
accordion itself, the second snippet shows two buttons with click event handlers.
These buttons can be used as an alternative way to navigate the accordion.

Note the use of the b:label element instead of the label attribute in the third
accordionItem. This element allows for inserting more than just text into the label,
for example, icons. Here's the code snippet that shows the accordion:

<b:accordion loop="true" width="250px">
 <b:accordionItem label="Beloved">
 <p>Author - Toni Morrison</p>
 <p> ... </p>
 </b:accordionItem>
 <b:accordionItem label="Their Eyes Were Watching God"
 selected="true">
 <p>Author - Zora Neale Hurston</p>
 <p> ... </p>
 </b:accordionItem>
 <b:accordionItem>
 <b:label>The Color Purple</b:label>
 <p>Author - Alice Walker</p>
 <p> ... </p>
 </b:accordionItem>
</b:accordion>

In the next snippet, each of the two buttons contains an XEL event handler (using
the handler tag). When the button is clicked, the event is handled, and previous
and next methods are called. These methods belong to the accordion. They allow
navigation back and forward through the accordion items.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[60]

<b:button>
 Previous accordionItem
 <e:handler event="click">
 <e:call with="preceding::b:accordion[last()]"
 method="previous" />
 </e:handler>
</b:button>
<b:button>
 Next accordionItem
 <e:handler event="click">
 <e:call with="preceding::b:accordion[last()]"
 method="next" />
 </e:handler>
</b:button>

Look at the e:call statements in the event handlers for the buttons. The with
attribute has the value preceding::b:accordion[last()] in both cases. This is
an XPath expression that says "Find the set of elements in the DOM tree before this
button element. Of these, select all accordions in the b namespace. Of these, find the
last element".

The support for XPath expressions is an important and powerful
feature of the Backbase framework. Many attributes in the Backbase
markup languages can have an XPath expression as their value. You
can find details about XPath in the API Reference and the Application
Development Guide. We will see more of it in the next chapter when we
talk about XEL and commands.

Why is this complicated XPath expression preferable over the more simple XPath
expression: id('my-accordion')? Well, in that case, I need to give the accordion an
ID. Imagine that you have more than one accordion in your application UI, or more
applications with accordion elements. You could then extend the accordion into
a new widget that always has the previous and next buttons, and you would not
have the problem of coping with id attributes in multiple accordion elements that
cannot have the same value.

There is also a disadvantage. If you were not sure about the relative position of the
buttons and the accordion, it would be difficult to use an XPath expression, while if
you were using an ID, it would not matter.

A last remark before we look at the next widget. If you have many elements, such as
a number of input fields in your accordionItems, then you may experience timing
problems when the accordion is loaded. Look at the tips section later in this chapter
for a solution to this problem.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[61]

Box
The box widget allows you to create a styled container for generic content. Use
this to group components and define layout.

box inherits from containerElement, dimensionElement, and
positionElement. box does not have local attributes or methods.

The box widget accepts text, images, and other BTL widgets.

The box is very similar to a div element. It has a default styling of a darker
background. Here's the code snippet that shows the box widget:

<b:box width="300px" height="75px">
 The last book I read was:
 <div>
 <input type="text"
 size="25" value="The Sound and the Fury"
 name="lastBook"/>
 <button>Confirm</button>
 </div>
</b:box>

deck
The deck widget presents multiple panes, one at a time of which is visible, just
like a deck of playing cards.

deck and deckItem inherit from cardStack and card
respectively. They do not have local attributes or methods.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[62]

Each pane in the deck is called a deckItem (it is really a card). The content of each
deckItem element determines the content of the deck. The order of deckItems in
the deck represents the sequence in which they will be displayed.

While the deck has built-in previous and next methods (inherited from cardStack),
you must create the buttons and handlers that trigger navigation between card
elements in the deck. You will also be responsible for any other functionality that
must occur while navigating between cards.

Here is a simple example of a deck with two buttons that navigate to the next and
previous deckItem in the deck. One of the buttons is written in XEL, while the
other is written in JavaScript.

The JavaScript version uses an XPath expression to find the deck. The JavaScript
that you could use to find the element by ID is commented out.

<h1>Booker Prize Winners:</h1>
<b:deck id="mydeck" loop="true">
 <b:deckItem>2002 - Yann Martel</b:deckItem>
 <b:deckItem>2003 - DBC Pierre</b:deckItem>
 <b:deckItem>2004 - Alan Hollinghurst</b:deckItem>
 <b:deckItem>2005 - John Banville</b:deckItem>
 <b:deckItem selected="true">2006 - Kiran Desai</b:deckItem>
</b:deck>
<button>Previous Card
 <e:handler event="click">
 <e:call with="id('mydeck')" method="previous"/>
 </e:handler>
</button>
<button>Next Card
 <e:handler event="click" type="text/javascript">
 //var oDeck = bb.document.getElementById('mydeck');
 var oDeck = this.selectSingleNode('preceding::b:deck[1]');
 oDeck.next();
 </e:handler>
</button>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[63]

navBox
The navBox widget shows and hides levels of sub-navigation and further detail.
Its appearance is the same as an accordionItem.

navBox inherits from containerElement, dimensionElement,
and positionElement.
navBox also inherits from focusableElement, iconElement,
and labelImplementor.

Attribute Description
open If true, the widget will be open initially.
Method Description
open Opens the widget.
close Closes the widget.

Each navBox has a header widget (defined by the value of the label attribute) and
related content, which can be static or dynamic text, links, images, or other widgets.
Clicking on the head widget expands or collapses the body widget with the related
content as shown in the following screenshot:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[64]

The navBox widget can expand multiple topics simultaneously. If you want to have
only one topic visible at a time, you can use an accordion or a tabBox. Unlike the
accordion, each navBox operates completely independent of the other, therefore, a
set of navBox elements do not need a container like the accordionItem elements do.

Here is an example:

<b:navBox width="200px"
label="W, or, the Memory of childhood" open="false">

W ou le souvenir d'enfance, (W, or, the Memory of Childhood, 1975)
is a semi-autobiographical work, hard to classify. Two alternating
narratives make up the volume, one a fictional outline of a
totalitarian island country called "W", patterned partly on life in
a concentration camp, and the second, descriptions of childhood,
that merge towards the end when the common theme of the Holocaust is
explained.
</b:navBox>

<b:navBox width="200px" label="A Void" open="false">

Perec is also noted for his constrained writing: his 300 page novel A
Void (La disparition, 1969) is a lipogram, written without ever using
the letter "e". It has been translated into English by Gilbert Adair
under the title A Void (1994).
</b:navBox>

<b:navBox width="200px" label="Life: A User's Manual">

In 1978, Perec won the prix Médicis for Life: A User's Manual (French
title, La Vie mode d'emploi), possibly his best-known work. The
99 chapters of this 600 page piece move like a knight's tour of a
chessboard around the room plan of a Paris apartment, describing the
rooms and stairwell and telling the stories of the inhabitants.
</b:navBox>

panelSet
The panelSet widget partitions the screen layout into rows and columns.

panelSet inherits from dimensionElement and positionElement.
See the table below for the attributes that are specific for panelSet.
panel inherits from containerElement and does not have local
attributes or methods.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[65]

The panelSet has a number of specific attributes:

Attribute Description
columns Specifies the column dimensions, defining values, or a

space-separated set of values in %, px, pc, pt, em, ex, in, cm, or mm.
You can also use the wildcard asterisk "*" sign to fill the remaining
space. You can use rows and columns attributes simultaneously to
create a panel matrix.

fullScreen Tells the panelSet to expand its area to the browser view port.
rows Specifies the row dimensions, defining values, or a space-separated

set of values in %, px, pc, pt, em, ex, in, cm, or mm. You can also use
the wildcard asterisk "*" sign to fill the remaining space. You can use
rows and columns attributes simultaneously to create a panel matrix.

splitter The panelSet can be resized using a splitter when this attribute is
set to true.

splitterSize Size of the splitter between panels in the panelSet.

When subdividing a panelSet, you use the panel element, or you can use another
panelSet widget to further subdivide that row/column. You can specify a panelSet
to have rows, columns, or both. By using the splitter="true" attribute/value pair,
you can add a resizable border to your panelSet.

first row

second row, first column second row, second column

third row
third row
third row
third row

The orientation of the panelSet can be set using either the rows or columns attribute.

The number of rows or columns is defined by the number of space-separated unit
values in the attribute. For instance, we create two columns by setting the columns
attribute to "200px 600px". To create three columns, we should have set the attribute
value to "200px 200px 600px". For five columns, you can use "50px 100px 100px
100px 50px". If not specified differently, the width of the panelSet widget will
automatically adjust to the sum of the column widths.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[66]

Note that a panelSet with a width of 800px will have an empty space on the right
for users with a screen resolution of 1024x768 or higher. This can be solved by using
the "*" wildcard. This way, the row or column will fill up its container in the browser
window. The asterisk wildcard can only be used once within the panelSet. For
example, the five columns panelSet can also use "50px 100px * 100px 50px", where
the third column will automatically adjust its width to ensure that the panelSet
occupies the entire container area.

The panel and panelSet widgets behave like a div tag. By themselves, they do not
have width or height. Therefore, you must add some styling to make a panelSet
visible. A simple way to achieve visibility is to add the fullScreen="true" to the
panelSet tag. Another option is to surround the panelSet with a div. For example:

<div style="width:600px; height:400px;">

Warning: Microsoft Internet Explorer performs slower if ancestor
elements of a panelSet have the style attribute set to height: 100%.
To resolve this, for the parent elements that have style="height:
100%", add the style attribute overflow: auto or overflow: hidden.

The panel tag represents the column or row as specified by the columns or rows
attributes of panelSet. Therefore, it is important that there are as many panel tags
nested in the panelSet as there are defined rows or columns. Child elements of the
panel tag constitute the content of the panel.

It is also possible to use a nested panelSet tag instead of the panel tag. Be aware
that there should eventually be as many panel tags as there are columns or rows
defined in (nested) panelSets.

Here is a panelSet with panels example:

In the following example, there are three rows, where the second row is divided
into two columns:

<div style="width:600px; height:200px;">
<b:panelSet rows="50px * 60px" splitter="true">
 <b:panel backgroundColor="#A9E9E2">first row</b:panel>
 <b:panelSet columns="30% *">
 <b:panel backgroundColor="#99FF99">
 second row, first column
 </b:panel>
 <b:panel backgroundColor="#FFCCFF">
 second row, second column
 </b:panel>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[67]

 </b:panelSet>
 <b:panel backgroundColor="#DF8E8E">
 third row

 third row

 third row

 third row
 </b:panel>
</b:panelSet>
</div>

tabBox
A tabBox is a container for multiple items that can be selected through tabs.

tabBox and tab inherit from cardStack and card.
tabBox is focusable by inheriting from focusableElement.
tab can have a label by inheriting from labelImplementor.
tabBox and tab do not have local attributes or methods.

This is how a tabBox widget looks:

When a user clicks on one of the header panes in a tabBox widget, the body pane of
the tabBox is revealed. All the header elements are always visible. The sequence of
panes is determined by the order of the child tab elements. The value of the label
attribute determines the text header of each tab.

The tabBox is functionally similar to an accordion. The difference between the two
widgets is their visual presentation. While the tabBox has a horizontal orientation that
looks like a Rolodex or tabbed address book, the accordion has a vertical orientation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[68]

You can navigate between tabs by using the left and right arrow keys.

Here is a BTL tabBox example. Note how you can put other XHTML or BTL
widgets inside a tab:

<b:tabBox>
 <b:tab label="Person">
 <div class="container">
 <table class="form-table">
 <tbody>
 <tr>
 <!-- omitted code: input form fields,
 we just leave the birth date to show
 the b:calendar -->
 <tr>
 <td class="form-left">
 <label
 for="input_person_birth_date">
 Birth Date:</label>
 </td>
 <td class="form-right">
 <b:calendar
 name="person_birth_date"
 id="input_person_birth_date"/>
 </td>
 </tr>
 </tr>
 </tbody>
 </table>
 </div>
 </b:tab>
 <b:tab label="Address"/> <!-- this tab is empty -->
</b:tabBox>

tabBox is the last of the layout widgets. So far, we have concentrated on the visual
and static aspects of a web application page. What happens and how to code it when
a user interacts with your application, will be shown in detail in the next chapter. We
conclude the description of widgets in this chapter by showing a few utility elements.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[69]

The BTL utility elements
There are a number of elements in the BTL library that only have a utilitarian
purpose. Here is a short overview of these. In particular, you will see populator
used in our BTL Exerciser sample application to lazily load tab panel contents.

codeHighlighter
This is an internal element that you can use to show code in a nice way. All examples
in the API Reference are shown using the highlighter. For example, see the following
section about the label widget for how the picture of the label example is followed
by the highlighted source code. The highlighter can be used as follows:

<b:codeHighlighter>
 <!-- your valid piece of XML here -->
</b:codeHighlighter>

label
Many BTL widgets support a label attribute, where, for example, you can specify a
simple text to be shown in a title bar. If you need more than simple text, you can use
the label element, which allows markup and icon images within your label.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[70]

populator
populator is a utility widget that implements lazy loading, allowing content to be
loaded upon request.

Attribute Description
events Default: "select".

Space-separated list of events that will trigger loading.
type Default: "once".

Specifies the behavior of lazy loading.
If set to once, it will load the content only once. This is useful when
working with static content that will not change. Setting this attribute
to always will make the lazy loader connect to the server every time
one of the events occur to which the populator element is listening.

url Specifies the URL that will be loaded.
Method Description
populate Loads the resource specified in the url attribute.

A custom loading message can be placed inside the populator element.

This element is often used in conjunction with a tabBox, to load contents of a tab
panel on request.

The loaded contents will be appended after the populator element. Any previously
loaded contents will be removed.

skinSettings
This element can be used to set a number of styling attributes of the chameleon
skin. We will give more detail about these settings in the section about styling
later in this chapter.

xhtml and xml
xhtml is a tag that can be used within a Backbase area to signal the Backbase runtime
engine that the contents between the start and end tag do not need to be processed.
This is useful to optimize performance if you have a block of plain XHTML code.
The following code snippet shows the use of xhtml tag:

<p style="border:1px solid blue">
 This XHTML code is processed by the Backbase Engine.
</p>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[71]

<b:xhtml>
 <p style="border:1px solid green">
 This XHTML code is processed by the client browser.
 </p>
</b:xhtml>

xml is a tag that does the opposite. It can be used for escaping back into an area that
is processed by the Backbase Client Runtime, when used within the BTL xhtml tag.

You can place xml elements within an xhtml element to force processing by the
Client Runtime.

Several attributes that affect the style of the xml element are available. In the
example, backgroundColor is used. To make the background color visible,
style="display: block;" must be specified.

<b:xhtml>
 <p>This is outside the Backbase space</p>
 <b:xml backgroundColor="yellow" style="display: block;">
 <p>This is inside the Backbase space</p>
 <b:calendar mode="inline" />
 </b:xml>
 <p>This is outside the Backbase space</p>
</b:xhtml>

Styling techniques for GUI widgets
This section talks about CSS and about the two skins available in the Backbase
framework—the chameleon skin and the system skin.

We assume that you have experience working with CSS (Cascading Style Sheets).
You probably did style your web pages by coloring texts and by filling areas with
background images, or by drawing borders. Another aspect of using CSS is to specify
layout for HTML, which you probably are familiar with too.

In this section, we will cover both aspects, that is, using CSS in Backbase applications
as well as other facilities that are available.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[72]

Using CSS
CSS helps you to separate visual aspects of the application from its content markup.
Generally speaking, you can use CSS to style many properties of your application
markup, such as colors, fonts, sizes, positioning, and so on. The following example
shows how an ID selector was used to give the calendar component a width:

<style type="text/css">
 #myCalendar { width: 200px; }
</style>
<b:calendar id="myCalendar" />

Keep in mind that Internet Explorer doesn't support multiple class
selectors. So, creating a rule .myclass1 .myclass2 will be applied
only to elements that have either myclass1 and/or myclass2
classes specified.

Styling BTL components can also be done with CSS. However, here you need to
follow certain conventions. Let's take a look at an example:

<style type="text/css">
 .btl-calendar-input { color: red; }
</style>
<b:calendar value="10/03/2009" />

Here, we gave a red color to the text that displays the calendar value. The class
selector we used was constructed by concatenating the following parts with a -
character: btl, indicating the BTL component namespace, calendar for the name
of the component, and input, indicating that this style is to be applied to the
component's input field.

You can style other BTL components in a similar way.

Skinning
When a set of widgets share a common skin, a consistent look and feel is propagated
throughout the web application.

The Backbase Client Framework provides two skins for all renderable BTL
elements: a system skin, which has the same look and feel as the Windows XP
classic skin, and a modern, configurable chameleon skin. This is how a slider
widget looks in system skin:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[73]

Here's how the same slider widget looks in chameleon skin:

You can change the skin used by altering the backbase/4_4_1/bindings/config.
xml file. In this file, alter the value of the href attribute in the include statement to
reflect the system skin file (config.xhtml_btl.system.xml) or the chameleon skin
file (config.xhtml_btl.chameleon.xml).

For example, to change the skin to a chameleon skin, you can use this code:

<include xmlns="http://www.w3.org/2001/XInclude"
 href="config.xhtml_btl.chameleon.xml" />

The Backbase Client Framework provides a few different options to alter the look
and feel of Backbase widgets. The application developer can alter the chameleon
skin simply by updating attribute values in the skin settings.

The BTL skinSettings widget
When using the chameleon skin, a tag called skinSettings is available. This
tag has attributes that allow you to alter the background and text colors of the
chameleon skin.

The slider, in this example, will be yellow; the button will have a purple
border when pressed, and the calendar will show a variety of colors when
dates are clicked:

<b:skinSettings activeText="cyan" highlightText="green"
activeBackground="yellow" activeBorder="purple" />
 <p>
 <b:slider id="mySlider"
 max="30" min="0" step="2" value="15" />
 </p>
 <p>
 <b:button> This is a button </b:button>
 </p>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[74]

 <p>
 <b:calendar mode="inline" />
 </p>

Default colors are represented by the default values of attributes of the
skinSettings.xml widget. By changing these attributes, you alter the
stylesheet settings.

Refer to the API Reference for the default values of the chameleon skin.

Many features of the Backbase chameleon skin cannot be customized as easily as it
may seem from this story. One reason is the use of background images and the other
reason is that the intricate interplay of the various CSS settings can easily be upset if
you change things.

If you don't want to use the chameleon skin, or you only want to alter a subset
of the chameleon skin widgets, or want to create your own skin, you will
have to extend widget(s) using TDL. Refer to the Widget Development Guide
for more information.

Height problems
When putting GUI widgets on a page, it may happen that they look different than
what you expected in the browser. Especially, the panelSet has a tendency to not
appear at all, causing frustration to developers. Let's look at the cause and its solutions.

It can happen that the container element of the widget does not have a height set.
In that case, the container will be sized according to the contents of the container.
By default many BTL widgets do have a height of 100%, but if the height of the
container is not set, this may be 100% of zero. The widget will collapse and will not
be visible.

Solutions to these problems are as follows:

•	 Don't use height: 100% but use a fixed height.
•	 Set a height to the container. While using 100%, please understand that

you're setting a size relative to the (offset) parent. You are actively setting a
relative size. If you are not aware of the size of the (offset) parent, you may
have to start with setting the height of the html element to 100%.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[75]

Part of the issue is the browser behavior. Take the following test case:

<!-- -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <style type="text/css">
 html { background-color: blue; }
 body { background-color: red; }
 </style>
 </head>
 <body> </body>
</html>

You will find that in Firefox, the color you see will be blue. In Internet Explorer, in
quirks mode, it is red. In IE, in standards mode, it will be blue, but with a red bar
(even if there is no content in the body). The conclusion is that the body does not
have a height initially (the content would determine the height). A height of 100% of
something that has no height will result in no height.

The next step is to give the body a height. If we want "full screen" behavior, we will
use 100%. However, the screen will still only show a blue background. Setting a
height to the html element quickly solves this.

There is much more to tell about skinning and ways to change the looks of BTL
elements. When appropriate, we will add some more information about this subject
in our examples.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[76]

A BTL Exerciser
In this section, we introduce an example application, a BTL Exerciser, which you
can use to execute the BTL examples shown in this chapter and later chapters. This
application uses functionality learned in this chapter and it gives a simple way to see
what the examples that are described in this chapter look like when executed. Each
of the examples is stored in a separate file. This makes it easy to look at the code or
to add your own examples. The picture below shows the application showing the
tabBox example:

The BTL Exerciser application builds upon the Basic Layout application that we
made in the previous chapter. If you want to follow along building this application,
then make a copy of the myApp1 folder in the same examples folder, and name it
btlSamples, or some other name that you like better.

The application structure
The structure of the application is similar to what we had in the first chapter, while
showing the basic application layout.

In the btlSamples folder, you will see the index.html file that contains the include
statements for the Backbase framework libraries and also, there is the app.xml file,
which contains the basic application layout.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[77]

We have some subfolders in the examples folder:

•	 resources: contains application-specific widgets, CSS files, and images.
•	 panels: contains the definitions for the tab panels, as we will see.
•	 The BTL examples are contained in two folders: descriptions and

examples. Their name says it all. You will find files in these with names
such as btl_accordion.xml, btl_balloon.xml, and so on.

See the picture below for an overview of this structure. The Backbase framework
does not enforce a directory structure such as, for example, the Ruby on Rails
framework does. However, we recommend setting a structure for yourself that
allows you and your co-workers to find all application-related items quickly.

The starting point to find out how an application works is of course index.html.
Therefore, we will look at its content now.

index.html
Make sure that the code for the Backbase area in index.html looks like this:

<script type="text/backbase+xml" style="height:100%">
 <xi:include
 href="../../backbase/4_4_1/bindings/config.xml" />
 <xi:include href="resources/bindings/squared.xml" />
 <xi:include href="app.xml" />
</script>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[78]

In addition to the config.xml file that is there to include the Backbase widgets and
tag libraries, we also include resources/bindings/squared.xml and app.xml. The
squared.xml file is there to include our own custom built widgets. As you will see
shortly, we used a widget that we built for this application. We will explain how
to build custom widgets and how this works in Chapter 7, which is about the Tag
Definition Language. For now, just copy the resources folder from the sample code
provided with this book.

app.xml
The app.xml file contains the main user interface layout for the application. We
have chosen to make a more complex layout than in the "Basic Layout" application
because we needed space for some fifty examples. We gave each category of BTL
widgets its own tab, and on each tab panel there is a layout like the one in the "Basic
Layout". The code looks as follows:

<div xmlns="http://www.w3.org/1999/xhtml"
xmlns:b="http://www.backbase.com/2006/btl" style="height: 100%;">
 <div id="appHeader">
 <div class="appHeaderText">
 Squared Circles - BTL Examples</div>
 </div>
 <b:tabBox height="100%">
 <b:tab class="mainTab" label="Layout">
 <b:populator
 events="DOMNodeInsertedIntoDocument select"
 url="panels/layout.xml" />
 </b:tab>
 <b:tab class="mainTab" label="Info & Notify">
 <b:populator url="panels/infoNotify.xml" />
 </b:tab>
 <b:tab class="mainTab" label="Actions & Menus">
 <b:populator url="panels/actionMenu.xml" />
 </b:tab>
 <b:tab class="mainTab" label="Forms">
 <b:populator url="panels/forms.xml" />
 </b:tab>
 <b:tab class="mainTab" label="Multimedia">
 <b:populator url="panels/multimedia.xml" />
 </b:tab>
 <b:tab class="mainTab" label="Windows & Dialogs">
 <b:populator url="panels/windowsDialogs.xml" />
 </b:tab>
 </b:tabBox>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[79]

For the tabBox used in our application, the tab panel contents are not coded directly,
but they are loaded from another file with a populator element. The populator
element differs from XInclude because the file is loaded in a lazy manner—only
when you click on a tab to select it, are the contents loaded. In our case, the contents
will be loaded once because we did not specify a type attribute and therefore, its
default value is assumed to be once.

Note that for the first tab we also specified an events attribute, which shows a
DOMNodeInsertedIntoDocument value, in addition to the select value, which is
the default. This is because the select event is not fired when the tabBox is loaded
for the tab that is the selected tab, by default the first one.

Tab panel content
Let's look at the content of one of the tab panels. The content of all of them is very
similar. We chose the panel for the multimedia category of widgets. Here's the
content of the tab panel:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl" style="height: 100%;">
 <b:panelSet columns="200px *" splitter="true">
 <b:panel>
 <xi:include href="menus/multimediaMenu.xml" />
 </b:panel>
 <b:panel class="btl-border-left">
 <div class="examplePanel">
 <p> Flash and Applets. </p>
 </div>
 </b:panel>
 </b:panelSet>
</div>

Each tab panel contains its own panelSet to create its layout. Each panelSet uses
a layout that is very similar to the basic layout that we described in Chapter 1.

We have chosen here to load the real content of the left part of the panel with an
XInclude. This means that the code is loaded statically when the tabBox is loaded
into the web application user interface. If the user interface of the application would
have many tabs of which you expect only a few will be used, then you should use a
populator element instead to load the contents more dynamically. You should also
use it if the contents of each tab are very large or if the contents should be refreshed
whenever the tab is selected.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[80]

You could argue that the use of XInclude here is modularization taken too far,
which results in too many small files. This is a matter of choice. Try to experiment
whatever size of files and modules works for you to make the code more clear to
read and therefore, easier to maintain. Recognize though, that you indeed have a
choice without resorting to server-side inclusion of code fragments, for example,
by PHP or JSP processing.

The menu in each tab panel
In the example above, you saw a reference to the menu file to be included. What does
it look like? Let us take as example the menus/infoNotifyMenu.xml file. It contains
the code that shows a menu with a set of navBox widgets, one for each BTL widget in
the category that the tab panel represents:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl">
 <b:navBox label="balloon" open="false">
 <sq:navLink example="btl_balloon" />
 </b:navBox>
 <b:navBox label="infoBox" open="false">
 <sq:navLink example="btl_infoBox" />
 </b:navBox>
 <b:navBox label="toolTip" open="false">
 <sq:navLink example="btl_toolTip" />
 </b:navBox>
</div>

We have chosen a set of navBox elements over an accordion because we wanted
all navBox elements to be closed, whereas for an accordion there will always be
one accordionItem open.

The code looks simple enough, but what does <sq:navLink example="btl_infoBox"
/> mean? Or the other navLink elements? Well, think about what we would like to see
when you click on a navBox tab:

•	 The navBox should open and we would like some descriptive text to appear
for each example that is available for the particular BTL widget that is in the
title of the navBox.

•	 A standard text will be appended to each description: click here to see
the example...

•	 When you click on the click here text, the example should be loaded
and shown in the panel to the right of the menu area.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 2

[81]

The following code snippet implements this for the case when we want to look at the
infoBox test case:

<div>
 <b:populator events="DOMNodeInsertedIntoDocument"
 url="../../descriptions/btl_infoBox.xml" />

 click here to see the example ...
 <e:handler event="click">
 <c:load url="../../examples/btl_infoBox.xml"
 destination="following::b:panel[1]"
 mode="replaceChildren" />
 </e:handler>

</div>

Our sq:navLink is an encapsulation into a widget that we made ourselves for the
code in the snippet above. Instead of having to copy the code above fifty times,
each with slightly different content, we now only have to code one line for each of
the widgets. We will explain more about it in Chapter 7, which describes the Tag
Definition Language.

The code in the snippet does the following:

•	 Load the description for the infoBox example underneath the navBox header
using a populator widget.

•	 Load the code for the example itself in the panel on the right. The
populator does not allow us to specify a target for the contents of the file
to be loaded, therefore, we are using the more powerful c:load command
to accomplish this. We will explain the Backbase commands including
c:load in the next chapter.

You have already seen some of the code for the examples and their descriptions.
Therefore, we assume that you already know what the files to be loaded, which
are in the descriptions and the examples folders, will look like.

We can conclude that we have built with very simple means a rather extensive and
dynamic application that shows the power of Backbase Tag Library.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

User Interface Development

[82]

Summary
In this chapter, we took a closer look at the Backbase Tag Library and in particular
the layout widgets.

The proper layout of an application user interface involves styling with CSS.
We described how CSS can interact with the BTL widgets and how you can go
about styling in your web application. We created a web application that can show
all BTL examples, basically just using the BTL layout widgets.

In the next chapter, we will give more detail about the execution logic of a web
application—commands and XEL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic
In this section, we will learn the basic concepts of scripting with the Backbase
framework. First, we will look into the Application Programming Model and see how
simple and intuitive it is. Then, we will present an overview of technologies and APIs
available, including specific Backbase event handling. After that we will get acquainted
with XML Execution Language (XEL), a markup-based programming language that
can be used instead of, or together with, JavaScript. At the end of this section, we will
provide some notes about XPath because XPath expressions can be used as value for
many XEL attributes. Then, we will be ready to dig into details of the built-in functions
that the Backbase framework provides—the Command Functions.

At the end of the chapter, we will present the BTL widgets in the Info and Notify
BTL widgets section, followed by a sample application that is very similar to the BTL
Exerciser we saw in the previous chapter. This version, the Command Functions
Exerciser, allows you to see the examples for the Command Functions, making use
of some of the features explained in this chapter.

Here is a detailed list of the subjects that we will cover in this chapter:

•	 The Application Programming Model—what it is and what it consists of
•	 Overview of the Backbase APIs—the bb object, the W3C DOM, events,

and utility functions
•	 Events—Event flow, the three ways of registering event handlers, event

APIs, and custom events
•	 Backbase utility functions, bb object functions, and Command functions
•	 XML Execution Language—variables, conditional logic, functions, XEL,

and JavaScript
•	 Some remarks about the use of XPath with the Backbase framework
•	 Command functions to manipulate the DOM or to manipulate elements

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[84]

•	 Info and Notify BTL widgets
•	 A Backbase Command Exerciser

In the following table you can find where the various categories of command
functions are discussed:

Category Chapter
Manipulate the DOM 3
Manipulate Elements 3
CSS related -
Asynchronous load 4
Behavior 6
Other 8

The application programming model
In the previous chapter, we have seen how to layout the User Interface with XML
and how to style it. We also looked into XHTML and several BTL widgets. Some of
those widgets had interaction capabilities, as you may remember. These interaction
capabilities are part of their implementation; we did not have to write a single line
of code to enable this behavior. You could also see that the widgets we used had no
real communication with each other. We were concentrating on their visual aspects.
It is clear that we need more if we want to develop an interesting application.

In a real application, the interaction with the UI components triggers actions.
For example, parts of the UI can be hidden or shown, or data can be visualized
dynamically. Simply, interactions enable user work flow.

In the previous chapter, we never talked about what the web application looked
like internally in the browser after the application XHTML document is loaded. We
will see something about this now. In more abstract terms, we will be talking about
the programming model of a Backbase application, meaning that we will describe in a
general way what the facilities are that a client web application will use.

When an XHTML document is loaded into a browser, the browser will parse
the elements and put them into an application tree, generally referred to as the
Document Object Model (DOM). The browser ignores everything that is placed
between <script type="application/backbase+xml"> and </script> tags, the
Backbase areas we defined in Chapter 1. The content of such a Backbase area, which
we will sometimes call a Backbase markup fragment and which should consist of
proper XML, is parsed by the Backbase framework core engine in exactly the same
way as the browser does with the XHTML elements. This means that the Backbase
markup fragment is inserted into a Backbase application tree.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[85]

The Backbase application tree has a standard DOM programming API for accessing
and modification of its content at runtime. If you know the HTML DOM API or
the XML DOM API, then you also know the Backbase DOM API because they are
the same. The execution of code in a web application usually starts with some user
interaction. For example, the user enters text into an input box, or clicks on a node
in a tree. Once the user interaction has taken place, an event is dispatched to the
appropriate object in the application UI tree. It carries information about the event
name and other details. If there is a listener (or handler) for the event, it is invoked
and the handler script is executed.

To summarize this introduction: The programming model of a Backbase application
involves a DOM that is similar to an XML or HTML DOM, with the corresponding
API. To interact with a Backbase web application, we need event handlers that
are registered to a specific DOM node. The content of the event handlers form the
application logic of our application.

Overview of the Backbase APIs
The Backbase Framework delivers a comprehensive and well-balanced set of APIs
for developing applications. Some of these APIs are JavaScript-based, others are
XML-based. The XML-based APIs always have a JavaScript equivalent API. The
opposite is not always true, as we will see when we talk in more detail about XEL.
The overview we are giving in this section is mainly based in the JavaScript interface
that the Backbase framework provides.

The APIs can be divided into two groups:
•	 The low level APIs that have the Document Object Model at the heart,

enabling fundamental functions
•	 The high level APIs that wrap common implementation patterns into

simple calls

For both the low level and the high level APIs, there exist JavaScript implementations
that are collected together in the bb object.

The bb object
The bb JavaScript API gives you the ability to interact with the Client Runtime; it is
the gateway to the Backbase APIs using JavaScript. You can use the API for calling
methods, checking properties, string functions, XML manipulation, DOM methods,
and utility functions. This object covers both the low level and the high level API.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[86]

Almost anything that you can do with the bb JavaScript API, you can
also do with XEL and the declarative Command Declarative API. The
Backbase framework provides a dual (JavaScript and XML) API so
that developers can work with the Client Runtime according to their
development preferences and skill sets.

The bb object is documented in the API Reference.

Low level APIs—the W3C DOM family
The Document Object Model is a family of platform- and language-neutral
interfaces that allow programs to access and manipulate structured documents,
for example, XML or HTML documents. The Backbase framework supports the
following DOM modules:

•	 The DOM Core module enables base objects such as Text, Element,
Document, and others. This module presents the document tree and it
allows APIs to access and manipulate its structure and contents.

•	 The DOM Events module enables a uniform event system that introduces
event flow through a document structure. It allows registration of event
handlers and provides ways to access event contextual information. Event
flow means that events are propagated through the DOM tree. We will
explain more about this in the Events section later in this chapter.

•	 The DOM XPath module enables APIs to query the document tree nodes by
using the XPath selection language. Although the DOM Core already has all
primitive APIs required to navigate the tree, it is more efficient and powerful
to use XPath because it significantly simplifies the use of the DOM.

•	 The CSS Selectors API module enables an alternative selection language
instead of XPath, for use with structured documents: the CSS Selectors. This
is the youngest technology in the family of DOM-related specifications yet it
is one of the most widely adopted. We assume that you are familiar with it.
There is no custom support for it in the Backbase framework.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[87]

The Document Object Model
As we noted earlier, Document Object Model is at the very heart of the Backbase
framework and it is the primary or low level API to the application UI. Some
developers consider the DOM to be complex, whereas others consider it to be too
complex. In fact, the DOM is rather simple, nice, and compact, as we hope to explain.

There are three aspects that need to be taken care of—traversing and modifying
the document tree, and handling events on its nodes.

Traversing the document tree
The first task we would need to complete when scripting almost anything against the
DOM is usually locating elements to operate on. DOM has many means to do that,
including pure traversal consisting of walking through parents of elements, siblings,
and children.

Often, it is practical to give the widget an identifier by specifying an id attribute
in the markup. Such an element can be found by calling getElementById
document method.

It is not always possible to give an id to every element we are going to work with.
Other APIs are available in this case, where the most powerful one is bb.evaluate.
It allows you to use XPath expressions to find nodes.

Here are the APIs relevant for document traversal:

•	 getElementById

•	 getElementsByTagName and getElementsByTagNameNS
•	 bb.evaluate and bb.evaluateSmart
•	 bb.selector.query and bb.selector.queryAll
•	 getAttribute and getAttributeNS

Some methods in the list above cannot be called directly on the bb object. Instead,
they can be called on the bb.document object. In the next example, we find a
collection of all b:calendar elements in the application:

var aCalendars = bb.document.getElementsByTagName("b:calendar");

In an XHTML application, you can find the root node of the DOM with
the document property. Similarly, the root of a Backbase area is available
as the bb.document property. The bb.document property shows only
the root of a Backbase application fragment and not the HTML nodes that
may be outside it.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[88]

Modifying the document tree
At application runtime, widgets may need to be adjusted to reflect the state of the
application. For example, an action in the application could become unavailable and
the corresponding menuPopupItem might need to be disabled, so that the user would
not be able to activate it. This could be done by setting a disabled attribute on the
menuPopupItem element.

It is also possible that we would need to dynamically create UI elements or even
fragments consisting of multiple elements. For example, an application user might
want to attach more files to a message and therefore, additional XHTML input
elements might need to be added to the UI to allow this. The createElementNS
method from the document object is used in this case. This method returns an
instance of a widget from a certain namespace that is provided as argument. Once
an instance of element is created, it can be added to the application DOM tree.

These are APIs relevant for document modification:
•	 createElement and createElementNS
•	 appendChild, insertBefore, removeChild, and replaceChild
•	 setAttribute, setAttributeNS, removeAttribute, and

removeAttributeNS

The NS suffix for the API methods mean that this is a namespace aware version
of the API.

The next example features the creation of a new menuPopUpItem widget and
adding it to the application UI:

var oMenuPopup = bb.document.getElementById("my_menupopup");
var oMenuPopupItem =
 bb.document.createElementNS("http://www.backbase.com/2006/btl",
 "b:menuPopupItem");
oMenuPopupItem.setAttribute("label", "New menu item 1");
oMenuPopup.appendChild(oMenuPopupItem);

Dealing with events
When talking about the programming model, we said that dealing with events is
the most important aspect of implementing the application logic. You can still use
the low level on... attributes on the XHTML tags, such as for example:

<div onclick="alert('I am clicked')">Click me</div>

Probably, you will often not use this option of handling events because using an XEL
event handler will allow you to use the specific Backbase events. Also, as we have
already seen, XEL event handlers are much easier to write, even if you use JavaScript
instead of XEL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[89]

As handling events is an important topic, which cuts through the low level and high
level API separation, we will discuss it now separately.

Events
Events refer to any kind of interaction with the application. An event can be
dispatched as a result of user input, such as a button click. A change in the system,
such as the loading of an external snippet, can also trigger the dispatching of an
event. In your application, you will see an event only when you indicate this to the
browser by registering an event handler.

DOM event flow and cancelable events
All events in the Backbase framework follow the DOM event flow. The three phases
(capture, target, and bubble) of the DOM event flow determine how an event is
dispatched through the application. During the Capture Phase of event propagation,
the event follows a path from the root of the DOM tree down to the target node.
The event can be handled at any ancestor of the target node. The Target Phase takes
place when the event reaches the target node. In the Bubbling Phase, the event is
dispatched back up from the target node (the node handled or that has an attached
listener) to the root of the tree.

See the next chart for an example:

Document

<html>

<body>

<table>

<tbody>

Bubbling
Phase3Capture

Phase1

2
Target
Phase

<tr> <tr>

<td> <td><td> <td>

Shady Grove Aeolian Over the River,
Charlie

Dorian

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[90]

Implementations may have a default action associated with an event type. An
example is the HTML form widget. When the user submits the form, usually by
pressing on a submit button, the event submit is dispatched to the widget and the
default action for this event type is generally to send a request to a web server with
the parameters from the form.

A cancelable event is an event associated with a default action that is allowed to
be canceled during the DOM event flow. At any phase during the event flow, the
triggered event listeners have the option of canceling the default action or allowing
the default action to proceed.

Registering event handlers
For a Backbase application, there are generally three ways of registering
event handlers:

•	 Using markup with an XEL handler element
•	 Using markup with XEL handler attributes
•	 Using JavaScript and the DOM events API

Using markup with an XEL handler element
We have seen this type of event handler before in our "Hello Backbase!"
examples. It is the most common way to specify and register an event handler.
Here is an example:

<script xmlns="http://www.w3.org/1999/xhtml"
 xmlns:e="http://www.backbase.com/2006/xel"
 type="application/backbase+xml">
 <xi:include href="../../backbase/4_4_1/bindings/config.xml" />
 <input type="text" id="age">
 <e:handler event="change" type="text/javascript">
 alert(this.getAttribute('value'));
 </e:handler>
 </input>
</script>

Let's explain the code:

•	 The handler tag indicates that the parent of the tag (the input element in
our example), will handle a particular event type.

•	 The event attribute specifies which event (in this case: "change") to handle.
•	 Code nested within the handler tag represents the functional code to be

executed when the event is triggered.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[91]

•	 The type attribute specifies what execution language will be used. In
this case, we are using JavaScript by setting the type attribute to text/
javascript. You could set the type attribute to application/xml and
write functionality using XML Execution Language.

Using markup with XEL handler attributes
Instead of the familiar onchange="..." or other on... event handling, you can
write e:onchange="..." and use Backbase-specific functionality in the handler.

<script xmlns="http://www.w3.org/1999/xhtml"
 xmlns:e="http://www.backbase.com/2006/xel"
 type="application/backbase+xml">
 <xi:include href="../../backbase/4_4_1/bindings/config.xml" />
 <input type="text" id="age"
 e:onchange="alert(this.getAttribute('value'))" />
</script>

This is handy if the event handler is very short, such as one or two statements.
Otherwise, it is preferable to use the XEL event handling.

Using JavaScript and the DOM events API
The third possibility is to add an event handler using the addEventListener
method on the node where you want to register the event.

var oElement = bb.document.getElementById("age");
oElement.addEventListener("change", function(oEvent) {
 alert(this.getAttribute('value'))
}, false);

The examples above have just an alert as the content of the event handler. Of
course, you will need to do more interesting things when handling events. The next
step in understanding how a web application works, and in particular, a Backbase
web application is to understand what the content of these event handlers can be and
which APIs are available to you as a web application developer. We will see more of
this in the high level Backbase APIs.

Besides the ability to trigger a script or to update the UI state, an event handler can
also affect the event flow itself. It can stop event propagation or prevent the default
action associated with this event type from executing.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[92]

The Backbase framework offers the possibility to dispatch events from the
application logic into the UI tree, although this is not a common thing to do.
Especially this should never happen for events implemented in the framework.
Creating an event object with a certain interface is done by calling the createEvent
function that is available on Backbase document object. Once the event object is
initialized with initEvent or another method specific to a certain interface, it can
be dispatched into the tree.

The events in the Backbase DOM implementation support the three
phases of propagation we described earlier—capture, target, and
bubble. Within a Backbase area, this will happen always, even within
a browser that might miss certain propagation phases completely
outside this area (Hello Internet Explorer!).

APIs relevant for dealing with events
The low level APIs for event handling are:

•	 stopPropagation and preventDefault
•	 createEvent, initEvent, and dispatchEvent
•	 addEventListener and removeEventListener

In the sample below, we show how calling stopPropagation prevents executing
an alert call from the element's parent.

<div e:onclick="alert('I shall not be called when my child is
 clicked')">
 <div e:onclick="event.stopPropagation()">
 Click (initiate) and stop event propagation.
 </div>
</div>

As we indicated earlier, the Backbase framework has more events available than
most browsers offer. It also standardizes the events for you, which means that
when using the Backbase framework, you will always have the same set of events
available, regardless of whether the specific browser used supports it.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[93]

Event types
Event types refer to the kind of events that can occur in an application. They may
have to do with mouse movement (click, mouseover), keyboard commands, system
changes (load, DOMNodeInsertedIntoDocument), or other interactions with the
application. They can be used as the value of the event attribute of an XEL handler
tag, or as an onEvent HTML event attribute.

The Backbase framework supports the following event standard types:

•	 DOM level 3 event types (sub-set)
•	 Backbase framework (non-DOM) events
•	 BTL widget custom events

The Backbase Application Development Guide and the Reference give a complete list
of the supporter DOM level 3 events. Here, we list only the specific Backbase events:

Event Type Description Bubbles Cancelable
keypress Dispatched when the user presses an

alphanumeric key.
Yes Yes

mousewheel Dispatched when the mouse wheel button is
rotated.

Yes Yes

contextmenu Dispatched when a context menu is triggered. Yes Yes
mouseenter Fires when the user moves the mouse pointer

into the object.
No No

mouseleave Fires when the user moves the mouse pointer
outside the object boundary.

No No

BTL widget custom events
Each widget contains its own API—a set of attributes, properties, methods, and
event handlers for the user to hook into. Sometimes, a widget or a behavior that
can be attached to a widget creates custom events. These events may add extra or
changed functionality to existing events (overriding) or they may exist because a
widget/behavior has a particular specific functionality that we want the application
to react to. In Chapter 6 we will see a number of these events that can be triggered
when adding drag-and-drop or resize behavior to a widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[94]

Custom event creation
Just as custom events were created in the BTL widgets, you can create and dispatch
your own custom events in the body of an XEL handler.

It takes three steps to create and dispatch an event. First, you create the event object.
Second, you initialize that event and set its properties (including the event name).
Lastly, you dispatch that event (when the change event is handled on the input field)
to an event target. Here is a somewhat artificial example:

 <e:handler event="shoppingCartInvoked" type="text/javascript">
 alert('I am the shoppingCartInvoked handler!');
 </e:handler>

<input type="text">
 <e:handler event="change" type="text/javascript">
 var oShoppingCartImage =
 bb.document.getElementById('shoppingCart');
 var oEvent = bb.document.createEvent('Events');
 oEvent.initEvent('shoppingCartInvoked', false, false);
 oShoppingCartImage.dispatchEvent(oEvent);
 </e:handler>
</input>

In the example, we create the shoppingCartInvoked event by using the initEvent
function in the event handler for the input field. The event is then dispatched to the
specified target, the image of a shopping cart, which handles the event by showing
an alert.

createEvent() and dispatchEvent() are methods of the DOM document object,
while initEvent() is a method of the DOM event object. Refer to the API Reference
for details.

We will stop our discussion of lower level APIs here and turn our attention to
the utility functions that are available and then to the XEL language.

Backbase utility functions
Although using the low level API is enough to code any UI-related task in your
application, it is not always efficient to do so as you will often end up writing similar
code constructs. The Backbase utilities wrap common routines into tasks that can be
called in a more simple and intuitive manner.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[95]

We introduced the bb core object already. It contains basic functions and properties
necessary to build applications. These functions include the ability to call other
methods and functions, property getting and setting, application construction and
destruction processes, and model-view-controller manipulation. These methods
on the bb object are used like any JavaScript method. See the API Reference for a
complete list.

The bb object utility functions
The following list describes the type of objects available with the bb object:

Objects Description
array Utility functions for array objects.
browser Provides information about the client browser.
command JavaScript API for the Command Functions methods.
console JavaScript API for the bb.console methods. These methods are only

available when the debugger is loaded.
cookie On this object, you can find API functions to set and get cookies.
exec On this object, you can find functions related to execution flow.
history Utility functions for handling history and bookmarking.
html Utility functions that handle HTML-related functions in a

browser-independent way.
smil Utility functions for SMIL animation.
string Utility functions for handling string objects.
time Utility functions for time calculation.
ui User Interface related functions.
uri Utility functions for resolving a URI
xml Utility functions for XML objects.

Backbase Commands
In the list above that specifies the types of bb object functions you saw the
bb.command functions mentioned. These command functions have a declarative
equivalent, the Command Functions markup language.

We have already encountered several commands in the first and second chapter
because almost every event handler will contain one. For example, there were
several alert commands, a setText to set the balloon text, and a load function
to dynamically load parts of the code.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[96]

When using commands declaratively in an application, the command namespace
must be declared in a parent tag of the element.

•	 The command namespace URI is: http://www.backbase.com/2006/command.
•	 The command conventional prefix is c:.

We categorized the command functions for you as follows:

In a later section of this chapter, we will look at the commands
that manipulate the DOM or specific elements. The other
commands will be covered in a later chapter.

The Backbase XML Execution Language
(XEL)
The Backbase Client Framework offers XEL, an XML markup language, which
can be used in many circumstances as an alternative to JavaScript. This section
will introduce you to the main XEL elements.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[97]

Before we turn our attention to XEL itself, let us try to clarify when you should use
JavaScript and when you should use XEL. Remember that we showed two versions
of the "Hello Backbase" balloon example in Chapter 1. In both cases, they used an
XEL event handler tag to describe what should happen in case the user clicks on the
OK button. In the first example, the content of the element was coded in JavaScript
and in the second example we used XEL. This suggests that you can use XEL or
JavaScript interchangeably. Just use whatever you like better for a specific situation.

By specifying either text/javascript or application/xml (which is usually
the default), you can indicate the choice you made. When making a choice, keep
this in mind:

•	 XEL code is usually shorter and it may be easier to see what is going on for
UI designers. Therefore, using XEL should be preferred in event handlers.

•	 The actions you code within an event handler are often command functions.
Of each command function, there are JavaScript versions, but also declarative
versions that you can use with XEL.

•	 XEL is not a complete programming language. Therefore, there may
be circumstances where it is not possible or feasible to use XEL.

•	 XEL has a learning curve. Therefore, if you are an experienced
JavaScript developer, you may be tempted to not use it, apart from
the XEL handler tag.

•	 Sometimes it is preferable to use JavaScript because of the slightly better
performance you may be able to achieve.

XEL is a programming language. Therefore, we will describe variables, operations,
control logic, and functions.

XEL features
XEL can be used to perform the following tasks:

•	 Adding an event handler to an element
•	 Implementing presentation logic
•	 Extending a widget instance
•	 Creating and destructing elements
•	 Allowing one widget to communicate with another widget
•	 Loading data asynchronously

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[98]

A namespace declaration is needed while using XEL tags.
We use the e: prefix in our examples:
xmlns:e="http://www.backbase.com/2006/xel".

We already described the most important element of XEL, the event handler. To
understand how to implement presentation logic with XEL, it is best to assume that
it is a real programming language. We will see later that it is missing some features
in this respect, but that has hardly an effect on its usability.

The first things to look at are variables.

Variables in XEL
Variables, attributes, and properties. What is the difference?

•	 Attributes can be set by giving them a value when placing a widget on a
page. Their initial value is visible on the UI. Their value can only be of a
string type. The scope of an attribute is within its widget.

•	 Properties are the attributes of widgets or objects. They can only be set
and retrieved programmatically. The type of a property can be any type
that is allowed in JavaScript. The scope of a property is local to the object
it belongs to.

•	 Variables are part of XEL as a programming language. Their value can
be anything, including node sets, and their scope can be local or global.

Declaring variables
In XEL, variables can be declared using the variable element.

In this example, we define a variable name as myVar and we define its value
as myInitialValue, which is an XPath string:

<e:variable name="myVar" select="'myInitialValue'" />

While declaring a variable, the value of the name attribute represents the variable
name. You will use this value while accessing the variable somewhere else in your
application. XEL variables can have strings, elements, or entire node sets as value.

There are a number of ways to assign a value to the variable. For example, you
can use an XPath expression in the select attribute.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[99]

In the next example, we assign all the div elements in the document to the
variable myVar:

<e:variable name="myVar" select="[//div]" />

Alternatively, you can use the e:data tag as a child of the variable tag to assign
its content to the variable, as in the next example:

<e:variable name="myVar">
 <e:data type="text/plain">
 My initial value
 </e:data>
</e:variable>

You can use the e:data tag combined with an xi:include tag to load an entire
file into a variable on startup of the page.

<e:variable name="external_data">
 <e:data type="text/xml">
 <xi:include href="data/movies_20.xml" />
 </e:data>
</e:variable>

Instead of xi:include, you can use c:load to load an entire file into a variable.
This is the preferred way for setting the value of a local variable as it may appear
in an event handler because the file will only be loaded when the variable is parsed
and not when the document is parsed, as would happen with xi:include.

<e:handler event="click">
 <e:variable name="external_data">
 <c:load url="data/movies_20.xml" />
 </e:variable>
</e:handler>

Variable scope
Variable scope indicates where you can access a declared variable. XEL variables can
take local or global scope depending on the position of the variable declaration.
If you declare a variable within an XEL function body, then the variable will have a
local scope. Therefore, it will only be accessible within that function. If the variable is
declared elsewhere in a document, the variable will have a global scope and it can be
accessed anywhere in that document.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[100]

Retrieving variable values
The value of a variable is available either in an XPath or a JavaScript expression.

In XPath expressions, variables are recognized using the $ sign. Here is an example
of getting the value of a variable named myVar. In the example, a button is defined
that shows an alert when clicked. The alert displays the value of the variable myVar,
which is defined in the previous statement as myValue.

<e:variable xmlns:c="http://www.backbase.com/2006/command"
 name="myVar" select="'myValue'" />
<b:button xmlns:c="http://www.backbase.com/2006/command">
 Click
 <e:handler event="click" type="application/xml">
 <c:alert select="$myVar" />
 </e:handler>
</b:button>

XEL variables are also accessible as JavaScript variables in the body of a handler
or function:

<b:button xmlns:c="http://www.backbase.com/2006/command">
 Click
 <e:handler event="click" type="application/xml">
 <e:variable name="myVar" select="'myValue'" />
 <e:script type="text/javascript">
 alert(vars['myVar']);
 </e:script>
 </e:handler>
</b:button>

Notice that we moved the declaration of the myVar variable inside the e:handler
function, because the JavaScript vars[] array is only available within the scope
of a function.

Setting properties and variables
You can use the e:set element to set object properties as well as XEL variables.
You use the attribute property and select to determine what you would like to
set. Here is an example. An accordion is shown and an XEL set element sets the
selectedIndex property.

<b:accordion id="myAccordion">
 <e:handler event="DOMNodeInsertedIntoDocument">
 <e:set property="selectedIndex" select="'1'" />
 </e:handler>
 <b:accordionItem label="Beloved">
 <p>Author - Toni Morrison</p>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[101]

 </b:accordionItem>
 <b:accordionItem label="Their Eyes Were Watching God"
 selected="true">
 <p>Author - Zora Neale Hurston</p>
 </b:accordionItem>
 <b:accordionItem label="The Color Purple">
 <p>Author - Alice Walker</p>
 </b:accordionItem>
</b:accordion>

Getting and setting attributes
In XEL, you get and set attributes in a slightly different way than you get and set
properties or variables. This is because we tap into the existing DOM standard,
which already has setAttribute and getAttribute methods. In this example,
we will click on one button to shrink its width attribute:

<b:button id="button" width="600px">
 Click me to shrink the width of the button...
 <e:handler event="click" type="application/xml">
 <e:call method="setAttribute" name="'width'"
 value="'100px'" />
 </e:handler>
</b:button>

Notice that both the name and value attributes accept XPath expressions, which
is why we place the attribute value inside single quotes.

Conditional execution in XEL
XEL has a number of operators that you can use to perform conditional processing.

Conditional logic
In XEL, conditional logic can be expressed through the if element or choose/when/
otherwise elements. The if element allows you to make a single test.

The if and when elements use the test attribute to determine logical conditions.
The value of the test attribute can be an XPath or a JavaScript expression.

Warning: The XEL language has no else construct. If you need
conditional logic of this kind, you can use the choose/when/
otherwise elements.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[102]

Use the test attribute while evaluating a single test. As there are no parentheses
around the test, it is interpreted as XPath. Note that the JavaScript and XPath test
syntax have subtle differences, (1==1) as opposed to 1=1. The XPath test may also
be written as: 1 eq 1. Click on the text, and an alert message should appear.

<div>
 <e:handler event="click">
 <e:if test="(1=1)">
 <e:script type="text/javascript">
 alert('This XPath test is true');
 </e:script>
 </e:if>
 </e:handler>
 testMe
</div>

The choose/when/otherwise elements allow you to create a logic structure with
more than one condition. The choose element is a container for one or many when
tags. Each when element constitutes one condition. The otherwise element provides
functionality if all the conditions in the when elements return false. The following
example shows a function that will toggle the width property of a button based on
the value of a variable named sWidth.

Use e:choose while evaluating multiple conditional statements. It is very similar
to a case construct in most programming languages.

<e:function name="toggleWidth">
 <e:argument name="sWidth" required="true" />
 <e:body>
 <e:choose>
 <e:when test="$sWidth='600px'">
 <e:call with="id('button1')"
 method="setAttribute"
 name="'width'" value="'60px'" />
 </e:when>
 <e:otherwise>
 <e:call with="id('button1')"
 method="setAttribute"
 name="'width'" value="'600px'" />
 </e:otherwise>
 </e:choose>
 </e:body>
</e:function>
<b:button id="button1" width="200px">
 <e:handler event="click">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[103]

 <e:call function="toggleWidth">
 <e:with-argument name="sWidth" select="@width" />
 </e:call>
 </e:handler>
 Click me!
</b:button>

Iterators
In XEL, iterators and looping structures can be created with the for-each element.
The for-each element allows you to iterate over a node set:

The handler in the clickable div loops through the children of the div with
id="parent". At each node, text is inserted, where the destination is the current
div in the for-each loop. The loop breaks when the div with id="d" is reached.

<div id="parent">
 <div id="a">a</div>
 <div id="b">b</div>
 <div id="c">c</div>
 <div id="d">d</div>
 <div id="e">e</div>
</div>
<div> Click to see the for-each loop
 <e:handler event="click">
 <e:for-each select="[id('parent')/div]">
 <c:setText destination="."
 select="' -- inserted text node -- '" />
 <e:if test="@id='d'">
 <e:script type="text/javascript">
 alert('Breaking the loop with the ' +
 'XEL break element -- ');
 </e:script>
 <e:break />
 </e:if>
 </e:for-each>
 </e:handler>
</div>

The value of the select attribute determines the node set. The XPath expression
[id('parent')/div] selects all the div child elements of the element with an id
of parent. In each element, a text node will be inserted in the child widget a.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[104]

The break element allows you to break from an iterator. In this case, when the
for-each statement executes the element with an id of d, it will execute a JavaScript
alert and then stop execution. As a result, the command to create a new text node
will not operate on the div elements with an id of e.

Functions in XEL
Just as in JavaScript, XEL allows you to define functions. After an XEL function is
defined, it can be called using either JavaScript or XEL in exactly the same way as
you would call a JavaScript function.

Defining functions in XEL is generally a very bad idea. Don't do it!

Of course, you need JavaScript functions and XEL offers you an easy way to define
them. However, if you develop a web application of any size and if you use other
people's work, like third-party frameworks, you must be very careful to not end
up with spaghetti and naming clashes. All good JavaScript frameworks use the
namespace to avoid interference problems and, of course, the Backbase framework
does this too, by using the bb object to contain all Backbase specific functions.

If you confine your code within event handlers or within methods of widget
definition objects that you define with the Tag Definition Language, you are able
to conquer complexity by dividing your code into pieces with local scope only, or
by forcing the circles of JavaScript into the squares of Backbase widgets. However,
defining XEL functions provides you with the ability to create code with a global
scope and this allows you to create spaghetti again.

You can read in the Backbase Application Development Guide how to define functions
if you really think you need one. We must confess though, that the examples that
follow contain a few function definitions, intended to make it easier to clarify an XEL
element. Our apologies!

Because you may need to call a function someone else wrote, for example a function
of the bb object, we show how to call a function with XEL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[105]

Calling a function or method
To call an XEL function, use the e:call element within an e:handler or
e:function body:

<!-- first we define a function ;-) -->
<e:function name="alertBox">
 <e:body type="text/javascript">
 alert('This alertBox function creates a JavaScript alert box.');
 </e:body>
</e:function>
<b:button>
 Click Me!
 <e:handler event="click" type="application/xml">
 <e:call function="alertBox" />
 </e:handler>
</b:button>

The call element allows you to call an XEL function or an API method. To call an
XEL function, you add the function attribute—the value is the name of the function.
For a method, you replace the function attribute with the method attribute:

<b:button>
 Click Me!
 <e:handler event="click" type="application/xml">
 <e:call method="setAttribute"
 name="'width'" value="'300px'" />
 </e:handler>
</b:button>

Passing a function argument
To pass an argument value to an XEL function, you can use the with-argument tag
as a child of the call element:

<b:button>
 Click me for XEL function passing text into alert...(1)
 <e:handler event="click">
 <e:call function="flexibleAlertBox">
 <e:with-argument name="myAlertText"
 select="'Argument Value'" />
 </e:call>
 </e:handler>
</b:button>
<e:function name="flexibleAlertBox">
 <e:argument name="myAlertText" required="true" />
 <e:body type="text/javascript">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[106]

 alert(myAlertText);
 </e:body>
</e:function>

The value of the name attribute must match the value of the name attribute specified
in the function argument. The argument value is specified in the select attribute.
The value can be an XPath or a JavaScript expression, and can return a string value,
an integer, or object.

You can also pass an argument value to an XEL function as an attribute/value pair
of the call element. The attribute name corresponds to the argument named as
specified in the function, and the value is the argument value. In this example, we
will have two buttons (with two handlers) that call the same function. The handlers
will pass different argument values and therefore, the function itself will react
differently. In this way, we will be able to pass different values to the same
alertBox function:

<b:button>
 Alert: Roses are Red
 <e:handler event="click">
 <e:call function="flexibleAlertBox"
 myAlertText="'Roses are red'">
 <e:with-argument name="myAlertText"
 select="'Roses are red'" />
 </e:call>
 </e:handler>
 </b:button>
<b:button>
 Alert: Violets are Blue
 <e:handler event="click">
 <e:call function="flexibleAlertBox"
 myAlertText="'Violets are blue'" />
 </e:handler>
</b:button>
<e:function name="flexibleAlertBox">
 <e:argument name="myAlertText" required="true" />
 <e:body type="text/javascript">
 alert(myAlertText);
 </e:body>
</e:function>

The first handler will show the with-argument element as a child of the call
element, while the second handler will pass the argument value as an attribute/
value. Both pass a value to the function. When the user clicks on each button, they
will see a different alert value.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[107]

With the call element, you can call JavaScript functions. However, JavaScript
functions do not have named arguments; they simply pass them in a predefined
order. As a result, while using XEL to call a JavaScript function that requires an
argument, you need to have syntax to name each argument. To accomplish this, the
attribute name of the first argument is argument1, the second argument is named
argument2, and so forth. Here's an example of calling the JavaScript alert function:

<div>
 Click me!
 <e:handler event="click">
 <e:call function="alert"
 argument1="'Alert function!'" />
 </e:handler>
</div>

One advantage of using the with-argument element (rather than an attribue/value
pair) is that you can call another function or method to get the argument value. In
this example, we call the doAlerting function. In the getAlertValue function, we
introduce the return element, which returns a value:

<b:button>
 <e:handler event="click">
 <e:call function="doAlerting">
 <e:with-argument name="alertValue">
 <e:call function="getAlertValue" />
 </e:with-argument>
 </e:call>
 </e:handler>
 Click me!
</b:button>
<e:function name="getAlertValue">
 <e:body>
 <e:return select="'257'" />
 </e:body>
</e:function>
<e:function name="doAlerting">
 <e:argument name="alertValue" required="true" />
 <e:body type="text/javascript">
 alert(alertValue);
 </e:body>
</e:function>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

v@v
Text Box
Download at WoweBook.com

Writing the Application Logic

[108]

The returned value can be determined from the children of the return
tag (for example, a literal value or an XEL variable) or from the value of a
select attribute on the return element.

Passing context
When a handler has executable code in its body, the context is by default the parent
widget of the handler, and the functional code inside the handler operates on that
parent widget. This context is passed to any functions or methods called in the
handler, so that the function is operating on the parent widget of the handler. For
example, if a handler is the child of a button, the executable code inside the handler
will operate on the button.

However, if the parent widget is not the correct widget to operate on, then you will
need to specify the correct element(s). In XEL, the with attribute is responsible for
specifying context. By targeting a widget or a widget set using XPath, we can reset
the context. In the following example, when we click on one button, we set the
disabled property of a second button. Because the default context is the first button
(the button we click), we need to specify the second button as our proper context.

Similar to passing arguments, context can also be passed as an attribute/value pair.

<b:button id="button1">
 Click me to disable the other button
 <e:handler event="click" type="application/xml">
 <e:set with="id('button2')"
 property="disabled" select="true()" />
 </e:handler>
</b:button>
<b:button id="button2">
 By clicking the other button, this one will be disabled...
</b:button>

As a best practice, we like to specify with as the first attribute. That
way, we immediately know on what element(s) the functional code
will operate.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[109]

Using JavaScript in XEL
One of the powerful features of XEL is that you can still use JavaScript within the
body of an XEL execution block. You can even evaluate JavaScript in the value of
select attributes and other attributes. This gives you not only flexibility, as you can
choose the best way to create your execution logic, but the power of both languages.

Most of the time when you use JavaScript, it will be in the body of an XEL function,
handler, or script element. To specify that you will write the handler of a function
or body in JavaScript, you give the type attribute a value of text/javascript:

<e:function name="myFunction">
 <e:body type="text/javascript">
 alert('The body of this function is written in JavaScript!');
 </e:body>
</e:function>

Even if you specify that you will write the handler or body function in XML, you
can still mix up XEL and JavaScript by nesting your JavaScript code in a script tag:

Use when you need to embed some JavaScript code in an XEL handler or function
body that is set to a type of XML.

<div>
 <e:handler event="click">
 <e:set variable="myVar" select="'my variable'" />
 <e:script type="text/javascript">
 alert('This line is written in JavaScript inside the XEL
 script tag!');
 </e:script>
 </e:handler>
 Click me!
</div>

This concludes our description of XEL. The next section contains some notes about
XPath that are useful when you are writing XEL code.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[110]

XPath
XML Path Language (XPath) is a W3C language for targeting parts of an XML
document. When working declaratively, XPath gives you a powerful mechanism
to select and operate on the DOM nodes of your application. It also gives you the
ability to perform logic and basic programming functions.

In the Backbase framework, you will generally use XPath when working with XEL
or with declarative command attribute values.

For example, the frequently used select attribute is set to accept an
XPath expression to target an element.

Here is a code fragment that targets all div elements in the application:
select="//div".

XEL and command attributes are set by default to be in "string mode", where the
accepted value is a string, or in "XPath mode", where the accepted value is an XPath
expression. In the API Reference, the attribute type will state the default mode.

The Backbase framework supports XPath version 1.0 (and some 2.0 functions).
When you can use an XPath expression as an attribute value, you can use any
supported XPath command.

We will not spend more time and paper on the explanation of XPath in this book,
except for some notes on how attribute values are evaluated. You can find a short
reference in the Backbase Application Development Guide and in the API Reference.
We hope that you will see the power of using XPath by looking at the examples
we provide.

The Backbase implementation follows the standard. Therefore, we refer you to
the W3C for the complete XPath specification.

Evaluating attribute values
Different languages evaluate attribute values in different ways. For example, in
XHTML, attribute values are always evaluated as strings. In contrast, while some
XEL and command attributes are also evaluated as strings, especially attributes such
as name and other attributes (notably attributes that point to an element, like select)
accept both XPath and JavaScript as valid values. With XPath and JavaScript syntax
at your disposal, you can create complex XPath expressions that point to a node or
node set or JavaScript functions as attribute values.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[111]

String mode
When the attribute is evaluated by default as a string, you can force it to evaluate as
XPath by using curly brackets {} inside the double quotes (""). Otherwise, the value
within the double quotes will be processed as the string.

XPath mode
Here is a quick syntax guide for attribute evaluation when the attribute should be
evaluated as XPath:

Syntax Explanation Attribute value
'blue' or "blue" Considered a string, without further evaluation. blue

//div Evaluated as an expression, where the first item
of the resulting sequence is used.

First div widget
only

[//div] Evaluated as an expression, where all the items
of the resulting sequence are used.

All div elements
in document

{/div/my:elem} Evaluated as an expression, where the first
element of the result sequence is cast to a
string type.

String value of
my:elem element

javascript:
alert('Alert
Box');,
javascript:6+3;

The values after the colon are evaluated as a
expression. No return statement is expected.

Alert Box (in
the alert), 9

As we saw in the description of the Backbase programming model, the functions
that we need to actually perform some work after having determined the logic
flow with XEL are the Command Functions. The next two sections describe some
of these commands.

Commands to manipulate the DOM or
elements
In this section, we provide details about commands that manipulate single elements
or the sets of elements in the DOM. The other commands will be covered in a later
chapter.

If you look at the descriptions for the commands, you will see that many attribute
names are shared. We describe some of these here, so that we do not have to repeat
them for every command.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[112]

Very common attributes are select and with:

Attribute Type Description
select String (XPath) Input value to the command.
with String (XPath) The targeted element.

Another set of commands is intended to manipulate the DOM. These commands
share the destination and mode attributes:
Attribute Type Description
destination String (XPath) Destination of the reated/copied/moved/replaced

element.
The value is a valid XPath or JavaScript expression
that refers to an element

mode String (XPath) Specifies how the node will be placed in the DOM tree.
If you do not specify this attribute, appendChild will
be assumed.
The possible values are:
replace: Replace the selected destination node.
replaceChildren: Replace its children.
firstChild: Place as the first child.
insertBefore: Insert before the selected node.
insertAfter: Insert after the selected node.
appendChild: Append to the selected destination
node. This is the default.
lastChild: Append to the selected destination node.

Manipulating elements
This is a set of commands that do something to a single element.

focus and blur
With the focus and blur commands, you can dynamically set or remove focus
from any element. Both these commands have the with attribute:

•	 focus: Sets focus on an element.
•	 blur: Blurs (removes focus from) the current focused element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[113]

In the following example, we use the buttons to blur or focus button 1:

<b:button>
 Click to set focus on button 1
 <e:handler event="click">
 <c:focus with="id('button1')" />
 </e:handler>
</b:button>
<b:button>
 Click to blur button 1
 <e:handler event="click">
 <c:blur with="id('button1')" />
 </e:handler>
</b:button>
<b:button id="button1">
 button 1
</b:button>

fireEvent
It fires an event on the targeted element.

The fireEvent command supports the with attribute and also the following
specific attributes:

Attribute Type Description
bubbles Boolean Determines whether the event should bubble.
cancelable Boolean Determines whether the event could be canceled.
event String The type of event that should be dispatched.

position
Changes the position of an element on the screen and sets the position of the
viewNode. The target element is repositioned relative to the destination element.
This destination element is specified by the destination attribute. The relative
position type is determined by the mode attribute.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[114]

The position command supports the destination and mode attributes, and also
the following specific attributes:

Attribute Type Description
x String X-coordinate of the element position. Expressed as XPath.
y String Y-coordinate of the element position. Expressed as XPath.

Here is an example:

<b:button>
 Click to reposition the destination widget.
 <e:handler event="click">
 <c:position with="id('movedElement')"
 destination="id('destinationElement')"
 mode="after-start" x="200px" y="100px" />
 </e:handler>
</b:button>
<div style="position:absolute;" id="movedElement">
 Element to be moved
</div>
<div id="destinationElement">
 Destination element
</div>

scrollTo
It scrolls an element into view in the browser.

The scrollTo command supports the with attribute.

setText
Creates an XML text node and places it in the DOM tree. Useful to dynamically
add text nodes based on user interaction.

Use the destination and mode attributes to specify where and how the element
is placed in the DOM tree.

The setText command supports the destination, mode, and select attributes.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[115]

In the next example, the value of a text node is set based on a change event in the
input field. The change event occurs when you press Enter or click your mouse
outside the input field.

<div id="myDiv" style="border: solid 1px red;" />
<p>
 A change to the input field will add a text node containing
 the value of the input field to the preceding div
 as first child.
</p>
<input type="text">
 <e:handler event="change">
 <c:setText select="property::value"
 destination="id('myDiv')" mode="firstChild" />
 </e:handler>
</input>

show, hide, and showHide
These commands allow showing or hiding elements dynamically.

The show command shows an element. When the show command is issued, it will
first check if a show method is defined on the controller. If this is the case, the method
is called. Otherwise, it will set the display style property to its default value (or to
block if it is still not displayed). The element to be shown is determined by context.

The hide command hides an element. When the hide command is issued, it will first
check if a hide method is defined on the controller. If this is the case, the method is
called. Otherwise, it will set the display style property to none. The element to be
hidden is determined by context.

Using showHide, the specified element will either be displayed or hidden, based
on the current state. When the showHide command is issued, it will first check if a
showHide method is defined on the controller. If this is the case, the method is called.
Otherwise, it will change the display style property. If the element is visible, the
display style property will be set to none. If the element is invisible, the element will
be displayed.

The show, hide, and showHide commands support the with attribute.

The three buttons in the next example cause a widget to be shown or hidden:

<div id="showHideDiv" style="display:none;">
 This widget is toggled by c:showHide.
</div>
<b:button>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[116]

 Show preceding div element
 <e:handler event="click">
 <c:show with="id('showHideDiv')" />
 </e:handler>
</b:button>
<b:button>
 Hide preceding div element
 <e:handler event="click">
 <c:hide with="id('showHideDiv')" />
 </e:handler>
</b:button>
<b:button>
 Show/Hide preceding div element
 <e:handler event="click">
 <c:showHide with="id('showHideDiv')" />
 </e:handler>
</b:button>

sort
This is a generic sorting command. It will generally be used on XHTML tables or a
group of similar elements, though they do not have to be the same. When sorting a
table, the sort target is a th or td element. When sorting a group of elements, the sort
target is the parent element.

The sort command supports the with attribute and the following specific attributes:

Attribute Type Description
by String Specifies the sort value. This is a string that is resolved to a

function that gathers the value to sort. By default, the result is
"return this.textContent".

algorithm String Specifies how to sort. Possible values are string and smart.
If the value is smart, then a smart algorithm is applied to the
values of sort. This is the default value.
If the value is string, then a string sort algorithm is used.

order String Specifies the sort direction.
If the value is ascending, then the values sorted in ascending
order. This is the default value.
If the value is descending, the values are sorted in
descending order.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[117]

Here is one example. The source code provided with the book contains two more
examples. By default, sorting works on the textContent of an element. You can
use sortValue if you want to use some other value like the sort attribute in the td
elements of the table.

<table id="sorttable">
 <thead>
 <tr>
 <th id="col1">col1</th>
 <th id="col2">col2</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td sort="b">a</td>
 <td>4</td>
 </tr>
 <tr>
 <td sort="a">b</td>
 <td>3</td>
 </tr>
 <tr>
 <td sort="c">c</td>
 <td>2</td>
 </tr>
 <tr>
 <td sort="d">d</td>
 <td>1</td>
 </tr>
 </tbody>
</table>
<b:button>
 Sort JS
 <e:handler event="click"
 type="application/javascript">
 bb.command.sort(bb.document.getElementById('col1'),
 false,
 'return this.getAttribute("sort")');
 </e:handler>
</b:button>
<b:button>
 Sort XEL
 <e:handler event="click">
 <c:sort with="id('col1')"

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[118]

 order="ascending"
 by="return this.getAttribute('sort')" />
 </e:handler>
</b:button>

tile
It tiles the content of the targeted element. Items must be absolutely positioned
and have a fixed width and height.

Attribute Type Description
animate String Animates the tiling or places the tiles at their final position

at once.
true: Items will be animated when tiled. Default.
false: Items will be tiled at once.

orientation String The orientation in which the tiled items will be rendered.
rows: Tiled items will be rendered in rows. Default.
columns: Tiled items will be rendered in columns.

rowmargin String The margin between rows. The value should be specified in a
similar way as you would specify a width or height attribute;
for example, in pixels (px).

columnmargin String The margin between columns. The value should be specified
in a similar way as you would specify a width or height
attribute; for example, in pixels (px).

maximum Integer The maximum row width or column height. Whether it is
the row width or column height depends on whether the
orientation is set to rows or columns. The value should be
specified in a similar way as you would specify a width or
height attribute; for example, in pixels (px).

Here is an example:

<div style="height: 500px;">
 <b:button>
 Tile the child elements of the "parent" div.
 <e:handler event="click">
 <c:tile with="id('parent')"
 orientation="rows" max="300px"
 rowmargin="50px" columnmargin="50px" />
 </e:handler>
 </b:button>
 <div id="parent"
 style="width: 800px; height: 400px; border: 1px solid
 black; position:absolute; top:200px;">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[119]

 <img style="position:absolute;width:200px;"
 src="http://www.google.nl/intl/nl_nl/images/logo.gif" />
 <img style="position:absolute;width:200px;"
 src="http://www.google.nl/intl/nl_nl/images/logo.gif" />
 <img style="position:absolute;width:200px;"
 src="http://www.google.nl/intl/nl_nl/images/logo.gif" />
 <img style="position:absolute;width:200px;"
 src="http://www.google.nl/intl/nl_nl/images/logo.gif" />
 <img style="position:absolute;width:200px;"
 src="http://www.google.nl/intl/nl_nl/images/logo.gif" />
 </div>
</div>

transform
It transforms XML with an XSL stylesheet. Parameters that can be used with
transform are described next. It uses the browser's XSLT 1.0 implementation.

The transform command supports the destination, mode, and select attributes,
and the following specific attribute:

Attribute Type Description
stylesheet String (Xpath) The location of the XSL stylesheet (Valid URL) or data

stored in a variable.

Here is an example of using the transform command. The transformation itself
follows the rules of XSLT. If you are interested, you can see this example (and all
others) in action using the Command Exerciser provided with the book.

<b:button>
 Click to transform...
 <e:handler event="click">
 <e:variable name="source">
 <c:load url="data/transform.xml" />
 </e:variable>
 <e:variable name="stylesheet">
 <c:load url="data/stylesheet.xsl" />
 </e:variable>
 <c:transform select="$source"
 stylesheet="$stylesheet"
 destination="id('myDiv')" mode="lastChild" />
 </e:handler>
</b:button>
<div id="myDiv">
 Load contents of transformation below this line...
 <hr />
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[120]

param
It adds a parameter to be added to the transform action.

The param command supports the name and select attributes.

This element can only be used as a child of the transform command.

This example shows a parameter to be added to the transform action.

<c:transform select="$datasource"
 stylesheet="$stylesheet"
 destination="id('output2')" mode="replaceChildren">
 <c:param name="stringvalue" select="' Nice book '" />
 <c:param name="nodevalue" select="$datasource//content" />
</c:transform>

Manipulating the DOM
In this section, we are looking at a set of commands that help you to create, copy, or
move elements. These commands are: copy, copy-of, create, and destroy. These
commands use the destination attribute to specify where the element should be
placed in the DOM tree and the mode attribute to specify how the element should be
put at its destination.

copy
Copies an element and recreates it in the destination location.

Use the destination and mode attributes to specify where and how the element
is placed in the DOM tree.

The element to be copied is determined by the context. Therefore, you should use
the with attribute if the context is not the current node.

The next example copies an existing widget and places it in the view tree.

<div style="width: 200px; border: 1px solid red;">
 Element to be copied
</div>
<div id="container"
 style="width: 400px; border: 1px solid black;">
 Copy container
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[121]

<div>
 Click to copy first widget as last child of second element
 <e:handler event="click">
 <c:copy with="preceding-sibling::*[2]"
 destination="id('container')" mode="appendChild" />
 </e:handler>
</div>

create
Creates and renders a fragment based on a provided XML fragment. The provided
XML fragment is the model fragment. Controllers will be created and the view nodes
are rendered using the templates. After creation, the fragment is placed inside the
DOM tree or returned (if no destination is specified).

Use the destination and mode attributes to specify where and how the fragment
is placed in the DOM tree. If the destination attribute is omitted, then the created
fragment will be returned.

An XML fragment can be provided by the select attribute or inline as a child
of the create command.

The destination and mode attributes are described earlier in this section.
The select attribute determines what will be created.

You can use the create command to create a widget and append it at the
proper location:

<div id="myElm"
 style="border: 1px solid black; width: 300px;">
 Created elements will be the last children of this widget.
</div>
<div>
 <p>Click to create new elements</p>
 <e:handler event="click">
 <c:create destination="id('myElm')" mode="appendChild">
 <div>
 <div>New widget 1</div>
 <div>New widget 2</div>
 <div>New widget 3</div>
 </div>
 </c:create>
 </e:handler>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[122]

attribute
It sets an attribute and an attribute value on the created parent element. This element
can only be used as a child of the create command.

The attribute command supports the following attributes—select and name.

And in addition, it supports the following attribute:

Attribute Type Description
namespace String The namespace of the attribute (optional).

Use the value-of attribute in the next example, to create a text value and the
attribute to create a new attribute with a corresponding value. The value displayed
is the total number of nodes on the pages, which increments by one each time you
click the Click here text. Because the new element is created as firstChild, it will
appear as the first node in the div, before all other text nodes.

<div id="myElm4"
 style="border: 1px solid black; width: 300px;">
 Elements will be created as first child of the div with id:
 myElm4.
</div>
<div>
 <p>
 Click to create new elements with attributes
 <code>value-of</code> and <code>attribute</code>.
 </p>
 <e:handler event="click">
 <c:create destination="id('myElm4')" mode="firstChild">
 <div>
 <c:value-of select="count(//*)" />
 <c:attribute name="style"
 select="'background:#0f0'" />
 </div>
 </c:create>
 </e:handler>
</div>

copy-of
It creates a copy of the selected XPath expression. This element can only be used
as a child of the create command.

The copy-of command supports the select attribute.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[123]

Use the copy-of attribute to create a copy of an existing widget within the
template of your create command. The copy-of widget must have a parent
element that is created.

<e:variable name="data" type="application/xml">
 <e:data type="text/xml">
 <div style="width: 100px; background: #cccccc;">
 <div>Element to be copied </div>
 </div>
 </e:data>
</e:variable>
<div id="myElm2"
 style="border: 1px solid black; width: 300px;">
 Created elements will be the last children of this widget.
</div>
<div>
 <p>Click to create new elements with copy-of</p>
 <e:handler event="click">
 <c:create destination="id('myElm2')">
 <div>
 <c:copy-of select="$data/div" />
 </div>
 </c:create>
 </e:handler>
</div>

value-of
It creates a text node of the selected XPath expression. This element can only
be used as a child of the create command.

The value-of command supports the select attribute.

We saw an example for the value-of command with the example for the
attribute command.

destroy
It destroys the element. Use the with attribute to determine the element to
be destroyed. The value is a valid XPath or JavaScript expression that refers
to an element.

When an element is removed from the DOM, it is not automatically destroyed.
An explicit call to destroy is necessary to delete it from the memory.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[124]

The code in the following example destroys the first preceding div found and
removes it from the memory. When there is no more div to be found, you will
see an error message:

<div>
 We will destroy this widget and remove it from memory 1.
</div>
<div>
 We will destroy this widget and remove it from memory 2.
</div>
<div>
 We will destroy this widget and remove it from memory 3.
</div>
<div>
 We will destroy this widget and remove it from memory 4.
</div>
<div style="border: solid 1px red;">
 Click to destroy widget.
 <e:handler event="click">
 <c:destroy with="preceding::div[1]" />
 </e:handler>
</div>

move
It moves the element to a new target location.

Use the destination and mode attributes to specify where and how the
element is placed in the DOM tree. The with attribute determines which element
is to be moved.

This example moves an existing widget to another location:

<b:button>
 Click to move "to be moved" widget into "container" element
 <e:handler event="click">
 <c:move with="id('tobemoved')"
 destination="id('container')" mode="firstChild" />
 </e:handler>
</b:button>
<div id="container"
 style="border:1px solid black; width: 400px;">
 <div id="a" style="border:1px solid green; width: 200px;">
 1st child widget in container
 </div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[125]

 <div id="b" style="border:1px solid blue; width: 200px;">
 2nd child widget in container
 </div>
 <div id="c" style="border:1px solid red; width: 200px;">
 3rd child widget in container
 </div>
</div>
<div id="tobemoved"
 style="border:1px solid red; width: 200px;">
 widget to be moved
</div>

The DOM manipulation commands also include the getAttribute, setAttribute,
and removeAttribute commands. We do not describe these explicitly here. You will
find examples in other places.

This concludes the description of two categories of commands that we wanted to
describe in detail in this chapter. You will find more commands in later chapters.

Info and Notify BTL widgets
In this section, we expand our knowledge of the Backbase Tag Library with a new set
of BTL widgets. These widgets help build the dynamic interaction with a user.

The Info and Notify BTL widgets inherit from containerElement and
dimensionElement. See Chapter 2 for a description of these elements
and the attributes they support.

balloon
The balloon widget displays an image similar to that of a dialogue box in a comic
book. We have seen the balloon already in the "Hello World" examples. You can
find a slightly different example in the supplied source code.

In addition to the elements already noted, balloon also inherits from
labelImplementor, which means that you can use a label attribute, or a nested
label element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[126]

The balloon widget supports the following specific attributes:

Attribute Type Description
mode String Location of the balloon, relative to the container element.

Its values can be: top-right (default), top-center, top-left,
bottom-right, bottom-center, bottom-left.

open Boolean The element is opened/expanded by default.
timeout String The time before the balloon disappears, based on a

formatted time string (for example, "1:23:45.687" or "5h").

infoBox
The infoBox widget represents a box with content that appears below a widget.
You must click on the enclosing element for the infoBox to appear. The contents
of the infoBox can be text, images, or other widgets.

Attribute Type Description
for XPath XPath expression indicating the element(s) that open

the infoBox on click and DOMActive events.
open Boolean The element is opened/expanded by default.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[127]

Clicking outside the infoBox closes it. You can open an infoBox by calling
the open method with a given context or by setting the open attribute to true.

Click on the text widget and receive advanced content information in the
following example:

<p id="bookOutline"
 style="border:1px solid black; padding:3px; width:350px;">
 What do Joseph Conrad, Samuel Beckett, Jack Kerouac, and Vladimir
 Nabokov have in common?
</p>
<b:infoBox for="id('bookOutline')" width="200px">
 <p>
 None of them wrote in their native language. Conrad was Polish,
 Beckett wrote (after the mid-40's) in French, Russian was
 Nabokov's first language, and Kerouac was Quebecois.
 </p>
</b:infoBox>

loadingMessage
The loadingMessage widget displays a notification to the user while the application
is loading. The message can be displayed using the show method, and removed using
the hide method.

This example shows a loadingMessage that is displayed when a button is clicked:

<b:button>
 Load a file
 <e:handler event="click" type="text/javascript">
 var oLoadingMessage =
 bb.document.getElementById('sampleLoadingMessage');
 oLoadingMessage.show();
 setTimeout(
 function()
 {if(oLoadingMessage.viewNode)
 oLoadingMessage.hide()},
 3000);
 </e:handler>
</b:button>
<b:loadingMessage id="sampleLoadingMessage">
 <p>No file is being loaded.</p>
 <p>This is only an example.</p>
</b:loadingMessage>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[128]

It is not so easy to use the loadingMessage when the Backbase framework is starting
up because of the well-known chicken-and-egg problem—you need the framework
to be active before you can use the loading message. Therefore, most applications
such as the Backbase explorer, use a custom loading message.

Personally, we dislike loading messages. If they are there to hide a performance
problem, it's better to solve the problem. Otherwise, they just delay the appearance
of your page.

toolTip
The toolTip widget allows you to provide a small piece of informative content
when a user hovers over a widget. It takes the form of a small box with text that
appears close to the element the user is moving his/her mouse over. You can create
a toolTip by nesting the toolTip widget inside the related widget. The toolTip is
displayed relative to the pointer and the enclosing widget.

toolTip has no local attributes.

Here is an example:

<p>
 <input type="text" name="companyName" value="Bbase"/> *
 <b:toolTip>
 This field must be a minimum of 7 characters.
 </b:toolTip>
</p>

A Backbase Command Exerciser
In Chapter 2, we introduced an example application that allowed you to view all
BTL examples and see them work. With so many new examples about the Backbase
Commands, it would be nice to have a similar application to show these.

We could have copied the BTL Exerciser and just changed the names in the menu
items and so on. We have chosen to make some changes to the UI though, to be able
to use some of the new widgets and commands for this chapter. As before, each of
the examples is stored in a separate file, which makes it easy to look at the code, or
to add your own examples.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[129]

The result is a Backbase Command Functions Exerciser. The following screenshot
shows it for the create command example:

The Command Functions Exerciser application has a similar tabBox and panelSet
layout as the BTL Exerciser. Where it differs is the content of the menu panels—there
are no navBox widgets anymore. Instead, there is just the name of the command and
if you move your mouse over it, you will see a yellow toolTip with the description.

When you click on the name of a command, the content is shown in the panel to
the right of the menu. The actual content is extended in this version by showing the
description of the example above the live code, so you do not have to remember
it from the toolTip. Below the live code, the source code is shown using the BTL
codeHighlighter widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[130]

The fastest way to build this application is to copy the contents of btlSamples to
cmdSamples, and then remove all examples and descriptions. Rename the panel and
menu files to reflect the Command Functions categories.

Probably, you can figure out for yourself how to code app.xml and the panels. What
is new are the menu files. We made a new widget, sq:menuItemLink, which does
everything from showing the toolTip to creating the widgets that are shown in
content panel.

It is still too early to explain how to build the menuItemLink widget. Therefore, we
added plain code for one of the menu items, the copy command, which is equivalent to
what the widget would have executed. Here is the code for manipulatedomMenu.xml:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:c="http://www.backbase.com/2006/command"
 xmlns:e="http://www.backbase.com/2006/xel"
 xmlns:sq="http://www.squaringthecircles.com/squared">
 <!-- the code below is a replacement for:
 <sq:menuItemLink label="copy" example="cmd_copy" />
 -->
<div
 style="padding-left: 5px; border-bottom: solid 1px gray;">
 <b:toolTip width="200px" backgroundColor="yellow">
 <xi:include href="../../descriptions/cmd_copy.xml" />
 </b:toolTip>
 <p>copy</p>
 <e:handler event="click">
 <c:create
 destination="following::b:panel[1]"
 mode="replaceChildren">
 <div style="padding-left: 10px;">
 <b:box width="400px">
 <p>copy

 File: cmd_copy
 </p>
 <xi:include
 href="../../descriptions/cmd_copy.xml" />
 </b:box>
 <hr />
 <xi:include
 href="../../examples/cmd_copy.xml" />
 <hr />
 <b:codeHighlighter>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 3

[131]

 <xi:include
 href="../../examples/cmd_copy.xml" />
 </b:codeHighlighter>
 </div>
 </c:create>
 </e:handler>
 </div>
 <sq:menuItemLink
 label="create" example="cmd_create_basic" />
 <sq:menuItemLink
 label="create copy-of" example="cmd_create_copyof" />
 <sq:menuItemLink
 label="create attribute"
 example="cmd_create_valueof_attribute" />
 <sq:menuItemLink label="destroy" example="cmd_destroy" />
 <sq:menuItemLink label="move" example="cmd_move" />
</div>

As you can see, the menu item is now really a div containing simple text, extended
with a toolTip and a click event handler.

The event handler contains a create command, that creates a BTL box widget
containing the name of the command, the file name where the example can be found,
and the description included from the description filename. Below the box there are
a set of horizontal lines, the live code, and the highlighted source code.

As we argued already several times, it is no fun to copy this code some thirty times
for each command. Of course it would not have been very difficult to generate this
code from a server script, but we hope you agree that it is a much cleaner solution
to have a widget that shows the behavior we want at the client side of the web
application.

There is one nasty line of code that we have to explain. We added the following line
to index.html, just after the line that includes config.xml:

<xi:include href="../../backbase/4_4_1/bindings/www.backbase.com.2006.
btl/toolTip/chameleon/toolTip.xml" />

We need to do this because the lazy loading of widget definitions is not completely
foolproof. Because we are creating the toolTip dynamically within a create
command, the loader seems to miss it and therefore, we are loading it explicitly.
There are a few circumstances where this is needed. Another reason why you may
want to load widget definitions explicitly is to optimize performance, by being able
to spend time loading at a moment when it is least noticed by your user.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Writing the Application Logic

[132]

On purpose, we did not spend effort to make the application better-looking than it
is. A real web designer could beautify this application easily. What we wanted to
show, however, is the bare bones of what you need to make a flexible and functional
application that can easily be adapted if you change your mind on styling or layout.

Summary
The first part of this chapter was rather theoretical. As a naive user of the Backbase
framework, you do not need to know all we described there. We hope that by
explaining some fundamentals of web application development with the Backbase
framework it will be easier to understand the structure of it. This understanding will
then make it easier to develop good web applications.

In this chapter, we provided more detail about the execution logic of a web
application. We looked at the Backbase programming model and the various
APIs it provides. In particular, we looked at XEL and Command Functions.

Further, just a list of points to remember:

•	 The namespace for the BTL is defined as:
xmlns:b="http://www.backbase.com/2006/btl".

•	 Event handlers are part of XEL, the XML Execution Language. Event
handlers can be attached to any element within Backbase space. They
are coded as child tag to that element with: e:handler.

•	 The type of an event handler can be either text/javascript, or
application/xml. The default is application/xml.

•	 In an event handler with type application/xml, you will use XEL to code
the logic and Command Functions to code the functions to be performed.
Each have their own namespaces:
xmlns:e = "http://www.backbase.com/2006/xel" and
xmlns:c = "http://www.backbase.com/2006/command".

We added a few new BTL widgets to our repertoire, the Info and Notify widgets.
We modified our sample application to show the Command Functions examples.

In the next chapter, we will look at forms and asynchronous communication.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication
and Forms

In the previous chapter, we have looked more closely at how to write the application
logic at the client-side of your web application, where JavaScript, XHTML, and the
Backbase framework live.

Of course, that is only half of the story. In this chapter and the next, we are looking at
communication with the other half of your web application—the part that resides on
the server and is developed using a server-side scripting language, such as PHP, JSP,
ASP, Ruby, and more.

This is a core chapter of the book. As you might expect from an AJAX Framework,
the Backbase client can make asynchronous requests to a server and the server can
respond with data or with dynamic parts of the page. We will look at communication
using the XMLHttpRequest object API, which for many is synonymous to using
AJAX. After we have covered the basics, we will discuss what the Backbase
framework adds to it and how you can make use of this in an application.

We discuss forms in detail because submitting a form is the major way to send user
input to a server. Being able to do this asynchronously has many implications for the
total architecture of your web application. Some of these aspects are discussed by
looking at the sample application.

To be able to communicate between client and server is useful, but if we are going to
develop a real application, we need more. Therefore, we will step to the server-side
and show you how AJAX communication can influence the architecture of a web
application. Against popular belief, we think that the server-side of the application
can become much easier than before, provided that you use data-driven widgets
as much as you can and use a strict Model-View-Controller (MVC) approach as the
overall architecture of your application. We will look at data-driven or data-bound
widgets in the next chapter and at the MVC pattern in this one.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[134]

In our examples, we are going to use PHP as the server-side scripting language.
We apologize here to our readers interested in Java. We know how to develop an
application in Java (Ghica has been involved with Java development for about ten
years). However, developing in PHP is much faster and the resulting code is more
concise. Because the syntax of both Java and PHP are derived from the C language
syntax, the PHP code should be easily understandable to Java developers.

We acknowledge that using Java, with JSP or JSF, is more appropriate for developing
core applications in corporate environments, where also a large percentage of the
Backbase framework users are located. However, for fast changing and dynamic
applications, the use of PHP, Ruby, or similar languages seems to be on the rise
everywhere, including within large corporations.

Remember also that the Backbase framework is server agnostic. This means that the
client web application that you develop with the Backbase framework is unaware of
what server language your application is using. You may see some signs of what the
server language is, by looking at the URLs involved in calling server actions. However,
you could even hide these by using some clever Apache web server mod-rewriting.
We will not do this because it may make it more difficult to deploy our sample code
in your own environment. Because the client application knows nothing about the
server except the agreed protocol for communication, you can easily replace the server
application with a similar one written in another language, as long as it adheres to the
same API.

The sample application that we start developing in this chapter involves a travel
blog site, where, if you are traveling, you can write blog entries about your travel
experience for a specific trip. You can upload photos and show where you are on
a Google map. Family or friends can follow your trip by visiting the site. In this
chapter, we develop enough of this application to do something interesting with
forms. In the next chapter, we will look at the display of public information for the
travel site by using data grids. Google maps and photo upload will be added in a
later chapter.

Here is a list of subjects that we will cover in this chapter:

•	 Overview of AJAX
•	 Asynchronous communication within the Backbase framework: the

XMLHttpRequest object, the JSONRequest object, and the load command
•	 Working with forms:

	° Forms profiles
	° Form elements: form, input, and fileInput
	° Abstract BTL form elements

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[135]

	° BTL form widgets: calendar, checkBoxGroup, comboBox,
and more

	° Validating input fields

•	 AJAX and architecture, Model-View-Controller, and implementing MVC
on the server

•	 The C3D travel blog sample application

The code for the BTL and command function examples can be found in
the btlSample and cmdSample exercisers that are part of the sample code
for this book.

AJAX
In a book that has AJAX in its title, we cannot omit a section where we briefly
introduce what AJAX stands for, although we assume that you are already
familiar with it.

Asynchronous JavaScript and XML (AJAX) is a term that describes a collection
of web development techniques and technologies for creating interactive web
applications:

•	 Extensible HyperText Markup Language (XHTML) and Cascading Style
Sheet (CSS) for presenting information.

•	 The Document Object Model (DOM), which is the browser's internal
representation of a web page, manipulated through JavaScript to display
information dynamically and to interact with the information.

•	 Extensible Markup Language (XML) and Extensible Stylesheet Language
Transformations (XSLT) for data interchange between browser and server,
and for data manipulation.

•	 The XMLHttpRequest object to exchange XML data asynchronously with
the web server, using the HTTP protocol. This means that the client does
not have to wait for the data exchange to complete before further user
interaction with the application is possible. As a result, JavaScript processing
can take place simultaneously with client-application interaction. Moreover,
a completely new page request is not required in order for new data to be
shown. Since only the necessary data is returned from the server, the user
interface appears more reactive to user input.

•	 JavaScript to bind everything together. JavaScript is used to interact
dynamically with the presented information. JavaScript functions can be
used to change styling or content, as well as to manipulate the DOM tree.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[136]

From a technical perspective, the use of the XMLHttpRequest object allows
applications to retrieve data from the server asynchronously. For example, the
result of a long database query, while the user continues to interact with the
application as presented in the browser page. Once the data transfer is complete, the
JavaScript in the client updates only those parts of a web page that need updating
by manipulating the DOM without refreshing the complete page (as required
by conventional web applications), and without forcing the user to wait until
communication with the server is complete.

From a conceptual perspective, AJAX technology allows you to build Single Page
Interface (SPI) applications. These applications have only one complete XHTML
document, in which the (dynamic) content of files or data sources will be loaded.
End user interactions result in asynchronous data requests to the server instead of
page requests. This results in partial updates of the user interface, thereby offering
end users fast response, smooth transitions between states, and continuous and
stable workflows.

The look and feel of an SPI AJAX application can be similar to a desktop application,
where all interaction results in partial updates within one window instead of the
traditional Multi-page Interface (MPI), where the browser page is reloaded after
every button press or form submit.

For general information on AJAX, there are many books available today. One of our
favorites is still the first one out—"AJAX in Action", by Dave Crane, Eric Pascarello,
and Darren James. The original article by Jesse James Garret is also still very readable.
(See: http://www.adaptivepath.com/ideas/essays/archives/000385.php)

Asynchronous communication
The first letter "A" in the word AJAX stands for Asynchronous. You may wonder,
however, what is asynchronous to what, and how is this possible?

When a page is loaded in the web browser, it starts its client-side life. In that period
of time, many interesting things happen in modern web pages or web applications.
For example, some animations could start running, some content could be updated,
and so on.

True asynchronous processes in the browser do not exist, in any case, not when this
book was written. This means that any of execution JavaScript code initiated, for
example, by a user input event would have to be processed entirely before another
event could happen. The same is true for JavaScript timeouts and intervals—they are
not executed in parallel, but rather sequentially.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[137]

I/O operations can happen asynchronously though. Once initialized from
synchronous JavaScript code, the request can start traveling to a remote server
and back. As soon as the server replies with a portion of the data and this data has
arrived at the client's web browser, the callback function of the requester object will
be called. Then, the program, now populated with data, can continue its flow.

There are several APIs available in the Backbase AJAX Framework that you can use
either with JavaScript or with XML to communicate with the server. In the following
sections, we will have hands-on experience with each of them.

The XMLHttpRequest object
The XMLHttpRequest JavaScript object is known today to be at the heart of any
modern AJAX application. But before this happened, it came quite a long way.
XMLHttpRequest was first released with Internet Explorer 5 in the year 1999.
Back in these days, this was a feature not used widely. Also, it was not known
as XMLHttpRequest, but as XMLHTTP. Several years later, the Mozilla browser
pioneered the reproduction of the XMLHTTP functionality with a new name of
XMLHttpRequest. Other browsers followed in Mozilla's steps and JavaScript now
had a powerful API for data communication.

The W3C standards specification for the XMLHttpRequest object can be found here:
http://www.w3.org/TR/XMLHttpRequest/.

The Backbase AJAX Framework has a reimplementation of XMLHttpRequest object.
Why is that? Web browsers, although trying to agree on implementation details
and even working in a joint effort on XMLHttpRequest specification, still have
multiple inconsistencies and sometimes even bugs in their implementation. Also,
Internet Explorer, prior to version 7, had a different API call for instantiating the
XMLHttpRequest object.

To solve these bugs and to bring consistency to the XMLHttpRequest object APIs,
Backbase provides a wrapped version of the object that has extra features, for example,
it enables script authors with sniffing facilities to serve browser-appropriate content to
site visitors.

Take a close look at the example below. It is very simple. The script is expected to
retrieve an XML document from the root folder of the web page:

var oRequest = new XMLHttpRequest;
oRequest.open("GET", "script.py", true);
oRequest.onreadystatechange = function() {
 if (this.readyState == 4) {
 alert(this.responseXML);
 }

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[138]

}
oRequest.send(null);

If you have experience with using XMLHttpRequest in your projects, you will
immediately see several potential problems. The first problem is using the this
scope in the readystatechange event handler and also, in the old Internet
Explorer browsers you could not write var o = new XMLHttpRequest; because
the object XMLHttpRequest did not exist.

These and many other issues are resolved within the Backbase framework.
Therefore, you do not need to think about them. You can just write code, as
in the example given, in the way you expect it to work and it indeed works.

The JSONRequest object
JavaScript Object Notation (JSON) is a lightweight data-interchange format. It
is rather popular with web developers as an alternative to using XML with the
XMLHttpRequest object because it is perceived as being easier to use.

The JSONRequest JavaScript object is a non-standard API object used in many
JavaScript frameworks and libraries. Unlike the XMLHttpRequest object, this API
object cannot be instantiated and all its methods are static. You can find more
information about its Backbase implementation in the Backbase framework's
API Reference.

In the following example, we will post a JSON object to the server script:

var oData = {"firstName": "Sam","lastName": "Brown"};
JSONRequest.post("myscript.cgi", oData, function() {
 alert('done!');
});

The load command
In the previous chapter, we gave an overview of the command functions that are
available with the Backbase framework. We then showed details of the commands
that you can use to manipulate the DOM tree or its elements. Here, we show the
load command, which is in a category of its own. You saw the load command
already in various examples.

The load command does a bit more than the XMLHttpRequest object that we saw
in the previous section because it also does something with the response it receives
from the server. Here are the functions of load command:

•	 The load command uses the XMLHttpRequest object to load XML

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[139]

from the server. It then uses that XML (like the create command) as
the code fragment.

•	 Use the destination and mode attributes to specify where and how the
element is placed in the DOM tree. If the destination attribute is omitted,
the loaded data will be returned.

•	 If the destination is outside a Backbase area, then the command also allows
loading invalid XML, in which case the browser will be responsible for
rendering the XML.

•	 If no content-type header is provided and the data is of type String, then the
content-type header will be set to application/x-www-form-urlencoded
for a post request.

•	 If no content-type header is provided and the data is of type XML
node or XML document, then the content-type header will be set
to application/xml for a request.

•	 The load and error events are fired on destination (if specified).

Here is a list of attributes that you can use with the load command—async, data,
destination, error, method, mode, select, success, type, and url. We have
encountered many of these before. Therefore, we restrict our description to the
attributes that are specific to the load command or that we did not see before.

Attribute Type Description
url String The URL of the remote data to be loaded. The value

is a valid URL string value expressed as an XPath
expression.

method String Determines the request method. Can be any string
value, but in general it is limited to GET (default) or
POST.

error JavaScript function JavaScript string that will be executed when an error
occurs during the load process.

success JavaScript function JavaScript string that will be executed when the load
process is completed successfully.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[140]

Attribute Type Description
type String Determines the type of response that the load

command should return.

Warning: This may only work correctly when the
destination attribute is omitted.

•	 application/xml, default: true,
application/xml Mime-type

•	 text/xml, text/xml Mime-type
•	 application/javascript, application/

javascript Mime-type
•	 text/javascript, text/javascript

Mime-type
•	 text/plain, text/plain Mime-type

async Boolean Determines whether the request should be done
asynchronously.

•	 true (default): Request is done
asynchronously.

•	 false: Request is done synchronously.
select XPath Data to be sent to the server along with the response

URL. When the method attribute is set to GET and
the data is of type string, the string will be interpreted
as query string data, comparable to the name/value
pairs at the end of a URL. If method is set to POST,
it is equivalent to a form submit. When the data is of
type Node, it will be serialized to a string and properly
escaped to make it suitable for HTTP transport.

Warning: When data is of type string, it must be
properly escaped by you to make it suitable for HTTP
transport.

In this example, the c:load function is used to load an external file:

<b:button>
 Click to load an external XML file
 <e:handler event="click">
 <c:load url="data/loadfiledata.xml"
 destination="id('receiver_element')" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[141]

 </e:handler>
</b:button>
<div id="receiver_element" style="border:1px solid green;">
 The contents of the external file will be loaded into this
 element.
</div>

header
It adds a header to the load action.

This element can only be used as a child of the load command.

Attribute Type Description
name String The header name. For example: Content-type.
select String (XPath) The header value. For example: application/xml.

The JavaScript load command
In the previous chapter, we introduced the bb object, which offers a set of utility
functions. One of the types of functions available with the bb object is the command
functions. In fact, for every command function that is available declaratively in
the xmlns:c="http://www.backbase.com/2006/command" namespace, there
is an equivalent function available with the bb object. Therefore, there is also a
bb.command.load function.

The parameters you can use to invoke the bb.command.load function are similar to
the ones available for the declarative load command, with the addition of headers,
process, and contextNode. You should specify them in this order: url, method, data,
headers, destination, success, error, process, async, and contextNode.

In the following example, the content of an external file is loaded into a div using
the JavaScript bb.command.load function. A function is defined to show an alert
when the load is successful. Similarly, you can define a function that handles errors.

<b:button>
 Click to load external XML file
 <e:handler event="click" type="text/javascript">
 var sUrl = "data/loadfiledata.xml";
 var oDest =
 bb.document.getElementById('receiver_element');
 var sMode = 'firstChild';
 var sMethod = "GET";
 var fnSuccess = function(){alert('success');};

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[142]

 bb.command.load(sUrl, sMethod, '', null, oDest,
 sMode, fnSuccess);
 </e:handler>
</b:button>
<div id="receiver_element" style="border:1px solid green;">
 The contents of the external file will be loaded into
 this widget.
</div>

Working with forms
The Backbase framework provides extended functionality to submit and validate
forms. As we said in the introduction to this chapter, a form is one of the most used
means to send input to a server. The standard implementation of the form element
and the elements that it can contain do not allow for asynchronous submission of
data and for receiving the data on the same page.

In the first chapter, we already presented a simple example: Hello Server!, which
showed how you can submit a form asynchronously and receive the results in an
area in the page itself. We made use of specific attributes on the form tag that are
provided with the Backbase framework: bf:destination and bf:mode. These
two attributes determine what will be done with the result that the server sends
back—where it will be placed on the page and how.

As you can see from the bf prefix used, these attributes are part of the forms
namespace, which we briefly introduced in Chapter 2.

The form submission itself happens exactly as before, by clicking a submit button
or by calling the JavaScript submit() function.

What does the forms support provided by the Backbase framework include?

•	 A complete implementation of the XHTML forms module to enable all
standard form's tags, without browser quirks

•	 A set of BTL widgets, designed to be used in a form
•	 Synchronous or asynchronous form submission
•	 Validation, together with a messaging and feedback system

We will first look at some general aspects of Backbase form handling, next we will
describe the BTL widgets that belong to the forms category and the last subject in this
section is form validation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[143]

The forms profiles
The forms profile extends BTL and XHTML with additional functionality—the
AJAX submission functionality and the validation functionality that the Backbase
framework offers for forms.

The forms profile files are automatically loaded when attributes in the forms
namespace are used, for example, a bf:destination attribute on an HTML form
element will trigger the loading of the forms profile. The profiles can also be loaded
on demand with the following two lines at the start of your application:

<d:uses namespace="http://www.w3.org/1999/xhtml" src=
"backbase/4_3_1/bindings/www.w3.org.1999.xhtml/formsProfile.xml" />
<d:uses namespace="http://www.backbase.com/2006/btl" src=
"backbase/4_3_1/bindings/www.backbase.com.2006.btl/formsProfile.xml"
/>

When you let the forms profile files load automatically, they are not
applied retroactively to elements before the element that triggered
the loading. For example, if you have an input element with a
bf:required attribute inside a form without a bf:destination
attribute (implying a Multi-page Interface submit), the form's code will
only be loaded when it reaches the bf:required attribute, and the form
element would not get the forms profiles' extensions.

The reason for the existence of the forms profiles is that the overhead of loading them
can be avoided when not used.

Form elements
In the forms namespace, there are a number of elements available that are extended
by the Backbase framework with regard to the XHTML standard. The two most
obvious ones are form itself and input. For both of those there is a base abstract
object to inherit from and an interface to implement. We are not going to bother
you by explaining how this exactly works, what is interesting though is the extra
attributes that are supported on these elements.

In addition to these two elements, we would like to discuss the Backbase framework
specific fileInput, which provides a way to upload a file with an AJAX form.

Other Backbase framework-specific elements are message and messages, which we
will introduce when we are discussing form validation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[144]

The extended form element
The form element has the same functionality as the standard XHTML form. In
addition, it supports the following attributes:

Attribute Description
bf:destination Destination of the response when the form is submitted. The value

must be a valid XPath expression. If this attribute is omitted, the
whole page will be refreshed with the contents of the response.

bf:messagesRef A reference to a messages element. Inherited from messengerBase,
an element we will not discuss here.

bf:mode Specifies how the submission result is placed in the DOM tree. We
have shown the valid modes before. appendChild is the default in
this case. Look in chapter 3 for allowed values.

bf:destination and bf:mode are related to Asynchronous JavaScript and XML
form submission, which we discussed earlier, while bf:messagesRef is related to
form validation, which we will discuss shortly.

The extended input element
Similar to the form element, the input element will function according to the
XHTML standard. Now, with these new attributes:

Attribute Description
bf:dataType Contains the XML Schema data type name with which to validate the

value. Refer to the W3 specification for simple types at http://www.
w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.
html.

bf:messagesRef A reference to a messages element. Inherited from messengerBase
(not discussed here).

bf:required If a field is required (true), a non-empty value for the input is required.
When the field is not required (false), an empty value is accepted. If
the attribute is absent or has the value default, no requirement checks
are done.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[145]

fileInput
The fileInput widget is a replacement for the input element with type="file".

It offers an input text field and a button. When the button is clicked, a dialog box
showing the filenames in the file system. When the user selects a file, the path and
filename is listed in the input field. Use this widget when your application requires
file uploads in a Single Page Interface (SPI) environment. This widget only works for
SPI submits. A regular HTML file input widget only works for Multi-page Interface
(MPI) submits.

When the form containing this widget is submitted or the submit() method is
called, the file upload will issue a separate request containing the selected file. You
can use fileInputParameter child elements to specify parameters that have to be
submitted along with the file. For example, this can be used to link two submission
requests together through a unique ID.

Use the fileInput when uploading a file to your application. The
fileInputParameter simply adds parameters that the server can read. These are
passed to the server on upload. You can use this field, together with a hidden input
field, to match the file upload with the form submit.

The following example actually works if you have the required PHP scripts
available. These are included in btlSample exerciser that can be found in the
code package for the book.

<form method="post" action="uploadForm.php"
 bf:destination="id('myFormDiv')">
 <input type="hidden" value="12345" name="uploadFormId" />
 <bf:fileInput action="fileUpload.php" name="myFile">
 <e:handler event="load" type="application/javascript">
 document.getElementById('myFileDiv').innerHTML =
 bb.getProperty(this,
 'responseHTML').documentElement.innerHTML;
 </e:handler>
 <bf:fileInputParameter name="uploadId" value="12345" />
 </bf:fileInput>
 <button type="submit">
 Upload the file!
 </button>
</form>
<div id="myFileDiv" style="border:solid 1px red;" />
<div id="myFormDiv" style="border:solid 1px blue;" />

We will use fileInput in a later chapter to upload photos to a web server, for our
sample application, the travel blog site. You will see that it can be rather tricky to
synchronize the file upload and form submit.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[146]

The abstract BTL form elements
In our overview of the BTL widgets, there is a forms category that contains a number
of widgets intended to be used in forms. These are: calendar, checkBoxGroup,
comboBox, listBox, slider, spinner, and suggestBox.

Just as we have seen in Chapter 2 for the layout BTL elements, there exist some
abstract elements to implement generic behavior for form elements. We have no
intention to present a boring long list of abstract elements here, however, knowing
something about the abstract behavior that some of the form elements inherit can be
helpful in using them.

The BTL elements we will be looking at are focusableElement, dropDown,
formList, formField, and rangeFormField.

focusableElement
We have mentioned focusableElement before, but a longer description seems
appropriate here because it determines the accessibility features of a widget, which
is important in a form.

If managing focus is properly supported, it allows the user to navigate through
an entire application using the keyboard. Supporting focus means supporting the
following features:

•	 accesskey: By pressing an Alt + [key] combination, the widget that has that
accesskey set will gain focus

•	 focus, blur methods: The methods to force focus/blur on a widget
•	 focus, blur events: The events that are dispatched when the widget receives

focus or when focus is lost to the widget
•	 tabindex: Determines placement in the order in which widgets are focused

by using Tab to cycle through focusable widgets

The focus feature is related to the disabled property, which means that when a
widget is disabled, it should not receive focus.

Elements that support focus extend focusableElement. To avoid problems with
disabling a focusableElement, it should be the last element in the list of extended
elements.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[147]

Here is a description of the attributes:

Attribute Type Description
accesskey Character When this key is pressed, the element is either focused or

activated (depending on the browser). Note that in some
browsers, you must set the tabindex attribute to enable the
accesskey.

tabindex Integer Manages the order in which controls can be accessed with the Tab
key. A value of -1 removes a control from the tab sequence, and
0 is the default value for focusable controls. Values higher than 0
place a control earlier in the tab order, with 1 having the highest
priority.

As mentioned above, the methods implemented by focusableElement are focus
and blur.

All widgets in the forms category inherit from focusableElement.

dropDown
This is the base element for drop-down widgets. calendar, comboBox, and
suggestBox inherit from it. dropDown implements the list functionality that
displays the items in the drop-down widget.

formField, formList, and rangeFormField
formField is the element that implements basic functionality for formList and
rangeFormField that both inherit from it. formField has no local attributes.

formList implements functionality for form widgets that can contain a list of
options. checkBoxGroup, comboBox, listBox, slider, and suggestBox inherit
from it. formList has no local attributes.

rangeFormField provides min and max attributes for derived elements to create
a value range.

Attribute Type Description
max Integer Sets the upper limit of the value.
min Integer Sets the lower limit of the value.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[148]

calendar, slider, and spinner inherit from it.

After this groundwork, we are ready to look at the form widgets themselves.

The BTL form widgets
In this section, we describe the forms category of the BTL widgets.

calendar
The calendar presents a visual representation of a month in Gregorian calendar
format. Click the arrows to navigate to the desired month and year, and select a
date in the presented month by clicking the appropriate number. The date is then
populated in an input field, which is read-only. The format option will cause the
date to be shown as, for example, 21-September-07.

calendar inherits from focusableElement, dimensionElement, positionElement,
and rangeFormField. It supports the following local attributes:

Attribute Description
disabledDates List of dates (in yyyy/MM/dd format) and weekday names (according

to language attribute) to disable in the calendar. Supported delimiters
are comma, semicolon, and space.

format A pattern for formatting the value of the attribute. Values represent
possible patterns for day, month, and year options. For example, M/d/
yy is 12/7/58, d-MMM is 7-Dec, d-MMMM-yy is 7-December-58,
MMMM is December, and MMMM yy is December 58. The default
value (for the default language, English) is MM/dd/yyyy. Note
that when specifying a date pattern with a full or abbreviated day
(ddd or dddd), the numeric value (d or dd) should also be included
(for example, dddd dd or dddd MMMM d, yyyy). For a full list of
acceptable values, see the Backbase API Reference.

language Display language. Languages are represented by two letter language
codes.

max The last date (in yyyy/MM/dd format) of the calendar. Dates after this
date will be disabled in the calendar.

min The start date (in yyyy/MM/dd format) of the calendar. Previous dates
will be disabled in the calendar.

mode Specifies whether the calendar will be shown completely inline or
partially inline with a pop up.

readonly When set to true, the user is not allowed to change the value.
value The (initial) value of the control.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[149]

Here is a picture of what a calendar looks like:

The calendar can be displayed in line or as a pop-up menu.

There are a few languages for which the calendar is supported—English, German,
and Dutch. Other languages can be added easily, look in the API Reference for an
example.

This example shows a calendar that is visible by default (mode="inline"). It also
specifies: language="nl", which means that the selected date is displayed in Dutch.

<b:calendar mode="inline" language="nl" format="d-MMMM-yy" />

checkBoxGroup
The checkBoxGroup is a form element that contains checkBoxGroupOptions. It
works in a similar way to an XHTML select. Multiple options can be selected at
the same time. XHTML can be used to influence the way the options are structured.
For example, a table can be used to display the options in several rows. The
checkBoxGroup should not contain other form elements.

Multi-page Interface (MPI) submits are not supported.

checkBoxGroup inherits from disableElement, containerElement,
dimensionElement, positionElement, and formList, and it does not have any
specific attributes.

In the next example, navBox elements are used to organize the options into
appropriate subgroups. In order for a server script to know what the entered values
are, a name attribute has to be supplied on the checkBoxGroup tag. If a value
attribute has been supplied on a checkBoxGroupOption, then that value will be
submitted instead of the text content; see the value for the Trivial Pursuit game after
submission. (You will need a server script to see it. It is provided with the code.)

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[150]

<style type="text/css">
 .option { display: block; }
</style>
Hobbies and Interests
<form action="cb_response.php"
 bf:destination="id('server-response-area')"
 bf:mode="appendChild" method="post">
 <b:checkBoxGroup name="hobbies[]" style="margin-top:20px">
 <b:navBox label="Sports" class="btl-bevel-left-right"
 padding="5px 10px" width="200px" open="true">
 <b:checkBoxGroupOption class="option">
 Football
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Baseball
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Swimming
 </b:checkBoxGroupOption>
 </b:navBox>
 <b:navBox label="Music" class="btl-bevel-left-right"
 padding="5px 10px" width="200px" open="false">
 <b:checkBoxGroupOption class="option">
 Pop
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Easy Listening
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Classical
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Jazz
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 New Age
 </b:checkBoxGroupOption>
 </b:navBox>
 <b:navBox label="PC/Console Games"
 class="btl-bevel-left-right"
 padding="5px 10px" width="200px" open="false">
 <b:checkBoxGroupOption class="option">
 First Person Shooter
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[151]

 Adventure
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Platform
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Simulation
 </b:checkBoxGroupOption>
 </b:navBox>
 <b:navBox label="Traditional Games"
 class="btl-bevel-left-right"
 padding="5px 10px" width="200px" open="false">
 <b:checkBoxGroupOption class="option">
 Bridge
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Chess
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Draughts
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption class="option">
 Scrabble
 </b:checkBoxGroupOption>
 <b:checkBoxGroupOption value="trivp"
 selected="true" class="option">
 Trivial Pursuit
 </b:checkBoxGroupOption>
 </b:navBox>
 </b:checkBoxGroup>

 <input type="submit"
 style="margin-left: 10px;" value="OK" />
</form>
<div id="server-response-area" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[152]

And here is what it looks like:

comboBox
The comboBox shows an input field and a drop-down value list. When the user
selects an item in the value list, the input field is populated with that value. By
default, the user can type a value directly into the input field; you can disable this
functionality by setting the value of the readonly attribute to true. The value list
can be hard-coded or bound to a data set, and the input value can be validated.

comboBox inherits from focusableElement, dimensionElement, positionElement,
formList, and dropDown. It has the following specific attributes:

Attribute Description
filter Specifies whether options will be filtered when a user enters a

value in the element.
readonly Specifies whether a user can enter a value in the element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[153]

Here's what a comboBox looks like:

The comboBox implements filtering functionality. If the filter attribute is set to
true when the user types a letter into the input field, then only the values in the
list that begin with that letter are displayed. Typing second and third letters further
reduces the possible list of values.

In the example, the readonly attribute is set to false. Therefore, custom values can
be typed in the comboBox. The filter attribute is set to true, which means that after
each character typed, only the remaining possible options will be shown.

<b:comboBox id="countryList" readonly="false" filter="true">
 <b:comboBoxOption>Afghanistan</b:comboBoxOption>
 <b:comboBoxOption>Albania</b:comboBoxOption>
 <b:comboBoxOption>Algeria</b:comboBoxOption>
 <b:comboBoxOption>American Samoa</b:comboBoxOption>
 <b:comboBoxOption>Andorra</b:comboBoxOption>
 <b:comboBoxOption>Angola</b:comboBoxOption>
 <b:comboBoxOption>Anguilla</b:comboBoxOption>
 <b:comboBoxOption>Antigua and Barbuda</b:comboBoxOption>
 <b:comboBoxOption>Argentina</b:comboBoxOption>
 <b:comboBoxOption>Armenia</b:comboBoxOption>
 <b:comboBoxOption>Aruba</b:comboBoxOption>
 <b:comboBoxOption>Ascension Island</b:comboBoxOption>
</b:comboBox>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[154]

listBox
The listBox widget displays a value list in a box. The list can be created inline or
bound to a data source. By setting the multiple attribute to true, the user can select
one item or many items (using Ctrl + click or Shift + click) from the value list. The
size attribute determines the number of visible rows in the box.

listBox inherits from focusableElement, dimensionElement, positionElement,
and formList, and it supports these specific attributes:

Attribute Description
multiple If set to a value of true, the listBox will allow the selection of multiple

values.
size The number of items displayed in the listBox (clipped items will

create a vertical scroll bar).

Here is what a listBox looks like:

The listBox is populated with child listBoxOption widgets. Setting the
selected attribute on the listBoxOption widget to true selects the
listBoxOption by default.

This example shows a listBox with listBoxOptions that make up the list items.

<h1>Contemporary Dutch Fiction</h1>
<b:listBox size="5" multiple="true" name="myListBox">
 <b:listBoxOption>The Discovery of Heaven</b:listBoxOption>
 <b:listBoxOption selected="true">The Assault</b:listBoxOption>
 <b:listBoxOption>A Heart of Stone</b:listBoxOption>
 <b:listBoxOption>All Souls Day</b:listBoxOption>
 <b:listBoxOption>The Third Voice</b:listBoxOption>
</b:listBox>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[155]

slider
The slider widget allows the user to move a grippy, or a rectangular cursor, along a
linear path that represents a text or numerical range. The location of the grippy along
the slider range corresponds to a particular value. Each grippy is a holder of this
value and position. These values can either be strings or numbers. The orientation
attribute of the slider allows you to orient the slider either horizontally or vertically.

slider inherits from focusableElement, dimensionElement, positionElement,
rangeFormField, and formList. It supports the following local attributes:

Attribute Description
fill If this attribute is true, the slider will have an area that is

highlighted with specific color. For a slider with one grippy, it
will be the area from the beginning of the scale to where the grippy
is positioned. For a slider with two grippies, it will be the area
between the grippies. In other cases, nothing is highlighted.

max The highest number in a numerical range. The slider cannot
represent a number higher than the value of this attribute.

min The lowest number in a numerical range. The slider cannot
represent a number lower than the value of this attribute.

orientation Determines whether the positioning of the slider is horizontal or
vertical.

showLabels Boolean value to indicate if a label should be displayed.

showToolTip Indicates if a toolTip should be displayed.

snap Boolean value to indicate if the slider should snap to the closest
value.

step The value by which the slider jumps. With a step of 3, a min of 1,
and a max of 10, the possible values would be 1, 4, 7, and 10.

value The attribute that sets the initial (default) value.

This is what a slider looks like:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[156]

The grippy is defined using the sliderGrippy element. If there is no child
sliderGrippy defined, one instance will be created automatically. You can define
any number of sliderGrippy elements for this slider, each having its own value.
Therefore, each following grippy cannot have a value that is smaller than the value
of the previous grippy.

Each sliderGrippy represents this separate value and position holder. For
backward compatibility, the slider widget also contains a value attribute, a value
property, and a defaultValue property, which redirect to the same properties and
attributes of the initially defined grippy.

A user can work with only one grippy at a time. This grippy should be active at
the time that the user works with it. The user selects the active grippy by clicking
on it. The active grippy receives all the mouse movements and keyboard controls.
Programmatically, the active grippy is represented by the activeGrippy property.
Setting this property changes the active grippy at runtime.

A slider is typically used on a form. When a user needs to enter a numerical value,
especially if there is a wide range of values, a slider is easier to use than a spinner
or a standard input field. Because the slider widget has attributes for min, max, and
step (the increment/decrement amount between values), a slider becomes even
more useful when the numerical value has a set range or must be incremented by
a value larger than one. Using two grippies, you can define the control for intuitive
entering of a range of values.

A more complicated scenario would involve a relationship between the slider
and a data widget. For example, the value on the slider could determine the
maximum price for items that you want to buy on a vacation. When the slider
value is changed, the data in a data widget is filtered, so that only items less than
the maximum price are displayed.

The sliderOption widget handles text values for the slider. Use the sliderOption
widgets as children of the slider when you want to predefine a non-standard item
list for the slider.

Here is an example of a BTL slider with horizontal and vertical orientation:

<b:slider id="myHorizontalSlider"
 max="30" min="0" step="2" value="15" />
<b:slider id="myVerticalSlider"
 max="0" min="-30" value="-15" orientation="vertical" />

This is an example of a BTL slider with non-numerical sliderOptions:

<b:slider value="Wednesday">
 <b:sliderOption>Sunday</b:sliderOption>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[157]

 <b:sliderOption>Monday</b:sliderOption>
 <b:sliderOption>Tuesday</b:sliderOption>
 <b:sliderOption>Wednesday</b:sliderOption>
 <b:sliderOption>Thursday</b:sliderOption>
 <b:sliderOption>Friday</b:sliderOption>
 <b:sliderOption>Saturday</b:sliderOption>
</b:slider>

spinner
The spinner allows you to increment or decrement a numerical value by entering a
value in an input field, clicking up and down arrows with the mouse, or using the up
and down arrow keys.

spinner inherits from focusableElement, dimensionElement, positionElement,
and rangeFormField. It has these local attributes:

Attribute Description
decimals Sets the number of decimals to be used for the precision of the

spinner value.
step Sets and reports the size of the changes made when the arrows are

clicked or the up and down keys are pressed.
stringAfter The text to be added after the value when it is displayed.
stringBefore The text to be added before the value when it is displayed.

value Value of the spinner.

This is what a spinner widget looks like:

You can set the minimal numeric value of the spinner using the min attribute.
The maximum numeric value is set using the max attribute (inherited from
rangeFormField).

This spinner example uses max and min attributes to create bounding values:

<b:spinner id="myspinner" min="50" max="100" step="5" value="75"
 stringAfter="%" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[158]

suggestBox
Much like the XHTML select element or comboBox widget, the suggestBox is a
form widget of which the submitted value is selected from a list of options. It can
be used to limit the size of the list for large datasets. Where the comboBox shows all
the options in the list, the suggestBox only shows the options that are suggested.
This means that the user does not have to go through a large list of options in order
to select one. Note that the number of suggestions that are displayed can be limited
using the suggestMaximum attribute. Setting this attribute may result in usability
and performance improvements when the dataSource contains a very large number
of suggestions.

suggestBox inherits from focusableElement, dimensionElement,
positionElement, dataObserver, formList, and dropDown, and it also has
some specific attributes:

Attribute Description
select Specifies a query for the data that has to be shown in the

suggestBox. Currently, this can only be an XPath query of
which the context is a row in the dataSource.

suggestDelay Specifies the delay in milliseconds before suggestions are actually
made. This reduces the amount of unnecessary suggestions when
a user is still typing a value.

suggestMaximum Specifies the maximum number of suggested options that are
visible.

suggestStartLength Specifies the minimum input string length for which suggestions
will be displayed.

The following screenshot shows a suggestBox:

Unlike the comboBox or listBox, the suggestBox does not need the options to be
listed as child elements of the suggestBox. Instead, it can retrieve the options from
a dataSource.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[159]

Currently, the suggestBox only supports using a local XML dataSource. In the next
chapter, you will see much more about data sources and we will show how you can
extend the suggestBox to use a remote data source after we have discussed TDL.

The suggestBox in this example allows you to find a specific country from a
list of countries easily by typing the first few letters of the country name. You
could keep the names of the countries in an XML file and read it into a variable.
Here, we provided the first few lines of this file as local data. To find the value
of a suggestBox, consider that its behavior is very similar to an input field. The
dataContainer is used to specify inline data. This inline data can be included
using xi:include.

<b:dataSource e:behavior="b:localData" name="mySource"
 dataType="application/xml">
 <b:dataContainer>
 <countries xmlns="">
 <country><name>Afghanistan</name></country>
 <country><name>Albania</name></country>
 <country><name>Algeria</name></country>
 <country><name>American Samoa</name></country>
 <country><name>Andorra</name></country>
 <country><name>Angola</name></country>
 <country><name>Anguilla</name></country>
 <country><name>Antigua and Barbuda</name></country>
 </countries>
 </b:dataContainer>
</b:dataSource>
<b:suggestBox name="country" dataSource="mySource" select="*[1]" />

Validating input fields
Anyone who fills in a form now and then has been confronted with the frustration
of making mistakes. Sometimes, you must deal with a server that sends unfriendly
error messages, and then wipes out the input that has already been entered.

You can enhance the user experience considerably by checking the values in the form
fields for validity before the form is sent to the server. The user should also see a
meaningful error message when values are entered incorrectly or when a value that
is required was not provided.

The Backbase framework offers several built-in facilities to validate user input. There
are also many ways to extend this validation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[160]

Required fields
We start with a very simple validation. An error message is displayed when you try
to submit the form while the name field is not filled in.

Here is the code for a form with Backbase form widgets:

<div xmlns:xi=http://www.w3.org/2001/XInclude
 xmlns:c="http://www.backbase.com/2006/command" id="center">
 <fieldset title="Check Out" id="checkOut">
 <legend>Check Out</legend>
 <div class="row">
 <div class="lspan">
 <label for="name">Name:</label>
 </div>
 <input class="inputText"
 type="text" name="name" id="name"
 bf:required="true"
 bf:messagesRef="id('required_field')" />
 *
 <bf:messages id="required_field">
 <bf:message event="invalid"
 class="errorMessage" facet="required">
 <div>This field is required.</div>
 </bf:message>
 </bf:messages>
 </div>
 <div class="row rowOdd">
 <div class="lspan">
 </div>
 <button type="submit">
 Order the T-shirt
 </button>
 </div>
 </fieldset>
 <p>
 Fields marked with * are required.
 </p>
</div>

Two attributes (bf:required="true" and bf:messagesRef="id('required_
field')") are added to the input field. We have seen these attributes in our
description of the extended input field for forms. You should also notice the
messages container.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[161]

The required_field identifier refers to a messages container, which displays
or hides the message depending on the validity of the field when the user tries to
submit the form. The messages container can have more than one message if you
want; for example, one for each kind of error that you would like to catch.

When the invalid event occurs, the message content is made visible. In our
example, red text appears to inform the user that the field is required. You can
try this by pressing the Order the T-shirt button without entering a value in the
name field.

When you fill in some values in the form and press the Order the T-shirt button, a
simple static text is displayed. This is what it would look like:

Data type validation
Making sure that a field is filled in is of course useful, but often you want more.
You would want to make sure whether the field value is a valid email address,
home address, or phone number, or a date, and so on. To help with this problem,
the Backbase framework supports the XML schema data types specification, and
provides the bf:dataType attribute for applying type validation rules to input tags.

This code shows a form with a select box, where the options should be a valid
language abbreviation. The name field is required, age has a custom type, and
the zipcode has a Backbase-specific type.

<select name="language" id="language
 bf:dataType="xs:language">
 <option value="" />
 <option value="nl">Dutch</option>
 <option value="en-GB">English (British)</option>
 <option value="en-US">English (US)</option>
 <option value="ja">Japanese</option>
</select>
<input name="name" id="name" bf:required="true" />
<input name="age" id="age"

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[162]

 bf:dataType="example:minimum-age-12" />
<input name="postcode" id="zipcode"
 bf:dataType="b:zipcode-nl" />

By default, the XML schema data types provide a number of built-in data types.
There are various possibilities to extend the types with custom values and checking
rules. You can find details for this in the Backbase documentation.

The XML schema specification itself provides the most common validation rules. For
example, the value of the bf:dataType attribute in the select element of the earlier
example, xs:language, is a standard simple type.

Additionally, Backbase delivers a few extra simple types such as email and
creditcard. These are extra validation rules that are not part of the XML
schema specification.

The age input field in the example also specifies a data type: minimum-age-12.
This simple type definition ensures that the field only allows an integer value
greater than 12.

<xs:schema xmlns:xi="http://www.w3/org/2001/XInclude"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.org/ns/my-datatypes">
 <xs:simpleType name="minimum-age-12">
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="12" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

This custom simple type is a composite of two XML schema rules. The restriction
xs:nonNegativeInteger refers to a built-in simple type that states that the value
must be an integer greater than or equal to zero. We then further restrict that simple
type by adding the minInclusive constraint, ensuring that the value must be an
integer greater than or equal to twelve.

We only showed some simple validation types here. If you need more, all facilities
are there to define them. The main purpose of this section was to give you an
impression of what is possible. We will add more complex validation to our sample
application in later chapters.

For inspiration and to see what is possible, you could take a look at the Rich Forms
Demo that can be found on the Demos page: http://bdn.backbase.com/client/
demos. We do not recommend taking this demo as a starting point for your own
development because it is very specific to the example it implements.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[163]

AJAX and architecture
By now, you know how to communicate with the server and how to load data
or code asynchronously. What effect does this have on the architecture of your
application? We are going to shift our attention from the details of asynchronous
communication to a more abstract level where we are talking about overall web
application architecture. After that, we'll make some remarks on how this can be
implemented on the server. The actual examples of both client and server code will
be given in the next section, where we discuss the travel blog site sample application.

In February 2005, when the term AJAX became known to the world via Jesse James
Garret's article AJAX: A New Approach to Web Applications, (see for a reference the
AJAX section, covered earlier in this chapter), web developers suddenly realized that
it was possible to create web applications with the same interactive look-and-feel as
desktop applications.

It was not new technology because all aspects of AJAX already existed, but the
understanding of how these technologies could be integrated caused a steep
increase in attention for new ways to do web application development.

In practice, the development of web applications has not become easier since AJAX
came on the scene as we already explained at the start of Chapter 1. Nowadays, the
effective web developer needs to have expert knowledge about (X)HTML, XML, AJAX,
JavaScript, CSS, the Document Object Model (DOM), and a server-side language like
JSP, PHP, ASP, or Ruby, to name a few. He needs to know about browser quirks,
server application architecture, database access, and the business domain that the
application covers.

It is no wonder that few web applications' frontends do nothing more than show
some glitzy JavaScript stuff and that the UI code of many applications has become
the spaghetti that we know so well from the eighties, the days before object-oriented
programming was invented.

By now, there are hundreds of JavaScript UI and AJAX libraries available, some
better known than others. It is not enough to have these libraries to make our
development easier. In fact, although we can make web applications that are more
powerful and more user friendly, in general, they have also become more complex.

The natural course of events for a new technology is that after making things more
complex, eventually, the community will understand how the technology works. The
new technology will be merged with older, similar ones, and simpler paradigms will
arise. We think the same is true for the AJAX technology now.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[164]

We have seen that the Backbase framework can act as a unifying technology for
the client-side of web applications, which is a great step forward in managing the
complexity of such applications. This does not help us if we cannot find means to
also manage the complexity of the server application and the web application as a
whole. Let's look at it.

AJAX is about communication between a web server application and a web client.
As you will understand now, each of the two is an application in its own right.
Both together compose the web application as the user will experience it. The
question arises: what should be in the client application and what should be in
the server application?

Older wisdom helps us out here. IT architects have known for a long time that
you should split your application in layers. The appropriate way to do that is by
using the MVC pattern, which we will describe in the next section.

Model-View-Controller
The Model-View-Control design pattern, or MVC for short, is maybe the first design
pattern documented as such—a design pattern is a general solution to a common
problem. The MVC pattern was originally written down by Trygve Reenskaug in
1978. This is roughly what he said:

•	 A model is a representation in an application of knowledge in a particular
problem domain

•	 A view is the presentation of the model to a user
•	 A controller defines the interaction between a user and the application

This definition is just as valid today as it was in 1978 and every good application has
a strategy for separating models from views and a discussion where the controller
should be placed.

Our web application really consists of three parts as we argued in the previous
section. For each part, you can apply the MVC separation separately. In fact, you can
use the MVC pattern for each component within your application and you have to
strike a balance between too much structure that cuts your application in pieces that
are too small and the complexity of spaghetti without structure.

Looking at our web application from a helicopter perspective, it is clear that
the model should be on the server and that the client acts as a view. We place the
controller also on the server. Why? Because the server is more secure and does not
allow (at least in principle) the user to assume any role he/she would like (being a
super administrator, for example), with the risk of destroying precious data.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[165]

Let us delay the question of how you can use the MVC pattern for the client
application until later. First, we will look at the server-side because the structure
of your server application determines to a large extent the complexity of your
total application.

Implementing MVC on the server
A while ago, we started looking for a PHP framework that could help with setting
up an architecture for our web applications. We evaluated a few and we tried a
few, but finally, none fit our requirement. Then, we came across some remarks
by Rasmus Lerdorf, the original creator of PHP (http://toys.lerdorf.com/
archives/38-The-no-framework-PHP-MVC-framework.html):

So you want to build the next fancy Web 2.0 site? You'll need some gear. Most
likely in the form of a big complex MVC framework with plenty of layers that
abstracts away your database, your HTML, your JavaScript and in the end your
application itself. If it is a really good framework, it will provide a dozen things
you'll never need.

Rasmus continues arguing that it is better to develop your own framework that
exactly fits your needs. This framework should be so simple that six months from
now you will understand it at a glance. We will develop such a framework. You will
see what it looks like in the next section when we introduce our travel blog site.

Of course, you are wondering now why we did not use the same argument and
develop our own client framework instead of using the Backbase framework. Well,
the truth is, Sergey did this indeed, but he was also a core developer of the Backbase
framework. For average web developers, it is not possible to develop a framework
that would abstract most quirks from all modern browsers and that can implement
the dynamic widgets that we need these days. As we argued in our introduction
about architecture in the previous section, the Backbase framework acts as a unifying
technology, which is needed to keep complexity at bay, just like object-oriented
technology gave a handle to manage complexity in the late nineteen-eighties.

In addition, the Backbase framework is more than a framework. It includes the Tag
Definition Language, which constitutes an essential part of the value of what is
offered by Backbase. We will discuss TDL in detail in a later chapter. Also, think of
it this way: Rasmus had to create PHP first, before he could create his no-framework
PHP MVC framework. Developing your own language is not interesting to most
developers and why should you if there are good languages to choose from?

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[166]

The server controller
A basic principle for a controller on the server is that it should act as the single,
exclusive entry point of all communication with the server. This has an important
advantage—only a single script is needed to handle session management, user
authorization, and input filtering. This makes handling security much easier. By the
way, input filtering can be done automatically for PHP since release 5.2.

In our no-framework framework, all other PHP scripts only contain classes and
therefore, cannot be executed directly by typing their URL in the address bar of
the browser. This is also an important security feature because authorization for
a script is not in the script itself, which could be wrongly handled or forgotten by
the developer.

The server model
We try to design our application in such a way that most server scripts can be just
simple providers of data to the client. They will need access to a database to do this.
We have a simple database framework available for you too. You need a framework
in this case not to protect you from writing SQL, but to protect you from inadvertent
SQL injection problems. The framework also offers you a choice of interfaces for
MySQL and SQLite.

Having only scripts that do simple requests for data and return that data as XML
will be a major simplification of your server application. Contrast this with the
Multi-page Interface approach where you had to weave data with HTML to build a
complete page, for every user request. In this chapter, we only look at requests that
result from submitting a form or from a load command. In the next chapter, the
data-bound widgets will be responsible for the requests for data.

The server view
Everything that is visible from the client is sent to it from the server. Using AJAX
technology and the Backbase framework, it is possible to separate out those parts
of an application that contain static text and those parts that contain dynamically
generated content. Static parts do not need to be generated. By using data bound
widgets and by sending only XML with data and not (X)HTML to the client, we
can avoid writing complicated server scripts that need to generate (X)HTML.

However, we did find that it is not possible to avoid code generation totally,
sometimes because of performance reasons, and sometimes because of restrictions
that we did not know how to solve yet.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[167]

We round this topic off with a cute quote from Martin Fowler. If you don't know
him, then check out his books. He is a very well-known author and authority
on everything related to object-oriented application analysis, design, and
implementation, with examples mostly in Java.

Scriptlets
On page 351 of his book, Patterns of Enterprise Application Architecture, Martin Fowler
defines a scriptlet as:

A piece of arbitrary programming logic in a server page, such as ASP, JSP or PHP.

On page 337, he writes:

I think that scriptlet code has the same relationship to well-designed software that
professional wrestling has to sport.

He then argues that we should separate out the programming logic from the
presentation logic in much the same way as web application programmers have
learned to use templates or template languages to separate model from view. This
is still valid, although the need for templates that are used to generate HTML should
be much less than before.

The C3D travel blog site
After the rather abstract and high level description of what our server code should
look like, we are ready to step down and get our hands dirty with some real code.
But, not immediately! First, we introduce our web application and describe a set of
requirements for it.

At the time of writing this chapter, one of the authors (Ghica) was in China,
accompanying her husband on a university exchange. To keep family and friends
informed of their whereabouts and adventures, they registered for a Dutch travel
blog site.

The site serves its purpose, but the user interface is annoying, to say the least. This
gave us the idea that maybe this user interface could be improved and that it actually
would provide an example where we could show many of the features of the
Backbase framework, as you will see.

Why C3D? Well, this book is about JavaScript circles and how to square them into
Backbase widgets. On the other hand, traveling is about the globe, which is really a
3D circle.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[168]

We have no intention to compete with this Dutch site or with its international cousin,
www.travelblog.com. Rather, our site will be a private site for a limited amount of
registered users and their friends.

You can use the source code provided as such and upload it to your own site, or
you can use the examples and the mini framework provided, to develop something
entirely different, for example, a web shop.

Here is a quick preview of the first prototype of the site for this chapter, at the time
when you enter a new trip:

The first thing that has to be done while developing an application is to write down a
list of requirements.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[169]

Requirements for the C3D site
Some of you may remember the times when the requirements for an application
were documents of two hundred or more pages, which were then cast in concrete.
This was a good starting point for the failure of your project because it was usually
impossible to match the requirements and if you could, it would turn out to be not
what your customer wanted by the time you finished. Therefore, we restrict our
requirements to a short informal list:

•	 The C3D site is a site where a restricted set of users can blog about their
travel experience and upload photos to show next to a blog entry

•	 It will be possible to place small Google maps next to a blog entry to indicate
where on earth the traveler is when writing a blog entry

•	 Everyone can view the trips made by the registered users and be informed of
selected updates to the site

This chapter addresses the design of the web application and the first point in the
list. The next chapter will show how the blog entries can be displayed using a data
grid and in Chapter 11 we will add the Google map facility.

Design
There are many ways of designing a web application. The most accepted ways are
either to start with use cases, or with frontend user interface design:

•	 Because this is an experimental example, we let our informal list of
requirements be the use cases

•	 The user interface design is just the thirteen-in-a-dozen page layout that you
saw for our example applications in Chapters 2 and 3

It is important to note here that if we change our mind about the visual aspect of
the user interface, we can usually rearrange it without having to change any of the
interface logic.

Our favorite next step is to create a data model.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[170]

Data model
Creating a data model is a quick way of starting the design of a small application.
For a large application, starting with an object model is more usual. However, in our
opinion, the best object models closely resemble good data models, and this is true
for applications of any size.

You create the data model by listing all the things that are important for your
application and that you want to keep track of in a database. After some shuffling,
we came up with the following model:

This is an extremely simple model that says:

•	 The C3D site has a number of users. Note that we do not need to create a
table that represents the site because it has no attributes.

•	 Each user can make a number of trips. Each trip can have a number of blog
entries associated with it. Each entry can have zero or more photos associated
with it.

•	 Note that we store when a trip was added or when a blog entry was made.
However, a user can still choose the dates to which a trip or entry applies.
This allows you to make entries at a later date than the date you are
describing in your blog.

•	 We will store photos outside the database. It is not difficult to do, but it may
take up a lot of space.

The straightforward SQL that you can create from this model is included in the code
provided with the book.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[171]

Page layout
Finally, we are going to show some real implementation. Unfortunately, we are
going to violate some of the principles we were arguing about earlier, as we need
to address something more important: usability.

We started out with a starter page containing a layout very similar to what we
have been doing before, using a panelSet. When our first prototype was ready,
we uploaded it to a server that sits somewhere in Europe and quickly found out
that we had a problem looking at it via our good, but rather slow, Internet
connection in China.

An essential part of a good user experience for a site is that the first page should
appear quickly. After that, a user may be willing to wait a few seconds. Using a
panelSet has the effect of putting a blanket on top of your application, through
which all interactions go. Moreover, lots of Backbase functionality needs to be
loaded just for this panelSet.

We solved our problem by replacing the panelSet with an ordinary table. With
the advent of better CSS support in most browsers, people tend to frown upon the
use of tables, and surely we could have found a way to get the same layout with
just CSS and a few div tags. However, a well-placed table can save you a lot of
frustration and in this case there are no hidden, generated, and nested tables that
can upset our layout.

We also changed the file type from .html to .php. We could now replace the XInclude
statements by PHP include statements. The difference is, of course, that the code is
included at the server, and not by an extra request after the page is loaded. The BTL
bindings in the config.xml must always be included using XInclude.

The body part of index.php now looks like this:

<body>
 <script type="text/backbase+xml" height="200px">
 <xi:include
 href="../../backbase/4_3_1/bindings/config.xml" />
 </script>
 <table style="width:100%; height: 100%" border="0"
 cellpadding="0" cellspacing="0">
 <tbody>
 <tr>
 <td colspan="2" style="overflow:
 hidden;height:140px;">
 <img src="resources/media/hongkong.jpg"
 width="100%" height="140px" border="0" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[172]

 </td>
 <td style="width:200px; height:140px;
 margin-bottom: 20px;" valign="top"
 align="right">
 <div class="appHeaderText"
 style="background-color: #2e1f34;
 height:140px;padding-left:10px;">
 3D
Circles
 </div>
 </td>
 </tr>
 <tr>
 <td style="width:200px;height:100%;
 overflow: hidden;" valign="top">
 <script type="application/backbase+xml">
 <div id="menu-area"
 style="width:180px;height:100%;
 overflow: hidden;">
 <?php $req=initialmenu;
 include "initcntrl.php"; ?>
 </div>
 </script>
 </td>
 <td class="btl-border-left" valign="top">
 <script type="application/backbase+xml">
 <div id="trip-area"></div>
 </script>
 <div id="app-content">
 <?php include "content.xml"; ?>
 </div>
 </td>
 <td class="btl-border-left"
 style="width:200px;" valign="top">
 <script type="application/backbase+xml">
 <div id="login-info"
 style="padding-left: 10px;
 font-color: navy;">
 <?php $req=userinfo;
 include "initcntrl.php"; ?>
 </div>
 </script>
 <div id="app-info">
 <?php include "info.xml" ?>
 </div>
 </td>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[173]

 </tr>
 </tbody>
 </table>
</body>

Your startup page will look like this:

Remember that this is a prototype still. There is some code in this version that we are
not so proud of. We will improve some of it in later chapters.

Good use of IDs
You may have guessed that we are not strong advocates of the use of IDs in your
XHTML. If you are dynamically loading code, then IDs are not guaranteed to be
present when you think they are. There is also the danger of loading a code fragment
twice and consequently, errors with duplicate IDs will result.

There are also circumstances where the use of an ID is OK. When you design a web
application page, there will be static parts of the application, such as the area at the
top where the header is placed, an area at the side where the menu items are and
an area in the middle where the dynamic content of a page is loaded. Usually, you
define div elements where the contents of these areas will be loaded and because
these elements will stay on the page during the whole execution process of your
web application, it is a good idea to give these div elements an ID. With CSS you
can determine where these div elements are placed on the page, and the IDs make it
easier to target dynamic content to be loaded.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[174]

To make it easier to understand the code in the next sections, we give here a diagram
of the IDs we are using:

Server application structure
The structure of our C3D application is similar to the one we used before. There is a
root directory, called c3da (we will have also a c3db version, and so on), and there
are several subfolders, each with a specific purpose. Here is a picture of it:

c3da is a subfolder of myApps. Another subfolder you will see is the fw folder. FW
stands for framework, but it typically is a no-framework framework because it only
contains a small set of database classes, a class loader typical for PHP5, and a few
other things. As before, the Backbase code is one-level up.

We promised that we would structure our server code according to the MVC pattern.
Therefore, we should look at each of those parts. Let's start with the controller.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[175]

The C3D controller
Basically, there is only one server script that can be called from the client: cntrl.php.

cntrl.php can accept a number of parameters, as either GET or POST requests. The
main one is the req parameter, which tells the cntrl.php script what it should do.
The code of this script is as follows (for brevity, we do not show all actions):

<?php
if (!isset($_SESSION)) {
 session_start();
}
header('Content-type: application/xml');
echo '<?xml version="1.0" encoding="UTF-8"?>';
require "../fw/setPaths.php";
require 'config.inc.php';
ob_start();
switch ($_REQUEST['req']) {
 case "login":
 $login = new login();
 $login->check($_POST['username'], $_POST['password']);
 break;
 case "logout":
 $login = new login();
 unset($_SESSION['c3d']['username']);
 $login->setLoginMenu();
 break;
// more case statements here
 default:
 echo "*** invalid request ***";
}
$out1 = ob_get_contents();
ob_end_clean();
echo createResponseElement($out1);
?>

Do you think that this controller is too simple? Maybe not! For example, remember
that input filtering to prevent cross-site scripting is done transparently by PHP, SQL
injection is handled by our database access classes, and this controller is the only way
you can communicate with the application. Its sole task is to make sure that only
those tasks are called for which the user of the site is authorized.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[176]

As for any PHP script that is part of an application, we should make sure first that
there is a session present that can keep information about our site user, such as
whether the user is logged on, which trip he/she is looking at, and so on.

You see two files included from our small fw framework, these contain the class
loader we were talking about and the database access classes. There is also a function
defined in setPaths.php with the name createResponseElement(). This function
embeds the code that is sent back by the model classes in a div with all necessary
namespace declarations.

The config.inc.php file contains database information, such as database user and
password. If you are using our sample code in your own environment, you should
adapt these values to fit your setup.

For those of you not familiar with PHP: the ob_start(), ob_get_contents(), and
ob_end_clean() functions allow to save output that otherwise would be echoed
immediately, into a string. This string can then be used to create the response with
the createResponseElement() function.

You may have noticed in the index.php script the invocation of initcntrl.php
script. This is not really a controller, but a script that offers a shortcut solution to the
problem of inserting dynamic code into the initial page.

It can happen that the user clicks on Refresh in his browser. This will result in
a new invocation of the index.php script. Because it is not nice to destroy the
session this user already had available, the initial page must be able to show the
proper menu items in this case. To avoid unnecessary round-trips to the server,
which as we found out in China gives the site a slow appearance, a custom script,
initcntrl.php, was written for this case. We will refactor this code in Chapter 11
in such a way that initcntrl.php is not needed anymore.

The C3D model
The model classes are the classes that are called from the controller script cntrl.php.
Right now, there are only three classes—a class that handles login and logout, a class
that handles inserts into a database table (for the moment only trips), and a class that
does some work to set up the initial menu.

The C3D view
The view is not stored in classes but in XML files and some of it is still hidden in PHP
model classes. They should go to PHP templates for which we have an extremely
simple facility in our fw framework. We will refactor this in a later version of the
C3D application.

index.php clearly belongs to the view too.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[177]

Login and logout
A user must be logged in to add a new trip, to add blog entries, or to upload photos.
To do so, he or she will click on the login menu item. A form will appear in which
the user can type a username and a password.

A request is sent to the server, which is handled by the controller script. When the
password is OK, the logout menu item will replace the login form and all menu
items that only a logged-in user can see will be added. For now, this is only the add
trip menu item.

When the user logs out, the login menu item should reappear and anything that
was viewable only by logged-in users should be removed.

Before login, the following code is placed in the menu area:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:c="http:// www.backbase.com/2006/command"
 xmlns:e="http://www.backbase.com/2006/xel"
 class="app_menu_item">
 Login
 <e:handler event="click">
 <c:load url="../forms/UserLogin.xml"
 destination="id('login-area')"
 mode="replaceChildren" />
 </e:handler>
 <!-- make sure that areas where there is info about
 logged-in users are empty -->
 <e:handler event="DOMNodeInsertedIntoDocument">
 <c:create destination="id('login-info')"
 mode="replaceChildren">
 <div />
 </c:create>
 <c:create destination="id('restricted-items-area')"
 mode="replaceChildren">
 <div />
 </c:create>
 <c:create destination="id('trip-area')"
 mode="replaceChildren">
 <div />
 </c:create>
 </e:handler>
</div>

This code says that at a click event the form should be loaded. As the code for the
form is very straightforward, we do not show it here.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[178]

Because we do not know whether the placement of the login menu item on the page
is the result of logging out, we make sure that all restricted areas are replaced with
empty div elements.

The logout menu item looks as follows:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:c="http://www.backbase.com/2006/command"
 xmlns:e="http://www.backbase.com/2006/xel"
 xmlns:xi="http://www.w3.org/2001/XInclude" class="app_menu_item">
 Logout
 <e:handler event="click">
 <c:load url="../cntrl.php?req=logout"
 destination="id('login-area')"
 mode="replaceChildren" />
 </e:handler>
 <e:handler event="DOMNodeInsertedIntoDocument">
 <c:create destination="id('login-info')"
 mode="replaceChildren">
 <div>
 Hello!
 <xi:include href="../cntrl.php?req=getuser" />
 <hr />
 </div>
 </c:create>
 </e:handler>
</div>

When the logout item is clicked, a request is sent to the controller. The controller
will just reset the user information in the session.

The placement of the logout menu item on the page must be the result of a
successful login. Therefore, when the menu item is inserted into the DOM, a
create command will place a greeting in the login-info area.

Add a trip
The last thing we would like to discuss for this version of the C3D web application is
the addition of a new trip by a user.

You have seen that the add trip menu item will appear when a user has successfully
logged in. When you click this item, a form will appear in the middle section of the
page. You have already seen what it looks like in an earlier section. Here is the code:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[179]

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:b="http://www.backbase.com/2006/btl"
 xmlns:bf="http://www.backbase.com/2007/forms"
 xmlns:d="http://www.backbase.com/2006/tdl">
 <d:uses namespace="http://www.w3.org/1999/xhtml"
 src="../../../backbase/4_3_1/bindings/www.w3.org.1999.xhtml/
 formsProfile.xml" />
 <d:uses namespace="http://www.backbase.com/2006/btl"
 src="../../../backbase/4_3_1/bindings/www.backbase.com.2006.btl/
 formsProfile.xml" />
 <hr />
 <h2 style="margin: 10px;">Add a new Trip:</h2>
 <form bf:destination="id('trip-area')"
 bf:mode="replaceChildren" action="../cntrl.php"
 method="post">
 <input type="hidden" name="req" value="insert" />
 <input type="hidden" name="dbtable" value="c3d_trip" />
 <table>
 <tbody>
 <tr>
 <td valign="top">
 <label for="name">name</label>
 </td>
 <td>
 <input type="text" name="name"
 style="width:300px;"
 bf:required="true"
 bf:messagesRef="../../td/bf:messages[1]" />
 </td>
 <td valign="top">
 <bf:messages>
 <bf:message
 event="invalid"
 class="errorMessage"
 facet="required">
 A name for your trip is required
 </bf:message>
 </bf:messages>
 </td>
 </tr>
 <tr>
 <td valign="top">
 <label for="description">description</label>
 </td>
 <td>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[180]

 <textarea name="description"
 bf:required="true"
 bf:messagesRef="../../td/bf:messages[1]" />
 </td>
 <td valign="top">
 <bf:messages>
 <bf:message
 event="invalid"
 class="errorMessage"
 facet="required">

 A description for your trip is
 Required

 </bf:message>
 </bf:messages>
 </td>
 </tr>
 </tbody>
 </table>
 <div style="height: 50px; clear:left; margin-top:10px;">
 <div style="float:left; width:200px;">
 <label for="startDate">start date</label>

 <b:calendar name="startDate" format="yyyy-MM-dd"
 bf:required="true"
 bf:messagesRef="../../div/bf:messages[1]" />
 </div>
 <div style="float:left;">
 <label for="endDate">end date</label>

 <b:calendar name="endDate" format="yyyy-MM-dd"
 bf:required="true"
 bf:messagesRef="../../div/bf:messages[2]" />
 </div>
 <div style="float:left;">
 <bf:messages>
 <bf:message event="invalid"
 class="errorMessage"
 facet="required">
 <div style="padding-left: 10px;">
 Start date is required</div>
 </bf:message>
 </bf:messages>
 <bf:messages>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 4

[181]

 <bf:message event="invalid"
 class="errorMessage"
 facet="required">
 <div style="padding-left: 10px;">
 End date is required</div>
 </bf:message>
 </bf:messages>
 </div>
 </div>
 <div style="clear:left; margin-top: 10px;">
 <input type="submit" value="Submit" />
 </div>
 </form>
 <div style="padding-left: 10px;">
 <p>
 * Click in the start/end date fields to see a calendar.

 * All fields are required.

 * The end date should be larger than the start date.
 </p>
 </div>
 <hr />
</div>

Here are some points to note:

•	 We apologize for using a table in this form. After struggling an hour or
more with floating div elements jumping all over the page, we felt this is
something that we should not repeat and gave up.

•	 The forms profile is loaded at the beginning. This is done because we want to
make sure it is there.

•	 There are two hidden fields in the form that specify the request to the
controller, an insert request and the database table this applies to. This is
just a convenient way to pass these request parameters to the server. Whether
a user is allowed to do the insert (a hacker could have changed the form) is
checked again by the controller. Therefore, it is not a security risk to use a
hidden field here.

•	 There are two simple fields to enter the name and a description for the trip.
•	 There are two calendar fields to specify the start and end date for the trip.

We specified a format for the calendar: format="yyyy-MM-dd". This format
makes the resulting value acceptable as input for MySQL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Client-server Communication and Forms

[182]

•	 All fields have the bf:required="true" attribute, which means that they are
all required to be filled in. We tried to associate individual error messages to
each field and to display them next to the field where the error occurs.

•	 There is one thing missing from this form: the check that the end date should
be larger than the start date. To properly do this the Backbase way, we need
to write some TDL. Therefore, we defer this to the Chapter 7, Creating UI
Components, where TDL is discussed.

We take a short look back at what we discussed about our C3D sample application:

•	 We motivated the choice of this application and we gave an overview of its
requirements.

•	 We showed its overall design according to the MVC pattern.
•	 A data model and several examples of the code were given.
•	 We certainly did not show all code. Specifically, we left out the PHP model

classes and mini framework classes because we consider it outside the scope
of this book to tell you how to access a database. Of course, the code is
available for you to look at.

Even considering its limited functional scope, there are still certain things missing,
both in the client application as in the server application, such as checking start and
end date when adding a trip and validating the input fields again.

In the following chapters, we will expand the scope of the application by implementing
the display of trip information, adding blog entries, and adding photos.

Summary
This was a long chapter where the subjects ranged from low level details about
asynchronous communication between client and server to high level web
application architecture. To develop solid web applications, at least a conceptual
knowledge of these subjects is required.

We showed you the details of forms support in the Backbase framework and listed
the BTL widgets available in this category.

We started to apply the knowledge acquired in these first four chapters to design
and to develop a sample application for a travel blog site, the C3D application. This
application will be expanded in future chapters.

In the next chapter, we will look at data-bound widgets.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets
Every web application contains data. In the beginning of the Web era, data, structure,
and formatting were sent in one package from the server to the browser, as you all
know. Then, CSS came along to separate formatting from data and structure. To
separate structure and data, more is needed: still most web applications prepare
the whole web page on the server and fill tables, select boxes, or other widgets that
contain dynamic data, by weaving structure and data together.

Data binding makes the next step possible—the separation of structure and content.

Data binding is an interaction between a dataSource and a dataObserver.
A dataSource only knows about data and how to retrieve it from a server. A
dataObserver knows how to access the data presented by the dataSource and
it maps the data retrieved onto elements that can be displayed in a browser.

If the data content is not put within HTML elements, it must be made available
separately to the client web application. It is probably clear to you that usually
AJAX communication is used for this. The "X" in AJAX suggests that the format
the data is sent in should be XML. For practical purposes, that is mostly true in
our book, but in reality, it is also rather popular to send data using the JavaScript
Object Notation (JSON) format.

JSON is more lightweight than XML and easier to assemble. If you are sending
lots of data, then this can be a performance advantage. But JSON is also less secure
because there is a possibility to put data into a JSON stream that can be interpreted
as malicious JavaScript.

Smart data-bound web applications do not need to send lots of data. You will never
send more than what fits on a page and XML data is just as easy to assemble if you
use a server framework and some sound design principles, as we will see later in this
chapter. Therefore, we assume that all data will be XML, with some exceptions that
should be transparent to the user of the Backbase framework.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[184]

In this chapter, we will look at data grids and other widgets that are data bound. We
will discuss in detail what data binding is and why this is important for Rich Internet
Application websites.

The Backbase framework offers the possibility to develop data-bound widgets. These
are not sent in a rendered form from the server to the client, but are rendered in the
client using content that is received as data from the server. Similarly, these widgets
have the possibility to let their data content be updated by the user and these
updates be sent back to the server transparently.

The interest for these so called data-bound widgets as a means to enable true Rich
Internet Application applications is increasing steadily. We stumbled upon a survey
a while ago that lists the features that people find most important in a framework. It
lists that data widgets and grids are the top two features (http://www.athenz.com/
app/decision/statistics/ajax) valued by the respondents to the survey. You
will see that the Backbase framework does fulfill these requirements beautifully.

A central element to be used with the data binding facilities is the BTL dataSource
element. This is the element that communicates with the server to receive data and
provide this data in a uniform format to the data-bound widgets on the client. All
data-bound widgets depend on dataSource to receive or update the data they are
bound with.

Paired with a dataSource is a dataObserver. All data-bound objects inherit from
dataObserver, which provides the interface definitions that these objects should
adhere to.

There are several widgets in BTL that have built-in data-binding facilities, such as
dataGrid or dataMenu. In addition, if the widget of your choice does not implement
data binding, you can easily add the facilities you need.

The format of this chapter will be slightly different from that of the earlier chapters.
We will concentrate on fundamentals of data binding and on examples for one
particular widget: the BTL dataGrid. Even restricting ourselves to these topics will
make this the longest chapter in the book. However, with this information, you will
be well equipped to find out all you need for the other data-bound widgets available.

Finally, with our new knowledge, we will rework and expand our C3D sample
application and make it into a usable prototype.

Here is a list of subjects that we will cover in this chapter:

• Why data binding is important and the server-side of it.
• Data-binding fundamentals, the dataSource element. Local and remote

data sources.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[185]

• Making an HTML element data bound: dataUL.
• The data-bound BTL widgets.
• DataGrid and its eleven features—common header menu, header context

menu, data paging, column drag-and-drop, column freezing, one-click
editing, editing and focusing together, instant editing, collapsible info block,
form editing, and live scrolling.

• Showing trips and trip entries for the C3D travel blog.

Why is data binding important?
To answer this question, we take a look at a simple example and we will contrast
a non data-bound and a data-bound solution to display a set of data.

The inspiration for this example is associated with our experience in developing the
C3D travel blog sample application. While being away in China, we were entering our
travel experiences in the travel blog. We split up our long trip into parts, to get
a better overview and to have more than one trip to show you, with realistic content.
Therefore, we now have a list of trips, although still from only one user.

Assume that we would like to show an overview of the trips on our C3D website.
We could display a simple HTML table, and it would look like this:

Even if you use fancy MVC techniques to develop your server-side application and
templates to produce the view output, the final HTML source that is sent to the client
browser has the data content mixed with the HTML table structure tags, as in the
following code snippet:

<table border="1">
 <tr>
 <th width="150px">name</th>
 <th width="350px">description</th>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[186]

 <th width="100px" valign="top">startDate</th>
 <th width="100px" valign="top">endDate</th>
 </tr>
 <tr>
 <td>Amsterdam - Hong Kong</td>
 <td>From Amsterdam to Hong Kong and one day in the city
 </td>
 <td>2009-05-16</td>
 <td>2009-05-18</td>
 </tr>
 <!-- More rows here ... -->
 <tr>
 <td>Hong Kong and return to Amsterdam</td>
 <td>A few days in Hong Kong and travel back home.</td>
 <td>2009-06-24</td>
 <td>2009-06-26</td>
 </tr>
</table>

This means that despite all your troubles to keep your server application clean, the
client-side application has no MVC separation anymore for the table structure and its
contents. If the amount of data is small and the data itself is static, that is no problem
because you would never touch the client-side code. The situation changes when you
are developing a Rich Internet Application. Consider these possibilities:

• The data is dynamically retrieved from a database and can change easily
• The amount of data is very large and cannot be displayed on one page
• The way the data is displayed needs to be flexible, allowing sorting of cell

values in a column, reordering or hiding columns, or formatting cells
• Inline editing of the table is a requirement for your application

If you try to implement these features in your server application, you will find that the
HTML your application produces will become very messy sooner or later. In addition,
for every new table you are using you must more or less reinvent the wheel.

The solution to this problem is to use data binding. This means that the client web
application provides the structure for the data and the data itself is retrieved
dynamically from the server using AJAX requests.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[187]

What would the code look like when using a dataGrid from the Backbase framework?
Here is a snippet from our C3D sample application:

<b:dataGrid width="100%"
 e:behavior="b:dataGridSortOneColumn"
 sortDirection="descending" sortField="startDate">
 <b:dataGridCol dataField="name"
 dataClass="t-area" width="150px">
 name
 </b:dataGridCol>
 <b:dataGridCol dataField="description"
 dataClass="t-area" width="250px">
 description
 </b:dataGridCol>
 <b:dataGridCol dataField="startDate" width="90px">
 start date
 </b:dataGridCol>
 <b:dataGridCol dataField="endDate" width="90px">
 end date
 </b:dataGridCol>
 <b:dataSource e:behavior="b:remoteData"
 url="../cntrl.php?req=tripdata"
 dataType="application/xml"
 requestType="application/xml" />
</b:dataGrid>

As you can see, in the client web application, there is no data content visible to the
developer. He/she has only to deal with designing an appropriate structure to
display the data. The data itself is retrieved by a special element named dataSource.
Do not worry about the details yet, just notice that the table rows are sorted
according to the start date column in descending order.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[188]

This is what the table from the previous picture looks like using a dataGrid:

Of course, you will not be fooled by the better looks of this grid: with appropriate
CSS, you can make the original table look just as good. You may appreciate though,
that out of the box this dataGrid has additional behavior that you can easily invoke.
For example, the e:behavior="b:dataGridSortOneColumn" specification allows
you to click on any column header and sort the rows in the table according to the
values of the cells in that column.

If you keep the data locally on the client, the Backbase framework will
handle the sorting and other functional behaviors that you may have
specified. When using a remote data source, such as in the example in this
section, your server script must be able to send the data according to the
request received, such as ordering by values in a specific column.

This brings us to the point of the data binding itself. The dataSource widget acts as
the spider in a web here. Its url attribute tells which server script will be invoked
via an Ajax request when new data is needed. The server is asked to return an XML
document by using dataType="application/xml". The dataSource receives this
XML document (alternatively it could be a JSON document) and supplies the data to
its associated data-bound widgets (there could be more than one). The widget (in our
example, a dataGrid) is responsible for rendering the data in the right way.

By looking at a part of the content of the XML document that could be sent back in
this example, it may become clear how the mapping from database data to dataGrid
content, the data binding, is established:

<records totalRecords="5" date="2009-06-16">
 <record>
 <id>1</id>
 <name>Amsterdam - Hongkong</name>
 <description>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[189]

 From Amsterdam to Hongkong and one day in the city.
 </description>
 <user>ghica</user>
 <startDate>2009-05-16</startDate>
 <endDate>2009-05-18</endDate>
 </record>
 <record>
 <id>2</id>
 <name>Changsha and Zhangjiajie</name>
 <description>
 Conference TAMC 2009 in Changsha and post-conference tour to
 Zhangjiajie.
 </description>
 <user>ghica</user>
 <startDate>2009-05-18</startDate>
 <endDate>2009-06-24</endDate>
 </record>
 <!-- More records -->
</records>

The dataField values in the dataGridCol elements correspond with the tag names
in the XML document. To see the mapping to the data in the database, recall the
structure of the c3d_trip table:

CREATE TABLE c3d_trip (
 id int(11) NOT NULL auto_increment,
 name VARCHAR(30),
 description TEXT,
 userId int(11),
 startDate DATE,
 endDate DATE,
 submitDate DATE,
 PRIMARY KEY (id)
) TYPE=MyISAM;

You will see that the XML tag names correspond to the column names in the table.
In this way, we have a one-to-one mapping of columns in the dataGrid to columns
in the table. However, this is mainly for convenience.

Actually, the Backbase framework provides much more complicated ways to do this
mapping if you need it. Also, on the server-side, you may have complex queries to
work with, where you will have to pull some tricks to get the column names right.
However, if you use common sense naming conventions and design principles, then
you probably never will have to deal with a situation more complex than the one
described here.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[190]

The server-side of data binding
Our story so far, assumes that automagically the right data will appear in the right
format at the client's doorstep after the client application made an AJAX request to
the server. Of course, this is not a realistic assumption.

The Backbase framework claims to be server agnostic, meaning it does not know
anything about what type of server it is dealing with. Therefore, it gives little
attention in its documentation to application development on the server-side. This is
understandable because there are many different programming languages that can
be used and opinions about the right server-side architecture may vary.

In this book, we advocate a specific overall architecture according to the MVC design
pattern for the web application, as we explained in the previous chapter. This is not
enough for the data binding to work. The Backbase framework's data-bound widgets
make specific assumptions about the structure of the data that is sent and it will
make our development a lot easier if we develop some server-side functionality to
help with this.

You already know that we have a database framework that is used with the C3D
sample web application. It may be small and simple, but it does exactly what
we need—connects to a database, executes a query, returns the results, and prevents
SQL injection.

For this iteration of the development of our C3D application, we have added a class
to this framework that takes a query, sends it off to the database classes, and converts
the returned result to XML. It is called bb_remoteDataSource. When we show the
new functionality added to the sample C3D application, we will show you some of
its code.

Knowing now that we have this bb_remoteDataSource class available, what should
we do to reply to a request to provide the XML as shown above? What you see
next is the essential piece of code, taken from a class named showTrips in the c3db
version of the application:

public function readTrips() {
 $sQuery=
 'SELECT t.id as id, name, description,
 u.username as user, startDate,
 endDate FROM c3d_trip t, c3d_user u
 WHERE t.userId = u.id';
 $sCountQuery =
 'SELECT COUNT(*) as iCount FROM c3d_trip';
 $datasource = new bb_remoteDataSource();
 return $datasource->asXml($sQuery, null, $sCountQuery);
}

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

v@v
Text Box
Download at WoweBook.com

Chapter 5

[191]

Let's discuss this short piece of PHP:

• The query asks for all trip rows to be returned and it includes the username
by joining the c3d_trip table with the c3d_user table.

• In our dataGrid, we are not using the username at the moment because so
far there is only one user. If we need it later, we just add a column to the
dataGrid and it will be shown.

• There is a second query that returns the number of rows in the result query.
This second query can be useful if the first query is complex and the number
of rows returned can also be found with a simpler query. The pager element
needs to know this value because it must be able to display the number of
pages in the result. In our example, the root element of the XML document
has the attribute totalRecords="5" . This is the total number of rows in the
table that can be used by the pager.

• We instantiate a new object of the class bb_remoteDataSource. Next, we
ask to return XML, as converted from the query result. Because there is no
parameter substitution in this example, the second argument in the call the
asXML method is null.

• The bb_remoteDataSource class returns XML as a result of calling its
asXML method. We have shown what this XML could look like in the
previous section of this chapter. The tag names used here are record and
records. These names are ignored by the dataSource because of the way
we have set this up, just the tag names within a record tag matter. By
making these tag names the same as the column names of the result of the
SQL query, we can write a server script that generically handles the requests
from our dataSource.

• Maybe you noticed the little downward pointing triangle in the header of
the startDate column and saw that the dates were sorted as the last date
first. You may have wondered why there is no ORDER BY in our query. This is
because the dataGrid asks for the sorting by: sortDirection="descendin
g" and sortField="startDate". The server script (in our case cntrl.php)
receives a request for ordering the rows and the bb_remoteDataSource class
picks up the request parameters, modifies the SQL query, and returns the
desired result.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[192]

• If you are interested in knowing what the request to the server really looks
like, then an easy way to see it, is to execute the example in a Firefox browser,
open Firebug and look at the request parameters. Of course, you must have
the Firebug plugin installed.

This was a long explanation for a few lines of code. We hope to have convinced
you of two things: a simple server framework to handle requests for data from a
remote data source is very useful, and data binding makes your application more
transparent and easier to develop.

We did not discuss all aspects of writing server-side scripts with respect to data
binding. For example, the simple grid we were showing here does not allow for
updates to be made. Our C3D sample application does not have the possibility for
updating yet. This topic will be covered in the section The eleven features of dataGrid.
For server-side code, you could look at the PHP code provided with these examples.

Historical note: On the Backbase developer website (http://bdn.
backbase.com), you may find traces of older products, such as a
JSF edition of the framework and a Java Data Services module. These
products were discontinued in favor of their new flagship product,
the Rich Portal, built upon the Backbase Client Framework.

Data-binding fundamentals
In fact, by looking at the design of the data-binding facilities, we have encountered
another example of the Observer pattern. The first example was the MVC pattern that
we used to partition our total web application into client and server layers.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[193]

The original description of the Observer pattern can be found in the famous Gang
of Four (GOF) book (Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma and others), which we can sincerely recommend to read. Although
it is already almost fifteen years old, its diagrams are in a pre-UML dialect, and
its C++ code examples may not look so familiar, the content is still very valid. For
your convenience, if you do not own the book, we found an online version of the
Observer pattern, copied from the book, here: http://www.research.ibm.com/
designpatterns/example.htm.

The purpose of the Observer pattern as stated by the Gang of Four is:

Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.

The overview picture shown in the following figure is based on the actual
implementation of the data-binding features in the Backbase framework. Therefore,
the class names differ from those in the book.

In the case of the Backbase framework and as applied to data binding, the object
that can change state is the dataSource. The dependent objects that will be notified
of such state changes all inherit from dataObserver. The concrete objects that
inherit from dataObserver in the Backbase framework are for example listGrid,
dataGrid, and suggestBox. The next diagram shows the inheritance structure:

dataSource

cacheLimit
name

DataObserver

dataSource
rows
sortDirection
sortField

suggestBoxdataPagedObserver

page

dataGridlistGrid

0..*

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[194]

• A dataSource can have references to zero, one, or more dataObserver
elements

• One of those observers can send a message to the dataSource to change
the state of the dataSource

• When that happens, the dataSource will notify all its known dataObserver
elements, which then can update their displayed data

Although a dataSource can have as many dataObserver elements attached to it as
you like, in practice, there will mostly be only one.

How does a dataSource set its state? Behind the scenes it needs to obtain data from
somewhere. Here, another design pattern comes into play, the proxy pattern. The
intent of this pattern is described as:

Provide a surrogate or placeholder for another object to control access to it.

This means that the dataSource allows its dataObserver elements access to the data
via a defined API, independent of how the data is actually stored or made available.

The other object that the proxy pattern refers to, provides the real implementation
hiding behind the API of the dataSource. It is attached to the dataSource in form of
a so-called behavior. For now, we just say that a behavior is a generic functionality
that can be attached to an element. We will see more behaviors in the next chapter,
for example, to handle resizing of elements or drag-and-drop. The three behaviors
that can be associated with a dataSource are indicating whether the dataSource
will handle local, remote, or static data. You can specify these on the dataSource
as follows:

• e:behavior = "b:localData", or
• e:behavior = "b:remoteData", or
• e:behavior = "b:staticData"

Let's look at the elements involved in data binding in more detail.

dataSource
The object that takes the role of being able to change state is the dataSource object.
It also acts as a proxy to provide data when attaching behaviors. By itself, the
dataSource inherits directly from element and has these attributes:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[195]

Attribute Description
cacheLimit The maximum number of records, usually rows in a grid that are kept in

a cache by the dataSource. A high number can increase performance if
large amounts of data need to be kept, at the cost of memory usage.

name Optional name of the dataSource. The value of this attribute will be used
to match with the value of the dataSource attribute of a dataObserver
that wants to use this dataSource.

The methods that are available for dataSource are mostly intended to be able to
attach and detach observers. The only method that you may want to use directly
is the refresh method, which tells all attached observers to refresh their data.

The most important aspect of providing the data to a dataSource object is whether
this data will be available statically, locally, or remotely. We will now look at the
various ways to provide the data.

Local data sources
What is the effect of specifying e:behavior = "b:localData" as attribute on a
dataSource element? First of all, it means that all the data is available in the client
application. Even though the observer widget may not see all data simultaneously,
no request to the server is needed when the observer widget requests new data.

For example, think of a data grid that can display 10 rows, while 100 rows
are available on the client. A pager will handle the pagination of the data that
is displayed.

The easiest way to make data available in the client locally is by using a
dataContainer—an element that can contain inline data. Here is an example:

<b:dataSource e:behavior="b:localData"
 dataType="application/xml">
 <b:dataContainer>
 <xi:include href="tripdata.xml" />
 </b:dataContainer>
</b:dataSource>

tripdata.xml contains the actual data. It is indeed local data because the XInclude
causes it to be included when the dataSource element is loaded.

The data content itself in tripdata.xml is the same as in the snippet we have
shown before containing the XML trip data.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[196]

dataType="application/xml" tells the dataSource that its data is in XML format,
as opposed to JSON. You may wonder why the dataType attribute was not shown
in the list of attributes of dataSource, while it appears as such in the previous
example. The effect of attaching the localData behavior to it is that it can now use
the attributes that are defined for the localData behavior, which are as follows:

Attribute Description
asynchronous Immediately returns on a request without waiting for the results.
dataSelect XPath expression to select records on which to operate. The default

value points to the dataContainer child node inside the control.
dataType Determines the language in which the data is stored, its value is either

application/xml or application/json.

There are also interesting methods available for the localData behavior:

Method Description
pushData Sends the data to a server.
sendRequest Sends request data to the server.

Refer to the Backbase API Reference for details of the arguments for these methods.

Remote data sources
If the data to be displayed is too large to be contained on the client, or highly
dynamic, you can choose to load only portions of the data in the client and
request data from the server only when needed.

We have already seen an example of a remote dataSource in the section
The server-side of data binding. The code for this dataSource looked like this:

<b:dataSource e:behavior="b:remoteData"
 url="../cntrl.php?req=tripdata"
 dataType="application/xml"
 requestType="application/xml"/>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[197]

The remoteData behavior, our proxy object, has the same attributes as the
localData behavior, with a few extra. They are as follows:

Attribute Description
method HTTP method used to open the connection (GET or POST).
requestType Determines the data type in which the request is sent to a server.

(application/xml or application/json).
url Points to the URL where the data is stored. Usually, a server script

that returns the data as result.
useTimestamp Determines if a timestamp is used in the URL to prevent caching

of requests.

A dataSource with remoteData behavior communicates with a server, by definition.
The information it sends to the server is sent in a specific format, in order for the
server to be able to decode the request and send an appropriate response.

The following table gives an overview of the set of parameters that are sent:

Parameter Values Default Description
request - - An XML or JSON string

containing the request
parameters and associated data.

action read, sort,
create, update,
delete

- The action that is to be
performed on the data set.

rangeStart - - The range start index for which
data should be sent.

rangeEnd - - The range end index for which
data should be sent (inclusive).

sortDirection ascending,
descending

- The direction in which the data
should be sorted.

sortField - *[1] The field (column) to be sorted.
dataType application/

xml, text/json
application/xmlThe format in which the data

should be returned.
requestType application/

xml, text/json
text/json The format used for the

parameter value.

You have already seen how these parameters arrive at the server in case the request
is sent as JSON data. Later, we will see examples of how a server script can deal with
these requests.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[198]

Static data sources
There is a third way of referring to data from a data source—the staticData
behavior. It differs from the previous two by not allowing any operations on the
data, such as sorting or editing. Similar to the localData behavior, the staticData
behavior can be used with the dataSelect and dataType attributes. This behavior
can be useful if you have a small amount of static data that needs to be displayed
quickly and does not need to be updated.

dataObserver
The other fundamental object besides dataSource that participates in the data
binding pattern is the dataObserver object. The dataSource object is a concrete
object where the additional functionality is added by way of behaviors, as we
have discussed in the previous sections. The dataObserver on the other hand,
is an abstract object that the concrete widgets such as dataGrid and suggestBox
inherit from.

In fact, any widget that is bound to data should inherit from dataObserver.
dataObserver contains several attributes, properties, and methods that are used
for data binding; the attributes are:

Attribute Description
dataSource The name of the dataSource element to which a connection is made.

The value of this attribute must match the value of the name attribute of
a dataSource element.

rows The number of visible rows.
sortDirection Indicates whether the initial sort direction is ascending or descending.

With remote data sources, this attribute is passed as a parameter in data
requests.

sortField The field used for sorting. With remote data sources, this attribute is
passed as a parameter in data requests.

The dataUpdate method
Of the methods available for dataObserver, we only describe the dataUpdate
method. This method is automatically called by the data binding mechanism. This
method must be reimplemented by all widgets that inherit from dataObserver
because they will all need to determine how to display the data that is made
available by the dataSource. In the next section, we will show an example of a
dataUpdate method, as implemented for a custom, data-bound bulleted list.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[199]

The dataUpdate method has two arguments:

• action—a string, the value of which depends on what is supported
by the particular dataSource behavior. Possible actions can be create,
read, update, or delete.

• records—contains an array of identifiers of records that have been updated.
For example, when the action is read, the array contains the identifiers of all
the records that should be visible.

The btl.dataSource.getValue function is used to retrieve a value in a record.
The first argument of this function is the reference to the dataSource that is
observed. The second argument is the unique identifier of a record, which is
usually one item in the records array. The third argument is the query string to
query the data in the record.

Make an HTML element data bound
Before we dive into the description of the complex dataGrid widget, we would
like to illustrate the data binding concept in depth by creating our own widget, a
data-bound bulleted list. We need to use some Tag Definition Language to achieve
this, which is not covered yet. Fear not, we will explain what we are doing and if
needed, you can peek into Chapter 7.

Our goal is to show a bulleted list of the names in the c3d_trip table.

Creating the data source
To feed our data source with data, we need to extract it from the database. For the
purpose of this example, we have done this in advance and have stored the result
in an XML file, which allows us to use the trip information as local data. We showed
the contents of this file earlier in this chapter.

We already talked about how to create a dataSource for this example. We show it
again here:

<b:dataSource e:behavior="b:localData"
 dataType="application/xml" id="tripdata">
 <b:dataContainer>
 <xi:include href="tripdata.xml" />
 </b:dataContainer>
</b:dataSource>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[200]

Look back at the section about Local data sources for an explanation of the attributes
and contained elements of this dataSource.

We gave the dataSource widget an id attribute with value tripdata. In most cases,
you can avoid giving the dataSource an ID, for example, by placing the dataSource
element as a child element of its observer (a dataGrid or other data-bound widget).

Define the new widget
To create a new widget definition, we must give it a name and a namespace. As
name, we use dataUL and mimicking the conventions that Backbase uses for its
namespaces, we have chosen http://www.squaringthecircles.com/squared,
for which we use the sq prefix. The outline for our widget definition using Tag
Definition Language then becomes:

<d:tdl xmlns="http://www.w3.org/1999/xhtml">
 <d:namespace
 name="http://www.squaringthecircles.com/squared">
 <d:element name="dataUL" extends="b:dataObserver">
 <d:template type="application/xhtml+xml">
 <!-- template code here -->
 </d:template>
 <d:method name="dataUpdate">
 <!-- the method here ... -->
 </d:method>
 </d:element>
 </d:namespace>
</d:tdl>

It requires no rocket science to see that we defined a new element with the required
name and namespace. Just three points:

• The dataUL extends dataObserver. Therefore, dataUL inherits all the
properties and methods from dataObserver. This also means that the
new element should have a dataUpdate method because the one defined
on dataObserver is abstract.

• The template tag defines the visible XHTML.
• The method tag has a name attribute with the value dataUpdate. This

means that we are defining a dataUpdate method here. We will look at
its implementation now.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[201]

The dataUpdate method
As said, the dataObserver object is abstract, and elements extending it must
implement the dataUpdate method. The following listing shows the implementation
for our dataUL widget:

<d:method name="dataUpdate">
 <d:argument name="action" />
 <d:argument name="records" />
 <d:body type="text/javascript">
 if(action == 'read'){
 var oSource = this.getProperty('dataSource');
 for(var i = 0; records.length > i; i++){
 var oLi = bb.document.createElement('li');
 var sTripName = btl.dataSource.getValue(oSource,
 records[i], 'name');
 oLi.appendChild(
 bb.document.createTextNode(sTripName));
 this.appendChild(oLi);
 }
 }
 </d:body>
</d:method>

Here are some points to note:

• When the method dataUpdate is called by the dataSource, two
arguments will be provided—action and records. We described this
in the previous section.

• The code in the body of the dataUpdate method shows that only a read
action is acted upon.

• If it is a read action, the second argument, which contains the data records
available, is iterated through. For every record, a new bullet item is created
and the value of the name tag in the record is retrieved using the dataSource
associated with the dataUL element. This value is used to create a text node
for the bullet item.

We are now done with defining the widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[202]

Show the data-bound bulleted list
To use our new widget, we must make sure that our widget definition is included on
the page and that we provide a namespace declaration. We can then create a bulleted
list from our trip data simply as follows:

<sq:dataUL dataSource="tripdata" />

The dataSource with the id="tripdata" will serve the contents of tripdata.xml
to the dataUL widget.

The result of the opening the page will be:

This completes the example showing a custom data-bound widget. We saw here
that we can make any element data bound, including simple HTML elements as
done in this example, by displaying a bulleted list that receives its content from
a dataSource.

The data-bound widgets
There are a number of widgets available in the Backbase framework that can use
a dataSource to provide the data content for the widget. These are as follows:

• dataGrid
• listGrid
• dataMenu
• dataTree
• suggestBox
• treeGrid

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[203]

We already described the suggestBox in the previous chapter. The details for the
remaining data-bound widgets could fill the rest of this book. Therefore, we made
a choice and here we will only discuss the dataGrid and the fieldEditor that
is handy when allowing editing of a grid. At the time of writing this book, the
dataGrid is still a Release Candidate, as opposed to the listGrid, which has very
similar functionality and is fully deployed. Our reason for choosing the dataGrid
instead of the listGrid is that the dataGrid is better performing, more powerful,
and more flexible. The dataGrid was developed as a replacement for the listGrid.

dataGrid
The dataGrid is a powerful mechanism for displaying tabular data. The dataGrid
supports sorting, value formatting, and editing. Furthermore, there are some
styling possibilities and it is possible to show smaller parts of data through a paging
mechanism, rather than showing all data at once. It fetches the data from a dataSource
that is specified with the dataSource attribute. The widget provides high performance
and can work with thousands of cells.

The dataGrid is similar to a listGrid in functionality. However, the listGrid
offers more formatting functionality out of the box, while the dataGrid will perform
up to three times better for large amounts of data.

For the dataGrid widget, there are several built-in behaviors available:

• For sorting: dataGridSortOneColumn
• To edit a dataGrid, you need to add the dataGridEditCell

behavior to the dataGrid
• For column freezing: dataGridFreezingUI

The most interesting elements that the dataGrid inherits from are:
focusableElement, dimensionElement, and dataPagedObserver.

The dataGrid element has a set of specific attributes that you can use on top of
the ones from the inherited elements . These attributes are described as follows:

Attribute Description
defaultColumnWidth Default column width.
frozenColumns Number of initially frozen columns.
liveScrolling Indicates whether live scrolling is enabled for the dataGrid.
maxPages Maximum number of pages.
readonly Indicates whether the dataGrid can be edited or not.
sortable Determines whether the columns in the dataGrid can be sorted

or not.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[204]

In addition to these attributes, there are also the attributes that are available when
specifying a behavior such as e:remoteData, for which you saw the attributes earlier
in this chapter.

The contents and format of a dataGrid can be specified with a number of child
elements, first of all, the dataGridCol that specifies the columns. A dataSource can
also be specified as child of a dataGrid, which is practical if the dataSource is only
used in conjunction with the dataGrid of which it is a child, because in this case,
you do not need an ID for the dataSource, opening possibilities to use the grid in a
custom widget.

You have seen a simple example of using the dataGrid at the beginning of
this chapter and a set of complicated examples are given in the section The eleven
features of dataGrid. Before we start with these examples, we provide a description
of fieldEditor, a widget that you can use to customize the editing facilities of
a dataGrid.

Grid editing and fieldEditor
In many cases, it will be sufficient to specify the dataGridEditCell behavior when
editing of the grid should be possible, because the default editing capabilities of the
grid column elements will be sufficient. If you need custom editing facilities, you can
use a fieldEditor.

A fieldEditor is used to define the content of a dataGrid cell when it is edited. For
example, you can add a select element in the editor with predefined options, which
will be displayed when the specific cell is edited. A fieldEditor can also be used
for other data-bound elements such as listGrid and treeGrid.

Let's look at an example:

<b:dataGrid width="100%"
 e:behavior="b:dataGridSortOneColumn
 b:dataGridEditCell"
 sortDirection="descending"
 sortField="startDate" rows="10">
 <b:dataGridCol dataField="name"
 dataClass="t-area" width="150px">name</b:dataGridCol>
 <b:dataGridCol dataField="description"
 dataClass="t-area" width="250px">description
 <b:fieldEditor>
 <b:xhtml>
 <textarea />
 </b:xhtml>
 </b:fieldEditor>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[205]

 </b:dataGridCol>
 <b:dataGridCol dataField="startDate" dataType="date"
 width="90px">start date
 </b:dataGridCol>
 <b:dataGridCol dataField="endDate" dataType="date"
 width="70px">end date</b:dataGridCol>
 <b:dataSource e:behavior="b:remoteData"
 url="../c3db/cntrl.php?req=tripdata"
 dataType="application/xml"
 requestType="application/json" >
 <b:dataSchema identifier="id"/>
 </b:dataSource>
</b:dataGrid>

The example should look familiar to you because it uses the same dataGrid that we
used in the beginning of this chapter. There are some differences now that allow us
to edit the grid:

• You can see that the grid has dataGridEditCell specified as behavior.
This makes all cells editable. You can restrict columns from being editable
by specifying that they are readonly.

• We added dataType="date" to the startDate and endDate columns. This
will have the effect that a calendar widget will appear when clicking on a
cell in these columns. We do not need a fieldEditor to make this happen.

• The trip description can be rather long, but the default editor for a string type
column is an input field. Therefore, we specified a textArea here to have a
larger area that can be used to enter text. We have put b:xhrml tags around
the textArea to tell the Backbase runtime engine that it does not need to
touch this element.

• The dataSource will send an update request to the server with the
changes made to the grid. The server needs to know which records are
involved, in order to be able to do a proper update of the database tables.
For this purpose, we need to send an ID. We can achieve this by adding a
dataSchema to the grid, and giving it the attribute identifier="id", where
id is the name of our identifier column. A dataSchema allows for intricate
mappings between the XML received from the server and the columns in the
grid, but as we said earlier, avoid this if possible.

The full source code, including the server-side PHP code, can be found with the
source code for this book, as is the case for the code for the eleven features discussed
in the next sections.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[206]

The eleven features of dataGrid
The dataGrid is a complex widget that offers a variety of features. Some are easy to
make use of, because their functionality is pre-built and they can easily be added by
attaching a behavior with e:behavior attribute. Others require additional coding,
but thanks to the dataGrid, the architecture of this coding is still simple.

In this section, we present eleven examples of using the dataGrid. The source code
for the examples can, as always, be found in the source code package for the book;
they are placed in the folder dataGrid11.

The examples show various display, interaction, and editing facilities. They make
use of a rather large table that contains fake personal data. The table is stored in
an SQLite database and there is a PHP script to access the data. This PHP script is
rather different from the server framework classes we are using for the C3D sample
application because it is a custom built piece of code, made for just this table and for
SQLite access. It contains many tips and tricks that are worth looking at. However,
here we will concentrate on the client-side of the examples.

The dataSource used is the same in all eleven examples:

<b:dataSource name="mySource" dataType="application/json"
 e:behavior="b:remoteData"
 url="../data/dataSqlite3Contacts.php?dataType=json">
 <b:dataSchema identifier="id">
 <b:dataField name="First" select="firstName" />
 <b:dataField name="Last" select="lastName" />
 <b:dataField name="Gender" select="gender" />
 <b:dataField name="Email" select="email" />
 <b:dataField name="Country" select="country"
 format="style[color:darkblue]" />
 <b:dataField name="Origin" select="origin" />
 <b:dataField name="Status" select="status" />
 <b:dataField name="Birthdate" select="birthdate" />
 <b:dataField name="Rating" select="rating" />
 <b:dataField name="liedetector" select="liedetector" />
 <b:dataField name="Name" select="name" />
 <b:dataField name="Age" select="age" />
 </b:dataSchema>
 <e:handler event="error" type="application/javascript">
 alert('data source error:\n' + event.message)
 </e:handler>
</b:dataSource>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[207]

We will not show complete listings for all examples because that would
take too much space and it would not help with understanding of the
described features. We will indicate for each example what the filename
is and where you can find the particular code for that example.

Now, let's look at the eleven features of dataGrid:

Common header menu
The source code for this example can be found in xml/menu.xml.

We will start our walk through the features of dataGrid with a very simple example:
enabling common context menu for column headers. In many applications, the
header menu that is activated when you click your right mouse button is the same
for all columns. Such a menu can then offer often used functionality. In this example,
you can hide or show columns.

The grid definition is as follows:

<b:dataGrid rows="20" height="400px"
 e:behavior="b:dataGridSortOneColumn">
 <!-- The dataSource goes here -->
 <b:dataGridColGroup class="test-69F-bold">

 Names
 <b:dataGridCol dataField="First" width="150px"
 dataType="html">

 First name
 </b:dataGridCol>
 <b:dataGridCol dataField="Last" label="Last name" />
 </b:dataGridColGroup>
 <b:dataGridCol dataField="Gender" label="Gender" />
 <b:dataGridCol dataField="Email" label="Email"
 display="false" />
 <b:dataGridCol dataField="Country" label="Country" />
 <b:dataGridCol dataField="Rating" label="Rating" />
 <!-- The menu pop-up goes here -->
 <!-- The contextmenu event handler goes here -->
</b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[208]

Here is a picture of the grid in action:

By using a dataGridColGroup element to contain dataGridCol elements, you can,
as the name suggests, group columns together. See the previous screenshot for what
this will look like.

Next, we show the code for the context menu:

<b:menuPopUp id="gridContextMenu">
 <b:menuPopUpItem label="Names" />
 <b:menuPopUpItem>
 <b:label style="padding-left:15px">
 First name</b:label>
 </b:menuPopUpItem>
 <b:menuPopUpItem>
 <b:label style="padding-left:15px">
 Last name</b:label>
 </b:menuPopUpItem>
 <b:menuPopUpItem label="Gender" />
 <b:menuPopUpItem label="Email" />
 <b:menuPopUpItem label="Country" />
 <b:menuPopUpItem label="Rating" />
<!-- A click in the menu hides or shows corresponding
 column or columns group -->

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[209]

 <e:handler event="DOMActivate"
 type="application/javascript">
 var oMenuItem = event.target;
 if (oMenuItem){
 if (oMenuItem.hidden) {
 oMenuItem.column.show();
 }
 else {
 oMenuItem.column.hide();
 }
 }
 </e:handler>
</b:menuPopUp>

The menu has an event handler that causes a column to be hidden or shown as
a toggle when its name is clicked.

In order to achieve the required behavior when interacting with the grid, we will
listen to the contextmenu menu event on dataGrid element. Once it occurs, we will
check the origin of the event and if it is the dataGrid header, we will walk through
the collection of dataGrid columns and apply column states to the menu items.

<!-- show the menu -->
<e:handler event="contextmenu" type="application/javascript"> <![CDATA[
 var oCell =
 bb.selector.queryAncestor(event.viewTarget,
 "td.btl-grid-header");//show the menu only in the header
 if (oCell) {
 var oMenu =
 bb.document.getElementById('gridContextMenu');
 if (oMenu) {
 //draw columns state
 var oGrid = oMenu.getProperty('parentNode');
 var aCols = oGrid.getProperty('columns');
 var aItems =
 oMenu.getElementsByTagName('b:menuPopUpItem');
 var iHiddenCount = 0, iLastVisible = -1;
 for(var i = 0; aCols.length > i; i++){
 var ind = i + 1;
 aItems[ind].column = aCols[i];
 if (aItems[ind].hidden =
 aCols[i].getProperty('hidden')) {
 bb.html.addClass(
 aItems[ind].viewNode, 'contextMenu-hidden');
 iHiddenCount++;

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[210]

 }
 else {
 bb.html.removeClass(aItems[ind].viewNode,
 'contextMenu-hidden');
 iLastVisible = ind;
 }
 aItems[ind].setAttribute('disabled', 'false');
 }
 var oGroup =
 oGrid.getElementsByTagName
 ('b:dataGridColGroup')[0];
 aItems[0].column = oGroup;
 if (aItems[0].hidden =
 oGroup.getProperty('hidden'))
 bb.html.addClass(aItems[0].viewNode,
 'contextMenu-hidden');
 else
 bb.html.removeClass(aItems[0].viewNode,
 'contextMenu-hidden');
 //disable some items to prevent hiding last column
 var iGroupVisibleColumns =
 (aItems[1].hidden ? 0 : 1) +
 (aItems[2].hidden ? 0 : 1);
 if (iHiddenCount >= 6 – iGroupVisibleColumns)
 //all hidden except group's columns
 aItems[0].setAttribute('disabled', 'true');
 else
 aItems[0].setAttribute('disabled', 'false');
 if (iLastVisible >= 0 && iHiddenCount >= 5)
 //one column is visible
 aItems[iLastVisible].setAttribute('disabled',
 'true');
 oMenu.open(oCell, 'at-pointer');
 event.preventDefault(); //prevent browser menu
 }
 }
]]></e:handler>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[211]

Header context menu
The source code for this example can be found in xml/menu2.xml.

This is a variation of the previous example. It will also enable the column header
context menu, but in a little bit different way.

The dataGrid used is the same as in the previous example. Therefore, we are not
showing it here. The menuPopUp is different from the previous one. It does not act
on all columns but on a specific column and row. This allows you to perform actions
such as sending an e-mail to the address in the selected row. You are also able to
delete rows, which then will be permanently deleted. In a later example, there is an
option to restore the table from a backup copy.

Here is the code for the menuPopUp:

<b:menuPopUp id="gridContextMenu">
 <b:menuPopUpItem align="left" label="Hide column">
 <e:handler event="click" type="application/javascript">
 this.getProperty('parentNode').context.column.hide();
 </e:handler>
 </b:menuPopUpItem>
 <b:menuPopUpItem label="Sort column">
 <e:handler event="click" type="application/javascript">
 var oContext =
 this.getProperty('parentNode').context;
 oContext.grid.sortColumn(oContext.column);
 </e:handler>
 </b:menuPopUpItem>
 <b:menuPopUpItem label="Send message to ..."
 disabled="true">
 <e:handler event="click" type="application/javascript">
 alert('Message sent');
 </e:handler>
 </b:menuPopUpItem>
 <b:menuPopUpSeparator />
 <b:menuPopUpItem label="Delete ..." disabled="true">
 <e:handler event="click" type="application/javascript">
 var oContext =
 this.getProperty('parentNode').context;
 oContext.grid.deleteRecords([oContext.recordId]);
 </e:handler>
 </b:menuPopUpItem>
</b:menuPopUp>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[212]

In the next picture, you see what the menu looks like when activated over a header.
When you activate it over a row, you will see the other options too.

The following code is from the contextmenu event handler on the dataGrid:

<!-- show the menu -->
<e:handler event="contextmenu" type="application/javascript">
 var cell = bb.selector.queryAncestor(
 event.viewTarget, "td");
 var oCol = this.getColumn(cell);
 if (oCol) {
 var oMenu =
 bb.document.getElementById('gridContextMenu');
 if (oMenu) {
 if (oCol) {
 var aCols = this.getProperty('columns');
 var iVisibleCount = 0;
 for(var i = 0; aCols.length > i; i++)
 if (!aCols[i].getProperty('hidden'))
 iVisibleCount++;
 //initialize menu items
 var bGroup = bb.instanceOf(oCol, btl.namespaceURI,
 "gridColGroup");
 var bVisible = !oCol.getProperty('hidden');
 var aItems =
 oMenu.getElementsByTagName('b:menuPopUpItem');
 //Hide
 aItems[0].setAttribute('display',
 bVisible ? '' : 'none');
 aItems[0].setAttribute('disabled',
 iVisibleCount > 1 ? 'false' : 'true');

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[213]

 //Sort
 aItems[1].setAttribute('disabled',
 bGroup ? 'true' : 'false');
 var recordId = this.getRecordId(cell);
 var oDataSource = this.getProperty('dataSource');
 var bNoRecord = recordId === null || recordId == '';
 var sName = bNoRecord ? '...' :
 btl.dataSource.getValue(oDataSource, recordId,
 'Name', false);
 //send message
 aItems[2].setAttribute('label',
 'Send message to ' + sName);
 aItems[2].setAttribute('disabled', bNoRecord);
 //delete row
 aItems[3].setAttribute('label',
 'Delete record: ' + sName);
 aItems[3].setAttribute('disabled', bNoRecord);
 oMenu.context =
 {'grid' : this,
 'column' : oCol, 'recordId' : recordId};
 oMenu.open(event.viewTarget, 'at-pointer');
 event.preventDefault();
 }
 }
 }
</e:handler>

Data paging
The source code for this example can be found in xml/paging.xml.

Paging is a powerful mechanism that is often useful when a large dataset needs to
be displayed in dataGrid. Instead of loading and rendering huge amounts of data
at once, we can retrieve smaller page-size datasets, thus reducing traffic and load on
both, the server as well as the client.

The most important widget here is the pager. You can place it, for example,
next to the dataGrid. In order to provide you with a granular control over its
functional behavior, there are several more widgets that you can put into pager
as children—pagerButton, pagerSeparator, and pagerJumper. Take a look at
the next code snippet and you will quickly find out how to make use of the features:

 <b:dataGrid id="testGrid" rows="50"
 height="600px" width="auto">
 <!-- The columns are placed here -->
 </b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[214]

 <b:pagerBar width="auto">
 <b:pager for="id('testGrid')" width="250px">
 <b:pagerButton type="First" />
 <b:pagerButton type="Previous" />
 <b:pagerSeparator />
 <b:pagerJumper />
 <b:pagerSeparator />
 <b:pagerButton type="Next" />
 <b:pagerButton type="Last" />
 </b:pager>
 </b:pagerBar>

The next picture shows what the pager looks like when used with the dataGrid:

Column drag-and-drop
The source code for this example can be found in xml/columnDnD.xml.

In some applications, it can be useful to allow end user to move columns around
within the dataGrid widget. If a user is more interested in viewing column A and
column B, he will probably want to move these columns in front. This can improve
the user's experience and in the end his/her efficiency working with dataset.

Adding a reorderable columns feature to a dataGrid is as simple as adding the
b:gridColumnDnD behavior to its list of behaviors:

<b:dataGrid rows="50" height="600px"
 e:behavior="b:gridColumnDnD">
 <!-- The columns are placed here -->
</b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[215]

In the following screenshot, we have tried to catch the act of dragging the Gender
column behind the Email column:

It will certainly be more convincing if you try this for yourself.

Column freezing
The source code for this example can be found in xml/columnFreeze.xml.

Another useful feature of the dataGrid widget is column freezing. When a dataset
has more columns than what can be viewed at a time within the dataGrid viewport,
it may be useful to freeze several first columns so that when scrolling the rest of
columns horizontally, the frozen ones' position would be persisted at the start.

In order to achieve the described behavior, we only need to add b:gridFreezingUI
behavior to the dataGrid and that's it! The initial amount of frozen columns can
be specified in the frozenColumns attribute. At runtime, this value can be updated
when a change is caused by the user interaction or the script.

In the code snippet below, you see that the number of frozen columns is 2. For brevity,
we left out the code for the columns. To make the column freezing more interesting,
there are more columns in the dataGrid than in the previous examples.

<b:dataGrid rows="10" height="auto" width="600px"
 e:behavior="b:dataGridFreezingUI" id="testGrid"
 frozenColumns="2">
 <!-- the columns go here -->
</b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[216]

The next picture shows the effect of the column freezing when you move the
scrollbar to the right.

At the top of the picture, there is a button. When clicked, the number of frozen
columns will be changed to 3, using the following code:

<b:button width="7em">
 Freeze 3 columns
 <e:handler event="click" type="application/xml">
 <c:setAttribute with="id('testGrid')"
 name="frozenColumns" select="3" />
 </e:handler>
</b:button>

If you try the example and move your mouse over the rows in the grid, you will see
that the cells in the column under the mouse are animated with various shades of a
blue color. This is an example of simple tricks that you can do with the grid. We are
using a functionality here that we haven't discussed yet. Therefore, the code may
pose problems to you right now. We will cover animation and view handling in the
following chapter.

<e:handler event="mouseenter" match="td.btl-grid-data"
 type="application/javascript">
 //track the mouse
 var oAnimationInfo = {
 attributeName: "background-color",
 attributeType:"CSS", dur: "500ms",
 from:"#7CF", to: "#FFF"
 }

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[217]

 var cell = event.currentView;
 bb.smil.animateColor(cell, oAnimationInfo);
</e:handler>

One-click editing
The source code for this example can be found in xml/editor.xml.

In the previous sections, we have learned about features that mainly concerned
dataGrid's general appearance and behavior. Here, we will start looking into
more practical aspects—enabling data editing within the dataGrid widget.

• Click on a cell to start editing.
• Pressing the Esc key leaves editing mode without saving.
• Clicking on another cell saves the current cell if its contents are changed

and editing the new cell is started.
• Leave editing mode: Press the Esc key without saving, or the Enter key

with saving the current changes. Use the arrow keys PageUp, PageDown,
Home, End, Home + Home, and End + End to move edit focus.

• Press Enter key or F2 key to start editing or you may just start typing
(not too fast, this is still an experimental feature).

The magic is made possible with the fieldEditor element, child of dataGridCol,
and with the b:dataGridEditCell behavior attached. Place a user input widget into
that element and you are done. The dataGrid widget will do the rest of the work.

First, we show the dataGrid itself with columns having a default editor:

<b:dataGrid dataSource="mySource" rows="50"
 width="600px" height="600px"
 e:behavior="b:dataGridEditCell">
 <b:dataGridColGroup>

 Names <!-- default editor: input -->
 <b:dataGridCol dataField="First">
 First name</b:dataGridCol>
 <!-- default editor: input -->
 <b:dataGridCol dataField="Last" label="Last name" />
 </b:dataGridColGroup>
 <!-- columns with special editors go here -->
</b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[218]

The remaining columns have specific editing capabilities, either because we attached
a specific editor or because their data type is something else as string. Here is a
picture of one of the custom editors in action:

In the next editor, the cells in the Gender column show two radio buttons when
edited. Here is the code:

<!-- editor: radio buttons inside b:xhtml -->
<b:dataGridCol dataField="Gender" width="6em"
 title="Radio buttons inside b:xhtml">
 Gender
 <b:fieldEditor>
 <b:xhtml>
 <input name="gender" type="radio"
 value="male" id="male" />
 <label for="male">Male</label>

 <input name="gender" type="radio"
 value="female" id="female" />
 <label for="female">Female</label>
 </b:xhtml>
 </b:fieldEditor>
</b:dataGridCol>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[219]

The Country column cells show a large comboBox when edited:

<!-- editor: big b:comboBox -->
<b:dataGridCol dataField="Country" label="Country">
 <b:fieldEditor>
 <xi:include href="bigCombo.xml" />
 </b:fieldEditor>
</b:dataGridCol>

For the Rating column, a spinner will be shown by default because the data type
is number:

<!-- default editor: spinner -->
<b:dataGridCol dataField="Rating" label="Rating"
 width="4em" dataType="number"
 title="default editor - spinner" />

The Status column has an XHTML select box:

<!-- editor: XHTML control -->
<b:dataGridCol dataField="Status" title="XHTML control">
 Status
 <b:fieldEditor>
 <select style="width:100%">
 <option>full-time</option>
 <option>n/a</option>
 <option>part-time</option>
 <option>pensioner</option>
 <option>self-employed</option>
 <option>student</option>
 <option>unemployed</option>
 </select>
 </b:fieldEditor>
</b:dataGridCol>

The Origin column has a big select box:

<!-- editor: a large XHTML select control -->
<b:dataGridCol dataField="Origin" width="150px"
 title="Large XHTML select control">
 Origin country
 <b:fieldEditor>
 <xi:include href="bigSelect.xml" />
 </b:fieldEditor>
</b:dataGridCol>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[220]

The Birth Date column has a calendar as editor by default because it has a date
data type:

<!-- default editor: calendar -->
<b:dataGridCol dataField="Birthdate" dataType="date"
 title="default editor - calendar">

 Birth date
</b:dataGridCol>

The Age column cannot be edited:

<b:dataGridCol dataField="Age" label="Age"
 dataClass="readonly"
 readonly="true" width="3em"
 title="Read only field. Try to change a birtdate field." />

The Check column has a checkbox input:

<!-- editor: checkbox -->
<b:dataGridCol dataField="liedetector"
 width="50px" title="checkbox">
 Check
 <b:fieldEditor>
 <input type="checkbox" value="pass" />
 Pass
 </b:fieldEditor>
</b:dataGridCol>

Here is an example of an external editor with which you can edit the e-mail address.
Firstly, we'll have a look at the screenshot of an external editor:

Now, let's look at the code:

<!-- editor: external editor -->
<b:dataGridCol dataField="Email" label="Email"
 title="external editor and edit events">
 <b:fieldEditor>
 <e:handler event="editStart"

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[221]

 type="application/javascript">
 var arr = this.getProperty('value').split('@');
 var eName = document.getElementById('name');
 eName.value = arr[0];
 var eSite = document.getElementById('site');
 eSite.value = arr[1];
 bb.html.position(eName.parentNode, this.viewNode);
 //show the editor form
 eName.parentNode.style.display = 'block';
 eName.focus();
 </e:handler>
 <e:handler event="editFinish"
 type="application/javascript">
 var eName = document.getElementById('name');
 this.setProperty('value', eName.value + '@' +
 document.getElementById('site').value);
 eName.parentNode.style.display = 'none';
 </e:handler>
 </b:fieldEditor>
</b:dataGridCol>

The external editor needs some sneaky invisible buttons, which are made visible
when the editor is invoked:

<b:xhtml>
 <div style="display:none;
 background-color:#F96;position:absolute;
 top:200px;left:200px;width:300px;padding:20px;">
 <input id="name" style="width:120px;" />
 @
 <input id="site" style="width:120px;" />
 <p>
 <button onclick=
 "bb.document.getElementsByTagNameNS(
 btl.namespaceURI, 'dataGrid')[0].
 editFinish(true)">
 Save
 </button>
 <button onclick=
 "bb.document.getElementsByTagNameNS(
 btl.namespaceURI, 'dataGrid')[0].
 editFinish(false)">
 Cancel
 </button>
 </p>
 </div>
</b:xhtml>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[222]

On the picture, you can also see the restore data button we promised earlier.
It allows you to mess up the table and start over again with a fresh copy.

<button onclick=
 "btl.dataSource.actionRequest(
 bb.document.getElementsByTagName('b:dataGrid')[0],
 'restore')">
 restore data
</button>

Here is the event handler of the dataGrid that does the refresh when a response
from a restore is received:

<!-- update the whole grid with restored data -->
<e:handler event="actionResponse"
 type="application/javascript">
 if (event.action == 'restore')
 this.refresh();
</e:handler>

Editing and focusing together
The source code for this example can be found in xml/editor2.xml.

The editing experience would be greatly improved if it was possible to work with
data using keyboard only. Jumping between cells with the Tab key without the
need to touch the mouse can easily be enabled with the b:gridRowFocusAndSelect
behavior. Having two behaviors, the new one and the one used in the previous
example, will turn our grid into a full-blown spreadsheet:

• Editing
• Focusing and selecting

The code for this example and the previous example is the same, except for
the added behavior. Therefore, we only show the dataGrid element:

<b:dataGrid dataSource="mySource" rows="50"
 width="600px" height="600px"
 e:behavior="b:dataGridRowFocusAndSelect
 b:dataGridEditCell">
 <!-- columns, event handlers, editors etc. go here -->
</b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[223]

Instant editing
The source code for this example can be found in xml/instantEdit.xml.

In this example, a contrast is made between two dataGrid elements, one with the
usual editing capabilities and another one (actually the first one shown) with inline
editing elements where all the changes are sent to a server immediately. We are only
showing a picture:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[224]

Collapsible info block
The source code for this example can be found in xml/infoBlock.xml.

When you try this example, you will notice the tiny + signs in the first column.
When you click on one, it gets replaced by a - sign and underneath, in an orange
block, the details for that row are shown.

In this example, actually in the previous example also but we did not tell you then,
an architectural feature of the Backbase framework surfaces, which we tried to hide
from you before. This is the existence of two layers in the Backbase areas, a controller
layer and a view layer. We will talk more about this in Chapter 7, which is about the
Tag Definition Language. For now, you should know that the view layer, as seen by
the browser, contains an ordinary HTML table representing the dataGrid, while the
controller layer contains the column structure and the functionality that you have
seen in action in the previous examples.

What happens in this example is that when you click on the + sign, an extra row in
the HTML table is made visible that was created when the dataGrid was created.
We show only relevant parts of the code, first the dataGrid:

<b:dataGrid dataSource="mySource" id="testGrid" rows="25"
 width="auto" height="auto">
 <!-- the column contains +/- to toggle the info section -->
 <b:dataGridCol render="none" resizable="false"
 dataClass="render-image-toggle" width="16px" />
 <b:dataGridCol dataField="Name"
 label="Name" width="150px" />
 <b:dataGridCol dataField="Email" label="Email"
 width="250px" />
</b:dataGrid>

Next, we show the event handler that acts like a field creator:

<e:handler event="pageRefreshed" type="application/javascript">
 //render column #1 with +/-
 var grid = this;
 var oDataSource = this.getProperty('dataSource');
 var eTemplate =
 document.getElementById('template').firstChild;
 //use selector API to get just created cells
 var arr =
 bb.selector.queryAll(grid.viewNode, 'td.render-image-toggle');
 for(var i=0; arr.length > i; i++) {
 //now render their content—create controls
 var cell = arr[i];
 var row = cell.parentNode;

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[225]

 var eToggle = document.createElement('div');
 bb.html.addClass(eToggle, 'image-toggle');
 //move viewNode to the required place
 cell.appendChild(eToggle);
 var recordId = this.getRecordId(cell);
 //add information block
 var eRow = document.createElement('tr');
 row.parentNode.insertBefore(eRow, row.nextSibling);
 //hide it
 eRow.style.display = 'none';
 var eCell = eRow.appendChild(
 document.createElement('td'));
 eCell.setAttribute('colSpan', '3');
 var eInfo = eCell.appendChild(
 eTemplate.cloneNode(true));
 var eInfoTable = eInfo.firstChild;
 eInfoTable.rows[0].cells[1].
 appendChild(document.createTextNode(
 btl.dataSource.getValue(
 oDataSource, recordId, 'First')));
 eInfoTable.rows[1].cells[1].
 appendChild(document.createTextNode(
 btl.dataSource.getValue(
 oDataSource, recordId, 'Last')));
 eInfoTable.rows[2].cells[1].innerHTML =
 btl.dataSource.getValue(
 oDataSource, recordId, 'Rating', 'rating');
 eInfoTable.rows[3].cells[1].innerHTML =
 btl.dataSource.getValue(
 oDataSource, recordId, 'Country');
 eInfoTable.rows[4].cells[1].
 appendChild(document.createTextNode(
 btl.dataSource.getValue(
 oDataSource, recordId, 'Age')));
 eInfoTable.rows[5].cells[1].
 appendChild(document.createTextNode(
 btl.dataSource.getValue(oDataSource,
 recordId, 'Birthdate')));
 bb.html.addEventListener(
 eToggle, 'click', function(event){
 var div = event.target || event.srcElement;
 if(bb.html.hasClass(div, 'image-toggle-open')) {
 bb.html.removeClass(div, 'image-toggle-open');
 //hide info block

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[226]

 div.parentNode.parentNode.
 nextSibling.style.display = 'none';
 }
 else {
 bb.html.addClass(div, 'image-toggle-open');
 //show info block
 div.parentNode.parentNode.
 nextSibling.style.display = '';
 }
 //redraw grid for IE
 grid.getProperty('gate').doLayout();
 }, false);
 //drop the class name on rendered cells to avoid
 //re-rendering on update and on paging
 bb.html.removeClass(cell, 'render-image-toggle');
 }
</e:handler>

And finally, here is the XHTML code that acts as a template for the detail values:

<b:xhtml style="display:none;" id="template">
 <div style="margin:5px;background-color:#F96;">
 <table>
 <tr>
 <td>First Name:</td>
 <td />
 </tr>
 <tr>
 <td>Last Name:</td>
 <td />
 </tr>
 <tr>
 <td>Rating:</td>
 <td />
 </tr>
 <tr>
 <td>Country:</td>
 <td />
 </tr>
 <tr>
 <td>Age:</td>
 <td />
 </tr>
 <tr>
 <td>Birth date:</td>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[227]

 <td />
 </tr>
 </table>
 </div>
</b:xhtml>

We conclude this part of the example with a picture of the info block that appears
when the + sign is clicked:

Form editing
The source code for this example can be found in xml/formEdit.xml.

This example is a rather extended mini-application. We included it here because it
might be useful to you. We will not show the code in the book, but give a description
that should be enough to get you started when you look at the source code:

• The grid can be edited by the form on the right-hand side of it
• The grid does not have any editing behavior
• Any changes are sent to a dataSource directly
• The form displays the values of the selected row in the grid
• You can edit the values in the form

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[228]

• In case Create is pressed, a new row will be added to the grid
• In case Save is pressed, the selected row will be updated

The picture below should make the intention of the example clear:

Live scrolling
The source code for this example can be found in xml/livescrolling.xml.

The last feature we want to highlight in the series is the live scrolling. When
dataGrid widget is first initialized, it will normally get only the first page rendered.
Later on, when the user starts scrolling through the virtual dataset, the widget
will retrieve and render a page if it is not yet available, thus implementing lazy
initialization behavior.

Adding live scrolling to a dataGrid element is done by specifying two important
attributes: livescrolling and maxPages. The first turns on the live scrolling
behavior and the second instructs the dataGrid what the maximum amount of
pages is that can be rendered at any time.

<b:dataGrid
 e:behavior="b:dataGridSortOneColumn
 b:dataGridEditCell b:gridColumnDnD"
 rows="40" height="600px"
 livescrolling="true" maxPages="10">
 <!-- the dataGrid columns go here -->
</b:dataGrid>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[229]

Here is a picture of the live scrolling behavior. It shows that, if you are scrolling too
fast, a big page number will be shown. As soon as the data is available, the number
will disappear and be replaced by the dataGrid contents:

This was the last of the eleven features of the dataGrid element. We hope to have
given you a taste of what is possible with this powerful widget.

Continue the development of the
C3D application
In the previous chapter, we introduced the C3D application. Back then, you could
only see a page skeleton, you could log in and log out, and you could add a trip.

In this chapter, we will add two major functional items:

• Add a trip entry. Each trip can contain several entries that describe
the details of a specific part of the trip.

• Show a list of trips, a list of entries for a trip, and entry details.

After we have added these features, the first prototype of the site is usable and can
accept real data as you can see on the example site that we made available for you:
http://www.squaringthecircles.com/bookApps/c3db/.

Of course, some highly desirable features are still missing: photo uploads, editing of
trip descriptions and trip entries, and e-mail notification, to name a few. Some of these
we will add in later chapters.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[230]

Adding a trip entry
The first feature we will add is the ability to enter details for a trip. The entry form
we need to make looks very much like the form we used for entering new trips as
you can see in the next screenshot:

There is one obvious difference: the trip entry has to be related to a trip, and
therefore, we would like to add a data-bound comboBox, which allows you to
choose from the available trips. Because new trips could be entered at any time, it
is necessary to build the options in the comboBox dynamically. First, we considered
using a suggestBox, which is already provided by the Backbase framework and
which is data bound. We decided not to use it because the user needs to type some
letters before suitable choices can be made and this is hard if you have no idea what
the trip names are. Therefore, we had to develop our own widget.

In this case, we already have a pretty good idea how to do this, as we have the
experience of developing the dataUL widget. To summarize, we need to define a
widget that extends from comboBox because we need the comboBox behavior, and
from dataObserver because we want to make the widget data bound. The new
widget should implement its own dataUpdate method.

Here is first the code, and after the code, we will explain the details:

<d:namespace
 xmlns:sq="http://www.squaringthecircles.com/squared"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="dataComboBox"
 extends="b:comboBox b:dataObserver">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[231]

 <d:attribute name="dataSource" />
 <d:attribute name="valueSelect" />
 <d:attribute name="optionSelect" />
 <d:method name="dataUpdate">
 <d:argument name="action" />
 <d:argument name="records" />
 <d:argument name="actionObj" />
 <d:body type="text/javascript">
 this.callSuper('dataUpdate', [action, records,
 actionObj]);
 if (!(action == 'read' || action == 'sort'))
 return;
 var oSource = this.getProperty('dataSource');
 var sValueQuery =
 this.getAttribute('valueSelect');
 var sQuery = this.getAttribute('optionSelect');
 var aResults = [];
 for (var i = 0, iMax = records.length; i < iMax; i++)
 {
 var sLabel =
 btl.dataSource.getValue(oSource,
 records[i], sQuery);
 var sValue =
 btl.dataSource.getValue(oSource,
 records[i], sValueQuery);
 var oOption = {};
 oOption.value = sValue;
 oOption.label = sLabel;
 aResults[aResults.length] = oOption;
 }
 for (var j = 0, jMax = aResults.length; jMax > j; j++)
 {
 var oOption =
 bb.document.createElementNS(
 btl.namespaceURI, 'comboBoxOption');
 var oText =
 bb.document.createTextNode(aResults[j].label);
 var sValue = aResults[j].value;
 if (sValue) {
 oOption.setAttribute('value', sValue);
 }
 oOption.appendChild(oText);
 this.appendChild(oOption);
 }
 //}

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[232]

 </d:body>
 </d:method>
 </d:element>
</d:namespace>

Our data-bound combobox has been named dataComboBox; it is placed in the
http://www.squaringthecircles.com/squared and has three additional
attributes defined:

• dataSource: Obviously, we need to be able to identify the dataSource
used for the dataComboBox.

• valueSelect: This should identify the ID to be used to send to the server, in
order for the server to use as identification for the option selected. We need
this attribute because just sending an index back would not be sufficient to
identify the option selected.

• optionSelect: This is what the user will see in the drop-down list of
the dataComboBox.

It is not obvious what the content of the method should be. But, we have an example
at hand—the dataUpdate method of suggestBox! We can just borrow it from the
definition that we find in: backbase/4_4_1/bindings/www.backbase.com.2006.
btl/suggestBox/suggestBoxBase.xml.

The dataUpdate method for dataComboBox is slightly simpler than the one for
suggestBox because we do not have to bother about a maximum number of
options to attach. And, of course, we need to create a comboBoxOption instead of a
suggestBoxOption to be appended to the drop-down list.

To be able to use this new widget, we place it into its own file, named
dataComboBox.xml. And, we place this file in the ../bookApps/c3db/resources/
bindings/www.squaringthecircles.com folder. Here, we are using a convention
similar to what the Backbase framework has for storing TDL definitions of widgets.

At the startup of the application, we should make sure that all the resources we need
are loaded, including the definition of our dataComboBox. We achieve this by putting
the names of all custom widgets (we have only one right now) in a special file. Here,
it is called ../bookApps/c3db/resources/bindings/squared.xml:

<d:tdl xmlns="http://www.w3.org/1999/xhtml"
 xmlns:d="http://www.backbase.com/2006/tdl">
 <d:namespace
 name="http://www.squaringthecircles.com/squared"
 xml:base="www.squaringthecircles.com/">
 <d:uses element="dataComboBox" src="dataComboBox.xml" />
 </d:namespace>
</d:tdl>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[233]

In our index.php script, we include squared.xml using XInclude.

The next thing to look at is the placement of the dataComboBox in the trip
entry form. Here is the code. We only show the row in the table that contains
the dataComboBox widget:

<tr>
 <td>
 <label for="tripId">trip</label>
 </td>
 <td>
 <sq:dataComboBox name="tripId" width="200px"
 valueSelect="*[1]"
 optionSelect="*[2]" bf:required="true"
 bf:messagesRef="../../td/bf:messages[1]">
 <b:dataSource e:behavior="b:remoteData"
 url="../cntrl.php?req=tripdataforuser"
 dataType="application/xml"
 requestType="application/xml" />
 </sq:dataComboBox>
 (select a trip)
 </td>
 <td valign="top">
 <bf:messages>
 <bf:message event="invalid"
 class="errorMessage" facet="required">
 You must select a trip
 </bf:message>
 </bf:messages>
 </td>
</tr>

As always, you can find the complete code for the form in the provided source
code package for the book.

Note the XPath expressions used as value for the valueSelect and optionSelect
attributes. These will find the values of the id tag (the first tag in each record) and
name tag (the second tag in each record) in the XML data.

Also, for the dataComboBox, you can use form validation. Here, if you do not make
a choice, which means a blank option, the error message will be displayed when you
try to submit the form.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[234]

We are not finished with our dataComboBox yet. There are still three points to
consider—the url on the data source, the data that is sent to the server when the
form is submitted, and the menu item we must add to enable the display of the form.

The query result that is requested from the server is named tripdataforuser. The
controller will invoke the readTripsForUser() function in the showTrips() class.
We have seen a very similar function earlier in this chapter. However, it was not
restricted to one user. Now, it looks like this:

public function readTripsForUser() {
 $sQuery=
 'SELECT id, name, description, startDate,
 endDate FROM c3d_trip
 WHERE userId = :userId ORDER BY startDate DESC';
 $sCountQuery =
 'SELECT COUNT(*) as iCount
 FROM c3d_trip WHERE userId = :userId';
 $aParameters = array();
 $aParameters['userId'] = $_SESSION['c3d']['user-id'];
 $datasource = new bb_remoteDataSource();
 return $datasource->
 asXml($sQuery, $aParameters, $sCountQuery);
}

We limit the trips returned to the trips that belong to the user who is logged in
because it is undesirable that a user could make entries for a trip of another user.
At the moment of writing this chapter, there is only one user who has entered trips,
so the result will be the same for now. You can see that the user-id is entered as a
parameter into the query. This helps prevent SQL injection because the parameters
are all checked and will never be part of the SQL string directly.

What will the server script, which receives the submitted form, see? We ask Firebug
for help again, and we see this:

We see a tripId parameter that has as value the trip ID with which we want to
associate this trip entry. As you can see, the server script does not need to be aware
of the special widget we were using to obtain this value.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[235]

A last thing we need to do is add a menu item that allows a logged-in user to
display the trip entry form. This is done in the same way as the Add a new Trip
menu item was added. Because we did not show this in the previous chapter, we
show it here now.

After a successful login, the login class delegates to the menuItems class to set
up the restricted-menu-area. Remember that what is returned by the server
is inserted into the menu-area area because the login menu specified this as
destination. What is returned is only a div element, which is empty, except for
a set of handlers. The one for the Add a new Trip Entry menu item looks like this:

<e:handler event="DOMNodeInsertedIntoDocument">
 <c:load destination="id('restricted-menu-area')"
 url="menuItems/addTripEntryItem.xml"
 mode="lastChild" />
</e:handler>

What happens is that the event is fired when the div node is inserted into the
document. This will cause the c:load command to execute, which puts whatever
it finds at menuItems/addTripEntryItem.xml into the restricted-menu-area.
This happens to be:

 Add a new Trip Entry

<e:handler event="click">
 <c:load url="../forms/EntryInsert.xml"
 destination="id('trip-area')"
 mode="replaceChildren" />
</e:handler>

This is indeed our menu item, which when clicked, will cause the add trip entry
menu to be loaded in the center area on the screen with id trip-area. This multi-
step process looks complicated at first. However, it is necessary to load the code in
this way because the reply to a request can only go to one destination, while often,
we want to put items in more than one area, or the destination is dependent on the
result of a server action, such as, if the login fails, the form should stay and an error
message should appear, instead of the appearance of the restricted menu items.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[236]

Show trips and trip entries
So far, we have entered quite a lot of data into the C3D application, but it seems
to have fallen into a black hole. So, now is the time to show the world what we
have written.

We thought it would be nice if we could show the information in a tree-like
structure. When you ask for the trip data to be shown, you will initially see just
a dataGrid with trip names and descriptions.

But, if you click on the + sign that can be found in front of every row, you will see
the entries that have been made for that particular trip. The text for the entries will
be shortened and by clicking on more..., the full text of the entry is shown.

The widget we developed builds on the example of the dataGrid that showed a
collapsible info block. In that example, the collapsible block contained a non-Backbase
area. Here, we extend this by allowing the info block to contain Backbase widgets
(in our case, another dataGrid).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 5

[237]

Why are we not using a treeGrid instead of building such a complicated widget?
For two reasons: the first one is that for a treeGrid the inner structure of the rows
must be the same as the outer structure. This is not the case in our example. The
second reason is that, when using a treeGrid, we must build rather complicated
XML to tie the inner structure to the outer one. In our implementation, we can use
the generic remote data source class we built in PHP.

We used this widget before in a scorecard application where statistical data from a
large school with 20,000 students was presented about absence/presence, classroom
occupancy, and so on. You could look at an overview for the whole school and then
drill down via a sub-school and class or group to an individual student. This was
very helpful to the school to obtain the necessary funds from the government.

This is again an exercise in using TDL while the introduction to this language is still
a chapter away. Therefore, we will not further explain the code here. You have seen
most of the building blocks already though, therefore, with some effort, you should
be able to go through the code on your own.

Let's just see some of the code for using the plusDataGrid and plusDatGridCol:

<sq:plusDataGrid class="innerGrid" width="100%"
 e:behavior="b:dataGridSortOneColumn"
 overflow="visible" sortDirection="descending"
 sortField="startDate" rows="3">
 <sq:plusDataGridCol render="none"
 field1="id"
 include="cntrl.php?req=tripentrygrid"
 resizable="false" />
 <b:dataGridCol dataField="id" display="none">
 id
 </b:dataGridCol>
 <b:dataGridCol dataField="name"
 dataClass="t-area" width="150px">
 name
 </b:dataGridCol>
 <b:dataGridCol dataField="description"
 dataClass="t-area" width="250px">
 description
 </b:dataGridCol>
 <b:dataGridCol dataField="startDate" width="90px">
 start date
 </b:dataGridCol>
 <b:dataGridCol dataField="endDate" width="70px">
 end date
 </b:dataGridCol>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Data-bound Widgets

[238]

 <b:dataSource e:behavior="b:remoteData"
 url="../cntrl.php?req=tripdata"
 dataType="application/xml"
 requestType="application/xml" />
</sq:plusDataGrid>
<!-- the pager bar goes here -->

This looks like a normal grid with a peculiar first column, a plusDataGridCol,
and there is a dataSource that is responsible for retrieving a list of all trips. The
plusDataGridCol indicates that it will include whatever is returned from cntrl.
php?req=tripentrygrid, which happens to be a dataGrid with trip entries. The
value of the field1 is the trip ID, which is used to find the entries for the selected trip.

Even if you cannot understand the code that we have introduced here for defining
the new widgets, you would probably be able to use them in your application
anyway. This is a strong point for using the Tag Definition Language: a specialist
in developing widgets will develop the plusDataGrid and a specialist in UI
development will develop the page in which the plusDataGridCol is used.

We also made it very clear that the work done in another project for a totally
different purpose can very conveniently be reused. Here, our scorecard widget ,
which was developed for a school, turned into a trip entry browsing widget for
the C3D sample application.

Summary
In this chapter, we have discussed data binding, data-bound widgets in the Backbase
framework, and how you can make your own.

The most powerful data-bound widget in the Backbase framework is the dataGrid.
With eleven examples, we explored many details of using this grid.

The work on our C3D travel blog sample application continued with the definition
of a trip entry form, and a grid that could seamlessly display both trips and entries
belonging to a trip.

In the next chapter, we will describe drag-and-drop and animation with SMIL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior
The word more in the title of this chapter suggests that we will cover a subject that we
have described before. Indeed, we are continuing with what we started in Chapter 3:
the three dynamic aspects of application development—traversing the document tree,
modifying the document tree, and dealing with events.

Let's have a level check. What we have covered so far:

• Traversing the document tree: We indicated how you can find elements
by ID or by tag name, using the bb object. There is also XPath that you can
conveniently use to give a value to those attributes in XEL, which are used to
set a node value in the DOM—for example, the often-used select attribute.

• Modifying the document tree: We discussed how you can use the APIs
according to well-known web standards, as implemented by the bb object.
On a higher level, you can use the XML Execution Language (XEL) and
the applicable command functions. We described both in Chapter 3. XSLT
transformations can be considered as a way to implement modifications of
the DOM tree. We showed an example of how you can do this using the
Backbase framework in Chapter 3.

• Dealing with events: In almost every example, we made use of an event
handler to describe the interaction with the user that should take place. You
might be familiar now with how to write these in either JavaScript or XEL.
We also covered some finer points, such as how to create your own events.

Elements in the DOM tree can move or change shape in ways other than described
above, by drag-and-drop, by animation, and so on. The Backbase framework has
implemented support for some of these.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[240]

In the Backbase framework, there is a possibility to extend the dynamic behavior of
any element in a generic way, conveniently called behaviors. We saw some specific
behavior for the dataGrid that could be added to it, such as sorting or cell editing.
Here, our main topic will be the generic drag-and-drop behavior. We will also describe
the resize behavior that you can attach to an element.

We will look at several command functions that you can use to handle behaviors,
either in combination with XEL or with JavaScript. In particular, you can use these
commands for adding or removing behavior to or from an element. You will find
these commands after the section on behaviors.

Using animation is a popular way to make a website more dynamic. The Backbase
framework has a partial implementation of the Synchronized Multimedia
Integration Language (SMIL) standard that is worth exploring, which we will do
in this chapter.

The last subject in this chapter is about the broadcaster/observer functionality as it
is implemented in the Backbase framework. You will remember that we have seen
the observer pattern described in the previous chapter as the fundamental pattern
behind data binding. There is also a more generic implementation in the Backbase
framework, known as the broadcaster/observer support.

Here is a list of subjects we will cover in this chapter:

• Behaviors: a definition
• Drag-and-drop and resize behaviors
• Commands affecting behaviors
• The broadcaster/observer pattern
• UI animation with SMIL
• An SMIL example for the C3D travel blog

Behaviors
A behavior is a dynamic functionality that can be added to a UI widget. Backbase
widgets are object-oriented objects. This means they have a state, which is kept in
properties and a dynamic behavioral functionality, which is coded in methods.
A behavior is actually an object that a widget can inherit from. If you add the
behavior to an UI widget, by coding for example: e:behavior="b:drag", the widget
will now inherit all attributes, properties, and methods that are defined for the
behavior (the capability to be dragged in this example).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[241]

We have already seen a large number of behaviors in the previous chapter. Remember
that if you specify e:behavior="b:remoteData" on a dataSource element, the
dataSource will be able to communicate with a server and you will have extra
attributes that you can use with the dataSource, such as a url attribute to specify
the destination of a request for data. Similarly, you could make a dataGrid sortable,
by specifying e:behavior="b:dataGridSortOneColumn" on the dataGrid tag
as attribute.

Frequently used examples of behaviors in the Backbase framework are
drag-and-drop and resize. These two behaviors are the main focus of this chapter.

• drag-and-drop: This is an action that can be applied to a UI widget. By
clicking with a mouse on that widget and keeping the mouse button down,
you can move the mouse and drag the UI widget with it. When you release
the mouse, the widget is dropped at the new location.

• resize: It is another action that can be applied to most UI widgets. It involves
dragging a corner or a border of a widget with a mouse to a new location.
When the mouse button is released, the size of the widget will be adapted in
such a way that the dragged corner or border will now be at the new location.

Drag-and-drop and resize are applied on a particular widget using the behavior
attribute and the name of the behavior as the attribute value. This will allow a
number of additional attributes, events, and methods to be applied to the widget,
namely those that are provided with the behavior. We will see in the next sections
what these attributes, events, and methods are.

Developers new to Backbase are often confused by the namespace prefixes that
must be used. In the dataGrid examples, you have seen that the name of the
attribute behavior must be prefixed with e:. This is because behavior belongs to
the XEL namespace. The value of the attribute is the name of the behavior, such
as localData, dataGridCellEdit, or resize. As we have explained above, these
behaviors are objects. The predefined Backbase behavior objects are all defined in the
BTL namespace and must therefore be prefixed with b:.

In the next chapter, we will see that you can also define your own behaviors. The
names of these must then be prefixed with the prefix you defined for your custom
namespace. Another confusion is that attributes belonging to the behavior that you
specified for a widget must not be prefixed, such as the url attribute of b:remoteData.
This is because the behavior is like a superclass to the object to which the behavior is
applied, as we explained in the previous paragraph. Therefore, the dataGrid where
the behavior b:remoteData is used just inherits the url and other attributes.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[242]

Drag-and-drop
We already defined what drag-and-drop is in the previous section. Briefly, it is a way
to move a UI widget using your mouse.

The drag-and-drop support in the Backbase framework consists of three behaviors.
Therefore, behaviors that are defined in the BTL namespace are:

• dragBase: It fires the basic events associated with drag-and-drop
• drag: It inherits from dragBase and offers a set of attributes that you can use

to customize the dragging behavior of the widget it is attached to
• dragTarget, which implements receiving draggable elements

As usual, in this book, we will show details of attributes and in this case, because we
are talking about the drag-and-drop behavior, we will explain events first and then a
series of examples.

dragBase
dragBase implements a set of events that form generic drag-and-drop behavior.
Each event has a list of properties available when it is fired. Using these properties,
you can investigate who initiated the drag and where, what is dragged, where the
dragged element is located, and so on.

Event Description Properties
drag Fires continuously during a drag

operation.
pageX, pageY, viewTarget,
dragInitiator, dragSource,
dragTarget, and dragViewTarget.

dragDrop Fires when the mouse button is
released during a drag-and-drop
operation.

dragInitiator and dragSource.

dragEnd Fires when the user releases
the mouse at the close of a drag
operation.

dragInitiator and dragSource.

dragEnter Fires when the user drags the object
to a valid drop target.

viewTarget, dragInitiator,
dragSource, dragTarget, and
dragViewTarget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[243]

Event Description Properties
dragLeave Fires when the user moves the

mouse out of a valid drop target
during a drag operation.

viewTarget, dragInitiator,
dragSource, dragTarget, and
dragViewTarget.

dragOver Fires continuously while the user
drags the object over a valid drop
target.

viewTarget, dragInitiator,
dragSource, dragTarget, and
dragViewTarget.

dragStart Fires when the user starts to drag an
object.

startX, startY, viewTarget, and
dragManager.

Disregard the attributes with view in their name for now. We will talk about
models, views, and controllers in the next chapter as they apply to the layers of
the Backbase framework. You can probably guess the meaning of most other
properties. Otherwise, the API Reference has descriptions.

The dragManager is a special object that you can use to customize dragging and
dropping. We will show an example of its use later in this chapter.

drag
drag inherits from dragBase and implements a draggable element. The element
receives dragStart, drag, and dragEnd events.

Attribute Description Value
dragBehavior Defines whether the dragged item will be moved

when dropped. drop indicates that the element
will be moved in the tree. move indicates that the
element will be absolutely positioned at the new
location.

drop and move.

dragConstraint Defines an element that serves as a boundary for
the dragged element.

The value is a valid
XPath expression. If
the expression selects
more than one node,
only the first node is
used.

dragGroup Defines a list of tag words, delimited by a blank.
A drag target checks this list to determine if it
will accept the element.

List of strings.

dragItem Defines a tag word. A drag target checks it to
determine whether it will accept the element.

String

dragMode Defines what the element looks like while it is
being dragged.

outline, real, and
symbol.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[244]

Attribute Description Value
dragSymbol Defines the dragSymbol when using

dragMode="symbol". The result of the XPath
can be either a node to which a clone is moved
or a string that will be converted to an HTML
element.

XPath

dropMode Defines what should be done when the element
is dropped on a drop-zone.

move and none.

useDragClass By default, the element can be dragged from
any point, but this can be changed using drag
classes. The class values can be:

• btl-dragItem: behavior defined
by dragBehavior

• btl-dragMove: overrides
dragBehavior to move value

• btl-dragDrop: overrides
dragBehavior to drop value

true and false.

Note that if useDragClass is set to true, the user selection of content within the
source element is not prevented. To prevent the user selection of content within
the element to which a drag class is applied, use the bb.html.disableUserSelect
method.

dragTarget
It implements receiving draggable elements. The element receives dragEnter,
dragOver, dragLeave, and dragDrop events. When the source element is moved
to a new element in the tree, the default behavior is to append as last child to the
receiving element.

This behavior is activated by specifying the b:dragReceive attribute on the receiver.

Having looked at the behavior objects that are available to support drag-and-drop
operations, we can now look at some examples.

All the source code for the behavior examples can be found in the
bookApps/behaviors folder. For each example, there is a .html
and a .xml file with the same filename. The actual source code is in
the .xml part. The .html part is there to start things and to provide
a short description.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[245]

Basic dragging and dropping with widgets
In this section, we look at the attributes you can specify to make a widget
draggable and what you can do to make a widget into an element that can
receive draggable widgets.

In the following example, you see a widget that can be dragged to a receiver:

<div class="dnd-container" style="left:50px;">
 Draggable
Item
 <div class="drag-tile" e:behavior="b:drag" />
</div>
<div class="dnd-container" style="left:200px"
 b:dragReceive="*">
 Drag

 Receiver
</div>

Before we explain the code, let's see a picture:

From looking at the picture, you can guess that we left out the CSS styling,
which was used to make the draggable div into a blue square and to style
the containers used. Apart from this, the code shown is all you need to enable
drag-and-drop behavior:

• e:behavior="b:drag" is specified as an attribute on the draggable widget.
• b:dragReceive="*" is specified on the receiver. The * means that there are

no constraints on the draggable widget that can be dropped.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[246]

Drag constraints
We can give a draggable widget extra properties that can help to constrain where
the widget can be dropped, and which parts of the widget can be used as a handle
to drag it.

dragItem
The next example is similar to the previous one. It shows four draggable items,
now with the dragItem attribute specified. There are two receivers, one saying b:
dragReceive="odd" and the other b:dragReceive="even". Here's the code:

<div class="dragReceive-container"
 style="left:50px; height:auto" b:dragReceive="*">
 Integers
 <div class="dragReceive-tile" e:behavior="b:drag"
 dragItem="odd">
 1
 </div>
 <div class="dragReceive-tile" e:behavior="b:drag"
 dragItem="even">
 2
 </div>
 <div class="dragReceive-tile" e:behavior="b:drag"
 dragItem="odd">
 3
 </div>
 <div class="dragReceive-tile" e:behavior="b:drag"
 dragItem="even">
 4
 </div>
</div>
<div class="dragReceive-container" style="left:200px"
 b:dragReceive="odd">
 Odd
</div>
<div class="dragReceive-container" style="left:350px"
 b:dragReceive="even">
 Even
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[247]

Here is a picture:

In this example, the dragItem attribute specifies the type of element that can be
dragged. The receivers must specify the same value in their b:dragReceive
attribute to be able to receive the dragged element. Therefore, blue squares can
be dropped in either the Odd or the Even container. You can drag all of them back
to their original container.

dragGroup
Another attribute that may be practical to use is the dragGroup attribute. First, let's
look at the code:

<div e:behavior="b:drag" dragMode="real" dragGroup="cat"
 class="dnd-container" style="left: 50px;">

 <div dragItem="cat" class="cat-tail">
 Drag here...
 </div>
</div>
<div b:dragReceive="cat" class="dnd-receiver"
 style="left: 350px;">
 <div>
 Igor!!
 </div>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[248]

Now, the picture:

As you can see, the cat can be dragged only by its tail (the real Igor would bite you
if you tried!). This is achieved by specifying a dragGroup attribute on the div that
contains the image and an overlay div with a dragItem attribute for the part that
can be clicked upon and be dragged.

Because we used dragMode="real", you see the real cat being dragged, instead of
only an outline.

useDragClass
This is another way to achieve the same effect: Igor can only be dragged by his tail.
This effect is achieved by using a useDragClass attribute with the value true. The
overlay div should now contain a class attribute that in our example contains the
value btl-dragItem, which means that the value for the dragBehavior is used.
We did not specify this attribute; its default value is drop. The code for the div
containing the image and its overlay now becomes:

<div e:behavior="b:drag" dragMode="real"
 dragItem="cat" useDragClass="true"
 class="dnd-container" style="left: 50px;">

 <div dragItem="cat" class="cat-tail btl-dragItem">
 Drag here
 </div>
</div>

dragMode="real" should be used carefully. Only in simple cases and
when the dragged elements are kept within simple elements, will this
mode work properly. In complex pages, you should create your own
symbol that can be dragged appropriately.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[249]

dragConstraint
A constraint of a different type, indicating where an item can be dragged, is the
dragConstraint attribute. It defines the boundaries for a draggable widget. The
value for the attribute must be a valid XPath expression.

We illustrate this by coding an on-off switch, remotely modeled after the switches
found in an iPhone to change the settings:

The switch is a simple table with one row and two columns. The table has a
background image with the on and off symbols. When you slide the switch, it won't
be appealing if you could move the switch all over the page. Therefore, the sliding is
constrained within the only row of the table. Here's the code:

<table style="background-image: url(media/onoff.jpg);">
 <tbody>
 <tr>
 <td class="switch" b:dragReceive="switch1">
 <div class="red" e:behavior="b:drag"
 dragConstraint="../.."
 dragItem="switch1" dragMode="real">
 </div>
 <e:handler event="dragEnd"
 type="application/javascript" phase="capture">
 alert('hi! you switched me off');
 </e:handler>
 </td>
 <td class="switch" b:dragReceive="switch1">
 <e:handler event="dragEnd"
 type="application/javascript" phase="capture">
 alert('hi! you switched me on');
 </e:handler>
 </td>
 </tr>
 </tbody>
</table>

The code has dragConstraint="../.." specified for the div that represents the
switch. This constraint means that the switch can be dragged within the element
that is two parents up, therefore the tr element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[250]

You will notice that phase="capture" is specified. This is done because the
dragEnd event does not bubble. This example will need version 4.4.0 or greater
of the Backbase framework to work properly.

We inserted two alerts to tell you what happens. This is done to show that it can
indeed be used to control settings in a configuration or other on-off information.

Reverting a dragged element
In many drag-and-drop scenarios, the dragged element should not be moved or
dropped to a new location, but only a copy or parts of the dragged element should
be placed at the target location. Imagine a shopping cart to which you can drag
products from a catalog. It would be really strange if the product would disappear
from the catalog after it was dragged to the shopping cart!

In the well-known prototype/scriptaculous framework, this is easy to do: just specify
revert="true" on the dragged element and it will happen. For the Backbase
framework, however, it is surprisingly difficult to find out how to do it, although
the implementation is fairly easy. Here, we reveal the secret for the first time!

We present a schematic scenario of a book shop. You will see images of books
that can be dragged to a shopping cart area and if you change your mind, you can
drag the book from the shopping cart to the waste basket. This is a very simple
implementation, which only intents to show reverting of a dragged element.
Therefore, there are no products, but only images in the catalog and there are no
order lines in the shopping cart with quantity or price information.

We will implement the reverting as follows:

• We specify dropMode="none" on the dragged element. This means that
when the element is dropped, it will always stay at the starting location.

• When dropped, we will clone the element and append the clone copy at
the target location.

Because of some problems with the cloning of behaviors in the Backbase framework,
we need to specify a new element using TDL. Actually, that gives us the opportunity
to show an alternative way of specifying dragging capabilities: just inherit from b:
drag!

The next picture should give you an impression of what happens when a picture
is dragged to the shopping basket. You see a full basket, but all four books are still
there in the books container.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[251]

<d:namespace xmlns:sq="http://www.squaringthecircles.com/squared"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="bookTile" extends="b:drag img">
 <d:attribute name="dropMode" default="none" />
 <d:attribute name="class" default="bookTile" />
 <d:attribute name="dragItem" default="book" />
 </d:element>
</d:namespace>

The element bookTile in the previous code is about the simplest element you can
imagine; it is an image that you can drag and it has some extra attributes.

Now, we can put some books in a catalog on our web page:

<div class="dragReceive-container" style="left:50px;">
 Books

 <sq:bookTile src="media/184719530X.png" />
 <sq:bookTile src="media/1847193633.png" />
 <sq:bookTile src="media/1847194141.png" />
 <sq:bookTile src="media/1904811825.png" />
</div>

Next, we can code the shopping cart:

<div class="dragReceive-container" style="left:250px;">
 Shopping Cart
 <div style="width:100%; height:90%; overflow: auto;"
 b:dragReceive="book">
 </div>
 <e:handler event="dragDrop"
 type="application/javascript" phase="capture">
 var oElement = event.dragSource;

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[252]

 if (oElement.getAttribute(“dropMode") == “none") {
 oElement = oElement.cloneNode();
 oElement.setAttribute(“dropMode", “move");
 oElement.setAttribute(“dragItem", “cart");
 event.target.appendChild(oElement);
 }
 </e:handler>
</div>

The cloning takes place in the dragDrop event handler. We also change the
dropMode and dragItem attributes, which enables the element to be dragged to
the waste basket in the hopefully unlikely case that the shopper changes his mind.

Finally, here is the wastebasket:

<div class="dragReceive-container" style="left:450px"
 b:dragReceive="cart">
 Waste Basket

 <e:handler event="dragEnd"
 type="application/javascript" phase="capture">
 var oElement = event.dragSource;
 bb.command.destroy(oElement);
 </e:handler>
</div>

Please note that this example requires version 4.4.0 or greater of the Backbase
framework to run because of the phase="capture" attribute in the event handler.
There is another way to implement reverting that also works in earlier versions.
The idea is to drop the element normally and to recreate the element at the
drag-initiating location when the dragged element is dropped, something like this:

<div class="book-tile">
 <img src="resources/media/mybook123.png"
 e:behavior="b:drag" />
 <e:handler event="DOMNodeRemoved">
 <c:create destination="." mode="appendChild">
 <img src="resources/media/mybook123.png"
 e:behavior="b:drag" />
 </c:create>
 </e:handler>
</div>

The disadvantage of this approach is that it may cause a flicker on the page and it
may take extra time to recreate the element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[253]

Advanced dragging and dropping with widgets
In this section, we look into how you can customize a drag-and-drop operation to
match the requirements of the widget. For this, we use the dragBase behavior to
hook into the events.

Drag-and-drop columns inside a table
For this example, we first define a table which has the dragBase behavior
defined. By doing this, we receive the dragStart event when the user initiates
a drag-and-drop operation. In this example, we simply show an alert when a
dragStart is initiated, indicating the node name of the element that was dragged.

In the handler of the dragStart event, we can implement a specific behavior to do
the dragging and dropping. If we do not define anything, it will not start the drag-
and-drop operation.

<style type="text/css">
 .mySymbol {
 border: 1px solid black;
 background: red;
 position: absolute;
 }
 .mySymbol.btl-drag-target { background: lightgreen; }
</style>
<table border="1" e:behavior="b:dragBase">
 <thead>
 <tr style="-moz-user-select: none;">
 <th>Column 1</th>
 <th>Column 2</th>
 <th>Column 3</th>
 <th>Column 4</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Content 1</td>
 <td>Content 2</td>
 <td>Content 3</td>
 <td>Content 4</td>
 </tr>
 </tbody>
 <!-- The handlers go here ... -->
</table>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[254]

We need to add some logic for the dragStart and dragEnd events:

• dragStart: Checking if we are on the head of the table when the drag starts
• dragStart: Creating the symbol we are going to drag
• dragStart: Starting the drag-and-drop operation using btl.drag.

dragManager.doDrag()

• dragEnd: Destroying/removing the symbol we have created in the
dragStart

We need to add the logic that detects if our mouse is on top of an element where
the column can be dropped. We do this by iterating over the table head cells and
checking if the current mouse position is at the target location of the table head.
This is made visible because the dragManager adds the btl-drag-target class
to the symbol, changing it from red to green.

• When this is the case, we call the btl.drag.dragManager.
acceptDragDrop() to accept the drag-and-drop

• If this is not the case anymore, we call the same btl.drag.dragManager.
acceptDragDrop() but then without any arguments to reset it

We also implement the dragDrop event handler that does the logic when the column
is dropped on another column. This event will only fire when the target is accepted,
in general, when btl.drag.dragManager.acceptDragDrop() is called with a valid
element as argument.

The following snippet defines the custom code for the dragStart, drag, dragDrop,
and dragEnd events to accommodate custom (symbolic) drag-and-drop for table
column reordering.

<e:handler event="dragStart" type="application/javascript">
 // Check for head
 if (event.viewTarget.nodeName == 'TH') {
 //Create the symbol
 var oSymbol = document.createElement('div');
 oSymbol.className = 'mySymbol';
 oSymbol.innerHTML = event.viewTarget.textContent ||
 event.viewTarget.innerText;
 document.body.appendChild(oSymbol);
 this.symbol = oSymbol;
 //Start the drag operation
 btl.drag.dragManager.doDrag(this, event.viewTarget,
 event.startX, event.startY, oSymbol,
 20, 20, 0.8, false,
 event.viewTarget.parentNode.childNodes);
 }
</e:handler>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[255]

<e:handler event="drag" type="application/javascript">
 <![CDATA[
 //Find the column currently under the mouse
 var oTHs = this.viewNode.getElementsByTagName('th'),
 i = 0, oTH;
 var iFoundIndex = null;
 while(oTH = oTHs[i++]) {
 var oCoord = bb.html.getBoxObject(oTH);
 if (event.pageX > oCoord.left && event.pageX
 < oCoord.left + oCoord.width) {
 if(oCoord.width / 2 > event.pageX - oCoord.left) {
 iFoundIndex = oTH.cellIndex;
 }
 else
 iFoundIndex = oTH.cellIndex + 1;
 }
 }
 if (iFoundIndex !== null && iFoundIndex !=
 event.dragSource.cellIndex &&
 event.dragSource != oTHs[iFoundIndex == 0 ? 0 :
 iFoundIndex - 1]) {
 //Accept the drag-and-drop
 this.iFoundIndex = iFoundIndex;
 btl.drag.dragManager.acceptDragDrop(this);
 }
 else {
 //Deny the drag-and-drop
 btl.drag.dragManager.acceptDragDrop();
 }
]]>
</e:handler>
<e:handler event="dragDrop" type="application/javascript">
 //Move all cells from that column to the new column
 var iCurrentIndex = event.dragSource.cellIndex;
 var iNewIndex = this.iFoundIndex;
 var aTRs = this.viewNode.rows, i = 0;
 while(oTR = aTRs[i++]){
 oTR.insertBefore(oTR.cells[iCurrentIndex],
 oTR.cells[iNewIndex]);
 }
</e:handler>
<e:handler event="dragEnd" type="application/javascript">
 document.body.removeChild(this.symbol);
 this.symbol = null;
</e:handler>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[256]

The next picture shows Column 4 being dragged:

The example code for the book contains the complete example.

Resize
The resize behavior allows you to click on the border or a corner of a widget and
drag its border so that the widget becomes smaller or larger. When the user clicks on
the border of a resizable widget, the icon changes into a double arrow.

Attributes of the resize behavior allow control over the resizable edges of an element,
minimum and maximum resize capabilities, and the visualization of the widget in
the process of resizing:

Attribute Description
maximized Defines if the element size is maximized.
minimized Defines if the element size is minimized.
resizeConstraint Defines an element that serves as the boundary for the resized

element. The value must be a valid XPath expression. If the
expression selects more than one node, only the first node is used.

resizeEdges Defines a list of space-separated values representing the edges of
the element that can start a resize action. By default, the element
can be resized by all edges.

resizeGripSize Defines the size in pixels of the region around an element edge
where resizing can be started.

resizeMaxHeight Defines the maximum height of the resized element. Use px as a
valid CSS length value.

resizeMaxWidth Defines the maximum width of the resized element. Use px as a
valid CSS length value.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[257]

Attribute Description
resizeMinHeight Defines the minimum height of the resized element. Use px as a

valid CSS length value.
resizeMinWidth Defines the minimum width of the resized element. Use px as a

valid CSS length value.
resizeType Defines the visual representation of resizing. Its value can be

outline, line, or real.

Using the resize behavior
As with other behaviors, you apply the resize behavior by adding the e:behavior
attribute to a particular markup element.

The basic syntax for the resize behavior applied to a box widget is shown in this
example. An absolute position for the resizable box is specified to give it enough
space in all directions.

<b:box e:behavior="b:resize" width="100px" height="100px"
 position="absolute" left="50px" top="100px" />

The above example allows the user to resize the widget in any direction. Pressing
the Esc key returns the last resized element to its original size. The picture below
shows a basic resize operation:

resizeEdges
Sometimes, you may want to restrict which borders the user can resize. If a widget
must retain a fixed relation to another element, or is positioned at one side of the
application, you may want to disable the ability to resize that border.

The resizeEdges attribute allows you to specify which edges of the widget can be
used to resize it. In the example, only the top and right edges can be dragged for
resizing. Absolute positioning is used to provide sufficient room.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[258]

<b:box e:behavior="b:resize"
 width="100px" height="50px"
 position="absolute" left="50px" top="100px"
 resizeEdges="top right" />

The resizeEdges attribute accepts four possible space-separated values: left,
right, top, and bottom.

resizeMin and resizeMax
The resizeMinHeight and resizeMinWidth attributes allow you to specify a
minimum size for the element's new size. The following example lets you increase
the width and height as much as you want, but limits the minimum width and
height to 100 pixels:

<b:box e:behavior="b:resize" width="30px" height="30px"
 resizeMinHeight="100px" resizeMinWidth="100px" />

Similar to the resizeMinHeight and resizeMinWidth attributes, you can use
resizeMaxHeight and resizeMaxWidth attributes to constrain the size of a
resizable widget.

resizeType
The resizeType attribute defines what the new border looks like when the widget
is in the process of being resized. By default, the resizeType is set to outline. This
shows a straight line that represents the new boundary of the element on the three
edges that are being altered. The line value only shows a line on the edge that is
currently being moved. There is also a real value that re-renders the box as it is
being moved.

resizeConstraint
As with the drag-and-drop behavior, you can set additional limits (besides size itself)
on the resize action. The resizeConstraint attribute allows you to use an XPath
expression to define a boundary for a resized widget.

In this example, we set the resizeConstraint attribute specifying that the widget
can be resized no larger than its parent:

<div style="width: 200px; height: 200px; border: 1px solid black;">
 This is the parent div widget.
 <div style="width: 100px; height: 100px; border: 1px solid red;"
 e:behavior="b:resize" resizeConstraint="..">
 This div cannot be resized larger than the parent widget.
 </div>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[259]

The following picture shows what happens when you try to resize the constrained
element from the example outside its container.

Advanced uses of resize scenarios could involve storing the new position of a widget
so that the widget is already resized the next time the user views the application or
allowing the user to reset the widget to a previously resized position.

Resize custom events
The resize behavior has three custom events that you can hook into. These events
cover each phase while resizing a widget. They will come in handy when your needs
exceed the out of the box functionality of the resize behavior and attributes. Most
often, you won't necessarily want to override the default behavior of the events, but
you might want to hook into the events in order to add additional functionality.

The resize custom events are:

Event Description
resize Fires when the size of the object is about to change. The event can be

cancelled.
resizeEnd Fires when the resizing ends (mouseup). Sets the new dimensions

of the object and completes the resize process. The event can be
cancelled.

resizeStart Fires when the user begins to change the dimensions of the object.
The event bubbles and can be cancelled.

Additionally, there are properties these event objects can have available:

• resizeEdges: Space-separated list of current moving edges and their types.
• originalLeft: Original left border position of the resized widget.
• originalTop: Original top border position of the resized widget.
• originalWidth: Original width of the resized widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[260]

• originalHeight: Original height of the resized widget.
• newLeft: New left border position of the resized widget. Can be modified

by the event handler.
• newTop: New top border position of the resized widget. Can be modified

by the event handler.
• newWidth: New width of the resized widget. Can be modified by the

event handler.
• newHeight: New height of the resized widget. Can be modified by the

event handler.
• realWidth: Real, box sizing independent width of the resized widget.
• realHeight: Real, box sizing independent height of the resized widget.

The following example uses the resizeEnd event to start an action (here, just a
simple alert) to show the idea:

<b:box e:behavior="b:resize" width="100px" height="100px"
 position="absolute" left="50px" top="100px">
 Resize me!
 <e:handler event="resizeEnd" type="text/javascript">
 alert('The new right edge is at: ' + (event.newLeft +
 event.newWidth) + 'px');
 </e:handler>
 </b:box>

In the source code provided with this book, you can find two more examples about
resizing widgets. We show a part of the code for each here:

Custom Grippies
This example can be found in: bookApps/behaviors/resize_custom_grippy.html.
In this example, an image can be resized by dragging one of the custom-defined
grippies:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[261]

The example uses some ugly code, such as an XEL function, which we had advised
not to use. For brevity of the example, we left it in:

<e:function name="doResize">
 <e:argument name="edge"/>
 <e:argument name="elm"/>
 <e:argument name="event"/>
 <e:body type="application/javascript">
 btl.resize.startResize(elm.controller, elm,
 edge, event.clientX + bb.viewport.scrollLeft,
 event.clientY + bb.viewport.scrollLeft, elm);
 </e:body>
</e:function>

The doResize function is called when the mouse is held down on one of the blue
square grippies, as you can see from the following code:

<div e:behavior="b:resizeBase" style="position:absolute;
 left:200px; top:200px; width:100px; height:100px;">
 <div class="grippy" style="top:45%; left:0px;
 cursor: w-resize;"
 onmousedown="doResize(btl.resize.WEST,
 this.parentNode, event || window.event);"/>
 <div class="grippy" style="top:0px;left:0px;
 cursor: nw-resize;"
 onmousedown="doResize(btl.resize.NORTHWEST,
 this.parentNode, event || window.event);"/>
 <div class="grippy" style="top:0px;left:45%;
 cursor: n-resize;"
 onmousedown="doResize(btl.resize.NORTH,
 this.parentNode, event || window.event);"/>
 <!-- more grippies here -->

</div>

In the doResize XEL function, the btl.resize.startResize function is used to do
the actual resizing. This function has a large number of arguments that you can find
described in the Backbase API Reference.

You need quite a bit of code to make these custom grippies. In the way it is coded
here, you would need to do the same for every image or any other element that
needs these custom grippies. Therefore, this example is a good prospect for the
building of a custom behavior. This (developing a custom behaviour) would make
it easy to attach these custom grippies to any widget. We will see in the next chapter
how custom behaviors can be developed.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[262]

Resizing table columns
This example can be found in: bookApps/behaviors/resize_custom_table.html.
This example has a simple table-like structure, the one we used for dragging columns
to a new position. Here, some fairly involved event handlers are defined to allow a
column to be resized.

This is how the resize takes place using event handlers:

• The mousemove event is used to find out whether the mouse is on top of a
header element and near an edge. In that case, a resize cursor is shown.

• The mousedown event will start the resize if appropriate and show
a resize line.

• The resizeEnd event will hide the line and finish.

We will not show all of the code for this example, but to give you a flavor of what
is involved, here is the mousedown event handler:

<e:handler event="mousedown" type="application/javascript">
<![CDATA[
 //Only when we are near an edge
 if(this._.resizeEdge && event.viewTarget.nodeName ==
 'TH') {
 //Select the correct cell for resizing and store
 // it on the object internal (for resizeEnd event)
 this._.resizeElm = this._.resizeEdge &
 btl.resize.RIGHT ?
 event.viewTarget : event.viewTarget.
 parentNode.parentNode.rows[0].
 cells[event.viewTarget.cellIndex - 1];
 //We use a line as symbol
 var oSymbol = document.getElementById('resizeLine');
 //Start the resize
 btl.resize.startResize(this, this._.resizeElm,
 btl.resize.RIGHT,
 event.clientX + bb.viewport.scrollLeft,
 event.clientY + bb.viewport.scrollTop,
 oSymbol, 20, 20);
 //Set the symbol height to the table height

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[263]

 oSymbol.style.height = this.viewNode.offsetHeight+'px';
 }
]]>
</e:handler>

You will probably understand what is going on, but maybe you also notice that
the code contains undocumented functionality, such as this._.resizeEdge.
Unfortunately, there seems to be no easy alternative to achieve the same effect.
We can just say that much more is possible using the Backbase framework than
meets the eye and that there is room for improvement of both the framework and
the documentation!

By now, you probably know more about resizing elements than you ever wanted
to know. Therefore, we're going to stop discussing this subject. We will round up
this section about behaviors with a description of the commands you can use to
manage them.

Commands for the behaviors
In Chapter 3, we introduced the Backbase Command Functions and in their
overview, you could find a set of commands to manipulate behaviors. These are
three commands that are intended to add, remove, or set a behavior.

The behavioral commands, by now, have all the very familiar select and
with attributes.

addBehavior
It adds the specified behavior to the targeted element.

Clicking of the button causes the resize behavior to be added. This can be achieved
by using the following code:

<b:button>
 Click to add resize behavior to newly resizable widget.
 <e:handler event="click">
 <c:addBehavior with="id('resizable_element')"
 select="'b:resize'" />
 </e:handler>
</b:button>
<div id="resizable_element" style="border:1px solid green;
 width:100px; height:100px;">
 Can only be resized after the button is clicked.
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[264]

removeBehavior
It removes the specified behavior from the targeted element.

Clicking of the button causes the resize behavior to be removed. Here's the code
for removeBehavior:

<b:button>
 Click to remove resize behavior from currently
 resizable widget.
 <e:handler event="click">
 <c:removeBehavior with="id('resizable_element')"
 select="'b:resize'" />
 </e:handler>
</b:button>
<div id="resizable_element" e:behavior="b:resize"
 style="border:1px solid green; width:100px; height:100px;">
 Will not be resizable after the button is clicked.
</div>

setBehavior
It sets the specified behavior on the targeted element.

Clicking of the button causes the resize behavior to be set. This behavior will
replace other behaviors as shown in the next code snippet:

<b:button>
 Click to set resize behavior on widget.
 <e:handler event="click">
 <c:setBehavior with="id('resizable_element')"
 select="'b:resize'" />
 </e:handler>
</b:button>
<div id="resizable_element" e:behavior="b:drag"
 style="border:1px solid green; width:100px; height:100px;">
 Can only be resized after the button is clicked.
 Will not be draggable after button is clicked.
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[265]

Broadcaster/observer
In the previous chapter, about data binding, we introduced the observer pattern. Data
binding is a rather specific use of the observer pattern, where changes to the data
made by one observer are notified to other observers so that they are able to update
their views. Here, we are looking at a more generic implementation of this pattern.

Observer is a design pattern associated with broadcasting changes in state of a single
object (commonly referred to as the broadcaster) to one or more observers. In a
web application, the state of an object can be defined by the values of its attributes.
Indeed, for a Backbase application, the pattern determines how changes to any of the
attributes of a broadcasting element are propagated to observing elements.

Any element can be used as a broadcaster in a Backbase application or it can be a
special BTL element named broadcaster.

For an element to be an observer, it should have its XEL observes global attribute
set to a valid id of the broadcaster. Because the observes attribute is defined in the
XEL namespace, you must then have a proper prefix, usually e: declared.

The following listing demonstrates how a change to the setting of the broadcaster
style attribute will be propagated automatically to the style attribute of two
observing elements:

<b:broadcaster id="colorChanger" style="color: turquoise" />
<div e:observes="colorChanger">Observer 1</div>
<div e:observes="colorChanger">Observer 2</div>
<b:button label="Observer"
 e:onclick="bb.document.getElementById('colorChanger')
 .setAttribute('style', 'color: yellow');">
 Set the broadcaster style attribute
</b:button>

Whenever an attribute of the broadcaster is changed, a broadcast event is
dispatched to the elements that observe the broadcaster. By default, this event causes
the attributes of the observers to be synchronized with those of the broadcaster.

Each time a page is loaded that contains a broadcaster, its attribute values, if
specified, are propagated to all observers. This is why in the previous and next
examples, the style of the observer elements is set to “color: turquoise"
immediately after the load.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

v@v
Text Box
Download at WoweBook.com

More Dynamic Behavior

[266]

Setting the broadcaster attributes causes the broadcast event to be fired on
observers. The following example will alert about style attribute modification:

<b:broadcaster id="colorChanger" style="color: turquoise" />
<div e:observes="colorChanger">
 Observer
 <e:handler event="broadcast" type="application/javascript">
 alert('div style about to be changed');
 </e:handler>
</div>
<b:button label="Observer"
 e:onclick="bb.document.getElementById('colorChanger')
 .setAttribute('style', 'color: yellow');">
 Set the broadcaster style attribute
</b:button>

In certain cases, it may be necessary to influence the observer/broadcaster default
behavior (which is to synchronize the attributes of the observers with those of
the broadcaster). To override the default behavior, it is necessary to intercept the
broadcast event, perform a custom action, and prevent the default action that
synchronizes the attributes.

The following example demonstrates how to override the default synchronization
action, making use of information about attribute changes that is carried over by
the event object:

• attrURI: stores the namespace Uniform Resource Identifier (URI) of the
changed attribute.

• attrName: stores the name of the changed attribute.
• attrValue: stores the setting that the default event applies to the attribute.

Here's the code:

<b:broadcaster id="colorChanger" style="color: turquoise" />

<div e:observes="colorChanger">

 Observer

 <e:handler event="broadcast" type="application/javascript">

 <![CDATA[

 if (!event.attrURI && event.attrName == 'style' &&
 event.attrValue == 'color: yellow') {
 bb.document.getElementById('colorChanger')
 .setAttribute('style', 'color: red');

 event.preventDefault();

 }

]]>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[267]

 </e:handler>

</div>

<b:button label="Observer"
 e:onclick="bb.document.getElementById('colorChanger')
 .setAttribute('style', 'color: yellow');">

 Set the broadcaster style attribute

</b:button>

When is the observer pattern useful? Imagine we have an application with a menu
bar, context menus, a tool bar, and a shortcut. It could be the case that several items
in these bars/menus are intended to invoke the same functionality, for example,
creating a new entry in a list.

If we had defined a broadcaster with an ID “brd_new" and set the menus to listen
to that broadcaster, we could easily enable or disable the calls to the functionality
by managing a disabled attribute in a single location: on the broadcaster. The
same broadcaster could also be used to share the textual representation of such a
command, by, for example, means of a shared label attribute.

Here is a similar example, where the picture says it all: by deselecting the Enable
checkbox, all elements below it are disabled:

But you'd probably like to see the code too. So, here's the code:

<script type="text/javascript">
function setState(event) {
 event.target.setAttribute('disabled',
 event.attrValue=='true'?'false':'true');
 event.preventDefault();
}

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[268]

</script>
<label>Enable
 <input id="checkbox" type="checkbox" checked="checked">
 <e:handler event="change" type="text/javascript">
 var oBroadcaster =
 bb.document.getElementById('broadcaster');
 oBroadcaster.setAttribute('disabled',
 this.getProperty('checked')?'false':'true');
 </e:handler>
 </input>
</label>
<b:broadcaster id="broadcaster" disabled="false" />
<b:slider e:observes="broadcaster" margin="20px 0 20px 0" e:broadcast=
"setState(event)" />
<b:button e:observes="broadcaster"
 margin="0 0 20px 0" e:broadcast="setState(event)"
 e:onclick="alert('Click!')">
 Click
</b:button>
<b:tabBox height="200px" width="200px">
 <b:tab label="Tab 1">Tab 1 Content</b:tab>
 <b:tab label="Tab 2" e:observes="broadcaster"
 e:broadcast="setState(event)">
 Tab 2 Content</b:tab>
</b:tabBox>

This example can be found in the Backbase Explorer, where you can try it for yourself.

Animating the UI
To spice up the look of your website, it can be functional to include some animation
into your UI.

SMIL animation
Support for SMIL is built-in the Backbase core framework.

Synchronized Multimedia Integration Language (SMIL, pronounced “smile")
version 2.1 is an XML-based language that allows interactive multimedia
presentations. Using SMIL, you can describe the temporal behavior of a presentation,
associate links with media objects, and describe the presentation layout. You can
apply SMIL elements to widgets (such as XHTML or BTL elements) to add rich
animation functionality.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[269]

You can find more information and the complete SMIL specification at:
http://www.w3.org/TR/SMIL2/.

Support for SMIL is built into the core, and while you do need to include the correct
namespace declaration, you do not need to include any extra files. Here's the correct
SMIL namespace declaration: http://www.w3.org/2005/SMIL21/.

The Client Runtime supports the following SMIL 2.1 modules:

• BasicAnimation

• BasicInlineTiming

SMIL elements can be used inside contexts that can contain XEL execution tags,
for example, within an XEL handler or function tag, and any TDL function body.

The following example changes the CSS border-color and border-width style
attribute values of an XHTML span widget over a five second period.

<span style="border-color:#dddddd; border-style: solid;
 border-width:1px;">
 Click me to see the border color and width
 change over the next ten seconds...
 <e:handler event="click" type="application/xml">
 <smil:animate attributeName="border-color"
 dur="5s" values="#660000;#006600"
 fill="freeze" />
 <smil:animate attributeName="border-width"
 dur="10s" from="5px" to="10px" fill="freeze" />
 </e:handler>

In this example, you will actually see three states. At first, the span style is specified
by the initial border color and width style properties. Secondly, there's the style
when the widget is clicked (the beginning of the animation), and lastly, you see the
style values at the end of the animation.

The animate widget is perhaps the most basic SMIL widget. The value of the
attributeName attribute determines the style to be animated, while the dur
attribute specifies how long it will take (the duration) from the beginning to the
end of the animation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[270]

Style attributes of the same element may have different animation durations. The
border-color, for example, will change over a five-second period, but it will take
ten seconds for the border-width attribute to increase from five to ten pixels. Most
of the time, you will use the from and to attributes to specify the beginning and
ending, and sometimes, you will use the values attribute that can also specify a
number of intermediate values.

In the following example, the size of an image increases when the mouse is over that
image. The animation for the mouseenter event is performed using the JavaScript
API for SMIL, whereas the animation for the mouseleave event is performed using
the XHTML API for SMIL.

<img src="media/weather-clear.png"
 alt="weather-clear" class="tile">
 <e:handler event="mouseenter" type="text/javascript">
 var oAnimationInfo = {
 attributeName: “height",
 attributeType:"CSS",
 dur: “1s",
 to: “250px", fill: “freeze"
 }
 // animate the height
 bb.smil.animate(this, oAnimationInfo);
 // animate the width
 oAnimationInfo.attributeName="width";
 bb.smil.animate(this, oAnimationInfo);
 </e:handler>
 <e:handler event="mouseleave" type="application/xml">
 <smil:animate attributeName="height" attributeType="CSS"
 dur="1s" to="50px" fill="freeze" />
 <smil:animate attributeName="width" attributeType="CSS"
 dur="1s" to="50px" fill="freeze" />
 </e:handler>

In the next and last animation example, we define a behavior to perform the
animation on every row of a table. Although we will show how to define behaviors
only in the next chapter, we assume that you will understand the code, knowing how
drag-and-drop or resize works.

The following example gradually changes the CSS background-color of a table row.
When the mouse enters the table row, which is detected by the handler tag defined
in the behavior, the CSS background-color will transform from white (#FFFFFF) to
purple (#7d8fce) in 250ms (dur="250ms"). On mouse leave, it will return to white in
one second.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[271]

<d:namespace xmlns:sq="http://www.squaringthecircles.com/squared"
 name="http://www.squaringthecircles.com/squared">
 <d:behavior name="fx-color">
 <d:handler event="mouseenter" type="application/xml">
 <smil:animate attributeName="background-color"
 dur="250ms" to="#7d8fce" fill="freeze" />
 </d:handler>
 <d:handler event="mouseleave" type="application/xml">
 <smil:animate attributeName="background-color"
 dur="1s" to="#fff" fill="freeze" />
 </d:handler>
 </d:behavior>
</d:namespace>
<table xmlns:sq="http://www.squaringthecircles.com/squared"
 cellspacing="0" cellpadding="0" border="0"
 class="expenseTable">
 <thead>
 <tr>
 <th style="width: 60px;">Date</th>
 <th style="width: 150px;">Expense</th>
 <th style="width: 50px;">Amount</th>
 <th style="width: 200px;">Comment</th>
 </tr>
 </thead>
 <tbody>
 <tr e:behavior="sq:fx-color">
 <td>10-04-08</td>
 <td>Flight</td>
 <td>$1354.33</td>
 <td>Roundtrip from Amsterdam to New York.</td>
 </tr>
 <!-- more rows ... -->
 <tr e:behavior="sq:fx-color">
 <td>13-04-08</td>
 <td>Taxi</td>
 <td>$45.80</td>
 <td>Ride to JFK Airport.</td>
 </tr>
 </tbody>
</table>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

More Dynamic Behavior

[272]

Here is a screenshot:

Adding animation to the C3D example
application
So far, we have not been able to show photos, taken during a trip, in the C3D sample
application. One major reason for this is that we haven't yet explained how you can
upload photos to the server. In Chapter 4, there was an example using the fileInput
widget. The use of that widget is not as straightforward as it seems in this example.
This is because JavaScript cannot access the local filesystem and therefore, the file
is uploaded in an iframe asynchronously from the rest of the form. Therefore, we
faced some challenges in handling the uploaded photo on the server.

To describe how we solved this problem is outside the scope of this chapter.
In Chapter 11 we show how synchronization can work for the C3D application.

Assuming that we have a set of photos uploaded and available now, we would like
to use animation to be able to scroll smoothly through these photos in thumbnail
form and maybe show an enlargement in a modal window if a user clicks on a photo.

For the smooth scrolling of the thumbnails, we borrowed an SMIL example from the
Backbase Explorer. For our C3D application, it looks like this (the example code is
placed in the bookApps/animation folder):

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 6

[273]

Although this is a very nice code for the purpose of the example in the Backbase
Explorer, for our C3D travel blog, we need to do more work to integrate it into the
application and to make it into a useful and reusable UI component. This is what
we are going to discuss in the next chapter, when we will look at the Tag Definition
Language in detail. We will then show the adapted code that is suitable for use in the
C3D sample application.

Summary
This was a not-so-long chapter with a seemingly diverse number of subjects.
However, they all were related to dynamic behavior of a web application and
as such this chapter was a continuation of the topics presented in Chapter 3.

To summarize, we talked about:

• Behaviors: generic functionality that you can attach to any
Backbase element

• The drag-and-drop behavior and the many options that you have to
influence the dragging of elements and the things you can do when
the element is dropped

• The resize behavior with its options
• Command functions to add, remove, or set behaviors dynamically
• The broadcaster/observer elements and functions
• Animation with Synchronized Multimedia Integration Language (SMIL)

In the next chapter, our subject will be the Tag Definition Language, finally!

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components
There have already been a few key chapters in this book. For example, what
would a book about an AJAX framework be without a chapter about client/server
communication? Or, without a chapter about data-bound widgets, the elegant
way to divide data content, and view structure in a widget made possible by AJAX?

Here is another key chapter. Its title could have been: Squaring the Circles of Web
Applications, which also could have been the subtitle of this book. It is about building
your own UI component with the Tag Definition Language (TDL), where the UI
component is encapsulated as an XML tag in a custom namespace to allow it to be
placed on a web page as a first class citizen, just like any XHTML or BTL element.

Even the most complete library of UI widgets will never cover all the requirements
of a particular application. The standard way of extending what you need is adding
some JavaScript here and there, often resulting in a spaghetti bowl of JavaScript
functions that is hard to untangle, maintain, and extend. If you are using a JavaScript
library or framework, it takes maybe a bit longer before your code becomes
spaghetti; however, because you basically add JavaScript code to existing XHTML
tags, the friction stays between two entangled syntaxes: the XML declarative syntax
and the JavaScript procedural syntax.

It doesn't need to be that way! The Tag Definition Language allows you to build
new declarative elements according to the XML syntax, where the JavaScript is
encapsulated in local, small pieces of code that are used for event handling and
object methods. This chapter is going to explain how.

Here is a list of subjects that we will cover in this chapter:

•	 Component models and technologies
•	 Introduction to the Tag Definition Language
•	 Simple widgets: templates, attributes, and resources
•	 Widget event handling

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[276]

•	 Widgets as objects: classes, properties, methods, constructors,
and destructors

•	 Composite widgets
•	 Inheritance, interfaces, and extending BTL
•	 Behaviors
•	 The limits of creating UI components

Component models and technologies
The Tag Definition Language of Backbase is not the only existing language that offers
the facility to build custom UI components as XML elements. The notion of XML tag
libraries may be more familiar to Java developers using JavaServer Pages or the like,
but also on the client-side there are several products that allow you to define new
XML tags and use these as UI components. We list some of these here briefly:

•	 HTML Components (HTCs) is a Microsoft technology available for the
Internet Explorer providing a mechanism to implement components in
script as Dynamic HTML (DHTML) behaviors.

•	 XBL (XML Binding Language) is an XML-based markup language
used to declare the behavior and look of XUL widget (a UI widget
in a Mozilla browser).

•	 The new, XBL 2.0 version of the specification is adopted by the
W3C standards body as a recommendation. No industrial-strength
implementation exists yet.

•	 The Backbase TDL: one of its unique features is that it works with all
modern browsers and that it does not require a plugin.

Introduction to the Tag Definition
Language (TDL)
The Backbase framework provides a binding language called Tag Definition
Language (TDL). The TDL is XML-compliant and has its foundations in
object-oriented programming languages. It provides a set of elements and
attributes required for the definition of new widgets or tags. The TDL serves
as a means to bind classes to document-level markup elements. The Backbase
implementation of XHTML and all the BTL widgets are constructed with the TDL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[277]

Widgets
At the start of Chapter 2, we defined a widget as a visible "thing" on a page.
Throughout the book, we have tried to avoid confusion by using the term widget in
this way and using element for more general "things", not necessarily visible. Control
is synonymous to widget, but we try not to use it. A tag is nothing but the name of a
widget, as you already know from XML.

In a more technical sense, we are going to use the term widget for any JavaScript
object that you can define using TDL. In the Backbase framework, all BTL "things"
are defined with TDL, therefore, accordion, calendar, button, spinner, and
tabBox elements are all Backbase widgets. What this means we will see later in
this chapter.

Sometimes, we will call a widget that is an element defined in TDL a UI component.

The advantages of using TDL
We have already said several times that the major advantage of using the Backbase
framework is the possibility of using TDL—the possibility to define your own
widgets or to easily change existing ones.

Because TDL is an object-oriented language, it allows you to do all the things that
you can do with objects: define widgets as classes, extend existing widgets, add
new behavior or presentation to a widget, and compose multiple widgets into one
larger widget.

Object-orientation
We argued several times now that TDL is great because it is an object-oriented
(OO) language. Maybe you cannot follow this reasoning, either because you are
not so familiar with OO, or because you do not think that OO is a good idea at all,
or because you do not know how OO is implemented in TDL. Let us address all
three points.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[278]

Object-oriented concepts
OO is a rather elusive concept that is implemented differently in each modern
programming language. The most pure OO language that we know of is Smalltalk,
where everything is an object, but this language is hardly mainstream today.
Other languages that may be more familiar to you are Java, C++, and C#, where
there are objects and classes, or PHP, which has similar facilities but where OO is
implemented as a kind of afterthought and where it is too easy to write applications
without one single object. There is also Ruby, increasing in popularity, which we do
not know enough about. And of course, there is JavaScript, which is object-based and
therefore, does not support classes.

In each case, there are commonalities: objects are blocks of code that provide
abstraction, encapsulation, and polymorphism.

Abstraction means that you are looking at your code from a higher level. Simply
said: if you are implementing an object that describes a car, then call it car and not
obj123. In the late eighties of the previous century, this was not as obvious as it is
now. Using these concepts made it possible to cross the bridge between business
analysts and software developers, and resulted in software that was closer to what
users expected and that was easier to maintain.

Encapsulation, or information hiding, means that all data and behavior (routines,
functions, or methods that access this data) are put in one place and that a clear
API is defined, describing how the state can be accessed and the behavior be
manipulated. This means that the implementation of an object could change without
changing the API and therefore, without impacting the rest of the application. This
adds further to the abstraction of the objects.

For example, if you want to put a calendar on your page, then you would like to
write <b:calendar/> because that fits within the XML way of coding on a page
containing HTML, instead of a set of div tags, with custom and vague CSS class
names, and where you have to hunt the implementation inside CSS files and
JavaScript libraries throughout your application. TDL allows you to do the simple
thing—put an XML tag on your page (<b:calandar /> in our example).

Polymorphism, or literally "many forms", has to do with the inheritance or extension
capabilities of most OO languages. It allows you to define a more abstract concept,
say vehicle and then extend it into car and truck, which are both vehicles. All vehicles
drive on roads, but depending on the law, trucks may have a maximum speed that
is different from a car. Still, you can code a sentence such as: "give me the maximum
speed of this vehicle", and you would get a different answer depending on whether
the object was a car or a truck.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[279]

Inheritance also relates to method overriding. In our maximum speed example, the
vehicle class would have a getMaximumSpeed method, and both the car as well as the
truck would have a method with the same name, each returning a different value.
Maybe there is also a three-wheel-car class that would extend the car class, but
allow a lower maximum speed. It could have its own getMaximumSpeed method that
would override the method with the same name in the superclass.

In some languages, such as Java, you can also use interfaces to implement
polymorphic behavior. For example, there could be a print interface that could
apply to very diverse objects that have no inheritance relationship to each other
(except Object, the granddad of all objects in Java).

OO and TDL
How is OO implemented in the TDL language?

•	 TDL supports objects and classes. To stay with our vehicle example,
a class could be car. Whereas, an object or instance of this class could
be my Peugeot model 406 with color green. Or, in case of our calendar,
the class calendar is coded as a TDL element definition. We will see
how to make these in the rest of this chapter. The object is the <b:calendar
format="d-MMMM-yy" /> on our page, where we have chosen a specific
format. You define a class in TDL using the element tag.

•	 TDL supports inheritance. A car inherits all the properties and behavior
of a vehicle, such as the capability to drive on a road, having wheels,
and a maximum speed. A calendar inherits from dimensionElement,
positionElement, and a few others, as we have seen in Chapter 4. Inheritance
can be indicated on a TDL element by using the extends attribute.

•	 TDL supports multiple inheritance. This means that a TDL element can
inherit from more than one TDL element. This is different from multilevel
inheritance. Multiple inheritance has one specific danger: if your class has
two superclasses both containing a method of the same name (for example:
print), then which method will be chosen to be executed? Within TDL, this
will be the first method found.

•	 TDL has interfaces. An interface specifies a set of methods that will be
implemented for a class. An interface is coded using the interface tag. You
can declare that a class will adhere to an interface by coding the implements
attribute on the element tag.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[280]

•	 TDL clearly supports encapsulation because it allows you to put data
(properties) and behavior (methods) together in an object. TDL does not
support private or protected properties and methods, like Java. Private data
and behavior allows the developer to protect an object from unauthorized or
accidental wrong access. We think this is a minor problem, considering that
Smalltalk does not support this either.

OO and web applications
The third question we were asking was whether the use of object-orientation is a
good idea for web applications. You will be using OO if you want to manage and
control the complexity of an application.

In the olden days, when each piece of behavior was allowed to access any piece of
data, the complexity of an application would grow exponentially with its size. In an
OO application, the access to data by pieces of behavior is very restricted and also
abstracted through encapsulation. Therefore, a well-designed OO application will
grow only linearly with size.

While web applications are evolving from simple HTML pages to complex and
complete business applications, it is necessary to keep the complexity of these
applications within manageable bounds. OO allows you to do that.

Model-View-Controller
In Chapter 4, we talked about the Model-View-Controller (MVC) architecture of the
C3D travel blog application as a whole. In a modern web application, it is not enough
to layer your application by putting just the view on the client and the controller with
the model on the server. Disregarding for now how you can structure the application
on the server further, let us turn our attention to the client.

We already said that the client part of a web application can be considered as
an application in itself; therefore, you could structure the client web application
using an MVC approach again. In fact, a Backbase application is more like a set of
interacting UI components, where each component follows an MVC design pattern.
Discussing MVC in this chapter refers to developing UI components and not to
developing client applications. You can get a feeling for the MVC structure of each
UI component by taking a look at the debugger. When you open the debugger, you
will see a Model and a View tab that shows model and view information for each
component. We will talk more about the debugger in the next chapter, but for now,
you should know that you can open the debugger by pressing the Esc key. We show
here some examples of useful information that you can find.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[281]

In case you had an accordion on your page, you will find a b:accordion tag with
child b:accordionItem tags on the Model tab page. You can double-click on the tab
and a list of interesting attributes, methods, handlers, and more will appear on the
right-hand side. If you click on the View tab, you will see a number of nested div
tags that have suggestive class names like btl-accordion and btl-accordionItem.
The view part is what the browser sees and renders in your browser window. The
model and controller parts are the parts you see as a developer.

Generally speaking, a widget has an abstract (non-visual) part that provides
functionality and logic. We call that the widget controller and it is implemented
as a JavaScript object. The widget will also have a view part that adds the visual
presentation of the widget. This is actually not yet what you see on the browser
window, it is the DOM tree as built by the Client Runtime from your TDL
definitions or from other predefined elements. This DOM tree is interpreted by
the browser to build the visual browser window.

The model part of your widget is the XHTML that the developer codes on a page, such
as <yourNamespace:yourWidget ... /> or <b:accordion>...</b:accordion>.

If we refer to the controller, we mean the controller layer, representing all controllers
and their interaction together. If we refer to a controller, we mean a specific controller
object for a specific widget.

You may also see the terms modelNode, viewNode, and viewGate:

•	 The modelNode API is browser dependent. Generally, there should be
no reason to access this. Do not confuse this with the model part of your
UI component.

•	 The viewNode is accessed if you need to change or control the appearance
of your widget. It is the root node of the visual structure that represents
your widget.

•	 Manipulating the view node directly should only be done if you are sure
that this is browser independent. Otherwise, you can use the bb.html
object that has many utility functions to allow browser-independent access
to view nodes.

•	 The viewGate is the node where new presentation child-nodes will be
appended by the framework (if required).

You can reach these nodes from a controller by coding this.modelNode,
this.viewNode or this.viewGate. We will see examples later in this chapter.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[282]

Widget creation with TDL
With TDL you can extend BTL widgets, create your own custom widgets to be used
by application developers, or even create your own custom XML languages that can
be visualized by the client browser.

Overview of the TDL elements
Before we start explaining each TDL element by showing examples, let us briefly
present an overview of the available tags. First, here is a list of the tags we already
saw because they allow you to define classes of TDL elements:

Tags Description
element Declares an element within a namespace. It must be child of a namespace

tag. This tag defines a class in TDL. The element is instantiated as an object
when the XML tag is placed on the page.

property Declares a property of an element. Properties are similar to attributes,
but are intended to keep the internal state of a widget. As opposed to
properties, which can only have a string data type, properties can be of
any data type allowed for JavaScript. Child elements of property can be
getter and setter. With getter, you can customize the value that is
returned when the value of a property is requested. With setter, you can
define a piece of code to be executed when a property value is set.

method Defines a method on an element. Child elements of method can be
argument and body.

These three tags are the basic building blocks of the OO constructs in the
TDL language.

The next list of TDL elements can determine the appearance of a widget that
you define using TDL:

Elements Description
resource Adds a resource to the namespace, document, or element (for example, a

CSS stylesheet or JavaScript).
template Templates define the content of a widget definition. You can use a content

element once within the template to insert view contents for a specific
instance of an element into the template. It also provides the insertion point
for child elements of the widget.

content Used within a template element to specify where the children of the
element will be inserted into the visual representation template.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[283]

Elements Description
attribute Declares an attribute of an element. Attributes can be used to define the

appearance of a specific instance of a widget. Although attributes can be
get and set, they should not be confused with properties, as explained
later in this chapter. The changer and mapper elements can be used to
customize the setting of an attribute.

A very important TDL element is the handler element. With this element, you can
apply event handlers to your own widgets in a predefined way, similar to
the handler element of the XEL language that we already saw so many times.

Here are the tags that keep TDL definitions together and that put these definitions
into a namespace.

Tags Description
tdl The tdl tag can be used as the root tag for a widget definition. namespace

is the only child element a tdl element can have. You only need to use this
tag if you have no other root element for your XML document.

namespace The TDL-specific child elements that you will see are: element,
interface, and resource. Any element is allowed as a child to
namespace.

Finally, there is the document element that never seems to be used. It is intended to
extend bb.document. We will ignore it.

Simple widgets
Simple widgets are the ones that are static. Maybe they have a CSS class applied or
maybe there are attributes that help to change the appearance of the widget.

Building a TDL widget definition
In this section, we'll discuss how to get a TDL definition off the ground. The basic
skeleton for a new widget built in TDL has three elements: the tdl root tag, a
namespace identifier, and a widget declaration using the element tag.

The following example shows the required code necessary to create a widget
skeleton. For each TDL definition, you will need a namespace tag that will
contain one or more element tags.

<?xml version="1.0"?>
<d:tdl xmlns:d="http://www.backbase.com/2006/tdl">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[284]

 <d:namespace
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourWidget">
 <!--
 children of the d:element tag consist of widget attributes,
 properties, methods, etc.
 -->
 </d:element>
 <d:element name="yourWidgetToo">
 <!--
 you can have more than one element within a namespace
 -->
 </d:element>
 </d:namespace>
</d:tdl>

You can place TDL on your application page or in a separate file. We will describe
later in this chapter how to do this. For a production environment of your
application, it is recommended to put TDL widget definitions in external files. In
the examples of this chapter, we will place the definitions usually next to the code
that uses them, to make them more easily readable and executable.

The namespace tag attaches a widget to a unique XML namespace. The name
attribute of the element tag names the widget and binds it to a widget in the
web application with the same name and same namespace.

An extends attribute can specify an inheritance relationship between widgets. This
means that a TDL widget, which extends another TDL widget, can use methods and
properties already defined in the widget it extends. See the section on inheritance later
in this chapter for more information.

When placing a widget on an application page, a developer would declare the
appropriate namespace, include the widget definition file of the widget and all
dependent files, and instantiate the widget as named in the TDL definition.

The following example instantiates a widget that has a widget name of
yourWidget and belongs to a namespace named http://www.
squaringthecircles.com/squared:

<script xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:sq="http://www.squaringthecircles.com/squared"
 type="application/backbase+xml">
 <!-- You may have the definition of your widget in an
 external file. -->
 <xi:include href="yourWidgetDefinitionFile.xml" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[285]

 <sq:yourWidget>
 <!-- the contents of your widget go here -->
 </sq:yourWidget>
</script>

We have seen now how you can make a basic TDL widget definition and how
to make use of namespaces. So far, there is not much you can do with a widget
definition like this because it has no content. This is our next task to look at.

The template, attribute, and resource tags
This section provides a description of two primary TDL tags that are children of
the element tag:

•	 The template tag, which allows you to define static XHTML content for
your widget.

•	 The attribute tag, which allows you to influence the appearance of the
widget when it is coded in a page. Attributes can have changer and mapper
as child tags. These allow you to specify behavior depending on the value of
the attribute when it is set or changed.

We'll also look at the resource tag, which can be used as an example for the purpose
of defining CSS style information together with your widget. You can also use other
kinds of file resources as we will see later in this chapter.

These tags allow you to build static widgets that have no behavior of their own.
Dynamic behavior will be enabled by using event handlers (see the upcoming section,
Widget event handling). The sections following the event handling discussion will look
at the features of the TDL language that allow you to build elements as objects, with
state and behavior, and the tags that implement it.

Templates
The template tag defines the structure of the visualized content, or the content
rendered in the client browser when the widget is instantiated.

The template tag has one attribute:

Attribute Description
type This attribute is required and can have the value text/javascript

or application/xml.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[286]

The template content must be in the XHTML namespace.

A frequently asked question is why templates cannot contain BTL or your
own widgets. It was just not implemented that way. There are other ways
of composing widgets into larger widgets that we will discuss later. See
also the discussion at the end of this chapter.

A very basic template might create something simple, such as a label with a text
input field. Here is a widget that has static text (HTML) in a template.

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourInputWidget">
 <d:template type="application/xhtml+xml">
 <div>
 <label for="myInput">
 My Text Input Field:
 </label>
 <input id="myInput" name="myInput" />
 </div>
 </d:template>
 </d:element>
</d:namespace>
<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <p>
 See the instantiated widget below:
 </p>
 <sq:yourInputWidget />
</div>

If you try this out, you will see that this is not a very interesting widget because its
contents are static. Moreover, although you will not get an error message, there is a
problem with this widget: it contains an id attribute in the input field that is needed
for the for attribute in the label. This means that you should instantiate this widget
only once on a page, to avoid duplicate IDs.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[287]

It is instructive to see what this widget will be like both in the model and in the
view layer of the framework. You can see this in the Backbase debugger, an excellent
tool that we will talk about a little bit more in the next chapter. You can start it by
pressing the Esc key, or sometimes it starts unexpectedly, with an error message.
Maybe you have seen it!

In the Model part, you only see the tag as coded in the example:
<sq:yourInputWidget>:

In the View part, you can see all the elements that were placed in the template.
You can access them by referring to the viewNode of the widget:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[288]

The template element must contain a proper tree. The following example is invalid
because it does not have a single root element.

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourInputwidget">
 <d:template type="application/xml">
 <div>
 <label for="myInput1">My Text Input Field 1:
 </label>
 <input name="myInput1" id="myInput1" />
 </div>
 <div>
 <label for="myInput2">My Text Input Field 2:
 </label>
 <input name="myInput2" id="myInput2" />
 </div>
 </d:template>
 </d:element>
</d:namespace>
<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <p>Can we instantiate the widget?</p>
 <sq:yourInputWidget />
</div>

If you try this one, you will get the following message:

TDL: Only one direct child element allowed in the
 "application/xhtml+xml" template.

Of course, you can easily fix the problem in this case by surrounding the content
of the template with a div.

The content tag
Many UI widgets can have other widgets as children, for example, a tabBox can
contain a set of tab elements and the XHTML div element can have almost any
element as child. The place in the DOM tree where child elements are inserted is
determined by the content tag that you can insert somewhere in a template.

The widget definition in the next example can have dynamic text and XHTML,
inserted at the location of the content tag.

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yellowNote">
 <d:template type="application/xhtml+xml">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[289]

 <div xmlns="http://www.w3.org/1999/xhtml"
 class="sq-yellowNote">
 <d:content />
 </div>
 </d:template>
 </d:element>
</d:namespace>

On your instance page, you can add content as a child of your defined widget, for
example, as follows:

<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <sq:yellowNote>
 There is just some text here.
 </sq:yellowNote>
 <sq:yellowNote>
 Read the Backbase book.
 Read the Backbase book.
 Read the Backbase book.
 </sq:yellowNote>
 <sq:yellowNote>
 Here is a list:

 item 1
 item 2

 </sq:yellowNote>
</div>

This code will show on your page as in the figure below:

Note that you can use XHTML tags to be inserted as text in the note. These
will be appropriately formatted in the output.

What did we achieve by defining this widget? At first sight, this is just a div
with some specific style information that turns a div into a yellow rectangle
with a gray border.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[290]

However, if an organization uses many yellow notes in its web applications, then
having a widget like this will help to ensure consistency. It is also easier to guess
from an element with the name yellowNote than from a div element about what
it is supposed to look like on the page.

What we had in mind when designing the yellowNote widget was to offer the
possibility to paste sticky notes on a photo to explain parts of it, like you can do
for photos on the well-known Flickr site at http://www.flickr.com. Later in this
chapter, you will gradually see more capabilities added to our yellowNote widget.

By the way, the style looks like this:

.sq-yellowNote {
 padding: 2px 2px 2px 5px;
 border: 1px solid gray;
 background-color: #ffff99;
 width: 100px;
 margin: 5px;
 font-size: 10px;
 font-family: cursive;
 color: navy;
 float: left;
}

Note that the CSS class name was carefully chosen as: prefix - dash - element name,
which conforms to the class name rules that BTL uses.

Templates with JavaScript
By setting the value of the type attribute to text/javascript, you can use
JavaScript to generate your XHTML template structure, as in the example below:

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourWidget">
 <d:template type="text/javascript">
 var oRoot = document.createElement('div');
 bb.command.setStyle(oRoot,{'background-color':'cyan',
 'padding':'10px'});
 var oGate = document.createElement('div');
 bb.html.setStyle(oGate,'background-color', 'yellow');
 oGate.style.padding='10px';
 oRoot.appendChild(oGate);
 return [oRoot, oGate];
 </d:template>
 </d:element>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[291]

In this code, we create a div tag (oRoot) with a cyan background and padding. Then,
we create another div tag (oGate) with a yellow background and padding. We attach
the oGate to oRoot as child.

On purpose, we have used three different ways to set a CSS style attribute
using JavaScript:

•	 The first one is the JavaScript equivalent to the <c:setStyle>:
bb.command.setStyle(oRoot,{'background-color':'cyan',
 'padding':'10px'});

The advantage is that you can set several style attributes in one command.
•	 The second one shields you from browser incompatibilities:

bb.html.setStyle(oGate,'background-color', 'yellow');

For the style attributes, only opacity will cause a problem.
•	 The third one directly accesses the view object:

oGate.style.padding='10px';

You can code style attributes in the last way if you are sure that the attribute will
work the same across browsers.

The return type of the JavaScript template function is an array with two
elements. The first element is intended to be the root tag of the returned
XML structure. The second element is intended to be used as a base to
attach further elements to.

In our example, further elements will be attached to oGate.

When we create a nested structure of yourWidget widgets, the divs will be shown
inside each other because each following widget is attached to oGate:

<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <sq:yourWidget>ABC
 <sq:yourWidget>DEF
 <sq:yourWidget>HIJ
 </sq:yourWidget>
 </sq:yourWidget>
 </sq:yourWidget>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[292]

Assume that in the example, the return statement would have read:

return [oRoot, oRoot];

In that case, the oRoot object would have been used to attach further elements,
instead of oGate.

The snapshots of the running example show the difference in results. Here's the
snapshot of the root attached to oGate:

The next screenshot shows root attached to oRoot:

We conclude our discussion of templates by making several remarks:

•	 Place a content tag always as the only child of an XHTML tag, in most cases,
a div.

•	 A template with JavaScript contents should always have a return statement,
with the root node and the view gate as arguments.

•	 The view gate as specified in a template with JavaScript content has the same
function as placing a content tag in an XHTML template.

•	 The Client Runtime produces a set of view nodes when it processes a
template. This means that the content of a template can only reside in the
XHTML namespace. As said previously, you cannot include BTL elements
or elements from other namespaces in a template definition.

In the next part of this section, we will introduce the attribute element, which
allows us to customize the appearance of a widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[293]

Attributes
Attributes help you to customize the visual appearance of a widget. An attribute
is similar, but not the same as a property. We will explain this better in the Defining
Classes with TDL section.

The attribute tag allows you to define an attribute for a TDL widget definition.
You should create an attribute when you would like your widget to have certain
characteristics that can be defined by the application developer when he/she puts
the widget on the application page. Attribute values are always typed as string. The
attribute tag can have these attributes:

Attribute Description
default Default value to be set in case no attribute value is provided.
name Name of the attribute. This attribute is required.
namespace Namespace for the attribute. Default attribute namespace is null (attribute

not specified).
onchange Script to be executed when the attribute value is changed.
onmap Script to be executed when the element to which the attribute belongs is

instantiated or when the attribute value is changed.

We will show the use of attributes in the next section.

Positioned yellow notes
Continuing with the yellow note example, we decided that yellow notes should be
capable of being posted at any place in the browser window. Therefore, we will
change the style of the yellowNote widget to include position:absolute, and we
will add two attributes: posx and posy. The attributes will indicate where the widget
will be put.

The example shows how to define these attributes. Because the posx and posy
attributes need to have a value, they are given the default value 0.

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yellowNote">
 <d:attribute name="posx" default="0"/>
 <d:attribute name="posy" default="0"/>
 <!-- ... the template goes here -->
 </d:element>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[294]

When you instantiate a widget on your application page, you can use the name of
the attribute, in our example posx and so on, just like any other attribute in a BTL
or XHTML widget. Here is a positioned yellow note:

<sq:yellowNote posx="160px" posy="80px">
 This is a positioned yellow note.
</sq:yellowNote>

Shortly, we will look into how we can do something with these attributes to see a
yellow note on our page that is positioned. But first we show the methods that you
can use to get and set attributes interactively:

In JavaScript, you can get or set the value of an attribute using the getAttribute
or setAttribute methods respectively.

this.getAttribute('color');
this.setAttribute('color', 'yellow');

The getAttribute method returns the attribute value, while the setAttribute
method allows you to set the attribute value.

Changers and mappers
We had no means yet to reflect attribute values onto some style attribute or do
something else with them. Changers and mappers come to our rescue here.

The intention of our example is that if we set the posx attribute in the yellowNote
widget to some value, the style attribute left of our widget should be set to the
same value. The posy attribute value should be set as the top value of the style
attribute. In other words, setting the attribute causes a side effect, which maps the
attribute values to a position.

You can cause these side effects to occur by using either a changer or a mapper. This
means that the attribute element can have changer and mapper as child tags. Code
inside these child tags will be executed when the setAttribute method is called.

The difference between a mapper and a changer is that the
mapper is invoked when the widget is instantiated and the
changer is not.

In the following snippet, the posx and posy values are used to set the position of the
yellow note.

<d:attribute name="posx" default="0">
 <d:mapper type="text/javascript">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[295]

 bb.html.setStyle(this.viewNode, 'left', value);
 </d:mapper>
</d:attribute>
<d:attribute name="posy" default="0">
 <d:mapper type="text/javascript">
 bb.html.setStyle(this.viewNode, 'top', value);
 </d:mapper>
</d:attribute>

The mapper code gets hold of the view node. We need this view node to set a
style attribute, such as left and top in the example.

this generally refers to the current context, which in this case is the
object representing the instantiated widget and which is placed on the
controller layer.

Here is a picture of what our page will look like with positioned notes. We forgot to
position one yellow note, therefore, it appears at the top left of the page because the
default values of the posx and posy attributes are both 0.

As mentioned, a changer is very similar to a mapper, except that the changer is not
called when the widget is instantiated. Here's a not so useful example that just shows
how it works:

<d:attribute name="width">
 <d:changer type="text/javascript">
 alert(name + ' attribute changed to ' + value);
 </d:changer>
</d:attribute>

Note the use of name and value in the previous examples. These are variables that
are available within the body of an attribute or property so that you can easily work
with the attribute/property name and value.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[296]

As a final example about attributes, we show that you can also create a changer
or mapper as an attribute of the attribute tag itself:

<d:attribute name="width" onchange="alert('attribute value
 changed');" onmap="this.viewNode.style.width = value;" />

If the text of the JavaScript code you want to execute is very short, then this is a
handy option.

Resources
Widgets may need custom styling or special functionality. In your TDL widget
definition, you can specify a list of resources that must be included when the
definition is loaded. These resources can be XML, CSS stylesheet files, JavaScript
libraries, or image files. When you use an image resource, the file will preload to
the browser cache. This can help to increase application performance.

The resource tag in your TDL widget definition allows you to specify a single
resource to be included when the element definition is processed by the Client
Runtime. Within the resource element, you must specify a source location and
a value for the type attribute that describes the media type, for example text/
javascript, text/css, or image/jpg. You can also specify the resource inline.

The path to the included resource file is relative to the location of the file
that includes it.

We will show a few examples of using resources. First, the inclusion of style
information in the yellow notes example, and next, a rather complicated example
using XSLT.

The yellow notes example using resources
We never told you how we included the style information for the yellow notes.
Instead of a style tag, which would have been separate from the widget definition,
we used a resource tag as follows:

<d:namespace
 name="http://www.squaringthecircles.com/squared">
 <d:resource type="text/css">
 .sq-yellowNote { /* the style definition goes here */ }
 </d:resource>
 <d:element name="yellowNote">
 <!-- The element definition goes here -->
 </d:element>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[297]

The resource tag allows you to define resources at the best place in your
application. In our example, the style information should be with the element
definition of the yellow notes widget, because it is specific for this widget. If you
need a global resource from a file, CSS for example, then the resource tag can
ensure that the resource is indeed available.

Named resources
You can also name your resources and define them inline if you wish. You can
retrieve your resource later by adding the name attribute to the resource tag.

The following example defines two named resources: an XML file and a stylesheet to
transform this XML with. The resource is retrieved within the template and the result
of the transformation is XHTML that is processed by the browser.

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl">
 <d:namespace
 name="http://www.squaringthecircles.com/squared">
 <d:element name="myBookList">
 <d:resource name="myXSL" type="application/xslt+xml">
 <xsl:stylesheet xmlns:xsl=
 "http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:output method="html" />
 <xsl:template match="/">
 <div> Book Title:

 <xsl:for-each select="books/book">

 <xsl:value-of select="title" />

 </xsl:for-each>

 </div>
 </xsl:template>
 </xsl:stylesheet>
 </d:resource>
 <d:resource name="myBooks"
 src="data/bookdata.xml" type="application/xml" />
 <d:template type="text/javascript">
 <![CDATA[
 var books = bb.getResource(this, 'myBooks');
 var oStylesheet = bb.getResource(this, 'myXSL');
 var oTransformedData =
 oStylesheet.transformToFragment(books, document);
 return [oTransformedData.firstChild, null];

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[298]

]]>
 </d:template>
 </d:element>
 </d:namespace>
</d:tdl>
<!-- put the booklist on a page -->
<div xmlns:sq= "http://www.squaringthecircles.com/squared"
id="book-list">
 <sq:myBookList />
 </div>

This example is interesting not only because of its use of named resources, but also
because of its use of a stylesheet to generate the template. As input for the stylesheet,
we need XML data, for example:

<books>
 <book sale="true">
 <title>book1</title>
 <price>$8.99</price>
 </book>
 <book sale="false">
 <title>book2</title>
 <price>$8.99</price>
 </book>
 <book sale="false">
 <title>book3</title>
 <price>$8.99</price>
 </book>
</books>

And this is the result:

In a real application, you would provide the data from a remote data source, as we
explained in Chapter 5, when talking about data binding, instead of a fixed set of
data like we used here.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[299]

This concludes our section about simple TDL elements. We have seen that with the
three elements described (template, attribute, and resource) we can already
build quite flexible widgets. In the next section, we will make our widgets dynamic
by adding the capability to handle events.

Widget event handling
Events, such as mouse clicks or DOM mutation events can be handled for TDL
widgets in a way very similar to that of XEL handlers attached to widget instances
on a page. The handlers specified for TDL widget definitions will be there for every
instance of that widget. Any XEL event handler that may be specified on a specific
widget will be called before any handler defined in TDL. The TDL event handlers
reside in the TDL namespace instead of the XEL namespace.

Event handlers allow you to respond to events that occur on a widget. Code within
the handler is executed when the specified event type is triggered.

The handler tag
The handler tag describes an event that you want to handle for the widget and
what functionality to execute when that event is triggered. The handler tag has
these attributes:

Attribute Description
defaultAction Allows you to control the event flow. It defines the propagation

behavior on a single node (cancel, perform).
event The name of event to which the handler will listen. Once the event is

fired within its context, the event handler will execute code within the
handler.

match Allows for adjusting the handler's target, so that it will only be
processed when the rule specified matches on an element in the
element view space.

phase Specifies when the handler will be activated by the desired event. By
setting the phase attribute to capture, the event will be handled during
the capturing phase. Otherwise, the event will be handled during the
bubbling or target phase.

propagate Allows you to control the event flow. It defines the propagation
behavior when bubbling or capturing. When set to stop, the event
propagation will stop after the event is handled. By default, it is set to
continue.

type Mime type of the script.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[300]

If you look at the list of attributes above, you will recognize that this list is identical
to the list of attributes you can use for an XEL event handler, except for the match
attribute. This attribute makes it possible to have a complex tree of view nodes for one
single controller node, while an event can be targeted at only one of the view nodes.

The following example shows how to use handler to perform some logic when the
user clicks on an element:

<d: element name="myWidget">
 <!-- element definition -->
 <d:handler event="click" type="text/javascript">
 var sTagName = this.getProperty('tagName');
 alert('You clicked on element: ' + sTagName);
 </d:handler>
</d:element>

The handler tag applies to the controller; therefore, the event will be handled when,
on the application page, the user performs the specified event on the widget. When
you want to attach an event to a particular XHTML element inside your template,
you can use match by pointing it to a class name on this XHTML element.

When an event is triggered on an element in a template, you might want to know
which view node inside the template triggered the event. For this purpose, you can
use the viewTarget attribute of the event object.

Updatable yellow notes
In the next example, we expand the yellow note widgets to include two handlers.
The idea is that it would be nice to be able to update a yellow note. It should work
as follows:

•	 When you click on a yellow note, a textarea will appear that contains
the text of the yellow note

•	 You can update the text
•	 When you click with your mouse outside the area of the yellow note, the

textarea is made invisible and the changed text replaces the text in the
yellow note

First, we'll make a change to the template, to include a textarea. The attributes
and their mappers stay unchanged.

<d:template type="application/xhtml+xml">
 <div xmlns="http://www.w3.org/1999/xhtml"
 class="sq-yellowNote">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[301]

 <div class="sq-yellowNote-div"
 style="height: 100%; width: 100%">
 <d:content />
 </div>
 <textarea class="sq-yellowNote-text"
 style="display: none">
 new text...
 </textarea>
 </div>
</d:template>

There are some points you should note:

•	 We added a textarea that is initially hidden to the template.
•	 There is also an extra div that holds the initial content.
•	 Both the div and the textarea have a CSS class added. For the div, the

class is only used to find it, and for the textarea, some formatting is needed:

.sq-yellowNote-text {

 font-size: 10px;

 margin-right: 2px;

 width: 90px;

 height: 60px;

}

We want to start editing when you click with your mouse on the div with class
sq-yellowNote-div. Therefore, we add the following event handler:

<d:handler event="click" type="text/javascript"
 match=".sq-yellowNote-div">
 var sContent = event.currentView.innerHTML;
 var oText = bb.selector.query(this.viewNode,
 '.sq-yellowNote-text');
 oText.value = sContent;
 bb.command.show(oText);
 bb.command.hide(event.currentView);
</d:handler>

As you can see, the event handler handles the click event and the match attribute
is used to identify the yellow note div element. Therefore, the event will only be
activated if you click within the sq-yellowNote-div.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[302]

The event handler code first retrieves the content of the sq-yellowNote-div, and
then, it finds the textarea with the class sq-yellowNote-text. It makes use of the
bb.selector.query method, which is a handy alternative to the following line:

var oText = this.viewNode.
 getElementsByClassName('sq-yellowNote-text')[0];

Next, the text from the div is copied into the textarea, which is made visible while
the div is hidden. The picture below shows what a yellow note will look like when
being edited.

When you are done editing, the process should be reversed: the text in the textarea
should be copied back into the div and the textarea should be hidden again.

We have chosen the blur event to signal the end of the editing. This means that if
you click outside the yellow note, the event will be triggered. Here is the code:

<d:handler event="blur" type="text/javascript"
 match=".sq-yellowNote-text">
 var sContent = event.currentView.value;
 var oDiv = bb.selector.query(this.viewNode,
 '.sq-yellowNote-div');
 oDiv.innerHTML = sContent;
 bb.command.show(oDiv);
 bb.command.hide(event.currentView);
</d:handler>

Event handlers in TDL are always in addition to the previously defined event
handlers in a parent object; they cannot be overridden in an inherited object. You
will rarely have a good reason to overwrite a handler defined in a parent element.
If this does come up, you should place the handler body in a method (we will look
at the methods shortly). Methods can be overwritten, so, you will be changing the
functionality of the event handler by altering the body of the method.

It is possible to specify additional event handlers for a single event.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[303]

We have taken an important step in making a TDL widget dynamic. Although it is
theoretically possible to put all code for the event processing in event handlers, the
TDL as a language provides us with many object-oriented facilities to enable good
program design principles to be applied.

Widgets as objects
In the introductory sections of this chapter, we have already discussed TDL as
an object-oriented language. We will now look at the TDL elements involved in
more detail.

Defining classes with TDL
You already know how to create a TDL class definition: this is done by defining
an element with the name element, where the name attribute is the name of the class.

All the elements that define the state and behavior of a TDL class are defined
using child tags of the element tag.

In TDL, you use property elements to the define the state of an object. We have seen
the attribute element that may seem similar to a property. However, attributes
and properties are not the same:

Attributes Properties
An attribute is always of type string and its
value can be set like any XHTML attribute
when placing the widget on a page.

Properties can be of any type, including of
type object.

Attributes can be retrieved by using the
getAttribute method.

Properties can be retrieved by using the
getProperty method.

The value of a property can be set by using
the setProperty method.

Attributes can be set by using the
setAttribute method.

As child elements to an attribute, a changer
and a mapper can be defined. The processing
defined in these elements can cause side
effects such as setting classes on the view of
the widget.

getter and setter elements can be
defined as child elements of property. Any
desired side effect can be achieved by using
these.

The behavior of a TDL object is coded within one or more method elements. As in
any object-oriented language, a method has a name and a body. Optionally it has
arguments. You will see all about it in the section on methods.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[304]

Inheritance
For many, an integral concept of object-orientation is inheritance, where objects may
inherit the behavior of one or more other objects. We will explain the details of how
you can implement and use inheritance in TDL later in this chapter, for example, we
will see that we can inherit from other classes by using the extends attribute.

Creating and destructing TDL objects is done using the appropriately named
construct and destruct elements. Note that destruct is almost never needed.

Composition
In the purest object-oriented languages, everything is an object. Actually, Java is
not one of them and neither is TDL. In TDL, the inside of an elementary object is a
structure of XHTML elements, augmented with CSS and JavaScript. Because this
kind of object cannot contain BTL or other TDL objects, this poses the problem of
how to apply the second integral concept of object-orientation:

Building larger objects out of smaller ones composition.

Apparently, TDL was not really built to allow this. On the other hand, it is very
well possible to compose a set of objects into larger ones, not using templates but
using the constructor method, similar to how you would construct composite
objects in Java.

We will show you how to do it in the Composite widgets section.

The element tag
Although we used the element tag in all examples in this chapter because it is the
fundamental tag for defining widgets using TDL, we did not list its attributes yet.
Here they are:

Attribute Description
abstract Boolean value, indicating whether the declaration is abstract. Abstract

elements cannot be instantiated. They can only be used by derived
elements in inheritance chains.

extends Space-separated list of extended elements. Names must be fully qualified.
implements Space-separated list of implemented interfaces. Names must be fully

qualified.
name Name of the element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[305]

The direct child tags of the element tag can be: attribute, constructor,
destructor, handler, method, property, resource, and template. We have seen
the ones that allow us to define static elements already and also the event handler
tag. The others will be described now.

Properties
Like attributes, properties are characteristics of a widget that indicate its state,
such as width or selectedIndex. The attributes that you can specify on a
property tag are:

Attribute Description
name Name of the property.
onget Script to be executed when the property value is retrieved.
onset Script to be executed when the property value is set.
type Data type of the property.

The value of a property can be used to determine the shape of a widget or to
perform particular operations. However, attributes and properties are different
in several respects, as we already pointed out.

The getProperty/setProperty API functions retrieve or set a property value. The
syntax for getting and setting properties is very similar to the getting and setting of
attributes, as the following code snippet shows:

this.getProperty('selectedIndex');
this.setProperty('selectedIndex', 2);

Before we explain how to add properties to your own widgets, we show some
examples of how you can get or set properties in BTL widgets. Both examples show
a navBox that is opened and closed programmatically in a button click handler. The
first example uses JavaScript in the click handler to get and set the open attribute of
the navBox.

Let's show the navBox first:

<b:navBox width="300px" id="mynavbox" label="Open and Close">
 The open state of this navBox can be toggled by pressing
 the button above.

</b:navBox>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[306]

And here's a button that opens or closes the navBox with every click:

<b:button id="button1">
 Click me to toggle the open state of the navBox below
 <e:handler event="click" type="text/javascript">
 var navbox = bb.document.getElementById('mynavbox');
 navbox.setProperty
 ('open', !navbox.getProperty('open'));
 </e:handler>
</b:button>

Alternatively, you can use the XEL language as in the following example:

<b:button id="button1">
 Click me to toggle the open state of the navBox below
 <e:handler event="click" type="application/xml">
 <e:set with="id('mynavbox')" property="open"
 select="not(property::open)" />
 </e:handler>
</b:button>

The code snippet uses the with attribute because a different context from the one
where the click occurred is needed.

Depending on your preference and your familiarity with JavaScript, you may favor
the declarative XEL style or the procedural JavaScript style, where it should be noted
that using JavaScript may result in a slightly better performance.

Knowing how to access an existing property, we are turning our attention to defining
new ones in the next section.

Property definition
Similar to attributes, you can define properties as children of an element
named element.

Here's the standard syntax of the TDL property element:

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourWidget">
 <!-- ... -->
 <d:property name="yourProperty" />
 </d:element>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[307]

The syntax for retrieving or updating property values is different from what you
have seen for attributes. There are no mappers and changers as for attributes, but
only setter elements. While there are no side effects that you can implement when
retrieving an attribute, you can use a getter to do so for a property.

Property getters
When you code getProperty() or setProperty(), these functions not only return
or set property values, but also trigger property getters and setters. In TDL, the
getter and setter tags can be placed as children of your property to establish
additional script performed when the corresponding function is called. You can use
getter, for example, to ensure that the correct value is returned even if the property
has no value.

When you use a getter, the standard behavior is no longer applied. This
means that you must retrieve the value of the property involved and then
return it.

Please note that the name of the property is available in a variable called name while
value will hold its value. You can retrieve the value of a property in this way also:

var value = this._._nameOfYourProperty;

The Client Runtime stores the properties of an element in an internal object with the
name _. This is done to improve the performance of some browsers:

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="trafficLight">
 <!-- ... -->
 <d:property name="state">
 <d:getter type="text/javascript">
 var value = this._._state;
 alert(name ' = ' + value);
 return value;
 </d:getter>
 </d:property>
 <!-- ... -->
 </d:element>
</d:namespace>

As with the template element or any element that can contain executable logic,
getters and setters need to define a value for the type attribute. This type states
whether the getter/setter will be an XEL snippet or JavaScript.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[308]

Property setters
The body of the setter element establishes additional functionality that is executed
when the setProperty function is called. The setter tag can be used to execute
side effects to the change of the property value such as raising events, performing
validation, throwing errors, and calling other functions.

In this example, when the selectedIndex property value is set, we alert the value of
the selected index:

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourWidget">
 <!-- ... -->
 <d:property name="selectedIndex">
 <d:setter type="text/javascript">
 alert('Property ' + name + ' is: ' + value);
 this._._selectedIndex = value;
 </d:setter>
 </d:property>
 <!-- ... -->
 </d:element>
</d:namespace>

To create a default value for a property, set the value in the constructor of the widget
(using the constructor tag). Another way that is frequently used for BTL widgets
is defining an attribute, often with the same name as the property that has a default
value and a mapper. The mapper allows you to map the attribute to the property
when the widget is built.

The next section describes a bit more concrete example of using attributes, mappers,
and properties.

A web lamp example
Here is an example of a lamp widget. It has a background image that will let it look
like (part of) a traffic light. There are two attributes, one that can define the color of
the lamp and a second one that sets its initial state, "on" or "off".

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[309]

We also define a property for the lamp, with the name lampOn. Why? The state of the
lamp should really be a Boolean value indicating whether the lamp is on or off. Now
that we have properties at our disposal, we can also ensure that the lamp is always in
an allowed state.

Below, you can see the code for the lamp definition. The on/off state is kept in
a property.

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl">
 <d:namespace
 xmlns:sq="http://www.squaringthecircles.com/squared"
 name="http://www.squaringthecircles.com/squared">
 <d:resource type="text/css">
 .lamp {width: 31px; height: 31px;
 background-image: url('media/light.gif');
 border: solid black 1px;
 }
 </d:resource>
 <d:element name="lamp">
 <d:attribute name="color" default="white" />
 <d:attribute name="state" default="off">
 <d:mapper type="text/javascript">
 if (this.getAttribute('state') == 'on')
 this.setProperty('lampOn', true);
 else
 this.setProperty('lampOn', false);
 </d:mapper>
 </d:attribute>
 <d:property name="lampOn" type="boolean">
 <d:setter type="text/javascript">
 var oLight = this.viewNode;
 var sOffColor = '#463E3F';
 var sOnColor = this.getAttribute('color');
 if (value)
 bb.html.setStyle(oLight,
 'background-color', sOnColor);
 else
 bb.html.setStyle(oLight,
 'background-color', sOffColor);
 // set the property value!
 this._._lampOn = value;
 </d:setter>
 </d:property>
 <d:template type="application/xhtml+xml">
 <div class="lamp" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[310]

 </d:template>
 </d:element>
 </d:namespace>
</d:tdl>

Looking at the code, you can see that there is <d:property> and with the name
lampOn, while we used the mapper code of the state attribute to give the lampOn
property its initial value. Further, a property needs to have a type, therefore, we
added type="boolean".

Important to note is the last line we added to the setter code of the lampOn
property. Since this setter code overrides the standard setter behavior, we need
to make the change to the property explicitly.

We define a button to click the new lamp on or off. A click event handler is used to
set the state attribute.

<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <sq:lamp id="lamp1" color="yellow" />
 <button>
 <e:handler event="DOMActivate" type="text/javascript">
 var lamp = bb.document.getElementById('lamp1');
 lamp.setProperty('lampOn',
 !lamp.getProperty('lampOn'));
 </e:handler>
 Lamp Switch
 </button>
</div>

Note that the lamp appears initially with a yellow background because the state
attribute is on by default.

Methods
A method usually consists of a sequence of statements to perform an action. A
method can have set of input parameters to influence those actions, and possibly
 an output value can be returned.

In TDL, the method tag is used to define a method that will be executed as either
XEL or JavaScript depending on the type in the body tag. A method element has
one attribute:

Attribute Description
name Name of the attribute. This attribute is required.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[311]

A method element can have two child elements: argument and body. The argument
tag describes the argument(s) that can be used to invoke the method, while the
contents of the body tag provide the logic.

The argument tag
It declares an argument to be used in a method. The argument tag can have
these attributes:

Attribute Description
default The default value of the argument to be used when no argument value

is provided.
name The name of the argument.
required Specifies if the argument is required.
type Data type of the property.

The value of the argument is available in the body element of the method as a
variable with a name equal to the name attribute of the argument and a value
equal to the value of the value attribute.

The body tag
The body tag declares the body of a method.

Attribute Description
type Mime type of the script, generally either application/xml or text/

javascript.

The script content of the body element is executed when the method is called.

It is time for an example!

Sliding thumbnails
In the previous chapter, we were talking about adding animation to the C3D sample
travel blog application. We showed a picture, but nothing of the code because it was
not really usable in an application yet. We are now going to change that by defining
two TDL widgets, which will make it easy to embed a set of pictures dynamically
into an application when needed.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[312]

In the Explorer example, there was a JavaScript function called slide(). In a real
production web application, it is not a good idea to have global functions like this,
because you could have name clashes when using JavaScript libraries from others,
and you could have a configuration problem to make sure that the right function is
loaded at the right time.

We solve these problems here by encapsulating the slide() function as the method in
an imageScrollContainer widget. We also wanted a vertical scrolling of the images
instead of the horizontal scrolling used in the Explorer example. Actually, we would
like the ability to do both, and this could be a further extension of the widget later.

Here is the layout of the widget:

<d:element name="imageScrollContainer">
 <d:template type="application/xhtml+xml">
 <div>
 <div class="imageScroll-btnBlock">
 <button class="btnUp">

 </button>
 <button class="btnDown">

 </button>
 </div>
 <div xmlns="http://www.w3.org/1999/xhtml"
 class="sq-imageScroll-clipRegion">
 <div class="sq-imageScroll-container"
 style="left:0px; top:0px;">
 <d:content />
 </div>
 </div>
 </div>
 </d:template>
 <d:method name="slide">
 <!-- the content of the slide() method goes here -->
 </d:method>
</d:element>

As you can see, we have put the buttons right into the widget itself. We needed to
use button widgets instead of b:button widgets because the latter are not allowed
in a template. In this case, it does not make a difference, but if you had wanted to
use a b:slider (for example), then you would need to find another way to build
this widget.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[313]

The slide method looks like this:

<d:method name="slide">
 <d:argument name="oDirect" required="true" />
 <d:argument name="iPxPerSec" required="true" />
 <d:body type="text/javascript">
 var oAnimationInfo = {
 attributeName: "top",
 fill: "freeze"
 }
 var oContainer = bb.selector.query(this.viewNode,
 '.sq-imageScroll-container');
 var deltaHeight = oContainer.offsetHeight -
 oContainer.parentNode.offsetHeight;
 var hstart = parseInt(oContainer.style.top);
 var distance;
 if(oDirect == "up") {
 distance = deltaHeight - Math.abs(hstart);
 stop = -deltaHeight;
 }
 else {
 distance = Math.abs(hstart);
 stop = 0;
 }
 if(distance != 0) {
 oAnimationInfo.dur =
 (Math.round(100*distance/iPxPerSec)/100) + "s";
 oAnimationInfo.values = hstart +"px;" + stop + "px";
 var callback = function() {
 animationRef = null;
 }
 animationRef = bb.smil.animate(oContainer,
 oAnimationInfo, callback);
 }
 else {
 animationRef = null;
 }
 </d:body>
</d:method>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[314]

You can compare this code with the code we provided for the previous chapter in the
bookApps/animation/imageScroll.html file (as a copy of the Explorer example
code), and you will see that it is the same, apart from the change in direction we
made. Also, the method finds the sq-imageScroll-container element, not by
finding an id but instead by looking for a CSS selector. This allows us to have
multiple imageScrollContainer widgets on one page.

In order for the widget to operate properly, we need a few event handlers:

<d:handler event="mousedown" match=".btnUp" type="text/javascript">
 this.slide('up', 400);
</d:handler>
<d:handler event="mouseup" match=".btnUp" type="text/javascript">
 if(animationRef != null) {
 bb.smil.stop(animationRef);
 animationRef = null;
 }
</d:handler>
<d:handler event="mousedown" match=".btnDown" type="text/javascript">
 this.slide('down', 400);
</d:handler>
<d:handler event="mouseup" match=".btnDown" type="text/javascript">
 if(animationRef != null) {
 bb.smil.stop(animationRef);
 animationRef = null;
 }
</d:handler>

The major remarkable thing for these event handlers is the use of the match
attribute. This attribute allows us to have an event handler for the widget that
applies to a specific element within the template of that widget. You need to be
able to target this element as a CSS selector. We used the CSS classes defined on
the buttons for this purpose.

Also, note the calls to the slide() method in the mousedown and mouseup
event handlers.

We defined another widget: sq:thumbnail, to contain an image. Here, this widget is
used only to make sure that the images are uniformly styled. Later, we can add event
handlers to this widget to pop up a larger version of the photo, together with any
yellow sticky notes that may have been defined for that image.

The code to display a list of images could be:

<sq:imageScrollContainer>
 <sq:thumbnail src="media/P1010862.JPG" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[315]

 <sq:thumbnail src="media/P1010938.JPG" />
 <!-- more images ... -->
 <sq:thumbnail src="media/P1010991.JPG" />
</sq:imageScrollContainer>

When we integrate this widget into the C3D application, it will look like this:

We will need to do a little more work to properly integrate the showing of
thumbnails with a trip entry. The neatest way to show the photos would be to make
the imageScrollContainer widget data bound. We have explained how to do that
in Chapter 5.

Let's have one other example that we can use later to extend our lamp example.
Earlier, we defined a button that, when clicked, would set the lamp on if it was off
and the other way around. The code in the event handler needed to set a property
in the lamp. In fact, this is not very desirable because you need to know the inner
structure of the widget. A good rule is:

Use attributes to set the initial state of a widget and use methods to change the
state of an object.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[316]

We are defining a simple method for the lamp called switchLamp:

<d:method name="switchLamp">
 <d:body type="text/javascript">
 this.setProperty('lampOn', !this.getProperty('lampOn'));
 </d:body>
</d:method>

The lamp and the button that switches the lamp can now be coded as:

<sq:lamp id="lamp1" color="yellow" />
<button>
 <e:handler event="DOMActivate" type="text/javascript">
 bb.document.getElementById('lamp1').switchLamp();
 </e:handler>
 Lamp Switch
</button>

Constructors and destructors
The constructor tag in TDL provides execution instructions for what happens
when a widget is instantiated. There is also a destructor element representing a
method that is called when a widget is destructed.

Constructor elements have a single attribute, type, which describes the type of script
code used to define the constructor. In fact, constructor is a special method that is
invoked at a specific point in time, when the widget is constructed. In every other
respect, constructors are just methods.

While the template tag builds the structural content of the widget, the
constructor tag adds logic to the widget once it is built. The constructor
is the last thing that is executed when the element is created, just before the
DOMNodeInsertedIntoDocument event is fired.

The following example initializes a property value in the constructor:

<d:constructor type="text/javascript">
 bb.setProperty(this, "selectedIndex", 1);
</d:constructor>

Because constructors are just methods, it is possible to do a lot more in a constructor
than setting a property or the color of your widget. By using a c:create or c:load
command in a constructor, you can build complex objects without the constraints
that a template imposes on the contents.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[317]

Opinions differ on the question of whether you should actually use the constructor in
this way (see the discussion at the end of this chapter). The main problem is that all
objects built using a Backbase command in a constructor are visible in the controller
layer and therefore, lack the encapsulation and information hiding that you expect
from a proper object. This would allow developers to manipulate widgets from the
outside in undesirable ways.

However, if you refrain from doing nasty things and stay a good citizen in the DOM
world, then the constructor allows you to build powerful widgets that are more
scalable and maintainable than with any JavaScript-based framework.

We will give an example of how composition could work in the next section.

Composite widgets
The main motivation for using classes and objects when developing an application is
the possibility to manage the complexity of your code. You can build larger chunks
of code into an object and you are able to address this larger chunk of code via an
API that hides the inner complexity of the object. Object-oriented languages allow
larger objects to be built from smaller objects by composition, such as Lego(R) blocks.
Although, you have to be careful when you do object composition with TDL; as we
just explained, it can work very well.

Compose a pedestrian light
A pedestrian light has only two lamps. If you know how to make this one, you can
also make a regular traffic light that has usually three lamps, or a light with five
lamps, or a string of Christmas lamps, lit randomly.

The complete pedestrian light definition is as follows:

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl">
 <d:namespace
 xmlns:sq="http://www.squaringthecircles.com/squared"
 name="http://www.squaringthecircles.com/squared">
 <d:uses element="lamp"
 src="data/tdl_lamp_definition.xml" />
 <d:element name="pedestrianLight">
 <d:property name="redLamp" type="object" />
 <d:property name="greenLamp" type="object" />
 <d:constructor type="application/xml">
 <c:create destination=".">
 <sq:lamp color="red" state="on" />
 <sq:lamp color="green" />
 </c:create>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[318]

 <e:set property="redLamp"
 select="sq:lamp[@color = 'red']" />
 <e:set property="greenLamp"
 select="sq:lamp[@color = 'green']" />
 </d:constructor>
 <d:method name="toggle">
 <d:body type="text/javascript">
 this.getProperty('redLamp').switchLamp();
 this.getProperty('greenLamp').switchLamp();
 </d:body>
 </d:method>
 <d:template type="application/xhtml+xml">
 <div>
 <d:content />
 </div>
 </d:template>
 </d:element>
 </d:namespace>
</d:tdl>

If you look at the constructor method, you will see that it creates a green lamp that
is off and a red lamp that is on. We have also added properties to save a reference to
the red and the green lamp. The constructor has two e:set instructions to set these
references. The reference itself is found as an XPath expression.

Note that the template of the pedestrianLight widget contains a content tag. This
is needed because we want to add new nodes to the view structure of the widget in
its constructor. The c:create in the constructor adds the elements it creates to the
view gate of its destination. The content tag provides us with the proper view gate.

For some of you, it may be more straightforward to write the constructor code in
JavaScript instead of XEL. On one hand, in XEL it is easier to see which nodes are
constructed, on the other, the setting of the property values is more complicated.
What the constructor looks like when written in JavaScript is shown below:

<d:constructor type="text/javascript">
<![CDATA[
 var oLamp = bb.document.createElementNS
 ('http://www.squaringthecircles.com/squared', 'lamp');
 oLamp.setAttribute('color', 'red');
 // keep the red lamp in a property
 this.setProperty('redLamp', oLamp);
 this.appendChild(oLamp); // build the lamp
 // switch the lamp on
 oLamp.setProperty('lampOn', true);

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[319]

 oLamp = bb.document.createElementNS
 ('http://www.squaringthecircles.com/squared', 'lamp');
 oLamp.setAttribute('color', 'green');
 // keep the green lamp in a property
 this.setProperty('greenLamp', oLamp);
 this.appendChild(oLamp); // build the lamp
 oLamp.setProperty('lampOn', false); // switch the lamp off
]]>
</d:constructor>

To define the complete behavior of the pedestrian light, we need a method,
switchLamp, to switch from red to green and back. You can see the code in the
previous example. Once defined, we can control the lamp with a button like this:

<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <sq:pedestrianLight id="ped1" />
 <button>
 <e:handler event="DOMActivate" type="text/javascript">
 var oLight = bb.document.getElementById('ped1');
 oLight.toggle();
 </e:handler>
 Click me to switch the pedestrian light!
 </button>
</div>

This is what it looks like (you have to imagine the colors in a black and white
printed book):

We can understand that you consider the traffic light example not very practical,
except for illustrating how widget composition works. Therefore, we will now look
at how you could simplify building forms.

Order form building blocks
We are going to show how you can encapsulate form elements into a widget that
allows the code on the application page to be much clearer and shorter, and which
allows us to add new fields to the form easily.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[320]

The inputElement widget that we will develop is an example of a
widget that needs to be built using a constructor method and that
cannot be built using a template. This is because the form uses Backbase
form validation and because the validation functionality is part of the
forms namespace; we use the bf prefix. This can only be built in the
controller layer, while templates are restricted to building widgets in the
view layer.

Before you start developing widgets like this, you should ask yourself a
few questions:

•	 How often will I use the resulting widget? If used only once, then the
development costs will not be compensated by ease of development later.

•	 Does the widget help to ensure a consistent look and feel for my web page?
Proper use of widgets can help to achieve consistency.

•	 Is the content of the widget related to the user interface or to the application
domain? If this is application domain content, you may consider writing a
server component instead of a client-side widget.

•	 Building a widget at runtime takes some overhead. The performance of your
application has to be weighed against its robustness and the productivity of
your developers.

Here is a form with shipping information for an order. Some fields are required and
therefore, an error message should be displayed when it is not filled in on submit.
The form in the picture is already partially filled in to show what happens when
partial information is submitted. Note that the row of the input information smoothly
expands when an error message is displayed. You can see this in the next screenshot:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[321]

Roughly, for each row in the form you would need to write code like this:

<div class="row">
 <div class="lspan">
 <label for="name">Name:</label>
 </div>
 <input class="inputText" type="text"
 name="name" id="name" bf:required="true"
 bf:messagesRef="id('required_field')" />
 *
 <bf:messages id="required_field">
 <bf:message event="invalid"
 class="errorMessage" facet="required">
 <div>This field is required</div>
 </bf:message>
 </bf:messages>
</div>

If you look at the form, you see that for each input element, there are three parts, a
label, input, and a bf:messages part. Together, they are put in a div. The variable
elements in the code are the label value, the values of the name and id attributes,
and whether the field is required to be filled in.

To accommodate the variability of the name of the input field and the text of the
label, we define an element with attributes name and label. The id should always be
the same as the name on the input field; therefore, we define it that way in the widget.
We need a third attribute to indicate whether a value is required when the form is
submitted. With this in mind, the basic widget definition looks like this:

<d:tdl>
 <d:namespace
 name="http://www.squaringthecircles.com/squared">
 <d:element name="inputElement">
 <d:attribute name="name" required="true" />
 <d:attribute name="label" />
 <d:attribute name="required" default="true" />
 <!--the constructor, methods, and template go here-->
 </d:element>
 </d:namespace>
</d:tdl>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[322]

Points to note are:

•	 The name attribute is always required. This is needed to be able to construct
valid code.

•	 The label attribute is optional. If not specified, then the same value that the
name attribute has will be used.

•	 The required attribute is optional too. It has a default value of true. This
was done considering that most fields cannot be left empty.

Let's take a look at the template. It is not very interesting, except for the presence
of the content element, which must be there because it functions as the viewGate,
which allows child elements to be added to the widget. If you are defining a
composite widget in a constructor, you always need to include a template as shown
below:

<d:template type="application/xhtml+xml">
 <div class="row">
 <content />
 </div>
</d:template>

Constructing the sq:inputElement is a two-step process: first the new nodes are
appended, for the label element, the input element, and if required="true", the
form validation nodes. The second step is to adapt the attributes of the nodes to the
values as specified in the attributes of the sq:inputElement. This is done in three
methods that are successively called.

<d:constructor type="application/xml">
 <e:choose>
 <e:when test="@required='true'">
 <c:create destination=".">
 <div class="lspan">
 <label for="name" />
 </div>
 <input class="inputText"
 type="text" name="name" bf:required="true"
 bf:messagesRef="../bf:messages[1]" />
 *
 <bf:messages>
 <bf:message event="invalid"
 class="errorMessage" facet="required">
 <div>This field is required</div>
 </bf:message>
 </bf:messages>
 </c:create>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[323]

 </e:when>
 <e:otherwise>
 <c:create destination=".">
 <div class="lspan">
 <label for="name" />
 </div>

 <input class="inputText" type="text" name="name"/>
 </c:create>
 </e:otherwise>
 </e:choose>
 <e:call method="setNames" ndest="./input[1]" />
 <e:call method="setLabel" ldest="./*/label[1]" />
 <e:call method="addRowOdd" />
</d:constructor>

The first method, setNames, sets the name and id attributes in the input that is
addressed in the argument. The argument is specified as an XPath expression, to
make it possible to target the nodes just built, without having to build IDs for each.

The second method is similar, but operates on the label element. As mentioned,
the value of the name attribute is used if the label attribute was not specified.

The third method, addRowOdd, is a method that allows you to zebrafy the form,
coloring the elements light blue or white in an alternating way. It does this by
finding the previous sibling of the current sq:inputElement. If that node does
not have the class rowOdd specified, it will be added to the current element.

<d:method name="setNames">
 <d:argument name="ndest" />
 <d:body type="text/javascript">
 var sName= this.getAttribute('name');
 ndest.setAttribute('name', sName);
 ndest.setAttribute('id', sName);
 </d:body>
</d:method>
<d:method name="setLabel">
 <d:argument name="ldest" />
 <d:body type="text/javascript">
 var sName = this.getAttribute('name');
 var sLabel = this.getAttribute('label');
 ldest.setAttribute('for', sName);
 if (sLabel == '') sLabel = sName + ':';
 else sLabel = sLabel + ':';
 var oText = bb.document.createTextNode(sLabel);

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[324]

 ldest.appendChild(oText);
 </d:body>
</d:method>
<d:method name="addRowOdd">
 <d:body type="text/javascript">
 <![CDATA[
 oSib = this.viewNode.previousSibling;
 if (oSib != null) {
 if (!bb.html.hasClass(oSib, 'rowOdd'))
 bb.html.addClass(this.viewNode, 'rowOdd');
 }
]]>
 </d:body>
</d:method>

We would like to make a few more remarks:

•	 In the new form, the country field is a normal input field instead of the
drop-down list or suggest box you would expect. You can just insert these if
you like in the old way or you could define a similar widget for a drop-down
list to encapsulate it in the same way.

•	 Similarly, you may want to perform other checks, such as a check for a valid
email address and so on. This will complicate the design of your widget, but
may further enhance the robustness of your applications and productivity of
the developers.

•	 You could combine several input widgets together to build a name and
address information form that can then be used in all your web applications
to give them a consistent look and feel.

•	 If, at some point, your UI designers change their mind about how the form
should look, all you have to do is change the CSS in the resource tag, and
everywhere where the widgets are used will show the new look. Of course,
this is the idea behind CSS in the first place, but in practice, this is really hard
to keep consistent. We must confess that for this widget the CSS naming
conventions used are not like we said it should be earlier, but even this is
easier to correct because of the resource tag we used.

•	 If you change the order of the fields or add a new field, the alternate coloring
of the rows would be automatically adjusted.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[325]

Finally, all the code you need to write to show this form when you use the widget
we just developed is this:

<fieldset title="Shipping Information" id="checkOut">
 <legend>Shipping Information</legend>
 <sq:inputElement name="Name" />
 <sq:inputElement name="Surname" />
 <sq:inputElement name="birthDate"
 label="Date of Birth" required="false" />
 <sq:inputElement name="Address" />
 <sq:inputElement name="postalCode"
 label="Postal Code/Zip" />
 <sq:inputElement name="City" />
 <sq:inputElement name="Country" />
 <sq:inputElement name="eMail" label="E-mail" />
</fieldset>
<div class="row">
 <p>Fields marked with * are required.</p>
 <button type="submit">Order the T-shirt</button>
</div>

We hope you agree that this 15 line code is much clearer than the eight times longer
code that you would need otherwise.

This concludes the discussion of constructing widgets from other widgets using
composition. In the next section, we will look at what we can achieve by building
new elements from old ones and inheriting their features.

Inheritance
Inheritance is a common concept in object-oriented languages. The idea behind
inheritance is that one class (called a subclass, child class, or derived class) inherits
the behavior of another class (also called the superclass, parent class, extended class,
or base class). For example, you may create a superclass called animal. The animal
superclass will contain general characteristics, such as hair or legs. The subclass
might be mammal or reptile. Then, you might create a subclass of mammal that is
even more specific, such as cat or human. The subclass inherits all the characteristics
of the superclass, but then extends that class by adding more attributes and methods
or by refining existing methods.

One of the main advantages of inheritance is that you can reuse code. Without
inheritance, you would have to include all the attributes and methods of the mammal
class in every specific mammal subclass.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[326]

In the case of Backbase Tag Definition Language, element, interface, behavior,
and document definitions are like classes, and they, too, can inherit from each other.
For example, in our BTL widgets, you might see that the skinned tabBox inherits
from the base tabBoxBase abstract tag, which, in turn, inherits from the abstract
element. This means that when employing the tabBox widget, you have access to all
the methods and properties from not only the skinned tabBox, but also tabBoxBase
and element.

In TDL, you can specify inheritance by using the extends attribute of the element
tag. You can also specify if a class is an abstract class by setting the abstract
attribute of the element tag to true. An abstract widget cannot be instantiated on
an application page.

The next code snippet shows the definition of tabBoxBase. You will not be allowed
to write <b:tabBoxBase/> on your application page because the widget is defined
as abstract.

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl"
 xmlns:b="http://www.backbase.com/2006/btl">
 <d:namespace name="http://www.backbase.com/2006/btl">
 <d:element name="tabBoxBase"
 extends="b:cardStack" abstract="true">
 <!-- ... -->
 </d:element>
 </d:namespace>
</d:tdl>

All elements derive from the DOM element object. Therefore, elements
that do not have an extends attribute derive directly from the DOM
element object. Elements that do have an extends attribute will extend
from the DOM element object via a chain of extended classes, where
ultimately, some parent element will not have an extends attribute.

You might be surprised that in the example above, the tabBoxBase element is
abstract. However, if you think about reusable design, it is a good idea to create a
widget that provides only functionality and not visualization. That way, you can
extend this widget to provide customized visual characteristics. If you want to have
more visualization, you can create two visual classes that extend the functional,
non-visual superclass. In BTL, this is used to provide a system and a chameleon
skin, each having different characteristics. A skin represents a consistent look and
feel of a set of UI widgets.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[327]

Note that items in the extends attribute contain a prefix. The extends attribute only
accepts fully qualified names. This means that you must specify not only the class
you would like to inherit, but also the prefix of the namespace in which the inherited
class is defined. If no prefix is specified, the default namespace is used. This structure
allows you to inherit from classes in different namespaces.

Inheritance is powerful because you can reuse information from superclasses. What
makes it more powerful is that if necessary, you can override information from the
superclass. All you need to do is write a method with the same name in the subclass,
and that method will be the one used by the instantiated object. However, if you
are trying to extend the functionality of the superclass method, meaning that you
would like to use the superclass method and add functionality to it, you can use the
callSuper method.

In the previous section, you saw reuse by composition. The question
arises when to use composition and when to use inheritance. A good way
to find an answer is to ask the is-a or has-a question.

For example:

•	 A pedestrian light is a traffic light, therefore we can inherit pedestrianLight
from trafficLight.

•	 A lamp is not a traffic light, but a traffic light contains (has) one or more
lamps. Therefore, we should compose a traffic light from one or more lamps.

•	 A car has wheels; therefore, I should compose a car of wheels, doors, and so
on. We cannot inherit car from wheel.

TDL also supports multiple inheritance. Multiple inheritance means that a
subclass can inherit from multiple superclasses. For example, you might have a
visualElement and a dropDown. You may want to make a comboBox that inherits
characteristics from both. To use multiple inheritance, you use a space-separated
list as a value of the extends attribute. To inherit from a visualElement and a
dropDown, your TDL tag definition might look like this:

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl">
 <d:namespace name="http://www.backbase.com/2006/btl">
 <d:element name="comboBox"
 extends="b:visualElement b:dropDown">
 <!-- ... -->
 </d:element>
 </d:namespace>
</d:tdl>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[328]

Actually, the inheritance situation for the comboBox widget is more complicated; we
just want to give you an idea of what it looks like.

With multiple inheritance, inheritance is processed from right to left. This
means that the leftmost inherited element will be processed last.

By inheriting from multiple classes, you have access to the elements of both classes,
thus reusing classes and not duplicating code.

Yellow notes using inheritance
In addition to being allowed to update yellow notes, we would also like to be able
to drag a yellow note to an appropriate place on top of a picture. In this way, we
could use the yellow notes to mark interesting spots on a picture in the C3D travel
blog web application.

The yellow notes are fine as they are; therefore, we would like to add the drag-and-
drop behavior while defining a new widget, stickyYellowNote, and extending
yellowNote to be able to use what we already have developed.

In addition to an example of inheritance, we'll also see some coding tricks you
should be aware of.

In the previous chapter, we showed that you can add drag-and-drop behavior by
extending b:drag. We will use this feature too.

Here is the skeleton definition of the sq:stickyYellowNote element:

<d:element name="stickyYellowNote"
 extends="b:drag sq:yellowNote">
 <d:attribute name="useDragClass" default="true" />
 <!-- the element definition goes here -->
</d:element>

The attribute useDragClass is there to allow us to use only part of the widget as drag
handle. See the previous chapter for a description of the drag behavior attributes.

We chose to add btl-dragMove as class to the div that represents the drag handle,
which means that the drag mode is move, because we would like to be able to drop
the yellow note anywhere on the image, where it should stay put.

We cannot use the note as defined earlier for dragging because as soon as you click
on it, the editing will start and a white text area is shown. Therefore, we decided to
add an area at the top of the note that you can use as a drag handle. See the following
picture for an idea of what this looks like:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[329]

We could add the element that functions as a drag handle using a constructor in the
stickyYellowNote element, like this:

<d:constructor>
 <c:create destination="." mode="firstChild">
 <div class="sq-yellowNote-header btl-dragMove">
 >> </div>
 </c:create>
</d:constructor>

This will work fine, but if you try this out and open a debugger to look at a
stickyYellowNote element, you will see that the result is a kind of half-baked
widget: some of it is hidden in the template and part of it is visible in the model.

This is clearly not desirable. It is much better to extend the template. To understand
how this works, you should realize that a template is just a method on the TDL
element; therefore, we can call it using callSuper in the inherited element, and then
add nodes to it, like this:

<d:template type="text/javascript">
 var aTempl = this.callSuper('__template');
 var oRoot = document.createElement('div');
 bb.command.addClass(oRoot,
 'sq-yellowNote-header btl-dragMove');

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[330]

 bb.command.setText(oRoot,'>>','replaceChildren');
 var oFirst = aTempl[0].childNodes[0];
 aTempl[0].insertBefore(oRoot, oFirst);
 var oDiv = bb.selector.query(this.viewNode,
 '.sq-yellowNote-div');
 bb.html.disableUserSelect(oDiv);
 bb.html.disableUserSelect(oRoot);
 return aTempl;
</d:template>

The last thing that we do to complete the widget definition for sticky yellow notes is
adding an event handler that fires when the dragging ends. For now, its content is
just an alert, showing where you dropped the note. You could use this as a starting
point to send information to the server and save it in a database, because you would
like the yellow notes to appear at the same place with the same content when you
reopen the image to where they are attached.

<d:handler event="dragEnd" type="text/javascript">
 var oNote = event.currentView;
 alert('posx="' + bb.html.getStyle(oNote, 'left')
 + '" posy="' + bb.html.getStyle(oNote, 'top') +'"');
</d:handler>

The element that we discuss in the next and last part of this section is interface. It
can be used to develop robust widgets when other widgets inheriting from it should
comply with a certain interface.

Interfaces
An interface is a way to define attributes, properties, and methods that must be
explicitly declared on elements that implement the interface. It is defined at the
same level as an element, and must be a child of the namespace widget in a TDL
document. An interface does not contain any functionality; it merely defines what
must be implemented. Primarily, interfaces are a convenient way to help developers
enforce the consistency of their API. If a widget implements an interface and does
not explicitly state what is declared in the interface, the Client Runtime will throw
an error. The larger the project, developer team, and inheritance structure, the more
important interfaces become.

To define an interface in TDL, use the interface element:

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl">
 <d:namespace
 name="http://www.squaringthecircles.com/squared">
 <!-- ... -->

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[331]

 <d:interface name="iYourInterface">
 <d:property name="selectedIndex" />
 <d:attribute name="width" />
 <d:method name="blur" />
 </d:interface>
 <!-- ... -->
 </d:namespace>
</d:tdl>

Interfaces can also be extended by using the extends attribute.

In the above code snippet, the iYourInterface interface defines a property,
attribute, and method that must be explicitly declared by implementing elements.
Here's how you would implement this interface in your element:

<d:tdl xmlns:d="http://www.backbase.com/2006/tdl"
 xmlns:sq="http://www.squaringthecircles.com/squared">
 <d:namespace
 name="http://www.squaringthecircles.com/squared">
 <d:element name="yourWidget"
 implements="sq:iYourInterface">
 <!-- Implement all properties, attributes,
 and methods defined in the interface -->
 </d:element>
 </d:namespace>
</d:tdl>

You can implement multiple interfaces with a space-separated list in the implements
attribute value.

Extending BTL
We have already seen several examples of extending BTL elements. Most notable are
the data-bound widgets we made from existing elements such as b:dataComboBox,
and the extension of b:drag to add drag-and-drop behavior.

Another thing you may want to do is build your own skin instead of the ones that
are provided by Backbase. In this case, you'll want to find the base tag of the widget
you are skinning. For example, to create a skinned accordion widget, your widget
would inherit from accordionBase.

The Backbase framework also provides a base widget class called element. This class
contains commonly used properties and methods for all UI widgets. As a result, if
you want to create your own UI widget that is not derived from an already existing
UI widget, you can inherit from element.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[332]

Behaviors
In some cases, you may want to create functionality that is modular and not tied to a
specific widget. For this, you can use a behavior. These behaviors provide a generic
behavioral model but not a visual component. Examples of behaviors are the resize
and drag-and-drop functionality.

Behaviors provide advanced functionality to a widget, and generally, can be used
with any supported markup language. The resize behavior, for example, can be
applied both to BTL and XHTML widgets.

By default, the behavior attribute, which you use to add behaviors to a
widget, resides in the XEL namespace, while Backbase-defined behaviors
are bound to the BTL namespace.

The behavior tag can have the following attributes:

Attribute Description
extends Space-separated list of extended behaviors. Names must be

fully qualified.
implements Space-separated list of implemented interfaces. Names must

be fully qualified.
name The name of the behavior. You must use the value of this

attribute when adding a behavior to an element.

You create a behavioral class in TDL using the behavior tag. Behaviors exist within
a namespace. So, the parent namespace determines the namespace of the behavior.
Like elements, behaviors can contain attributes, methods, properties, and handlers,
but no template, constructor, or destructor. Here's a basic behavior definition:

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 name="http://www.squaringthecircles.com/squared">
 <d:behavior name="yourBehavior">
 <!-- ... -->
 </d:behavior>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[333]

Behavior example
Assume that you would like to create a very special RSS reader, which can handle
feeds from Amazon™. These can be about books, electronics, music, or toys and
either the bestsellers or the new releases are shown.

We are not going to show a complete RSS reader. Although, with some XSLT, we
would be able to define a crude one; it is not possible to define it without the help
of a server-side script or by doing some iframe tricks. It you try to load an RSS
feed from Amazon or any other feed that is not in the same domain as your client
application, you will see a message like this:

GENERIC: Javascript error: "XMLHttpRequest.open failed,
 (cross-domain / bad method)"

We have a simple link on our page, which, when clicked, opens a new browser
window from the URL as composed from the combination of comboboxes. You
could expand it with server-side scripting to format the result in better ways. It is
outside the scope of this example here.

If you try the example in a Firefox or IE browser, you will actually see a rendering
of the RSS with pictures and nice formatting. First, we show how the example could
be used:

<div xmlns:sq="http://www.squaringthecircles.com/squared">
 <b:comboBox id="topChoice" readonly="true"
 filter="true" e:behavior="sq:changeContext">
 <b:comboBoxOption>TopSeller</b:comboBoxOption>
 <b:comboBoxOption>NewRelease</b:comboBoxOption>
 </b:comboBox>
 <b:comboBox id="choiceList" readonly="false"
 filter="true" e:behavior="sq:changeContext">
 <b:comboBoxOption>electronics</b:comboBoxOption>
 <b:comboBoxOption>books</b:comboBoxOption>
 <b:comboBoxOption>music</b:comboBoxOption>
 <b:comboBoxOption>dvd</b:comboBoxOption>
 <b:comboBoxOption>toys</b:comboBoxOption>
 </b:comboBox>
 <!-- give the href an initial value, so that it can be
 clicked without changing the comboboxes -->
 <a id="amazon-link"
 href="http://rss.amazon.com/TopSeller/cat/books/">
 Click here!

</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[334]

Next, we show what it could look like. The arrow points to a part of a new window
that will open up:

Why is a behavior a nice choice for this application? This is because the setting of a
value in one comboBox triggers the setting of the value in the link based on the values
in both. The code for the handler in each combobox would be exactly the same and
therefore, it is better to separate the handler functionality from each combobox and
implement it as a behavior. Here is the definition of the behavior:

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 xmlns:e="http://www.backbase.com/2006/xel"
 name="http://www.squaringthecircles.com/squared">
 <d:behavior name="changeContext">
 <d:handler event="change">
 <e:variable name="cList"
 select="id('choiceList')/property::value" />
 <!-- make sure cList actually has a value -->
 <e:if test="$cList = ''">
 <e:set property="selectedIndex"
 with="id('choiceList')" select="0" />
 <e:variable name="cList"
 select="id('choiceList')/property::value" />
 </e:if>
 <e:variable name="tChoice"
 select="id('topChoice')/property::value" />
 <e:set property="href" with="id('amazon-link')"
 select="concat('http://rss.amazon.com/',
 $tChoice, '/cat/', $cList, '/')" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[335]

 <!-- for example:
 http://rss.amazon.com/TopSeller/cat/books/ -->
 </d:handler>
 </d:behavior>
</d:namespace>

As you can see, the code in the click event handler of the behavior makes sure that
the choiceList combobox actually has a value because it is initially empty. If empty,
the handler sets a value. The link is targeted with an XPath expression to set the
proper value in the href attribute. It you subsequently click on the link, the right
page will be opened.

Uses
The uses tag is designed to automatically include files when a certain element,
interface, behavior, or attribute is used. This could be when instantiating an element
in your document, or when inheriting from one in a TDL definition. For example,
say you want to create a new element called myElm. This element implements the
interface iInput that is defined in a file called iInput.xml. In order to automatically
load this file when the iInput interface is implemented, you must include its
definition with the uses tag.

<d:namespace xmlns:d="http://www.backbase.com/2006/tdl"
 xmlns:sq="http://www.squaringthecircles.com/squared"
 name="http://www.squaringthecircles.com/squared">
 <d:uses interface="iInput" src="iInput.xml" />
 <d:uses element="inheritedTag" src="extrafile.xml" />
 <d:uses behavior="specialBehavior" src="extrafile.xml" />
 <d:element name="myTag" implements="sq:iInput" />
</d:namespace>

The uses tag is only for file loading. To ensure that your element
definition inherits from a base element or interface, you will also need to
use the extends or implements attribute on the element tag or apply
the behavior to the element.

There are quite a few details and attributes you can specify to control the way files
are loaded when using the uses tag. You can find this information in the Backbase
API Reference.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[336]

The limits of creating UI components
We have left this discussion as the last part in this chapter because you can
now better understand some of the concerns that you need to be aware of when
developing widgets using TDL.

The Tag Definition Language is designed and implemented to build UI components
composed of XHTML elements, JavaScript, and CSS only. These components are
encapsulated on the view layer, while at the controller layer you only see the custom
tags that you have created using TDL. We have seen how this works by looking at
screenshots of the Backbase debugger.

One side of the discussion is that you should not use TDL for purposes it was not
designed for. Moreover, UI components should be small and have little behavior.

The other side of the discussion is that it is very tempting to use TDL for building
larger and complex UI widgets. It means a new and revolutionary way to build
web applications. With care and constraint, it is possible, therefore, why not?

TDL as a macro language
The example of using TDL to define widgets as building blocks for forms explained
earlier in this chapter, is an example of using TDL as a macro language. The main
purpose of defining the building blocks is to save you from writing a lot of repetitive
code. If you take the trouble to just write the code, then the resulting XHTML
elements would be in the Backbase area and therefore, in the controller layer. There
would be no encapsulation in this case; using the TDL building blocks just improves
modularity, which can never be wrong. Another example of using TDL this way
are the menu item links used in the BTL and command function example exercises
introduced in Chapters 2 and 3.

TDL as an object-oriented language
We discussed earlier in this chapter that TDL is a pure object-oriented language.
Because of this, it has two main features for application construction: inheritance
and composition.

Clearly, you can build larger objects by inheriting features of other objects. In TDL,
you can even inherit multiple features as we had seen for the BTL widgets. For
example, a calendar widget inherits from focusableElement, dimensionElement,
and more.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 7

[337]

There are limits to using inheritance. For example, if you build a car, it will be
composed of smaller objects such as doors and wheels. A car does not inherit
from wheels because a car is not a wheel but a composition. A car also has its
composite behavior.

If you want to build larger components, you must use composition—if your UI
component wants to have a chance to be maintainable and extensible.

The desirability of building larger UI components in your environment cannot be
decided by us. On one hand, all the architects of large business applications will
tell you that object composition is the basis of good application design: divide and
conquer, build small simple parts and compose them into larger and more complex
parts. Many design patterns use both inheritance and composition. On the other
hand, the requirements at the client-side of a web application may be different.

If you are using TDL in a compositional way, the resulting component will work
perfectly OK. However, there is a problem with encapsulation as we already
mentioned. Composed widgets are visible in the controller layer and there is only
one global DOM tree built. This allows malicious or stupid developers to trip up the
component definitions by traversing the DOM tree from the outside and destroying it.

Squaring the circles
The not so technically inclined developers will appreciate that TDL allows you to
put JavaScript back to the place where it came from: JavaScript is a very handy tool
to implement small pieces of logic, the circles of JavaScript being squared by the
square brackets of XML.

We are not claiming that you cannot do large scale application development with
JavaScript. You certainly can. We are claiming that there is a mismatch between the
declarative nature of XHTML and the procedural nature of JavaScript.

TDL allows you to define tag libraries on the client, just like JSP allows you to define
tag libraries on the server, which makes this mismatch manageable.

Namespaces
Despite the hazards of using composition, if you really would like to restrict yourself
to building UI components using what is allowed in a template only, elements in
the XHTML namespace, there are some major things that you cannot do and that are
part of the attractiveness of the Backbase framework.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Creating UI Components

[338]

Fundamentally, widgets built in other namespaces than the XHTML namespace,
such as BTL or the forms bf namespace belong in the controller layer, because that
is what the controller layer is for: an abstraction of the view elements, to provide
you with widgets with more functionality, and to shield you from browser quirks.

The behaviors functionality that the Backbase framework offers is functionality that
is defined outside the XHTML namespace and that is attached to elements in the
controller layer, but not in the view layer. This includes drag-and-drop behavior.
Earlier, we showed an example where the whole widget could be dragged—the
sticky yellow notes. The dragging handle was not the whole widget, but only the
top part. We could still use the event handlers on the whole widget because of the
targeting that you can do with the match attribute.

However, if you want to make a UI component out of another example, the
iPhone-like switch we showed in the previous chapter, you might not be so lucky.
The thing that is dragged, a red rectangle, is embedded in the switch, but because
it is dragged, it must be visible in the controller layer. Therefore, composition by
building the widget in a constructor using a create command instead of a template
to create the elements in the widget, is unavoidable, albeit only simple XHTML
elements are needed. In the code provided with this book, there is an example
where you can see the switch as TDL element.

Actually, it seems to be possible to attach drag-and-drop behavior to view nodes in a
really sneaky way by creating loose controller nodes. We think tricks like this should
be avoided at all cost!

Conclusion
The verdict is not out yet and maybe there should not be one. Of course, it is your
choice to use the TDL in any way you like.

Summary
In this chapter, we gave a lot of detail about the Tag Definition Language, the most
interesting and unique feature of the Backbase framework. We showed that you can
build powerful UI components using TDL, which promises new ways of doing web
application development, but also that some of the possible uses are controversial.

Some of the examples we used could be building blocks for the C3D travel blog
application—the sticky yellow notes that you can attach to photos and the sliding
thumbnails that you can use to show photos next to the text of a trip entry.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up
In the previous chapters we explained details about many BTL widgets. Still we
are missing a set of widgets that might prove to be handy when developing a web
application:

•	 Action and menu widgets: button, contextMenu, menuBar, toolBar,
menuPopUp, and pager. For some widgets in this category there also
exist data-bound versions: dataContextMenu and dataMenu. The action
widgets perform an action/function when clicked. The menu widgets
select menu items.

•	 Window and dialogs: window, modal, taskBar, and windowArea. These
widgets open a window or dialog on top of the main browser window.

•	 Multimedia: applet and flash. These widgets embed multimedia files.

There is also a set of command functions that we did not cover yet: alert,
bookmark, and trace.

In this chapter, we will complete the description of BTL widgets and the Command
Functions by describing these categories.

Here is a detailed list:

•	 Action and menu widgets
•	 Data-bound menus
•	 Windows and dialogs
•	 Multimedia widgets
•	 An example with menus and windows
•	 Miscellaneous commands: trace, alert, and bookmark

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[340]

Action and menu widgets
Action and menu widgets allow users to interact with a web application using
elements that match the overall style of the application. Something happens when
you click on an action or menu widget. Usually, you will wrap the functionality that
you want performed when the user clicks on the widget in a click event handler.

button
The BTL button widget represents generic button functionality. When the user
clicks on the button, an action is performed. You must implement the action in
an event handler. Here's a screenshot showing the button widget:

button inherits from focusableElement, containerElement,
dimensionElement, and positionElement. button does not
have local attributes or methods.

Look back to Chapter 2 to see the inheritance structure of the BTL widgets and the
attributes that are supported by the parent classes of button.

The button is enabled by default. Set the disabled attribute to true to make the
button disabled. The following example has an Enabled and a Disabled button, both
with an event handler that will be activated when clicked. For the Enabled button,
you will see an alert when you click on the button. When you click on the Disabled
button, nothing will happen. Here's the code for the button widget:

<b:button id="enabledSubmit">
 <e:handler event="click" type="text/javascript">
 alert('This button is enabled.');
 </e:handler>
 Enabled
</b:button>
<b:button id="disabledSubmit" disabled="true">
 <e:handler event="click" type="text/javascript">
 alert('This button is disabled.');
 </e:handler>
 Disabled
</b:button>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[341]

contextMenu
The contextMenu is a menu that becomes visible when the user executes a right-click
on a particular widget. Once visible, the user can select an item from that menu or
navigate to a submenu by holding the mouse over a menu item. This is shown in the
following screenshot:

contextMenu inherits directly from element.

contextMenu has one attribute:

Attribute Description
menuPopUp XPath query to the menuPopUp element (an element extending

menuPopUpBase) that will be opened when the contextMenu
is triggered. The evaluation of this query is done in
DOMNodeInsertedIntoDocument event handler, which means that
only elements before this element in the document order are accessible.

There are two ways to add a contextMenu to your application. In the first case,
you add a contextMenu element as a child of the element that should trigger
the contextMenu.

In the second case, you create the contextMenu in the same way as a child of
the triggering element. However, this time you place your menuPopUp inline in
the contextMenu.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[342]

Warning: It is not possible to support contextMenu properly in
the Opera browser, as it does not allow the browser context menu
to be disabled.

In the next example, the contextMenu uses XPath in the menuPopUp attribute to
find the menuPopUp. Right-click in the bordered book description to see the pop up.

<div style="border:1px solid black; width:400px;">
 Book Name:The Woman in the Dunes

Author:Kobo Abe

Price:5.99
 <b:contextMenu menuPopUp="id('menubar_context')" />
</div>
<b:menuPopUp id="menubar_context">
 <b:menuPopUpItem label="Add to shopping cart" />
 <b:menuPopUpItem label="Save to wish list" />
 <b:menuPopUpItem label="View extended information" />
</b:menuPopUp>

In the next example, the menuPopUp is located as a child of the contextMenu, so the
menuPopUp attribute is not needed on the contextMenu. Right-click in the bordered
book description to see the pop up.

<div style="border:1px solid black; width:400px;">
 Book Name:

 The Woman in the Dunes

Author:Kobo Abe

Price:5.99
 <b:contextMenu>
 <b:menuPopUp id="menubar_context">
 <b:menuPopUpItem label="Add to shopping cart" />
 <b:menuPopUpItem label="Save to wish list" />
 <b:menuPopUpItem label="View extended information" />
 </b:menuPopUp>
 </b:contextMenu>
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[343]

Next, we look at an example of a nested menuPopUp. Right-click in the bordered book
description to see the pop up.

<div style="border:1px solid black; width:400px;">
 Book Name:
 The Woman in the Dunes

Author:Kobo Abe

Price:5.99
 <b:contextMenu>
 <b:menuPopUp>
 <b:menuPopUpItem label="Add to shopping cart" />
 <b:menuPopUpItem label="Save to wish list" />
 <b:menuPopUpItem label="View extended information">
 <b:menuPopUp id="submenu">
 <b:menuPopUpItem label="Author biography" />
 <b:menuPopUpItem
 label="Publication information" />
 </b:menuPopUp>
 </b:menuPopUpItem>
 </b:menuPopUp>
 </b:contextMenu>
</div>

menuBar
The menuBar is displayed as a horizontal bar with menu items. When the user clicks
on one of the menu items, either a developer-defined command such as Print can
be executed, or the menuBar can display a vertically-aligned submenu. menuBar
commands can be logically organized by using child elements: menuBarItem and
menuBarSeparator.

menuBar inherits from dimensionElement and positionElement.
menuBar does not have local attributes, but it has menuItems and
selectedMenuItem as properties.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[344]

The keyboard can be used to navigate through the menuBar:

Key Description
Right Selects the menuBarItem on the right of the selected menuBarItem and opens

the menuPopUp of the menuBarItem. If the selection is on a menuPopUpItem
with a menuPopUp inside, it will open the menuPopUp and select its first
menuPopUpItem. When there is no menuPopUp inside, the selection in the
menuBar will be moved to the right. When there is no menuBarItem on the
right of the selected menuBarItem, the leftmost menuBarItem will be selected.

Left Selects the menuBarItem on the left of the selected menuBarItem and opens the
menuPopUp of the menuBarItem. If the selection is inside a menuPopUp with a
menuPopUp ancestor, the menuPopUp with the selection is closed and navigation
will continue for the first ancestor menuPopUp. When there is no menuPopUp
ancestor, the selection in the menuBar will be moved to the left. When there
is no menuBarItem on the left of the selected menuBarItem, the rightmost
menuBarItem will be selected.

Up Opens the menuPopUp of a menuBarItem if it is not already open and selects
the bottom menuPopUpItem. When a menuPopUp is already open, the selection
is moved to the menuPopUpItem above the currently selected menuPopUpItem.
When there is no menuPopUpItem above the currently selected
menuPopUpItem, the selection is moved to the bottom menuPopUpItem.

Down Opens the menuPopUp of a menuBarItem if it is not already open and
selects the top menuPopUpItem. When a menuPopUp is already open, the
selection is moved to the menuPopUpItem below the currently selected
menuPopUpItem. When there is no menuPopUpItem below the currently
selected menuPopUpItem, the selection is moved to the top menuPopUpItem.

Enter Opens the menuPopUp of a menuBarItem if it is not already open and selects
the top menuPopUpItem. When a menuPopUp is already open, a DOMActivate
event is dispatched when a menuPopUpItem without a menuPopUp is selected.
When the selected menuPopUpItem contains a menuPopUp, the menuPopUp will
be opened and its top menuPopUpItem will be selected.

Escape Deactivates the menuBar when no menuPopUp is open. When menuPopUps are
open, the menuPopUp that is lowest in the hierarchy is closed and navigation will
continue for the first ancestor menuPopUp or menuBar.

Home Selects the top menuPopUpItem of the open menuPopUp that is lowest in the
hierarchy.

End Selects the bottom menuPopUpItem of the open menuPopUp that is lowest in the
hierarchy.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[345]

The next example shows a menuBar with inline menuBarItem elements and a
menuBarSeparator:

<b:menuBar width="130px">
 <b:menuBarItem label="File">
 <b:menuPopUp>
 <b:menuPopUpItem label="Open" />
 <b:menuPopUpItem label="Save" />
 <b:menuPopUpSeparator />
 <b:menuPopUpItem label="Export">
 <b:menuPopUp>
 <b:menuPopUpItem label="To gif..." />
 <b:menuPopUpItem label="To png..." />
 </b:menuPopUp>
 </b:menuPopUpItem>
 <b:menuPopUpSeparator />
 <b:menuPopUpItem label="Save As..." />
 </b:menuPopUp>
 </b:menuBarItem>
 <b:menuBarSeparator />
 <b:menuBarItem label="Edit">
 <b:menuPopUp>
 <b:menuPopUpItem label="Cut" />
 <b:menuPopUpItem label="Copy" />
 <b:menuPopUpItem label="Paste" />
 </b:menuPopUp>
 </b:menuBarItem>
 <b:menuBarItem label="View">
 <b:menuPopUp>
 <b:menuPopUpItem label="Toolbar" />
 <b:menuPopUpItem label="Content" />
 <b:menuPopUpSeparator />
 <b:menuPopUpItem label="Windows" />
 <b:menuPopUpItem label="Errors" />
 </b:menuPopUp>
 </b:menuBarItem>
</b:menuBar>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[346]

menuPopUp
This is a pop-up menu that can be used inside a contextMenu, menuBarItem, or
menuPopUpItem. It can also be used without the contextMenu element. In that case,
the menuPopUp can be opened by adding a handler for the contextmenu event to an
application. The handler should call the open method of the menuPopUp.

toolBar
The toolBar widget displays a horizontal command menu. When the user
clicks on an item in the toolBar, a command is triggered. There are a number
of child widgets, such as toolBarItem, toolBarButton, toolBarSwitch, and
toolBarSeparator, which you can use to organize the commands.

toolBar inherits from disableElement, dimensionElement, and
positionElement. toolBar does not have local attributes or methods.

The toolBar widget is great for creating a desktop-like command bar. If you want
to combine commands and submenus, you should use a menuBar widget.

In combination with drag-and-drop functionality, you can make the toolBar movable.

You can add many different types of items in your toolBar. The toolBarItem
widget allows you to nest any other widget, allowing you to use a calendar or
a radio button group. The toolBarButton gives you a generic button to provide
extra functionality, such as print. The toolBarSwitch widget gives you a button
you can toggle, such as the bold/italics/underline on/off functionality in text
editors. Finally, the toolBarSeparator provides a vertical line that lets you logically
organize your toolBar widgets.

The following toolBar is composed of multiple toolBarButton widgets:

<b:toolBar width="400px">
 <b:toolBarButton>
 <img alt="" style="height:16px; width:26px;"
 src="media/send.gif" />
 Send
 </b:toolBarButton>
 <b:toolBarButton>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[347]

 <img alt="" style="height:16px; width:20px;"
 src="media/compose.gif" />
 Compose
 </b:toolBarButton>
 <b:toolBarSeparator />
 <b:toolBarButton>
 <img alt="" style="height:16px; width:19px;"
 src="media/erase.gif" />
 Erase
 </b:toolBarButton>
</b:toolBar>

In the next example, the toolBar has a toolBarItem, a toolBarSwitch, a
toolBarButton, and a toolBarSeparator. This toolBar can be dragged
anywhere in the application.

<b:toolBar e:behavior="b:drag" dragBehavior="move">
 <b:toolBarItem>
 <select size="1">
 <option>High Resolution</option>
 <option>Low Resolution</option>
 <option>No Resolution</option>
 </select>
 </b:toolBarItem>
 <b:toolBarSeparator />
 <b:toolBarButton>
 <img alt="" style="height:16px; width:26px;"
 src="media/send.gif" />
 </b:toolBarButton>
 <b:toolBarSwitch active="true">
 Bold
 </b:toolBarSwitch>
</b:toolBar>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[348]

pager
The pager widget provides a visual means to navigate through data sets or
information. A pager will most often be used in conjunction with a dataGrid.
In Chapter 5, we have seen several examples of this. This is a screenshot of the
pager widget:

pager inherits from dimensionElement and positionElement.

The pager has one attribute:

Attribute Description
for XPath query to the pageable widget to which the pager must

connect.

When you click on one of the navigation buttons or type in the input field in the
pager, the data set automatically updates to show the desired data rows. The
pagerBar widget functions as a container and graphical border for the pager. Simply
by connecting the pager to a data widget with the for attribute, the pager provides
built-in functionality for page navigation. Values of the page attribute of the
pagerButton element allow you to provide buttons for first, last, previous, and next
functionality. Additionally, the pagerJumper widget provides extended navigational
functionality; instead of navigating to a page through a list of numbered page links,
the pagerJumper allows you to type in a page number. Pressing Enter navigates you
directly to that page.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[349]

The pager widget provides advanced navigation possibilities for data widgets
or other data sets, such as an image viewer that could have multiple blocks of
information. It is a great way to provide navigation through rows of data sets
without doing any extra programming. You can have more than one pager that refer
to the same data widget. For example, you might want to place pager widgets above
and below a dataGrid.

The following example shows a standard pager with First, Last, Previous, and
Next buttons (specified by values of the pagerButton attribute) as well as a list of
numbered links (as specified by the pagerNumbers widget):

<b:pagerBar width="260px">
 <b:pager for="id('myListGrid')" width="250px">
 <b:pagerButton type="First" />
 <b:pagerButton type="Previous" />
 <b:pagerSeparator />
 <b:pagerNumbers numbers="5" />
 <b:pagerSeparator />
 <b:pagerButton type="Next" />
 <b:pagerButton type="Last" />
 </b:pager>
</b:pagerBar>

Next, the example replaces the list of standard links with a pagerJumper, which
allows you to type in a page number to which to navigate. The for attribute connects
the pager to a data widget as shown in the following code:

<b:pagerBar width="260px">
 <b:pager for="id('myListGrid')" width="250px">
 <b:pagerButton type="First" />
 <b:pagerButton type="Previous" />
 <b:pagerSeparator />
 <b:pagerJumper />
 <b:pagerSeparator />
 <b:pagerButton type="Next" />
 <b:pagerButton type="Last" />
 </b:pager>
</b:pagerBar>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[350]

Data-bound menus
In addition to contextMenu and menuBar, where you should add menu items
statically, there are also a data-bound versions of these widgets, dataContextMenu
and dataMenu, where the menu items can be loaded dynamically.

The dataSource for a menu
As for all data-bound widgets, dataContextMenu and dataMenu need to have a
dataSource associated to them. Some fields in the data source have a special meaning:

Field Description
identifier Unique identifier for the record
name Label of the menu item
icon Icon for the menu item (optional)
hasSubmenu A boolean value that indicates whether the menu has a submenu.

Default is false.
separator A boolean value that indicates whether the menu is a separator.

Default is false.
open A boolean value that indicates whether the menu is opened or not.

Default is false.
submenu A pointer to a child menu of a menu item, if it has one.

The menuActivate event
When a data-bound menu item is clicked upon, the menuActivate event is fired.
This event has a special property, detail, which allows you to find out which data
item in the dataSource is activated. See the next section for an example.

dataContextMenu
The dataContextMenu widget is very similar to the contextMenu widget. It becomes
visible when the user executes a right-click on a particular widget. Once visible, the
user can select an item from that menu or navigate to a submenu by holding the
mouse over a menu item.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[351]

This is an example of a dataContextMenu:

<b:dataSource name="dataContextMenu" e:behavior="b:localData"
 recordSelect="item">
 <b:dataSchema>
 <b:dataField name="name" />
 <b:dataField name="icon" select="@icon" />
 <b:dataField name="hasSubmenu" select="@hasSubmenu" />
 <b:dataField name="separator" select="@separator" />
 <b:dataField name="open" select="@open" />
 <b:dataField name="submenu"
 dataSchema="_self" select="submenu/item" />
 <b:dataField name="color" select="@color" />
 </b:dataSchema>
 <b:dataContainer xmlns="">
 <menu>
 <item icon="media/patch_cornsilk.gif"
 color="#FFF8DC">
 <name>Cornsilk</name>
 </item>
 <item icon="media/patch_darkseagreen.gif"
 color="#8FBC8F">
 <name>Darkseagreen</name>
 </item>
 <item icon="media/patch_lightsteelblue.gif"
 color="#B0C4DE">
 <name>Lightsteelblue</name>
 </item>
 <item separator="true" />
 <item color="">
 <name>Default</name>
 </item>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[352]

 </menu>
 </b:dataContainer>
</b:dataSource>
<b:box width="200px" height="200px">
 <b:dataContextMenu dataSource="dataContextMenu">
 <e:handler event="menuActivate" type="text/javascript">
 var oDataSource = this.getProperty('dataSource');
 var sColor = btl.dataSource.getValue(oDataSource,
 event.detail, 'color');
 this.getProperty('parentNode').
 setAttribute('backgroundColor', sColor);
 </e:handler>
 </b:dataContextMenu>
</b:box>

The interesting part in this piece of code is the event handler for the menuActivate
event. There is a property in the dataContextMenu that holds a reference to the
dataSource. This reference is retrieved and used to find the new color that is
required. Within the dataSource, the current record is found by using the
event.detail property of the event.

dataMenu
The dataMenu widget looks the same as the menuBar widget. It is displayed as a
horizontal bar with menu items. When the user clicks on one of the menu items,
either a developer-defined command can be executed or the dataMenu can display
a submenu.

This example shows a dataMenu:

<b:dataSource name="dataMenu" e:behavior="b:localData"
 recordSelect="item">
 <b:dataSchema>
 <b:dataField name="name" />
 <b:dataField name="icon" select="@icon" />
 <b:dataField name="hasSubmenu" select="@hasSubmenu" />
 <b:dataField name="separator" select="@separator" />
 <b:dataField name="open" select="@open" />
 <b:dataField name="submenu" dataSchema="_self"
 select="submenu/item" />
 </b:dataSchema>
 <b:dataContainer>
 <xi:include href="data/dataMenu.xml" />
 </b:dataContainer>
</b:dataSource>
<b:dataMenu dataSource="dataMenu" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[353]

To understand the example fully, we show part of the XML file that contains the
menu definition:

<menu>
 <item hasSubmenu="true">
 <name>File</name>
 <submenu>
 <item icon="media/icons/table.png">
 <name>File</name>
 </item>
 <item icon="media/icons/table_save.png">
 <name>Save</name>
 </item>
 <item separator="true" />
 <item hasSubmenu="true"
 icon="media/icons/table_go.png">
 <name>Export</name>
 <submenu>
 <item>
 <name>To gif...</name>
 </item>
 <item>
 <name>To png...</name>
 </item>
 <!-- more items -->
 </submenu>
 </item>
 <!-- more items -->
 </submenu>
 </item>
 <!-- more items -->
</menu>

Windows and dialogs
Windows and dialogs can display content that is disconnected from the main
browser window. Unlike a JavaScript pop-up window where in fact a completely
new browser window is created, the Backbase framework window and dialog
widgets stay on top of the browser window and cannot be moved outside.

The window widget is a draggable, resizable container that fully supports maximize,
minimize, restore, and close functionality. When used in combination with the
windowArea and taskBar, the user can seamlessly navigate between multiple
windows as easily as when using a standard desktop application.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[354]

The modal dialog is most commonly used to present (or request) important
information to (from) the user while preventing interaction with the rest of the page
or application.

window
The window widget represents a resizable window that floats above your application.
It can be closed by clicking on the closeButton widget in the top right of the header.

window inherits from dimensionElement,
positionElement, labelImplementorElement,
iconElement, and containerElement.

The window widget has these specific attributes:

Attribute Description
buttons Enables or disables buttons in the window. If set to none, no buttons

will be available.
mode Specifies whether the window is embedded in the interface. inline

embeds the window in your interface, while float detaches the
window from the interface.

open Set to open to open/expand the element by default.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[355]

window uses both drag-and-drop and resize behaviors, so it can be moved and
resized by the user. The value of the label attribute becomes the window header,
while any children of the window widget are displayed in the body of the window.
The window will by default start in the top left of your application. However, by
setting the mode attribute to inline, the window will be initially located at that
point in the application.

The window is open by default. You can change the open attribute to a value of
false to have the window closed by default.

This example shows a BTL window at work:

<b:window label="More Info About Nadine Gordimer" id="window"
 height="250px" position="relative">
 Nadine Gordimer
 (born 20 November 1923) is a South African novelist and writer,
 winner of the 1991 Nobel Prize in literature and 1974 Booker
 Prize.
 Her first published work was a short story for children, "The
 Quest for Seen Gold," which appeared in the Children's Sunday
 Express in 1937.
</b:window>

windowArea
The windowArea widget functions as a container for window widgets. It is used
in combination with a taskBar widget, where the taskBar becomes a window
manager for window widgets that are children of the windowArea.

The windowArea widget is required when you have multiple window widgets
that you want to manage with a taskBar. It also helps communicate between
window widgets.

In the next example, there is a windowArea that contains windows. The taskBar
provides easy navigation between the windows. The windows cannot move beyond
the boundaries of the windowArea.

<b:windowArea height="400px">
 <b:window label="Window 1" top="40px" left="20px"
 padding="5px">
 <p>Content of Window 1</p>
 </b:window>
 <b:window label="Window 2" top="60px" left="40px"
 padding="5px">
 <p>Content of Window 2</p>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[356]

 </b:window>
 <b:window label="Window 3" top="80px" left="60px"
 padding="5px">
 <p>Content of Window 3</p>
 </b:window>
 <b:taskBar orientation="top" />
</b:windowArea>

See the picture in the next section, taskbar, for an impression of how the windowArea
and the taskBar function together.

taskbar
The taskBar widget is used in combination with a windowArea. It helps to manage
multiple window widgets by creating tabs at the bottom of the screen for each open
window. This allows you to make a window active (in the foreground) by clicking
on the correct tab. Similarly, if you minimize one of the windows, you can open it
again by clicking on its tab in the taskBar. The text shown in the tab is the same as
the header label of the window. Here's the screenshot of a taskbar widget used in
combination with a windowArea:

The taskBar widget should be used when you have multiple window widgets
available in your application and you would like an easy way to navigate
between them.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[357]

When you have multiple windows that need to be connected to your taskBar,
your taskBar and all connected window widgets must be children of the
windowArea widget.

modal
The modal widget displays a modal window as shown in the following screenshot:

The modal is a pop-up window that contains displayed information, most often a
warning message.

modal inherits from containerElement, dimensionElement, and
positionElement. It also inherits drag behavior.

The modal widget has the following attributes:

Attribute Description
center Boolean value to indicate if the modal is centered automatically.
dragConstraint dragConstraint defines an element that serves as a boundary

for the dragged element. The dragged elements cannot go into this
element or beyond it (if it is a parent). The value is a valid XPath
expression. If the expression selects more than one node, only the
first node is used.

for XPath expression indicating which element will have its content
blocked. The application programmer must set the targeted element
with an offset.

open Set to open to open/expand the element by default.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[358]

When the modal is open, the user cannot interact with another part of the application
that you specify. They can interact with the content window, but the rest of the
specified part of the application is covered in a gray window. Users can close
the modal by clicking on the x icon in the top right of the modal window, or the
application developer can build custom functionality (for example, using buttons)
that offer the user a choice of options. You can use the width and height attributes
to determine the size of the content area of the modal, while the center attribute
allows the content area to be centered in the application, rather than being located at
the place that it is initially rendered.

The parts of the application that are accessible when the modal is open is determined
by the location of the modal and the use of the for attribute. When the modal is the
first child of the script tag, the modal renders the rest of the application unavailable.
However, if you use the for attribute, you can target an element that can be blocked.
This is useful when you want to block one part of an application, but still allow users
to interact with the rest of the application.

By default, the open attribute of the modal is set to a value of false, which means
the modal is invisible. Generally speaking, the display of the modal is triggered by
user interaction.

This example shows a BTL modal at work:

<b:modal label="Warning!" id="myModalWin" center="true" width="300px"
 height="100px">
 <div>
 You must click the OK button before you can re-access
 the application.
 </div>
 <div>
 <button>
 OK
 <e:handler event="click" type="text/javascript">
 var oModal = bb.document.getElementById('myModalWin');
 oModal.setAttribute('open', 'false');
 </e:handler>
 </button>
 </div>
</b:modal>
<button>
 Open modal
 <e:handler event="click">
 <c:setAttribute with="id('myModalWin')" name="open"
 select="'true'" />
 </e:handler>
</button>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[359]

Multimedia widgets
Certain multimedia technologies, such as Flash movies or Java applets can be
embedded in browsers. However, it can sometimes be a bit complex to set up.
BTL aims to make it easier to use those technologies and offers one interface for
all browsers.

applet
An applet widget allows you to insert a Java applet in your application. Behind the
scenes, we translate the applet widget into either an object for Microsoft Internet
Explorer or an embed for the Firefox browser. The appletParam widget allows you to
set parameters for your applet.

In the example below, a Java applet is loaded and given some parameters to show a
bar chart. The align="right" attribute will cause the applet to be displayed at the
right within its container. The BTL widgets allow you to use styling attributes like
width, height, and align to make styling of specific elements easier.

<b:applet width="250px" height="100px" align="right">
 <b:appletParam name="code" value="BarChart.class" />
 <b:appletParam name="codebase" value="media" />
 <b:appletParam name="title" value="Performance" />
 <b:appletParam name="orientation" value="horizontal" />
 <b:appletParam name="columns" value="3" />
 <b:appletParam name="c1_label" value="Q1" />
 <b:appletParam name="c1_color" value="blue" />
 <b:appletParam name="c1" value="10" />
 <b:appletParam name="c2_label" value="Q2" />
 <b:appletParam name="c2_color" value="red" />
 <b:appletParam name="c2" value="20" />
 <b:appletParam name="c3_label" value="Q3" />
 <b:appletParam name="c3_color" value="green" />
 <b:appletParam name="c3" value="5" />
</b:applet>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[360]

Here is a picture of this applet:

flash
The flash widget allows you to embed an Adobe Flash movie in your application.
Enter a relative path as the value of the src attribute to point to the location of your
Flash movie.

The flash widget bypasses the "activate control" message in Microsoft Internet
Explorer 6 and 7.

You can specify the dimensions of the Flash movie using the width and height
attributes. The src attribute is required.

The example shows how to insert a Flash movie:

<b:flash width="550px" height="350px" src="media/backbase.swf" />

An example with menus and windows
After having seen the isolated examples for the windows and menus, it is maybe
not so clear how we can tie these things together to form the basis of an application.
Just to show that this can be rather simple, we create a page on which you can place
windows in random order, by choosing them from a menu. Let's make it clear with
a screenshot:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[361]

The source code for this example can be found in bookApps/sqLittleWindows.

The web application page consists of two parts: a menu and a window area. We
created some simple windows that can be placed in the window area by choosing
one of the menu options. There are two types of windows: windows that contain
a Google gadget and windows that contain handcrafted items. The Google gadgets
were rather randomly chosen from the vast supply at http://www.google.com/ig/
directory?synd=open&cat=all. These gadgets must be placed in an iframe
within the window to work. The other windows just contain some text or some
BTL widgets.

The index.html page contains nothing special; therefore, we do not show it here.
The page includes app.xml, which is the starting point for the application. This file
has only two interesting lines of code:

<sq:windowMenu windowArea="myWindowArea"
 menuData="resources/data/mydatamenu.xml" />
<b:windowArea id="myWindowArea" overflow="auto" />

We do not need to explain what the purpose of the b:windowArea is, because
you have seen this widget in the previous sections in this chapter. But what
about sq:windowMenu? The sq:windowMenu widget hides all complexity of the
sqLittleWindows mini application. From the name you can guess that it is the menu
for the b:windowArea, and also that it is a custom widget we created using TDL.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[362]

sq:windowMenu extends b:dataMenu; therefore, there must be an XML file that
defines what the structure of the menu is. This is what the menuData attribute of
sq:windowMenu is for. Indeed there is a file called mydatamenu.xml that looks like this:

<menu>
 <item icon="resources/media/googleg.gif" hasSubmenu="true">
 <name>Gadgets</name>
 <submenu>
 <item url="myWindows/mystocks.xml" width="300px">
 <name>Stocks</name>
 </item>
 <item url="myWindows/myWeather.xml" width="340px">
 <name>Weather</name>
 </item>
 <item url="myWindows/myturtles.xml" width="380px">
 <name>Turtles</name>
 </item>
 </submenu>
 </item>
 <item separator="true" />
 <item icon="resources/media/patch_lightsteelblue.gif"
 hasSubmenu="true">
 <name>sq:window</name>
 <submenu>
 <item url="myWindows/simple.xml">
 <name>Simple Window</name>
 </item>
 <item url="myWindows/calendar.xml" width="200px">
 <name>Calendar</name>
 </item>
 </submenu>
 </item>
 <item separator="true" />
</menu>

The contents as shown above look very much like what we have seen before to
define a dataMenu. What may attract your attention are the url and width attributes
on the item tag. We will use these later when handling the menuActivate event to
load the proper window into the windowArea.

The dataSource needs to be adjusted accordingly:

<b:dataSource name="menuData" e:behavior="b:remoteData"
 recordSelect="item" url="resources/data/mydatamenu.xml">
 <b:dataSchema>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[363]

 <b:dataField name="name" />
 <b:dataField name="icon" select="@icon" />
 <b:dataField name="hasSubmenu" select="@hasSubmenu" />
 <b:dataField name="separator" select="@separator" />
 <b:dataField name="open" select="@open" />
 <b:dataField name="url" select="@url" />
 <b:dataField name="width" select="@width" />
 <b:dataField name="submenu" dataSchema="_self"
 select="submenu/item" />
 </b:dataSchema>
</b:dataSource>

As you can see, we have added specific dataField elements to cover url and width.

Let's take a look at the definition of the sq:windowMenu now. It has three parts:

•	 A constructor where the dataSource will be created
•	 A template that is needed to append the dataSource nodes to
•	 A menuActivate event handler, where the window selected from

the menu will be loaded into the windowArea

Here is the skeleton for sq:windowMenu:

<d:namespace name="http://www.squaringthecircles.com/squared">
 <d:element name="windowMenu" extends="b:dataMenu">
 <d:attribute name="windowArea" default="myWindowArea" />
 <d:attribute name="menuData" />
 <d:constructor type="text/javascript">
 <!-- the constructor code goes here -->
 </d:constructor>
 <d:template type="application/xml">
 <div>
 <d:content />
 </div>
 </d:template>
 <d:handler event="menuActivate" type="text/javascript">
 <!-- handler code goes here -->
 </d:handler>
 </d:element>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[364]

The constructor does not look very straightforward. If you look at it, it is just
a string with the XML for the dataSource, where its url attribute is filled in by
concatenating the menuData attribute value of the sq:windowMenu. This string is
then taken by bb.command.create to create a set of nodes that is appended to the
sq:windowMenu widget.

It would have been clearer if we would have been able to put the XML of the
dataSource within c:create tags in the constructor. This would work fine if
we did not have the requirement that the name of the file containing the menu
definitions should be variable and therefore, we wanted to have an attribute where
you could specify it. Somehow setting the attribute interferes with the c:create XEL
processing, therefore, we decided to use straight JavaScript.

The JavaScript string that we built must contain namespace declarations
as appropriate.

This is the code for the constructor:

<d:namespace name="http://www.squaringthecircles.com/squared">
 <d:element name="windowMenu" extends="b:dataMenu">
 <!-- attributes go here -->
 <d:constructor type="text/javascript"><![CDATA[
 var sCstr = '<b:dataSource
 xmlns:b="http://www.backbase.com/2006/btl" ';
 sCstr += ' xmlns="http://www.w3.org/1999/xhtml"
 xmlns:e="http://www.backbase.com/2006/xel" ';
 sCstr += ' e:behavior="b:remoteData" recordSelect="item" ';
 sCstr += ' url="' + this.getAttribute('menuData') + '">';
 sCstr += ' <b:dataSchema>';
 sCstr += ' <b:dataField name="name" />';
 sCstr += ' <b:dataField name="icon" select="@icon" />';
 sCstr += ' <b:dataField name="hasSubmenu"';
 sCstr += ' select="@hasSubmenu" />';
 sCstr += ' <b:dataField name="separator"';
 sCstr += ' select="@separator" />';
 sCstr += ' <b:dataField name="open" select="@open" />';
 sCstr += ' <b:dataField name="url" select="@url" />';
 sCstr += ' <b:dataField name="width" select="@width" />';
 sCstr += ' <b:dataField name="submenu" dataSchema="_self"';
 sCstr += ' select="submenu/item" />';
 sCstr += ' </b:dataSchema>';
 sCstr += ' </b:dataSource>';
 bb.command.create(sCstr, this,'replaceChildren');
]]></d:constructor>
 <!-- the template and menuActivate event handler go here -->
 </d:element>
</d:namespace>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[365]

We agree that the code is not pretty. It would be better to construct the nodes by
using createElement commands, but then it would be harder to see what is going
on. If you look at the string we are building in the constructor, you will see that it is
an exact copy of the code for the dataSource we showed earlier.

Finally, here's the code for the menuActivate event handler:

<d:namespace name="http://www.squaringthecircles.com/squared">
 <d:element name="windowMenu" extends="b:dataMenu">
 <!-- attributes, template and constructor go here -->
 <d:handler event="menuActivate" type="text/javascript">
 var oDataSource = this.getProperty('dataSource');
 var sUrl = btl.dataSource.getValue(oDataSource,
 event.detail, 'url');
 var sWidth = btl.dataSource.getValue(oDataSource,
 event.detail, 'width');
 if (sUrl) {
 var sName = btl.dataSource.getValue(oDataSource,
 event.detail, 'name');
 var sId = this.getAttribute('windowArea');
 var oWinArea = bb.document.getElementById(sId);
 var oMyWin = bb.document.createElementNS
 ('http://www.backbase.com/2006/btl', 'window');
 oMyWin.setAttribute('label', sName);
 if (sWidth) oMyWin.setAttribute('width', sWidth);
 oMyWin.setAttribute('overflow', 'hidden');
 oWinArea.appendChild(oMyWin);
 // load the window contents
 bb.command.load(sUrl,'GET',null,null,oMyWin);
 bb.command.tile(oWinArea,
 true, false, '1px', '1px');
 }
 </d:handler>
 </d:element>
</d:namespace>

What does the event handler do? First, it retrieves the value for the url and the
width of the menu option selected. These represent the url and the width of the
window to be loaded. You can set the width, but not the height of the window,
because we want to arrange the windows neatly into rows within the windowArea.

After creating a window, its attributes are set, and the name of the menu option
becomes the label of the window.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[366]

The window is appended to the windowArea and the window contents are loaded
according to the url given. Finally, the windowArea is tiled to arrange the windows
into rows.

Let's look at an example of loading a window containing the stocks gadget. The value
of the url attribute is in this case myWindows/mystocks.xml. If you look in this file,
it contains:

<iframe xmlns="http://www.w3.org/1999/xhtml"
 height="100%" width="100%"
 src="../googlegadgets/stocks.html">
</iframe>

The iframe has a url where the code that we retrieved for the gadget is stored. You
can find it in stocks.html. The line of code below should really be all on one line:

<script src="http://www.gmodules.com/ig/ifr?
 url=http://hosting.gmodules.com/ig/gadgets/
 file/114860707221226021925/stock-tab-index-
 publish.xml&synd=open&w=250&h=470& title=Stock+Market+Index
 &border=%23ffffff%7C3px%2C1px+solid+%23999999& output=js">
</script>

Is the sq:windowMenu widget useful?
As the widget is now, there are some restrictions to it:

•	 You can drag-and-drop a window, but if you retile the windowArea, the
window will go back to where it came from. If you want to prevent this,
you could either disable drag-and-drop or you could write your own tiling
routine, which is not a trivial task.

•	 If you close a window, it leaves a hole in the tiling, which you could try
to repair of course. You should also destroy the window to remove all its
resources properly.

•	 Some windows may not like to be displayed twice. For our examples this
is not a problem because they do not contain any id values. Still, this is
something to watch out for.

The usefulness of the sq:windowMenu widget depends on the way you are going to
deploy your web application and on the structure of your development team. If your
team is really small and consists of expert JavaScript developers, and you make this
kind of application only once, then it would be better to just place the code that we
folded into a widget now, straight onto your page.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[367]

Otherwise, you may reap the advantages of being able to specify the menu layout
separately in a file, and of allowing your UI designers to put a sq:windowMenu on
the page without worrying about the dataSource widgets and the dataField
elements that it should contain.

If you ever add new function to the sq:windowMenu, such as custom tiling, this will
be available to all instances of the widget everywhere in your application.

Miscellaneous commands
This category contains, as the name suggests, some commands that we did not know
how to place in another category: trace, alert, and bookmark.

trace
Adds the specified message to the event log. The context (either the current context
or a context defined by the XEL with element/attribute) is automatically added to
the message.

The trace command supports the select and with attributes.

Logs a message and places it in the console. Here's the code for trace command:

<div>
 Log a message to the console for debugging...
 <e:handler event="click">
 <c:trace select="'My Debug Message'" />
 </e:handler>
</div>

The next screenshot shows what happens when you click on the text:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[368]

alert
Alert requires no introduction. You have seen so many already!

It raises an alert box with the text as specified by the select attribute. Let's look
at the following code:

<div>
 Click for Command Alert (string) - returns "alert text"
 <e:handler event="click">
 <c:alert select="'alert text'" />
 </e:handler>
</div>

You can use an alert like the following for debugging:

<div>
 Click for Command Alert (node) - returns "object"
 <e:handler event="click">
 <c:alert select="id('cmd_object')" />
 </e:handler>
</div>
<div id="cmd_object" style="border: solid;">
 Alert with this div
</div>

bookmark
Adds a state to the browser which can be activated by pressing the Back/Forward
buttons, thus enabling history and bookmarking for AJAX applications.

The bookmark command can have two attributes:

Attribute Description
name The string label to be used as bookmark identifier. When this

parameter is omitted, a random string is created.
title The title associated with the bookmark (to be displayed in the

browser navigation history).

In the following example, the state of a tabBox is added to the browser history.
Whenever a tab is selected, the URL is updated to reflect the current selection.
To do this, once bb.command.bookmark is used, once c:bookmark, and twice
bb.history.add is used. They all have the same functionality. A handler is
added to the tabBox (when the tabBox is added to the page) that will listen to the
history event. When the user navigates through the history, the tabBox is restored
to match the selected tab when the state was added to the history.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 8

[369]

<b:tabBox>
 <e:handler event="DOMNodeInsertedIntoDocument"
 type="text/javascript">
 <![CDATA[
 //Add the handler for history actions!
 var oTabbox = this;
 //Function used for restoring the tabbox
 function bookmarkTabbox(sTab){
 //It's a tabselect
 if(sTab.indexOf('tab') == 0){
 var iTab = sTab.charAt(3);
 oTabbox.setProperty('selectedIndex', iTab-1);
 return true;
 }
 return false;
 }
 //Add the tabbox update to the history event
 bb.document.addEventListener('history',
 function(event) {
 bookmarkTabbox(event.bookmark);
 }, false);
 //Restore the initial state
 if (!bookmarkTabbox(bb.history.current)) {
 //add the first tab because there will be
 //no select event for it
 bb.command.bookmark('tab1', 'Tab 1');
 }
]]>
 </e:handler>
 <b:tab label="Tab 1">Tab 1
 <e:handler event="select">
 <!-- Add the action to history -->
 <c:bookmark name="tab1" title="Tab 1" />
 </e:handler>
 </b:tab>
 <b:tab label="Tab 2">Tab 2
 <e:handler event="select" type="text/javascript">
 //Add the action to history
 bb.history.add('tab2', 'Tab 2');
 </e:handler>
 </b:tab>
 <b:tab label="Tab 3">Tab 3
 <e:handler event="select" type="text/javascript">
 //Add the action to history

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Widget Wrap-up

[370]

 bb.history.add('tab3', 'Tab 3');
 </e:handler>
 </b:tab>
</b:tabBox>

It is a bit hard to visualize this example with a picture. You should try it out using
the BTL Example Exerciser. What you will see is that the URL in the browser is
adapted each time you click on another tab. The browser history will be updated
and when the history event is triggered, the proper tab will be made active in the
history event handler.

Summary
By reaching the end of this chapter you have seen almost all, BTL widgets and
command functions. The ones you have not seen are seldom used, deprecated, or
otherwise not advisable to use. To make it easier to find a specific widget, you can
find the category to which it belongs in Chapter 2. An overview of the command
functions can be found in Chapter 3.

You can find an example of a tree widget in the BTL Exerciser sample
application; we just did not have space in Chapter 5 to describe it. The
treeGrid was omitted from the book because the plusDataGrid we
developed in Chapter 5 is a better alternative.

We did not formally describe the CSS-related commands. However, you can find
many examples throughout the book using them. There are also specific examples in
the Command Exerciser sample application.

In the next chapter, we will look at the Backbase debugger, provide some
optimization tips, and discuss deployment of your Backbase application.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and
Deployment

Sometimes, something goes wrong when you test a newly developed application.
How can you figure out where the problem is? In this chapter, we give some tips
specifically adapted to development using the Backbase framework.

When everything works, it is a good idea to look at your application again from
a different standpoint, instead of just checking whether it functions correctly. We
will discuss some ways by which you can make your application perform faster
and more robustly.

Next, it is time to think about deploying your web application on a web server.
We will have some points on this subject too.

Part of the information in this chapter may be found almost literally in the online
documentation for the Backbase framework. We are repeating the text here in
an adapted and abbreviated form because we think it is handy to have all the
information you need to effectively develop a client web application in one place,
in this book. In addition, some of this documentation is hard to find if you do not
know where to look. We will also tell you where it is.

This chapter covers the following topics in detail:

• Debugging and the Backbase debugger with the various tabs you can see
• Application optimization, focusing on YSlow
• The TDL Optimizer and the options it offers
• Deployment of your client web application on a server

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[372]

Debugging
Whether you do development using Extreme Programming and a test-first approach
or whether you develop with the old fashioned waterfall method, there will be
moments when your web application does not react in the way you expect or does
not look like the designers said it should. You'll need tools and ingenuity to figure
out what is wrong.

Probably still the best toolset for web developers to help them with the task of
debugging their application is a combination of the Firefox browser with the Firebug
and Web Developer plugins. They allow you to inspect and change almost anything on
your page when you are testing your application. Within Firebug, you can see exactly
what was sent and received between browser and server, set breakpoints, and so on.
We have shown you some examples of Firebug usage in the earlier chapters.

Here is a list of the frequent problems that we encountered ourselves or that we saw
in the forum on the Backbase developer network (http://bdn.backbase.com):

• Debugging a web application using the Backbase framework is no different
from debugging any other web application using JavaScript. You can use
the same tools and the same tricks.

• Old fashioned, well-placed JavaScript alert statements sometimes help
to find the cause of a problem more quickly than any other way.

• Using XHTML has its challenges; some browsers punish you for forgetting
end tags or for inserting funny characters by not displaying anything. Firebug
can sometimes help to find out where the cause is by inspecting the reply
sent from the server.

• Another cause for not seeing any output is sending text/html instead of
application/xml as Content-type from the server. This happens to us more
often than you would expect!

• Although the Backbase framework can shield you from browser
incompatibilities, the JavaScript you write or the CSS you use can still show
differences across browsers. You must test your work at least in Chrome,
Firefox, MSIE, Opera, and Safari, unless you can prescribe to your users
which browser to use.

• If you have performance problems instead of functional ones, the Console
log and Net tab of Firebug can help because they show time in milliseconds
for every file loaded.

• Make it work, make it right, make it fast (Kent Beck, the inventor of
Extreme Programming, said this). Fast is last. We will talk much more
about performance later in this chapter.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[373]

The Backbase debugger
The Backbase debugger has functionality that resembles the Firebug plugin of the
Mozilla Firefox browser, with the advantage that it will work with all browsers
supported by the Backbase framework.

The details of what you can do with the debugger are explained here:
http://bdn.backbase.com/client/examples/debugger.

Overview
When you are running the Backbase development version (as opposed to the
optimized version, which we will talk about later), the debugger is always present
in the background. When something goes wrong, such as a JavaScript error occurs,
or the XML you are trying to load is invalid, then the debugger will pop up with
one bar containing an error message. If you click on this bar, a window will open in
which you can search for details.

You can also make the debugger appear on demand, by pressing the Esc key. This
can be useful if you want to take a look at the structure of a widget or at the CSS
used. You have seen examples of this in Chapter 7 when we looked at the model and
view structure of the widgets we developed.

The information/error bar
Below you see a typical picture that could appear when something goes wrong.

Press the Esc key to toggle the visibility of the bar. A gray Backbase icon will appear.
If you click on the small right arrow, the bar will expand. When an error occurs, the
information/error bar will open automatically. You can click on the icon or the bar to
open the debugger window:

The error bar is rather intuitive; you will probably not need any help with it. Just
note that you can move the bar around by dragging the Backbase icon. Note also
that the messages are numbered. You can step back and forth to see the status of
your application at the time when the message was issued.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

v@v
Text Box
Download at WoweBook.com

Debugging, Optimization, and Deployment

[374]

The debugger window
The debugger window shows a set of tabs when it is opened:

• Console: Shows details about error messages and source text of failing
JavaScript if applicable. It logs messages written by the bb.console function.

• Model: Provides an interactive overview of the application's model space.
• View: Provides an interactive overview of the view space.
• TDL: Provides an interactive overview of defined namespaces and classes.
• Network: Provides an I/O inspector of all XMLHttpRequests.
• Reports: Provides system information and a summary of the elements in

both the Model and the View space.
• Preferences: Provides various settings, for example, when the debugger

window should be opened.
• Help: Provides basic help on how to use the debugger.

At the bottom of the debugger window you'll see >>>. You can type commands
here. This line will be visible with every tab that you have open. The output of the
command will differ depending on the tab that is active.

For example, if we had a simple accordion on our page and selected an
accordionItem in the Model tab, then typing bb.console.log(this) in the
command area and clicking Run will result in b:accordionItem as console output.

Now, if we go over to the View tab, you will see that a div with class=”btl-
accordionItem” is selected. Typing the same bb.console.log(this) in the
command area will now show: div.btl-accordionItem.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[375]

Console tab
Let's look at a realistic scenario that often happens to us:

2: XInclude: Failed loading resource from
 “http://snippetviewer/snippetViewer/testcases/btl_accordion.xml”.

Usually, this means that you forgot to code a namespace declaration. To make sure, you
can open the debugger window, click on the blue sourceText link and see this in the
console window:

When debugging TDL widgets, it can be really useful to see the source text of a
failing method, or when debugging server scripts, you should see what the script
sent back.

We have seen the bb.console command above. Here are a few examples of what
you can do with it. The complete list can be found in the online documentation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[376]

If you are familiar with the Firebug tool, you will see that this command is very
similar to the console command in Firebug, with the obvious difference that
the Backbase debugger commands also work in other browsers, such as Internet
Explorer. The methods available on the bb.console object are designed to match
the Console API as used in the Firebug tool for the Firefox browser.

Methods Description
bb.console.
error(object[, object,
...])

Writes a message to the console with the visual "error"
icon and color coding.

bb.console.
assert(expression[,
object, ...])

Tests whether an expression is true. If not, it will write a
message to the console and throw an exception.

bb.console.dir(object) Prints an interactive listing of all properties of the
object.

The Model and View tabs
In Chapter 7, we have already shown you an example of the Model and View tabs
when we discussed the model and view layers of the Backbase framework. Below
are some more examples that should make clear that there is a lot of information
to be found in the debugger that can help you when developing widgets and web
applications. A practical feature is that you can find a node by first clicking the
Inspect button, and then clicking on the element in your browser window that
you want to find. Then, the corresponding model or view node (depending on
the tab you activated) will be selected. On the right-hand side, you can find all the
information about the DOM tree and the CSS layout.

The picture below shows a part of the Model DOM tree:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[377]

The next picture has the same application code, but now the View part is shown:

The HTML DOM (View) nodes are available for inspection and you can get detailed
information about the layout of the component and its style.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[378]

TDL tab
In this tab, you can inspect the complete namespace and class structure as defined in
TDL for all namespaces that are defined in your page. You can find a class by drilling
down the namespaces and classes. The following is a picture of what the TDL tab
window looks like:

On the right side of the screen, there is an overview of the different attributes,
properties, and methods of the class.

Network tab
In this tab, you can inspect the XMLHttpRequests occurring in the application. You
can see:

XMLHttpRequests Description
Request Headers The headers sent to the server on request
Request Body The body (data) sent to the server on request
Response Headers The headers sent from the server when returning the request
Response Body The response text of the request returned by the server

You can also see the size of the files that were loaded and how long it took
in milliseconds.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[379]

Reports tab
In this tab, you can see statistics about your application.

Preferences tab
Here, you can set debugger preferences as shown in the next screenshot:

Help tab
This tab provides instructions for using the debugger.

Application optimization
With optimization, we mean optimization for performance from the perspective of
the user of your web application. Performance should be looked at last as we said
earlier in this chapter. This is because optimizations in an application are always
needed in a different area than where you thought they would be needed at the
start of your development process. Looking at performance as the last activity of
course does not mean that you should do stupid things during development, such as
including long database queries in your web application.

You can find a wealth of information on the Web about making your applications
faster. However, we base the discussion in the following sections on this site:
http://developer.yahoo.com/performance/.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[380]

This site has a list of 34 points that you should look at when trying to optimize your
site, subdivided into seven categories: Content, Server, Cookie, CSS, Javascript,
Images, and Mobile. We will look at the first six of these categories, not to repeat
information that is already well described on the site, but to add specific points to
be aware of concerning the Backbase framework. The seventh category, Mobile, is
interesting but out of the scope for this book.

One more point before we start discussing optimizing the content of your
page: Install YSlow!

As it says on the Yahoo developer site:

YSlow analyzes web pages and suggests ways to improve their performance
based on a set of rules for high performance web pages. YSlow is a Firefox
add-on integrated with the Firebug web development tool.

This tool checks for each of the rules and gives recommendations for improvement.

The following is a picture of using YSlow with the C3D travel blog application. As a
result, apparently, we need to do something about compression and minifying both
CSS and JavaScript.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[381]

Optimizing content
Optimizing the content of your web page involves the following points:

• Making fewer HTTP requests
• Reducing DNS lookups
• Avoiding redirects
• Making AJAX cacheable
• Post-loading components
• Preloading components
• Reducing the number of DOM elements
• Splitting components across domains
• Minimizing the number of iframes
• Preventing 404 errors

If you have only a limited amount of time to do the optimization of your application
and you have to make a choice of what to do, then, look at the items here that help
optimize the content of the pages in your web application because they will have
the greatest effect.

We pick out four points here to discuss in more detail: Making fewer HTTP requests,
Making AJAX cacheable, Post- or preloading components, and Reducing the number of
DOM elements.

Making fewer HTTP requests
Balancing the number of HTTP requests against the file size of the components you
load seems to be the number one activity that can help to speed up the loading of
your web pages. If you've ever taken a look at the Console and Net tabs of Firebug,
you would have seen that multiple requests are issued to the server: in the case of
the startup window of the C3D travel blog sample application, it amounts to around
30 requests, while nothing special happens on that page. Particularly in the Net tab
of Firebug, you can evaluate what types of requests were sent, how long it took to
receive a reply, and so on.

The bindings in the Backbase framework (the TDL definitions for the BTL widgets)
are split up in many small files to allow lazy loading of what you need. For good
performance, the granularity of these building blocks is too high. It would, therefore,
be advantageous to combine these files into larger chunks based on what you
actually use in your application.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[382]

To help you with this rather complex task, there is a tool available, the TDL Optimizer,
that can combine files together and also compress and minify the contents by taking
out whitespace and comments. The TDL Optimizer is discussed later in this chapter.
Be sure though, that your files do not become too long because this will adversely
affect performance and some browsers cannot cope with very large files.

Another way to minimize the number of HTTP requests is to combine images.
This can be done using CSS sprites. It involves combining background images into
one and by using background-image and background-position in CSS, you can
display the right part of the image. This technique is used for many of the BTL
background images.

Making AJAX cacheable
We assume you know how to add Expires or Cache-Control Headers. This should be
applied not only to components of complete pages, but also to AJAX responses. Also,
think of compressing and minifying responses.

It may not have been obvious to you that it is also possible to cache data responses.
Look into the YSlow documentation for an example of how this could be done.

Post- or preloading components
The old wisdom about user interaction response times says that a user who is
looking at his/her browser window may be willing to wait three seconds for a page
to be loaded or a reply to be received. If it takes longer, most users will become
increasingly annoyed.

This is especially important when the initial page of your application is loaded.
Therefore, you should try to load as few components as possible initially. For a
Backbase application, there are a few rules of thumb:

• Try to put static content or content that uses HTML only outside of Backbase
areas. Note that you can still dynamically change content outside Backbase
areas using bb.command.load.

• Make Backbase areas initially empty wherever possible. Fill these areas using
an onload event handler; this'll cause them to be filled after the rest of the
page is loaded.

• If you have large chunks of standard XHTML within a Backbase area,
escape these blocks using b:xhtml.

• If you are using the TDL Optimizer or hand-crafted combinations of
widget definitions, combine only those files that are absolutely required
on the first page.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[383]

Sometimes, it is impossible to keep response times below the three-second
threshold and in that situation, you need to do something to keep the user busy.
An often-used trick is to display a busy image. Alternatively, you could display
extra textual information or a short Flash movie. Be careful not to hide the bad
design behind a busy image.

Preloading can be useful if you can predict that a user will need some component
or data and that you can utilize the idle time of the browser-server connection.

Reducing the number of DOM elements
A while ago, we read an article of someone who was trying to use an earlier version
of the Backbase framework and who was complaining that his application slowed
down considerably when the number of DOM nodes were above 12,000. We thought
this was insane: when you can request new data using AJAX dynamically, why
would you try to squeeze 12,000 nodes in a page, while you would be able to see
only a part of it?

Nevertheless, the new dataGrid BTL component in the Backbase framework was
specifically designed to be able to handle thousands of nodes. Despite this, the
dataGrid will perform better when you serve it one page at a time from a remote
data source, instead of feeding it with a flood of nodes!

Because of the double-layer approach of the Backbase framework architecture, there
are sometimes three nodes instead of one, for the controller, the model, and the view.
Therefore, it is extra helpful for speed of processing when you keep the DOM nodes
at a minimum.

Maybe, surprisingly, defining and using TDL components helps to minimize the
model DOM tree because this tree will only contain the nodes for the tags you
defined, as we have seen in Chapter 7. To minimize the number of view nodes,
the usual rules apply as detailed in the YSlow documentation.

Optimizing the server
Optimizing the server that is hosting your web application involves the
following points:

• Use a Content Delivery Network
• Add an Expires or a Cache-Control Header
• Gzip components (Compression)
• Configure ETags
• Flush the buffer early
• Use GET for AJAX requests

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[384]

Using a Content Delivery Network involves deploying your application on a number
of distributed servers, serving static content from a location near the user. This seems
to improve performance more than distributing the server processing, which would
involve complicated synchronization issues.

Adding an Expires or a Cache-Control Header can be very useful to enable the
server to cache components and therefore avoiding HTTP requests. However,
you should be careful with dynamic components or new releases of your
application, because the browser could try to use old versions of these
components, which may cause problems.

Compression
Compression will make files smaller. Of course, it takes time to compress and
decompress files before and after they are sent over the network, but the gain in
shorter transmission time offsets this extra processing easily. Therefore, compression
makes your application perform faster and results in shorter response times.

Browsers automatically decompress zipped files, but on the server side you must
usually do something, such as configuring the server in the right way. Here are
some tips.

Both Apache Httpd Server 2.0 and 1.3 support server-side compression,
which means that you do not have to compress your files yourself.

To enable compression on Apache Httpd Server 2.0, you must load the mod_deflate
module in your httpd.conf configuration file. mod_deflate adds a filter to Gzip the
content. You can allow the compression of all web files by using the SetOutputFilter
directive, or you can specify file types with the AddOutputFilterByType. Refer to the
Apache Httpd Server 2.0 documentation (http://httpd.apache.org/docs/2.0/) for
more information.

Apache Httpd Server 1.3 uses the mod_gzip module rather than the mod_deflate
module for compression. Refer to the mod_gzip home page for more information:
http://sourceforge.net/projects/mod-gzip/.

Microsoft Internet Information Server 6 includes a native compression system
that can be configured to compress both static content and dynamic content.
Microsoft Internet Information Server 6 also caches the compressed information
in a directory, which helps improve performance by eliminating the need to
compress already-compressed content.

To enable HTTP compression in Microsoft Internet Information Server 6, open the
website's property page to edit the global properties for the site. Navigate to the
Service tab and configure the HTTP Compression section.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[385]

IIS version 5.x does not have native support for compression. There are
third-party commercial plugins available, but it is also possible to compress
the files manually using Gzip and have an ASP page to check for compression
support on the client browser.

If you cannot or do not want to use the Apache Httpd Server server-side
compression modules, you can also use PHP. When using PHP, you must compress
the files yourself using a utility such as Gzip. The next step is to create a PHP script
that checks to see if the client can accept compressed files. If it can, then you can
send the manually compressed files to the client. If not, you should send the
uncompressed files.

Using Etags is more flexible than using expiration dates. However, if you do not
know what you are doing, it is better to remove them, for example by adding
FileETag none to the Apache configuration file.

Flushing the buffer early
Although the piece of advice given for this item is not specific to Backbase
applications and applies to using PHP on the server, if you do use PHP, this is
an easy thing to do. Use the flush() function right after the head of the page, to
enable the browser to start rendering the page earlier.

Using GET for AJAX requests
It seems that browsers implement POST as a two-step process. POST is often used
instead of GET to avoid long URLs that may contain sensitive data, but as you do
not see the URL when using an AJAX request and GET requests are mostly easier to
construct in a Backbase application, it is better to avoid POST if you are not sending,
but retrieving data.

Optimizing cookies
Optimizing cookies involves reducing cookie size and using cookie-free domains
for components.

From a Backbase framework point of view, there is nothing specific about reducing
cookie size.

Regarding using cookie-free domains, which is useful for hosting static and public
content: it would theoretically be possible to put the images used for styling
Backbase components into a different domain, however, this is probably not worth
the effort.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[386]

Optimizing JavaScript and CSS
For CSS, we should look at these points:

• Put stylesheets at the top
• Avoid CSS expressions
• Choose <link> over @import
• Avoid filters

When considering optimizing JavaScript, you should look at the following list.
Some of the points also apply to CSS:

• Put scripts at the bottom
• Make JavaScript and CSS external
• Minify JavaScript and CSS
• Remove duplicate scripts
• Minimize DOM access
• Develop smart event handlers

We do not need to discuss CSS Expressions, @import, and filters here, but for
the placement of CSS and JavaScript, there are some considerations with respect
to Backbase.

Placing JavaScript code at the end of the page
and CSS at the top
Having your application's JavaScript code at the bottom of a page makes the page
load faster because execution of scripts will block parallel downloads.

This is not always possible when using the Backbase framework because it is
necessary to have the libraries and widget definitions loaded before they are used.
Therefore, your options in this respect are not many. One trick to consider is to keep
the Backbase areas empty when the page is initially loaded and then fill these areas
when the loading is completed.

The inclusion of the Backbase boot.js file should still be inside the head
element of the page.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[387]

With CSS, it is exactly the other way around. When CSS is placed at the top of the
page, it appears to be loading faster because the browser will be able to progressively
render the elements on the page.

Backbase widgets usually contain their own CSS that is loaded using resource tags
when the widget is loaded. This is OK because when a widget is not used, its CSS is
not loaded and processed unnecessarily.

Minify JavaScript and CSS
You can improve application load times by decreasing the number of bytes sent
to the client. Minifying JavaScript and CSS involves removing whitespace and
comments. The following are some examples of regular expressions that you could
use to remove these unwanted items. It is also possible and probably preferable to
use the TDL Optimizer tool for this purpose. We will talk about this tool in a later
section of this chapter.

To remove items such as whitespaces and comments, you can use XSLT or you can
use regular expressions to strip files. These regular expressions can be included in
an Apache Ant build process, or you can run a find/replace on your files:

• Remove CSS comments (simple):
\/*[\s\S]*?*\/

• Remove CSS comments (advanced):
^\/*[\s\S]*?*\/\s*

• Remove empty lines:
^[\r\n]+

• Remove tabs:
^[\t]+

• Remove CSS comments, tabs, whitespaces, and carriage returns (please note
that this is a single line regular expression):
(^\/*[\s\S]*?*\/\s*|\/*[\s\S]*?*\/|^\s+|(?<=:)[]+|(?<=\{)\s+\
s+|\s+(?=\})|
(?<=;)[\r\n]+|(?<=,)[\r\n]+)|\t

Although these expressions were tested by Backbase, there is no
guarantee they'll work in your situation.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[388]

Removing duplicate scripts
Loading the same JavaScript script twice is certainly not a good idea. If you are
using Backbase widgets only to contain JavaScript, this should not happen. If
you are loading a Backbase function twice, you will see a warning.

Minimizing DOM access
Minimizing DOM access can be achieved in a Backbase environment by using properties
to keep references to DOM nodes that you need to access. Using composite widgets
defined in TDL can also help to abstract from the DOM tree. However, you must be
aware of the other drawbacks of using these as outlined in Chapter 7.

Developing smart event handlers
The trick for developing smart event handlers seems to be to attach the event handlers
not to many lowest items in a component, but to a container that can accept the
events. The Backbase event handlers have event.target objects that make it easier
to find the element that actually caused the event.

Optimizing images
Optimizing the images you are using in your web application involves these points:

• Optimize images
• Optimize CSS sprites
• Don't scale images in HTML
• Make favicon.ico small and cacheable

There is nothing specific for a Backbase application here. Nevertheless, there is
some sound advice on the YSlow website. Please check out the ImageMagick tool
at: http://www.imagemagick.org, if you did not do so already, to help with
identifying and solving image problems.

One last point on optimization in general (or actually two):
Good enough is good enough. Do not over optimize your application,
instead, spend your efforts on functional improvements.
Make your optimizations repeatable and document what you did. You
will have to redo many optimizations, such as minifying code, for every
release of your application.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[389]

The TDL Optimizer
In the Backbase framework package, you can find a special utility program, the TDL
Optimizer. Look in the tools folder to find a tdlOptimizer subfolder. A detailed
documentation is also located there. Here, we give a practical overview.

What does the TDL Optimizer do and why would you want to use such a utility?

A problem with JavaScript frameworks and libraries like the Backbase framework
is that the JavaScript code must be loaded each time a new page is loaded into the
browser. The libraries consist of many large files and not only the size of the files, but
more than that, the number of files may make the initial loading of a page slow.

One way of limiting the number of files that are loaded is by loading files only on
demand. While this helps, you will see when you use the Firebug tool in the Firefox
browser that still a large number of files are loaded.

What you can do to bring the number of files down, is to combine the files that are
needed for an application into larger ones. You can minimize file sizes by taking out
comments and whitespace, and by compressing the files.

Creating a configuration file for the optimizer
To create a configuration file for the optimizer, perform the following steps:

1. Boot up the application.
2. Make note of the bindings that are loaded at startup (but not at runtime). For

Firefox, you can use Firebug's Net watcher tool. For IE, you can use Fiddler.
3. As an alternative, you can use the Backbase Debugger tool, and select the

TDL tab to see which bindings and widgets are being used by your Backbase
application.

4. Create a configuration file for the optimizer with xi:include statements to
the tags that you need.

5. Make sure the application still works correctly when using the configuration
file you just created, by replacing the <xi:include src=”/Backbase/4_4_1/
bindings/config.xml”/> declaration in your HTML file with an
xi:include of the newly created configuration file.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[390]

Running the TDL Optimizer
You must set the JAVA_HOME environment variable before running this
program. To run the TDL Optimizer, simply execute the tdlOptimizer.bat or
tdlOptimizer.sh file, specifying at least the first two arguments defined below:

• -i or --inputFile—the path to the input file.
• -o or --outputFile—the path to the output file.
• -dco or --disableCssOptimization—turns off CSS optimization.
• -djo or --disableJavascriptOptimization—turns off JavaScript

optimization and obfuscation.
• -djob or --disableJavascriptObfuscation—turns off obfuscation

of local JavaScript variables.
• -iu or --ignoreUses—ignores d:uses everywhere, so that no d:uses

will be resolved.
• -iiu or --ignoreInputUses—ignores d:uses in the input file. This option

has no effect if --ignoreUses is also specified, in which case no d:uses will
be resolved.

• -r or --relocate—overrides the optimized (output) xml:base setting. This
is useful when invoking the TDL Optimizer from a build script because the
location of the bindings files will probably be different when the application
is deployed.

• -p or --pretty—if present, the output file will be properly formatted and
indented for best readability (but non-optimal performance).

• -h or --help—prints a help screen explaining command line syntax.

Deploying the optimized bindings
Firefox browsers have a known issue with handling large XML files. Therefore, we
recommend that you split your optimized files within your Backbase application if
they are excessively large.

Simply replace the reference to your original configuration file with the generated
optimized bindings file. Please note that you can keep some bindings to be resolved
through the automated loading mechanism (d:uses). This way, you can balance the
overhead between boot and runtime.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[391]

Deployment on a server
Deployment of your web application ultimately means copying the sources
or compiled versions of what you developed on a publicly accessible server,
together with the Backbase framework package.

If you have a large organization that is developing the web application, there are
probably dedicated people who know all about installation and deployment on a
web server. If you are in a small group, deploying on a hosted service, you probably
do not have many options of customizing the server to your needs. In this section,
there are some general points that will apply.

A vast majority of web applications are deployed on a server running some version
of Unix and using an Apache web server. If you are using Java Servlets or JavaServer
Pages, you will have additional configuration concerns, such as installing Tomcat
or some other server supporting Java. You will need to know details of the specific
server you are dealing with, which is outside the scope of this book.

A source of detailed information is the Production Deployment Guide of the
Backbase Client Framework. There is also a Deployment Guide for the JSF or the
Struts editions of the framework that has more information about deploying in a
Java environment. You can find this documentation on the developer network of
Backbase, http://bdn.backbase.com/.

The Production Deployment Guide can be confusing because it has a lot of seemingly
duplicate information. It repeats the story for every kind of web server you may be
interested in. Because we assume that most of you will be interested in using Apache
as a web server, we made one story concentrating on Apache.

Here, we are covering some general points that specifically apply to deploying
the Backbase framework and the code that you have developed with it:

• Install—the quickest way to deploy the Backbase framework is to copy the
files into the server's DocumentRoot. This is the default directory from which
a server serves documents and requires no additional configuration.

• Defining Aliases—if you want a server to serve documents from locations
other than the DocumentRoot, you have to set up aliases using the Alias
directive for the Apache server or by defining Virtual Directories for the
Microsoft Internet Information Server to point to these locations.

• Compression—compressing the Client Runtime JavaScript files allows
quicker downloading of the Backbase framework to the client. We already
discussed compression earlier in this chapter when we were talking about
application optimization.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[392]

Install
A server has a default directory, also called DocumentRoot for an Apache web
server, from which it serves your documents. The quickest way to put a Backbase
framework application into a production environment is to place the Client Runtime,
bindings files, and the application itself into this directory.

The place where you can find the DocumentRoot can vary depending on the
operating system and type of web server you are using. For an Apache server,
its location is specified in the http.conf file.

For example, in a default Apache Httpd Server Windows installation, the
DocumentRoot is C:\Program Files\Apache Group\Apache2\htdocs, while Linux
uses the directory /var/www/html as the server DocumentRoot.

Here is what you need to do, assuming that you are using version 4.4.1:
1. Copy the backbase/4_4_1_optimized directory to the server's

DocumentRoot. If you are using a hosted service, you will probably have
access using the FTP protocol to copy files onto your server.

2. You can, of course, copy the backbase/4_4_1_optimized directory
anywhere inside your DocumentRoot (or an aliased location). The key point
is that your application startup page(s) (any file that points to the Client
Runtime JavaScript file) has the correct relative pathway.

3. Rename the backbase/4_4_1_optimized directory to backbase/4_4_1.
4. Adjust the permissions and the ownership of the Backbase directory and

the files and directories below it to make sure that the user under whom the
server is running can access them.

5. Move your application to a location of your choice in the
DocumentRoot directory.

6. Each startup page of a Backbase framework application loads a Client
Runtime initialization file named boot.js:
<head>
<title>Startup Page</title>
<script type=”text/javascript”
 src=”../backbase/4_4_1/engine/boot.js”>
</script>
</head>

7. We have talked about initialization of files at length in Chapter 1. Ensure
that the relative pathway named as the value of the src attribute correctly
points to the location of the boot.js. The boot.js file is located in
backbase/4_4_1/engine.

8. Test your application.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 9

[393]

Installation in a Java environment
For use in a Java environment, there are WAR files available, both a development
and an optimized version. Look into the Java Technologies documentation of the
Backbase framework for more information.

Defining alias locations
If you want a server to serve documents from locations other than the
DocumentRoot, use the Alias directive to allow manipulation and control
of a URL, as requests arrive at the server.

In the following example, we are assuming that you are using an Apache Httpd
Server. The Alias directive is used to map a URL to filesystem paths. This allows for
content that is not directly under the DocumentRoot to be served as part of the web
document tree. It allows you to cleanly separate the Backbase framework installation
directory from your projects' directory and the server directory.

We use the following settings/locations to show you how to create an alias:

• The backbase/4_4_1 directory (that contains the Client Runtime and
bindings files) is placed at the root of the /usr/local/ directory

• There is a /usr/local/myApps directory that will contain your applications

Naturally, if you have set up your environment differently, you will need to make
the necessary path adjustments.

Use the following steps to create an alias:

1. Adjust the permissions and the ownership of the Backbase directory and
the files and directories below it to make sure that the user of the server can
access them.

2. Locate the server configuration file httpd.conf.
3. Open the httpd.conf file in an editor.
4. In the aliases section, add the aliases and the directory directives to enable

your web server to locate your Backbase Framework Client Runtime
installation and project directory:
Alias /myapps /usr/local/www/data/myApps

Alias /Backbase /usr/local/backbase/4_4_1

<Directory /usr/local/www/data/myApps>

Options Indexes MultiViews

AllowOverride None

Order allow,deny

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Debugging, Optimization, and Deployment

[394]

Allow from all

</Directory>

<Directory /usr/local/backbase/4_4_1>

Options Indexes MultiViews

AllowOverride None

Order allow,deny

Allow from all

</Directory>

5. Restart Apache.
6. Test your application.

Summary
This was a short chapter to give you some hints for debugging, optimization, and
deployment of your application.

We have seen that the Backbase tool set, especially the debugger, has an advantage
over other tools because they work with all browsers. In addition, the Backbase
debugger allows you to inspect your Backbase application structure and all custom
built widgets easily.

Using the guidelines set forth by the YSlow tool, we described what you can do to
optimize a Backbase web application.

Deploying the Backbase framework libraries is not very different from deploying
other JavaScript libraries. Optimization and tuning of the JavaScript in your
application follows the same rules as before.

Deploying the TDL bindings can be optimized using the TDL Optimizer if needed.
Using the optimized versions of the bindings delivered with the Backbase package
may be already sufficient.

In the next chapter, we will make a comparison of the Backbase framework with
some other frameworks.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison
It does not matter whether you opened this chapter after having read the major part
of the book or whether you ended up here out of curiosity while looking through
the table of contents; you are probably curious to know how the Backbase AJAX
framework compares to the other similar frameworks.

We will start the chapter with an attempt to classify the multiple solutions used today
to build interactive websites and client-side applications. By doing a drill-down, we
will approach the category to which we believe the Backbase AJAX framework belongs
and from which the candidates for a more detailed comparison will be picked up. To
make a fair comparison, we will eliminate any server-side frameworks, client-side
libraries, and application frameworks—this is why you won't see GWT, JSF, jQuery, or
PureMVC in the final comparison.

The libraries and frameworks mentioned in this comparison are very
briefly described at the end of this chapter.

Also, at the end of this chapter (but before the framework reference overview),
there is a section about integrating other frameworks with Backbase.

This chapter discusses the following topics in detail:

•	 Toolkit classification
•	 Backbase comparison to similar products
•	 Techniques of integrating third-party widgets into Backbase
•	 References to the mentioned libraries and frameworks

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[396]

The landscape of client-side
technologies
Since 2005, when the term AJAX was invented, many JavaScript libraries and
tools have popped up. In fact, there have been several tools earlier to aid DHTML
development, which can be seen as predecessors for the AJAX tools and libraries. One
of these is the earlier version of the Backbase framework, and another example is Bindows.

Some of those libraries survived the AJAX technology hype and grew into a solid
base for many RIA projects and services, whereas some vanished. Libraries that
survived have gone through a series of transformations and refactoring phases as
well as marketing repositioning attempts. By now, there are hundreds of libraries,
frameworks, and other tools, and it is not easy at all to find your way in this
abundance and make the right choice.

Before we get to the actual comparison of the Backbase AJAX framework against
similar solutions, we should look around to see how the canvas of relevant
technologies is laid out. So, let's first go through the tree of technologies until we
end up in a group where Backbase resides.

We mentioned earlier in this book that there were a number of other
versions of the Backbase framework, all Java-related, such as a JSF
Edition. These products are currently supported only for existing
customers and not available for new development. Therefore, they are not
included in this comparison. Of course, it is still possible to easily use Java
with the Backbase Client Framework!

Server-side and client-side
Until recently, we thought of web applications as websites being created and run on
a web server somewhere on the Internet. The server-side application was entirely
responsible for the page generation: it checked for authorization, retrieved data from
data sources, and generated static web pages filled in with the data.

With time, server output in HTML became enhanced with scripts running on the
client-side, but the page generation and the business logic between user interactions
was still processed on the server-side. To aid such rather complex development,
several technologies and frameworks are available, for example, GWT, ASP.NET
MVC, and ZK.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[397]

Today, web applications development has radically changed; the frontend of
the application is moving to the client-side, the web browser. Both application
logic and UI generation are moving with it. This is exactly where client-side
toolkits come into play.

Let's proceed with those and ignore the server-dependent frameworks in the rest
of this chapter. See the end of this chapter for more information on the frameworks
mentioned earlier in this section.

Client-side libraries and frameworks
Most of JavaScript toolkits position themselves today as frameworks, although they
called themselves libraries earlier. Some may really have evolved into a framework,
whereas others are still, libraries.

In reality, it is not easy to differentiate between the two types of software:
libraries and frameworks.

•	 The common understanding of a library concludes that a library is designed
to execute a well-defined task, for example, a library can decode data or, in
the case of a JavaScript toolkit, it can simplify DOM traversal. As a library
is designed to execute a certain task or a couple of tasks, it is usually not
extensible in nature.

•	 A software framework usually has wider scope. Eventually, it could be
composed of several libraries. A framework, opposite to what a library
does, allows and sometimes even requires extensions. A JavaScript
framework often provides means to create widgets; it enables its own
event's flow and provides well-designed APIs to those widgets.

Is it important to know whether a certain JavaScript toolkit is a library or a
framework? We believe, yes, it is important.

In practice, you will see that a library is often used to fine-tune web pages,
while a framework is used to build true client-side applications. For example,
the Script.aculo.us library provides great visual effects that can be used to improve
web page appearance and interaction, while the framework qooxdoo can hardly be
used for that purpose; it is only suitable for building an application.

Being categorized as a library does not decrease the quality or capabilities of a
toolkit. Instead, it properly positions software so that a right choice can be made
based on the purpose of using it. jQuery, MooTools, Prototype.js, and Script.aculo.us
are all JavaScript libraries, and they are great at what they had been designed for:
enhancing web pages without changing much in the overall development process.

We will not include the JavaScript libraries mentioned in this section further in
our comparison.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[398]

Flash, Silverlight, and JavaScript-based
frameworks
For the sake of completeness of the technology comparison, it may also be interesting
to check out how some AJAX frameworks stand compared to plugin-based solutions,
such as, Flash or Silverlight.

Both Flash and Silverlight employ XML for application layout, MXML and XAML
respectively.

Both Flash and Silverlight have a way to extend their component base by
implementing custom tags in custom namespaces, something that the Backbase
AJAX framework also offers.

Both platforms, similar to some JavaScript-based frameworks, implement the
Document Object Model, which enables document access and event flow, although
Silverlight provides a custom, lighter version of the DOM API. Styling is not done
with CSS, in either Flash or Silverlight.

The plugin-based solutions such as Flash and Silverlight are both great choices
for building Rich Internet Applications that run on a desktop. They are not usable
for mobile devices because these plugins do not run on them.

Client-side GUI framework and application
framework
There is another category of frameworks that we would like to exclude from our
comparison: the application frameworks. Examples of such a framework are
Cappuccino, SproutCore, and PureMVC.

PureMVC is, as the name suggests, a framework that is there to help you implement
the MVC part of your application.

To position Cappuccino, we quote here some text from their website, which sums
up very nicely what it is trying to achieve:

Cappuccino is not designed for building web sites, or making existing sites more
"dynamic". We think these goals are too far removed from those of application
development to be served well by a single framework. Projects like Prototype and
jQuery are excellent at those tasks, but they are forced by their nature to make
compromises which render them ineffective at application development.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[399]

On the other end of the existing frameworks are technologies like SproutCore. While
SproutCore set out with similar goals to Cappuccino, it takes a distinctly different
approach. It still relies on HTML, CSS, JavaScript, Prototype, and an entirely
new and unique set of APIs. It also requires special development software and a
compilation step.

The Backbase AJAX framework is not an application framework; rather it is a
GUI framework. For smaller to medium-sized applications, you do not need an
application framework, as long as you structure your application correctly. For
larger applications, you could consider developing your own client MVC support,
or try to integrate with a framework like PureMVC.

Backbase and other client-side GUI
frameworks
In our knock-out competition, we have progressed now to a state where we
have a set of JavaScript frameworks that are comparable in functionality to what
the Backbase offers. For the comparison below, we selected: Bindows, Dojo, Ext
JS, Javeline, qooxdoo, and YUI. Let's now take a deeper look at the most relevant
characteristics of those toolkits and see how Backbase compares. We will consider
the programming model, the widget set, component models, data binding, support
for standards, performance, internationalization, and long-term viability.

We start with an overview table. Detailed descriptions follow in the next sections.

Backbase Bindows Dojo Ext JS Javeline qooxdoo YUI

Programming model XML/JS XML/JS JS/JS JS/JS XML/JS JS/JS JS/JS

Widget library Yes Yes Yes Yes Yes Yes Yes

Component model
Binding
Language

Binding
Language

Dijit
plugin Plugin Binding

Language Javascript --

Data Binding field set data set data set data set field set data set data set

Cross-browser
support Yes Yes Yes Yes Yes Yes Yes

Internationalization +/- ++ ++ + - ++ ++

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[400]

As you can see, this comparison table is not too useful because it merely shows what
these frameworks have in common. We left out performance in this table because
there is no easy way to compare these frameworks quantitatively and we do not
know about any benchmark tests.

Programming model
The programming model varies between frameworks. It is a matter of developer
preference to see which model he/she is more comfortable with. To help you find
your own preference, we included a section at the end of this chapter to compare
an Ext JS example with the same example in Backbase. We also use this example
to show you how you can integrate other frameworks into Backbase if desired.

There are two different approaches used:

•	 XML for UI layout and JavaScript for UI logic
•	 JavaScript both for UI layout and for UI logic

In the first group, we have advanced toolkits such as Backbase, Bindows, and
Javeline; in the second group, there are Dojo, Ext JS, qooxdoo, and YUI. The toolkits
in the first group make use of XML as a way to layout the application UI and they
provide a DOM or a DOM-like interface to it.

The toolkits in the second group produce widgets in a different way. They also
provide other ways to register widget event handlers.

The major benefit of using XML for UI layout is better separation of the three
concerns: UI, logic, and style. Just using different syntaxes for those areas forces
better understanding of how to organize code; it also enables programming practices
that were used for designing native HTML pages that have been proved to work
well. Such a separation comes with a price: a framework might need some more
time to process the XML initially. However, in practice, this does not seem to lead to
significant degradation.

Using JavaScript both for UI layout and logic may lead to, as it is known
"spaghetti-code", where at some point it becomes rather complex to maintain
the application source base. A major problem is that often the look and feel of a
page is hidden away in JavaScript source files. If they are included in the HTML
page, it will make the code incomprehensible to most graphical web designers.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[401]

Widgets
Every framework in our comparison has a great variety of UI widgets. There are
comboboxes, tab boxes, date pickers, grids, and so on. It is vital that widgets in a
framework follow common design principles so that the developer would be able
to start using one, without the necessity to dig in first into documentation.

The widgets are often grouped into the following categories:

•	 Layout widgets
•	 User input widgets
•	 Grid widgets
•	 Windowing widgets
•	 Others

In the Backbase AJAX framework, the widgets fall into similar categories, which is
accidental, but rather because of the inheritance chains they follow. For example, all
user input widgets have disabled and value attributes, and all layout widgets have
margin and padding attributes.

Component model
The ability to create new components or extend existing ones helps hiding widget-
specific logic and presentation issues away from the application logic. A reusable
component can be instantiated several times inheriting all logic its class has defined.

Backbase has a great technology for defining and extending UI widgets, the Tag
Definition Language (TDL), as you have seen in Chapter 7. TDL is a core concept in
the Backbase methodology because it is used to build its own GUI library of widgets.

The other toolkits are all (except YUI) enabled to build components, some in similar
and others in different ways. For example, Dojo is working on building a solid
plugin system to create components, while Ext JS has provided this earlier. A model
for creating components is not applicable to YUI, as YUI is rather a collection of
disconnected widgets.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[402]

Data binding
Data binding is an essential mechanism for building more complex applications as
you have seen in Chapter 5. The toolkits that provide data binding have all data set
bindings, to bind sets of data to lists and grids. Javeline and Backbase also allow
finer granularity field bindings.

Standards support
Talking about standards, support for our set of JavaScript toolkits is tough. It is well
known that browsers don't support well-established standards, so why would some
framework aim to do so? And what standards can a framework support?

Most JavaScript frameworks support standards exactly for the reason that browsers
do not support them: to allow developers to create applications that work cross-
browser or that can use new standards not available in any browser yet.

The Backbase APIs have been greatly inspired by the DOM and XBL (XML
Binding Language, see http://www.w3.org/TR/xbl/) standards. In browsers, the
implementations for the DOM and for XBL are either very inconsistent or missing.
As there is awareness of these standards among web developers and because there
is evidence that browsers are striving to implement those eventually, application
logic written today against the Backbase AJAX framework will pretty much work
in future browsers natively or it will be easier to migrate it when these standards
become available.

Internationalization
Open source AJAX frameworks such as Dojo, YUI, or qooxdoo have done a great job
implementing aspects of internationalization. Their widgets can be easily adjusted to
use different date or time formats for example.

The Backbase framework has some functionality for date formatting in its
calendar widget, but further internationalization support is currently absent.
Internationalization is on the radar of the Backbase development team and we
expect that better support will be available at some point in time.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[403]

Performance
Performance considerations have always been of high importance when choosing an
AJAX framework.

A major problem for many frameworks is the occurrence of memory leaks causing
performance to degrade over time. At Backbase, performance is watched closely by
running nightly performance tests and thus tracking the changes in the framework,
and spotting potential memory leaks.

Performance can be adversely impacted by the necessity to do additional
interpretation or compilation of the framework-specific code. The extra model
and controller layers in the Backbase framework certainly require extra time. The
gain in the level of abstraction you can use for your development and the shorter
development times that should result are in the long run more important than the
raw performance impact. History shows that eventually better optimizers and better
hardware will offset the slower performance. After all, nobody would consider these
days to program an application in Assembler language anymore.

Web browsers recently made a great leap in the struggle for the rendering speed.
In fact, they have come to a point that the difference in performance of different
frameworks became rather slight.

Long-term viability
The long-term existence of any software product depends on many factors other
than its technical merits. Company strategy and profitability of a product are
essential for the survival of closed source or company-owned products like the
Backbase framework, Bindows, or Javeline.

Also, many open source products can only survive because of support by large
companies: Microsoft supports jQuery, and the Apache web server or the Eclipse
IDE would not exist today without considerable grants from IBM.

If we just look at the technical side of things, we believe that the Backbase AJAX
framework has longer term viability because it tries to preserve the application
programming model that exists in a browser rather than creating a new one.

The Backbase Core implements DOM APIs that you know from the browser, and
these APIs will stay. XML as a technology for UI layout is well proven for HTML.
Although it has not been given enough attention in the development community,
XML-based markup for the UI of web applications will exist in a foreseeable future
because, for UI designers , an XML-based language is much more manageable than
a conventional programming language such as JavaScript.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[404]

Similar to Flash making use of MXML or Silverlight making use of XAML, the
Backbase XML languages simplify interface creation while providing great
separation between UI, logic, and style.

Conclusion
We did not try to convince you that the Backbase framework is the best framework
by telling you that it has more widgets than its competition or something else. We
did tell you however, where to find the competition and what features you can
expect from a framework like the Backbase framework. We hope that it is now easier
for you to decide for yourself what you want or need from a JavaScript toolkit and
how Backbase can fit into your requirements.

To make this story a bit more practical, we have an example in the next section for
comparing programming styles and integration of other frameworks within the
Backbase framework.

An integration example
We are going to discuss an example of integrating a data grid widget as it is offered
by the Ext JS framework, into the Backbase framework.

We have a dual purpose for this:

•	 Firstly, it will give you a feel for what it is like to program using a framework
that employs JavaScript exclusively

•	 Secondly, we show that it is fairly easy to incorporate functionality that is
offered by another framework or library, if for some reason you prefer that
over what is offered by Backbase or if it offers something additional

In the next chapter, we will show another integration example, using Google maps in
our C3D sample application.

To start, we are going to display a data grid with XML data. In this case, the data is
a list of trips from our sample application, using the Backbase framework. We have
seen this example before in Chapter 5, therefore, please look back to see the contents
of XML file we will use. For clarity, we show the code for the dataGrid here:

<b:dataGrid width="100%" e:behavior="b:dataGridSortOneColumn"
 sortDirection="descending" sortField="startDate">
 <b:dataGridCol dataField="name" width="150px">
 name</b:dataGridCol>
 <b:dataGridCol dataField="description" width="250px">
 description</b:dataGridCol>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[405]

 <b:dataGridCol dataField="startDate" width="90px">
 start date</b:dataGridCol>
 <b:dataGridCol dataField="endDate" width="90px">
 end date</b:dataGridCol>
 <b:dataSource e:behavior="b:localData"
 dataType="application/xml"
 requestType="application/xml">
 <b:dataContainer>
 <xi:include href="data/tripdata.xml" />
 </b:dataContainer>
 </b:dataSource>
</b:dataGrid>

Of course, we have to embed this file into an HTML page, which we assume
that you know how to do, however, we discussed this in detail in Chapter 1.

So far, nothing new. But we know that Ext JS offers a very nice data grid and let's
assume now that we would like to use the Ext JS grid in our application instead of
the Backbase dataGrid.

Our first question is what the example would look like, without using the
Backbase framework:

<html>
 <head>
 <title>XML Grid Example</title>
 <link rel="stylesheet" type="text/css"
 href="ext/ext-all.css" />
 <script type="text/javascript" src="ext/ext-base.js">
 </script>
 <script type="text/javascript" src="ext/ext-all.js">
 </script>
 <link rel="stylesheet" type="text/css"
 href="ext/grid-examples.css" />
 <link rel="stylesheet" type="text/css"
 href="ext/examples.css" />
 <!-- The javascript for the example -->
 <script type="text/javascript" src="tripdata-grid.js">
 </script>
 </head>
 <body>
 <h1>XML Grid Example</h1>
 <p>
 The data in the grid is loaded from tripdata.xml
 </p>
 <div id="tripdata-grid"></div>
 </body>
</html>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[406]

We hear you say :"Huh! Where is my grid?" We just see a div that suggests holding
the div because of the value of the id attribute.

In the previous sections, we have claimed a few times that declarative code using
XML markup is preferable over a pure JavaScript approach, and here you see why.

Compare this with the grid we coded for the pure Backbase solution and then
decide for yourself. We do not want to pick on Ext JS in particular because all pure
JavaScript libraries and frameworks are like this.

Some call this unobtrusive JavaScript and will tell you it is a virtue!

To know what is going on, we need to look at the JavaScript file in
tripdata-grid.js:

Ext.onReady(function(){
 // create the Data Store
 var store = new Ext.data.Store({
 // load using HTTP
 url: 'data/tripdata.xml',
 // the return will be XML, so let's set up a reader
 reader: new Ext.data.XmlReader({
 // records will have an "Item" tag
 record: 'record',
 id: 'id',
 totalRecords: '@totalRecords'
 }, [
 // set up the fields mapping into the xml doc
 // The first needs mapping, the others are very basic
 'name', 'description', 'startDate', 'endDate',
])
 });
 // create the grid
 var grid = new Ext.grid.GridPanel({
 store: store,
 columns: [
 {header: "Name", width: 200, dataIndex: 'name',
 sortable: true},
 {header: "Description", width: 400,
 dataIndex: 'description', sortable: true},
 {header: "Start Date", width: 80,
 dataIndex: 'startDate', sortable: true},
 {header: "End Date", width: 80, dataIndex: 'endDate',
 sortable: true}
],
 renderTo:'tripdata-grid',

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[407]

 width:780,
 height:160
 });
 store.load();
});

If you study this piece of JavaScript, you will probably understand how the grid is
coded. You can see that similar concepts are used as for a dataGrid in the Backbase
framework. There is a data source called Ext.data.Store with fields, there is
an Ext.data.XmlReader that reads and maps the data like a data container in the
Backbase framework, and there is a grid with columns, here it's called Ext.grid.
GridPanel, where the columns are embedded as anonymous objects.

Here is a picture of what the grid looks like when the example is executed:

Another problem with this kind of JavaScript coding is that everything, the name of
the XML file, the names of the columns, and the div where the grid is rendered is
hard coded. If we want to use the grid in a different situation, the best we can do is
cut and paste this code and adapt it to the new situation. For our example, we have
already done this, using the original example and changing it to suit our trip data.

What if you have five grids in your application? Do you still know from the id of the
div which is which? And what particular mappings to XML fields you were using or
column sorting, and so on? Or which JavaScript file contains the code to fill the grid?
You would have to open up the JavaScript files to find out.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[408]

To improve on the situation, you could try to generalize the data grid functionality
and encapsulate it into a parameterized function. You could embed the JavaScript
code in script tags right where the div is that contains the grid. Within a short
time, your HTML page will become cluttered with intangible JavaScript and your
UI designers will probably not be very happy.

There is nothing technically wrong with putting any JavaScript in your Backbase
application, although it is probably necessary to keep grid code like this outside
the Backbase areas. But, there is an alternative: use the TDL markup language of
the Backbase framework. We are going to encapsulate the Ext JS grid into a
Backbase widget.

From the description above, you would've guessed that we need four elements for
our grid example. We will call them grid, gridCol, dataStore, and field. Further
more, we thought it was a good idea to place the widgets in their own namespace:
http://www.extjs.com/ext30.

The code that you need to put into a Backbase application for an Ext JS grid, after
you have done the integration, looks like this:

<ext:grid xmlns:ext="http://www.extjs.com/ext30" width="780">
 <ext:dataStore url="data/tripdata.xml">
 <ext:field name="name" />
 <ext:field name="description" />
 <ext:field name="startDate" />
 <ext:field name="endDate" />
 </ext:dataStore>
 <ext:gridCol header="Name" width="200" dataIndex="name"
 sortable="true" />
 <ext:gridCol header="Description" width="400"
 dataIndex="description" sortable="true" />
 <ext:gridCol header="Start Date" width="80"
 dataIndex="startDate" sortable="true" />
 <ext:gridCol header="End Date" width="80"
 dataIndex="endDate" sortable="true" />
</ext:grid>

We hope you agree that this code is similar to the code we made for the pure
Backbase example, except for the names of the widgets and the attributes used.
We could have made them more similar to the Backbase equivalents, but we have
chosen to define names closer to the names used in the pure Ext JS example.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[409]

Now that you have seen what the final result is, it will be easier to understand the
definition in TDL for the grid itself:

•	 The grid needs to have two attributes to hold the size of the grid:
width and height.

•	 The template of the grid element needs to be a div that can be used
to attach the Ext JS grid to. Using this div to put the grid, we do not
need the external div with a specific id.

<d:element name="grid">

 <d:attribute name="width" default="500" />

 <d:attribute name="height" default="160" />

 <d:template type="application/xhtml+xml">

 <div xmlns="http://www.w3.org/1999/xhtml">

 <d:content />

 </div>

 </d:template>

 <d:handler event="DOMNodeInsertedIntoDocument"
 type="text/javascript">

 // The rendering of the div takes place here.

 </d:handler>

</d:element>

If you look at the JavaScript code for the example (tripdata-grid.js), you will see that
the grid is rendered after the page is loaded, using Ext.onReady(function(){...}.
We mimic this behavior by using the DOMNodeInsertedIntoDocument event. Here is
the code for the event handler:

<d:handler event="DOMNodeInsertedIntoDocument"
 type="text/javascript">
 // get the store
 var oStoreEl =
 this.getElementsByTagNameNS('http://www.extjs.com/ext30',
 'dataStore')[0];
 var store = oStoreEl.getStore();
 // create the grid columns
 var aColElements =
 this.getElementsByTagNameNS ('http://www.extjs.com/ext30',
 'gridCol');
 var aCols = new Array();
 for (var i=0; i < aColElements.length ; i++) {
 aCols[i] = {
 header: aColElements[i].getAttribute('header'),
 width: parseFloat(aColElements[i].getAttribute('width')),

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[410]

 dataIndex: aColElements[i].getAttribute('dataIndex'),
 sortable: (aColElements[i].getAttribute('sortable') ==
 'true')? true : false
 };
 }
 // create the grid
 var grid = new Ext.grid.GridPanel({
 store: store,
 columns: aCols,
 renderTo: this.viewGate,
 width: parseFloat(this.getAttribute('width')),
 height: parseFloat(this.getAttribute('height'))
 });
store.load();
</d:handler>

The code in the DOMNodeInsertedIntoDocument event handler is essentially a copy
of the original example code. Look carefully at the following though:

•	 The dataStore widget is created by placing the widget as a nested element
within the grid element. All we need to do is find it, using this.getElemen
tsByTagNameNS('http://www.extjs.com/ext30', 'dataStore')[0].

•	 The Ext JS dataStore object is created by calling the getStore() method on
the dataStore element. Be careful to make the distinction between the Ext
JS data.Store object that we get returned from the getStore() method and
the Backbase dataStore that is returned by the getElementsByTagNameNS
function.

•	 In a very similar way as finding the data store, we find a set of gridCol
elements. The anonymous column elements in the array that we will
need to create the grid are created using the attributes provided in the
gridCol elements.

•	 Next, the grid itself, a new Ext.grid.GridPanel object is created, which has
the store object and the column array we created before as arguments. The
width and the height are taken from the width and height attributes, which
have a default value, therefore, you will always see a grid, even if it does not
have the proper size.

•	 Note in particular the renderTo attribute, which specifies this.viewGate,
indicating that the grid will be rendered as child of the view node of the
widget. This is exactly what we want because the grid will be shown where
the grid widget is placed, and no extra div with a specific id is needed.

The gridCol widget is very simple: just a set of attributes. This is all we need to
build the columns array.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[411]

<d:element name="gridCol">
 <d:attribute name="header" />
 <d:attribute name="width" />
 <d:attribute name="dataIndex" />
 <d:attribute name="sortable" />
</d:element>

We have seen something about the dataStore widget already. However, we would
still like to point out a few things in the getStore() method:

•	 The field elements contained in the dataStore are found in a similar way
as the gridCol elements in the grid.

•	 The data to be inserted in the grid is retrieved by an AJAX call from
the server by the XML reader. The url used is an attribute for the
dataStore widget.

•	 The reader needs to know a few things, like how many records there are in
the file, what tag it should look for, and what is the ID in each record. This
is very similar to what is needed in the Backbase case, and our XML file
already contains the necessary information. We need to define attributes on
the dataStore widget to provide these values. We gave them handy defaults
because we know that our XML files always look the same, except for the
record contents of course.

<d:element name="dataStore">

 <d:attribute name="url" />

 <d:attribute name="record" default="record" />

 <d:attribute name="id" default="id" />

 <d:attribute name="totalRecords" default="totalRecords" />

 <d:method name="getStore">

 <d:body type="text/javascript">

 var aFields =
 this.getElementsByTagNameNS('http://www.extjs.com/ext30',
 'field');

 var aStoreFields = new Array();

 for (var i=0; i < aFields.length ; i++) {

 aStoreFields[i] =
 aFields[i].getAttribute('name');

 }

 var store = new Ext.data.Store({

 // load using HTTP

 url: this.getAttribute('url'),

 // the return will be XML, so let's set up a reader

 reader: new Ext.data.XmlReader({

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[412]

 // records will have a "record" tag

 record: this.getAttribute('record'),

 id: this.getAttribute('id'),

 totalRecords: '@' + this.getAttribute('totalRecords')

 }, aStoreFields)

 });

 return store;

 </d:body>

 </d:method>

</d:element>

The field element is very simple. It just has one attribute specifying its name. In
fact, we could have made this element a bit more interesting by allowing mappings
of the xml tags to grid fields to take place. We did not need it here; therefore, we
decided to keep it simple.

<d:element name="field">
 <d:attribute name="name" />
</d:element>

You already saw what the code to place our example grid on the page looks like. The
HTML page needs to contain a link to all the Ext JS scripts in its head part, except the
tripdate-grid.js script because its logic is now captured in the set of widgets we
just defined.

One more remark: we found it quite difficult to assemble the required CSS and
images. We think the way Backbase handles this (keeping all CSS and images
together with the widget definitions) is much more manageable, although it may
have a small adverse effect on performance.

The picture shown earlier was actually a picture of running the Backbase version
of the Ext JS grid example; the output is identical for both.

You saw that it is indeed not difficult to encapsulate Ext JS widgets into Backbase
widgets. There is no general rule to how you can do this encapsulation. To start, you
can take a look at the Ext.onReady(function(){...} or similar code that many
framework plugins use to start rendering their widgets. Just fold this code into the
DOMNodeInsertedIntoDocument event handler of your new widget, and you have
a working start to continue with, in a refactoring process.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[413]

AJAX toolkit reference
Here is an alphabetical, short description of the libraries and frameworks mentioned
in this chapter. Some of the descriptions are directly taken from the website where
the library or framework is hosted and therefore, may sound a bit subjective. We
provide a link to the website of each of the toolkits, to allow you to find out more.

ASP.NET AJAX
ASP.NET AJAX is the free Microsoft AJAX framework for building highly
interactive and responsive web applications that work across all popular browsers.
The ASP.NET AJAX framework includes server-side ASP.NET AJAX, client-side
ASP.NET AJAX, the AJAX Control Toolkit, and the jQuery library. ASP.NET AJAX
enables developers to choose their preferred method of AJAX development, whether
it is server-side programming, client-side programming, or a combination of both.

Obviously, ASP.NET AJAX depends on a Microsoft server environment, but
Microsoft makes it possible to use the AJAX Library on any site by offering a Content
Delivery Network where an ASP.NET AJAX application can link to. Remarkable is
also the standard inclusion of the jQuery library into ASP.NET AJAX.

Reference: http://www.asp.net/ajax/.

Bindows
Bindows is an object-oriented platform for developing AJAX applications.
With Bindows, you can generate web applications with the exact look and feel
of Windows applications.

Bindows applications require no end-user downloads: it has a true zero-footprint
(no Java, Flash, plug-ins, or ActiveX are used).

The Bindows framework is based on Dynamic HTML and the programming
language used is Application Description Files (ADF), which is executed at the
client's end as JavaScript.

The framework follows the Swing programming and DOM models. Class names
start with "Bi", that is BiObject, BiRadioButton, and so on. The name Bindows comes
from a combination of Business Intelligence (BI) and windows, BI being one of the
interests of the company MB Technologies, responsible in creating the framework.

Reference: http://www.bindows.net/.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[414]

Cappuccino
Cappuccino is an open source framework that makes it easy to build desktop-caliber
applications that run in a web browser.

Cappuccino is built on top of standard web technologies like JavaScript, and
it implements most of the familiar APIs from GNUstep and Apple's Cocoa
frameworks. When you program in Cappuccino, you don't need to concern yourself
with the complexities of traditional web technologies like HTML, CSS, or even the
DOM.

Cappuccino was implemented using a new programming language called
Objective-J, which is modeled after Objective-C and built entirely on top
of JavaScript.

Reference: http://cappuccino.org.

Ext JS
Like Backbase, Ext JS is developed commercially and has both open source (GNU
GPL v3) and commercial licensing options. It is primarily a widget-based framework,
although it seems to provide the essential cross-browser utilities, including a
powerful element selection mechanism.

Ext JS is backed up by subscription-based support services, professional training,
and consulting. One of the strengths of the framework is the cosmetic appeal of
the widgets, which is complimented by extensive use of animation (that is, open/
close effects for windows and tree branches). Grid support is also impressive and
includes XML and JSON data binding, editing, row-based grouping, enhancement
(conversion of an HTML table to an interactive grid component), and filtering.

Compared with Backbase, the syntax can be more complex, as JavaScript is used
exclusively.

Reference: Ext JS (http://extjs.com).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[415]

The Dojo toolkit
Dojo is an open source framework that has been in development for approximately
four years. The latest release (1.3.2) consists of three distinct components: Dojo
core, Dijit, and DojoX. The core file is relatively lightweight (less than 30k gzipped)
and provides a comprehensive set of cross-browser utilities including DOM
manipulation, normalized event handling, and basic animation. The second
component (Dijit) is a widget library consisting of relatively common widgets
including button, menu, panel layouts, progress bar, rich text editor, slider, and tree.
The final component (DojoX) consists of a wide range of extensions at varying levels
of readiness. For example, charting support is available as an extension, but the
online demos do not work in IE7. The intention is that widgets will be moved from
DojoX to Dijit as and when they reach the appropriate level of quality.

Widgets can be added to a document either using a declarative model or JavaScript.
The declarative model makes use of HTML with the class or custom dojoType
attributes used to identify widgets. When the document is parsed, elements having
a class or dojoType attribute referencing a known widget will be replaced with
the relevant HTML. When creating a widget programmatically using JavaScript, a
constructor for the desired widget must be used. For example, calling new dijit.
ProgressBar() with appropriate parameters will create a progress bar widget.

In Dojo, widgets consist of three files: an HTML file that defines the component
structure, a CSS file for styling, and a JavaScript file for implementing control logic.
However, the general architecture seems significantly less powerful and harder to
use than the Backbase approach.

Reference: http://www.dojotoolkit.org.

Google Web Toolkit
With Google Web Toolkit (GWT), you write your AJAX frontend in the Java
programming language, which GWT then cross-compiles into optimized JavaScript
that automatically works across all major browsers. During development, you can
iterate quickly in the same "edit-refresh-view" cycle you're accustomed to with
JavaScript.

Reference: Google Web Toolkit (http://code.google.com/webtoolkit).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[416]

Javeline
Javeline Platform is an application development framework (also called a library, or
toolkit) aimed at developers for building applications that run via web browsers, but
look and feel like conventional desktop applications.

Javeline seems to have a very similar philosophy of development as Backbase. It
uses JML (Javeline Markup Language) with a j: prefix, to code web applications.
There are extensive MVC facilities built in, but there does not seem to be a custom
component building facility.

Reference: http://www.javeline.com.

jQuery
jQuery is a concise but complete AJAX library. Although the core is small, the
plugins contain all of the necessary parts. The relationship between jQuery and
jQuery UI is similar to the one between Prototype and Script.aculo.us, where
jQuery contains the basic AJAX functions and jQuery UI contains behaviors like
drag-and-drop and widgets like an accordion and slider.

One advantage of jQuery is its powerful multi-selector, which makes finding an
element easy. The syntax looks similar to CSS selector and it adds many more
filters, such as content, attribute, and forms. Another advantage is its big plugin
community. It has over 300 different plugins to choose from. You can find cutting
edge UI-like fisheye or carousel view, as well as functional plugins for event
propagation. These plugins are specific to certain purposes and are maintained by
the community.

On the down side, the plugin community requires a lot of time to maintain and
update these plugins.

Reference: jQuery (http://jquery.com).

MooTools
MooTools is a compact, modular, object-oriented JavaScript framework designed
for the intermediate to advanced JavaScript developer.

Mootools seems to be rather limited in scope; it has animation and event handling,
but just a limited set of available plugins: Accordion, slider, and sortables.

Reference: http://mootools.net.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[417]

Prototype and Script.aculo.us
These two libraries are most often mentioned in one sentence. There are other
libraries that are based on the Prototype library, but Script.aculo.us is certainly
the best known.

Prototype
Prototype is more like a basic AJAX tool that allows you to extend from it and make
your own AJAX library (like Script.aculo.us).

One advantage of Prototype is that it is very generic and focuses on JavaScript and
DOM data manipulation. Because it is one of the first AJAX frameworks, Prototype
has many JavaScript add-on functions that allow you to take advantage of other
language features, such as inheritance, complicated data structure (hash table), and
array manipulation.

On the other hand, Prototype delegates fancy layout functions, such as animation,
charting, drag-and-drop, or resize, to Script.aculo.us. Also, it does not have its own
widgets library.

Reference: Prototype (www.prototypejs.org).

Script.aculo.us
Script.aculo.us is based on Prototype, so it inherits all Prototype functions.

Script.aculo.us has over 20 types of high quality animation effects. Another
advantage is that the cores are modulated, so that you can easily pick the core that
you need. For example, if you do not need drag-and-drop functionality in the project,
you can simply exclude the dragdrop.js file.

A drawback of Script.aculo.us is that it focuses too much on animation rather
than creating more useful widgets and demos. For example, it does not have form
validation and data binding services.

Reference: Script.aculo.us (http://script.aculo.us/).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[418]

PureMVC
PureMVC is a lightweight framework for creating applications based upon the
classic Model-View-Controller concept.

Based upon proven design patterns, this free, open source framework, which was
originally implemented in the ActionScript 3 language for use with Adobe Flex,
Flash, and AIR, has been ported to many development platforms among which is
JavaScript.

Reference: http://puremvc.org.

qooxdoo
qooxdoo is a comprehensive and innovative framework for creating RIAs.
Leveraging object-oriented JavaScript allows developers to build impressive
cross-browser applications. No HTML, CSS, or DOM knowledge is needed.

qooxdoo has a comprehensive set of widgets. Using JavaScript and no HTML
makes it orthogonal in development philosophy to Backbase. This seems to be
squares circled instead of circles squared.

Reference: http://qooxdoo.org.

SproutCore
This is an HTML5 Application Framework for building rich cloud applications
running in any modern web browser without plugins.

Reference: http://www.sproutcore.com.

The Yahoo User Interface (YUI) library
The Yahoo User Interface (YUI) library consists of five distinct elements: a set of CSS
files designed to ensure that interfaces look the same in different browsers, the core
engine, which includes normalized DOM and Event utilities, and the global YAHOO
object, a utility module that provides support for features like animation and drag-
and-drop, widgets, and developer tools.

Reference: YUI (http://developer.yahoo.com/yui).

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 10

[419]

ZK
ZK is an open source AJAX web application framework, written in Java that enables
creation of rich graphical user interfaces for web applications with no JavaScript and
little programming knowledge.

The core of ZK consists of an AJAX-based event-driven mechanism, over 123 XUL
and 83 XHTML-based components, and a markup language for designing user
interfaces. Programmers design their application pages in feature-rich XUL/XHTML
components, and manipulate them upon events triggered by end user's activity. It
is similar to the programming model found in desktop GUI-based applications.

ZK takes the so-called server-centric approach that the content synchronization of
components and the event pipelining between clients and servers are automatically
done by the engine and AJAX plumbing codes are completely transparent to web
application developers. Therefore, the end users get the similar engaged interactivity
and responsiveness as a desktop application, while programmers' development
retains a similar simplicity to that of desktop applications.

In addition to component-based programming in a manner similar to Swing, ZK
supports a markup language for rich user interface definition called ZUML.

Reference: http://www.zkoss.org/.

Summary
In this rather theoretical chapter, we have shown you a way to look at the
various JavaScript frameworks available and how to categorize them.

As a result of our comparison, we showed some benefits of using the
Backbase framework:

•	 XML-based UI layout technology
•	 Standards-based APIs
•	 Extensibility: TDL is a powerful and object-oriented mechanism to

create new components
•	 Server agnostic framework, although products exist for the Java

environment specifically
•	 Longer term viability: Technologies enabled in Backbase are more

likely to stay for longer

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Framework Comparison

[420]

There are some points to watch out for concerning the Backbase framework:

•	 XML-based resources (such as TDL bindings) cannot be served from
a third domain

•	 Application markup is hardly accessible for Internet crawlers
•	 Does not fit traditional website creation, which actually is also a benefit

We illustrated the difference in coding style for a pure JavaScript framework as
opposed to the Backbase framework using XML for UI layout. We also illustrated
how easy it is to integrate other frameworks into the Backbase framework.

In order to enable you to explore all the frameworks mentioned, we included
references and a short description.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application
In this last chapter we will try to integrate what we have discussed in this book and
we will formulate the concept of a square web application. We will then apply this
knowledge and take a last look at our C3D travel blog application. Before we finish
the chapter we need to discuss a few subjects that can badly interfere with our goal
to develop a square web application, such as how to handle legacy applications. We
end this chapter and therefore this book, with a wink: a square puzzle, which we
hope will spark discussion by way of an example, on how client web applications
can be best developed.

Until we all walk through 3D holograms to interact with the Web, the flat,
rectangular browser window will be our main way to view the Web.

This means that everything you see in the browser is confined to rectangles within its
window, often laid out in intricate ways and sometimes rectangles can overlap. Each
rectangle within the browser window can have an autonomous existence, its contents
can be replaced using AJAX communication with a server, or a rectangle can be
added, copied, moved, or deleted anywhere within the browser window. Even
though there is lots of freedom within the browser window, the web application
cannot step outside and interact with your PC, such as accessing files in your file
system, except for storing some cookies.

In this chapter we will talk about the square web application, a web application
that fits well in square browser windows. Do not confuse this with Web Squared
(See: http://assets.en.oreilly.com/1/event/28/web2009_websquared-
whitepaper.pdf). This is an entirely different concept, where Tim O'Reilly talks
about taking Web 2.0 one step further.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[422]

We should recognize that it is not difficult to interact with the Web in ways other
than via a browser or where a browser accepts inputs that are very different
from the click of a button. In the last year, the so-called Augmented Reality (AR)
applications are popping up, especially for mobile phones like the iPhone and for
mobile operating systems like the Android, where the camera view is mixed with
extra information or virtual objects. We just read about a new AR language called
Augmented Reality Markup Language (ARML), which suggests that an XML-based
approach like the Backbase framework uses can be extended effectively into new
web realms.

For now, there are still too many websites with awkward interfaces where pages
start shaking each time we press a button. There are still too many web applications
that would need to be rewritten if they should allow input from other servers or if
they should integrate external information.

A square web application on the other hand is flexible and fluid. So, what is it?
Let's define it in the next section.

Here is a list of topics that we will cover in this last chapter:
•	 The nine features of a square web application: No global JavaScript,

data-bound widgets where possible, no complex HTML generation at
the server, send only XML from server to client, make the layout modular,
use MVC throughout, the client is the view, the controller is at the server,
and no business logic at the client.

•	 Complete the C3D travel blog sample application (make it work, make it
right, and make it fast): Handle image upload, add a Google map, initial page
loading, optimization of the client, and server-side issues.

•	 Usability aspects: Legacy integration, progressive enhancement,
internationalization, and accessibility.

•	 What will the future bring?
•	 A square puzzle example.

What is a square web application?
In the very beginning of this book we said something along these lines: would it not
be nice if...

•	 You would have an extensive library of UI widgets that could be used in
the same way as HTML?

•	 You could extend HTML with new widgets and components in any way
you like?

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[423]

•	 You could use AJAX almost transparently?
•	 You could bind data retrieved from the server in flexible ways to any widget,

in particular data grids?

We explained in this book that the Backbase framework allows you to develop
applications answering these questions with a resounding "yes". A square web
application is a single page application that uses BTL, TDL, XHTML, CSS, and
data-bound widgets, and nothing else.

That may sound obvious at first, but it actually isn't. You can use the Backbase
framework in any way you wish, also for traditional multi-page applications, with
just a few BTL widgets, or with JavaScript all across the page. The framework may
be slow if you try to do so because of the overhead involved in loading the library
for each page. However, if you are trying to transform a classical web application
to a modern Rich Internet Application (RIA), this may be a good approach. We will
talk a little bit more about this later in this chapter.

It is indeed rather hard to square your application! It will be very tempting to just
quickly create a JavaScript function to handle user interaction, instead of considering
to develop a behavior or a new widget using TDL. If you are starting a new
application by squaring your application from the start, meaning you plan to have
only XML on your page, that may make design and communication with your web
designers a lot easier, because you will be able to use traditional page layout tools
effectively and if your designers know HTML, they will have a feel for what the
result will be.

Below we show a kind of checklist, which we will expand in the next sections.
When we look at the client application, we would like to see the following:

•	 There will be no global JavaScript functions
•	 Make widgets data bound where possible
•	 There will be no server code that generates XHTML
•	 All data content will be sent as XML from the server to the client
•	 The layout and styling of the page should be easily adaptable

Here are some points that apply to the total application architecture:

•	 Design according to the MVC design pattern
•	 The client application is the view
•	 The controller is at the server
•	 The model is at the server

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[424]

We think that these are the most important aspects of creating a square web
application, where the encapsulated JavaScript requirement is by far the most
important one, followed by the use of a Model-View-Controller architecture.

No global JavaScript functions
There will be no global JavaScript functions. Does this sound like too strict of a
requirement? Would it not be nice to define some JavaScript functions to do some
generic UI handling? Well, yes, but if you think more about what you are trying to
achieve, it will probably be just as easy to define a behavior as explained in Chapter
7, Creating UI Components. Or, even better, maybe you can create a new widget, as
explained in the same chapter.

Any global function that you define has the chance to conflict with functions from
another library that you may want to integrate. If you use only widgets, behaviors,
or XEL event handlers to contain JavaScript code, this will force all JavaScript code
to be properly namespaced.

By encapsulating JavaScript code in widgets or behaviors, they become objects and
are consequently easier to maintain, manage, and extend.

By using the Backbase lazy loading facilities, the JavaScript code loaded into the
browser can be minimized. Contrast this with loading every JavaScript file that you
can find within your enterprise, out of fear that you may need some function, which
is hidden deep into your page.

Make widgets data bound
Make widgets data bound wherever possible. This will diminish the need for
generating pages containing data at the server, such as generating tables together
with their content.

Another way data-bound widgets can be used is exemplified by the data-driven
menu system we made for the C3D travel blog. You will see it described later in
this chapter. In this case, it allows you to take away any awareness about
authorizations from the client because items that a user cannot click are not sent
back from the server.

A data-driven approach could also be used to support multiple languages: the
client asks for a template in a certain language.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[425]

Do not generate HTML at the server
There will be no server code that generates XHTML beyond templates with simple
variable replacement. Loops should be avoided in the server templates.

If you remember our discussion in Chapter 4, Client-Server Communication and Forms,
about scriptlets which were somehow associated to professional wrestling, then you
will understand why you should not generate complex HTML in complex scripts.

Send only XML data from server to client
All data content will be sent as XML from the server to the client. It seems that XML
is more secure than the obvious alternative: JSON. With XML, it is possible to define
schemas for XML and in this way XML data structures can be made very robust.

Make the layout modular
The layout and styling of the page should be easily adaptable without changes
to the server code.

This does not need further explanation. We followed this rule in our web applications
by including all real content in the main page through include statements, either a
static PHP include, or a static XInclude, or a dynamic load command.

Use MVC throughout
Design the total structure of the web application according to the MVC design
pattern. We have described this in Chapter 4.

In our comparison with other frameworks in Chapter 10, we briefly discussed the
MVC approach you could take for the client application itself. There is a lot more that
could be said about this, which unfortunately falls outside the scope of this book.

The client is the view
The client application is the view of the total web application. Ideally, the view is
very loosely coupled with the model, which would make it possible to exchange
the server technology used with another one, with minimal effort. For example,
exchange JSP with PHP.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[426]

Place the controller at the server
The controller of the application should be positioned at the server because it is
the gateway to the model business processes and guards its security.

No business logic at the client
The client application should never contain model processes, for security reasons.
However, it is possible to have a snapshot of model processes to enhance the user
experience. The obvious example is validity checking in forms.

By now we gave you a lot of points that you may look at to achieve a square
application, an application where all JavaScript is encapsulated within XML tags. A
last but not the least point is: Don't be dogmatic! If you are trying to transform an old
application or a conservative development team, be patient. It is more important that
your application functions in the right way at every step than that it is squared, as
long as you do not lose sight of your final goal.

In the next sections, we are going to complete some parts of our C3D travel blog
sample application. In the C3D: make it right section, we will try to square an
important part of this application: the menu structure.

Complete the C3D example
Throughout the book we have illustrated the subjects we were discussing with code
for the C3D sample application, a simple travel blog. This is our last chance in this
book to add functionality to it and also explain it to you. We will show you a few
more things we implemented.

Like in a real development project, we changed our mind about the design of
our application several times. Also, because you have more knowledge about the
Backbase framework now, it is possible to use more of its advanced facilities.

We will look at the C3D application in the spirit of what we have explained in
Chapter 9 about make it work, make it right, and make it fast. There is still a need to
add functionality to make the C3D application work and be usable. We need to
refactor the web application to make it more easily extensible and to improve its
performance. Finally, we need to deploy the application on a real website.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[427]

C3D: make it work
There are a number of items still on our list that need to be done to make the C3D
travel blog usable. We describe two of these here:

•	 The upload form for a photo
•	 Displaying a Google map with a trip entry

To make it really work, there is also work to be done at the server-side. For example,
we need to do image handling to resize images that are too large and to allow
thumbnails to be generated.

The photo upload form
The first item we are going to look at is the form that allows us to upload a photo.
We are showing here some details because the implementation of this form posed
some unexpected challenges. Here is the form:

The dataComboBoxes
A challenge is the presence of two dataComboBox elements, where the value of the
second one depends on the value of the first one because you would not like to allow
trip entries in the second dataComboBox to be chosen that do not belong to the trip
chosen in the first dataComboBox.

We have encountered the dataComboBox in Chapter 5, Data-bound Widgets.
We need to make updates to it now to support updating the list of
dataComboBoxOption elements.

We start with showing how the comboboxes are used. Here is the code for the
first dataComboBox:

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[428]

<sq:dataComboBox name="tripId" width="200px"
 valueSelect="*[1]" optionSelect="*[2]"
 bf:required="true"
 bf:messagesRef="../../td/bf:messages[1]">
 <b:dataSource e:behavior="b:remoteData"
 url="cntrl.php?req=tripdataforuser"
 dataType="application/xml"
 requestType="application/xml" />
 <e:handler event="change" type="text/javascript">
 var oEntryComboDS = bb.document.getElementById('trip-entries');
 var sURL = oEntryComboDS.getAttribute('urlbase');
 oEntryComboDS.setAttribute('url',sURL + '&tripId=' +
 this.getProperty('value'));
 oEntryComboDS.refresh();
 </e:handler>
</sq:dataComboBox>(select a trip)

We gave the dataSource of second dataComboBox an id in order to be able to
address it from the first one. It would have been better to construct an XPATH
expression to find the second combobox, but for now it works.

When a choice is made for the trips, the event handler for the change event will
fire. In the event handler, we retrieve the URL as found for the dataSource of the
trip entries, and the dataSource is then refreshed. Note that we coded a urlbase
attribute instead of a url attribute because if we changed our mind about the
selection in the first combobox, we would construct a wrong URL if we used the
already changed url attribute.

The last line in the event handler causes the second dataComboBox to refresh itself.
Because of this, we need to make a change to the code for the dataComboBox widget,
otherwise the new dataComboBoxOption elements would be appended to the previous
list. We add the following lines of code at the start of the dataUpdate method:

// remove all comboboxOptions children
var aChildren = this.getElementsByTagNameNS(btl.namespaceURI,
 'comboBoxOption');
for (i = aChildren.length, i > -1 ; i--) {
 this.removeChild(aChildren[i]);
}

Here's the second dataComboBox. Just notice the id for the data source in it and the
urlbase attribute:

<sq:dataComboBox name="entryId" width="200px"
 valueSelect="*[1]" optionSelect="*[3]"
 bf:required="true"
 bf:messagesRef="../../td/bf:messages[1]">

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[429]

 <b:dataSource e:behavior="b:remoteData" id="trip-entries"
 urlbase="cntrl.php?req=tripentrydata"
 dataType="application/xml"
 requestType="application/xml" />
</sq:dataComboBox>(select a trip entry)

With these updates it is now possible to show only the trip entries that belong to
a certain trip.

Handling the image upload
Another challenge in handling this form is the upload of the image. We have talked
about the fileInput widget in Chapter 4, but we conveniently skipped how you
could synchronize the uploading of the file with the submission of the rest of the
form. To start, we put some tricky stuff in the image upload form:

<input type="hidden"
 value="<?php $dvar = time(); echo $dvar;?>"
 name="uploadFormId" />
<bf:fileInput action="fileUpload.php" name="myFile">
 <e:handler event="load" type="application/javascript">
 document.getElementById('myFileDiv').innerHTML =
 bb.getProperty(this,
 'responseHTML').documentElement.innerHTML;
 </e:handler>
 <bf:fileInputParameter name="uploadId"
 value="<?php echo $dvar;?>" />
</bf:fileInput>

The bf:fileInput will be used to create an iframe that is used to upload the
image. The trick is to send the same, but otherwise unique value with both the
form and the iframe. The hidden input field value will be sent together with the
form, and the bf:fileInputParameter will go with the iframe. Thanks to PHP,
we can generate the same value for both. To make it unique, we use a timestamp
as the value. It is created in the hidden input field.

There will be two requests to the server, the controller (cntrl.php) will be
called with an insert request and fileUpload.php will be called to process
the image upload.

The final result of the upload should be a row in the c3d_photo table, with
information about the image as entered in the form. Because we do not know what
will arrive first, we also store the timestamp we sent with both the form and the
iframe, as uploadId in the table. In both scripts, we will check first whether a row
with the uploadId already exists. If yes, we will update the existing row with the
additional information. Otherwise, we will create a new row.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[430]

Add a Google map
Would it not be nice if we could show on a map where on earth each trip entry was
situated? Using the Google Maps API, this is not difficult to do at all. In this section,
we will construct a simple widget defined in TDL that can display a small map
centered at a location with the help of a geocoder. We will use the new version 3 of
the Google Maps API, which has the great advantage that you no longer need an
API key to use it. Apparently, there is still functionality missing in this version that is
available in version 2, but for our application we do not need it.

To start our integration of Google Maps, we look at an example. We found one that
covers our functional need: display a map using a string that describes a place on
earth. You can find it here: http://gmaps-samples-v3.googlecode.com/svn/
trunk/geocoder/getlatlng.html

We show the code for the script below, so that you can understand how we do
the integration:

var geocoder;
var map;
function initialize() {
 geocoder = new google.maps.Geocoder();
 var latlng = new google.maps.LatLng(-34.397, 150.644);
 var myOptions = {
 zoom: 8,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 map = new google.maps.Map(document.getElementById("map_canvas"),
 myOptions);
}
function codeAddress() {
 var address = document.getElementById("address").value;
 if (geocoder) {
 geocoder.geocode({ 'address': address},
 function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 map.setCenter(results[0].geometry.location);
 var marker = new google.maps.Marker({
 map: map,
 position: results[0].geometry.location
 });
 } else {
 alert("Geocode was not successful" +
 "for the following reason: "
 + status);
 }

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[431]

 });
 }
}

The initialize() function will be called at the onload event of the page. This
function initializes the map with a default location. The codeAddress() function is
called when a button is clicked. The value in the address input field is then taken to
find the new map location.

To allow the map to fit in our application we will need to integrate the Maps API
into the Backbase framework. Here is how we do it:

1. Add the library to index.php. This means adding the following code to the
<head> section of the page:
<script type="text/javascript"

 src="http://maps.google.com/maps/api/js?sensor=false">

</script>

2. Define a new namespace. We have chosen http://maps.google.com/
v3 with prefix gm. We could have decided to add our map widget to the sq
namespace, but we thought "Maybe we can grow this widget into a more
general package for Google Maps". For now, the widget is rather specific to
the C3D application.

3. Create a bindings directory and files. We need to put our definition for
the map widget at the proper place; therefore, we defined the resources/
bindings/maps.google.com.v3 directory, which contains a map.xml file.
We also update squared.xml in the resources/bindings directory to
include our new widget:
<d:namespace name="http://maps.google.com/v3"

 xml:base="maps.google.com.v3/">

 <d:uses element="map" src="map.xml" />

</d:namespace>

4. Create a map element.
5. Put the widget in the tripEntry template. Note the namespace declaration

in the div. It is needed because the standard generation of a response does
not include it. We do not want to include it there because it is used only once.

<div xmlns:gm="http://maps.google.com/v3"
 style="padding:5px">
 <!-- template showing trip entry title and place-->
 <gm:map place="<?php echo $place; ?>" />
 <!-- template showing trip entry text -->
</div>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[432]

Let's show the skeleton code for the widget now:

<d:element name="map">
 <d:property name="geocoder" />
 <d:property name="map" />
 <d:template type="application/xml">
 <div style="margin-top: 20px; margin-bottom: 20px;
 width: 360px; height: 150px;
 border: solid 1px green;">
 <d:content />
 </div>
 </d:template>
 <d:handler event="DOMNodeInsertedIntoDocument"
 type="text/javascript">
 this.initialize();
 this.codeAddress(this.getAttribute('place'));
 </d:handler>
 <d:method name="initialize">
 <d:body type="text/javascript">
 // the code for the initialize method goes here
 </d:body>
 </d:method>
 <d:method name="codeAddress">
 <d:argument name="address" />
 <d:body type="text/javascript">
 // the code for the codeAddress method goes here
 </d:body>
 </d:method>
</d:element>

The code for the initialize method is as follows:

<d:method name="initialize">
 <d:body type="text/javascript">
 var geocoder = new google.maps.Geocoder();
 var latlng =
 new google.maps.LatLng(52.3737671, 4.8909347);
 var myOptions = {
 zoom: 5,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 var map =
 new google.maps.Map(this.viewGate, myOptions);
 this.setProperty('geocoder', geocoder);
 this.setProperty('map', map);

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[433]

 </d:body>
</d:method>

In essence, this is the same code as in the original initialize() function. We use
properties to save the values of the geocoder and map variables because we need
these later when the codeAddress() function is called. Here's the code for the
codeAddress function:

<d:method name="codeAddress">
 <d:argument name="address" />
 <d:body type="text/javascript">
 var geocoder = this.getProperty('geocoder');
 var map = this.getProperty('map');
 if (geocoder) {
 geocoder.geocode(
 { 'address': address},
 function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 map.setCenter(results[0].geometry.location);
 var marker = new google.maps.Marker({
 map: map,
 position: results[0].geometry.location
 });
 } else {
 alert("Geocode was not " +
 "successful for the following reason:"
 + status);
 }
 });
 }
 </d:body>
</d:method>

Except for the loading of property values into variables, the code is the same as for
the demo example. Actually, we could have folded the methods into one because
we have only one location to geocode. However, we think that the way we did the
integration has more possibilities for expanding it later into a mapping layer for the
Backbase framework.

For now, the widget does what it needs to do—it works. In addition, by using a
widget instead of embedded JavaScript, we think that the tripEntry template kept
its clarity, while it is clear that we used a Google map.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[434]

Finally, we show a picture of what the showing of the trip entry now looks like.

We are aware that there are more things that need to be done to make the C3D
sample application usable. In particular, as said, the handling of images needs
to be developed further.

C3D: make it right
When developing the code as we have shown in the previous chapters, we were
constrained sometimes because we could not use functionality that we had not
discussed yet. We also found problems in the end result of the application as
developed so far:

•	 We ended up having quite a bit of PHP code generating HTML. This makes
our web application more dependent on PHP than it should be, and it is
more difficult for web designers to see what the page will look like when the
application is used.

•	 We would like to add other types of users, such as an admin user. With the
current structure it would be difficult to display the right menu options for
each user.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[435]

•	 We would like to be able to easily add new menu options. The actions
for each menu option should be more loosely coupled.

•	 The controller (cntrl.php) became rather messy.

The application was therefore not complying with our own standards. When looking
at all the PHP code that crept in generating XHTML and Backbase code, we saw that
the biggest problem was the menu system. Therefore, we decided to overhaul it.

We already have a database table listing the users of our C3D application and their
passwords. We are going to add the authorizations each user has for using menu
items. Because we would like to have a flexible authorization structure, we also need
a table relating authorizations and menu item actions.

Here is a database model for three new tables and how they relate to the
c3d_user table:

And here is what we have in the c3d_action table right now:

The values in actor column are symbolic for the actions that are called when the
user clicks on a menu item. The real actions are determined by the controller. The
label is what is shown in the menu. It would be possible to extend the menu
system for use in multiple languages, by having a table with label values in another
language, keyed by the actor. The id column is there to allow sorting of the menu
items, which are then displayed in this order in the menu. The real unique value
should be the actor value.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[436]

For each actor, we need to specify the authorizations a user needs to call the action:

You may wonder why the insert action is in the list of actors here and not in the list
of menu actions. This is because insert is an action that is caused by submitting a
form to add a new trip, new trip entry, or to upload a photo. Any action that causes
communication with the server must have an entry in this list.

There is also a c3d_authorization table, which lists authorizations for each user.
A user can have more than one authorization and each actor could be activated
through multiple authorizations with this model. This means that we have a very
flexible authorization structure now. How do we implement the menu widgets and
the PHP backend for our new menu system?

We replace the PHP function found in setup.php that built the initial menu in
index.php, with XML code, which you can find in menu.xml:

<b:dataSource e:behavior="b:remoteData" name="source"
 id="menu-source" url="cntrl.php?req=dataMenu"
 dataType="application/xml" requestType="application/xml">
</b:dataSource>
<sq:dataMenu dataSource="source" />
<div id="menu-action">
</div>

As you might guess, the dataSource enables us to fetch the right menu information
from the server. We should never keep information about user authorizations at the
client, and by fetching the menu items dynamically, this is not necessary. There is
also an sq:dataMenu widget that refers to the dataSource. We are going to explore
this widget further now.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[437]

Actually, if you look into resources/bindings/www.squaringthecircles.com/
dataMenu.xml, you will find two widgets, dataMenu and dataMenuItem. You
have seen this pattern several times before, where there is a data-bound widget
that contains a list of items created dynamically, using the information from a
dataSource. Let's look at the code of dataMenu:

<d:element name="dataMenu" extends="b:dataObserver">
 <!-- The dataUpdate method goes here -->
 <d:template type="application/xhtml+xml">
 <div>
 <d:content />
 </div>
 </d:template>
</d:element>

Please note that the name of this widget is the same as a BTL widget. This does not
matter because we placed our widget in our own namespace. Next, here is the code
for the dataUpdate method, which we need for all data-bound widgets:

<d:method name="dataUpdate">
 <d:argument name="action" />
 <d:argument name="records" />
 <d:body type="text/javascript">
 <![CDATA[
 if(action == 'read'){
 // remove all children
 while (this.hasChildNodes()) {
 this.removeChild(this.getProperty('firstChild'));
 }
 // build the new list
 var oSource = this.getProperty('dataSource');
 for(var i = 0; records.length > i; i++){
 var sLabel =
 btl.dataSource.getValue(oSource,
 records[i], 'label');
 var sActor =
 btl.dataSource.getValue(oSource,
 records[i], 'actor');
 var sDescription =
 btl.dataSource.getValue(oSource,
 records[i], 'description');
 var oItem =
 bb.document.createElementNS(
 'http://www.squaringthecircles.com/squared',
 'dataMenuItem');
 oItem.buildItem(sActor, sLabel, sDescription);

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[438]

 this.appendChild(oItem);
 }
 }
]]>
 </d:body>
</d:method>

As you can see, the dataUpdate method removes all children, which is necessary
when the menu is renewed, after a login, for example. Then, the method loops
through all records returned by the remote dataSource and creates dataMenuItem
elements, which are filled by calling the buildItem on them. The dataMenuItem
element looks as follows:

<d:element name="dataMenuItem">
 <d:template type="application/xhtml+xml">
 <div>
 <d:content />
 </div>
 </d:template>
 <d:method name="buildItem">
 <d:argument name="actor" />
 <d:argument name="label" />
 <d:argument name="description" />
 <d:body type="text/javascript">
 var sCstr = '<a class="app_menu_item" href="javascript:" ';
 sCstr += ' xmlns="http://www.w3.org/1999/xhtml"';
 sCstr += ' xmlns:b="http://www.backbase.com/2006/btl"';
 sCstr += ' xmlns:c="http://www.backbase.com/2006/command"';
 sCstr += ' xmlns:e="http://www.backbase.com/2006/xel"';
 sCstr += ' xmlns:xi="http://www.w3.org/2001/XInclude" >';
 sCstr += ' <b:toolTip width="200px" ' +
 'backgroundColor="yellow">';
 sCstr += description;
 sCstr += ' </b:toolTip>';
 sCstr += ' ' + label + '';
 sCstr += ' <e:handler event="click">';
 sCstr += ' <c:load url="cntrl.php?req=menuItem&actor=' +
 actor + '"';
 sCstr += ' destination="."';
 sCstr += ' mode="appendChild" />';
 sCstr += ' </e:handler>';
 sCstr += ' ';
 bb.command.create(sCstr, this, 'appendChild');
 </d:body>
 </d:method>
</d:element>

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[439]

A string is built-in JavaScript containing the XML for an a (anchor) element with a
tool tip and an event handler, which causes the actor to be activated when the user
clicks on the menu item.

We are not proud of this code because we do not like this type of string handling. But
it works. When tried to create these elements with XEL, it was rather difficult to fold
in variable information, like we need to do here. We have seen this problem before in
our examples. Maybe this is a candidate for the next round of refactoring.

The menu system we built now has no support for nested menus. This will not be
difficult to add, when we need it in the future.

This was an example of refactoring that we could do. Of course, there are many
more things that could be refactored and we did some more that we will not
describe here. In line with good refactoring principles, be careful not to try to
make your application perfect. Good enough is good enough.

C3D: make it fast
As we have argued in Chapter 9, Debugging, Optimization, and Deployment,
performance optimizations are best done when your application is almost ready to
be deployed because only then you can truly determine where the bottlenecks are.

We have already looked at performance a little bit when we deployed the first
prototype of the C3D travel blog on our website; see the discussion about the
application page layout in the Page Layout section of Chapter 4.

Initial page loading
A major concern was the time it took to load the main page of the application. To
summarize what we did about it: we replaced the panelSet with a classical HTML
table for the basic layout of the page and we replaced XInclude to include the content
with a PHP include to avoid an extra HTTP request. As a result the main page is not
server language agnostic anymore. This is a price to pay for better performance.

Optimizing client runtime processing
If the script tag encloses the bulk of the application code in the content part of
the C3D application, it may seem that the performance gain will be minimal after
the first loading of the page. You can still try to minimize this overhead by using
the BTL escape tags b:xhtml and b:xml. We described these in Chapter 2, User
Interface Development.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[440]

There may also be functional reasons to put part of your page in non-Backbase
controlled areas. If you are loading HTML from an external source, you may not
know for sure that this code is proper XHTML. By placing the code outside the
Backbase area or within escape tags, you minimize the chance for parsing errors
that cause your page to stay blank.

Server-side issues
There are two types of issues we can look at: the server-side programming issues and
the server-side configuration issues.

As far as programming issues are concerned, the most likely cause of bad
performance is slow queries. The database system you are using will undoubtedly
have tools to help you find these bad queries. For example, MySQL has a slow query
log that you could turn on and examine.

Other items we should look at are configuration issues, such as, whether the server
really is sending compressed pages to the client. It turns out that the hosting
provider where our C3D application resides does not send compressed files, or
actually, it did not send CSS and JavaScript files in a compressed form.

After some experimentation, we found that the following line in our .htaccess
file on the server had the desired effect on YSlow to grade us with an A for the item
Compress components with Gzip:

AddOutputFilterByType DEFLATE text/html text/plain text/xml
 text/css application/x-javascript

Additional things you can do are: use the optimized version of the Backbase
framework, use the TDL Optimizer and study the YSlow statistics and the Firebug
loading times to see if there are spikes in performance. Basically, those things we
discussed in Chapter 9.

Remember though that we made a performance trade-off by encapsulating
JavaScript and CSS locally within XML tags because the gain of effective
development must weigh heavier than the slight performance gain we could
expect by really placing all CSS at the top and all JavaScript at the bottom.

You can see the result of our deployment work at:
http://www.squaringthecircles.com.

After this intermezzo with a final look at our C3D travel blog sample application,
we should look at some aspects of web application development that are not always
compatible with our ideas of a squared application.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[441]

Usability aspects
So far, we took a technical approach to the development of a web application. We
tried to convince you that if you would follow the principles of developing a square
web application and had a UI designer who would make things look nice, then you
would have a good web application. There are, however, other aspects that have to be
taken into account. We name a few:

•	 The integration of legacy web pages or web applications
•	 Internationalization aspects
•	 Accessibility aspects

Legacy integration
The implementation of AJAX web applications can range from simply creating an
AJAX page using an existing HTML page with an added BTL widget to creating an
AJAX application with desktop-like behavior. This range of web applications allows
you the possibility to stage a gradual transition of an existing Multi-page Interface
infrastructure, thereby mitigating risk and leveraging existing Multi-page Interface
investments. For these reasons, a gradual transition to an AJAX web application will
often be the preferred choice. The following list describes the various scenarios in
more detail:

•	 Enhance parts of existing web pages: You may want to keep the existing
Multi-page Interface application, but you also want to spice up the
application by adding rich UI widgets, such as a calendar or contextMenu.
By creating pages with BTL or custom defined widgets, the developer
increases the usability of the application without changing the web
application architecture.

•	 Build a complete Single Page Interface AJAX application: This scenario
is typical if you intend to migrate a fat server to a rich thin client, thereby
transforming an entire server-centered architecture to an RIA. Another
possibility is that you want to migrate a non web-based client/server
application from a fat client to a web-based rich thin client. These represent
alternatives to Swing, VB, or Oracle Forms, by essentially web-enabling fat
client web applications.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

v@v
Text Box
Download at WoweBook.com

The Square Web Application

[442]

•	 Integrate AJAX applications within a Multi-page Interface infrastructure:
To reduce risk and leverage the investment in a Multi-page Interface
application, you may opt either for an intermediate web application or
for a gradual transition, whereby parts of an existing Multi-page Interface
infrastructure are converted into AJAX applications, leaving the rest of their
web presence intact. In this scenario, a series of smaller Single Page Interface
applications can be created that integrate the dynamic asynchronous
loading of content with their rich widgets. This makes applications such as
dashboards, Internet banking, and administrative systems more responsive
and consistent, without implementing a domain-wide AJAX web application.

•	 Combining different AJAX frameworks: If you have already adopted AJAX
web application development, you may discover that a combination of
features from different AJAX frameworks best satisfies your requirements.
In this circumstance, it is important that the frameworks are sufficiently
flexible to accommodate third-party components. The Backbase framework
can support coexistence with third-party frameworks as you have seen in the
previous chapter and earlier in this chapter.

Progressive enhancement
Wikipedia defines progressive enhancement as follows:

Progressive enhancement uses web technologies in a layered fashion that allows
everyone to access the basic content and functionality of a web page, using any
browser or Internet connection, while also providing those with better bandwidth
or more advanced browser software an enhanced version of the page.

If you have this requirement for your application, then it should function without
AJAX and without JavaScript. To enable enhancements for users with more advanced
browser facilities, you can develop your application using the somewhat exotic
tags, importHTML and enhanceHTML, which we did not mention before. See the
API Reference and the importHTML demo application to find more information
on these tags.

It is obvious that you cannot build a full Rich Internet Application in the way we
described in this book using only these two tags. And it certainly makes your
application more difficult to maintain. You may have to make careful trade-offs
when designing for progressive enhancement.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[443]

Internationalization and localization
Internationalization and localization involves the ability to support multiple languages
in one application and displaying dates, times, and currencies in a format that is
appropriate for the country or region the user resides in. We have told you earlier that
the Backbase framework does not have much support for internationalization and
localization, except some support for formatting calendar dates.

Actually, this is not quite true. In the Java environment, you could use resource
bundles and there are several examples available on the Backbase developer network
(http://bdn.backbase.com) that show how you could do this.

There is also an example in the Backbase Explorer, (http://demo.backbase.com/
explorer) under the heading Localization, which shows right-to-left display of
text and the use of Unicode for special fonts such as Japanese.

Many languages other than Java also support internationalization and localization,
which you could use to make your web application support multiple languages.

Other options include using data binding extensively and return data for a
data-bound widget depending on the locale of the user. For example, we could
extend the menu-item tables in the C3D application to include columns containing
translations in other languages of the label texts, and return these translated texts
instead of the English ones if asked.

Accessibility
Of course accessibility is a worldwide concern; however, in the USA there is a law
that addresses this need most clearly:

Section 508 of the United States Rehabilitation Act of 1973 is a law requiring that
electronic and information technology developed, procured, used, or maintained
by all agencies and departments of the Federal Government be accessible both to
Federal employees with disabilities and to members of the public with disabilities.
Section 508 applies to web applications as a series of regulations including usability
for people that are visually impaired, such as alternative keyboard navigation.

Backbase User Interface widgets comply with Section 508 regulations as much as
possible. The widgets meet the directives in the following ways:

•	 Partial focus implementation—implementation of the focus model allows
full keyboard navigation

•	 Almost complete resize support—full resize support allows users to change
the size of text and objects to meet their needs

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[444]

What will the future bring?
If we all knew how to convince the world to use the best technology for a specific
purpose, we would have peace on earth, have solved pollution, eradicated poverty,
and all developers would be using the Backbase framework to build web applications.

While this is not true and because our crystal ball looking skills are not great, we
need to find other ways to predict what will happen with the Web in general and
the Backbase framework in particular.

Backbase as a company realized that the Backbase framework and all its competitors
are foundation technologies. These technologies are becoming more and more like
commodities that developers take for granted to be available freely.

This means that most frameworks and libraries are open source or have free
community licenses. So does the Backbase framework. It has a free community
license and the open source issue will be solved in due time. When, we don't know,
but remember that it took the implementation of the Java language about ten years
to become open source. The availability of the source of the Backbase framework
will undoubtedly be sooner. This does not make a lot of difference for using the
framework because it is free now and most of you would not be interested in reading
or changing the source code anyway.

Despite the popular belief that open source projects are built by young professionals
in their evening hours, for many projects that is not true. Apache and the Eclipse
IDE were heavily funded by IBM; jQuery, being part of ASP.NET AJAX, will
certainly receive money from Microsoft, and MySQL, now owned by Oracle, was
made profitable by selling commercial licenses, giving paid support and organizing
expensive courses.

Backbase has decided to fund the Client Framework by broadening the scope of the
company. Backbase has used the framework to develop new portal software, a kind of
iGoogle that companies can install on their own servers. This software has been very
successfully marketed to some very large enterprises.

For the Backbase framework itself this is good news because the success of the portal
software is dependent on the stability and functionality of the framework. It may be
the case that the marketing attention of a small company like Backbase, will, for a
while, be more focused on this new product.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[445]

A square puzzle
We are going to end this book with a puzzle and a challenge—both a real and
a metaphorical square puzzle. Real, because it is square as you can see from the
screenshot a few pages later. Metaphorical, because the code of the puzzle is a
squared JavaScript using TDL to the max.

One of the authors thinks this is a good example of what can be achieved in a
simple way using TDL. The other author thinks this example is a bridge too far in
using component composition. Therefore, we entered this puzzle as a challenge for
improvement and as a pun on the title of this chapter.

The example we are going to describe is an implementation of a puzzle you all know
from childhood: the 15 square puzzle.

The puzzle has a 4 x 4 square board with 15 tiles on it, that are initially randomly
placed and one square is left empty. By sliding a tile that is in a position adjacent to
the empty square to the empty square position, you can rearrange the tiles, until the
tiles are properly ordered from 1 to 15. A variation that you often see for children has
a picture on the tiles, instead of numbers.

The challenge we would like to put forward is to ask you to develop a better
implementation of the puzzle using pure JavaScript or your favorite framework
(could be Backbase!), but no server-side code. Better looks of the puzzle are of course
nice, but not the objective of this challenge. Drag-and-drop of the puzzle tiles should
be supported and our implementation allows defining other sizes other than a 4 x 4
square, as added complexity.

To get a puzzle board on your page, you need to code this:

<sq:puzzleBoard />

Or, if you wanted a 3 x 10 puzzle board, you could code this:

<sq:puzzleBoard rows="3" columns="10" />

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[446]

Looking at the object model for this puzzle, we recognize three classes:
puzzleBoard, puzzleSquare, and tile. The tile is the thing that is actually
dragged around, to an empty puzzleSquare from a neighboring puzzleSquare.
Here is a picture of this model:

We prefixed properties with p_ and events with e_ to accommodate our little
modeling tool.

Rather than showing you all 200 lines of code, we will explain how it works.
We invite you to look for yourself in the sample code provided with the book.

•	 The puzzleBoard calculates how many tiles and squares there will be and
determines a random sequence for the tiles, with a random position for the
empty square. We should note here that half of the random sequences result
in an insolvable puzzle where two tiles will always be in reverse order. With
some extra calculation this can be avoided, but we did not bother to do so for
this example.

•	 The puzzleBoard creates all the squares and for each square it sets the
row, column, and sequence number. It asks each puzzleSquare to create a
tile too. Each of these is a UI component in its own right, with appropriate
behavior and defined as a widget in TDL. The puzzleBoard widget
composes them together into the square puzzle.

•	 It is important to recognize that there are only two interaction points with the
DOM in the whole implementation of the puzzle. The puzzleBoard creates
an ordinary HTML table and appends in each cell a square as child. The
puzzleSquare creates a tile, sets its properties, and adds it to itself as child.
The interaction with the DOM during dragging and dropping of the tiles is
done transparently by the framework.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[447]

•	 It is also important to note that dragging behavior and capabilities are
dynamically added and removed. This makes it much easier to avoid tiles
to be dragged that should not be movable. To achieve this, it is necessary to
know the neighboring squares to an empty square, in order to make the tile
on this square draggable and remove the possibility to drag others.

•	 Therefore, each puzzleSquare knows who its neighbors are, which is kept in
an array of sequence numbers.

•	 When a puzzleSquare becomes empty, it will set its neighboring tiles as
draggable and itself as a drag receiver:
<d:method name="setDraggables">

 <d:body type="text/javascript">

 var oNeighbors = this.getProperty('neighbors');

 var aSquares =
 this.getProperty('myBoard').getProperty('squares');

 for (var i=0; i < oNeighbors.length; i++) {

 oTile =
 aSquares[oNeighbors[i]].getProperty('myTile');

 oTile.addDrag();

 }

 // make me a receiver

 this.setAttributeNS

 ('http://www.backbase.com/2006/btl',
 'dragReceive', '*');

 </d:body>

</d:method>

•	 Here is the method on the tile to make itself draggable:
<d:method name="addDrag">

 <d:body type="text/javascript">

 bb.addBehavior(this,

 'http://www.backbase.com/2006/btl', 'drag');

 this.setProperty('isDraggable', true);

 </d:body>

</d:method>

•	 The isDraggable property is there to allow the mouseover event handler to
change the cursor.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[448]

•	 The last interesting piece of code is the event handler for the dragEnd event.
This event occurs when the tile is already dropped. To understand this event
handler, remember that there is only one drag receiver, the empty square,
and that only its neighboring tiles are draggable.

•	 The event handler removes all drag-and-drop capabilities from the previous
empty square. This is the square that had the tile on top of it on which the
event was fired. Then, it asks the new empty square to add drag-and-drop
capabilities as we have seen above.

•	 Note again that this event handler does not access the DOM in any way, it
just adapts the references to squares and tiles in the right way.

<d:handler event="dragEnd" type="application/javascript">

 oBoard = this.getProperty('myBoard');

 oSquare = oBoard.getProperty('emptySquare');

 oSquare.removeDraggables();

 oOldSquare = this.getProperty('mySquare');

 oBoard.setProperty('emptySquare', oOldSquare);

 this.setProperty('mySquare', oSquare);

 oSquare.setProperty('myTile', this);

 oOldSquare.setProperty('myTile', null);

 oOldSquare.setDraggables();

</d:handler>

Finally, here is a picture:

This completes the square puzzle example.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Chapter 11

[449]

Summary
In this last chapter of this book, we gave you a summary of the design principles
that apply to the development of a good web application using the Backbase Client
Framework. We called a web application that is built using these principles a square
web application, not to be confused with web squared, which is an extension of Web
2.0 ideas defined by Tim O'Reilly.

The main characteristic of a square application is that everything is XML. XHTML is
considered just one markup language in one namespace that you can use in a web
application, but there can be many others, such as BTL or XEL. You can create your
own XML tags that encapsulate your own UI components in your own namespace
using the object-oriented Tag Definition Language (TDL) that make the framework
seamlessly and transparently extensible or adaptable to new requirements.

In the second part of this chapter, we tried to complete the C3D travel blog sample
application. Of course complete is a relative concept, but the resulting application has
the essential ingredients for a travel blog: trip entries categorized in trips, photos,
and maps.

We completed the example using some guidelines presented in earlier chapter:
Make it work using your best effort, but avoiding perfectionism. Make it right, which
we demonstrated by refactoring the menu system of the application. Make it fast by
looking at what is loaded initially, optimizing database queries, and so on.

In the third part of this chapter, we gave an overview, but no details of usability
aspects such as legacy integration, progressive enhancement, internationalization,
and accessibility.

In the last part of this chapter we tried to see a glimpse of the future and we
presented a not-so-serious example, the square puzzle, pun intended.

Having read this book, you should be able now to develop your own client web
applications. The book contains enough details to allow offline development, and
enough pointers to online documentation should you need even more detail.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

The Square Web Application

[450]

The online documentation offers practically no help with developing your web
application as a whole. This book fills that void by also offering you design and
development guidelines, with examples in PHP, but applicable to other server-side
languages. The book also puts the various web technologies and standards like
DOM, CSS, XHTML, and more in perspective and explains how the Backbase Client
Framework fits into these.

BDN, the Backbase developer network, at http://bdn.backbase.com provides
a discussion platform for further questions, comments, and ideas. We hope to see
you there soon.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Index
A
accordion widget

about 58-60
disadvantages 60

action and menu widgets
about 340
contextMenu widget 341
menuBar widget 343
menuPopUp widget 346
pager widget 348
toolBar widget 346

AJAX
about 10, 135
CSS 135
DOM 135
JavaScript 135
SPI 136
XHTML 135
XML 135
XMLHttpRequest object 135
XSLT 135

AJAX architecture
about 163
Model-View-Control design pattern 164
Model-View-Control design pattern,

implementing 165
AJAX example

about 29
page, with form 30
PHP response 31

AJAX toolkit reference
about 413
ASP.NET AJAX 413
Bindows 413
Cappuccino 414

Dojo 415
Ext JS 414
Google Web Toolkit 415
Javeline Platform 416
jQuery 416
MooTools 416
Prototype 417
PureMVC 418
qooxdoo 418
Script.aculo.us 417
SproutCore 418
YUI library 418
ZK 419

alert command 368
API Reference 43
APIs, Backbase AJAX Framework

JSONRequest object 138
load command 138
XMLHttpRequest object 137

appletParam widget 359
applet widget 359
application frameworks

about 399
Cappuccino 398
PureMVC 398
SproutCore 398

application optimization
about 379, 380
content, optimizing 381
cookies, optimizing 385
CSS, optimizing 386
images, optimizing 388
JavaScript, optimizing 386
server, optimizing 383

application programming model 84
application structure, BTL Exerciser 76, 77

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[452]

app.xml, BTL Exerciser 78, 79
Aptana Studio

about 16
argument tag

about 311
default attribute 311
name attribute 311
required attribute 311
type attribute 311

aspects, web application
about 441
accessibility 443
internationalization 443
legacy integration 441
localization 443
progressive enhancement 442

ASP.NET AJAX 413
asynchronous communication 136
attribute command

about 122
namespace attribute 122

attributes, drag
about 243
dragBehavior 243
dragConstraint 243
dragGroup 243
dragItem 243
dragMode 243
dragSymbol 244
dropMode 244
useDragClass 244

attributes, load command 140
async 140
error 139
method 139
select 140
success 139
url 139

attributes, resize behavior
about 256
maximized 256
minimized 256
resizeConstraint 256, 258
resizeEdges 256, 257
resizeGripSize 256
resizeMaxHeight 256, 258
resizeMaxWidth 256, 258

resizeMinHeight 258, 259
resizeMinWidth 257, 258
resizeType 257, 258

attribute tag
about 293
changers 294
default attribute 293
mappers 294
name attribute 293
namespace attribute 293
onchange attribute 293
onmap attribute 293
yellow note example 293

attribute values, evaluating
string mode 111
XPath mode 111

B
Backbase

application programming model 84
about 10
advantages 11
API Reference 43
basic page layout 35-38
debugging 372
features 10
future 444
namespaces, using 34, 35
square puzzle 445
UI markup languages 44

Backbase APIs
bb JavaScript API 85
low level APIs 86
overview 85

Backbase Client Framework 10, 11
Backbase command exerciser

about 128-131
create command example 129

Backbase command functions
about 95
categories 96

Backbase debugger
about , 373, 15
debugger window 374
information/error bar 373
overview 373

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[453]

Backbasee Tag Library. See BTL
Backbase events

about 93
contextmenu 93
keypress 93
mouseenter 93
mouseleave 93
mousewheel 93

Backbase examples 21
Backbase Explorer 12, 13
Backbase framework

downloading 16, 17
forms, working with 142
installation, verifying 22, 23
installing 17
source code 46

Backbase page skeleton 18-20
Backbase panelSet widget 9
Backbase TDL 276
Backbase utility functions

about 94
Backbase commands 95
bb object utility functions 95

balloon widget
about 24, 125
mode attribute 126
open attribute 126
string attribute 126

basic page layout, Backbase 35
bb object 85
bb object utility functions

about 95
array 95
browser 95
command 95
console 95
cookie 95
exec 95
history 95
html 95
smil 95
string 95
time 95
ui 95
uri 95
xml 95

b-button widgets 312
behavioral commands

about 263
addBehavior 263
removeBehavior 264
setBehavior 264

behaviors
about 240
drag-and-drop 241
resize 241

behavior tag
about 332
examples 333, 334, 335
extends attribute 332
implements attribute 332
name attribute 332

Bindows 413
body tag

about 311
type attribute 311

bookmark command
about 368
name attribute 368
title attribute 368

box widget 61
broadcaster/observer 265-268
BTL

about 41, 49
extending 331
UI widgets 41

BTL abstract elements
about 51
card 55
cardStack 55
dimensionElement 55
element 53
inheritance structure 51, 52
positionElement 54
visualElement 53

BTL Exerciser
about 76
application structure 76, 77
app.xml file 78, 79
index.html 77
menu, in tab panel 80, 81
tab panel content 79

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[454]

BTL form elements
about 146
dropDown 147
focusableElement 146
formField 147
formList 147
rangeFormField 147

BTL form widgets
about 148
calendar 148
checkBoxGroup 149
comboBox 152
listBox widget 154
slider widget 155
spinne widget 157
suggestBox 158

BTL skinSettings widget 73, 74
BTL utility elements

about 69
codeHighlighter 69
label 69
populator 70
skinSettings 70
xhtml 70
xml 71

BTL widget custom events
about 93
creating 94

BTL widgets
about 50
action and menu widgets 340
categories 50
data-bound widgets 350
multimedia widgets 359
overview 50

button widget 340

C
C3D application

animation, adding 272, 273
completing 426
performance optimizing 439
photo upload form 427
troubleshooting 434-439
working 427

C3D controller 175, 176
C3D model 176
C3D travel blog site

about 167
data model 170
designing 169
developing 229
page layout 171
requisites 169
server application structure 174
trip, adding 178
trip entry, adding 230-235
trip names and descriptions,

showing 236-238
C3D view 176
calendar widget

about 148
cattributes 148
elements 148
languages 149

calendar widget attributes
disabledDates 148
format 148
language 148
max 148
min 148
mode 148
readonly 148
value 148

cancelable event 90
Cappuccino 398, 414
card, BTL abstract elements

about 56
selected attribute 56

cardStack, BTL abstract elements
about 55
loop attribute 56
next method 56
cardStack, BTL abstract elementsprevious

method 56
Cascading Style Sheet. See CSS
categories, BTL widgets

actions & menu 50
forms 50
grids & trees 50
info & notify 50

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[455]

layout 50
multimedia 50
utilities & tools 50
windows & dialogs 50

chameleon skin 71 20
changers 294
checkBoxGroup widget

about 149
elements 149

classes, defining with TDL
composition 304
element tag 304
inheritance 304

client-side GUI framework 398
client-side technologies

about 396
client-side libraries 397
Flash 398
framework 397
JavaScript-based frameworks 398
server-side and client-side 396
Silverlight 398

codeAddress() function 431
codeHighlighter element 69
comboBox widget

about 152, 153
attributes 152
elements 152
filter attribute 152
readonly attribute 152

commands, for manipulating DOM
about 120
attribute command 122
copy 120
copy-of command 122
create 121
destroy 123
move 124
value-of command 123

commands, for manipulating elements
about 112
fireEvent command 113
focus and blur commands 112
hide command 115
position command 114
scrollTo command 114
setText command 114

show command 115
showHide command 115
sort command 116
tile command 118
transform command 119

component model 401
composite widgets

about 317
order form building blocks 319-325
pedestrian light, composing 317-319

conditional execution, XEL
about 101
conditional logic 101, 102
iterators 103

constructor tag 316
content optimization

about 381
AJAX, making cacheable 382
DOM elements, minimizing 383
HTTP requests, minimizing 381
postloading components 382
preloading components 382

contextMenu widget
about 341
adding, to application 341-343
menuPopUp attribute 341

context, XEL
passing 108

copy command 120
copy-of command 122
create command 121
CSS 72, 135

D
data binding

about 402
about 183
advantages 185
C3D travel blog sample application 185
example 185-189
server-side 190

data binding fundamentals
about 192
inheritance structure 193

data-bound widgets
about 202-350

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[456]

dataContextMenu widget 350
dataGrid 203
dataGridEditCell 204
dataMenu widget 350, 352
ieldEditor 204
menuActivate event 350

dataContextMenu widget 350, 352
dataGrid

about 203
defaultColumnWidth attribute 203
features 206
frozenColumns attribute 203
liveScrolling attribute 203
maxPages attribute 203
readonly attribute 203
sortable attribute 203

dataGrid features
about 206
collapsible info block 224-227
column drag-and-drop 214, 215
column freezing 215, 216
common header menu 207-210
data paging 213, 214
form editing 227, 228
header context menu 211-213
instant editing 223
live scrolling 228, 229
one-click editing 217-222

dataMenu widget 352, 353
data model, C3D travel blog site 170
dataObserver

about 183, 198
dataSource attribute 198
dataUpdate method 198
dataObserverrows attribute 198
sortDirection attribute 198
sortField attribute 198

data source
about 350
fields 350
hasSubmenu field 350
icon field 350
identifier field 350
name field 350
open field 350
separator field 350
submenu field 350

dataSource
about 183, 194
attributes 194
local data sources 195
remote data sources 196, 197
static data sources 198

dataUpdate method 198
debugger window

about 374
console tab 375
help tab 379
model and view tabs 376, 377
network tab 378
preferences tab 379
reports tab 379
TDL tab 378
XMLHttpRequests, network tab 378

debugging 372
deck widget

about 61, 62
example 62

deployment, on server
about 391
insalias locations, defining 393, 394
install 392
installing, in Java environment 393

destroy command 123
destructor tag 317
development environment

setting up 14
development environment, setting up

browser 15
IDE, using 16
server scripting language 14
web server 14

dimensionElement, BTL abstract elements
about 55
height attribute 55
width attribute 55

Document Object Model. See DOM
about 87
document tree, modifying 88
document tree, traversing 87
events, dealing with 88

Dojo 415
DOMt 135

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[457]

DOM event flow
about 89
diagrammatic representation 90

DOM modules
about 86
DOM Core module 86
DOM Events module 86
DOM XPath module 86

drag 243
drag-and-drop

customizing 253-256
drag-and-drop behavior

about 242
drag 243
dragBase 242
drag constraints 246
dragging, with widgets 245
dragTarget 244
dropping, with widgets 245

dragBase 242
drag constraints

about 246
dragConstraint 249
dragged element, reverting 250-252
dragGroup 247
dragItem 246, 247
useDragClass 248

dragManager 243
dragTarget 244
dropDown element 147

E
element, BTL abstract elements

about 53
id attribute 53
xml base attribute 53

element tag
about 304
abstract attribute 304
extends attribute 304
implements attribute 304
name attribute 304

event handlers
about 299
registering 90
registering wyas 90

event handlers, registering
DOM events API, used 91
JavaScript, used 91
markup, used with XEL handler attributes

91
markup, used with XEL handler element 90

events
about 89
cancelable event 90
DOM event flow 89
event handlers, registering 90
low level APIs, for event handling 92

events, dragBase
drag 242
dragDrop 242
dragEnd 242
dragEnter 242
dragLeave 243
dragOver 243
dragStart 243

event types
about 93
Backbase framework events 93
BTL widget custom events 93
DOM level 3 event types 93

extended form element
about 144
destination attribute 144
messagesRef attribute 144
mode attribute 144

extended input element
about 144
dataType attribute 144
messagesRef attribute 144
required attribute 144

Extensible HyperText Markup Language.
See XHTML

Extensible Markup Language. See XML
Extensible Stylesheet Language Transfor-

mations. See XSLT
Ext JS 414

F
fileInput widget 145
fireEvent command

about 113

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[458]

bubbles attribute 113
cancelable attribute 113
event attribute 113
with attribute 113

Flash 398
flash widget 360
focusableElement

about 146
accesskey attribute 147
attributes 147
features 146
tabindex attribute 147

focus and blur commands 112
form elements

about 143
extended form element 144
extended input element 144
fileInput widget 145

formField element 147
formList element 147
forms

abstract BTL form elements 146
BTL form widgets 148
elements 143
input fields, validating 159
profiles 143
working with 142

forms profile 143
functions, XEL

about 104
argument, passing 105-107
calling 105
method, calling 105

G
Google Web Toolkit. See GWT
GUI widgets

styling techniques 71
GWT 415

H
handler element 283
handler tag

about 299
defaultAction attribute 299

event attribute 299
match attribute 299
phase attribute 299
propagate attribute 299
type attribute 299
yellow notes, updating 300, 301, 303

height issues
about 74
solutions 74
troubleshooting 74

Hello World
Backbase balloon, using 24
JavaScript balloon, using 25
XEL balloon, using 27

hide command 115
HTML components 276
HTML element data bound

about 199
data-bound bulleted list 202
data source, creating 199
dataUpdate method 201
new widget, defining 200

I
implementation bindings 19
index.html, BTL Exerciser 77
info and notify BTL widgets

about 125
balloon widget 125
infoBox widget 126
loadingMessage widget 127
toolTip widget 128

infoBox widget
about 126
for attribute 126
open attribute 126

inheritance 325-327
inheritance structure, BTL abstract element

about 51
diagrammatic representation 52

initialize() function 431
input fields

data type validation 161, 162
required_field identifier 160
validating 159

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[459]

integration example 404-412
interfaces 330, 331
internationalization 402

J
JavaScript 135
JavaScript and CSS optimization

about 386
CSS, placing at top of page 386
DOM access, minimizing 388
duplicate scripts, removing 388
JavaScript and CSS, minifying 387
JavaScript code, placing at end of page 386
smart event handlers, developing 388

JavaScript balloon 25, 27
JavaScript-based frameworks 398
JavaScript load command 141
Javeline Platform 416
jQuery 416
JSON 183
JSONRequest object 138

L
label element 69
layout widgets

about 58
accordion 58
box 61
deck 61
navBox 63
panelSet 64
tabBox 67

listBox widget
about 154
attributes 154
elements 154
multiple attribute 154
size attribute 154

load command
about 138
attributes 139
functions 138, 139
header 141
JavaScript load command 141

loadingMessage widget 127

local data sources
about 195
asynchronous attribute 196
attributes 196
dataSelect attribute 196
dataType attribute 196
methods 196
pushData method 196
sendRequest method 196

long term viability 403
low level APIs 86
low level APIs, for event handling 92

M
menuActivate event 350
menuBar widget 343, 344
menuPopUp widget 346
method element

about 310
argument tag 311
body tag 311
name attribute 310
sliding thumbnails 311

modal widget
about 357
attributes 357
center attribute 357
dragConstraint attribute 357
for attribute 357
open attribute 357

modelNode 281
MooTools 416
move command 124
multimedia widgets

about 359
applet widget 359
flash widget 360

MVC architecture 280
MVC implementation, on server

about 165
scriptlets 167
erver controller 166
server model 166
server view 166

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[460]

N
navBox widget

about 63
close method 63
open attribute 63
open method 63

O
object-orientation 277
object-oriented concepts 278

P
page layout, C3D travel blog site

about 171, 173
IDs, using 173

pager widget 348
panelSet widget

about 64, 66
columns attribute 65
fullScreen attribute 65
rows attribute 65
splitter attribute 65
splitterSize attribute 65

panel tag 66
param command 120
parameters, remote data sources

action 197
dataType 197
rangeEnd 197
rangeStart 197
request 197
requestType 197
sortDirection 197
sortField 197

performance 403
performance optimizations, C3D

application
about 439
client runtime processing, optimizing 439
initial page loading 439
server-side configuration issues 440

photo upload form, C3D application
about 427
dataComboBoxes 427, 429
Google map, adding 430-434

image upload, handling 429
PHP 191
populator element

about 70
events 70
populate method 70
type 70
url 70

position command
about 114
destination attribute 114
 mode attribute 114
x attribute 114

positionElement, BTL abstract elements
about 54
bottom attribute 54
left attribute 54
margin attribute 54
position attribute 54
right attribute 54
top attribute 54
zIndex attribute 54

programming model 400
progressive enhancement 442
property getters 307
property setters 308
property tag

about 305
defining 306
name attribute 305
onget attribute 305
onset attribute 305
type attribute 305

Prototype 417
PureMVC 398, 418

Q
qooxdoo 418

R
rangeFormField element

about 147
max attribute 147
min attribute 147

remote data sources
about 196

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[461]

attributes 197
method attibute 197
paramaters 197
requestType attibute 197
url attibute 197
useTimestamp attibute 197

resize behavior
about 256
attributes 256
custom events 259
resize custom events 259
using 257

resizeConstraint attribute 258
resize custom events

about 259
bookApps/behaviors/resize_custom_grip-

py.html 260, 261
bookApps/behaviors/resize_custom_table.

html 262, 263
properties 259
resize 259
resizeEnd 259
resizeStart 259

resizeEdges attribute 257
resizeMax attributes 258
resizeMin attributes 258
resizeType attribute 258
resource tag

about 296
named resources 297, 298
yellow notes example 296

RIA 10

S
Script.aculo.us 417
scriptlets 167
scrollTo command 114
server application structure, C3D travel blog

site
about 174
add trip menu item 178, 180
C3D controller 175, 176
C3D model 176
C3D view 176
login menu item 177
logout menu item 177, 178

server optimization
about 383
Ajax request, using 385
buffer, flushing 385
compression 384
compression, enabling 384
GET request, using 385

show command 115
showHide command 115
Silverlight 398
simple widgets

about 283
attribute tag 293
resource tag 296
TDL widget definition, building 283, 284
template tag 285

skinning 72
skinSettings element 70
slide() function 312
slide method 313
slider widget

about 155, 156
attributes 155
elements 155
in chameleon skin 73
in system skin 72

slider widget attributes
fill 155
max 155
min 155
orientation 155
showLabels 155
showToolTip 155
snap 155
step 155
value 155

SMIL animation 268-271
sort command

about 116
algorithm attribute 116
by attribute 116
order attribute 116

source code 46
SPI 136
spinner widget

about 157
attributes 157

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[462]

elements 157
spinner widget attributes

decimals 157
stringAfter 157
stringBefore 157
value 157

SproutCore 399, 418
sq:humbnail widget 314
square puzzle 445, 447
square web application

about 422, 423
requisites 424, 425
widgets, making data-bound 424

sq:windowMenu widget
about 361-367
constructor 363
menuActivate event handler 363

src attribute 360
standards support 402
static data sources 198
styling techniques, GUI widgets

about 71
CSS, using 72
height issue 74
skinning 72

suggestBox widget
about 158
attributes 158
elements 158

suggestBox widget attributes
select 158
suggestDelay 158
suggestMaximum 158
suggestStartLength 158

Synchronized Multimedia Integration Lan-
guage. See SMIL

system skin 71

T
tabBox widget 67, 68
tab panel content, BTL Exerciser 79
Tag Definition Language. See TDL
tags, TDL elements

element 282
method 282
namespace 283

property 282
tdl 283

taskBar widget 356
TDL

about 276
advantages 277
classes, defining with 303
custom widgets, creating 282
macro language 336
MVC architecture 280
namespaces 337
object-orientation 277
object-oriented concepts 278
object-oriented language 336
OO, implementing 279
widgets 277

TDL elements
about 282
attribute 283
content 282
resource 282
tags 282
template 282

TDL Optimizer
about 389
configuration file, creating 389
optimized bindings, deploying 390
running 390

template tag
about 285-288
content tag 288, 289
templates, with JavaScript 290, 291
type attribute 285

tile command
about 118
animate attribute 118
columnmargin attribute 118
maximum attribute 118
orientation attribute 118
rowmargin attribute 118

toolBar widget 346, 347
toolTip widget 128
trace command 367
transform command

about 119
param command 120
stylesheet attribute 119

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[463]

U
UI

animating 268
UI components

about 276
Backbase TDL 276
HTML components 276
limitations 336
XBL 276

UI markup languages
about 44, 45
BTL 45
forms 45
XHTML 45
XInclude 46

UI widgets 41
uses tag 335

V
value-of command 123
variables, XEL

about 98
attributes, getting 101
attributes, setting 101
declaring 98, 99
properties, setting 100
setting 100
variable scope 99
variable values, retrieving 100

viewGate 281
viewNode 281
visualElement, BTL abstract elements

about 53
class attribute 53
display attribute 53
opacity attribute 53
style attribute 54
title attribute 54
visibility attribute 54

W
web lamp example 308, 310
widget event handling 299
widgets

about 277, 401

widgets, as objects
BTL, extending 331
classes, defining with TDL 303
composite widgets 317
constructors 316
destructors 317
inheritance 325
interfaces 330
methods 310
properties 305

windowArea widget 355
windows and menus example 360-366
window widget

about 354, 355
buttons attribute 354
mode attribute 354
open attribute 354

X
XBL 276
XBL 2.0 version 276
XEL 96
XEL balloon 27-29
XEL features

about 97, 98
conditional execution 101
context, passing 108
functions 104
JavaScript, using 109
variables 98

XHTML 47, 48, 135
xhtml element 70
XInclude 20
XML 32, 135
xml element 71
XML Execution Language. See XEL
XMLHttpRequest object 135, 137
XML namespaces

about 24, 32
declaring 33
need for 32
using, with Backbase 34

XML Path Language. See XPath
XPath

about 110
attribute values, evaluating 110

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[464]

XSLT 135

Y
yellow notes

inheritance, using 328-330
YSlow 380
YUI library 418

Z
ZK 419

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Thank you for buying
Backbase 4 RIA Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Backbase 4 RIA Development, Packt will have given some of
the money received to the Backbase project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to specific
client-side problems

3. For web designers to create interactive elements
for their designs

Learning Ext JS
ISBN: 978-1-847195-14-2 Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications

1. Learn to build consistent, attractive web
interfaces with the framework components.

2. Integrate your existing data and web services
with Ext JS data support.

3. Enhance your JavaScript skills by using Ext's
DOM and AJAX helpers.

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

AJAX and PHP: Building
Responsive Web Applications
ISBN: 978-1-904811-82-4 Paperback: 284 pages

Enhance the user experience of your PHP website
using AJAX with this practical tutorial featuring
detailed case studies

1. Build a solid foundation for your next
generation of web applications

2. Use better JavaScript code to enable powerful
web features

3. Leverage the power of PHP and MySQL to
create powerful back-end functionality and
make it work in harmony with the smart
AJAX client

Object-Oriented JavaScript
ISBN: 978-1-847194-14-5 Paperback: 356 pages

Create scalable, reusable high-quality JavaScript
applications and libraries

1. Learn to think in JavaScript, the language of the
web browser

2. Object-oriented programming made accessible
and understandable to web developers

3. Do it yourself: experiment with examples that
can be used in your own scripts

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Hello Backbase!
	What is Backbase?
	What can Backbase do for me?

	The Backbase Explorer
	Setting up a web development
environment
	The web server and a server scripting language
	The browser
	Using an IDE

	Download the Backbase framework
	The Backbase page skeleton
	"Hello Backbase" in four variations
	Verifying the installation of the Backbase framework
	"Hello World" using a Backbase balloon
	The JavaScript balloon
	The XEL balloon

	Hello Server!
	The page with the form
	The PHP response

	XML and namespaces
	Why do we need XML namespaces?
	Declaring XML namespaces
	Use of namespaces with Backbase

	A basic page layout
	Summary

	Chapter 2: User Interface Development
	Squaring the circles of web applications
	The Backbase Reference
	UI markup languages
	Where is the source code?

	XHTML
	The Backbase Tag Library
	Backbase Tag Library widget overview

	The BTL abstract elements
	Abstract element inheritance structure
	element
	visualElement
	positionElement
	dimensionElement
	cardStack and card

	The layout widgets
	Accordion
	Box
	deck
	navBox
	panelSet
	tabBox
	The BTL utility elements
	codeHighlighter
	label
	populator
	skinSettings
	xhtml and xml

	Styling techniques for GUI widgets
	Using CSS
	Skinning
	The BTL skinSettings widget

	Height problems

	A BTL Exerciser
	The application structure
	index.html
	app.xml
	Tab panel content
	The menu in each tab panel

	Summary

	Chapter 3: Writing the Application Logic
	The application programming model
	Overview of the Backbase APIs
	The bb object
	Low level APIs—the W3C DOM family
	The Document Object Model

	Events
	DOM event flow and cancelable events
	Registering event handlers
	Using markup with an XEL handler element
	Using markup with XEL handler attributes
	Using JavaScript and the DOM events API

	APIs relevant for dealing with events
	Event types
	BTL widget custom events
	Custom event creation

	Backbase utility functions
	The bb object utility functions
	Backbase Commands

	The Backbase XML Execution Language (XEL)
	XEL features
	Variables in XEL
	Conditional execution in XEL
	Functions in XEL
	Passing context
	Using JavaScript in XEL

	XPath
	Evaluating attribute values
	String mode
	XPath mode

	Commands to manipulate the DOM or
elements
	Manipulating elements
	focus and blur
	fireEvent
	position
	scrollTo
	setText
	show, hide, and showHide
	sort
	tile
	transform

	Manipulating the DOM
	copy
	create
	destroy
	move

	Info and Notify BTL widgets
	balloon
	infoBox
	loadingMessage
	toolTip

	A Backbase Command Exerciser
	Summary

	Chapter 4: Client-server Communication and Forms
	AJAX
	Asynchronous communication
	The XMLHttpRequest object
	The JSONRequest object
	The load command
	header
	The JavaScript load command

	Working with forms
	The forms profiles
	Form elements
	The extended form element
	The extended input element
	fileInput

	The abstract BTL form elements
	focusableElement
	dropDown
	formField, formList, and rangeFormField

	The BTL form widgets
	calendar
	checkBoxGroup
	comboBox
	listBox
	slider
	spinner
	suggestBox

	Validating input fields
	Required fields
	Data type validation

	AJAX and architecture
	Model-View-Controller
	Implementing MVC on the server
	The server controller
	The server model
	The server view

	The C3D travel blog site
	Requirements for the C3D site
	Design
	Data model
	Page layout
	Good use of IDs

	Server application structure
	The C3D controller
	The C3D model
	The C3D view
	Login and logout

	Add a trip

	Summary

	Chapter 5: Data-bound Widgets
	Why is data binding important?
	The server-side of data binding

	Data-binding fundamentals
	dataSource
	Local data sources
	Remote data sources
	Static data sources

	dataObserver
	The dataUpdate method

	Make an HTML element data bound
	Creating the data source
	Define the new widget
	The dataUpdate method
	Show the data-bound bulleted list

	The data-bound widgets
	dataGrid
	Grid editing and fieldEditor
	The eleven features of dataGrid
	Common header menu
	Header context menu
	Data paging
	Column drag-and-drop
	Column freezing
	One-click editing
	Editing and focusing together
	Instant editing
	Collapsible info block
	Form editing
	Live scrolling

	Continue the development of the
C3D application
	Adding a trip entry
	Show trips and trip entries

	Summary

	Chapter 6: More Dynamic Behavior
	Behaviors
	Drag-and-drop
	dragBase
	drag
	dragTarget
	Basic dragging and dropping with widgets
	Advanced dragging and dropping with widgets

	Resize
	Using the resize behavior
	Resize custom events

	Commands for the behaviors
	addBehavior
	removeBehavior
	setBehavior

	Broadcaster/observer
	Animating the UI
	SMIL animation
	Adding animation to the C3D example application

	Summary

	Chapter 7: Creating UI Components
	Component models and technologies
	Introduction to the Tag Definition
Language (TDL)
	Widgets
	The advantages of using TDL
	Object-orientation
	OO and TDL
	OO and web applications

	Model-View-Controller
	Widget creation with TDL
	Overview of the TDL elements

	Simple widgets
	Building a TDL widget definition
	The template, attribute, and resource tags
	Templates
	Attributes
	Resources

	Widget event handling
	The handler tag
	Updatable yellow notes

	Widgets as objects
	Defining classes with TDL
	Inheritance
	Composition
	The element tag

	Properties
	Property definition
	Property getters
	Property setters
	A web lamp example

	Methods
	The argument tag
	The body tag
	Sliding thumbnails

	Constructors and destructors
	Composite widgets
	Compose a pedestrian light
	Order form building blocks

	Inheritance
	Yellow notes using inheritance
	Interfaces
	Extending BTL

	Behaviors
	Behavior example

	Uses
	The limits of creating UI components
	TDL as a macro language
	TDL as an object-oriented language
	Squaring the circles
	Namespaces
	Conclusion

	Summary

	Chapter 8: Widget Wrap-up
	Action and menu widgets
	button
	contextMenu
	menuBar
	menuPopUp
	toolBar
	pager

	Data-bound menus
	The dataSource for a menu
	The menuActivate event
	dataContextMenu
	dataMenu

	Windows and dialogs
	window
	windowArea
	taskbar
	modal

	Multimedia widgets
	applet
	flash

	An example with menus and windows
	Is the sq:windowMenu widget useful?

	Miscellaneous commands
	trace
	alert
	bookmark

	Summary

	Chapter 9: Debugging, Optimization, and Deployment
	Debugging
	The Backbase debugger
	Overview
	The information/error bar
	The debugger window
	Console tab
	The Model and View tabs
	TDL tab
	Network tab
	Reports tab
	Preferences tab
	Help tab

	Application optimization
	Optimizing content
	Making fewer HTTP requests
	Making AJAX cacheable
	Post- or preloading components
	Reducing the number of DOM elements

	Optimizing the server
	Compression
	Flushing the buffer early
	Using GET for AJAX requests

	Optimizing cookies
	Optimizing JavaScript and CSS
	Placing JavaScript code at the end of the page
and CSS at the top
	Minify JavaScript and CSS
	Removing duplicate scripts
	Minimizing DOM access
	Developing smart event handlers

	Optimizing images

	The TDL Optimizer
	Creating a configuration file for the optimizer
	Running the TDL Optimizer
	Deploying the optimized bindings

	Deployment on a server
	Install
	Installation in a Java environment
	Defining alias locations

	Summary

	Chapter 10: Framework Comparison
	The landscape of client-side
technologies
	Server-side and client-side
	Client-side libraries and frameworks
	Flash, Silverlight, and JavaScript-based frameworks
	Client-side GUI framework and application framework

	Backbase and other client-side GUI frameworks
	Programming model
	Widgets
	Component model
	Data binding
	Standards support
	Internationalization
	Performance
	Long-term viability
	Conclusion

	An integration example
	AJAX toolkit reference
	ASP.NET AJAX
	Bindows
	Cappuccino
	Ext JS
	The Dojo toolkit
	Google Web Toolkit
	Javeline
	jQuery
	MooTools
	Prototype and Script.aculo.us
	Prototype
	Script.aculo.us

	PureMVC
	qooxdoo
	SproutCore
	The Yahoo User Interface (YUI) library
	ZK

	Summary

	Chapter 11: The Square Web Application
	What is a square web application?
	No global JavaScript functions
	Make widgets data bound
	Do not generate HTML at the server
	Send only XML data from server to client
	Make the layout modular
	Use MVC throughout
	The client is the view
	Place the controller at the server
	No business logic at the client

	Complete the C3D example
	C3D: make it work
	The photo upload form

	C3D: make it right
	C3D: make it fast
	Initial page loading
	Optimizing client runtime processing
	Server-side issues

	Usability aspects
	Legacy integration
	Progressive enhancement
	Internationalization and localization
	Accessibility

	What will the future bring?
	A square puzzle
	Summary

	Index

