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Preface  

This volume contains the proceedings of the Joint International Symposium 
PLILP/ALP '98, which has united the Tenth PLILP (Programming Languages, 
Implementations, Logics and Programs) and the Seventh ALP (Algebraic and 
Logic Programming) conferences. This symposium was held in Pisa, Italy, during 
September 16-18, in cooperation with the Fifth Static Analysis Symposium (SAS 
'98), chaired by Giorgio Levi, and in conjunction with a number of satellite 
events. 

The previous PLILP meetings took place in Orldans, France (1988), Linkbping, 
Sweden (1990), Passan, Germany (1991), Leuven, Belgium (1992), Tallinn, Es- 
tonia (1993), Madrid, Spain (1994), Utrecht, The Netherlands (1995), Aachen, 
Germany(1996), and Southampton, UK (1997). All proceedings have been pub- 
lished by Springer-Verlag as Lecture Notes in Computer Science, volumes 348, 
456, 528, 631, 714, 844, 982, 1140, and 1292, respectively. 

The previous ALP meetings took place in Gaussig, Germany (1988), Nancy, 
France (1990), Volterra, Italy (1992), Madrid, Spain (1994), Aachen, Germany 
(1996), and Southampton, UK (1997). All proceedings have been published by 
Springer Verlag as Lecture Notes in Computer Science, volumes 343, 463, 632, 
850, 1139, and 1298, respectively. 

The PLILP symposia traditionally aim at stimulating research in declara- 
tive programming languages, and seek to disseminate insights in the relation 
between the logics of those languages, implementation techniques, and the use 
of these languages in constructing real programs. The ALP conferences tradi- 
tionally promote the exchange of ideas and experiences among researchers from 
the declarative programming communities. In addition to the standard topics, 
the 98 Joint Symposium encouraged contributions also from other programming 
areas, in particular from the concurrent and object-oriented fields. 

The program committee met electronically during the second and third week 
of May, 1998, and selected 26 papers out of 68 submissions (38%). Besides the 
selected contributions, the scientific program included three invited talks, by 
Charles Consel (University of Rennes/Irisa, France), Amir Pnueli (Weizmann 
Institute of Science, Rehovot, Israel), and Scott A. Smolka (SUNY Stony Brook, 
USA). The last two presentations were shared with SAS '98. In addition, the 
program included three tutorials, by Andrea Asperti (University of Bologna, 
Italy), John Hannah (The Pennsylvania State University, USA), and Andrew 
Pitts (University of Cambridge, UK). This volume contains all the selected pa- 
pers, and the contributions (either in form of a short abstract or a full paper) of 
the invited speakers and tutorialists, except for the contribution of Amir Pnueli, 
which is included in the proceedings of SAS '98. 

We would like to thank all those who submitted papers, for their interest in 
PLILP/ALP '98, the Program Committee members and their referees, for their 
careful work in the reviewing and the selection process, and the invited speakers 
and tutorialists, for their contribution to the success of the symposium. 
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Finally, we would like to express our gratitude to the members of the local 
committee, for the effort they have invested in organizing this event. 

July 1998 Catuscia Palamidessi, Hugh Glaser and Karl Meinke 
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Logic Programming and Model Checking�

Baoqiu Cui, Yifei Dong, Xiaoqun Du, K. Narayan Kumar,
C. R. Ramakrishnan, I. V. Ramakrishnan, Abhik Roychoudhury,

Scott A. Smolka, and David S. Warren

Department of Computer Science, SUNY at Stony Brook
Stony Brook, NY 11794–4400, USA
http://www.cs.sunysb.edu/~lmc

Abstract. We report on the current status of the LMC project, which
seeks to deploy the latest developments in logic-programming technology
to advance the state of the art of system specification and verification. In
particular, the XMC model checker for value-passing CCS and the modal
mu-calculus is discussed, as well as the XSB tabled logic programming
system, on which XMC is based. Additionally, several ongoing efforts
aimed at extending the LMC approach beyond traditional finite-state
model checking are considered, including compositional model checking,
the use of explicit induction techniques to model check parameterized
systems, and the model checking of real-time systems. Finally, after a
brief conclusion, future research directions are identified.

1 Introduction

In the summer of 1997, C.R. Ramakrishnan, I.V. Ramakrishnan, Smolka, and
Warren were awarded a four-year NSF Experimental Software Systems (ESS)
grant1 to investigate the idea of combining the latest developments in concur-
rency research and in logic programming to advance the state-of-the art of sys-
tem specification and verification. This was the first year of the ESS program at
NSF, and its goal is to support experimental investigations by research teams
dedicated to making fundamental progress in software and software engineering.
The ESS program director is Dr. William W. Agresti.

The current primary focus of our ESS-sponsored project is model check-
ing [CE81,QS82,CES86], the problem of determining whether a system specifica-
tion possesses a property expressed as a temporal logic formula. Model checking
has enjoyed wide success in verifying, or finding design errors in, real-life sys-
tems. An interesting account of a number of these success stories can be found
in [CW96b].
� Research supported in part by NSF grants CDA–9303181, CCR–9404921, CCR–

9505562, CDA–9504275, CCR–9705998, CCR–9711386 and AFOSR grants F49620-
95-1-0508 and F49620-96-1-0087.

1 There are two additional co-Principal Investigators on the grant who are no longer
at Stony Brook: Y.S. Ramakrishna of Sun Microsystems and Terrance Swift located
at the University of Maryland, College Park.

C. Palamidessi, H. Glaser, and K. Meinke (Eds.): PLILP’98, LNCS 1490, pp. 1–20, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



2 Baoqiu Cui et al.

We call our approach to model checking logic-programming-based model
checking, or LMC for short, and it is centered on two large software sys-
tems developed independently at SUNY Stony Brook: the Concurrency Fac-
tory [CLSS96] and XSB [XSB98]. The Concurrency Factory is a specification
and verification environment supporting integrated graphical/textual specifica-
tion and simulation, and model checking in the modal mu-calculus [Koz83] tem-
poral logic. XSB is a logic programming system that extends Prolog-style SLD
resolution with tabled resolution. The principal merits of this extension are that
XSB terminates on programs having finite models, avoids redundant subcompu-
tations, and computes the well-founded model of normal logic programs.

Verification systems equipped with model checkers abound. For exam-
ple, http://www.csr.ncl.ac.uk:80/projects/FME/InfRes/tools lists over
50 specification and verification toolkits, most of which support some form of
model checking. Although these tools use different system-specification languages
and property-specification logics, the semantics of these logics and languages are
typically specified via structural recursion as (least, greatest, alternating) fixed
points of certain types of functionals.

It is therefore interesting to note that the semantics of negation-free logic
programs are given in terms of minimal models, and Logic Programming (LP)
systems attempt to compute these models. The minimal model of a set of Horn
clauses is equivalent to the least fixed point of the clauses viewed as equations
over sets of atoms. Hence, model checking problems involving least fixed points
can be naturally and concisely cast in terms of logic programs. Problems in-
volving greatest fixed-point computations can be easily translated into least
fixed-point computations via the use of logical negation.

However, Prolog-style resolution is incomplete, failing to find minimal mod-
els even for datalog (function-free) programs. Moreover, the implementation of
negation in Prolog differs from the semantics of logical negation in the model
theory. Consequently, traditional Prolog systems do not offer the needed support
to directly implement model checkers. As alluded to above, evaluation strate-
gies such as tabling [TS86,CW96a] overcome these limitations (see Section 2.2).
Hence, tabled logic programming systems appear to offer a suitable platform for
implementing model checkers. The pertinent question is whether one can con-
struct a model checker using this approach that is efficient enough to be deemed
practical.

The evidence we have accumulated during the first year of our LMC project
indicates that the answer to this question is most definitely “yes.” In particular,
we have developed XMC [RRR+97], a model checker for Milner’s CCS [Mil89]
and the alternation-free fragment [EL86] of the modal mu-calculus. The full
value-passing version of CCS is supported, and a generalized prefix operator
is used that allows arbitrary Prolog terms to appear as computational units
in XMC system specifications. Full support for value-passing is essential in a
specification language intended to deal with real-life systems such as telecom-
munications and security protocols.
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XMC is written in approximately 200 lines of XSB tabled-logic-programming
Prolog code, and is primarily intended for the model checking of finite-state
systems, although it is capable of handling certain kinds of infinite-state sys-
tems, such as those exhibiting “data independence” [Wol86]. With regard to the
efficiency issue, XMC is highly competitive with state-of-the-art model check-
ers hand-coded in C/C++, such as SPIN [HP96] and the Concurrency Fac-
tory [CLSS96]. This performance can be attributed in part to various aspects of
the underlying XSB implementation, including its extensive support of tabling
and the use of trie data structures to encode tables. In [LRS98] we describe how
XMC can be extended to the full modal mu-calculus.

Buoyed by the success of XMC, we are currently investigating ways in which
the LMC approach can be extended beyond traditional finite-state model check-
ing. In particular, the following efforts are underway.

– An LMC-style specification of a model checker is given at the level of seman-
tic equations, and is therefore not limited to any specific system-specification
language or logic. For example, we have built a compositional model checker,
simply by encoding the inference rules of the proof system as Horn clauses
(Section 4.1).

– Traditionally, model checking has been viewed as an algorithmic technique,
although there is a flurry of recent activity on combining model checking
with deductive methods. Observe that (optimized) XSB meta-interpreters
can be used to execute arbitrary deductive systems. Hence, the LMC ap-
proach offers a unique opportunity to fully and flexibly integrate algorithmic
and deductive model checking, arguably the most interesting problem being
currently researched by the verification community. To validate this claim,
we have been experimenting with ways of augmenting XMC with the power
of induction, with an eye toward the verification of parameterized systems
(Section 4.2).

– By using constraints (as in Constraint LP [JL87]) to finitely represent infinite
sets and tabled resolution to efficiently compute fixed points over these sets,
we are looking at how tabled constraint LP can be used to verify real-time
systems (Section 4.3).

The rest of the paper is structured follows. Section 2 shows how model check-
ing can be essentially viewed as a problem of fixed-point computation, and how
fixed points are computed in XSB using tabled resolution. Section 3’s focus is
our XMC model checker, and Section 4 describes ongoing work on extending the
XMC technology beyond traditional finite-state model checking. After a brief
conclusion, Section 5 identifies several promising directions for future research.

2 Preliminaries

In this section we describe the essential computational aspects of model check-
ing and tabled logic programming. This side-by-side presentation exposes the
primary rationale for the LMC project.
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2.1 Model Checking

As remarked in the Introduction, model checking is essentially a problem of fixed-
point computation. To substantiate this view, consider an example. Suppose we
have a transition system T (transition systems are often used to model systems
in the model-checking framework) and we wish to check if the start state of T
satisfies the CTL branching-time temporal logic formula EFp. This will prove
to be true just in case there is a run of the system in which a state satisfying
the atomic proposition p is encountered.

Let S0 be the set of states of T that satisfy EFp. If a state s satisfies p,
written s � p, then clearly it satisfies EFp. Further if s and t are states such
that t � EFp and s has a transition to t, then s � EFp as well. In other
words, if S is a set of states each of that satisfies EFp and EFp : 2T → 2T is
the function given by

EFp(S) = {s | s � p} ∪ {s | s→ t ∧ t ∈ S}
then EFp(S) ⊆ S0. As a matter of fact, S0 is the least fixed point of EFp.
Thus, one way to compute the set of states that satisfy EFp is to evaluate the
least fixed point of the function EFp. Assuming that T is finite-state, by the
Knaster-Tarski theorem, it suffices to start with the empty set of states and
repeatedly apply the function EFp till it converges.

There is a straightforward Horn-clause encoding of the defining equation of
EFp. Tabled LP systems can evaluate such programs efficiently, and hence yield
an efficient algorithm for model checking EFp. This observation forms the basis
for the XMC model checker (Section 3).

Other temporal logic properties of interest may involve the computation of
greatest fixed points. For example, consider the CTL formula AGp asserting
that p holds at all states and along all runs. The set of states satisfying this
formula (which turns out to be the negation of the formula EF¬p) is the greatest
fixed point of the function AGp given by:

AGp(S) = {s | s � p} ∩ {s | s→ t ⇒ t ∈ S}
Once again, using Knaster-Tarski, the set of states satisfying the property AGp
may be computed by starting with the set of all states and repeatedly applying
the function AGp till it converges.

More complicated properties involve the nesting of least and greatest fixed-
point properties and their computation becomes a more complex nesting of iter-
ations. The modal mu-calculus, the logic of choice for XMC, uses explicit least
and greatest fixed-point operators and consequently subsumes virtually all other
temporal logics in expressive power.

2.2 The XSB Tabled Logic Programming System

The fundamental theorem of logic programming [Llo84] is that, given a set of
Horn clauses (i.e., a “pure” Prolog program), the set of facts derivable by SLD
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resolution (the computational mechanism of Prolog) is the same as the set of
facts logically implied by the Horn clauses, which is the same as the set of facts
in the least fixed point of the Horn clauses considered as set equations. From
this result it might seem obvious that logic programming is well suited to solving
general fixed-point problems and could be directly applied to model checking

This, however, is not the case. The foundational theorem on fixed points
is weak in that it ensures only the existence of successful computations (SLD
derivations); but there may be infinitely many computations that do not lead to
success. This means that while a standard Prolog engine may be able to show
that a particular fact is in the least fixed point of its rules, it can never show
that a fact is not in the fixed point when there are infinitely many unsuccessful
computation paths, which is the case for the fixed points needed for model
checking. And even if the fact is in the fixed point, Prolog’s search strategy
may not find it. So even though the semantics of logic programming is a useful
semantics for model checking, its computation mechanism of SLD is too weak
to be practical.

The XSB system implements SLG resolution [CW96a], which to a first ap-
proximation can be understood as a tabled version of SLD resolution. This means
that XSB can avoid rederiving a fact that it has previously tried to derive. (In
the procedural interpretation of Horn clauses, this means that XSB will never
make two calls to the same procedure passing the same arguments.) It is easy to
see that for a system that has only finitely many possibly derivable facts, as for
example in a finite-state model checking problem, XSB will always terminate.

To see how this works in practice, consider the following logic program:

reach(X,Y) :- trans(X,Y).
reach(X,Y) :- trans(X,Int), reach(Int,Y).

which defines reachability in a transition system. We assume that the predicate
trans(X,Y) defines a transition relation, meaning that the system can make
a direct transition from state X to state Y. Given a definition of the trans
relation, these rules define reach to be true of a pair (X,Y) if the system can
make a (nonempty) sequence of transitions starting in state X and ending in
state Y. trans could be defined by any set of facts (and/or rules), but for our
motivating example, we’ll assume it is defined simply as:

trans(a,b).
trans(b,c).
trans(c,b).

Given a query of reach(a,X), which asks for all states reachable starting from
state a, Prolog (using SLD resolution) will search the tree indicated in Figure 1.
The atoms to the left of the :- symbols in the tree nodes capture the answers; the
list of atoms to the right are waiting to be resolved away. Each path from the root
to a leaf is a possible SLD derivation, or in the procedural interpretation of Prolog
programs are computation paths through the nondeterministic Prolog program.
Notice that the correct answers are obtained, in the three leaves. However, the
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reach(a,X) :- reach(a,X)

reach(a,X) :- trans(a,X)

reach(a,b) :- reach(a,X) :- reach(b,X)

reach(a,X) :- trans(a,Intb),reach(Intb,X)

reach(a,X) :- trans(b,X) reach(a,X) :- trans(b,Intc),reach(Intc,X)

reach(a,X) :- reach(c,X)

reach(a,X) :- trans(c,X) reach(a,.X) :- trans(c,Intd),reach(Intd,X)

reach(a,X) :- reach(b,X)reach(a,b) :-

reach(a,c) :-

o

o

o

o

Fig. 1. Infinite SLD tree for reach(a,X)

point of more interest is that this is an infinite tree, branching infinitely to the
lower right. Notice that the lower right node is identical to an ancestor four
nodes above it. So the pattern will repeat infinitely, and the computation will
never come back to say it has found all answers. A query such as reach(c,a)
would go into an infinite loop, never returning to say that a is not reachable
from c.

Now let us look at the same example executed using SLG resolution in XSB.
The program is the same, but we add a directive :- table reach/2. to indicate
that all subgoals of reach should be tabled. In this case during execution, an
invocation of a reach subgoal creates a new subtree with that subgoal at its
root if there is no such tree already. If there is such a tree, then the answers
from that tree are used, and no new (duplicate) tree is created. Figure 2 shows
the initial partial computation of the same query to the point where the subgoal
reach(b,X) is about to be invoked, at the lower right node of that tree. Since

reach(a,X) :- reach(a,X)

reach(a,X) :- trans(a,X)

reach(a,b) :- reach(a,X) :- reach(b,X)

reach(a,X) :- trans(a,Intb),reach(Intb,X)

Fig. 2. Initial SLG subtree for reach(a,X)
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reach(b,X) :- reach(b,X)

reach(b,X) :- trans(b,X)

reach(b,c) :-

reach(b,X) :- trans(b,Intc),reach(Intc,X)

reach(b,X) :- reach(c,X)

Fig. 3. Partial SLG subtree for reach(b,X)

there is no subtree for this subquery, a new one is created and computation
continues with that one yielding another subtree, as shown in Figure 3. Now here

reach(c,X) :- reach(c,X)

reach(c,X) :- trans(c,X)

reach(c,b) :-

reach(c,X) :- trans(c,Intc),reach(Intc,X)

reach(c,X) :- reach(b,X)

Fig. 4. Partial SLG subtree for reach(c,X)

again a new subgoal, reach(c,X), is invoked, leading to a new subtree, which
is shown in Figure 4. Here again we have encountered a subgoal invocation, this
time of reach(b,X), and a tree for this subgoal already exists; it is in Figure 3. So
no more trees are created (at least at this time.) Now we can use answers in the
subtrees to answer the queries in the trees that generated them. For example we
can use the answer reach(c,b) in Figure 4 to answer the query of reach(c,X)
generated in the lower rightmost node of Figure 3. This results in another answer
in Figure 3, reach(b,b). Now the two answers in the tree for reach(b,X) can
be returned to the call that is the lower rightmost node of Figure 4, as well as
to the lower rightmost node of Figure 2.

After all these answers have been returned, no new subgoals are generated,
and the computation terminates, having reached a fixed point. The final state
of the tree of Figure 2 is shown in Figure 5. The final forms of the other sub-
trees are similar.

This very simple example shows how tabling in XSB terminates on compu-
tations that would be infinite in Prolog. All recursive definitions over finite sets
will terminate in a similar way. Finite-state model checkers are essentially more
complicated versions of this simple transitive closure example.

3 Model Checking of Finite-State Systems

In this section we present XMC, our XSB-based model checker for CCS and
the modal mu-calculus. We first focus on the alternation-free fragment of the
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reach(a,X) :- reach(a,X)

reach(a,X) :- trans(a,X)

reach(a,b) :- reach(a,X) :- reach(b,X)

reach(a,X) :- trans(a,Intb),reach(Intb,X)

reach(a,b) :-reach(a,c) :-

Fig. 5. The final SLG subtree for reach(a,X)

modal mu-calculus, to illustrate the strikingly direct encoding of its semantics
as a tabled logic program. The full modal mu-calculus is treated next using a
sophisticated semantics for negation developed within the logic-programming
community. Finally, we show how the structural operational semantics of CCS,
with full value-passing support, can also be naturally captured as a tabled logic
program.

3.1 Model Checking the Alternation-Free Modal Mu-Calculus

The modal mu-calculus [Koz83] is an expressive temporal logic whose semantics
is usually described over sets of states of labeled transition systems. We encode
the logic in an equational form, the syntax of which is given by the following
grammar:

F −→ Z | tt | ff | F ∨ F | F ∧ F | diam(A, F) | box(A, F)

D −→ Z += F (least fixed point)
| Z -= F (greatest fixed point)

In the above, Z is a set of formula variables (encoded as Prolog atoms) and A
is a set of actions; tt and ff are propositional constants; ∨ and ∧ are standard
logical connectives; and diam(A, F) (possibly after action A formula F holds)
and box(A, F) (necessarily after action A formula F holds) are dual modal
operators. For example, a basic property, the absence of deadlock, is expressed
in this logic by a formula variable deadlock free defined as:

deadlock_free -= box(-, deadlock_free) /\ diam(-, tt)

where the ‘-’ in box and diam formulas stand for any action. The formula states,
essentially, that from every reachable state (box(-,deadlock free)) a transition
is possible (diam(-,tt)).

We assume that the labeled transition system corresponding to the process
specification is given in terms of a set of facts trans(Src, Act, Dest), where
Src, Act, and Dest are the source state, label and target state, respectively, of
each transition. The semantics of the modal mu-calculus is specified declaratively
in XSB by providing a set of rules for each of the operators of the logic, as follows:
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models(State_S, tt).

models(State_S, (F1 \/ F2)) :- models(State_S, F1).

models(State_S, (F1 \/ F2)) :- models(State_S, F2).

models(State_S, (F1 /\ F2)) :- models(State_S, F1), models(State_S, F2).

models(State_S, diam(A, F)) :- trans(State_S, A, State_T),

models(State_T, F).

models(State_S, box(A, F)) :- findall(T, trans(State_S, A, T),

States_L),map_models(States_L, F).

Consider the rule for diam. It declares that a state State S (of a process)
satisfies a formula of the form diam(A, F) if State S has an A transition to
some state State T and State T satisfies F.

The semantics of logic programs are based on minimal models, and accord-
ingly XSB directly computes least fixed points. Hence, the semantics of the
modal mu-calculus’s least fixed-point operator can be directly encoded as:
models(State_S, Z) :- Z += F, models(State_S, F).

To compute greatest fixed points in XSB, we exploit its capability to handle
normal logic programs: programs with rules whose right-hand side literals may
be negated using XSB’s tnot, which performs negation by failure in a tabled en-
vironment. In particular, we make use of the duality νX.F (X) = ¬µX.¬F (¬X),
and encode the semantics of greatest fixed-point operator as:
models(State_S, Z) :- Z -= F, negate(F, NF),

tnot(models(State_S, NF)).

The auxiliary predicate negate(F, NF) is defined such that NF is a positive
formula equivalent to (¬F).

For alternation-free formulas, the encoding yields dynamically stratified pro-
grams (i.e., a program whose evaluation does not involve traversing loops with
negation), and has a two-valued minimal model. In [SSW96] it was shown that
the evaluation method underlying XSB correctly computes this class of pro-
grams. Tabling ensures that each explored system state is visited only once in
the evaluation of a modal mu-calculus formula. Consequently, the XSB program
will terminate under XSB’s tabling method when there are a finite number of
states in the transition system.

3.2 Model Checking the Full Modal Mu-Calculus

Intuitively, the alternation depth of a modal mu-calculus formula [EL86] f is the
level of nontrivial nesting of fixed points in f with adjacent fixed points being
of different type. When this level is 1, f is said to be “alternation-free”. When
this level is greater than 1, f is said to “contain alternation.” The full modal
mu-calculus refers to the class of formulas of all possible alternation depths.
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In contrast to the alternation-free fragment of the modal mu-calculus, when
a formula contains alternation, the resultant XSB program is not dynamically
stratified, and hence the well-founded model may contain literals with unknown
values [vRS91]. For such formulas, we need to evaluate one of the stable mod-
els of the resultant program [GL88], and the choice of the stable model itself
depends on the structure of alternation in the formula. Such a model can be
computed by extending the well-founded model. When the well-founded model
has unknown values, XSB constructs a residual program which captures the de-
pendencies between the predicates with unknown values.

We compute the values of these remaining literals in the preferred stable
model by invoking the stable model generator smodels [NS96] on the residual
program. The algorithm used in smodels recursively assigns truth values to lit-
erals until all literals have been assigned values, or an assignment is inconsistent
with the program rules. When an inconsistency is detected, it backtracks and
tries alternate truth assignments for previously encountered literals. By appro-
priately choosing the order in which literals are assigned values, and the default
values, we obtain an algorithm that correctly computes alternating fixed points.

Initial experiments indicate that XMC computes alternating fixed points very
efficiently using the above strategy, even outperforming existing model checkers
crafted to carry out the same kind of computation. Details appear in [LRS98].

3.3 On-the-Fly Construction of Labeled Transition Systems

The above encoding assumes that processes are given as labeled transition sys-
tems. For processes specified using a process algebra such as CCS [Mil89], we can
construct the labeled transition system on the fly, using CCS’s structural oper-
ational semantics. In effect, we can treat trans as a computed (IDB) relation
instead of as a static (EDB) relation, without changing the definition of models.
Below, we sketch how the trans relation can be obtained for processes speci-
fied in XL (a syntactically sugared version of value-passing CCS), the process
specification language of XMC.

The syntax of processes in our value-passing language is described by the
following grammar:

E −→ PN | in(A) | out(A) | code(C) | if(C, E, E)

E o E | E ’||’ E | E # E | E \ L | E @ F

Def −→ (PN ::= E)∗

In the above, E is a process expression; PN is (parameterized) process name,
represented as a Prolog term; C is a computation, (e.g., X is Y+1); Process
in(a(t)) inputs a value over port a and unifies it with term t; out(a(t)) out-
puts term t over port a. Process if(C, E1, E2) behaves like E1 if computa-
tion C succeeds and otherwise like E2. Operator o is generalized prefixing. The
remaining operators are like their CCS counterparts (modulo occasional changes
in syntax to avoid clashes with Prolog lexicon). For example, # is nondetermin-
istic choice; ’||’ is parallel composition; @ is relabeling, where F is a list of
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substitutions; and ‘\’ is restriction, where L is a list of port names. Recursion is
provided by a set of defining equations , Def, of the form PN ::= E.

The formal semantics of our language is given using structural operational
semantics, closely paralleling that of CCS [Mil89]. Due to space limitations, we
present here the axioms and inference rules for only a few key constructs. In order
to emphasize the highly declarative nature of our encoding, these are presented
exactly as they are encoded in the Prolog syntax of XSB.

trans(in(A), in(A), nil).

trans(out(A), out(A), nil).

trans(code(X), _, code) :- call(X).

trans(P1 o P2, A, Q) :- trans(P1, A, Q1),

(Q1 == code -> trans(P2, A, Q);

(Q1 == nil -> Q = P2 ; Q = Q1 o P2))).

trans(if(X,P1,P2),A,Q) :- call(X) -> trans(P1,A,Q) ; trans(P2,A,Q).

trans( P ’||’ Q, A, P1 ’||’ Q ) :- trans(P, A, P1).

trans( P ’||’ Q, A, P ’||’ Q1) :- trans(Q, A, Q1).

trans( P ’||’ Q, tau, P1 ’||’ Q1) :- trans(P, A, P1),

trans(Q, B, Q1), comp(A, B).

comp(in(A), out(A)).

comp(out(A), in(A)).

trans(P, A, Q) :- P ::= R, trans(R, A, Q).

In the above, A -> B ; C is Prolog syntax for if A then B else C. The trans
predicate is of the form trans(P, A, Q) meaning that process P performs an
A transition to become process Q. The axiom for input says that in(A) can ex-
ecute an in(A) transition and then terminate; similarly for the output axiom.
The axiom for internal computation forces the evaluation of X and then termi-
nates (without exercising any transition). The rule for generalized prefix states
that P1 o P2 behaves like P1 until P1 terminates; at that point it behaves as
P2. The conditional process if(X, P1, P2) behaves like P1 if evaluation of X
succeeds, and like P2 otherwise. Finally, the rules for parallel composition state
that P ’||’ Q can perform an autonomous A transition if either P or Q can (the
first two rules), and P ’||’ Q can perform a synchronizing tau transition if P
and Q can perform “complementary” actions (the last rule); i.e., actions of the
form in(A) and out(A). The final rule above captures recursion: a process P
behaves as the process expression R used in its definition.

To illustrate the syntax and semantics of XL, our value-passing language,
consider the following specification of a channel chan (with input port get and
output port give) implemented as a bounded buffer of size N.
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chan(N, Buf) ::= code(length(Buf, Len)) o

if( (Len == 0)

, receive_only(N, Buf)

, if( (Len == N)

, send_only(N, Buf)

, receive_only(N, Buf) # send_only(N, Buf)

)).

receive_only(N, Buf) ::= in(get(Msg)) o chan(N, [Msg|Buf]).

send_only(N,Buf) ::= code(rm_last(Buf,Msg,RBuf)) o

out(give(Msg)) o chan(N,RBuf).

In the above definition rm last(Buf,Msg,RBuf) is a computation, defined in
Prolog, that removes the last message Msg from Buf, resulting in a new (smaller)
buffer RBuf.

3.4 Implementation and Performance

The implementation of the XMC system consists of the definition of two pred-
icates models/2 and trans/3; in addition, it contains a compiler to translate
input XL representation to one with smaller terms that is more appropriate for
efficient runtime processing. Overall the system consists of less than 200 lines of
well-documented tabled Prolog code.

Preliminary experiments show that the ease of implementation does not pe-
nalize the performance of the model checker. In fact, XMC has been shown
(see [RRR+97]) to consistently outperform the Concurrency Factory’s model
checker [CLSS96] and virtually match the performance of SPIN [HP96] on a
well-known set of benchmarks.

We recently obtained results from XMC on the i-protocol, a sophisticated
sliding-window protocol used for file transfers over serial lines, such as telephone
lines. The i-protocol is part of the protocol stack of the GNU UUCP package
available from the Free Software Foundation, and consists of about 300 lines
of C code.

Table 1 contains the execution-time and memory-usage requirements for
XMC, SPIN, COSPAN [HHK96], and SMV [CMCHG96] applied to the i-protocol
to detect a non-trivial livelock error that can occur under certain message-loss
conditions. This livelock error was first detected using the Concurrency Factory.

Run-time statistics are given for window sizes W = 1 and W = 2, with the
livelock error present (~fixed) and not present (fixed). All results were obtained
on an SGI IP25 Challenge machine with 16 MIPS R10000 processors and 3GB
of main memory. Each individual execution of a verification tool, however, was
carried out on a single processor with 1.8GB of available main memory.

As can be observed from Table 1, XMC performs exceptionally well on this
demanding benchmark. This can be attributed to the power of the underlying
Prolog data structuring facility (the i-protocol makes use of non-trivial data
structures such as arrays and records), and the fact that data structures in XSB
are evaluated lazily.
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Version Tool Completed? Memory Time
(MB) (min:sec)

W=1 ~fixed COSPAN Yes 4.9 0:41
SMV Yes 4.0 41:52
SPIN Yes 749 0:10
XMC Yes 18.4 0:03

W=1 fixed COSPAN Yes 116 24:21
SMV Yes 5.3 74:43
SPIN Yes 820 1:02
XMC Yes 128 0:46

W=2 ~fixed COSPAN Yes 13 1:45
SMV No 28 >35 hrs
SPIN Yes 751 0:12
XMC Yes 68 0:11

W=2 fixed COSPAN Yes 906 619:49
SMV No — —
SPIN Yes 1789 6:23
XMC Yes 688 3:48

Table 1. i-protocol model-checking results.

4 Beyond Finite-State Model Checking

In Section 3 we provided evidence that finite-state model checking can be ef-
ficiently realized using tabled logic programming. We argue here that tabled
LP is also a powerful and versatile vehicle for verifying infinite-state systems.
In particular, three applications of tabled logic programming to infinite-state
model checking are considered. In Section 4.1, we show how an XMC-style model
checker can be extended with compositional techniques. Compositional reason-
ing can be used to establish properties of infinite-state systems that depend
only on some finite subpart. Section 4.2 treats parameterized systems. Finally,
in Section 4.3, the application of tabled LP to real-time systems is discussed.

4.1 Compositional Model Checking

Consider the XL process A o nil. Clearly it satisfies the property diam(A,tt).
We can use this fact to establish that (A o nil) # T also satisfies diam(A,tt),
without consideration of T. This observation forms the basis for compositional
model checking, which seeks to solve the model checking problem for complex
systems in a modular fashion. Essentially, this is accomplished by examining the
syntactic structure of processes rather than the transition relation. (Recall, that
the XMC model checker, presented in Section 3, does exactly the latter in its
computation of the predicate trans/3.) Besides yielding potentially significant
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efficiency gains, the compositional approach is intriguing also when one considers
that the T in our example may well have been infinite-state or even undefined.

Andersen, Stirling and Winskel [ASW94] present an elegant compositional
proof system for the verification of processes defined in a synchronous process
calculus similar to Milner’s SCCS [Mil83] with respect to properties expressed
in the modal mu-calculus. A useful feature of their system is the algorithmic
nature of the rules. The only nondeterminism in the choice of the next rule to
apply arises from the disjunction operator in the logic and the choice of action
in the process. Both of these sources of nondeterminism are unavoidable. In this
respect, it differs from many systems reported in literature which require a clever
choice of intermediate assertions to guide the choice of rules.

Andersen et al. in [ASW94] also present an encoding of CCS into their syn-
chronous process calculus and consequently it is possible to use their proof sys-
tem to verify CCS processes. This encoding, however, has two disadvantages.
First, the size of the alphabet increases exponentially with the number of paral-
lel components, and, secondly, the translation of the CCS parallel composition
operator is achieved via a complex nesting of synchronous parallel, renaming,
and restriction operators.

To mitigate the problems with their proof system in the context of CCS,
we have adapted it to work directly for CCS processes under the restriction
that relabeling operators use only injective functions. Our system retains the
algorithmic nature of their system, yet incorporates the CCS parallel composition
operator and avoids the costly alphabet blowup.

This adaptation is achieved by providing rules at three levels as opposed to
two in [ASW94]. The first level deals with processes that are not in the scope of a
parallel composition operator, the second for processes in the scope of a parallel
composition operator, and the third for processes appearing in the scope of
relabeling and parallel composition operators.

A Level-1 Rule:

models(P1 # P2, box(A,F)) :- models(P1, box(A,F)),

models(P2, box(A,F)).

A Level-2 Rule:

models((P1 # P2) ’||’ P3, box(A,F)) :-

models(P1 ’||’ P3, box(A, F)),

models(P2 ’||’ P3, box(A, F)).
A Level-3 Rule:

models((B o P1) @ R ’||’ P2, box(A,F)) :-

maps(R,B,C), models(C o (P1 @ R) ’||’ P2, box(A,F)).

Our system is sound for arbitrary processes and complete for finite-state
processes. It has been implemented using XSB in the same declarative fashion
as our XMC model checker. The compositional system is expected to improve
on XMC’s space efficiency by avoiding the calculation of intermediate states and



Logic Programming and Model Checking 15

by reusing subproofs, though worst-case behavior is unchanged. Performance
evaluation is ongoing.

Our compositional system can indeed provide proofs for properties of par-
tially defined processes as illustrated by the following example from [ASW94].
Let p ::= (tau o p) # T and q ::= (tau o q) # T where T is an unspeci-
fied process. The formula x += box(tau, x) expresses the impossibility of di-
vergence. The following is a proof that p ’||’ q may possibly diverge.

models(p ’||’ q, x)

?- models(p ’||’ q, box(tau, x))

?- models((tau o p) # T) ’||’ q, box(tau, x))

?- models((tau o p) ’||’ q, box(tau, x))

?- models(p ’||’ q, x)

?- fail.

4.2 Model Checking Parameterized Systems using Induction

We have thus far described how inference rules for a variety of verification sys-
tems can be encoded and evaluated using XSB. These inference systems specify
procedures that are primarily intended for model checking finite-state systems.
We now sketch how more powerful deductive schemes offer (albeit incomplete)
ways to verify properties of parameterized systems. A parameterized system rep-
resents an infinite family of finite-state systems; examples include an n-bit shift
register and a token ring containing an arbitrary number of processes.

An infinite family of shift registers can be specified in XL as follows:

reg(0) :== bit

reg(s(N)) :== (bit @ [get/temp] || reg(N) @ [give/temp]) \ {temp}

bit :== in(get) o out(give) o bit

In the above specification, natural numbers are represented using successor no-
tation (0, s(0), s(s(0)), . . .) and reg(n) defines a shift register with n + 1
bits.

Now consider what happens when the query models(reg(M), φ), for some
nontrivial property φ and M unbound (thereby representing an arbitrary instance
of the family), is submitted to an XMC-style model checker. Tabled evaluation of
this query will attempt to enumerate all values of M such that reg(M)models the
formula φ. Assuming there are an infinite number of values of M for which this is
the case, the query will not terminate. Hence, instead of attempting to enumerate
the set of parameters for which the query is true, we need a mechanism to derive
answers that compactly describe this set.

For this purpose, we exploit XSB’s capability to derive conditional answers:
answers whose truth has not yet been (or cannot be) independently established.
This mechanism is used already in XSB for handling programs with non-stratified
negation under well-founded semantics. For instance, for the program fragment
p :- q. q :- tnot r. r :- tnot q. XSB generates three answers: one for p that
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is conditional on the truth of q, and one each for q and r, both conditional on
the falsity of the other. Now, if r can be proven false independently, conditional
answers for q and p can be simplified : both can be marked as unconditionally
true.

Our approach to model checking parameterized systems is to implement a
scheme to uncover the inductive structure of a verification proof based on the
above mechanism for marking and simplifying conditional answers. Consider,
again, the query models(reg(M), φ). When resolving this query, we will en-
counter two cases, corresponding to the definition of the reg family: (i) M = 0,
and (ii) M = s(N), corresponding to the base case and the recursive case, re-
spectively. For the base case, the model checking problem is finite-state and the
query models(reg(0), φ) can be completely evaluated by tabled resolution.

For the recursive case, we will eventually encounter a subgoal of the form
models(reg(N), φ′), where φ′ is some subformula of φ. For simplicity of ex-
position, consider the case in which φ = φ′. Under tabled resolution, since
this subgoal is a variant of one seen before, we will begin resolving answers
to models(reg(N), φ) from the table of models(reg(M), φ), and eventually
add new answers to models(reg(M), φ). This naive strategy leads to an in-
finite computation. However, instead of generating (enumerating) answers for
models(reg(N), φ) for adding answers to models(reg(M), φ), we can gener-
ate one conditional answer, of the form:

models(reg(M), φ) :- M = s(N), models(reg(N), φ).

which captures the dependency between the two sets of answers. In effect, we
have evaluated away the finite parts of the proof, “skipping over” the infinite
parts while retaining their structure. For instance, in the above example, we
skipped over models(reg(N), φ) (i.e., did not attempt to establish its truth in-
dependently), and retained the structure of the infinite part by marking the truth
of models(reg(s(M)), φ) as conditional on the truth of models(reg(N), φ).
Using this mechanism, we are left with a residual program, a set of conditional
answers that reflects the structure of the inductive proof. The residual program,
in fact, computes exactly the set of instances of the family for which the property
holds, and hence compactly represents a potentially infinite set.

Resolution as sketched above, by replacing instances of heads (left-hand sides)
of rules by the corresponding bodies (right-hand sides) unfolds the recursive
structure of the specification. In order to make the structure of induction explicit,
it is often necessary to perform folding steps, where instances of rule bodies
are replaced by the corresponding heads. In [RRRS98] we describe how tabled
resolution’s ability to compute conditional answers, and folding mechanisms can
be combined to reveal the structure of induction.

It should be noted that although we have a representation for the (infinite)
set of instances for which the property holds, the proof is not yet complete; we
still need to show that the set of instances we have computed covers the entire
family. What we have done is to simply evaluate away the finite parts, leaving
behind the core induction problem, which can then be possibly solved using
theorem provers. In many cases, however, the core induction problem is simple
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enough that the proof can be completed by heuristic methods that attempt to
find a counter example, i.e., an instance of the family that is not generated by the
residual program. For example, we have successfully used this counter-example
technique to verify certain liveness properties of token rings and chains (shift
registers), and soundness properties of carry look-ahead adders.

4.3 Model Checking Real-Time Systems

Another kind of infinite-state system we are interested in is real-time systems.
Most embedded systems such as avionics boxes and medical devices are required
to satisfy certain timing constraints, and real-time system specifications allow a
system designer to explicitly capture these constraints.

Real-time systems are often specified as timed automata [AD94]. A timed
automaton consists of a set of locations (analogous to states in a finite automa-
ton), and a set of edges between locations denoting transitions. Locations as
well as transitions may be decorated with constraints on clocks . An example of
a timed automaton appears in Figure 6. A state of a timed automaton comprises
a location and an assignment of values to clock variables. Clearly, since clocks
range over infinite domains, timed automata are infinite-state automata.

Real-time extensions to temporal logics, such as timed extensions of the
modal mu-calculus [ACD93,HNSY94,SS95], are used to specify the properties
of interest.

Traditional model-checking algorithms do not directly work in the case of
real-time systems since the underlying state-space is infinite. The key then is to
consider only finitely many regions of the state space. In [AD94] it is shown that
when the constraints on clocks are restricted to those of the form X < Y + c
where X and Y are clock variables and c is a constant, the state space of a
timed automaton can be partitioned into finitely many stable regions—sets of
indistinguishable elements of the state space.

For example, in the automaton of Figure 6, states 〈L0, t = 3〉 and 〈L0,t= 4〉
are indistinguishable. States 〈L0, t = 4〉 and 〈L0, t = 6〉, however, can be dis-
tinguished, since only from the latter can we make a transition to 〈L1, t = 6〉,
where an a-transition is enabled.

In [SS95], we presented a local algorithm for model checking real-time sys-
tems, where the finite discretization of the state space is done on demand, and
only to the extent needed to prove or disprove the formula at hand. We can
encode the essence of this algorithm with three predicates: models/2, which ex-
presses when a region satisfies a timed temporal formula, refinesto/2, which
relates a region with its partitions (obtained during finite discretization), and
edge/3, which captures the transitions between regions.

Refinement adds a new inference rule to models:

R refinesto {Ri}, ∀i Ri � F

R � F

which is captured by the following Horn clause:
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Fig. 6. Timed Automaton

models(R, F) :- refinesto(R, Refinements), map_models(Refinements, F).

Refinement creates new regions, and hence introduces new edges. The pres-
ence or absence of such edges may force further refinement. Therefore, refinesto
and edge are mutually recursive predicates. Regions themselves are represented
as a set of linear constraints, and operations on regions (such as splitting, which
is needed when two points in a region can be distinguished) manipulate these
constraints. Thus the resultant program is a tabled constraint logic program.
Such programs can be evaluated in XSB using a meta interpreter, without mod-
ifying XSB’s SLG-resolution engine. For better performance, however, we plan
to directly augment the engine with a constraint-handling facility.

5 Conclusions

We have surveyed the current state of the LMC project, which seeks to use the
latest developments in logic-programming technology to advance the state of
the art of system specification and verification. In particular, the XMC model
checker was discussed as well as several directions in which we are extending the
LMC approach beyond traditional finite-state model checking.

Additional efficiency and ease-of-use issues are worthy of future investiga-
tion. First, since model checkers are specified at the level of semantic equations,
equations of abstract semantics [CC77] can be encoded with equal ease. These
can be used to incorporate process and formula abstractions, which have been
used successfully to ameliorate state explosion in model checking [Dam96], into
an LMC-style model checker. Secondly, the programmability of an LP system
allows for direct encoding of traditional model-checking optimizations, such as
partial order reduction [HPP96]. Finally, the high level at which model checking
is specified correspondingly elevates the level at which erroneous system specifi-
cations can be diagnosed and debugged.
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Abstract. The SLG-WAM implements tabling by freezing the WAM
stacks: this technique has a reasonably small execution overhead, but is
not easy to implement on top of an existing Prolog system. We propose a
new technique for the implementation of tabling: the Copying Approach
to Tabling. CAT does not interfere with normal Prolog execution and can
be introduced in an existing Prolog system orthogonally. We have imple-
mented CAT starting from XSB by taking out SLG-WAM and adding
CAT. We describe the additions needed for adopting CAT in a WAM im-
plementation. We show a case in which CAT performs arbitrarily worse
than SLG-WAM, but on the other hand we present empirical evidence
that CAT is competitive and often faster than SLG-WAM. We discuss
issues related to memory management and the impact of the scheduling.

1 Introduction

Tabling in logic programming has been proven useful in a wide range of appli-
cation areas such as parsing, deductive databases, program analysis based on
abstract interpretation, and recently verification through model checking. The
most practical implementation of tabling is found in XSB [11]: it also seems the
only general Prolog system with tabling. The Table Space of XSB is organized
using tries and table access mechanisms are optimised even further through sub-
stitution factoring [8]. Also, XSB currently implements two different scheduling
strategies [5]. In this paper, we will be concerned mainly with the third aspect of
tabling, which is the control and which is orthogonal to the other two. Control,
i.e. the need to suspend and resume computations, is a main issue in a tabling
implementation, because some subgoals, called generators, generate answers that
go into the tables, while other subgoals, called consumers, consume answers from
the tables; as soon as a generator depends on a consumer, the generator and the
consumer must be able to work in a coroutining fashion, something that is not
readily possible in a WAM implementation of Prolog. The execution of the query
?- pg(X). against the following small program exemplifies this situation.

:- table p/1.
p(1) :- pc(Y).
p(2).

The subscripts g and c denote the occurrence of a subgoal that is a generator
or consumer for this particular query. The answer p(1) cannot be generated
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before pc has consumed the other answer, p(2), from the answer table that pg

fills. At the moment that pc consumes the answer p(2), it must be in an ex-
ecution state which is the same as when it was selected first. But, in a WAM
implementation, backtracking has removed part of that state — because without
backtracking, the answer p(2) could not have been generated — so the state of pc

must be preserved. The SLG-WAM [10], the abstract machine of XSB, preserves
consumer states by freezing them, i.e. by not allowing backtracking to reclaim
space on the stacks as is done in WAM. In implementation terms, this means
that the SLG-WAM has a extra set of freeze registers, one freeze register for each
of heap, trail, local and choice point stack.1 Moreover, the trail needs to record
also values because they have to be reinstalled together with the consumer.

This management of control through freezing slows down execution which
is not related to tabling: this overhead is actually smaller than people usually
assume (order of 10% for an emulated implementation [10]), but we will show
in this paper that it can be completely avoided through the adoption of CAT.
Moreover, freezing is complicated and not easy to put into an existing Prolog
system: this fact might be the main reason why logic programming systems do
not yet generally offer tabling. Also here, CAT saves the day because by using
CAT, tabling can be added to a WAM implementation in an orthogonal way.

Instead of freezing the consumer state, one could imagine that the whole
state of the abstract machine (i.e. all the stacks) is saved in a separate memory
area, and then execution just fails over the consumer. When we need to rein-
stall the consumer, we can just revert to the saved copy and feed the consumer
with its answers. This is not a good solution for two reasons: copying the whole
WAM state is unnecessary (as we will show later) and it also leads to unneces-
sary recomputation. The execution of the query ?- pg(X). against the following
program shows this.

:- table p/1.
p(1) :- b. b :- pc(Y).
p(2). b :- ... .

The state of the abstract machine at the moment pc is called, contains the
choice point for b. Still, the second alternative of b will have been exhausted by
the time pg generates its first answer (in this case p(1)). When we reinstall the
consumer pc, we do not want to reinstall the alternative for b as the ... represent
an arbitrary amount of computation. Thus, a more selective copying of the WAM
state can and should be done. CAT does exactly this: it copies selectively (and
incrementally) execution states of consumers and reinstalls these copies when
needed.

CAT does not require any changes to the WAM, only additions in the form of
a few new instructions which can be alternatively seen as new built-in predicates.
The choice points for tabled subgoals in CAT differ slightly from usual WAM
1 Throughout this paper, we assume a WAMmodel with environment and choice point
stacks separated (as XSB or SICStus Prolog implement) rather than combined as in
the original WAM. We also assume that stacks grow downwards, i.e. higher in the
stack means older, lower means younger.
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choice points but this is not visible for non-tabled execution. Moreover, unlike
SLG-WAM, no freeze-registers are needed for CAT, nor a more complicated
trail. In short, CAT allows introduction of tabling into a WAM like implemen-
tation without any performance overhead. Therefore, we believe that CAT is an
attractive approach to incorporate tabling in any logic programming system.

In the next section, a brief introduction to tabling and the SLG-WAM is
given and some terminology is set. We then explain CAT step by step in situa-
tions of increasing complexity in Section 3. All along the additions to WAM are
introduced and memory management is discussed. Section 4 discusses a worst
case behaviour of CAT and a possible remedy. Section 5 discusses in more detail
the CAT implementation and the relation between SLG-WAM and CAT. Sec-
tion 6 compares the performance of CAT and SLG-WAM in the context of XSB.
We end with an overview of related and future work.

2 Tabling and SLG-WAM: Concepts and Terminology

Due to space limitations, we only present concepts and terminology of tabled
evaluation and of the SLG-WAM which are necessary to make the paper rea-
sonably self-contained. We assume the usual terminology of logic programming
and refer the reader to [2] for issues related to SLG resolution and to [10] for a
detailed description of the SLG-WAM. Also due to space limitations we restrict
ourselves to mainly definite programs and we keep the presentation informal.

2.1 Basic Overview of Tabling

A tabled program is a program augmented (automatically or by the programmer)
with tabling declarations of the form: :- table p1/n1, . . . , pk/nk. where pi

is a predicate symbol and ni is an integer. These declarations ensure that all
queries to the predicate pi of arity ni will be executed using tabled evaluation
(e.g. SLG resolution). Other predicates are implicitly assumed as non-tabled
in which case SLD resolution is used for queries to these predicates. Slightly
abusing terminology, we will speak of tabled subgoals as well as tabled predicates.
Following SLG resolution we will consider two tabled subgoals to be the same if
they are variants of each other; i.e. identical up to variable renaming; however
note that this is an orthogonal issue to the design of SLG-WAM or CAT. Tabled
subgoals which are encountered in the evaluation of a query against a program
are persistently stored in a global data structure called a subgoal table. When
a tabled subgoal, s, is called, a check must be made to see whether s exists
in the subgoal table or not. This is the purpose of the SLG new subgoal
operation. If s is new, it is termed a generator, it is entered in the table and
will use program clause resolution to derive answers. Through the new
answer operation, the set of derived answers of s will also be recorded in a
global data structure called the answer table of s. Note that there is a one-to-
one correspondence between generators and answer tables. If, on the other hand,
(a variant of) s already exists in the table, it will resolve against answers from



24 Bart Demoen and Konstantinos Sagonas

its answer table. In this case, we call the subgoal a consumer of s. Answers are
fed to the consumer one at a time through the answer return operation.

A basic concept in tabled evaluations is completion of (generator) subgoals
and their associated answer tables. Informally, a subgoal s (and its answer ta-
ble) is called complete if all its answers have been derived. On a slightly more
operational level, through the SLG completion operation a subgoal can be
determined as complete if all program and answer clause resolution has been
performed for clauses of this subgoal. As there might exist dependencies between
subgoals, it is often the case that subgoals cannot be determined complete on
an individual basis, but their (mutual) dependencies also have to be taken into
account. This suggests that the subgoal dependency graph DG has to be ex-
amined and sets of mutually dependent subgoals can be completed when they
are involved in a strongly connected component Λ of DG that is independent :
i.e. none of Λ’s subgoals depends on a subgoal outside Λ. When all subgoals are
completed, the evaluation has reached a fixpoint and stops.

2.2 Implementation of Tabling in the SLG-WAM

As one of the examples in the introduction shows, tabling cannot be imple-
mented using the pure depth-first search of the WAM: this is mainly due to the
fact that the generation and consumption of answers are asynchronous events.
This means that an abstract machine for tabling has to maintain or reconstruct
execution environments of consumers until these have consumed all answers that
are generated for the subgoals; i.e. consumers have to be retained until fixpoint
or completion of the associated generators. Likewise, newly derived answers must
be queued to resolve against subgoals which do not necessarily correspond to the
current execution environment. SLG-WAM offers a particular way to implement
these features.

Suspending and Resuming Consumers in the SLG-WAM The
SLG-WAM implements tabling by suspending consumers when these have ex-
hausted all answers currently in the table and resuming them when new answers
have been derived for them. Suspension is performed in SLG-WAM by creating
a consumer choice point to represent the suspended environment, freezing all
stacks by setting the freeze registers to point to the current top, and then failing
to a previous choice point without reclaiming any stack space; in particular, the
freeze registers are not reset. Space is not reclaimed above these freeze registers
until completion of the appropriate generator. Resuming, besides restoring the
WAM registers to the values saved in the consumer choice point, uses the ad-
dresses and the values saved in a forward trail [13,12] to restore variable bindings
along the path to the suspended consumer; see [10] for exactly how this is done.
An unconsumed answer is then returned to the restored consumer and execution
continues by taking the forward continuation of the restored computation.

The purpose of freezing is that execution states of consumers are retained
until the consumption of all their answers. So suspension interacts with com-
pletion: if upon consuming the last currently available answer of a subgoal, the
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subgoal cannot be determined complete, i.e. that it has all its answers, the con-
sumer needs to be suspended so that its execution environment is available if
new answers are generated for it. If, on the other hand, a consumer of a com-
plete subgoal is encountered, a completed table optimization can be performed:
suspension through freezing is not necessary and the consumer can backtrack
through the answers in the table as if they were program clauses stored as facts.

Scheduling and Incremental Completion in the SLG-WAM A schedul-
ing strategy determines when answers are returned to consumers: SLG allows
for many different scheduling strategies each of which can have different perfor-
mance characteristics; see [5]. XSB currently implements two different schedul-
ing strategies called batched and local evaluation. Both of them are based on
partitioning the subgoals encountered during the course of an evaluation into
scheduling components. As this partitioning also interacts with and is influenced
by completion we examine scheduling and completion together.

In definite programs, completion (determining fixpoint) can be postponed
till the end of the evaluation. However, for the SLG-WAM to reclaim space and
thus be effective on large programs a more fine grained, incremental completion
is needed. To efficiently perform incremental completion, the SLG-WAM (and
CAT) contains an area of memory new to the WAM, the Completion Stack. The
completion stack can be seen as a restriction of the choice point stack to just the
choice points for generators and is used to efficiently keep track of dependen-
cies between subgoals and of scheduling components. Specifically, the comple-
tion stack maintains, for each subgoal s, a representation of the older (highest)
generator subgoal sL upon which s or any subgoal below s may depend. This
subgoal is called the leader of its scheduling component. When s and all subgoals
younger than s have exhausted all program clause resolution, s can be checked
for completion. If s is the leader of its component, A, and thus does not depend
on subgoals higher in the stack than itself, if all consumers of subgoals in A
have consumed all answers, then s and all other subgoals in A can complete
and the (possibly frozen) space that corresponds to subgoals of the component
can be reclaimed. Otherwise, if the leader sL is higher in the completion stack
than s, then s may depend upon subgoals that appear higher than itself on the
completion stack, and execution backtracks to the previous alternative with-
out reclaiming any space. This is the main idea behind the implementation of
incremental completion in the SLG-WAM (see [10] for more details).

In both batched and local evaluation, scheduling of answer return oper-
ations is based on (and limited to the subgoals of) the component that is on
the top of the completion stack. This explains why these are called scheduling
components. More specifically, the leader of the topmost component is respon-
sible for checking whether all answers have been returned to all consumers of
subgoals that it leads, and schedule answer return operations if unresolved
answers exist for some consumer. This check, called fixpoint check in [10], is
needed independently of whether each generator schedules its consumers or not
after performing all program clause resolution and checking whether it can com-
plete. Scheduling of consumers on failing back to the leader is always possible
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as some scheduling strategies cannot determine fixpoint in a purely stack-based
manner; see [10,5] for why this is so. To appreciate the design of CAT, it is thus
important to keep in mind that consumers of subgoals of a scheduling component
may need to be resumed when execution has failed back to the leader.

3 A Step by Step Introduction to CAT

3.1 A First Approximation: No Incremental Completion

Let us first make the approximation that incremental completion is not per-
formed: there is only one scheduling component (for all subgoals), and the single
leader does all the scheduling (for all consumers of subgoals that it leads) on
failing back to it. In this setting consider how execution goes: At the moment
a consumer is found, its consumer choice point is installed on the choice point
stack. Fig. 1(a) shows the stacks: generator choice points G0 (which is the leader)
up to G2, followed by the consumer choice point C. The vertical dots in between
these choice points and above G0 denote possible Prolog choice points, not re-
lated to execution of tabled predicates. The heap is shown segmented according
to the tabling choice points and so is the trail. The same segmentation is not
shown in the local stack, as it is a spaghetti stack. From the trail, some point-
ers point to cells older than the segment between G0 and G1: these cells have
addresses @1 and @2 in the picture and the values in these cells are α and β.

1

G0

G2

G

choicepoints

α
β

@1
@2

local stack heap trail

C

(a) Stacks after creation of a
consumer choice point: shaded
parts are copied.

β@2
α@1 selective trail copy

copy of shaded heap
copy of shaded local stack
copy of consumer choice point

book keeping

CAT header

CAT area

(b) The CAT area with se-
lective trail.

Fig. 1. Conservative saving of a consumer state (without incremental comple-
tion).

Fig. 1(b) shows the information as saved by CAT: there is a (dynamically
allocated) frame of fixed size which we name the CAT header. Apart from some
bookkeeping fields, it contains a pointer to areas which contain copies of the
shaded parts of the stacks: for heap and local stack, these shaded areas of
Fig. 1(a) are copied as is; they are the part of heap and local stack created
between the creation of G0 and the consumer C. From the choice point stack,
CAT only needs to save the consumer choice point: the justification is that at
the moment C is scheduled to consume its answers, all the Prolog choice points
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as well as the non-leader generator choice points will have exhausted their alter-
natives, and will have become redundant. This also means that when a consumer
choice point is reinstalled, this can happen immediately below the leader G0.

CAT copies the trail selectively as well: since CAT copies all of the heap
between G0 and C, there is no need to save the trail entries that point into
this region and similarly for the trail entries that point to the saved part of the
local stack. On the other hand, just saving the trail entries pointing to the older
region of the heap (and local stack), is not enough to reinstall the consumer,
because backtracking (up to G0) will have undone the binding of say cell @1
to α. It means that CAT must also save the value α, or in general the current
value of heap (and local stack) cells older than G0 and pointed to by trail entries
younger than G0. Fig. 1(b) shows in more detail a saved trail. We call the CAT
header together with the saved stacks, a CAT area.

After CAT has copied the consumer state, it removes the consumer choice
point from the stack and activates a general failure in the WAM. Forward ex-
ecution might then create other consumers (and CAT areas). Execution will
eventually fail back to the leader G0.

In this setting, after exhausting all alternatives of G0, the leader must also
make sure that the consumers consume their answers. The scheduling and
restoration of consumers happens as follows: For each consumer, C, the saved
portion of the heap and the local stack is copied back to its original place. Also,
the saved values on the trail are reinstalled and the saved consumer choice point
is copied just below G0. This reinstalled consumer choice point can now start
consuming answers from the tables as in SLG-WAM. After all currently avail-
able answers have been consumed, CAT must also update the LastAnswer field
of the consumer choice point in the corresponding CAT area. Note that after
reinstalling the consumer, the trail and choice point stack are in general smaller
than at the moment of saving the consumer state. See Fig. 2(a).

In the following sections we will refine CAT, but here already, we have laid out
the basics for understanding CAT: the state of a consumer is saved by copying it;
this copy consists of the parts of the heap and local stack between the consumer
and a generator, a more selective trail copy and only the consumer choice point.

3.2 Adding Incremental Completion Based on Fixed Leaders
In the previous section, we assumed that completion was non-incremental and
all subgoals belonged to one scheduling component led by a single leader. As
mentioned in Section 2.2, for definite programs, this is a valid scheme for CAT
as scheduling and completion can always be postponed till the end of the evalu-
ation. However, as in the SLG-WAM, it is more efficient to perform incremental
completion and have smaller scheduling components because then (1) CAT would
copy and reinstall a smaller part of the stacks, and (2) subgoals can complete
and free the CAT areas of their consumers earlier. Indeed, look at the execution
of ?- pg(X). against the following program:

:- table p/1, q/1.
p(1) :- qg(Y). q(3) :- qc(Z).
p(2). q(4).
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The answers of q/1 do not depend on the answers of p/1, so a generator
of q/1 can be a leader and form a scheduling component in itself. It means that
at the moment qc(Z) is called, its leader is not pg(X), but the subgoal qg(Y),
and the consumer qc can always be scheduled on failing back to the generator qg.
So, in order to reinstall the state of qc, it is enough to copy stacks between qc

and the leader qg. Fig. 2(b) shows a variant of Fig. 1(a): the consumer is C2 and
its leader is G2; the shaded areas to be copied are smaller than before. Note,
however, that this schema is not practical because it assumes that the fixed
leaders of scheduling components are known beforehand.

choicepoints

α
β

@1
@2

local stack heap trail

C

G0

(a) The stacks just after the
consumer has been restored.

G2

G1

G0

choicepointslocal stack heap trail

C2

(b) The leader is closer to
the consumer: the copy is
smaller.

Fig. 2. Reinstallation and incremental saving of consumer states.

3.3 A Coup: The Leader Changes

The principle of the previous two sections was: save consumer state up to the
leader generator that might or will schedule the consumer. Even in cases where
the fixed leaders are not known in advance, this works well until there is a change
of leader: in practice a change of leader happens often. The query ?- pg(X).
executed against the following program shows such a coup:

:- table p/1, q/1.
p(X) :- qg(Y), fail. q(3) :- qc(X).
p(1). q(4) :- pc(X).

When the consumer qc is saved, its leader (as maintained by dependencies
kept in the completion stack) is the generator qg. Indeed, at that point, it is
not yet known that the answers of q will depend on answers of p. Later, at the
moment the consumer pc is created, a coup takes place: the generator qg is no
longer the leader of a scheduling component and pg has become the leader of qc.
It means that in the future qc might need to be restored by pg, so the saved state
of qc should at restoration time contain also the part of the stacks between pg

and qg. We could eagerly — at the moment of the coup — save this missing
part and add it to the CAT area of qc. The alternative is to wait until execution
is about to backtrack over generator qg: then, CAT saves the increment needed
for qc (i.e. the part of the stacks between pg and qg) and links it up to the CAT
area of qc. The advantage of waiting until this moment to save the increment, is
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that there might be other consumers in the same need for an extension of their
CAT area, and thus the part of the stacks between pg and qg can potentially be
shared between all these consumers, instead of copying the same part for every
one of them. This will become more clear below.

3.4 Incremental Copying of Consumer States

The previous section showed that in the absence of precise information about
leaders and scheduling components, there is possibly a need for extending the
saved state whenever the leader changes. Now consider the following program,
which differs from the one before only by an extra (last) clause for q/1:

:- table p/1, q/1. q(3) :- qc1(X).
p(X) :- qg(Y), fail. q(4) :- pc(X).
p(1). q(5) :- qc2(X).

The two consumers for q/1 have been given an index for ease of reference.
At the moment consumer qc1 is saved, copying happens up to the leader which
is then qg; when consumer qc2 is saved, the coup has happened already, mean-
ing that for qc2 , we copy up to pg, the new leader. Later when backtracking
happens over the generator qg, we copy the part between qg and pg so that
this can be linked to consumer qc1. Note though that qc2 already contains that
part of the stacks ! So, we have copied twice the same information from the
stacks (the part between pg and qg) and it is very difficult to avoid this in the
schema which copies a consumer state up to its current leader. Since we have
already the mechanism to link parts of saved states, we can use it in a more
systematic way as follows: instead of saving a consumer state up to its leader,
CAT always saves up to the closest generator G. When execution fails back to
this generator, all consumers younger than G have copied all information needed
for their restoration: they can be scheduled to consume their answers. If G is
a leader of a scheduling component, on reaching fixpoint, completion can occur
and the space for the CAT areas can be freed. Otherwise, since backtracking
over this generator will occur, a new increment up to the previous generator
is linked to all the consumers that need it. Applied to the above example, it
means that the double copying of the old schema, does not happen anymore.

to q
1from c

g

from q

to pg

g

from c2

to qg

This sharing of CAT areas between consumers is
also shown schematically in the following rough
picture. This incremental saving of consumer
states, is the one finally implemented in CAT: it
performs less copying by improving sharing of con-
sumer states. CAT also allows for more flexible
scheduling strategies since now even non-leaders
can schedule consumers; moreover in the context
of CAT, it is natural that a generator can schedule
all consumers with a saved state that reaches up
to this generator, not just its own.
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4 The Main Problem of CAT and a Remedy

Consider the program:
:- table p/1.
p(X) :- produce(LargeTerm), pc(Z), X = 2.
p(1).

The query ?- pg(X). produces the answers p(1) and p(2) and the consumer pc

is saved and restored once. produce/1 is a computation which produces a large
term as output argument. In the setting above, the consumer state contains this
large term, so it is copied on saving and copied on restoring the consumer. So the
CAT area for a consumer can be arbitrarily large, meaning that both saving and
restoring a consumer can take arbitrarily long. The SLG-WAM does not suffer
from this problem: freezing the stacks is a constant time operation and the cost
of restoring a consumer in SLG-WAM is related to the trail. Since it is easy to
construct examples in which consumers have to be restored arbitrarily often, it
follows that CAT can be made to perform arbitrarily worse than SLG-WAM.
However, this bad behaviour of CAT was not observed in any of the programs
we have so far used tabling for. 2

As it happens in the above example, this large term is not used in the con-
tinuation of the consumer, which means that copying it on saving the consumer
was unnecessary. In general one can say that none of the heap entries which are
not reachable for the continuation of a consumer, need to be saved. So, it seems
worthwhile to perform a garbage collection that is restricted to the part of the
heap to be copied, just before saving a consumer state. This is explored in more
detail in [4] which also deals with a similar compaction of the local stack.

5 Implementation of CAT and Relation to SLG-WAM

We have implemented CAT within XSB; XSB itself implements SLG-WAM
which freezes stacks as a means to save a consumer state. This means that XSB
has a more complicated trail, trail test, setting of top-of-stack, etc. As a CAT
prefers warmth, we have first heated up XSB, by removing all the freeze related
code and replacing it with the plain WAM equivalent. In this warm version of
XSB, we have then implemented CAT, reusing from XSB everything related to
the implementation of incremental completion and the access and storing mecha-
nisms for tabling of [8]. Besides adding the incremental CAT copying and restora-
tion described in Section 3.4 and slightly modifying the scheduling (as will be
explained below), only instructions related to tabling (tabletry, answer return, . . .)
which do not belong to the WAM, were changed. So, now there exist two versions
of XSB: one that implements SLG-WAM and one that implements CAT. These
will form the basis of a comparison between SLG-WAM and CAT. Since to our
knowledge, there exists no other implementation of SLG-WAM (nor of CAT) we
will henceforth refer to the two mechanisms as if they were implementations.

2 The bad figures for read o in Table 1 and 2 have another reason: see Section 6.
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Current Similarities and Differences with the SLG-WAM In our first
version of CAT we have retained the incremental completion algorithm of the
SLG-WAM. As mentioned, in definite programs, completion can always be post-
poned and it is mainly used for space reclamation. As the SLG-WAM freezes the
stacks at the top, non stack-based selective completion (and space reclamation)
of subgoals is not possible without fragmenting the stacks and thus requires stack
compaction. As this is probably costly, the SLG-WAM always completes the com-
ponent in which the youngest generator belongs: therefore, the SLG-WAM uses
a completion algorithm based on approximate subgoal dependencies. This algo-
rithm is known to trap subgoals in scheduling components (see [10]) and may
arbitrarily postpone their completion despite the fact that they are independent
of other subgoals. CAT, as a true feline, is much more flexible in completion
because reclamation of the CAT areas is not based on compaction. We plan to
add an exact completion algorithm to our CAT, but for fairness, in this paper
we compare CAT and SLG-WAM under the same completion algorithm.

Unlike the SLG-WAM, CAT reclaims the trail and choice point stack even
before completion of a component.3 In particular, it reclaims generator choice
points for non-leaders when these have exhausted program clause resolution.
This means that the substitution factor variables (an optimization of [8]) cannot
be stored in the choice point stack as in the SLG-WAM, but in a place that
survives backtracking until completion: we have opted for the heap. As another
small technical point, since non-leader generators are reclaimed by CAT, local
scheduling is implemented by creating a CAT area for generators that are not
leaders. This is in accordance with the definition of local evaluation that specifies
that these generators behave as consumers (cf. [5]).

Finally, as noted, CAT allows for more flexible scheduling algorithms, in
particular more fine-grained ones. However, the current version only performs
scheduling on failing to the leader in a manner similar to the fixpoint check of
the SLG-WAM. A difference with the SLG-WAM is that scheduling decisions
are taken more often by CAT since CAT can reinstall only one consumer at a
time, while SLG-WAM can schedule several consumers in one go.

Extending CAT to normal logic programs The XSB implementation of
the SLG-WAM evaluates programs according to the well-founded semantics.
There is really nothing that prevents CAT to also work for this class of pro-
grams as the handling of negation is an orthogonal issue. The same low-overhead
(around 1%) mechanisms that the SLG-WAM uses to maintain exact subgoal
dependencies [10], to detect and break cycles through negation can be combined
with CAT as well. Space limitations prohibit a full discussion but we simply
note that the handling of negative (tabled) literals in CAT is analogous to the
handling of consumer subgoals: the execution state of negative literals is also
preserved in a CAT area by copying. A small difference is that a negation sus-
pension frame [10] rather than a consumer choice point is copied and that this
frame is reinstalled once and at the place of the generator choice point (upon its
completion) rather than immediately below it.
3 Actually, it reclaims all stacks, but parts of heap and local stack stay in CAT areas.



32 Bart Demoen and Konstantinos Sagonas

6 Performance Evaluation

As expected, CAT performs better than SLG-WAM in Prolog code; around 10%
according to our measurements (see also [10]). Also, CAT and SLG-WAM have
indistinguishable performance in artificial tabling benchmark programs from the
database community like transitive closures over chains, cycles and trees of var-
ious lengths and same generation over cylinders (cf. [11,10,5]). So we compare
CAT and the SLG-WAM on more realistic sets of programs from an application
area where tabling has been proven worth having in a general purpose logic pro-
gramming system: abstract interpretation. All measurements were conducted on
an Ultra Sparc 2 (168 MHz) under Solaris 2.5.1. Times are reported in seconds,
space in KBytes. Space numbers measure the maximum use of the stacks (for
SLG-WAM) and the total of max. stack + max. CAT area (for CAT).

6.1 A Benchmark Set Dominated by Tabled Execution

The first benchmark set is taken from [3]: the programs perform type analysis
by program abstraction and execution of the abstracted program under tabled
evaluation. Tabling is used both for termination, efficient storage of the analysis
results and to avoid redundant subcomputations in the domain-dependent ab-
stract operations (see [3]). With the exception of a few utility predicates like
append/3, all other predicates are tabled in this benchmark set and the size of
the table space (not shown) is quite large: this set of benchmarks programs is
heavily dominated by tabling operations.

Tables 1 and 2 show time and space performance of the analysis under the
two scheduling strategies of XSB. On this set of programs, SLG-WAM per-
forms more or less the same time-wise with batched (B) and local (L) strategy
with a very noticeable advantage for the local strategy in space consumption
as its scheduling components are tighter. CAT under local scheduling performs
slightly better than SLG-WAM in time and slightly worse in space. CAT under
batched scheduling is slower than the SLG-WAM for the last three benchmarks
by 15–60%: these are also the benchmarks for which CAT uses more than 10
times more space than SLG-WAM. This behaviour is mostly due to the approxi-
mate completion algorithm that is used. In this benchmark set, a high percentage
of the tabled subgoals, and more specifically the abstract operations, is semi-det:

cs o cs r disj o gabriel kalah o peep pg read o

SLG-WAM(B) 0.23 0.45 0.13 0.17 0.15 0.44 0.12 0.58

CAT(B) 0.22 0.41 0.13 0.15 0.14 0.50 0.15 0.92

SLG-WAM(L) 0.23 0.43 0.13 0.16 0.16 0.42 0.12 0.61

CAT(L) 0.22 0.42 0.12 0.15 0.14 0.40 0.11 0.55

Table 1. Time performance of CAT vs. SLG-WAM under batched & local
scheduling.
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cs o cs r disj o gabriel kalah o peep pg read o

SLG-WAM(B) 9.7 11.4 8.8 20.6 40 317 119 512

CAT(B) 13.6 19.4 11.7 45.3 84 3836 1531 5225

SLG-WAM(L) 6.7 7.6 5.8 17.2 13.3 19 15.8 93

CAT(L) 7.9 10.7 7.1 29.5 12.5 17 23.5 246

Table 2. Space performance of CAT vs. SLG-WAM under batched & local
scheduling.

i.e. produces at most one answer. Because completion is based on an approxi-
mation of subgoal dependencies, these semi-det subgoals often get trapped in an
approximate scheduling component and cannot be completed on their own. As it
is not known whether new answers will be derived for these subgoals, their con-
sumers have to suspend (and create a CAT copy) rather than use the completed
table optimisation (see Section 2.2). Some extra measurements for the read o
program shed more light: under batched scheduling 3112 consumers are saved
(max. CAT area of 5208 KBytes) and only 192 times a consumer is restored
(totaling 371 KBytes) to consume new answers; in contrast, the corresponding
numbers for local scheduling are 264 consumers saved and 224 restorations (240
and 371 Kbytes respectively — the bigger restoration is due to sharing of the
saved space by incremental copying, but not by restoration). With the current
approximate completion algorithm, under batched scheduling, CAT performs
worse than SLG-WAM. We strongly believe that for this benchmark set CAT
will be more competitive to SLG-WAM (under batched scheduling) if completion
is based on exact subgoal dependencies (cf. also Section 5).

6.2 A more Realistic Mix of Tabled and Prolog Execution

The second set of benchmarks is taken from [6]. These programs perform abstract
interpretation. The abstract operations are implemented in Prolog and occupy a
high percentage of the total execution time (around 75–80%). Regardless of the
issue SLG-WAM vs. CAT, only the local scheduling makes sense in this program
set because the analyses are based on an abstract least upper bound operation,
resulting in a very poor performance for the batched strategy (see also [5]).
Tables 3 and 4 compare SLG-WAM and CAT in time and space. Overall, CAT
performs time-wise slightly better (5–20%) in this set. It performs considerably
better (25–140%) than SLG-WAM in space with only two exceptions.

akl color bid deriv read browse serial rdtok boyer plan peep

SLG-WAM 1.48 0.67 1.11 2.56 9.64 32.6 1.17 3.07 10.02 7.61 9.01

CAT 1.24 0.62 0.97 2.50 9.56 32.2 0.83 2.75 9.96 6.38 8.54

Table 3. Time performance of CAT vs. SLG-WAM.
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akl color bid deriv read browse serial rdtok boyer plan peep

SLG-WAM 998 516 530 472 5186 9517 279 1131 2050 1456 1784

CAT 552 223 206 486 8302 7847 227 821 1409 1168 1373

Table 4. Space performance (in KBytes) of CAT vs. SLG-WAM.

7 Related Work

There is an analogy between the SRI-model [12] for implementing OR-parallelism
and MUSE [1] on one hand, and the SLG-WAM for implementing tabling and
CAT on the other: like the SLG-WAM, the SRI-model has a complicated man-
agement of the stacks and switching from one worker to another — the analogue
of suspending one consumer to resume another one — uses a trail structure that
is more complicated than the WAM trail, because bindings have to be undone as
well as reinstalled. Like MUSE, CAT avoids complicated stacks by copying the
portion of the stacks that is particular to a consumer or in the case of MUSE a
worker. We believe this analogy is so strong, that although not conscious at the
time, we must have been influenced by our knowledge of MUSE when getting
the idea for CAT. [1] notes that the overhead of copying is small compared to
all other work to be performed and our experience with CAT is similar.

In [9] a design for combining tabling and or-parallelism was presented. The
implementation of tabling was based on the SLG-WAM, the only availableWAM-
based model of implementing tabling at that time, while or-parallelism was sup-
ported through environment copying as in the MUSE model. In view of the
above similarity between CAT and MUSE, we believe that CAT also offers a
more natural way of combining tabling and or-parallelism as the same basic
machinery can be used for satisfying the implementation requirements of both
forms of suspend/resume mechanisms.

Another related technique based on copying is described in [7]. It provides a
set of library functions for introducing backtracking in C programs: the parts of
the C-stack that must become active again after failure are copied incrementally.
This is achieved by changing at run time the return address in activation records.
In contrast, in CAT the zones to be copied are delimited by invocations of tabled
predicates, so that by compiling these with special instructions, such a change
is performed effectively at compile time.

8 Conclusion and Future Work

Since any logic programming system can benefit from having tabling, it has been
our long term goal to make tabling more accessible and more attractive to add
to existing systems. It always seemed to us that the main obstacle to this were
some aspects of the SLG-WAM: in particular the machinery that the SLG-WAM
imposes on the WAM to implement the suspend/resume mechanism needed for
tabling. This machinery is quite complicated and unnecessarily slows down the
underlying basic system. The other issues in tabling implementations — the
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tabling data structures and the scheduler — were always orthogonal and do not
affect the underlying implementation. We have shown that CAT is a true alter-
native to SLG-WAM for implementing the control that tabling requires. CAT
is simpler to add and it has no influence on the efficiency of the underlying im-
plementation. In addition, CAT helps in reasoning about reachability of objects
in the execution tree and it seems that it allows more easily for more flexible
scheduling strategies. Empirical tests show that most of the benchmark programs
are not slowed down by the CAT technique compared to the implementation of
SLG-WAM in XSB and that under the local evaluation strategy, the memory
consumption is most often better than under SLG-WAM. This might come as a
surprise, but the simplicity of CAT is the key to its performance.

However, to fully achieve our goal, at least the following are needed: a clear
definition of the interface between the tabling components and a general purpose
LP system; a complete integration of CAT in the memory management of a LP
system (a forthcoming paper deals with this [4]); and a better understanding of
the interaction of CAT with scheduling strategies.
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Abstract. The development of intelligent software agents and other
complex applications which continuously interact with their environ-
ments has been one of the reasons why explicit concurrency has become
a necessity in a modern Prolog system today. Such applications need to
perform several tasks which may be very different with respect to how
they are implemented in Prolog. Performing these tasks simultaneously
is very tedious without language support.
This paper describes the design, implementation and evaluation of a pro-
totype multithreaded execution environment for SICStus Prolog. The
threads are dynamically managed using a small and compact set of Pro-
log primitives implemented in a portable way, requiring almost no sup-
port from the underlying operating system.

Keywords: logic programming, implementation, multithreading, abstract
machines

1 Introduction

Prolog has historically been centered around the concept of asking queries to a
database and receiving answers and other output on a terminal or other out-
put device. This has proven to be an excellent way of providing many software
solutions.

But computer applications have become more and more complex, involving
many independent and different subproblems. For example, a WWW-server nor-
mally contains a part which continuously listens for connections on sockets and
a word-processor with on-the-fly spell-check has a part which continuously scans
the spelling dictionary for the words which are typed in. This is usually done
by employing multiple threads of execution, or just threads . Doing it without
threads forces the programmer to manually switch between executing the dif-
ferent subproblems, making the program inefficient and difficult to write and
maintain.

Now, threads is not a new concept in Prolog or in other languages. Most
modern languages support threads in some way. Most notable are C [22,18],
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Erlang [1], Java [14], and Oz 2.0 [30,31]. Many logic programming systems
implement threads (although they are mostly referred to as “processes”), such
as CS-Prolog [15], KL1 [8], IC Prolog II [10], Multi-Prolog [4], but these are all
relatively small and experimental systems. There are no widely-used commercial
Prolog systems supporting threads (to the best of our knowledge). EMRM [32]
includes a multi-client WWW-server based on Aurora [23], an or-parallel exten-
sion to SICStus Prolog. Amzi! Prolog + Logic Server supports multiple threads,
but not in the same Prolog engine; they have to be coded using C or Java threads.

Summing up, multithreading is a very useful language extension for devel-
oping and maintaining large software systems, such as WWW-servers and in-
telligent software agents. This paper presents the design, implementation and
evaluation of such an extension to SICStus Prolog [7]. Different options are dis-
cussed for the following design issues: native threads, scheduling algorithm, time
quanta and thread switching, programming interface, communication and syn-
chronization, and blocking system calls. A preliminary performance analysis is
given.

The rest of the paper is organized as follows: We state the requirements of
our prototype in Section 2. We then describe the important design issues (Sec-
tion 3, 4, 5) and their impact in the implementation. Section 6 describes the
programming interface and Section 7 describes the solution to the problem of
blocking system calls. Sections 9 and 10 evaluate the performance of our imple-
mentation and include references to related work. We end with some conclusions.

2 Requirements

The purpose of this work has primarily been to prove that support for multiple
threads is realistic in an industrial-strength Prolog system, executing full Prolog.
There are no restrictions, for example, on backtracking as in committed-choice
languages. Also, threads performs separate and independent computations, not
to be confused with parallel Prolog, where threads (or processes as they are
sometimes referred to) cooperate to perform the same computation in parallel.

To prove that multiple threads are realistic under these requirements, we
must show that introducing support for multiple threads does not cause any sig-
nificant inconvenience for the user such as reduced execution speed or excessive
memory consumption. In other words, the prototype must provide the benefits
of multiple threads without removing any (or as little as possible) of the benefits
of not supporting threads.

3 Native Threads

The first design issue which needs to be settled is whether to use native threads.
Native threads have two major benefits. The first, and perhaps most important,
is that they make it possible to utilize multiple CPUs (and other machine- and
operating-system specific features). The second is related to blocking system
calls and will be discussed in Section 7.
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We have chosen not to use native threads at all in this first version of SICStus
MT, for a couple of reasons. First, native threads are not available on all plat-
forms. If this prototype relies on native threads we restrict our results to those
platforms with native thread support. Second, native threads are not crucial in
order to prove the feasibility of threads in a industrial-strength Prolog. Third,
native threads can be implemented later on if desirable; avoiding native threads
in the prototype does not rule them out completely. See also Section 11.

4 Necessary Modifications

The two basic characteristics of any language implementation are its storage and
execution models. In order to support multithreading in SICStus, changes are
needed to both of these.

4.1 Storage Model

The storage model need to be modified so that some data-areas are kept private
to each thread. There are four data-areas in a WAM-based [2] emulator:

The Static Area contains a variety of objects, such as interpreted and compiled
clauses, atoms, indexing tables, and so on.

The Local Stack contains procedure frames and choice point records.
The Global Stack contains Prolog terms. This is usually the largest area.
The Trail Stack contains conditional variable bindings, i.e. variables that should

be reset to unbound upon backtracking.

In addition to this, we have the set of abstract machine registers organized as
a data structure WS for W orker S tructure, which contains program counters,
stack boundaries, choicepoint-information, etc.

The bulk of the static area is kept global in order for threads to be able to
share code. The local and trail stacks must be kept private, since they are directly
related to how the program is executed. The same goes for the abstract machine
registers, the WS. The WS is combined with thread-related information (such as
status-flags, thread ID, message-port, etc.) to form a data-structure representing
a thread.

In a WAM-based emulator, all three stacks shrink on backtracking. Thus,
if threads perform independent computations, the global stack too must be
kept private. This unfortunately incurs an overhead on communication between
threads (see Section 6.1), as messages need to be copied between stacks. It is
conceivable to have a design that avoids copying, with a shared global stack that
does not shrink except on garbage collection, but that would represent a major
departure from the WAM and is out of scope of this work.
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4.2 Execution Model

Like the storage model, the execution model needs to be modified in order to
support multiple threads. Since native threads are not utilized, the execution
model must support time-sharing of the emulator between the different threads
(see also Section 7.2).

The main problem to solve is to determine where in the emulator loop threads
should be switched in and out. The place where this is done is called the syn-
chronization point . A natural candidate for the synchronization point is the
event-handler , which handles certain kinds of asynchronous events, such as stack
overflows, goals woken by variable bindings, and goals invoked by interrupts.

The benefit of using the event-handler as the location of the synchronization
point is that the execution state is fully well-defined, so that a context switch
between two threads is trivially implemented by exchanging references to the
WS.

5 Scheduling

Scheduling [21] can be compared to motion picture soundtracks: if it is done well,
it is not noticed—it just contributes to the overall impression of the performance.

The main requirements of the scheduler, apart from having a low scheduling
overhead, is that it should be preemptive. Without preemption, it is impossible
to write applications which use threads to perform independent work simulta-
neously (like serving two clients at the same time).

The algorithm used in SICStus MT is a variant of Round-Robin schedul-
ing [29,33], called Priority Round-Robin (PRR). PRR scheduling is conducted
like Round-Robin scheduling with the difference that Round-Robin is only prac-
ticed among threads with equal priority. Among threads with different priority,
the priority determines which thread is scheduled for execution.

This algorithm is far from perfect. The main disadvantage is that it is not fair
(a fair scheduling mechanism guarantees that threads will not starve, regardless
of the number of threads waiting to run). If a thread decides to increase its
priority above everybody else and then initiate a lenghty calculation, all other
threads will starve for sure.

On the other hand, by not having priorities, threads with important tasks
will have to wait for threads with very low priority tasks. For example, a spell-
checker in a word-processor would naturally run with very low priority in order
to avoid stealing resources from the more important task of handling user input
and displaying it on the screen. Without priorities, the spell-checker would take
up as much computing resources as the actual word-processor.

Summing up, PRR does not guarantee fairness, but it is robust, easy to
implement, and provides good performance in most cases.

5.1 Choice of Time Quantum

The size of the time quantum is crucial to (P)RR scheduling. The time-quantum
is defined as the maximum period of time a thread is allowed to execute before it
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is interrupted by the scheduler. The size of this period has a large impact on the
efficiency of the scheduling. If the period is too large, response times will become
too long. If the time-quantum is allowed to be infinite, we lose the preemptive
property of PRR. If the period is too small, the scheduling overhead will become
too large.

We obtained a time quantum by using using a timer interrupt to generate
an asynchronous signal, and then switch out the thread when it reaches the
event-handler (as described in Section 4.2). If timer signals occurs every, say, 50
ms, the length of the time-quantum would then be 50 ms plus the time taken to
reach the synchronization point. This will guarantee a finite time-quantum.

This solution has the drawback of relying on signals to ensure preemption.
ANSI C does support timer signals [18], but only with low resolution (seconds).
For non-ANSI C implementations which lack signals entirely, PRR cannot be
implemented with guaranteed preemption. See Section 8 for a further discussion
of the portability aspects of using timer signals.

It is also possible to base the time quantum on the number of executed WAM
instructions. This has quite a large overhead (almost 20% in some cases), but
it has a major benefit: it is possible to repeat the same execution sequence (for
debugging purposes, for example). However, it would also require substantial
modification to the native code kernel, which would be tedious to implement
and would also degrade the performance of native code execution.

Another possibility is to base the time quantum on the number of exe-
cuted procedures. This is more efficient than counting WAM-instructions and
still supports repeatable execution sequences. This method is used by Oz and
Erlang [30,31,1].

6 Programming Interface

The following predicates are introduced in SICStus MT. The usage of each pred-
icate is indicated by prefixing each argument X by +, denoting that X should be
instantiated to a non-variable in any call; -, denoting that X should be unbound;
or ?, denoting no restrictions on X .

spawn(+Goal, -ThreadID) Launches a new, independent computation in a sep-
arate thread. Thus, the declarative semantics of this predicate is “true”. The
new thread will execute the thread Goal. ThreadID will be bound to the
identifier of the new thread. Also, a message-port is created for send/receive
operations. See Section 6.1.

send(+ThreadID, +Term) Sends Term to the thread indicated by ThreadID.
This predicate always succeeds (or throws a domain error exception). Term
will be inserted last in the receiving thread’s input queue. Unbound variables
are consistently copied, i.e. f(X,X) becomes f(Y,Y) on the other side.

receive(?Term) Extracts the first element in the thread’s input queue that is
unifiable with Term and unifies it with Term. If no such term exists, the
thread is suspended.
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echo :-

receive(Term),

write(Term),

nl,

echo.

run :-

spawn(echo, EchoThread),

send(EchoThread, term1),

send(EchoThread, term2),

...

send(EchoThread, termn),

...

Fig. 1. Example of using send/receive. The example spawns a simple echo thread
which lies in the background and echos everything sent to it

self(-ThreadID) ThreadID is the thread identifier of the running thread.
kill(+ThreadID) Causes ThreadID to terminate. Always succeeds, even when

the thread does not exist or has died, i.e. the semantics is that after the call
to kill/1, the specified thread is dead, regardless of its state before the call.

wait(+Ms) Suspends the currently running thread and then waits at least Ms
milliseconds before resuming. The actual time elapsed before the thread is
resumed is guaranteed to be at least Ms but could exceed this limit depending
on two factors; the frequency of the timer-interrupts and the number of
threads waiting to run. See Section 8.

See Figure 1 and 2 for examples of how to use these predicates. Figure 1 is a
trivial example while Figure 2 is a little more complex example on how to code
the predicate join/2 using SICStus MT.

6.1 Communication and Synchronization

The model of communication and synchronization is message-based as opposed
to blackboard-based [5,34], also known as tuple space based [16]. This means that
the communication is based on sending explicit messages as opposed to using a
shared store of some kind. A message can be any kind of Prolog term. Unbound
variables are allowed in messages, but they will be renamed.

Furthermore, the message-port is anonymous , i.e. it is an integral part of the
thread and addressed using the thread’s identifier. Messages are addressed by
direct naming, but only of the destination thread; the source thread is not spec-
ified, allowing a server, for example, to receive messages from unnamed clients.
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spawn_joinable(Goal, JoinableThreadID) :-

self(Self),

spawn(joinable_wrapper(Goal, Self), JoinableThreadID).

joinable_wrapper(Goal,Parent) :-

self(Self),

( on_exception(Exception,Goal,

joinable_handler(Exception,Parent,Self)) ->

send(Parent,Self -> success(Goal))

; send(Parent,Self -> fail)

).

joinable_handler(Exception,Parent,Self) :-

send(Parent, Self -> exception(Exception)).

join(ThreadID,Result) :-

receive(ThreadID -> Result).

run(Goal) :-

spawn_joinable(Goal,ThreadID),

...

join(ThreadID,Result),

format(’~w has completed. Result = ~w.~n’, [Goal,Result]).

Fig. 2. Example of how to implement join/2 using SICStus MT. The semantics
of join/2 is to suspend until the specified thread has completed. This implemen-
tation catches exceptions which are thrown in the thread and also sends back
goal-term with eventual variable bindings.

Direct naming is not as flexible as indirect communication using named chan-
nels [9]. More specifically, channels allow many-to-many communications which
direct naming does not. The main reason for using direct naming in the proto-
type was to keep the implementation simple, and this might well be reconsidered
in a released version of SICStus MT.

Oz and Gypsy [30,17], are examples of language implementations using chan-
nels. PLITS and Erlang [13,1] is an example that uses direct naming and allows
the receiver to leave out the sender address.

The communication mechanism is asynchronous . This means that the sender
does not need to wait until the receiver is ready to receive the message, i.e. the
send -primitive is non-blocking. This means also that the mechanism is buffered,
i.e. the communication media (the input queue) has a memory of its own where
it can store messages until they are ready to be picked up by the receiving
thread. The message port is basically a FIFO-structure, which means that it is
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completely ordered. However, as we will discuss later on, the programmer can
specify the order in which terms are received.

Due to our design choices, messages must be copied when sending them
between threads. The absence of a shared heap causes at least one copying to
be done. Full Prolog (with unrestricted backtracking) prevents us from copying
directly to/from another thread’s heap, so we must copy the message twice, via
the static area.

If the receiving thread is suspended on a call to receive/1 it is lazily switched
in for execution, i.e. just moved to the ready-list. If the receiving thread is sus-
pended for some other reason, nothing happens. The alternative would be eager
thread switching, i.e. preempting the receiving thread, disregarding any priori-
ties. See Section 9 for a discussion on the performance of these two approaches.
When the receiving thread is eventually resumed, it must unpack the message
on its own heap.

Message Non-determinism Recall that receive/1 extracts the first match-
ing message. The makes it possible to specify which messages to accept for a par-
ticular call to receive/1. This is also referred to as message non-determinism [5]
and is also used in Erlang.

In the Game-of-Life benchmark, described in Section 9, there is a construc-
tion which relies on this particular feature. Since the cells work asynchronously
(without a global “conductor” telling them when to do a state transition), each
cell needs to make sure that the incoming messages are grouped by generation.
This means that if a cell in generation x receives a message from a cell which
is in generation x + 1, it must be able to defer that message until itself is in
generation x + 1. In our implementation, this is solved by letting each cell loop
through all its neighbors and for each one, wait for a message from that partic-
ular neighbor. In this way, we are guaranteed that the messages are processed
in the correct generation. This would be very tedious to code without language
support, since we would need to keep a separate list of terms which were received
“too early”, a list which needs to be maintained, sent around to all predicates
calling receive/1, and searched for each such call.

However, there are performance issues worth discussing here. Each time the
receiving thread tries to execute a receive(Term) goal (either the first time
around, or upon a thread switch in case it was suspended), it has to traverse
the input queue, unpack each message, delete it from the queue if it unifies with
Term, and otherwise keep searching. Unpacked messages that do not unify are
reclaimed by Prolog’s backtracking and so must be unpacked again the next
time around. Even though the time to unpack a message is linear in its size, a
given message may get re-examined many times. Also, message non-determinism
will result in a list of “currently unmatched” messages, i.e. messages that have
arrived but are not unifiable with the argument to receive/1. This means that
messages can be delayed in the input queue for a potentially indefinite period of
time. See Section 9 for some performance figures.
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7 Blocking System Calls

The problem of blocking system calls in user-level (as opposed to kernel-level)
thread implementations is a well-known and well-investigated problem [33,12].
The core of the problem is that the operating system kernel (by definition) is
unaware of the existence of user-level threads. Therefore, when a blocking system
call is performed, the kernel suspends the entire process for the duration of the
system call, instead of scheduling another thread for execution, which is the
desirable behavior.

7.1 Possible Solutions

There are not that many ways of solving the problem. We must in some way
prevent a given blocking system call from blocking the entire process and find a
way of scheduling another thread instead. We have explored two approaches to
the problem, the cautious approach and the cavalier approach.

The cautious approach uses a relatively complex mechanism in order to exam-
ine system resources in order to determine, without making the call, whether or
not the system call would block the process. If the call could not be performed
without blocking the process, the thread is suspended and another thread is
switched in. Otherwise, the thread continues with the read and returns nor-
mally. The main problem of this approach is its complexity. Each system call
which might block must be preceded by a piece of code (called jacket) in order
to determine whether or not the system call would block or not. This turned
out to be quite non-trivial—the documentation on when system calls block is
often inadequate and examining system resources not a very portable procedure.
Another drawback is the additional overhead of the jacket code.

The cavalier approach relies on the possibility of performing system calls
without blocking the process at all, commonly known as asynchronous I/O.
Instead of trying to determine beforehand whether or not a system call is about
to block, we simply perform the system call asynchronously. A check is made
after the call to determine if the call was completed and if not, the thread is
suspended and then resumed when the asynchronous system call can be retried
(as a result of a SIGIO signal indicating I/O completion).

The cavalier approach wins the game on the fact that it is simpler to imple-
ment and more robust. We leave it to the individual system call to determine
whether or not it is about to block. This relieves us from having to write special-
ized code for each system call which is not only tedious but also error prone. The
drawback is that is relies on the availability of asynchronous I/O (see Section 8).

We have not made any measurements of the performance penalty of these
mechanisms (i.e. what the overhead is when threads are not used at all), but we
do not believe that it is significant.

7.2 Emulator Support

The solutions discussed above both need a mechanism for communicating with
the emulator. More precisely, they need to be able to inform the emulator when
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a thread should be suspended as a result of a blocking system call. The idea is
to introduce an extra return code for predicate-calls in addition to TRUE/FALSE
(which represent success and failure, respectively). The new return code is called
SUSPEND and is returned when the thread executing the predicate should be
suspended.

Since the process of suspending a thread as a result of making a blocking
system call varies significantly depending on the nature of the system call, the
actual work of suspending a thread (setting bits, moving threads between lists,
etc.) is done by the code performing the system call. The only action required
by the emulator is to immediately jump to the synchronization point in order to
perform a thread switch.

Native Code SICStus Prolog compiles Prolog code to native code on some plat-
forms [3,19]. Thus instead of interpreting predicates or executing byte-compiled
code, the Prolog code is compiled to native code and inserted directly into mem-
ory and executed as if it were a regular C function. The purpose of this is, of
course, execution speed, and speedups of 3-4 times are typical.

The multithreaded execution model maintains full compatibility with native
code execution, since the thread scheduling mechanism is built upon an already
existing mechanism—the event handler—for which the native kernel already has
support. The scheduler raises an asynchronous event which will cause the native
code kernel to automatically escape back to the emulator, jump to the event-
handler and thereby reschedule. When the thread later on is scheduled again,
the native code execution will continue as normal. See also [27].

Suspending The Emulator The emulator will sometimes be in the situation
where there are no more threads to schedule. For example, this happens imme-
diately at startup in the development system when the top-level thread waits
for input from the user. This should cause the Prolog process to suspend itself,
just as if it would have if it had performed a normal, blocking system call.

This is implemented by a small piece of code in the scheduler. When the
scheduler has suspended the top-level thread and realizes that the ready-list is
empty, it suspends the process by calling pause(). Suspending and resuming
processes is—as one would expect—platform-dependent. We will only describe
the procedure used under Solaris; we expect the procedure to be fairly similar
on most modern operating systems. See also Section 8.

The process is then resumed (i.e. pause() returns) when a signal is received.
The signal is triggered by one of two reasons. Either the asynchronous I/O
mechanism sends a signal to indicate that the I/O call was completed, or the
timer mechanism sends a signal to indicate that we have one or more threads
suspended on a call to wait/1 and that we need to examine the queue to schedule
those threads for which the time-quantum has expired. These actions are taken in
the signal-handler routines, so that when pause() returns, we examine the ready-
list and if everything went right we should have a thread waiting to execute.
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However, for different reasons we might have received a false alarm, in which
case we will simply be suspended again.

8 Portability Aspects

This implementation has been done on Solaris, and while most parts of the
solution are directly portable to most operating systems supported by SICStus,
there are some issues worth special attention.

Asynchronous I/O relies on the use of signal SIGPOLL to indicate I/O comple-
tion. This signal is not ANSI-C, but is included in POSIX and thus available on
most UNIX dialects. The most notable exception is the Win32 platforms. How-
ever, on those platforms there are other (Win32-specific) ways of performing
asynchronous I/O which mimic the use of SIGIO/SIGPOLL.

The same applies to the predicate wait/1 (Section 6) and the mechanism for
suspending the emulator (Section 7.2). They both use POSIX extensions which
have counterparts in the Win32 interface.

Implementing SICStus MT in a bare ANSI-C environment is certainly possi-
ble, but it would mean some restrictions in functionality: Time-quantums cannot
be specified with higher resolution than seconds, the wait/1 predicate will have
reduced accuracy, and blocking system calls will suspend the entire process.

9 Performance Evaluation

We briefly evaluate the space complexity and execution speed of our implementa-
tion. We have used two benchmark programs: Game-of-Life [20], a simulation of
a simple biological environment, and a matrix multiplication program. The pur-
pose of the former benchmark is to measure message-passing overheads, whereas
the latter benchmark gives an idea of the intrinsic scheduling overheads.

9.1 Memory Consumption

Naturally, the objective during the implementation process has been to keep the
threads as lightweight as possible. It is quickly realized that the space occupied
by the WS is negligible compared to the stackconsumption.

Related to this is the fact that the address space in SICStus is only 228 =
256 Mb (on a 32-bit architecture) since the 4 upper bits are used for tagging
data-cells. This not only means that the data-areas cannot exceed 256 Mb, it
also means that they have to be located at optimal places for this to be possible.
In other words, if the address space becomes fragmented (by stack-shifting, for
example), the limit of 256 Mb will drop even further. The impact of this limit
will become clear in the next section.



A Multithreaded Execution Environment for SICStus Prolog 47

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50 100 150 200 250 300 350 400 450 500

M
ill

is
ec

on
ds

Generations

Erlang (using neighbor-specific messaging)
SICStus MT (using generation-specific messaging)

SICStus MT (using neighbor-specific messaging)
Java

Oz 2.0

Fig. 3. Execution times for the Game-of-Life benchmark. The board is 10 × 10
cells.

9.2 Execution Speed

The figures in the following section have been obtained by running SICStus
MT executing emulated code on a Sun UltraSPARC 248 MHz (unless otherwise
noted).

Game-of-Life This is a variant of Conway’s Game Of Life [20], a simulation
of a simple biological environment. Basically, it consists of a matrix of cells,
each of which may or may not contain an organism. There are rules for how the
live cells reproduce for each generation and, depending on the initial population,
many interesting and fascinating patterns occur. We have implemented the game
in a way which makes it an excellent benchmark for measuring the efficiency of
employing several (hundreds or even thousands) threads. By spawning a separate
thread for each cell in the matrix and using the inter-thread communication
mechanism to propagate information, we can get good information about the
scheduling and communications overhead. See Figure 3.

The Oz 2.0 benchmark is not as relevant as the other three since it does not
use the message passing mechanism to propagate information. Since Oz 2.0 has
a shared heap (see Section 4.1), the threads can simply read the state of their
neighbors directly from the heap. This eliminates two overheads: suspension
overhead while sending and receiving messages and message copying overhead.

The Java-implementation (Sun’s JDK 1.1.4) displays surprisingly bad per-
formance, despite the fact that no message copying is done. We also found that
there is also only a very small difference between JIT-compiled Java and byte-
interpreted Java, which leads us to believe that it is the Java scheduler which is
inefficient.
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Comparing lazy switching and eager switching (see Section 6.1) using the
Game-of-Life benchmark showed that lazy switching is more efficient. The dif-
ference was approximately 700 ms or 7%, measured on neighbor-specific messag-
ing (the square markers in Figure 3). The difference is caused by the fact that
lazy switching decreases the number of messages that are unpacked in vain (i.e.
messages that do not match the first argument of the call to receive/1).

There is a considerable overhead in the message passing mechanism. The
overhead can be divided into two parts. The first part is caused by having to
copy messages between heaps. This is not a very big overhead, especially when
the messages are small. The dominating overhead is caused by the message non-
determinism (see Section 6.1). This mechanism allows the receiving thread to
specificy which messages should be received. The problem is that the sending
thread has no way of finding out if a message is “appropriate”, i.e. if it matches
the first argument to receive/1. Instead, it must always resume the receiving
thread so it can make the decision itself. This is where generation-specific and
neighbor-specific messaging come in. The former means that messages are only
identified by their generation and the latter means that messages are identified by
the sending cell (or thread). Neighbor-specific messaging causes more messages
to arrive “out-of-order”. This induces a higher overhead in the parsing of the
message queue which can clearly be seen in the figure.

This overhead can be reduced by being more selective about when to resume
threads blocked on receive/1, so we minimize the number of threads which are
resumed in vain. Lazy switching is one way of doing this. Another way is to allow
the sending thread to inspect the first argument to receive/1 (in the receiving
thread, that is) and avoid resuming threads when the message does not match.
This should enable us to eliminate all unnecessary scheduling of threads blocked
on receive/1.

Another improvement is to utilize indexing [26] to search the input queue.
The queue is currently searched linearly, but by using indexing, the search would
become considerably more efficient. The actual improvement, however, depends
heavily on the application. If the average length of the input queues is large
(which is the case if there are many messages arriving out of order), this im-
provement will have larger impact than if the queues are mostly empty.

Yet another, more orthogonal way of reducing this overhead is to introduce
named channels (see Section 6.1). Named channels can be used to reduce the
amount of out-of-order messaging, since messages of a certain kind can be sent
to a dedicated channel.

Matrix Arithmetic Since our implementation of the Game-of-Life benchmark
relies on the existence of threads, it is difficult to use that benchmark to get a
grip on the overhead of SICStus MT compared with single-threaded SICStus.

To get some figures on this, we used a very simple matrix multiplication
benchmark which can operate in two different modes, threaded and meta-called .
The first spawns a thread for each cell in order to compute its value and the
second simply performs a meta-call (using call/1), thereby not spawning any
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threads. These two modes correspond to the Parallel MT and Sequential MT
lines in the graph in Figure 4, which were obtained using SICStus MT. The third
line is obtained by running the matrix benchmark in sequential mode but using
plain SICStus (version 3#5).

While the difference between lazy and eager switching was quite small in
the Game-of-Life benchmark, it made a considerable difference here. The main
thread receives a messages from each thread when it has completed, and eager
switching caused the main thread to start executing for each such message while
lazy switching only let the main thread execute once all multiplier threads had
completed. The difference was large enough (roughly a factor 2 compared to
Sequential MT) to exclude eager switching from an interesting comparison.

The data in Figure 4 tell us that the overhead of supporting threads is very
small (the benchmark had to be executed several times in order to obtain a reli-
able difference). This means that it is reasonable to include support for multiple
threads in a released version of SICStus.

The benchmark also shows that the overhead of spawning a thread as opposed
to doing a meta-call is reasonably small. Also, the overhead of the meta-call
itself (not shown in the graph) was insignificant; we did not observe a significant
difference between the meta-called version and the standard sequential version.

Performance Conclusion Added up, it is reasonable to include support for
multiple threads in a released version of SICStus, but the message passing over-
heads needs to be reduced in order to be competitive with implementations such
as Erlang and Oz 2.0.
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10 Related Work

A great deal of work on parallel execution of Prolog has been done during the
past 15 years; see e.g. [11,23]. However, this work has mostly been concerned
with exploiting the parallelism which is implicit in logic programs.

Several concurrent logic programming system based on explicitly creating
processes (or threads) have evolved during the last 15 years. A survey of the
general issues can be found in [5].

CS-Prolog Professional [24] supports multiple processes and uses the mess-
age-passing paradigm for communication using explicitly created channels as
media. Asynchronous message passing is not supported; instead a rendezvous
(or hand-shake) model is used. However, forcing threads to synchronize when-
ever communication takes place tends to encourage deadlocks and is generally
restrictive to the programmer.

KL1 [8] is a concurrent logic programming language based on GHC (Guarded
Horn Clauses). The concurrency is similar to that of SICStus MT; threads are
managed explicitly and communication is done using blocking variable bindings.

Multi-prolog [4] and BlackLog [28] use the blackboard paradigm for communi-
cating between processes. Blackboard-based systems are inherently less scalable
in applications where there is heavy communication between processes since all
messages need to pass through one single point. On the other hand, blackboards
tend to give the programmer more expressiveness since messages do not need to
be sent to an explicit destination.

11 Future Work

11.1 Implementing Native Threads

The perhaps most interesting area for future work is the incorporation of native
threads. As mentioned in section 3, native threads are not used at all in this pro-
totype implementation. However, the benefits of using native threads (multiple
CPU utilization, blocking systems calls, etc.) are important enough to justify
native threads in a released version of SICStus. Incorporating native threads
raises a couple of design issues itself.

First, should native threads replace the emulated threads of the current de-
sign? The answer to this question is “no”. Not all platforms have multiple CPUs
and there is a certain amount overhead with using native threads; both in the
handling of the native threads themselves but also with the additional cost of
needing to synchronize accesses to global data in the emulator. So, in some cases
it might well be justified (from a performance point of view) to avoid native
threads to some extent.

Second, how should the underlying native threads implementation be chosen
to minimize portability problems? Are Pthreads (POSIX threads) [25] suitable
for our purposes? This question is probably the most difficult one to give a good
answer to. There are many different native threads implementations with differ-
ent properties regarding portability, user-space vs. kernel-space, scheduling, etc.
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Answering the first question with “no”, raises another question: How do
we map Prolog threads onto native threads? Should it be automatic or user-
controlled? This question is still open for discussion. Since native threads do use
resources in the operating system, using too many will degrade overall system
performance. On the other hand, a Prolog application (such as Game-of-life)
might want to create a very large number of threads. In such a situation, it is
necessary to strike a balance between the number of native threads used and
how the Prolog threads should map onto these. This dynamic scenario makes
it unlikely that a static mapping—i.e. a Prolog thread is attached to a specific
native thread, for example when calling spawn/2, and is thereafter fixed to that
native thread—is suitable. A dynamic mapping where Prolog threads could be
dynamically scheduled on the existing native threads could more easily adopt to
different user-needs and different platforms.

11.2 Debugger

Debugging a multithreaded application is not an easy task. However, we are
not really talking about debugging Prolog code (for which SICStus has very
good support), but rather about debugging the concurrency introduced by mul-
tithreading. Extending the existing debugger with the basic support for debug-
ging multithreaded code is not that difficult; the problem is the support for more
advanced features such as deadlock detection, debugging race conditions, etc.

12 Conclusion

We have presented the design and implementation of SICStus MT, a multi-
threaded extension to SICStus Prolog. The following design issues were dis-
cussed in detail: whether to use native threads, the scheduling algorithm, time
quanta and thread switching, programming interface, communication and syn-
chronization, and blocking system calls. We gave a preliminary performance
analysis, indicating minimal scheduling overheads, but significant message pass-
ing overheads in the implemented prototype. Work is under way to reduce these
overheads.
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Abstract. In this paper, we develop a solid theoretical foundation for a
bottom up program transformation, capable of specialising a logic pro-
gram with respect to a set of unit clauses. Extending a well-known op-
erator, originally introduced for composing logic programs, we define a
bottom up partial deduction operator and prove correctness of the trans-
formation with respect to the S-semantics. We also show how, within this
framework, a concrete control strategy can be designed.
The transformation can be used as a stand-alone specialisation tech-
nique, useful when a program needs to be specialised w.r.t. its internal
structure (e.g. a library of predicates w.r.t. an abstract data type) in-
stead of a goal. On the other hand, the bottom up transformation can be
combined with a more traditional top down partial deduction strategy.
We conjecture that such a combined approach will finally enable good
automatic specialisation of meta-programs.

1 Introduction

Partial deduction is an important transformation technique for logic programs,
capable of removing substantial inefficiencies from programs [16,9,5]. As an on-
line specialisation technique, it is based on an evaluation mechanism for logic
programs. The input to a typical partial deducer is a program and a partially
instantiated query. The instantiated part represents the information with respect
to which one would like to specialise; the uninstantiated part represents the
information not yet known. Therefore, all classical partial deduction techniques
use top down evaluation (or SLD-resolution) to evaluate the program parts that
depend on the known input and generate a new program that computes its
result using only the remainder of the input. Since the new program has less
computations to perform, in general, it will be more efficient.

In recent work [21], we argued the need for a complementary partial deduc-
tion technique, capable of “specialising” a program w.r.t. a set of (unit) clauses
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instead of a goal. It seems natural to define such a specialisation scheme in
terms of bottom up evaluation. During evaluation, the information from the
unit clauses is then propagated upwards, and new facts and clauses are derived.
In [21], we developed a specific, and very concrete control scheme for such a bot-
tom up transformation and provided some examples showing that a combination
of bottom up transformation and classical (goal-directed) top down partial de-
duction achieves at least equally good results as a top down scheme alone, while
requiring a much less complicated control mechanism for either part.

In this work, we establish a solid theoretical foundation for such bottom up
transformation schemes, rendering a general framework in which concrete control
strategies can be proven correct.

In Section 2, we first recapitulate and illustrate briefly the main motivation
for bottom up specialisation. Subsequently, Section 3 – the main one – develops
the framework. Next, we address concrete control in Section 4. Section 5, finally,
discusses achievements and plans for future work.

Throughout the paper, we restrict attention to definite programs (and goals).

2 Motivating Bottom Up Specialisation

In this section, we recapitulate briefly our motivation for bottom up specialisa-
tion. More information can be found in [19,21].

In a logic program, some information flows naturally in a bottom up fashion,
starting from a set of unit clauses. Take as example a program in which the con-
crete representation of some data structure is hidden by an abstract data type
(ADT) and all operations manipulating the structure are defined using func-
tionality provided by the ADT implementation. Abstracting such information
through several layers makes sense from a software engineering point of view:
concrete representations can be altered without much effort. On the other hand,
every layer of abstraction decreases efficiency. Therefore, it makes sense to prop-
agate the concrete information up into the program, to the places where it is
really used. In the ADT-example: propagating the concrete representation into
the program can eliminate all calls to the ADT, removing a layer of overhead.

This sort of information propagation can in principle be obtained by a top
down specialisation scheme. Achieving it in a general and completely automatic
way, however, is far from trivial since control information, needed by the spe-
cialiser to decide whether or not to continue the specialisation, might also flow
bottom up. In particular, (Vanilla-like) meta-programs typically present difficul-
ties of this kind [20]. Consider the following example, taken from [21]: The pred-
icate make list(T, I, R) can be used to create a list of a fixed length (type T ),
with each element initialised with I. The result is returned in R.

Example 1.

fill list(L, T, I, L)← type(T, L). type(list1, [X ])
fill list(L, T, I, R)← fill list([I|L], T, I, R). type(list3, [X1, X2, X3]).
make list(T, I, R)← fill list([], T, I, R).



56 Wim Vanhoof et al.

Example 1 represents a class of recursive predicates that build up some structure
between calls before a base clause of the predicate (ending the recursion) is
reached, depending on the structure built. All top down specialisers are based
on unfolding techniques, which are known to have problems with these: Often, it
cannot be derived from the SLD-tree built so far whether or not unfolding such
a recursive call will eventually terminate.

If this recursive predicate is handled in a bottom up fashion, structure is
shrinking between recursive calls, resulting in the facts

make list(list1, I, [I]).
make list(list3, I, [I, I, I]).

Apart from control, there are other reasons why a bottom up approach might
be preferred. Sometimes goal-directed specialisation simply is not needed, be-
cause all information to be propagated into the program is already there, and
need not be provided from elsewhere. Consider a program library M , in which
n routines are defined, all using an ADT. A top down specialiser needs a single
goal to start specialisation from, which might not be available when specialising
the library. Or it/they will likely contain no information (all arguments free)
since the latter flows bottom up (further complicating top down control).

So, in a number of cases, proceeding bottom up is a more natural solution.
bottom up transformation and specialisation has been considered occasionally
before (see e.g. [11,4]). However, to the best of our knowledge, our ongoing effort
is the first attempt to achieve these in a completely general and automatic way.

3 Defining the Framework

First, we recall the concept of a non-ground TP operator, which normally acts
on atoms. However, for reasons that will become clear below, we consider a non-
ground TP operator acting on sets of clauses1 as in compositional semantics (see
e.g. [2,1]). To keep the presentation simple, atoms will be considered as unit
clauses and vice versa, as the context requires. In what follows, HC denotes the
set of all Horn clauses over a fixed first order language L, underlying a given def-
inite program P . Let ≡ be the variant relation on HC. For any set S, 2S denotes
its powerset. Unless specified otherwise, uppercase characters A,B,. . . denote
atoms, Ã,B̃ conjunctions of atoms, r, s, t, u terms and r̃, s̃, t̃ , ũ appropriate num-
bers of terms used as predicate arguments. As usual, A � B denotes that A is
more general than B. We mean by θ = mgu((B1, . . . , Bm), (C1, . . . , Cm)) that
(B1, . . . , Bm) and (C1, . . . , Cm) are unifiable and θ is an mgu of the m-tuples,
so, Biθ = Ciθ for i = 1 . . .m. For a program P , Pred(P ) denotes the set of pred-
icate names occurring in P . For an atom A, V ar(A) denotes the set of variables
of A.

First, we define a basic operator, adapted from [2].

1 Hence the notation: TC
P .
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Definition 1. The compositional, non-ground TP -operator, TCP , is a function
TCP :2HC/≡ → 2HC/≡, defined for any S ⊆ HC/≡ as: TCP (S) = S ∪ {Hθ ←
(L̃1, . . . , L̃n)θ where H ← B1, . . . , Bn ∈ P (n ≥ 0), A1 ← L̃1,. . . , An ← L̃n fresh
variants of clauses in S and θ = mgu((B1, . . . , Bn), (A1, . . . , An)).}

From [1], we know that TCP is continuous and its least fixpoint TCP ↑ ω exists.
By definition, TCP ↑ ω is a set of unit clauses denoting the least S-Herbrand
model [8,1] of P , Ms(P ). That is, Ms(P ) = Heads(TCP ↑ ω) where Heads is a
function that projects a set of (unit) clauses onto their heads. In the remainder
of this paper, we simply consider Ms(P ) = TCP ↑ ω.
Example 2. Consider the following program:

P : p(X, c)← r(a).
p(a, a)← r(f(X))← r(X).
q(X,Y )← p(X,Y )

Then Ms(P ) = {p(X, c), p(a, a), r(a), q(X, c), q(a, a), r(f(a)), r(f(f(a))), . . .}
Our aim is to define a partial deduction operator that transforms a program P

into a program P ′ in which information is propagated in a bottom up fashion. TCP
can serve as a basis for such an operator, but we need to ensure that consecutive
applications of our operator always terminate within finite time. To achieve this,
unlike [2,1], we define and incorporate an abstraction operator on HC.

First, we introduce the concept of a predicate renaming.

Definition 2. A predicate renaming of an atom p(t1, . . . , tn) is p′(t1, . . . , tn)
where either p′ = p, or p′ denotes a new, unique predicate name.

Thus, a predicate renaming of an atom p(t̃) is the atom itself or p′(t̃), where p′

is a newly introduced predicate symbol (not used before in the same program
transformation).

Definition 3. An abstraction function, Abst, is an idempotent function
2HC/≡ → 2HC/≡, such that for any S ⊆ 2HC/≡, if S′ = Abst(S), then for
every clause p(t̃) ←B̃ ∈ S, either p(t̃)←B̃ ∈ S′ or there exists a clause p(s̃)←
p′(s̃) ∈ S′ such that p(s̃) � p(t̃) and p′(s̃) is a predicate renaming of p(s̃).

As we show below, the abstraction p(s̃) ← p′(s̃) can generate, in combina-
tion with an appropriate renaming of the original clause, p′(t̃) ← B̃, the same
atoms of Ms(P ) as the original clause p(t̃)← B̃ (since θ = mgu(p′(t̃), p′(s̃)) and
p(s̃)θ = p(t̃)). Since possibly more clauses can be mapped on the same gener-
alisation, abstraction enables us to replace the computation of Ms(P ) (which
is possibly infinite) with the computation of a finite set of clauses, defining the
same least S-Herbrand model.

Therefore, we combine TCP with an abstraction function to obtain a bottom
up partial deduction operator.

Definition 4. The abstracting TCP -operator, ACP , associated to a program P
and an abstraction function Abst is defined as ACP= Abst ◦ TCP .
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Example 3. Reconsider the program of Example 2. We define Abst({p(a, a)←})
= {p(a, Y )← p(a, Y )} and Abst({r(a)}∪{r(f(X))← r(X)}) = {r(X)← r(X)}
while all other clauses remain unchanged by Abst. Then

I0 = {}

I1 = ACP (I0) =




p(a, Y )← p(a, Y )
p(X, c)←
r(X)← r(X)


 I2 = ACP (I1) =




p(a, Y )← p(a, Y )
p(X, c)←
r(X)← r(X)
q(a, Y )← p(a, Y )
q(X, c)←




The reader can easily verify that I2 is the least fixpoint of ACP .
In general, ACP is not a monotonic operator, since Abst may replace clauses

by their generalisations. However, the following proposition holds:

Proposition 1. For any S ⊆ HC/≡, such that Abst(S) = S, we have S ⊆
ACP (S).

Proposition 1 follows straightforwardly from the definition of ACP and mono-
tonicity of TCP . Thus, if we start off from an initial set S0 which satisfies
Abst(S0) = S0, monotonicity of a sequence of ACP -applications is ensured since
Abst is required to be idempotent. Therefore, we can define ordinal powers of
ACP as follows:

Definition 5. ACP ↑ 0 = {}, ACP ↑ n = ACP (A
C
P ↑ (n − 1)) for n ∈ IN and

ACP ↑ ω =
⋃
n∈IN ACP ↑ n.

Henceforth, we will always use ACP as in Definition 5. As long as no abstraction
occurs, subsequent ACP applications, starting from an initial set {} derive sets
of unit clauses. Abstraction introduces clauses in a set ACP ↑i that are no longer
unit clauses, but clauses capable of generating (among others) the same atoms
as the abstracted ones, provided the originals are present. To that extent, we
define two complementary functions on sets generated by ACP : Res, containing
the clauses p′(t̃) ← B̃ where p(t̃) ← B̃ was removed because of an abstraction
p(s̃)← p′(s̃) and Gen, comprising the abstractions themselves.

Definition 6. Res, Gen : 2HC/≡ → 2HC/≡ are defined as:

– Res(ACP ↑0) = Gen(ACP ↑0) = {}.
– Res(ACP ↑n) = Res(ACP ↑(n−1))∪{p′(t̃)← B̃|p(t̃)← B̃ ∈ TCP (ACP ↑(n−1))

and p(t̃) ← B̃ �∈ ACP ↑n and Abst({p(t̃) ← B̃}) = {p(s̃) ← p′(s̃)}} for any
n > 0.

– Gen(ACP ↑n) = Gen(ACP ↑(n−1))∪Abst(TCP (ACP ↑(n−1)))\TCP (ACP ↑(n−1))
for any n > 0.

Obviously, all clauses in any Gen set are of the form p(s̃)← p′(s̃). Note also
that Gen(ACP ↑n) ⊆ ACP ↑n while Res(ACP ↑n) ∩ACP ↑n = {}.
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Example 4. In Example 3, Ms(I2) = {p(X, c), q(X, c), p(a, c), q(a, c)} �= Ms(P ).
We will return to the presence of p(a, c) and q(a, c) in Example 5 below. Here
we first note that a.o. p(a, a) and q(a, a) have disappeared. This is due to the
abstraction of p(a, a) ← into p(a, Y ) ← p(a, Y ). There is however a clause
q(a, Y ) ← p(a, Y ) in ACP ↑2 such that θ = mgu(p(a, a), p(a, Y )) exists and
q(a, Y )θ = q(a, a). Hence, while p(a, a) is abstracted away and also q(a, a)
therefore not directly derived by ACP , the situation is rectified by storing p(a, a)
through Res and adding it to the final program, as in Definition 7 below.

In what follows, we will assume Abst to be defined such that ACP is finitary2;
in other words, ACP ↑ ω= ACP ↑n0, for some n0 ∈ IN. Note that if ACP is indeed
finitary and reaches its least fixpoint in n0 ∈ IN, Res(ACP ↑n0) and Gen(ACP ↑n0)
are necessarily finite sets, since all sets ACP ↑n, n ≤ n0 are finite.

We are now in a position to define the notion of a bottom up partial deduc-
tion.

Definition 7. Given a program P and an abstraction function Abst, giving rise
to a finitary abstracting TCP -operator, ACP , with least fixpoint ACP ↑n0, the bottom
up partial deduction of P (using Abst) is the program
ACP ↑n0 ∪ Res(ACP ↑n0).

Before reconsidering our example, we return to the use of predicate-renamings
in the abstraction function. Notice that by Definition 2, a valid predicate renam-
ing of an atom A is the atom itself. As a consequence, clauses in Gen (and hence
in the residual program, P ′) may be of the form p(s̃) ← p(s̃). Such clauses are
“useless” and possibly introduce non-termination in top down evaluation. How-
ever, since our transformation is based on the TCP -operator, it seems natural to
formulate soundness and completeness of bottom up partial deduction in terms
of least S-Herbrand models, and the presence of such clauses in P ′ does not
influence Ms(P ′). Moreover, after completion of the transformation, they can
be easily excluded from the residual program. However, as Example 5 below
shows, renamings are sometimes necessary to guarantee soundness of the trans-
formation. First, we recapitulate the definition of soundness and completeness
with respect to the least S-Herbrand model. Obviously, also in the transformed
program, we are really only interested in the original predicates. Hence, in the
remainder of this paper and in the following definition of transformation cor-
rectness, Ms(P ′)|Pred(P ) = {p(t̃) ∈Ms(P ′) | p ∈ Pred(P )}.

Definition 8. Let P ′ be a bottom up partial deduction of a program P . P ′ is
sound w.r.t. P if Ms(P ′)|Pred(P ) ⊆ Ms(P ). P ′ is complete w.r.t. P if
Ms(P ) ⊆Ms(P ′).

Without the use of predicate renamings, a bottom up partial deduction is
not sound in general.
2 Clearly, this is a matter of control: It involves deciding when to abstract and how to
do it. See Section 4.
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Example 5. Reconsider the program P from Example 2 and Abst from Exam-
ple 3. Since ACP (I2) = I2, the fixpoint is reached in ACP ↑2 and the bottom up par-
tial deduction of P is P ′ = I2∪Res(I2) and Res(I2) = {p(a, a)←}∪{r(a)←}
∪{r(f(X)) ← r(X)}. It is easy to see that, while P and P ′ have equal least
Herbrand models, Ms(P ′) �⊆Ms(P ):

Ms(P ) = {p(X, c), p(a, a), r(a), q(X, c), q(a, a), r(f(a)), r(f(f(a))), . . .}
Ms(P ′) = {p(X, c), p(a, a), r(a), q(X, c), q(a, a),p(a, c), q(a, c), r(f(a)), . . .}.
In this example, due to the abstraction of p(a, a) ← into p(a, Y ) ← p(a, Y ),

we introduce a clause in P ′ that is capable of further instantiating elements of
Ms(P ′): p(X, c) ∈ Ms(P ′) and p(X, c) unifies with p(a, Y ) without being an
instance of it, and hence p(a, c) ∈ Ms(P ′) while it is not an element of Ms(P ).
Soundness can be obtained by imposing an extra condition on a bottom up
partial deduction, ensuring that if any element p′(t̃) of Ms(P ′) unifies with the
body atom of a clause p(s̃)← p′(s̃) introduced by Abst, p′(t̃) must be an instance
of p′(s̃).

Definition 9. Let S be a set of clauses, such that Gen(S) and Res(S) are
defined. S is inside-closed if for all A ←B̃ ∈ S ∪Res(S) holds: if H ← H ′ ∈
Gen(S) such that θ = mgu(A,H ′) exists, then H ′θ = A.

As shown in Example 5, when this condition is not imposed on ACP ↑n0,
Abst might create clauses by which atoms in Ms(P ′) are derived that are more
instantiated than any atom in Ms(P ). Note that a concrete control strategy
(as in Section 4, e.g.) need not actually rename as long as the set ACP ↑i stays
inside-closed. Hence the possibility to re-use the same predicate in Definition 2.

Example 6. Reconsider the program P from Example 2 but Abst now defined
as Abst({p(a, a)←}) = {p(a, Y )← p′(a, Y )} and Abst({r(a) ←} ∪ {r(f(X))←
r(X)}) = {r(X) ← r(X)} (Abst introduces the new predicate p′). The new
transformed program is P ′ = ACP ↑2 ∪Res(ACP ↑2) and Res(ACP ↑2) =
{p′(a, a)←}∪ {r(a)←}∪ {r(f(X))← r(X)} where P ′ contains now p(a, Y )←
p′(a, Y ). Hence,

Ms(P ′)|Pred(P ) = Ms(P ) = {p(X, c), p(a, a), r(a), q(X, c), q(a, a), r(f(a)), . . .}.
Now, we can prove the correctness of the transformation.

Theorem 1. Let P ′ be a bottom up partial deduction of a program P , P ′ =
ACP ↑n0 ∪Res(ACP ↑n0). Then, if ACP ↑n0 is inside-closed, Ms(P ′)|Pred(P ) =
Ms(P ), thus P ′ is sound and complete w.r.t. P .

In order to prove this theorem, we include a useful lemma from [6].

Lemma 1. (Proposition II.1 from [6])
Let A = {Ai}1≤i≤n be a set of positive literals, B = {Bi ← Bi,1, . . . , Bi,ni}1≤i≤n
and C = {Ci,j ← Ci,j,1, . . . , Ci,j,pi,j}1≤i≤n,1≤j≤ni be sets of definite clauses. Let
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us further assume that V ar(A), V ar(B) and V ar(C) are disjoint sets. Then,
there exist substitutions α and β such that:

(I)
{
α = mgu((Ai)1≤i≤n, (Bi)1≤i≤n),
β = mgu((Bi,jα)1≤i≤n,1≤j≤ni , (Ci,j)1≤i≤n,1≤j≤ni )

if and only if there exists substitutions γ and δ such that:

(II)
{
γ = mgu((Bi,j)1≤i≤n,1≤j≤ni , (Ci,j)1≤i≤n,1≤j≤ni),
δ = mgu((Ai)1≤i≤n, (Biγ)1≤i≤n)

Moreover, if (I) or (II) holds then αβ = γδ (modulo variable renaming).

The following corollary states that if mgu((Ai)1≤i≤n, (Bi)1≤i≤n) exists, so
does mgu((H)1≤i≤n, (Bi)1≤i≤n) if Hi � Ai (1 ≤ i ≤ n) and V ar((Ai)1≤i≤n),
V ar((Bi)1≤i≤n)) and V ar((H)1≤i≤n) are disjoint sets.

Corollary 1. Let (A1, . . . , An), (B1, . . . , Bn) and (H1, . . . , Hn) be sets of atoms
with V ar(A1, . . . , An), V ar(B1, . . . , Bn) and V ar(H1, . . . , Hn) disjoint sets such
that (A1, . . . , An) = (H1, . . . , Hn)γ. Then, if mgu((A1, . . . , An), (B1, . . . , Bn))
exists, so does mgu((H1, . . . , Hn), (B1, . . . , Bn)).

Proof. Apply the only-if of Lemma 1 with A = {A1, . . . , An}, C = {B1, . . . , Bn}
(seen as unit clauses) and B the set of clauses {H1 ← H1, . . . , Hn ← Hn}.

Below, in order to avoid uninteresting technical details, we assume renaming
apart and reason modulo variable renaming wherever appropriate.

Proof of Theorem 1

Proof. Soundness. Since every step in the computation of AC
P represents a Horn clause

program, we introduce the following definition of intermediate programs: P0 = {},
Pi = A

C
P ↑i ∪Res(AC

P ↑i). We assume that P ′ = AC
P ↑n ∪Res(AC

P ↑n) and prove by
induction that for all i ≤ n: Ms(Pi)|Pred(P ) ⊆ Ms(P ). Obviously, Ms(P0) ⊆ Ms(P ).
Suppose now that Ms(Pk)|Pred(P ) ⊆ Ms(P ) (Induction Hypothesis). The difference
between Pk+1 and Pk consists of:

1. clauses added by TC
P : Consider H1 ←L̃1, . . . ,Hn ←L̃n in AC

P ↑k and a clause H ←
B1, . . . , Bn in P such that α = mgu((B1, . . . , Bn), (H1, . . . , Hn)) exists and Hα←
(L̃1, . . . ,L̃n)α ∈ AC

P ↑(k+1). We have to prove that for each conjunction of atoms, D̃
in Ms(P

′) holds that if β = mgu(D̃, (L̃1, . . . ,L̃n)α), Hαβ ∈ Ms(P ). By Lemma 1,
the existence of α and β implies the existence of γ = mgu((L̃1, . . . ,L̃n),D̃) and
δ = mgu((H1, . . . ,Hn)γ, (B1, . . . , Bn)). By induction hypothesis, H1γ, . . . ,Hnγ ∈
Ms(P ), and since H ← B1, . . . , Bn is a clause of P , Hδ = Hγδ = Hαβ ∈Ms(P ).

2. clauses p(t̃)← B̃ removed by Abst and recovered through Res as p′(t̃)← B̃ with
p′(t̃) a predicate renaming of p(t̃). Obviously, for each conjunction of atoms, D̃ in
Ms(P

′) such that β = mgu(D̃, B̃), p′(s̃)β ∈ Ms(P
′) and p(s̃)β ∈Ms(P ) (since the

induction hypothesis holds for the original clause).
3. clauses p(s̃) ← p′(s̃) introduced by Abst (with p′(s̃) a predicate renaming of
p(s̃)): By (2), we know that if p′(t̃) ∈ Ms(P

′), p(t̃) ∈ Ms(P ). Since abstraction
must guarantee inside-closedness, if θ = mgu(p′(s̃), p′(t̃)), p′(s̃)θ = p′(t̃) and thus
p(s̃)θ = p(t̃) ∈Ms(P ).
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Completeness. We prove by induction that for every k, TC
P ↑k ⊆ Ms(P

′). Since
Ms(P ) = T

C
P ↑ ω, the result follows. TC

P ↑0 = {} ⊆Ms(P
′). Suppose TC

P ↑k ⊆Ms(P
′).

By monotonicity of TC
P we need to consider only clauses added in the (k + 1)-th

application of TC
P : TC

P ↑(k + 1) \ TC
P ↑k = {Hδ ← true|H ← B1, . . . , Bn ∈ P,A1 ←

true, . . . , An ← true ∈ TC
P ↑k, and δ = mgu((B1, . . . , Bn), (A1, . . . , An))}. We need

to prove that Hδ ∈ Ms(P
′). Since A1, . . . , An ∈ TC

P ↑k, A1, . . . , An ∈ Ms(P
′) (by

induction hypothesis). This implies the existence of clauses H1 ←L̃1, . . . ,Hn ← L̃n in
P ′ and conjunctions of atoms D̃1, . . . ,D̃n ∈Ms(P

′) such that

γ = mgu((D̃1, . . . ,D̃n), (L̃1, . . . ,L̃n)) (1)

and (H1, . . . , Hn)γ = (A1, . . . , An). Since H1 ←L̃1, . . . ,Hn ← L̃n are clauses of P ′,
there exists an m such that some of these clauses are in AC

P ↑m, and the others in
Res(AC

P ↑m). Let us assume that (possibly after renumbering)H1 ←L̃1, . . . ,Hk ←L̃k ∈
AC

P ↑m and Hk+1 ←L̃k+1, . . . ,Hn ←L̃n ∈ Res(AC
P ↑m). Since the latter clauses have

been abstracted in the process of computing AC
P ↑m, there exist clauses H ′

k+1 ←
H ′

k+1, . . . ,H
′
n ← H ′

n in AC
P ↑m such that

(H ′
k+1, . . . , H

′
n)η = Hk+1, . . . ,Hn.

Since
δ = mgu((B1, . . . , Bn), (A1, . . . , An))

and (A1, . . . , An) = (H1, . . . ,Hn)γ, mgu((B1, . . . , Bn), (H1, . . . , Hn)) exists (Corol-
lary 1). Next, again applying Corollary 1, since

(H1, . . . ,Hn) = (H1, . . . ,Hk,H
′
k+1, . . . ,H

′
n)η,

θ = mgu((B1, . . . , Bn), (H1, . . . , Hk,H
′
k+1, . . . , H

′
n)) (2)

exists. Recall that

H ← B1, . . . , Bn ∈ P and




H1 ← L̃1

. . .

Hk ← L̃k

H ′
k+1 ← H ′

k+1

. . .
H ′

n ← H ′
n

∈ AC
P ↑m (3)

Together (2) and (3) imply that Hθ ← (L̃1, . . . ,L̃k,H
′
k+1, . . . ,H

′
n)θ ∈ TC

P (AC
P ↑m) and

hence is a clause of P ′. Now, from (H ′
k+1, . . . , H

′
n)η = (Hk+1, . . . ,Hn) it follows that

there is an η′ = mgu((H ′
k+1, . . . ,H

′
n), (Hk+1γ, . . . ,Hnγ)) where γ is defined as in (1).

Moreover, (1) implies the existence of

γ′ = mgu((L̃1, . . . , L̃k), (D̃1, . . . , D̃k)).

Since V ar(H ′
k+1), . . . , V ar(H

′
n), V ar(Hk+1γ), . . . , V ar(Hnγ), V ar(L̃1), . . . ,

V ar(L̃k), V ar(D̃1), . . . , V ar(D̃k) are disjoint sets, η
′ and γ′ can be composed into η′γ′:

η′γ′ = mgu((L̃1, . . . , L̃k,H
′
k+1, . . . ,H

′
n), (D̃1, . . . , D̃k,Hk+1γ, . . . ,Hnγ)).

Since

(H1, . . . ,Hk,H
′
k+1, . . . ,H

′n)η′γ′

= (H1γ
′, . . . ,Hkγ

′,Hk+1γγ
′, . . . ,Hnγγ

′)

= (H1γ, . . . ,Hkγ,Hk+1γ, . . . ,Hnγ)

= A1, . . . , An
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and δ = mgu((B1, . . . , Bn), (A1, . . . , An)),

δ = mgu((B1, . . . , Bn), (H1, . . . ,Hk,H
′
k+1, . . . ,H

′
n)η

′γ′)

Using the if-part of Lemma 1 with A = {B1, . . . , Bn}, B the AC
P ↑m-clauses of (3) and

as C the set {D̃1, . . . , D̃k,Hk+1γ, . . . , Hnγ} (seen as a set of unit clauses), the existence
of η′γ′ and δ implies the existence of θ (as in (2)) and

σ = mgu((L̃1, . . . , L̃k,H
′
k+1, . . . ,H

′
n)θ, (D̃1, . . . , D̃k,Hk+1γ, . . . ,Hnγ)).

D̃1, . . . , D̃k ∈Ms(P
′) and Hk+1γ, . . . ,Hnγ = (Ak+1, . . . , An) ∈Ms(P

′) and Hθ ←
(L̃1, . . . ,L̃k,H

′
k+1, . . . ,H

′
n)θ is a clause of P ′. It follows that Hθσ ∈ Ms(P

′), Hθσ =
Hη′γ′δ through Lemma 1 and Hη′γ′δ = Hδ since Hη′γ′ = H . Therefore, we have
shown that Hδ ∈Ms(P

′). ��
In [8,1,2] the equivalence between the operational semantics and the S-

semantics is established. This important result guarantees that if Ms(P ) =
Ms(P ′), the operational behavior of P and P ′ is essentially the same: For any
goal G, P ∪ G has an SLD-refutation with c.a.s. θ if and only if P ′ ∪ G has
an SLD-refutation with c.a.s. θ. Since all classical, top down, partial deduc-
tion techniques are formulated with respect to this operational semantics, this
equivalence result together with Theorem 1 enables an integration of the two
transformations.

Note that while our transformation preserves finite failures, it may convert
infinite failure into finite failure, as the following example shows:

Example 7.
P : q(a)← P ′ : q(a)←

q(X)← q(X)

The query q(b) fails infinitely in the original program P , whereas it fails
finitely in the transformed program P ′.

4 Concrete Control

In order to show how our framework can be used in practice, we now cast a
concrete bottom up control strategy within it. The basic strategy was already
operationally described in [21], but by presenting it within our conceptual frame-
work, we are now able to derive an algorithm which is operationally both sound
and complete (which was not completely the case in [21]).

Example 8. Consider the following set of clauses, C, defining two well-known
predicates append and reverse working with an abstract data type for list rep-
resentation.

append(L1, L2, L2)← list nil(L1)
append(L1, L2, LR)← list notnil(L1), list head(L1, H), list tail(L1, T ),

append(T, L2, R), list cons(H,R,LR)

reverse(L,A,A)← list nil(L1)
reverse(L,A,R)← list notnil(L1), list head(L1, H), list tail(L1, T ),

list cons(H,A,NA), reverse(T,NA,R)
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The ADT itself is represented by the following set of clauses, A, using the
classical concrete list representation.

list nil([])← list head([X |Xs], X)←
list notnil([X |Xs])← list tail([X |Xs], Xs)←

list cons(X,Xs, [X |Xs])←
The program P = C ∪ A can be seen as a library that we want to specialise

w.r.t. the ADT represented by A.
In top down partial deduction, ordering partially deduced atoms in tree-

structures rather than sets is a commonly used control tool [17,18,15]. Likewise,
rather than just using TCP to derive sets of clauses, we define a new operator,
DP , which orders the derived clauses into a dag. By doing so, we make the
relation between derived clauses explicit, facilitating later on the formulation of
a sufficiently precise abstraction function. We denote with DHC the set of all
such dags, and with Clauses a function DHC→ 2HC , mapping a dag to the
set of clauses present in it. Before defining DP , we introduce an intermediate
function, Add:

Definition 10. Add : DHC → DHC is a function such that for D ∈ DHC,
{C1, . . . , Cn} ⊆ Clauses(D) and C ∈ HC, Add(D, {C1, . . . , Cn}, C) denotes a
dag D′ ∈ DHC that is the result of adding C to D, with an edge from every
Ci → C for (1 ≤ i ≤ n).

Definition 11. For a definite program P , the DP -operator is a function, DP :
DHC → DHC defined for any dag D ∈ DHC as DP (D) = D′, where D′ is the
result of repeatedly applying Add(D, {C1, . . . , Cn}, C) for every
C ∈ TCP (Clauses(D)) \ Clauses(D) where C was derived from C1, . . . , Cn by
TCP .

DP is continuous and monotonic, and we define its ordinal powers as usual.

Example 9. With P defined as in Example 8, DP ↑ 1, DP ↑ 2 and DP ↑ 3 are
depicted in Figures 1, 2 and 3 (see Appendix A) respectively.

The relation between DP and TCP is obvious: For any dag D ∈ DHC :

Clauses(DP (D)) = TCP (Clauses(D)) holds.

This implicitly defines Gen(D) and Res(D) for any D constructed through
ADP , defined below. Henceforth, we will often leave implicit the distinction
between the dag and the set of clauses it contains.

We want our abstraction function to abstract clauses that would otherwise
lead to an infinite dag. To that extent, following the terminology of [15] (and
references therein), we first define a well-quasi relation and give a concrete in-
stance of such a relation that can be used as a criterion to decide when to perform
abstraction.
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Definition 12. We call a relation W ⊆ HC/≡×HC/≡ well-quasi on HC if and
only if any infinite series of clauses C1, . . . , Ck, Ck+1, . . . ∈ HC/≡ contains two
clauses Ci and Cj, i ≤ j, such that (Ci, Cj) ∈ W.

A well-known example of a well-quasi relation is the homeomorphic embedding
relation. Basically, it is a well-quasi order on a finite alphabet (e.g. [7,18]), but the
refined “strict” version below is not transitive. It remains well-quasi, though [15].
The following definition is taken from [14,15,10].

Definition 13. Let X,Y range over variables, f over functors, and p over pred-
icates. As usual, e1 ≺ e2 denotes that e2 is a strict instance of e1. Define ✂ on
terms and atoms:
X ✂ Y
s✂ f(t1, . . . , tn) ⇐ s✂ ti for some i
f(s1, . . . , sn) ✂ f(t1, . . . , tn) ⇐ si ✂ ti for all i
p(s1, . . . , sn) ✂ p(t1, . . . , tn) ⇐ si ✂ ti for all i and p(t1, . . . , tn) �≺ p(s1, . . . , sn)
The basic intuition behind the homeomorphic embedding relation is that

A✂B if A can be obtained from B (modulo variable renaming) by striking-out
some functors in B. As such, it provides a starting point for detecting growing
structure and hence possibly non-terminating processes.

Example 10. In the dag of Example 9: reverse([], R,R)✂reverse([X ], A, [X |A])
and append([], L, L) ✂ append([X ], L, [X |L]).

Based on ✂, we can define a well-quasi relation on HC:
Definition 14. W✂ ⊆ HC/≡ ×HC/≡ = {(H1 ← B̃1, H2 ← B̃2) |H1 ✂ H2}

Given a well-quasi relation W on HC, we are in a position to define an
abstraction function AbstW : DHC → DHC through the algorithm given below.
It uses operations remove(D,C) : DHC ×HC → DHC which removes a clause C
from a dag D and replace(D,C,C′) : DHC × HC × HC → DHC replacing a
clause C in a dag D by C′. Given atoms A and B, msg(A,B) denotes their
most specific generalisation (see a.o. [18,15]).
Algorithm 1
Input: a dagD ∈ DHC , a well-quasi relation W on HC.
Output: a dag AbstW(D) ∈ DHC .
D0 := D; i := 0;
repeat

if there exists a path C1 =⇒ C2 in Di such that (C1, C2) ∈ W
where C1 denotes p1(t̃)← B̃1 and C2 denotes p2(s̃)← B̃2.

then if there exists p2(r̃)← p′2(r̃)∈ Gen(Di) such that p2(r̃) � p2(s̃)
then Di+1 := remove(Di, C2);
else Di+1 := replace(Di, C2, p2(ũ)← p′′2(ũ));

where p2(ũ) = msg(p1(t̃), p2(s̃))
and p′′2(ũ) is a new predicate renaming of p2(ũ)

i := i+ 1;
until Di = Di−1;
AbstW(D) := Di;
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Definition 15. We call a well-quasi relationW on HC suitable (for abstraction)
if (A,B) ∈ W implies msg(A,B) �= B.

Note that strict homeomorphic embedding as defined in Definitions 13 and 14
is suitable [15]. Now we can state the following correctness results.

Theorem 2. Given a suitable well-quasi relation W on HC, Algorithm 1 ter-
minates for any input dag D ∈ DHC.

Proof. In the algorithm, Di �= Di−1 as long as there exists a path C1 =⇒ C2

in Di such that (C1, C2) ∈ W . In each loop, either C2 is removed from the dag,
resulting in precisely one path less to consider in the next loop, or a generalisation
is made. Thus, the only thing left to prove is that there cannot occur an infinite
sequence of consecutive generalisations. This follows because suitability of W
implies that generalising is strict and therefore well-founded. ��

It can be easily verified that, given a suitable W , AbstW as defined in the
above algorithm complies with Definition 3, and hence is an abstraction function,
AbstW : DHC → DHC . Again, we combine AbstW with DP to obtain a concretisa-
tion of ACP : ADP = AbstW ◦DP and ADP : DHC → DHC . Since AbstW({}) = {},
Proposition 1 ensures monotonicity of a sequence of ADP applications and we
can define its ordinal powers in the usual way.

Theorem 3. ADP is finitary.

Proof. Suppose ADP is not finitary: There does not exist n ∈ IN such that
ADP ↑ n is a fixpoint. Since ADP is monotonic, it will then construct an in-
finite D. Now, for any D ∈ DHC , Clauses(D) and TCP (Clauses(D)) are both
finite sets, thus in each iteration of ADP , only a finite number of new clauses are
added to D. The only way then in which D can become infinite is through an
infinite path in D. But this would mean there exists an infinite series of clauses
C1, . . . , Ck, . . . without two clauses Ci, Cj (i ≤ j) such that (Ci, Cj) ∈ W , con-
tradicting well-quasiness of W . ��

Corollary 2. Given a program P and an abstraction function AbstW , the pro-
gram ADP ↑ n0 ∪Res(Clauses(ADP ↑ n0)), where ADP ↑ n0 is the fixpoint of
ADP , is a bottom up partial deduction of P (using AbstW).

Example 11. The bottom up partial deduction of P (using AbstW✂
) is the fol-

lowing program (where only the predicates of interest, append and reverse, are
given)
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append([], L, L)←
append([X ], L, [X |L])←
append([X |Xs], Y, [X |Z])← append(Xs, Y, Z)
append(X,Y, Z)← append(X,Y, Z)

reverse([], R,R)←
reverse([X ], A, [X |A])←
reverse([X |Xs], A,R)← reverse(Xs, [X |A], R)
reverse(X,Y, Z)← reverse(X,Y, Z)

For both predicates, input lists of length 0 or 1 are captured by a unit clause.
This is due to the fact that when Abst detects that

(reverse([], R,R) ✂ reverse([X ], A, [X |A]))

the latter is generalised (so called child generalisation in top down partial de-
duction terminology, see Figures 3 and 4). Generalising the former instead – and
removing its descendant graph – (parent generalisation) usually results in less
generated code (in the example: only one unit clause, for the empty input list,
would be generated). However, child generalisation is necessary if we want ACP
(and ADP ) to remain monotonic. On the other hand, when parent generalisation
is used, a sequence of ACP applications is no longer monotonic, but ACP can still
be finitary due to a “sufficiently large” monotonic subsequence. How to incorpo-
rate this exactly into the framework is a topic of further research. The concrete
control strategy of [21] uses parent generalisation.

5 Discussion & Future Work

This paper provides a formal framework for bottom up specialisation. We enrich
the compositional TCP operator [2,1] with abstraction and thus obtain a generic
bottom up partial deduction operator ACP . We prove soundness and complete-
ness of the transformation provided a particular condition is imposed on ACP .
This inside-closedness condition plays a key role in deciding whether actually
to rename an atom or use the atom itself in the abstraction. Always renam-
ing during abstraction creates a set ACP ↑n0 which trivially is inside-closed, and
hence the residual program derived from it is sound and complete. The clauses
from Gen(ACP ↑n0) serve as “translation” clauses between the renamings and
the original predicates. On the other hand, never renaming during abstraction
creates a set ACP ↑n0 leading to a residual program P ′ that possibly is not sound
with respect to P . Deriving P ′ from P by the control strategy of [21] provides an
example: if A ∈Ms(P ′), it is possible that A �∈Ms(P ); however A is “correct” in
the sense that there does exist an A′ ∈Ms(P ) such that A′ � A (Theorem 3.16
in [21]). In general, clauses from Gen(ACP ↑n0) that bear the same predicate in
head and body, can be filtered from the residual program since they do not serve
as “translation” clauses. Herefore, less renaming results in smaller transformed
programs. Examples 10 and 11 required none.
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The aim of bottom up partial deduction should be to maximize the prop-
agation of information in the program, while preserving the least S-Herbrand
model. Without abstraction, the process reduces to bottom up evaluation and
P ′ = Ms(P ). Enriching TCP with abstraction introduces several new complica-
tions. While in general ACP is not continuous, it can be defined finitary. This is
mandatory if we plan to use it for program transformation, since the transfor-
mation as well as the resulting program must be finite. Also, while the defined
ACP operator is monotonic, practical control (as the one in [21]) may use parent-
generalisation (cutting away parts of a dag built so far), and destroy overall ACP
monotonicity.

As noted in [2,1], TCP ↑ ω is in essence a set of resultants which can be seen
as the result of a top down partial deduction of P w.r.t. a set of atomic goals
of the form p(X1, . . . , Xn). As a consequence of abstraction, this will not be the
case with our transformation. Reconsider the program of Example 2 to which
the clause q(Y )← p(X,Y ) is added. Abst is defined as in Example 3, resulting
in a set I2 which includes the clause q(Y ) ← p(a, Y ). Although this clause was
produced by TCP starting from an abstraction, it can not be derived as a resultant
from a top down partial deduction of q(Y ), since its body contains the constant
a as the result of an earlier bottom up propagation.

Recently, an integration between partial deduction and abstract interpreta-
tion (both top down) has been established [13]. A similar integration between
our framework and bottom up abstract interpretation (see e.g. [3]) might be fea-
sible and is a topic of further research. Also the exact relation between bottom
up and top down partial deduction needs to be scrutinised, as well as an integra-
tion between the two techniques. Examples in [21] indicate that a combination
of the described bottom up transformation with a top down component using a
trivial control strategy – deterministic unfolding – is capable of specialising the
Vanilla meta interpreter satisfactorily. Equally good results can be obtained by a
top down control strategy alone, but often at the cost of not completely general
and/or automatic techniques (e.g. [12]), or a non-trivial and complex control
mechanism. In [20], a sophisticated approach is described based on extending
a local unfolding rule by global information. Although the resulting technique
is completely general and automatic, in spite of its complexity, it turns out to
be not sufficiently effective when more involved meta interpreters are at hand.
The same results can be obtained by two separate but rather straightforward
control strategies, and the combined approach is conceptually cleaner than the
sophisticated top down one. We plan to investigate how the two control strate-
gies can be tuned - separately and combined - to obtain good specialisation of
other, more involved meta interpreters.
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A Figures

In this appendix, the dags built in the examples throughout Section 4 are de-
picted. For simplicity, variables in the dags are not renamed.

list_nil([])

list_notnil([X|Xs])

list_head([X|Xs],X)

list_tail([X|Xs],Xs)

list_cons(X,Xs,[X|Xs])

Fig. 1. DP ↑ 1 = ADP ↑ 1

list_nil([])

list_notnil([X|Xs])

list_head([X|Xs],X)

list_tail([X|Xs],Xs)

list_cons(X,Xs,[X|Xs])

append([],R,R) reverse([],R,R)

Fig. 2. DP ↑ 2 = ADP ↑ 2

list_nil([])

list_notnil([X|Xs])

list_head([X|Xs],X)

list_tail([X|Xs],Xs)

list_cons(X,Xs,[X|Xs])

append([],R,R)

append([X],L,[X|L])

reverse([],R,R)

reverse([X],R,[X|A])

Fig. 3. DP ↑ 3
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list_nil([])

list_notnil([X|Xs])

list_head([X|Xs],X)

list_tail([X|Xs],Xs)

list_cons(X,Xs,[X|Xs])

append([],R,R) reverse([],R,R)

append(X,Y,Z)<-append(X,Y,Z) reverse(X,Y,Z)<-reverse(X,Y,Z)

Fig. 4. ADP ↑ 3

list_nil([])

list_notnil([X|Xs])

list_head([X|Xs],X)

list_tail([X|Xs],Xs)

list_cons(X,Xs,[X|Xs])

append([],R,R) reverse([],R,R)

append(X,Y,Z)<-append(X,Y,Z) reverse(X,Y,Z)<-reverse(X,Y,Z)

append([X|Xs],Y,[X|Z])<-append(Xs,Y,Z) reverse([X|Xs],A,R)<-reverse(Xs,[X|A],R)

Fig. 5. DP ↑ 4

list_nil([])

list_notnil([X|Xs])

list_head([X|Xs],X)

list_tail([X|Xs],Xs)

list_cons(X,Xs,[X|Xs])

append([],R,R) reverse([],R,R)

append(X,Y,Z)<-append(X,Y,Z) reverse(X,Y,Z)<-reverse(X,Y,Z)

Fig. 6. ADP ↑ 4 = ADP ↑ 3
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Abstract. We show how termination of logic programs with delay dec-
larations can be proven. Three features are distinctive of this work: (a)
we assume that predicates can be used in several modes; (b) we show
that block declarations, which are a very simple delay construct, are
sufficient; (c) we take the selection rule into account, assuming it to be
as in most Prolog implementations. Our method is based on identifying
the so-called robust predicates, for which the textual position of an atom
using this predicate is irrelevant. The method can be used to verify ex-
isting programs, and to assist in writing new programs. As a byproduct,
we also show how programs can be proven to be free from occur-check
and floundering.

1 Introduction

Delay declarations are provided in several logic programming languages to allow
for more user-defined control [7,8,18] as opposed to the standard left-to-right
selection rule. An atom in a query is selected for resolution only if its arguments
are instantiated to a specified degree.

In this paper we present a method of ensuring termination of programs with
delay declarations. As far as possible, we translate the problem to showing ter-
mination for a corresponding program with ordinary left-to-right execution. We
assume that for the corresponding program, termination has been shown using
some existing technique [1].

Three distinctive features of this work make its contribution: (a) it is as-
sumed that procedures may run in more than one mode; (b) we concentrate on
block declarations, which are a particularly simple and efficient delay construct;
(c) the selection rule is taken into account.

(a) Apart from the test-and-generate paradigm (coroutining) [15], allowing
procedures to run in more than one mode is probably the most important appli-
cation of delay declarations. Although other authors have not explicitly assumed
multiple modes, their theory and examples only become fully relevant under that
assumption. Whether this is a better approach than generating multiple versions
of each predicate [18] is an ongoing discussion [6].

C. Palamidessi, H. Glaser, and K. Meinke (Eds.): PLILP’98, LNCS 1490, pp. 73–88, 1998.
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(b) The block declarations declare that certain arguments of an atom must
be non-variable before that atom can be selected. Insufficiently instantiated
atoms are delayed. As demonstrated in SICStus [8], block declarations can be
efficiently implemented; the test whether the arguments are non-variable has
negligible impact on performance. Termination clearly depends on the instan-
tiation of the arguments of the query. For example, the append predicate has
infinitely many answers when called with uninstantiated arguments and there-
fore does not terminate, but it terminates when either the first or the third
argument is a list of bounded length. Although it cannot be tested in a single
step which of these arguments is a list of bounded length, block declarations are
still sufficient.

(c) The property of termination may critically depend on the selection rule,
that is the rule which determines, for a derivation, the order in which atoms are
selected. We assume that derivations are left-based, which are derivations where
(allowing for some exceptions, concerning the execution order of two literals
woken up simultaneously) the left-most non-delayed atom is selected. This is
intended to model derivations in the common implementations of Prolog with
block declarations. Other authors have avoided the issue by abstracting from a
particular selection rule [2,10]; considering left-based selection rules on a heuristic
basis [15]; or making the very restrictive assumption of local selection rules [11].

Circular modes (when a predicate uses its own output as input) and specu-
lative output bindings (bindings made before it is known that a solution exists)
are known sources of loops [15]. We develop this explanation further by iden-
tifying predicates which have the undesirable property of looping when they
are called with insufficient (that is, non-variable but still insufficiently instan-
tiated) input. For instance, the query permute(A,[1|B]) loops, although the
query permute(A,[1,2]) terminates. The idea of our method for proving ter-
mination is that, for such predicates, calls with insufficient input should never
arise. This can be ensured by appropriate ordering of atoms in the clause bodies.
This actually works in several modes, provided not too many predicates have
this undesirable property.

This paper is organised as follows. The next section defines some essential
concepts and notations. Sect. 3 introduces some concepts needed later, which are
also useful for proving programs free from occur-check and floundering. Sect. 4
is about termination. Sect. 5 investigates related work. Sect. 6 concludes with a
summary and a look at ongoing and future work.

2 Essential Concepts and Notations

We base the notation on [2,9]. For the examples we use SICStus notation [8].
The set of variables in a syntactic object o is denoted by vars(o). A syntactic
object is linear if every variable occurs in it at most once. A flat term is a
variable or a term f(x1, . . . , xn), where n ≥ 0 and the xi are distinct variables.
The domain of a substitution σ is dom(σ) = {x | xσ �= x}.
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For a predicate p/n, a mode is an atom p(m1, . . . ,mn), where mi ∈ {I ,O}
for i ∈ {1, . . . , n}. Positions with I are called input positions, and positions
with O are called output positions of p. A mode of a program is a set of
modes, one mode for each of its predicates. A program can have several modes, so
whenever we refer to the input and output positions, this is always with respect
to the particular mode which is clear from the context. To simplify the notation,
an atom written as p(s, t) means: s and t are the vectors of terms filling the
input and output positions, respectively.

A type is a set of terms closed under substitution. A type is called variable
type if it contains variables and non-variable type otherwise. In the examples,
we use the following types: any is the type containing all terms, list is the type of
all (nil-terminated) lists, int the type of integers, and il is the type of all integer
lists. We write t : T for “t is in type T ”. It is assumed that each argument
position of each predicate p/n has a type associated with it. These types are
indicated by writing the atom p(T1, . . . , Tn) where T1, . . . , Tn are types. The
type of a program is a set of such atoms, one for each predicate. A term t is
typeable wrt. T if there is a substitution θ such that tθ : T . A term t occurring
in an atom in some position is typeable if it is typeable wrt. the type of that
position.

A block declaration [8] for a predicate p/n is a set of atoms of the form
p(b1, . . . , bn), where bi ∈ {?,−} for i ∈ {1, . . . , n}. A program consists of a set
of clauses and a set of block declarations, one for each predicate defined by the
clauses. If P is a program, an atom p(t1, . . . , tn) is selectable in P if for each
atom p(b1, . . . , bn) in the block declaration for p, there is some i ∈ {1, . . . , n}
such that ti is non-variable and bi = −.

A query is a finite sequence of atoms. A derivation step for a program P
is a pair 〈Q, θ〉; 〈R, θσ〉, where Q = Q1, a,Q2 and R = Q1, B,Q2 are queries;
θ is a substitution; a an atom; h ← B (a variant of) a clause in P and σ the
most general unifier of aθ and h. We call aθ the selected atom and Rθσ the
resolvent of Qθ and h← B.

A derivation ξ for a program P is a sequence 〈Q0, θ0〉; 〈Q1, θ1〉; . . ., where
θ0 = ∅ and each successive pair 〈Qi, θi〉; 〈Qi+1, θi+1〉 in ξ is a derivation step.
Alternatively, we also say that ξ is a derivation of P ∪ {Q0}. We also denote ξ
by Q0;Q1θ1; . . .. A derivation is an LD-derivation if the selected atom is always
the leftmost atom in a query. A delay-respecting derivation for a program P
is a derivation where the selected atom is always selectable in P . We say that it
flounders if it ends with a non-empty query where no atom is selectable.

If Q, a,R; (Q,B,R)θ is a step in a derivation, then each atom in Bθ is a
direct descendant of a, and bθ is a direct descendant of b for all b ∈ Q,R.
We say b is a descendant of a if (b, a) is in the reflexive, transitive closure of
the relation is a direct descendant. The descendants of a set of atoms are defined
in the obvious way. If, for a derivation . . . Q; . . . ;Q′;Q′′ . . ., the selected atom in
Q′;Q′′ is a descendant of an atom a in Q, then Q′;Q′′ is called an a-step.

Consider a delay-respecting derivation Q0; . . . ;Qi;Qi+1, where
Qi = R1, a, R2, and R1 contains no selectable atom, and a is not the selected
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atom in Qi;Qi+1. Then a is delayed in Qi;Qi+1. An atom is waiting if it is the
descendant of a delayed atom. A delay-respecting derivation Q0;Q1 . . . is left-
based if in each Qi, a non-waiting atom is selected only if there is no selectable
atom to the left of it in Qi.

3 Permutations and Modes

In [2], the concepts of nicely moded and well typed are introduced, assuming that
each predicate has a single mode. They are used to show that the occur-check
can safely be omitted and that derivations do not flounder. The idea is that
in a query, every piece of data is produced (i.e. output) before it is consumed
(i.e. input), and every piece of data is produced only once. Here “before” refers
to the textual position in a query.

We generalise these concepts and results by considering a permutation of
the atoms in each clause body in a program (and in each query), such that
an LD-derivation for the reordered program is automatically delay-respecting,
and thus, block declarations are effectively unnecessary. These permutations
are used to compare a program with the (theoretically) reordered program; it is
not intended that the program is actually changed. Since the permutations are
different in each mode, this would commit the program to a particular mode.

3.1 Permutation Nicely Moded Programs

In a nicely moded query, a variable occurring in an input position does not occur
later in an output position, and each variable in an output position occurs only
once. We generalise this to permutation nicely moded.

Definition 3.1 (permutation nicely moded). Let Q = p1(s1, t1), . . . ,
pn(sn, tn) be a query and π a permutation on {1, . . . , n}. Q is π-nicely moded
if t1, . . . , tn is a linear vector of terms and for all i ∈ {1, . . . , n}

vars(si) ∩
⋃

π(j)≥π(i)

vars(tj) = ∅.

The query1 π(Q) is a nicely moded query corresponding to Q.
The clause C = p(t0, sn+1)← Q is π-nicely moded if Q is π-nicely moded

and t0, . . . , tn is a linear vector of terms. The clause p(t0, sn+1) ← π(Q) is a
nicely moded clause corresponding to C.

A query (clause) is permutation nicely moded if it is π-nicely moded for
some π. A program P is permutation nicely moded if all of its clauses are. A
nicely moded program corresponding to P is a program obtained from P
by replacing every clause C in P with a nicely moded clause corresponding to C.
1 Given a sequence o1, . . . , on, we write π(o1, . . . , on) for oπ−1(1), . . . , oπ−1(n), i.e. the
sequence obtained by applying π to o1, . . . , on.
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Note that in the clause head, the letter t is used for input and s is used for
output, whereas in the body atoms it is vice versa.

Example 3.1.

:- block permute(-,-).

permute([], []).

permute([U | X], Y) :-

permute(X, Z),

delete(U, Y, Z).

:- block delete(?,-,-).

delete(X,[X|Z],Z).

delete(X,[U|Y],[U|Z]) :- delete(X,Y,Z).

In mode {permute(I ,O), delete(I ,O , I )}, this program is nicely moded. In
mode {permute(O , I ), delete(O , I ,O)}, it is permutation nicely moded, since
the second clause for permute is 〈2, 1〉-nicely moded, and the other clauses are
nicely moded.

Note that the problem of finding a mode for a program so that it is nicely moded
is considered in [4]. We are not concerned with this here.

We show that there is a persistence property for permutation nicely-moded-
ness similar to that for nicely-modedness in [2].

Lemma 3.1. Every resolvent of a permutation nicely moded query Q and a
permutation nicely moded clause C, where vars(Q) ∩ vars(C) = ∅, is permuta-
tion nicely moded.

Proof. Let Q = a1, . . . , an be a π-nicely moded query and h ← b1, . . . , bm be a
ρ-nicely moded clause, and suppose for some k ∈ {1, . . . , n}, h and ak are unifi-
able with unifier θ. By Def. 3.1, aπ−1(1), . . . , aπ−1(n) and h← bρ−1(1), . . . , bρ−1(m)

are nicely moded. Thus by [2, Lemma 11]2

aπ−1(1), . . . , aπ−1(π(k)−1), bρ−1(1), . . . , bρ−1(m), aπ−1(π(k)+1), . . . , aπ−1(n) θ

is nicely moded. This implies that a1, . . . , ak−1, b1, . . . , bm, ak+1, . . . , an θ is
!-nicely moded, where !(i) is defined as:

π(i) if i < k, π(i) < π(k)
π(i) + m− 1 if i < k, π(i) > π(k)
π(k)− 1 + ρ(i− k + 1) if k ≤ i ≤ k + m− 1
π(i−m + 1) if k + m ≤ i ≤ n + m− 1, π(i−m + 1) < π(k)
π(i−m + 1) + m− 1 if k + m ≤ i ≤ n + m− 1, π(i−m + 1) > π(k)

��
Fig. 1 illustrates ! when Q = a1, a2, a3, a4 , π = 〈4, 3, 1, 2〉 , C = h ← b1, b2 ,
ρ = 〈2, 1〉 , and k = 2. Thus ! = 〈5, 4, 3, 1, 2〉. The following corollary generalises
this from a single derivation step to derivations.
2 Unlike [2], we included the condition that t0 is linear in Def. 3.1.
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a1 a2 a3 a4

a3 a4 a2 a1

�������
❅

❅❅

✟✟✟✟✟

✟✟✟✟✟

b1 b2

b2 b1

a1 b1 b2 a3 a4

resolve
✲

a3 a4 b2 b1 a1



✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

Fig. 1. The permutation ! for the resolvent

Corollary 3.2. Let P be a permutation nicely moded program, Q = a1, . . . , an
be a π-nicely moded query and i, j ∈ {1, . . . , n} such that π(i) < π(j). Let
Q; . . . ;R be a derivation for P and suppose R = b1, . . . , bm is ρ-nicely moded. If
for some k, l ∈ {1, . . . ,m}, bk is a descendant of ai and bl is a descendant of aj ,
then ρ(k) < ρ(l). (Proof [17])

As an aside, we now use permutation nicely-modedness to show when the occur-
check can safely be omitted.

Definition 3.2. A derivation is called occur-check free [2,3] if no execution of
the Martelli-Montanari unification algorithm [13] performed during this deriva-
tion ends with a system of term equations including an equation x = t, where x
is not t, but x occurs in t.

If P and Q are nicely moded, then all derivations of P ∪ {Q} are occur-check
free [2, Thm. 13]. The following theorem is a trivial consequence of this and
Lemma 3.1.

Theorem 3.3 (occur check). Let P and Q be permutation nicely moded.
Then all derivations of P ∪ {Q} are occur-check free.

3.2 Permutation Well Typed Programs

To show that derivations do not flounder, [2] defines well-typedness, which is a
generalisation of a simpler concept called well-modedness. The idea is that given
a query H, a, F , if H is resolved away, then a becomes sufficiently instantiated
to be selected. As with the modes, we assume that the types are given. In the
examples, they will be the obvious ones.

Definition 3.3 (permutation well typed). Let n ≥ 0 and π be a permuta-
tion such that π(i) = i whenever i /∈ {1, . . . , n}. Let Q = p1(s1, t1), . . . , pn(sn, tn)
be a query, where pi(Si,Ti)3 is the type of pi for all i ∈ {1, . . . , n}. Then Q is
π-well typed if for all i ∈ {1, . . . , n} and every substitution σ

|= (
∧

π(j)<π(i)

tjσ : Tj)⇒ siσ : Si. (∗)

3 Si, Ti are the vectors of types of the input and output arguments, respectively.
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The clause C = p(t0, sn+1) ← Q, where p(T0,Sn+1) is the type of p, is π-well
typed if (∗) holds for all i ∈ {1, . . . , n + 1} and every substitution σ.

A permutation well typed query (clause, program) and a well typed
query (clause, program) corresponding to a query (clause, program) are de-
fined in analogy to Def. 3.1.

Example 3.2. Consider Ex. 3.1 and assume the type {permute(list, list),
delete(any, list, list)}. The program is well typed for mode {permute(I ,O),
delete(I ,O , I )}, and permutation well typed for mode {permute(O , I ),
delete(O , I ,O)}, with the same permutations as in Ex. 3.1. The same holds
assuming type {permute(il, il), delete(int, il, il)}.
We now give a statement analogous to Lemma 3.1. The proof is like that of
Lemma 3.1, using Lemma 23 instead of 11 in [2].

Lemma 3.4. Every resolvent of a permutation well typed query Q and a per-
mutation well typed clause C, where vars(Q)∩vars(C) = ∅, is permutation well
typed.

Theorem 3.5. Let P be a permutation well typed program and Q be a permu-
tation well typed query. Assume that an atom is selectable if it is non-variable
in all input positions of non-variable type. Then no delay-respecting derivation
of P ∪ {Q} flounders. (Proof [17])

For the program in Ex. 3.2, the above lemma shows that no permutation well
typed query can flounder.

4 Termination

So far we have introduced two useful concepts of “modedness” and “typedness”.
In this section, we will build on these to show termination.

We are interested in termination in the sense that all derivations of a query
are finite. Therefore the clause order in a program is irrelevant. Furthermore,
we are concerned with how delay declarations can affect the termination of a
program. Thus it is assumed that termination for the corresponding nicely moded
and well typed programs has been shown by some existing method for LD-
derivations [1]. We first give some examples to illustrate the issues.

Example 4.1. The permute predicate (Ex. 3.1) loops for the query
permute(V,[1]) because delete produces a speculative output binding [15]: The
output variable Y is bound before it is known that this binding will never have
to be undone. Assuming left-based derivations, termination in both modes can
be ensured by replacing the second clause with

permute([U | X1], Y) :-

delete(U, Y, Z),

permute(X1, Z).
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This heuristic is called putting recursive calls last [14]. The example suggests
that one cannot give reasonable termination guarantees without making such
strong assumptions about the selection rule.

However, the heuristic of putting recursive calls last cannot explain the appro-
priate atom order in the following example.

Example 4.2. This program for the n-queens problem shows an application of
block declarations other than enabling multiple modes: implementing the test-
and-generate paradigm. Here permute is defined as in Ex. 4.1.
nqueens(N,Sol) :-

sequence(N,Seq),

safe(Sol),

permute(Sol,Seq).

:- block sequence(-,?).

sequence(0,[]).

sequence(N,[N|Seq]):-

0 < N,

N1 is N-1,

sequence(N1,Seq).

:- block safe(-).

safe([]).

safe([N|Ns]) :-

safe_aux(Ns,1,N),

safe(Ns).

:- block safe_aux(-,?,?), safe_aux(?,-,?),

safe_aux(?,?,-).

safe_aux([],_,_).

safe_aux([M|Ms],Dist,N) :-

no_diag(N,M,Dist),

Dist2 is Dist+1,

safe_aux(Ms,Dist2,N).

:- block no_diag(-,?,?), no_diag(?,-,?).

no_diag(N,M,Dist) :-

Dist =\= N-M,

Dist =\= M-N.

With the mode {nqueens(I ,O), safe(I ), sequence(I ,O), permute(O , I ),
is(O , I ), <(I , I )} and the type {nqueens(int, il), sequence(int, il), safe(il),
permute(il, il)}, the first clause is 〈1, 3, 2〉-nicely moded and 〈1, 3, 2〉-well typed.
Moreover, the query nqueens(4,Sol) terminates.

However, if in the first clause, the atom order is changed by moving
sequence(N,Seq) to the end, then nqueens(4,Sol) loops. This is because re-
solving sequence(4,Seq) with the second clause for sequence makes a (not
speculative!) binding which triggers the call permute(Sol,[4|T]). This call
results in a loop. Note that [4|T], although non-variable, is insufficiently in-
stantiated for permute(Sol,[4|T]) to be correctly typed in its input position:
permute is called with insufficient input.

To ensure termination, atoms in a clause body that loop when called with in-
sufficient input should be placed so that all atoms which produce the input for
these atoms occur textually earlier.

In the following three subsections, we first define permutation robustly typed,
which is an elementary property a program must have for our method to be
applicable. We then identify the robust predicates, which terminate for every
delay-respecting selection rule. Finally, we show how predicates which are not
robust must be placed in clause bodies to ensure termination.



Termination of Logic Programs 81

4.1 Preventing Instantiation of Own Input

A prerequisite of our formalism is that no call arising in a derivation can ever
instantiate its own input arguments.

Example 4.3. Consider the following version4 of delete(O , I ,O).

:- block delete(?,-,-).

delete(X,[U|[H|T]],[U|Z]) :-

delete(X,[H|T],Z).

delete(A,[A|B],B).

Consider the query delete(A,L,R), delete(B,[1,2],L). The second atom
produces L, which is used by the first atom as input. The query loops, since
the second atom partially binds L, which wakes up the first atom, which then
instantiates L further (i.e. the call instantiates its own input), resulting in a
recursive call to delete, and so forth.

To prevent a call from instantiating its input, the block declarations must en-
force that an atom is only selected if all input positions of non-variable type are
non-variable. As the previous example shows, this is not enough. It also has to
be ensured that each input argument in the clause head is flat (which the clause
head delete(X,[U|[H|T]],[U|Z]) violates). The next example shows that even
that is not enough.

Example 4.4. Consider the following program in mode p(I ,O).

:- block p(-,?).

p(g(Y),Y).

A call to p(g(X),3) instantiates X to 3, and thus instantiates its own input.

The easiest solution seems to be to require that the output positions in a query
are always filled by variables. In mode p(I ,O), the query p(g(X),3) should not
arise, since its output is already instantiated. This is considered in [2] (simply-
modedness). However, it is often too restrictive.

Example 4.5. The following is an excerpt from a version of quicksort.

:- block qs(-,-).

qs([],[]).

qs([X|Xs],Ys) :-

append(As2,[X|Bs2],Ys),

partition(Xs,X,As,Bs),

qs(As,As2),

qs(Bs,Bs2).

For the mode {qs(O , I ), append(O ,O , I ), partition(O , I , I , I )}, the non-
variable term [X|Bs2] occurs in an output position.
4 It is part of the most specific program [12] corresponding to Ex. 3.1, proposed
in [15] to prevent looping for permute(O , I ). However, it does not work. The query
permute(A,[1]) indeed terminates, but permute(A,[1,2]) still loops.
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In the sequel, we assume that a label free or bound is associated with each output
position of each predicate. Non-variable terms in output positions in a query are
allowed only in bound positions. The bound positions must be of non-variable
type. As with assigning the mode and the type to a predicate, we do not propose
a method of deciding which positions should be free or bound. In the examples
however, an output position of a predicate p is bound if and only if there is
a clause body with an atom using p, which has a non-variable term in that
position.

For notational convenience, we use the notion of free and bound positions
also for input positions. An input position is free if and only if it is of variable
type. We denote the projection of a vector of arguments r onto its free positions
as rf , and the projection onto its bound positions as rb.

Definition 4.1 (permutation robustly typed). Let π be a permutation such
that π(i) = i whenever i /∈ {1, . . . , n}. A query Q = p1(s1, t1), . . . , pn(sn, tn) is
π-robustly typed if it is π-nicely moded and π-well typed, tf

1, . . . , t
f
n is a vector

of variables, and tb
1, . . . , t

b
n is a vector of flat typeable terms.

The clause p(t0, sn+1)← Q is π-robustly typed if it is π-nicely moded and
π-well typed, and

1. tf
0, . . . , t

f
n is a vector of variables, and tb

0, . . . , t
b
n is a vector of flat typeable

terms.
2. if a position in sb

n+1 of type τ is filled with a variable x, then x also fills a
position of type τ in tb

0, . . . , t
b
n.

A permutation robustly typed query (clause, program) and a robustly
typed query (clause, program) corresponding to a query (clause, program)
are defined in analogy to Def. 3.1.

Example 4.6. The permute-program of Ex. 4.1, for any of the types in Ex. 3.2,
assuming all output positions are free, is robustly typed in mode permute(O , I )
and permutation robustly typed in mode permute(I ,O).

Consider Ex. 4.5 with the usual definition for the missing clauses, with type
{qs(il, il), append(il, il, il), partition(il, int, il, il)}. This program is permuta-
tion robustly typed in mode qs(O , I ), assuming the second position of append is
the only bound output position. It is also permutation robustly typed in mode
qs(I ,O), assuming that all output positions are free.

Definition 4.2 (input selectability). Let P be a permutation robustly typed
program. P has input selectability if for every permutation robustly typed
query Q, an atom in Q is selectable in P if and only if it is non-variable in all
input positions of non-variable type.

Example 4.7. Consider append(O ,O , I ) where the second position is the only
bound output position (Exs. 4.5, 4.6), and the block declaration is

:- block append(-,?,-), append(?,-,-).
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This program has input selectability. Q = append(A,[B|Bs],[1]) is a permuta-
tion robustly typed query, and its only atom is selectable. The atom
append([],[],C) is also selectable, although its input position is variable. This
does not contradict Def. 4.2, since this atom cannot be an atom in a permuta-
tion robustly typed query with respect to mode append(O ,O , I ).

Looking at Def. 4.1, one is tempted to think that it is best to associate the
label bound with all output positions, because that would make the definition
less restrictive. However, we require a program to have input selectability in
each of its modes. Since input selectability is defined with respect to atoms in
permutation robustly typed queries, and permutation robustly typed queries
are defined with respect to given free and bound positions, it turns out that
the choice of free and bound positions constrains the possible set of modes.
For reasons of space, we cannot explain this in detail. Anyway, we have not
encountered a case where a “natural” mode of a program was ruled out.

The following lemma shows a persistence property of permutation robustly
typedness, and shows furthermore that a derivation step cannot instantiate the
input arguments of the selected atom.

Lemma 4.1. Let P be a permutation robustly typed program with input se-
lectability, Q = p1(s1, t1), . . . , pn(sn, tn) be a permutation robustly typed query
and C = pk(v0,um+1)← q1(u1,v1), . . . , qm(um,vm) be a clause in P such that
vars(Q)∩ vars(C) = ∅. Suppose 〈Q, ∅〉; 〈R, σ〉 is a derivation step with clause C
and selected atom pk(sk, tk).

Then Rσ is permutation robustly typed, and dom(σ) ∩ vars(sk) = ∅ and
vars(sk) ∩ vars((v1, . . . ,vm)σ) = ∅. (Proof [17])

4.2 Robust Predicates

In this subsection, derivations are not required to be left-based. Therefore we
do not need to consider arbitrary permutations and we can, without loss of
generality, assume that the programs and queries are robustly typed (rather
than permutation robustly typed). This simplifies the notation. In Subsect. 4.3,
we go back to allowing for arbitrary permutations.

Definition 4.3 (robust). A predicate p in a robustly typed program P is ro-
bust if, for each robustly typed query p(s, t), any delay-respecting derivation of
P ∪ {p(s, t)} is finite. An atom is robust if its predicate is.

This means that for queries consisting of robust atoms, termination does not
depend on left-based derivations. Thus the position of a robust atom in a clause
body or query does not affect termination. The following lemma says that a
robust atom cannot proceed indefinitely unless it is repeatedly “fed” by some
other atom.

Lemma 4.2. Let P be a robustly typed program with input selectability and
F, a,H a robustly typed query where a is a robust atom. A delay-respecting
derivation of P∪{F, a,H} can have infinitely many a-steps only if it has infinitely
many b-steps, for some b ∈ F . (Proof [17])
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The following lemma is a simple consequence and states that the robust atoms
in a query on their own cannot produce an infinite derivation.

Lemma 4.3. Let P be a robustly typed program with input selectability and Q
a robustly typed query. A delay-respecting derivation of P ∪ {Q} can be infinite
only if there are infinitely many steps where a non-robust atom is resolved.
(Proof [17])

For LD-derivations, termination proofs usually rely on some norm to measure
the size of a term or atom [1,5]. For a query F, a,H , the query F is resolved
away before a is resolved, and thus a is sufficiently instantiated to be bounded
with respect to the norm. In contrast, for arbitrary derivations, the decrease in
argument size must be independent of the order in which atoms are selected.
We assume a simple norm where a term is smaller than another term if it is a
proper subterm. This method could be enhanced by considering other norms.

Example 4.8. Consider Ex. 4.2, where all arguments are input, and the type
is {safe(il), safe aux(il, int, int), no diag(int, int, int)}. All delay-respecting
derivations of a permutation robustly typed query safe aux(l, n,m) terminate,
because in the first argument of safe_aux, there is a strict decrease with respect
to the “subterm” norm.

The following definition is adapted from [1].

Definition 4.4 (depends on). Let p, q be predicates in a program P . We say
that p refers to q if there is a clause in P with p in its head and q in its
body, and p depends on q (written p � q) if (p, q) is in the reflexive, transitive
closure of refers to. We write p ❂ q if p � q and q �� p, and p ≈ q if p � q and
q � p.

To show robustness, one has to find argument positions, one for each predicate,
such that there is a decrease in argument size in that position.

Definition 4.5 (decreasing clause). Assume that for each predicate p in a
program P , there is a designated position called decreasing position. Let
C = q(v0,um+1) ← q1(u1,v1), . . . , qm(um,vm) be a clause in P . Suppose that
for each µ ∈ {1, . . . ,m} where qµ ≈ q, qµ(uµ,vµ) has a variable in its decreasing
position which is a proper subterm of the term in the decreasing position of
q(v0,um+1). Then C is decreasing.

To show that a predicate p is robust, we assume that all predicates q with p ❂ q
have already been shown to be robust.

Lemma 4.4. Let P be a robustly typed program with input selectability and
p a predicate in P . Suppose that for each predicate q, where p � q, either:

1. p ❂ q and q is robust.
2. p ≈ q and each clause defining q is decreasing.

Then p is robust. (Proof [17])
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Of course, a predicate in a permutation robustly typed program is not always
robust, and so the technique given by the above lemma cannot always be applied.
Often there is no decreasing position for a predicate.

Example 4.9. We demonstrate for Ex. 4.8 how Lemma 4.4 is used. Given that
the built-in =\= terminates, it follows that no diag is robust. We show that
the second clause for safe_aux meets assumption 2 of Lemma 4.4. With the
first position of safe_aux as decreasing position, the recursive call to safe_aux
has Ms in the decreasing position, which is a proper subterm of [M|Ms]. Similar
arguments can be applied for the other clauses, showing that safe and safe_aux
are robust.

4.3 Well Fed Programs

So far we have shown for some predicates that all delay-respecting derivations of
queries with these predicates terminate. As permute(O , I ) shows, this does not
work for all predicates. In a program which uses such predicates, the selection
rule must be taken into account. We assume left-based derivations. Consequently
we now also give up the assumption, made to simplify the notation, that the
clauses and query are robustly typed, rather than just permutation robustly
typed. All statements from the previous subsection generalise in the obvious
way.

A query is called well fed if each atom has been shown to be robust or occurs
in such a position that all atoms which “feed” the atom occur earlier. Of course,
since robustness is undecidable, we must assume a predicate to be non-robust if
it has not been shown to be robust.

Definition 4.6 (well fed). Let P be a permutation robustly typed program.
For a π-robustly typed query p1(s1, t1), . . . , pn(sn, tn), an atom pi(si, ti) is well
fed if it is robust, or π(j) < π(i) implies j < i for all j. A π-robustly typed
query (clause) is well fed if all of its (body) atoms are. P is well fed if all of
its clauses are well fed and it has input selectability.

Example 4.10. The programs mentioned in Ex. 4.6 are well fed in the given
modes. The program in Ex. 4.2 is well fed in the given mode. It is not well
fed in mode {nqueens(O , I ), permute(I ,O), sequence(O , I ), < (I , I ), is(O , I )},
because it is not permutation nicely moded in this mode: in the second clause
for sequence, N1 occurs twice in an output position.

Lemma 4.5. Every resolvent of a well fed query Q and a well fed clause C,
where vars(Q) ∩ vars(C) = ∅, is well fed.

Proof. By obvious analogy, Corollary 3.2 also holds if nicely moded is replaced
with robustly typed. The result then follows from Lemma 4.1. ��
The following theorem reduces the problem of showing termination of left-based
derivations for well fed programs to showing termination of LD-derivations for
the corresponding robustly typed program.
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Theorem 4.6. Let P and Q be a well fed program and query, and P ′ and Q′

a robustly typed program and query corresponding to P and Q. If every LD-
derivation of P ′ ∪ {Q′} is finite, then every left-based derivation of P ∪ {Q} is
finite. (Proof [17])

Given that for the programs of Ex. 4.10, the corresponding robustly typed pro-
grams terminate for robustly typed queries, it follows from the above theorem
that the former programs terminate for well fed queries.

5 Related Work

In using “modedness” and “typedness”, we follow Apt and Luitjes [2], and also
adopt their notation. Our results on occur-check freedom and non-floundering
are straightforward variations of their results. For termination, they propose a
method limited to deterministic programs.

Naish [15] gives excellent intuitive explanations why programs loop, which
directed our own search for further ideas and their formalisation. To ensure
termination, he proposes some heuristics, without any formal proof.

Predicates are assumed to have a single mode. Naish suggests that alternative
modes should be achieved by multiple versions of a predicate.5 However, under
that assumption, why have delay declarations in the first place? For instance,
in the mentioned example permute, if we only consider permute(O , I ), then
Ex. 4.1 does not loop for the plain reason that no atom ever delays, and thus
the program behaves as if there were no delay declarations. In this case, the
interpretation that one should “put recursive calls last” is misleading. If we only
consider permute(I ,O), then the version of Ex. 4.1 is much less efficient than
Ex. 3.1. In short, the whole discussion on delay declarations makes little sense
when only one mode is assumed.

Lüttringhaus-Kappel [10] proposes a method of generating control auto-
matically, and has applied it successfully to many programs. However, rather
than pursuing a formalisation of some intuitive understanding of why programs
loop, and imposing appropriate restrictions on programs, he attempts a high
degree of generality. This has certain disadvantages.

The method only finds acceptable delay declarations, ensuring that the most
general selectable atoms have finite SLD-trees. What is required however are
safe delay declarations, ensuring that instances of most general selectable atoms
have finite SLD-trees. A safe program is a program for which every acceptable
delay declaration is safe. No hint is given as to how it is shown that a program
is safe. This is a missing link.

The delay declarations for some programs such as quicksort require an argu-
ment to be a nil-terminated list before an atom can be selected. As Lüttringhaus-
Kappel points out himself, “in NU-Prolog [or SICStus] it is not possible to ex-
press such conditions”. We have shown here that, with a knowledge of modes
and types, block declarations are sufficient.
5 This is also the approach taken in Mercury [18], where these versions are generated
by the compiler.
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Floundering cannot be ruled out systematically, but only be avoided on a
heuristic basis. Thus in principle, the method sometimes enforces termination
by floundering. This lies in the nature of the weak assumptions made, and thus is
sometimes unavoidable, but there is no way of knowing whether for a particular
program, it was unavoidable or not.

Marchiori and Teusink [11] base termination on norms and the covering
relation between subqueries of a query. This is loosely related to well-typedness.
However, their results are not comparable to ours because they assume a local
selection rule, that is a rule which always selects an atom which was introduced
in the most recent step. We are not aware of an existing language that uses a
local selection rule. The authors state that programs that do not use speculative
bindings deserve further investigation, and that they expect any method for
proving termination with full coroutining either to be very complex, or very
restrictive in its applications.

6 Discussion and Future Work

We have presented a method of proving termination for programs with block dec-
larations. This was both a refinement and a formalisation of the heuristics pre-
sented in [15].

We required programs to be permutation robustly typed, a property which
ensured that no call instantiates its own input. In the next step, we identified
when a predicate is robust, which means that every delay-respecting derivation
for a query using the predicate terminates. Robust atoms could be placed in
clause bodies arbitrarily. Non-robust atoms had to be placed such that their
input is sufficient when they are called.

The main purpose of this work is software development, and it is envisaged
that an implementation should take the form of a program development tool.
The programmer would provide mode and type information for the predicates
in the program. The tool would then generate the block declarations and try to
reorder the atoms in clause bodies so that the program is well fed with respect
to these modes and types. Finding the free and bound positions, as well as the
decreasing position used to prove robustness, should be done by the tool. As
already indicated, these choices are very constrained anyway, which suggests
that this should be feasible.

In [16] we discuss how to prevent errors related to built-ins, in particular
arithmetic built-ins. Another interesting issue is how achieving multiple modes
using block declarations affects the efficiency of programs.
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7. P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, 1994.
73

8. Intelligent Systems Laboratory, SICS, PO Box 1263, S-164 29 Kista, Sweden. SIC-
Stus Prolog User’s Manual, 1997.
http://www.sics.se/isl/sicstus/sicstus toc.html. 73, 74, 75

9. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. 74
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Abstract. We show that Jacobs and Langen’s domain for set-sharing
analysis is isomorphic to the domain of positive Boolean functions, in-
troduced by Marriott and Søndergaard for groundness dependency anal-
ysis. Viewing a set-sharing description as a minterm representation of a
Boolean function leads to re-casting sharing analysis as an instantiation
dependency analysis. The key idea is to view the sets of variables in a
sharing domain element as the models of a Boolean function. In this way,
sharing sets are precisely dual negated positive Boolean functions. This
new view improves our understanding of sharing analysis considerably
and opens up new avenues for the efficient implementation of this kind
of analysis, for example using ROBDDs. To this end we express Jacobs
and Langen’s abstract operations for set sharing in logical form.

1 Introduction

Of the abstract domains used in abstract interpretation of logic programs, the
two that have received the most attention are Pos and Sharing. The former, orig-
inally introduced by Marriott and Søndergaard [15] and more formally presented
in [6,16,8] consists of the class of positive Boolean functions. The Pos domain
is most commonly applied to the analysis of groundness dependencies for logic
programs. The Sharing domain, introduced by Jacobs and Langen [11,13,12], con-
sists of sets of sets of variables and is applied to the analysis of possible sharing
amongst sets of program variables. The two abstract domains seem very different
in nature. While Pos is considered a clean, intelligible abstract domain, many
theoreticians have grappled with the subtleties of Sharing, and implementors
have found that analysis based on Sharing is cumbersome and inefficient.

We show that Sharing is Pos, in the sense that the two domains are iso-
morphic, even though the interpretation of the Boolean functions (and hence
some of the associated abstract operations) differ from one to the other. This
insight helps to de-mystify Sharing, and it has ramifications for set sharing anal-
ysis, which may become more amenable to efficient implementation, witness the
number of fast Pos-based groundness analyzers that have been built.

The extra complexity of Sharing and its operations is often attributed to the
fact that set-sharing is a polyadic property (“it takes more than one to share”)
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while in contrast, Pos is concerned with dependencies related to groundness, a
monadic property. The intuition behind our result is to view set-sharing anal-
ysis as “dual negative”—a term that will become clear shortly—to groundness
analysis. We effectively recast the variable sharing (or variable independence)
problem as one of instantiation dependency. We claim that it is not only a prac-
tical, but also a conceptual advantage, to view the polyadic “sharing” property
in terms of dependencies related to the monadic “instantiatedness” property.

An element of Sharing is a set of variable sets. It conveys sophisticated infor-
mation about possible sharing amongst program variables. For example, the sub-
stitution θ = {w �→ c, x �→ f(y, z)} is abstracted by the set S = {∅, {x, y}, {x, z}}
of variable sets. The set {x, y} indicates the (possible) presence of a common vari-
able in the terms that x and y are mapped to by θ. Similarly, for the set {x, z}.
Note that the absence of w in S indicates that w must be ground.

The key idea applied in this paper is to view the sets of variables in an
element of the Sharing domain as models of a Boolean function. Because the
elements of the Sharing domain always contain the empty set, we are concerned
with the class of Boolean functions which are satisfied by assigning the value
false to all of the variables. We call this class of functions coPos, as these are
precisely the set of dual negated Pos functions (or equivalently, the negated dual
Pos functions). The order isomorphism between Sharing and coPos and hence
also between Sharing and Pos is immediate and yet intriguing. Considering the
well-known subset Def ⊆ Pos and its dual negated counterpart coDef ⊆ coPos, we
show that groundness analyses using Def and Sharing coincide, thus extending a
result by Cortesi et al. [7].

Before we continue, let us reflect briefly on the relation between the two rep-
resentations. It emerges that Sharing gives a “truth-table like” representation of
the dual negated positive Boolean functions, whereas Pos usually is implemented
using much more compact, symbolic representations of Boolean functions, such
as ROBDDs [4]. The hope is that such representations may enable simpler and
more efficient abstract implementation of the essential abstract operations for
Sharing.

2 Preliminaries

We assume familiarity with the standard definitions and notation for logic pro-
grams [14] and abstract interpretation [9,10]. We denote the set of all (logic)
variables by Vars but usually restrict attention to a fixed finite set VI of vari-
ables of interest. Object language variables are typically chosen from the set
{s, t, u, v, w, x, y, z}, while we use c as an object language constant. For a syn-
tactic object O, vars(O) denotes the set of variables in O. A substitution θ is
a mapping from variables to terms which has a finite support. Namely, the set,
dom(θ) = {v ∈ Vars | vθ 	= v} (often referred to as the domain of θ) is finite. The
identity substitution is denoted ε. We use Sub to denote the set of (idempotent)
substitutions.
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2.1 Set-Sharing

For a fixed finite set VI of variables of interest, the abstract domain Sharing is
defined as

Sharing =
({

S ⊆ P(VI )
∣∣∅ ∈ S }

, ⊆)
.

We say that a set s of variables occurs in a substitution θ through the variable
v, if s is (exactly) the set of variables (of interest) which are mapped to terms
containing v. If s occurs in θ through some variable v then we say that s is a set
of variables which share under θ. Jacobs and Langen [12] provide the following
definition:

occs : Sub×VI → P(VI )
occs(θ, v) =

{
x ∈ VI

∣∣ v ∈ vars(xθ) }
.

The abstraction function αsh : 2Sub → Sharing for set sharing analysis is defined
by

αsh(Θ) =
{
occs(θ, v)

∣∣ θ ∈ Θ, v ∈ Vars
}
.

Observe that a variable x ∈ VI is absent from each set in αsh(Θ) if and only if
every θ ∈ Θ maps x to a ground term. Also note that the presence of ∅ in every
element of Sharing is natural: the empty set can be seen as the contribution
from the variables in Vars \VI . Namely, because both VI and the domain of a
substitution θ are always finite, there will always be a variable v 	∈ VI for which
θv = v and hence also occs(θ, v) = ∅.

Example 1. Let VI = {w, x, y, z}, recall that ε denotes the identity substitution
and let θ1 = {x �→ [s, t], y �→ [t, u, v], z �→ [s, t, u, v]} and θ2 = {w �→ c, x �→
f(y, z)}. Then

αsh({ε}) = {∅, {w}, {x}, {y}, {z}}
αsh({θ1}) = {∅, {w}, {x, z}, {y, z}, {x, y, z}}
αsh({θ2}) = {∅, {x, y}, {x, z}}

αsh({θ1, θ2}) = {∅, {w}, {x, y}, {x, z}, {y, z}, {x, y, z}}

2.2 Boolean Functions

Let B = {true, false}. A Boolean function (on VI ) is a function f : Bn → B. An
interpretation µ : VI → B is an assignment of truth values to the variables in VI .
An interpretation µ is a model for f , denoted µ |= f , if f(µ(x1), . . . , µ(xn)) =
true. We will often write an interpretation as the set of variables which are
assigned the value true. The set of models of f is thus viewed as a set of sets of
variables defined by:

modelsVI (f) =
{ {x | µ(x) = true} ∣∣µ |= f

}
.
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Let f be a Boolean function on VI . We say that f is positive if VI ∈
modelsVI (f), that is, f(true, . . . , true) = true. The abstract domain Pos con-
sists of the positive Boolean functions ordered by logical consequence. We say
that a positive Boolean function is definite, if its set of models is closed under
intersection. We denote the class of definite Boolean functions by Def. A definite
function can be written as a conjunction of clauses of the form a0 ← a1, . . . , an,
and this form is functionally complete for Def, that is, every element in Def can
be written this way [1]. The acceptable clauses can also be characterised as the
disjunctions a0 ∨¬a1 ∨ . . .∨¬an, that contain exactly one non-negated variable.
Figure 1 (a) and (b) illustrates Pos and Def for VI = {x, y}.

The abstraction function αgr : 2Sub → Pos for groundness analysis is defined
by

αgr(Θ) =
∨

θ∈Θ

∧
v∈dom(θ)

(v ↔∧
vars(vθ)).

Example 2. Let VI = {w, x, y, z}, θ1 = {x �→ c, y �→ c, z �→ c} and θ2 = {w �→
c, x �→ f(y, z)}. Then

αgr({ε}) = true
αgr({θ1}) = x ∧ y ∧ z
αgr({θ2}) = w ∧ (x↔ (y ∧ z))

αgr({θ1, θ2}) = (x ∨ w) ∧ (x↔ (y ∧ z))

We say that f is negative if and only if f(true, . . . , true) = false, that is, if
and only if f is not positive. Let Pos and Pos denote the classes of positive and
negative Boolean functions respectively.

The dual of a Boolean function is the function that results when the roles of
false and true are interchanged. Given a propositional formula, a formula for the
dual function is easily obtained: interchange, wherever they occur, the constants
false and true, the connectives ∨ and ∧, the connectives↔ and 	↔ (exclusive or),
→ and 	←, ← and 	→. Negation is self-dual, so ¬ is left unchanged, as are vari-
ables. It follows that existential quantification (∃) and universal quantification
(∀) over propositional variables are dual. Table 1 summarizes the truth tables
for the binary propositional connectives and their duals.

For any Boolean function ϕ we denote by coneg(ϕ) the dual of the negation
of ϕ (or, equivalently, the negation of its dual). For a set of Boolean functions Ψ

x y x ∧ y x ∨ y x↔ y x �↔ y x→ y x �← y x← y x �→ y

false false false false true false true false true false
false true false true false true true true false false
true false false true false true false false true true
true true true true true false true false true false

Table 1. Truth tables for binary propositional connectives and their duals
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we let coneg(Ψ) denote the set of dual negated functions from Ψ . We let coPos =
coneg(Pos) denote the dual negative functions.

It is easy to see that coPos shares many properties with Pos. For example,
coPos is closed under conjunction, disjunction and existential quantification, but
not under negation.

We are interested in one additional class of Boolean functions, the dual
negated Def functions. By duality, these are the coPos functions whose models are
closed under union. It is not difficult to see that a function in coDef = coneg(Def)
can be written as a conjunction of clauses of the form a0 → a1, . . . , an. In other
words, a clause in coDef is a disjunction with exactly one negated variable.
Figure 1 (c) and (d) illustrates coPos and coDef for VI = {x, y}.

Clearly, coneg is an order isomorphism between Pos and coPos and between
Def and coDef. Observe that coneg is its own inverse.

3 The Logic of Sharing

Jacobs and Langen [11] prove that Sharing enjoys a Galois insertion into the
domain of concrete substitutions. It is easy to see that Sharing and coPos are
order isomorphic. The isomorphism is given by the function ss : coPos→ Sharing
defined by

ss(ϕ) = {s ⊆ VI | s |= ϕ}.
Conversely, we can view a set of variable sets as a propositional formula in
minterm form [3]. For example, for VI = {w, x, y, z}, the set {∅, {x, y, z}} is
read as

(¬w ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (¬w ∧ x ∧ y ∧ z) = ¬w ∧ (x↔ y) ∧ (y ↔ z).

This function can further be mapped into Pos by the function coneg, yielding
w ∧ (x ↔ y) ∧ (y ↔ z). The domain orderings, set (model) containment and
logical consequence, clearly correspond.

Note that it is natural, and common, to also allow ∅ as an additional, least,
element of Sharing, and to allow false as an element of coPos and of Pos. In either
case the element corrsponds to the empty set of substitutions. The isomorphism
is easily extended so that these elements correspond.

If we consider just Def and coDef, coneg is in fact homomorphic with respect
to all the interesting (abstract) operations, including ∧, ∨, and ∃. We state this as
Theorem 1 below. It was already known that Sharing properly contains Def [7,5]1.

Casting Sharing in terms of Boolean functions makes this immediate, and
we easily extend that result to the following corollary of Theorem 1: A sharing
analysis which uses coDef rather than full Sharing is exactly equivalent to a
groundness analysis that uses Def.
1 Cortesi et al. [7] showed that the groundness component of Sharing was equivalent to
the domain Cov which they defined syntactically, and which in hindsight is exactly
Def. Cortesi et al. [5] gave a precise mapping from Sharing to Def, by which the exact
groundness information that is present in a Sharing element is made clear.
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3.1 The Relation between Sharing and Def

To understand the relation between Sharing and coDef (and hence also Def),
consider those elements of Sharing that are closed under set union.

Definition 1. A Boolean function ϕ is up-closed if models(ϕ) is closed under
union. We denote by ϕ↑ the smallest logical consequence of ϕ which is up-closed.
Similarly, ϕ is down-closed if models(ϕ) is closed under intersection. We denote
by ϕ↓ the smallest logical consequence of ϕ which is down-closed.

In other words, models(ϕ ↑) is the smallest set that contains models(ϕ) and
is closed under union. It is clear that ϕ↑ is well-defined, as the function true
is both up-closed and a logical consequence of ϕ, so ϕ↑ can be characterised
as the conjunction of all up-closed logical consequences of ϕ. Similarly, ϕ↓ is
well-defined.

The abstract domain Def consists of the down-closed positive Boolean func-
tions. It follows that Def is not closed under disjunction. Armstrong et al. [1]
discuss the abstract operations for Def and show how the clausal form of the
join (ϕ∨ψ)↓ can be calculated. We give a similar result for coDef in Section 3.2.

Example 3. Let VI = {w, x, y, z}. The formula ¬w ∧ (x ↔ (y ∨ z)) is closed
under union of models:

models(¬w ∧ (x↔ (y ∨ z))) =
{∅, {x, y}, {x, z}, {x, y, z}} .

It is not hard to see that the operation ↑ is an upper closure operator on coPos
and that it thus induces a Galois insertion between coPos and coDef.

Definition 2. We say that σ ∈ coPos and γ ∈ Pos correspond if σ = coneg(γ),
or equivalently γ = coneg(σ), and write this σ ∼ γ.

The Pos formula that best describes the unification x = t (where x is a variable
and t a term) is

γ = x↔
∧

vars(t).

The sharing formula which best describes the same unification is

σ = x↔
∨

vars(t),

and it is easily checked that σ ∼ γ. We can read this as saying that x can be
instantiated if some of the variables in t can, and vice versa.

The description of a computation’s “initial state”, that is, the identity sub-
stitution ε, can be considered an abstract operation init. This operation may
depend on VI . The Pos formula which best describes the identity substitution
is then initgr(VI ) = true, while the corresponding Sharing description con-
sists of the empty set together with all of the singleton sets over VI . So, for
VI = {x1, . . . , xn}, we have the Sharing description

{∅, {x1}, . . . , {xn}
}
.
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The corresponding coPos formula is

initsh(VI ) =
∧
x∈VI

(x→ ∧
y∈VI\{x}

¬y)

which specifies that if one of the variables is true in a model then all of the others
must be false. In terms of instantiatedness dependencies this means that further
instantiation of any one variable cannot effect the other variables.

Note that initsh(VI ) is not up-closed. It is easily checked that initsh(VI )↑=
initgr(VI ). One of the main reasons why a sharing analysis using coDef would
lose precision compared to one based on coPos is exactly the inability to capture
the initial state init(VI ) accurately.

Theorem 1. Let σ, σ′ ∈ coDef and γ, γ′ ∈ Def be such that σ ∼ γ and σ′ ∼ γ′.
Then: (1) (σ∧σ′) ∼ (γ∧γ′), (2) (σ∨σ′) ∼ (γ∨γ′), (3) (∃v : σ) ∼ (∃v : γ),
and (4) initsh(VI )↑ ∼ initgr(VI )↓.
Proof. (1) Negating (γ ∧ γ′) yields (¬γ ∨ ¬γ′). Dualising yields (coneg(γ) ∧
coneg(γ′)), that is, (σ ∧ σ′). (2) Similar. (3) Negating ∃v : γ yields ∀v : ¬γ.
Dualising this we get ∃v : coneg(γ), that is, ∃v : σ. (4) Both sides are true.

It follows that a sharing analysis using coDef is exactly identical to a groundness
analysis using Def. The abstract operations are the ones covered in Theorem 1,
except that the join in coDef is given by σ � σ′ = (σ ∨ σ′)↑ while the join in Def
is given by γ � γ′ = (γ ∨ γ′)↓ .

It is, however, clear that also these joins preserve correspondence, since
σ ↑∼ γ ↓ if σ ∼ γ. This can be seen by considering the models of σ and γ.
If the set of models for σ is M then the set of models for γ = coneg(σ) is
M ′ = {µ | µ ∈ M}, where µ denotes the complement of µ. Hence closing M
under union and M ′ under intersection preserves the ∼ relationship.

3.2 Finding the Best Up-Closed Approximation

Definition 3. Let ϕ be a propositional formula. We denote by m(ϕ) the formula
obtained by replacing each negated variable in the minterm representation of ϕ
by true.

Note that m is an upper closure operator and that m(ϕ) is the smallest mono-
tonic logical consequence of ϕ.

Example 4. m((x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z)) = (x ∧ y) ∨ (x ∧ z).

Theorem 2. Let ϕ be a coPos function for a set VI of variables of interest.
Then

ϕ↑ =
∧
x∈VI

(x→ m(ϕ ∧ x)) .
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Before we prove this, let us give some examples.

Example 5. Let VI = {w, x, y, z} and ϕ = {∅, {x}, {w, x}, {x, y}, {x, y, z}} be a
coPos function given by its set of models. Then

ϕ↑ = (w → (w ∧ x)) ∧
(x→ x ∨ (x ∧ w) ∨ (x ∧ y) ∨ (x ∧ y ∧ z)) ∧
(y → (x ∧ y) ∨ (x ∧ y ∧ z)) ∧
(z → (x ∧ y ∧ z))

We can write ϕ↑ more simply as (w → x)∧ (y → x)∧ (z → y). That is, if w or y
are instantiated, so is x, and if z is instantiated, so is y (and hence x). Note that

models(ϕ↑) =
{∅, {x}, {w, x}, {x, y}, {x, y, z}, {w, x, y}, {w, x, y, z}} .

Example 6. Let VI = {w, x, y, z} and ϕ = {∅, {x, y}, {y, z}} be a coPos function
given by its sets of models. Then

ϕ↑ = (w → false) ∧ (x→ (x ∧ y)) ∧
(y → ((x ∧ y) ∨ (y ∧ z))) ∧ (z → (y ∧ z)).

We can write ϕ↑ more simply as ¬w ∧ (y ↔ (x ∨ z)). Note that

models(ϕ↑) =
{∅, {x, y}, {y, z}, {x, y, z}} .

Example 7. Let VI = {w, x, y, z} and ϕ = {∅, {w}, {x}, {y, z}} be a coPos func-
tion given by its sets of models. Then

ϕ↑ = (w → w) ∧ (x→ x) ∧ (y → (y ∧ z)) ∧ (z → (y ∧ z)).

We can write ϕ↑ more simply as y ↔ z. Note that

models(ϕ↑) =
{∅, {w}, {x}, {y, z}, {w, x}, {w, y, z}, {x, y, z}, {w, x, y, z}} .

Proof. (Of Theorem 2.) Let ϕ be a coPos function and let

ψ =
∧
x∈VI

(x→ m(ϕ ∧ x)) .

We first show that if M is a finite union of models of ϕ then M is a model of Ψ .
Assume, without loss of generality, that M is the union of two models µ1 and µ2

of ϕ. Note that for x ∈ µ1, m(ϕ ∧ x) = (
∧
µ1) ∨ σ (for some σ) and likewise for

y ∈ µ2, m(ϕ ∧ y) = (
∧
µ2) ∨ σ′ (for some σ′). So for each x ∈ µ1, Ψ contains a

conjunct of the form x→ (
∧
µ1)∨ σ and for each y ∈ µ2 a conjunct of the form

y → (
∧
µ2) ∨ σ′. The interpretation µ1 ∪ µ2 is a model of Ψ because it satisfies

each of the above implications; and because all of the other implications in Ψ
are satisfied vacuously, as their left-hand sides are false.

Now we prove that Ψ is minimal. Namely, every model of Ψ is the union of
some models of ϕ. Assume, for contradiction, that µ is a model of Ψ which is not
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the union of some models of ϕ. Then there must be a variable x ∈ µ for which
no model of ϕ which includes x is contained in µ. Let µ1, . . . , µk be the models
of ϕ which include x. By construction, Ψ contains a conjunct of the form

x→
∨

1≤i≤k

∧
µi.

Namely, if x is in any model of Ψ then so are all of the other elements of one of
the models µ1, . . . , µk. This contradicts the assumption that x ∈ µ.

4 Full Sharing and Its Abstract Operations

We now turn to the abstract operations on Sharing. Our aim is to give these in
a logical form, by considering sharing information to be expressed in coPos. We
need to define the abstract operations init, projection (or variable elimination),
join and aunify (for abstract unification).

We have already handled init in Section 3.1, and it is straightforward to
show that projection corresponds to existential quantification and that the join
corresponds to disjunction. Abstract unification is (as expected) the only tricky
operation.

Jacobs and Langen define abstract unification using the following auxiliary
functions.

– The up-closure of S ∈ Sharing, denoted S∗ is the smallest superset of S such
that A ∈ S∗ ∧B ∈ S∗ → A ∪B ∈ S∗.

– The set of components of S ∈ Sharing which are relevant to a set of variables
V is defined as rel(S, V ) =

{
A ∈ S ∣∣A ∩ V 	= ∅ }

.
– The cross union of the sets of sets of variables S1, S2 ⊆ P(VI ) is defined as
S1 � S2 =

{
A ∪B ∣∣A ∈ S1, B ∈ S2

}
.

Let S ∈ Sharing be given, together with a program constraint x = t (where x is
a variable and t a term), and let A = rel(S, {x}) and B = rel(S, vars(t)). Then
the abstract unification operation is defined by

aunify(S, x, t) = (S \ (A ∪B)) ∪ (A �B)∗.

Abstract unification for a pair of atoms a and b in a sharing element S is then
defined inductively on the primitive constraints in mgu(a, b).

For the logical formulation of aunify , let ϕ ∈ coPos be the function corre-
sponding to S, namely models(ϕ) = S, and let d be the disjunction of variables
in vars(t), that is, d =

∨
vars(t). Further, let d′ = x∨ d. The result of aunify is

then
(x↔ d) ∧ ((ϕ ∧ ¬d′) ∨ (ϕ ∧ d′)↑).

The intuition is this: The x ↔ d is the contribution from the equation x = t.
There is also an impact on the current abstract substitution ϕ, and to determine
this impact, we proceed by cases: (1) If x is (or becomes) ground, then all of



98 Michael Codish and Harald Søndergaard

the variables in t also become ground, and so the effect on ϕ is described by
ϕ ∧ ¬d′; (2) Alternatively, there are possibly non-ground variables in t. Since
sharing is possible amongst any set of variables that are not ground, the total
effect is not ϕ ∧ d′, but its up-closure, (ϕ ∧ d′)↑.

Conjecture 4.1 With the notation introduced above, if S = models(ϕ) then

aunify(S, x, t) = models((x↔ d) ∧ ((ϕ ∧ ¬d′) ∨ (ϕ ∧ d′)↑)).

Example 8. Let VI = {x, y, z} and consider the analysis of x = f(y, z). The
initial approximation initsh(VI ) (in minterm form) is

ϕ = (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z).

In the notation from above, ϕ∧d′ = (¬x∧¬y∧z)∨ (¬x∧y∧¬z)∨ (x∧¬y∧¬z),
and the up-closure of this is x ∨ y ∨ z. Taking the disjunction with (ϕ ∧ ¬d′)
yields true. Hence the result is simply x↔ (y ∨ z).

Example 9. Again let VI = {x, y, z} but now consider the analysis of x = y,
y = z. First consider x = y. In the notation from above, d′ = x ∨ y, and so
ϕ ∧ d′ = (x 	↔ y) ∧ ¬z. The up-closure of this is (x ∨ y) ∧ ¬z.

We also have ϕ∧ ¬d′ = ¬x∧ ¬y, and taking the disjunction with the above,
we get (¬x ∧ ¬y) ∨ ¬z. Conjoining this with x↔ y we arrive at

ϕ′ = (¬x ∧ ¬y) ∨ (x ∧ y ∧ ¬z)

as the coPos description that applies at the point between the two constraints.
Notice that the result differs significantly from what a groundness analysis yields
here, namely x↔ y.

From this point let d′ denote instead y∨z. Now ϕ′∧d′ = (¬x∧¬y ∧z)∨ (x∧
y∧¬z), the up-closure of which is (¬x∧¬y ∧ z)∨ (x∧y). Taking the disjunction
with ¬d′ yields x↔ y.

This leads to the result after both constraints: (x↔ y) ∧ (y ↔ z).

Notice that the processing of a unification such as x = f(y, z) yields a result
which, as far as x, y, and z are concerned, is up-closed, in this case x↔ (y ∨ z),
with models {∅, {x, y}, {x, z}, {x, y, z}}, rather than {∅, {x, y}, {x, z}}. This up-
closed result is easily seen to be the correct result when we consider that some
of the three variables could well have been bound to non-linear terms before the
unification.

Also notice that if we were to perform the sharing analysis in the domain
coDef instead of full coPos, then projection and join would remain unchanged,
while abstract unification becomes exactly the same as that for a groundness
analysis using Def: Since ϕ ∈ coDef is up-closed, so is ϕ ∧ d′, and hence

aunify(ϕ, x, t) = (x↔ d) ∧ ((ϕ ∧ ¬d′) ∨ (ϕ ∧ d′)) = (x↔ d) ∧ ϕ.
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5 Conclusion

A considerable degree of imprecision is present in a sharing analysis that uses
Sharing because the linearity of variables is not tracked. For this reason the do-
mains Asub [17] and Esharing [13] incorporate linearity information with sharing
information, but Sharing is, as far as the handling of unification goes, no better
than a groundness analysis using the domain Def, sometimes used for groundness
analysis. In fact, if we use Def’s natural counterpart coDef for sharing analysis
then sharing and groundness analysis coincide. This result extends the observa-
tion by Cortesi et al. [7] that Sharing properly subsumes Def.

We have found that Sharing and Pos are surprisingly similar. In fact, Sharing
is nothing but a “truth-table like” representation of the dual negated positive
Boolean functions, coPos. Viewing Sharing as a class of Boolean functions has
advantages, not only because it helps our understanding of sharing analysis but
also because it points towards efficient implementation of set sharing analysis,
using for example ROBDDs. To this end we have recast Jacobs and Langen’s
abstract operations for Sharing in logical form and shown the equivalence of
the formulations. We believe that this will lead to greatly improved set sharing
analysis for logic programs.

It remains to be seen whether the logic-based approach suggested here can
lead to faster implementations of sharing analysis. Bagnara, Hill and
Zaffanella [2] have shown that if the ultimate goal of a sharing analysis is to
determine pair-sharing, that is, whether a given pair of variables are guaranteed
to be independent, then a set-sharing analysis can be simplified considerably.
It remains to be investigated whether this result can help also in a logic-based
implementation.
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Fig. 1. Classes of Boolean functions for VI = {x, y}. (a) Pos: the positive func-
tions. (b) Def: the positive functions with models closed under intersection. (c)
coPos: the dual negated positive functions. The models of these functions give
corresponding elements of the Sharing domain. For example ¬y ≡ {∅, {x}} and
x ← y ≡ {∅, {x}, {x, y}}. (d) coDef: the dual negated definite functions. The
models of these functions are closed under union.
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Abstract. We study the application of abstract interpretation to the
design of inductive methods for verifying properties of logic programs.
We give a unified view of inductive assertion-based proof methods for
logic programs, by systematically deriving them in a uniform way using
Abstract Interpretation. The resulting verification framework allows us
to reconstruct several existing verification methods and to understand
the relation among them in terms of abstractions. Moreover, we can
tackle the problem of establishing the completeness of the proof meth-
ods.
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1 Introduction

Abstract interpretation theory [17,18] is successfully used to reason about the
relation among different semantics and to statically analyze programs. More re-
cently it has been used in the framework of debugging, diagnosis and validation
[6,13,12,8] and to derive proof methods [16]. In this paper we use abstract in-
terpretation as a tool for systematically deriving sufficient partial correctness
conditions for logic programs.
In fact, the problem of verification of logic programs can be very naturally ap-
proached by abstract interpretation, since it is a typical semantics-based task.
The specifications used in verification can simply be viewed as a suitable intended
abstract semantics. The existing notions of correctness and related verification
methods [23,5,21,3,1] can then be explained in terms of different abstractions.
Here we can use the first important feature of abstract interpretation, namely the
ability to compare different semantics by reasoning in terms of abstraction. In
the case of logic programs verification, this makes easier to compare the different
techniques and to show the essential differences. Two examples of controversial
issues which can be better understood by adopting the abstract interpretation
approach are
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– the problem of the relation between declarative and operational properties
(and the complexity of the related verification methods), recently raised by
Drabent [22];

– the intrinsic ambiguity of specifications given in terms of pre- and post-
conditions, for which we can have two different notions of correctness (see
I/O correctness and call correctness of Sections (4) and (5)).

The second feature of abstract interpretation is its ability to systematically derive
the (optimal) abstract semantics from the concrete one and from the abstrac-
tion. The resulting abstract semantics is a correct approximation of the concrete
semantics by construction and no additional “correctness” theorems need to be
proved. The above nice features are inherited by verification techniques, if the
problem is approached by abstract interpretation. Namely, we can define a veri-
fication framework, parametric with respect to the (abstract) property we want
to model. Given a specific property (abstraction), the corresponding verifica-
tion conditions are systematically derived from the framework and guaranteed
to be indeed sufficient partial correctness conditions. In addition the verification
method is guaranteed to be complete, if the abstraction is precise (complete ac-
cording to abstract interpretation theory).
Properties we deal with in this paper are abstractions of SLD-trees. The verifica-
tion framework is based on a hierarchy of semantics [14,11,10], whose collecting
semantics [14] is defined in a concrete domain of SLD-derivations. A generic
(abstract) semantics in the hierarchy, corresponding to the asbtraction α, is the
least fixpoint of an operator TαP , systematically derived from the corresponding
operator of the collecting semantics. In Section (2), we show the general results
about sufficient partial correctness conditions and completeness of the verifica-
tion methods. In the next Sections, we show some instances of the verification
framework, with the aim of reconstructing existing verification methods. We first
consider the case where specifications are given in an extensional way and are
simply intended abstract semantics. We start with more abstract properties (and
corresponding weaker verification methods), moving from the success behaviour
(Section (3)), to the Input-Output behaviour (Section (4)) and to the call be-
haviour (Section (5)). In particular we reconstruct the Drabent and Maluszynski
method [23], the Bossi and Cocco method [5], and various verification methods
reviewed in [3]. Finally in Section (6), we consider the case of intensional specifi-
cations given in a formal specification language. Intensional specifications lead to
a further layer of abstraction, whose properties (decidability, precision) strongly
depend on the specification language. In the case of success behaviour we recon-
struct the results by Clark [9] and Deransart [21].

Throughout the paper, we assume familiarity with the standard notions of
lattice theory [4], abstract interpretation [17,18], logic programming [2] and ver-
ification methods [1,15].
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2 Description of the Framework

We assume as a concrete semantics the denotational semantics of [14]. The do-
main is given by the set of pure collections, D = (Pred → ℘̃(SLD),≤), where
a pure collection is a function from the set Pred = {p(x) | p predicate symbol
and x a tuple of distinct variables} of pure atoms to ℘̃(SLD), that is the set of
prefix-closed sets of finite SLD -derivations. The order ≤ is the pointwise exten-
sion of the subset order of ℘̃(SLD).
We use the following functions (for a formal definition we refer to [14]). Let
SLD be the set of SLD -derivations. Given δ ∈ SLD, first(δ) and last(δ) are
respectively the first goal and the last goal of δ; clauses(δ) is the set of clauses
used in δ; ∂θ(δ) is the derivation obtained by instantiating the first goal with the
substitution θ and applying the same clauses as in δ as far as possible; res(δ) is
the computed answer substitution of the successful derivation δ.
Given a program P , we consider the associated semantic function TP : D → D

(also defined in [14], where it is called P [[P ]]). TP is continuous on D and the
semantics [[P ]] of P is defined as lfp(TP ) = TωP = λp(x).{δ ∈ SLD | first(δ) =
p(x), clauses(δ) ⊆ P}.

The main idea of this paper is to view (extensional or intensional) speci-
fications as an abstract domain (A,). Under reasonable hypotheses, this re-
lationship can be formalized through a Galois connection between (D,≤) and
(A,), with α : D → A and γ : A → D respectively the abstraction and the
concretization functions. Then each element D of D is correct with respect to
specifications S such that α(D)  S. In this paper, (abstract) domains of spec-
ifications will always have the form (Pred → S,). Each one of its element Ψ
can be thought of as a set {Ψp}p∈Pred , where each Ψp is a specification for what
we observe in the set of derivations started by predicate p. In fact the generic
correctness condition can be expressed as

∀δ ∈ [[P ]](p(x)) : δ verifies Ψp,

which can be rewritten, for a suitable observable α [11], as

∀δ ∈ [[P ]](p(x)) : α(δ)  Ψp. (1)

This point of view allows us to study the verification problem using methods
and results of abstract interpretation. In fact the problem of checking whether
a program P verifies a specification S in A, can be rephrased in abstract inter-
pretation terms as

[[P ]] ≤ γ(S) or, equivalently, α([[P ]])  S. (2)

Indeed, in our case, condition (1) is equivalent to α([[P ]](p(x)))  Ψp, for each p,
that is to α([[P ]])  Ψ . Since [[P ]] is defined as the least fixpoint of the opera-
tor TP , a sufficient condition for (2) to hold is

TP (γ(S)) ≤ γ(S) or, equivalently, TαP (S)  S, (3)
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where TαP = α◦TP ◦γ, is the best abstraction of TP in A. In fact TαP (S)  S
implies lfp(TαP )  S and, since α(lfp(TP ))  lfp(TαP ) (because α is correct), the
condition α([[P ]])  S can be derived.

Condition (3) can often be unfolded and transformed into a verification con-
dition for P and S, which may be the base for an inductive proof method.
Obviously how to do it depends on the abstract domain and the abstraction. In
this paper we show how the verification conditions of several well known methods
can be derived.

In general, given an inductive proof method, if a program is correct with
respect to a specification S, the verification condition might not hold for S.
However if the method is complete, then when the program P is correct with
respect to specification S, there exists a property R, stronger than S, which
verifies the verification condition. We have proved that, for verification conditions
which have the form of condition (3) for a suitable α, the derived method is
complete if and only if the abstraction is precise with respect to TP , that is if
α(lfp(TP )) = lfp(TαP ).

In fact, it is known from simple lattice theoretic facts (Park’s fixpoint induc-
tion [28]) that for a monotonic operator F on a complete lattice

lfp(F ) ≤ ϕ if and only if ∃ψ ≤ ϕ F (ψ) ≤ ψ. (4)

We can easily derive the following lemma.

Lemma 1. Let (C,A, α, γ) be a Galois connection between the complete lat-
tices C and A. Let F : C → C be a monotonic operator on C and Fα = α◦F◦γ :
A → A be its best abstraction on A. Then, for each ϕ ∈ A,

α(lfp(F ))  ϕ implies ∃ψ  ϕ Fα(ψ)  ψ.

if and only if (C,A, α, γ) is precise with respect to F .

Then, if the proof method is derived from condition (3) and the abstraction
is precise, if a program P is correct with respect to the property S (that is
α([[P ]])  S) then there exists a property R stronger than S (that is R  S),
which verifies the verification condition of the method (that is TαP (R)  R).
Notice that precision of abstract interpretation can be quite difficult to prove. A
sufficient condition for precision, generally easier to check, is full precision, that
is α◦TP = TαP ◦α. In this paper we show the completeness of some methods by
showing the full precision of the underlying abstraction.
[25] contains some methods which allow us to systematically enrich a domain
of properties so as to obtain an abstraction which is fully precise with respect
to a given function. These methods can be viewed as the base for systematic
development of complete proof methods.

3 Success Behaviour of Programs

Let us start by focusing on the program behaviour with respect to the success of
non-ground atoms. Let us suppose a set ϕp of atoms (the extensional specification
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of a property) to be associated with each predicate p. The program P is success-
correct with respect to success-properties {ϕp}p∈Pred iff

∀p(t) ∈ Atoms p(t) θ� ✷ implies p(t)θ ∈ ϕp,

where G θ� ✷ means that G succeeds with computed answer θ. Now a set
{ϕp}p∈Pred is just a function ϕ : Pred → ℘(Atoms). We can introduce then the
abstract domain

C = (Pred → ℘(Atoms),≤),

i.e., the set of functions from predicates to sets of atoms ordered by the pointwise
extension of subset order. The idea is that if p(t) ∈ ϕ(p(x)), ϕ ∈ C, then p(t) is
a successful instance of p(x). Elements of C then, can be viewed as specifications
of the success behaviour of programs. The abstraction from the basic domain D

is given by the function

α(D) = λp(x).{p(x)θ | δ ∈ D(p(x)), ∂θ(δ) successful}. (5)

α is indeed additive, hence there exists an adjoint function γ : C → D, giving
a Galois connection between D and C. It can be easily checked that success-
correctness can be rephrased as the condition

α([[P ]]) ≤ ϕ.

The best abstraction T CP = α◦TP ◦γ in C of the concrete function TP can explicitly
be defined as

T CP (I) = λp(x).{p(t)θ | p(t)← p1(t1), . . . , pn(tn) ∈ P,
∀i ∈ {1, . . . , n} pi(ti)θ ∈ I(pi(x))}.

The following lemma shows that the abstract interpretation is fully precise.

Lemma 2. Let α : D → C be defined as in (5). Then there exists a function
γ : C → D such that (D, C, α, γ) is a Galois connection and is fully precise with
respect to TP .

This means that there is no loss of precision for what concerns the success
behaviour, when using T CP instead of TP . As a consequence of lemma (2), the least
fixpoint of T CP exists and lfp(T CP ) = α([[P ]]) [19]. Indeed the semantics specified
by the pair (C, T CP ) is just a reformulation of the well known C-semantics [9,24].

Now recalling Section (2), a sufficient condition for success-correctness is

T CP (ϕ) ≤ ϕ, (6)

from which a verification condition can then be constructively derived by un-
folding T CP with its definition.
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Theorem 1. Let P be a logic program and {ϕp}p∈Pred be a success property. A
sufficient condition for P to be success-correct with respect to {ϕp}p∈Pred is that
for each clause p(t)← p1(t1), . . . , pn(tn) ∈ P it is true that

∀θ
n∧
i=1

pi(ti)θ ∈ ϕpi implies p(t)θ ∈ ϕp. (7)

Example 1. Let P be the program

app([],Y,Y).
app([X:Xs],Ys,[X:Zs])←app(Xs,Ys,Zs).

Let ϕapp = {app(t1, t2, t3) | t3 ground implies t1 and t2 ground}. It can easily be
checked that for each θ, app([], Y, Y )θ ∈ ϕapp and, if app(Xs ,Ys,Zs)θ ∈ ϕapp ,

then app([X : Xs ] ,Ys , [X : Zs ])θ ∈ ϕapp . By theorem (1), if app(t1, t2, t3)
θ� ✷

and t3θ is ground, then t1θ and t2θ are ground.

Note that the verification condition is expressed extensionally. Anyway we can
see this case as laying the ground on which methods based on specifications
expressed by a formal language can be introduced, as shown in Section (6).

Clearly condition (7) is only sufficient for success-correctness, since it is equiv-
alent to property (6), which is just a sufficient condition for α([[P ]]) ≤ ϕp. Any-
way by lemmas (1) and (2) it follows immediately that the method is complete,
that is if P is success-correct with respect to {ϕp}p∈Pred , then there exists a
success property {ψp}p∈Pred with ∀p ψp ⊆ ϕp, which verifies condition (7) for
each clause of P . Obviously given a valid property ϕ, there are no general meth-
ods to compute a stronger property ψ which verifies (7). Anyway we think that
approximated methods to that aim can be better tackled in a framework like
ours based on abstract interpretation.

4 Input/Output Behaviour

The properties that we can prove by the above method are properties of the
success set of a program. We are now interested in the input/output behaviour,
i.e., in the relation between the arguments of a predicate at call time and their
instantiation in case of success. This can be specified by a set ηq ⊆ Atoms×Subst
associated to each predicate q. The set of properties {ηq}q∈Pred can be viewed
then as a specification of I/O patterns for logic programs. A program is I/O-
correct with respect to I/O properties {ηq}q∈Pred iff

∀p(t) ∈ Atoms p(t) θ� ✷ then (p(t), θ) ∈ ηp.

The collecting domain we can take to capture these observations is S = (Pred →
℘(Atoms×Subst),≤). Namely for each predicate p we have a set of pairs (p(t), θ)
with the intended meaning that the predicate p computes a substitution θ for
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its arguments if called with argument t. The order is obtained again by point-
wise extension of the subset order on ℘(Atoms×Subst). There exists a Galois
connection from D to S. The abstraction is defined as

α(D) = λp(x).{(p(t), σ) | p(t) ∈ Atoms, δ ∈ D(p(x)) successful,
θ = res(δ), ∃σ = mgu(p(x)θ, p(t))}

(8)

Again it can be checked that program P is I/O-correct with respect to {ηq}q∈Pred

iff α([[P ]]) ≤ η. The best abstraction of TP in S is explicitly defined as

T SP (I) = λp(x).{(p(s), ρ◦θ) | ∃(p(t)← p1(t1), . . . , pn(tn)) ∈ P, p(s) ∈ Atoms,
ρ=mgu(p(t), p(s)), ∀i ≤ n (pi(ti)ρ, θi) ∈ I(pi(xi)),
θ=mgu((p1(t1), . . . , pn(tn))ρ,

(p1(t1)ρθ1, . . . , pn(tn)ρθn))}.
The semantics (S, T SP ) (a variant of the S-semantics [24]) is guaranteed not to
lose any information about the Input/Output behaviour by the following lemma.

Lemma 3. Let α : D → S be defined as in (8). Then there exists a function
γ : S → D such that (D,S, α, γ) is a Galois connection and is fully precise with
respect to TP .

As before the sufficient condition T SP (η) ≤ η can be unfolded and a verification
condition for I/O-correctness be obtained.

Theorem 2. Let P be a logic program and {ηp}p∈Predbe an I/O property.
P is I/O-correct with respect to {ηp}p∈Pred if for each clause p(t) ←
p1(t1), . . . , pn(tn) ∈ P and for each p(s) ∈ Atoms it is true that

ρ = mgu(p(t), p(s)) and
n∧
i=1

(pi(ti)ρ, θi) ∈ ηpi implies (p(s), ρ◦θ) ∈ ηp, (9)

where θ = mgu((p1(t1), . . . , pn(tn))ρ, (p1(t1)ρθ1, . . . , pn(tn)ρθn)).

By lemma (3) the abstraction is precise. Then, by lemma (1), the proof method
is complete.
It is worth noting that for particular classes of specifications, verification of
I/O-correctness boils down to verification for success-correctness. For example
consider closed specifications, such that for each q, (aθ, ε) ∈ ηq implies (a, θ) ∈ ηq.

Lemma 4. Given a set of closed specification {ηq}q∈Pred then there exists a
success property {ζq}q∈Pred , with each ζq = {a | (a, ε) ∈ ηq}, such that P is
I/O-correct with respect to {ηq}q∈Pred if and only if P is success-correct with
respect to {ζq}q∈Pred

This result is essentially a generalization of results in [7, Th. 4.4] and in [22,
Prop. 3.2], where it has been proved for I/O specifications like ϕp _ ψp =
{(a, θ) | a ∈ ϕp ⇒ aθ ∈ ψp}, where ϕp and ψp are subsets of Atoms and each ϕp
is substitution closed.
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5 I/O and Call Correctness

Some verification conditions proposed in the literature (see, for exam-
ple, [23,5,3,7]) take into account a property which is stronger than I/O cor-
rectness, i.e. call correctness. In fact it requires in addition to I/O correctness
that each predicate is called accordingly to a given specification. Having to con-
sider call patterns, which depend on the selection rule, we assume a leftmost
selection rule for SLD derivations.
The call and I/O behaviour can be specified by a set ξq ⊆ Atoms×(Atoms ∪
Subst) associated to each predicate q. The idea is that, if the pair (p(t), θ) ∈ ξp,
then if p is called with argument t, it computes the substitution θ. If (p(t), q(s)) ∈
ξp then a call q(s) is generated in the derivation for p(t) with a leftmost selec-
tion rule. A program P is call-correct with respect to call-properties {ξq}q∈Pred

of Call iff for each predicate p

p(t) θ� ✷ implies (p(t), θ) ∈ ξp

and

p(t)�∗L 〈q(s),G〉 implies (p(t), q(s)) ∈ ξp,

where G1 �∗L G2 means that by applyng SLD resolution with a leftmost selec-
tion rule the goal G1 rewrites to G2.
A suitable domain is given by Call = (Pred → ℘(Atoms×(Atoms ∪ Subst)),≤).
The abstraction is

α(D) = λp(x). {(p(t), q(s)) | δ ∈ D(p(x)), δ′ = ∂θ(δ),first(δ′) = p(t),
last(δ′) = 〈q(s),G〉}⋃ {(p(t), σ) | δ ∈ D(p(x)), δ′ = ∂θ(δ) successful,
first(δ′) = p(t), res(δ′) = σ}.

(10)

It collects calls and computed substitutions. The corresponding best abstract
operator TCall

P is defined as follows

TCall
P (I) = λp(x). Idp ∪ {(p(s), q(r)) | ∃p(t)← p1(t1), . . . , pn(tn), ∃k ≤ n,

∃θ0, . . . , θk−1, θ0=mgu(p(t), p(s)),
∀i < k (pi(ti)θ0 · · · θi−1, θi) ∈ I(pi(xi)),
(pk(tk)θ0 · · · θk−1, q(r)) ∈ I(pk(xk))}⋃ {(p(s), θ0 · · · θn) | ∃p(t)← p1(t1), . . . , pn(tn),
θ0, . . . , θnsuch thatθ0=mgu(p(t), p(s)),
∀i ≤ n (pi(ti)θ0 · · · θi−1, θi) ∈ I(pi(xi))},

where Idp = {(p(s), p(s)) | p(s) ∈ Atoms}. The following lemma shows that
no information about calls and successes is lost in the computation of abstract
iterates.

Lemma 5. Let α : D → Call be defined as in (10). Then there exists a function
γ : Call → D such that (D,Call , α, γ) is a Galois connection and is fully precise
with respect to TP .
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The usual sufficient verification condition is TCall
P (ξ) ≤ ξ, and because of lemma

(5), the method is complete.

Theorem 3. Let P be a logic program and {ξp}p∈Pred be a call-property. P is
call-correct with respect to {ξp}p∈Pred if for each clause p(t)← p1(t1), . . . , pn(tn)
it is true that

∀p(s) ∈ Atoms, θ0 = mgu(p(s), p(t)), ∀θ1, . . . , θn

∀k ≤ n if ∀i < k (pi(ti)θ0 · · · θi−1, θi) ∈ ξpi and (pk(tk)θ0 · · · θk−1, q(r)) ∈ ξpk

then (p(s), q(r)) ∈ ξp

and

if ∀i ≤ n (pi(ti)θ0 · · · θi−1, θi) ∈ ξpi then (p(s), θ0 · · · θn) ∈ ξp

Indeed the verification condition is quite complex. Anyway, if we consider
more restricted classes of assertions, we can derive well known verification meth-
ods.

5.1 The Method of Drabent and Maluszynski

The method of Drabent and Maluszynski [23] can be derived by considering as
specifications DM pre-post properties {prei _ post i}i∈I , where I is a set of
indices and, for each i ∈ I, prei _ post i is a basic pre-post specification, that is a
set {preip _ post ip}p∈Pred , with prep ⊆ Atoms and each postp ⊆ Atoms×Atoms.
A program P is DM-correct with respect to {prei _ post i}i∈I iff for each i ∈ I
and each predicate p

∀p(t) ∈ preip p(t) θ� ✷ implies (p(t), p(t)θ) ∈ post ip
and

∀p(t) ∈ preip p(t)�∗L 〈q(s),G〉 implies q(s) ∈ preiq.
The domain of such specifications can be defined as

DM = (℘(Pred → ℘(Atoms)×℘(Atoms×Atoms)),⊇)
and each element pre _ post = {prei _ post i}i∈I can be concretized into an
element of Call

γ(pre _ post) = λp(x).{(p(t), θ) | ∀i ∈ I p(t) ∈ preip ⇒ (p(t), p(t)θ) ∈ post ip}⋃{(p(t), q(s)) | ∀i ∈ I p(t) ∈ preip ⇒ q(s) ∈ preiq}.
It can be checked that γ has a left adjoint α, hence there is a Galois connection
between Call and DM. By composing with the Galois connections between D

and Call , we soon obtain a Galois connection between D and DM.
As usual, the verification condition can be extracted from

TDMP (pre _ post) ≤ pre _ post , (11)
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where TDMP is the best abstraction of TP , which is equal to the best abstraction of
TCall
P with respect to the Galois connection between Call and DM, by abstract

interpretation theory. It can be checked that in case the property to verify is
a single basic pre-post specification, that is a DM property {prei _ post i}i∈I
with I a singleton, then the verification condition is exactly (an extensional
version of) the verification condition of the method of Drabent and Maluszynski.

Theorem 4. Let P be a logic program and {prep _ postp}p∈Pred be a basic
pre-post property. Then P verifies the verification condition of the method of
Drabent and Maluszynski with respect to {prep _ postp}p∈Pred if and only if
condition (11) is verified.

It is not difficult to show that the abstraction is precise (it suffices to prove the
precision of the abstraction from Call and DM with respect to TCall

P ). Hence,
the method derived from condition (11) is complete.
Notice that this does not represent a proof of completeness of the method of
Drabent and Maluszynski, since in this case, the stronger property to be found
must be again a pre-post property {prei _ post i}i∈I with I a singleton and this
is a stronger requirement than precision of abstraction.

5.2 The Method of Bossi and Cocco, Types and Modes

The method of Bossi and Cocco is obtained by considering as basic pre-post
specifications a pair prep _ postp for each predicate p, where prep and postp are
substitution closed subsets of atoms. A program P is BC-correct with respect to
BC−properties {prei _ post i}i∈I iff for each i ∈ I and each predicate p

∀p(t) ∈ preip p(t) θ� ✷ implies p(t)θ ∈ post ip
and

∀p(t) ∈ preip p(t)�∗L 〈q(s),G〉 implies q(s) ∈ preiq.
We can consider as a domain

BC = (℘(Pred → ℘↑(Atoms)×℘↑(Atoms)),⊇),
where ℘↑(Atoms) is the set of substitution closed sets of Atoms . Following [3], an
element pre _ post of BC can be viewed as an element of DM through the func-
tion γ(pre _ post) = {λp(x).pre ip _ (Atoms×post ip) | i ∈ I, (prei _ post i) ∈
(pre _ post)}. It gives raise to a Galois connection between DM and BC Then,
by composing abstractions and concretizations, a Galois connection (D,BC, α, γ)
is obtained. As in the previous case a sufficient condition for correctness is

TBCP (pre _ post) ≤ pre _ post , (12)

from which a verification condition can be derived. The condition obtained in
the case of singleton BC−properties, is exactly (an extensional version of) the
verification condition of the method of Bossi and Cocco [5].
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Theorem 5. Let P be a logic program and {prep _ postp}p∈Pred be a basic
BC−property. Then P verifies the verification condition of the method of Bossi
and Cocco if and only if condition (12) is verified.

Also in this case completeness of the method can be shown by proving precision
of the abstraction from DM and BC. Also in this case, the same proviso applies
about the difference between the completeness of the method derived from (12)
and the method of Bossi and Cocco.
For what concerns types and modes, we can view the set of type assignments and
mode assignments to predicates as further abstractions with respect to BC and
can use the same techniques used to go from DM to BC. The result is that we
completely reconstruct the hierarchy of [3], by reducing the relationships between
proof methods to Galois connections between the corresponding domains.

6 Intensional Specifications

Properties considered so far were extensional sets of atoms. In this section we
want to consider intensional properties expressed in a formal specification lan-
guage. Our idea is that this corresponds to a further step of abstraction.
We will consider the case of success-correctness only. Similar constructions can
be given for the other notions of correctness.

Let us consider a first order language L = 〈Σ,Π, V 〉. Let F be a set of formu-
las (also called assertions) of L, expressing properties of interest of arguments
of predicates. We assume the signature of L to include functions, constants and
variables of the programs we want to verify. Let a tuple of variables xp1, . . . , x

p
n

be associated to each p ∈ Π with arity n.
We need to define what it means for an atom p(t) to satisfy a property Φ

of F . We consider two cases.
In the first one we fix a term-interpretation I = 〈Terms(Σ, V ), ΣI , ΠI〉, that
is the set of non-ground terms seen as an L structure. An atom p(t1, . . . , tn) is
said to I-satisfies the formula Φ [xp1, . . . , x

p
n] of F iff for each σ

I |=σ[xp
1 ,... ,x

p
n\t1,... ,tn] Φ [x

p
1, . . . , x

p
n] .

In the second case we consider derivability from a theory Γ of formulas of F .
That is the atom p(t1, . . . , tn) Γ -satisfies the formula Φ [xp1, . . . , x

p
n] of F iff

Γ  Φ [xp1, . . . , x
p
n\t1, . . . , tn].

Example 2. Let the formulas of F be the set of first-order classical logic formu-
las built from atomic formulas gr(t), with the signature Σ of the program in
example (2).
Let I = (Terms(Σ, V ), ΣI , {grI}) be the interpretation given by the set of all
terms of L, with grI the set of ground terms. Then app([a] , [ ] , d) I-satisfies the
formula gr(xapp

3 ) ⇒ gr(xapp
1 ) ∧ gr(xapp

2 ). In fact it is true that d ∈ grI implies
[a] ∈ grI and [ ] ∈ grI .
If we consider the theory Γ = {gr(f(t1, . . . , tn)) ⇔ gr(t1) ∧ · · · ∧ gr(tn)}f∈Σ,
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we have that app([a] , [ ] , d) Γ -satisfies the formula gr(xapp
1 ) ∧ (gr (xapp

2 ) ⇔
gr(xapp

3 )), since gr([a])∧ (gr ([ ])⇔ gr(d)) can be derived straightforwardly from
the axioms of Γ .

Let us define what it means for a program P to verify a set of assertions. Given
the set of assertions {Θp}p∈Pred , Θp ∈ F , P is I−success-correct (resp., Γ -

success-correct) with respect to assertions {Θp}p∈Pred iff ∀p(t) ∈ Atomsp(t) θ� ✷

implies p(t)θ I-satisfies (resp., Γ -satisfies) Θp.
Two natural pre-orders can be defined on F , i.e.

Θ $I Φ iff I |= Θ ⇒ Φ

and

Θ $T Φ iff Γ,Θ  Φ.

In both cases we can take the quotients of F with respect to the induced equiv-
alences and define the partial orders AI = (Pred → F/≡I ,$I) and AΓ =
(Pred → F/≡Γ ,$Γ ), whose elements will be represented as sets {Θp}p∈Pred ,
where each Θp is a formula of F with free variables corresponding to arguments
of p. The order is given by the pointwise extension of the order between formulas
of F (modulo ≡I or ≡Γ , resp.).

Consider the following function from AI to C:
γI(Θ) = λp(x).{p(t) ∈ Atoms | p(t) I-satisfies Θp},

If (F/≡I ,$I) is a complete lattice and the meets of F/≡I behave like classical
and (that is p(t) I-satisfies Θ & Φ iff p(t) I-satisfies Θ and Φ), it can easily
be checked that AI is a complete lattice and the function γI is meet-additive.
Hence γI determines a Galois connection with C. In the case of the domain AΓ
the corresponding function is

γΓ (Θ) = λp(x).{p(t) ∈ Atoms | p(t) Γ -satisfies Θp},
which determines a Galois connection with C, if (F/≡Γ ,$Γ ) is a complete lattice
and the meet of F/≡Γ behaves like a classical and. We assume from now on to
work in classical logic and F to be closed by and. By what has been said, γI
and γΓ establish then Galois connections with C.
We can define the best abstractions of T CP on AI and AΓ . For example

T IP (Θ) = λp(x).
∨

p(t)←p1(t1),... ,pn(tn)∈P

∧
{Φ | I |=

n∧
i=1

Θpi [xi\ti]⇒ Φp [x\t]}.

The definition of T ΓP is similar.
It can be checked that P is I−success-correct (resp., Γ -success-correct) with
respect to assertions {Θp}p∈Pred iff αI(lfp(T CP )) ≤ Θ (resp., αΓ (lfp(T CP )) ≤ Θ),
where αI and αΓ are the adjoint functions to γI and γΓ . Again T IP (Θ) ≤ Θ and
T ΓP (Θ) ≤ Θ are sufficient conditions for I−success-correctness and Γ -success-
correctness, respectively. By exploiting their definition we obtain the following
verification conditions.
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Theorem 6. Let P be a logic program and {Φp}p∈Pred be assertions of F . A
sufficient condition for P to be I-success-correct with respect to {Φp}p∈Pred is
that for each clause p(t)← p1(t1), . . . , pn(tn) it is true that

I |=
n∧
i=1

Φpi [xi\ti]⇒ Φp [x\t] (13)

A similar theorem holds for Γ -success-correctness. These results are essentially
the verification methods proposed by Clark in [9] and by Deransart, who in [21]
decomposes condition (13) to get a more efficient proof method (annotation
method).

Example 3. Let us consider the program of example (1), the assertions F , the
interpretation I and the theory Γ of (2).
Let us consider the assertion Φapp = gr(xapp

3 ) ⇒ gr(xapp
1 ) ∧ gr(xapp

2 ). For the
clause app([], Y, Y ), it can easily be checked that I |= gr(Y ) ⇒ gr([]) ∧ gr(Y )
and Γ  gr(Y ) ⇒ gr([]) ∧ gr(Y ). For the clause app([X : Xs ] ,Ys, [X : Zs]) ←
app(Xs,Ys ,Zs) it can be showed that I |= (gr(Zs) ⇒ gr(Xs) ∧ gr(Ys)) ⇒
(gr([X : Zs ])⇒ gr([X : Xs]) ∧ gr(Ys)) and Γ  (gr(Zs)⇒ gr(Xs) ∧ gr(Ys))⇒
(gr([X : Zs ])⇒ gr ([X : Xs ]) ∧ gr (Ys)).
By the above theorems we conclude that the program of example (1) is I-success-
correct and Γ -success-correct with respect to the assertion gr(xapp

3 )⇒ gr(xapp
1 )∧

gr(xapp
2 ).

If the relations  or |= are decidable, we have an effective test to check the
conditions. As an example, we could consider the language of properties by
Marchiori [26,27], which allows us to express groundness, freeness and sharing
of terms. [26] contains also a decidable axiomatization for a fragment of the
language.

Concerning the completeness of the axiomatic method, the same result of
extensional properties holds, namely the completeness of the method is equiva-
lent to the precision of the abstraction. In this framework this means that the
strongest set of assertions {ϕp}p∈Pred , for which P is I-success-correct, veri-
fies condition (13). Similarly for Γ -success-correctness. Obviously the precision
strongly depends on the choice of the language and of the set of properties F .

7 Conclusion

Abstract interpretation allows us to make explicit the relation among semantics
at different levels of abstraction. As already advocated by the Cousots [20,16],
this can be very helpful to understand, organize and synthesize proof methods for
program verification. We have shown this in practice, by providing a framework
for the verification of logic programs, based on abstract interpretation. In this
framework we have defined various proof methods, each obtained in a uniform
way by unfolding pre-fixpoint relations on domains obtained by abstracting a
concrete semantics of derivations. Some of these methods were already known.
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However, we have derived new more general methods and provided a unified
view of a class of proof methods, which makes clear the mutual relationship us-
ing tools and structures of abstract interpretation.
In particular, we have shown that the relation between operational and declar-
ative properties is just a matter of abstraction. I/O correctness boils down to
success correctness for properties which are closed under instantiation. As we
might expect, stronger properties require more complex proof methods. Analo-
gously, the same specification given in terms of pre and post conditions can be
interpreted as a more abstract (weaker) property, in the case of I/O correctness,
or as a stronger property in the case of call correctness.

It is worth noting again, that, by using abstract interpretation theory, the
definition of a new verification method simply requires the formalization of the
property we are interested in as an abstraction of SLD-derivations (and the
abstraction can be based on a formal assertions language). Once we have the ab-
straction, we systematically derive the specific sufficient correctness conditions.
All the general theorems about correctness and completeness hold by construc-
tion.

Our results can be applied to abstract diagnosis [12]. The verification con-
dition on the abstract operator is essentially the same as the notion of partial
correctness used there. Our conditions might then be used in a similar way to find
potential errors. The new relevant features, to be added to abstract diagnosis,
are intensional specifications and specifications given as pre- and post-conditions.
Using the “call behaviour” model for pre- and post-conditions would allow us to
get information about wrong procedure calls.

There are some interesting open problems related to intensional specifications
and their relation to traditional abstract domains used in program analysis. The
latter have indeed been developed to model specific properties (such as modes,
types, groundness, etc.). An abstract element can indeed be viewed as an in-
tensional specification of the set of concrete atoms which is its concretization.
Traditional program analysis domains usually lead to abstract interpretations
which are not complete. The proof methods based on these domains are then
sound but in general not complete. However, most of the proving boils down
to computation on the abstract domain. On the other hand, the same program
properties can logically be modeled by intensional specifications such as those
considered in Section (6) (see, for example, [27]). These domains might be com-
pared to the traditional ones from the viewpoint of precision. Some of them might
even turn out to be complete. Hence the logical domains derived for verification
might be useful for program analysis.

The hierarchy of proof methods discussed in this paper is shown in Figure (1).
It is worth noting that every proof method in the hierarchy can be further
abstracted by using intensional specifications or properties specified by elements
of program analysis abstract domains.
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Fig. 1. The hierarchy of semantics and verification methods.
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Abstract. In logic programming, almost no work has been done so far
on proving that certain queries cannot succeed. Work in this direction
could be useful for queries which seem to be non-terminating. Such
queries are not exceptional, e.g. in planning problems. The paper de-
velops some methods, based on abduction, goal-directedness, tabulation,
and constraint techniques, for proving failure of queries for definite logic
programs. It also reports some experiments with various tools.

1 Introduction

Given some logic program, executing a query may have many different outcomes.
It may terminate or run forever (in practice until some resource is exhausted).
In both cases, the query may or may not lead to answers. There is a large body
of literature on termination analysis (see [7] for a survey). However, termination
conditions are not decidable and automated methods are based on analysing
the size of syntactical structures. So there is a substantial class of programs for
which automated termination analysis fails. For some of these, loop checking
methods [2,3,15] monitoring the execution, bring some relief, by pruning some
infinitely failing branches. Methods have to choose between pruning too much,
causing incompleteness in the search for solutions, and preserving completeness
but still allowing some infinite computations. Also an execution mechanism aug-
mented with tabling such as XSB [14] or an approach such as [4] reduces the
number of non-terminating queries.

So far, there are almost no works on program analysis which attempt to
recognise (infinitely) failing queries. Problems with planners, which generate
more and more complex objects until one is found with a particular property
have been the incentive to start our research. It would be very useful to be able
to stop their infinite search for a solution to an unsolvable problem. Also certain
program properties can be proven by proving failure of a particular query. As a
trivial example, consider a program which knows about even and odd numbers.
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One can prove the program does not define a number which is both even and
odd by proving that a query asking for such a number fails.

Conceptually, there is a simple way to show that a query must fail: find a
model of the program in which the query is false. In [8] some of the authors
of the current paper made a first exploration of the issues involved in finding
such a model for definite programs. The current paper develops two methods
for automating the search for a pre-interpretation underlying such a model. A
first approach combines abduction and tabulation to direct the search for a
pre-interpretation. A second approach considers the abducibles as constraints
and uses techniques from finite domain constraint solving [20] to further prune
the search. Also the suitability of alternative methods for solving this problem is
analysed. The use of a general purpose model generation tool [16,17] is evaluated.
We have also explored whether tools for type inference [11,5] can show that such
queries have an empty success set and whether conjunctive partial deduction [13]
can specialise such queries into a trivially failing program.

Section 2 recalls the basics about pre-interpretations and introduces a triv-
ial example. Section 3, explains how a pre-interpretation can be described by a
number of facts, how a program can be abstracted as a DATALOG program, and
how the least model based on that pre-interpretation can be queried by evaluat-
ing the abstracted query on the DATALOG program. In section 4, a procedure
combining abduction with tabulation and a variant handling the abducibles as
constraints are developed. Other approaches we are aware of which can directly
or indirectly prove failure are discussed in Section 5. In section 6, the different
approaches are compared. Finally, in section 7, we draw some conclusions. We
assume some familiarity with the basics of tabulation, e.g. [19,14,21].

2 Preliminaries

A pre-interpretation J of a program P consists of a domain D = 〈d1, . . . , dm〉
and, for every functor f/n a mapping fJ fromDn toD. An interpretation I based
on a pre-interpretation J consists of a mapping pI from Dn to {true, false} for
every predicate p/n in P . An interpretation is often identified by the set of atoms
p(d1, . . . , dn) for which pI(d1, . . . , dn) is mapped to true. An interpretation M
is a model of a program P iff all clauses of P are true under the interpretation
M . A definite program always has a model (map pI(d1, . . . , dn) to true for
all predicates and all domain elements). The intersection of two models is also
a model and there is always a unique least model. As a consequence, if an
existentially quantified conjunction ∃

X
L1 ∧ . . . ∧ Ln is false in a model based

on a pre-interpretation J then it is also false in the least model based on that
pre-interpretation. So, given a pre-interpretation, it suffices for our purposes to
evaluate the conjunction in the least model.

Example 1. Even/odd
even(0). even(s(X)) ← odd(X). odd(s(X)) ← even(X).
D = {E ,O}
0J = E sJ(E) = O sJ(O) = E
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The least model is {even(E), odd(O)}. The query ← even(X), odd(X) fails be-
cause ∃Xeven(X), odd(X) is false in this model. Executing the program with
SLD or with a tabulating procedure (e.g. XSB [14]) results in infinite failure.

3 Proof Procedures

Pre-interpretations based on finite domains have been used in the analysis of
logic programs. The approach was pioneered by Codish and Demoen [6] for
groundness analysis and subsequently by others, e.g. by [10] for type analysis.
They used abstract compilation and represented the functions fJ/n of the pre-
interpretation by n+ 1-ary relations over the domain and replaced all terms in
the program by their pre-interpretation. This gives a so called abstract program
which is a DATALOG program. Its finite model expresses declarative properties.

Example 2. In Example 1, we can define the pre-interpretation by:
0J(E). sJ(E ,O). sJ(O, E).
To abstract the program, non-variable terms are replaced by fresh variables
which are defined by the appropriate relations (a term f(t1, . . . , tn) is replaced
by a fresh variable X and the atom fJ(t1, . . . , tn, X) is added to the body; this
construction is repeated until all terms have disappeared). Variables are left as
they are, the effect of the abstraction is that they now range over the domain of
the pre-interpretation. This gives the following program:
even(X) ← 0J(X)
even(Y) ← sJ(X,Y), odd(X).
odd(Y) ← sJ(X,Y), even(X).
The clauses together with the facts of the pre-interpretation are a DATALOG
program. The least model is {0J(E), sJ(E ,O), sJ (O, E), even(E), odd(O)}. The
formula ∃Xeven(X), odd(X) is false in this model. While the query← even(X),
odd(X) is nonterminating under SLD, it fails finitely under well known proof
procedures such as bottom-up evaluation after magic-set transformation or top-
down methods enriched with tabulation such as OLDT [19] and XSB [14].

4 The Search for the Right Pre-interpretation

To prove that a query for a program P, which seems to run forever without
returning a solution, fails, one has to select a domain and a pre-interpretation
and has to show finite failure when executing the abstracted query with the
abstracted program. A straightforward way consists of selecting a domain, and
trying all pre-interpretations until one is found for which the query fails. If none
exists, one can try again with a larger domain. However, for programs with a
substantial number of function symbols and constants, this quickly results in
a very large search space. Indeed, with a n-element domain, an m-ary functor
has n(nm) possible pre-interpretations.
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4.1 An Abductive Approach

To prune the search one can employ an abductive procedure: execute the ab-
stract program with an initially unknown pre-interpretation, and abduce the
different components of the pre-interpretation when they are needed during the
execution. As soon as the query succeeds, backtracking can be initiated. To do
so, one declares the predicates fJ/n + 1 as abducibles, add constraints that
the pre-interpretation of each functor f/n is a total function, i.e. that one fact
fJ(d1, . . . , dn, d) must be abduced for every combination 〈d1, . . . , dn〉 of domain
elements and employ a general purpose abductive procedure such as SLDNFA [9].
Some initial experiments showed the feasibility1, but also the need for a dedi-
cated procedure which allows to experiment with different control strategies. We
designed and implemented an abductive procedure for definite programs which
makes use of tabulation and which has the integrity constraints on the pre-
interpretation hardwired in the code. By doing some experiments we gained a
better understanding of the issues which are important to control the search. For
example we observed that it performed better when tabling only the most gen-
eral call for each predicate. Below we describe the procedure as (inference) rules
which map sets of clauses (a “state”) to sets of clauses. The control —in which
order the different rules are applied— is left undetermined. The system attempts
to abduce a pre-interpretation such that the query fails under a top-down exe-
cution with tabulation of the abstract program, i.e. is false in the corresponding
model of the abstract program.

We need some notational conventions. The state of the computation is rep-
resented as a set of clauses. The symbol Cl is used to represent a clause and
the symbol Cls to represent a set of clauses. We use Cl :: Cls to represent
the set of clauses {Cl } ∪ Cls . A and B are used to represent atoms, As and
Bs to represent sequences of atoms. A clause is represented as H ← As in which
the head H is an atom (or false). Given a query ← As, the initial state of
the derivation is represented as (false ← As). p/n refers to a predicate of the
original program, calls to such predicates are tabled. abducef(t1,...,tn,X)
is the notation we use for a call to an abducible predicate fJ(t1,...,tn,X) of
the pre-interpretation. These calls are not tabled. In a state of the derivation
(a set of clauses), the calls p(X) which are tabled are represented implicitly
through the occurrences of literals Lookup(p(t)) in the bodies of the clauses.
The answers to tabled calls are represented by clauses with an empty body.

We assume a fixed number of domain elements. Rule 1 handles a new call
to a program predicate. The call is wrapped inside Lookup to indicate that it is
waiting for answers. Nothing else needs to be done when the predicate was called
before. Otherwise, the clauses defining the predicate are added. Eventually, they
will lead to facts which are answers to the most general call of the predicate.
Rule 2 describes the lookup step: a (wrapped) call is unified with an answer
and the resolvent is added (for simplicity of presentation, we assume the state
remains the same when —up to renaming— the same clause is derived a second
1 Because the procedure lacks tabulation, some extra transformation of the clauses
of recursive predicates was required.
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time). Rule 3 resolves an abducible with an already abduced fact and adds the
resolvent. Rule 4 abduces a new fact. Several domain elements are available, so
a choice point is created. Rule 5 detects that the query has an answer, i.e. that
the chosen pre-interpretation does not satisfy, and triggers backtracking.

1. H ← p(t),As :: Cls
Let p(Xi) ← Bsi (i: 1,. . .,m) be the clauses in the definition of p. If
this is the first call to p (Cls does not contain a clause with an atom
Lookup(p(r))) then the new state is:
p(X1)←Bs1 ::. . .:: p(Xm)←Bsm :: H ← Lookup(p(t)),As ::Cls
Else the new state is:
H ← Lookup(p(t)),As :: Cls

2. H ← Lookup(p(t)),As :: p(s) ← :: Cls
where p(s) ← is a fact which unifies with p(t).
The new state is:
(H ← As)mgu(t,s) :: H ← Lookup(p(t)), As :: p(s) ← :: Cls

3. H ← abducef(t),As :: abducef(s) ← :: Cls
where abducef(s) ← is a fact unifying with abducef(t).
The new state is (use of abduced fact):
(H ← As)mgu(t,s) :: H ← abducef(t),As :: abducef(s) ← :: Cls

4. H ← abducef(t1,. . .,tm,t),As :: Cls
Let d1,. . .,dm be domain elements which unify respectively with t1,. . .,tm

and such that Cls has not yet a fact abducef(d1,. . .,dm,d) ← for some
domain element d. A choice point is created. A domain element d is selected
and the new state is (abduction of a new fact):
abducef(d1,...,dm,d) ← :: H ← abducef(t1,...,tm,t),As ::Cls

5. (false ←) :: Cls
Backtrack to the state corresponding to the most recent choice point with
an untried domain element d.

We have a proof that the query fails when the system reaches a stable final
state (no new clauses can be inferred —up to renaming— and (false ←) is
not part of the state). The search for a proof fails when the rewriting fails
(rule 4 has exhausted all choices for a tuple d1,. . .,dm of domain elements). In
the latter case, one could increase the size of the domain and start over. The
application of the rules is nondeterministic. An obvious control strategy delays
the introduction of choice points as long as possible2. We have experimented
with various search rules (selection of clause) and computation rules (selection
of literal). In section 6 we give more details on the system which behaved best.
Experiments revealed that none of the strategies is superior and that overall
performance on a particular problem is rather dependent on the order in which
the pre-interpretations of the different functors are abduced. This motivated the
search for a better approach.
2 Symmetries: with n domain elements, each pre-interpretation can be mapped into
an equivalent one (for what concerns the truth of the query in the least model) by
permuting the domain elements. Our implementations avoid most symmetries.
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4.2 A Constraint Approach

From now on, we use a slightly different notation for the abstract program. The
abstraction of an atom p(f(a)) is denoted as abduce(f(a),X), p(X) (We use
abduce(f(a),X) as an abbreviation of abducea(Y), abducef(Y,X).).

The problem with the abductive approach can be illustrated with the follow-
ing example: Assume that the pre-interpretation of a functor f/1 has already
been abduced as abduce(f(d1),d1) and abduce(f(d2),d2) and that a clause
false ← abduce(f(g(h(a))),X), abduce(g(h(a)),X) is derived. Whatever
is the pre-interpretation for a, h, and g, false ← will be derived. The abduc-
tive systems will not revise the pre-interpretation for f before having thrashed
over most of the pre-interpretations of a, h, and g.

A constraint based approach can to a large extent avoid such problems. We
consider the abducibles as constraints and use a special purpose constraint solver
which checks the existence of a pre-interpretation which satisfies all constraints.
In the above example, if the pre-interpretation of f/1 is constrained to the shown
one and the clause false ← abduce(f(g(h(a))),X), abduce(g(h(a)),X) is
derived, then the solver detects the inconsistency and triggers backtracking.

This approach makes it necessary to reformulate our abductive system. The
major difference is wrt. the tabulation. The answers to a tabled predicate are no
longer ground facts but constrained facts (of the form p(X) ← abduce(...),
..., abduce(...)). A problem is that one can have an infinite number of
syntactically different answers. However, with a finite domain and a fixed pre-
interpretation, the set of answers (its model) is finite. So it must be possible
to add constraints which enforce the finiteness. Before presenting the formal
system, we illustrate the main ideas with the even/odd example.

Example 3. Even/odd
The program is as follows:
even(X) ← abduce(0,X).
even(Y) ← abduce(s(X),Y), odd(X).
odd(Y) ← abduce(s(X),Y), even(X).

We represent the state of the derivation by three components, the set of
clauses, the set of answers and the constraint store, holding the set of con-
straints (as before the component with the fixed abstract program is left out).
ε stands for the empty set. Lookup is abbreviated as L, and false, abduce, even
and odd respectively as f, ab, e and o. Finally, sb is the abbreviation of sub-
sumed. In the initial state ((0) in Table 1) the only clause is the query. The
leftmost atom of a program predicate is selected and the two clauses defining
even/1 are activated (1). The second clause is a constrained fact. In princi-
ple, we have to create a choice point. The first alternative adds the constraint
subsumed(even(X) ← abduce(0,X), {}) to the constraint store in an attempt
to have the new fact subsumed by the existing ones. The constraint is false for
every pre-interpretation, so the second alternative is taken: The fact is added to
the set of answers and the constraint not(subsumed(even(X) ← abduce(0,X),
{})) is added to the store. The constraint is redundant wrt. the (empty) store, so
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clauses answers constraint store

0 f ← e(X), o(X) ε ε

1 f ← L(e(X)), o(X) ε ε
e(X)← ab(0, X)
e(Y )← ab(s(X), Y ), o(X)

2 f ← L(e(X)), o(X) e(X)← ab(0, X) ε
e(Y )← ab(s(X), Y ), o(X)

4 f ← L(e(X)), o(X) e(X)← ab(0, X) ε
e(Y )← ab(s(X), Y ), L(o(X))
o(Y )← ab(s(X), Y ), L(e(X))

6 f ← L(e(X)), o(X) e(X)← ab(0, X) ε
f ← ab(0, X), o(X)
e(Y )← ab(s(X), Y ), L(o(X))
o(Y )← ab(s(X), Y ), L(e(X))
o(Y )← ab(s(0), Y )

8 f ← L(e(X)), o(X) e(X)← ab(0, X) ε
f ← ab(0, X), L(o(X)) o(Y )← ab(s(0), Y )
e(Y )← ab(s(X), Y ), L(o(X))
o(Y )← ab(s(X), Y ), L(e(X))

10 f ← L(e(X)), o(X) e(X)← ab(0, X) ε
f ← ab(0, X), L(o(X)) o(Y )← ab(s(0), Y )
f ← ab(0, X), ab(s(0),X)
e(Y )← ab(s(X), Y ), L(o(X))
e(Y )← ab(s(s(0)), Y )
o(Y )← ab(s(X), Y ), L(e(X))

11 f ← L(e(X)), o(X) e(X)← ab(0, X) f ← ab(0, X), ab(s(0), X)
f ← ab(0, X), L(o(X)) o(Y )← ab(s(0), Y ),
e(Y )← ab(s(X), Y ), L(o(X))
e(Y )← ab(s(s(0))), Y ),
o(Y )← ab(s(X), Y ), L(e(X))

12 f ← L(e(X)), o(X) e(X)← ab(0, X) f ← ab(0, X), ab(s(0), X)
f ← ab(0, X), L(o(X)) o(Y )← ab(s(0), Y ) sb(e(Y ))← ab(s(s(0)), Y ),
e(Y )← ab(s(X), Y ), L(o(X)) {e(X)← ab(0, X)})
o(Y )← ab(s(X), Y ), L(e(X))

Table 1. Constraint based execution of even/odd

the store remains empty (2). The call odd(X) is selected in the second clause, the
clause defining odd/1 is added, and its atom even(X) is selected (4). The stored
answer is used to resolve with the first and third clause, this results in two new
clauses 3 (6). In the first, the atom odd(X) is selected, the last is an answer for
odd/1. We have a choice point but again the first alternative creates an incon-
sistent store and the second alternative a redundant constraint, so the net effect
is that the fact is added to the answer set (8). This answer is used to resolve
with the second and third clause, resulting in two new clauses (10). The first one

3 Remark that abduce(s(X), Y), abduce(0, X) is abbreviated by abduce(s(0),

Y).
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is a constraint which is consistent with the current store and added to it (11),
It means that 0 and s(0) should be different under the pre-interpretation. The
second is an answer for even/1. This time we have a real choice point. The first
alternative enforces the constraint that the new answer is subsumed by the exist-
ing answers, so the answer is not stored and the constraint subsumed(even(Y))
← abduce(s(s(0)),Y), {even(X) ← abduce(0,X)}, which is consistent with
the current store is added to it. It actually means that 0 and s(s(0)) must be equal
under the pre-interpretation. A stable state is reached so the query is false in the
models of the pre-interpretations satisfying the constraints of the store. The pre-
interpretation abduce(0,d1), abduce(s(d1),d2) and abduce(s(d2),d1) is a
solution (the subsumption test reduces to subsumed(even(d1), {even(d1)})
and yields true). Observe that a not(subsumed(...)) constraint is added to the
constraint store each time that a new answer is added to the answer set. The
conjunction of these constraints enforces finiteness of the answer set and termi-
nation of the algorithm (The number of distinct atoms in the model of a m-ary
predicate is limited to mn, so at most mn times an answer can be added that is
not subsumed by the previous ones.). An alternative approach which also ensures
termination and completeness of the search discards the not(subsumed(...))
constraints and uses a weaker but easier to verify constraint which restrict the
number of answers for a predicate p/m to mn.

Below, we use ✸ to separate the three components of the state. The sym-
bols As and Bs stand for any sequence of atoms, while Abds stands for a sequence
consisting solely of abduce atoms. Store stands for a conjunction (set) of con-
straints, Answers for a set of answers (constrained facts) and Answersp for the
subset of answers about predicate p . The initial state is given by false ←
As ✸ ε ✸ ε where As is the query. Assume n domain elements. Remember that
arguments of program predicates of the abstracted program are always variables.

1. H ← Abds, p(X), As :: Cls ✸ Answers ✸ Store
Let p(Xi) ← Bsi (i : 1, . . . ,m) be the clauses in the definition of p. If
this is the first call to p (Cls does not contain a clause with an atom
Lookup(p(Y )) then the new state is :
p(X1) ← Bs1 ::. . .:: p(Xm) ← Bsm :: H ← Abds,Lookup(p(X)),
As :: Cls ✸ Answers ✸ Store
Else the new state is:
H ← Abds, Lookup(p(X)), As :: Cls ✸ Answers ✸ Store

2. H ← Abds1, Lookup(p(X)), As :: Cls ✸

p(Y ) ← Abds2 :: Answers ✸ Store
The new state is:
(H ← Abds1, Abds2, As)mgu(X,Y ) :: H ← Abds1, Lookup(p(X)),
As :: Cls ✸ p(Y ) ← Abds2 :: Answers ✸ Store

3. false ← Abds :: Cls ✸ Answers ✸ Store
The new state is:
Cls ✸ Answers ✸ false ← Abds :: Store
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4. Cls ✸ Answers ✸ Store where Store is inconsistent.
Backtrack to the state corresponding to the most recent choice point with
an untried alternative.

5. p(X) ← Abds :: Cls ✸ Answers ✸ Store
A choice point is created. Under the first alternative the new system is:
Cls ✸ Answers ✸ subsumed(p(X) ← Abds, Answersp) :: Store
Under the second alternative the new system is:
Cls ✸ p(X) ← Abds :: Answers ✸

not(subsumed(p(X) ← Abds, Answersp)) :: Store

Rules 1 and 2 are as before. Rule 3 adds a new constraint to the constraint
store and rule 4 checks its consistency. Rule 5 processes a new answer and creates
a choice point. The first alternative adds a subsumption constraint and drops the
new fact. The second alternative adds a not-subsumed constraint to the store and
the answer to the answer set. The not-subsumed constraint is redundant when
the subsumed constraint creates an inconsistent store (often the case when a
first answer is added). The store is inconsistent when it has more than mn

answers for p/m. So an alternative is to drop the not-subsumed constraints and
to check the weaker constraint on the size of Answersp/m. Both cases guarantee
termination and completeness of the search for a given domain size.

The efficiency of the consistency checks is crucial for the overall performance.
Space lacks to give a full description of the encoding as a finite domain problem.
We sketch the main ideas using the even-odd example. Let D be the domain
of the pre-interpretation. We use two kinds of finite domain variables: vari-
ables Dt ranging over D and representing the pre-interpretation of the term t
and boolean variables Bt1=t2 indicating whether or not the terms t1 and t2 have
the same pre-interpretation. Such boolean variables are linked to the domain
variables through definitions Bt1=t2 ↔ Dt1 = Dt2 which ensure propagation of
new information. Which domain variables are created is determined by the terms
which occur in the constraints. Consider the constraint false ← abduce(0,X),
abduce(s(0),X). To handle it we introduce domain variables D0 and Ds(0). We
can translate the constraint in false ← D0 = X, Ds(0) = X or, after elimina-
tion of X: false ← B0=s(0) or B0=s(0) = 0. To express the connection between 0
and s(0), we add for all d ∈ D the constraint B0=d ≤ Bs(0)=s(d)

4. Note that
this implies the creation of domain variables Ds(d). Now consider the constraint
subsumed(even(Y)) ← abduce(s(s(0)),Y),{even(X) ← abduce(0,X),}. It
contains a new term s(s(0)), so a domain variable Ds(s(0)) is created and it is
linked with Ds(0) by adding for all d ∈ D the constraint Bs(0)=d ≤ Bs(s(0))=s(d).
The subsumption constraint is expressed as Bs(s(0))=0 = 1 (Its negation as
Bs(s(0))=0 = 0). This translation ensures that all choices which are made are
immediately propagated.

4 Or equivalently B0=d → Bs(0)=s(d).
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5 Alternative Approaches

Model generation. The logic program and the clause false ← query can be
considered as a logical theory. A model of this theory is a proof that the query
fails. There exist general purpose tools for generating models of logical theories.
FINDER [16,17], written in C, is such a tool, it takes as input a set of clauses in
a many-sorted first order language, together with specifications of finite cardi-
nalities of the domains for the sorts, and generates interpretations on the given
domains which satisfy all the clauses [16]. The systems performs an exhaustive
search for interpretations of the given language, using the declared clauses as
constraints to direct backtracking. A major difference between FINDER and our
approach is that there is no explicit control on the order of evaluation. FINDER
generates an interpretation and tests it against all clauses; if all clauses are true
with respect to the generated interpretation, we have a model that is accepted
and printed. If one or more of the clauses are false, the interpretation is adjusted
so as to generate an improved candidate interpretation. The process continues
until the search space is exhausted or a model has been found.

Regular approximations. Within the context of program analysis, the most obvi-
ous approach to prove failure is to add a clause shouldfail(X) ← query(X)
and to use one or another kind of type inference to show that the success-set of
shouldfail(X) is empty. A typical representative of such systems is described
in [11] which computes a regular approximation of the program. Roughly speak-
ing, for each argument of each predicate, the value it can take in the success-set5

are approximated by a type (a canonical unary logic program). Failure of the
query is proven if the types of shouldfail(X) are empty. Also set based anal-
ysis [12] can be used to approximate the success-set.

Program specialisation. One could also employ program transformation, and
more specifically program specialisation techniques to prove failure of the query.
If for the given query, the program can be specialised in the empty program,
then the query trivially fails. A technique which has almost the same power as
transformations based on the fold/unfold approach is conjunctive partial deduc-
tion [13]. By specialising conjunctions of atoms instead of single atoms, it can
achieve substantially better results than other specialisers. For example it can
specialise the even/odd program into the empty program for our example query.

6 Experiments

For the abductive systems we experimented extensively with 5 different control
regimes. We report here on the most successful one i.e. the system with the best
worst cases. In this system, as in all others, rule 5, which triggers backtracking,
has top priority. Rules 2 and 3, which use respectively tabled answers and ab-
duced facts to perform a resolution step, have equal priority, as well as rule 1
5 The set of ground atoms which are logical consequences of the program.
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for the case that the clause has a call to an already tabled predicate. If none of
these rules apply and there is an unprocessed clause with only calls to not yet
tabled program predicate, then rule 1 is applied on that clause. Otherwise rule 4
is applied on a selected clause and the pre-interpretation is extended.

In the constraint system, rule 4 which checks for the consistency of the Store
has top priority each time a constraint is added to the store as it can trigger
backtracking. Rule 5, which can create a choice point, has lowest priority. A first
implementation used the weaker constraints on the number of answers for each
predicate instead of the not-subsumed constraints. Using the latter resulted in
significant better pruning on the hard problems (and marginal slow-down on
easier ones). The finite domain solver is incremental.

Table 2 details the benchmarks6. Besides the name, the table gives the do-
main size, the number of functors, the number of abduced facts in a complete
pre-interpretation7, the number of predicates defined in the program, the to-
tal number of program clauses and the number of program clauses with a head
predicate of arity 1, of arity 2 and of arity 38.

odd even is a trivial example about even and odd numbers. wicked oe is
an extension which adds a call to each clause and 4 functors which are irrele-
vant for success or failure. It allows to see the effect of this on the search space.
appendlast, reverselast, nreverselast and schedule are small but hard
examples from the domain of program specialisation. The queries express pro-
gram properties (which have to be recognised by a specialiser to derive the empty
program). multiseto and multisetl are programs to check the equivalence of
two multisets, the first uses a binary operator “o” to build sets, the second uses a
list representation. The others are typical examples from a large set of planning
problems reasoning on multisets of resources. The first two use the “o” represen-
tation for the multiset, the next two the “l” representation. blockpair2o and
blockpair2l omit the for success or failure irrelevant argument for collecting
the plan (and have 6 functors less). blocksol is there to show what happens
when the query does not fail.9

The abductive systems are implemented in Prolog. The queries have been
executed with Prolog by BIM on a SUN sparc Ultra-2. The constraint system is
also written in Prolog, uses the SICSTUS finite domain solver and was running
under SICSTUS Prolog [18] on the same machine. FINDER is implemented
in C and was running on a IBM RS6000. Regular approximations (RA) were
computed with a system due to John Gallagher, conjunctive partial deduction
(CPD) with a system due to Michael Leuschel. Witold Charatonik was so kind
to run our examples on a tool (some info can be found in [5]) for set based
analysis (SBA) he developed together with Harald Ganzinger, Christoph Meyer,
Andreas Podelski and Christoph Weidenbach.

6 The code is available at http://www.cs.kuleuven.ac.be/˜henkv/pre
7 n facts and m domain elements yields mn/m! different pre-interpretations.
8 With arity k, a predicate can have 2(m

k) different interpretations.
9 One should in parallel run the query and interrupt the search for failure when a
solution is found.
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name domain functor abduced predicates clauses arity 1 arity 2 arity 3

odd even 2 2 3 2 3 3 0 0
wicked oe 2 6 10 3 4 1 3 0

appendlast 3 4 12 2 4 0 2 2
reverselast 3 4 12 2 4 0 2 2
nreverselast 5 4 28 3 6 0 4 2
schedule 3 4 12 6 12 9 3 0

multiseto 2 4 7 1 7 0 7 0
multisetl 2 4 7 2 4 0 2 2

blockpair2o 2 9 19 3 15 0 15 0
blockpair3o 2 15 36 3 15 0 7 8
blockpair2l 2 9 19 5 14 0 8 6
blockpair3l 2 15 36 5 14 0 0 14
blocksol 2 9 19 5 14 0 0 14

Table 2. Properties of benchmark programs

Table 3 gives the results: For the abductive system the time and the number
of backtracks (wrt. the choice made in the pre-interpretation); for the constraint
system the time, the number of backtracks (wrt. the choices regarding tabula-
tion) and the number of consistency checks (each check verifies the existence of
a pre-interpretation satisfying all constraints and has internal backtracking); for
FINDER the time and the number of backtracks. For CPD, RA and SBA we
only indicate whether failure of the query follows from the result (It makes little
sense to give times as these systems do not perform an exhaustive search and no
sense to try blocksol.). If followed by H, time is in hours, otherwise in seconds.

AB CS FINDER CPD RA SBA

name time #bckt time #bckt #cstch time #bckt

odd even 0.00 4 0.00 0 2 0.02 1 yes yes yes
wicked oe 0.08 64 0.00 0 2 0.02 64 yes yes yes

appendlast 6.63 949 0.45 1 6 0.83 19023 yes no yes
reverselast 9.37 1267 3.70 2 9 1590 94583354 no no yes
nreverselast >19H - >19H - - >15H > 100.106 yes no no
schedule 0.11 33 0.31 1 10 0.07 508 no no yes

multiseto 0.05 12 0.04 0 6 0.47 2849 no yes yes
multisetl 0.01 3 0.06 1 8 77.10 2583088 yes no yes

blockpair2o 3.36 103 0.38 0 12 112 1359532 no no no
blockpair3o 639.05 97246 0.42 0 12 >1.65H > 10.106 no no no
blockpair2l 0.9 34 2.36 2 17 >1.41H > 10.106 no no no
blockpair3l 2.46 162 2.49 2 17 >3.80H > 10.106 no no no
blocksol 293.33 12832 4.48H 299 609 >1.01H > 10.106 - - -

Table 3. Results.
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6.1 Discussion

The abductive system is rather sensitive to the presence of functors which are
irrelevant to the existence of a solution (but which occur in terms met during top-
down execution) as a comparison of odd even and wicked oe, of blockpair2o
and blockpair3o and of blockpair2l and blockpair3l shows. When larger
domain sizes are needed, the size of the search space increases dramatically, so
it is hardly a surprise that it fails on nreverselast. It did surprisingly well in
showing that there is no solution based on a 2-element domain for blocksol.

The constraint system is doing consistently well on all planning problems
which fail. Its performance is unaffected by the presence of irrelevant functors.
It has serious problems with blocksol where it backtracks a lot and has to do a
big number of consistency checks before having exhausted the search space (not a
real problem, one should run the query and find a solution). More serious is the
problem it has with nreverselast where one needs to distinguish 5 different
kinds of lists. The resulting search-space is of the order 528 = 4 ∗ 1020. The
constraints generated by this example, while correct, does not seem to prune the
search-space a lot. Adding redundant but stronger constraints will be needed to
avoid the current trashing behaviour.

FINDER, which has no equivalent of a top-down strategy and of tabling, is
doing poor on these problems. It behaves worse than our first abductive pro-
cedure. FINDER’s input being sorted, it is possible to associate different sorts
with the different functors and different domain sizes with different sorts. Very
recently, experimenting with this feature and using the intuitively right domain
sizes for the sort “list” (3 for reverselast and 5 for nreverselast) and 2 for all
other types (also for a functor which maps two lists to a pair10), we succeeded
in finding a solution in respectively 0.2s with 2738 backtracks (reverselast)
and 18H with 111.106 backtracks (nreverselast). This suggests that separate
types and separate domains for different functors could also restrict the search
space in our systems. We plan to explore this in the future.

Conjunctive partial deduction can handle some of the problems which are
difficult for us (and a planned extension 11 likely even more), but cannot handle
any of the planning problems. Computing regular approximations is fast, but
it can show failure of the most simple problems only. The set based analyser is
more precise and fails only on the planning problems and nreverselast.

7 Conclusion

For definite logic programs, we have addressed the problem of proving that cer-
tain queries cannot succeed with an answer. A problem which is particularly
10 It is not obvious from the problem formulation that this latter can result in a solution.
But it drastically reduces the search space: with m domain elements, the natural
thing is that the sort of pair has m2 domain elements.

11 A planned extension of CPD should be able to handle also reverselast and
multiseto.
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relevant when the query does not fail finitely. We have developed two new ap-
proaches which aim at searching a model of the program in which the query is
false. We have performed some experiments using (rather small) example pro-
grams and queries which do not terminate12. We also did a comparison with
other approaches which could be used to tackle this problem: a general purpose
model generation tool which does not allow the user to control the search, the
use of type inference, and the use of program specialisation. In the case of type
inference, the approach is in fact also to compute a model. However, the chosen
model is the one which best reflects the type structure of the program. If the
query happens to be false in this model, then failure is shown. Also in the case
of program specialisation, showing failure is a byproduct of the approach: for
some queries, the program happens to be specialised into the empty program.

Abduction is a very powerful and general problem solving technique. It was
pretty easy to formulate the problem of searching a pre-interpretation such that
the query is false in the least model based on it as an abductive problem and
to use a general purpose abductive procedure[9]. But we quickly realised that
we had almost no control over the search for a solution. Our first approach was
to built a special purpose abductive procedure for definite programs which em-
ploys tabulation and which hard wired the constraints that pre-interpretation
of functors are total functions. The idea behind the proof procedure is to use a
top-down evaluation strategy —abducing a part of the pre-interpretation only
when needed in evaluating the query— and to prevent looping by the use of tab-
ulation. Experiments confirmed our intuition that it was important to delay the
abduction of new components in the pre-interpretation as long as possible (to
propagate all consequences of what was already abduced to check whether it was
part of a feasible solution). The system was performing in general much better
than FINDER which is at least an order of magnitude faster in raw speed than
ours. This suggests that our basic strategy —using a goal directed proof proce-
dure and using tabulation— is a good one. However, the results were not really
convincing. We tried to delay the choice of components in the pre-interpretation
even more: we considered them as constraints. This allowed to delay the deci-
sions up to the point were answers had to be tabled: at such a point one need to
know whether the answer is new or not. Still we do not fix the pre-interpretation
at such a point but formulate constraints on the pre-interpretation, using a finite
domain solver to check the existence of a pre-interpretation satisfying all con-
straints. With this approach, the overall speed crucially depends on the speed
by which consistency can be checked. We were coding this consistency check as a
finite domain problem and obtained quite impressive results. Still the system has
some weaknesses. It starts to slow down when it needs a lot of backtracking over
its decisions with respect to new answers being subsumed by the existing ones
or not. The number of possible backtracks quickly goes up with the arity of the
predicates, as the example blocksol, where the query does not fail, illustrates.
It also increases quickly with the size of the domain needed to show failure e.g.

12 These programs also loop when using tabulation or when executing bottom-up after
a magic set transformation.
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nreverselast13. Further work is possible to reduce this number of backtracks:
tabling one predicate in each strongly connected component of the program is
enough to prevent looping of the procedure. This can reduce the number of
choice points. Still it is desirable to find ways to extract more knowledge from
the problem to further prune the search.

In general, our approach is doing much better than the general purpose model
generation tool FINDER and type inference based on Regular Approximations.
The comparison with conjunctive partial deduction is less straightforward. Both
approaches seem to be good at a different classes of problems. In fact it could be
interesting to apply program specialisation as a pre-processing step: the speciali-
sation may reduce the number of predicates and the number of functors, making
the problem easier to solve by our tool (and in extreme cases making it a trivial
problem by returning the empty program).

In a broader context, this paper makes contributions to the following topics:

– A (first) study of methods to prove (infinite) failure of definite logic pro-
grams.

– The development of a proof procedure which combines tabulation with ab-
duction and of a constraint based procedure which treats the abducibles as
constraints and uses a constraint solver to check the existence of a solution
for the abducibles. Also the latter procedure uses tabulation.

– A better understanding of the power and limitations of abduction. While
very expressive, our findings suggests that abductive procedures need to be
augmented with “background” knowledge to direct the search for abductive
solutions. Simply specifying the properties of an abductive solution as an
integrity constraint cannot provide sufficient guidance to the search for a
solution. It is interesting to observe that background knowledge is also often
the key to success in Inductive Logic Programming which makes use of in-
ductive procedures which are in more than one respect “twins” of abductive
procedures [1].

– The further development of model based program analysis. [10] showed that
model based program analysis pioneered by [6] is also an excellent method
for type inference. In [10] it was shown that there exist pre-interpretations
which encode various other declarative properties of programs. Our work
takes this work one step further by developing methods for automatically
constructing a pre-interpretation which expresses a particular program prop-
erty (expressed as a query which should fail).

A possible extension of this work is for programs with negation. Transforma-
tions are known which preserve a 3-valued completion semantics and transform
a program with negation into a definite program, having for each predicate p/n
two definitions, one for p/n and one for p ∗ /n. It seems feasible to apply our
method on this transformed program.

13 Some problems require an infinite domain, e.g. less(N,s(N)). less(N,s(M))<-

less(N,M). and the query ?- less(N,M),less(M,N)..
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Abstract. Conventional partial evaluators specialize programs with re-
spect to concrete values, but programs can also be specialized with re-
spect to abstractions of concrete values. We present a novel method for
staging static analyses using abstraction-based program specialization
(ABPS). Building on earlier work by Consel and Khoo and Jones, we
give an ABPS system that serves as a formal foundation for a suite of
analysis and verification tools that we are developing for Ada programs.
Our tool set makes use of existing verification packages. Currently many
programs must be hand-transformed before they can be submitted to
these packages. We have determined that these hand-transformations can
be carried out automatically using ABPS. Thus, preprocessing programs
using ABPS can significantly extend the applicability of existing tools
without modifying the tools themselves.

1 Introduction

Conventional program specialization systems [14] specialize programs with re-
spect to concrete values. For example, given a program P that takes a collection
of data items c and some instructions i to perform on each data item, if P will
often be called with a particular collection {d1, d2, d3}, one might use a special-
ization system to customize P with respect to {d1, d2, d3}.

There are many situations where certain properties of expected input data
are known even when the actual concrete values are not known. For example,
one might know that P is usually called with collections of size 3 even though
concrete items d1, d2, d3 are not known. Collection size can be viewed as a par-
ticular abstraction of collections. Optimizations based on abstractions (such as
unrolling a loop that walks over the collection) can be performed by propagat-
ing abstract values — in essence, by combining specialization with an abstract
interpretation instead of a concrete interpretation. Unfortunately, the most so-
phisticated specialization systems [1,6] specialize programs only with respect to
concrete values and not abstractions.
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Many researchers (e.g., [7,13,16]), have recognized the utility of abstraction-
based specialization (ABPS). In particular, Consel and Khoo [7] and Jones [13]
have developed formal frameworks to support the idea for functional and im-
perative languages, respectively. Despite these significant efforts, the technology
has not been incorporated into full-fledged implementations. It seems that there
have not been enough interesting applications to justify the cost of extending
systems to include ABPS.

1.1 Applying Abstraction-Based Program Specialization

We are building a suite of tools for analysis and verification of software systems
written in Ada. Several of our tools use existing analysis tools [9,12,17] that
vary in sophistication. These existing tools often require programs to be hand-
transformed before analysis. The purpose of many of these translations is to
reduce the state space to be explored by the analysis tool. For example, when
verifying properties of a protocol control logic, one might hand transform the
non-control data that transmits through a software communication system to a
single dummy value, thereby simplifying the work of the following analysis.

We have determined [8] that many of these transformations can be automated
using abstraction-based program specialization. In essence, ABPS can be used
to stage analyses by carrying out part of an analysis at specialization time, while
an existing tool carries out the remainder of the analysis. This strategy allows
us to significantly extend the applicability of existing analysis/verification tools
without having to modify the tools themselves.

The goal of this paper is to give a formal justification for staging analyses (as
required by our tools) using abstraction-based program specialization. This for-
mal presentation provides the foundation for a full-scale ABPS system currently
being implemented for a large subset of Ada.

1.2 Related Work

Since we rely heavily on ideas of Consel and Khoo [7] and Jones [13], we briefly
summarize their work below, and describe how we modify and extend it to satisfy
our requirements.

Consel and Khoo [7] give a framework for abstraction-based partial evaluation
of first-order functional programs. The system is parameterized on algebras that
define the meaning of constants and primitive operations in the language. Both
online and offline as well as concrete and abstraction-based partial evaluation
can be obtained through a suitable choice of algebras. A denotational semantics
framework is used to establish correctness, and the safety relationship between
a concrete and abstract algebra is expressed using a family of logical relations.
The framework was implemented for first-order ML [5,15].

Jones [13] provides an elegant language-independent framework for describ-
ing partial evaluation and supercompilation. An abstract property is represented
by the set of values abstracted by the particular property. For example, the prop-
erty “x is even” is represented by “x ∈ {0, 2, 4, . . .}”. The meaning of programs
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is given using a transition relation on states (l, σ) where l is the label of a pro-
gram point and σ is the current store. Correctness of specialization is expressed
by showing a correspondence between the transition relations of the source
and residual programs. Although Jones’s framework is language-independent,
he gives examples using a simple flowchart language and outlines an algorithm
for supercompilation of flowchart programs.

Other elements in our work are inspired by Ashley and Consel’s mechanisms
for controlling polyvariance and generalization in flow analyses [3,2], Glück and
Klimov’s presentation of supercompilation [10], Schmidt’s presentation of ab-
stract interpretation [18], and Sørensen and Glück’s work on generalization for
tree-structured data [19].

1.3 Contributions and Organization

To obtain a framework for staging analyses, we recast in an imperative language
setting Consel and Khoo’s idea of parameterization using algebras, and we adopt
Jones’s presentation of semantics using transition relations.

Below we list the novel aspects of our ABPS system. These stem from our ap-
plications to analysis and verification, and our desire to handle large imperative
programs.

Preservation of abstract semantics: Program specialization has always
sought to preserve a program’s concrete (i.e., execution) semantics. In our target
applications, residual programs will be analyzed instead of executed. Thus spe-
cialization need not preserve execution semantics, but only abstract semantics.
This allows more specialization to occur since fewer operations need to be resid-
ualized. For example, if one already knows the abstract value resulting from
an operation, the abstract value itself can be residualized. It is not necessary
to residualize the operation to compute a concrete value at run-time. “Run-
time” becomes “analysis-time”, and at analysis time one is only interested in
abstractions. Our system is parameterized on operations that allows the user to
determine if concrete or abstract semantics is to be preserved.

Control of polyvariance: In both the Consel and Khoo and Jones presen-
tations, specialization is maximally polyvariant — specialized code is generated
for each unique specialization-point/context pair or state. While this gives max-
imum specialization, it can lead to residual programs that are quite large (and
sometimes specialization doesn’t terminate). Since we will be working on large
programs, it is important to give the user some control over the degree of poly-
variance. For example, one might want only monovariant specialization for some
program points, or only polyvariance on a particularly relevant subset of program
variables. We introduce a mechanism for this.

Control of generalization: To avoid infinite specialization (and too much
polyvariance), one must have a mechanism for merging multiple computational
states s1, s2, . . . to obtain a single state s that covers each si. We parameterize the
system on a widening operator θ that defines the merging of states. Generating
residual code in conjunction with systematic generalization is more complicated
than in convential specializers. For example, one may generate residual code for
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Syntax Domains

p ∈ Programs[Σ]
b ∈ Blocks[Σ]
l ∈ Block-Labels[Σ]
x ∈ Variables[Σ]

e ∈ Expressions[Σ]
a ∈ Assignments[Σ]
al ∈ Assignment-Lists[Σ]

j ∈ Jumps[Σ]
o ∈ Operations[Σ]
t ∈ Tests[Σ]

Grammar

p ::= (l) b+

b ::= l : al j
al ::= a al | ·

a ::= x := e;
e ::= x | o(e∗)
j ::= goto l; | return; | if t(x∗) then l1 else l2;

Fig. 1. Syntax of the Flowchart Language FCL

a particular state s only to discard the code later if s is merged with s′ [19].
We incorporate a strategy for dealing with this in the context of imperative
languages.

The rest of the paper is organized as follows. Section 2 presents the simple
flowchart language FCL that we use for illustrating the principles of ABPS.
Section 3 gives our presentation of ABPS. Section 4 shows how ABPS can be
used to stage a simple static analysis. Section 5 concludes and gives plans for
future research.

An implementation of the system presented here, as well as an extended
version of this paper with examples of application to Ada, and more technical
details, discussion, and proofs can be found off of the first author’s web page
(http://www.cis.ksu.edu/~hatcliff).

2 The Flowchart Language FCL

We present the principles of our ABPS using the simple flowchart language
FCL of Gomard and Jones [11,13,14]. As they note, FCL is small enough to
allow a clean semantic presentation, but rich enough conceptually to illustrate
a multitude of issues associated with program specialization.

Figure 1 presents the syntax of FCL. An FCL program (l) b+ consists of a
list of basic blocks b+ and l is the label of the initial block to be executed. Each
basic block consists of a label followed a (possibly empty) list of assignments.
Each block concludes with a jump that transfers control from that block.

FCL contains three kinds of jumps: an unconditional jump goto to label l,
a conditional jump if, and a special jump return that terminates program ex-
ecution. Note that we only allow variables to occur as arguments to tests. This
simplifies the treatment of supercompilation-like features. This restriction can be
lifted by introducing a preprocessing phase that introduces temporary variable
names for test arguments. We will consider the output of the program to be the
collective value of the program’s variables.
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The syntax of FCL is parameterized by a signature Σ that specifies a set
of operator symbols Operations[Σ] and a set of of test symbols Tests[Σ]. Each
operator o ∈ Operations[Σ] has an associated arity arity(o) (similarly for tests).
Constants (literals) are realized as 0-ary operators. We write Constants[Σ] to
denote the set of constants in Operations[Σ].

Example 1. Σnum is a signature for simple computation on natural numbers.

Operations[Σ] = {+, ∗,−, 0, 1, . . .}
Tests[Σ] = {even?, <, equal?}

where numerals have arity 0, even? has arity 1, and all others have arity 2.

The meaning of aΣ-program is parameterized by aΣ-algebraA that provides
an interpretation for the signature Σ. A Σ-algebra A consists of a carrier set
Values[A] (e.g., an upper semi-lattice) with partial order �A, sets Operations[A]
and Tests[A] that contain functions implementing the operations and tests of Σ,
and a map [[·]]ΣA that maps each operation and test symbol inΣ to the correspond-
ing implementation in Operations[A] and Tests[A]. For simplicity, we sometimes
omit the map [[·]]ΣA and write oA for the operation in A associated with symbol o
(simimarly for tests). We will define the semantics of programs so that one can
obtain a concrete interpretation of a program by plugging in an Σ-algebra Acon
and an abstract interpretation by plugging in a suitable Σ-algebra Aabs.

Figure 2 formalizes the semantics of a Σ-program with respect to a Σ-
algebra A in terms of traces. A big-step semantics is used to define the evaluation
of expressions, assignments, and jumps. A small-step semantics is used to define
the transitions in traces. Intuitively, a trace shows the transitions

(l0, σ0) → (l1, σ1) → (l2, σ2) → . . .

a program can make between computational states (li, σi) ∈ States[A] where
li ∈ Labels[Σ] is the label of current basic block and σi ∈ Stores[A] is the current
store (memory). A store σ ∈ Stores[A] is partial function from Variables[Σ] to
Values[A]. A store σ is p-compatible when it is defined on all variables occuring
in program p and undefined otherwise. We write dom(σ) for the set of defined
variables in the domain of σ.

A concrete interpretation typically will generate linear (non-branching) traces
(although, our definition of tests is general enough to allow non-deterministic
choice). An abstract interpretation typically will generate branching traces (a
computation tree) since some tests will not be decidable due to incomplete in-
formation.

To represent terminal states, we add a special label halt to Block-Labels[Σ]
to obtain the set Labels[Σ]. All finite branches of a trace will end in a state
(halt, σ) for some store σ.

A program is represented using a partial function Γ called a block map that
maps a label l ∈ Block-Labels[Σ] to a block b ∈ Blocks[Σ]. Intuitively, Γ will be
defined for exactly the labels that name blocks in the program being interpreted.



Staging Static Analyses Using Abstraction-Based Program Specialization 139

Semantic Domains

v ∈ Values[A] oA ∈ Operations[A] tA ∈ Tests[A]

σ ∈ Stores[A] = Variables[Σ]⇀Values[A]
l ∈ Labels[Σ] = Block-Labels[Σ] ∪ {halt}
Γ ∈ Block-Maps[FCL] = Block-Labels[Σ]⇀Blocks[Σ]

Expressions

σ ��expr x⇒ σ(x)

σ ��expr ei ⇒ vi oA(v1 . . . vn) = v

σ ��expr o(e1 . . . en)⇒ v

Assignments
σ ��expr e⇒ v

σ ��assign x := e;⇒ σ[x 	→ v] σ ��assigns · ⇒ σ

σ ��assign a⇒ σ′ σ′ ��assigns al⇒ σ′′

σ ��assigns a al⇒ σ′′

Jumps

σ ��jump goto l;⇒ {(l, σ)} σ ��jump return;⇒ {(halt, σ)}

tA(x
∗, l1, l2, σ) = {(l′1, σ′

1), . . . , (l′n, σ′
n)}

σ ��jump if t(x∗) then l1 else l2;⇒ {(l′1, σ′
1), . . . , (l′n, σ′

n)} where n ∈ {1, 2}
Transitions

Γ (l) = l : al j σ ��assigns al⇒ σ′ σ′ ��jump j ⇒ {(l′1, σ′
1), . . . , (l′n, σ′

n)}
Σ,A��Γ (l, σ)→ (l′i, σ

′
i) ∀i ∈ {1, . . . , n}

Fig. 2. Trace semantics of Σ-programs with respect to Σ-algebra A

The rule for deriving transitions depends on rules for each of the syntac-
tic categories of FCL (expressions, assignments, jumps). The only notewor-
thy aspect of these rules is the parameterization on operations and tests. For
each o ∈ Operations[Σ], Operations[A] contains a monotonic function oA ∈
Values[A]arity(o)→ Values[A]. For each t ∈ Tests[Σ], Tests[A] contains a func-
tion

tA ∈ Values[A]arity(t) × Block-Labels[Σ]×Block-Labels[Σ]× Stores[A]→℘(States[A]).

In a concrete interpretation, a test tA will usually be defined so that
tA(x∗, l1, l2, σ) yields {(l1, σ)} if the test succeeds and {(l2, σ)} otherwise. In an
abstract interpretation, there may not be sufficient information to determine the
appropriate branch, and one would have tA(x∗, l1, l2, σ) yields {(l1, σ1), (l2, σ2)}.
Allowing σ1 and σ2 to be different from σ lets us describe situations where in-
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Carrier 

even odd

0 2 4 ... 1 3 5 ...

✟✟✟
❍❍❍

✁✁ ✄✄ ❈❈❆❆
✁✁ ✄✄ ❈❈❆❆

Operations (excerpts)

add(v1, v2)
def
=




n1 + n2 if v1 = n1 and v2 = n2

even if ¬∃n1, n2 such that v1 = n1 and v2 = n2 and
v1 � v2 ∈ {even, odd}

odd if ¬∃n1, n2 such that v1 = n1 and v2 = n2 and
v1 � even = even and v2 � odd = odd, or
v1 � odd = odd and v2 � even = even

 otherwise

Tests (excerpts)

even?(x, l1, l2, σ)
def
=



{(l1, σ)} if σ(x) � even = even
{(l2, σ)} if σ(x) � odd = odd
{(l1, σ[x 	→ even]),
(l2, σ[x 	→ odd])} otherwise

equal?(x1, x2, l1, l2, σ)
def
=




{(l1, σ)} if ∃n . σ(x1) = σ(x2) = n
{(l2, σ)} if ¬∃v . σ(x1) � σ(x2) = v
{(l1, σ[x1 	→ v, x2 	→ v]),
(l2, σ)} if ∃v . σ(x1) � σ(x2) = v

and ¬∃n . (σ(x1) = σ(x2) = n)

Fig. 3. Abstract algebra Aeo for even/odd abstract interpretation

formation about variables x∗ increases as conditionals are crossed as in e.g.,
supercompilation.

We now consider some example algebras. Let Anum be the expected concrete
algebra associated with Σnum (Values[Anum] = {0, 1, 2, . . .}). Figure 3 presents
an Σnum-algebra Aeo designed for an odd/even abstract interpretation of Σnum-
programs. For techniques to relate concrete and abstract algebras, we refer the
reader to the extended version of this paper.

3 Abstraction-Based Specialization

Our abstraction-based specialization framework combines the trace generation
system from the previous section with code generation. The idea is to carry out
the trace while simultaneously generating code that is specialized with respect
to the information accumulated in the trace.
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Semantic Domains

v ∈ Values[A] oA ∈ Operations[A] tA ∈ Tests[A]

w ∈ Spec-Values[A] = Values[A]× Expressions[Σ]
σ ∈ Stores[A] = Variables[Σ]⇀Values[A]
l ∈ Labels[Σ] = Block-Labels[Σ] ∪ {halt}
Γ ∈ Block-Maps[FCL] = Block-Labels[Σ]⇀Blocks[Σ]

Expressions
σ �expr x⇒ 〈σ(x) , x 〉

σ �expr ei ⇒ 〈 vi , e′i 〉 oA(v1 . . . vn) = v v ∈ R

σ �expr o(e1 . . . en)⇒ 〈 v , lift(v) 〉

σ �expr ei ⇒ 〈 vi , e′i 〉 oA(v1 . . . vn) = v v �∈ R

σ �expr o(e1 . . . en)⇒ 〈 v , o(e′1 . . . e′n) 〉
Assignments

σ �expr e⇒ 〈 v , e′ 〉
σ �assign x := e;⇒ 〈σ[x 	→ v] , [x := e′;] 〉 σ �assigns · ⇒ 〈σ , [] 〉

σ �assign a⇒ 〈σ′ , al′ 〉 σ′ �assigns al⇒ 〈σ′′ , al′′ 〉
σ �assigns a al ⇒ 〈σ′′ , al′ ++ al′′ 〉

Fig. 4. Abstraction-based specialization (part 1)

Figures 4 and 5 present the abstraction-based program specializer. The spe-
cializer is parameterized on a specialization structure

Ξ = (Σ,Σres,A, π, θ, R, lift).

– Σ is the signature of the program being specialized.
– Σres is the signature of the residual program. If abstract tokens (e.g., even,

odd) are being residualized, Σres will differ from Σ (e.g., Σres will contain
constants even, odd).

– Programs will be specialized with respect to Σ-algebra A.
– π controls the degree of polyvariance by specifying which states are to be

merged.
– θ is a widening operator used to merge stores.
– R is the set of values from Values[A] that can be residualized.
– lift generates code for values v ∈ R, i.e., it maps a residualizable value v to

a constant in Σres.

We explain each of these components and constraints they must satisfy in the
subsections below.
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Jumps

σ �jump goto l;⇒ 〈{(l, σ)} , goto π(l, σ); 〉

σ �jump return;⇒ 〈{(halt, σ)} , return; 〉

tA(x
∗, l1, l2, σ) = {(l1, σ′)}

σ �jump if t(x∗) then l1 else l2;⇒ 〈{(l1, σ′)} , goto π(l1, σ
′); 〉

tA(x
∗, l1, l2, σ) = {(l2, σ′)}

σ �jump if t(x∗) then l1 else l2;⇒ 〈{(l2, σ′)} , goto π(l2, σ
′); 〉

tA(x
∗, l1, l2, σ) = {(l1, σ′

1), (l2, σ
′
2)}

σ �jump if t(x∗) then l1 else l2;
⇒ 〈{(l1, σ′

1), (l2, σ
′
2)} , if t(x∗) then π(l1, σ

′
1) else π(l2, σ

′
2); 〉

Blocks

σ �assigns al⇒ 〈σ1 , al1 〉
σ1 �jump j ⇒ 〈{(l2i , σ2i) | i ∈ {1, . . . , n}} , j2 〉

σ �block l : al j ⇒ 〈{(l2i , σ2i) | i ∈ {1, . . . , n}} , (l, σ) : al1 j2 〉
Specialization steps

C0(ι) �block Γ (π−1(ι))⇒ 〈{(l′i, σ′
i) | i ∈ {1, . . . , n}} , b′ 〉

�Γ 〈S , C0 , ΓR〉 	−→ 〈Sn , Cn , ΓR[ι 	→ b′]〉 if ι◦ = first(S0)

where
ιi = π(l′i, σ

′
i) for i ∈ {1, . . . , n}

Ci =

{
Ci−1[ιi 	→ θ(σ′

i, Ci−1(ιi))] if Ci−1(ιi) is defined
Ci−1[ιi 	→ σ′

i] if Ci−1(ιi) is undefined

}
for i ∈ {1, . . . , n}

S0 = remove-arcs(mark(S , ι), ι)

Si =




make-arc(Si−1, ι, ιi
•) if ιi = halt

make-arc(Si−1, ι, ιi
◦) if ιi not in Si−1 and ιi �= halt

make-arc(Si−1, ιi, ιi
m) if ιi

m′
in Si−1 and ιi �= halt

where m = ◦ if C0(ιi) ❁ Cn(ιi)
and m = m′ if C0(ιi) = Cn(ιi)




for i ∈ {1, . . . , n}

Fig. 5. Abstraction-based specialization (part 2)
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The semantic domains for the specializer have a structure similar to those
of the trace generator. The key difference is that the specializer manipulates
specialization values Spec-Values[A] instead of only Values[A]. A specialization
value is pair 〈v , e〉 where v ∈ Values[A] and e is a piece of residual code whose
value is abstracted by v.

Specialization will transform a Σ-program into a Σres-program. The con-
stants from Σ and Σres may be different. For example, if we are using the
algebra Aeo to stage an even/odd analysis and the tokens odd and even are
residualized, then {odd, even} ⊆ Constants[Σres]. However, we require that the
non-constant operations and tests be the same in Σ and Σres.

Expression specialization uses the injectitve code generation function lift ∈
R→ Constants[Σres]. The definition of the set of residualizable values R and
the definition of lift controls whether specialization will preserve the concrete
semantics or only the abstract semantics of a program. For example, if we want
to preserve the concrete semantics using the even/odd abstraction, we only allow
lifting of “concrete” values:

Rc = {0, 1, 2, . . .}
liftc(n) = n ∀n ∈ Rc

Using this definition and the store σ def= [x1 → 〈 even , x1 〉, x2 → 〈 even , x2 〉],
we have σ �expr +(x1, x2)⇒ 〈 even , +(x1, x2) 〉. Here, the value even cannot be
residualized, so we must residualize an expression to compute a value at run-time
(using the second rule for operations in Figure 5).

If we only need to preserve abstract semantics, then we can define Ra and
lifta as follows:

Ra = {even, odd, 0, 1, 2, . . .}
lifta(n) = n ∀n ∈ {0, 1, 2, . . .}

lifta(even) = even
lifta(odd) = odd

Using this definition, we have σ �expr +(x1, x2) ⇒ 〈 even , even 〉. Here, the
residual program will have a signature Σres which include constants even and
odd. Abstract tokens like these are represented in Ada using enumerated types.

When preserving the concrete semantics using Rc, the + operation must be
residualized because the concrete value of the operation cannot be determined
at specialization time. When preserving the abstract semantics using Ra, the
operation need not be residualized because the abstract value of the operation
can be determined at specialization time. In general, specializing to preserve
abstract semantics yields smaller programs since the information to computed
by the residual program need not be as precise.

At the end of this section, we define a notion of strong correctness (where
no precision is lost during specialization) and weak correctness (where precision
may be lost during specialization). Essentially, strong correctness conditions will
hold when R is discretely ordered and downwards closed. If R is not discretely
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ordered, then precision may be lost since a less precise value may be residualized
at specialization time, but a more precise value may flow into the program point
at run-time. Note that Rc satisfies the strong correctness conditions, but Ra
does not. To see the implications of this, consider executing the residual frag-
ments above that resulted from specializing with respect to σ using Rc and Ra.
We will use the store σ′ def= [x1 → 2, x2 → 4] for executing the residual frag-
ments (note σ′ � σ). Executing the residual fragment obtained from Rc gives
σ′ ��expr +(x1, x2) ⇒ 6 but executing the residual fragment obtained from Ra
gives σ′ ��expr even ⇒ even. Thus, precision has been lost in the second case.
Requiring R to be discretely ordered and downwards-closed means that no value
more precise than the value of residual token can flow into the relevant program
point at run-time.

The previous section showed that an abstract interpretation produces a series
of states (li, σi). Maximally polyvariant specialization would produce a special-
ized block for each of these states. Often one does not want maximal polyvariance
since this would lead to a prohibitively large number of specialized blocks (or
worse yet, the number of specialized blocks would be infinite).

To help avoid these problems, specialization is parameterized by a projection
operator π ∈ States[A]→ Indices where Indices is some (as yet) unspecified set
of tokens depending on the definition of π. Intuitively, each specialized block
will be labeled by an index ι, and π(l, σ) yields the label of the residual block
associated with (l, σ). Thus, the rules for specializing jumps use π to determine
the label of the jump destinations in the residual program. As a technicality,
we assume that Indices always includes an index halt and that for all stores σ,
π(halt, σ) = halt.

The degree of polyvariance is controlled by mapping one or more states to the
same index. For example, the following two definitions would yield a maximally
polyvariant analysis and a monovariant analysis, respectively.

π(l, σ)
def
= (l, σ) ∀l ∈ Block-Labels[Σ], ∀σ ∈ Stores[A] and States[A] ⊆ Indices

π(l, σ)
def
= l ∀l ∈ Block-Labels[Σ], ∀σ ∈ Stores[A] and Labels[Σ] ⊆ Indices

If at least two states (l, σ) and (l, σ′) map to the same index, then the asso-
ciated residual block must be general enough to handle both σ and σ′. Since
we intend that π merge different states of the same block l, we require π to be
label distinguishing, i.e., π(l1, σ1) = π(l2, σ2) implies l1 = l2. We write π−1(ι) to
denote the unique label that π associates with ι.

There are many interesting variations between the two extremes above (max-
imally polyvariant and monovariant) that can be realized by π. For instance, π
can easily be defined to give monovariance at some blocks, but polyvariance at
others. Additionally, one can have polyvariance on some particular variables,
but monovariance on others. As an example, it is useful to have monovariance
on the dead variables (detected by a live variable analysis). In our full system,
the user choses between several default settings, but can also attach annotations
that override the defaults at each block.
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To represent the structure of the residual program, the specializer incre-
mentally constructs a control-flow graph (program skeleton) S with nodes m ∈
Indices. Each node is annotated with a mark m ∈ {◦, •}. An unmarked node ι◦

indicates that the associated block is pending for specialization. A marked node ι•

indicates that the associated specialized block is currently up-to-date with re-
spect to the information determined to be flowing into the block. Intuitively, new
nodes added to the graph are unmarked, and a marked node may be unmarked
at a later stage due to generalization (widening). Consider a π that maps both
s = (l, σ) and s′ = (l, σ′) to the same index ι. If state s is encountered first
during specialization, a specialized block will be generated for it at that time.
Later, if s′ is encountered, node ι will need to be unmarked to instruct the spe-
cializer to reprocess the residual block associated with node ι in S. For example,
the specializer will need to create a new specialized version of block l special-
ized to a generalized store σ � σ′. Here, σ � σ′ represents the component-wise
application of �.

We use the following operations to manipulate control-flow graphs.

– mark(S, ι): returns a graph identical to S except that the ι is now marked
(similarly for unmark(S, ι)).

– make-arc(S, ι1, ι2m): returns a graph identical to S except that an arc from
ι1 to ι2 is added. If the arc is already present, the set of arcs is unchanged.
If node ι2 is not already in the graph, then it is added with mark m. If node
ι2 is already in the graph, then its mark is changed to m.

– remove-arcs(S, ι): returns a graph identical to S except all arcs leading out
of ι are removed (the set of nodes is unchanged). If node ι is not in the graph,
then S is returned unchanged.

A cache C ∈ Indices⇀ Stores[A] collects the information that can flow into
each block ι in the residual program. A block-map ΓR maps a label (index ι) to
the associated specialized block.

According to the definition in Figures 4 and 5, the specializer repeatedly
transforms a control-flow graph S, a cache C, and a block map ΓR for the residual
program. A specialization step begins by using a topological sort on S to find
an unmarked node with no unmarked predecessors (first(S) returns such a node,
if it exists). Choosing a node in this manner ensures that the specializer is not
wasting computation, and prevents non-terminating specialization (provided π
and widening operator θ are chosen appropriately).

After a node ι◦ is chosen, a specialized version b′ of the source block π−1(ι)
is created using the store C(ι) currently held in the cache for node ι. Information
is propagated by processing the set of descendent states as follows.

After obtaining an index ιi for each state, the cache entry for ιi is updated
by merging the new store σ′i with the previously cached store for node ι (if it
exists). The merging is parameterized on a widening operator θ that must satisfy
the following conditions.
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1. σ1 � σ2 � θ(σ1, σ2)
2. π(l, σ) = ι = π(l, σ′) implies π(l, θ(σ, σ′)) = ι

3. θ is monotonic

The second condition can be removed by giving a slightly more complicated
method for generating labels for residual blocks.

The control-flow graph is updated by marking the node ι just processed.
All out-going arcs of ι are removed since the current in-coming store may be
less precise than previous stores that have flowed into the node (and thus the
out-going arcs may change). For each successor state (l′i, σ

′
i), the corresponding

index ιi is added as a child to ι in the graph. If ιi = halt, then it represents a
terminal node that requires no further processing (so it is marked). If ιi is not
already in the graph, it is unmarked to signal that it has not been processed yet.
If ιi is already in the graph and if generalization caused the previously cached
value to be out of date (i.e., the previously cached value is strictly less than
the current value), the node ιi is unmarked to signal that the node needs to be
reprocessed. If the cached value has not changed, then the node’s mark is not
changed.

Let p = (linit) b+ be a Σ-program, Γ be the blockmap associated
with p, A a Σ-algebra, and σinit ∈ Stores[A] a p-compatible store. An initial
specialization configuration for specializing p with respect to σinit is the config-
uration 〈S , C , ΓR〉 where S contains only the index ιinit◦ where π(linit, σinit) =
ιinit, C(ιinit) = σinit and is undefined for all other arguments, and ΓR is undefined
on all argument values. If �Γ 〈S , C , ΓR〉 −→∗ 〈S′ , C′ , ΓR

′〉 where 〈S′ , C′ , ΓR
′〉

is a terminal state (i.e., no unmarked node is reachable via first in S′), the resid-
ual program has initial label ιinit and blocks {ΓR

′(ι) | ∀ι∈S′ reachable from ιinit}.
It is important to note that specialization with respect to algebra A is not

guaranteed to terminate unless Values[A] is finite. When Values[A] is infinite but
of finite height, defining π for maximal polyvariance can still give infinite special-
ization. In this case, defining π for monovariance and taking θ = � does ensure
termination. For Values[A] of infinite height, θ = � with π set for monovari-
ance does not ensure termination. Instead, one must have a more sophisticated
definition of θ to ensure termination.

In contrast to the Søresen and Glück generalization strategy [19] which en-
sures termination, we must rely on the user to give appropriate definitions of π
and θ if guaranteed termination is desired. Søresen and Glück are able to en-
sure termination because they deal specifically with tree-structured data (e.g.,
cons-lists) and can take advantage of technical results concerning homeomorphic
embeddings.

Specialization using the specialization structure Ξ = (Σ,Σres,A, π, θ, R, lift)
transforms a Σ-program p1 into a Σres-program p2. The meaning of a p1 is
given by Σ-algebra A. The meaning of a p2 is given by Σres-algebra Ares that
is induced from the definition of Σ,Σres, R, and lift. In summary, Ares will be
be the same as A except that the meaning of the new residual tokens in Σres is
given using the inverse of lift.
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Correctness of ABPS follows from the following theorems which state how the
trace semantics of the residual program under the algebra Ares compares with
the trace semantics of the source program under A. The properties in Theorem 1
are Jones’s conditions for a driven program [13] recast in our setting.

Theorem 1 (strong correctness). Let Ξ = (Σ,Σres,A, π, θ, R, lift) be a spe-
cialization structure, and Ares be the residual algebra induced from Ξ. Assume
that specialization of some a Σ-program p with block map Γ produces skeleton S,
cache C, and residual program ΓR. If the strong correctness constraints are sat-
isfied then the three following properties hold.

– Invariance: Let σ1 be a store such that σ1 � C(ι1). If

Σres,Ares ��ΓR(ι1, σ1)→ (ι2, σ2) then σ2 � C(ι2).

– Soundness: If Σres,Ares ��ΓR(ι1, σ1)→ (ι2, σ2) and σ1 � C(ι), then

Σ,A��Γ (π−1(ι1), σ1)→ (π−1(ι2), σ′2) and σ′2 = σ2.

– Completeness: If ι1 ∈ S and Σ,A��Γ (π−1(ι1), σ1) → (l2, σ′2) and σ1 �
C(ι1), then there exists an ι2 such that Σres,Ares ��ΓR(ι1, σ1)→ (ι2, σ2). and
π−1(ι2) = l2 and σ′2 = σ2.

Invariance states that safety between residual program stores and computed
cache values is preserved (thus, each residual block is sufficiently general for
any store that can flow into it). Soundness states that for every transition in
the residual program there is a corresponding transition in the source program.
Completeness states that for every transition in the source program, there is
a corresponding transition in the residual program.

If the strong correctness conditions do not hold, then a weak correctness
holds: the Soundness property is dropped and the last condition in Com-
pleteness is weakened from σ′2 = σ2 to σ′2 � σ2. The difference from strong
correctness is that, since precision is lost, there may be branches in a residual
trace that do not occur in a source trace and thus the residual program is “un-
sound” with respect to the source program. However, the weakened version of
Completeness guarantees that the residual program is a valid approximation
of the source program.

The key distinction between strong correctness and weak correctness is that
in strong correctness, specialization does not introduce any loss of precision. This
holds whether one is considering concrete interpretation or abstract interpreta-
tion. For instance, performing an abstract interpretation on the source program
will give exactly the same information as performing the same abstract interpre-
tation on the residual program since one has a mirroring of traces in the source
and residual programs.

The following section gives example traces which give further intuition about
the strong/weak correctness properties.
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Source program

(b1)

b1: if equal?(x,y) then b2 else b3; b4: if <(y,x) then b1 else b5;

b2: y := 10; b5: if even?(x) then b6 else b1;

z := *(z,3); b6: return;

goto b4;

b3: x := +(x,2);

y := +(*(5,x),y);

goto b4;

Concrete residualization program Abstract resdiualization program

(b1,[0,T]) (b1,[0,T])

(b1,[0,T]): if equal?(x,y) (b1,[0,T]): if equal?(x,y)

then b2 then b2

else (b3,[T]); else (b3,[T]);

b2: y := 10; b2: y := 10;

z := *(z,3); z := even;

goto b4; goto b4;

(b3,[T]): x := +(x,2); (b3,[T]): x := even;

y := +(*(5,x),y); y := +(even,y);

goto b4; goto b4;

b4: if <(y,x) b4: if <(y,x)

then (b1,[even,T]) then (b1,[even,T])

else b5; else b5;

(b1,[even,T]): if equal?(x,y) (b1,[even,T]): if equal?(x,y)

then b2 then b2

else (b3,[T]); else (b3,[T]);

b5: goto b6; b5: goto b6;

b6: return; b6: return;

Fig. 6. Example specialization using ABPS

4 Staging Static Analyses Using ABPS

We illustrate ABPS by specializing the FCL program at the top of Figure 6 using
the odd/even abstraction Aeo defined earlier. Two specializatons are performed:
the first preserves concrete semantics by using liftc of Section 3, and the second
only preserves abstract semantics by using lifta of Section 3. We have chosen the
program of Figure 6 to illustrate the projection operator and generalization —
only a small degree of specialization occurs here.

The first specialization uses the specialization structure
Ξ = (Σnum, Σnum,Aeo, π, θ, Rc, liftc). Since liftc does not residual any ab-
stractions, the signature of the source and residual programs are both Σnum.
We choose the projection operator π so that it illustrates several concepts at
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once. Specialization is specified to be monovariant at some blocks and polvari-
ant (to various degrees) at other blocks. The program has three variables x,y,
and z so the store will have the shape σ = [x → vx, y → vy, z → vz] (abbreviated
[vx, vy, vz ]).

π(b1, [vx, vy, vz]) = (b1, [vx, vy]) polyvariant on x and y
π(b2, [vx, vy, vz]) = b2 monovariant
π(b3, [vx, vy, vz]) = (b3, [vy]) polyvariant on y
π(b4, [vx, vy, vz]) = b4 monovariant
π(b5, [vx, vy, vz]) = b5 monovariant
π(b6, [vx, vy, vz]) = b6 monovariant

Thus, the abstract set of indices contains block labels, and pairs of block labels
and stores. For widening, we simply define θ ≡ �.

Specializing the source program to the store σinit = [x → 0, y → �, z → even]
results in the following control-flow graph (left) and cache (right).

• (b1, [0,�]) → b2, (b3, [�])
• b2 → b4
• (b3, [�]) → b4
• b4 → (b1, [even,�]), b5
• (b1, [even,�]) → b2, (b3, [�])
• b5 → b6
• b6 → halt
• halt

(b1, [0,�]) = [0,�, even]
b2 = [even, even, even]
(b3, [�]) = [even,�, even]
b4 = [even,�, even]
(b1, [even,�]) = [even,�, even]
b5 = [even,�, even]
b6 = [even,�, even]
halt = [even,�, even]

These resulting structures are the same regardless of the choice of lift (either liftc
or lifta). In other words, the definition of lift affects only the code generation,
and not the information propagation.

The bottom left of Figure 6 gives the code generation resulting from the
steps above using liftc. A block with index ι is specialized with respect to C(ι).
In this simple example, the only specialization that takes place is the resolution
of the conditional in b5. One might expect that the assignment y := 10; could
be specialized away and the value 10 propagated in the store. However, doing
so may cause loss of precision (concrete semantics will not be preserved) if the
value of y is generalized at a later block. This is the case in our example since y
will be generalized to � at b4. A more clever (and more complicated) treatment
of assignments allows their residualization to be delayed until it is detected
that a merge is occuring. If no merge occurs then the assignment will not be
residualized. In addition, we do not compress goto transitions. This optimization
can also be performed in a straightforward way, e.g., in post-processing.

The bottom right of Figure 6 gives the code generation from the steps above
using the specialization structure Ξ = (Σnum, Σnum−eo,Aeo, π, θ, Ra, lifta)
based on lifta.Σnum−eo is identical toΣnum except that it also contains constants
even and odd. Here more specialization can occur because we are allowed to
residualize abstractions. Even though the program with residual abstractions
cannot be executed with the original semantics preserved, it can be analyzed on
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a store σ where σ � σinit using the even/odd abstraction given the residual
algebra induced by Aeo.

In our experience, using ABPS to preserve abstract semantics often gives dra-
matic specialization. Many interesting verification problems require knowledge
of only a small subset of a program’s variable values. The irrelevant variables
can be abstracted to the single point domain {�}. Here are some examples of
abstractions that we have encountered.

– When verifying properties of a queue, one may be interested only in empty
and non-empty states. For this case, the data type of queues is abstracted
to {empty, non-empty,�}. In the residual program, queue operations are re-
placed by operations on an enumerated type containing tokens empty and
non-empty. For occurences of top, we take advantage of bounded static vari-
ation of the enumerated type and introduce non-deterministic choice over
empty and non-empty by inserting a conditional test.

– When manipulating a collection c, sometimes one is only concerned with
whether an object d is present or absent from the collection. This is ab-
stracted to a three-point domain similar to the case above.

– Some verification problems depend on knowing if a certain variable’s value
lies with in particular particular subrange of integers. If, for example, four
different subranges are of interest, the one can abstract the integer type us-
ing the domain {subrange1, subrange1, subrange3, subrange4} and residualize
these similarly to the examples above.

5 Conclusion

We have given a method for staging static analyses using abstraction-based
program specialization. This method significantly extends the applicability of
existing analysis and verification tools (e.g., SPIN [12] and SMV [4]) without
modifying the tools themselves. The key insight is that the required staging
can be performed as a source-to-source transformation that need only preserve
abstract semantics instead of concrete semantics. This relaxing of the correctness
criteria allows the specializer to be more aggressive. In constructing our ABPS
system, we have merged ideas from previous work and added new mechanisms
for controlling polyvariance and for generalization.

Finite-state verification systems are often applied to verify properties of reac-
tive and concurrent systems (e.g., graphical user interfaces, railway interlocking
systems, and industrial control systems). We are extending the framework here
to handle concurrency primitives and to handle more complicated forms of ab-
stractions related to relational abstract interpretations.
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Antoine Rauzy, editors, Proceedings of the Third International Workshop on Static
Analysis WSA’93, volume 724 of Lecture Notes in Computer Science, pages 112–
123, Padova, Italy, September 1993. 136

11. Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation.
In G. X. Ritter, editor, Information Processing ’89. Proceedings of the IFIP 11th
World Computer Congress, pages 1139–1144. IFIP, North-Holland, 1989. 137

12. G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engi-
neering, 23(5):279–294, May 1997. 135, 150

13. Neil D. Jones. The essence of program transformation by partial evaluation and
driving. In Masahiko Sato Neil D. Jones, Masami Hagiya, editor, Logic, Lan-
guage and Computation, a Festschrift in honor of Satoru Takasu, pages 206–224.
Springer-Verlag, April 1994. 135, 137, 147

14. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall International, 1993. 134, 137

15. Siau Cheng Khoo. Parameterized partial evaluation: theory and practice. PhD
thesis, Yale University, June 1992. 135

16. Michael Leuschel. Program specialization and abstract interpretation reconciled.
Technical Report CW 259, Departement Computerwetenschappen, K.U.Leaven,
Belgium, May 1998. 135

17. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993. 135



152 John Hatcliff et al.

18. David A. Schmidt. Trace-based abstract interpretation of operational semantics.
Lisp and Symbolic Computation. (in press). 136

19. Morten H. Sørensen and Robert Glück. An algorithm of generalization in positive
supercompilation. In John Lloyd, editor, Logic Programming: Proceedings of the
1995 International Symposium, pages 465–479. MIT Press, 1995. 136, 137, 146



An Experiment in Domain Refinement: Type

Domains and Type Representations for Logic
Programs

Giorgio Levi and Fausto Spoto

Dipartimento di Informatica - Università di Pisa
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Abstract. We apply the methodology of domain refinement to system-
atically derive domains for type analysis. Domains are built by iterative
application of the Heyting completion operator to a given set of basic
types. We give a condition on the type system which assures that two
steps of iteration are sufficient to reach the fixpoint. Moreover, we provide
a general representation for type domains through transfinite formulas.
Finally, we show a subset of finite formulas which can be used as a com-
putationally feasible implementation of the domains and we define the
corresponding abstract operators.

Keywords: Abstract interpretation, abstract domain, static analysis,
type analysis, logic programming.

1 Introduction

Type analysis for untyped logic programs is useful both to the programmer (for
debugging and verification) and to the compiler (for code optimization). This
is the motivation of many different proposals for type analysis. It is hard to
compare the various techniques in terms of precision, efficiency and generality,
because they use different methods and are often based on different assumptions.

There exist type inference techniques similar to those developed for (higher
order) functional languages (see, for example, [15,16]) and techniques inspired
by program verification methods [1]. Finally, there are plenty of type analysis
techniques based on abstract interpretation [8]. The most relevant feature of
abstract interpretation is that the analysis can systematically be derived from
the (concrete) semantics and is guaranteed to be correct. The starting point
is always the definition of an abstract domain modeling a given type system.
In principle, the theory would allow us to systematically derive from the con-
crete semantics the optimal abstract operations and the corresponding abstract
semantics, which is by construction a correct approximation. However, in practi-
cal type analysis systems, ad-hoc non-optimal abstract operations and abstract
semantics computation algorithms are often considered. The theory is then used
to prove the correctness of the construction.
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The basic step in every abstract interpretation approach to type analysis is
the choice of the abstract domain, which defines how we assign types to terms. A
ground type language does not allow one to handle type dependencies [4]. This
is the case of [14,18]. Some type dependencies among different arguments of a
procedure can be expressed using type variables in the type language. This is
a standard solution, used for instance in [3,13,19,6]. The same solution is used
in the framework of regular approximations of the success set in [11]. However,
the use of type variables does not allow one to express all type dependencies
between argument positions. [5] is the only example of an analysis which explic-
itly expresses type dependencies. However, the underlying type language does
not contain variables. Hence type dependencies arising from polymorphism can
not be handled without an infinite set of dependencies. Moreover, [5] does not
consider dependencies between different types, since the analysis is performed
separately for every type. Finally, there is no approach which is able to express
negative information on types. One of the contributions of this paper is to give
a general technique for explicitly expressing general type dependencies and neg-
ative information on types.

We achieve this result by pushing forward the systematic derivation view
of abstract interpretation by applying it to the design of the abstract domain.
The systematic derivation of abstract domains can be based on the theory of
domain refinement operators [9]. One example of such an operator is the Heyting
completion [12], which was recently used to systematically reconstruct various
domains for groundness analysis [17] and to show that the domain POS [2,7] is
indeed optimal.

In this paper, we apply the same methodology to the derivation of new type
domains. We start by defining a basic domain of elementary polymorphic types
(section 4). We then define a hierarchy of refined domains by iteratively applying
the Heyting completion operator (section 5). We prove (in section 6) that, for
a large class of elementary types, the refinement procedure derives the optimal
domain after two steps of refinement only, as was the case for the groundness
domain. The optimal domain can then be viewed as a version of POS for types,
and is similar to the domains of type dependencies defined in [5].

Once we have defined the abstract domain, we are left with the problems of
defining a domain representation, suitable for being implemented in an abstract
analyzer, and of giving a precise algorithmic definition of the abstract operators.
We tackle the above problems in two steps. In the first step we represent type
domains by formulas in a fragment of transfinite logic (section 7) and we define
correct approximations for the abstract operators (section 8). The results of
the first step can effectively be used for type analysis only if the set of types
is finite. In the more interesting case of elementary type domains containing
infinitely many types, transfinite formulas are not finitely representable. Hence
the representation by means of transfinite formulas is introduced essentially to
establish some theoretical results to be used in the next step (section 9), where we
use a representation in terms of finite formulas with type variables. The resulting
domain turns out to be formed by logic programs. Using logic programs to
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represent abstract domains for logic programs is not new (see, for example, [10]).
However, in our experiment, we succeed in providing a formal justification of the
construction.

2 Preliminaries

1 Terms and Substitutions

Given a set of variables V and a set of function symbols Σ with associated arity,
we define terms(Σ, V ) as the set of terms built from V and Σ in the usual way.
In the following sections, we will consider different signatures Σ for the set of
terms built from the functor symbols of a logic program and for the set of terms
built from a type signature. To distinguish these sets, the former will be denoted
as UV , while the latter as terms(Σ, V ), where Σ will be a type signature and V
is a set of type variables. We will often abridge V ∪ {x} as V ∪ x and V − {x}
as V − x.

We define ΘV,UW as the set of idempotent substitutions θ such that
dom(θ) ⊆ V and θ(x) ∈ UW for every x ∈ V . If θ ∈ ΘV,UW and V ′ ⊆ V ,
θ|V ′(x) = θ(x) if x ∈ V ′ and θ|V ′(x) = x if x �∈ V ′. A substitution θ ∈ ΘV,UW

is called grounding for a set of variables G ⊆ V if and only if θ(x) is ground
for every x ∈ G. For every set of variables V , a partial pre-ordering is defined
on substitutions θ, θ′ ∈ ΘV,UW as θ′ ≤V θ if and only if there exists a sub-
stitution σ ∈ ΘW,UW such that θ′ = θ ◦ σ. When the set V is clear from the
context, we will often remove the subscript V . A set S ⊆ ΘV,UW of substitutions
is downward closed if and only if θ ∈ S and θ′ ≤ θ entail θ′ ∈ S. We define
↓ S = {θ|θ ≤ θ′ and θ′ ∈ S}.

Given t1, t2 ∈ UV , we define t1 ≤V t2 if and only if t1 = t2θ for a suitable
θ ∈ ΘV,UV . As usual, the subscript will be always removed. S ⊆ UV is called
downward closed if and only if t ∈ S and t′ ≤ t entail t′ ∈ S.

If S is a set endowed with a relation ≤, P(S) is the set of all the subsets of S,
while P↓(S) is the set of all the downward closed (with respect to ≤) sets of S.

We will often define types as solutions of recursive equations over sets of
terms. In such definitions, we will use classical λ-notation as well as a least
fixpoint operator µ.

2 Abstract Interpretation

Abstract interpretation [8] is a theory developed to reason about the abstraction
relation between two different semantics. The theory requires these semantics to
be defined on domains which are posets. (C,�) (the concrete domain) is the do-
main of the concrete semantics, while (A,≤) (the abstract domain) is the domain
of the abstract semantics. The partial order relations reflect an approximation
relation. The two domains are related by a pair of functions α (abstraction)
and γ (concretization), which form a Galois connection.

Let f : Cn → C be an operator and assume that f̃ : An → A is its abstract
counterpart. Then f̃ is (locally) correct with respect to f if and only if for all
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x1, . . . , xn ∈ A we have α(f(γ(x1), . . . , γ(xn))) � f̃(x1, . . . , xn). According to
the theory, for each operator f , there exists an optimal (most precise) locally
correct abstract operator f̃ defined as f̃(y1, . . . , yn) = α(f(γ(y1), . . . , γ(yn))),
where α is extended to sets S ∈ C defining α(S) = ∧s∈Sα(s).

We briefly recall the equivalence between the Galois insertion and the closure
operator approach to the design of abstract domains. Let 〈L,≤,∧,∨,�,⊥〉 be a
complete lattice. An upper closure operator on L is an operator
ρ : L �→ L monotonic, idempotent and extensive. Each closure operator ρ is
uniquely determined by the set of its fixpoints, which is its image ρ(L). A set
X ⊆ L is the set of fixpoints of a closure operator if and only if X is a Moore
family, i.e., � ∈ X and X is completely ∧–closed. For any X ⊆ L, we denote
by �(X) the Moore–closure of X , i.e., the least subset of L containing X which
is a Moore family of L.

The complete lattice of all abstract interpretations (identified up to isomor-
phism) of a domain C is isomorphic to the complete lattice of upper closure
operators on C.

A systematic approach to the development of abstract domains is based on
the use of domain refinement operators. Intuitively, given an abstract domain A,
a domain refinement operator R yields an abstract domain R(A) which is more
precise than A. Classical domain refinement operations are reduced product and
disjunctive completion [9].

Heyting completion was proposed in [12] as a powerful domain refinement
operation. It allows us to include in a domain the information related to the
propagation of the abstract property. Let L be a complete lattice and a, b ∈ L.
The relative pseudo–complement (or intuitionistic implication) of a relative to b,
if it exists, is the unique element a→ b ∈ L such that for any x ∈ L: a∧L x ≤ b
if and only if x ≤L a → b. Relative pseudo–complements, when they exist, are
uniquely given by a→ b =

∨
L{c|a∧Lc ≤L b}. A complete lattice A is a complete

Heyting algebra if and only if it is relatively pseudo–complemented, i.e., a → b
exists for every a, b ∈ A. An example of complete Heyting algebra which will
be used throughout this paper is 〈P↓(ΘV,UV ),⊆,∩,∪, ΘV,UV , ∅〉. Given a, b ∈
P↓(ΘV,UV ), the intuitionistic implication a → b =

⋃{c ∈ P↓(ΘV,UV )|a ∩ c ⊆ b}
is also given by a→ b = {θ ∈ ΘV,UV |for all δ ≤ θ if δ ∈ a then δ ∈ b}. Note that
this corresponds exactly to the definition of the concretization of implication in
the case of the POS [2,7] domain for groundness analysis. The concretization of
x ⇒ y is the set of substitutions such that every instance which grounds x must
also ground y. This is not by chance, as shown in [17]. Roughly speaking, an
arrow x→ y represents the set of substitutions such that the property of interest
propagates from the variable x to the variable y for every possible instance.

Given the domains D1
V ⊆ DV and D2

V ⊆ DV , we define D1
V

�−→ D2
V =c{d1 → d2|d1 ∈ D1

V and d2 ∈ D2
V }. This domain is called the Heyting comple-

tion of D1
V with respect to D2

V and contains all possible dependencies between
an element of D1

V and an element of D2
V .
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3 The Concrete Domain

Since types are downward closed properties of substitutions, our concrete do-
main consists of downward closed sets of substitutions. Given a substitution θ,
its downward closure represents the set of substitutions which are compatible
with θ, i.e., which might be obtained by refining θ by further computation steps.
For instance, if the computed substitution at a program point is {y �→ f(x)},
then, as computation proceeds, the new substitution might be {y �→ f(g(w)),
x �→ g(w)}. With this interpretation in mind, a downward closed set of substi-
tutions contains exactly all the substitutions which are compatible with the rest
of the computation. For instance, if S1 is the (downward closed) set of substi-
tutions which are compatible with a procedure call p1 and S2 is the (downward
closed) set of substitutions which are compatible with a procedure call p2, then
S1 ∩ S2 is the (downward closed) set of substitutions which are compatible with
the calls p1, p2 and p2, p1.

We endow downward closed sets of substitutions with two operations:

unification: if S1, S2 ⊆ ΘV,UV , then unifyV (S1, S2) = S1 ∩ S2;
cylindrification: if S ⊆ ΘV,UV , its cylindrification with respect to x ∈ V is

cylV (S, x) =
{
θ′ ∈ ΘV,UV

∣∣∣∣ there exist θ, σ ∈ ΘV ∪{n},UV ∪{n} s.t.
θ|V = θ′, θ ≤V ∪{n} σ and σ ∈ S[n/x]

}
, (1)

where n is a new variable (n �∈ V ), S[n/x] = {σ[n/x]|σ ∈ S} and σ[n/x](n) =
σ(x), σ[n/x](x) = x and σ[n/x](y) = σ(y)[n/x] if y �= x.

While the definition of unification is the classical one for the case of downward
closed sets of substitutions (see for instance [17]), and is justified by the above
considerations, it turns out that an explicit definition of concrete cylindrification
on downward closed sets of substitutions was never given.

Definition (1) should be read as follows. In order to compute the cylindri-
fication of a set S of substitutions, we consider x as a new variable n. Then
we instantiate all the substitutions in S and we select those instantiations θ
such that θ|V does not contain n. We try now to get some insight on the
meaning of this definition. Consider a procedure defined as p(y) : −y = f(x)..
The set of substitutions which are consistent with the body of the procedure is
S = ↓{θ}, where θ = {y �→ f(x)}. Note that θ′ = {y �→ f(g(x))} �∈ S, as long as
we consider idempotent substitutions (or, equivalently, logic programming with
occur–check). Consider now the set of substitutions which are consistent with
the procedure call p(y). We have to consider x in the body of the procedure as
existentially quantified. Hence x in the body of the procedure is not the same x
that we have outside the procedure p. This means that θ′ is now consistent with
the procedure call p. For instance, if we make a procedure call p(y), with a
partial computed substitution {y �→ f(g(x))}, we obtain success, even when the
occur–check is performed. Definition (1) should now be clear. We consider x as
a new variable n, then we instantiate the new variable in every possible way,
including with terms which contain x.
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The domain of downward closed sets of substitutions will be considered as
our concrete domain. We will show in the following sections how some elements
of this domain can be selected in order to get a hierarchy of type domains.

4 Basic Domains for Types

In this section we build a domain for type analysis which is able to model elemen-
tary monomorphic as well as polymorphic types. We assume a given set of functor
symbols Σ (the type signature) and a finite set of variables V = {x, y, z, . . .}
(variables of interest).

Given Σ, we define a related interpretation IΣ,V (denoted in the following
simply by I). The domain of I is P(UV ) (UV could be the set of terms over V
induced by the signature of the program). Functors are interpreted in a “user–
defined” way. For instance the user can define:

I(top) = UV

I(int) = {0, 1, 2, . . .}
I(list) = λα.µβ.{[]} ∪ {[h|t]|h ∈ α and t ∈ β}
I(tree) = λα.µt.{void} ∪ {tree(x,l,r)|x ∈ α, l ∈ t and r ∈ t} .

(2)

Note that in equations (2) list stands for the polymorphic list constructor,
through the use of the λ-abstraction. Monomorphic lists can be defined as
I(list′) = µl.{[]} ∪ {[h|t]|h ∈ UV and t ∈ l}. tree is the polymorphic tree
constructor.

I allows us to evaluate a type t ∈ terms(Σ, ∅) into a set of terms:

[[c]]I = I(c) if c has arity 0
[[f(t1, . . . , tn)]]I = [[f ]]I([[t1]]I, . . . , [[tn]]I) if f has arity n.

According to the above definitions, tree(int) contains the terms void, tree(2,
void,void) and tree(3,tree(1,void,void),void).Moreover, I(list(top)) =
I(list′).

A type system is a triple 〈Σ, V, I〉 1. Given a variable x and a type t ∈
terms(Σ, ∅), the set x ∈V,I t = {θ ∈ ΘV,UV |θ(x) ∈ [[t]]I} is a basic type property.
It represents the set of substitutions which bind x to a term which belongs to the
type t. The domain of basic types on variables V , T YPE0

Σ,V,I (in the following
simply T YPE0), is defined as follows:

T YPE0 =
k

{x ∈V,I t |x ∈ V, t ∈ terms(Σ, ∅)} .

As already mentioned, the Moore family operator selects the least set of down-
ward closed sets of substitutions which contains top and all basic type properties
1 Strictly speaking, we should include UV in a type system. This information will be
left unspecified, in order to simplify the notation.
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and is closed with respect to intersection. The selected set is ordered with respect
to the original ordering relation on downward closed sets of substitutions (set in-
clusion). Note that if I yields downward closed sets for constants and downward
closed sets transformers for symbols with arity greater than zero, then T YPE0

is a set of downward closed sets of substitutions. In the following, we will assume
this hypothesis to be satisfied. An abstraction map from the set of downward
closed sets of substitutions into T YPE0 can be defined in a standard way.

T YPE0 is able to model only conjunction of simple type properties, like for
instance “x is an integer and y is a list of integers”. It is not able to model type de-
pendencies (directionality). This means that the set ↓{θ}, where θ = {x �→ [h|t]}
is abstracted into ΘV,UV , the set of all the substitutions, in the type system de-
fined by equations (2). T YPE0 is not able to model the directionality of θ. Actu-
ally, if h is of type int and t is of type list(int), then x is of type list(int),
and vice versa. In the following section we will introduce directionality, by sys-
tematically refining T YPE0 by the Heyting completion operator.

5 A Hierarchy of Domains for Directional Types

We want now to build a (possibly infinite) hierarchy of type domains as follows:

T YPE0 =
c {x ∈V,I t |x ∈ V, t ∈ terms(Σ, ∅)} ,

T YPE i = T YPE i−1 �−→ T YPE i−1 for i ≥ 1 .
(3)

Note that we do not know whether this refinement chain is finite or not. In the
following, we will show that under proper conditions on the type system this
chain is finite. Namely, it converges at T YPE2.

Consider now a generic element of T YPE1. It has the form (b11 → b12) ∩
. . . ∩ (bn1 → bn2 ) ∩ . . . where bi1, b

i
2 ∈ T YPE0 for i ≥ 1. The intersection can

be finite as well as infinite. Moreover, every bij has the form bij = (xi,j1 ∈V,I
ti,j1 )∩ . . .∩ (xi,jmi,j

∈V,I ti,jmi,j
)∩ . . . where, again, the intersection can be finite as

well as infinite. Hence T YPE1 is able to model directional types.
Assume the type system to contain two disjoint types t1 and t2. Namely, we

require [[t1]]I ∩ [[t2]]I = ∅. In such a case, T YPE1 would contain the element
(x ∈V,I t1 ∩ x ∈V,I t2) ← y ∈V,I t, where t is a type and x, y are two variables.
The meaning of this element is that y is not and will not be eventually bound to
a term of type t. This is a form of intuitionistic negation. Note that the variable x
can be substituted with whatever other variable. Its name is irrelevant. Hence
we could simply write ⊥ ← y ∈V,I t, where ⊥ means failure. Moreover, this
argument can be applied even if there are not disjoint types. We just need to add
a distinguished type bot to the type system, whose interpretation is I(top) = ∅.
In such a case, ⊥ would be an abridged form for x ∈V,I bot. The introduction
of negative information seems to be a distinguishing feature of our approach.
This information is essentially useless in the case of groundness analysis. For
instance, if we add the distinguished type bot to the basic domain for groundness
containing the unique property g such that I(g) = {t ∈ UV | vars(t) = ∅}, then
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an element of the form ⊥ ← x ∈V,I g is ⊥ itself. This is because every term can
always be made ground.

Negative information is extremely powerful for generic type systems. In our
concluding example of analysis (section 10) we will show a case where it plays a
key role.

It is worth noting that polymorphism is treated in a “ground fashion”. For
instance, consider the type signature and the interpretation given by equa-
tions (2). In T YPE1 we are able to say that if x is of type T then y is of
type list(T ). However, the element representing this information is an in-
finite intersection of the form (x ∈V,I int → y ∈V,I list(int)) ∩ x ∈V,I
list(int) → y ∈V,I list(list(int))) ∩ (x ∈V,I list(list(int)) → y ∈V,I
list(list(list(int))))∩ . . . This observation means that the way elements are
built in T YPE i can not be used directly as a guide for devising a computation-
ally effective representation for T YPE i. We have to represent a possibly infinite
intersection in a finite way. This can be accomplished through the use of type
variables in the representation, as it will be shown in section 9.

6 Well Formed Type Systems

In this section we investigate a class of type systems which enjoy the property
that the refinement chain (3) is finite. Namely, for these type systems the refine-
ment chain converges at the second refinement step to a domain which contains,
by construction, all possible type dependencies.

Definition 1. A type system 〈Σ, V, I〉 is called well formed if and only if, for
every θ ∈ ΘV,UV , there exists a grounding substitution σ for V , such that for
every type t ∈ terms(Σ, ∅), θ(x) ∈ [[t]]I if and only if (θ(x))σ ∈ [[t]]I.

Roughly speaking, well formed type systems are such that terms which do not
belong to types can be instantiated in such a way that they will definitively
not belong to those types. It turns out that all sensible type systems are well
formed. For instance, the type system int list top with Σ = {int, list, top},
I[int] = µi.i = {0} ∪ {s(j)|j ∈ i}, I[list] = λx.µl.l = {[]} ∪ {[h|t]|h ∈ x, t ∈ l}
and I[top] = UV , is well formed.

Let bi, cj, dk be basic type properties for i ∈ I, j ∈ J and k ∈ K, where I, J,K
are index sets. Let B =

⋂
i∈I bi, C =

⋃
j∈J cj and D =

⋃
k∈K dk. Assume the

following condition holds:

H1: (B → C) → D = (B ∪D) ∩ (C → D).

Intuitively, hypothesis H1 means that deep arrows can be factorized into simpler
arrows. The following results can be proved by extending similar proofs done
in [17] for the groundness domains:
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1. If 〈Σ, V, I〉 satisfies condition H1, then T YPE2 = T YPE i for every i ≥ 2;
2. If 〈Σ, V, I〉 satisfies condition H1, then T YPE2 can be obtained as implica-

tion between conjunctions of basic type properties and disjunctions of basic
type properties. Formally, we have:

T YPE2 =
k{

a→ o
∣∣a ∈ T YPE0 and o ∈ OR}

,where

OR =
{⋃

i
{xi ∈V,I ti}

∣∣∣ xi ∈ V, ti ∈ terms(Σ, ∅)
and the union is not empty

}
.

OR is able to model disjunction of basic type properties, while T YPE2 is able to
model propagation of type information from conjunctions of basic type properties
to disjunctions of basic type properties.

The importance of well formed type systems is that they satisfy condition H1:

Proposition 1. Condition H1 holds for well formed type systems.

7 A Hierarchy of Intermediate Representations

In this section we consider a hierarchy of representations for the above defined
type domains. They are intermediate because they are not adequate for a direct
implementation in an analysis tool. However, they will be used to obtain some
theoretical results, and to devise an effective representation for our type domains.

We start by defining a fragment of transfinite logic which will be called
LOGΣ,V (in the following simply LOG). It is the least set such that false, true ∈
LOG, (x ∈ t) ∈ LOG, for x ∈ V and t ∈ terms(Σ, ∅), if S is a (possibly infinite)
subset of LOG then ∧(S) ∈ LOG and ∨(S) ∈ LOG, if s1, s2 ∈ LOG then
s1 ⇒ s2 ∈ LOG and if s ∈ LOG then ¬s ∈ LOG.

Given a substitution θ ∈ ΘV,UV and an interpretation I, we define the inter-
pretation of a formula of LOG as follows:

[[false]]Iθ = 0 and [[true]]Iθ = 1
[[x ∈ t]]Iθ = 1 iff θ(x) ∈ [[t]]I , for x ∈ V and t ∈ terms(Σ, ∅),
[[∧(S)]]Iθ = 1 iff [[s]]Iθ = 1 for every s ∈ S,
[[∨(S)]]Iθ = 1 iff there exists s ∈ S such that [[s]]Iθ = 1 ,

[[s1 ⇒ s2]]Iθ = 1 iff if [[s1]]Iθ = 1 then [[s2]]Iθ = 1,
[[¬s]]Iθ = 1 iff [[s]]Iθ = 0 .

An interpretation I induces an equivalence relation ≡I on formulas. Namely,
φ1 ≡I φ2 if and only if for every θ ∈ ΘV,UV , [[φ1]]Iθ = 1 entails [[φ2]]Iθ = 1 and vice
versa. This equivalence will be called logical equivalence in the following.

Given φ ∈ LOG and an interpretation I, we define the map γI : LOG �→
P↓(ΘV,UV ) as γI(φ) = {θ ∈ ΘV,UV |for all σ ≤ θ, [[φ]]Iσ = 1}. γI induces an equiva-
lence relation on formulas defined as φ1 ≡γI φ2 if and only if
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γI(φ1) = γI(φ2). This equivalence will be called γ-equivalence in the follow-
ing. Note that if φ1 and φ2 are logically equivalent then they are γ-equivalent,
by definition of γ. However, the converse, in general, does not hold.

We define now a hierarchy of representations as follows:

LOG0 =

{
∧(S)

∣∣∣∣∣
S =

⋃
i

{xi ∈ ti} ,
xi ∈ V, ti ∈ terms(Σ, ∅)

}
/≡I ,

LOG1 =

{
∧(S)

∣∣∣∣∣
S =

⋃
j

{s1j ⇒ s2j} ,
s1j , s

2
j ∈ LOG0

}
/≡I ,

LOG2 =


∧(S)

∣∣∣∣∣∣
S = ∪j{aj ⇒ oj} ,
[aj ]≡I

∈ LOG0,

[oj ]≡I
∈ LOGOR


 /≡I ,where

LOGOR =

{
∨(S)

∣∣∣∣∣
S =

⋃
i

{xi ∈ ti} is non empty,

xi ∈ V, ti ∈ terms(Σ, ∅)

}
/≡I .

The following inclusions can easily be proved: LOG0 ⊆ LOG1 ⊆ LOG2.
We extend the concretization map on equivalence classes as γI([φ]≡I ) =

γI(φ). This definition is well given because logical equivalence entails
γ-equivalence. Note that γI is monotonic. In the following, a formula will stand
for its (logical) equivalence class.

It can be shown that every element of T YPE0 is the image through γI of an
element of LOG0, that every element of T YPE1 is the image through γI of an
element of LOG1 and that every element of T YPE2 is the image through γI of
an element of LOG2. Note that this last result holds only for the particular form
of the elements of LOG2. Hence in these three cases γI is onto. We have already
shown that it is monotonic. However, we know that it is not always one to one.
If we make the assumption:

H2: γI is one to one, i.e., logical equivalence is γ-equivalence;

then we conclude that the following isomorphisms hold: T YPE0 ≈ LOG0,
T YPE1 ≈ LOG1 and T YPE2 ≈ LOG2. The following result shows that well
formed type systems satisfy condition H2. Hence the representations of this sec-
tion are isomorphic to the type domains of section 5 for well formed type systems.

Proposition 2. Condition H2 holds for well formed type systems.

8 Abstract Operators on Transfinite Logic

In this section we give an explicit definition of correct abstract operators on the
domains of transfinite logic formulas.

Let us first note that if S1 is represented by φ1 and S2 is represented by φ2,
then S1 ∩ S2 is represented by φ1 ∧ φ2. Moreover, this is the best possible ap-
proximation.
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We consider now the approximation of the concrete cylindrification operator.
Let T =

c{[[t]]I|t ∈ terms(Σ, ∅)} be the least Moore family (with respect to set
intersection) which contains all the types. The substitution of a type t ∈ T for
a variable x in a formula φ is defined as follows:

false[t/x]=false
true[t/x]=true

(x ∈ t′)[t/x]=




true
if t ⊆ [[t′]]I
false
otherwise

(y ∈ t′)[t/x]=(y ∈ t′)
if x �= y

∧(S)[t/x]=∧({s[t/x]|s ∈ S})
∨(S)[t/x]=∨({s[t/x]|s ∈ S})

(s1 ⇒ s2)[t/x]=s1[t/x] ⇒ s2[t/x]
(¬s)[t/x]=¬(s[t/x]) .

We define the abstract cylindrification operator on the logical domain as ∃xφ =
∨({φ[t/x]|t ∈ T ′}), where T ′ ⊆ T is the set of types which are the most specific
type of some term. Note that this subset is not empty because T is a Moore
family. Hence every term has a most specific type. This definition is similar
to the Schröder elimination used in the case of groundness analysis [2,7]. Note
that x does not occur in ∃xφ. For generic type systems, ∃x is not a correct
cylindrification operator. However, it turns out that ∃x is a correct abstract
operator with respect to concrete cylindrification in the case of well formed type
systems.

9 Logic Programs as Finite Representations of Type
Domains

Transfinite formulas can be used as a computationally effective representation
domain if the set of types is finite. In such a case the set of transfinite for-
mulas is isomorphic to a set of finite formulas and the abstract operators on
the domain can correctly be approximated by effective algorithms. For instance,
the operator ∃x becomes an algorithm for computing cylindrification. Even the
equivalence test between two formulas becomes effective, though very expensive,
being a classical NP–complete problem.

A more interesting case is when we deal with an infinite set of basic types,
i.e., when terms(Σ, ∅) is infinite. In such a case, transfinite formulas are not
finitely representable. However, the full power of transfinite formulas is sel-
dom useful for our purposes. For instance, to express the relationship between
the variables in the binding x = [h|t] we must write an infinite conjunction:∧
t∈terms(Σ,∅) (x ∈ list(t) ⇐⇒ h ∈ t ∧ t ∈ list(t)). However, this could be ex-

pressed more compactly using type variables as x∈list(T ) ⇐⇒ h ∈ T ∧ t ∈
list(T ).

In this section, we introduce a domain of finite formulas with type variables
and the corresponding abstract operators.

Let V ′ = {X,Y, Z, . . . } be an infinite set of type variables. Type vari-
ables are denoted by uppercase letters to distinguish them from the variables
of interest V = {x, y, z, . . . }. REPΣ,V,V ′,I (in the following, simply REP) is
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the least set of first order formulas containing xi ∈ ti for xi ∈ V and ti ∈
terms(Σ, V ′) and closed with respect to ∧ and ⇒, modulo the equivalence rela-
tion ≡REP defined as follows: φ1 ≡REP φ2 if and only if γREP(φ1) ≡I γREP(φ2),
where γREP(φ(X1, . . . , X2)) =

∧
t1,... ,tn∈terms(Σ,∅) φ[t1/X1, . . . , tn/Xn] (where

φ(X1, . . . , Xn) means that the type variables contained in φ are exactly
X1, . . . , Xn). Intuitively, the last formula is the transfinite formula represented
by the finite formula φ. Note that there exist transfinite formulas which can not
be represented this way. Moreover, REP is not closed with respect to infinite ∧.
This means that we are not guaranteed to have optimal operators. Finally, in
general REP is not finite and not even noetherian. For example, the instance of
REP induced by the type system int list top is not noetherian, because there
exists an infinite chain X ∈ top, X ∈ list(top), X ∈ list(list(top)), and so
on.

In order to make REP finite, we consider the approximate domain REPk,
k ∈ N, k > 0, whose formulas contain constraints of the form xi ∈ ti, such
that ti ∈ terms(Σ, V ′) and the depth of ti is less than or equal to k. We define
γREPk = γREP and ≡REPk=≡REP restricted to formulas in REPk.

Considering only constraints with bounded term depth does not boil down
to the case of a finite set of types. In fact, type variables are free to assume any
value, with arbitrary depth. As the concluding example will show, this restriction
on the constraints does not introduce a big loss in precision, thanks to the use
of type variables.

We give now algorithmic definitions for the two abstract operators and for
the abstraction map.

Abstract unification. It can be shown that ∧ is correct with respect to in-
tersection of downward closed sets of substitutions. Given φ1, φ2 ∈ REPk,
we have γI(γREPk(φ1 ∧ φ2)) = γI(γREPk(φ1)) ∩ γI(γREPk(φ2)).

As a consequence, we have that (x∈list(T )⇐y∈T ) ∧ (z∈T ⇐w∈T ) ≡REPk

(x ∈ list(T ) ⇐ y ∈ T ) ∧ (z ∈ D ⇐ w ∈ D). Actually, two occurrences of the
same type variable in two different implications can be replaced by different type
variables.

This suggests an interesting interpretation for formulas in REPk. Since (A1∧
. . . ∧ An) ⇐ B can be equivalently rewritten as (A1 ⇐ B) ∧ . . . ∧ (An ⇐ B),
the elements of REPk can be viewed as definite Horn clauses. We only need to
interpret a constraint of the form x ∈ t as an atom x(t), where the variables of
interest become predicate symbols. For instance, the abstract constraint

(x∈list(T )⇐(y∈T ∧ z∈list(T ))) ∧ (y ∈ T ⇐ x ∈ list(T )) ∧ z ∈ list(T )

can be seen as the logic program shown in figure 1(a). The above remark is
important when we look for a correct approximation of the cylindrification op-
erator. We already have a non effective definition of the approximation: given φ
and a variable x, we compute γREPk(φ), then we apply Schröder elimination.
This definition is not adequate because Schröder elimination destroys the clause
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x(list(T)):-y(T),z(list(T)).

y(T):-x(list(T)).

z(list(T)).

x(list(T)):-y(T).

y(T):-x(list(T)).

y(T):-y(T),z(list(T)).

z(list(T)).

(a) (b) (c)

Fig. 1. A constraint and two of its cylindrifications.

structure of the elements of REPk, which is extremely important for represent-
ing in a compact way a possibly infinite quantification on types. If the elements
of REPk are represented as logic programs, cylindrification of an element P with
respect to a variable x means computing a program P ′ which expresses the same
dependencies among the predicate symbols (variables of interest) different from
x in the same way as P does, but does not contain x anymore. The simplest tech-
nique for removing a predicate from a program is unfolding. Given two clauses
H1 ⇐ B1 ∧ . . . ∧Bn and H2 ⇐ C1 ∧ . . . ∧ Cm, if θ = mgu(Bi, H2) exists, one of
their unfoldings is (H1 ⇐ B1 ∧ . . . ∧ Bi−1 ∧ C1 ∧ . . . ∧ Cm ∧ Bi+1 ∧ . . . ∧ Bn)θ.
It can be shown that the unfoldings of two clauses are logical consequences of
them. Note, however, that the unfolding of two clauses whose terms have depth
less than or equal to k can contain a term with depth greater than k.

Abstract cylindrification. We define the operator ∃REPk

x through the un-
folding operation. Any element P ∈ REPk is viewed as a set of clauses. In
order to compute ∃REPk

x P , we perform the following three steps:
1. we add to P all the possible unfoldings of any clause containing x in the

body with any clause containing x in the head. Let P ′ be the resulting
program;

2. we remove from P ′ all the clauses containing x thus obtaining P ′′;
3. we remove from P ′′ all the clauses which contain terms with depth

greater than k, thus obtaining ∃REPk

x P .

For instance, the abstract cylindrification of the program of figure 1(a) with
respect to the variable z and for k = 2 is the program shown in figure 1(b), while
the abstract cylindrification of the same program with respect to the variable x
and for k = 2 is the program shown in figure 1(c), which is ≡I -equivalent to the
program z(list(T))..

Note that the algorithm for computing the abstract cylindrification intro-
duces a loss in precision in the last two steps. In order to improve the precision,
we can repeat the first step to decrease the number of clauses which contain x
in the body. However, the loss in precision of the third step can not be avoided.
It can be shown that ∃REPk

x is indeed correct with respect to concrete cylindri-
fication for well-formed type systems.

The algorithm for cylindrification uses concrete unification between type
terms. This is not related to the unification operator of the domain. It is simply
a consequence of the use of logic programs as abstract domains. However, since
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types are partially ordered with respect to a subtyping relation (for instance:
int ⊆ top), the unification procedure used in the unfolding step might be too
coarse. For instance, if we have a clause whose head is x ∈ list(int) and we
try to unfold it in the body of a clause containing x ∈ list(top), the unification
procedure fails. Actually, unfolding should be allowed because if x is a list of
integers then it is even a list of generic terms. Similarly, if we have a clause
whose body contains x ∈ T , we can remove x ∈ T from the body and instantiate
the resulting clause with the substitution {T �→ top}. This is correct because
every term is always in top. This means that we could improve the precision
of the cylindrification operator using in its algorithmic definition a unification
procedure which embeds subtyping information.

Abstraction map. We define now a correct approximation of the abstrac-
tion of ↓{θ}. We only need to find a formula φ ∈ REPk, such that ↓{θ} ⊆
γIγREPk(φ). Let α(θ) be one such a formula. Assume we have a procedure
type, which, for every term u ∈ UV with vars(u) = {x1, . . . , xn}, behaves as
u

type
❀

{〈t1, t1x1
, . . . , t1xn

〉, . . . , 〈tm, tmx1
, . . . , tmxn

〉}, where ti and tixj
belong to

terms(Σ, V ′), i.e., they are types possibly containing type variables. We re-
quire that, for every σ ∈ ΘV,UV , uσ ∈ [[tiσ′]]I for a suitable σ′ ∈ ΘV ′,terms(Σ,∅)
grounding for V ′, if and only if, for all j = 1, . . . , n, xjσ ∈ [[tixj

σ′]]I.
Roughly speaking, type(u) computes a finite set of possible types for u, and,
for each possible type, it computes some necessary and sufficient conditions
on the variables of u in order for u to belong to the type. Note that a straight-
forward definition of the type procedure can be automatically derived from
the definition of types and that this definition is compositional with respect
to addition of new types to the type system.
Given the procedure type and a substitution θ, such that x ∈ dom(θ), we de-
fine αx(θ) =

∧m
i=1

(
x∈ti ⇐⇒ (

x1 ∈ tix1
∧ . . . ∧ xn ∈ tixn

))
, where vars(θ(x))

= {x1, . . . , xn} and type(θ(x)) = {〈t1, t1x1
, . . . , t1xn

〉, . . . , 〈tm, tmx1
, . . . , tmxn

〉}.
Finally, we define α(θ) =

∧
x∈dom(θ) αx(θ). It can be proved that, for every

substitution θ ∈ ΘV,UV , ↓{θ} ⊆ γIγREPk (α(θ)).

For instance, if we consider the top type, integers, and polymorphic lists, we
can implement type as a Prolog procedure type(Term,Type) which enumerates
all possible types Term can take. Moreover, the variables of Term are bound
to types to represent necessary and sufficient conditions for Term to belong to
Type. For instance, type([H|T],Type) yields a computed answer substitution
{Type �→ list(S), H �→ S, T �→ list(S)}, meaning that [H|T] has type list(S)
if and only if H has type S and T has type list(S). An example of such a
procedure is shown in figure 2.

The above algorithmic definition of the abstraction map can be improved by
extracting from a substitution even the negative information that it contains.
We just need to modify type. We can assume that type(t) contains even pairs
of the form 〈ti,⊥〉, meaning that the term t can never belong to the type ti. For
instance, [H |T ] can never be an integer, while s(X) can. As a consequence, we de-
fine αx(θ) =

∧m
i=1

(
x ∈ ti ⇐⇒ (

x1 ∈ tix1
∧ . . . ∧ xn ∈ tixn

)) ∧ ∧k
i=1

(⊥ ⇐ (t′)i
)
,
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meta-clause
type(X,S):-var(X),!,X=S.

the whole universe UV

type(X,top).

integers: µi.i = {0} ∪ {s(l)|l ∈ i}
type(X, int) : −X = 0.
type(X, int) : −X = s(I), type(I, int).

polymorphic lists: λs.µl.l = {[]} ∪ {[h|t]|h ∈ s and t ∈ l}
type(X, list(S)) : −X = [].
type(X, list(S)) : −X = [H|T], type(H, S), type(T, list(S)).

Fig. 2. An example of the procedure type.

where vars(θ(x)) = {x1, . . . , xn} and type(θ(x)) = {〈t1, t1x1
, . . . , t1xn

〉, . . . , 〈tm,
tmx1

, . . . , tmxn
〉, 〈(t′)1,⊥〉, . . . , 〈(t′)k,⊥〉}.

10 An Example

We implemented in Prolog an abstract analyzer which uses the REPk abstract
domain and which is parametric with respect to a given set of types. In this sec-
tion, we show how it behaves on the program shown in figure 3, which computes
the derivative of an expression involving the variable x. The types used in the

int(0).

int(s(I)):-int(I).

der(x,s(0)).

der(X,0):-int(X).

der(X*Y,(DX*Y)+(X*DY)):-der(X,DX),der(Y,DY).

der(X+Y,DX+DY):-der(X,DX),der(Y,DY).

der(-(X),-(DX)):-der(X,DX).

der(X-Y,DX-DY):-der(X,DX),der(Y,DY).

der(X^K,DK*K*(X^(K-s(0)))):-der(K,DK).

der(exp(X),DX*exp(X)):-der(X,DX).

der(sin(X),DX*cos(X)):-der(X,DX).

der(cos(X),-(DX*sin(X))):-der(X,DX).

Fig. 3. The program of our example.

analysis are the top type, denoted by top, integers, denoted by int, generic ex-
pressions on x, denoted by expr, and algebraic expressions on x, i.e., expressions
on x which do not involve exponentiation or trigonometric functions, denoted
by algebraic. We compute the abstract fixpoint of the above program through
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our analyzer. Then we evaluate the query (mode) der(algebraic,top) in the
abstract fixpoint. We get the set of constraints shown in figure 4, where var0 and
var1 stand for the first and for the second argument of the predicate der, respec-
tively. Every constraint is a logic program. If the predicate bot is derivable from

constraint 1: constraint 2: constraint 3:
bot:-var0(int). var0(algebraic). bot:-var0(algebraic).
var0(algebraic). var0(expr). bot:-var0(int).
var0(expr). var0(int). bot:-var1(algebraic).
var1(algebraic). var1(algebraic). bot:-var1(int).
var1(expr). var1(expr). var0(algebraic).
var1(int). var1(int). var0(expr).
var1(top). var1(top). var1(expr).

var1(top).

constraint 4: constraint 5: constraint 6:
bot:-var0(int). bot:-var0(int). bot:-var0(algebraic).
bot:-var1(int). bot:-var1(int). bot:-var0(int).
var0(algebraic). var0(algebraic). bot:-var1(algebraic).
var0(expr). var0(expr). bot:-var1(int).
var1(algebraic). var0(expr):-var1(expr). var0(algebraic).
var1(expr). var1(algebraic):-var0(algebraic). var0(expr):-var1(expr).
var1(top). var1(expr):-var0(expr). var1(expr):-var0(expr).

var1(top). var1(top).

constraint 7: constraint 8:
bot:-var0(algebraic). bot:-var0(algebraic).
bot:-var0(int). bot:-var0(int).
bot:-var1(algebraic). bot:-var1(algebraic).
bot:-var1(int). bot:-var1(int).
var0(algebraic). var0(algebraic).
var0(expr):-var1(expr). var0(expr).
var1(expr):-var0(expr). var1(expr).
var1(top). var1(top).

Fig. 4. The set of constraints computed for our query.

the logic program, then the constraint can be dropped since it is not satisfiable.
In the case at hand, constraints 3, 6, 7 and 8 are dropped. From the remaining
four constraints, we derive the fact var1(expr). This means that the second
argument is bound to an expression. More interestingly, the same constraints
allow us to derive the fact var1(algebraic), i.e., the second argument is bound
to an algebraic expression. Roughly speaking, our analyzer concludes that the
derivative of an algebraic expression is an algebraic expression too. Note that
this result was possible only through the use of negative information. Namely,
the dropped constraints do not allow to derive the fact var1(algebraic). Hence
only if we remove them we can obtain the desired result.

11 Conclusions

We presented a polymorphic type analysis scheme based on abstract interpreta-
tion. The construction of the abstract domains is made through a formal method-
ology, namely domain refinement starting from a simple domain of elementary
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types. We have introduced an isomorphic representation of the elements of the
domain by means of transfinite formulas. We have given sufficient conditions on
the type systems which assure that the resulting type domains and type rep-
resentations with transfinite formulas enjoy some desirable properties, namely
factorization of deep type implications, identity between logical equivalence on
the representation and concretization equality and correctness of the Schröder
elimination procedure on the representation. Finally, we have shown how a fi-
nite domain of finite formulas (represented by definite Horn clauses) with type
variables can be selected in order to make the analysis effective.

We are left with several important open problems. Some of the problems we
are currently investigating are:

– the optimality of Schröder elimination;
– the automatic derivation and the use of subtyping information in the algo-

rithm for abstract cylindrification;
– the relation, in terms of precision, between the domain of finite formulas

with type variables and the domain of transfinite formulas;
– the definition of a better approximation of the abstraction map into formulas

in REPk;
– the definition of a generic implementation based on a type specification lan-

guage (as we have shown, a type analyzer can be constructed from a type
specification in an automatic way);

– the comparison of our technique to other existing techniques for type analysis
based on abstract interpretation. The domain refinement methodology we
use should be useful to compare existing domains, as already shown in the
case of groundness analysis.
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1 Introduction

Domain-specific languages (DSLs) can be viewed from both a programming lan-
guage and a software architecture perspective. The goal of this paper is to re-
late the two viewpoints. In particular, we demonstrate that DSLs can be con-
structed using an existing formal methodology for developing general purpose
languages (GPLs) while expressing software architecture concerns.

1.1 A Programming Language Perspective

A DSL can be viewed as a programming (or specification) language dedicated
to a particular domain or problem. It provides appropriate built-in abstractions
and notations; it is usually small, more declarative than imperative, and less
expressive than a GPL.

Consider for example the Unix command make. This tool is a utility to main-
tain programs: it determines automatically which pieces of a large program need
to be recompiled, and issues the commands to recompile them. The language of
makefiles is small (at least in the early versions of make) and mainly declarative,
although it also contains some imperative constructs. Its expressive power is lim-
ited to updating task dependencies; actual recompilation actions are delegated
to a shell. It hides implementation details like file last-modification time and
provides domain abstractions such as file suffixes and implicit compilation rules.
As a result, the user may concisely express precise update dependencies.

This example illustrates several important DSL features, which make DSLs
more attractive than GPLs for a variety of applications.

Easier programming. Because of appropriate abstractions, notations and de-
clarative formulations, a DSL program is more concise and readable than its
GPL counterpart. Hence, development time is shortened and maintenance
is improved. As programming focuses on what to compute as opposed to
how to compute, the user does not have to be a skilled programmer. For
example, in the case of recompilation, writing a program to explicitly test
all file modification times in order to incrementally rebuild a system would
clearly be lengthy, tedious and error-prone.
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Systematic re-use. Most GPL programming environments include the ability
to group common operations into libraries. Though some are standard li-
braries, re-use is left to the programmer. On the other hand, a DSL offers
guidelines and built-in functionalities which enforce re-use. Additionally, a
DSL captures domain expertise, either implicitly by hiding common program
patterns in the DSL implementation, or explicitly by exposing appropriate
parameterization to the DSL programmer. Thus, any user necessarily re-uses
library components and domain expertise.

Easier verification. Another important advantage of DSLs is that they enable
more properties about programs to be checked. In contrast to a GPL, the
semantics of a DSL can be restricted to make decidable some properties that
are critical to a domain. For example, make reports any cycle in dependencies
and thus totally prevents non-termination (assuming the individual actions
do not loop).

Although all DSL features listed above address important software engineer-
ing concerns, they do not say much about the way applications based on DSLs
should be structured. In fact, DSLs strongly suggest particular software archi-
tectures.

1.2 A Software Architecture Perspective

Software architectures express how systems should be built from various compo-
nents and how those components should interact. From a software architecture
perspective, a DSL can be seen as a parameterization mechanism as well as an
interface model.

Parameterization mechanism. A program or a library can be more or less
generic depending on the scope of the problems it addresses [3]. For exam-
ple, a scientific library can be highly generic considering the vast variety
of problems it can be used for. Pushing the idea of genericity further leads
to complex parameters that can be seen as DSLs. For example, the format
string argument of function printf can be seen as both a complex parameter
and a very simple DSL. Considering a DSL program as a complex argument
to a highly parameterized component may sound contrived but it actually
is the final step of a chain of increasingly expressive power in parameteriza-
tion. This situation is illustrated by Unix commands grep, sort, find, sed,
make, awk, etc., and the progression from simple command-line parameters
to program files. At the end of the spectrum, the data parameter ends up
being a program to be processed, yielding increased parameterization power.

Interface to a library. As a library becomes larger or more generic, its us-
ability decreases due to the multiplication of entry points, parameters and
options offered. As a result, the library might be ignored by programmers
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because it is too complex to use. In this situation, a DSL can offer a domain-
specific interface to the library so that the programmer does not have to di-
rectly manipulate numerous highly-parameterized building blocks; the com-
plexity is hidden. Another common situation is when some patterns of library
calls occur frequently. In this case, a DSL interface can provide direct access
to those commonly used combinations. For example, Unix shells are inter-
faces to standard Unix libraries. This idea is shared by scripting languages,
that glue together a set of powerful components written in traditional pro-
gramming languages. For example, Tcl/Tk provides a Tcl interface on top
of the Tk graphic toolkit.

Recognizing a DSL as both a parameterization mechanism and an interface
has an impact on structuring and reasoning about the software. In fact, the range
of software adaptability is defined by the DSL. Such software is thus naturally
separable into two parts: the decoding of the parameterization expressed by DSL
programs and a library of components.

One may wonder when complex parameters and library interfaces are used.
In the first case, complex parameters are introduced when, instead of offering
separate but related tools, a single, versatile program is provided. In the second
case, libraries are in essence created to enable re-use of data types and basic
operations among related programs. Thus, the common motivation of those ar-
chitectures is to build a set of related programs. This observation leads us to
another, more conceptual aspect of DSLs: a program family.

Program family. A DSL program designates a member of a program family.
A program family is a set of programs that share enough characteristics that
it is worthwhile to study them as a whole [26]. A program family can also
be seen as providing a solution to a problem family, i.e., a set of related
problems. Drivers, for a given type of device, form a natural example of a
program family: in addition to having the same API (for a given operating
system), they all share similar operations, although they vary according to
the hardware.

1.3 When to Develop a DSL?

Conversely, we believe that whenever a problem family must be solved, i.e.,
whenever a program family must be developed, basing the software architecture
on a DSL makes configuration (i.e., DSL programming) simpler. More generally,
the following issues should be raised even when developing new software: does
the program to be developed address an isolated problem? Could it be a member
of a future program family?

The fact is that existing DSLs do implement program families. Examples are
numerous; DSLs have been used in various domains such as graphics [12,19],
financial products [1], telephone switching systems [13,21], protocols [4,35], op-
erating systems [29], device drivers [37], routers in networks [35] and robot
languages [2]. This profusion also shows the recent attention that DSLs have
received from both the research and industrial communities.
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1.4 How to Develop a DSL?

These applications have clearly illustrated the advantages of DSLs over GPLs,
recording benefits such as productivity, reliability and flexibility [20]. However,
they also raise a key issue which, if not addressed, could obstruct the use of
DSLs [5]: how does one design and implement a DSL? Resolving this issue is
critical to make the approach profitable since there is no point in reducing the
complexity of program development by shifting all the complexity into the con-
struction and maintenance of a DSL programming environment.

Another related question is: who will develop DSLs? Even in the program-
ming language community, only a few people have actually designed a language.
A fortiori, we cannot expect software engineers to have the full expertise to build
up new languages. Thus, it is crucial that a methodology and tools are provided
to make the DSL approach widely accessible.

1.5 Our Methodology for Developing DSLs

We propose a methodology for designing and implementing DSLs. This method-
ology is based on an existing formal framework for defining GPLs and integrates
software architecture concerns.

This formal framework is based on denotational semantics, which has been
extensively used to formally define GPLs [31]. It identifies key concepts in lan-
guage design and semantics. Furthermore, techniques have been developed to
derive implementations from definitions in denotational semantics [14]. These
techniques typically produce compilers that are less efficient than ad hoc GPL
compilers. However, in the context of DSLs, efficiency often relies on the underly-
ing building blocks. As will be shown in this paper, structuring a DSL definition
allows these building blocks to be isolated and implemented efficiently.

Our methodology is based on a framework outlined in an earlier paper by
Thibault and Consel [33]. It can be summarized as follows. For the sake of clarity,
the phases of our methodology are presented sequentially. In practice, the whole
process needs to be iterated. Notice that the working example used to illustrate
each phase throughout the paper is the final result of this iteration.

Language analysis. Assuming a problem family has been identified, the first
step is to analyze the commonalities and the variations in the corresponding
program family. This analysis is fueled by domain knowledge. The result
of this analysis includes a description of objects and operations that are
needed to express solutions to the family of problems, as well as language
requirements (e.g., analyzability) and elements of design (e.g., notations).

Interface definitions. The next phase is to refine the design elements of the
DSL. To do so, the syntax of the DSL is defined and its informal semantics
is developed. The informal semantics relates the syntactic constructs to the
objects and operations (i.e., the building blocks) identified previously. Ad-
ditionally, the domain of objects and the type of operations are formalized,
thus forming the signature of semantic algebras.
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Staged semantics. The semantics of a GPL is typically split between the
compile-time and the run-time actions. These two parts are also referred
to as the static and the dynamic semantics of a language. We propose to
perform the same separation in the semantics of a DSL. With respect to
software architecture concerns, this separation makes stages of configuration
explicit.

Formal definition. Once the static and dynamic components of the language
have been determined, the DSL is formally defined. Valuation functions de-
fine the semantics of the syntactic constructs. They specify how the opera-
tions of the semantic algebras (i.e., the building blocks) are combined.

Abstract machine. Then, the dynamic semantic algebras are grouped to form
a dedicated abstract machine which models the dynamic semantics of the
DSL. From the denotational semantics, the DSL is given an interpretation
in terms of this abstract machine. The state of the semantics is globalized
and mapped into abstract machine entities (e.g., registers) dedicated to the
program family.

Implementation. The abstract machine is then given an implementation (typ-
ically, a library), or possibly many, to account for different operational con-
texts. The valuation function can be implemented as an interpreter based on
an abstract machine implementation, or as a compiler to abstract machine
instructions.

Partial evaluation. While interpreting is more flexible, compiling is more effi-
cient. To get the best of both worlds, we use a program transformation tech-
nique, namely, partial evaluation, to automatically transform a DSL program
into a compiled program, given only an interpreter.

Each of the above methodology steps is further detailed in a separate section
of this paper.

1.6 A Working Example

To illustrate our approach, an example of DSL is used throughout the paper. We
introduce a simple electronic mail processing application as a working example.
Conceptually this application enables users to specify automatic treatments of
incoming messages depending on their nature and contents: dispatching mes-
sages to people or folders, filtering spam, offering a shell escape (e.g., to feed an
electronic agenda), replying to messages when absent, etc.

This example is inspired by a Unix program called slocal which offers users
a way of processing inbound mail. With slocal, user-defined treatments are
expressed in the form of rules. Each rule consists of a string to be searched in a
message field (e.g., Subject, From) and an action to be performed if the string
is found. Each rule stands on a single line and the whole specification is a flat
series of rule lines, as opposed to a structured program.

This simple application illustrates the situation where a family of problems
has to be handled: addressing different needs for the treatment of messages.
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One could imagine a combination of various GPL programs being written to
address each kind of treatment. This would form a family of programs which
would most likely rely on a dedicated library. This library would consist of basic
operations such as parsing a message, accessing and modifying message header
fields, archiving and sending messages, etc.

We present a DSL solution to this problem family. More precisely, we show
how to design and implement Mailsh, a simple DSL aimed at specifying the
automatic treatment of incoming e-mails. Some details are left out of the fol-
lowing discussion. Our goal is to illustrate our methodology, not to propose an
alternative to slocal.

2 Language Analysis

In the first phase of our approach, we analyze the problem family. During this
analysis, the commonalities (shared features and assumptions that hold for all
family members) and variabilities (variations in behavior and assumptions that
differ among family members) must be identified. The analysis takes into ac-
count domain knowledge such as technical literature, existing programs, and
current and future requirements. It can be conducted using methodologies used
for commonality analysis, such as FAST [40,11], and domain analysis [24,25,28].
The main results of this analysis phase are: language requirements, a descrip-
tion of the common objects and operations, and design elements of the DSL.
We examine each of these items in turn and illustrate them with our working
example.

2.1 Language Requirements

Analyzing the family of problems leads to requirements for the language. Those
requirements mainly consist of the functionalities that must be expressible in the
DSL. Requirements also include language constraints (e.g., domain issues such
as safety and security) and implementation constraints (e.g., resource bounds).

This phase does not differ much from a problem analysis that occurs when
initiating any software development. The difference is that requirements are
expressed in terms of language issues rather than general features of the appli-
cation.

Working example. Concerning our message processing application, it should be
possible, at the language level, to copy, move, delete, forward, pipe to a shell
command, and reply to a message. Those actions should be triggered according
to conditions depending on the inbound message. Those conditions should be
string patterns matched against fields of the message.

Moreover, we have determined four language constraints. First, the user-
defined treatments determined by a Mailsh program should not loop. Second,
treatments should be guaranteed not to lose inbound messages. Third, inbound
messages should not be duplicated in the same folder when archived. Fourth,
automatically forwarding messages should not cause endless loops.
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2.2 Objects and Operations

Identifying the common objects and operations essentially corresponds to defin-
ing the basic building blocks needed to express solutions for the family of prob-
lems. From a software architecture point of view, this process can be viewed as
designing a library since it captures the common program patterns in the family
and abstracts over the differences. The building blocks are grouped with respect
to the objects they manipulate.

Working example. The program family analysis of our e-mail processing appli-
cation results in the following fundamental objects and operations.

Messages. An electronic message consists of header fields and a body. We need
operations to manipulate these message fields and to create new messages.

Folders. Folders contain a list of messages. Assuming we limit ourselves to dis-
patching messages, the only operation needed is to add a message to a folder.

Hierarchies of folders. A user typically has many folders to which (s)he directs
messages, e.g., according to topic or source. To cope with an increasing
number of folders, e-mail systems offer the ability to create a folder hierarchy.
To treat this feature in our system we need to associate an actual filename
to a folder path in the folder hierarchy.

Files of Folders. Because of the layer introduced by the hierarchy of folders, the
actual folders need to be captured by a separate object. Operations to read
and write a folder from/to the file system need to be introduced.

Streams. Messages need to be sent, received or piped into a shell command. To
model this, we need streams of inbound and outbound messages, as well as
a command stream.

Miscellaneous. There are other, less fundamental objects and operations that
we do not further detail here. This includes the ability to know the user’s
name (to send messages) and the current date (to timestamp the messages).
There are also operations on booleans and strings, in particular a pattern
matcher used in the message filtering condition.

2.3 Elements of Design

The last part of the language analysis phase consists of determining elements
of the language design. These elements include the language paradigm (e.g.,
declarative or imperative) as well as the language level: from low-level for ex-
pressivity, to high-level for usability. In addition, a terminology and notations
are developed both from the domain and the set of problems to be addressed.
These notations must correspond to the way domain experts express a solution,
i.e., a member of the problem family.

Working example. To apply this phase to our example, we have to introduce
assumptions about the users of this message processing system. We assume such
users to be typical Unix shell programmers. As a result, we decide the DSL
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should be imperative like shell languages. Moreover, selection criteria should
include regular expressions to achieve pattern matching in messages, as provided
in the shell languages.

3 Interface Definitions

Given the information collected previously, we are now ready to develop a prelim-
inary specification of the DSL. This preliminary specification consists of defining
interfaces: the signature of semantic algebras and the DSL syntax. The seman-
tics is kept informal; it will be made explicit in a later phase (see Section 5).
Still, it allows taking into account some language requirements and to prepare
the structuring of the actual language definition.

3.1 Semantic Algebras

The common objects and operations collected in the previous phase are now
grouped with respect to the objects they manipulate to produce abstract data
types. In the denotational framework, this form of abstract data types can be
formalized as semantic algebras. A semantic algebra formally defines a domain
(i.e., a structured value space) and the operators on that domain [31]. At this
stage, we only provide signatures; we postpone details until a complete view of
basic building blocks is determined.

Working example. Let us illustrate the notion of semantic algebra with our
message processing application. To do so, we present in Figure 1 the signature
of semantic algebras which follow the common objects and operations determined
earlier in Section 2.1.

Messages. Function msg-to-string converts a message into a string. This function
is used when piping a message into a shell command and when forwarding a
message. In the latter case, the body of the new message (a string) contains
the forwarded message. FieldName is defined as String .

Folders. We consider a folder as an ordered list of messages; function add-msg
adds a message at the end of this list. There are other obvious common
operations on folders; we do not mention them here as they are not needed
for our example.

Hierarchies of folders. Function get-filename maps a folder path into a filename.
Note that the folder hierarchy may define aliases: two paths may be mapped
into the same filename.

Files of Folders. There are several common implementations of a folder, depend-
ing on the user’s mailing system. We let actual implementations of abstract
operators read-folder and write-folder deal with that.

Streams. Function next-msg reads the next incoming message. Note that an im-
plementation of it must not return until a new message has arrived, thus
suspending the application. Function send-msg ships a message to the sys-
tem stream. Function pipe-msg passes a string to the standard input of a
command. We also define CmdString as String .
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Messages
Domain: Message
Operations:

new-msg : Message
get-field : FieldName → Message → String
set-field : FieldName → String → Message → Message
get-body : Message → String
set-body : String → Message → Message
msg-to-string : Message → String

Folders
Domain: Folder
Operations:

add-msg : Message → Folder → Folder

Hierarchy of Folders
Domain: FolderHierarchy
Operations:

get-filename : FolderPath → FolderHierarchy → FileName

Files of Folders
Domain: FolderFiles
Operations:

read-folder : FileName → FolderFiles → Folder
write-folder : FileName → Folder → FolderFiles → FolderFiles

Streams
Domains: InStream ,OutStream ,CmdStream
Operations:

next-msg : InStream → (Message × InStream)
send-msg : Message → OutStream → OutStream
pipe-msg : Message → CmdString → CmdStream → CmdStream

Fig. 1. Signature of the main semantic algebras for Mailsh

B ∈ BoolExpr
C ∈ Command
F ∈ FolderPath
S ∈ String

B ::= match Sfield Spat

| notB | B1 and B2 | B1 or B2

C ::= C1 ; C2

| if B then C1 else C2

| skip

| delete

| copy F
| forward Sto

| reply Sbody

| pipe Scmd

Fig. 2. Abstract syntax of Mailsh
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Miscellaneous. We do not detail here other miscellaneous semantic algebras. We
will later only explicitly use match : String → StringPattern → Bool as the
pattern matching operator.

3.2 The DSL Syntax

The syntax of the DSL is defined based on information collected earlier, namely,
the language requirements (functionalities as well as constraints) and the design
elements (language paradigm, language level, terminology and notations). It
may also explicitly refer to some of the objects and operations identified as
fundamental; the others remain hidden in the underlying semantics. Intuitively,
a syntactic construct in the DSL corresponds to a pattern of operations.

One of the key issues in designing the abstract syntax (i.e., the interface of
the language) is to restrict the programmability so that required properties are
provable. At the same time, raising the level of the DSL may hinder future needs
for expressiveness. For example, a common practice to ensure the termination of
DSL programs is to provide the programmer only with restricted loop constructs,
if any, so that the property can be syntactically checked. Issues regarding the
design of a concrete syntax are beyond this work.

As the DSL syntax is developed, its semantics is informally defined. This
preliminary definition allows the semantic algebras to be further refined.

Working example. The requirements were that Mailsh should express condi-
tional treatment of incoming messages, be imperative and close to Unix shells.
Figure 2 presents the BNF definition of an abstract syntax which fulfills those
requirements. Folders are an example of a domain-specific object explicitely re-
ferred to by the syntax via folder paths. In contrast, folder filenames remain
hidden. For the sake of simplicity, we have intentionally reduced this DSL to a
kernel language, rich enough to allow us to illustrate the various aspects of our
approach. Obviously, to make it usable, more constructs and actions on messages
should be added. For example, the following abbreviations could be provided:

– move F ≡ copy F ; delete
– if B then C ≡ if B then C else skip

A concrete syntax close to Unix shells can easily be developed.
We shall not comment here on the semantics of the various constructs of

the language since most of them are self-explanatory. An example program is
given in Figure 3. (Indentation emphasizes the nesting of constructs.) Note that
the reply construct can be used to setup a vacation-like tool, i.e., a message-
sensitive answering machine.

It must be noted that the language only specifies the treatment of a single
message; there is an implicit loop over the inbound messages. This kind of treat-
ment encapsulation is typical to DSLs. Common examples are text processing
DSLs, like sed, that assume an implicit loop over each line of the text input.

Before providing a formal definition for the language and tackling its imple-
mentation, a staging phase is required to separate the language semantic entities.
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if match “Subject” “DSL” then

forward “jake”;
copy Research.Lang.DSL; delete

else if match “From” “hotmail.com” then

reply “Leave me alone!”; delete

else if match “Subject” “seminar” then

pipe “agenda --stdin”; delete

else

skip

Fig. 3. Abstract syntax of a Mailsh program

4 Staged Semantics

From a programming language viewpoint, the semantics of a GPL is traditionally
split into two parts: the static and the dynamic semantics. In practice, the static
semantics of a language corresponds to the actions performed by a compiler;
these actions are thus the ones which depend on the program being compiled.
The dynamic semantics represents the computations which may depend on the
input data of the program. Necessarily, these computations must be postponed
until run time.

Because a compiler processes the static semantics of a language with respect
to a given program, it is in effect a syntax-to-dynamic-semantics mapping [10].
Concretely, the dynamic semantics is a compiled program; it consists of a com-
bination of instructions for a machine (either abstract or concrete).

From a software architecture viewpoint, the static semantics corresponds to
computations that determine the member of a program family. The dynamic
semantics corresponds to computations that produce the answer to the corre-
sponding problem, i.e., program execution.

From an implementation viewpoint, processing the static semantics of an
application can be seen as configuring generic software with respect to a given
context. More concretely, configuring amounts to processing the static (i.e., avail-
able) information in order to select the appropriate components, and combining
them to produce a customized software. Then, processing the dynamic semantics
consists of executing the customized software.

Determining staging addresses an important concern in software architecture:
reasoning about the genericity of software to predict and control its customiza-
tion. This is a key step towards reconciling flexibility, as promoted by many
approaches to software architecture, and performance. Indeed, inefficiency is a
well-known limitation of many of these approaches [23].

We propose to address the staging of a DSL semantics, or equivalently the
configuration of its software architecture counterparts, using a language ap-
proach. At this point of our methodology, the staging process is limited to se-
mantic algebras, instead of being applied to the complete DSL definition. Later,
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when providing an actual definition (the valuation functions), more staging issues
will also have to be considered. For the moment, from initial staging constraints
coming from the problem family, we introduce staging in the semantic algebras
and in the treatment of language constraints.

4.1 Initial Staging Constraints

To achieve the staging of a DSL semantics, the initial step is to determine the
semantic arguments of the valuation functions which can be assumed to be static
(i.e. known) given the problem family. These static arguments can be seen as
configuration arguments. Just like GPLs, the static semantics of DSLs assumes
that the program is available (i.e., static).

Working example. Considering our message processing application, we assume
that the static arguments are the DSL program representing the user-defined
treatments, the folder hierarchy of the user, and the user’s name.

4.2 Staging the Semantic Algebras

Given this initial staging, the semantic algebras need to be analyzed to determine
which ones correspond to configuration (i.e., static) computations and which
ones define actual (i.e., dynamic) computations. For example, in the context
of a GPL, a semantic algebra which maintains type information on program
variables is typically a static algebra when the language is strongly typed.

For a given DSL, the staging process should answer the following question
on each semantic algebra: should this value domain, and its corresponding op-
erations, be static or dynamic?

Working example. Given that the folder hierarchy is a static initial argument to
Mailsh, it should remain unchanged throughout the semantics since our DSL
does not provide a way to modify this hierarchy. Therefore, the semantic algebra
for the hierarchy of folders should be static as well; operations on such values
should be processed completely statically.

The other semantic algebras of our DSL are intrinsically dynamic since they
rely on values assumed to be known only at run time, i.e., inbound messages.

4.3 Staging the Language Constraints

Staging not only involves the language semantics but also the language con-
straints, which in turn has an impact on the semantics. Some constraints may
be guaranteed statically, before the DSL program is run. Others may rely on
run-time information and have to be checked when the DSL program is exe-
cuted.

Working example. The first language constraint (see Section 2.1) is that the
treatment of a message should not loop. This constraint is syntactically enforced
given that there is no iteration construct.
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The second constraint states that user-defined treatments should be guar-
anteed not to lose inbound messages. An inbound message is lost when it is
neither copied, forwarded, piped, replied-to nor explicitly deleted, i.e., when it
is skipped. For example, the program in Figure 3 can lose a message if none of
the conditions applies. This constraint can be statically checked by analyzing
the possible execution paths of a program with respect to the pattern matching
conditions. (Proof omitted.)

The third language constraint can also be statically checked. (Proof omitted.)
It states that inbound messages should not be duplicated in the same folder when
archived.

The fourth language constraint says that automatically forwarding messages
should not be able to cause endless loops. Because of unknown aliases and mailing
lists, it is not possible to make sure that, if a message is forwarded, it will not
eventually be forwarded back to the sender. This condition can only be checked
dynamically by introducing a specific mechanism.

An additional constraint has not been expressed yet because it depends more
on the structure of the language than on the domain: it should not be possible to
operate on a message after it has been deleted. This amounts to checking paths
where there exist message treatments after a delete invocation. This property
can be statically checked. (Proof omitted.) We make the decision to reject any
program not satisfying this property. As we will see, not only does it prevent us
from specifying error handling in the dynamic semantics, but it also simplifies
the implementation of delete, turning it into a mere skip.

5 Formal Definition

We now have all the necessary elements to formally define the semantics of a DSL.
Fundamentally, the denotational definition represents a guide for the language
implementer and a key source of documentation. By postponing implementation
issues to a later phase, the DSL developer can better stage decisions. For ex-
ample, the data layout of objects can be postponed until hardware features are
known.

As is customary, the denotational semantics is composed of three parts: the
abstract syntax (see Section 3.2), the semantic algebras (see Section 3.1), and
the valuation functions. In contrast to the informal semantics given previously,
the semantic algebras are now completely specified, including the definition of
their operations.

5.1 Semantic Arguments

Valuation functions are inductively defined on the abstract syntax. Besides the
program text, a valuation function includes other semantic arguments which de-
fine the semantic context. The semantic arguments are drawn from the semantic
algebras introduced earlier.
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Working example. The semantic arguments in the case of Mailsh are the folder
hierarchy, the message being treated, the folder files, the streams and other
miscellaneous entities like the current date and the user’s name.

5.2 Staging the Semantic Arguments

Beyond the semantic algebras, the valuation functions must further separate the
DSL semantics into its static and dynamic parts. To do so, we keep separate the
static and dynamic semantic arguments of the valuation functions. This sepa-
ration is guided by the binding time (static / dynamic) of the semantic algebras
determined previously.

Working example. As for Mailsh, the static semantic arguments are the folder
hierarchy and the user’s name; these are grouped into a product domain named
StaticState. The dynamic arguments are the message being treated, the folder
files, the streams and the current date.

We use the following notations: the tuple projection on the domain X (e.g.,
Message) of σ ∈ DynamicState is denoted σx (e.g., σmessage). Updating the X
element of the tuple σ with a value y is denoted [x �→ y]σ.

5.3 Control Staging and Dynamic Combinators

The computations described by the valuation functions also need to be staged.
The basic operations used by a valuation function have a binding time that has
been determined in the previous phase; only the control operations remain to
be staged. To do so, the separation between static and dynamic control oper-
ations must be made explicit. We thus introduce combinators for the dynamic
control operations; these combinators are later turned into control instructions
in the abstract machine. Static control operations need not be associated with
an explicit combinator.

Working example. The conditional statement if B then C1 else C2 is dynamic
because it depends on the message to be treated via the match construct. We
thus introduce a choice function as an explicit cond combinator.

5.4 Valuation Functions

The valuation functions may finally be defined. Complete definition of the se-
mantic algebras should be provided at this stage as well.

Working example. Remember that the processing of messages is always active
and should be modeled by an infinite loop aimed at polling the stream of inbound
messages. This loop must further rely on function next-msg, which suspends
the message processing application if no inbound message is available. When
some messages are received, the dynamic semantic arguments are set up and
the valuation function C is applied to the program, i.e., a possibly structured
command.
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C : Command → StaticState → DynamicState → DynamicState where
StaticState = FolderHierarchy ×UserName
DynamicState = FolderFiles ×OutStream × CmdStream ×Date ×Message

C [[C1 ; C2]] ρ = (C [[C2]] ρ) ◦ (C [[C1]] ρ)

C [[if B then C1 else C2]] ρ = cond (B [[B]]) (C [[C1]] ρ) (C [[C2]] ρ)

C [[skip]] ρ σ = σ

C [[copy F ]] ρ σ =
let ν = get-filename (F [[F ]]) ρfolder-hierarchy

ϕ = add-msg (set-field “Delivery-Date” σdate σmessage)
(read-folder ν σfolder-files)

in [folder-files �→ write-folder ν ϕ σfolder-files]σ

C [[forward S]] ρ σ =
[out-stream �→ send-msg

(set-field “Resent-by” (concat ρuser-name (get-field “Resent-by” σmessage))
(set-field “Subject” (concat “Fwd: ” (get-field “Subject” σmessage))
(set-body (msg-to-string σmessage)

(set-field “From” ρuser-name

(set-field “To” (S [[S]])
(set-field “Date” σdate (new-msg))))))) σout-stream] σ

C [[reply S1]] ρ σ =
[out-stream �→ send-msg

(set-field “Subject” (concat “Re: ” (get-field “Subject” σmessage))
(set-body (S [[S1]])
(set-field “From” ρuser-name

(set-field “To” (get-field “From” σmessage)
(set-field “Date” σdate (new-msg)))))) σout-stream]σ

C [[pipe S]] ρ σ = [cmd-stream �→ pipe-msg σmessage (S [[S]]) σcmd-stream]σ

B : BoolExpr → DynamicState → DynamicState

B [[match S1 S2]] σ = match (get-field (S [[S1]]) σmessage) (S [[S2]])

Fig. 4. Valuation functions for Mailsh

Figure 4 shows the definition of valuation function C. The delete construct
does not appear in the definition of C because it is replaced by a skip after
analysis (see Section 4). The definition of the other valuation functions and the
semantic algebras of our DSL are omitted since they are rather simple and do
not raise issues with respect to our approach. Setting the “Resent-by” field
when forwarding allows the encapsulating loop to discard incoming messages
that have already been forwarded by the user, thus dynamically verifying the
fourth constraint expressed in the language requirements.

Common dynamic patterns of operations in the right-hand side of the seman-
tic equations can be encapsulated into new operators. For example, composing
a message for the forward or reply operations shares dynamic operations that
could have been grouped into a single higher-level operator.
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6 Abstract Machine

Although the valuation functions make a clear separation between the static and
dynamic semantics of the DSL, we still have to further encapsulate the dynamic
semantics to define a dedicated abstract machine. This is a key step to derive a
realistic implementation from the DSL definition. The abstract machine roughly
corresponds to the library in a conventional software architecture. However, it
is not yet the implementation (see Section 7).

Another benefit of the approach is that it provides a formal model of com-
putation that can be reasoned about using well-established techniques for ab-
stract machines [27]. In fact, the abstract machine offers a model of computation
that underlies all programs in the family [5]. The abstract machine model also
provides the right level of decomposition to increase reuse of the abstract ma-
chine [39]. In particular, since an abstract machine can express a wide range of
applications within the domain, and a DSL only a restricted subset of these,
several DSLs could share the same abstract machine. For example, it is useful
to have multiple DSLs for different users; a DSL could thus manage a whole
database while a subset of this DSL might only be able to express queries.

6.1 Single-Threadedness and Globalization

The key issue in expressing a semantics in terms of an efficient abstract machine
is the globalization of the dynamic semantic arguments. To enable semantic
arguments to be made implicit in the actual implementation, they cannot be
manipulated in an arbitrary way by the denotational definition. Schmidt and
others have developed specific criteria which allow semantic arguments to be
globalized when deriving an implementation from a denotational definition [31].
If these criteria are fulfilled by the denotational definition for a given semantic
argument, then the denotational definition is said to be single-threaded in this
semantic argument. A precise definition of these criteria is beyond the scope of
this paper.

If a semantics definition is single-threaded in a dynamic state argument, this
argument can be globalized. For example, in case of an imperative GPL, the
store is a typical semantic argument which gets globalized in an implementation
of its dynamic semantics. Indeed, the store corresponds to the processor memory
and thus does not need to be passed explicitly since it is globally available. In
the case of a DSL, there may be various semantic arguments which need to be
globalized in an actual implementation. This is one of the aspects which reflects
the dedicated nature of the abstract machine of DSL.

Note that, when the dynamic state is globalized, abstract machine instruc-
tions which perform a state transition are linearized.

Working example. The semantics example given in Figure 4 is already single-
threaded. Thus, the dynamic semantics arguments can be globalized.
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6.2 Abstract Machine Entities

Our goal is to develop an abstract machine dedicated to the dynamic computa-
tions of the DSL, based on the semantic algebras. To facilitate this process, the
dynamic parts of the semantic context need to be grouped in a unique seman-
tic argument which prefigures the basic entities of the abstract machine (e.g.,
registers).

Because all of the dynamic context is passed as a unique argument to the
valuation functions, the operations in the semantic algebras no longer need to be
passed to the dynamic semantic arguments separately; they can be transformed
so as to get these values from a unique argument.

Working example. The valuation functions shown in Figure 4 already group the
dynamic semantic arguments passed to the valuation functions into a unique
semantic argument, namely DynamicState. These arguments naturally corre-
spond to registers of the abstract machine. We group them in the domain
AbsMachState .

In addition, consider the new-msg operator. It returns a fresh, new mes-
sage whose fields are later assigned dynamically. However, from an operational
viewpoint, only two messages may exist at any time: the current inbound mes-
sage and a message being composed (two new messages cannot be composed
at the same time). To make globalization more explicit, we dedicate an extra
register of the abstract machine for the message being currently composed. The
operator new-msg : Message thus becomes the abstract machine instruction
new-msg : AbsMachState → AbsMachState which operates indirectly on this
new register.

In making operators like set-field and get-field implicitly access the dynamic
registers, an ambiguity has appeared because we now have two registers for mes-
sages. To make the message register explicit, we denote get-fieldi the instruction
that accesses the inbound message and get-fieldc the instruction that accesses
the message being composed. In an actual implementation, this may be modeled
as an argument to the instructions (e.g., a pointer to the actual message).

The resulting semantic definition based on the abstract machine is given in
Figure 5.

7 Implementation

The implementation of a DSL can be derived from the implementation of its val-
uation function and an implementation of the corresponding abstract machine.
Like GPLs, DSLs can either be implemented by an interpreter or a compiler.
The abstract mahcine provides a portable layer.

7.1 Interpretation

The interpretation is usually the easiest implementation approach because it
processes a program in the presence of its data, and thus directly produces an



Architecturing Software Using a Methodology for Language Development 187

C : Command → StaticState → AbsMachState → AbsMachState where
StaticState = FolderHierarchy × UserName
AbsMachState = FolderFiles ×OutStream × CmdStream ×Date

×Message i ×Messagec

C [[C1 ; C2]] ρ = (C [[C2]] ρ) ◦ (C [[C1]] ρ)

C [[if B then C1 else C2]] ρ = cond (B [[B]]) (C [[C1]] ρ) (C [[C2]] ρ)

C [[skip]] ρ = no-op

C [[copy F ]] ρ σ =
let ν = get-filename (F [[F ]]) ρfolder-hierarchy

in ((write-folder ν) ◦
(add-msg) ◦
(set-fieldi “Delivery-Date” σdate) ◦
(read-folder ν)) σ

C [[forward S]] ρ σ =
((send-msg) ◦
(set-fieldc “Resent-by” (concat ρuser-name (get-fieldi “Resent-by” σ))) ◦
(set-fieldc “Subject” (concat “Fwd: ” (get-fieldi “Subject” σ))) ◦
(set-bodyc (msg-to-stringi σ)) ◦
(set-fieldc “From” ρuser-name) ◦
(set-fieldc “To” (S [[S]])) ◦
(set-fieldc “Date” σdate) ◦
(new-msgc)) σ

C [[reply S1]] ρ σ =
((send-msg) ◦
(set-fieldc “Subject” (concat “Re: ” (get-fieldi “Subject” σ))) ◦
(set-bodyc (S [[S1]])) ◦
(set-fieldc “From” ρuser-name) ◦
(set-fieldc “To” (get-fieldi “From” σ)) ◦
(set-fieldc “Date” σdate) ◦
(new-msgc)) σ

C [[pipe S]] ρ = pipe-msg (S [[S]])

B : BoolExpr → AbsMachState → AbsMachState

B [[match S1 S2]] σ = match (get-fieldi (S [[S1]]) σ) (S [[S2]])

Fig. 5. Abstract-machine-based semantic definition of Mailsh
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answer. In contrast, a compiler produces a program which, when executed, pro-
duces a result. Thus, the compiler approach introduces an indirection which
makes it more difficult to develop. Another advantage of the interpretation ap-
proach is that interpreters can often be derived from the denotational definition
by directly translating the specification into a functional program.

The interpretation approach is also well known for its flexibility. For exam-
ple, there are existing techniques to extend interpreters (e.g., based on mon-
ads [22,32,38]) without corrupting the semantics. More generally, interpretation
allows languages to be prototyped rapidly and thus language design can be very
reactive. This feature is particularly important in the context of a DSL; given
that needs in the domain may evolve over time, so should the DSL. The obvi-
ous limitation of the interpretation approach is inefficiency. Depending on the
language, interpretation has been commonly cited to be one order of magnitude
slower than compiled code [30].

7.2 Compilation

From a software engineering viewpoint, a DSL compiler can be seen as an appli-
cation generator in that it processes a specification to generate an application.
Traditional compilation could be applied to a DSL; that is, native code could be
directly produced from a DSL program. Developing a compiler which generates
efficient code should not require more effort than for a GPL, considering the
restricted nature of a DSL.

Another compilation strategy consists of producing abstract machine instruc-
tions from a DSL program. In doing so, the staged semantics is exploited to allow
more flexibility in the implementation of the abstract machine.

7.3 Abstract Machine Implementation

As for efficiency, the abstract machine layer should cause a negligible overhead
given that each instruction often captures substantial dynamic computations.
Therefore, if there exist efficient compilers for the implementation language of
the abstract machine, little (if any) overhead should be incurred compared to
natively-compiled programs.

Depending on the implementation language which glues the abstract ma-
chine instructions, the valuation functions may however need linearization. If
the implementation language has expressions, the abstract machine code may
stay structured: the reason is that the implementation language compiler would
linearize them anyways. In our example, these are the expressions involving
msg-to-string, concat, get-field, etc. On the contrary, linearizing these instructions
further would have been useless, at best, and an obstacle for optimizing compi-
lation, at worst. Indeed, higher-level machine instructions may expose more op-
timization opportunities than instructions where early operational choices have
been made. If the implementation language is flat (e.g., assembly, JVM), then
linearization is necessary. However, linearization does not go beyond state tran-
sition boundaries.
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7.4 The Abstract Machine as an API

Although only a single implementation of the valuation functions is typically
needed, there might be several implementations of the same abstract machine,
to account for different operational contexts.

Working example. To illustrate the flexibility offered by a staged implementa-
tion, let us examine the Mailsh folders. There are several common implemen-
tations of a folder, either as a single file being the (formatted) concatenation of
messages (e.g., Netscape or GNU Emacs) or as a directory containing one file
per message (e.g., exmh). We abstracted over these implementation choices by
introducing the domains FileName and FolderF iles.

8 Partial Evaluation

In the previous section, two separate implementation approaches were presented,
namely, interpretation and compilation. In this section we propose a third ap-
proach which allows compilation to be achieved from an interpreter. This ap-
proach relies on partial evaluation [6,16,17]. It consists of developing an inter-
preter based on the staged semantics of the DSL. Then, a partial evaluator is
applied to the interpreter and a given DSL program to process the static seman-
tics. That is, it performs the static computations of the interpreter and produces
code for the dynamic computations, as a compiler would do.

Partial evaluation has traditionally been used to specialize an interpreter by
removing the interpretation layers [10,18]. More generally, it has been shown to
successfully optimize the implementation of various software architectures [7,23].
In the context of DSLs, partial evaluation has been used to successfully optimize
DSL interpreters, as demonstrated by GAL, a language to specify device drivers
for PC graphics card. Thibault et al. have reported that the GAL interpreter
can be specialized with respect to a driver specification (known at compile time)
to yield an implementation as efficient as an equivalent, hand-written device
driver [34].

In addition, partial evaluation has been successfully used to specialize inter-
preters at run time, i.e., with respect to a DSL program not known until run
time. This work has been done in the context of PLAN-P, a DSL for active
networks [36]. When the PLAN-P interpreter is specialized at run time with
respect to a PLAN-P program, the resulting code incurs no overhead in overall
system performance in comparison with hand-written C code. Furthermore, in
comparison with Java, another mobile code approach, the specialized program
is twice as fast as an equivalent Java program compiled with an optimizing off-
line byte-code compiler. In effect, run-time specializing interpreters achieve the
same functionality as a Just-In-Time compiler for the price of an interpreter.
Moreover, unlike specialized GPL interpreters, which compete with optimizing
compilers producing fine-grained, low-level operations, specialized DSL inter-
preters can yield domain-specific, coarse-grained operations where the need for
efficiency often resides.
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cond (match (get-fieldi "Subject") "DSL")(

new-msg;

set-fieldc "Date" (date);

set-fieldc "To" "jake";

set-fieldc "From" "bob";

set-bodyc (msg-to-stringi);

set-fieldc "Subject" (concat "Fwd: " (get-fieldi "Subject"));

set-fieldc "Resent-by" (concat "bob" (get-fieldi "Resent-by"));

send-msg;

read-folder "/home/bob/Mail/Research/Lang/DSL";

set-fieldc "Delivery-Date" (date);

write-folder "/home/bob/Mail/Research/Lang/DSL"

)(

cond (match (get-field_i "From") "hotmail.com")(

new-msg;

set-fieldc "Date" (date);

set-fieldc "To" (get-fieldi "From");

set-fieldc "From" "bob";

set-bodyc "Leave me alone!";

set-fieldc "Subject" (concat "Re: " (get-fieldi "Subject"));

send-msg;

)(

cond (match (get-fieldi "Subject") "seminar")(

pipe-msg "agenda --stdin"

)(

no-op)))

Fig. 6. Implementation of a Mailsh program example

Notice that the specialization of both DSL interpreters (GAL and PLAN-P)
were done using Tempo [8,9], a partial evaluator for the C language developed
by the Compose group (http://www.irisa.fr/compose/tempo).

Working example. Recall the example of a Mailsh program presented in Fig-
ure 3. We have taken its denotation and performed all the reductions made
possible by the availability of both the program and folder hierarchy. Unlike
GAL and PLAN-P, this was done by hand; Mailsh has not been implemented.
The resulting term is presented in Figure 6. To illustrate the globalization phase,
the dynamic state is eliminated from the reduced denotation; the composition of
the state-transforming instructions is noted with a semicolon. As can be noticed,
the result is quite close to an imperative program. This representation could be
transformed into a very efficient C program for example.
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9 Conclusion

DSLs have been successfully used to address software engineering concerns in
specific application domains. Yet, methodologies for language development have
been focusing on GPLs, designed to be universal. In this paper, we have proposed
an approach aimed at bridging the gap between these two perspectives. This ap-
proach is a complete software development process starting from the identifica-
tion of the need for a DSL to its efficient implementation. It uses the denotational
framework to formalize the basic components of a DSL. The semantics definition
is structured so as to stage design decisions and to smoothly integrate imple-
mentation concerns. When implemented as an interpreter, partial evaluation is
proposed as an optimization technique to remove the performance overhead. Our
methodology builds on two successful developments of DSLs: GAL, a language
to specify device drivers for graphics cards, and PLAN-P, a language to program
routers.

Beyond a methodology to develop DSLs, we are now studying an approach
to allowing one to assemble a DSL from parameterized building blocks. This
work stems from the fact that, although specific to a domain, a DSL often
includes common functionalities which could correspond to generic components.
Providing these components in a DSL development environment could facilitate
the work for non-experts in programming languages to develop their own DSL.
A related topic involves the definition of properties about these components such
that they could be safely composed when defining a new DSL.

Another avenue of research consists of exploring structuring techniques for
the DSL definition to enable the derivation of DSL program analyzers. A de-
parture point for this study would include factorized semantics as proposed by
Jones and Nielson [15].

Finally, the methodology needs to be further validated by more applications.
We plan on investigating other families of problems to develop new DSLs. To
do so, we are actively studying networking where various DSL candidates have
been identified (e.g., Web caching).
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9. C. Consel, L. Hornof, F. Noël, J. Noyé, and E.N. Volanschi. A uniform approach
for compile-time and run-time specialization. In O. Danvy, R. Glück, and P. Thie-
mann, editors, Partial Evaluation, International Seminar, Dagstuhl Castle, number
1110 in Lecture Notes in Computer Science, pages 54–72, February 1996. 190

10. C. Consel and Danvy O. Static and dynamic semantics processing. In Conference
Record of the Eighteenth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples Of Programming Languages, Orlando, FL, USA, January 1991. ACM Press.
180, 189

11. D. Cuka and D. Weiss. Engineering domains: Executable commands as an example.
In Proc. Fifth Internationbal Conference on Software Reuse, June 1998. 175

12. Conal Elliott. Modeling interactive 3D and multimedia animation with an embed-
ded language. In Proceedings of the 1st USENIX Conference on Domain-Specific
Languages, Santa Barbara, California, October 1997. 172

13. N.K. Gupta, L. J. Jagadeesan, E. E. Koutsofios, and D. M. Weiss. Auditdraw:
Generating audits the fast way. In Proceedings of the Third IEEE Symposium on
Requirements Engineering, pages 188–197, January 1997. 172

14. N. D. Jones, editor. Semantics-Directed Compiler Generation, volume 94 of Lecture
Notes in Computer Science. Springer-Verlag, 1980. 173

15. N. D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool for
program ana lysis. Technical report, University of Copenhagen and Aarhus Uni-
versity, Copenhagen, Denmark, 1990. 191

16. N.D. Jones. An introduction to partial evaluation. ACM Computing Surveys,
28(3):480–503, sep 1996. 189

17. N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. International Series in Computer Science. Prentice-Hall, June 1993.
189

18. N.D. Jones, P. Sestoft, and H. Søndergaard. Mix: a self-applicable partial evaluator
for experiments in compiler generation. Lisp and Symbolic Computation, 2(1):9–50,
1989. 189

19. Samuel Kamin and David Hyatt. A special-purpose language for picture-drawing.
In Proceedings of the 1st USENIX Conference on Domain-Specific Languages,
Santa Barbara, California, October 1997. 172



Architecturing Software Using a Methodology for Language Development 193

20. R. Kieburtz, L. McKinney, J. Bell, J. Hook, A. Kotov, J. Lewis, D. Oliva, T. Sheard,
I. Smith, and L. Walton. A software engineering experiment in software component
generation. In Proceedings of the 18th IEEE International Conference on Software
Engineering ICSE-18, pages 542–553, 1996. 173

21. David Ladd and Christopher Ramming. Two application languages in software
production. In USENIX Symposium on Very High Level Languages, New Mexico,
October 1994. 172

22. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, California,
pages 333–343. ACM, January 1995. 188

23. R. Marlet, S. Thibault, and C. Consel. Mapping software architectures to efficient
implementations via partial evaluation. In Conference on Automated Software
Engineering, pages 183–192, Lake Tahoe, Nevada, November 1997. IEEE Computer
Society. 180, 189

24. R. McCain. Reusable software component construction: A product-oriented
paradigm. In Proceedings of the 5th AiAA/ACM/NASA/IEEE Computers in
Aerospace Conference, Long Beach, California, October 1985. 175

25. James Neighbors. Software Construction Using Components. PhD thesis, Univer-
sity of California, Irvine, 1980. 175

26. D.L. Parnas. On the design and development of program families. IEEE Transac-
tions on Software Engineering, 2:1–9, mar 1976. 172

27. G. D. Plotkin. A Structural Approach To Operational Semantics. University of
Aarhus, Aarhus, Denmark, 1981. 185

28. Rubn Prieto-Dı́az. Domain analysis: An introduction. Software Engineering Notes,
15(2), April 1990. 175

29. C. Pu, A. Black, C. Cowan, J. Walpole, and C. Consel. Microlanguages for oper-
ating system specialization. In 1st ACM-SIGPLAN Workshop on Domain-Specific
Languages, Paris, France, January 1997. Computer Science Technical Report, Uni-
versity of Illinois at Urbana-Champaign. 172

30. T. Romer, D. Lee, G. Voelker, A. Wolman, W. Wong, J. Baer, B. Bershad, and
H. Levy. The structure and performance of interpreters. In Proceedings of 7th
international conference on Architectural Support for Programming Languages and
Operating Systems, pages 150–159, October 1996. 188

31. D. A. Schmidt. Denotational Semantics: a Methodology for Language Development.
Allyn and Bacon, Inc., 1986. 173, 177, 185

32. Guy L. Steele. Building interpreters by composing monads. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages. ACM Press, 1994. 188

33. S. Thibault and C. Consel. A framework of application generator design. In
M. Harandi, editor, Proceedings of the Symposium on Software Reusability, pages
131–135, Boston, Massachusetts, USA, May 1997. Software Engineering Notes,
22(3). 173

34. S. Thibault, R. Marlet, and C. Consel. A domain-specific language for video de-
vice drivers: from design to implementation. In Conference on Domain Specific
Languages, pages 11–26, Santa Barbara, CA, October 1997. Usenix. 189

35. Scott Thibault, Charles Consel, and Gilles Muller. Safe and efficient active network
programming. In 17th IEEE Symposium on Reliable Distributed Systems, West
Lafayette, Indiana, October 1998. 172



194 Charles Consel and Renaud Marlet

36. Scott Thibault, Charles Consel, and Gilles Muller. Safe and efficient active network
programming. In 17th IEEE Symposium on Reliable Distributed Systems, West
Lafayette, Indiana, October 1998. 189

37. Scott Thibault, Renaud Marlet, and Charles Consel. A domain-specific language
for video device driver: from design to implementation. In Proceedings of the 1st
USENIX Conference on Domain-Specific Languages, Santa Barbara, California,
October 1997. 172

38. P. Wadler. The essence of functional programming. In Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles Of Pro-
gramming Languages, pages 1–14, Albuquerque, New Mexico, USA, January 1992.
ACM Press. 188

39. Bruce W. Weide and William F. Ogden. Recasting algorithms to encourge reuse.
IEEE Software, 11(5), September 1994. 185

40. D.M. Weiss. Family-oriented abstraction specification and translation: the fast
process. In Proceedings of the 11th Annual Conference on Computer Assurance
(COMPASS), Gaithersburg, Maryland, pages 14–22. IEEE Press, Piscataway, NJ,
1996. 175



Explicit Substitutions for Objects and Functions

Delia Kesner1 and Pablo E. Mart́ınez López2
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Abstract. This paper proposes an implementation of objects and func-
tions via a calculus with explicit substitutions which is confluent and
preserves strong normalization. The source calculus corresponds to the
combination of the ς-calculus of Abadi and Cardelli [AC96] and the λ-
calculus, and the target calculus corresponds to an extension of the for-
mer calculus with explicit substitutions. The interesting feature of our
calculus is that substitutions are separated – and treated accordingly – in
two different kinds: those used to encode ordinary substitutions and those
encoding invoke substitutions. When working with explicit substitutions,
this differentiation is essential to encode λ-calculus into ς-calculus in a
conservative way, following the style proposed in [AC96].

1 Introduction

Object-oriented languages are not yet well understood from a theoretical point of
view since there is no widespread agreement on a collection of basic constructs
and on their properties. A better understanding of the foundations of these
languages is necessary, and in particular, formal calculi to model object-oriented
programming become essential to this purpose, as well as various formal calculi
have been used as foundations for procedural languages.
In [AC96] Abadi and Cardelli propose object calculi which are as simple and

fruitful as λ-calculi and which clarify the general principles of object-oriented
languages. They take objects as primitive and concentrate on the intrinsic rules
that objects should obey, developing in this way a theory of objects. The theory
suggests how to interpret existing constructions, and how to create and assess
new ones. It also provides tools for reasoning about languages (existing or new),
in particular for soundness proofs.
One of the calculi proposed in [AC96] is the ς-calculus, which is an untyped

calculus supporting method update, a common property in object oriented lan-
guages. Update is the operation that modifies the behavior of an object by
replacing one of its methods – the other methods being inherited. As a conse-
quence, the semantics of objects given by the ς-calculus is natural and suggestive
of common implementation techniques.
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In λ-calculus as well as in ς-calculus, the evaluation process is modeled by
a notion of reduction which performs the replacement of formal parameters by
actual arguments. This operation, called substitution, is defined as an atomic op-
eration described by operators that are external to the language, even if any real
implementation of a language has to explicitly describe a method to compute
and to apply them – method which is in general very expensive. Thus, there is
a conceptual gap between the theory of the calculus and its implementation in
programming languages. Calculi with explicit substitutions attempt to bridge
this gap by incorporating substitutions explicitly into the language, so that sub-
stitutions are handled with symbols and reduction rules belonging to the syntax
of the calculus. This allows more refined control over substitutions, more flexible
implementations, and a theory tool to study abstract machines.

In these last years there was a growing interest in λ-calculi with explicit sub-
stitutions and various calculi have been proposed in the literature. Among them
we find the pioneer, λσ, which is inspired by de Bruijn’s notation [dB72,dB78]
and has the main features which characterize a calculus of explicit substitutions:
β-reduction is simulated in two stages, first by the application of one rule, which
activates the calculus of substitutions, then by propagation of the substitution
until variables are reached. Other calculi are λσ⇑ [HL89], λυ [Les94], λs [KR95],
λd [Kes96], λχ [Muñ96] and λx [Ros92,BR95], this last one being the calculus
inspiring the presentation of this work in named-variable style. However, explicit
substitutions have been always studied in the framework of λ-calculi, the only ex-
ceptions being the formalisms of Combinatory Reduction Systems (CRSs) with
explicit substitutions given in [BR96] and [Pag97], which are, respectively, gen-
eralizations of the calculi λx and λσ⇑ to higher order rewriting. We should also
mention the λ∆exp-calculus studied in [BKR97], which is a particular case of
CRS with explicit substitutions à la λx. All these works raise the question of the
generality of explicit substitutions, that is, if a particular theory of explicit sub-
stitutions is sufficient to capture all the real implementations of programming
languages based on higher order systems. As we will see along this paper, nei-
ther λx nor λσ⇑ have all the features needed to implement objects and functions
via explicit substitutions, so the calculus studied here is not a particular case of
the formalism in [BR96] nor in [Pag97].

The aim of this paper is to provide an implementation language for object ori-
ented programming with functions by merging two successful formalisms: explicit
substitutions and ς-calculus. We provide an untyped ς-calculus with explicit sub-
stitutions, called ςES , which is confluent and preserves strong normalization. Our
calculus can be used to implement an object-oriented language based on the ς-
calculus, as well as a functional language modeled by the λ-calculus. This is
a relevant feature that gives a theoretical model to implement a programming
paradigm combining functional and object oriented styles. The interesting and
original feature of the ςES-calculus is that substitutions are separated – and
treated accordingly – in two different kinds: those used to encode ordinary sub-
stitutions and those encoding invoke substitutions. These two forms of explicit
substitutions are induced from two subtly different uses of meta-substitution in
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the ς-calculus: one having the form {x← b} where the variable x is not free in
the term b, and the other having the form {x← x.l}, where x is precisely free in
the term x.l. The fact of separating explicit substitutions of ςES in two different
kinds is useful not only to differentiate their properties but also to allow some
kind of interaction or commutation between them which will not be allowed
on two substitutions of the same kind. However, the resulting system is tuned
to have the preservation of ς-strong normalization property since interaction of
substitution does not have the same effect than the composition operator in λσ
(which destroys preservation of β-strong normalization [Mel95]).
More precisely, ordinary substitution is used to perform evaluation of meth-

ods, while invoke substitution is used to replace a variable by a self method
invocation, an operation which is used to implement functions. The differentia-
tion between ordinary and invoke substitutions is essential to encode functions
by objects in a conservative way using the same ideas in [AC96], but with explicit
substitutions in our case: if only ordinary substitution is used to encode λ-terms
into ςES-terms, β- reduction cannot be simulated anymore.
When working with explicit substitutions variables can also be encoded by

natural numbers (using for example de Bruijn’s indices) in order to avoid α-
conversion, and this is done in most of the well-known calculi with explicit sub-
stitutions appearing in the literature. We think however that the named variable
presentation makes some essential properties of explicit substitutions more ap-
parent by abstracting out the details of renaming and updating. This is why we
choose here to present our ideas via the ς-calculus with explicit substitutions and
names. However, one of the reasons to introduce invoke substitutions comes from
the de Bruijn’s version of the ς-calculus with functions, which clearly shows the
difference between the renaming needed by an ordinary or an invoke operation.
We will come back to this point in section 3.
The paper is organized as follows. Section 2 recalls the syntax of the ς-

calculus together with its reduction rules and properties. We also recall the
translation of λ-calculus into ς-calculus and discuss some possible variations of
this encoding. Section 3 is devoted to the ς-calculus with explicit substitutions
and section 4 shows how to encode λ-calculi with explicit substitutions into
our calculus ςES-calculus. In section 5 we show confluence and preservation of
strong normalization of ςES . Finally, section 6 is devoted to conclusions and
future works.

2 The ς-Calculus

We recall in this section the ς-calculus [AC96], which is the kernel language used
to model implementations of object oriented languages. The calculus is built out
of two distinct infinite sets of variables and labels, by means of object formation,
method invocation and method update. An object is a set of components of the
form li = mi, for methods mi and distinct labels li, where the order of the com-
ponents does not matter. The letter ς is used as a binder for the self parameter
of a method in the same way as the symbol λ is used in λ-calculus as a binder
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for the parameter of a function. However, methods are inseparable from objects
and cannot be recovered as functions. The set of terms of the ς-calculus, denoted
by Tς , is defined by the grammar:

a ::= x | a.l | a ✁ 〈l,m〉 | [li = m i∈1...n
i ]

m ::= ς(x).a

We say that x is a variable, l is a label, a.l is a method invocation, a ✁ 〈l,m〉 is
a method update or update, [li = m i∈1...n

i ] is an object, ς(x).a is a method, x is a
bound variable in ς(x).a and a is the body of the method ς(x).a. Our notation for
method update differs from that in [AC96] in order to avoid possible confusions
with method invocation.
The sets of free and bound variables of a term a, denoted respectively by

FV (a) and BV (a), are defined as in [AC96]. Terms are identified modulo α-
conversion exactly as in the λ-calculus, by allowing the renaming of bound vari-
ables. Indeed, we assume the Barendregt’s convention [Bar84] (but on Tς -terms),
which allows to work only with terms having no variables being bound and free
at the same time. Substitution is at the core of the primitive semantics and is
considered as a meta-operation as it is completely external to the language.

Definition 1 (Substitutions). Let a and b be two terms, m be a method and
n ≥ 1. Then, the substitution of x by b in the term a, denoted a{x ← b}, is
defined by induction as follows:

(ς(y).a){x← b} =def ς(y).a{x← b} if x 	≡ y and y 	∈ FV (b)
[li = m i∈1...n

i ]{x← b} =def [li = mi{x← b} i∈1...n]
(a.l){x← b} =def a{x← b}.l
(a ✁ 〈l,m〉){x← b} =def a{x← b}✁ 〈l,m{x← b}〉
y{x← b} =def

{
b if x ≡ y
y if x 	≡ y

We may make reference to the substitution lemma which says that
a{x← b}{y← c} is equal to a{y ← c}{x← b{y ← c}} if x is not free in c.
The primitive semantics of the ς-calculus can be expressed as a sequence of

reduction steps, where reduction is defined by means of the following reduction
rules.

[li = ς(xi).b i∈1...n
i ].lj −→ bj{xj ← [li = ς(xi).b i∈1...n

i ]}
[li = mi∈1...n

i ]✁ 〈lj ,m〉 −→ [lj = m, li = mi∈1...n,i�=j
i ]

The intended semantics of a method invocation a.l is given by the first rule: the
idea is to execute the body of the method of a named l with the object a bound
to the self parameter, and to return the result of the execution. The semantics of
a method update a✁〈l,m〉 is functional: the idea is to produce a copy of a where
the method named l is replaced with the method m. The reduction relation ς is
confluent [AC96], but strong normalization fails as the following example shows.

Example 1. Let b = [l = ς(x).x.l]. Then, b.l −→ x.l{x← b} = b.l −→ . . .
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Abadi and Cardelli show that the ς-calculus is computationally complete:
every λ-term can be encoded into a ς-term and every β-step can be simulated by
a sequence of ς-steps. This property is essential in order to incorporate functions
to the ς-calculus: one simply adds λ-syntax to the ς-calculus – allowing in this
way to reason not only about objects but also about functions –, but evaluation
is just performed by a simple machinery, namely the ς-calculus. The set of terms
of the λ-calculus mixed with the ς-calculus, denoted Tλς , is given by the following
grammar:

a ::= x | a.l | a ✁ 〈l,m〉 | [li = m i∈1...n
i ] | λx.a | (a a)

m ::= ς(x).a

Objects and functions are mixed in this syntax in such a way that λς-terms can
be reduced, according to their form, by the β or the ς-rules. Many well-motivated
examples of objects using functions are given in [AC96]. The combination of β
and ς yields a confluent reduction relation over Tλς (this can be shown for exam-
ple using the fact that the resulting system is an orthogonal CRS [KvOvR93]).
Evaluation of this new combination can be simply implemented as a λ-term can
be translated into a ς-term in such a way that β-reduction can be simulated by
the rewriting rules of the ς-calculus.

Definition 2 (Translating λς-terms into ς-terms). The translation � �
from λς-terms to ς-terms is defined in the following way:

� x� =def x
� a.l� =def � a� .l
� a ✁ 〈l,m〉 � =def � a� ✁〈l,� m�〉
� ς(x).a� =def ς(x).� a�
� [li = m i∈1...n

i ]� =def [li =� mi � i∈1...n]
� λx.a� =def [arg = ς(z).z.arg, val = ς(x).� a� {x← x.arg}]
� (a b)� =def � a� • � b�

where p • q =def (p✁ 〈arg, ς(y).q〉).val with y 	∈FV (q)

Summarizing, this function translates only λ-terms, while, for all the other con-
structions in the language, it is defined as a homomorphism. Indeed, the appli-
cation first stores the value of the argument into the arg field, and then invokes
a method that calculates the final value, accessing the argument via its self ar-
gument. Variables that are λ-bound are replaced by themselves accessing the
arg field while free and ς-bound variables are left untouched. This translation
preserves β-reduction.

Proposition 1 (ς simulates β). Let A be a term in Tλς such that A −→β A′.
Then � A� −→∗ς � A′ �.

Proof. The proof is by induction on the structure of λς-terms. See [AC96] for
details.
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Fixpoint operators of the λ-calculus can also be encoded into λς. Indeed,
let consider a constant fix with its associated rewriting rule (fix A) −→fix

(A (fix A)). Let consider the following extension of the translation � � in
order to cover λ-terms with fix-constants:

� fix�=def [arg = ς(x).x.arg, val = ς(x).((x.arg)✁ 〈arg, ς(y).x.val〉).val]

As expected, the following property holds ([AC96]).

Proposition 2 (ς simulates fix). If A −→fix A′ then � A�=ς� A′ �.

One of the goals of the calculus proposed in section 3 is to keep these proper-
ties (propositions 1 and 2) in the presence of explicit substitutions. The notion
of reduction in ςES is much more finer than that of standard ς-reduction, so
that our calculus must be able to capture the subtle operations used to evalu-
ate application of substitutions. We refer the reader to section 4 for the details
concerning the translation of terms with explicit substitutions.
Didier Rémy proposed in [Rém97a] a slightly different encoding of λ-terms

into ς-terms which may look simpler than the one of [AC96]: all λ-variables are
replaced by themselves accessing the arg field (that is � x �=def x.arg for λ-
variables and� x�=def x for ς-variables), and thus, the encoding of λx.a does
not need to replace the free variable x in a by x.arg (that is � λx.a �=def
[arg = ς(z).z.arg, val = ς(x). � a �]). As a consequence, when λ and ς syntax
are mixed (as it is the case in [AC96] and here), the encoding of Rémy needs
to perform an a priori differentiation of variables [Rém97b] in order to modify
only λ-variables, leaving ς-variables untouched. Thus, a two-pass analysis will
be necessary for Rémy’s encoding (one to distinguish variables, the other one
to encode them), while a single one-step translation via invoke substitutions is
sufficient to implement the encoding proposed in [AC96]. Also, the translation we
propose for object-oriented programs with functions and explicit substitutions
(based on the translation proposed in [AC96]) is well behaved with respect to
explicit substitutions operators, but this is no more true if Rémy’s encoding is
considered. We leave this (technical) discussion for section 4.

3 The ςES-Calculus

This section presents the ς-calculus with explicit substitutions using variable
names as in [BR95,Ros92] instead of de Bruijn’s indices as in [ACCL91]. This
makes the calculus simpler and allows us to explain the main ideas of the inter-
action between ordinary and invoke substitution in a more intuitive way.
The set of terms of the ςES-calculus, denoted TςES is defined by the following

grammar:
a ::= x | a.l | a ✁ 〈l,m〉 | [li = m i∈1...n

i ] | a[s]
m ::= ς(x).a | m[s]
s ::= x← a | x@l
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A term a is called a closure1 if it has the form b[s], and a pure term if it
does not contain closure subterms. The sets of free and bound variables of a
term a, denoted respectively by FV (a) and BV (a), are defined as usual by
adding the cases FV (a[x← b]) = (FV (a)−{x})∪FV (b), FV (a[x@l]) = FV (a),
BV (a[x ← b]) = BV (a) ∪ BV (b) ∪ {x} and BV (a[x@l]) = BV (a). Terms are
identified modulo α-conversion by allowing the renaming of bound variables. In-
deed, we have for example ς(x).x =α ς(y).y, x[x ← y][y@l] =α z[z ← y][y@l]
and y[y@l][y ← w] =α z[z@l][z ← w]. As a consequence, the variable x is never
bound in a[x@l] and it is only free if it is free in a.

The meaning of a[s] is the term a affected by the substitution s and we say
that [x ← b] is an ordinary substitution and [x@l] is an invoke substitution.
Thus, a[x ← b] denotes the term a{x ← b} (the substitution of the term b for
all the free occurrences of x in a) and a[x@l] denotes the term a{x← x.l} (the
substitution of the term x.l for all the free occurrences of x in a). Even if these
two forms of substitutions may look very similar with respect to their meaning,
they do not verify the same constraints with respect to their “types” and “free
variables”; so we have to make this difference explicitly as we are concerned with
explicit substitutions. Let us explain this difference in more detail.

Regarding constraints with respect to “types”, in an ordinary substitution
[x ← b] (which denotes {x ← b}) the term b is intuitively of the same type
than x, while in [x@l] (which denotes {x ← x.l}) the invokation of a method l
of x is in general, of different type than the object x.

Regarding constraints with respect to “free variables”, ordinary substitutions
in ςES must be identified with those substitutions in λ-calculus that are created
by the contraction of a β-redex ((λx.a) b), yielding the term a{x ← b}. This
operation assumes implicitly the operation of α-conversion, so that the term b
does not contain free occurrences of the variable x. As in λ-calculus with explicit
substitutions the β-rule is modelized by the B-rule ((λx.a) b) −→B a[x← b], it
is natural to impose that b does not contain free occurrences of the variable x in
an ordinary substitution [x← b]. However, since x has a free occurrence in x.l,
an explicit substitution which is intended to modelize the substitution {x← x.l}
cannot be considered as an ordinary one.

This difference is still more evident when using de Bruijn’s indices since
the standard renaming performed by an ordinary substitution is not the same
needed by an invoke substitution. Indeed, ordinary substitution (exactly as the
substitution used to perform β-reduction in λ-calculus) should decrement all the
indices of the variables, while invoke substitution adds information to a bound
variable, leaving the rest untouched. Let us see that on the following example

1 This is the standard terminology used in the explicit substitution community to
denote terms affected by explicit substitutions. Do not make confusion with the
terminology of closed terms used to denoted terms without free variables.
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by considering the terms2:

o = ς(x).(ς(y).x[y@l1])[x@l2] odB = ς(ς(2[1@l1])[1@l2])

o′ = ς(x).(ς(y).(x.l2)) o′dB = ς(ς(2.l2))

The term odB (resp. o′dB) is the de Bruijn’s representation of o (resp. o
′). Now,

since [x@l] is an operation which is intended to replace x by x.l, the term o
intuitively reduces to o′. However, if [n@l] is treated exactly as an ordinary
explicit substitution [cons(n.l)] (see for example [Kes96] for a general treatment
of calculi with de Bruijn’s indices) the term odB reduces to the term ς(ς(1))
which is not the de Bruijn’s representation of o′.
This distinction between ordinary and invoke substitution is irrelevant when

working with substitutions at a meta-level, but becomes essential when imple-
menting them explicitly, either via names or de Bruijn’s indices. We have then
to separate the substitutions not only to differentiate the properties we have just
explained but also in order to allow some kind of interaction or commutation
between ordinary and invoke substitutions, which will not be allowed on two
substitutions of the same kind. The semantics of the ςES-calculus is then given
by the following set of rewriting rules.

[li = ς(xi).b i∈1...n
i ].lj −→MI bj[xj ← [li = ς(xi).b i∈1...n

i ]]
[li = m i∈1...n

i ]✁ 〈lj ,m〉 −→MU [lj = m, li = m i∈1...n, i�=j
i ]

(ς(y).c)[s] −→SM ς(y).c[s] if x 	≡ y
[li = m i∈1...n

i ][s] −→SO [li = mi[s] i∈1...n]
(a.l)[s] −→SI a[s].l
(a ✁ 〈l,m〉)[s] −→SU a[s]✁ 〈l,m[s]〉
x[x← b] −→OSV b
x[x@l] −→ISV x.l
a[x← b] −→DO a if x 	∈ FV (a)
a[x@l] −→DI a if x 	∈ FV (a)
a[x@l][x← [l = ς(y).b, . . .]] −→CO a[x← b] if y 	∈ FV (b)
a[y@l][x← b] −→SW a[x← b][y@l] if x 	≡ y

and y 	∈FV (b)

The MI-rule activates a Method Invocation, while the MU-rule implements
Method Update and SM, SO, SI, SU propagate a Substitution through a Method, an
Object, an Invocation and an Update respectively. Application of
Ordinary (resp. Invoke) Substitution to Variables is performed by OSV (resp.
ISV) and DO and DI are used to Discard Ordinary and Invoke substitutions which
have not meaning. The CO-rule COmposes ordinary and invoke substitutions and
SW SWitches them when it is possible. Both rules are necessary to simulate the
λx-calculus into ςES (see section 4). The rules CO and SW are necessary to simu-
late the λx-calculus via ςES (see section 4). They justify the existence of invoke

2 Underlining is used to distinguish de Bruijn indexes from natural numbers.
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substitutions and they capture the interaction between invoke and ordinary sub-
stitution.
Notice that a simpler rule like a[x@l][x ← b] −→CO′ a[x ← b.l], which is

also able to simulate λx, fails to preserve strong normalization of the rest of the
system ςES : indeed, if b is the object [l = ς(x).x.l] and a is for example the
variable y, then a[x@l][x ← b] is strongly normalizing but a[x ← b.l] is not as
there is an infinite reduction sequence starting at b.l (see example 1).
The set of rules {SM, SO, SI, SU,OSV,DO, ISV,DI,CO, SW} is called the ES rewrit-

ing system, and ES together with the MI and MU rules constitutes the ςES rewrit-
ing system. Since ES is not locally confluent, we have to use another calculus to
define a function (given by a locally confluent and terminating system) to elim-
inate explicit substitutions from ςES-terms in the confluence proof of ςES . This
system is called BES and contains the rules {SM, SO, SI, SU,OSV, ISV,DO,DI}. We
will also mention the minimal calculus MES = {SM, SO, SI, SU,OSV,DO}, and the
calculus ςMES = MES∪{MI}∪{MU} which implements object-oriented programs
which do not use functions.
The ς-terms are naturally injected into the ςES-terms, and ς-reduction is

simulated by the ςES-reduction (theorem 1).

4 Encoding λx-Terms into ςES-Terms

The goal of this section is to provide a satisfactory simulation of the λ-calculus
with explicit substitutions, called λx, into our calculus ςES . We take the same
approach presented in section 2 by first giving a syntax for a mixed calculus
called λςES , and a translation from λςES-terms into ςES-terms, then showing
that the translation preserves reduction. This is an essential property of the
ςES-calculus, which guarantees that it can be used in a conservative way to
implement a language with objects and functions.
We first recall the main definition concerning λx-calculus [Ros92,BR95]. The

set of λx-terms is defined by M ::= x | (M M) | λx.M | M [x ← M ] and the
rewriting rules are the following:

(B) (λx.M)N −→ M [x← N ]
(V ar1) x[x← N ] −→ N
(V ar2) x[y ← N ] −→ x if x 	= y
(Lambda) (λx.M)[y ← N ] −→ λx.M [y ← N ] if x 	= y and x 	∈ FV (N)
(App) (M1 M2)[x← N ] −→ (M1[x← N ] M2[x← N ])

The λςES-calculus is similar to the λς-calculus presented in section 2, but it also
contains explicit substitutions. The rules of λςES are the ones for ςES plus those
for λx-calculus and the set of terms of ςES + λx, denoted TλςES , is defined by
the grammar:

a ::= x | a.l | a ✁ 〈l,m〉 | [li = m i∈1...n
i ] | a[s] | λx.a | (a a)

m ::= ς(x).a | m[s]
s ::= x← a | x@l
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The encoding of λx-terms into ςES-terms is similar to the one in section 2,
but here the invoke substitutions is annotated (and not evaluated) using the new
operator @ of explicit invoke substitution.

Definition 3 (Translating λςES-terms into ςES-terms). The translation ≺
� from λςES-terms to ςES is defined in the following way:

≺ x � =def x
≺ a.l � =def ≺ a � .l
≺ a ✁ 〈l,m〉 � =def ≺ a � ✁〈l,≺ m �〉
≺ [li = m i∈1...n

i ] � =def [li =≺ mi � i∈1...n]
≺ a[s] � =def ≺ a � [≺ s �]
≺ ς(x).a � =def ς(x). ≺ a �
≺ m[s] � =def ≺ m � [≺ s �]
≺ x← a � =def x←≺ a �
≺ x@l � =def x@l
≺ λx.a � =def [arg = ς(z).z.arg, val = ς(x). ≺ a � [x@arg]]
≺ (a b) � =def ≺ a � • ≺ b �

where p • q =def (p ✁ 〈arg, ς(y).q〉).val and y 	∈FV (q)

The translation changes all the lambda expressions into objects, keeping the
structure of the rest of the constructions, namely, the objects, variables, methods
and explicit substitutions. Even if it would be possible to translate λ-bound
variables using a meta-level substitution (like in [AC96]), we prefer to use an
explicit invoke substitution to be coherent with our treatment of substitutions
and to avoid the use of a complicate formalism dealing with explicit and implicit
substitution at the same time. Thus, this translation follows the lines of the rest
of our work, and invoke substitutions becomes an operation having the same
status as any ordinary substitution.
As an example, given the term (λx.x)w, we have that

≺ (λx.x)w �≡ [arg = ς(z).z.arg, val = ς(x).x[x@arg]]• ≺ w �

Now, let o be the object [arg = ς(y). ≺ w �, val = ς(x).x[x@arg]]. Then, the
expresion ≺ (λx.x)w � ςES-reduces to x[x@arg][x ← o], which CO-reduces to
x[x←≺ w �] ≡≺ x[x← w] �. Remark that if one uses the ordinary substitution
[x← x.arg] in the translation of λx.x instead of the invoke substitution [x@arg],
then the expression ≺ (λx.x)w � would ςES-reduce to x[x← x.l][x← o], which
ςES-reduces to ≺ w �	≡≺ x[x ← w] �. Thus, simulation of λx would not be
possible via ςES .
The real interaction between invoke and ordinary substitutions can be seen

in the proof of the following lemma where the SW and CO rules are fundamental
to simulate λx via ςES .

Proposition 3 (ςES simulates λx). Let A be a term in λςES such that
A −→λx A′. Then ≺ A � −→∗ςES ≺ A′ �.
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Proof. The proof is done by induction on the structure of the λx-term, using the
following sentences:

1. ≺ x[x← b] � −→∗ςES ≺ b �
2. ≺ y[x← b] � −→∗ςES ≺ y �, for x 	≡ y
3. ≺ (c d)[x← b] � −→∗ςES ≺ (c[x← b] d[x← b]) �
4. ≺ (λy.c)[x← b] � −→∗ςES ≺ λy.c[x← b] �
5. ≺ ((λx.c) b) � −→∗ςES ≺ c[x← b] �
Cases 1, 2, and 3 are straightforward. For case 4, we have

≺ (λy.c)[x← b] � =def
[arg = ς(z).z.arg, val = ς(y). ≺ c � [y@arg]][x←≺ b �] −→∗SO,SM,SI,DO

[arg = ς(z).z.arg, val = ς(y). ≺ c � [y@arg][x←≺ b �]] −→SW

[arg = ς(z).z.arg, val = ς(y). ≺ c � [x←≺ b �][y@arg]] =def
≺ λy.c[x← b] �
For case 5, we have

≺ ((λx.c) b) � =def
[arg = ς(z).z.arg, val = ς(x). ≺ c � [x@arg]]• ≺ b � −→∗
≺ c � [x@arg][x← [arg = ς(y) ≺ b �, val = . . .]] −→CO

≺ c � [x←≺ b �] =def
≺ c[x← b] �

It is worth noticing that Rémy’s encoding does not satisfy the properties
of proposition 3: the term x[x ← b] λx-reduces to b but ≺ x[x ← b] �=
≺ x � [x ←≺ b �] = x.arg[x ←≺ b �] does not ςES-reduce to ≺ b �. This
reason justifies our choice of the encoding proposed in [AC96] instead of that
in [Rém97a].
Fixpoint operators can also be encoded into ςES by extending ≺ � with

≺ fix �=� fix �, where � � is the translation in definition 2. Since
� fix � does not involve neither explicit substitutions nor even λ- terms, then
the following property becomes straightforward using the theorem 1 in section 5:

Proposition 4 (ςES simulates fix). If A −→fix A′ then ≺ A �=ςES≺ A′ �.

As a consequence of the previous results, λςES-reduction sequences can be
translated in ςES-reduction sequences, even in the presence of recursion, and
thus ςES-calculus can be used to implement both objects and functions.

5 Properties of ςES

In this section we study the main properties of the ςES-calculus, namely, conflu-
ence and preservation of ς-strong normalization. Confluence means that when-
ever a−→∗ςES b and a−→∗ςES c then there exists a term d such that b−→∗ςES d
and c−→∗ςES d. This property is essential to ensure uniqueness of the results of
computations. In order to guarantee correctness of any implementation, preserva-
tion of strong normalization is also essential when implementing a (non-
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terminating) calculus with another one. Indeed, in contrast to what was ex-
pected, the calculus with explicit substitutions λσ does not preserve β-strong
normalization of λ-calculus [Mel95]. This result is very surprising because it
is natural to expect the meta-theory of the calculus with implicit and explicit
substitutions to coincide. But λσ has a powerful form of composition of substitu-
tions which destroys strong normalization even for simply typed terms. On the
other hand all the λ-calculi with explicit substitutions in the literature which
preserve β strong normalization do not allow neither an interaction nor a form
of full 3 composition between substitutions. As a consequence, since the calculus
ςES proposed in this paper allows some interaction between some forms of sub-
stitutions, then the proof of preservation of ς-strong normalization given in this
section turns out to be essential. It is also worth noting that the ςES-calculus is
not a particular case of the Combinatory Reduction Systems with explicit sub-
stitutions proposed in [BR96] and [Pag97]. Indeed, both works specify calculi
having only ordinary substitutions.

5.1 Confluence of ςES

In this section we prove that ςES is confluent. For that purpose, we use the
interpretation method [Har87] (theorem 3) – which is the standard technique
used to prove confluence of calculi with explicit substitutions. We use the calculus
BES to interpret ςES-terms into ς-terms, that is, to eliminate closures from ςES-
terms.

Lemma 1 (SN of SW). The SW-rule is strongly normalizing.

Proof. The proof uses theorem 6 in appendix A which is based on the weak nor-
malization property of SW. The SW-rule can be shown to be weakly normalizing
using the same technique in [KR97] to show weak normalization of the σ-/-
transition rule of the λωe-calculus. Now, we proceed as follows. Let us define
f : TςES �→ IN as

f(x) = 1 f(a ✁ 〈l,m〉) = f(a) + f(m)
f(ς(x).a) = f(a) f([li = m i∈1...n

i ]) = Σn
i=1f(mi)

f(a.l) = f(a) f(a[x← b]) = f(a) + f(b)
f(a[x@l]) = 2.f(a)

We can easily check that f(a[x@l][y ← b]) = 2.f(a)+f(b) < 2.(f(a)+f(b)) =
f(a[y ← b][x@l]), so that one can prove by induction on the structure of a that
whenever a −→SW b, then f(a) < f(b). Now, since SW is (trivially) locally
confluent, strong normalization of SW follows from weak normalization of SW by
application of theorem 6 in appendix A.
3 The only exception is the λd-calculus [Kes96] which provides a weak form of com-
position for substitutions. However, the λd is completely different in spirit to the
ςES-calculus as it only allows interactions between substitutions that perform the
renaming of de Bruijn’s indices and ordinary substitutions.
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Lemma 2 (SN of ES∪{MU}). The ES∪{MU}-calculus is strongly normalizing.

Proof. Take the following measure h : TςES −→ IN2, where IN2 is the set of
integers greater or equal to 2.

h(x) = 2 h(a ✁ 〈l,m〉) = h(a) + h(m) + 1
h(ς(x).a) = h(a) + 1 h([li = m i∈1...n

i ]) = Σn
i=1h(mi) + n+ 1

h(a.l) = h(a) + 1 h(a[x← b]) = h(a).(h(x) + h(b))
h(a[x@l]) = h(a).(h(x) + 1)

and show that s −→ES−SW t implies h(s) > h(t) and s −→SW t implies
h(s) = h(t). Then termination of ES follows from lemma 1 by application of
theorem 5 in the appendix A.

Notice that the system ES is not locally confluent, so that we use BES to
interpret ςES-terms into ς-terms, that is, to eliminate explicit substitutions from
ςES-terms. Since the BES-calculus is locally confluent (this can be proved by cases
where the only critical pairs arise from DO or DI and SM, SO, SI, SU) and strongly
normalizing (because it is a subcalculus of ES which is strongly normalizing) we
can then obtain the following:

Corollary 1 (Confluence of BES). The BES calculus is confluent and BES-
normal forms are unique. From now on, we denote by BES(a) the BES-normal
form of a.

Now, we show some technical properties that we need to prove confluence
of ςES .

Proposition 5. For every term p in TςES and every pure term d in Tς
1. BES(p) is a pure term,
2. If d[x← p] is a term in TςES , then BES(d[x← p]) is a pure term in Tς .

Proof. It can be done by induction on the lexicographic order induced by the
pair 〈p, d〉.
As a consequence, we get:

Corollary 2. BES-normal forms of TςES -terms are pure terms.

Lemma 3 (Behavior of subst.). Let a, b ∈ TςES . Then BES(a[x ← b]) =
BES(a){x← BES(b)} and BES(a[x@l]) = BES(a){x← x.l}.

Proof. The property can be shown by first proving the statement whenever a
is a pure term (which can be done by induction on the structure of terms, using
definition 1). For non-pure terms a, one has that:

– BES(a[x ← b]) = BES(BES(a)[x ← b]) by uniqueness of BES-normal forms
and BES(a) is a pure term by corollary 2. Thus, the previous case for pure
terms applies and gives BES(BES(a)){x← BES(b)} = BES(a){x← BES(b)}
again by uniqueness of normal forms.
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– BES(a[x@l]) = BES(BES(a)[x@l]) by uniqueness of BES-normal forms and
BES(a) is a pure term by corollary 2. Thus, the previous case for pure terms
applies and gives BES(BES(a)){x ← x.l} = BES(a){x ← x.l} again by
uniqueness of normal forms.

Theorem 1 (Simulation of ς by ςES). If a−→∗ς b, then a−→∗ςES b.

Proof. The proof proceeds by induction on the length of the reduction sequence
a−→∗ς b, using, for the base case, induction on the term a and lemma 3.

Theorem 2 (Simulation of ςES by ς). If a−→∗ ςESb, then BES(a)−→∗ ςBES(b).

Proof. The proof proceeds by induction on the length of the reduction sequence
a−→∗ςES b, using, for the base case, induction on the term a.
Indeed, we have that s −→MI,MU,CO t implies BES(s)−→∗ς BES(t) and
s −→SM,SO,SI,SU,OSV,ISV,SW t implies BES(s) = BES(t).

Theorem 3 (Confluence of ςES). The ςES-calculus is confluent.

Proof. The proof uses the interpretation method [Har87]. Let a, b, c ∈ TςES such
that a−→∗ςES b and a−→∗ςES c. By theorem 2 we have that BES(a)−→∗ς BES(b)
and that BES(a)−→∗ς BES(c). By confluence of ς we know that there is a pure
term d such that BES(b)−→∗ς d and BES(c)−→∗ς d and by theorem 1 we have
that BES(b)−→∗ςES d and that BES(c)−→∗ςES d so the diagram can be closed
by b−→∗BES BES(b)−→∗ςES d and c−→∗BES BES(c)−→∗ςES d.

This same technique can be used to show that the ςMES-calculus is confluent
on the set of terms TςES which do not contain [ @ ] substitutions. For that, one
has just to remark that MES is also locally confluent (and of course terminating
since is a subsystem of BES), so that MES can be used to interpret the terms as
in theorem 3.

5.2 Preservation of ς-Strong Normalization

In this section we show that every ς-term which is ς-strongly normalizing is also
ςES-strongly normalizing. This property is essential to keep the normalization
properties of ς when implementing it by ςES .
We first define SNς as the set of all the ς-strongly normalizing pure terms

of TςES and F as {a ∈ TςES | for all subterm b of a,BES(b) ∈ SNς}.
Lemma 4. If a ∈ F and a −→ςES a′, then a′ ∈ F .

Proof. By induction on the structure of a using theorem 2. The more delicate
case is when a = e[y@l][x ← b] −→SW e[x ← b][y@l] = a′. Let us sup-
pose that a is in F but a′ 	∈ F . As e and b are subterms of a, then by hy-
pothesis BES(e) and BES(b) are ς-strongly normalizable; and also BES(a′) =
BES(a), so that BES(a′) is in SNς by hypothesis. As a consequence, the only
possible case is BES(e{x ← b}) not in SNς . Now, BES(e[x ← b]) is exactly
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BES(e){x ← BES(b)} and BES(e[y@l][x ← b]) is exactly BES(e){x ← BES(b)}
{y ← y.l} by lemma 3 and the substitution lemma, so that if BES(e){x ←
BES(b)} is not in SNς , neither is BES(e){x ← BES(b)}{y ← y.l} = BES(a)
which leads to a contradiction with the hypothesis. We can then conclude that
a′ ∈ F .
We are now going to interpret ςES-terms in F into another set of terms

denoted by Θ which is generated by the following grammar:

t ::= + | t.nl | ✁ (t, l, u) | [li = u i∈1...n
i ] | @(t, l) | t〈t〉n

u ::= ς(t) | u〈t〉n | @(u, l)

For every pure term a, we denote by ν(a) the maximal length of a ς-reduction
sequence starting at a. The translation T : F −→ Θ is then defined as follows:

T (x) = +
T (ς(x).a) = ς(T (a))
T (a.l) = T (a).ml, for m = ν(BES(a.l))
T (a ✁ 〈l,m〉) = ✁(T (a), l, T (m))
T (a[x← b]) = T (a)〈T (b)〉m for m = ν(BES(a[x← b]))
T (a[x@l]) = @(T (a), l)
T ([li = m i∈1...n

i ]) = [li = T (mi) i∈1...n]

We define A as the set of symbols {+,@,✁, ς,=, [ ]} ∪ {〈〉n | n ∈ IN}∪
{.n |n∈ IN}, and we define a well-defined precedence � on A given by .m+1 �
〈〉m � .m � ✁ � ς,=, +, [ ] and 〈〉m � @ � .h, ς, [ ],✁. We denote by >Θ
the rpo order on Θ wrt the precedence � and the status function defined as
τ(α) = mul, for every α ∈ A (for details see definition 4 in appendix A). This
order >Θ is well-founded [Der82,KL80].

Lemma 5. Let a ∈ F . Then a −→ςES a′ implies T (a) >Θ T (a′).
Proof. The proof is by induction on the structure of a. For more details, we refer
the interested reader to the full version available by ftp.

Theorem 4. The ςES-calculus preserves ς-strong normalization.

Proof. Suppose that ςES does not preserve ς-strong normalization. Then there
is a pure term a ∈ Tς such that a ∈ SNς and a is not ςES-strongly normalizing.
By lemma 2 ES∪{MU} is terminating so that the infinite ςES reduction starting
at a must be of the form

a−→∗ES∪{MU} b
′
0 −→MI b0−→∗ES∪{MU} b

′
1 −→MI b1 . . .−→∗ES∪{MU}

b′i −→MI bi . . .

Since a is a pure term, then a is in F and also by lemma 4 all the bi and
b′i, (i ≥ 0) are in F . As a consequence we can define the translation T () on all
the terms a, bi, b′i and we obtain by lemma 5 an infinite sequence
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T (a) ≥Θ T (b′0) >Θ T (b0) ≥Θ T (b′1) >Θ T (b1) ≥Θ T (b′2) >Θ T (b2) . . .
and hence an infinite sequence

T (a) >Θ T (b0) >Θ T (b1) >Θ T (b2) . . .
which yields to a contradiction since >Θ is a well-founded order.

As a corollary we obtain that the ςMES-calculus also preserves ς-strong nor-
malization, and can then be used to implement object-oriented programs without
functions.

6 Conclusion and Future Work

We have proposed an untyped calculus with explicit substitutions that allows
to implement both objects and functions. This language is able to simulate any
computation of the λ-calculus (with or without explicit substitutions) as well
as any computation of the ς-calculus (with or without explicit substitutions).
The interesting feature of our calculus with respect to other calculi with explicit
substitutions proposed in the literature, is that substitutions are divided in two
different kinds – and treated accordingly – in order to differentiate ordinary from
invoke substitution. This treatment is essential to encode the λ-calculus into
the ς-calculus using the same ideas in [AC96], but with explicit substitutions.
Also, since the interaction between substitutions keeps preservation of ς-strong
normalization, the translation from functions to objects is conservative and thus
the calculus ςES proposed in this paper turns out to be a potential real language
to implement objects and functions. It is worth noting that ςES is not a particular
case of the combinatory reduction systems with explicit substitutions proposed
in [BR96] and [Pag97] as they do not allow different sorts of substitutions having
some kind of interaction between them. We have also shown that the minimal
calculus ςMES can be used to implement objects without functions: it is confluent
and it preserves ς-strong normalization.
This work also suggests that a more general approach than those proposed

in [BR96] and [Pag97] is needed to capture all the real implementations of pro-
gramming languages based on higher order systems. In particular, we would like
to pursue this line of research by extending CRSs with a general scheme like
in [Kes96].
The specification of objects and functions implemented via explicit substitu-

tions and de Bruijn’s indices is the subject of current investigation.
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torat, Université de Paris VII, 1987. 206, 208
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A Some Known Properties

Theorem 5. Let R = 〈O, R1 ∪ R2〉 be an abstract reduction and > be a well-
founded order on S such that

– R2 is strongly normalizing;
– there exists a function h : O −→ S such that
• a −→R1 b implies h(a) > h(b),
• a −→R2 b implies h(a) = h(b).

Then R1 ∪R2 is strongly normalizing.

Theorem 6. Let R = 〈O,R〉 be an abstract reduction such that

– R is weakly normalizing
– R is locally confluent
– there exists a function f : O �→ IN such that a R b implies f(a) < f(b).

Then R is strongly normalizing.

Definition 4 (RPO order). Let� be a precedence on a set of function symbols
A and τ a status function such that τ(α) = lex or τ(α) = mul for every α ∈ A.
Given two terms s and t on A ∪ X where X is a set of variables, we say that
s >rpo t if and only if s = f(s1, . . . , sn) and either

1. t = g(t1, . . . , tm), s >rpo ti for all 1 ≤ i ≤ m and
– f � g, or
– f = g and (s1, . . . , sn) >rpo,τ (t1, . . . , tm)

2. there exists 1 ≤ i ≤ m such that si >rpo t or si = t.

where τ is the extension of >rpo associated to the status τ(f).
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Abstract. We study the algorithmic complexity of supporting late bind-
ing in dynamic object-oriented programming (OOP) languages—i.e., lan-
guages that allow creation of new class definitions at runtime. We propose
an abstraction of the late-binding problem for dynamic OOP languages
in terms of operations on dynamic trees, and develop a lower bound
of Ω(lg n) per operation (where n is the number of nodes in the tree).
This result shows that efficient solutions (i.e., solutions that incur a con-
stant time overhead per operation) of this problem are, in general, not
possible. We also propose new data-structures and algorithms for solv-
ing the late-binding problem for dynamic OOP languages very efficiently,
with a worst-case time complexity of O( 3

√
n) per operation. This result

is an improvement over most existing approaches.

1 Introduction

We study the the algorithmic complexity of implementation mechanisms for
supporting inheritance in dynamic object-oriented languages. The aim of this
study is to model these implementation mechanisms in terms of operations on
dynamic data structures, with the final goal of determining their complexity.
Our complexity study is used to derive novel data structures for implementing
inheritance mechanisms efficiently. In this work we limit ourselves to studying the
complexity of implementing late-binding inheritance in dynamic OOP systems,
with particular focus on prototype-based languages. The inheritance considered
is single inheritance, or multiple inheritance with linearization. Generalization of
this work to more complex domains (tree and graph-based multiple inheritance)
is still under investigation.

Inheritance refers to the property of OOP languages whereby new classes are
defined by specializing existing classes. When a class D is defined as a subclass
of another class B (sub-typing), it inherits all the attributes (both data and op-
erations) from class B. Late binding means that procedure-call name-resolution,
i.e., mapping of a procedure call to a procedure definition, is done at run-time,
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rather than compile-time. This is because due to sub-typing and inheritance, it
is not immediately clear which definition should be used corresponding to a pro-
cedure call, as procedure definitions may be multiply defined in a class hierarchy.
Late-binding is an essential feature of OOP and is present in most languages,
e.g., Java, CLOS, Smalltalk, C++ (virtual functions), etc.
Dynamic OOP languages are languages that allow dynamic runtime creation of
class definitions. Thus the complete class hierarchies are not known at compile-
time. CLOS [17] and Smalltalk are two such languages. Additionally, prototype
based languages [2,4,29] are also examples of such languages. Name-resolution
in presence of late-binding is easily solved for static OOP languages (such as
Java and C++) since the complete class hierarchy is known at compile-time;
for dynamic languages, due to absence of this information, it is not as easy. To
study the complexity of the problems that arise in implementing name-resolution
in late-binding dynamic OOP languages, we first abstract it and formalize it in
terms of operations on dynamic trees (i.e., trees that grow and shrink with time).
This formalization permits us to abstractly study the implementation problems.

The abstraction of the computing machine that we choose is the Pointer Ma-
chine [18,19,27]. The reason we choose a pointer machine is because it provides
operations needed for expressing computations over dynamic data structures;
it also allows us to perform a finer level of analysis compared to other models
(e.g., RAM). Besides, use of pointer machines enables us to use many existing
results [22,12,14,21] which are useful in our study and have been developed on
pointer machines. Analysis of the name-resolution problem in late-binding dy-
namic language on pointer machines gives us a deep insight into the sources of
its implementation complexity.

Based on our rigorous study, we develop a lower bound time complexity
of Ω(lg n) per operation (where n is the number of nodes in the tree), for the
name-resolution problem in late-binding dynamic OOP languages. This lower
bound implies that the implementation of name-resolution (creation, mainte-
nance, member look-up, etc. of a class hierarchy) in late-binding dynamic OOP
languages will at least incur cost proportional to lgn, where n is the number of
classes in a hierarchy. In particular, this means that all the operations needed to
support dynamic look-up in a class hierarchy cannot be made constant-time.

We also propose efficient new data-structures and algorithms for solving this
problem which have a worst-case time complexity of O( 3

√
n) per operation. This

result is an improvement over existing approaches that typically have a com-
plexity of Ω(n) per operation. The data structures are very practical and can be
easily employed in actual implementations.

The abstraction of the name-resolution problem for dynamic OOP languages
in terms of dynamic trees, the derivation of a lower bound on complexity of
name-resolution, and the development of an efficient, new implementation tech-
nique for it, are the main contributions of this paper. To the best of our knowl-
edge, this is the first rigorous study of implementation of name-resolution in
late-binding dynamic object-oriented languages. Our study is inspired by our
observation that implementation mechanisms needed for supporting inheritance
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in dynamic OOP languages are similar to implementation mechanisms needed in
various other programming paradigms (e.g., advanced forms of execution of logic
programming [21], and certain Game-trees and Artificial Intelligence applica-
tions [24]). The connection between the problems present in different paradigms
is not obvious until we abstract them. These observed similarities allow us to
reuse techniques and results developed in one area to solve problems in other
areas. All the results presented in this paper, to the best of our knowledge, are
novel, and complement similar studies focused on more specialized languages
or techniques [23,25,33,1,9]. The data structures adopted to develop our upper-
bounds are generalizations and extensions of the tabling and caching mechanisms
proposed by various researchers [9,8,15].

1.1 Object Oriented Programming

In object-oriented programming solution of a problem is expressed in terms
of creation and manipulation of objects. Objects encapsulates a data-structure
(data-fields) and its behavior (member functions). We will use the general term
attributes to refer to the components of an object, namely, its data-fields and
member functions. Objects are organized into classes (collections of objects with
common properties) and classes of objects are organized into hierarchies (sub-
classes and superclasses). Powerful mechanisms, like inheritance, allows defini-
tion of classes/objects as refinements of other existing classes/objects. Hierar-
chies of classes can assume various formats, depending on the flexibility allowed
by the language; e.g., they can be represented as a single tree (single rooted,
single inheritance), as multiple trees (multi-rooted, single inheritance), or as ar-
bitrary complex Direct Acyclic Graphs (DAGS) (multiple inheritance). Objects
consist of instance variables (which define the state of the object) and methods
(which define the behavior of the object)1. The structure of an object is defined
in terms of the class it belongs to; furthermore the definition of each class is
a result of a combination of the components of all its super-classes (via inheri-
tance). Thus the presence of an attribute β in an object of class C depends on
the presence of β in C or in any of its super-classes. Attributes can get redefined
at different stages of the hierarchy, e.g., β in class C1 can be redefined in C2.

1.2 Search Problems in OOP

From the previous discussion it follows that determining the structure of an
object (i.e., its attributes) requires a search. A static system where the hierarchy
is statically defined allows this search to be completely performed at compile-
time. Whenever a class definition is processed, the hierarchy can be studied to
determine exactly all the variables and all the methods that characterize each
instance of such class.

In more complex object oriented system, such as those that allow dynamic
creation of classes and/or late binding, part of this search has to be performed
at run-time. This search can be more complex, as the look-up table, or its equiv-
alent, may have to be constructed at runtime since the class hierarchy may be
1 For simplicity we ignore the various distinctions, such as class variables.
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extended at runtime. In the next subsections we illustrate situations where more
complex search operations are required to determine attributes of a given object.

Self-reference and late binding are considered two essential components of
the inheritance mechanism in an object-oriented system; in fact, various re-
searchers [6,7,30] define inheritance as “...an incremental modification mecha-
nism in the presence of a late-bound self-reference” [30]. The presence of poly-
morphism in object-oriented programming allows the assignments of objects be-
longing to a class C to variables of type B, where B is a base class for C. Consider
the following example2: given the classes square and circle, which are subclasses
of the base class shape

class shape { class square { class circle {
protected: float side; float radius;
char *name; public: public:
public: .... ...
void display() void display() void display()
{ ... }}; { ... }}; { ... }};

In an application program it is possible to define an array of pointers to shape:
shape *array[5];

circle little circle(2.0);

square big square(100.0);

and successively assign to it values taken from the subclasses circle and square
array[0] = &little circle; array[1] = &big square;

The execution of the methods array[0]->display() and
array[1]->display() should lead to the execution of the correct methods (i.e.,
those associated to the classes circle and square respectively). The impossibil-
ity of determining statically which method should be called implies the need to
dynamically detect the correct applicable method at runtime. This process of
dynamically detecting the correct method to execute is referred to as late (or
dynamic) binding. Most of the current object-oriented languages (e.g., C++ and
Java) rely on late binding (either implicitly, as Java, or explicitly, as for the
virtual functions of C++).

Compilers of languages that allow only a static structuring of the class hier-
archies can efficiently realize late binding. For example, in C++, a simple table
of pointers to methods is associated with each class instance (the VTable); at
runtime determining the applicable method just involves a simple table lookup.
However, there are other languages which allow dynamic extension of the classes
hierarchy at runtime (e.g., Dynamic Object Oriented languages such as CLOS
and Smalltalk), allowing creation of new classes on the fly. In this framework,
smarter mechanisms are needed to organize class methods so that the correct
applicable method can be determined for a given call. This determination may
now, however, involve search of the class hierarchy at run-time. How to efficiently
perform this search is the problem we address and analyze in this paper. Similar
situation occurs (with greater frequency) in prototype based object-oriented lan-
guages [2,4,29]; in these frameworks the concept of class is not present, rather,
2 For simplicity we adopt a C++-like syntax, even if C++ is not a dynamic language.
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it is replaced by the idea of prototypes. Objects and prototypes are created on
the fly and each object/prototype can be cloned to create new objects; parent
attributes are used to connect the objects into hierarchies; execution of methods
is based either on delegation—i.e., messages that do not match a local method
are delegated to the parent object (e.g., in Self [5])—or on inheritance (e.g.,
Omega [2]). The focus of this work is mainly towards these classes of languages,
characterized by heavy run-time requirements and limited compiler intervention.

The problem becomes more complex when multiple inheritance is considered.
In multiple inheritance a class is allowed to inherit attributes from different
base classes—thus generating possible inheritance conflicts. Existing multiple
inheritance systems adopt different methodologies to solve these problems:
- linearization of the inheritance DAG, i.e. the DAG is topologically sorted
and the list of nodes is traversed during name-resolution (e.g., as in CLOS);

- tree inheritance where the inheritance DAG is converted into a tree by du-
plicating (some of the) nodes reachable via different paths;

- graph-based approach where the DAG is not transformed and, in presence of
conflicts, the programmer specifies how they should be resolved.
Approaches based on linearization will lead to situations that are analogous

to those of single inheritance. Tree-inheritance generates a tree which is rooted
at the most defined class and which has to be traversed in a predefined order.

1.3 Search Problems in Other Areas

The situation illustrated in the previous subsections is not unique to object-
oriented programming; similar types of search operations occur in various dif-
ferent contexts. Our interest in the problem of implementing inheritance mech-
anisms was in fact spawned by our previous research [21] in the area of logic
programming and search in Artificial Intelligence. Various forms of execution of
logic programming (e.g., or-parallel execution of logic programming) progress by
developing a computation tree (in parallel), where the different branches repre-
sent alternative computation paths, leading to possibly different solutions to the
original query. Variables created before a branching point can be instantiated to
distinct values along different branches; every time a variable is referenced, the
correct value of the variable has to be determined (which is the value assigned
to that variable along the current branch of execution). This problem closely
resembles the one we are considering here for object-oriented programming—
with the exception that in logic programming a variable can be assigned only
once along a branch, while in OOP programming an attribute can be redefined
multiple times along one branch of the hierarchy.

2 Pointer Machines

A Pure Pointer machine (PPM) consists of a finite but expandable collection R
of records, and a finite collection of registers. Each record is uniquely identified
through an address (let N be the set of all the addresses). A special address nil
is used to denote an invalid address. Each record is a finite collection of named
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fields. All the records in the global memory have the same structure, i.e. they all
contain the same number of fields, with the same names. Each field may contain
only an address (i.e., an element from N ). The pointer machine is also supplied
with a finite collections of registers, r1, r2, . . . (pointer registers). Each register ri

can contain one element of N . A program P is a finite, numbered sequence
of instructions. The instructions allow to move addresses between registers and
between registers and records’ fields. The only “constant” which can be explicitly
assigned to a register is nil. Special instructions are used to create a new record
and to perform conditional jumps. The only condition allowed in the jumps
is equality comparison between two pointer registers. In terms of analysis of
complexity, each instruction has a unit cost. For further details on the structure
of the pure pointer machine the reader is referred to [18,31,27]. Comparisons of
the relative power of PPM and RAM have been presented in [27].

Even though RAM is the most commonly used model in studies of complexity
of sequential algorithms, Pointer Machines have received increasing attention.
The Pointer Machine model is simpler, thus making it more suitable for analysis
of lower bounds of time complexity [31]. Furthermore, RAM hides the actual cost
of arithmetic operations, by allowing operations on numbers of size up to lgn
(n being the size of the input) to be treated as constant-time operations. PPM
instead makes these (relevant) costs explicit. From this point of view, PPMs
provide a more realistic model for measure of time complexity [27].

3 Abstraction of the Problem

3.1 Preliminary Definitions

A tree T = 〈N,E〉 is a connected, directed, and acyclic graph. The tree con-
tains a distinguished node, root which has no incoming edges. Each node in
the tree has bounded degree. Trees are manipulated through three instructions:
(i) create tree() which creates a tree containing only the root; (ii) expand(n, b1)
which, given a node n and a label b1, creates a new node and adds it as new chil-
dren of n (b1 can be thought of as the “name” of the new node); (iii) remove(n)
which, given a leaf n of the tree, removes it from the tree. These three operations
are assumed to be the only ones available for modifying the “physical structure”
of the tree. The tree implements a partial ordering between the nodes in the
tree. Given two nodes n and n′, we write n � n′ if n is an ancestor of n′; n ≺ n′

additionally says that n �= n′.

3.2 Abstracting Inheritance

The abstraction of an OOP execution should account for the various issues
present in OOP, (e.g., definition of new classes/objects, inheritance of attributes
etc.). Previous research, as well as experience gained from the development of
practical implementations [30,26,13,34] shows that management of attributes
is indeed one of the key issue in the implementation of an OOP system. The
impact of the efficiency of attribute management on an OOP system has been
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experimentally demonstrated [16,35,10,11]; furthermore, exploitation of paral-
lelism and adoption of more complex approaches to object orientation make the
problem of attribute management even more complex and difficult to imple-
ment. Thus, efficient implementation of attribute management is an important
problem in implementation of OOP languages, if not the most fundamental one.

As described earlier, one of the main issues in dealing with inheritance in
OOP is the search of a given attribute. This search may be needed when a
class/object is created (in order to detect which variables should be included in
each object) or during execution (in order to detect what is the correct method
to execute in response to a given message). In the rest of the discussion we will
adopt the following assumptions: the hierarchy is represented by a single-rooted
tree which can dynamically grow and shrink; each node either introduces one
attribute or redefines one. each tree has a bounded degree—thus, without loss of
generality, we can focus on binary trees. In section 6 we will illustrate how most
of these assumptions can be lifted, without affecting the results obtained. The
tree representing the hierarchy to be searched will be referred to as the o-tree.

The development of the OOP computation takes place as described in the
previous section. A hierarchy—here assumed to be represented by a dynamic tree
of either classes (class-based system), or objects (prototype-based system)—is
dynamically created. Each new leaf created in the tree refines the object(s)
defined at its parent node, by adding attributes and/or shadowing existing ones.
The structure (set of attributes) of an object at node N (denoted by S(N))
is thus determined by a combination d(N, d(N1, d(N2, . . .))) of the definitions
present in the nodes Ni, where Ni is the ancestor of N at distance i from node N .
d is a function with signature

d : Nodes× 2Nodes ×Attr → 2Nodes ×Attr

where Attr is the set of possible attributes and Nodes is the set of nodes in the
hierarchy. Each object is described by a set of pairs 〈N,ψ〉, where each pair
identifies one attribute composing the object; ψ determines the attribute and N
determines the node (class/prototype) from where we are going to inherit the
definition of ψ. If γ(N) is the attribute in node N , then d(N,S) is defined as

d(N,S) = {〈N, γ(N)〉} ∪ {〈M,ψ〉 | 〈M,ψ〉 ∈ S ∧ ψ �= γ(N)}
We can assume that a total of m attributes are available (i.e., there are m
variables and methods). If the computation tree has size n, then we can assume
that m = O(n) (see also section 6). If 〈M,ψ〉 ∈ S(M) and there are no further
definitions of ψ in the sequence of path from M to a descendent node N , then
the path from M to N is ψ-free.

At each node N two operations on attributes are possible:
1. assign an attribute ψ to a node N ; as a consequence, every reference to ψ in
a node M � N (such that the path from N to M is ψ-free) will produce N
as result (i.e., identifies that 〈N,ψ〉 is present in S(M)).

2. dereference an attribute ψ at a node N—i.e., identify the node
max�{M |M defines ψ ∧ M � N}

In the formalization proposed here we assume an additional operation:
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3. alias two attributes ψ1 and ψ2; This means that every reference to ψ1 (ψ2)
in a node M � N will produce the same result as ψ2 (ψ1).

The alias operation is slightly unusual; we introduce it in this abstraction in
order to allow the representation of constructions like the ability to access re-
defined properties by using superclass names as qualifiers (as in C++), and the
super (Smalltalk) and resend (Self), as well as the “inverted” behaviour of lan-
guages like Beta (with the inner construct). The alias operation subsumes both
these behaviours. In the rest of this work we will deal briefly with this opera-
tion; most of the complexity results are independent from the presence of the
alias operation—i.e., the cost of the alias operation is negligible with respect to
the complexity of the remaining operations. In the previous abstraction we have
assumed the presence of one attribute per node. This restriction can be made
without loss of generality if we can assume that the number of attributes in the
node is bound by a program dependent constant. Section 6 considers possible
relaxations of this condition. Let us refer to the problem of supporting these dy-
namic tree operations (assign, dereference, and alias) as the OOP problem. Later
we are going to discuss the problems of aliasing and dereferencing separately.
Figure 1 illustrates an example of an o-tree.

1

2 3

4 5

6 7

8 9

10 11

alias(a1,a2)

assign(a1) assign(a1)

node10: dereference(a1) = node9

node8: dereference(a1) = node8

node11: dereference(a1) = node9
node10: dereference(a2) = dereference(a1) = node9

Fig. 1. Operations on o-tree
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Fig. 2. Complex Tree

All the operations need to be implemented efficiently to guarantee adequate
performance. Our abstraction of the problem properly accounts for all the costs
incurred during execution and is directly related to the computation in the hi-
erarchy. Thus, even schemes which move part of the cost of managing search
during object creation are properly represented in our abstraction—such costs
will be accounted for in the abstraction during the expansion of a node.

4 Lower Bound for OOP
In this section we will develop a lower bound on the complexity of the operations
required in our abstraction of OOP. The initial goal was to demonstrate that a
dynamic late-binding OOP system cannot be maintained with a constant-time
cost per operation. This result, as shown below, can be easily proved just based
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on the behaviour of the alias operation alone. Nevertheless, the real source of
complexity arises from the need to maintain dynamic references that, in each
branch of the hierarchy, allow to resolve every attribute reference. This produces
a considerably higher lower bound.

It is quite easy to observe that along each branch of the tree, attributes
are managed in a way very similar to in the union-find problem. Initially all
attributes are distinct; given an attribute X , let us denote with φ(X) the set of
all the attributes that are currently (on the branch at hand) aliased toX . If a new
aliasing between X1 and X2 takes place, then the set φ is modified as φ(X1) =
φ(X1)∪φ(X2). If we assume that the value of an attribute X is always associated
to the representative of φ(X), then any dereference operation is based on a find
operation in order to detect the representative. We also assume (as addition to
the union-find model) that the representative is selected as the node in φ(X)
which is closer to the root. This observation can be used to provide a proof of
the non-constant time nature of the computation involved in the management
of attributes in a class-hierarchy—by showing that the OOP problem subsumes
the union-find problem.

Theorem 1. The amortized time complexity of OOP is Ω(n + mα(m,n)),
where n is the number of attributes and m is the number of tree operations.

This result relies on the execution of aliasing operations. Nevertheless, it is
possible to show that the result holds even when we disallow aliasing during OOP
execution. In fact, the inability to achieve constant-time behavior is inherent in
the management of the attributes in the tree and does not depend on the presence
of the alias operation.

Theorem 2. On pointer machines, the worst case time complexity of OOP
is Ω(lg n) per operation even without aliasing.

Detailed proof can be found elsewhere [20]. The above result is stronger than
theorem 1, and gives us a greater insight into why it is impossible to support
OOP with constant-time overhead.

5 Upper Bound for OOP
In this section we develop an upper bound for the OOP problem. Most of the
implementation schemes proposed in the literature either restrict the capabilities
of the OOP system (allowing to collect sufficient information during compile-time
and reduce run-time search to simple table lookups) or can be shown to have a
worst case complexity of O(n) per operation. Currently, the best result we have
been able to achieve is the following:

Theorem 3. OOP with no aliasing can be solved on a pointer machine with a
single operation worst–case time complexity O( 3

√
n(lg n)k) for a small k.

The OOP problem can be cast in the following terms. The computation is
described in terms of operations on a dynamic tree. For the sake of simplicity we
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will focus on a growing only tree. Thus, the only operation allowed on the tree
is expand(v,X1, X2) which expands the leaf v by appending two successors u1

and u2, respectively labeled withX1 andX2. Here we are assuming, as mentioned
above, that each node in the tree has bounded degree; thus, without loss of
generality, we can as well restrict our attention to binary trees. Section 6 consider
generalizations of this case. Also, for simplicity we assume that X1 and X2 are
the actual attributes associated to such nodes—i.e., we avoid explicit use of
assign. Only leaves can be expanded. The tree is labeled; thus a tree is coupled
with a labeling function: l: Nodes → Γ , where Nodes is the set of all the nodes
in the tree and Γ is a finite set of labels. Given this, we can define the function

dereference: Γ × Nodes → Nodes ∪ {⊥}
which given a label l and a node n returns the lowest (i.e., closer to n) node m (if
any) on the path (from the root) ending in n which is labeled l. Our problem now
reduces to efficient implementation of the two operation expand and dereference.

Let us start developing a solution under the assumption that the number N
of nodes to be inserted in the tree is known in advance. For our purposes, we can
think the labels to be stored directly in the nodes of the tree. Let us first consider
the naive scheme. The expand operation simply expands a leaf attaching the two
new successors. The dereference operation starts with a label and a leaf, and
walks back towards the root searching for the desired label. Clearly, in this naive
implementation, the expand operation is O(1), but the dereference operation can
take time O(N) in the worst case, since the tree may be completely unbalanced.
Alternatively, on the other extreme, we could require expand to create a complete
summary the branch up to that point (Õ(n)), allowing a very fast dereference
operation (Õ(1)). In both cases, a sequence of n operations will lead to a worst–
case complexity of Õ(n2).

The general idea in our improved schemes is to balance the amount of work
done during the expand and the dereference operations, by making the expand
operation more complex in order to make the search more efficient. We first start
by providing a simple Õ(

√
N) solution; we later improve the solution to Õ( 3

√
N).

This last solution is considerably more involved than the first one, but uses some
of the ideas in the first one.

An Õ(N
1
2 ) scheme: The first algorithm that we are describing will lead to a

complexity3 O(
√

N(lgN)k).
The behavior of dereference can be improved by creating at various points of

each branch a “table” that summarizes the actions performed on that segment of
the branch. This is illustrated in figure 3. Table T1 summarizes the assignment
of labels to nodes for the part of the branch between nodes n1 and n2; table T2
summarizes the assignment of labels to nodes for the part of the branch between
nodes n3 and n4. Nodes that are associated to tables are linked together. Note
that, although we talk conceptually about tables, these tables are actually im-
plemented as binary search trees on pointer machines. We can do this because
we can assume the existence of a total order between the labels (we can remove
this assumption by paying an O(lgN) penalty). The execution of dereference

3 For the sake of simplicity in the following analysis we will ignore the (lgN)k factor.
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requires linearly scanning the branch from the leaf up to the first table node.
If the desired label is not found in such part of the branch, then the table is
examined. If the label is not found, then the search is repeated in the preceding
table, and so on. If the root is reached, then the searched label has not been
assigned to any node on that branch.

The complexity of this process is the following: let us assume that the tables
are created every t(N) nodes.
• the initial linear search will not visit more than t(N) nodes;
• searching inside a table will require O(lg t(N));
• since there are at most O(N) nodes on the branch, then the search process
will visit at most O( N

t(N) ) tables.
Combining these elements, we can state that the complexity of this implemen-
tation of dereference is

O(t(N) + lg t(N)
N

t(N)
)

The expand operation, on the other hand, has a worst-case time complexity
Õ(t(N)) per operation (occurring at the time of table creation). Choosing
t(N) =

√
N the total cost4 is O(

√
N lgN).

An Õ(N
1
3 ) Solution: The above scheme can be improved by making use of

the solution to the ancestor problem—the problem of determining if one node
is ancestor of the other in a dynamic tree. This is a well-studied problem with
very efficient solutions [12,14,18,32]. Let β(n) denote the complexity of solving
the ancestor problem for a dynamic tree with n nodes. We know from the litera-
ture [32,14] that it is possible to solve the ancestor problem for two nodes x, y in
time≈ O(lgmin(depth(x), depth(y))). Thus we can assume that β(N) = O(lgN).

The intuition behind this second solution is the following: if a certain label l
has been assigned to very few nodes—let’s say k nodes m1, . . . ,mk—it is pos-
4 We choose to ignore the polylog factors in making an optimum choice for t(N).
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sible to solve the problem dereference(n,l) by simply considering each of the k
nodes mi and verifying whether mi is an ancestor of n. This is possible only if k
is sufficiently small. Observe that, in the worst case, the number of nodes asso-
ciated to l can be O(N). On the other hand, only “few” labels will be used very
frequently. We can try to take advantage of these facts by collecting the assign-
ments of labels to nodes into groups. Each group is supposed to have sufficiently
small cardinality to allow its exhaustive search.

The general idea in the search scheme (dereference) would be to first deter-
mine the group of the label being searched, and then perform an exhaustive
search within the group, using the solution to the ancestor problem. Let t(N) be
the cardinality of a group. Thus, we associate to each label γ a set of groups, con-
taining all the nodes n in the tree such that l(n) = γ. During the construction of
the tree, every time we create a node m with label γ, we insert m in the current
group for γ. If the current group is full—i.e., it contains t(N) elements—then a
new group for γ is created, and m is added to such group. Nodes which lead to
the creation of a new group are called boundary nodes. Each boundary node is
properly marked, and contains a pointer to the new group.

Additionally, if the node n is inserted for the label γ, and γ has ever before
received a new group, then n is a used node, and it is also marked. More formally:

Definition 1. Given a label γ, we indicate with #(γ) the number of groups
currently existing for γ. G(γ, i) indicates the ith group for γ (if 1 ≤ i ≤ #(γ)).
|G(γ, i)| indicates the cardinality of the ith group of γ.

The used and boundary nodes can be defined as follows.

Definition 2. A node n such that l(n) = γ is said to be a boundary node if,
at the moment of its creation, |G(γ,#(γ))| = t(N). A node n such that l(n) = γ
is said to be a used node if #(γ) ≥ 2.

Figure 4(i) schematically illustrates these concepts with a simple example.
The example assumes t(N) = 2. The numbers indicate the order in which the
indicated nodes have been inserted. Node 4 is a boundary node as it requires
the creation of a new group for Z; for this reason it has been marked. Node 6 is
also a boundary node, for label X. Node 7 is a used node, since it is inserting a
label for which there has already been a group change (due to node 6); for this
reason the node is also marked.

Observe that, since there are N nodes in the tree, and a group has size t(N),
then during the insertion there will be at most N

t(N) groups. Observe also that
given that there are N nodes, there can be at most N

t(N) labels having more than
one group. This means that along each branch of the tree, we cannot have more
than O(N/t(N)) nodes that have been marked (either used or boundary).

Considering the organization of label assignments into groups, a strategy to
implement the dereference operation would be to simply visit the marked nodes
along the current branch (we can assume that they are linked together). If a
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node with the correct label is found, then we have an immediate solution—
determined in O(N/t(N)). If a node with the correct label is not found, there
are two possibilities left:
• the label has been used in the branch and the assignment was generated before
filling the first group of that label; thus the assignment has been recorded in the
first group for that label. The correct node can be found in time O(t(N)β(N)).
• the label has not been used at all in the branch. Again, if we search the nodes
in the first group (O(t(N)β(N))) we are going to determine this situation.

Thus, the process will lead to a solution in O(t(N)β(N) +N/t(N)) steps.
The search can be improved by adding, as in the scheme described in the

previous section, tables to summarize the group numbers associated to the
used/boundary nodes in the previous section of the branch. Considering that we
need to keep track of at most N/t(N) nodes per branch—the maximum number
of used and boundary nodes—using the results from the previous section we can
determine that the best behavior can be achieved by placing a table at every√

N/t(N)
th
used/boundary node along a branch. The effect of the table will be

to summarize the previous
√

N/t(N) used and boundary nodes generated along
the current branch. Figure 4(ii) illustrates the situation. Marked nodes represent
used/boundary nodes. Using this scheme, a search for a label starting from a
given leaf will proceed as follows:
• starting from the leaf, the various used/boundary nodes are accessed up
to the first table. If the label is found within these nodes, then we have
immediately an answer to the problem. Considering the assumption made
before, this first phase will traverse at most O(

√
N/t(N)) nodes.

• if the label is not found in the used/boundary nodes at the end of the branch,
then the first table is searched for the considered label. This search will cost
O(lg(N/t(N))).
• if the label is found in the table, then we can assume that the entry will
directly refer to the correct group. Otherwise the search has to be repeated
in the preceding table. At most

√
N/t(N) tables are going to be searched,

leading to a total time of O(
√

N/t(N) lg(N/t(N))).
• finally, if the label is not found in any of tables, then the group of this label
never changed (hence is 1). A final search has to be performed in the initial
group for the label, which will imply a cost of O(t(N)β(N)).

Thus, we obtain a total complexity for the dereference operation of:

O(
√

N/t(N) +
√

N/t(N) lg(N/t(N)) + t(N)β(N))

Choosing t(N) = 3
√

N , noting that β(N) is O(lgN) we get that the complexity
of dereference is Õ( 3

√
N).

To conclude the argument, we need to tackle the two assumptions made at
the beginning of the proof:
1. the argument was focused on growing-only trees, i.e., we ignored the remove
operation. It is relatively easy to observe that this operation is applied only
to leaves of the tree and hence does not affect the validity of the results.
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2. we assumed at the beginning that the number of nodesN is known beforehand.
One can show that the use of the current number of nodes in place of the total
number of nodes is going to produce variations only in the polylog part of the
complexity. We made this assumption to keep the presentation of the proof
simple and easy to follow.
It is interesting to observe that the average case behavior can be improved by

adopting a better structuring of the nodes in each group. In particular the nodes
in a group can be organized as a tree which reflects the ancestor relationship
present in the original dynamic tree—which would, on average, improve the
search in a group. Also, a different criteria can be used to switch to a new group:
a new group is created whenever the tree present in the current one has reached
a specified height. This criteria would guarantee the same worst case behavior as
before but may allow to place a larger number of nodes within the same group,
potentially leading to a reduction in the time required to scan the main tree. ✷

The above scheme allows to gain good efficiency on all the requested op-
erations. The scheme increases memory consumption; nevertheless the space
complexity is in the order of O(2 × n).

6 Generalizing the Lower and Upper Bounds

There are various assumptions that we made in the beginning. These assump-
tions were made to keep the presentation simple, and to derive the lower and
upper bounds. Relaxing these assumptions will not affect the lower bound, as
the problem will become more complex if an assumption is relaxed. However,
relaxing an assumption can increase the upper bound. The effect of relaxing the
assumptions is discussed next.
• Number of Attributes per Node The treatment of the previous sections
was based on the assumption that a single attribute is associated to each node
in the tree. As long as the total number of attributes defining a class/object
is bounded by a given constant, the lower and upper bounds change only up
to a constant. Introducing arbitrary numbers of attributes in a node will add
a penalty for searching the attribute; if we assume k to be the number of
attributes per node, then a O(lg k) penalty per operation will be incurred.
• Degree of the Nodes In most of the previous treatment we have assumed the
use of a bounded degree tree (in particular most of the discussion focused on
binary trees). Nevertheless, by looking at the structure of the various proofs we
can observe that the issue does not affect the final result. The various formulae
proposed are based on the independent structure of each separate path, and
it is not affected by the degree of the various nodes. Thus this assumption can
be easily relaxed without affecting the final results.
• Arbitrary Insertion Points We assumed in deriving the upper bound that
the o-tree grows only at the leaf nodes. This assumption is related to the pre-
vious one. However, note that adding new children to any node in the tree
(even internal nodes) does not affect the existing paths in the tree. Thus, the
schemes here provided can be easily modified to accommodate a more gen-
eral version of the expand operation—the only change required in the O( 3

√
n)
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scheme is keeping an additional pointer with each node which points to the
most recent boundary/used node. This can be easily maintained with a con-
stant additional overhead.
• Modification of Internal Nodes Various dynamic object oriented systems
allows modification of existing classes or prototypes, by adding new attributes
or changing existing ones. This would imply, in our model, the ability of modi-
fying attributes of internal nodes of the tree. If we allow such operations, then
the upper bound is affected.
The operation of replacing an individual attribute β in an internal node v
with an attribute γ can be implemented by updating the information stored
in node v and by maintaining an external table which records the replace-
ment operations performed. A search for γ will require two traversal of the
data structure, one searching directly for γ, and one for β (where β has been
detected from the global replacement table).
In general, if k replacements have been performed in the whole data structure,
then we have a degradation of complexity to O(k 3

√
n) per operation.

7 Conclusions

In this paper we studied the complexity of supporting single inheritance (or
multiple inheritance with linearization), in late-binding dynamic OOP systems.
We focused on the complexity of the operations associated with determining the
correct attributes to be used with a given class/object. We developed lower and
upper bounds for the OOP problem, i.e., the problem of implementing the basic
operations required for correctly managing attribute detection.

The lower bound produced, O(lg n), is a confirmation that an ideal situation
where all the required operations can be implemented in constant-time is not
feasible. This seems to confirm the results achieved for similar problems by other
authors [25,23]. The upper bound, Õ( 3

√
n), even if far from the lower bound, is

of great importance, as it suggests that current implementation mechanisms are
sub-optimal and better implementation schemes are feasible. In fact, from the
implementation proposed for various systems, it seems that mostly naive schemes
(typically requiring O(n) time per operation) have been adopted. The scheme
presented handle the OOP without the use of the alias operation. Nevertheless,
from [3] we can infer that the alias operation can be implemented with worst–
case complexity O( lg n

lg lg n ), thus adding just a lower order component to
3
√

n.
The results presented in this work are mainly related to worst–case analysis of

the problems. Nevertheless, all the worst–case situations depicted are reasonable
and we expect the average–case complexity (which is heavily dependent on the
specific application) to be sufficiently close to the results derived here.

An open problem of interest is the development of better upper bounds for
the OOP in case of no aliasing between variables. We have shown that this
problem has a non-constant time lower bound, but an optimal upper bound is
still a subject of research. Our conjecture is that the problem admits a solution
with a worst case time complexity O((lg n)k) (for a small k) per operation.
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Finally, it is important to observe that the OOP problem is actually a very
general problem, which occurs in almost the same form in various different frame-
works. For example, [24,21] illustrates how the same problem arises in the context
of parallel execution of logic programming and in various artificial intelligence
applications. Thus, the results presented here are very general and can be applied
to problems outside of OOP.
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22. H. La Poutré. Lower Bounds for the Union-Find and the Split-Find Problem on
Pointer Machines. Journal of Computer and System Sciences, 52:87–99, 1996. 214

23. G. Ramalingam and H. Srinivasan. A Member Lookup Algorithm for C++. In
Programming Languages Design and Implementation. ACM Press, 1997. 215, 227

24. D. Ranjan, E. Pontelli, and G. Gupta. Dynamic Data Structures in Advanced Pro-
gramming Languages Implementation. Technical report, Dept. Computer Science,
New Mexico State University, 1997. 215, 228

25. J.G. Rossie and D.P. Friedman. An Algebraic Semantics of Subobjects. In Conf. on
Object-Oriented Progr. Systems, Languages, and Applications. ACM Press, 1995.
215, 227

26. J.H. Saunders. A Survey of Object-Oriented Programming Languages. Journal of
Object-Oriented Programming, 1(6), 1989. 218

27. A. Schönhage. Storage Modification Machines. SIAM Journal of Computing,
9(3):490–508, August 1980. 214, 218

28. D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26, 1983.

29. L. Stein. Delegation is Inheritance. In OOPSLA. ACM, 1987. 214, 216
30. A. Taivalsaari. On the Notion of Inheritance. Computing Surveys, 28(3), 1996.

216, 218
31. R.E. Tarjan. A Class of Algorithms which Require Nonlinear Time to Mantain

Disjoint Sets. Journal of Computer and System Sciences, 2(18), 1979. 218
32. A.K. Tsakalidis. The Nearest Common Ancestor in a Dynamic Tree. ACTA

Informatica, 25, 1988. 223
33. J. Vitek, R. Nigel Horspool, and A. Krall. Efficient Type Inclusion Tests. In

Conf. on Object-Oriented Programming Systems, Languages, and Applications.
ACM Press, 1997. 215

34. P. Wegner. Concepts and Paradigms of Object-Oriented Programming. OOPS
Messenger, 1(1), 1990. 218

35. O. Zendra, D. Colnet, and S. Collin. Efficient Dynamic Dispatch without Virtual
Function Tables. In Conf. on Object Oriented Programming Systems, Languages,
and Applications. ACM Press, 1997. 219



A Compiler for Rewrite Programs in

Associative-Commutative Theories

Pierre-Etienne Moreau and Hélène Kirchner

LORIA-CNRS & INRIA-Lorraine
BP 239

54506 Vandœuvre-lès-Nancy Cedex, France
moreau,hkirchne@loria.fr

Abstract. We address the problem of term normalisation modulo as-
sociative-commutative (AC) theories, and describe several techniques for
compiling many-to-one AC matching and reduced term construction.
The proposed matching method is based on the construction of com-
pact bipartite graphs, and is designed for working very efficiently on
specific classes of AC patterns. We show how to refine this algorithm to
work in an eager way. General patterns are handled through a program
transformation process. Variable instantiation resulting from the match-
ing phase and construction of the resulting term are also addressed. Our
experimental results with the system ELAN provide strong evidence that
compilation of many-to-one AC normalisation using the combination of
these few techniques is crucial for improving the performance of algebraic
programming languages.

Keywords: compilation, rewrite systems, AC theories, AC many-to-one
matching.

1 Introduction

In the area of formal specifications and algebraic programming languages, rewrite
programs (i.e. sets of rewrite rules) are used for prototyping computations in
user-defined data types. In this context, mathematic and algebraic structures
often involve properties of function symbols, such as associativity and com-
mutativity. For example, let us consider polynomials with integer coefficients
simplify monomials with a null coefficient. This is simply achieved by using
a rule P + (0 ∗ M) → P where P is a polynomial and M a monomial. This
rule takes advantage of the associativity and commutativity property of opera-
tors + and ∗: all permutations needed to find a reducible monomial are performed
by an AC matching algorithm. Clearly AC operators lead to more concise and
elegant rewrite programs, however providing this facility in rule-based languages
requires specific implementation techniques. Straightforward implementations of
AC matching and normalisation can lead to inefficiency that discourages the pro-
grammer to use this feature. So it is a real challenge, addressed in this work, to
achieve efficient computations in AC theories.
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A first idea is that efficient execution of rewrite programs can be obtained
by designing specific techniques for frequently used patterns. It is natural then
to examine which patterns are the most usual ones in rule-based specifications,
handle these cases first and use a more powerful, but in general more expensive,
method only when needed. This led us to design many-to-one AC matching for
classes of patterns. The general case is handled through a preliminary transfor-
mation technique of programs so that they fall into the previous classes, and a
combination of our many-to-one approach with a general one-to-one matching
algorithm [9]. More details and proofs can be found in the PhD Thesis of the
first author.

Construction of substitutions and the result are also operations involved in
normalisation, that must be carefully designed for efficiency. The difficulty of
achieving a compiler for AC rewriting is not only to improve each technical step
(often starting from some solutions already proposed in the literature) but also
to combine all these steps together to achieve an efficient implementation. We
give experimental results and comparisons with other systems to provide some
evidence of efficiency.

After introducing preliminary concepts in Section 2, we present our compi-
lation techniques, in Section 3 for matching, and in Section 4 for normalisation.
Experimental results are provided in Section 5, before concluding with a few
perspectives in Section 6.

2 Preliminary Concepts

We assume the reader familiar with basic definitions of term rewriting and
AC theories, given for instance in [26,17].
T (F ,X ) is the set of terms built from a given finite set F of function symbols

and a set X of variables. Positions in a term are represented as sequences of
integers. The empty sequence ε denotes the top-most position. The subterm of t
at position ω is denoted t|ω. The set of variables occurring in a term t is denoted
by Var(t). If Var(t) is empty, t is called a ground term. A term t is said to be
linear if no variable occurs more than once in t. A substitution is an assignment
from X to T (F ,X ), written σ = {y1 �→ t1, . . . , yk �→ tk}. It uniquely extends to
an endomorphism of T (F ,X ). Given a binary function symbol fAC , let AC be
the set of associativity and commutativity axioms

fAC(x, fAC(y, z)) = fAC(fAC(x, y), z) and fAC(x, y) = fAC(y, x).

All AC function symbols that satisfies these two axioms, are indexed by AC in
the following. We write s =AC t to indicate that the terms s and t are equivalent
modulo associativity and commutativity. F∅ is the subset of F made of function
symbols which are not AC, and are called free function symbols. A term is said
to be syntactic if it contains only free function symbols.

A conditional rewrite rule is a triple of terms denoted l → r if c such that
l, r ∈ T (F ,X ), c is a boolean term, and Var(c)∪Var(r) ⊆ Var(l). c is called the
condition, l the left-hand side or pattern and r the right-hand side. A rewrite rule
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is said to be syntactic if the left-hand side is a syntactic term. To apply a syntactic
rule to a subject t, we look for a match, i.e. a substitution σ satisfying lσ = t.
The algorithm which provides the unique substitution σ whenever it exists is
called syntactic matching. When the condition cσ reduces to the boolean term
true, the subterm lσ is replaced by rσ in the subject. Otherwise, the application
of this rule fails.

When the left-hand side of the rule contains AC function symbols, then
AC matching is invoked. The term l is said to AC match another term t if
there exists a substitution σ such that lσ =AC t. Since AC matching can return
several solutions, this introduces a need for backtracking for conditional rules: as
long as there is a solution to the AC matching problem for which the condition
is not satisfied, another solution has to be extracted. Only when no solution
is remaining, the application of this rule fails. Conditional rewriting requires
AC matching problems to be solved in a particular way: the first solution has to
be found as fast as possible, and the others have to be found “on request”.

AC matching has already been extensively studied, for instance
in [16,2,20,1,21,9]. Usually all terms in the same AC equivalence class are rep-
resented by their canonical form [16,9]. Given a total ordering > on the set of
function symbols F and variables, the canonical form is obtained by flattening
nested occurrences of the same AC function symbol, recursively computing the
canonical forms and sorting the subterms, and replacing α identical subterms t
by a single instance of the subterm with multiplicity α, denoted by tα. A term in
canonical form is said to be almost linear if the term obtained by forgetting the
multiplicities of variable subterms is linear, i.e. if a variable occurs more than
once in a flattened term, it must be directly under the same AC function symbol.
For a term t in canonical form, the top layer t̂ is obtained from t by removing
subterms below the first AC symbol in each branch.

In order to support intuition throughout this paper, we choose the following
running example of two rewrite rules whose right-hand sides are irrelevant:

fAC(z, f(a, x), g(a)) → r1 if z = x
fAC(f(a, x), f(y, g(b)))→ r2

3 Many-to-One AC Matching

In programming with rewrite rules, it frequently happens that programs contain
several rules whose left-hand sides begin with the same top function symbol.
This often corresponds to definition by cases of functions. In this context, many-
to-one pattern matching is quite relevant.

The many-to-one (AC) matching problem is the following: given a set of
terms P = {p1, . . . , pn} called patterns, and a ground term s, called subject,
find one (or more) patterns in P that (AC) matches s. Patterns and subject
are assumed to be in canonical form. Efficient many-to-one matching algorithms
(both in the syntactic case and in AC theories) are based on the general idea of
factorising patterns to produce a matching automaton. The discrimination net
approach [13,6,24] is of this kind. In the case of AC theories, the decomposition of



A Compiler for Rewrite Programs in Associative-Commutative Theories 233

matching problems gives rise to a hierarchically structured collection of standard
discrimination nets, called an AC discrimination net [1,14].

3.1 Description of the Algorithm

The skeleton of our many-to-one AC matching algorithm is similar to the algo-
rithm presented in [1]. Given a set of patterns P ,
1. Transform rules to fit into a specific class of patterns. In particular, patterns
are converted to their canonical forms, rules with non-linear left-hand sides are
transformed into a conditional rule with a linear left-hand side and a condition
expressing equality between variables (of the form x = y);
2. Compute the AC discrimination net associated to P = {p1, . . . , pn} and the
corresponding matching automata. Figure 1 shows the AC discrimination net
for the set of patterns in our running example.

P = {fAC(z, f(a, x), g(a)), fAC(f(a, x), f(y, g(b)))}
where only fAC is an AC symbol. The net is composed of two parts:

AC

a

gf

a y

g

b

xg

xb

AC

f(a,x)

f(y,g(b))

f(a,x)

f(a,x)

f(y,g(b))

g(a)

f

f   (z,f(a,x),g(a)) f   (f(a,x),f(y,g(b)))AC

Fig. 1. Example of discrimination net

– a discrimination net for the top layers P̂ = {p̂1, . . . , p̂n} which determines
which rules can be applied, and a link to the sub-automaton used to match
subterms of AC function symbols (fAC);

– the sub-automaton itself that implements a many-to-one syntactic matching
algorithm [13] for the set of syntactic terms: f(a, x), f(y, g(b)) and g(a).

This decomposition is iterated if there are more AC function symbols.

The previous steps only depend on the set of rewrite rules. They can be per-
formed once and for all at compile time. At run-time the subject is known and
the following steps are performed.
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Given a ground term s = fAC(s1, . . . , sp),

3. Build the hierarchy of bipartite graphs according to the given subject s in
canonical form. For each subterm pi|ω, where ω is a position of an AC func-
tion symbol in p̂i, an associated bipartite graph is built. For an AC matching
problem from fAC(t1, . . . , tm) to fAC(s1, . . . , sp), where for some k, 0 ≤ k ≤ m,
no t1, . . . , tk is a variable, and all tk+1, . . . , tm are variables, the associated bi-
partite graph is BG = (V1 ∪ V2, E) whose sets of vertices are V1 = {s1, . . . , sp}
and V2 = {t1, . . . , tk}, and edges E consists of all pairs [si, tj ] such that tjσ
and si are equal modulo AC for some substitution σ.
This construction is done recursively for each subterm of pi|ω whose root is an
AC symbol.

For example, given the ground term s=fAC(f(a, a), f(a, c), f(b, g(b)), f(g(c),
g(b)), g(a)), the two bipartite graphs given in Figure 2 can be built (one for each
rule);

f(a, x) g(a)

f(a, a) f(a, c) g(a)

f(a, x) f(y, g(b))

f(a, a) f(a, c) f(b, g(b)) f(g(c), g(b))

Fig. 2. Examples of bipartite graphs

4. Find a set of solutions to the hierarchy of bipartite graphs and construct a
Diophantine equational system which encodes the constraints on the remaining
unbound variables: in order to match m variables xα1

1 , . . . , xαm
m to n remaining

subterms sβ1
1 , . . . , s

βn
n one looks for non-negative integer solutions of the system∧

i=1..n βi = α1X
1
i + · · ·+ αmX

m
i with Σn

j=1X
i
j ≥ 1 in order to get solutions of

the form xk = fAC(sX
k
1

1 , . . . , s
Xk

n
n ) for k = 1..m.

5. Solve the Diophantine equational system to get a matching substitution.

Starting from this quite general algorithm, our goal was to improve its ef-
ficiency by lowering the cost of some steps, such as traversing the levels of the
hierarchy of discrimination nets, building and solving bipartite graphs, or solv-
ing Diophantine equational systems. The idea is to apply these costly steps on
specific patterns for which they can be designed efficiently, or simply skipped.
The classes of patterns presented in the following section cover a large class of
rewrite programs. For the general case, a pre-processing of the rewrite program
is done, as explained in Section 3.4.
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3.2 Classes of Patterns

All terms in the pattern classes are assumed to be in canonical form and al-
most linear. The pattern classes C0, C1, C2 contain respectively terms with no
AC function symbol, at most one and at most two levels of AC function symbols.

Definition 1. Let F∅ be the set of free function symbols, FAC the set of AC func-
tion symbols and X the set of variables.

– The pattern class C0 consists of linear terms t ∈ T (F∅,X )\X .
– The pattern class C1 is the smallest set of almost linear terms in canonical
form that contains C0, all terms t of the form t=fAC(xα1

1 ,. . . , x
αm
m ,t1,. . .,tn),

with fAC ∈ FAC, 0 ≤ n, t1, . . . , tn ∈ C0, x1, . . . , xm ∈ X , α1, . . . , αm ≥ 0,
m ≥ 0, and all terms t of the form f(t1, . . . , tn), with f ∈ F∅, t1, . . . , tn ∈
C1 ∪ X .

– The pattern class C2 is the smallest set of almost linear terms in canonical
form that contains C1, all terms t of the form t=fAC(xα1

1 ,. . . , x
αm
m ,t1,. . . , tn),

with fAC ∈ FAC, 0 ≤ n, t1, . . . , tn ∈ C1, x1, . . . , xm ∈ X , α1, . . . , αm ≥ 0,
m ≥ 0, and all terms t of the form f(t1, . . . , tn), with f ∈ F∅, t1, . . . , tn ∈
C2 ∪ X .
In our example, the patterns fAC(z, f(a, x), g(a)) and fAC(f(a, x), f(y, g(b)))

belong to the class C1. The pattern
fAC(x3

1, g(fAC(z, f(a, x2), g(a))), g(fAC(f(a, x3), f(y, g(b)))))
belongs to C2.

It should be emphasised that for completeness of AC rewriting, extension
variables have to be added [26,17]. Those variables store the context and al-
low us to do rewrite steps in subterms. Adding extension variables amounts to
considering additional rule patterns of the form fAC(x, l1, . . . , ln) for each rule
with a left-hand side of the form l = fAC(l1, . . . , ln). Note that the rule and its
extension belong to the same pattern class.

3.3 Many-to-One AC Matching Using Compact Bipartite Graphs

The AC matching techniques described in this section are restricted to the class
of patterns presented in Section 3.2. This restriction leads to several improve-
ments of the general approach described in Section 3.1.

– Thanks to the restriction put on patterns, the hierarchy of bipartite graphs
has at most two levels. Thus, the construction can be done without recursion;

– We use a new compact representation of bipartite graphs, which encodes, in
only one data structure, all matching problems relative to the given set of
rewrite rules;

– No Diophantine equational system is generated when there is at most one or
two variables, with (restricted) multiplicity, under an AC function symbol
in the patterns. Instantiating these variables can be done in a simple and
efficient way;
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– A preliminary syntactic analysis of rewrite rules can determine that only one
solution of an AC matching problem has to be found to apply some rule.
This is the case for unconditional rules or for rules whose conditions do not
depend on a variable that occurs under an AC function symbol in the left-
hand side. Taking advantage of the structure of compact bipartite graphs,
a refined algorithm is presented to handle those particular (but frequent)
cases.

Compact Bipartite Graph. Given a set of patterns with the same syntactic top
layer, all subterms with the same AC top function symbol are grouped to build
a particular bipartite graph called a Compact Bipartite Graph described below.
Given a subject, the compact bipartite graph encodes all matching problems
relative to the given set of rewrite rules. From this compact data structure, all
bipartite graphs that the general algorithm would have to construct, can be
generated. In general, the syntactic top layer may be not empty and several AC
function symbols may occur. In this case, a compact bipartite graph has to be
associated to each AC function symbol and their solutions have to be combined
to solve the matching problem.

Such a decomposition leads us to focus our attention on sets of patterns
p1, . . . , pn defined as follows:

p1 = fAC( p1,1 , . . . , p1,m1 )
...

...
...

pn = fAC( pn,1 , . . . , pn,mn )

where for some kj , 0 ≤ kj ≤ mj , no pj,1, . . . , pj,kj is a variable, and all
pj,kj+1, . . . , pj,mj are variables. Given a subject s = fAC(sα1

1 , . . . , s
αp
p ), the asso-

ciated Compact Bipartite Graph is CBG = (V1 ∪ V2, E) where
V1 = {s1, . . . , sp}, V2 = {pj,k | 1 ≤ j ≤ n, 1 ≤ k ≤ kj}, and E consists of
all pairs [si, pj,k] such that pj,kσ and si are equal (modulo AC) for some substi-
tution σ.

Syntactic subterms pj,k are grouped together and a discrimination net that
encodes a many-to-one syntactic matching automaton is built. This automaton
is used to find pairs of terms [si, pj,k] that match together and build the compact
bipartite graph as described above.

To handle patterns with two levels of AC function symbols, a two-level hier-
archy of bipartite graphs has to be built. To each edge of the graph issued from
an AC pattern, is attached the corresponding AC subproblem. This hierarchy is
represented by a matrix of bipartite graphs where rows correspond to subject
subterms, and columns correspond to patterns pj,k.

Solving a Compact Bipartite Graph. Finding a pattern that matches the sub-
ject usually consists of selecting a pattern pj , building the associated bipartite
graph BGj and finding a maximum bipartite matching [15,11]. Instead of build-
ing a new bipartite graph BGj each time a new pattern pj is tried, in our ap-
proach, the bipartite graph BGj is extracted from the compact bipartite graph
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CBG = (V1 ∪ V2, E) as follows:

BGj = (V1 ∪ V ′2 , E′) where
{
V ′2 = {pj,k | pj,k ∈ V2 and 1 ≤ k ≤ kj}
E′ = {[si, pj,k] | [si, pj,k] ∈ E and pj,k ∈ V ′2}

Given the subject s = fAC(sα1
1 , . . . , s

αp
p ) and a fixed j, Sj is a solution of BGj

if: {
Sj ⊆ E′ and ∀k ∈ {1, . . . , kj}, ∃ a unique [si, pj,k] ∈ Sj
card({[si, pj,k] ∈ Sj | 1 ≤ i ≤ p}) ≤ αi

This solution corresponds to a maximum bipartite matching for BGj . If Sj does
not exist, the next bipartite graph BGj+1 (associated to pj+1) has to be ex-
tracted. The main advantage of this approach is that common syntactic subterms
are matched only once, even if they appear in several rules (the information is
saved once in the presented compact bipartite graph). Moreover, extraction can
be performed efficiently with an adapted data structure: in our implementation,
the compact bipartite graph is represented by a set of bit vectors. For each sub-
term pj,k, a bit vector is associated, the ith bit is set to 1 if pj,k matches to si.
Encoding compact bipartite graphs by a list of bit vectors has two main advan-
tages: the memory usage is low and the bipartite graph extraction operation is
extremely cheap, since only bit vectors are selected.

Example. Considering our running example, an analysis of subterms with the
same AC top function symbol fAC gives three distinct non-variable
subterms up to variable renaming: p1,1 = f(a, x) and p1,2 = g(a) for
fAC(z, f(a, x), g(a)) → r1 if z = x, and p2,1 = f(a, x), p2,2 = f(y, g(b)) for
fAC(f(a, x), f(y, g(b))) → r2. Variable subterms (z in this example) are not in-
volved in the compact bipartite graph construction. They are instantiated later
in the substitution construction phase described in Section 4.1. Let us consider
the subject:

s = fAC(f(a, a), f(a, c), f(b, g(b)), f(g(c), g(b)), g(a)).

After trying to match all subterms f(a, a), f(a, c), f(b, g(b)), f(g(c), g(b)) and
g(a) by f(a, x), f(y, g(b)) and g(a), the following compact bipartite graph is
built:

f(a, x) f(y, g(b)) g(a)

f(a, a) f(a, c) f(b, g(b)) f(g(c), g(b)) g(a)

The compact bipartite graph is exploited as follows. In order to normalise
the subject, a rule has to be selected, for instance fAC(f(a, x), f(y, g(b)))→ r2.
The bipartite graph that should have been created by the general method can be
easily constructed by extracting edges that join f(a, x) and f(y, g(b)) to subject
subterms, which gives the “classical” bipartite graph presented in the right part
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of Figure 2. To check if the selected rule can be applied, a maximum bipartite
matching has to be found. The bipartite graph has four solutions:

[f(a, a), f(a, x)], [f(b, g(b)), f(y, g(b))] [f(a, c), f(a, x)], [f(b, g(b)), f(y, g(b))]
[f(a,a), f(a,x)], [f(g(c),g(b)), f(y,g(b))] [f(a,c), f(a,x)], [f(g(c),g(b)), f(y,g(b))]

The given example of compact bipartite graph is represented by only three
bit vectors: 11000, 00110 and 00001. The first one: 11000, means that the cor-
responding pattern f(a, x) matches the two first subterms: f(a, a) and f(a, c),
and similarly for the other ones. Extracting the bipartite graph is done by only
selecting bit vectors associated to f(a, x) and f(y, g(b)): 11000 and 00110.

Eager matching. An AC matching problem usually has more than one solution.
But for applying a rule without conditions or whose conditions do not depend
on a variable that occurs under an AC function symbol of the left-hand side,
there is no need to compute a set of solutions: the first found match is used to
apply the corresponding rule. Those rules are called eager rules. This remark
leads us to further specialise our algorithm to get an eager matching algorithm,
which tries to find a match for eager rules, as fast as possible. The idea consists
of incrementally building the whole compact bipartite graph and adding to each
step a test to check whether a bipartite graph associated to an eager rule has a
solution. This test is not performed for non-eager rules and no check is necessary
on a bipartite graph if no modification occurred since the last applied satisfia-
bility test (i.e. no edge has been added). Using those two remarks, the number
of checked bipartite graphs is considerably reduced.

Let us consider our running example. With the first method presented above
(called the main algorithm), five matching attempts were done to completely
build the compact bipartite graph (corresponding to its five edges). Only after
this building phase, bipartite graphs are extracted and solved. Assuming that
subterms are matched from left to right, it is sufficient to match only three
subterms (with the eager algorithm), to find the first suitable solution:

S2 = {[f(a, a), f(a, x)], [f(b, g(b)), f(y, g(b))]}.
This solution is found as soon as the following partial compact bipartite graph
is built:

f(a, x) f(y, g(b)) g(a)

f(a, a) f(a, c) f(b, g(b)) f(g(c), g(b)) g(a)

In practice, eager matching considerably reduces the number of matching
attempts and there is only a small time overhead, due to the test, when no ea-
ger rule is applied. In the main algorithm, the number of matching attempts
is linear in the number of subterms of the subject. In the eager algorithm, this
number also depends on the pattern structure. Using two examples (Prop and
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Bool3) described in section 5, some experimental results that compare the num-
ber of matched subterms with and without the eager algorithm are given in the
following table:

Main algorithm Eager algorithm Gain
Prop 50,108 32,599 17,509 (−35%)
Bool3 44,861 8,050 36,811 (−82%)

Note however that eager matching is not compatible with rewriting with
priority, since the eager rule chosen by the eager matching algorithm may not
correspond to the first applicable rule in the set of rules ordered by the program-
mer.

3.4 Handling Other Patterns

In order to handle rules whose patterns are not in C2, a program transformation
is applied. It transforms those rules into equivalent ones whose left-hand sides
are in the class C2. In order to preserve the semantics, the definition of condi-
tional rewrite rules has to be enriched with a notion of local assignment. Such a
construction is already allowed in the syntax of ELAN, and a similar one is called
matching condition in ASF+SDF. Our compiler can handle rules of the following
form: l → r if v where p := u, where p is a term possibly reduced to a single
variable. Let σ be the matching substitution from l to the given subject. If p
matches uσ, its variables are instantiated and this extends the main matching
substitution σ. If the pattern p contains AC function symbols, an AC matching
procedure is called.

The transformation of a rule with a general pattern into a rule with local
assignments and satisfying our pattern restrictions is done according to two cases
for the pattern l: either the top symbol of l is an AC symbol or not.

– Let l = fAC(xα1
1 , . . . , xαm

m , t1, . . . , tk, tk+1, . . . , tn) with x1, . . . , xm ∈ X ,
t1, . . . , tk ∈ C1 and tk+1, . . . , tn /∈ C1, where k < n.
If l′ = fAC(xα1

1 , . . . , xαm
m , t1, . . . , tk, y). The rule

l′ → r where fAC(tk+1, . . . , tn) := y

is equivalent to the previous one. Recall that when computing the local
assignment, y is instantiated by the matching substitution from l′ to the
ground subject.

– Let l = f(t1, . . . , tn) with some ti /∈ C2. Let Λ be an abstraction function
that replaces each maximal non-variable subterm of l which is not in C2,
say uj , by a new variable xj , for j = 1..k, where k is the number of such
subterms. Let l′ = Λ(f(t1, . . . , tn)). The rule

l′ → r where u1 := x1

...
where uk := xk

is equivalent to l → r.
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It is worth noticing that when computing such local assignments, only one-to-
one matching problems occur. If the pattern p contains AC function symbols,
a general one-to-one AC matching procedure [9] can be called. In the worst
case, many-to-one AC matching is not used and the program transformation
builds a rewrite rule system where AC problems are solved with a one-to-one
AC matching procedure in the where parts, helped by a full indexing for
the topmost free function symbol layer. We get back a frequently implemented
matching technique, used in Maude [7] for instance.

4 Compiling the Normalisation Process

It is essential to have a good AC matching algorithm to get an efficient AC rewrit-
ing engine. But, matching is not the only operation in a normalisation process.
Computing a normal form of a term consists of repeatedly selecting a rule that
matches the subject, computing the current substitution and applying it to the
right-hand side of the selected rule to build the reduced term. A global consider-
ation of the whole process is crucial: all data structures and sub-algorithms have
to be well-designed to cooperate without introducing any bottleneck. In this sec-
tion we complete the description of the general architecture of our compiler by
giving details on how instances of variables are computed and how the reduced
term is built.

In the construction on the reduced term, it is usually possible to reuse parts
of the left-hand side to construct the instantiated right-hand side. At least, in-
stances of variables that occur in the left-hand side can be reused. More details
can be found in [28] for the syntactic case. Similar techniques have been devel-
oped in our compiler, but we do not discuss them here, but rather focus on the
construction of substitutions.

4.1 Construction of Substitutions

For constructing the reduced term, the substitution which encodes a solution
to the matching problem has to be built. At this stage, two problems can be
addressed: how to instantiate the remaining variables in AC patterns? How to
optimise the substitution construction?

Variable instantiation. Variables that occur in patterns just below an AC func-
tion symbol are not handled in the previously described phases of the compiler.
This problem is delayed until the construction of substitutions. When only one or
two distinct variables (with multiplicity) appear directly under each AC function
symbol, their instantiation does not need to construct a Diophantine equational
system. Several cases can be distinguished according to the syntactic form of
patterns.

– For fAC(x1, t1, . . . , tn), once t1, . . . , tn are matched, all the unmatched sub-
ject subterms are captured by x1.
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– For fAC(xα1
1 , x2, t1, . . . , tn), let us first consider the case where α1 = 1. Then

once t1, . . . , tn are matched, the remaining subject subterms are partitioned
into two non-empty classes in all possible ways. One class is used to build
the instance of x1, the other for x2.
When α1 > 1, once t1, . . . , tn are matched, one tries to find in all possible
ways α1 identical remaining subjects to match x1 and then, all the remaining
unmatched subject subterms are captured by x2.

– For fAC(xα1
1 , . . . , xαm

m , t1, . . . , tn), once t1, . . . , tn are matched, a system of
Diophantine equations is solved for computing instances of x1, . . . , xm.

Considering our running example, and the rule fAC(z, f(a, x), g(a))→ r1 if z =
x. Once matching has been performed, and the two solutions for x (a and c)
have been found, the variable z can be instantiated respectively by fAC(f(a, c),
f(b, g(b)), f(g(c), g(b))) or fAC(f(a, a), f(b, g(b)), f(g(c), g(b))). The condition
z = x is never satisfied with those substitutions, so application of this rule fails.

Compiling the substitution construction In the syntactic case, the matching sub-
stitution is easily performed by the discrimination net, since there is at most one
solution. In the AC case, there may be many different instantiations for each
variable. It would be too costly to record them in a data structure for possi-
ble backtracking. Furthermore, the construction of this dynamic data structure
is not necessary when the first selected rule is applied, because all computed
substitutions are deleted. Our approach consists of computing the substitution
only when a solution of the bipartite graph is found. For each subterm pj,k,
variable positions are known at compile time and used to construct an access
function access pj,k from terms to lists of terms. This function takes a ground
term as argument and returns the list of instances of variables of pj,k as a re-
sult. Given Sj = {[si, pj,k]} a solution of BGj , the set Ij = {access pj,k(si) |
[si, pj,k] ∈ Sj} of variable instantiations can be computed.

Given the rule fAC(f(a, x), f(y, g(b)))→ r2, the functions access f(a, x)(t) =
t|2 and access f(y, g(b))(t) = t|1 are defined. Starting from S2 ={[f(a,a), f(a,x)],
[f(b, g(b)), f(y, g(b))]}, the set I2 = {a, b} is easily computed, and we get the
substitution σ = {x �→ a, y �→ b}.

4.2 Optimisations

Normalised substitutions. In the case of the leftmost-innermost reduction strat-
egy, all variables instantiated by syntactic matching are irreducible by construc-
tion. Nested function calls are such that before a matching phase, each subterm
is in normal form w.r.t. the rewrite rule system. This is no longer the case in
AC rewriting: for instance, in our running example, the variable z can be in-
stantiated by fAC(f(a, c), f(b, g(b)), f(g(c), g(b))) which is reducible by the
rule fAC(f(a, x), f(y, g(b))) → r2. To ensure that instances of variables that
appear immediately under an AC top function symbol are irreducible, they are
normalised before using them to build the right-hand side. Moreover, if the con-
sidered rule has a non-linear right-hand side, this normalisation substitution step
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allows us to reduce the number of further rewrite steps: the irreducible form is
computed only once. Without this optimisation, normalisation of identical terms
frequently occurs even if a shared data structure is used because flattening can
create multiple copies. As illustrated in section 5.2, in practice, the number of
applied rules is significantly reduced.

Maintaining canonical forms. The compact bipartite graph construction (and
thus the matching phase) supposes that both pattern and subject are in canon-
ical form. Instead of re-computing the canonical form after each right-hand side
construction, one can maintain this canonical form during the reduced term con-
struction. Whenever a new term t is added as a subterm of s = fAC(sα1

1 , . . . , s
αp
p ),

if an equivalent subterm si already exists, its multiplicity is incremented, else,
the subterm t (which is in normal form by construction) is inserted in the
list sα1

1 , . . . , s
αp
p at a position compatible with the chosen ordering. If t has the

same AC top symbol fAC , a flattening step is done and the two subterm lists
are merged with a merge sort algorithm. A detailed algorithm is given in [23].

Term structure and sharing. A specific data structure for terms has been
adopted, assuming that terms are maintained in some canonical form. In imple-
mentations of algebraic programming language, the representation of first-order
terms is generally based on trees. An alternative representation of terms which
is linear rather than tree-like has been proposed by Jim Christian [6]. Those
flatterms, represented by a doubly-linked list data structure, yield in practice
simpler and faster traversal algorithms than the conventional tree representa-
tion. But in the flatterm representation, subterms stored in the doubly-linked
list cannot be shared. In our compiler, two different tree based representations are
used. Subterms of free function symbols are stored in an array, while subterms of
AC function symbols are stored in a simply-linked-list. This data structure has
been easily extended to handle multiplicities and represent terms in canonical
form.

4.3 Summary

To give a better understanding of the approach and an overview of the compiler,
we summarise in Figure 3 which data structures and operations are used during
the compilation process and during the execution time.

5 Experimental Results

Our own interest in compilation of AC normalisation comes from the develop-
ment of the ELAN system [19]. ELAN is an environment for prototyping and com-
bining different deduction systems described using rewrite rules and user-defined
strategies for controlling rewriting [3,4]. A first ELAN compiler was designed and
presented in [28], but did not handle AC function symbols. However, remarkable
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Compile Time Run Time

Data
Structure

rewrite rules term
discrimination tree/automata compact bipartite graph
position of variables bit vector

substitution

Operations

linearisation of patterns canonical form maintenance
transformation of rules syntactic matching
compilation of discrimination trees CBG construction
pre-construction of CBG BG solving
compilation of variable access variable instantiation

functions sharing creation and detection

Fig. 3. Summary of defined data structures and operations

performances obtained by this compiler were a strong encouragement to design
an extension to handle AC theories.

The version of the ELAN compiler used in the experiments below does not
handle ELAN’s strategies. This ELAN compiler is implemented with approxima-
tively 10,000 lines of Java. A runtime library has been implemented in C to
handle basic terms and AC matching operations. This library contains more
than 7,000 lines of code. To illustrate the power of our compilation techniques,
let us consider examples that make a heavy use of AC normalisation.

5.1 Examples of Specifications

� The Prop example implements the two basic AC operators and, xor, and four
syntactic rules that transform not, implies, or and iff functions into nested calls
of xor and and. The rewrite system is defined by the following rules:

and(x,�) → x
and(x,⊥) → ⊥ xor(x,⊥)→ x
and(x, x) → x xor(x, x) → ⊥
and(x, xor(y, z))→ xor(and(x, y), and(x, z))
implies(x, y) → not(xor(x, and(x, y)))
not(x) → xor(x,�)
or(x, y) → xor(and(x, y), xor(x, y))
iff(x, y) → not(xor(x, y))

The benchmark consists of normalising the following term:

implies(and(iff(iff(or(a1,a2),or(not(a3),iff(xor(a4,a5),not(not(

not(a6)))))),not(and(and(a7,a8),not(xor(xor(or(a9,and(a10,a11)),a2),

and(and(a11,xor(a2,iff(a5,a5))),xor(xor(a7,a7),iff(a9,a4)))))))),

implies(iff(iff(or(a1,a2),or(not(a3),iff(xor(a4,a5),not(not(not(a6)))))),

not(and(and(a7,a8),not(xor(xor(or(a9,and(a10,a11)),a2),and(and(a11,

xor(a2,iff(a5,a5))),xor(xor(a7,a7),iff(a9,a4)))))))),not(and(implies(and(

a1,a2),not(xor(or(or(xor(implies(and(a3,a4),implies(a5,a6)),or(a7,a8)),
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xor(iff(a9,a10),a11)),xor(xor(a2,a2),a7)),iff(or(a4,a9),xor(not(a6),

a6))))),not(iff(not(a11),not(a9))))))),not(and(implies(and(a1,a2),

not(xor(or(or(xor(implies(and(a3,a4),implies(a5,a6)),or(a7,a8)),

xor(iff(a9,a10),a11)),xor(xor(a2,a2),a7)),iff(or(a4,a9),xor(not(a6),

a6))))),not(iff(not(a11),not(a9))))))

The normalisation of this term quickly produces a very large term. The ex-
pected result of the evaluation is �.
� The Bool3 example (designed by Steven Eker) implements computation in a
3-valued logic. The rewrite system is defined by the following rules, where +
and ∗ are AC.

x+ 0 → x x ∗ 0 → 0
x+ x+ x → 0 x ∗ x ∗ x→ x
(x+ y) ∗ z → (x ∗ z) + (y ∗ z) x ∗ 1 → x
and(x, y) → (x ∗ x ∗ y ∗ y) + (2 ∗ x ∗ x ∗ y)+

(2 ∗ x ∗ y ∗ y) + (2 ∗ x ∗ y)
or(x, y) → (2 ∗ x ∗ x ∗ y ∗ y) + (x ∗ x ∗ y)+

(x ∗ y ∗ y) + (x ∗ y) + (x+ y)
not(x) → (2 ∗ x) + 1
2 → 1 + 1

The benchmark consists in normalising the two following terms, and compare
their normal forms:

and(and(and(a1, a2), and(a3, a4)), and(a5, a6))
and
not(or(or(or(not(a1), not(a2)), or(not(a3), not(a4))), or(not(a5), not(a6))))

� In [8], a rewrite system modulo AC for natural arithmetic was presented:
Nat10. This system contains 56 rules rooted by the AC symbol +, 11 rules
rooted by the AC symbol ∗, and 82 syntactic rules. The authors conjecture
in their paper that compilation techniques and many-to-one matching should
improve their implementation. We used this rewrite system to compute the 16th

Fibonacci number.

5.2 Benchmarks

The first two benchmarks (Prop and Bool3) seem to be trivial because they
contain a small number of rules. But after several rewrite steps, the term to be
reduced becomes very large (several MBytes) and contains a lot of AC symbols.
It is not surprising to see a system spending several hours (on a fast machine)
before finding the result or running out of memory.

The execution of the Nat101 example does not generate such large terms,
but the rewrite system contains a lot a rules. This illustrates the usefulness of
many-to-one matching techniques.
1 This last example was originally implemented in CiME which is a theorem prover
rather than a programming environment. To compute Fib(16), CiME applies 10,599
rules in 16,400 seconds.
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Those three examples have been tested with Brute2, Maude [7], OBJ [12],
OTTER [22], RRL [18], ReDuX [5] and the new ELAN compiler on a Sun Ultra-
Sparc 1 (Solaris). Unfortunately, we did not find any other compiler for normal-
isation with AC rewrite systems. It may be questionable to compare a compiled
system with an interpreted systems such as OBJ. However, there is no evidence
that a compiled system should be significantly faster than a good interpreter
when a lot of AC symbols are involved: compared to the syntactic case, few pre-
computed data structures and functions can be generated and the main costly
operations involve many dynamic data structures and general functions from the
runtime library. In this sense, even with a compiler, AC matching operations are
partially interpreted.

The number of applied rewrite rules (rwr) and the time spent in seconds (sec)
are given in the following array:

Prop Bool3 Nat10
rwr sec rwr sec rwr sec

OBJ 12,837 1,164 - > 24h 26,936 111
OTTER 167,621 6.17 - > 10min3 - -
ReDuX 18,292 180 268,658 1,200 - -
RRL - > 24h - > 4h 3 - -
Brute 23,284 1.78 34,407 2.25 - -
Maude 12,281 0.47 4,854 0.25 25,314 0.32
ELAN compiler 12,689 0.43 5,282 0.18 15,384 0.15

The following statistics give an overview of the time spent in specialised
AC matching operations compared to the total execution time (the total is not
equal to 100% because many other functions are involved in the normalisation
process):

Prop Bool3 Nat10
CBG build 12.76% 14.59% 7.39%
BG extraction 0.3% 0.39% 4.31%
BG solve 3% 3.19% 9.38%
substitution build 3.74% 3.77% 4.52%
canonical form maintenance 24.1% 23.9% 1.7%

On the three presented examples, less than 21% of the total execution time
is spent in building and solving the bipartite graph hierarchy. When the num-
ber of AC rules increases (Nat10), the time spent on extracting and solving
bipartite graphs slightly increases. The CBG construction is cheaper in Nat10
because the size of the involved subject is smaller: the number of matching at-
tempts is reduced. As expected, the time spent on building substitutions does
not significantly depend on the example nor from the number of solutions of

2 available at ftp://ftp.sra.co.jb/pub/lang/CafeOBH/brute-X.Y.tar.gz
3 More than 70 MBytes and 115MBytes respectively were used.
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the solved AC matching problem. This clearly shows the interest of our com-
piled substitution construction approach. To conclude, even with a well-suited
term data structure and an optimised canonical form maintenance algorithm,
the time spent in maintaining a term in canonical form can be really important
on examples in which very large terms are involved.

What is really interesting in the compiled approach is that we can com-
bine interesting performances of the proposed AC rewriting process with ex-
tremely good results brought by the syntactic compiler: up to 10,000,000 rewrite
steps per second can be performed on simple specifications, and an average
of 500,000 rwr/sec when dealing with large specifications that involve complex
non-deterministic strategies. The best interpreters can perform up to 400,000
rwr/sec in the syntactic case. Compared with the compiled approach, this is a
serious bottleneck when specifying a constraint solver or a theorem prover, for
example.

On the two first examples, Maude gives very interesting results. The third
example tends to show that in a more realistic situation (with many rewrite
rules) the many-to-one approach may be an advantage to efficiently execute
large specifications.

6 Conclusion

Experimental results show that the combination of techniques presented in this
paper leads to a significant improvement of performance of AC normalisation.
Another characteristic of the implementation, not yet mentioned, is to provide
modular compilation, in the sense that each function or strategy corresponds
to one compiled code module. The idea is that when a function or a strategy
is modified, only the corresponding module is recompiled. This is extremely
important for compilation of large programs.

The presented compilation techniques are not exclusively designed for the
ELAN language. In a recent project in cooperation with the ASF+SDF group, we
have designed a translator from a sub-language of ASF+SDF (namely µASF) to
the intermediate code used by our compiler. This experiment has clearly shown
that our compilation techniques can be used in a more general context than
ELAN itself.

To conclude this paper, let us mention further work.
� User-defined strategies. The strategy language of ELAN provides pre-

defined constructors for strategies, and also gives the possibility to the user to
define his own strategies in a very flexible way using the same paradigm of rewrit-
ing [3,4]. Compilation techniques for this powerful strategy language are under
development.
� List matching. The expressivity offered by associative operators is ex-

tremely interesting when designing large specifications. The recent experiment in
compiling ASF+SDF specifications reveals the need to have an efficient match-
ing algorithm for such list operations. We are working on a specialised version of
the presented AC matching algorithm, using the same compact data structure,
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in order to handle some new classes of patterns that contain associative function
symbols.
� Combination of theories. AC theories are the most frequent ones in

mathematical and algebraic structures, but a programmer may be interested in
mixing in his specifications AC function symbols with others that may be only
associative, or commutative, or idempotent or with a unit. Although theoretical
problems related to combination of matching algorithms have already been ex-
plored [25,27], providing an efficient matching algorithm for the combination of
such symbols is a challenging open problem first attacked in [10].
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We sincerely thank Peter Borovanský, Claude Kirchner, Christophe Ringeissen,
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Abstract. A property P of term rewriting systems is persistent if for
any many-sorted term rewriting system R, R has the property P iff its
underlying term rewriting system Θ(R), which results from R by omit-
ting its sort information, has the property P . It is shown that termi-
nation is a persistent property of many-sorted term rewriting systems
that contain only variables of the same sort. This is the positive solution
to a problem of Zantema, which has been appeared as Rewriting Open
Problem 60 in literature.

1 Introduction

Sort introduction technique in term rewriting has caught attention recently [2,8].
We prove in this paper a conjecture which opens up a possibility of new applica-
tions of this technique. The conjecture reads: for any terminating many-sorted
term rewriting systemR, ifR contains only variables of the same sort then Θ(R)
is also terminating. Here, Θ(R)—called the underlying term rewriting system
of R—is the term rewriting system obtained from R by omitting its sort infor-
mation. The conjecture was raised by Zantema and adapted in [4] as Rewriting
Open Problem 60.

A property P of TRSs is said to be persistent ifR has the property P iff Θ(R)
has the property P ; this notion is due to Zantema [10]. We say P is persistent for
a class C of many-sorted TRSs if for any R ∈ C, R has the property P iff Θ(R)
has the property P . Thus the conjecture above equals persistency of termination
for the class of many-sorted TRSs that contain only variables of the same sort.
It is known that confluence is persistent for the class of many-sorted TRSs [3]
and that termination is persistent for the class of many-sorted TRSs that do
not contain both duplicating and collapsing rules [10]. Persistent properties in
equational rewriting have been studied in [9].

A property φ of TRSs is said to be modular for the direct sum if φ(R1) and
φ(R2) imply φ(R1 ∪ R2) for any two TRSs R1 and R2 sharing no function
symbols. For component closed properties φ, persistency of φ for the class of
many-sorted TRSs implies modularity of φ for the direct sum of TRSs [10].
Similarly, persistency of property φ for a subclass C of many-sorted TRSs often
implies modularity of φ for the direct sum of TRSs from the class {Θ(R) | R ∈

C. Palamidessi, H. Glaser, and K. Meinke (Eds.): PLILP’98, LNCS 1490, pp. 250–265, 1998.
c© Springer-Verlag Berlin Heidelberg 1998
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C}. Indeed, if we assign sorts 1 × · · · × 1 → 1 to function symbols in R1 and
2 × · · · × 2 → 2 to those in R2, modularity of φ for the direct sum of R1 and
R2 is a particular case of persistency of φ provided that R1 ∪ R2 under this
sort assignment is contained in C. Thus, for example, persistency of termination
for the class of many-sorted TRSs that do not contain both duplicating and
collapsing rules implies the corresponding modularity result for the direct sum
of TRSs. To the contrary, our requirement on the sorts of variables does not carry
over for TRSs and therefore it is hard to formalize the corresponding modularity
result. This contrasts sharply with other persistency results obtained so far.

Our result is useful to show that termination is preserved under suitable
translations of TRSs. More precisely, it follows that coding a function symbol
f(, . . . , ) by a suitable term t(, . . . , ) does not affect termination behavior of
TRSs.

The rest of this paper is organized as follows. In Section 2, we fix notations
on many-sorted term rewriting and its underlying term rewriting. Section 3 is
devoted to the proof of the Zantema’s conjecture. In Section 4, applications of
our theorem and related works are discussed. We conclude our result in Section
5.

2 Preliminaries

We assume familiarity with basic notions in term rewriting. In what follows, we
recall some less common definitions and fix notations used in this paper.

Let S be a set of sorts (denoted by α, β, γ, . . .), F a set of S-sorted func-
tion symbols (denoted by f, g, h, . . .), V a set of S-sorted variables (denoted by
x, y, z, . . .). We write f : α1×· · ·×αn → β when f ∈ F has sort α1×· · ·×αn → β.
We assume that there are countably infinite variables of sort α for each sort
α ∈ S.

We denote by T (and T α) the set of terms (of sort α, respectively). For a
term t, V(t) is the set of variables that appear in t. Syntactical equality is denoted
by ≡. We write t � s (t � s) when t is a (proper) subterm of s, or equivalently s
(properly) contains t.

For each sort α, the hole of sort α is written as�α. A context is a term possibly
containing holes. We denote by C the set of contexts. We write C : α1×· · ·×αn →
β when C ∈ C has sort β (as a term) and has n holes �α1 , . . . ,�αn from left to
right in it. If C : α1×· · ·×αn → β and t1 ∈ T α1 , . . . , tn ∈ T αn then C[t1, . . . , tn]
is the term obtained from C by replacing holes with t1, . . . , tn from left to right.
A context C is written as C[ ] when C contains precisely one hole. A context is
said to be empty when C ≡ �α for some α ∈ S.

We denote by Pos(t) the set of positions of a term t; by t/p the subterm
of t at a position p ∈ Pos(t). PosV(t) stands for {p ∈ Pos(t) | t/p ∈ V}. The
empty (or root) position is denoted by Λ. For u, v ∈ Pos(t), we write u ≤ v
when u is a prefix of v and u | v when u and v are incomparable. For a context
C[ ], we write C[ ]p when C[ ]/p is a hole. When s ≡ C[u]p, we denote by
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s[p← v] the term C[v]. When p /∈ Pos(s), we define s[p← v] ≡ s. We abbreviate
(· · · (s[p1 ← v1]) · · · [pn ← vn]) to s[pi ← vi | 1 ≤ i ≤ n].

A substitution σ is a mapping from V to T such that x and σ(x) have the
same sort. A substitution is extended to a homomorphism from T to T in the
obvious way; tσ stands for σ(t) for a substitution σ and a term t.

A (many-sorted) rewrite rule is a pair l → r of terms such that (1) l and r
have the same sort, (2) l /∈ V , (3) V(r) ⊆ V(l). A many-sorted term rewriting
system (STRS, for short) is a set of rewrite rules. For an STRS R, its reduction
relation s →R t is defined as usual. Note that s and t have the same sort
whenever s →R t. The transitive-reflexive closure and the transitive closure of
→R are denoted by ∗→R and +→R, respectively.

When S = {∗}, an STRS is called a TRS. Given an arbitrary STRS R, by
identifying each sort with ∗, we obtain the TRS Θ(R)—called the underlying
TRS of R. According to the definition of rewrite relation, Θ(R) acts on the set
of terms possibly non-well-sorted with respect to the sorts of function symbols
in R. Fixing a STRS R, we will denote by Θ(T ) and Θ(C) the sets of terms and
contexts possibly non-well-sorted with respect to the sorts of function symbols
in R respectively. On the other hand, we preserve notation C : α1×· · ·×αn → β
only for well-sorted contexts; more precisely, we will write C : α1×· · ·×αn → β
only when C is well-sorted with respect to the sorts of function symbols in R.

3 A Proof of the Conjecture

We prove in this paper the following theorem conjectured by Zantema.

Theorem 1. Let R be an STRS that contains only variables of the same sort.
Then R is terminating if and only if Θ(R) is terminating.

For this purpose, we assume in the sequel that there exists a special sort
0 ∈ S, and fix an STRS R such that every variable occurring in rules of R has
sort 0.

3.1 Sort introduction basics

Terms in Θ(T ) can be partitioned into well-sorted components; and this partition
yields a natural layered structure in each term. In this subsection, we present
basic notion and notations related to this layered structure, and present a few
key observations that follow from our assumption above.

From now on terms in Θ(T ) are often referred to just terms.

Definition 1. 1. The sort of a term t is defined by

sort(t) =
{

α if t ≡ xα,
β if t ≡ f(t1, . . . , tn) with f : α1 × · · · × αn → β.

We extends the definition of sort for contexts in the obvious way by putting
sort(�α) = α.
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2. Let t ≡ C[t1, . . . , tn] (n ≥ 0) be a term with non-empty C. We write t ≡
C[[t1, . . . , tn]] if (1) C : α1 × · · · × αn → β and (2) sort(ti) �= αi for i =
1, . . . , n. We call the terms t1, . . . , tn principal subterms of t. We denote
by cap(t) the well-sorted context C[�α1 , . . . ,�αn ]. Clearly, every term t is
uniquely written as C[[t1, . . . , tn]] by some C ∈ C and terms t1, . . . , tn.

3. The rank of a term t is defined by:

rank(t) =
{

1 if t ∈ T ,
1 + max{rank(ti) | 1 ≤ i ≤ n} if t ≡ C[[t1, . . . , tn]] (n > 0).

4. A subterm u of t is said to be special (in t) if either u ≡ t or u is a principal
subterm of a special subterm of t.

Convention 1. We denote C[u] by C[!u] if this occurrence of u is a proper special
subterm of C[u]. We indicate C[u1, . . . , un] as C[u1, . . ., (ui)γ , . . ., un] when �γ
is not special in C[u1, . . . ,�γ , . . . , un]. In the sequel, we assume every hole in
non-empty C ∈ Θ(C) is not a special subterm of C; in this spirit, we often omit
the superscript α of �α.

We next formalize the notion of peak and leaf, which are essential in our
proof.

Definition 2. 1. For a non-empty position p in a term t, the sort of the po-
sition p in t is defined as: sort(t, p) = γ when t ≡ C[(u)γ ]p for some C
and u.

2. For a term t, we define the set of disconnections in t as follows:

Dcn(t) = {p ∈ Pos(t) | t/p is a special subterm of t}.
For a context C, Dcn(C) is defined similarly. It is clear that for every non-
empty position p, we have p ∈ Dcn(t) iff sort(t, p) �= sort(t/p).

3. Let t ≡ C[!u]q. The peak of u is the position p defined by

p = max{o ≤ q | sort(t, o) = 0 or o ∈ Dcn(t)\{q}}.
Clearly, C/p is again a context; we call it the leaf of C and denote it by
leaf(C).

Let us illustrate our notation and concepts by an example.

Example 1. Let F = {f : 0 × 1 → 0, g : 1 → 1, h : 1 → 0, a : 0, b : 0, c :
1}. Let s ≡ f(h(f(h(a), g(b))), c). Let C1 ≡ f(h(�1), c). Then we can write s
as C1[(!f(h(a), g(b)))1]. We have sort(s, 1.1) = sort(s, 1.1.2) = 1 and Dcn(s) =
{Λ, 1.1, , 1.1.1.1, 1.1.2.1}. The peak of a in s is 1.1.1 and that of b in s is 1.1.
Let C2 ≡ f(h(f(h(�1), g(b))), c). Then s ≡ C2[!a] and leaf(C2) ≡ h(�1).

Definition 3. A rewrite step s→ t is said to be inner (written as s→i t) if

s ≡ C[[s1, . . . , C
′[lσ], . . . , sn]]→ C[s1, . . . , C

′[rσ], . . . , sn] ≡ t

for some terms s1, . . . , sn, a substitution σ, l→ r ∈ R, and C′ ∈ Θ(C); otherwise
it is outer (written as s→o t). The redex of an inner reduction is a inner redex;
that of an outer reduction is an outer redex.
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The next lemma is the first key observation arising from our assumption.

Lemma 1. Let l → r ∈ R and l ≡ Cl[x1, . . . , xk]o1,...,ok
where Cl is a (non-

empty) context containing no variables. Suppose s ≡ C[lσ]o and lσ is an outer
redex in s. Then,

1. sort(s, o.oi) = 0 for all i = 1, . . . , k;
2. for the peak p of each principal subterm of s, we have either o.oi ≤ p for

some i, p < o or p | o. (See Figure 11.)
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Fig. 1. The peak of a principal subterm and an outer redex

Definition 4. A rewrite step s →o t is said to be destructive at level 1 if
sort(s) �= sort(t); and s→i t is destructive at level k + 1 if

s ≡ C[[s1, . . . , sj , . . . , sn]]→i C[s1, . . . , tj, . . . , sn] ≡ t

with sj → tj destructive at level k.

The following lemma appears often (see e.g. [2]).

Lemma 2. A rewrite step s →o t is destructive if and only if t ≡ σ(x) and
s ≡ C[[s1, . . . , σ(x), . . . , sn]] for some terms s1, . . . , sn, substitution σ, and C ∈ C
such that C[s1, . . . ,�, . . . , sn] ≡ C′σ for some C′[x]→ x ∈ R.

The second key observation derived from our assumption concerns with de-
structive rewrite steps.

Lemma 3. Let s ≡ C[[s1, . . . , sn]]q1,...,qn , and suppose that s → si is a destruc-
tive rewrite step of level 1, and pj is the peak of sj in s for each j = 1, . . . , n.
Then,

1. sort(s) = 0, sort(s, qi) = 0 and sort(si) �= 0;
2. pi = qi and pi is minimal in {p1, . . . , pn}.
1 In this and the succeeding figures, • denotes a non-empty disconnection.
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3.2 Active subterms and ⇒-reduction

A crucial step of our proof is to define a particular mapping from terms to terms
that maps a Θ(R)-reduction to another with some “good” property. This kind
of technique is popular in modularity proofs (e.g. pile and delete technique [6],
top-down labelling technique [2]). Our mapping results from a confluent and ter-
minating reduction (called⇒-reduction), which we introduce in this subsection.

We first introduce a notion of active subterms.

Definition 5. 1. Let s ≡ C[[s1, . . . , sn]], and suppose that pi is the peak of si
for each i = 1, . . . , n. The term s is said to be root-active if sort(s) = 0
and si is root-active whenever pi = Λ.

2. A subterm of s is said to be active (in s) if (1) it is a proper special subterm
of s and (2) it is root-active.

Definition 6. Let s ≡ C[(!u)γ ]q and u ≡ C′[[u1, . . . , un]]q1,...,qn . Suppose p is
the peak of u in s and pi is the peak of ui in s for each i = 1, . . . , n. Then, this
occurrence of u is said to be properly active (in s) if (1) sort(u) = 0 and (2)
q < pi for all i (1 ≤ i ≤ n). When u is properly active, ui (1 ≤ i ≤ n) is called an
activator of u (in s) if (1) pi is minimal in {p1, . . . , pn} and (2) sort(u, qi) = 0;
if further it satisfies (3) sort(ui) = γ, then ui is called a connectable activator
of u (in s). Activators that are not connectable are inconnectable activators. (See
Figure 2.)
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Fig. 2. A properly active subterm and activators
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It is readily checked that if s ≡ C[(!u)γ ]q, u ≡ C′[[u1, . . . , un]]q1,...,qn , p is the
peak of u in s and pi is the peak of ui in s for each i = 1, . . . , n, then u is active
iff (1) sort(u) = 0 and (2) ui is active in s whenever q = pi. Thus, every properly
active subterm is active.

Intuitively, properly active subterms u of a term s are special subterms whose
top layer might collapse by a reduction; activators are principal subterms of u
that might come up when the top layer of u collapses. Active subterms of a term
are special subterms whose descendants might become properly active.

Note that if u is an active subterm of s ≡ C[!u]q then, since sort(u) = 0 and
q ∈ Dcn(s), we have sort(s, q) �= 0, and hence leaf(C) is non-empty.

Example 2. In Example 1, subterms of s that are root-active are s,
h(f(h(a), g(b))) f(h(a), g(b)), h(a), a and b; active subterms in s are f(h(a), g(b)),
a and b; properly active subterms in s are a and b. Let t be the term obtained
by replacing b in s with f(c, c), i.e. t ≡ s[1.1.2.1 ← f(c, c)]. Then f(c, c) is a
properly active subterm of t, which has a connectable activator c.

The next lemma is an easy consequence of the definition above, Lemma 1
and Lemma 3.

Lemma 4. Let s → t a rewrite step destructive at level k > 1. Then there
exists a subterm u of s properly active in s and an activator ui of u in s and a
context C such that u→ ui, s ≡ C[u] and t ≡ C[ui].

Now we are in a position to define the ⇒-reduction.

Definition 7. Let s ≡ C[!u] and p the peak of u in s.

1. This occurrence of u in s is said to be a ⇒-redex if (1) u is properly active
in s and (2) s/p is root-active.

2. The ⇒-redex u is a left-most inner-most⇒-redex if (3) every proper special
subterms of s/p with the peak different from p is not a⇒-redex and (4) every
principal subterms of leaf(C) placed on the left to the hole is not a ⇒-redex
if its peak equals p.

3. Suppose that the ⇒-redex u is a left-most inner-most ⇒-redex. Let ũ ≡
C′[leaf(C)[u1], . . . , leaf(C)[un]], where u ≡ C′[u1, . . . , un] with all activa-
tors u1, . . . , un of u displayed. Let t ≡ s[p ← ũ]. Then we say that s ⇒-
reduces to t (symbolically s ⇒ t) or t is a ⇒-reduct of s; we call s ⇒ t
a ⇒-rewrite step. (See Figure 3.) The term u is called the ⇒-redex of this
⇒-rewrite step and we write s⇒u t when this is the case. A ⇒-normal term
is a term s such that s⇒ t for no term t.

It is clear that every ⇒-normal term contains no ⇒-redex.

Example 3. In Example 2, t ≡ f(h(f(h(a), g(f(c, c)))), c)
⇒ f(h(f(a, g(f(c, c)))), c) ⇒ f(h(f(f(a, g(c)), c)), c) ⇒ f(f(f(a, g(c)), c), c).
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Fig. 3. A ⇒-rewrite step

We note that one can no longer expect a confluent ⇒-reduction if we define
⇒-reduction based on arbitrary ⇒-redexes instead of left-most inner-most ⇒-
redexes.

We will need a notion of descendants of⇒-reduction in the succeeding proofs.

Definition 8. Let A : s ⇒u t be a ⇒-rewrite step. Suppose s ≡ C[u]q and p is
the peak of u in s. For o ∈ Pos(s), the set A(o) of descendants of o by A is defined
as follows: Let u1, . . . , un (n ≥ 0) be activators of u with u ≡ C[u1, . . . , un]q1,...,qn .
Then,

A(o) =




{o} if o < p or o | p,
{p.qi.(o\p) | 1 ≤ i ≤ n} if p < o and q � o,
{p.(o\q)} if q < o and ∀i (q.qi � o),
{p.qj .(p\q).(o\(q.qj))} if q.qj < o for some j (1 ≤ j ≤ n).
∅ if o ∈ {p, q, q.q1, . . . , q.qn}.

For u ≡ s/o, the set of descendants of u by A is {t/o′ | o′ ∈ A(o)}.
One can readily check the next lemma.

Lemma 5. Let A : s ⇒u t be a ⇒-rewrite step. Suppose s ≡ C[u]q and p
is the peak of u in s. Let u1, . . . , un (n ≥ 0) be activators of u with u ≡
C′[u1, . . . , un]q1,...,qn . Let P =

⋃{A(o) | o ∈ Dcn(s)} and Q = {p.(qi\q).(q\p) |
ui is inconnectable, 1 ≤ i ≤ n}. Then,

Dcn(t) =
{

P ∪Q if p /∈ Dcn(s),
{p} ∪ P ∪Q if p ∈ Dcn(s).
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Lemma 6. Let A : s⇒u t be a ⇒-rewrite step, and p the peak of u in s. Then,

1. s/p is active iff t/p is active;
2. every descendant of an active subterm is active;
3. every active subterm of t different from t/p is a descendant of an active

subterm different from u and s/p.

Proof. By Lemma 5 and definition, it suffices to prove that s/o is active iff t/o
is active, where o = max{p′ ≤ p | s/p′ is a special subterm of s}. We distinguish
two cases:

1. o = p. The case where p = Λ is trivial. Otherwise, suppose that s/p is a
proper special subterm of s. We show s/p and t/p are active in s and t
respectively. Since s/p is root-active, s/p is active in s. We know hence
sort(s/p) = 0, sort(s, p) �= 0 and every principal subterm of s/p with the
peak p is active. If u has no activator, then t/p ≡ u, which is active in t. Oth-
erwise suppose u has activators u1, . . . , un (n > 0) with u ≡ C′[u1, . . . , un].
First, sort(t/p) = sort(u) = 0. By definition, each principal subterm of t/p
is either a descendant of a principal subterm of u that is not an activator,
or a principal subterm of leaf(C′)[ui] (1 ≤ i ≤ n). Principal subterms from
the former do not have the peak p in t, because u is properly active in s.
Principal subterms from the latter also do not have the peak p, because
sort(t, p.qi) = 0. Thus, t/p is active.

2. o < p. Then s/p is not special. Thus, sort(s, p) = 0 and so the principal
subterms of s/o contained in s/p can not have the peak o. Also, the principal
subterms of s/o not contained in s/p coincide those of t/o not contained in
t/p. Therefore, s/o is active in s iff t/o is active in t.

Definition 9. For each special subterm u of t, we define depth(u) inductively
as follows: (1) depth(t) = 0. (2) Suppose u is a special subterm of depth(u) = k
and u ≡ C[[(u1)γ1 , . . . , (un)γn ]]. Then for i = 1, . . . , n

depth(ui) =




k −· 1 if γi = 0,
k + 1 if sort(ui) = 0,
k otherwise.

Lemma 7. The relation ⇒ is well-founded and confluent.

Proof. For each ⇒-redex v in s, let weight(v) = 〈depth(v), rank(v),M〉 where
M = [〈depth(v′), rank(v′)〉 | v′ is an active subterm of s different from v yet has
the same peak as v ]. And, for each term s, let ‖s‖ = [weight(u) | u is a⇒-redex
in s ].

Let � be an order defined by: 〈i1, j1〉 � 〈i2, j2〉 iff either (1) i1 > i2 or
(2) i1 = i2 and j1 > j2; and ·� the multiset extension of �. Let � be an order
defined by: 〈i1, i2,M1〉 � 〈j1, j2,M1〉 iff either (1) i1 > i2, (2) i1 = i2 and j1 > j2
or (3) i1 = i2, j1 = j2 and M1 ·� M2; and �� the multiset extension of �. We
are going to verify that s⇒ t implies ‖s‖ �� ‖t‖.
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Suppose A : s ⇒u t, and let p be the peak of u in s. By the definition of
⇒-reduction, if v is a⇒-redex in t then either (1) v ≡ t/p, (2) v is a descendant
of a⇒-redex in s different from u and s/p, or (3) v is a descendant of a properly
active subterm of s with the peak q.qi for some i.

If t/p is a ⇒-redex then s/p is special by Lemma 5 and so depth(s/p) =
depth(t/p). Therefore, we have weight(u) � weight(t/p), because depth(u) =
depth(s/p) + 1. If v is a descendant of a properly active subterm of s with the
peak q.qi for some i, then we have weight(u) � weight(v), because depth(u) =
depth(v) and rank(u) > rank(v). Thus, because u has no descendant, it suffices
to show that [weight(v)] −−�� [weight(t/o′) | o′ ∈ A(v)] for any ⇒-redex v of s

different from u and s/p.
Let v be a ⇒-redex in s and o the position of v in s. We distinguish two

cases:

1. o < p or o | p. Then A(o) = {o} and therefore it suffices to show weight(v) ≥
weight(t/o). For any subterm s/o′ satisfying o′ ≤ p or o′ | p, the follow-
ing hold: (1) s/o′ is active iff t/o′ is active (by Lemma 6); (2) rank(s/o′) ≥
rank(t/o′) (for, rank(s/p) ≥ rank(t/p)); (3) depth(s/o′) = depth(t/o′).
Therefore, we have weight(v) ≥ weight(t/o).

2. p < o. By definition, ⇒-redexes contained in s/p have the peak p. Thus,
for any descendant v′ of v, depth(v) = depth(v′) and rank(v) = rank(v′).
Further we have π3(weight(v))\π3(weight(v′)) = [〈depth(u), rank(u)〉], and
depth(u) = depth(w) and rank(u) > rank(w) for any 〈depth(w), rank(w)〉 ∈
π3(weight(v′))\π3(weight(v))2. Thus, we get π3(weight(v)) > π3(weight(v′)),
and so weight(v) > weight(v′).

Thus s ⇒ t implies ‖s‖ �� ‖t‖. It is readily checked �� is well-founded;
hence so is ⇒.

Next,⇒ is locally confluent; for, if two left-most inner-most⇒-redexes occur
in a term then their peaks are disjoint. Therefore ⇒ is confluent.

Thus every term s has the unique ⇒-normal form; we denote it by s�.

3.3 Simulating Θ(R)-reductions in ⇒-normal terms

To show termination of R implies that of Θ(R), we derive a contradiction as-
suming that there exists an infinite Θ(R)-reduction sequence and that R is
terminating. To this end, we next map infinite Θ(R)-reductions to infinite Θ(R)-
reductions consisting of ⇒-normal terms.

We write s →[p,l→r] t when s ≡ C[lσ]p and t ≡ C[rσ]p for some context C,
substitution σ and l→ r ∈ R.

Definition 10. Let A : s →[p,l→r] t be a rewrite step. For o ∈ Pos(s), the set
A(o) of descendants of o by A is defined as follows:

A(o) =



{o} if o < p or o | p,
{p.p3.p2 | r/p3 = l/p1} if o = p.p1.p2 with p1 ∈ PosV(l),
∅ otherwise.

2 Here, πi〈a1, a2, a3〉 = ai.
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For u ≡ s/q, the set of descendants of u by A is the set {t/q′ | q′ ∈ A(q)}.
We first need the following lemma.

Lemma 8. If s→ t and s is ⇒-normal, then t is also ⇒-normal.

Proof. We distinguish two cases:

1. s → t is not destructive. Let s ≡ C[!u]q, t ≡ C[!u′]q and u →o u′. By the
definition of the ⇒-redex, it suffices to show that (a) no principal subterm
of u′ is a ⇒-redex. (b) u′ itself is not a ⇒-redex.
(a) Suppose that there exists a principal subterm v′ of u′ that is a⇒-redex.

Then there exists a principal subterm v of u with descendant v′. Let
the peak of v in s be p and that of v′ in t p′. Since u → u′ is outer, v′

is properly active iff so is v. Thus, by our assumption, we know t/p′ is
root-active while s/p is not. But this can not happen by Lemma 1.

(b) Suppose u′ is a ⇒-redex. By our assumption, this implies that u′ is
properly active while u is not. Thus, since sort(u) = sort(u′) = 0, there
exists a principal subterm v of u with peak q. But then, by Lemma 1,
there exists a descendant of v with the peak q. This is a contradiction.

2. s→ t is destructive. If s→ t is destructive at level 1 then the statement holds
obviously. Suppose s → t is destructive at level k > 1. Then, by Lemma 4,
we have s ≡ C[(!u)γ ], t ≡ C[ui] and u→ ui for some u properly active in s
and ui an activator of u in s. Let p the peak of u in s.
If γ �= sort(ui), then the only possible⇒-redex in t is ui, but, since sort(ui) �=
0, this can not be a new ⇒-redex. Therefore, suppose otherwise, i.e. γ =
sort(ui). Then the only possible⇒-redex in t is (a) a principal subterm of ui
and (b) the minimal special subterm of t that contains t/p.
(a) Suppose that there exists a principal subterm w of ui that is a ⇒-redex.

Then the peak of the descendant of w in t equals p. For otherwise, the
peak of w in s is contained in ui, and therefore it follows that w is a
⇒-redex. Thus, by our assumption, we know that t/p is root-active. But
this implies s/p is root-active since u is properly active. Therefore, it
follows that u is a ⇒-redex, which is not the case.

(b) Suppose that w is the minimal special subterm of t that contains t/p
and w is a ⇒-redex. Let v be the minimal special subterm of s that
contains s/p. From the fact that t/p is properly active while s/p is not,
we know t/p ≡ w, because u is the only principal subterm of v that has
no descendant that is a principal subterm of w. But this implies, since u
and w are properly active, s/p is root-active, and hence u is a ⇒-redex.
This is a contradiction.

We also need in our proof the fact that our mapping from terms to⇒-normal
terms preserves infiniteness of Θ(R)-reductions. A notion of head reductions is
required to show this.

Definition 11. Let t ≡ C[[t1, . . . , tn]], and pi the peak of ti for each i = 1, . . . , n.
The head of t is defined as: head(t) = t[pi ← � | 1 ≤ i ≤ n]. We write
t ≡ C′[〈u1, . . . , uk〉] when t ≡ C′[u1, . . . , uk] and C′ is the head of t.
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Definition 12. A rewrite step s→ t is said to be a body reduction (written as
s→bd t) if

s ≡ C[〈s1, . . . , C
′[lσ], . . . , sn〉]→ C[s1, . . . , C

′[rσ], . . . , sn] ≡ t

for some terms s1, . . . , sn, a substitution σ, l→ r ∈ R, and C′ ∈ Θ(C); otherwise
it is a head reduction (written as s →hd t). The redex of a body reduction is a
body redex; that of a head reduction a head redex.

The following commutativity lemma is a basis of our reduction simulation.

Lemma 9. If s → t and s ⇒ s1, then there exists s2, t1 such that s1

∗
⇒ s2

∗→
t1
∗
⇔ t; further if s→hd t then s2 →hd t1.

Proof. Suppose A : s ≡ Ĉ[lσ]o → Ĉ[rσ] ≡ t and B : s ⇒u s1. Let s ≡ C[u]q, p
the peak of u. We distinguish the cases according to the position of the redex of
s→ t:

1. o | p. Then, we have s1 ≡ s2 →[o,l→r] t1 ⇔t/q t for some t1.
2. o < p. Then o.ox ≤ p for some ox ∈ PosV(l) by Lemma 1. Let {o1, . . . , ol} =
{o′ ∈ PosV(l) | l/o′ = l/ox, o

′ �= ox} and {v1, . . . , vk} = A(s/ox). Then vi is
a ⇒-redex for all i = 1, . . . , k and so is s/(o.oi.(q\ox)) for all i = 1, . . . , l.
Thus, we have s1 ⇒o1 · · ·⇒ol

s2 →[o,l→r] t1 ⇔vk
· · ·⇔v1 t for some t1.

3. p ≤ o. Let u1, . . . , un (n ≥ 0) are activators of u and u ≡ C′[u1, . . . , un].
(a) q | o. Then C[ ]q →[o,l→r] C∗[ ]q and leaf(C) →[o\p,l→r] leaf(C∗) for

some C∗. Let B(o) = {o1, . . . , on}. Then s1/oi is a redex for any i =
1, . . . , n, and so we have s1 ≡ s2 →[o1,l→r] · · · →[on,l→r] t1 ⇔t/q t.

(b) q.qi � o for all i (1 ≤ i ≤ n). If o = q and s → t is destructive, then
rσ is an activator by Lemma 4, and so we have s1 →[p,l→r] t1 ≡ t.
(See Figure 4.) Otherwise, for any i = 1, . . . , n, either o | q.qi or o.ox ≤
q.qi for some ox ∈ PosV(l). Hence, t/q′ is an activator of t/p for any
q′ ∈ ⋃

iA(q.qi). Also, s1/p.(q\o) is a (R-)redex, because ui ≡ uj implies
leaf(C′)[ui] ≡ leaf(C′)[uj ]. Thus, we have s1 →[p.(o\q),l→r] t1 ⇔t/q t.
(Note that there may be the case that

⋃
iB(q.qi) = ∅; however, by the

definition of ⇒-reduction, we have t1 ⇔t/q t also in this case.)
(c) q.qi ≤ o for some i (1 ≤ i ≤ n). Let uj → u′j with s ≡ C′[uj] and

t ≡ C′[u′j]. Since sort(uj) �= 0, uj → u′j is not destructive at level 1 by
Lemma 3. Hence sort(uj) = sort(u′j) and so u′j is an activator of the
descendants of u. Thus, we have s1 →[p.qj .(q\p).(o\(q.qj)),l→r] t1 ⇔t/q t.

Finally, observe that s→hd t only in the cases 1 or 2.

Lemma 10. If s→ t, then s� ∗→ t�; further, if s→hd t, then s�→hd t�.

Proof. For any term u, let ,u = max{n | n is the length of u
∗
⇒ u�}. Note ,u

is well-defined since
∗
⇒ is terminating (Lemma 7) and every term contains only

finitely many ⇒-redexes. Using Lemma 8 and Lemma 9, it is not difficult to
show s

∗→ t implies s� ∗→ t� by induction on ,s.
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Fig. 4. Destructive step from an active subterm

Definition 13. Let s → t be a destructive rewrite step at level k > 1. Then by
Lemma 4 we have s ≡ C[!u], t ≡ C[ui] and u → ui for some u properly active
in s and ui an activator of u in s. Let p be the peak of u in s. We say s → t
critically destructive if s/p is root-active.

The two lemmata below are proved in a straightforward way.

Lemma 11. Suppose R is terminating. Every infinite Θ(R)-reduction sequence
containing infinitely many head reductions contains infinitely many rewrite steps
that are critically destructive.

Lemma 12. If s→ t and s is ⇒-normal then s→ t is not critically destructive.

Lemma 13. If R is terminating then so is Θ(R).

Proof. Suppose R is terminating. Let s0 → s1 → · · · be an infinite Θ(R)-
reduction sequence. Without loss of generality, we can assume that there are
infinitely many head reductions in it. Then by Lemma 10, we have a reduction
sequence s0� ∗→ s1� ∗→ · · ·, which contains infinitely many head reductions.
By Lemma 11, it must contain infinitely many rewrite steps that are critically
destructive. As si� is ⇒-normal, this contradicts Lemma 12.

Now, Theorem 1 immediately follows from Lemma 13.
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4 Applications and Related Results

Sort introduction technique based on our result, as well as that based on other
known persistency results, is useful to detect a property of TRSs.

Example 4. Let R = {f(g(a), g(b), x) → f(x, x, x), g(x) → x}. To show termi-
nation of R, we assume the following sort assignment: {f : 0 × 0 × 0 → 1, g :
0 → 0, a : 0, b : 0}. It is clear that R under this sort assignment is a STRS
with only variables of sort 0. Thus, by Theorem 1, it suffices to show termi-
nation of R under this sort assignment. Terms of sort 0 are terminating and
confluent, since only applicable rule is g(x) → x. Terms of sort 1 have form
f(t1, t2, t3) where t1, t2, t3 are terms of sort 0. Suppose contrary that there exists
an infinite reduction sequence of terms of sort 1. Then since terms of sort 0
are terminating, it must contain a reduction at the root position, which has the
form f(g(a), g(b), t) → f(t, t, t) for some term t of sort 0. Since g(a) and g(b)
have distinct normal forms and terms of sort 0 are confluent, we never have
g(a) ∗← t

∗→ g(b). Thus we know that every reduction sequence starting from
f(t, t, t) never has a reduction at the root position. Since t is terminating, this
implies f(t, t, t) is terminating, which is a contradiction.

It is known that termination is persistent for the class of many-sorted TRSs
that do not contain both collapsing and duplicating rules [10]. However, the
argument above does no work with this result, because R is collapsing and
duplicating.

Another kind of applications of our result is to prove that termination is
preserved under suitable translations of TRSs.

Example 5 ( [4]). For each n-ary function symbol f ∈ F , let f1, . . . , fn−1 be
new binary function symbols, and let F̂ be the collection of such new function
symbols. Define a transformationˆfrom terms on F to those on F̂ by:

t̂ =
{

t if t ∈ V ,
f1(t̂1, f2(t̂2, f3(· · · , fn−1(t̂n−1, t̂n) · · ·))) if t ≡ f(t1, . . . , tn).

And, finally let R̂ = {l̂ → r̂ | l → r ∈ R}. Using Theorem 1, we can show that
R is terminating if and only if R̂ is terminating.

(⇐)-part is trivial. To show (⇒)-part, we introduce a set of sorts by S =
{0} ∪ ⋃{δ1

f , . . . , δ
n−2
f | f ∈ F , f is n-ary}, and sort assignment on F̂ as: f1 :

0 × δ1
f → 0, fi : 0 × δif → δi−1

f (i = 2, . . . , n − 2), and fn−1 : 0 × 0 → δn−2
f

for each f ∈ F . It is clear that R̂ is a STRS under this sort assignment
with only variables of sort 0. Thus, by Theorem 1, R̂ is terminating if and
only if R̂ is terminating on this sort assignment. Suppose R̂ is not terminat-
ing. Then there also exists an infinite reduction sequence consisted of terms
well-sorted under this sort assignment. Without loss of generality, we assume
terms in this reduction sequence have sort 0. It is clear from the sort assign-
ment that if once a function symbol fi occurs in a well-sorted term of sort 0,
it occurs in a form of f1(s1, f2(s2, . . . , fn−2(sn−2, fn−1(sn−1, sn)) . . .)) for some
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terms s1, . . . , sn. Thus, all these terms have form t̂ for some t and so we can
reversely translate this infinite reduction sequence to that of terms on F . Thus,
we know R is not terminating.

Note that, in the example above, function symbols in F̂ has arity of at most 2,
and therefore terms in T (F̂ ,V) have simple structures. Instead, T (F̂ ,V) in gen-
eral contains much more terms than T (F ,V), and not all terms in T (F̂ ,V)
are images of terms in T (F ,V). We believe, however, that this kind of coding
that preserves termination behavior would be helpful for studying properties of
complicated systems by interpreting them in simpler systems.

Another way of simulating a TRS by another TRS containing simpler func-
tion symbols is “currying”: each function symbol is coded by a constant and a
new binary function symbol for “application” is added. Again new terms have
simple structures and not all new terms are the images of original terms. This
transformation also does not affect termination behavior of TRSs [5,7].

5 Concluding Remarks

We have proved that for any terminating many-sorted TRS R, if R contains
only variables of the same sort then its underlying TRS is also terminating. This
is the positive solution to the problem of Zantema that has been appeared as
Rewriting Open Problem 60 in [4]. We have also presented some applications of
this result.
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Abstract. E-unification (i.e. solving equations modulo an equational
theory E) is an essential technique in automated reasoning, functional
logic programming and symbolic constraint solving but, in general E-
unification is undecidable. In this paper, we focus on R-unification (i.e. E-
unification where theories E are presented by term rewriting systems R).
We propose a general method based on tree tuple languages which al-
lows one to decide if two terms are unifiable modulo a term rewriting
system R and to represent the set of solutions. As an application, we
prove a new decidability result using primal grammars.

Keywords: R-unification, Rewrite techniques, Tree languages.

1 Introduction

E-unification (i.e. solving equations modulo an equational theory E) is an essen-
tial technique in automated reasoning, functional logic programming and sym-
bolic constraint solving (see [2] for a survey). Unfortunately E-unification is
generally undecidable. The problem can be restricted by considering only equa-
tional theories presented as confluent term rewriting systems (TRS). In this
context, narrowing is a general unification procedure that has been extensively
studied [3,8]. But, from an operational point of view, these methods often loop,
enumerating infinite sets of answers or computing unproductive branches; such
drawbacks challenge their use in programming languages.

In a functional logic programming framework, the computation of whole sets
of solutions to an unification problem is, most of the time, not really necessary.
It is more interesting to test the existence of solution (which allows one to cut
unproductive branches) or to provide a finite representation of infinite sets of
answers (to avoid non-terminating enumerations). The purpose of this paper is
to propose a general method to decide if two terms can be unified modulo an
equational theory and to get compact representations of sets of solutions.

This paper is only devoted to equational theories described by TRS and
therefore, it addresses the R-unification problem. Moreover, since we focus on
the programming aspects of rewrite techniques, we consider a constructor-based
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semantics for R-unification, which is more adequate to functional logic program-
ming since it is actually convenient to distinguish the symbols used to represent
the data of the program and those used to described operations or relations
between these data.

Considering an unification problem s
?=R t (i.e. a goal to be solved modulo a

TRS R), the main idea is to describe its ground solutions by a language of ground
first order terms. A solution being defined by the instances of the variables of
this goal, (i.e. by a tuple of terms and terms being trees) the set of solutions can
be viewed as a tree tuple language. To describe this language, we propose to use
tree tuple grammars. There exists many different kind of tree grammars that can
be used according to the complexity of the solutions to be expressed [5,10,11].
To insure the consistency of this approach, some properties are needed:

– their intersection is a recognized language w.r.t. the classes of grammars
used to handle this R-unification problem,

– emptiness is decidable.

The method involves three steps: decomposition of the initial goal into el-
ementary subgoals, representation of sets of solutions for these subgoals and
recomposition of the initial goal by intersection or join.

As an application of this work, we extend a decidability result of [14] using
primal grammars [10].

2 Preliminaries

2.1 Rewrite Techniques

We recall here rewrite techniques basic notions. We refer the reader to [6] for
more details.

LetΣ be a finite set of symbols with arity and X be an infinite set of variables,
T (Σ,X ) is the first-order term algebra over Σ and X . Σ is partitioned in two
parts : the set F of definite function symbols (or function symbols), and the set C
of constructor symbols. The terms of T (C,X ) are called data-terms. A term is
said linear if it does not contain several times the same variable.

Let t be a term, O(t) is the set of occurrences of t, t|u is the subterm of t at
occurrence u and t(u) is the symbol that labels the occurrence u of t. t[u ← s]
is the term obtained by replacing in t the subterm at occurrence u by s. A
substitution is a mapping from X into T (Σ,X ), which extends trivially to a
mapping from T (Σ,X ) to T (Σ,X ). A data-substitution σ is a substitution such
that for each variable x, σx is a data-term.

In the following x, y, z denote variables, s, t, l, r denote terms, f, g, h function
symbols, c a constructor symbol, u, v, w occurrences, and σ, θ substitutions.

A term rewrite system (TRS) is a finite set of oriented equations called rewrite
rules or rules. lhs means left-hand-side and rhs means right-hand-side. For a
TRS R, the rewrite relation is denoted by →R and is defined by t→R s if there
exists a rule l → r in R, a non-variable occurrence u in t, and a substitution σ,
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such that t|u = σl and s = t[u ← σr]. The reflexive-transitive closure of →R

is denoted by →∗R, and the symmetric closure of →∗R is denoted by =R. →n
R

denotes n steps of the rewrite relation.
A TRS is said confluent if t→∗R t1 and t→∗R t2 implies t1 →∗R t3 and t2 →∗R t3

for some t3. If the lhs (resp. rhs) of every rule is linear the TRS is said left-
(resp. right-)linear. If it is both left and right-linear the TRS is said linear. A
TRS is constructor based if every rule is of the form f(t1, . . . , tn) → r where
the ti’s are data-terms.

Since the signatures we deal with follow a constructor discipline, the validity
of an equation is defined as a strict equality on terms, in the spirit of functional
logic languages like TOY [15] or CURRY [9]. So, as in [1], σ is a solution of the
equation t

?= t′ iff σ is a data substitution and σt→∗R s and σt′ →∗R s where s is

a data-term 1. For example, the equation 1÷x
?= 1÷ 0 where ÷ is the euclidean

division defined by some rewrite rules, is not equivalent to the equation x
?= 0,

since the former is actually not defined.

2.2 Tree Languages

This section presents some basic notions and notations related to tree languages
concepts. More details can be found in [5].

As word languages, tree languages can be studied either from the genera-
tion point of view (i.e. grammars) or from the recognition point of view (i.e.
automata). Tree grammars are very similar to word grammars except that basic
objects are trees. Note that, in this paper, we focus on tree grammars where
trees are first order terms.

Definition 1. A tree grammar G is defined by the 4-tuple (A,N, C, P ) where:
1. A is the axiom,
2. N are the non-terminal symbols with A ∈ N ,
3. C is the set of terminal symbols,
4. R is a set of production rules2 α⇒ β where α ∈ N , β ∈ T (C ∪N) 3.

The derivation relation using a grammar G = (A,N, C, P ) is simply defined
by s⇒G t iff there exists a rule α⇒ β ∈ P such that s|u = α and t = s[u← β].
The definition of the language L(G) generated by G immediately follows from
this:

L(G) = {t ∈ T (C) | A +⇒G t}
where +⇒G denotes as usual the transitive closure of ⇒G.
1 Note that such data-term s is irreducible because there is no relation between con-

structors, and it is then unique because of confluence.
2 We use here the ⇒ symbol for productions to avoid confusion with the rewrite

relation →.
3 The standard definition authorizes variables in β but here we consider only ground

terms.
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As for word grammars, the notion of regular tree grammar is defined as a
grammar G = (A,N, C, P ) where all non-terminal symbols have arity 0 and pro-
duction rules have the form X ⇒ β where X is a non-terminal and
β ∈ T (C ∪N).

Extensions of the basic definitions of tree grammars have been proposed
in order to express more sophisticated languages. We can mention tree tuples
synchronized grammars (TTSG [11]). Primal grammars [10] which are used in
this paper have a quite different definition.

From a practical point of view, languages of tuples of finite trees can be
recognized by automata (see [5] for more details).[5] mentions different notions
of recognizability for tuples of finite trees: by considering products of recognizable
sets, by stacking trees or by using Ground Tree Transducers.

In the following, we focus on tree tuples grammars since we are interested
in tuples of terms and previous definitions are extended to tree tuple languages
(the only difference is that the axiom of the grammar is a tuple).

3 Presentation of the Method

This section describes how, given a TRS R, an unification problem s
?=R t4 can

be translated in terms of tree languages. This approach is justified by the fact
that it can be much more interesting to determine if an unification problem has
at least one solution and then to provide a finite representation of its solutions
rather than to enumerate all its solutions. Usually, solving a goal s ?= t consists
in computing substitutions σ such that σs =R σt. But, the notion of solution
can be handled differently by considering the variables {x1, ..., xn} appearing
in s and {xn+1, ..., xm} in t. Then, solutions can be represented by the set of
tuples
{(t1, ..., tm)∈T (C)m |s[x1←t1,...,xn←tn]=Rt[xn+1←tn+1,...,xm←tm]}
This set is a language L of tree tuples (in fact terms tuples). Therefore, decid-

ability of unification is now equivalent to emptiness decidability of L. Obviously,
the main difficulty lies in the construction of L starting from the goal s ?= t.

Let us consider the following example to illustrate our method. Given a TRS
defining two functions (namely the even property and the addition over symbolic
integers in an equational logic programming style):

Example 1.

e(0)→ true
e(s(s(x)))→ e(x)
p(0, y)→ y
p(s(x), y)→ s(p(x, y))

Clearly, the constructors are C = {0, s, true} and therefore the data-terms are
symbolic integers and the boolean value true. The functions are F = {e, p}
4 The subscript R will be omitted when clear from the context.
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which respectively denote a boolean valued function (i.e. a predicate) and an
operation over integers.

We want to solve the goal e(p(x, y)) ?= true (i.e. {(x, y) |x+ymod 2=0}). First
of all, we decompose the initial goal into three sub-goals: e(y2)

?= y1, p(x, y)
?=

y2, true
?= y1. The set of ground solutions of e(y2)

?= y1 can be considered as
the following (infinite) set of pairs of ground terms L1 = {(t1,t2) | e(t2) ∗→R t1}.
Similarly, we introduce two languages L2 and L3 corresponding to the two other
sub-goals and such that: L2 = {(t1, t2, t3) | p(t2, t3) ∗→R t1} and L3 = {(true)}.
These languages have to be formalized thanks to appropriate tree tuple gram-
mars, describing the relation ∗→R.

At this step, we have to reconstruct the global solution of the initial uni-
fication problem by combining these different partial solutions. This will be
achieved by a join operation (i.e. a kind of intersection). The ground solutions
to e(p(x, y)) = y1 will be described by the tree language L4 = {(t1, t2, t3, t4) |
(t1, t2) ∈ L1 and (t2, t3, t4) ∈ L2}. Then, we combine the language L3 in a similar
way to get the final language of solutions L5 = {(t1, t2, t3, t4) | (t1, t2, t3, t4) ∈ L4

and t1 = true}. Since t3 and t4 represent instances of x and y, the result is
e(p(t3, t4)) (represented by t1) and we impose t1 = true. Therefore, we have a
description of the ground substitutions σ such that σ(e(p(x, y)) ∗→R true. The
only step that remains to be performed is to test if L5 is empty or not.

We now detail the process step by step.

3.1 Decomposition

Here is the first component of our method. Given a TRS R and a general unifi-
cation problem s

?= t is decomposed according to the following definition.

Definition 2. Let R be a TRS over a signature Σ = F ∪C and X a set of
variables, the goal to be solved s

?= t is decomposed by applying the following
inference rules:

Variable Introduction
G ∪ {s ?= t)}

G ∪ {s ?= y, t
?= y}

if s, t ∈ T (Σ,X ), y ∈ X \ (V ar(G) ∪ V ar(s) ∪ V ar(t))

Function Decomposition
G ∪ {s ?= t}

G ∪ {s[u← y] ?= t, s|u ?= y}

if s|u ∈ F , y ∈ X \ (V ar(G) ∪ V ar(s) ∪ V ar(t))
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Goal Linearization
G ∪ {s ?= t}

G ∪ {s[u1 ← y1, ..., un ← yn]
?= t, s|u1

?= y1, ..., s|un

?= yn}

if ∃u1, ..., un ∈ O(s), n > 1, s|u1 , ..., s|un ∈ V ar(s) and s|u1 = ... = s|un

and y1, . . . , yn ∈ X \ (V ar(G) ∪ V ar(s) ∪ V ar(t)) and u �= ε

Remark 1. Variable introduction allows us to decompose goal into a kind of
canonical form: s ?= y with y ∈ X . Therefore, ground solution languages are
easier to express.

Function decomposition provides subgoals of the form f(s) ?= t with f ∈ F
such that there is no other function symbols in f(s) (only constructor symbols).
This makes the description of the language of solutions easier by looking at the
rules of the TRS R defining f (since f will be the only symbol that can be
rewritten in this sub-goal).

The last inference rule obviously transforms a goal into a linear goal.

Back to example 1, the goal e(p(x, y)) ?= true will be decomposed as:

e(p(x, y)) ?= true
V.I

e(p(x, y)) ?= y1, true
?= y1

F.D

e(y2)
?= y1, p(x, y)

?= y2, true
?= y1

At this stage, note that decomposition of the initial goal into several subgoals
allows us to represent each sets of subgoal solutions by using different languages.
The underlying idea is to choose for each sub problem the adequate grammar
to schematize its set of ground solutions and then to recombine them (provided
that this reconstruction is possible and that required properties are preserved).

3.2 Description of Sets of Solutions by Means of Tree Languages

In our general framework, we do not consider specific representation or ma-
nipulation tools related to languages of m-tuples of trees. These languages can
be represented using grammars. Due to remark 1, the work to be done here is
to represent the definition in extension of each function defined in the consid-
ered TRS by tree tuple languages in order to describe the elementary solutions
(i.e. solutions of the sub goals obtained by decomposition). The characteristics
of these grammars depend on the complexity of the existing relations between
the components of the tuples. For instance the language L1 = {(si(0), sp(0)) |
i is odd and p is even} can be described by a regular grammar with the produc-
tions: {I ⇒ s(0); I ⇒ s(s(I));P ⇒ 0;P ⇒ s(s(P ))} and the axiom (I, P ). But,
if we consider now L2 = {(sn(0), s2n(0))}, its representation should differ since
it is not a regular language (due to the fact that the second component must
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be the double of the first one). Such relations can be handled for instance by
introducing synchronizations between productions (see [11]).

We define a working language classWL as the class of the various tree tuple
languages used to solve a given problem. For instance, one may need to combine
regular tree tuple languages and languages recognized by tree tuple synchronized
grammars to handle unification modulo a particular TRS.

Remark that an emptiness decision procedure is required for this class of
languages. Before going on, one has to check that for every language in WL,
emptiness is decidable.

Starting from the set of subgoals S obtained by the previous decomposition,
we define the notion of set of elementary solutions as:

Definition 3. Given a set of subgoals SR = {si
?=R yi}, we define the set:

ESR = {(si
?= yi,Li) | Li = {(t1, ..., tn) | s[x1 ← t2, ..., xn−1 ← tn]

∗→R t1}}
if V ar(s) = {x1, ..., xn−1}

At this stage, one has to start from scratch and to choose grammars powerful
enough to describe the tuples of solutions but keeping in mind that emptiness
must be decidable for this class of languages and moreover that intersections of
these languages will be performed in the next step of our method.

3.3 Recomposition of Solutions

The main problem here is to “intersect” languages of tuples with different sizes
(i.e languages of n-tuples with languages of m-tuples (see example 1)). This is
achieved by a particular join operation.

We generalize the occurrences to tuples in the following way: let
p = (p1, . . . , pn) a tuple, ∀i ∈ [1, n] p|i = pi, and when the pi’s are terms,
p|i.u = pi|u. The following definitions state basic operations over tuples.
Definition 4. Given two tuples (t1, ..., tn) and (t′1, ..., t′m), we define the con-
catenation operator ∗ as:

(t1, ..., tn) ∗ (t′1, ..., t′m) = (t1, ..., tn, t′1, ..., t
′
m)

Definition 5. Given a tuple (t1, ..., tn), the component elimination is defined as:

(t1, . . . , ti, . . . , tn)\i = (t1, . . . , ti−1, ti+1, . . . , tn)

Definition 6. Let E1 be a set of n1-tuples and E2 be a set of n2-tuples. The
k1, k2 join of E1 and E2 is the set of n1 + n2 − 1-tuples defined by

E1 ✶k1,k2 E2 = {tp1 ∗ (tp2\k2) | tp1 ∈ E1 and tp2 ∈ E2 and tp1|k1 = tp2|k2}
This operation can also be fully defined w.r.t. the usual intersection of lan-

guages.
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Proposition 1. Let E1 be a set of n-tuples and E2 be a set of m-tuples

E1 ✶k1,k2 E2 = E′1 ∩ E′2

with
E′1 = {(t1, ..., tn, t′1, ..., t′k2−1, t

′
k2+1, ..., t

′
m) |

(t1, ..., tn) ∈ E1, (t′1, ..., t
′
k2−1, t

′
k2+1, ..., t

′
m) ∈ T (Σ)m−1}

and
E′2 = {(s′1, ..., s′k1−1, sk2 , s

′
k1+1, ..., s

′
n, s1, ..., sk2−1, sk2+1, ..., sm)

| (s1, ..., sm) ∈ E2, (s′1, ..., s
′
k1−1, s

′
k1+1, ..., s

′
n) ∈ T (Σ)n−1}

To insure stability of recomposition, one has to check that the join of two
languages generates a language that can be handled later in the method (i.e. for
two languages in WL, check that their join stays in WL).

More formally, we define a recomposition rule as:

Definition 7. Given a set of pairs PS of subgoals and languages describing their
solutions, solutions are recomposed by applying the following inference rule:

Recomposition
PS ∪ {(s ?= y,L1), (t

?= y′,L2)}
PS ∪ {(s[y′ ← t] ?= y,L1 ✶i,1 L2)}

if y′ is represented by the ith component of L1.

Clearly we start recomposition with the set of elementary solutions ESR (see
definition 3).

4 Application of the Method

In this section, we show how the previous framework can be instantiated with
primal grammars as tree language support for representing sets of solutions.
First we define primal grammars [10]. Then, we give the class of R unification
problems we deal with. The representation of solutions of each elementary sub-
goal is achieved by primal grammars. The decidability of R-unification comes
from decidability of unification (i.e. intersection) of primal grammars.

4.1 Primal Grammars

In this section, we give definitions related to primal grammars which have been
introduced by M. Hermann and R. Galbavý in [10]. To avoid too long develop-
ments, we restrict the definitions given pp 116-121 in [10] to the subset of primal
grammars effectively used here. Moreover, some notations have been modified
to fit ours. All missing details can be found in [10].
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Definition 8. (Primal Algebra)
A counter expression is an expression built over 0, successor function s and a
set of counter variable Cnt. s(c) means 1 + c if c is a counter expression. The
ground counter expression sn(0) is interpreted as the integer n.

The algebra of primal terms is defined over a set of functions F̃ (whose
elements f̃ have a counter arity car(f̃) and a standard arity ar(f̃)), a set of
constructor symbols C, a set of ordinary variables X and a set of counter variables
Cnt. This is the smallest set such that
– each ordinary variable of X is a primal term,
– if c1, . . . , ck are counter expressions, t1, . . . , tn are primal terms and f̃ ∈ F̃
such that car(f̃) = k and ar(f̃ ) = k + n, then f̃(c1, . . . , ck; t1, . . . , tn) is a
primal term,

– if t1, . . . , tn are primal terms and c is a constructor with the arity ar(c) = n
then c(t1, . . . , tn) is a primal term.

A primal term t is said to be regular if ∀u such that t|u = f̃(t1, . . . tn) where
f̃ ∈ F̃ , ti is a data-term, for i ∈ [1, n].

If a precedence ≺ is defined overF̃ , Apx(f̃ (c; t)) = {g̃(z;u)|f̃ � g̃, z is a
subsequence of c and u a subsequence of t}.
Definition 9. (Presburger rewrite system)
A Presburger rewrite system contains for each defined functions f̃ the following
pair of Presburger rewrite rules:
• basic rule

f̃(0, c;x)→Pbg t1

• and the inductive rule which have the following form:
f̃(s(n), c;x)→Pbg t2[u← f̃(n, c;x)]

where
• c is a vector of counter variables, x a vector of ordinary variables,
• the rhs of the inductive rewrite rule is a regular primal term.
• t1, t2 are primal terms whose redex belong to the approximation
Apx(f̃(s(n), c;x))

In [10], two additional conditions are required on t2 but as discussed p120,
any Presburger rewrite system can be transformed to satisfy these two missing
restrictions. On the other hand, we omitted one possibility for the inductive rule
since it is not used here. In the same way we restrict the recursive application
of a function to one occurrence.

Definition 10. (Primal term grammar)
A primal term grammar (or primal grammar for short) is a quadruple G =
(C, F̃ ,R, t) where C is a set of constructors, F̃ the set of defined functions, R is
a Presburger rewrite system and t a primal term called axiom.

The language generated by such a primal term grammar is the set of terms
L(G) = {σt↓ | σ affects a ground integer value to each counter variable of t }.
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GndL(G) is the ground term language recognized by G and is defined as
GndL(G) = {t | t is a ground term, t = θ(t′) and t′ ∈ L(G)}.

Example 2. We want to describe the language of all the integer lists [n, . . . , 0].
Integer are represented with zero and suc and lists are constructed thanks to ∗.

Let G be a primal grammar defined by C = {suc, zero, ∗}, F̃ = {f̃ , g̃}, R is
composed by the 4 Presburger rewrite rules
g̃(0)→Pbg zero, g̃(s(n))→Pbg suc(g̃(n)),
f̃(0)→Pbg zero, f̃(s(n))→Pbg g̃(s(n)) ∗ f̃(n)
and the axiom f̃(c).

Using the precedence f̃ � g̃, our Presburger rules fit definition 9.
f̃(1)→Pbg g̃(1)∗ f̃(0)→Pbg g̃(1)∗zero→Pbg suc(g̃(0))∗zero→ suc(zero)∗zero.
So L(G) = {zero, suc(zero)∗zero, . . . , sucn(zero)∗sucn−1(zero)∗ . . .∗zero, . . .}

4.2 A New Decidability Result Using Primal Grammars

The result proved in this section is in fact a strict extension of a result given
by S. Mitra in his Phd Thesis [14]. The proof given by S. Mitra is not detailed
on some crucial points. This proof uses a kind of goal decomposition which
looks like ours (in fact this decomposition is integrated in a narrowing strategy
called lazy narrowing [13]). Then S. Mitra uses (without precisely giving the
correspondence) I-Terms of [4]. When we tried to make the proof using our
framework, it came out that the restrictions on the TRS were not strict enough
to fit the I-term formalism. Therefore the result of Mitra is more restrictive than
announced in [14]. In this section, we correct the proof and extend the result
by using primal grammars which is a much more powerful term schematization
than I-terms.

The following definition gives the class of TRS we deal with.

Definition 11. (primal TRS)
A TRS R is called primal TRS if it is a non-overlapping5 left-linear constructor
based TRS which satisfies the following property: each function f is defined

– either by a finite set of rewrite rules f(t1, . . . , tn) →R r of R such that r is
a data-term. f is then called a non-recursive function

– or by two rewrite rules f(t1, . . . , tn)→R r and f(t′1, . . . , t
′
n)→R r′ such that

• r = C[u← f(x1, . . . , xn)] where C is a data term and x1, . . . , xn is a set
of pairwise different variables such that ∀i ∈ [1, n], {xi} = V ar(ti).

• r′ is either a data term or r′ = C′[u′ ← f ′(x′1, . . . , x′n′)] where C′ is a
data term, x′1, . . . , x

′
n′ is a set of pairwise different variables and f ′ �= f

and f ′ is defined neither from f nor from non-recursive function.

f is then called a recursive function.

5 A TRS is overlapping if it contains two rules l1 → r1 and l2 → r2 and a substitution
σ s.t. σ(l1) = σ(l2).
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Note that mutual recursivity in R is forbidden.
S. Mitra in [14] allows several rules f(t1, . . . , tn)→R r where r is a data-term

for recursive functions which cannot be handled by the I-term formalism. On the
other hand, only one recursive rewrite rule (i.e. with a function call in the rhs)
is admitted and right-linearity is required in contrast with primal TRS.

Here are some technical definitions which are used to deduce Presburger
rewrite rules from a primal TRS.

Definition 12. (technical)
A TRS R is primal if for a defined function symbol f the depth of f , denoted
dp(f) is

– 0 if f is a non-recursive function.
– 1 if f is a recursive function only defined from itself.
– 1 + dp(f ′) if f is a recursive function such f(ti)→R C[u ← f ′(xi′ )] and f ′

is a defined function symbol such that f �= f ′.

The substitution σf(x1,...,xn) is defined if f is a recursive function by
σf(x1,...,xn) = {∀i ∈ [1, n], xi �→ If

i (ndp(f), . . . , n1;VR)} where VR =
⋃{V ar(l)

s.t. l →R r ∈ R}. VR will also be used instead of the list y1, . . . , yn of the elements
of VR

Now, we are able to define Presburger rewrite rules deduced from a primal
TRS R. For this Presburger rewrite system, called Pbg(R), the set of defined
functions is {f̃ |f ∈ F} ∪ {If

i |f ∈ F and 0 < i ≤ Arity(f)}. f̃ encodes the set
of possible results (i.e. the co-domain) for the function f and If

i set of possible
values for the ith argument of f . The Presburger rewrite rules of Pbg(R) are
deduced only from term rewrite rules of R defining recursive functions.

Definition 13. (Pbg(R))
The Presburger rewrite system associated to the primal TRS R is denoted by
Pbg(R) and is defined by :

– For each rewrite rule of R, f(ti)→R r where dp(f) = 1 and r is a data-term,
we deduce the Presburger rewrite rules :
• f̃(0 ;VR)→Pbg r

• for each i ∈ [1, Arity(f)], If
i (0 ;VR)→Pbg ti

– For each rewrite rule of R, f(ti)→R C[u← f(x′i)] where C is a data-term,
we deduce the Presburger rewrite rules :
• f̃(s(ndp(f)), . . . , n1 ;VR)→Pbg σ

f(x′
i
)
(C)[u← f̃(ndp(f), . . . , n1 ;VR)]

• for each i ∈ [1, Arity(f)], If
i (s(ndp(f)), . . . , n1 ;VR)→Pbg σ

f(x′
i
)
(ti).

– For each rewrite rule of R, f(ti) →R C[u ← f ′(x′i)] where f �= f ′, C is a
data-context, we deduce the Presburger rewrite rules :
• f̃(0, ndp(f ′), . . . , n1 ;V arR)→Pbg σ

f ′(x′
i′)
(C)[u← f̃ ′(ndp(f ′), . . . , n1 ;VR)]

• for each i ∈ [1, Arity(f)], If
i (0, ndp(f)−1, . . . , n1 ;VR)→Pbg σ

f ′(x′
i′)
(ti).
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If we consider the precedence ≺ such that f̃ � f̃ ′ if dp(f) > dp(f ′), f̃ � If ′
i

if dp(f ′) ≤ dp(f) and If
i � If ′

i if dp(f) > dp(f ′), we can verify that Pbg(R) fits
definition 9 because all defined function symbols appearing in rhs of Presburger
rules are less or equal to the function symbol of the lhs according to ≺. The
counter variables in the rhs are subsequences of the one in lhs. At least for the
inductive case, the first counter of the function is decremented from the lhs to
the rhs.

Now, we are able to define the primal grammars that generate the definition
in extension of each recursive function (to achieved the description step of the
method presented in section 3.2).

Definition 14. (Ext(f) for recursive functions)
Let R be a primal TRS and f a recursive function defined in R. The primal
grammar (C,D(R), P bg(R), ta)6 where ta is
(f̃(ndp(f), . . . , n1 ;VR), I

f
1 (ndp(f), . . . , n1 ;VR), . . . , I

f
Arity(f)(ndp(f), . . . , n1 ;VR))

is called Ext(f).

The following proposition states the fundamental correspondence between
the primal grammar Ext(f) and the definition in extension of the function f
according to our semantics.

Proposition 2. Let R be a primal TRS, for each recursive function f defined
in R, GndL(Ext(f)) = {(r, t1, . . . , tn)|r, t1, . . . , tn are ground data-terms and
f(t1, . . . , tn)→∗R r}.

Proof. First we prove that for each recursive function of R, GndL(Ext(f)) ⊆
{(r, t1, . . . , tn)|r, t1, . . . , tn are ground data-terms and f(t1, . . . , tn)→∗R r}.
This is done on induction on dp(f).

• Suppose that dp(f) = 1, we prove that for each integer k,
if (r, t1, . . . , tn) ∈ (f̃(k;VR), I

f
i (k;VR)) then f(t1, . . . , tn)→k+1

R r.

2 For k = 0 we have (f̃(0;VR), I
f
1 (0;VR), . . . , If

n(0;VR))→Pbg (r′, t′1, . . . , t′n) and
by definition f(t′1, . . . , t

′
n)→R r′ belongs to R.

Since (r, t1, . . . , tn) ∈ L((f̃(0;VR), I
f
1 (0;VR), . . . , If

n(0;VR)), it is a ground in-
stance of (r′, t′1, . . . , t

′
n). Therefore we have f(t1, . . . , tn)→1

R r.

2 For k > 0, we suppose the property true for all k′ < k. As k > 0,
(f̃(k;VR), I

f
i (k;VR))→Pbg (σ

f(x′
i
)
(C)[u← f̃(k−1;VR), σf(x′

i
)
(t′i)). So the rewrite

rule f(t′1, . . . , t
′
n)→R C[u← f(x′i)] belongs to R and ∀i ∈ [1, n]{xi} = V ar(ti).

Since (r, t1, . . . , tn) ∈ L((f̃(k;VR), I
f
i (k;VR))), we know that ∀i ∈ [1, n], ti is

a ground instance of t′i[u← t′′i ]) where t′′i ∈ L(If
i (k − 1, VR)).

Let σ be the substitution defined by {∀i ∈ [1, n], x′i �→ t′′i }. r is a ground
instance of σ(C[u← r′′]) where r′′ ∈ L(f̃(k − 1;VR)).
6 D(R) is the set of defined function symbols of R.



278 Sébastien Limet and Frédéric Saubion

Let θ be the substitution such that (r, t1, . . . , tn) = θ(σ(C[u ← r′′]), t′1[u ←
t′′1 ], . . . , t

′
n[u← t′′n]).

On one hand, we have
f(ti) = θσ(f(t′i))→R θσ(C[u← f(x′i)]) = θσ(C[u← f(t′′1 , . . . , t′′n)]).

On the other hand, (r′′, t′′1 , . . . , t
′′
n) ∈ GndL((f̃(k− 1;VR), I

f
i (k − 1;VR))), so

by induction hypothesis f(t′′1 , . . . , t
′′
n)→k

R r′′. Therefore
f(t1, . . . , tn)→1

R θσ(C[u← f(t′′1 , . . . , t′′n)])→k
R θσ(C[u← r′′]) = r.

• Suppose now that dp(f) > 1. Now our induction hypothesis is that ∀f ′ such that
dp(f ′) < dp(f), if (r′, t′1, . . . , t′n′) ∈ GndL((f̃ ′(k, k′j ;VR), I

f ′
i (k, k′j ;VR))) then

f ′(t′1, . . . , t
′
n′)→∗R r′.

We prove on induction on k that
if (r, t1, . . . , tn) ∈ GndL((f̃(k, k′j ;VR), I

f
i (k, k

′
j ;VR))),

then f(t1, . . . , tn)→k+1+k′′
R r.

2 For k = 0, since dp(f) > 1 we have
(f̃(0, k′j ;VR), I

f
i (0, k

′
j ;VR)))→Pbg (σ

f ′(x′
i′)
(C)[u← f̃ ′(k′j ;VR)], σf ′(x′

i′)
(t′i)) and

f(t′1, . . . , t
′
n)→R C[u← f ′(x′i′)] belongs to R.

Thanks to the substitution σ
f ′(x′

i′ )
, all occurrences of x′i′ in C, t′1, . . . , t

′
n is

replaced by If ′
i′ (k

′
j ;VR)). This means that each occurrences of x′i′ corresponds to

subterm t′′i of (r, t1, . . . , tn). This term t′′i belongs to GndL(If ′
i′ (k

′
j ;VR)). Let us

call σ the substitution that maps x′i′ to t′′i′ .
In the same way, r|u is the term r′′ that belongs to f̃ ′(k′j ;VR).

So (r′′, t′′1 , . . . , t
′′
n′) ∈ GndL((f̃ ′(k′j ;VR), I

f ′
i′ (k

′
j ;VR))) and dp(f ′) = dp(f)− 1 by

definition. So by induction hypothesis (for the induction on dp(f)) we know that
f ′(t′′1 , . . . , t

′′
n′)→∗R r′′.

Moreover, since (r, t1, . . . , tn) ∈ L((f̃(0, k′j ;VR), I
f
i (0, k

′
j ;VR))), it is a ground

instance of (σ(C[u ← r′′]), σ(t′1), . . . , σ(t
′
n)). Let us call θ the substitution that

makes these two tuples equal.
So we have f(t1, . . . , tn) = θσ(f(t′1, . . . t

′
n)) →R θσ(C[u ← f ′(x′1, . . . , x

′
n′)])

which is θσ(C[u← f ′(t′′1 , . . . , t
′′
n′)])→∗R θσ(C[u← r′′]) = r.

2 The induction step on k is proved in the same way as the induction step for
dp(f) = 1.

Now we have to prove that {(r, t1, . . . , tn)|r, t1, . . . , tn are ground data-terms
and f(t1, . . . , tn) →∗R r} ⊆ GndL(Ext(f)). It is proved on induction on the
length k (i.e. number of rewriting steps) of the rewrite derivation
f(t1,. . ., !tn)→k

R r.
• for k = 1 we have f(t1, . . . , tn) = σ(f(t′1, . . . , t

′
n)) and f(t′1, . . . , t

′
n)→R r′ is a

rewrite rule of R, r′ is a data term such that σ(r′) = r.
So by definition the following Presburger rewrite rules have been deduced :

f̃(0 ;VR) →Pbg r′ and ∀i ∈ [1, n] If
i (0 ;VR) →Pbg t′i, so the tuple (r′, t′1, . . . , t

′
n)
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belongs to L(Ext(f)). Since (r, t1, . . . , tn) is a ground instance of (r′, t′1, . . . , t
′
n),

it is an element of GndL(Ext(f)).

• if k > 1, we have f(t1, . . . , tn)→R σ(C[u← f ′(t′1, . . . , t′n′)])→k−1
R r.

Since u is the only occurrence of σ(C[u← f ′(t′1, . . . , t
′
n)]) labeled by a defined

function symbol, we have f ′(t′1, . . . , t
′
n′) →k−1

R r′ in one hand and in the other
hand r = σ(C[u← r′]).

By induction hypothesis we have (r′, t′1, . . . , t
′
n′) ∈ GndL(Ext(f ′)) which

means that there exists a ground substitution σcnt for counter variable such
that
σcnt(f̃ ′(ndp(f ′), . . . , n1 ;VR), I

f ′
i ((ndp(f ′), . . . , n1 ;VR)))→∗Pbg (r

′′′, t′′′1 , . . . , t′′′n′)and
(r′, t′1, . . . , t′n′) is a ground instance of this tuple.

Since f(t1, . . . , tn)→R σ(C[u← f ′(t′1, . . . , t
′
n′)]) there is a rewrite rule

f(t′′1 , . . . , t
′′
n)→R C[u← f(x′1, . . . , x

′
n)] in R.

If f = f ′ we have n = n′ and Pbg(R) contains the following rules

– f̃(s(ndp(f)), . . . , n1 ;VR)→Pbg σ
f(x′

i
)
(C)[u← f̃(ndp(f), . . . , n1 ;VR)

– for each i ∈ [1, Arity(f)], If
i (s(ndp(f)), . . . , n1 ;VR)→Pbg σ

f(x′
i
)
(ti).

So, if we consider σ′cnt the ground counter substitution such that for all counter
variable ni but ndp(f), σ′cnt(ni) = σcnt(ni) and σ′cnt(ndp(f)) = s(σcnt(ndp(f))).
We have
σ′cnt(f̃ ′(ndp(f), . . . , n1 ;VR), I

f
i ((ndp(f), . . . , n1 ;VR)))→Pbg

σcnt(σf(x′
i
)
(C)[u← f̃(ndp(f), . . . , n1 ;VR)], σf(x′

i
)
(ti)).

Let σ = {x′i �→ t′i, ∀i ∈ [1, n]}. We have

σ′cnt(f̃ ′(ndp(f), . . . , n1 ;VR), I
f
i ((ndp(f), . . . , n1 ;VR)))→∗Pbg (σ(C[u ← r′]), σ(ti)).

Since (r, t1, . . . , tn) is a ground instance of (σ(C[u← r′]), σ(ti)), (r, t1, . . . , tn) ∈
GndL(Ext(f)).

The case f �= f ′ is proved in the same way.

Now we have to define Ext(f) and GndL(Ext(f)) for non-recursive function.

Definition 15. (Ext(f) and GndL(Ext(f)) for non-recursive functions)
Let R be a primal TRS and f a non-recursive function of R.

– Ext(f) = {(r, t1, . . . , tn) | f(t1, . . . , tn)→R r belongs to R}.
– GndL(Ext(f)) = {(r, t1, . . . , tn) | (r, t1, . . . , tn) is a ground instance of an
element of Ext(f)}.
Ext(f) can be seen as a set (i.e. a union) of primal grammars with empty

Presburger rewrite system. Now, thanks to the proof framework described sec-
tion 3, and decidability result on intersection of primal grammars of [10], we
claim that unification modulo a primal TRS is decidable and that the set of
solutions can be represented be a set of primal grammars. In fact, given a pri-
mal TRS R, a goal s ?= t is decomposed into elementary subgoals according
to section 3.1, the elementary solutions are described using proposition 2 and
definition 15 and then the global solution is recomposed according to section 3.3.
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For instance, the TRS given in example 1 is a primal TRS so R-unification
modulo this TRS is decidable. Here is another example of primal TRS.

Example 3. This example defines the function firstn which takes an integer n
as argument and returns the list of the n first integers.
firstn(0)→ [0],
firstn(s(x))→ [s(x), f irstn(x)].

Thanks to primal grammars we are able to describe the solutions of the
equation firstn(x) = y. As far as we know, none of the previous decidability
results can handle such a TRS because of the non-linearity of the rhs.

5 Conclusion and Future Work

We have defined a general framework to get decidability results for R-unification
problems using tree languages. Its advantages are twofold : on one hand the
“user” should only focus on proving that the tree languages of interest can
represent solutions of very simple goals (in fact most of the time he has to
prove that the tree language can represent the definition in extension of each
defined function of the TRS), on the other hand the tree language provides a
finite representation of the set of solutions. This can be useful to implement a
procedure to handle finitely infinite sets of R-unifiers.

The second result of the paper shows how the proof framework can be in-
stantiated with primal grammars to get a new class of decidable R-unification
problems. This result is a strict extension of the one given in [14]. Unfortunately,
we have not proved that the restrictions on primal TRS define a kind of border
between decidability and undecidability like in [11,7]. In fact it seems that our
result may be extended because it does not use all the power of primal gram-
mars, so it would be interesting to study how to use all expressivity of primal
grammars. On the other hand, it would be interesting to extend the expres-
sivity of primal grammars, by allowing a finite set of basic Presburger rewrite
rules f̃(c, x) →Pbg r where r is a data term, in order to authorize several basic
rewrite rules for primal TRS. But one has to be extremely careful because primal
grammars are already very powerful and undecidability is round the corner.

Due to lack of space, we have not presented how we could can weaken restric-
tions given in [11] using regular tree languages. Indeed the result of [11] is only
on restricted goals (i.e. the goal have to be linear). Thanks to our framework,
it can be shown that when a variable appears several times in a goal and only
one occurrence of this variable is defined by a TTSG (all others being defined
by regular tree languages), the R-unification problem is still decidable. Roughly
it comes from the fact that intersection between a regular tree grammar and a
TTSG is a TTSG.

This framework could also be extended to R-disunfication results [12]. For
that one has to define a “anti-join” operation on tree languages.



A General Framework for R-Unification Problems 281

References

1. A. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proceed-
ings 21st ACM Symposium on Principle of Programming Languages, Portland,
pages 268–279, 1994. 268

2. F. Baader and J. Siekmann. Unification Theory. In D.M. Gabbay, C.J. Hogger,
and Robinson J.A., editors, Handbook of Logic in Artificial Intelligence and Logic
Programming. Oxford University Press, Oxford, UK, 1993. 266

3. A. Bockmayr, S. Krischer, and A. Werner. Narrowing strategies for arbitrary
canonical systems. Fundamenta Informaticae, 24(1,2):125 – 155, 1995. 266

4. H. Comon. On unification of terms with integer exponents. Math. Systems Theory,
28:67–88, 1995. 275

5. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree
Automata Techniques and Applications. 1997. 267, 268, 269

6. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. Van Leuven, editor,
Handbook of Theoretical Computer Science. Elsevier Science Publishers, 1990. 267

7. H. Faßbender and S. Maneth. A Strict Border for the Decidability of E-Unification
for Recursive Functions. In proceedings of the intern. Conf. on Algebraic and Logic
Programming., number 1139 in LNCS, pages 194–208. Springer-Verlag, 1996. 280

8. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, 19 & 20:583–628, May/July 1994. 266

9. M. Hanus. A unified computation model for functional and logic programming. In
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97),
pages 80–93, 1997. 268
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Abstract. In the last few years increasing use has been made of struc-
tural operational semantics to study aspects of programming languages
which traditionally have been analysed via denotational semantics. (The
articles in the recent collection by Gordon and Pitts (1998) [4] are a
good illustration of this development and its applications.) Since there
are more or less adequate denotational models for programming lan-
guage features such as higher order functions and procedures, recursive
definitions, local state, and data abstraction, one might wonder why one
should consider syntactic methods at all. This tutorial talk will attempt
to explain why one should.

‘But once feasibility has been checked by an operational model, operational rea-
soning should be immediately abandoned; it is essential that all subsequent rea-
soning, calculation and design should be conducted in each case at the highest
possible level of abstraction.’ Hoare (1996, page 182) [6]

The advice in the second half of the above quotation—that one should always
strive for the highest possible level of abstraction—is very sound. Nevertheless, I
am going to try to persuade you to ignore the first half and embrace, rather than
abandon, operational reasoning. The justification for this lies in the claim that
operational semantics can (sometimes—we are still learning how) be presented at
a sufficient ‘level of abstraction’ to support quite palatable methods of reasoning,
calculation and design. I plan to cover some of the following topics.

– Structural operational semantics—a brief survey, including the use of struc-
tural congruence relations, arising from work in concurrency theory (Berry
and Boudol 1992 [1], Milner 1990 [8]), to simplify the auxiliary syntactic
structures (environments, memories, program stacks, multisets of program
threads, etc) needed in a semantic specification.

– The use of evaluation contexts to aid inductive reasoning about transition
relations (Felleisen and Heib 1992 [3], Wright and Felleisen 1994 [13], Harper
and Stone 1996 [5]).

– Operational analogues of the domain-theoretic concepts of least fixed points,
continuity, and the minimal invariant property of recursively defined do-
mains (Mason, Smith and Talcott 1996 [7], Smith 1998 [12]).

– Applications of operationally-based logical relations (Pitts 1997 [9], Birkedal
and Harper 1997 [2], Pitts and Stark 1998 [11], Pitts 1998 [10]).

C. Palamidessi, H. Glaser, and K. Meinke (Eds.): PLILP’98, LNCS 1490, pp. 282–283, 1998.
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Abstract. Animation is a temporally continuous phenomenon, but is
typically programmed in terms of a discrete sequence of changes. The
use of discreteness serves to accommodate the machine that is present-
ing an animation, rather than the person modeling an animation with
the help of a computer. Using a continuous model of time for animation
allows for natural specification, avoiding some artificial details, but is dif-
ficult to implement with generality, robustness and efficiency. This paper
presents and motivates continuous modeled animation, and sketches out
a naive functional implementation for it. An examination of some of the
practical problems with this implementation leads to several alternate
representations, all of which have difficulties in themselves, some quite
subtle. We hope that the insights and techniques discussed in this paper
lead to still better representations, so that animation may be specified
in natural terms without significant loss of performance.

1 Introduction

A functional approach to animation offers the possibility to make animations
much easier and more natural to express, by removing the need to direct the
details of presentation and allowing the programmer instead to say what an
animation is [1,8]. Following the evolution of 3D graphics, we have termed this
approach “modeling”, as opposed to “presentation” [4].

Given that we want to model animations, what notion of time should we
adopt? The first fundamental choice is discrete vs continuous, that is do we
think of time as moving forward in a (discrete) sequence of “clock ticks”, or a
(continuous) flow?

A discrete model of time fits more easily into popular computational con-
cepts, because modern computers operate in temporally discrete steps. More
specifically, animations are presented as a sequence of frames, delivered to the
user at a finite rate.

On the other hand, a continuous model of time seems a more natural fit with
our human perception of time. Moreover, we have a rich heritage of mathemat-
ical, scientific, and engineering tools for understanding and describing the basic
animation concepts of motion, growth, etc, and these tools are based on the
continuous notion of time. These tools include polynomials, trigonometry, and
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calculus, together with their applications to physical motion, governed by New-
ton’s law of motion and its applications to gravitational attraction, springs, etc.

Just as continuous image models such as Postscript [11] naturally give rise
to spatial resolution-independence and hence scalability, the continuous time
model for animation yields temporal resolution-independence and scalability. For
instance, one can stretch or squeeze a given animation to fit a desired duration.

Fran (Functional reactive animation) is a theory of animation, and imple-
mentation as a Haskell library, that is based on a continuous time model. As
such, it offers the possibility of allowing people to express animations in ways
that match their intuitive understandings and that leverage the wealth of math-
ematical tools at their disposal.

The cost of offering a continuous time model is a more challenging imple-
mentation problem, since continuous animation descriptions must be translated
into discrete lower-level software and hardware structures.1 In fact, we have
implemented Fran many times, and have not yet achieved a satisfactory combi-
nation of generality, robustness and efficiency. Several subtle difficulties became
apparent to us only through implementation and experimentation.

The purpose of this paper is to present the implementation techniques we
have explored, together with some insight into practical difficulties, in the hope
of facilitating work leading to still better representations.

An expanded version of this paper presents a few more implementation al-
ternatives that we have investigated, but have implemented only partially or not
at all [7].

Previous papers on Fran have presented its vocabulary and semantics, its
role as an ”embedded language”, and examples of its use [8,5,4,14]. This paper
gives only minimal treatment of these issues.

2 A User Perspective on Fran

Fran is a declarative animation library (or “embedded language”) that embodies
the continuous time model of animation, and is implemented in Haskell [9].

2.1 Behaviors

For any type ty, the Fran type Behavior ty represents ty-valued animations,
i.e., functions from continuous time to ty. As an example, consider the following
definition of a real-valued animation, which has value 1 at time 0 and grows
quadratically:

1 The translation from continuous to discrete inevitably introduces error. Usually these
errors are negligible, but sometimes, as in some systems of differential equations or
condition-based events, errors can become significant. These problems are inherent
in applying computers to simulate continuous phenomena, regardless of the pro-
gramming paradigm.
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type RealB = Behavior Double -- helpful synonym

growQuad :: RealB
growQuad = 1 + time ** 2

There is some notational magic going on here. We are using behavior-specific
overloadings of familiar numerical operators for addition and exponentiation,
and even numeric literals, using Haskell’s type class mechanism. The types used
in this example are as follows:

1, 2 :: RealB
(+), (**) :: RealB -> RealB -> RealB
time :: RealB

Literals like 1 and 2 are implicitly converted into behaviors through application
of the polymorphic constantB function:

constantB :: a -> Behavior a

For any value x, the behavior constantB x has value x at every time.
The behavior versions of functions like + and **, as well as sin, log, etc.,

are all defined in terms of the non-behavior versions, by using lifting operations.

lift1 :: (a -> b) ->
Behavior a -> Behavior b

lift2 :: (a -> b -> c) ->
Behavior a -> Behavior b -> Behavior c

lift3 :: (a -> b -> c -> d) ->
Behavior a -> Behavior b -> Behavior c -> Behavior d

-- etc

Lifting is hidden inside of type class instances, with declarations like the follow-
ing:

instance Num a => Num (Behavior a) where
(+) = lift2 (+)
(*) = lift2 (*)
negate = lift1 negate
abs = lift1 abs
fromInt n = constantB (fromInt n)

The first line says that for any “number type” a, the type of a-valued behav-
iors is also a number type. The second line says that the behavior version of +
is the binary-lifted version of the unlifted + operation. (The definitions appear
self-referential, but are not. Overload resolution distinguishes the two different
versions of “+”.) The function fromInt is used to resolve literal integer over-
loading. The reason for this definition, instead of the more obvious one involving
lift1, is that fromInt must still work on numbers, not number-valued behav-
iors. This requirement is partly desirable, but is also partly due to the restricted
type of fromInt. In such cases, Fran provides additional definitions with names
formed by adding “B” or “*” to the unlifted version, such as the following.



Functional Implementations of Continuous Modeled Animation 287

fromIntB :: Num a => Behavior Int -> Behavior a
fromIntB = lift1 fromInt

(==*) :: Eq a => Behavior a -> Behavior a -> Behavior Bool
(==*) = lift2 (==)

Because Behavior is a type constructor, we can apply it to any type. For in-
stance, when applied to a type Point2 of 2D static points, the result is the type
of motionsn in 2D space.

It is often quite natural to express behaviors in terms of time-varying veloc-
ities. For this reason, Fran supports integration over a variety of types, as long
as they implement vector space operations.

integral :: VectorSpace v => Behavior v -> User -> Behavior v

Examples of vector space types are reals, 2D vectors, and 3D vectors. The “user”
argument to integral has two roles. One is to choose the integral’s start time,
and the other is to assist choice of step-size in the numerical solution. If a user
u has start time t0, then integral b u is a behavior that at time t has approx-
imately the value

∫ t

t0
b(t′)dt′.

For modularity, it is useful to construct a behavior and then, separately,
transform it in time. Fran, therefore, has a time transformation operation. Since
a time transform remaps time, it is specified as a time-valued behavior, which
semantically is a function from time to time.

timeTransform :: Behavior a -> Behavior Time -> Behavior a

The lifting operators can all be expressed in terms of a single operator:

($*) :: Behavior (a -> b) -> Behavior a -> Behavior b

The name “$*” comes from the fact that it is the lifted version of function
application, whose Haskell infix operator is “$”.

The lifting operators are defined simply in terms of constantB and “$*”, as
follows.

lift0 = constantB
lift1 f b1 = lift0 f $* b1
lift2 f b1 b2 = lift1 f b1 $* b2
lift3 f b1 b2 b3 = lift2 f b1 b2 $* b3
-- etc

Note that the basic combinators “$*”, constantB, time, and timeTransform
correspond semantically to type-specialized versions of the classic S, K, I,
and B combinators.
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2.2 Events

Besides behaviors, the other principle notion in Fran is the event. For any type
ty, the Fran type Event ty is the type of ty-valued events, each of which is
semantically a time-sorted sequence of time/ty pairs, also refered to as “occur-
rences” of the event.

This paper is chiefly concerned with the implementation of continuous be-
haviors, rather than events (which are intrinsically discrete). We will informally
describe event operators as they arise.

2.3 Reactive Behaviors

While one can define an infinite set of behaviors using just the behavior combi-
nators given above, such behaviors are not very dynamic. Fran greatly enriches
these behaviors by supporting reactivity, via the following primitive, which uses
behavior-valued events.

untilB :: Behavior a -> Event (Behavior a) -> Behavior a

Given behavior b and an event e, the behavior b ‘untilB‘ e acts like b until e
occurs, and then switches to acting like the behavior that accompanies the event
occurrence. Although untilB only needs the first occurrence of an event, the
other occurrences are used by some of the event combinators. This meaning of
events turned out to be more convenient than the one in [8], since it enables
higher level combinators for constructing reactive behaviors, as illustrated in [4].

3 Implementing Continuous Behaviors

We now turn to the main thrust of our paper, which is an exploration of how to
implement continuous behaviors.

Representation A: time-to-value functions. The semantics of behaviors suggest
a very simple representation:

newtype Behavior a = Behavior (Time -> a)

-- Sample a behavior "at" a given time
at :: Behavior a -> Time -> a
Behavior f ‘at‘ t = f t

This definition introduces both a new type constructor and a value construc-
tor, both called Behavior. (A simple type definition in Haskell would not have
allowed overloading.) Using this representation, it is easy to define our simple
behavior combinators:
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constantB x = Behavior (const x)

fb $* xb = Behavior (\ t -> (fb ‘at‘ t) (xb ‘at‘ t))

time = Behavior (\ t -> t)

timeTransform b tt = Behavior (at b . at tt)

To sample a behavior constructed by b ‘untilB‘ e at a time t, first check
whether the event e occurs before t.2 If so, sample the new behavior, b’, that is
part of the event occurrence, and if not, sample b.

b ‘untilB‘ e = Behavior sample
where
sample t = case (e ‘occ‘ t) of

Nothing -> b ‘at‘ t
Just b’ -> b’ ‘at‘ t

Here we presume a function occ, with the following signature, for checking for
an event occurrence before a given time.

occ :: Event a -> Time -> Maybe a

3.1 The Problem of Non-incremental Sampling

While Representation A given above is appealing in terms of simplicity, it has
a serious performance problem. It allows nothing to be remembered from one
sampling to another. In animation, however, behaviors are typically sampled at
a sequence of display times separated by small differences. For instance, given
an integral behavior, it is vital for efficiency that intermediate results are carried
from one sampling to the next, so that only a small amount of extra work is
required. Similarly, for a reactive behavior, i.e., one constructed with untilB, it
is important to make incremental progress in event detection.

Consider the implementation of untilB above, and suppose we want to sam-
ple a reactive behavior with times t1, t2, . . .. For every ti, sampling must consider
whether the event has occurred, and choose to sample the old behavior or the
new one. Moreover, it is frequently the case that the new behavior it itself reac-
tive, and so on, in an infinite chain. In such a case, the time it takes to compute
each sample will increase without bound, which is clearly unacceptable. More-
over, consider what is involved in computing “e ‘occ‘ t” in untilB. There are
two possibilities: either event occurrences are being rediscovered, or they are
cached somehow. If they are rediscovered, then the cost of sampling increases
even more so with each sampling. If, however, they are cached, then the cache
itself becomes a large space leak. Together these problems cause what we call a
“space-time leak”.
2 By choosing before, rather than before or at, the sampling time t, animations may
be self- or mutually-reactive.
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Representation B: residual behaviors. A crucial observation is that typically, the
sampling times t1, t2, . . . , are monotonically increasing. If we assume that this
typical case holds, then we can remove the space-time leak.3 The idea is to have
sampling yield not only a value, but also a “residual behavior”.

newtype Behavior a = Behavior (Time -> (a, Behavior a))

at :: Behavior a -> Time -> (a, Behavior a)
Behavior f ‘at‘ t = f t

The combinator implementations are not quite as simple as before, but still
reasonable. Constant behaviors always return the same pair:

constantB x = b
where
b = Behavior (const (x, b))

The time behavior is also simple.

time = Behavior (\ t -> (t, time))

The “$*” combinator samples its argument behaviors, applies one resulting value
to the other, and applies “$*” to the residual behaviors.

fb $* xb = Behavior sample
where sample t = (f x, fb’ $* xb’)

where (f, fb’) = fb ‘at‘ t
(x, xb’) = xb ‘at‘ t

Time transformation can be implemented much like “$*”.

timeTransform b tt = Behavior sample
where sample t = (x, timeTransform b’ tt’)

where (t’, tt’) = tt ‘at‘ t
(x , b’ ) = b ‘at‘ t’

Time transformation can violate our monotonicity assumption for time streams,
if the time transform tt is not itself monotonic. It would be possible to check for
monotonic sampling dynamically, at least for reactive behaviors, though Fran
does not do so. Checking monotonicity “statically”, i.e., when a timeTransform
or untilB behavior is constructed does not seem to be feasible.

The occ function, used for checking event occurrences, is changed in a way
much like behaviors, so that it now yields a residual event along with a possible
occurrence.

occ :: Event a -> Time -> (Maybe a, Event a)

3 Unfortunately, the cost of this assumption is a significant restriction in the time
transforms that may be applied to reactive behaviors.
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Next, consider reactivity. Sampling a reactive behavior with a time that is
after the event’s first occurrence, the newly constructed behavior (a) no longer
checks for the event occurrence, thus eliminating the time leak, and (b) no longer
holds onto the old behavior, thus eliminating the space leak.

b ‘untilB‘ e = Behavior sample
where
sample t =

case (e ‘occ‘ t) of
-- No occurrence before t; keep looking
(Nothing, eNext) -> let (x, bNext) = b ‘at‘ t in

(x, bNext ‘untilB‘ eNext)

-- Found it; sample new behavior
(Just bNew, _) -> bNew ‘at‘ t

Representation C: stream functions. An alternative solution to the problem of
non-incremental sampling is to map time streams to value streams. We will see
in Section 3.2 that this representation has advantages over Representation B.

newtype Behavior a = Behavior ([Time] -> [a])

at :: Behavior a -> [Time] -> [a]
Behavior f ‘at‘ ts = f ts

Constant behaviors always return the same list containing an infinite repetition
of a value:

constantB x = Behavior (const (repeat x))

The “$*” combinator samples the function and argument behaviors, and ap-
plies resulting functions to corresponding arguments, using the binary mapping
functions zipWith.

fb $* xb =
Behavior (\ ts -> zipWith ($) (fb ‘at‘ ts) (xb ‘at‘ ts))

Time is the identity as it was in Representation A, but of a different type:

time = Behavior (\ ts -> ts)

Reactivity is implemented by scanning through a list of possible event occur-
rences, while enumerating behavior samples. For convenience, assume a stream
sampler function for events:

occs :: Event a -> [Time] -> [Maybe a]

The implementation of untilB:
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b ‘untilB‘ e =
Behavior (\ ts -> loop ts (b ‘at‘ ts) (e ‘occs‘ ts))

where
-- Non-occurrence. Emit first b sample and continue looking
loop (_:ts’) (x:xs’) (Nothing:mbOccs’) =

x : loop ts’ xs’ mbOccs’
-- First event occurrence. Discard the rest of the b values
-- and possible event occurrences, and continue with the
-- new behavior
loop ts _ (Just bNew : _ ) = bNew ‘at‘ ts

A weakness of Representations B and C is that they cause a great deal
of construction with each sampling. For this reason, it is important to have a
garbage collector that deals very efficiently with the rapid production of short-
lived structures, as in generational garbage collection. For instance, the Glasgow
Haskell Compiler [12] has such a collector.

3.2 The Problem of Redundant Sampling

Another serious problem with all the representations preceding is that they lead
to redundant sampling. As a simple example, consider the following behavior
that linearly interpolates between two numerical behaviors b1 and b2, according
to the interpolation parameter a, so that the resulting behavior is equal to b1
when a is zero and b2 when a is one.

interp :: RealB -> RealB -> RealB -> RealB
interp b1 b2 a = (1 - a) * b1 + a * b2

The problem is that sampling the behavior generated by interp at some time t
ends up sampling a at t twice, due to the repeated use of a in the body of
interp. If a is a complex behavior the redundant sampling is costly. Worse
yet, composition of functions like interp multiplies the redundancy, as in the
following example.

doubleInterp :: RealB -> RealB -> RealB -> RealB -> RealB -> RealB
doubleInterp b1 b2 b3 b4 a = interp b1 b2 a’
where a’ = interp b3 b4 a

When the result of doubleInterp is sampled with a time t, the behavior a’ will
be sampled twice at t, which means a will be sampled four times, and the inter-
polation work for a’ done twice. If we were to cube the result of doubleInterp,
via the definition

cube :: Num a => a -> a
cube x = x * x * x
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then sampling work would be multiplied by three, causing a to be evaluated
twelve times for each sample time t.

One approach to solving the problem of redundant sampling is applying lazy
memoization [10,3], which may be supported with a function of the form type.

memo :: Eq a => (a -> b) -> (a -> b)

Semantically, memo is the identity. Operationally, the closure returned contains
a mutable “memo table”.

Any of the three representations discussed so far may be memoized. For in-
stance, in Representation B one could simply memoize the constructed sampling
functions. By way of example, here is an appropriately modified “$*”. The only
change is that the created sample function is memoized.

fb $* xb = Behavior (memo sample)
where sample t = (f x, fb’ $* xb’)

where (f, fb’) = fb ‘at‘ t
(x, xb’) = xb ‘at‘ t

A drawback to this implementation is that the memoization overhead must be
paid for each sample time of each component behavior, and so slows down sam-
pling, rather than speeding it up, except in circumstances of extreme redundant
sampling.

A more efficient alternative would to start with Representation C, so that
memoization works at the level of lists of times rather than individual times.
Rather than base memoization on the usual elementwise notion of list equal-
ity, which would be particularly problematic because our time lists are infinite,
it suffices to use pointer equality on the list representations, as recommended
in [10].

This is the representation used in the current version of Fran (1.11), except
that memo tables are managed explicitly, rather than through a higher-order
memo function. The reason for this exception is that memo tables need to be
“aged”, as will explained below.

Our algebra of behaviors is related to, and in some ways inspired by, Backus’
language FP [2]. In FP, programs are always expressed at the function level, with
application to “object-level” values kept implicit. This property leads to redun-
dant applications of a function to the same argument, similar to the problem
discussed in this section. The Illinois Functional Programming Interpreter [13]
addressed this problem by using an “expression cache.” For some recursive algo-
rithms, expression caching reduced the asymptotic running time. Normally this
caching had a more modest effect, speeding up some computations and slowing
down others.

3.3 The Problem of Space-Leaking Memo Tables

A subtle but important consideration for any use of memoization is garbage col-
lection. The memoized functions contain tables of domain and range values, and



294 Conal Elliott

these tables typically grow without bound. When all references to a memoized
function are lost, the contents of its memo table are reclaimed, as described
in [3]. For example, consider the following behavior, which uses the cube and
interp functions defined above to stretch a given picture. (The Fran type ImageB
represents “image-valued behaviors”, i.e., two-dimensional animations.)

anim1 :: ImageB
anim1 = stretch s1 pic
where
s1 = cube (interp 0.5 1.5 (cube time))

If anim1 is displayed, it will be sampled with a time list that depends on the
speed of the machine and the time-varying load from other processes. As long
as there is no reference to anim1 besides the one given to the display function,
the representations of anim1 and s1, including memo tables will be reclaimed.
The list cells in the time and value lists will also be eligible for reclamation in
an efficient manner as animation display progresses.

Unfortunately, memory use is not always so well-behaved. One problematic
case is that in which the definition of anim1 is a top-level definition, also known
as a “CAF” (constant applicative form). In that case, in the current Haskell
implementations we know of, the behaviors will never be reclaimed.4

Another problematic situation for reclamation of memo tables arises when a
behavior is retained in order to be restarted, as in the following example, which
makes a looping behavior out of s1, restarting every two seconds.5

anim2 :: ImageB
anim2 = stretch s2 pic
where
s1 = cube (interp 0.5 1.5 (cube time))
s2 = s1 ‘untilB‘ timeIs 2 -=> later 2 s2

Here we have used the later operator to shift s2 by two seconds. (Alternatively,
the semantics of untilB could do this kind of shifting automatically. Although
there are some technical difficulties, we intend to alter Fran in this way. The
implementation issue discussed below remains, however.) In this case, s1 cannot
released, because it will be used every two seconds to generate a new list of
scale values. For each memo table, an entry is added every two seconds, and the
evaluated size of each entry grows through lazy evaluation by a time, a scale,
and two cons cells every sample, e.g., 10 per second.

For these reasons, it seems necessary for memo tables to have special support
from the garbage collector, so that when there are no live pointers to an object
other than memo table keys, then the object gets reclaimed and the memo table
entries get deleted. This idea is described in [10] and has been in use in some
Smalltalk, Lisp and Scheme implementations for quite a while, but as far as we
4 An upcoming release of the Glasgow Haskell Compiler fixes this problem.
5 The event “e -=> v” occurs whenever e occurs and has value v at each occurrence.
Syntactically, it binds more tightly than ‘untilB‘.
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know it has not yet been implemented in a Haskell run-time system. Some Fran
programs leak space for exactly this reason.

A more serious, and more subtle, problem with memoization comes from
Fran’s afterE combinator. This combinator is essentially a dual to snapshot.
The two signatures are as follows:

snapshot :: Event a -> Behavior b -> Event (a, b)
afterE :: GBehavior bv => Event a -> bv -> Event (a, bv)

The idea of e ‘snapshot‘ b is to pair up the event data from each occurrence
of e with snapshots of b values at the corresponding occurrence time. Dually, e
‘afterE‘ b gives access to the residual of b at each occurrence of e. Its purpose
is to be able to coordinate with a concurrently running behavior after an event
occurrence, but fortunately its use can often be hidden inside of other event
and behavior combinators. Because afterE need not actually sample, it can be
used with “generalized behaviors”, a notions that subsumes the actual behavior
types.

Fran implements afterE in terms of the following more primitive “aging”
function:

afterTimes :: GBehavior bv => bv -> [Time] -> [bv]

The idea is to create a list of times corresponding not only to occurrences of
an event, but to closely spaced non-occurrences as well. This list is fed into
afterTimes, which then produces a stream of updated versions of its general-
ized behavior argument. (Note: it may well be possible and desirable to hide
afterE beneath a set of more abstract combinators, but the implementation
issues remain.)

Now consider the interaction between afterTimes and memoization. Suppose
we have a behavior bv with a memo entry for the time stream t1, t2, . . . and
corresponding value stream x1, x2, . . ., and we have another time stream t′1, t′2, . . .
as an argument to afterTimes. How should we initialize the aged behaviors’
memo tables? If we use bv’s memo table, we will have a space leak, and, moreover,
these entries are not likely to get cache hits. If, on the other hand, we start with
empty memo tables, we will end up repeating a lot of work. A crucial observation
is that these aged behaviors are often sampled with aged sample time streams,
i.e., suffixes of the time streams that have already been used to sample bv itself.
Rather than reusing or discarding memo tables in their entirety, the current
Fran implementation “ages” the tables, replacing each time- and value-stream
pair with corresponding stream suffixes. For instance, if t2 < t′1 ≤ t3, then the
first aged memo pair would be t3, t4, . . . and x3, x4, . . ..

Note that if we were to memoize Representation A or B instead of C, then
it would become trickier to use a garbage collector to trim the memo tables. If
the Time type is something like Float or Double (as in Fran’s implementation),
then we could easily keep a time/sample pair alive in a memo table by accident.
If indeed these accidental retentions happen, a solution would be to introduce a
data type to wrap around the time values.
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3.4 The Problem of Synchrony

Memoization solves the problem of redundant sampling, but only when the dif-
ferent uses of a behavior are sampled with exactly the same time streams. There
are, however, at least three situations in which we would want a behavior to be
sampled with different time streams.

The first situation is the application of a time transformation. Consider the
following example.

b :: RealB
b = b1 + timeTransform b1 (time / pi)
where
b1 = cube (interp 0.5 1.5 (cube time))

There is a second situation in which we might like to sample a behavior with
two different rates, namely when different degrees of precision are needed. As an
example, suppose we have an image im1 moving in a complex motion path mot,
with an overlaid, much smaller copy of itself:

im :: ImageB
im = stretch 0.1 im2 ‘over‘ im2
where
im2 = move mot im1

If we were sampling in order to stay within a error bound measured in 2D
distance, rather than temporal rate, then the first use of im2 would require less
accuracy from mot and im1 than the second use, because the spatial inaccuracies
are reduced by a factor of ten.

A third situation calling for variable sampling rate is detection of events
defined by boolean behaviors. As discussed in [8], interval analysis (IA) can be
used in a robust nand efficient algorithm to detect occurrences of such events.
The sampling patterns are adaptive to the nature of the condition’s constituent
behaviors.

In all of these cases, lack of synchrony disallows sharing of work between
different sampling patterns. We do not have a solution to this problem. Note,
however, that the values used for display in between samplings are necessarily
approximate. (Fran uses a linearly interpolating engine [6].) As explored in [7],
this observation suggests sharing of work among non-synchronous sampling pat-
terns.

3.5 Structural Optimizations

Fran’s algebra of behaviors and events satisfies several algebraic properties that
are exploited for optimization. Roughly speaking, these identities fall into the
categories of “static” and “behavioral” properties.

By a “static” property, we mean one that is lifted to the level of behaviors
directly from a property on static values. Examples include the following identity
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and distributive properties on images, where over is the (associative but not
commutative) image overlay operation and *% applies a 2D transform to an
image.

emptyImage ‘over‘ im == im

im ‘over‘ emptyImage == im

xf *% (im1 ‘over‘ im2) == xf *% im1 ‘over‘ xf *% im2

Another useful property is following one for condB, which is the lifted form
of if-then-else:

condB (constantB True ) b c == b

condB (constantB False) b c == c

By a “behavioral” property, we mean one that applies to behaviors over all types.
For example, when “$*” is applied to constant behaviors, the result is a constant
behavior, i.e.,

constantB f $* constantB x == constantB (f x)

As a consequence, a lifted n-ary function applied to n constant behaviors yields
a constant behavior.

Another useful property is distributivity of lifted functions over reactivity.
First consider a simple case.

lift1 f (b ‘untilB‘ e) == lift1 f b ‘untilB‘ e ==> lift1 f

The event e ==> h occurs when e occurs, and its occurrence values result from
applying the function h to the corresponding value from e. Syntactically, it binds
more tightly than ‘untilB‘.

Here is an obvious candidate for the general case:

fb $* (xb ‘untilB‘ e) ==
fb $* xb ‘untilB‘ e ==> \ xb’ ->
fb $* xb’

and similarly for the case that fb is reactive. If both argument behaviors are
reactive, then both rules may be applied sequentially (in either order). Similarly,
if in the first rule, xb itself is reactive, applying the rule will give rise to another
rule application as well.

There is, however, an operational problem with a rule like the one above,
namely that it holds onto the behavior fb while waiting for the event e to
occur, thus causing a space leak. Then when e finally occurs, fb will get sampled
starting at the occurrence time. If fb has meanwhile undergone many transitions,
there may be a lot of catching up to do, which amounts to a “time leak”. To fix
both of these problems, use afterE to give quick access to the residual of fb.
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fb $* (xb ‘untilB‘ e) ==
fb $* xb ‘untilB‘ e ‘afterE‘ fb ==> \ (xb’,fb’) ->
fb’ $* xb’

The identities above, while widely applicable, do not improve performance
by themselves. Their merit is that they often enable other optimizations. For
instance, consider the following animation:

b :: RealB
b = (time ‘untilB‘ timeIs 5 -=> 0) + b2

Applying the $*/untilB identity yields the following:

time + b2 ‘untilB‘ (timeIs 5 -=> 0) ‘afterE‘ b2 ==>
\ (b1’, b2’) -> b1’ + b2’

When the transition occurs at time 5, the new behavior will be 0 + b2’, which
can be simplified to b2’.

4 Conclusions

Modern software and hardware technology are temporally discrete in nature
and so encourage discrete software models. In the context of animation, a con-
tinuous approach is more natural because it more closely reflects the real-world
behaviors being modeled. In this paper, we have explored several functional im-
plementations of continuous animation and some problems that arise. Some of
these problems are rather subtle and became apparent only through costly trial
and error. See [7] for more alternatives that we have partially explored. We hope
that their discussion here will motivate further work in pursuit of the goals of
efficiently-executing, naturally-specified interactive animation.
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Abstract. The programming languages Erlang and Scheme have many
common features, yet the performance of the current implementations
of Erlang appears to be below that of good implementations of Scheme.
This disparity has prompted us to investigate the translation of Erlang to
Scheme. Our intent is to reuse the mature compilation technology of cur-
rent Scheme compilers to quickly implement an efficient Erlang compiler.
In this paper we describe the design and implementation of the Etos Er-
lang to Scheme compiler and compare its performance to other systems.
The Scheme code produced by Etos is compiled by the Gambit-C Scheme
to C compiler and the resulting C code is finally compiled by gcc. One
might think that the many stages of this compilation pipeline would
lead to an inefficient compiler but in fact, on most of our benchmark
programs, Etos outperforms all currently available implementations of
Erlang, including the Hipe native code compiler.

1 Introduction

Erlang is a concurrent functional programming language which has been mostly
developed internally at Ericsson for the programming of telecom applications.
The language is not purely functional because of its support for concurrent pro-
cesses and communication between processes. Scheme shares many similarities
with Erlang: “mostly” functional programming style, mandatory tail-call opti-
mization, dynamic typing, automatic memory management, similar data types
(symbols, lists, vectors, etc). Section 2 and Sections 3 briefly describe these lan-
guages (a complete description can be found in [3] and [16,7]).

There is growing interest in Erlang in industry but due to its “in-house”
development there is a limited choice of compilers. As the implementors of these
compilers freely admit [1], “Performance has always been a major problem”.
On the other hand there are many implementations of Scheme available [18]
and the good compilers appear to generate faster code than the Erlang compil-
ers available from Ericsson (for example Hartel et al. [13] have shown that the
“pseudoknot” benchmark compiled with Ericsson’s BEAM/C 6.0.4 is about 5
times slower than when compiled with the Gambit-C 2.3 Scheme compiler).

Because of the strong similarity between Erlang and Scheme and the avail-
ability of several good Scheme compilers, we have begun the implementation of
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an Erlang to Scheme compiler called “Etos”. Our goal is to reduce development
efforts by exploiting the analyses and optimizations of the Gambit-C Scheme
to C compiler. It is reasonable to believe that most of the Gambit-C technology
can be reused because the similarities between the languages outweigh the differ-
ences (infix vs. prefix syntax, pattern matching vs. access functions, catch/throw
vs. call/cc, and concurrency). When we started this project it was not clear
however if the many stages of the compilation pipeline would allow efficient code
to be generated. In the rest of the paper we explain the major design issues of
an Erlang to Scheme compiler and how these are solved in Etos 1.4, and show
that its performance is very good when compared to other Erlang compilers.

2 Scheme

This section briefly describes Scheme for those unfamiliar with the language.
Scheme is a lexically scoped dialect of Lisp (invented by Sussman and Steele

in 1975 [19] and enhanced regularly since then) which is both small and ex-
pressive. It is an expression-based language with garbage-collection and so pro-
motes the functional programming style (but side-effects on variables and data-
structures are permitted). The language requires that tail-recursion be imple-
mented properly [6]. Several builtin data types are available, all of which are
first-class and have indefinite extent: boolean, character, string, symbol, list,
vector (one dimensional array), procedure (of fixed or variable arity), port (file
handle), number (unlimited precision integers and rationals (i.e. exact num-
bers), and floating point and complex numbers). Procedures are closed in their
definition environment (i.e. they are “closures” containing a code pointer and
environment) and parameters are passed by value. An anonymous procedure is
created by evaluating a lambda special form (see example below). Scheme is one
of the few languages with first-class continuations which represent the “rest of
a computation” and a construct, call/cc, to transform the current (implicit)
continuation into a user-callable procedure. All arithmetic functions are generic,
e.g. the addition function can be used to add any mix of number types.

3 Erlang

Erlang, like Scheme, is a garbage-collected expression-based language that is
lexically scoped (but with unusual scope rules as explained in Section 8), prop-
erly tail-recursive, dynamically typed and which uses call-by-value parameter
passing. The data types available are: number (floating-point numbers and un-
limited precision integers), atom (like the Scheme symbol type), list, tuple (like
the Scheme vector type), function, port (a channel for communicating with exter-
nal processes and the file system), pid (a process identifier), reference (a globally
unique marker), and binary (an array of bytes). Integers are used to represent
characters and lists of integers are used to represent strings. Erlang’s arithmetic
operators are generic (any mix of numbers) and the comparison operators can
compare any mix of types.
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Erlang’s syntax is inspired by Prolog (e.g. [x,y,z], [] and [H|T] denote
lists, variables begin with an uppercase letter and atoms with lowercase, pattern
matching is used to define functions and take apart data). Erlang does not
provide full unification as in Prolog (i.e. a variable is not an object that can
be contained in data). Note also that a guard can be added to a pattern to
constrain the match (third clause in the example below). The only way to bind a
variable is to use pattern matching (in function parameters, the case, receive,
and pattern=expr constructs). In particular in pattern=expr the expression is
evaluated and the result is pattern matched with the pattern, variables bound
in the process have a scope which includes the following expressions.

The language was designed to write robust concurrent distributed soft real-
time applications in telephony. Local and remote processes are created dynam-
ically with the spawn function, and interacted with by sending messages (any
Erlang object) to their mailbox which sequentializes and buffers incoming mes-
sages. Messages are drained asynchronously from the mailbox with the receive
construct, which extracts from the mailbox the next message which matches the
pattern(s) specified by the receive (a timeout can also be specified).

Exceptions are managed using the forms throw expr and catch expr. Eval-
uating a throw X transfers control to the nearest dynamically enclosing catch,
which returns X. Predefined exceptions exist for the builtin functions.

Erlang supports a simple module system, which provides namespace manage-
ment. Each module specifies its name, the functions it exports and the functions
it imports from other modules. The form lists:map indicates the function map
in the module lists.

Here is a small contrived example of an Erlang function definition showing
off some of the features of Erlang:

f(green,_) -> 1.5; % ignore second parameter

f([H|_],Y) -> T=Y+1, {H,T*T}; % return a two tuple

f(X,Y) when integer(X) -> lists:reverse(Y); % X must be an integer

f(X,Y) -> lists:map(fun(Z) -> [Z,X+Z] end, Y).

This is roughly equivalent1 to the following Scheme definition:

(define f

(lambda (x y) ; parameters of f are x and y

(cond ((eq? x ’green) 1.5) ; return 1.5 if x is the symbol green

((pair? x)

(let ((t (+ y 1))) ; bind t to y+1

(vector (car x) (* t t))))

((integer? x)

(reverse y)) ; y better be a list

(else

(map (lambda (z) ; pass an anonymous procedure to map

(list z (+ x z))) ; create a list

y))))) ; y better be a list of numbers

1 There are subtle differences such as (integer? 2.0) is true in Scheme, but 2.0 is
not an integer in Erlang.
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4 Portability vs Efficiency

Early on we decided that portability of the compiler was important in order to
maximize its usefulness and allow experiments across platforms (different target
machines but also different Scheme implementations). Etos is written in standard
Scheme [7] and the generated programs conform fairly closely to the standard.

It is clear however that better performance can be achieved if non-standard
features of the target Scheme implementation are exploited. For example, the
existence of fast operations on fixed precision integers, i.e. fixnums, is crucial
to implement Erlang arithmetic efficiently. Fixnums are not part of the Scheme
standard but all of the high performance Scheme compilers have some way to
manipulate them. To exploit these widespread but not truly standard features,
the generated code contains calls to Scheme macros whose definition depends
on the target Scheme implementation. The appropriate macro definition file is
supplied when the Scheme program is compiled. Not all Scheme implementa-
tions implement the same macro facilities, but this is not a problem because
each macro file is specific to a particular Scheme implementation. This approach
avoids the need to recompile the Erlang program from scratch when the target
Scheme implementation is changed. For example, the Erlang addition operator,
which is generic and supports arguments of mixed float and unlimited precision
integer types, is translated to a Scheme call of the erl-add macro. The macro
call (erl-add x y) may simply expand to a call to a library procedure which
checks the type of x and y and adds them appropriately or signals a run time
type error, or if fixnum arithmetic is available, it may expand to an inline ex-
pression which performs a fixnum addition if x and y are fixnums (and the result
doesn’t overflow) and otherwise calls the generic addition procedure.

Using a macro file also allows to move some of the code generation details out
of the compiler and into the macro file, making it easy to experiment and tune
the compiler. For example the representation of Erlang data types can easily be
changed by only modifying the macro definitions of the operations on that type.

5 Direct Translation

We also wanted the translation to be direct so that Erlang features would map
into the most natural Scheme equivalent. This has several benefits:

– Erlang and Scheme source code can be mixed more easily in an application
if the calling convention and data representation are similar. Special features
of Scheme (such as first-class continuations and assignment) and language
extensions (such as a C-interface and special libraries) can then be accessed
easily. For this reason, adding extra parameters to all functions to propagate
an exception handler and/or continuation would be a bad idea.

– A comparison of compiler technology between Erlang and Scheme compil-
ers will be fairer because the Scheme compiler will process a program with
roughly the same structure as the Erlang compiler.

– The generated code can be read and debugged by humans.
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When a direct translation is not possible, we tried to generate Scheme code
with a structure that would be compiled efficiently by most Scheme compil-
ers. Nevertheless there is often a run time overhead in the generated Scheme
code that makes it slower than if the application had been written originally in
Scheme. For example, Erlang’s “<” operator is generic (it works on numbers as
well as lists and other data types) but in most application programs it is only
used to compare numbers. The code generated by Etos can’t use Scheme’s “<”
primitive directly because it works on numbers only.

6 Data Types

The most important Erlang data types have a direct equivalent in Scheme, as
explained in this section.

6.1 Numbers

Scheme numbers are organized into a class hierarchy: integer ⊆ rational ⊆ real ⊆
complex. Independently of their class, numbers have an “exactness”. For in-
stance 2.0 denotes the inexact number 2 and 1/2 denotes the exact number 0.5.
Scheme exact integers correspond to Erlang integers. In both Scheme and Erlang,
integers can be of limited range. The Erlang specification requires at least 24 bit
integers but all available compilers support unlimited precision integers by using
a bignum representation when the integers are larger than can fit in a fixnum.
Scheme inexact reals correspond to Erlang floats.

An unfortunate consequence of this representation is that testing for an Er-
lang integer or float translates into two tests in standard Scheme
(i.e. (and(integer? x)(exact? x))tests if x is an exact integer). The test
(integer? x) is typically quite expensive because it must return true on both
exact integers and on inexact reals which happen to have a null fractional part.
Again, some non-standard features can help to do this quicker, for example in
Gambit-C: (or (##fixnum? x) (##bignum? x)).

6.2 Atoms

Scheme symbols can be used to represent Erlang atoms. Both can contain arbi-
trary characters and symbols can be compared for equality efficiently with the
eq? predicate (which is simply a pointer comparison in many implementations
of Scheme). The Scheme procedures string->symbol and symbol->string are
equivalent to the Erlang built-in functions list_to_atom and atom_to_list ex-
cept that the former deals with strings (which is a separate data type in Scheme).

One complication is that Scheme is a case-insensitive language and Erlang
is case-sensitive. Variable names and symbols in the source of Scheme programs
are stripped of their case. A simple solution for converting Erlang function and
variable names is to prefix uppercase letters with an escape character (i.e. ^), so
that the Erlang variable ListOfFloats becomes ^list^of^floats in Scheme.
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Atoms are handled differently. The only way to force a particular case for
symbols in Scheme is to use the procedure string->symbol. This means that Er-
lang constants containing atoms (e.g. the constant list [1,tWo]) must be created
at run time using string->symbol. This is done by storing the objects created
into global variables once in the initialization phase of the Scheme program and
references to these globals replace references to the constants. Constants not
containing atoms get converted to Scheme constants. For example, the Erlang
call f([1,tWo],[3,4]) gets converted to:

(define const1 (string->symbol "tWo")) ; global definitions

(define const2 (list 1 const1))

... (f const2 ’(3 4)) ...

Alternative representations for atoms which were rejected are:

– Strings: no special treatment for uppercase letters is needed but the equality
test is much more expensive.

– Symbols with escape character for uppercase letters: requires an unnatural
and inefficient translation of list_to_atom and atom_to_list.

Gambit-C provides a (non-standard) notation for symbols that preserves case
(e.g. |tWo|) so it was possible to reference atoms literally in code and constants.

6.3 Lists

Both languages handle lists similarly. In Scheme, lists are made up of the empty
list (i.e. ()) and pairs created with the cons primitive or the variable arity list
primitive. The primitives car and cdr extract the head and tail of a list.

6.4 Tuples

Scheme vectors are the obvious counterpart of tuples. Vectors are constructed ei-
ther with the variable arity vector primitive (Erlang’s {...,...}), the
list->vector primitive (Erlang’s list_to_tuple), or the make-vector primi-
tive (which creates a vector of length computed at run time).

A minor incompatibility is that tuples are indexed from 1 (with the element
builtin function) and Scheme vectors are indexed from 0 (using vector-ref).

A more serious problem is that lists and vectors are the only compound data
structures in standard Scheme. Since the Erlang data types port, pid, reference,
and binary don’t have a direct counterpart in Scheme, they must be implemented
using lists or vectors.We have used vectors to implement these data types (as well
as tuples and functions) because their content can be accessed in constant time.
The first element of the vector is a symbol which indicates the type and the data
associated with the type is in the remaining elements. Thus the tuple {1,2,3}
is represented by the Scheme vector #(tuple 1 2 3). Note that with this rep-
resentation, tuple indexing does not require a run time decrement of the index
to access an element. However, an Erlang type test translates to two Scheme
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tests. Thus (and (vector? x) (eq? (vector-ref x 0) ’tuple)) tests if x is
a tuple (we need not worry about the vector-ref being out of bound because
empty vectors are never created by Etos).

A more compact representation which is based on the ability to test object
identity with eq? is to use no tag for tuples and a special tag for non-tuples:

(define pid-tag (vector ’pid))

(define make-pid (lambda (...) (vector pid-tag ...)))

(define pid?

(lambda (x)

(and (vector? x)

(> (vector-length x) 0)

(eq? (vector-ref x 0) pid-tag))))

This representation was not used because type testing (a frequent operation
in pattern matching) is more expensive in this representation. One more test is
required for non-tuples as shown above and many more tests for tuples (we must
check that the first element is not one of the tags pid-tag, etc).

6.5 Functions

Scheme procedures are the obvious counterpart of Erlang functions. Erlang func-
tions are of fixed arity so the variable arity mechanism of Scheme is not necessary.
Both Erlang and Scheme can create and call functional objects.

Unfortunately, this direct representation does not support error detection.
Erlang’s general function calling mechanism needs to ensure that the function
that is being called is of the appropriate arity, and signal a run time error if
it isn’t. Because there is no standard way in Scheme to extract the arity of a
procedure or to trap the application of a procedure to the wrong number of
arguments, functional objects are represented as a tagged vector which contains
the function’s arity and the corresponding Scheme closure.

Toplevel functions of a module contain the arity information in their name
so no arity test is needed when they are called. For example the function bar
of arity 2 in module foo is translated to a Scheme lambda-expression of ar-
ity 2 bound to the global variable foo:bar/2 (a valid variable name in Scheme).
A call such as foo:bar(1,2) is then translated to a Scheme call to foo:bar/2
which is guaranteed to be bound to a procedure of arity 2.

6.6 Ports, Pids, References and Binaries

The remaining Erlang data types can be represented with tagged Scheme vectors
as shown above. Ports, which allow interaction with external processes (such as
device drivers written in C), will clearly have to be built with some implemen-
tation specific extension to Scheme (i.e. a foreign function interface). There are
no raw binary array data types in standard Scheme so a space inefficient vector
based representation must be used. Scheme strings can’t be used because there
is no constraint on the size of characters and the integer->char procedure may
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not implement a natural encoding (such as ASCII). A compact representation is
possible in Gambit-C by using bytevectors (arrays of 8, 16 and 32 bit integers).

7 Front End

To ensure compatibility with existing Erlang compilers, Etos’ parser specifica-
tion was derived from the one for the JAM interpreter and processed by our
own Scheme parser generator [8,5]. The original parser constructs a parse tree
built of tuples. Because Etos needs to attach semantic information on the nodes
of the parse tree, a conversion phase was added to extend the tree nodes with
additional fields. This conversion also computes the bound variables at each
node and performs constant propagation and constant folding. Constant propa-
gation and folding are mainly needed to avoid allocation of structures which are
constant, such as in the definition f(X) -> Y={1,2}, [X,Y,3,4]. which gets
compiled as though it were: f(X) -> [X|[{1,2},3,4]]. The list [{1,2},3,4]
is represented internally as the Scheme constant list (#(tuple 1 2) 3 4).

Following this, the free variables before and after each node are computed.
This is done as a separate pass because the bound variable analysis requires a left-
to-right traversal of the parse tree, whereas the free variable analysis requires a
right-to-left traversal. The free variables are needed to efficiently translate case,
if, and receive expressions, which is explained in the next section.

8 Binding and Pattern Matching

8.1 Binding in Erlang

Erlang’s approach for binding variables is a relic of its Prolog heritage. Binding
is an integral part of pattern matching. Once it is bound by a pattern matching
operation, a variable can be referenced in the rest of a function clause but can’t
be bound again (unless it has become an “unsafe” variable, see below). For
example, in f({A,B}) -> [X,X,X]=A, B+X. the function f will pattern match
its sole argument with a two-tuple. In the process, the variables A and B get
bound to the first and second element respectively. After this, A is referenced
and pattern matched with a list containing three times the same element. Note
that the first occurrence of X binds X to the first element of the list and the
remaining occurrences reference the variable.

8.2 Binding in Scheme

In Scheme the basic binding construct is the lambda-expression and binding oc-
curs when a procedure is called, as in ((λ (x) (* x x)) 3). Here the variable x
is bound to 3 when the closure returned by evaluating the lambda-expression is
called with 3. Scheme also has the binding constructs let, let* and letrec but
these are simply syntactic sugar for lambda-expressions and calls. For example
the previous expression is equivalent to (let ((x 3)) (* x x)).
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Erlang syntactic categories: 〈const〉: constant
〈ubvar〉: unbound variable
〈bvar〉: bound variable
〈exp1〉, 〈exp2〉: arbitrary expressions
〈pat1〉, 〈pat2〉: arbitrary patterns
〈fn〉: function name

Expression translation: E(〈const〉, k) = (k C(〈const〉))
E(〈bvar〉, k) = (k N(〈bvar〉))
E(〈pat1〉=〈exp1〉, k)=E(〈exp1〉,(λ(v1)(P (〈pat1〉, (kv1), (erl-exit-badmatch))v1)))
E(〈exp1〉,〈exp2〉, k) = E(〈exp1〉, (λ (v1) E(〈exp2〉, k)))
E(〈exp1〉+〈exp2〉, k)=E(〈exp1〉, (λ(v1)E(〈exp2〉,(λ(v2)\!(k(erl-add v1 v2))))))
E(〈fn〉(〈exp1〉), k) = E(〈exp1〉, (λ (v1) (k (N(〈fn〉)/1 v1))))

Pattern matching translation: P (〈ubvar〉, s, f) = (λ (N(〈ubvar〉)) s)

P (〈bvar〉, s, f) = (λ (v1) (if (erl-eq-object? v1 N(〈bvar〉)) s f))
P ([], s, f) = (λ (v1) (if (erl-nil? v1) s f))
P ([〈pat1〉|〈pat2〉], s, f) = (λ (v1)

(if (erl-cons? v1)

(P (〈pat1〉,(P (〈pat2〉,s,f)(erl-tl v1\!)\!), f)
(erl-hd v1))f))

Auxiliary functions: C(const): translate an Erlang constant to Scheme

N(name): translate an Erlang variable or function name to Scheme

Note:
vn stands for a freshly created variable which will not conflict with other variables.

Fig. 1. Simplified translation algorithm for a subset of Erlang.

8.3 Translation of Binding and Pattern Matching

To translate an Erlang binding operation to Scheme it is necessary to nest the
evaluation of the “rest of the function clause” inside the binding construct. This
can be achieved by performing a partial CPS conversion, as shown in Figure 1.

The translation function E has two parameters: the Erlang expression to
translate (e) and a Scheme lambda-expression denoting the continuation which
receives the result of the Erlang expression (k). E returns a Scheme expression.

E makes use of the function P to translate pattern matching. P ’s arguments
are: the pattern to match and the success and failure Scheme expressions. P
returns a one argument Scheme lambda-expression which pattern matches its
argument to the pattern, and returns the value of the success expression if there
is a match and returns the value of the failure expression otherwise.

When an Erlang function is translated, E is called on each function clause
to translate the right hand side with the initial continuation (λ (x) x) (i.e. the
identity function). Note that the continuation k and all lambda-expressions gen-
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erated in the translation are always inserted in the function position of a call.
This implies that in the resulting Scheme code all the lambda-expressions gener-
ated can be expressed with the let binding construct (except for those generated
in the translation of functional objects, which is not shown). To correctly imple-
ment tail-calls, an additional translation rule is used to eliminate applications of
the identity function, i.e. ((λ (x) x) Y )→ Y .

The translation algorithm is not a traditional CPS conversion because func-
tion calls remain in direct style (i.e. translated Erlang functions do not take
an additional continuation argument). This partial CPS conversion is only used
to translate Erlang binding to Scheme binding. A remarkable property of func-
tion E is that it embeds k in the scope of all Scheme bindings generated in the
translation of e. This is important because k may have free variables which must
resolve to variables bound in e. This is achieved by inserting k inside E(e, k)
at a place where the variables are in scope. Similarly, P always embeds s (the
success expression) in the scope of all Scheme bindings generated. This is useful
to handle expressions such as Z=(X=1)+(Y=2), X+Y+Z which reference variables
bound inside previous expressions (here X and Y).

Now consider the Erlang expression [X|Y]=foo:f(A), X+bar:g(Y). This is
translated to the following Scheme expression (if we assume that A is bound):

(let ((v7 ^a))

(let ((v5 (foo:f/1 v7)))

(let ((v6 v5))

(if (erl-cons? v6)

(let ((^x (erl-hd v6)))

(let ((^y (erl-tl v6)))

(let ((v1 v5))

(let ((v2 ^x))

(let ((v4 ^y))

(let ((v3 (bar:g/1 v4)))

(erl-add v2 v3)))))))

(erl-exit-badmatch)))))

There are many useless bindings in this code. In the actual implementation, the
translator keeps track of constants, bound variables and singly referenced expres-
sions and propagates them to avoid useless bindings. With this improvement the
code generated is close to what we would expect a programmer to write:

(let ((v5 (foo:f/1 ^a)))

(if (erl-cons? v5)

(erl-add (erl-hd v5) (bar:g/1 (erl-tl v5)))

(erl-exit-badmatch))))))
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8.4 Translation of Conditionals

The case, if, and receive constructs perform conditional evaluation. The case
construct evaluates an expression and finds the first of a set of patterns which
matches the result, and then evaluates the expression associated with that pat-
tern. The receive construct is like case except that the object to be matched
is implicit (the next message in the process’ mailbox), no error is signaled if
no pattern matches (it simply moves to the following message in a loop until a
match is found), and a timeout can be specified. The if construct is a degen-
erate case where each clause is only controlled by a boolean guard (no pattern
matching is done).

These conditional constructs must be handled carefully to avoid code dupli-
cation. Consider this compound Erlang expression containing X*Y preceded by
a case expression: case X of 1->Y=X*2; Z->Y=X+1 end, X*Y.

This case expression will select one of the two bindings of Y based on the
value of X. After the case, Y is a bound variable that can be referenced freely.
On the other hand Z is not accessible after the case because it does not receive
a value in all clauses of the case (it is an “unsafe” variable after the case).

The case construct could be implemented by adding to the translation func-
tion E a rule like Figure 2a. Note that the continuation k is inserted once in the
generated code for each clause of the case. This leads to code duplication which
is a problem if the case is not the last expression in the function body and the
case has more than one clause. If the function body is a sequence of n binary
case expressions, some of the code will be duplicated 2n times.

This code explosion can be avoided by factoring the continuation so that it
appears only once in the generated code. A translation rule like Figure 2b would
almost work. The reason it is incorrect is that k is no longer nested in the scope
of the binding constructs generated for the case clauses, so the bindings they
introduce are not visible in k.

A correct implementation has to transfer these bindings to k. This can be
done by a partial lambda-lifting of k as shown in Figure 2c. The arguments of
the lambda-lifted k (i.e. vk) are the result of the case (i.e. vr) and the set of
bound variables that are added by the clauses of the case and referenced in k
(i.e. AV ). Each clause of the case simply propagates these bindings to vk. AV
can be computed easily from the free variables (it is the difference between the
set of free variables after the case and the set of free variables after the selector
expression). The lambda-lifting is partial because vk may still have free variables
after the transformation.

This lambda-lifting could be avoided by using assignment. Dummy bindings
to the variables AV would be introduced just before the first pattern matching
operation. Assignment would be used to set the value of these variables in the
clauses of the case. This solution was rejected because many Scheme systems
treat assignment less efficiently than binding (due to generational GC and the
assignment conversion traditionally performed to implement call/cc correctly).

In the actual implementation of the pattern matching constructs, the patterns
are analyzed to detect common tests and factor them out so that they are only



Compiling Erlang to Scheme 311

E( case 〈exp0〉 of

〈pat1〉 -> 〈exp1〉;
〈pat2〉 -> 〈exp2〉
end

, k) = E(〈exp0〉, (λ (v0)

(P (〈pat1〉,
E(〈exp1〉, k), ;;; duplication of k
(P (〈pat2〉,

E(〈exp2〉, k), ;;; duplication of k
(erl-exit-case-clause))

v0))
v0)))

a) Inefficient translation of the case construct.

E( case 〈exp0〉 of

〈pat1〉 -> 〈exp1〉;
〈pat2〉 -> 〈exp2〉
end

, k) = E(〈exp0〉, (λ (v0)

(let ((vk k)) ;;; k not in right scope
(P (〈pat1〉,

E(〈exp1〉, vk),
(P (〈pat2〉,

E(〈exp2〉, vk),
(erl-exit-case-clause))

v0))
v0))))

b) Incorrect translation of the case construct.

E( case 〈exp0〉 of

〈pat1〉 -> 〈exp1〉;
〈pat2〉 -> 〈exp2〉
end

, k) = E(〈exp0〉, (λ (v0)

(let ((vk (λ (vr AV...) (k vr))))

(P (〈pat1〉,
E(〈exp1〉, (λ (vr) (vk vr AV...))),
(P (〈pat2〉,

E(〈exp2〉, (λ (vr) (vk vr AV...))),
(erl-exit-case-clause))
v0))

v0))))

Where AV... is the set of bound variables that are added by the clauses of the case

and referenced in k.

c) Correct translation of the case construct.

Fig. 2. Translation of the case construct.

executed once (using a top-down, left-right pattern matching technique similar
to [4]). For example the translation of the following case expression will only
contain one test that X is a pair:

case X of [1|Y]->...; [2|Z]->... end
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9 Errors and catch/throw

The traditional way of performing non-local exits in Scheme is to use first-class
continuations. A catch is translated to a call to Scheme’s call/cc procedure
which captures the current continuation. This “escape” continuation is stored
in the process descriptor after saving the current escape continuation for when
the catch returns. A throw simply calls the current escape continuation with its
argument. When control resumes at a catch (either because of a normal return
or a throw), the saved escape continuation is restored in the process descriptor.

10 Concurrency

First-class continuations are also used to implement concurrency. The state of a
process is maintained in a process descriptor. Suspending a process is done by
calling call/cc to capture its current continuation and storing this continuation
in the process descriptor. By simply calling a suspended process’ continuation,
the process will resume execution.

Three queues of processes are maintained by the runtime system: the ready
queue (processes that are runnable), the waiting queue (processes that are hung
at a receive, waiting for a new message to arrive in their mailbox), and the
timeout queue (processes which are hung at a receive with timeout). The time-
out queue is a priority queue, ordered on the time of timeout, so that timeouts
can be processed efficiently.

There is no standard way in Scheme to deal with time and timer interrupts.
To simulate preemptive scheduling the runtime system keeps track of the func-
tion calls and causes a context switch every so many calls. When using the
Gambit-C Scheme system, which has primitives to install timer interrupt han-
dlers, a context switch occurs at the end of the time slice, which is currently set
to 100 msecs.

11 Performance

11.1 Benchmark Programs

To measure the performance of our compiler we have used mostly benchmark
programs from other Erlang compilers. We have added two benchmarks (ring
and stable) to measure the performance of messaging and processes.

– barnes (10 repetitions): Simulates gravitational force between 1000 bodies.
– fib (50 repetitions): Recursive computation of 30th Fibonacci number.
– huff (5000 repetitions): Compresses and uncompresses a 38 byte string with

the Huffman encoder.
– length (100000 repetitions): Tail recursive function that returns the length

of a 2000 element list.
– nrev (20000 repetitions): Naive reverse of a 100 element list.
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– pseudoknot (3 repetitions): Floating-point intensive application taken from
molecular biology [13].

– qsort (50000 repetitions): Sorts 50 integers using the Quicksort algorithm.
– ring (100 repetitions): Creates a ring of 10 processes which pass around a

token 100000 times.
– smith (30 repetitions): Matches a DNA sequence of length 32 to 100 other

sequences of length 32. Uses the Smith-Waterman algorithm.
– stable (5000 repetitions): Solves the stable marriage problem concurrently

with 10 men and 10 women. Creates 20 processes which send messages in
fairly random patterns.

– tak (1000 repetitions): Recursive integer arithmetic Takeuchi function. Cal-
culates tak(18,12,6).

11.2 Erlang Compilers

Etos was coupled with the Gambit-C Scheme compiler version 2.7a [10]. We will
first briefly describe the Gambit-C compiler.

The Gambit programming system combines an interpreter and a compiler
fully compliant to R4RS and IEEE specifications. The Gambit-C compiler trans-
lates Scheme programs to portable C code which can run on a wide variety of
platforms. Gambit-C also supports some extensions to the Scheme standard such
as an interface to C which allows Scheme code to call C routines and vice versa.

The Gambit-C compiler performs many optimizations, including automatic
inlining of user procedures, allocation coalescing, and unboxing of temporary
floating point results. The compiler also emits instructions in the generated code
to check for stack overflows and external events such as user or timer interrupts.
The time between each check is bound by a small constant, which is useful to
guarantee prompt handling of interprocess messages.

Gambit-C includes a memory management system based on a stop and copy
garbage collector which grows and shrinks the heap as the demands of the pro-
grams change. The user can force a minimum and/or maximum heap size with
a command line argument. Scheme objects are encoded in a machine word (usu-
ally 32 bits), where the lower two bits are the primary type tag. All heap allo-
cated objects are prefixed with a header which gives the length and secondary
type information of the object. Characters and strings are represented using the
Unicode character set (i.e. 16 bit characters). Floating point numbers are boxed
and have 64 bits of precision (like the other Erlang compilers used).

The implementation of continuations uses an efficient lazy copying strategy
similar to [15] but of a finer granularity. Continuation frames are allocated in a
small area called the “stack cache”. This area is managed like a stack (i.e. LIFO
allocation) except when the call/cc procedure is called. All frames in the stack
cache upon entry to call/cc can no longer be deallocated. When control returns
to such a frame, it is copied to the top of the stack cache. Finally, when the
stack cache overflows (because of repeated calls to call/cc or because of a deep
recursion), the garbage collector is called to move all reachable frames from the
stack cache to the heap.
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We have compared Etos version 1.4 [9] with three other Erlang compilers:

– Hipe version 0.27 [17], an extension of the JAM bytecode compiler that
selectively compiles bytecodes to native code;

– BEAM/C version 4.5.2 [14], compiles Erlang code to C using a register ma-
chine as intermediate;

– JAM version 4.4.1 [2], a bytecode compiler for a stack machine.

11.3 Execution Time

The measurements were made on a Sun UltraSparc 143 MHz with 122 Mb of
memory. Each benchmark program was run 5 times and the average was taken
after removing the best and worse times.

The Scheme code generated by Etos is compiled with Gambit-C 2.7a and
the resulting C code is then compiled with gcc 2.7.2 using the option -O1. The
executable binary sets a fixed 10 Mb heap.

Etos Time relative to Etos
Program (secs) Hipe BEAM/C JAM

fib 31.50 1.15 1.98 8.33
huff 9.74 1.48 5.01 24.81
length 11.56 2.07 3.44 34.48
smith 10.79 2.17 3.37 13.06
tak 13.26 1.12 4.37 11.09

barnes 9.18 2.08 – 4.07
pseudoknot 16.75 2.37 – 3.18

nrev 22.10 .84 1.83 10.98
qsort 14.97 .96 3.88 15.38

ring 129.68 .30 .31 1.92
stable 21.27 1.16 .64 2.43

Fig. 3. Execution time of benchmarks

The results are given in Figure 3. They show that Etos outperforms the other
Erlang compilers on most benchmarks. If we subdivide the benchmarks according
to the language features they stress, we can explain the results further:

– fib, huff, length, smith and tak, which are integer intensive programs,
take advantage of the efficient treatment of fixnum arithmetic in Gambit-C
and from the inlining of functions. Etos is up to two times faster than Hipe,
5 times faster than BEAM/C, and 35 times faster than JAM.

– On the floating point number benchmarks, barnes and pseudoknot, Etos is
also faster than the other Erlang implementations. In this case Etos is a little
over two times faster than Hipe. These programs crashed when compiled with
BEAM/C.
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– List processing is represented by nrev and qsort. On these programs Hipe is
a little faster than Etos (4% to 16%), which is still roughly two to four times
faster than BEAM/C. Etos’ poor performance is only partly attributable to
its implementation of lists:
1. Gambit-C represents lists using 3 word long pairs as opposed to 2 words

on the other systems. Allocation is longer and the GC has more data to
copy.

2. Gambit-C guarantees that interrupts are checked at bound intervals [11]
which is not the case for the other systems. For example, the code gen-
erated by Gambit-C for the function app (the most time consuming
function of the nrev benchmark) tests interrupts twice as often as Hipe
(i.e. on function entry and return).

3. The technique used by Gambit-C to implement proper tail-recursion
in C imposes an overhead on function returns as well as calls between
modules. For nrev the overhead is high because most of the time is spent
in a tight non-tail recursive function. Independent experiments [12] have
shown that this kind of program can be sped up by a factor of two to
four when native code is generated instead of C.

– Finally ring and stable manipulate processes. Here we see a divergence
in the results. Hipe is roughly three times faster than Etos on ring. Etos
performs slightly better than Hipe on stable but is not as fast as BEAM/C.
We suspect that our particular way of using call/cc to implement processes
(and not the underlying call/cc mechanism) is the main reason for Etos’
poor performance:
1. When a process’ mailbox is empty, a receive must call the runtime

library which then calls call/cc to suspend the process. These inter-
module calls are rather expensive in Gambit-C. It would be better to
inline the receive and call/cc.

2. Scheme’s interface to call/cc (which receives a closure, which will typ-
ically have to be allocated, and must allocate a closure to represent
the continuation) adds considerable overhead to the underlying call/cc
mechanism which requires only a few instructions.

12 Future Work

Etos 1.4 does not implement Erlang fully. Most notably, the following features
of Erlang are not implemented:

1. Macros, records, ports, and binaries.
2. Process registry and dictionary.
3. Dynamic code loading.
4. Several built-in functions and libraries.
5. Distribution (all Erlang processes must be running in a single user process).

We plan to add these features and update the compiler so that it conforms
to the upcoming Erlang 5.0 specification.
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An interesting extension to Etos is to add library functions to access Gambit-
C’s C-interface from Erlang code. Interfacing Erlang, Scheme and C code will
then be easy.

The Gambit-C side of the compilation can also be improved. In certain cases
the Scheme code generated by Etos could be compiled better by Gambit-C (its
optimizations were tuned to the style of code Scheme programmers tend to
write). It is worth considering new optimizations and extensions specifically de-
signed for Etos’s output. In particular, a more efficient interface to call/cc will
be designed. Moreover we think the performance of Etos will improve by a fac-
tor of two on average when we start using a native code back-end for Gambit.
We are also working on a hard real-time garbage collector and a generational
collector to improve the response time for real-time applications.

13 Conclusions

It is unfortunate that inessential mismatches between Erlang and Scheme cause
many small difficulties in the translation of Erlang to standard Scheme. Specif-
ically the translation would be easier and more efficient if Scheme: was case-
sensitive, did not separate the numeric class (integer, ...) and exactness of num-
bers, allowed testing the arity of procedures or a way to trap arity exceptions,
had the ability to define new data types, had a raw binary array data type, a
foreign function interface and a more efficient interface to call/cc. Fortunately,
mature implementations of Scheme, and Gambit-C in particular, already include
many of these extensions to standard Scheme so in practice it is not a big prob-
lem because such features can be accessed on an implementation specific basis
by using a file of macros tailored to the Scheme implementation.

When coupled with Gambit-C, the Etos compiler shows promising results.
It performs very well on integer and floating point arithmetic, beating all other
currently available implementations of Erlang. Its performance on list processing
and process management is not as good but we think this can be improved in
a number of ways. This is a remarkable achievement given that the front-end
of the compiler was implemented in less than a month by a single person. It
shows that it is possible to quickly reuse existing compiler technology to build a
new compiler and that a compiler with a deep translation pipeline (i.e. Erlang to
Scheme to C to machine code) need not be inefficient. Of course Etos’ success is to
a great extent due to the fact that Scheme and Erlang offer very similar features
(data types, functional style, dynamic typing) and that Scheme’s call/cc can
be used to simulate Erlang’s escape methods and concurrency. Our work shows
that Scheme is well suited as a target for compiling Erlang.
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Abstract. The explicitly parallel programming language Eden adds a
coordination level to the lazy functional language Haskell. This paper de-
scribes how a compiler and runtime system for Eden can incrementally
be built on the basis of a compiler and runtime system for the compu-
tation language. The modifications needed in the compiler are restricted
to specific orthogonal extensions. We show that Eden’s design for dis-
tributed memory systems proves beneficial for the construction of a lean
parallel runtime system.

1 Introduction

Due to the side effect freedom of the reduction semantics of functional lan-
guages it is possible to evaluate independent subexpressions in arbitrary order
or in parallel. This implicit parallelism is semantically transparent and allows the
automatic parallelization of functional programs. In available parallel functional
systems like the Glasgow parallel Haskell (GpH) system [17] or the Nijmegen
CLEAN system [19] the programmer is asked to place annotations in programs.
These annotations show the compiler which subexpressions can potentially be
evaluated in parallel. They only affect the runtime behaviour of programs.

Apart from the exploitation of implicit parallelism, explicit parallel con-
structs can be added in order to obtain more expressive parallel functional
languages and to carry the benefits of functional languages into the world of
parallel programming. Caliban [9] e.g. supports annotations for partitioning a
program into a static net of processes which communicate via head-strict lazy
streams. In data-parallel functional languages like Sisal [16], Nesl [2] and SCL [7]
special parallel structures and operations are provided to express data-parallel
algorithms on a high-level of abstraction. Concurrent functional languages like
Facile [8], Concurrent ML [14], Erlang [1] and Concurrent Haskell [12] add prim-
itive constructs for the dynamic creation of concurrent processes (spawn or fork)
and the exchange of messages between such processes (send and receive) to the
functional kernel language. The main purpose of concurrent languages is how-
ever the definition of reactive systems and not the speeding up of computations
by parallelism.
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The parallel functional language Eden [6,5] enables the programmer to
explicitly express systems consisting of processes and interconnecting channels.
This provides control over the granularity of processes and the communication
topology. The placement of processes and the sending and receiving across com-
munication channels will efficiently be handled by the system.

Eden is defined by adding a coordination language with explicit processes
to the computation language Haskell [11]. It is tailored for distributed memory
systems. The coordination language contains process abstractions, which define
schemes for processes in a functional style, and process instantiations, which
are expressions that generate processes and yield the respective outputs as their
result. A process that maps inputs in1, . . . , inm to outputs out1, . . . , outn can
be specified by the process abstraction

process (in1 , . . . , inm) -> (out1, . . . , outn)
where equation1 . . . equationr

The optional where part of this expression is used to define auxiliary functions
and common subexpressions which occur within the output expression.

Process abstractions have the type Process a b where Process is a newly
introduced type constructor and the type variables a and b represent the input
and output interface of the process, respectively. A process can have as input
(respectively, output) tuples of channels and data structures of channels [4]. In
the latter case, an annotation <.> is used to mark channels in types without
changing the types themselves.

Example 1 (Process ring). Consider the following process structure which occurs
in many parallel algorithms:

✣✢
✤✜

✲

❄

❄
✣✢
✤✜

✲

❄

❄

p 0

i0,

o0,

p 1

i1,

o1,

✣✢
✤✜

✲

❄

❄

p n

in ]

on ]

. . . ,

. . . ,

✲ � � �
ring

out = [

inp = [

The whole system can easily be defined in Eden as a process that maps a list of
input channels to a list of output channels and takes a process abstraction as a
parameter that defines the behaviour of the component processes. The number
of ring processes corresponds to the length of the input list:

procRing :: (Int -> Process (i,r) (o,r)) -> Process [<i>] [<o>]
procRing p
= process inp -> out
where (out, ring) = createRing p 0 inp ring

Note that the type of the process abstraction makes clear that the component
processes have two input and two output channels and that the integer identifier
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is not communicated but passed as a parameter before process creation. For the
definition of the function createRing we need the concept of process creation.

Process instantiations create processes and their input and output channels. In
such an expression, a process abstraction p is applied to a tuple of input expres-
sions, yielding a tuple of outputs. The child process uses n independent threads
of control in order to produce these outputs. Likewise, the parent introduces m
additional threads that evaluate input exp1, . . . , input expm:

(out1, . . . , outn) = p # (input exp1, . . . , input expm)

Example 1 (cont’d): The function createRing can now be defined as follows:

createRing :: (Int -> Process (i,r) (o,r)) ->
Int -> [i] -> r -> ([o],r)

createRing p k [] ringIn = ([], ringIn)
createRing p k (i:is) ringIn = (o:os, ringOut)

where (o, ringMid) = p k # (i,ringIn) -- process instantiation
(os,ringOut) = createRing p (k+1) is ringMid

The function createRing builds up the process ring element by element, as
long as further inputs are available. Finally, the two ends of the ring connection
are fused. The ring processes are created together with their communication
interface by the process instantiations p k # (i,ringIn).

Communication channels are unidirectional 1 : 1 connections which automat-
ically transmit output expressions which have been evaluated to normal form
before. Lists are transmitted in a stream-like fashion, i.e piecemeal. Upon pro-
cess creation, communication channels for the transmission of inputs and outputs
between parent and child will be established. An evaluation will be suspended
if it depends on input that has not yet been received.

The evaluation of Eden processes is driven by the evaluation of the out-
port expressions, for which there is always demand. This rule overrides normal
lazy evaluation in favour of parallelism. There will be a separate concurrent
thread of execution for each output channel. Thus, we find in Eden two levels
of concurrency: the concurrent or parallel evaluation of processes and the con-
current evaluation of different threads within processes. A process with all its
outputs closed will terminate immediately. On termination its input channels
will be eliminated and the corresponding outports in the sender processes will
be closed.

Furthermore, each process immediately evaluates all top level process in-
stantiations. This may lead to speculative parallelism and again overrules lazy
evaluation to some extent, but speeds up the generation of new processes and
the distribution of the computation.

No implicit or explicit sharing of information among processes is possible.
All kinds of communication and synchronization have to be performed using
communication channels. If a process abstraction contains global (free) variables
on process creation, they will be replaced by their bindings. As the bindings may
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be unevaluated, this may lead to the duplication of work. Complex parameters
should therefore be replaced by inputs.

The coordination constructs introduced up to now preserve referential trans-
parency. This is not true for the two further constructs which support the defini-
tion of reactive systems in Eden but will not be handled in this paper: dynamic
reply channels and predefined nondeterministic processes (see [5] for details).

In this paper we show how to extend the Glasgow Haskell compiler1 (GHC),
a publicly available fast implementation of Haskell, for Eden’s parallel implemen-
tation. We describe the compilation of Eden and present a lean parallel runtime
system which implements DREAM, the DistRibuted Eden Abstract Machine [3].
In the Eden parallel runtime system the process structures underlying parallel
algorithms can exactly be modelled. Process abstractions determine the process
interface and the environment in which the evaluation of the processes takes
place. There is no need for a (virtual) shared memory or global address space.
This simplifies the whole memory management including garbage collection. Sev-
eral parts of the GUM (Graph reduction for a Unified Machine model) runtime
system [18] for Glasgow parallel Haskell programs [17] have been reused for our
parallel system. Our work is not restricted to Eden, a similar approach might be
taken for other orthogonal extensions of sequential languages by a coordination
language.

2 The Eden Compiler

The key idea of the GHC which forms the basis for the Eden compiler is “compi-
lation by program transformation” [15]. Haskell programs are first transformed
into Core Haskell, a minimal functional language in which all other Haskell con-
structs can be expressed. Core Haskell is mapped to a still functional abstract
machine language STGL which has a simple denotational and operational seman-
tics. The operational semantics is defined by the Spineless Tagless G-machine
(STGM) which is an abstract description of the run-time system [13]. C is used
as a portable target language of the compiler. Figure 1 shows the structure of
GHC and the following extensions:

– The parser transforms the Eden constructs into Haskell expressions which
contain functions defined in a Haskell module EdenBase.

– An additional compiler pass is introduced for the transformation of STG to
PEARL. PEARL is an extension of the STG language by primitive parallel
constructs. It enables Eden-specific optimizations and transformations.

– During code generation special code for the new PEARL expressions is
generated.

2.1 Passing Eden Programs through the GHC Front End

From an implementation point of view, Eden’s extensions to Haskell can be seen
as “syntactic sugar” in the front end. We introduce for each parallel construct
1 see http://www.dcs.gla.ac.uk/fp/software/ghc
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Fig. 1. Overview of GHC’s compiler passes and our extensions

a Haskell function with the types chosen appropriately to ensure Eden’s type
restrictions.

We specify the Eden data type Process a b to distinguish between processes
and functions and introduce Haskell functions process and (#):

process :: (a -> b) -> Process a b
(#) :: Process a b -> a -> b

In order to force the evaluation of output expressions to normal form and to
model the sending of data via communication channels, the following classes are
included in the module EdenBase:

class Eval a => NFData a where
rnf :: a -> ()
rnf x = x ‘seq‘ ()

class NFData a => Transmissible a where
sendChan :: a -> a
sendChan x = rnf x ‘seq‘ sendVal x ‘seq‘ x

The class NFData has been introduced in [17]. Its method rnf reduces ex-
pressions to normal form. The default implementation is the head normal form
evaluation of the class Eval, which is sufficient for basic data types. For algebraic
data types, the normal form is produced by forcing the normal form evaluation of
all component expressions. The instance derivation tool described in [20] already
provides rules for creating such instances.
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The class Transmissible provides an overloaded function sendChan which
is used to make explicit the sending of values across communication channels.
In each of its instances, sendChan forces the evaluation of its argument and
relies on primitive functions sendVal, sendHead and closeStrm to perform the
communication2. The primitive functions are implemented by routines of the
underlying message passing system. The default implementation of sendChan is
used for all data types except lists. To communicate lists as streams the following
instance declaration is used:

instance Transmissible a => Transmissible [a] where
sendChan xs = sendStream xs ‘seq‘ xs

sendStream :: Transmissible a => [a] -> ()
sendStream [] = closeStrm
sendStream (x:xs) = rnf x ‘seq‘ sendHead x ‘seq‘ sendStream xs

The parser recognizes a process abstraction of the form

process (i1, ..., im) -> (o1, ..., on)
where decls

and transforms it into the following Haskell expression using the definitions in
the module EdenBase:

process ( \ (i1, ..., im) -> let decls
in (sendChan o1, ..., sendChan on) )

A process instantiation of the form pabs # (e1,...,em) is transformed into
pabs # (sendChan e1,..., sendChan em).
The other Eden constructs are handled similarly.

To sum up, we have only modified the parser in order to embed Eden’s
additional expressions in Haskell syntax. The resulting Haskell program is passed
through the subsequent, unchanged compiler passes, until STG syntax is reached.
In particular, the original type inference algorithm is used to check the types of
Eden programs.

2.2 Transforming STG into Pearl

Our intermediate language PEARL (Parallel Eden Abstract Reduction Lan-
guage) is an extension of the STG language by parallel constructs. PEARL’s
operational semantics is given by DREAM (DistRibuted Eden Abstract Ma-
chine), an orthogonal extension of the STGM, formally specified in [3].

In PEARL, multithreading is expressed explicitly. The following syntax is
used:

2 The communication functions need no argument for the destination of the commu-
nication, because this is implicitly given in the corresponding outport definition.
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{expr || ... || expr} -- multithreading
{frees} \p {args} body -- process abstraction
{var, ..., var} = p # {expr || ... || expr}

-- process instantiation

The multithreading expression means that the component expressions should
be evaluated concurrently, each by a separate newly created thread. It is used in
process instantiations and in the body of process abstractions to implement the
generation of threads. In the runtime system a primitive function createThreads
is provided for that purpose. A process abstraction is represented by a lambda
abstraction with free variables frees, flag p and parameters args. The process
instantiations occur as new letrec-bindings in PEARL.

In fact, the definition of primitive functions for process and (#) would have
been sufficient to generate process trees, in which a process only communicates
with its parent or children. To implement arbitrary process topologies and to
support the simultaneous instantiation of several connected processes, a special
code generation is necessary. Such opportunities for optimizations are difficult to
detect in Haskell or STG programs. This is the reason for introducing PEARL
and the additional compiler pass. It allows to re-collect the information about
processes and their interconnections.

The following translation schemes introduce the PEARL expressions for pro-
cess abstraction and instantiation.

STG syntax: var = process lf
lf = { frees } \n { args } body_exp
lf :: t -> (t1, ..., tn)

-->
PEARL syntax: var = { scheme, frees } \p { args }

let body’ = { frees, args } \n { } body_exp
in scheme body’

scheme = {} \n x -> case x of
(x1,..., xn) -> {x1 ||...|| xn}

The original process abstraction is transformed into a lambda abstraction with
flag p. In order to introduce the multithreading expression in the body of the
process abstraction, we extract the number of output channels from the type of
the original lambda form3 and apply a general scheme for the process body to
the actual body expression.

STG syntax: var = { p, arg } \n { } (#) p arg
arg = { vi_1, ..., vi_n } \n { } (vi_1, ..., vi_n)
p :: Process (it_1, ..., it_n) (ot_1, ..., ot_m)

-->
PEARL syntax: var = { vo_1,...,vo_m } \n { } (vo_1,...,vo_m)

{vo_1,...,vo_m} = p # {vi_1 ||...|| vi_n}
3 In the GHC, the type information is still accessible in the STG program.
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In STGL, the function (#) indicates a process instantiation. The input tuple of
this instantiation will be defined separately, as functions are applied to variables
only. The type of the process abstraction is used to determine the number of
outputs of the instantiation. PEARL’s process instantiation provides variables
for the inputs and outputs. The multithreaded evaluation is made explicit. Of
course, the output tuple of the process instantiation has to be reassigned to the
original variable var as a tuple.

Naturally, the most important part of the back end is the translation into C.
The compilation of STGL expressions and declarations remain unchanged. The
PEARL transformation is determined by the parallel run-time system which is
discussed in the following.

3 Eden’s Parallel Runtime System

In this section we give an outline of the parallel runtime system of Eden which
is based on the abstract machine DREAM [3]. We will show the advantages
of the design decisions underlying Eden with respect to efficiency and ease of
implementation in a distributed setting.

In DREAM, an Eden process consists of one or more concurrent threads
of control. These evaluate different output expressions which are independent of
each other and use a common heap that contains shared information (cf. Fig. 2).

Likewise, the state of a process includes information common to all threads
and the states of the threads. The shared part includes the heap and an inport
table, because input is shared among all threads. The state of a thread comprises
the state of a sequential abstract machine and a specification of the associated
outport referencing the connected inport. The interface of a process is visible in
the following way: the outports are associated to threads (runnable or blocked)
and the inports are enumerated in the inport table.

Communication channels are only represented by inports and outports which
are connected to each other. An outport is just the global reference to an inport.
These are the only global references needed. There are no explicit channel buffers,
but the data is transferred from the producer’s heap to the consumer’s heap using
the inport to find the location where the data should be stored.

We have already shown how we can benefit from our distinction of commu-
nication and coordination language by reusing a “state of the art” compiler for
the computation language Haskell. In addition, we can take advantage of the
runtime system GUM [18] for an implicitly parallel version of Haskell.

In the parallel functional runtime system GUM, the units of computa-
tion are called threads. Each thread evaluates an expression to weak head normal
form. A thread is represented by a heap-allocated Thread State Object (TSO)
containing slots for the thread’s registers and a pointer to heap-allocated Stack
Objects (SO). Each processor element (PE) has a pool of runnable threads.

The memory management in GUM is especially involved as it has to man-
age a virtual shared memory in which the shared program/data graph resides.
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Fig. 2. A DREAM process

The virtual shared memory requires global addresses which are (PE, local iden-
tifier) pairs. Local identifiers are mapped to local heap addresses using a Global
Indirection Table (GIT).

In order to transfer a subgraph from one PE to another, GUM uses sophisti-
cated packing/unpacking algorithms, which guarantee that all the links back to
the original graph are maintained and that the duplication of work is avoided.
GUM uses a passive work distribution scheme, where PEs looking for work send
out requests for work.

In principle, the GUM system is more complex than what is needed for Eden,
as it supports a virtual shared memory and is demand driven. But the overall
organization of the system, the interleaved evaluation of independent threads
on a single processor, and the graph packing and unpacking algorithms can be
incorporated in the Eden system, although they are used in different contexts.

The following aspects are fundamental in the design of a parallel runtime
system:

1. communication between processes
2. multithreading inside of processes and scheduling
3. management of parallel activities
4. garbage collection

3.1 Communication

In contrast to most other parallel systems based on lazy functional languages,
message data is evaluated and transmitted eagerly in Eden. This means that
a one-message protocol is used for communication, i.e. one that dispenses with
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request messages for remote data. This feature is very important for the effi-
cient implementation on distributed memory systems with considerable commu-
nication latencies. It furthermore alleviates the overlapping of computation and
communication. The threads will be suspended less frequently than in a two
message protocol, where a thread must be blocked after requesting the remote
data. Nevertheless, message passing will not be done blindly, but mechanisms
for controlling the flow of messages will be provided.

The sending of data across communication channels is initiated in special rou-
tines which correspond to the predefined communication functions in PEARL.
The receipt of any messages is handled by a communication unit which puts the
message contents into the heap and updates the inport table.
Graph Packing/Unpacking. To pack the result of an evaluation into a packet
that can be sent across the network, GUM’s graph packing and unpacking algo-
rithms can be used. In Eden, it is ensured that a subgraph to be output contains
only normal form data. This allows a substantial simplification of GUM’s pack-
ing algorithm which checks for each closure node whether it contains normal
form data or not in order to avoid the duplication of work. The effort for the
globalization of shared non-evaluated closures (thunks) is saved. The GUM al-
gorithms however have to be extended by the possibility to use more than one
packet for the transmission of large subheaps.

3.2 Multithreading

In order to prevent multiple threads of the same process from evaluating the same
shared expression, a synchronization mechanism is used, which can be found in
most of the parallel runtime systems for functional languages. The thread that is
the first to access a thunk, overwrites it with a so-called black hole or queueMe-
closure. Subsequent threads attempting to access it will be blocked in a special
queue and released when the first thread overwrites the queueMe-closure with
the result of the computation.

GUM’s thread management is perfectly appropriate for Eden’s threads. The
sequential evaluation of threads and the synchronization of threads within the
same process need not be changed. The heap-allocated TSOs are extended by
the outport specification, i.e. the global reference to the inport to which the
result of the thread’s computation must be sent.

Scheduling: Eden needs a fair scheduler for the evaluation of concurrent
threads. Every logical PE runs a scheduler, which has the following tasks:

– perform local garbage collection (see Section 3.4)
– run the communication unit, which processes incoming messages
– run the active threads according to the scheduling strategy

The scheduling strategy is selected in a way such that it balances the speed
of execution between senders and consumers. For efficiency reasons, it is vital to
adapt the amount of output produced to the demand for information. In partic-
ular, we throttle senders which threaten to flood the heap of slower receivers.
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Assigning Eden Processes to PEs. In order to map arbitrary process sys-
tems on a finite machine, we have to use interleaving of multiple processes on
the same PE. In order to keep process creation as cheap as possible, we provide
only one instance of the abstract machine per PE, which can execute several
Eden processes concurrently. These processes share the heap, the scheduler and
the runtime tables.

3.3 Management of Parallel Activities

Runtime Tables. In order to establish the communication structure of the
Eden process systems, new runtime structures have to be introduced. In every
PE, we use the following tables to represent the communication channels and
process interface information (see Fig. 3):

– The inport table maps locally unique identifiers of inports to heap addresses
and the global references to the connected outports. Until the correspond-
ing input data becomes available, a queueMe-closure is stored at the heap
address. The outport references are used for the propagation of termination
information.

– The outport table maps locally unique identifiers of outports to the corre-
sponding thread (TSO) address. The outport table is used for system man-
agement, i.e. garbage collection, termination, error detection, etc.

– The process table contains for each process identifier the linked lists of in-
port and outport identifiers. Several Eden processes share the same abstract
machine, and there is one entry in the process table for every process.
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A global reference consists of the identifier of a remote PE and an identifier which
is unique within this PE and will be used to index a runtime table.

Process Creation. The evaluation of a process instantiation leads to the cre-
ation of a child process which will be spawned on a processor element selected
by the load balancing mechanism. The local result of the process creation is the
tuple of new inports, which will be filled by the child process. The code generated
for process abstractions and process instantiations causes the following sequence
of actions (see Fig. 4):

I The parent PE evaluates a thread that encounters a process instantiation
pabs # (in1, ..., inm). The process abstraction pabs and the tuple of
input expressions in1, . . . , inm will be available as heap closures, the ad-
dresses of which are given on the stack within the TSO of this thread.

II The parent PE

– generates queueMe-closures for the new inports, to which the outports of the
new process will point, provides new identifiers for them and inserts them
into the inport and process tables.

– provides new identifiers for the new outports, which have to be connected to
the inports of the new process, inserts them into the outport and process
tables correspondingly.

– composes a createProcess message, which contains the processor identi-
fier, the whole subheap of the process abstraction4 and the identifiers for
the inports and outports of the process. On process creation the complete
subheap representing the process abstraction is duplicated to build the heap
of the new abstract machine of the new process. This ensures that the data
dependencies between processes are restricted to the ones represented in the
process interfaces.
The global references to the inports and outports are pairs with the processor
identifier and the respective port identifiers. The subheap can be packed
using our simplified packing algorithm, because thunks can be copied.

– sends this message to the “child PE” determined by the process distribution
and load balancing algorithm.

– creates new threads t1, . . . , tm for the evaluation of the input expressions for
the new process, which are suspended until the new process has returned an
acknowledgement message with the global references to the corresponding
inports.

– returns the tuple with the heap addresses of the queueMe-closures which
represents the (not yet available) result of the subprocess evaluation.

On receipt of the process creation message, the child PE
4 If the subheap contains a queueMe-closure which represents a shared expression cur-

rently under evaluation by another thread, we copy the original closure nevertheless.
This is possible because we use the so-called revertable black holes already imple-
mented for GUM. If it however depends on an inport, blocking cannot be avoided.
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– generates queueMe-closures for the inports of the new process and adapts
the inport and process table. The latter is extended by an entry for the
new process. Note that the child PE can immediately store the connected
outports of the parent PE in its inport table.

– generates new identifiers for the outports and extends the outport and pro-
cess table accordingly.

– unpacks the process abstraction and starts the initial thread (tb) of the pro-
cess evaluation which will build up the process environment and then spawn
the threads for the evaluation of the outport expressions via the primitive
function createThreads (ct). In the meantime the outport specifications of
these threads are stored in the state of the initial thread.

III The child PE sends an ack message to the parent process which contains
a mapping between the global addresses of connected inports and outports.
On receipt of the ack message, the parent PE writes the global references
to the child’s inports into the thread state objects of the outports thereby
reactivating the suspended threads. Additionally, it stores the connection of
the inports in its inport table.

Process Distribution and Load Balancing. Eden requires an active process
distribution algorithm. In the first version of the parallel runtime system we
use a random distribution algorithm, i.e. a processor that instantiates a new
process sends the createProcess message to a randomly selected PE. We plan
to investigate more elaborate versions of distribution and balancing algorithms,
which use bookkeeping about processor loads and information about process
topologies and which choose a suitable substitute in case the selected PE is
unable to accept the createProcess message.

3.4 Garbage Collection and Termination

There is no need for (general) global garbage collection of heap closures in the
Eden runtime system, because there is no global address space. The local garbage
collection proceeds as in the sequential system, but with additional roots in the
evacuation phase. This extension is similar to the treatment in the GUM system
where the entries of the global indirection table (GIT) are used as additional
roots for local garbage collection.

An obvious thing to do would be to use the inports as additional roots in the
Eden system, because these represent the only global references to the local heap.
But this approach hinders the detection of input that is no longer consumed by
any thread. For this reason, we decided to use the outports, or to be precise the
TSO addresses within the outport table, as additional roots for local garbage
collection. This corresponds to our view that there is always demand for output
and it facilitates to detect that an inport (i.e. its heap location) is not referenced
any more by any thread. In this case we can terminate the sending thread and
sometimes even break dependency cycles between processes (see below).
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Process Termination. Processes without any outports will be terminated as
they cannot contribute to the overall result of the program. This situation is
detected, when an outport is closed, by checking whether the outport list of the
corresponding process in the process table is empty. The inports of the process
will be closed and termination messages will be sent to the connected outports.

There are two situations in which an outport is closed: if its thread terminates
or if a termination message from the receiver process arrives. In the latter case
the PE closes the addressed outport and kills the corresponding thread. This may
lead to the termination of further processes. Likewise, there are two situations
in which an inport is closed: if its process terminates or if it is not referenced
any more. The latter is detected by the local garbage collection which checks
whether the queueMe-closures of the inports have been reached from the roots.

The closing of inports whose queueMe-closures can no longer be accessed
is an important vehicle for the termination of subsystems of processes which
are no longer needed, but maintain mutual input/output connections. Many of
such systems will shut down by the closing of inports, when the outports which
connect these systems with the main system will be closed. Fig. 5 visualizes
a scenario where a thread does no longer consume input data (1). The inport
will be closed after garbage collection and a termination message will be sent to
the corresponding outport (2). This leads to the termination of the associated
thread (3) and so on.

4 Related Work

In parallel functional runtime systems like Haskell’s GUM [18] and CLEAN’s
PABC (Parallel ABC machine) [10] the task of a process is the evaluation of
an expression to weak head normal form. The whole computation is demand
driven. The systems provide a global address space, sometimes called virtual
shared memory. Whenever the evaluation needs the contents of a global address,
a request message is sent to the processor element holding that address. In the
PABC machine such request messages trigger the evaluation of the expression at
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the global address. In GUM the graph at the global address is packed and trans-
ferred to the requesting processor element. Also process distribution is usually
done on demand, i.e. processor elements with empty work pools send requests
for work to other processor elements.

In the specification of a parallel process graph in a functional language
with parallelism annotations the communication channels will be modelled by
function parameters, in implementation terms global addresses, and the re-
quest/answer mechanism, a two message protocol, will be adopted for “commu-
nicating values along the communication lines” of a process graph. It depends
on the runtime system where expressions will be evaluated and when communi-
cation takes place. The Caliban system [9] tries to overcome this loss of topology
information by extracting process net information at compile time and translat-
ing it into a call to a special system primitive called procnet which implements
the run-time parallelism. This is only possible because the Caliban system is
restricted to static process systems.

Data-parallel languages like Sisal [16], Nesl [2] and SCL [7] provide only pre-
defined parallel operations and skeletons, which can be implemented by adding
parallel primitives to a sequential implementation. The development of a specific
parallel abstract machine is not required. Concurrent functional languages like
Facile [8], Concurrent ML [14], Erlang [1] and Concurrent Haskell [12] are based
on low level parallel primitives, which are implemented on a shared memory base
using fair schedulers to switch between the concurrent activities. Distributed im-
plementations are feasible, but require the implementation of a virtual shared
memory as in the runtime systems of functional languages with implicit paral-
lelism. The low level process model of these languages obstructs the abstraction
of a communication structure which could easily be mapped on a distributed
system.

5 Conclusions

As Eden extends Haskell by a coordination language which allows the explicit
definition of parallel process systems, an obvious approach to the implementation
of Eden is to extend a Haskell compiler and runtime system. In this paper we have
shown that the front end of the Glasgow Haskell compiler can be reused with
minor extensions for the compilation of Eden into STGL. The back end of the
compiler and the runtime system require changes, which are however designed as
orthogonal additions to the existing implementation. Kernel parts of the parallel
functional runtime system GUM could be reused and even simplified. The Eden
parallel runtime system has recently been implemented using MPI. A detailed
elaboration of this implementation, together with specific optimizations, is left
for future work.
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Abstract. This paper shows how lazy functional programs can be made
mobile by compiling them for the Java Virtual Machine. The Haskell
compiler it describes is based on the 〈ν,G〉-machine, which is designed for
implementing lazy functional languages on parallel processors. Although
this is not the obvious thing to do, it leads to a particularly elegant set of
translation rules. Sadly though, the speed of the resulting Java Virtual
Machine code programs is disappointing due to the surprisingly high
cost of memory allocation/reclamation in current implementations of
the Java Virtual Machine. In future work, we intend to find out whether
this high cost is a property of the Java Virtual Machine’s design or its
implementation.

1 Introduction

Java [AG96] programs are safe because they can be verified to ensure that they
will not damage the computer that they run on, and mobile because they can
be compiled for a widely available abstract machine [LY96]. As a result, Java
can be used for Internet programming; that is, for creating documents with
executable content. Haskell [PH97] programs are also safe because strong type-
checking ensures that they will not “go wrong” on the computer that they run
on, but they are not mobile because there is no widely available abstract machine
that they can be compiled for. As a result, Haskell cannot be used for Internet
programming, which is a shame.

This paper shows how lazy functional programs can be made mobile by com-
piling them for the same abstract machine used by Java. The Haskell to Java
Virtual Machine code compiler it describes is novel because it is based on the
〈ν,G〉-machine [AJ89], which is designed for implementing lazy functional lan-
guages on parallel processors, rather than the G-machine [Joh84], which is de-
signed for implementing them on sequential ones.

The paper is organised as follows. Section 2 introduces our version of the
〈ν,G〉-machine, and Section 3 shows how a small core functional language can
be compiled for it. Section 4 introduces the Java Virtual Machine, and Section 5
shows how 〈ν,G〉-machine code can be converted to Java Virtual Machine code.
Section 6 presents some benchmark figures. Section 7 mentions some closely
related work, and Section 8 concludes.
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2 The 〈ν,G〉-machine

This section describes the machine architecture and instruction set of our version
of the 〈ν,G〉-machine [AJ89].

2.1 Machine Architecture

The 〈ν,G〉-machine works by evaluating an expression to normal form. Expres-
sions are represented by graphs with three kinds of node (see Figure 1). A con-

V k

g0 g1 g2

❄❄❄

F c

g0 g1 g2 e1 e0

❄❄❄❄❄

C z c

g0

❄

Fig. 1. Constructed value, frame and canonical application nodes.

structed value node represents the application of a data value constructor to
some arguments. The node stores the constructor number, k, and has slots for
pointers to the graphs representing the arguments, gi. Basic values, such as inte-
gers and characters, are represented by constructed value nodes with appropriate
values of k and no argument slots. A frame node represents the application of a
function to all of its arguments. The node stores the function’s code, c, and has
slots for pointers to the graphs representing the arguments, gi. Additional space
is also provided for a small evaluation stack of pointers to graphs, ej, used when
the function is applied. A canonical application node represents the application
of a function to the first few of its arguments. The node stores the number of
arguments that are missing, z, the function’s code, c, and has slots for pointers
to the graphs representing the arguments that are present, gi.

Expressions are evaluated by graph reduction. Constructed value and canon-
ical application nodes are irreducible, and there is nothing to do. Frame nodes
are reducible, and can be rewritten by executing their code and updating them
with the normal form node that results. As the graph is reduced, new nodes
are attached to it and existing nodes are detached from it. From time-to-time, a
garbage collector recovers the memory occupied by the detached nodes. For us,
the most important feature of the 〈ν,G〉-machine architecture is that there are
many small evaluation stacks instead of a single large one. This makes it possi-
ble for the Java Virtual Machine garbage collector to recover all of the memory
occupied by detached nodes, so avoiding the space leaks that beset our earlier
G-machine-based implementation [Wak97].
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2.2 Instruction Set

Each 〈ν,G〉-machine instruction can be described by one or more state transition
rules of the form s1 ⇒ s2. A state maps names to graph nodes, with the name
of the frame node where reduction is currently taking place, νn, underlined. In
order to make the rules easier to read, we assume that any graph nodes not
explicitly mentioned in s2 are unchanged from those in s1.

Figure 2 gives state transition rules for the various NEW and UPD instruc-
tions that allocate and initialise graph nodes. In our version of the 〈ν,G〉-
machine, node allocation and initialisation are separated because the Java Vir-
tual Machine separates object allocation and initialisation.

{
ν1 �→ F (NEWVAL k m : c) a s

}
⇒

{
ν1 �→ F c a (ν2 : s)
ν2 �→ V ? ?

}

{
ν1 �→ F (NEWFRM f : c) a s

}
⇒

{
ν1 �→ F c a (ν2 : s)
ν2 �→ F ? ? ?

}

{
ν1 �→ F (NEWCAP f : c) a s

}
⇒

{
ν1 �→ F c a (ν2 : s)
ν2 �→ C ? ? ?

}
{

ν1 �→ F (UPDVAL k m : c) a (p1 · · · pm : ν2 : s)
ν2 �→ V ? ?

}

⇒
{

ν1 �→ F c a (ν2 : s)
ν2 �→ V k [p1 · · · pm]

}
{

ν1 �→ F (UPDFRM f m : c) a (p1 · · · pm : ν2 : s)
ν2 �→ F ? ? ?

}

⇒
{

ν1 �→ F c a (ν2 : s)
ν2 �→ F code(f) [p1 · · · pm] [ ]

}
{

ν1 �→ F (UPDCAP f m : c) a (p1 · · · pm : ν2 : s)
ν2 �→ C ? ? ?

}

⇒
{

ν1 �→ F c a (ν2 : s)
ν2 �→ C (arity(f)−m) code(f) [p1 · · · pm]

}

Fig. 2. Instructions for allocating and initialising graph nodes.

Figure 3 gives state transition rules for the GETSLOT and PUTSLOT instruc-
tions that move pointers between the argument slots and the evaluation stack
of a frame node.

Figure 4 gives the state transition rules for the DO instruction, which makes a
general tail-call by applying the canonical application node at the top of the eval-
uation stack to the n arguments below it. There are three possibilities to consider
here. First, if the canonical application node is missing more than n arguments,
the result is another canonical application node. Second, if the canonical appli-
cation node is missing exactly n arguments, the result is a frame node. Finally,
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{
ν1 �→ F (GETSLOT i : c) [. . . ai . . .] s

}
⇒

{
ν1 �→ F c [. . . ai . . .] (ai : s)

}
{

ν1 �→ F (PUTSLOT i : c) [. . . ai . . .] (p : s)
}
⇒

{
ν1 �→ F c [. . . p . . .] s

}

Fig. 3. Instructions for moving pointers between argument slots and evaluation
stack.

if the canonical application node is missing less than n arguments, a frame node
must be constructed and reduced to a canonical application node by an EVAL
instruction before DO can be tried again.

{
ν1 �→ F (DO n : c1) a1 [ν2, p1 · · · pn]
ν2 �→ C z c2 a2

}
, (z > n)

⇒
{

ν1 �→ C (z − n) c2 (a2++[p1 · · · pn])
}

{
ν1 �→ F (DO n : c1) a1 [ν2, p1 · · · pn]
ν2 �→ C z c2 a2

}
, (z = n)

⇒
{

ν1 �→ F c2 (a2++[p1 · · · pn]) [ ]
}

{
ν1 �→ F (DO n : c1) a1 [ν2, p1 · · · pn]
ν2 �→ C z c2 a2

}
, (z < n)

⇒
{

ν1 �→ F (EVAL : DO(n− z) : c1) a1 [ν3, pz+1 · · · pn]
ν3 �→ F c2 (a2++[p1 · · · pz]) [ ]

}

Fig. 4. The instruction for performing a general tail-call.

Figure 5 gives the state transition rules for the instructions that evaluate a
graph to normal form. These rules require the addition of a dump stack , d, to
the machine state. The EVAL instruction examines the node at the top of the
evaluation stack. If it is a constant value node or a canonical application node
then EVAL does nothing. If it is a frame node then EVAL saves the current point
of reduction on the dump stack before moving it to the frame node. The RET
instruction restores the current point of reduction from the dump stack, and
leaves a pointer to a result node on its evaluation stack.

Figure 6 gives state transition rules for the instructions that perform case-
analysis. The DUP instruction duplicates a pointer to a constructed value node
on the evaluation stack, and the TAG instruction pops this pointer and pushes
the node’s constructor number onto the dump stack. The CASE instruction uses
the constructor number to choose which branch to execute next. The SPLIT
instruction then provides access to the arguments of the constructed value node
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〈
{

ν1 �→ F (EVAL : c1) a1 (ν2 : s)
ν2 �→ V k a2

}
, d〉 ⇒ 〈

{
ν1 �→ F c1 a1 (ν2 : s)

}
, d〉

〈
{

ν1 �→ F (EVAL : c1) a1 (ν2 : s)
ν2 �→ C z c2 a2

}
, d〉 ⇒ 〈

{
ν1 �→ F c1 a1 (ν2 : s)

}
, d〉

〈
{

ν1 �→ F (EVAL : c1) a1 (ν2 : s)
ν2 �→ F c2 a2 [ ]

}
, d〉 ⇒ 〈

{
ν1 �→ F c1 a1 s
ν2 �→ F c2 a2 [ ]

}
, (ν1 : d)〉

〈
{

ν1 �→ F (RET : c1) a1 (p : s1)
ν2 �→ F c2 a2 s2

}
, (ν2 : d)〉⇒ 〈

{
ν1 �→ F c1 a1 s1

ν2 �→ F c2 a2 (p : s2)

}
, d〉

Fig. 5. Instructions for performing evaluation.

by copying them into free argument slots of the frame node at the current point
of reduction. A JMP instruction is sometimes used to join up control again.

〈
{

ν1 �→ F (DUP : c) a (p : s)
}

, d〉 ⇒ 〈
{

ν1 �→ F c a (p : p : s)
}

, d〉
〈
{

ν1 �→ F (TAG : c) a1 (ν2 : s)
ν2 �→ V k a2

}
, d〉 ⇒ 〈

{
ν1 �→ F c a1 s

}
, (k : d)〉

〈
{

ν1 �→ F (CASE l0 · · · ln : · · · lk : ck) a s
}

, (k : d)〉
⇒ 〈

{
ν1 �→ F ck a s

}
, d〉

〈
{

ν1 �→ F (SPLIT n k : c) a1 (ν2 : s)
ν2 �→ V k a2

}
, d〉 ⇒ 〈

{
ν1 �→ F c (a1++a2) (ν2 : s)

}
, d〉

〈
{

ν1 �→ F (JMP lk : · · · lk : c) a s
}

, d〉 ⇒ 〈
{

ν1 �→ F c a s
}

, d〉

Fig. 6. Instructions for performing case-analysis.

Of course, there are also instructions for manipulating basic values. The ADD
instruction, for example, pops two integers from the dump stack and pushes their
sum.

3 Compilation Rules

As in [AJ89], functional programs are assumed to be transformed into the core
functional language shown in Figure 7. A program is a set of functions of varying
arity. An expression is an argument or function applied to zero or more other
expressions, a data value constructor applied to all of its arguments, or a case-
expression with simple patterns.

For convenience, Figure 8 collects together the schemes used to compile core
functional programs into 〈ν,G〉-machine code. In these schemes, ρ is an envi-
ronment mapping variables to argument slots, and n is the number of the next
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p ::= fm1
1 x11 · · ·x1m1 = e1

...
fmn

n xn1 · · · xnmn = en

e ::= x e1 · · · em (m ≥ 0)

| fk
i e1 · · · em (m ≥ 0)

| ck e1 · · · em (m ≥ 0)
| case e in ck1 x1 · · ·xm : e1 ‖ · · · end

Fig. 7. The core language.

free slot. Cases that appear not to be covered by the schemes are assumed to
have been transformed away before compiling to 〈ν,G〉-machine code.

Only the R scheme is significantly different from that of the original paper.
Here, its result need not be in normal form because tail calls are dealt with by
returning a frame node representing the call, instead of making the call directly.
This frame node can be driven to normal form by a loop that is a variant
of Steele’s “UUO handler” [Ste78]. The R scheme is the only one that can
encounter a tail call, and doing things this way avoids overflowing the Java
Virtual Machine’s control stack (see Section 5).

As in the original 〈ν,G〉-machine, operations on basic values, such as integers
and characters, are compiled using a B scheme similar to that of the ordinary
G-machine [Joh84] (not shown in Figure 8).

4 The Java Virtual Machine

This section describes the machine architecture and instruction set of the Java
Virtual Machine [LY96].

4.1 Machine Architecture

A Java program is organised into classes , which have methods for performing
computation and describe the structure of objects . For every class, the Java com-
piler produces a file containing Java Virtual Machine code for the methods and
a constant pool of literals, such as numbers and strings, used by this code. The
local state of a method invocation is stored on the Java Virtual Machine stack. It
consists of the actual parameters and local variables, and a small operand stack
for the intermediate results of expression evaluations. An object is a record whose
fields may be either scalar values, methods or references to other objects. Stor-
age for objects is allocated from heap memory and later recovered by garbage
collection.
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F [[ fk
i x1 · · · xk = e ]] = R [[ e ]] [ x1 = 0 · · ·xk = (k − 1) ] k

R [[ x ]] ρ n = GETSLOT ρ(x); RET
R [[ x e1 · · · em ]] ρ n = C [[ em ]] ρ n; · · · C [[ e1 ]] ρ n; E [[ x ]] ρ n; DO m; RET

R [[ fk
i e1 · · · em ]] ρ n =



C[[ fk

i e1 · · · em]] ρ n;RET (m ≤ k)

C[[ em]] ρ n; · · · C[[ ek+1]] ρ n; (m > k)

E [[ fk
i e1 · · · ek]] ρ n;DO (m− k);RET

R [[ ck e1 · · · em ]] ρ n = C [[ ck e1 · · · em ]] ρ n; RET
R [[ case e in ck1 x1 · · · xm : e1‖ · · · end ]] ρ n

= E [[ e ]] ρ n; DUP; TAG; CASE l1, · · · lk;
l1 : SPLIT n m;
R[[ e1]] (ρ + [x1 = n, · · ·xm = n + m− 1]) (n + m)

· · ·

E [[ x ]] ρ n = GETSLOT ρ(x); EVAL; DUP; PUTSLOT ρ(x)

E [[ fk
i e1 · · · em ]] ρ n = C [[ fk

i e1 · · · em ]] ρ n; EVAL
E [[ ck e1 · · · em ]] ρ n = C [[ ck e1 · · · em ]] ρ n
E [[ case e in ck1 v1 · · · vm : e1‖ · · · end ]] ρ n

= E [[ e ]] ρ n; DUP; TAG; CASE l1, · · · lk;
l1 : SPLIT n m;
E [[ e1]] (ρ + [x1 = n, · · ·xm = n + m− 1]) (n + m);
JMP lx

· · ·
lx :

C [[ x ]] ρ n = GETSLOT ρ(x)

C [[ fk
i e1 · · · em ]] ρ n =




NEWCAP f ; C[[ em]] ρ n; · · · C[[ e1]] ρ n; (m < k)
UPDCAP f m

NEWFRM f ; C[[ em]] ρ n; · · · C[[ e1]] ρ n; (m = k)
UPDFRM f m

C [[ ck e1 · · · em ]] ρ n = NEWVAL k m; C [[ em ]] ρ n; · · · C [[ e1 ]] ρ n; UPDVAL k m

Fig. 8. The compilation schemes.

4.2 Instruction Set

Although the Java Virtual Machine has many instructions, we need only a few
of them here. Each Java Virtual Machine instruction can be described by a
state transition rule of the form s1 → s2. A state is a five-tuple consisting of
the instruction stream c, the object heap, h, the local variables, v, the operand
stack , s, and the control stack d.

Figure 9 gives the state transition rules for the new and checkcast instruc-
tions that allocate an object in the heap and check that the object is of the
expected type.
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〈 (new n : c), h, v, s, d 〉 → 〈 c, h + [x �→ n], v, (x : s), d 〉
〈 (checkcast n : c), [. . . x �→ n . . .], v, (x : s), d 〉 → 〈 c, [. . . x �→ n . . .], v, (x : s), d 〉

Fig. 9. Instructions for allocating and checking the type of an object.

Figure 10 gives the state transition rules for the aload and astore instruc-
tions that move object references between the local variables and the operand
stack.

〈 (aload i : c), h, [. . . vi . . .], s, d 〉 → 〈 c, h, [. . . vi . . .], (vi : s), d 〉
〈 (astore i : c), h, [. . . vi . . .], (x : s), d 〉 → 〈 c, h, [. . . x . . .], s, d 〉

Fig. 10. Instructions for moving objects between local variables and the stack.

Figure 11 gives the state transition rules for the dup, swap and sipush in-
structions that duplicate, exchange and push values on the operand stack.

〈 (dup:c), h, v, (x : s), d 〉 → 〈 c, h, v, (x : x : s), d 〉
〈 (swap:c), h, v, (x : y : s), d 〉 → 〈 c, h, v, (y : x : s), d 〉
〈 (sipush i : c), h, v, s, d 〉 → 〈 c, h, v, (i : s), d 〉

Fig. 11. Instructions for manipulating the operand stack.

Figure 12 gives the state transition rules for the goto and lookupswitch
instructions that transfer control within the Java Machine Code for a method.

〈 (goto lk. . . lk : ck. . . c), h, v, s, d 〉 → 〈 ck, h, v, s, d 〉
〈 (lookupswitch l0 . . . ln. . . lk : ck), h, v, (k : s), d 〉 → 〈 ck, h, v, s, d 〉

Fig. 12. Instructions for transferring control.
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Figure 13 gives the state transition rules for the instructions that invoke
a method and return its result. The instruction invokespecial p invokes the
initialisation method <init> with signature p of an object, and the instruction
invokevirtual (m, p) invokes method m with signature p of an object. The
areturn instruction returns an object reference from a method invocation.

〈 (invokespecial ((p1 . . . pn)pr) : c), h, v, (an . . . a1 : x : s), d 〉
→ 〈 jvmcode(p.<init>), h, [a1 . . . an], [ ], ((c, v, s) : d) 〉

〈 (invokevirtual (m, (p1 . . . pn)pr) : c), h, v, (an . . . a1 : x : s), d 〉
→ 〈 jvmcode(x.m), h, [a1 . . . an], [ ], ((c, v, s) : d) 〉

〈 (areturn:c), h, v, (x : s), ((c1, v1, s1) : d) 〉
→ 〈 c1, h, v1, (x : s1), d 〉

Fig. 13. Instructions for invoking methods and returning results.

Figure 14 gives the state transition rule for the getfield (f.r) instruction
that accesses a field f with type r of an object x known only at run-time.

〈 (getfield (f, r) : c), [. . . x . . .], v, (x : s), d 〉 → 〈 c, [. . . x . . .], v, (x.f : s), d 〉

Fig. 14. Instruction for accessing a field of an object.

5 Conversion to Java Virtual Machine Code

The conversion of 〈ν,G〉-machine code to Java Virtual Machine code uses the
Java class for graph nodes, N, shown in Figure 15, with subclasses for constructed
value, frame and canonical application nodes.

5.1 Constructed Value Node Classes

Constructed value node classes are provided as part of the run-time system, writ-
ten in Java. Figure 16 shows the class V3. The constructor method initialises k
and the argument slots. Both the evaluation method, eval, and the evalua-
tion step method, ev1, are trivial because the node is in normal form. The tag
method just returns the constructor number. All other methods are illegal.
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abstract public class N {

public abstract N eval();

public abstract N ev1();

public abstract N do1(N g);

public abstract int tag();

public abstract N cpy();

}

Fig. 15. Java code for the N class.

5.2 Frame Node Classes

A frame node class is produced by the compiler for every function in the pro-
gram. Figure 17 shows the Java equivalent of the class f frm produced for the
function f x y z = z. The constructor method just initialises the argument
slots. Two methods are used to perform evaluation. The first, the evaluation
step method, ev1, evaluates the frame node upto a constructor or a tail call.
The second, the evaluation method, eval, uses the evaluation step method and
a loop to evaluate the frame node to normal form. The loop is a version of
Steele’s “UUO handler” [Ste78]. By returning a node object whose ev1 method
is to be invoked instead of invoking this method directly, one can implement tail
calls without overflowing the Java Virtual Machine’s control stack. The eval-
uation step method has three stages. First, the frame node is blackholed by
setting all of its argument slots to null. Black-holing is a way of avoiding spack
leaks through nodes that will eventually be updated [Jon92]. Next, the result
node is obtained by running the frame node’s code. Finally, the frame node is
updated by setting the indirection field, ind to point to the result node. The
more common way of updating, by copying the normal form node over the ap-
plication node, is impossible because the Java Virtual Machine provides no way
to copy one object over another (the merits of both approaches are considered
in [Pey87]). The frame node’s code appears as a class method, obtained by trans-
lating 〈ν,G〉-machine-code into Java Virtual Machine code using the rules given
in Figure 18. Of course, our compiler uses the more efficient versions of the Java
Virtual Machine instructions, such as aload0 and bipush, whenever possible.

To preserve laziness, special treatment must be given to constant applicative
forms (or CAFs). The indirection field of the frame node for a CAF is made a
class variable shared between all instances of the class, so that as soon as one
instance of the CAF has been updated, all the others “feel the benefits”.

5.3 Canonical Application Node Classes

A canonical application node class is also produced for every function in the
program. Figure 19 shows the Java equivalent of the class f cap produced for
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final public class V3 extends N implements Cloneable {

public int k; public N s0, s1, s2;

public V3(N a2, N a1, N a0, int k) {

this.k = k; this.s0 = a0; this.s1 = a1; this.s2 = a2;

}

public N eval() { return this; }

public N ev1() { return this; }

public N do1(N g) { RT.Stop("V3.do1()"); return null; }

public N cpy() { RT.Stop("V3.cpy()"); return null; }

public int tag() { return this.k; }

}

Fig. 16. Java code for the V3 class.

the function f above. Constructor methods are provided for the different numbers
of arguments that the function f could take with some still missing (here, zero,
one and two). Each initialises the missing argument count, z, and the first few
argument slots. Again both the evaluation method, eval, and the evaluation step
method, ev1, are trivial because the node is in normal form. The do step method,
do1, extends a copy of a canonical application node with another argument,
and returns either the canonical application node or a frame node if there are
no longer any arguments missing. This is a rather clumsy way to implement
the DO instruction, but it is not supposed to happen very much [AJ89].

6 Benchmarks

A Haskell to Java Virtual Machine code compiler has been constructed using
the ideas described above, based on version 0.9999.4 of the Chalmers HBC com-
piler. Table 1 compares the execution speed of Haskell programs run by ver-
sion 1.2 Beta 2 of the SUN Java Virtual Machine with those run by version 1.3
of the Nottingham Hugs interpreter. The SUN Java Virtual Machine can either
interpret Java Virtual Machine code (INT), or compile it to SPARC machine
code “just-in-time” (JIT). These figures were recorded on a SUN UltraSPARC 1
workstation with a 140MHz processor, 64Mbytes of memory. and version 2.5.1
of the Solaris operating system. The first three benchmarks are small programs;
the remainder are large ones from the nofib suite [Par92]. For our compiler, the
timings are the best of three runs after an initial “warm up” run; for Hugs, they
are the best of three runs, each made immediately after starting the interpreter.
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final public class f_frm extends N implements Cloneable {

N ind, s0, s1, s2;

public f_frm(N a2, N a1, N a0) {

this.s0 = a0; this.s1 = a1; this.s2 = a2;

}

public N eval() {

N x, y;

x = this.ev1(); do { y = x; x = x.ev1(); } while (y != x);

return x;

}

public N ev1() {

if (this.ind != null) return this.ind.ev1();

else {

N a0 = this.s0; this.s0 = null;

N a1 = this.s1; this.s1 = null;

N a2 = this.s1; this.s2 = null;

return this.ind = this.code(a0, a1, a2);

}

}

public N do1(N g) { return this.eval().do1(g); }

public N cpy() { RT.Stop("f_frm.cpy()"); return null; }

public int tag() { RT.Stop("f_frm.tag()"); return 0; }

static N code(N a0, N a1, N a2) {

return a2; /* generated code for function body */

}

}

Fig. 17. Java code for the f frm class.
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T [[ CASE l0, · · · lk ]] = lookupswitch l0, · · · lk
T [[ DO n ]] = invokevirtual (cpy,()N)

swap; invokevirtual (do1,(N)N) (this line repeated n times)
T [[ DUP ]] = dup

T [[ EVAL ]] = invokevirtual (eval,()N)
T [[ GETSLOT i ]] = aload i
T [[ JMP l ]] = goto l
T [[ NEWCAP f ]] = new f cap; dup
T [[ NEWFRM f ]] = new f frm; dup
T [[ NEWVAL k m ]] = new Vm; dup
T [[ PUTSLOT i ]] = astore i
T [[ RET ]] = areturn

T [[ SPLIT n m ]] = checkcast Vm;
dup; getfield (s0,N); astore n;
· · ·
dup; getfield (sm−1,N); astore (n + m− 1)

T [[ TAG ]] = invokevirtual (tag,()I)
T [[ UPDCAP fk m ]] = invokespecial ((N1 · · · Nm)V)
T [[ UPDFRM fk m ]] = invokespecial ((N1 · · · Nm)V)
T [[ UPDVAL k m ]] = sipush k; invokespecial (Vm,(N1 · · · NmI)V)

Fig. 18. Instruction translation rules.

Benchmark Hugs Ours (SUN INT) Ours (SUN JIT)
Time (s) Time (s) Time (s)

calendars 2.1 3.2 8.1

clausify 4.0 5.9 8.3

soda 0.5 1.2 1.0

bspt 22.7 81.6 89.3

infer 6.5 125.0 119.1

parser 11.7 47.6 56.1

prolog 8.7 73.6 79.2

reptile 3.8 10.7 fails

Table 1. Benchmark figures for the SUN Java Virtual Machine.
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final public class f_cap extends N implements Cloneable {

int z; N s0, s1;

public f_cap() { this.z = 3; }

public f_cap(N a0) { this.z = 2; this.s0 = a0; }

public f_cap(N a1, N a0) { this.z = 1; this.s0 = a0; this.s1 = a1; }

public N eval() { return this; }

public N ev1() { return this; }

public N do1(N g) {

switch (--this.z) {

case 0 : return new f_frm(g, this.s1, this.s0);

case 1 : this.s1 = g; return this;

case 2 : this.s0 = g; return this;

}

return null; /* not reached */

}

public N cpy() {

try { return (N) super.clone(); }

catch (CloneNotSupportedException e) {

RT.Stop("f_cap.cpy()"); return null;

}

}

public int tag() { RT.Stop("f_cap.tag()"); return 0; }

}

Fig. 19. Java code for the f cap class.

Disappointingly, our compiler produces programs that run between 3 and 18
times more slowly than with Hugs when the Java Virtual Machine code is inter-
preted, and often run more slowly still when it is compiled “just-in-time”. There
are several reasons for this. Most importantly, we have done small experiments
that show that memory allocation/reclamation is around an order of magnitude
more expensive in the SUN Java Virtual Machine than in the Hugs run-time sys-
tem. Since lazy functional language implementations allocate so much memory,
this really hurts performance.

Next, the Java Virtual Machine performs/requires run-time checks that are
unnecessary for strongly-typed functional languages. Although memory is never
accessed through a null pointer, and the code that splits apart a constructed
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data value never gets one of the wrong sort, this is checked anyway as the
program runs. Also, there are the run-time support routines. In the Hugs imple-
mentation they are written in C and compiled once; in our implementation they
are written in Java and either interpreted or compiled “just-in-time”, which is
more expensive.

Finally, the Java Virtual Machine uses dynamic linking: at the start of each
program run, method references are resolved to memory addresses by loading
files from disk. In our benchmarking, we have tried to reduce the cost of dynamic
linking as much as possible be getting the computer’s operating system to cache
class files in memory during the “warm-up” run, so that it does not have to
access the disk again.

One might hope that other “just-in-time” compilers would do better than
the one from SUN, but unfortunately this is not so. Table 2 compares the execu-
tion speed of Haskell programs run with the Symantec “just-in-time” compiler
(part of SUN’s version 1.1.6 Java distribution) and the Microsoft “just-in-time”
compiler (part of Microsoft’s version 1.1 Visual J++ system). These figures were
recorded on a Gateway 2000 Solo notebook computer with a 166MHz processor,
48Mbytes of memory, and version 4.0 of the Windows NT workstation operating
system. A full investigation must wait for another time, but clearly these com-
pilers are optimising for a very different instruction mix from the one that they
are getting.

Benchmark Hugs Ours (ST JIT) Ours (MS JIT)
Time (s) Time (s) Time (s)

calendars 1 7 54

clausify 3 5 52

soda 5 2 3

bspt 16 198 2,237

infer 5 267 1,743

parser 8 118 865

prolog 7 203 1,299

reptile 4 19 228

Table 2. Benchmark figures for the Symantec and Microsoft Java Virtual Ma-
chines.

7 Related Work

In a previous paper, we described a Haskell to Java Virtual Machine code com-
piler using the G-machine [Wak97]. The problem with that work was the big
Java array used for the pointer stack. It proved to be a severe source of space
leaks because none of the nodes accessible from the array could be recovered by
the Java Virtual Machine garbage collector. Looking for a way to avoid space
leaks by splitting the big stack array into a linked-list of small ones, we soon
arrived at an abstract machine remarkably like the 〈ν,G〉-machine.
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Through personal communications, we have become aware of a number of
other researchers who have considered compiling lazy functional languages to
Java Virtual Machine code. At the University of Nijmegen, Rinus Plasmeijer
tried some experiments with a view to developing a compiler for the lazy func-
tional language Clean, but concluded that the Java Virtual Machine was not yet
efficient enough to make it worthwhile. A prototype Haskell compiler based on
the Glasgow Spineless Tagless G-machine was produced by Mark Tullsen at Yale
University [Tul97]. But for even the small benchmarks he tried, Tullsen found it
hard to get good performance from the Java Virtual Machine, and is no longer
working on the compiler. Gary Meehan and Mike Joy have produced a G-machine
based compiler for their pure, lazy, weakly-typed language, Ginger [MJ98]. This
compiler produces Java Virtual Machine code programs with the same order of
performance as our own, but which do not appear to be properly tail-recursive.

There has also been some work on compiling strict functional languages for
the Java Virtual Machine. Nick Benton of Persimmon IT has a compiler for
Standard ML, and Cygnus Support have a compiler for Scheme.

Aside from Java, other high-level languages have been compiled to Java Vir-
tual Machine code. Intermetrics have a compiler for Ada [Taf96], and the GNU
Project has a compiler for Eiffel [CC98]. Thorn surveys a number of other lan-
guages and systems for mobile code in [Tho97].

8 Conclusions

In this paper we have shown how lazy functional programs, such as Haskell, can
be made mobile by compiling them for the Java Virtual Machine. Basing the
compiler on a version of the 〈ν,G〉-machine is not the obvious thing to do, but it
leads to a particularly elegant set of translation rules. Indeed, we find it hard to
imagine a cleaner implementation. Currently, the speed of the resulting Java Vir-
tual Machine code programs is disappointing — programs run between 3 and 30
times more slowly than with an ordinary interpreter. This is largely due to the
surprisingly high cost of memory allocation/reclamation in current implemen-
tations of the Java Virtual Machine. Other functional language implementors
have built prototype compilers and found (but sadly not documented) much the
same problem. In future work, we intend to find out whether this high cost is a
property of the Java Virtual Machine’s design or its implementation.
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High-level languages support a rich syntactic structure involving bound vari-
ables and a variety of binding constructs. This structure contributes significantly
to the need for sophisticated program analyses during compilation. Providing
high-level, declarative descriptions of these analyses is an important step towards
designing these analyses and implementing them efficiently. Deductive systems,
utilizing a rich collection of logical constants, provide a suitable formalism for
specifying such descriptions, and the programming language λProlog provides a
means for implementing and experimenting with such deductive systems.

The suitability of λProlog for this task can be traced to two aspects of the
language. First, λProlog supports a high-level abstract syntax for programs in
which all binding and scoping constructs can be represented using λ-terms. This
representation supports a uniform treatment of α-conversion and substitution
for all such constructs. Second, λProlog supports the direct encoding of deduc-
tive systems as programs. The language exploits the structure of the high-level
abstract syntax and supports the construction of programs which manipulate
bound variables and substitutions in a simple and uniform manner. Hypothet-
ical and parametric reasoning allow complex tasks to be specified without the
use of explicit contexts or side conditions. The resulting programs offer clear,
concise, and logical descriptions of program analysis tasks, including semantic
definitions, optimizations, and translations. The logical nature of these specifi-
cations supports reasoning about their correctness.

We study the use of λProlog to specify the abstract syntax of simple pro-
gramming languages, the operational semantics of these languages, and various
translations and static analyses for these languages. Additionally, we discuss how
to reason about the correctness of some of these specifications. We focus on a
simple, functional language, but these techniques can be applied to a wide range
of languages.
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Abstract. We introduce a semantics of Logic Programming based on
an classical Game Theory, which is proven to be sound and complete
w.r.t. the traditional operational semantics and Negation as Failure. This
game semantics is based on an abstract reformulation of classical results
about two player games, and allows a very simple characterization of
the solution set of a logic program in terms of approximations of the
value of the game associated to it, which can also be used to capture in
a very simple way the traditional “negation as failure” extensions. This
approach to semantics also opens the way to a better understanding of
the mechanisms at work in parallel implementations of logic programs
and in the operational semantics of logic programs with negative goals. 1

1 Introduction

Game theory has found, in recent years, various applications in the research field
of programming languages semantics, so that game theory is a very active re-
search subject in computer science. After the preliminary works of Lamarche [12],
Blass [5] and Joyal [11] in the early 90s, the works of Abramsky, Malacaria and
Jagadeesan [2] lead to the first fully abstract semantics for functional (PCF)
or imperative (Idealized Algol) languages. Then, more recently, specialists of
Linear Logics got interested in links between games and the geometry of inter-
action [16], whereas Curien and Herbelin showed that certain classical abstract
machines could be interpreted in terms of games [7].

On the down side, all these relevant works seem to use the vocabulary of
games (player, move, game, strategy) more than the results and the techniques
of traditional Game Theory: typically, nobody is interested to know, in those
games, if there is a winner, and what he wins; the focus there is on the dynamic
aspect of player interaction, and game composition, not on the gain.
1 A full version of the paper is available as

http://www.dmi.ens.fr/˜dicosmo/plgames.ps.gz

C. Palamidessi, H. Glaser, and K. Meinke (Eds.): PLILP’98, LNCS 1490, pp. 355–373, 1998.
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This should not be taken as a criticism, but as proof of the richness of Game
Theory, which can be useful even when one only takes its vocabulary: the gen-
erality of the concepts it manipulates (arenas, multiple and independent agents,
strategies of cooperation or of non-cooperation, quantification of the remunera-
tion after each game) and their intuitive nature, already provide a powerful met-
alanguage that allows many of the aspects of modern programming languages
to be tackled.

Nevertheless, it seems to us of the highest interest to be able to show, for the
first time, that classical notions like payoff, propagation functions and evaluation
of a game tree are not sterile in the semantics of programming languages. In this
paper, the gain will be the central notion, while the interaction part, like in
classical Game Theory, will be rather trivial.

We will first present in this paper a simple framework for classical two player
games, in which well known results from Game Theory, like the monotonicity of
evaluation by subgames, can be reformulated in an abstract way, via the notion
of evaluation structure and then take advantage of this abstract reformulation
to apply these results no longer to real numbers representing monetary payoffs,
but to algebraic structures built out of a notion which is at the core of logic
programming: idempotent substitutions.

We will see how a logic program can be interpreted as a set of rules for a two
player game and how traditional semantics like the minimum Herbrand model,
the computed answers, and even negation as failure can all be recovered by means
of optimistic or pessimistic approximation of the value of the game tree over a
suitable domain of values (typically a set of sets of idempotent substitutions).
We will also hint at some new possible semantics suggested by taking as value
domain the complete lattice of idempotent substitutions described in [15].

Let us say first of all that our goal is not to prove again some well established
theorems in Logic Programming, but to show that a simple, natural, intuitive
framework based on the classical notion of game can be used to recover them,
in an unified framework.

The slogan ”each logic program is a game” arose by a sort of a side effect:
while working on bisimulation games for concurrency theory [13], we imple-
mented a Prolog prototype which turned out to be very simple (only six lines of
code). Actually, it was too simple: it was impossible not to have the clear feeling
that we had come across, in one way or the other, a structural shift of the prob-
lem, so we looked more closely at the mechanisms at work, and the outcome of
this investigation was the foundation of a game semantics for logic programming
that we present in this paper.

Some Basic Notions of Game Theory

Game theory is the branch of mathematics which tries to model and to under-
stand the behavior that rational agents should choose in a competitive arena.
We want to informally recall here some basic intuitive notions of game theory
which form the basis of the next section and corresponds, mainly, to the intu-
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itive idea of randomized strategic games and refer the interested reader to the
comprehensive handbook [1] for a recent introduction to the topic.

Classically, a game is given extensionally as a tree in which the root repre-
sents the initial position of a play, the nodes are positions and edges are moves.
In a general n-players game, there are n + 1 players (n human players plus an
(optional) special one, the chance player, used to model random processes, like
throwing a dice), and nodes are labeled with the name of the player whose turn
is to play in that position. The payoff function is a function giving terminal
positions p an n-ary vector of values (usually reals), in which the jth compo-
nent represents the amount paid (or received) by player j when the game ends
in position p. A strategy for player j is a function which associates to each of
the (human) player’s node exactly one of his moves in that player’s position: it
describes the way he will behave in a play. The most studied games in Game
Theory have been the two players, zero-sum games: for them, the Minimax The-
orem (von Neumann, 1928 [17]) states that the dual approaches of maximizing
one’s gains or minimizing one’s losses lead to the same expected value for each
player, so each game has one optimal value, the minimax value. This can be
rephrased in terms of game trees by saying that one can compute the value of a
two-player, zero-sum game by assigning the payoff values to the terminal nodes
of the game tree, and propagating them bottom-up applying theMax (resp.Min)
propagation functions to the values of the player (resp. opponent) subtrees.

It is important to note that the choice of the Max and Min functions depends
on the game: usually they are the maximum and minimum over a set of reals,
but there are well-known cases where a different function is needed. For example,
in the presence of random events (dices etc.), the mean value is used instead of
the maximum. Similarly, the game presented in this paper uses substitutions as
values and intersection of substitutions as the Max function. In the next section,
we will rephrase and formalize these notions for two player games in an abstract
setting, and clearly separate the notion of game rules, and game tree from the
notion of evaluation.

Structure of the Paper

The paper is organized as follows: in Section 2 we set up the formal framework
for abstract two player games, and reformulate and prove in this framework some
classical results related to approximations and strategies. Then we introduce the
game associated to a logic program in Section 3, and turn to show how, with
the proper choice of evaluation structures defined in Section 4, several classical
semantics can be recovered (Sections 5 and 6). Finally, we hint at some new
semantics and various applications in the Conclusions 7.
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2 An Abstract Framework for Two Player Games

In this section we introduce a general framework which is quite convenient to
describe the large class of two-player games. We will introduce in an abstract
way the general notions of a game tree, evaluation of a game tree, strategy and
winning strategy, and a few key lemmas that are at the core of the approximation
procedures of infinite (or very large) game trees. This will allow us later on to
easily deal with various variants of games and valuations specialized for Logic
Programming.

2.1 Game Tree

The intuitive notion of a game is best described as a tree, which is a conve-
nient way, given the rules of the game, to describe the set of all possible plays
starting from a given initial position, so that a particular play is just a branch
of the tree. Informally, a (possibly infinite) Game Tree is a tree whose nodes
are divided into two sets of Player and Opponent nodes, representing Player
and Opponent positions, and whose edges are labeled by moves. This tree is
usually given implicitly by defining the “rules of the game”, which is just a func-
tion P assigning to each Player or Opponent position the set of legal moves,
and an initial position G. From these elements, it is easy to build the whole
tree Γ (P,G). We will denote game trees using (possibly) infinite terms built
via the constructors PLeaf(G) and OLeaf(G) (where G is a terminal position) ,
the n-ary constructors P and O , and the binary constructor Label used to label
an edge in the tree with the corresponding move of the game (we will use often a
more convenient notation for labeling egdges, writing for example P(m1

Γ1
, .., mn

Γn
)

instead of P(Label(m1,Γ1), .., Label(mn,Γn)). Typically, when drawing such
trees, a Player node is depicted by a circle, while an Opponent node is depicted
by a square.

2.2 Game Evaluation

The major aim of game theory is to study the value associated to a game,
traditionally representing a sort of “best” gain Player can expect to get given
an initial position. This value of the game is obtained by combining in some
way all possible gains Player can obtain in all possible plays starting from the
given initial position. Traditionally, this is done by assigning a gain (or payoff)
from a given domain D, usually the real numbers, only to the final positions, by
means of a function EvaluateT erminal, and these values are then propagated
bottom up to the root by means of two functions � and � which give the
value of an internal Player or Opponent node, knowing the values of its sons.
We require that the domain of values be a partial order (D,≤) with a maximum
and a minimum element �,⊥. We will additionally require (D,≤) to be ω-chain
complete (i.e. any ascendent or descendent chain has lub and glb respectively) to
deal with infinite game trees, but for finite game trees this is not necessary. The
propagations functions � and � are associative and commutative variable n-ary
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operations (n ≥ 1) that can be seen as generated by their binary version, so we
will often give only the binary version in what follows.
In general it is important to take into account not only the strength of the
terminal position, but also the way by which this position has been reached: for
this, we add to the payoff of a terminal position a component which depends on
the path to that node, i.e the sequence of moves of the play. This can be stated
in an elegant way by saying that, at each turn, a player has to pay something
to stay in the game, so that each move of the game has a local payoff (given
by a function Price), which gets accumulated as the play proceeds by means
of a function +. More formally, an evaluation structure for a game is a 9-uple
collecting the above elements:

(D, �, ⊥, ≤, �, �, +, EvaluateT erminal, Price)

Notation 1 When interested in the value of a game tree, we will often need to
label edges not only with the moves, but also with their associated local payoffs.
Since we are more interested in payoffs than move names, we will just annotate
the edges with their local payoffs, and, with a slight abuse of notation, write
P(Price1Γ1

, .., Pricen

Γn
) instead of P( (m1,Price1)

Γ1
, .., (mn,Pricen)

Γn
).

Given an evaluation structure, it is possible to compute the value of a finite
game tree as follows:

Definition 1 (Value of a finite game tree).
The value of a finite game tree is defined in a bottom-up fashion from the leaves
to the root, by first giving values to the terminal nodes and then combining the
values of the subtrees as follows:

– val (t) = EvaluateT erminal(t) if t is a leaf.
– val (t) = �(x1 + val (t1), · · · , xn + val (tn))

if the root of t is a P node and xi = Price(mi) are the prices of the moves mi

leading to opponent positions ti.
– val (t) = �(x1 + val (t1), · · · , xn + val (tn))

if the root of t is an O node and xi = Price(mi) are the prices of the moves mi

leading to player positions ti.

For example, the famous Minimax algorithm simply computes the value obtained
by choosing as evaluation structure (R,+∞,−∞,≤,max,min,+, h, zero), where
zero is the constant zero function and h is the function, often named heuristic
for historical reasons, that evaluates the leaves for the given game. The game
presented in this paper (see section 3 for details) will also fit into this general
framework, with the construction of the game tree imposed by the rules of the
logic program (this can been seen as a syntaxic analysis of the logic program)
and the evaluation of the game giving the semantics of the program. In fact, we
will show that different choices for the evaluations structure allow us to recover
different traditional semantics (see section 4 for two usual semantics, namely the
denotation of computed answers and the SLDNF extension), and suggest new
ones (see 7).
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2.3 Infinite Game Trees and Approximations of a Game Value

If the propagation functions used to evaluate a game tree have good regularity
properties (if they are all monotone, for instance), it is possible to get approxi-
mations of the true value of a game tree by giving approximate values to some
of the leaves or some of the internal nodes, instead of fully evaluating the tree.
This is the key idea for defining the value of infinite game trees as the limit
of a sequence of approximations, and comes directly from traditional practice
of games : for instance, the size of the chess game tree is so big that it can be
considered infinite for all practical purpose, so real chess playing programs cut
it at a certain level and provide an approximation evaluation of the tree using
appropriate heuristics for the values of cut nodes. In general, if we do not know
anything about the heuristic function used, we cannot have any idea of the qual-
ity of the approximation. However, if we know that the bias it introduces has
always the same sign (that is, if we know the heuristic function always overesti-
mate or always underestimate the true value of the node), then we can know the
bias of the approximation of the root value with respect to the true (unknown)
value, by using the following key lemma :

Lemma 1 (monotonicity of sub-games).
If the functions +, � and � are monotone (non decreasing) w.r.t. ≤, then for
any context tree Γ [.] and any game trees Γ1 and Γ2,

valΓ1 ≤ valΓ2 =⇒ valΓ [Γ1] ≤ valΓ [Γ2]

Proof. The composition of non decreasing function is still a non decreasing func-
tion.

Using the above lemma, it is possible to approximate the value of an infinite
or very large game tree with a sequence of finite approximations. An approx-
imation is built in two steps: first one applies a function Cut(k, ) (which is
formally defined in the long version of the paper) to the tree to cut it at the kth

Opponent level (that is, at depth 2k), replacing all non-leaf subtrees with a
special constant Ω, which represents the interruption of the tree development
process.

Then one approximates the values of the Ω nodes using values with known
bias and propagate them to the root to obtain an approximation of the tree
value. For example, using � (resp. ⊥) one gets the greatest (resp. lowest) ap-
proximation, that we call here optimistic (resp. pessimistic).

Definition 2 (Pessimistic and optimistic approximations of the game
value).
The function valpess is an extension of the function val on the game trees
containing the constant Ω, which is evaluated by the worst possible value, that
is by setting valpessΩ = ⊥. The dual optimistic version valopt evaluates Ω with
the best possible value, that is by setting valoptΩ = �. Given a game tree Γ ,
we denote val kpessΓ the approximation valpessCut(k, Γ ) and val koptΓ the dual
approximation valoptCut(k, Γ ).
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Two fundamental properties of the approximations are the following

Lemma 2 (Monotonicity of progressive approximations).
If the functions + , � and � are non decreasing, then the function val kpess of
a game tree is increasing (monotone) with respect to the cut level k, whereas the
function val kopt is decreasing.

Proof. Using lemma 1.

When a game tree Γ is finite then exists a minimum natural number h such
that Γ = Cut(h, Γ ), and we will call this integer the depth of Γ .

Evaluation of an Infinite Game Tree We can now consider the problem of
defining the value of an infinite game-tree. We have established the monotonicity
of finite approximations, so we could define the value of an infinite tree as the
limit of the approximate values, but then we may get different results depending
on the choice of the value for the Ω nodes. Indeed, we will define two approx-
imate values, one pessimistic, and the other optimistic, that may or may not
coincide. Notice that to ensure the existence of such limits, we need to require
our value domain (D,≤) to be ω-chain complete (this is the case for R and for
the evaluation structures we will use for Logic Programming).

Lemma 3. If the functions + , � and � are non decreasing, then

– if the game tree Γ is finite and has depth h, then

val kpessΓ ≤ valΓ ≤ val koptΓ ∀k ≥ 0

val kpessΓ = valΓ = val koptΓ ∀k ≥ h

– if the game tree Γ is infinite, then

val kpessΓ ≤ val koptΓ ∀k ≥ 0

so, assuming (D,≤) is an ω-chain complete domain, if we define val∞pessΓ
and val∞optΓ as the limits of corresponding chains, we obtain

val∞pessΓ ≤ val∞optΓ

2.4 Strategies

Finally, we recall another central notion of game theory, which relates game trees
to rational behaviour: that of a strategy for Player or for Opponent. Intuitively,
a strategy for one of the players determines uniquely a move to play in any
given position. Formally, a Player (Opponent) strategy is a subtree of a game
tree which is deterministic on the Player (Opponent) levels. We write Φ(t) for
the Player strategies in a game tree t and Ψ(t) for the Opponent strategies in a
game tree t.



362 Roberto Di Cosmo et al.

Remark 1 (Depth and value of a finite strategy). Finite strategies are just finite
game trees of a special shape, so the definition of depth and of the value of a
game tree extends naturally to strategies.

Now, we introduce the notion of winning strategy for the Player and the dual
notion of winning strategy for the Opponent.

Definition 3 (Winning Strategies).

– A winning strategy for Player in a (possibly infinite) game tree Γ is a
finite player strategy ϕ ∈ Φ(Γ ) such that valϕ = ⊥. The set of all winning
strategies of depth k will be denoted by WΓ

k , and WΓ =
⋃
k

WΓ
k .

– A winning strategy for Opponent in a (possibly infinite) game tree Γ is
a finite opponent strategy ψ ∈ Ψ(Γ ) such that valψ = �. The set of all
winning strategies of depth k for the Opponent will be denoted by LΓk , and
LΓ =

⋃
k

LΓk .

A strategy fixes the behaviour of one of the players, so the value of a strategy
provides an approximation from below of the value of the game for that player,
and under some additional assumptions on the propagation functions (weak
or strong distributivity), this approximated value can be tightly related to the
approximation obtained by cutting the trees at a fixed depth.

Definition 4 (Distributive properties of propagation functions). We
will say that a binary operator g ≤-distributes (resp. ≥-distributes) with respect
to another binary operator f if

(x f y) g z ≤ (x g z) f (y g z)(resp.(x f y) g z ≥ (x g z) f (y g z)),

and we will say that g strongly distributes (or distribute, for short) with respect
to f if it both ≤-distributes and ≥-distributes w.r.t. g.

For example, min and max are functions that mutually strongly distribute.

Theorem 2 (Distributivity and strategies).

– if ⊥ is the neutral element of � and � ≥-distributes w.r.t. � , then
�

ϕ∈WΓ
k

valϕ ≤ val kpessΓ
– if � is the neutral element of � and � ≤-distributes w.r.t. � , then
val koptΓ ≤ �

ψ∈LΓ
k

valψ

Moreover, if the operations strongly distribute, then we can write equality in place
of inequality.

Proof. By induction on k using the distributivity properties of � and � .
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3 The Rules of the Game

There are traditionally two classical views of a logic program, depending on
whether each clause B ← A1, . . . , An in it is interpreted from right to left or
from left to right:

– the logical vision: if A1 ∧ · · · ∧ An then B
– the effective vision: to compute B, one must first compute A1, · · · , An. An-

other way of saying it is that B is a procedure whose body is A1, · · · , An
Our game theoretic alternative will be the following: to each logic program

we associate a simple two player game, in which one of the players tries to prove
the goal and his opponent tries to disprove it: the beauty of the approach is that
the logical rules written by the programmer are just the rules of the game, and
this allows us to get a simpler understanding of the mechanisms involved in logic
programming.

Nevertheless, the game we define here give rise, for a given goal G, to a game
tree which is not the näıve one obtained by taking the tree of all possible SLD
derivations starting from G; we want to clearly separate in our framework the
different features making up an SLD derivation: the construction of the tree, the
visit of the tree and its evaluation. For this, we use player positions consisting
of just one atom, and check the consistency of solutions using the propagation
function in the opponent nodes of the game tree.

We can now give a formal definition for the game Γ (P ) associated to a logic
program P and the game tree Γ (P,G) for the game Γ (P ) starting at position G.

Definition 5 (Game of a logic program).
The two-player game associated to a logic program P has the following compo-
nents:

Positions : a player position is an atomic formula A, while an opponent po-
sition is a sequence of atomic formulae.

Initial position : only opponent positions are legal starting positions of a game,
and Opponent begins.

Player moves : Player moves by choosing a (variant of a) rule H ← A1, .., An
in P whose head H unifies with the current position A. This leads to an
opponent position (A1θ, .., Anθ), where θ is the mgu of A and H. If no rule
unifies with the current position, the game stops in a Player leaf.

Opponent moves : Opponent moves by selecting one of the subgoals Ai of an
opponent position G = A1, .., An, and the game continues in the player po-
sition Ai. If the current opponent position is the empty sequence, the game
stops in a Opponent leaf.

Now that we know what are the Player and Opponent nodes, and we know
how to build the sons of a Player and an Opponent position, we immediately
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know what is the game tree associated to a given program P and starting posi-
tion G, we will write Γ (G,P ) with a little abuse of notation (confusing the logic
program P with the “game rules” function P of the previous section).

Notice that the game tree built this way is not a complete SLD-tree, which
can be obtained as the game tree of a different game where player and opponent
positions are both sequences of formulae and the rules are resolution steps over
sequence of atomic formulae (this different game is hinted at in [9]). Our game
tree is much more compact, as shown in 5.3: in fact, each SLD-tree describes a
particular visit of the game tree, given the chosen selection rule which imposes
the order of the visit of the sub-game trees at Opponent’s nodes.

Notice that, as a consequence of this compactness of representation, it is
not enough, for a goal to be provable, that Player always arrives to a terminal
winning position: he also needs to have used compatible payoffs. In other terms,
it will be the “value” of the game tree, for a given evaluation structure, that is
related to provability. We can see all this in the following example, where we use
informally the evaluation structure which will be formally defined in 4.

Example 1 (A simple example). Consider the logic program P consisting of the
following three rules

1. path(X,Z) :- arc(X,Y), path(Y,Z)
2. path(X,X)
3. arc(a,b)

This program P defines the game Γ (P ). If we try to satisfy the goal path(X,b)
in P , we use Γ (P ) with the initial position path(X, b) and get the game tree
Γ (P, path(X, b)), which will be the regular infinite tree of figure 1, where the

path(X,b)

clause 2clause 1

{X←b}

{Y←b}{ X←a,Y←b }

arc(X,Y) path(Y,b)

clause 1 clause 2clause 3

Opponent nodes

Goal  path(X,b)

Player nodes

{X←b}{X←a}

path(X,b)

clause 1

{Y←b}{ X←a,Y←b }

arc(X,Y) path(Y,b)

clause 2clause 3

path(X,b)

clause 2

{X←b}

Fig. 1. An example game tree and two winning strategies.

gray subtree is equal to Γ (P, path(X, b)) up to the renaming of X to Y .
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Remark 2. As usual, we use variants of program rules obtained by replacing the
free variables of the rule with fresh variables. Here, we will also require that each
application of a node formation rule uses a different supply of fresh variables.

4 Evaluation Structures for Traditional Semantics

It is now time to introduce the evaluation structures that can be used to recover
the different traditional semantics. To recover the computed answer semantics
and SLDNF, we choose as values sets of idempotent substitutions, ordered by
inclusion

It is worth noticing that a slightly different evaluation structure, where values
are multisets of idempotent substitutions can be used to give the semantics of
actual prolog machines.

4.1 An Evaluation Structure for Computed Answers Semantics and
SLDNF

We are interested here in handling the calculated substitutions of a query of
a logic program, so we will construct our domain using the complete lattice of
idempotent substitutions (introduced in [10] and [15]), in which each point of the
lattice is a class of equivalent (up to renaming) idempotent substitutions.

domain of values : � will be the (infinite) set of all idempotent substitutions,
⊥ will be the empty set ∅, and D will be just the powerset (2�,⊆) of subsets
of � ordered by inclusion.

payoffs : The first player unable to move will lose, so EvaluateT erminal is
defined as EvaluateT erminal(PLeaf(A)) = ⊥ = ∅ independently from the
player terminal position A, and EvaluateT erminal(OLeaf( )) = �. The
local payoff of the moves are defined as follow :
– the Player has to perform an unification step to choose a rule of the logic

program, so the payoff of his move will just be the mgu θ used in this
unification.

– the Opponent has no price to pay, so his local payoff is always ε, the
identity substitution, and we will omit the labeling of Opponent moves
altogether in what follows

accumulation of payoffs : The accumulation function is the usual composi-
tion of substitution, extended to sets of substitutions, that is S1 · S2 =
{σ1 · σ2) | σ1 ∈ S1, σ2 ∈ S2}, so that � = {ε} · � and ∅ = ∅ · �.

propagation functions : The propagation functions � and � are defined
as � = ∪ (the usual union of sets) and � =↑, the extension to sets of
substitutions of the operator of parallel composition of substitions defined
in [15].

We say that two substitutions θ1 and θ2 are compatible if θ1 ↑ θ2 = ∅. As usual
when working with logic programing, we will assume that we only keep the
relevant parts of the game values.
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Remark 3. It can been seen that the value of a finite game (and also the fi-
nite approximations of an infinite game) is either ∅ or can be put in the form
{θ1, . . . , θn} · � with n ≥ 1. In particular, the value of a winning strategy for
Player is always {θ} ·�, and we will allow us a slight abuse of notation by saying
shortly that its value is θ. Since the EvaluateT erminalfonction is independent
from terminal positions, we can forget they and denote leaves only with the
constructors PLeafand OLeaf.

Using theorem 2, we immediately obtain the following

Proposition 1 (Approximations by cut vs. strategies).

• val kpessΓ =
⋃

ϕ∈WΓ
k

valϕ

• val koptΓ ⊆ ↑
ψ∈LΓ

k

valψ

Proof. Because ↑ distributes strongly w.r.t. ∪ , and ∪ ⊆-distributes w.r.t. ↑.

5 Recovering the Least Herbrand Model through the
Pessimistic Approximations

It is well known that some of the traditional semantics of logic programming, like
the least Herbrand model, have operational characterizations in terms of SLD-
derivations. We show here that it is possible to give an equivalent definition of
these denotations in terms of winning strategies. Since the initial positions of the
game are just atomic goals, we can freely use in the following the terms ”atomic,
ground, Herbrand, conjunctive, etc.” to characterize them.

The least Herbrand model denotation (success set) of a program P becomes
now the set of winning Herbrand positions for Player, that is the Herbrand
positions for which he has a winning strategy:

WP = {A | A Herbrand position s.t. ∃ a winning player strategy in Γ (P,A)}
For the denotation of computed answers (S-semantics in [4]), we have the most
general atomic positions (i.e. positions with the form A(X1, .., Xn)), instantiated
by the computed answers:

WS
P = {Aθ | A most general position s.t.∃ a winning player strategy inΓ (P,A) with value θ}

We say that WP and WS
P are the two winning position denotations of a pro-

gram P , and prove the soundness and the completeness of these game-based de-
notations with respect to the least Herbrand model OP and the s-semantics OSP ,
by relating them to the well-known operational characterizations:
OP = {A | A Herbrand atom and ∃ A =⇒

P

∗ }
and

OSP = {Aθ | A most general atom and ∃ A θ
=⇒
P

∗ }.
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5.1 Fusion and Splitting of SLD Derivations

In order to relate strategies to SLD-derivations, we need two key results about
SLD-derivations, namely that we can fuse two successful derivations and that
we can split a successful derivation starting from a conjunctive goal into several
successful derivations starting from the components of the conjunction.
These are stated in the following lemmas, which are immediate consequences of
work in [15] and [8], but, for completeness, we provide also a self-contained full
proof of a more general result in the appendix of the full paper.

Lemma 4 (Goal fusion for successful SLD-derivations).

Suppose that θ1 and θ2 are compatible, that G1
θ1=⇒∗ and that G2

θ2=⇒∗ ,

then (G1, G2)
θ1↑θ2=⇒∗ .

Lemma 5 (Goal split for successful SLD-derivation).

Conversely, if (G1, G2)
θ
=⇒
P

∗ then there exist two shorter SLD-derivations

G1

θ1=⇒
P

∗ , G2

θ2=⇒
P

∗ such that θ = θ1 ↑ θ2.

5.2 Soundness and Completeness of the Winning Positions
Denotations

We show here first that our game based denotations are sound, that is, whenever
a winning strategy for Player exists, we can find a successful SLD-derivation. We
then show that they are also complete, that is, that whenever a successful SLD-
derivation exists, we can find a winning strategy for Player. What is more, the
computed answer and the value of the strategy are the same.

Theorem 3 (From winning strategies to successful SLD-derivations
(soundness)).
If there exists a winning strategy for Player with value θ in Γ (P,G) then there
exists a successful SLD-derivation of G in P with computed answer θ.

Proof. The idea of the proof is to construct the SLD-derivation piece by piece,
while performing a visit of the winning strategy. Formally, we need an induction
on the structure of the strategy and, in fact, since a winning strategy ϕ is a
finite Player-Opponent tree that has no player leaf, we can prove the thesis by
induction on the number k of opponent levels of the strategy. Complete details
are given in the full version of the paper.

Theorem 4 (From successful SLD-derivations to winning strategies
(completeness)).

If G
θ
=⇒
P

∗ then there exists a winning strategy for Player with value θ in the
game Γ (P,G).
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Proof. Let ξ be a SLD-derivation G
θ
=⇒
P

∗ . We shall construct a winning strat-
egy in Γ (P,G) The proof is by induction on the length l of ξ. Complete details
are given in the full version of the paper.

Since we know, by Proposition 1, that val kpessΓ =
⋃

ϕ∈WΓ
k

valϕ, we immediately

get the main result of this section:

Theorem 5 (Equivalence of computed answer semantics and the pes-
simistic value). The pessimistic approximation of the value of the game as-
sociated to a logic program P on an initial position G is exactly the computed
answer semantics of G in P .

One can now trivially recover the least Herbrand model as usual.

5.3 Expressive Power of Winning Strategies

Before turning to Negation as Failure, we pause for a moment to consider the
amount of SLD-derivations which are subsumed in a game tree. It turns out
that a strategy represents exactly a natural class of equivalent SLD derivations,
derived from the notion of switching introduced in a classical technical lemma
on SLD-derivations (see [3]), which says, informally, that two SLD-derivation
steps can be exchanged provided that in the second step an instance of an ”old”
atom is selected.

Definition 6 (Equivalence of SLD-derivation). If ξ and ξ′ are two SLD-
derivations which satisfy the conditions of the switching lemma, then we say
that ξ′ is a switch of ξ and we write ξ′ ↔ ξ. By definition ↔ is a symmetric
relation, so we define the equivalence ≈ as the reflexive and transitive closure
of ↔.

Looking better at the proofs of the soundness and completeness results, we see
that a winning strategy represents precisely the class of switch equivalent suc-
cessful SLD-derivations. For a formal proof, we should reconstruct the strategy
implicitly associated to an SLD-derivation and prove that any equivalent SLD-
derivation corresponds to the same strategy, but here we only want to remark
that equivalent SLD-derivations have the same skeleton and the strategy is in-
deed this skeleton.

It is possible to exactly determine the number of different (but switch-
equivalent) SLD-derivations denoted by a strategy. Observe that if an SLD-
derivation is the switch of another then they consist of the same number of
SLD-steps (the same holds for ≈), so all derivations in an equivalence class have
the same length. We can then compute the length 4(ϕ) and the number 5(ϕ) of
successful SLD-derivations that a strategy denotes.

4(ϕ) =



0 if ϕ = OLeaf,
n∑
j=1

(4(ϕj) + 1) if ϕ = O(P( θ1ϕ1
), .., P( θn

ϕn
))
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5(ϕ) =



1 if ϕ = OLeaf

n∏
j=1

5(ϕj) ·
4(ϕ)!

nQ

j=1
(�(ϕj)+1)!

if ϕ = O(P( θ1ϕ1
), .., P( θn

ϕn
))

Example 2. Consider a strategy with the structure shown in the following picture
(figure 2). We can calculate that this strategy alone represents 13440 different
(swith-equivalent) successful SLD-derivations.

Fig. 2. A strategy with three Opponent levels

SLD Trees, AND/OR Trees Game Trees

Let us use a few words to clarify the differences between our game trees, with
their winning strategies, and traditional objects in logic programming like the
very old AND/OR trees which were abandoned in favor of SLD trees. First of
all, it is true that a specific SLD tree, with a fixed selection rule, is as concise
as our game trees in representing the full search space, due to the well known
independence on the selection rules. But this conciseness comes, for SLD trees, at
the price of the introduction of an arbitrary element: the selection rule, precisely.
There is no “canonical” SLD tree, while the game tree is a canonical object.

On the other hand, one could hold as a criticism to game trees, like to the
old AND/OR trees, the fact that there are cases where the game tree is infinite
while some specific SLD tree is not, for example, the goal p(X),q(X) produces
a finite SLD tree with the leftmost selection rule in the program with clauses
p(a) and q(b) :- q(b), while the game tree is infinite, as it contains a branch
for the loop generated by the second clause that the leftmost rule avoids (while
a rightmost rule would not).

But the game tree is just a mathematical object that we are interested in
evaluating, and an infinite tree can sometimes be evaluated in finite time: in
this example, the optimistic approximation yields ∅ already at the first opponent
level, so we know the answer is ∅ without building the whole tree.
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The advantage of separating the tree as a canonical object from the evalua-
tion, which is the real semantics, is to allow a great deal of flexibility in studying
the semantic properties, but one must keep in mind that, in practice, nobody
will build the whole tree before evaluating it, but rather incrementally refine an
initial evaluation while incrementally building the part of the tree needed for the
evaluation: SLD trees are just an example of such exploration procedures.

6 Recovering SLDNF through the Optimistic
Approximations

We have seen in the previous section that the pessimistic approximations of the
game value (using its characterisation in terms of winning strategies for Player
of Theorem 2) allows us to recover traditional semantics of logic programming.
Turning our attention to the treatment of negation, we can now show that the
sequence of optimistic values can be used to describe successive approximations
of the greatest fix-point of the logic consequences operator TP , thus allowing
us to use the very same game and evaluation structure as above to recover the
semantics of negation as failure. More precisely, we will prove that the process
of going from an approximation level k to k + 1 has the same pruning power
as an application of TP to T kP (H), starting from the Herbrand base H (or, put
in another way, that an application of TP corresponds exactly to an alternation
Player-Opponent in the game process). In the following, we will say that a goal G
is game-refuted at depth k if val koptΓ (P,G)=∅. We will use TP ↓ k to denote
the kth application of TP , starting from the Herbrand base H .

Let’s start by showing that game refutations at depth k are included in finite
failures exhibited after k applications of TP , which gives soundness. We need
two lemmas.

Lemma 6 (Monotonicity by generalisation). If val koptΓ (P,G) = ∅, then
for all substitution θ we have val koptΓ (P,Gθ) = ∅.
Lemma 7 (Game value of ground positions as binary answers). If G is
a ground position, then val koptΓ (P,G) ∈ {∅,�}.
The previous lemma implies that, if A1, .., An are ground positions such that
the value val koptΓ (P, (A1, .., An)) is ∅, then there exists at least one Ai s.t.
val koptΓ (P,Ai) = ∅.
Theorem 6 (Soundness of optimistic semantics with respect to TP ↓ω).
If A is an Herbrand atom game-refutated at depth k, then A ∈ TP ↓ k
Proof. The proof proceeds by induction on the approximation level k ≥ 1 of the
game tree. Complete details are given in the full version of the paper.

Having established the soundness, let us turn now to prove completeness. In the
following, if S is a set of atoms, we will use the notation [S] to indicate the union
of the ground instances of the atoms of S. The following lemma is classical :
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Lemma 8. If A unifies with the head of the program clause B ← B1 · · ·Bn with

the mgu θ and σ is a substitution, then [Aθσ] ⊆ TP (
n⋃
j=1

Bjθσ)

Theorem 7 (Optimistic approximations survive TP ).
Let v = val koptΓ (P,G) be the kth optimistic approximation of the value of a game
with initial position G = A1, .., An. Then [G · v] ⊆ TP ↓ k

Proof. The proof is by induction on the approximation level k ≥ 0 of the game
tree. Complete details are given in the full version of the paper.

This allows us to finally conclude

Corollary 1 (Completness of optimistic semantics with respect to
TP ↓ ω). If A is an Herbrand atom such that A ∈ TP ↓ k , then A is game-refuted
at depth k.

Proof. By contradiction: if we suppose that v = val koptΓ (P,A) is not the empty
set, then, by previous theorem, [A · v] ⊆ TP ↓ k. Since A is ground, we have
[A · v] = {A}, so we get A ∈ TP ↓ k, which contradicts the hypothesis.

7 Conclusion and Future Work

We have presented in this paper a game theoretic approach to the semantics of
Logic Programming, by providing an abstract framework for two-player games
based on the notion of evaluation structure, which allows us to abstractly prove
general properties of finite approximations, and we have stated the conditions
under which the value of the game can be equivalently formulated using the
value sets of strategies or the limit of successive approximations obtained by
cutting the tree at deeper and deeper levels. By choosing the proper evaluation
structure, this framework can be instantiated to capture various forms of se-
mantics proposed in the literature: from the minimum Herbrand model to the
computed answers, to a very elegant treatment of SLDNF using sets of idem-
potent substitutions, and computed answers with multiplicity using multisets
of idempotent substitutions. The key notion here is that of winning strategy,
which concisely represents a very large class of equivalent SLD derivations, thus
providing a powerful tool to investigate properties of derivations.

This showed a little of the potential of the game theoretic approach, but
we are convinced that much more can be achieved by pursuing this direction of
research :

– For lack of space, we can only hint here at another evaluation structure,
where the domain is precisely the complete lattice of idempotent substitu-
tions introduced by Palamidessi in [15], equipped with ↑ and ↓ instead of ↑
and ∪. This domain seems very well adapted to perform abstract interpre-
tation of logic programs to obtain an approximation of the real values.
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– The game values of programs are AND-compositional (since it can be seen
that valpessΓ (P, (G1, G2)) = valpessΓ (P,G1) ↑ valpessΓ (P,G2) ), but they
are not OR-compositional, since valpessΓ ((P ∪Q), G) = valpessΓ (P,G) ∪
valpessΓ (P,G). This leaves open the problem to find an OR-compositional
game-based denotation, hopefully more abstract and intuitive than the
known ones.

– The relation we have established here between various traditional semantics
and two player games could be the basis of a very promising transfer of results
from traditional game theory to logic programming, especially in the field
of parallel execution, where game theory provides a wealth of efficient exe-
cution algorithms that could now be carried over to the Logic Programming
community (see [14,6] for comprehensive bibliographies about parallelisation
of Logic Programming and parallelisation game-search algorithms)

– To efficiently handle the problem of repeated position in a game, clever
programs use a hash-based mechanism to check the linear history of the
play for already visited positions. Could this technique be adapted to logic
programs? Intuitively, the program Q(X)← Q(X) will loop forever for the
goal Q(X) because it will go through an infinite sequence of variants of the
same position Q(X), although Q(X) is not included in the least fix point
semantics of the program. If we code a clause using deBrujin indexes, variants
of a same clause are mapped to the same term, so hashing could be applied,
like in game programs. Could this be made into a nice semantic framework?

– Finally, the two ways, either pessimistic or optimistic, of defining a cut-
approximation computation of game values yields a duality clearly similar
to the least fix-point vs greatest fix-point duality used to deal with positive
and negative interrogation in logic programming, but in a unified framework,
so we hope this will provide a means of giving a clean semantics to logic
programs with negative goals. After all, the intuitive semantics of not(A) is
quite simple in term of games: when Opponent challenges us to show that A
is not provable, we just turn the table, give him A, and say “your turn”!

We believe that the game semantic framework holds interesting promises for the
Logic Programming community, if it accepts to play the game.
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Abstract. Logic languages can deal with non-deterministic computa-
tions via built-in search facilities. However, standard search methods like
global backtracking are often not sufficient and a source of many pro-
gramming errors. Therefore, we propose the addition of a single primi-
tive to logic-oriented languages to control non-deterministic computation
steps. Based on this primitive, a number of different search strategies can
be easily implemented. These search operators can be applied if the stan-
dard search facilities are not successful or to encapsulate search. The lat-
ter is important if logic programs interact with the (non-backtrackable)
outside world.
We define the search control primitive based on an abstract notion of
computation steps so that it can be integrated into various logic-oriented
languages, but to provide concrete examples we also present the inte-
gration of such a control primitive into the multi-paradigm declarative
language Curry. The lazy evaluation strategy of Curry simplifies the im-
plementation of search strategies, which also shows the advantages of
integrating functions into logic languages.

1 Introduction

Computing solutions to partially instantiated goals and dealing with non-deter-
ministic computations via built-in search facilities is one of the most important
features of logic languages. Standard logic languages like Prolog use a global
backtracking strategy to explore the different alternatives of a computation.
This is often not sufficient and a source of many problems:
– If a top-level predicate fails, all alternatives of previously called predicates
are also explored. This may lead to an unexpected behavior and makes the
detection of programming errors difficult (e.g., if the backtracking is caused
by a missing alternative in the top-level predicate). This problem is often
solved by inserting “cuts” which, however, decreases the readability of pro-
grams.

– Depth-first search is an incomplete strategy. Although this drawback can
be managed by experienced programmers, it causes difficulties for beginners
(who frequently use predicates like commutativity or left-recursive clauses
in the beginning). As a consequence, one is forced to talk about Prolog’s
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depth-first search strategy too early in logic programming courses. This can
have a negative impact on the declarative style of programming.

– In larger application programs (e.g., combinatorial problems), other strate-
gies than the standard depth-first search are often necessary. In such cases
the programmer is forced to program her own strategies (e.g., by using meta-
programming techniques). The possible interaction with the standard strat-
egy can lead to errors which are difficult to find.

These problems can be solved if there is a simple way to replace the standard
search strategy by other strategies and to implement new search strategies fairly
easy. In this paper we show that this is possible by adding a single primitive
operation to control non-deterministic computation steps. This primitive, which
is a generalization of Oz’s search operator [15], evaluates the program as usual
but immediately stops if a non-deterministic step occurs. In the latter case, the
different alternatives are returned so that the programmer can determine the way
to proceed the computation. Based on this primitive, a number of different search
operators, like depth-first search, breadth-first search, findall, or the Prolog
shell, can be easily implemented. These operators also allow the encapsulation
of possible search in local predicates. This feature is important if logic programs
interact with the (non-backtrackable) outside world, like file accesses or Internet
applications.

In contrast to Oz’s search operator [15], which is directly connected to a
syntactic construct of the language (disjunctions), our control operator is based
on an abstract notion of basic computation steps. Thus, it can be considered
as a meta-level construct to control (don’t know) non-deterministic computa-
tion steps which could be added to logic-oriented languages provided that they
offer constraints or equations to represent variable bindings and existential quan-
tification to distinguish variables which can be bound in a local computation.
Moreover, we provide a formal connection between the search trees of the base
language and the results computed by our search operators. Hence, soundness
and completeness results for the base language carry over to corresponding re-
sults for particular search strategies based on our control operator.

The next section introduces our notion of computation steps of the base
language. The primitive to control non-deterministic computations is described
in Section 3. Based on this primitive, we show the implementation of different
search strategies in Section 4. The relations of these search strategies with the
search trees of the base language are established in Section 5. We show the
advantages of a base language with lazy evaluation to provide a simple imple-
mentation of search strategies in Section 6. Section 7 compares our techniques
with related work, and Section 8 contains our conclusions. Due to lack of space,
we omit some details and the proofs of the theorems which can be found in [4,5].

2 Operational Semantics of the Base Language

As mentioned above, the search primitive should control the different non-
deterministic steps occurring in a derivation. To abstract from the operational
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model of the concrete base language, we only assume that a computation step
of the base language reduces an expression (goal) to a disjunction consisting of
a sequence of pairs of substitutions (bindings) and expressions (goals), i.e, the
operational semantics of the base language is defined by a one step relation

e ⇒ σ1, e1 | · · · | σn, en

where n ≥ 0, e, e1,. . . ,en are expressions, σ1, . . . , σn are substitutions on the
free variables in e, and “|” joins different alternatives to a disjunction. A sub-
stitution is a mapping from variables into terms and we denote it by σ =
{x1 �→ t1, . . . , xn �→ tn}. Dom(σ) = {x1, . . . , xn} is the domain of σ and
VRan(σ) = Var(t1) ∪ . . . ∪ Var(tn) is its variable range, where Var(e) denotes
the set of all free variables occurring in an expression e. The identity substitu-
tion (i.e., the substitution id with Dom(id) = ∅) is often omitted in computation
steps. We call the evaluation step deterministic if n = 1 and non-deterministic
if n > 1. The case n = 0 corresponds to a failure and is also written as e⇒ fail.

This notion of a computation step makes the possible don’t know non-
determinism of the base language explicit which will be controlled by our search
primitive. A possible don’t care non-determinism (e.g., in a concurrent base
language) corresponds to an indeterminate definition of “⇒” and will not be
controlled by our search primitive. Furthermore, note that this notion of a com-
putation step covers a variety of declarative languages. In functional program-
ming, n is at most 1 (i.e., no non-deterministic step occurs) and all substitu-
tions are the identity since unbound variables do not occur during a computa-
tion. In logic programming, e is a goal, e1, . . . , en are all resolvents of this goal
and σ1, . . . , σn are the corresponding unifiers restricted to the goal variables (for
constraint logic programming, the notion of substitutions must be replaced by
constraints).

Since our search control operator will be based on this abstract notion of a
computation step of the base language (in contrast to Oz [15]), it is applica-
ble to a variety of (functional, constraint) logic languages. To provide concrete
examples and to show the advantages of integrating lazily evaluated functions
into a logic language, we present the addition of the search control operator to
Curry [3,5], a multi-paradigm declarative language aiming to amalgamate func-
tional, logic, and concurrent programming paradigms. Therefore, we outline in
the rest of this section Curry’s computation model (details can be found in [3,5]).

Values in Curry are, similarly to functional or logic languages, data terms
constructed from constants and data constructors. These are introduced through
data type declarations like1

data bool = true | false
data nat = z | s(nat)
data list(A) = [] | [A|list(A)]

1 In the following we use a Prolog-like syntax which is slightly different from the actual
Curry syntax.
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true and false are the Boolean constants, z and s are the zero value and the
successor function to construct natural numbers,2 and polymorphic lists (A is a
type variable ranging over all types) are defined as in Prolog.

A data term is a well-typed3 expression containing variables, constants and
data constructors, e.g., s(s(z)), [true|Z] etc. Functions (predicates are con-
sidered as Boolean functions for the sake of simplicity) operate on data terms.
Their meaning is specified by rules (or equations) of the form l | {c} = r (the
condition part “| {c}” is optional) where l is a pattern, i.e., l has the form
f(t1, . . . , tn) with f being a function, t1, . . . , tn data terms and each variable
occurs only once, and r is a well-formed expression containing function calls,
constants, data constructors and variables from l and c. The condition c is
a constraint which consists of a conjunction of equations and optionally con-
tains a list of locally declared variables, i.e., a constraint can have the form
let v1, . . . , vk free in {eq1, . . . , eqn} where the variables vi are only visible in
the equations eq1, . . . , eqn. If a local variable v of a condition should be visible
also in the right-hand side, the rule is written as l | {c} = r where v free. A
rule can be applied if its condition is satisfiable. A head normal form is a vari-
able, a constant, or an expression of the form c(e1, . . . , en) where c is a data
constructor. A Curry program is a set of data type declarations and equations.

Example 1. The addition on natural numbers (type nat above) is defined by

add(z ,Y) = Y
add(s(X),Y) = s(add(X,Y))

The following rules define the concatenation of lists and functions for computing
the first and the last element of a list (“_” denotes an anonymous variable):

append([] ,Ys) = Ys
append([X|Xs],Ys) = [X|append(Xs,Ys)]
first([X|_]) = X
last(Xs) | {append(_,[X])=Xs} = X where X free

If the equation append(_,[X])=Xs is solvable, then X is the last element of Xs.
✷

From a functional point of view, we are interested in computing the value of an
expression, i.e., a data term which is equivalent (w.r.t. the program rules) to
the initial expression. The value can be computed by applying rules from left
to right. For instance, to compute the value of add(s(z),s(z)), we apply the
rules for addition to this expression:

add(s(z),s(z)) ⇒ s(add(z,s(z))) ⇒ s(s(z))

2 Curry has also built-in integer values and arithmetic functions. We use here the ex-
plicit definition of naturals only to provide some simple and self-contained examples.

3 The current type system of Curry is a Hindley/Milner-like system with parametric
polymorphism, e.g., a term like s(true) is ill-typed and thus excluded.
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A strategy selects a single function call for reduction in the next step. Curry
is based on a lazy (leftmost outermost) strategy. This also allows the computa-
tion with infinite data structures and provides more modularity, as we will see in
Section 6. Thus, to evaluate the expression add(add(z,s(z)),z), the first sub-
term add(z,s(z)) is evaluated to head normal form (in this case: s(z)) since
its value is required by all rules defining add (such an argument is also called
demanded). On the other hand, the evaluation of the subterm append([z],[])
is not needed in the expression first([z|append([z],[])]) since it is not de-
manded by first. Therefore, this expression is reduced to z by one outermost
reduction step.

Since Curry subsumes logic programming, it is possible that the initial ex-
pression may contain variables. In this case the expression might not be reducible
to a single value. For instance, a logic programming system should find values for
the variables in a goal such that it is reducible to true. Fortunately, it requires
only a slight extension of the lazy reduction strategy to cover non-ground expres-
sions and variable instantiation: if the value of a variable argument is demanded
by the left-hand sides of program rules in order to proceed the computation, the
variable is non-deterministically bound to the different demanded values.

Example 2. Consider the function f defined by the rules

f(a) = c
f(b) = d

(a, b, c, d are constants). Then the expression f(X) with the variable argument X
is evaluated to c or d by binding X to a or b, respectively. Thus, this non-
deterministic computation step can be denoted as follows:
f(X) ⇒ {X �→ a} c | {X �→ b} d. ✷

A single computation step in Curry performs a reduction in exactly one (un-
solved) expression of a disjunction. For inductively sequential programs [1] (these
are, roughly speaking, function definitions without overlapping left-hand sides),
this strategy, called needed narrowing [1], computes the shortest possible success-
ful derivations (if common subterms are shared) and a minimal set of solutions,
and it is fully deterministic if variables do not occur.4

Functional logic languages are often used to solve equations between expres-
sions containing defined functions. For instance, consider the equation
{add(X,z)=s(z)} w.r.t. Example 1. It can be solved by evaluating the left-
hand side add(X,z) to the answer expression {X �→ s(z)}s(z) (here we omit
the other alternatives). Since the resulting equation is trivial, the equation is
valid w.r.t. the computed answer {X �→ s(z)}. In general, an equation or equa-
tional constraint {e1=e2} is satisfied if both sides e1 and e2 are reducible to the
same data term. Operationally, an equational constraint {e1=e2} is solved by
evaluating e1 and e2 to unifiable data terms where the lazy evaluation of the
expressions is interleaved with the binding of variables to constructor terms [10].
4 These properties also show some of the advantages of integrating functions into logic
programs, since similar properties for purely logic programs are not known.
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Thus, an equational constraint {e1=e2} without occurrences of defined functions
has the same meaning (unification) as in Prolog.5 Note that constraints are
solved when they appear in conditions of program rules in order to apply this
rule or when a search operator is applied (see Section 3). Conjunctions of con-
straints can also be evaluated concurrently but we omit this aspect here (see [3,5]
for more details).

3 Controlling Non-deterministic Computation Steps

Most of the current logic languages are based on global search implemented by
backtracking, i.e., disjunctions distribute to the top-level (i.e., a goal A ∧ B,
where A is defined by A↔ A1∨A2, is logically replaced by (A1∧B)∨(A2∧B)).
As discussed in Section 1, this must be avoided in some situations in order to
control the exploration of the search space.

For instance, consider the problem of doing input/output. I/O is implemented
in most logic languages by side effects. To handle I/O in a declarative way, as
done in Curry, one can use the monadic I/O concept [18] where an interactive
program is considered as a function computing a sequence of actions which are
applied to the outside world. An action changes the state of the world and
possibly returns a result (e.g., a character read from the terminal). Thus, actions
are functions of the type

World → pair(α,World)

(where World denotes the type of all states of the outside world). This func-
tion type is also abbreviated by IO(α). If an action of type IO(α) is applied
to a particular world, it yields a value of type α and a new (changed) world.
For instance, getChar of type IO(Char) is an action which reads a character
from the standard input whenever it is executed, i.e., applied to a world. The
important point is that values of type World are not accessible to the program-
mer — she/he can only create and compose actions on the world. For instance,
the action getChar can be composed with the action putChar (which writes
a character to the terminal) by the sequential composition operator >>=, i.e.,
“getChar >>= putChar” is a composed action which prints the character typed
in the keyboard to the screen (see [18] for more details).

An action, obtained as a result of a program, is executed when the program
is executed. Since the world cannot be copied (note that the world contains at
least the complete file system or the complete Internet in web applications), an
interactive program having a disjunction as a result makes no sense. Therefore,
all possible search must be encapsulated between I/O operations. In the fol-
lowing, we describe a primitive operation to get control over non-deterministic
computations so that one can encapsulate the necessary search for solving goals.

5 We often use the general notion of a constraint instead of equations since it is concep-
tually fairly easy to add other constraint structures than equations over Herbrand
terms.
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3.1 Search Goals and a Control Primitive

Since search is used to find solutions to some constraint, we assume that search is
always initiated by a constraint containing a search variable for which a solution
should be computed.6 A difficulty is that the search variable may be bound
to different solutions (by different alternatives in non-deterministic steps) which
should be represented in a single expression for further processing. As a solution,
we adapt the idea of Oz [15] and abstract the search variable w.r.t. the constraint
to be solved, which is possible in a language providing functions as first-class
objects.7 Therefore, a search goal has the function type α→ Constraint where α
is the type of the values which we are searching for and Constraint is the type of
all constraints (e.g., an equation like {add(X,z)=s(z)} is an expression of type
Constraint, cf. [5]). In particular, if c is a constraint containing a variable x
and we are interested in solutions for x, i.e., values for x such that c is satisfied,
then the corresponding search goal has the form \x->c (this is the notation
for lambda abstractions, e.g., \X->3*X denotes an anonymous function which
multiplies its argument with 3). For instance, if we are interested in values for
the variable X such that the equation append([1],X)=[1,2] holds, then the
corresponding search goal is \X->{append([1],X)=[1,2]}.

To control the non-deterministic steps performed to find solutions to search
goals, we introduce a function8 try of type

(α→ Constraint) → list(α→ Constraint)

i.e., try takes a search goal as an argument and produces a list of search goals.
The idea is that try attempts to evaluate the constraint of the search goal until
the computation finishes or does a non-deterministic step. In the latter case, the
computation is immediately stopped and the different constraints obtained by
the non-deterministic step are returned. Thus, an expression of the form try(g)
can have the following outcomes:

try(g) = []: The empty list indicates that the search goal g has no solution.
For instance, the expression

try(\X -> {1=2})

reduces to []. Note that a failure of the search can now be handled explicitly
because it does not lead to a failure of the whole computation as it would
do without the search operator.

6 The generalization to more than one search variable is straightforward by the use of
tuples.

7 If the base language does not provide functions as first-class objects, one has to
introduce a special language construct to denote the search variable, like in Prolog’s
setof or findall predicate.

8 If the base language does not provide functions, like Prolog, we can also implement
try as a binary predicate where the second argument denotes the result.
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try(g) = [g′]: A one-element list indicates that the search goal g has a single
solution represented by the element of this list. For instance, the expression

try(\X -> {[X]=[0]})

reduces to [\X->{X=0}]. Note that a solution, i.e., a binding for the search
variable like a substitution {x �→ t}, can always be represented as an equa-
tional constraint {x=t}. In the following, we denote by σ the equational
representation of the substitution σ.

try(g) = [g1,...,gn], n > 1: If the result list contains more than one element,
the evaluation of the search goal g requires a non-deterministic computation
step. The different alternatives immediately after this non-deterministic step
are represented as elements of this list, where the different bindings of the
search variable are added as constraints. For instance, if the function f is
defined as in Example 2, then the expression

try(\X -> {f(X)=d})

reduces to the list [\X->{X=a,c=d}, \X->{X=b,d=d}]. This example also
shows why the search variable must be abstracted: the alternative bindings
cannot be actually performed (since a variable is only bound to at most
one value in each computation thread) but are represented as equational
constraints in the search goal. Note that the search goals in the result list are
not further evaluated. The further evaluation can be done by a subsequent
application of try to the list elements. This allows the explicit control of
the strategy to explore the search tree. It will be discussed in more detail in
Section 4.

3.2 Local Variables

Some care is necessary if free variables occur in a search goal, as in

\E -> {append(L,[E])=[3,4,5]} (*)

To compute the last element E of the list [3,4,5] with this goal, the variable L
must be instantiated which is problematic since L is free. There are different
possibilities to deal with this case. In Prolog’s bagof/setof predicates, free
variables are (possibly non-deterministically!) instantiated and then remain in-
stantiated with this value, which does not help to really encapsulate all search
and sometimes leads to unexpected results. Another ad-hoc method is to con-
sider a try application to a search goal containing free variables as a run-time
error. Since Curry as well as most Prolog systems is equipped with coroutining
facilities, we take another solution and require that the try operator never binds
free variables of its search goal. If it is necessary to bind a free variable in order
to proceed a try evaluation, the computation suspends. Thus, a try application
to the search goal (∗) cannot be evaluated and suspends until the variable L is
bound.
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try(g) =

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

[] if {c} ⇒ fail

[g′] if {c} ⇒ σ {} (i.e., σ is a mgu for all equations in c) with
Dom(σ) ⊆ {x, x1, . . . , xn},
g′ = \x->let x1, . . . , xn free in {σ}

try(g′) if {c} ⇒ σ {c′} with Dom(σ) ⊆ {x, x1, . . . , xn}
and g′ = \x->let x1, . . . , xn, y1, . . . , ym free in {σ, c′}
where {y1, . . . , ym} = VRan(σ) \ ({x, x1, . . . , xn} ∪ Var(g))

[g1,...,gk] if {c} ⇒ σ1 {c1}| · · · |σk {ck}, k > 1, and, for i = 1, . . . , k,
Dom(σi) ⊆ {x, x1, . . . , xn} and
gi = \x->let x1, . . . , xn, y1, . . . , ymi free in {σi, ci}
where {y1,. . .,ymi}=VRan(σi)\({x, x1,. . .,xn}∪Var(g))

suspend otherwise

Fig. 1. Operational semantics of the try operator for g =
\x->letx1, . . . , xn free in {c}

To allow possible bindings of unbound variables during a local search, they
can be declared as local to the constraint so that they might have different
bindings in different branches of the search. For instance, we start the evaluation
of

try(\E -> let L free in {append(L,[E])=[3,4,5]}) (**)

to compute the last element of the list [3,4,5]. Now the variable L is only visible
inside the constraint (i.e., existentially quantified) and can be bound to different
values in different branches. Therefore, the expression (∗∗) evaluates to
[\E -> let L free in {L=[], [E]=[3,4,5]},
\E -> let L,X,Xs free in {L=[X|Xs],[X|append(Xs,[E])]=[3,4,5]\}]

The new variables X and Xs (introduced by unification) are also added to the list
of local variables so that they can be further instantiated in subsequent steps.

The exact behavior of the try operator is specified in Figure 1. Thus, the
search goal is solved (second case) if the constraint is solvable without bindings of
global variables. In a deterministic step (third case), we apply the try operator
again after adding the newly introduced variables to the list of local variables.
Note that the free variables Var(g) occurring in g must not be declared as local
because they can appear also outside of g, and therefore they have to be removed
from VRan(σ). In a non-deterministic step (fourth case), we return the different
alternatives as the result. If a computation step on the constraint tries to bind a
free variable, the evaluation of the try operator suspends. In order to ensure that
an encapsulated search will not be suspended due to necessary bindings of free
variables, the search goal should be a closed expression when a search operator
is applied to it, i.e., the search variable is bound by the lambda abstraction and
all other variables are existentially quantified by local declarations.
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Note that the operational semantics of the try operator depends only on the
meaning of computation steps of the underlying language. Thus, it can be intro-
duced in a similar way to other logic-oriented languages than Curry.9 Although
the management and testing of local variable bindings look complicated, it can
be efficiently implemented by decorating each variable with a declaration level
and checking the level in binding attempts (similarly to the implementation of
scoping constructs in logic languages [12]). Moreover, the equational represen-
tations σi of the substitutions need not be explicitly implemented but can be
implicitly represented by binding lists for the variables.

4 Search Strategies

The search control operator try introduced in the previous section is a ba-
sis to implement powerful and easily applicable search strategies. This section
demonstrates the use of try to implement some search strategies in Curry. These
strategies can be defined in a similar way in other declarative languages. How-
ever, we will show in Section 6 that Curry’s lazy evaluation strategy can be
exploited to simplify the application of search operators.

The following function defines a depth-first search strategy which collects
all solutions of a search goal in a list:

all(G) = collect(try(G))
where collect([]) = []

collect([G]) = [G]
collect([G1,G2|Gs]) = concat(map(all,[G1,G2|Gs]))

The auxiliary function collect applies recursively all to all resulting alter-
natives of a non-deterministic step and appends all solutions in a single list
(concat concatenates a list of lists to a single list and map applies a function to
all elements of a list). Thus, the expression

all(\L -> {append(L,[1])=[0,1]})

reduces to [\L->{L=[0]}].
Due to the laziness of Curry, search goals with infinitely many solutions cause

no problems if one is interested only in finitely many of them. A function which
computes only the first solution w.r.t. a depth-first search strategy can be simply
defined by

once(G) = first(all(G))

Note that once is a partial function, i.e., it is undefined if G has no solution.
The value computed for the search variable in a search goal can be easily

accessed by applying it to an unbound variable. For instance, the evaluation of
the applicative expression
9 For concurrent languages, one could modify the definition of try such that non-
deterministic steps lead to a suspension as long as a deterministic step might be
enabled by another computation thread. This corresponds to stability in AKL [8]
and Oz [15].
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once(\L -> {append(L,[1])=[0,1]}) @ X

(F@E denotes the application of a function F to some E, where F and E can
be arbitrary expressions) binds the variable X to the value [0], since the first
subexpression evaluates to \L->{L=[0]} and the constraint {X=[0]} obtained
by the application of this expression to X can only be solved by this binding.
Based on this idea, we can define a function unpack that takes a list of solved
search goals and computes the list of the corresponding values for the search
variable:

unpack([]) = []
unpack([G|Gs]) | \{G@X\} = [X|unpack(Gs)] where X free

Now it is simple to define a function similarly to Prolog’s findall predicate:

findall(G) = unpack(all(G))

For a search goal without free variables, findall explores the search tree (depth
first) and collects all computed values for the search variable in a list.

A bounded search strategy, where search is performed only up to a given
depth n in the search tree, can also be easily implemented when we consider
search trees containing only the nodes for non-deterministic steps. This means
that search will not end after n arbitrary reduction steps but only after n non-
deterministic steps. The following function is very similar to the function all
but explores the search goal G only up to depth N.

all_bounded(N,G) = if N>1 then collect(try(G)) else [] where
collect([]) = []
collect([G]) = [G]
collect([G1,G2|Gs]) = concat(map(all_bounded(N-1),[G1,G2|Gs]))

Note that the algorithm may not terminate if an infinite deterministic reduction
occurs (which is seldom in practical search problems) because the search operator
will never return a result in this case. The same can happen with the next
algorithm implementing a breadth-first search strategy that traverses the
search tree level by level and each level from left to right, regarding as level n
all goals obtained from the search goal after n non-deterministic steps.

all_bfs(G) = trygoals([G]) where
trygoals([]) = []
trygoals([G|Gs]) = splitgoals(map(try,[G|Gs]),[])
splitgoals([] ,Ugs) = trygoals(Ugs)
splitgoals([[]|Gs] ,Ugs) = splitgoals(Gs,Ugs)
splitgoals([[G]|Gs] ,Ugs) = [G|splitgoals(Gs,Ugs)]
splitgoals([[G1,G2|G3]|Gs],Ugs) = splitgoals(Gs,

append(Ugs,[G1,G2|G3]))

The function trygoals applies the search operator to the list of remaining alter-
natives and scans the result (a list of lists) using the function splitgoals, which
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removes failures and returns all solutions computed so far. Then the remaining
goals, which result from non-deterministic steps, are recursively explored further.
Similarly, one can also implement other search strategies like depth-first itera-
tive deepening or best solution search with branch and bound [15]. Moreover,
a parallel fair search for the first or all solutions can be implemented with our
search primitive and a committed choice [15] (which is also available in Curry).
To show the use of encapsulated search to control the failure of computations, we
define a function on constraints which implements negation as finite failure
known from logic programming:

naf(C) = {all(\_->{C}) = []}

Thus, if C is a constraint where all variables are existentially quantified, then
naf(C) is solvable iff the search space of solving C is finite and does not contain
any solution.

5 Search Trees and Search Operators

In this section we sketch the connection between the search trees of the base
language and the results computed by some of the search operators defined
above. More details can be found in [4].

The notion of a search tree w.r.t. ⇒ can be defined as in logic program-
ming [9], i.e., each node is marked with a constraint, and if an inner node N
is marked with c and c ⇒ σ1, c1| · · · |σk, ck is a computation step of the base
language, then N has k sons N1, . . . , Nk where Ni is marked with ci and the edge
from c to ci is marked with σi (i = 1, . . . , k). In case of logic programming, where
⇒ denotes a resolution step with all resolvents for a goal, search trees w.r.t. ⇒
are similar to SLD-trees [9]. Leaves are nodes marked with a constraint c that
cannot be further derived. The leaf is successful if c is the empty constraint (in
this case we call the composition of all substitutions marked along the branch
from the root to this leaf a ⇒-computed answer for the constraint at the root of
the tree). The leaf is failed if {c} ⇒ fail. All other leaves are suspended.

The following theorems relate search trees w.r.t. ⇒ to results computed by
some of the search operators (here we assume the functional definition as given
in the previous section, but these properties can be also transferred to other
definitions, e.g., in a relational style). To simplify the formulation of the the-
orems, we represent a search goal as a triple (V, σ, c) where V = {x1, . . . , xn}
is a set of variables, σ is a substitution and c is a constraint. This corresponds
to \_->let x1, . . . , xn free in {σ,c} in the representation introduced in Sec-
tion 3, i.e., here we ignore the special rôle of the search variable since it is not
important for the results in this section. In order to avoid the problem of suspen-
sion due to necessary bindings of free variables, we consider only initial search
goals where all variables are existentially quantified.

The first theorem states the soundness of the all operator.
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Theorem 1 (Soundness of “all”). Let c be a constraint and g=(Var(c),id,c).
If all(g) evaluates to a list [(V1, σ1, c1),(V2, σ2, c2),...], then each ci is an
empty constraint, each σi is a ⇒-computed answer for c and
Var(c) ∪ VRan(σi) ⊆ Vi.

The converse result does not hold in general due to infinite branches in the search
tree, since all implements a depth-first search through the tree. However, we
can state a completeness result for the case of finite search trees.

Theorem 2 (Completeness of “all” for finite search trees). Let c be a
constraint and σ be a⇒-computed answer for c. If the search tree with root c is fi-
nite, then all((Var(c), id, c)) evaluates to a list [(V1, σ1, c1),...,(Vn, σn, cn)],
where σi = σ for some i ∈ {1, . . . , n}.
A corollary of this theorem is the completeness of the negation-as-failure oper-
ator.

Corollary 1 (Completeness of “naf” for finite search trees). Let c be a
constraint. If the search tree with root c is finite and contains only failed leaves,
then naf(c) is a solvable constraint.

A further interesting result is the completeness of the breadth-first search strat-
egy all_bfs. As already discussed, this strategy may be incomplete in case of
infinite deterministic evaluations. Therefore, we call a search tree deterministi-
cally terminating if there is no infinite branch where each inner node has exactly
one successor. Excluding this case, which is seldom in practical search problems,
we can state the following completeness result.

Theorem 3 (Completeness of “all_bfs”). Let c be a constraint and σ be
a ⇒-computed answer for c. If the search tree with root c is deterministically
terminating, then all_bfs((Var(c), id, c)) evaluates to a (possibly infinite) list
[(V1, σ1, c1),(V2, σ2, c2),...], where σi = σ for some i > 0.

6 Exploiting Laziness

We already exploited the advantages of Curry’s lazy evaluation strategy by defin-
ing the search for the first solution (once) based on the general depth-first search
strategy all. This shows that lazy evaluation can reduce the programming ef-
forts. Furthermore, it is well known from functional programming that lazy eval-
uation provides more modularity by separating control aspects [7]. We want to
emphasize this advantage by an implementation of Prolog’s top-level shell with
our search operator.

The interactive command shell of a Prolog interpreter roughly behaves as
follows. If the user types in a goal, a solution for this goal is computed by the
standard depth-first search strategy. If a solution is found, it is presented to the
user who can decide to compute the next solution (by typing ‘;’ and <return>)
or to ignore further solutions (by typing <return>). This behavior can be easily
implemented with our search operator:
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prolog(G) = printloop(all(G))

printloop([]) = putStr("no") >> newline
printloop([A|As]) = browse(A) >> putStr("? ")

>> getChar >>= evalAnswer(As)

evalAnswer(As,’;’) = newline >> printloop(As)
evalAnswer(As,’\n’) = newline >> putStr("yes") >> newline

Here we make use of the monadic I/O concept discussed at the beginning of Sec-
tion 3. The result of browse(A) is an action which prints a solution on the screen.
Similarly, putStr and newline are actions to print a string or an end-of-line. >>
and >>= are the sequential composition operators for actions [18]. The second ar-
gument of >>= must be a function which takes the result value of the first action
and maps this value to another action. The expression “evalAnswer(As)” is a
partially applied function call, i.e., it is a function which takes a further argument
(a character) and produces an action: if the character is ’;’, the next solution
is computed by a call to printloop(As), and if the character is a <return>
(’\n’), then the computation finishes with an action to print the string "yes".
Note that disjunctions do not occur in the printloop evaluation since potential
non-deterministic computation steps of the goal G are encapsulated with all(G).

Since the solutions for the goal are evaluated by all in a lazy manner, only
those solutions are computed which are requested by the user. This has the
advantage that the user interface to present the solutions (printloop) can be
implemented independently of the mechanism to compute solutions. In an eager
language like Prolog, the computation of the next solution must be interweaved
with the print loop, otherwise all solutions are computed (which may not termi-
nate) before the print loop is called, or only one standard strategy can be used.
Our implementation is independent of the particular search strategy, since the
following functions use the same top-level shell but bounded and breadth-first
search to find the solutions:

prolog_bounded(N,G) = printloop(all_bounded(N,G))
prolog_bfs(G) = printloop(all_bfs(G))

7 Related Work

This section briefly compares our operator for controlling non-deterministic com-
putations with some related methods.

Prolog provides built-in predicates for computing all solutions, like bagof,
setof, or findall. As shown in Section 4, they can be easily implemented with
our control primitive, provided that all variables are existentially quantified. On
the other hand, the search strategy in these predicates is fixed to Prolog’s depth-
first search and they always compute all solutions, i.e., they do not terminate if
there are infinitely many solutions. In particular, they cannot be used in situ-
ations where not all solutions are immediately processed, like in an interactive
shell where a demand-driven computation becomes important (cf. Section 6).
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The lazy functional language Haskell [6] supports the use of list comprehen-
sions to deal with search problems. List comprehensions allow the implementa-
tion of many generate-and-test programs, since logic programs with a strict data
flow (“well-moded programs”) can be translated into functional programs by the
use of list comprehensions [17]. On the other hand, list comprehensions are much
more restricted than our search operators, since purely functional programs do
not allow the use of partially instantiated structures, and list comprehensions
fixes a particular search strategy (diagonalization of the generators) so that other
strategies (like best solution search) cannot be applied.

The higher-order concurrent constraint language Oz [16] provides a primi-
tive operator to control search [15] similarly to ours. Actually, our operator try
generalizes Oz’s operator since try is not connected to a construct of the lan-
guage (like or expressions in Oz) but its semantics is defined on the meaning of
computation steps of the base language. This has an important consequence of
the programming style and causes a significant difference between both concepts
which should be explained in the following. An Oz programmer must explicitly
specify in the program whether a search operator should later be applicable or
not. A non-deterministic step can be performed in Oz only if an explicit dis-
junction (or or choice, see [14,15]) occurs in a procedure. As a consequence,
programs must be written in different ways depending on the use of search oper-
ators. The following simplified example explains this fundamental difference to
our approach in more detail. Consider the multiplication with zero defined by
the following rules:

mult(X,z) = z
mult(z,X) = z

Then expressions like mult(z,z) or mult(add(z,z),z) can be reduced to z with
one deterministic reduction step using the first rule.10

In Oz, there are two implementation choices by using a conditional (multc)
or a disjunction (multd):

proc {multc A B C} proc {multd A B C}
if B=z then C=z or B=z then C=z
[] A=z then C=z [] A=z then C=z
fi ro

end end

Conditionals commit to single computation branches, e.g., {multc z z X} re-
duces to the constraint X=z. However, we cannot use multc if we want to compute
solutions to a goal like {multc X Y z} since the conditions in an if are only
checked for entailment. Thus, we have to take the disjunctive formulation multd
where we can compute a solution using some search operator [15]. On the other
10 Although one could also apply the second rule in this situation, sophisticated opera-

tional models for functional logic programming exploit the determinism property of
functions: if a function call is reducible (i.e., a rule is applicable without instantiating
arguments), then all other alternative rules can be ignored [2,11].
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hand, the advantages of deterministic reductions are lost in multd, since the
expression {multd z z X} is only computable with a search operator (a dis-
junction is not reduced until all but at most one clause fails [15]). Therefore, one
has to implement mult twice to combine the deterministic reduction and search
possibilities.

In contrast to Oz, the definition of our control operator is based on the mean-
ing of computation steps, i.e., the possible application of search operators does
not influence the way how the basic functions or predicates are defined. This
property keeps the declarative style of programming, i.e., function definitions
describe the meaning of functions and control aspects are covered by search
operators. Thus, functions or predicates can be defined independently of their
later application, and explicit disjunctions are not necessary. The latter prop-
erty also allows to write more predicates as functions which leads to potentially
more efficient executions of programs. Furthermore, the laziness of Curry allows
the implementation of search strategies independently of their application, e.g.,
demand-driven variants of search strategies (see [15]) are not necessary in our
framework since the user interface can be implemented independently of the
search strategy, as shown in Section 6.

8 Conclusions

We have presented a new primitive which can be added to logic languages in
order to control the exploration of the search tree. This operator, which can
be seen as a generalization of Oz’s search operator [15], can be added to any
logic-oriented language which supports equational constraints and existential
quantification. In this paper, we have added it to the multi-paradigm language
Curry and we have shown the advantages of Curry’s lazy evaluation strategy to
simplify the implementation of the different search operators. Since the search
operators can be applied to any expression (encapsulated in a constraint), there
is no need to translate functions into predicates or to use explicit disjunctions
as in other approaches.

Since the definition of our control primitive is only based on an abstract view
of computation steps (deterministic vs. non-deterministic steps), it can be ap-
plied to a variety of programming languages with a non-deterministic computa-
tion model, like pure logic or constraint logic languages (extended by existential
quantifiers like in Prolog’s bagof/setof construct), higher-order logic languages
like λProlog [13] which already has explicit scoping constructs for variables, or
the various functional logic languages which often differ only in the definition
of a computation step. The general connection between search trees of the base
language and the results computed by the search operators, which is also pro-
vided in this paper, supports the transfer of soundness and completeness results
for the base language to corresponding results for the search operators.

The use of search operators supports the embedding of logic programs into
other application programs where backtracking is not possible or too complicated
(e.g., programs with side effects, input/output) since search operators allow the
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local encapsulation of search. Furthermore, they contribute to an old idea of
logic programming by separating logic and control: the specification of functions
or predicates becomes more independent of their use since the same function can
be used for evaluation (computing values) or for searching (computing solutions)
with various strategies without the necessity to define them in different ways. As
shown in Section 6, this feature enables to simply replace the standard depth-
first search by a bounded or breadth-first search in the user interface. This is
quite useful to teach logic programming without talking about backtracking too
early.
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Abstract. We define a framework for writing executable declarative
specifications which incorporate categorical constraints on data, Horn
Clauses and datatype specification over finite-product categories. We
construct a generic extension of a base syntactic category of constraints
in which arrows correspond to resolution proofs subject to the specified
data constraints.

1 Introduction

Much of the research in logic programming is aimed at expanding the expressive
power and efficiency of declarative languages without compromising the logical
transparency commitment: programs should (almost) read like specifications.
One approach is to place more expressive power and more of the control com-
ponents into the logic itself, possibly by expanding the scope of the underlying
mathematical formalism. This has been the goal of constraint logic program-
ming (CLP, Set constraints, Prolog III), and extensions to higher-order and
linear logic, to name a few such efforts. This paper is a step in this direction.
Rather than expand the logic itself, we consider two extensions of the underlying
syntactical foundation, using fairly simple categorical tools. Categorical syntax
and proof theory for logic programming permits a powerful extension of con-
ventional logic programming to be built in a manner that does not compromise
declarity and that admits a similar semantical treatment to conventional logic
programming.

The encoding dilemma. The main contribution of the paper is a new ap-
proach to defining syntactic extensions to specify data types and constraints
as independent components, somewhat in the spirit of modules in functional
programming.

This information is processed by extending the logic programming interpreter
dynamically with new rules. In traditional logic programming, this kind of in-
formation is coded directly into the Horn logic, often very cleverly, in a way that
may obscure the intended meaning of the code, despite the fact that it is logical.
Soundness and completeness of the target logic says nothing about the correct-
ness of the encoding. We propose expanding the specification formalism in a
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way that admits direct definitions of data and constraint information that are
already mathematically clear, or verified elsewhere using appropriate tools. We
consider a datatype defintion construct and a very liberal notion of constraint
based on finite product categories, of which equational constraint systems are
a special case. We make use of a categorical foundation developed in [9], and
similar in spirit to, e.g. [1,4,5,21]. Although the framework admits extensions to
Hereditarily Harrop or Higher-order logic, we will only consider Horn logic here.

An Example: It will be useful to give an example of the kind of code that is
admitted by the extensions discussed in this paper.

begin module "list"

datatype ’a list = nil | cons of ’a * ’a list

begin

fun length nil = (0:int)

| length (cons (a,t)) = 1 + length t

end;

even(0:int).

even(X) :- even(X - 2).

length_of(Z, length Z).

end module;

? - list even (cons(2,(cons(4,(cons(6,nil)))))).

- yes
? - pred[length](cons (2,(cons (4,(cons (5,nil))))),A).

- A = 3
? - length_of((cons (2,(cons (4,(cons (5,nil)))))),A).

- A = 3

It is assumed that a datatype int, together with operators +,*,- of type
int -> int, constants 0,1,2,...:int and equational constraints are defined
elsewhere.

The predicate pred[length] is not specified by the user, but is built up
automatically from the function definition for length, whereas (for no good
reason other that to illustrate the difference) length of is a predicate with the
same meaning hand coded by the user1 The query

?-length_of((cons (2,(cons (4,(cons (5,nil)))))),A+2).

yields A=1 by unification of ((cons (2,(cons (4,(cons (5,nil)))))),A+2) with
(Z,length Z) which is carried out in the appropriate category by taking the
pullback of the two corresponding arrows, as described below. The predicate
list even is also not defined directly by the user, only even.

In this paper we show how to define a category with arrows corresponding to
resolution proofs with a generalized notion of unification with constraints such
as:
1 The point of providing an automatically generated predicate pred[length] is that

the function length could be made private to the data type. This is in keeping with
the view that adding datatypes should not necessarily mean turning logic program-
ming into a functional programming language.
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length of((cons (2,(cons (4,(cons (5,nil)))))),A+2)
A=1
❀ �.

and with new proof steps that incorporate data type information

list X (cons(a,t))❀ X(a),list X (cons(a,t))

which are treated as dynamic updates of the basic Horn clause interpreter.
What we will not discuss here are proof strategies: algorithms for searching

the category of proofs or the category of non-deterministic resolutions defined
in the paper, or for computing pullbacks. This is of course extremely relevant,
and quite a harder matter to resolve than the subject matter of this paper.
What we show here is that in principle a correct interpreter can be dynamically
generated from constraint data expressed in a modular discipline that is both a
specification at top level, and correctly executable code.

Related Work: Module proposals, and data type definitions for logic program-
ming have appeared since the early 1980’s, notably [12,2]. Our contribution here
is to introduce a new technique for lifting certain constraints on data to pred-
icates on that data and proofs between them, in the general framework of a
categorically defined constraint domain.

Categorical approaches to logic programming features appeared in the mid
1980’s in Rydeheard and Burstall’s categorical treatment of unification [24] based
on ideas of Burstall and Goguen. Since then research using categories to an-
alyze or generalize different facets of declarative programming has been car-
ried out by Corradini, Asperti and Montanari [1,5,4], Panangaden, Scott, Seely,
Saraswat, [19], Power and Kinoshita [21] Diaconescu [8], Pym [22], Orejas, Ehrig
and Pino [18], and Finkelstein, Freyd and Lipton [9,10].

2 Logic Programming Categories

In the remainder of this paper, we build on the basic categorical framework
defined in [9], based on standard approaches to categorical logic, e.g. [16,11]. It
is briefly sketched here.

Categorical Logic: In a nutshell, the categorical representation of the syntax of
logic programs is as follows: an FP category (category with finite products) C is
taken as a generalization of to the Herbrand Universe. It serves as a generalized
program signature as well: it supplies the basic sorts (objects), function symbols
of sort (σ, ρ) (arrows σ

f✲ ρ), and constants of sort ρ (arrows of the form
1

a✲ ρ, where 1 is the terminal object). Since it is closed under allowed
compositions, it supplies the terms as well. Often, only a distinguished class
of arrows (closed under composition) interest us as program terms, and are so
identified. Predicates are subobjects of their sort, with instances given by pulling
back along term arrows. In order to make the right kind of subobjects available,
special categories C [X1, . . . , Xn] or C[σ] of generic predicates will be built on
top of C subject to different constraints depending on the extension we are
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trying to formalize. In these categories, predicates are functors generated by
spans emanating from their sort.

We can recover traditional logic programming over the Herbrand universe in
this framework, if we pick C to be the so-called the Lawvere Algebraic Theory
for a one-sorted signature with at least one constant (considered in e.g. [9]) and
with no equations. Here, arrows correspond to (projections of vectors of) terms
of the Herbrand Universe. We call this the Herbrand Category for the signature.
The more general framework of arbitrary finite-product categories and generic
predicate extensions allows us to build-in constraint information and data types
into the syntax, as well as into the the structure of predicates. In such categories,
unification of two arrows u and v with a common target (corresponding to two
terms of the same sort which are standardized apart) amounts to finding a pair of
substitutions (arrows) with a common source θ, ψ making a commuting square,
i.e. such that ψv = θu.

Most general unifiers yield pullback diagrams, when they exist. Note that
separating the domains of terms u and v is what standardizes them apart2.
In extensions of Horn logic, such as λ-prolog, queries and programs may share
variables, which requires explicit sharing of domains. Unification then reduces
to equalizing the arrows (see [10])

For basic concepts of category theory, we refer the reader to [11], and for
the elements of indexed category theory, see [6]. We note that compositions of
arrows are written in diagrammatic order: A

f✲ B composed with B
g✲ C

is A
fg✲ C.

2.1 Generic Predicates and Unordered Goals

A predicate symbol R of type σ may be modelled in a category with finite
products by a monic arrow with target σ. Instantiation (and hence, substitution)
by terms of sort σ can be modelled by pullbacks along the appropriate arrow:

R(t) ✲ R

α
❄

❄

t ✲ σ
❄

❄

Any distinguished family of monics can play the role of predicates in a logic
program, but if they are to make sense in logic program syntax such a collection
should be closed under pullbacks3 and they should not be chosen to conflict
with the meaning of the logic program in which they will be used. Unlerss one
wishes to constrain program predicates in advance (a question we will take up
2 If the ambient category is the Herbrand Category, the occurs-check will be automat-

ically enforced.
3 If the predicates are not stable under pullbacks of arrows designated as program

terms, then certain instances may not even exist in the syntax, which is a rather
unusual form of failure for a logic program query.
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subsequently), the predicate A should not be true of any instance A(t) in the
syntactic category, until information about the program is somehow incorporated
into the categorical structure. In short: they should behave like second-order
predicate variables. We thus seek a notion of generic or freely adjoined predicate.

Definition 1 (Generic Predicates) Let X be a subobject of some object b in
a finite product category C , and let D be a family of arrows in C targeted at b.
We say X is a generic subobject of b with respect to the maps D if

– For every arrow t in D the pullback t#(X) exists.
– No such pullback is an isomorphism.

Definition 2 Let C be an FP category and b = b1, . . . , bn a sequence of objects
of C . Then C [X1, . . . , Xn], the category obtained from C by freely adjoining
indeterminate subobjects of b is defined as follows:

objects: pairs 〈A,S〉 where A ∈ |C | and S is a sequence S1, . . . , Sn of finite sets Si ⊂
HomC (A, bi),

arrows: are triples 〈A,S〉 f✲ 〈B,T 〉 where A
f✲ B is an arrow in C and fT ⊂ S,

that is to say, for every i, (1 ≤ i ≤ n) and every t ∈ Ti, fti ∈ Si. The arrow f

in C is called the label of 〈A,S〉 f✲ 〈B,T 〉. Composition of arrows is inherited

from C . Two arrows 〈A,S〉 f✲ 〈B,T 〉 and 〈A′, S′〉 f ′
✲ 〈B′, T ′〉 are equal if

they have the same domain and range and if f = f ′ in C .

Given an object 〈A,S〉 we will use the notation tS, where t is an arrow in C with
target A, to mean the sequence tS1, . . . , tSn where tSi = {ts : s ∈ Si}. Notice
that an arrow in C [X1, . . . , Xn], may have an identity arrow in C as a label,
and not even be an isomorphism in C [X1, . . . , Xn]. We will be paying special
attention to a certain class of such arrows.

Theorem 3 Let C be a finite product category. The category C [X1, . . . , Xn] has

– a terminal object 〈1,∅〉, where ∅ is the sequence ∅, . . . , ∅ of length n,
– products: 〈A,S〉×〈B, T 〉 = 〈A×B, π1S ∪ π2T 〉 where A ✛π1

A×B π2✲ B
is a product in C .

Furthermore, the functor C
ι✲ C [X1, . . . , Xn] given by mapping objects A to

〈A,∅〉 and arrows A
f✲ B to 〈A,∅〉 f✲ 〈B,∅〉, is a limit-preserving, full

embedding.

Limit preservation follows from the fact that ι has a left adjoint, namely the
forgetful functor U taking objects 〈A,S〉 to A and arrows to their labels.

Lemma 4 Addition of indeterminate subobjects simultaneously, sequentially, or
in permuted order results in isomorphic categories. More precisely:

1. C [X1, . . . , Xn] 
 C [X1] · · · [Xn].
2. Let σ be a permutation of the first n positive integers. Then C [X1, . . . , Xn] 


C [Xσ(1), . . . , Xσ(n)].

Proof. Straightforward. ✷
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Definition 5 In C [X1, . . . , Xn] define the indeterminate subobjects
X1, . . . , Xn of sorts b1, . . . , bn respectively, to be the subobjects

〈bi, J i〉✲idbi✲ 〈b,∅〉, where the J i are the “basis vectors”

(J i)k =
{∅ if i �= k
{idbi} o.w.

Theorem 6 The indeterminate subobjects Xi of bi are generic with respect to
the maps (targeted at 〈bi, ∅〉) in the image of C

ι✲ C [X1, . . . , Xn].

Proof. The following diagram is a pullback for any arrow 〈A,∅〉 t✲ 〈bi,∅〉:

〈A, tJ i〉 t✲ 〈bi, {id}〉

〈A,;〉

idA

❄

❄

t
✲ 〈bi, ;〉

idbi

❄

❄

so X(t) = 〈A, tJ i〉✲idA✲ 〈A,∅〉 exists for all appropriate t. This arrow cannot be
an isomorphism in C [X1, . . . , Xn]: its inverse, which would have to be labelled
with idA, would have to satisfy idAt ∈ ∅. ✷

Objects of the form X(t) = 〈A, tJ i〉 will be called atomic predicates. If A
is an object of C , we say that the monic 〈B,S〉✲ f✲ 〈A,∅〉 is a canonical
(representative of a) subobject of 〈A,∅〉 if B is A and the monic f is idA.
Observe that every object 〈A,S〉 of C [X1, . . . , Xn] is a canonical subobject of
“its sort” 〈A,∅〉. This allows us to define a natural indexed structure [6] for
C [X1, . . . , Xn] over C .

Definition 7 For each object A of C , let CA[X1, . . . , Xn] be the category whose
objects are arrows in C [X1, . . . , Xn] of the form 〈A,S〉 idA✲ 〈A,∅〉, and with
morphisms given by arrows between their sources labelled by the identity on A in
C . Then let p : C ✲ CAT be the strict indexed category given by

– p(A) = CA[X1, . . . , Xn]

– p(A
f✲ B) = f# : CB[X1, . . . , Xn] ✲ CA[X1, . . . , Xn]

Notice that the pullback operation referred to by f# maps 〈B,S〉 idB✲ 〈B,∅〉 to
〈A, fS〉 idA✲ 〈A,∅〉. Thus (fg)# is precisely g#f# on the nose. Now we define
a “canonical intersection” functor for the indexed category p:

Definition 8 Let ∩ : p× p ✲ p be defined by 〈A,S〉 ∩A 〈A, T 〉 = 〈A,S ∪ T 〉.
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By the remarks immediately preceding the definition, it is immediate that ∩
commutes with pullback, i.e. is a natural transformation.

The following theorems make precise the fact that C [X1, . . . , Xn] is called
the category obtained by freely adjoining the indeterminate subobjects of the
sorts b1, . . . , bn.

Lemma 9 Every object 〈A,S〉 is representable as (i.e. equal on the nose to) the
canonical intersection

⋂
{t#(Xi) : t ∈ Si, 1 ≤ i ≤ n}

where the pullbacks are canonical: t#(Xi) = 〈A, tJ i〉 = 〈A, ∅ · · · ∅ {t}︸︷︷︸
i

∅ · · · ∅〉.

Proof. Immediate: Since S =
⋃{{t} : t ∈ S}, the indicated canonical intersec-

tion is precisely 〈A,S〉. ✷

Theorem 10 (Universal Mapping Property) Suppose F : C −→ D is a
limit preserving functor from the finite-product category C to the finitely com-
plete category D, and that F (bi) = di for 1 ≤ i ≤ n. Furthermore, let B1, . . . , Bn

be a sequence of subobjects of d1, . . . , dn respectively, in D. Then there is a limit-
preserving functor FB : C [X1, . . . , Xn] −→ D, unique up to isomorphism, such
that the following diagram commutes.

C [X1; : : : ; Xn]

�
�
�
�

�
� @

@
@
@

FB

R
C

F
- D

FB is called the evaluation functor induced by the Bi.

Proof. Define FB on objects by FB(〈A,S〉) = lim←{F (t)#(Bi) : t ∈ Si, 1 ≤ i ≤
n}. The universal mapping property of limits gives us the action on arrows: if
〈A,S〉 f✲ 〈A′, S′〉 is an arrow in C [X1, . . . , Xn] then FB(〈A,S〉), the limit of
the family of monics {F (t)#(Bi) : t ∈ Si, 1 ≤ i ≤ n} targeted at FA, is also, by
composing with F (A

f✲ B) and using properties of pullbacks and of arrows in
C [X1, . . . , Xn], a cone over the family of monics {F (t)#(Bi) : t ∈ S′i, 1 ≤ i ≤ n}.
There is therefore a unique induced arrow F 〈A,S〉 θ✲ F 〈A′, S′〉 which is the
value of F (〈A,S〉 f✲ 〈A′, S′〉). The details, and those of the proof of limit
preservation, are left to the perseverant reader. ✷
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We are interested in a category D with richer structure, in which case we are
able to sharpen this result a bit.

Corollary 11 Assume the category D in the preceding theorem is SetC
o

and
that F is the Yoneda embedding. Choose the sequence of subobjects Bi of Fbi =
HomC ( , bi) to be canonical, that is to say, pointwise subsets of Fbi, and take
limits in SetC

o

to be given pointwise (not just up to isomorphism, but on the
nose). Then the evaluation functor FB of the preceding theorem is unique.

Unordered Goals The most elementary notion of query, or of state in a logic
program, is that of a conjunction of atoms

Xi1(t1), . . . , Xin(tn) (1)

where the Xij are program predicate symbols. We call these basic goals.
A first approximation to syntactic goals is already present in the category

C [X1, . . . , Xn] whose objects are effectively unordered goals . By the representa-
tion lemma (9) above, every object 〈A,S〉 in C [X1, . . . , Xn] is an intersection

⋂
{t#(Xi) : t ∈ Si, 1 ≤ i ≤ n}. (2)

and can be thought of as a non-deterministic image of the corresponding ordered
goal (1) above.

These intersections are free in the sense that one can recover all compo-
nents t#(Xi) from them, i.e. by reading off the arrows in the Si, and in the sense
of theorem 10. Since the Si are sets, they cannot capture order or repititions of
atoms within goals. An ordered counterpart will be defined below.

Definition 12 Let C be a finite product category, and X1, . . . , Xn a sequence of
generic predicates over C of sorts b1, . . . , bn. An interpretation is an evalua-
tion functor extending the Yoneda embedding, assigning to each Xi some canon-
ical subobject Bi of HomC ( , bi) as in corollary 11.

In other words, an interpretation is a functor

[[ ]] : C [X1, . . . , Xn] −→ SetC
o

– agreeing with the Yoneda embedding on C , and
– mapping 〈A,S〉 to ⋂{( [[t ]])#(Bi) : t ∈ Si, 1 ≤ i ≤ n},

where [[t ]] means the Yoneda image of t.
It is easy to check that interpretations form a complete lattice under the

pointwise order.
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2.2 Two Proof-Theoretic Categories

Fix a sequence of sorts σ = σ1, . . . , σn, σi ∈ |C | and a family X1, . . . , Xn of
generic predicates X1, . . . , Xn with Xi of sort σi, as in the construction of the
categories in the preceding section. We will refer to objects Xi(ti) = tiJ

i of
sort A, where A

t
✲ σi is an arrow in C , as atomic goals or predicates (of

sort A), objects 〈A,S〉 of C [X1, . . . , Xn] as unordered (or non-deterministic)
goals (of sort A), and sequences Xi1(t1), . . . , Xim(tm), where each atomic pred-
icate Xij (tj) is of sort A, as ordered goals of sort A.

Note that there is a “forgetful” function β which takes ordered goals to the
underlying unordered ones:

β(Xi1 (t1), . . . , Xim(tm)) = 〈A,S〉, (3)

where Sk = {tj : ij = k} that is to say, the set of all terms occurring as
arguments to the kth generic predicate, wherever it occurs (0 or more times)
in Xi1(t1), . . . , Xim(tm). Thus 〈A,S〉 =

⋂{t#(Xi) : t ∈ Si, 1 ≤ i ≤ n} as
discussed in the previous section.

It will be convenient below to describe the following operation on ordered and
unordered goals, both given the same name delkt , which removes one occurrence
(the first one, in the ordered case) of the atomic goal Xk(t) if it exists, and
returns the original goal unchanged, otherwise. More formally, in the unordered
case: delkt 〈A,S〉 = 〈A, T 〉 where Ti = Si if i �= k and Tk = Sk \ {t}.

Definition 13 A Horn Program over C (in the predicates X1, . . . , Xn) is a finite
set of triples 〈A,G,X(t)〉 where G is an ordered goal, and X(t) an atomic goal,
both of sort A. An unordered Horn program is a similar set of triples 〈A,G,X(t)〉,
but where G is unordered. The triples are called (ordered or unordered) clauses,
and may be written G⇒ X(t) when the sort is understood from context.

Note that the “forgetful” function β in (3) extends naturally to a map from
ordered clauses to unordered ones.

Definition 14 Let P be a Horn program. A P-SLD proof step between ordered
goals G1 and G2, of sorts A1 and A2, respectively, with substitution θ, and pro-
gram clause c = 〈A,H,Xk(u)〉, denoted

G1
θ,c
❀ G2

is a 4-ary relation (relating G1, θ, c, G2) defined by:

– A2
θ✲ A1 is an arrow in C , and

– there is an arrow A1
t
✲ σk in C , such that Xk(t) is an atomic subgoal

of G1, that is to say, G1 = G,Xk(t), G′,
– there is an arrow A2rT o

ψA such that θt = ψu and
– G2 = θG, ψH, θG′.
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If 〈A1, S〉, 〈A2, T 〉 are unordered goals, an sld-step 〈A1, S〉 θ,c
❀ 〈A2, T 〉 between

them exists when a clause c and unifying arrows θ and ψ exist, as above, and
T = θ(delktS) ∩ ψH. In both the ordered and unordered cases, the arrow θ is
called the substitution of the SLD step, and c its clause.

We define an SLD-sequence between goals, G❀
θ· · · ❀G′ to be the ternary

relation that obtains when there is a sequence of goals G = G0, . . . , Gn = G′

and SLD-steps between each Gi−1 and Gi with substitution θi, and θ is the
composition θn · · · θ1. The “reflexive case”n = 0 and θ = id is allowed.

Definition 15 The category CSLD

P of unordered SLD proofs over program P has

the objects of C [X1, . . . , Xn] as its objects, and arrows 〈A,S〉 θ✲ 〈B, T 〉 where

〈B, T 〉❀ θ· · ·❀〈A,S〉 is an SLD sequence. We call A
θ✲ B in C the label of

this arrow of CSLD

P .

The Operational Category C P We now modify the generic predicate con-
struction C [X1, . . . , Xn] to produce a category of predicates C Pwhich are generic
modulo the clauses in program P. C P is a categorical (and constraint-sensitive)
counterpart to the operational C-semantics of Levi et. al. [15], in the sense that
objects are goals modulo operational equivalence, and arrows are open substitu-
tions between them. Later we will study how datatype information acts on both
C P and CSLD

P to produce dynamically updated predicates, operational semantics
and proofs.

Definition 16 Let A be an object in C , and T a monotone operator on sets of
arrows with a common source in C . Then a family S of arrows with source A
is said to be closed under T if T (S) = S. S is T -generated by a family of
arrows emanating from A if S = T (U). We will also write 〈U〉 for T (U) when
the closure operator is understood from context.

Definition 17 Let C be a finite-product category, and P a Horn clause program
over C [X1, . . . , Xn]. The category C P is given by the following data:

objects: Pairs (A,S) where A is an object of C , and S is a sequence S1, . . . , Sn,
where each Si is a set of arrows from A to σi, closed with respect to the
following clausal closure condition:
For each clause of sort α in P

Xi1(t1), . . . , Xin(tn)⇒ X(t) (4)

where X,Xik are generic predicates of sort σj , σik , α
t✲ σ and α

tk✲ σik

arrows in C , and for each arrow A
ϕ✲ α satisfying

ϕt1 ∈ Si1 , . . . , ϕtn ∈ Sin (5)

we must have ϕt ∈ Sj.
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arrows are triples (A,S)
f✲ (B, V ) such that A

f✲ B (the label) is an
arrow in C , and fV ⊂ S. Composition is defined by composing labels.

If we let TA
P be the operator on sets of arrows with a common source A given

by

TA
P (S) =

⋃
c∈P

{ϕt : A ϕ✲ α and ϕt1 . . . , ϕtn ∈ S}

then the requirement on S in the preceding definition is equivalent to being TA
P -

generated.

Lemma 18 There is a faithful functor ιP : C [X1, . . . , Xn] ✲ C P given by
(A,U) �→ (A, 〈U〉) on objects, and which preserves labels of arrows.

Proof. Since the closure operator TA
P is monotone, ιP maps arrows to arrows.

Fidelity and functoriality is immediate. ✷

2.3 Semantics

Let P be a program, GPthe collection of ordered goals over P, and [[ ]] an inter-
pretation into SetC

o

as in definition (12), and β the forgetful map from ordered to
unordered goals. Then observe that β [[ ]] is a function GP −→ SetC

o

. We some-
times overload the symbol [[ ]] to denote β [[ ]], since context will always make
clear what is meant. We call the composition βιP : GP −→ C P the representation
of goals in the category C P.

Note that by corollary (11), the value of [[ ]] on goals is completely determined
by its value on generic predicates.

We now give a quick sketch of some results on semantics from [9,10]. We give
a categorical analogue of the Kowalski-van Emden bottom-up semantics. Proofs
can be founded in the cited references, and are, for the most part, omitted.

Definition 19 An interpretation [[ ]] is a model of program P if for every clause
tlcl ⇒ hdcl we have [[tl ]] ⊂ [[hd ]]. A goal G of sort α is said to be true in the
interpretation if the image [[β(G) ]] ∈ SetC

o

of the monic

β(G)
idα✲ (α, ∅)

is an isomorphism.

In the following discussion we will use the notation cl ∈ P to refer to the fact
that cl is an ordered clause in the program P. We also refer to the empty goal of
sort σ by �σ. The image of this goal in C [X1, . . . , Xn] under β is (σ, ∅), which
is the entire subobject (σ, ∅) ==== (σ, ∅). Since functors preserve identity arrows,
it must be mapped by any interpretation to the identity C ( , σ) ==== C ( , σ).
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Lemma 20 (Soundness) Let [[ ]] be a model of program P, and G1 and G2

goals of sorts α1, α2 respectively, and G1❀
θ,c· · · ❀G2 a resolution proof with

answer substitution α2
θ✲ α1. Then [[G2 ]] ⊂ [[θG1 ]]. In particular, if G2 is

�α2 then θG1 is true in the model.

We now define a categorical analogue of the TP operator of Kowalski and
Van Emden, an operator EP on the lattice of interpretations.

Definition 21 Let [[ ]] be an interpretation and X1, . . . , Xn the sequence of
generic predicates in program P. Then

EP ( [[ ]])(Xi) =
⋃

tl⇒Xi(t)∈P
Im [[t ]] ( [[tlcl ]])

where, for each t occurring in the head of a clause in P of the form tl ⇒ Xi(t),
Im [[t ]] denotes the image along the arrow [[t ]] in SetC

o

.

In [9,10] it is shown that EP is a continuous operator on the lattice of interpre-
tations, with a least fixed point [[ ]]∗ (called the Herbrand interpretation for P).

Lemma 22 An interpretation [[ ]] is a model of program P if and only if it is a
pre-fixed point of EP (that is to say, EP ( [[ ]]) ⊆ [[ ]]) and hence, if and only if
[[ ]]∗ ⊆ [[ ]].

The following is established in [9,10]

Theorem 23 (Completeness) If P is a program, [[ ]]∗ its Herbrand interpre-
tation and G a goal, [[G ]]∗ is an isomorphism if and only if there is an SLD

proof G❀
id· · ·❀�

We now establish some properties of the category C P. Since it is a finite-product
category, arrows in C P are not, strictly speaking, SLD proof steps (in reverse),
but a bit more. Arrows in C P correspond to extended resolution steps that
include weakening of goals and instantiation of goals, as well as products of
basic SLD sequences that can be thought of as parallel resolutions of multiple
goals. But the present category suffices for our purposes, since the only global
proofs �α

θ✲ βιP(G) correspond to real SLD proofs G❀
θ· · ·❀�α.

Theorem 24 (Soundness of β ◦ ιP) Let G1❀
θ· · ·❀G2 be an SLD sequence,

and let (α1, 〈U1〉) and (α2, 〈U2〉) be the images in C P of G1 and G2 under β ◦ ιP.
Then G2

θ✲ G1 is an arrow in C P.

Proof. Observe that the closure condition (5) of definition (17) guarantees that
for each clause tl ⇒ hd of P, the arrow (α, 〈Stl〉) idα✲ (α, 〈Shd〉) is in C P,
for βιP(hd) = (α, 〈Shd〉) and βιP(tl) = (α, 〈Stl〉), the requirement for arrows in
C P being Stl ⊆ Shd which is precisely the closure condition (5). This proves the
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claim for the trivial one-step resolution from the head of a clause to its tail. Using
the fact that for any arrow θ targeted at α (α, θ〈Stl〉) idα✲ (α, θ〈Shd〉) is also in

C P, and that G1❀
θ· · · ❀G2 implies θG1❀

id· · · ❀G2, it is straightforward to
show that any resolution sequence with answer substitution θ maps to an arrow
with label θ in the opposite direction. ✷

Theorem 25 (Completeness of β ◦ ιP) If �α
θ✲ βιPG is an arrow in C P,

then there is an SLD proof G❀
θ· · ·❀�α.

Proof. The empty goal of sort α is represented by the object (α, 〈∅〉) in C P.
Suppose βιPG = (γ, 〈U〉). That is to say G is of the form Xi1(t1), . . . , Xin(tn)
and U is ⋂

{t#(Xi) : t ∈ Ui, 1 ≤ i ≤ n}. (6)

Then if �α
θ✲ βιPG is an arrow in C P, θ〈U〉 ⊆ 〈∅〉, that is to say, by the

remarks about TP following definition (17), every Xij (tj) is true in the Herbrand
interpretation [[ ]]∗ of P for (1 ≤ j ≤ n). By completeness for [[ ]]∗ (theorem 23)
there is an SLD proof of θG from P, hence a proof of G with computed answer
substitution θ. ✷

3 The Categories C[σ], C P[σ] and CSLD

P
[σ]

Next, we generalize definition 2 so that the resultant construction will allow
lifting of functorial datatypes and certain diagrams from the base category to
the category of predicates. For the duration of this section C is an FP category, D
is a complete category, J is a category, and D is a collection of product diagrams
in J, which we will call distinguished products, or D-products.

Definition 26 (D-Product Preservation) We will say that the functor H :
J ✲ B preserves D-products if H sends each D-product to a product diagram
in B.

For the rest of this paper σ : J ✲ C will be a functor that preservesD-products
and σi will denote the C-object σ(i).

Definition 27 (D-Closure) Let A ∈ |C |, and D be a set of product diagrams in
C . A subfunctor S of C (A, σ(−)) is D-closed if it preserves D-products. In other
words, for every D-product diagram for i1×. . .×in, if there are arrows fk ∈ S(ik)
for each k = 1, . . . , n, then 〈f1, . . . , fn〉 ∈ S(i1 × . . .× in).
In particular, if 1J ∈ D, then σ1J

= 1C and S(1J) = {!A}.
Definition 28 (D-Generating Sets) Let Y be a collection of arrows emanat-
ing from A, each with target in the range of σ. Y is said to D-generate S if S is
the smallest D-closed subfunctor of C (A, σ(−)) containing all the arrows of Y .
In that case we write � Y � for S, and call it the D-closure of Y .
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Definition 29 Let C[σ] be defined as follows.

objects: pairs 〈A,S〉 where A ∈ |C | and S is a D-closed subfunctor of
C (A, σ(−)).

arrows: are triples 〈A,S〉 h✲ 〈B, T 〉 where A
h✲ B is an arrow in C and

hT ⊂ S, i.e. for any j ∈ |J| and f ∈ T (j), hf ∈ S(j). Again, we define a
label as before, and compostion is inherited from C .

Observe that the functors S are no longer finitely generated.
A routine verification shows that if J is the discrete category on the set

{1, . . . , n} and D = ∅ then C[σ] = C [X1, . . . , Xn]. Hence Definition 2 is a
special case of Definition 29.

Proposition 30 If C is an FP category [resp. cartesian] then C[σ] is an FP
category [resp. cartesian] and the functor C

ι✲ C[σ] given by mapping ob-
jects A to 〈A,� ∅ �〉, and arrows A

f✲ B to 〈A,� ∅ �〉 f✲ 〈B,� ∅ �〉,
is a full and faithful limit-preserving embedding.

The proof is straightforward, but lengthy. The reader is referred to [17] for
details.

Definition 31 Let C(σ) stand for the full subcategory of C[σ] whose objects are

|ι(C )|
⋃
{〈σj ,� Idσj �〉|j ∈ |J|}.

Also, let X : J ✲ C(σ) be the functor taking objects j ∈ |J| to the pair
〈σj ,� Idσj �〉 and arrows i

h✲ j to 〈σi,� Idσi �〉
σh✲ 〈σj ,� Idσj �〉.

Finally, let m : X ✲ ι ◦ σ be the natural transformation defined by mj ≡
Xj

idσj✲ ι(σj) where j ∈ |J|.

It is straightforward to show the composite functor J
X✲ C(σ) ⊂ ✲ C[σ]

preserves D-products.
The monic mj (and by abuse of language, its source Xj) will be called the

generic predicate of sort σj since the familym exhibits similar characteristics
to the generic predicates of Definition 1. In particular, for every j ∈ |J|, t ∈
C (A, σj) the diagram

〈A,	 t
〉 t ✲ Xj

〈A,	 ∅ 
〉

IdA

❄

t
✲ ισj

mj

❄

∩

is a pullback in C[σ]. However, it may be the case that some of these pullbacks
are indeed isomorphisms: the constraint information contained in σ may make
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some generic predicates true. For example, suppose 1J is in D. Then it follows

that X1J
= σ1J

= 1C so that X1J

m1J✲ σ1J
is iso.

The “genericity” of the family m is made precise in the following theorem.

Theorem 32 (Universal Mapping Property II) Suppose D is complete
category and F : C(σ) ✲ D is a functor such that

– F ◦ ι : C ✲ D is a cartesian representation;
– F◦X : J ✲ D preserves D-products; and
– F (m) : F◦X ✲ F ◦ ι(σ) is a monic natural transformation.

Then there exists a cartesian functor F̄ : C[σ] ✲ D unique up to isomorphism
making the triangle

C [�]

�
�
�
�
�
�� @

@
@
@
@

�F

R
C (�)

F

- D

commute.

Proof(sketch). For A
t✲ σj , let F̃ (t) be the pullback of Xj

Fmj✲ Fισj along
Fι(A)

F (t)
✲ Fισj .

Define F̄ 〈A,S〉 on objects by F̄ 〈A,S〉 = ⋂{F̃ (t)|t ∈ S(j), j ∈ |J|}. F̄ on
arrows is just a consequence of the limit definition of F̄ on objects. It follows
that F̄ has the stated properties. We refer the reader to [17] for the details. ✷

Corollary 33 Assume the category D in Theorem 32 is SetC
o

and that F ◦ ι
is the Yoneda embedding. Also, for each i ∈ |J| take F (Xi)

F (mi)✲ F (σi) to
be a pointwise subset of F (σi), and take limits in SetC

o

to be given pointwise.
Then the functor F̄ of Theorem 32 is unique. In this case we call the functor a
σ-interpretation by analogy with definition 12, and write it [[ ]].

The category C P[σ]: We have given two constructions, one yielding a category
C P of substitutions corresponding to proofs with respect to program P, and one
yielding arrows that serve as proof steps for data information encapsulated in
the index category J and the functor σ. Finally we define a category of σ-proofs
C P[σ] by merging the two constructions. The objects are pairs (A,S), A in
|C | and S a subfunctor of C (A, σ(−)) closed under both the conditions 5 of
definition 17 (clausal closure) and that of definition 27 (D-closure). Arrows are
induced by labels from C as before.

The category CSLD

P [σ]: Given the data C , J and σ, we define an (unordered)
σ-goal to be an object of C[σ], a σ-clause to be a triple 〈A,G,X(t)〉, where X(t)
is an atomic σ-goal (a pullback of a generic σ-predicate) and G a σ-goal, both of
sort A ∈ |C |, and a σ-program P a set of σ-clauses. We can construct a category



406 James Lipton and Robert McGrail

of generalized resolution proofs directly from C P[σ] and P by taking, as objects,
the objects of C[σ], and as arrows, triples

〈A,S〉 h✲ 〈B, T 〉

where 〈A, 〈S〉D〉 h✲ 〈B, 〈T 〉D〉 is an arrow in C P[σ], (〈S〉D being the D-closure
of S), and composition is given by composition of labels from C . In other words,
CSLD

P [σ] is the object part of the comma category (κ, κ) induced by the functor
κ : C[σ] ✲ C P[σ] which maps objects 〈A,S〉 to 〈A, 〈S〉D〉 and labels to
themselves. In this category, arrows correspond to SLD-resolutions induced by
program P, weakening, and proof steps induced by the datatype information
encoded in σ. We then have soundness and completeness in the following sense

Theorem 34 Let P be a σ-program and G be a σ-goal. [[G ]] is true for every σ-

interpretation [[ ]] that is a model of P if and only if there is an arrow �A
idα✲ G

in CSLD

P [σ].

4 Lifting Data Types to Predicates and Proofs

In this section we give several examples of the use of the machinery developed
in preceding sections to incorprate datatype definitions into logic programs.

We take the following syntax for a datatype declaration.

datatype ’a foo = c0|c1 ... |k1 of E 1(’a)| ... |kn of E n(’a)

with ’a possibly a sequence of variables, and where each Ei(’a) is a type term,
e.g. ’a * ’a list, and ki the appropriate constructor (e.g. cons).

The category C : We assume a finite product category C of data has been speci-
fied with objects corresponding to all required sorts together with an endofunctor
foo: C ✲ C and endofunctors E1, . . . , En induced by the type terms Ei in
the datatype declaration (e.g. λX.X × list (X)) such that:

1. For each constant ci in the datatype declaration there is a natural transformation

λX.1
(ci)✲ id.

2. For each constructor ki there is a natural transformation ki from Ei to foo
3. The object D(α) = 1 + . . . + 1 + E1(α) + . . . En(α) exists (as a coproduct) in C ,

for every object α of C .

4. The arrow

D(foo α)
[c0···cm k1···kn]foo α✲ foo α

is an initial algebra in C for every object α.

The techniques for building the appropriate category C are well known, and
discussed in the literature, so we will not dwell upon this question here. The
reader should consult e.g. [20,13,14,23,3].
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Definition 35 (The Index category J) Let S = {γ1, . . . , γn} be the multi-
set of sorts of predicates in the program (some sorts may be repeated) and let N

be the preorder on the set {1, . . . , n} such that there is precisely one arrow of
each type, i.e. all objects of N are isomorphic. J will be the smallest subcategory
of C × N subject to the following conditions:

1. (1C , l), (γl, l) ∈ |J| for all l = 1, . . . , n;
2. for each (α, l) ∈ |J| and l′ = 1, . . . , n, we have

!(α,l) ∈ J((α,l), (1C , l′));

3. for each (h, f) ∈ J((α,l), (β, l′)) , the following diagrams are included in J;

(foo(α), l)
(foo(h), f)✲ (foo(β), l′) (7)

4. for each constant ci in the declaration, (α, l) ∈ |J|, and l′ = 1, . . . , nj ,

(ci, l′ ⇒ l) ∈ J((1C , l′), (foo(α), l)),

where l′ ⇒ l is the unique arrow in N(l′ , l);
5. for each constructor kj in the datatype declaration and object (α, l) ∈ |J|, all product

diagrams

(Ej(α), l)
πk✲ (Ej(k)(α), l) (1 ≤ k ≤ nj) (8)

are included in J.
Given a J-span

(�; l0)

	�
�
�
�

f1
@
@
@
@

fnj

R
(Ej

(1)(�); l) : : : (Ej
(nj )(�); l)

(9)

it must be the case that

〈f1, . . . , fnJ 〉 ∈ J((β,l′), (Ej(α), l)).

The special products in D are precisely:

1. the terminators (1C , l); and
2. the products of Diagram 8.

Let σ : J ✲ C be the projection functor onto the first coordinate.

The construction implements the appropriate extension of SLD resolution in
the following sense.

Theorem 36 Given the data J
σ✲ C described above, the category C P[σ]

contains all instances of the following arrows, for γ ∈ S and each constructor ki:

– XEi(γ)
(ki)γ✲ foo(Xγ) (where ki is a label from C )
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– XEi(γ)(〈t1, . . . , tn〉) idγ✲ foo Xγ(ki(t1, . . . , tn))
– All SLD proofs over the Horn Clauses in P.

Observe that the predicate foo(Xγ) means Xfooγ , which in the category C P[σ]
is (fooγ,� idfooγ �). It is easily shown foo extends to an endofunctor on C P[σ]
(The case where foo is a monad is studied in [17]).

In the case of e.g. the list datatype, the arrow XE1(γ)
k1✲ foo Xγ becomes

Xγ×list(γ)

cons✲ list(Xγ) and XEi(γ)(〈t1, . . . , tn〉) idγ✲ foo(Xγ)(ki(t1, . . . , tn))

becomes Xγ×list(γ)(〈t1, t2〉)
cons✲ list(Xγ)(cons(t1, t2)) which corresponds to the

the proof rule

list(Xγ)(cons(t1, t2))
id
❀ Xγ(t1), list(Xγ)(t2)

4.1 Encapsulation

Finally we show how to lift a datatype definition with member functions

datatype ’a foo = c0|c1 ... |k1 of E 1(’a)| ... |kn of

E n(’a)
begin

fun f1 ...

...

end

where the functions between the begin...end are arrows α
f✲ ρ in the original

term category C .
All we need to change is the definition of J, which now must be a disjoint

union of the Jγ and the diagrams α×α idα×f✲ α×ρ. The generic predicatemj ≡
Xj

Idσj

✲ (α × ρ � idα×ρ �) resulting from this extra component of J is called

pred[f] in the program syntax. It will automatically satisfy the condition that
pred[f](X,f(X)) is an isomorphism in the categories C P[σ] and CSLD

P [σ]. That
is to say, the construction “hard-wires” the graph of the function f into the
binary relation pred[f]. This makes it possible for an implementation to supply
the predicate without supplying the function, which would remain hidden. When
interpreted in any model pred[f](X,f(X)) will be true, and in any resolution
proof in CSLD

P [σ] this goal is isomorphic to the empty goal of its sort. We illustrate
with an example based on the code in the introduction. We consider the length
function given in the fragment

begin module "list"

datatype ’a list = nil | cons of ’a * ’a list

begin

fun length nil = (0:int)

| length (cons (a,t)) = 1 + length t

end;
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which will give rise to an arrow list(γ)
length✲ int in J (and in C ), and to the arrow

list(γ)
〈id,length〉✲ list(γ) × int in J, mapped by σ to itself in C P[σ]. The objects

in category C P[σ] are pairs (A,S) where S must satisfy the closure requirement:

for every arrowA
ϕ✲ list(γ), ϕ ◦ 〈id, length〉 is in S(list(γ)× int) (9)

since S is a subfunctor of C (A, σ( )). The predicate pred[length] is represented
in C P[σ] and in CSLD

P [σ] as the generic

(list(γ)× int,� id�)
id
✲ (listγ × int,� ∅ �)

Its instantiation (pullback) along 〈id, length〉 is

(list(γ),� 〈id, length〉 �)
id
✲ (listγ,� ∅ �)

which has the inverse (list(γ),� 〈id, length〉 �) ✛
id

(listγ,� ∅ �) since,

perhaps suprisingly at first, � 〈id, length〉 �⊆� ∅ � by condition (9) with
A = list(γ) and ϕ the identity. Therefore the (reverse SLD step corresponding
to the) arrow �σ

id✲ pred[length](〈id, length〉) is in CSLD

P [σ].

5 Conclusion and Future Work

We have described a construction of a category of predicates over a base category
C , generic up to satisfaction of program clauses and datatype definitions, which
gives a category of non-deterministic resolution proofs that implement extended
resolution steps capturing program, datatype and base-category information.
The framework is proposed here as a blueprint for incorporating certain types
of extensions into constraint logic programming. It has been used elsewhere to
extend Hereditarily Harrop logic programming with constraints on terms [10,7]
and with monads [17]. We hope it will prove a natural vehicle for declarative
approach to the limited amounts of control and state that are needed in logic
programming as well.

Conspicuously absent in this study is a systematic approach to a determin-
istic implementation of an abstract machine based on this framework, a set of
categorical narrowing rules for execution of the code, and reduction rules for
computation of pullbacks (or a canonical choice of unifiers) in the base cate-
gory C , when C is suitably chosen (for example with recursively enumerable
pullbacks).
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Abstract. A method for extracting positive information from negative
goals is proposed. The method makes use of knowledge about the ex-
istence of solutions of predicates and about the types of variables. It
strictly generalises earlier work in this area. It can be used as a construc-
tion rule or as a simplification rule. As a construction rule it does not
involve an SLD-derivation of the negated sub-goal and so is applicable
during compilation. As a simplification rule it prunes unsatisfiable goals
without doing an explicit satisfiability test.

Keywords: constructive negation, existence properties, type system

1 Introduction

The “negation by failure” rule, NAF for short, may lead to floundering when
negative goals contain variables. The reason is that NAF doesn’t allow negative
goals to bind variables. To overcome this limitation, Chan introduced the “con-
structive negation” rule which allows non-ground negative goals to bind variables
in the same way as positive ones [2,3]. The basic idea is that answers to ¬ Q
are obtained by negating answers to Q. Given ¬ Q, a frontier of a derivation
tree for Q is first obtained. Answers to ¬ Q are then obtained from the frontier
as first-order formulae which are interpreted in Clark’s equality theory (CET).
Chan’s method was formulated for logic programs in the Herbrand universe and
involves introducing disequality constraints over the Herbrand universe. An an-
swer to a goal by Chan’s operational semantics SLD-CNF is a set of equality
and disequality constraints. Originally, Chan’s method applied only to negative
goals with finite sub-derivation trees and worked by negating answers to the
negated sub-goal [2]. Chan later extended his method by negating a frontier of
a derivation tree for the negated sub-goal [3]. The simplification procedure in
Chan’s method relies on the following property of the Herbrand universe.

¬∃y, z.(x = s(y) ∧Q(y, z))↔ ∀y.(x �= s(y)) ∨ ∃y.(x = s(y) ∧ ¬∃z.Q(y, z))
where x is a free variable, bold letters denote vectors of different variables, y
and z are disjoint and variables in z don’t occur in y.

C. Palamidessi, H. Glaser, and K. Meinke (Eds.): PLILP’98, LNCS 1490, pp. 411–426, 1998.
c© Springer-Verlag Berlin Heidelberg 1998
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Foo et. al propose an approach for constructive negation for Datalog pro-
grams [9]. A Datalog programwith negation is first transformed by adding typing
goals before its negative goals. Each argument of a negated sub-goal corresponds
to a typing goal, called the relevant type of the argument. The typing goal enu-
merates all possible values for the argument. In this way, the negative goals in
the transformed program are always ground when it is selected and floundering
is avoided. The relevant type for a program is a superset of the success set of
the program and is derived from the program.

Ma9luszyński and Näslund put forward another approach to constructive
negation which allows a negative goal to directly return fail substitutions, as
its answers [13]. Since answers to negative goals cannot in general be repre-
sented by a finite number of substitutions, Ma9luszyński and Näslund’s approach
sometimes needs to return an infinite number of fail substitutions.

Drabent defines SLDFA resolution over the Herbrand universe [7]. Chan’s
first method works only when the negated sub-goal has a finite number of an-
swers. SLDFA overcomes this by constructing answers for the negative goal from
a finite number of answers to the negated sub-goal.

Fages proposes a simple concurrent pruning mechanism over standard SLD
derivation trees for constructive negation in constraint logic programs [8]. Two
derivation trees are concurrently constructed. The computed answers from one
of the trees are used to prune the nodes of the other. Fages’ method admits an
efficient implementation as it is not necessary to deal with complex goals with
explicit quantifiers outside the constraint part.

Stuckey provides a constructive negation method for constraint logic pro-
grams over arbitrary structures [17]. Stuckey’s method which is sound and com-
plete with respect to the three-valued consequences of the completion of the
program can be thought of as a generalisation of Chan’s. Stuckey uses the fol-
lowing property of logic formulae in his simplification procedure.

¬∃y.(c ∧Q)↔ ¬∃y.c ∨ ¬∃y.(c ∧Q)

where c is a constraint and Q is a conjunction of goals. The method needs to
do a satisfiability test when combining ¬∃y.c with other constraints.

Cleary makes use of domain knowledge and existence properties of arith-
metic constraints to construct answers to negative goals [4]. There are usu-
ally functional dependencies between arguments to an arithmetic constraint.
Let add(x, y, z) denote addition on the domain of integers, for any integers x
and y, then there is a unique z such that add(x, y, z) is true. This is called an
exists unique property. It implies that ¬∃z.add(x, y, z) is unsatisfiable and that
¬∃z.(add(x, y, z)∧q(z)) can be directly simplified to add(x, y, z)∧¬q(z). Another
kind of property is called the exists sometimes property which corresponds to
partial functional dependencies between arguments to an arithmetic constraint.
Let log(y, x) denote y = 10x on the domain of integers. Then there is at most
one x such that log(y, x) is true. So, we can directly simplify ¬∃x.(log(y, x)∧q(x))
to ¬∃x.log(y, x) ∨ log(y, x) ∧ ¬q(x). Yet another kind of property is called the
exists property. For instance, for any integer x, there are integers y and z such
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that add(x, y, z) is true. Exists properties can be used to derive falsity of neg-
ative goals such as ¬∃y, z.add(x, y, z). [4] offers a rewrite rule for each of these
three kinds of property. The simplification procedure in [4] consists of rewrite
rules for these kinds of property plus some miscellaneous rewrite rules such as
¬(x > y)↔ (x ≤ y) provided x and y range over the domain of numbers.

Unlike other constructive negation methods [3,7,8,13,17], the method in [4]
does not necessarily rely on SLD resolution to obtain a frontier of the negated
sub-goal, and can be used both as a constructive rule and as a simplification
rule. Though the method was proposed for arithmetic constraints, the basic
principles behind the method carries over to other goals so long as they satisfy
some available existence properties.

The prerequisite that a functional or partial functional dependency exists be-
tween arguments to a predicate (arithmetic constraints in [4]) is over restrictive.
Consider sq(x, y) in the domain of real numbers. For every x, there is a unique y
such that sq(x, y) is true. However, for every y > 0, there are two x’s such
that sq(x, y) is true. The rewrite rule for exists unique properties in [4] doesn’t
apply directly when it comes to constructing answers to ¬∃x.(sq(x, y) ∧ b(x)).
This problem is resolved by inserting a tautology (x ≥ 0 ∨ x < 0) into the neg-
ative goal and transforming ¬∃x.(sq(x, y) ∧ b(x)) into ¬∃x1.(sq(x1, y) ∧ x1 ≥
0 ∧ b(x1)) ∧ ¬∃x2.(sq(x2, y) ∧ x2 < 0 ∧ b(x2)) and then applying the rewrite
rule for exists unique properties to the two negative sub-goals. This causes diffi-
culty because we need to have exists unique properties for complex constraints
(sq(x1, y) ∧ x1 ≥ 0) and (sq(x2, y) ∧ x2 < 0). Moreover, inserting a correct tau-
tology, say (x ≥ 0 ∨ x < 0), into the negative goal before rewriting is involved
and difficult to mechanise.

Types are essential in any practical implementation of the constructive nega-
tion method in [4] as it is necessary to constrain the range of input and output
values in existence properties. Though [4] allows the use of types in existence
properties in the context of arithmetic constraints, it does not provide a theo-
retical framework for doing so.

This paper generalises the constructive negation method in [4] by general-
ising the notion of an existence property and incorporating a type system. In
a generalised existence property, an input value may now correspond to mul-
tiple output values provided each of the output values can be isolated into a
subdomain. Thus, the generalised method is applicable to more negative goals
than the original one. A typed version of existence properties and rewrite rules
are formulated by expressing (sub-)domains as types. Types also allow existence
properties to be more concise and precise. The generalised method can be used
either as a construction rule or as a simplification rule. As a construction rule, it
does not involve sub-SLD derivation of the negated sub-goal. As a simplification
rule, it prunes unsatisfiable goals without doing an explicit satisfiability test. We
also note that Chan’s simplification rule can be fully characterised by a set of
existence properties.

The rest of the paper is organised as follows. Section 2 informally presents
the type system. Section 3 formulates the typed version of existence properties
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and rewrite rules and concludes with a number of examples. Section 4 concludes
the paper. Proofs are omitted due to limited space.

2 Type System

This section informally describes a type system which supports inclusion, para-
metric and overloading polymorphism. The type system is expressive and de-
cidable. The reader is referred to [16] for more details on type systems in logic
programming.

A type is a finite expression denoting a possibly infinite set of ground terms.
Specifically, a type denotes a set of ground terms which is a regular term lan-
guage. We first introduce the notion of a type program. A type term is a term
constructible from a denumerable set Para of type parameters β, βi, and a set
Cons of type constructors. Cons is divided two groups: Consf containing type
constants with fixed denotations and Consd containing type constructors whose
denotations are determined by type definitions. Consf contains two special type
constants none denoting the empty set of ground terms and all denoting the
Herbrand universe HU .
Example 1. The following will be used to illustrate the type system. Let

Consf = {R,Z, none, all}
∪{Z[L,H] | L,H are integers ∧ L ≤ H}
∪{R[L,H] | L,H are real numbers ∧ L ≤ H}

The type constants in Consf have the following fixed denotations. R denotes
{−∞,∞} plus the set of reals, Z denotes {−∞,∞} plus the set of integers,
Z[L,H] denotes the integer interval [L..H ] and R[L,H] denotes the closed real
interval [L..H ].

Following [10] and [12], we define types by type clauses. A type clause is
either of the form f(x1, · · · , xn) : c(β1, · · · , βm) ← x1 : G1, · · · , xn : Gn or
of the form x : c(β1, · · · , βm) ← x : d(β′1, · · · , β′l) where m,n, l ≥ 0, c/m ∈
Consd, d/l ∈ Cons, f/n is a function symbol, β1, · · · , βm are different type pa-
rameters, x1, · · · , xn are different program variables, each β′ is a type parameter,
and each G is either a type parameter or a type constructor applied to type pa-
rameters. Type clauses are required to be type preserving [18] in that any type
parameter occurring in the body also occurs in the head.

Example 2. Let Consd = {nat,man,woman, person, list}. The programmer may
define types by the following.

0 : nat← % D1
s(x) : nat← x : nat % D2
[ ] : list(β1)← % D3
[h|l] : list(β2)← % D4

h : β2, l : list(β2)

peter : man← % D5
john : man← % D6
mary : woman← % D7
x : person← x : man % S1
x : person← x : woman % S2
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D1 says that 0 is a member of type nat. D2 means that if x has type nat
then s(x) has type nat. D3 states that [ ] is a member of type list(β1) for any
type β1 while D4 reads that, for any type β2, if h is a member of type β2 and l
a member of type list(β2) then [h|l] is a member of type list(β2). D5 and D6
mean that peter and john are members of man while D7 means that mary is
a member of woman. S1 and S2 declare that man and woman are subtypes of
person.

User-defined type clauses induce a type program Φ as in [6]. Φ consists of the
user-defined type clauses, as well as f(x1, · · · , xn) : all← x1 : all, · · · , xn : all for
each function symbol f/n, and type clauses t : cf ← for any other cf ∈ Consf
and each constant t of type cf .

Monomorphic type terms, denoted by M,N , are type terms without type
parameters. The meaning =γΦ(M) of a monomorphic type termM with respect
to a type program Φ is defined as the set of ground terms t such that t :M is a
logical consequence of Φ.

=γΦ(M)
def
= {t ∈ HU | Φ |= t :M}

=γΦ(M) is a regular term language, according to the following lemma.

Lemma 1. Given a type program Φ, =γΦ(M) is a regular term language for any
monomorphic type termM.

In the sequel, we shall assume a fixed Φ and drop Φ from =γΦ.
We now introduce two mutually recursively defined notions of a typed term

and a type. A term is typed by typing its variables. Let x :σ denote that variable x
is of type σ. x : σ means that any term assigned to the variable x must be a
member of σ. As its variables are constrained by types, possible instances of a
term are restricted. For example, f(a) is not a legitimate instance of f(x : Z)
since a is not an integer. If a variable in a term is not typed, it can be thought
of as being typed by all.

A special function value maps a typed term to a type, called a singleton type.
value(T ) with T being a typed term is treated as a set expression [1].

=γ(value(x : σ))
def
= =γ(σ)

=γ(value(f(T1, · · · , Tn))) def
= {f(t1, · · · , tn) | ti ∈ =γ(value(Ti))}

=γ(value(T )) is a regular term language of ground terms, according to the follow-
ing lemma.

Lemma 2. For any typed term T , if the types of variables in T are regular term
languages then =γ(value(T )) is a regular term language.
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A type is an expression consisting of monomorphic type terms, singleton
types, and boolean operators and, or and not. Notice that the use of boolean oper-
ators are restricted by the definition of a type clause. For instance,
list(person or nat) and list(not(Z)) are not types. or, and and not are defined
respectively as set union, set intersection and set complement.

=γ(σ1 and σ2)
def
= =γ(σ1) ∩ =γ(σ2)

=γ(σ1 or σ2)
def
= =γ(σ1) ∪ =γ(σ2)

=γ(not(σ))
def
= HU \ =γ(σ)

Define σ � η
def
= =γ(σ) ⊆ =γ(η) and σ ≡ η

def
= =γ(σ) = =γ(η). Types are

regular term languages since monomorphic type terms and singleton types are
regular term languages which are are closed under set intersection, union and
complement. The inclusion and equivalence problems of regular term languages
are known to be decidable [11]. So, the validity of σ � η and σ ≡ η can be
effectively tested.

Example 3. Continuing examples 1 and 2, we have

=γ(person) = {peter, john,mary}
=γ(list(none)) = {[ ]}

=γ(list(all)) = {[ ], · · · , [x], · · · , [y, s(0)], · · · }
R ≡ R[−∞,∞], Z ≡ Z[−∞,∞], and Z[0,∞] denotes the set of non-negative integers.
[ ] is in =γ(list(M)) for any monomorphic type termM. Note that nat �≡ Z[0,∞]

as =γ(nat) and =γ(Z[0,∞]) are different sets of terms. Open real intervals can be
expressed by type expressions. For instance, R[0,1] and not(value(0)) is a type
expression denoting the set of real numbers from 0 to 1 but excluding 0.

The type system is powerful and yet decidable. It supports inclusion, para-
metric and overloading polymorphism. Types are regular term languages. This
is the same as in [6]. However, [6] does not support parametric polymorphism as
type rules are not parameterised. Other type systems that support parametric
polymorphism [10,15,19,14] use types to denote tuple-distributive sets of terms
which are strictly less powerful than regular term languages. We have completed
an efficient implementation of a subset of the type system and are working to-
wards a full and efficient implementation.

In the next section, we shall use the following abbreviations for type ex-
pressions. R>0 stands for (R[0,∞] and not value(0)) that denotes the set of real
numbers greater than zero, R<0 for (R[−∞,0] and not value(0)) that the set of real
numbers less than zero, R≥0 for R[0,∞], Z>0 for Z[1,∞], and Z<0 for Z[−∞,−1].

3 Rewrite Rules

This section revises Cleary’s rewrite rules for constructive negation [4]. We first
revise these rewrite rules by relaxing their application conditions and then for-
malise a typed version of the revised rewrite rules. The rewrite rule making use



Constructive Negation Using Typed Existence Properties 417

of exists unique properties is revised as follows. For every input value, the predi-
cate holds for a fixed number of output values each of which can be isolated into
a sub-domain. For instance, each positive number has two square roots one of
which is positive and the other is negative. The rewrite rule making use of exists
sometimes properties is revised in the same manner, so that every input value
has at most one output value on each of a fixed number of sub-domains.

3.1 Basic Rewrite Rules

Exists unique The rewrite rule for exists unique properties requires that, for
every u, there be exactly one x such that A(ux) holds. In other words, “A” must
be a function from the domain of u to that of x. u and x can be viewed as input
and output parameters respectively. The predicate “A” may satisfy more than
one exists unique property with different groups of input and output parameters.

The revised rewrite rule for exists unique properties requires that there be
sub-domains such that, for any u, there is exactly one x in each of those sub-
domains such that A(ux) holds. It also requires that, for any u, any x such that
A(ux) holds lies in one of those sub-domains. Let Di(x), i ∈ I be sub-domains
(type constraints) where I is a finite set of indices. Then

∀ux.[A(ux)→ ∨i∈IDi(x)] (1)
∀u. ∧i∈I ∃!xi.[A(uxi) ∧Di(xi)] (2)

where ∃! means “there is exactly one”.
The revised rewrite rule is obtained as follows. From (1), we have A(ũx)↔

A(ũx) ∧ [∨i∈IDi(x)] where bold letters with tildes denote vectors of terms that
are not necessarily different. Hence A(ũx) ∧Q↔ ∨i∈IA(ũx) ∧Di(x) ∧Q. Dis-
tributing ∃ over ∨, renaming existentially quantified variables within their scopes
and applying De Morgan’s law result in the following:1

¬∃xy.[A(ũx) ∧Q]↔ ∧i∈I¬∃xiy.[A(ũxi) ∧Di(xi) ∧Q[x := xi]]

where Q[x := xi] is the result of substituting xi for x in Q. From (2), we obtain
the following revised rewrite rule where VE is the set of variables in E.

Q
Given (1) and (2) and Vũ ∩ (x ∪ y) = ∅
¬∃xy.[A(ũx) ∧Q]↔ ∧i∈I(A(ũxi) ∧Di(xi) ∧ ¬∃y.Q[x := xi])

The condition Vũ ∩ (x∪y) = ∅ ensures that ũ does not contain existentially
quantified variables also called local variables. That this is necessary is shown as
follows. Assume the exists unique property for integer addition in the introduc-
tion, ¬∃y.(add(x, y, y)∧q(y)) cannot be simplified to add(x, y, y)∧¬q(y) because
¬∃y.add(x, y, y) holds for x �= 0. The fact that the second argument y to add is
1 x has been renamed into xi for each sub-domain Di.
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a local variable invalidates the condition. The sub-domains needn’t be disjoint
though it is computationally more efficient if they are.

Example 4. The fact that, in the domain of real numbers, a positive number has
exactly one negative square root and exactly one positive square root can be
expressed as the following exists unique property.

∀y > 0.∀x.(sq(x, y)→ x < 0 ∨ x > 0)
∀y > 0.(∃!x1.(sq(x1, y) ∧ x1 < 0) ∧ ∃!x2.(sq(x2, y) ∧ x2 > 0))

Suppose y > 0, the negative goal ¬∃x.(sq(x, y)∧b(x)) is rewritten into sq(x1, y)∧
x1 < 0 ∧ ¬ b(x1) ∧ sq(x2, y) ∧ x2 > 0 ∧ ¬ b(x2).

Exists sometimes The revision of the rewrite rule for exists sometimes prop-
erties is similar to that for exists unique properties. (2) is now replaced by the
following requirement.

∀u. ∧i∈I ∃?xi.[A(uxi) ∧Di(xi)] (3)

where ∃? denotes “there is at most one”. (3) requires that, for each u, there is
at most one x in each sub-domain such that A(ux) holds. The revised rewrite
rule for exists sometimes properties follows.

S
Given (1) and (3) and Vũ ∩ (x ∪ y) = ∅
¬∃xy.[A(ũx) ∧Q]↔
∧i∈I(¬∃xi.[A(ũxi) ∧Di(xi)] ∨A(ũxi) ∧Di(xi) ∧ ¬∃y.Q[x := xi])

Example 5. The fact that, in the domain of integer numbers, a positive number
has at most one negative square root and at most one positive square root can
be expressed as the following exists sometimes property.

∀y > 0.∀x.(sq(x, y)→ x < 0 ∨ x > 0)
∀y > 0.(∃?x1.(sq(x1, y) ∧ x1 < 0) ∧ ∃?x2.(sq(x2, y) ∧ x2 > 0))

Suppose y > 0, the negative goal ¬∃x.(sq(x, y) ∧ b(x)) is rewritten into
(¬∃x1.(sq(x1, y) ∧ x1 < 0) ∨ sq(x1, y) ∧ x1 <0∧¬ b(x1))∧(¬∃x2.(sq(x2, y)∧x2>
0) ∨ sq(x2, y) ∧ x2 > 0 ∧ ¬ b(x2)).

Exists There is no revision to exists properties and corresponding rewrite rules
at this stage as the knowledge of subdomains in which output values lie is irrel-
evant.

E
Given ∀u.∃x.A(ux) and Vũ ∩ x = ∅
¬∃x.A(ũx)↔ false
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Miscellaneous The miscellaneous rewrite rule makes use of properties
∀u.(¬A(u)↔ B(u)) to rewrite a negative goal into a positive one.

R
Given ∀u.(¬A(u)↔ B(u))

¬A(ũ)↔ B(ũ)

3.2 Typed Rewrite Rules

Types make concise the expression of an existence property as domains are types
and sub-domains are subtypes.

Example 6. The exists unique property in example 4 can be expressed as fol-
lows. 2

∀y:R>0.∀x.(sq(x, y)→ x ∈ R>0 ∨ x ∈ R<0)
∀y:R>0.(∃!x1:R>0.sq(x1, y) ∧ ∃!x2:R<0.sq(x2, y))

Example 7. The fact that the square of any real number is a positive real number
is expressed as follows.

∀x:R.∀y.(sq(x, y) → y ∈ R≥0)
∀x:R.∃!y:R≥0.sq(x, y)

Note that we have restricted the domain of y into R≥0 rather than R, which
helps avoid the introduction of local variables in some cases as explained later.

The typed version of an exists unique property is expressed by the following
two equations.

∀u:σ.∀x.[A(ux)→ ∨i∈Ix ∈ θi] (4)
∀u:σ. ∧i∈I ∃!xi:θi.A(uxi) (5)

Domains in (1) and (2) are replaced by types in (4) and (5). Each θi is called
a solution subtype of the output parameter x. Furthermore, input parameters
are typed, which uses a type expression to express the condition under which
a specific property holds. The typed version of an exists sometimes property is
expressed by (4) and the following equation.

∀u:σ. ∧i∈I ∃?xi:θi.A(uxi) (6)

An example of typed exists sometimes properties can be found in example 10.
A typed exists property ∀u:σ.∃x:θ.A(ux) states that for every u of type σ

there are some x of type θ such that A(ux) holds. For instance, the append/3
2 The type of a variable in a conjunctive formula follows just the first occurrence of
the variable.
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program satisfies ∀z :list(β).∃x:list(β).y:list(β).append(x, y, z) which states that
every list z can be split into two lists x and y.

A typed miscellaneous property ∀u : σ.(¬A(u) ↔ B(u)) states that, for
every u of type σ, ¬A(u) can be replaced by B(u). For instance, we have
∀x:Z.y:Z.(¬(x < y)↔ (x ≥ y)).

As types and subtypes are associated with variables, the constraints that
express sub-domains can be eliminated from the right-hand sides of rewrite rules
for existence properties. So, more concise residual formulae can be obtained by
making use of typed existence properties. As each variable is now associated with
a type, it is necessary to make sure that a local variable is of the right type as
an output argument in order to avoiding incorrect rewriting. This is guaranteed
by requiring that if the output value lies in a solution subtype of an output
parameter then the type of the local variable in the corresponding argument
position is a supertype of that solution subtype.

Example 8. The following is an exists unique property in the domain of integers.

∀x:Z.y:Z.∀z.(add(x, y, z)→ z ∈ Z)
∀x:Z.y:Z.∃!z:Z.add(x, y, z)

It states that, for any integers x and y, there is a unique integer z such that
add(x, y, z) is true. It would be wrong to use the exists unique property to rewrite
¬ ∃z:Z[−∞,10].(add(10, y:Z, z) ∧ b(z)) into add(10, y:Z, z:Z[−∞,10]) ∧ ¬ b(z). This
is because z can take any value in Z and Z[−∞,10] is not a supertype of Z.

The number of solutions to be negated is limited by the number of solution
subtypes of the output parameter. Some solution subtypes are not relevant for a
particular negative goal. A solution subtype is relevant if and only if it intersects
with the type of the local variable in the negative goal. We call an index a
relevant index if its corresponding solution subtype is relevant. We only need to
consider relevant solution subtypes when rewriting the negative goal.

Example 9. Let the negative goal to rewrite be the following.

¬∃x:R≥0.(sq(x, y:R>0) ∧ b(x))

From example 6, sq(x, y:R>0) has two solutions for x, one of them is in R<0 and
the other is in R>0. This suggests that there are two solutions to be negated.
But, the type R≥0 of the local variable x doesn’t intersect with R<0, that is,
only solution subtype R>0 is relevant for the negative goal. The negative goal is
rewritten to

sq(x1:R>0, y:R>0) ∧ ¬ b(x1)

since the type R≥0 of x is a supertype of the relevant solution subtype R>0.

Let iarg(ũ,σ, z̃)
def
= ũ ∈ σ ∧Vũ ∩ z̃ = ∅ where z̃ is a set of variables which

are local when iarg(ũ,σ, z̃) is invoked. The above considerations lead to the
following typed rewrite rules for exists unique and exists sometimes properties.
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QT
Given (4), (5) and iarg(ũ,�, (x ∪ y)) ∧ ∀i ∈ J.(�i  �)
where J = {i ∈ I | (� and �i) �≡ none}
¬∃x:�y:� .[A(ũx) ∧Q]↔ ∧j∈J [A(ũxj:�j) ∧ ¬(∃y:� .Q[x := xj ])]

ST

Given (4), (6) and iarg(ũ,�, (x ∪ y)) ∧ ∀i ∈ J.(�i  �)
where J = {i ∈ I | (� and �i) �≡ none}

¬∃x:�y:� .[A(ũx) ∧Q]↔ ∧j∈J

2
4

¬∃xj:�j .A(ũxj)
∨

A(ũxj:�j) ∧ ¬(∃y:� .Q[x := xj ])

3
5

The condition iarg(ũ,σ, (x∪y)) in the above two rewrite rules ensures that
an input argument is of the type of the corresponding input parameter and it
doesn’t contain any local variables. The rewrite rules only generate subformulae
for relevant solution subtypes which are collected by J = {i ∈ I | (η and θi) �≡
none}. For these relevant solution subtypes, the type of a local variable needs be a
supertype of the type of the corresponding output parameter. This is guaranteed
by ∀i ∈ J.(θi � η). Note that both (η and θi) �≡ none and θi � η can be
effectively tested.

The following rewrite rule makes uses of typed exists properties. It verifies
that an input argument is of the type of the corresponding input parameter
and that the type of an output argument is a supertype of the type of the
corresponding output parameter.

ET
Given ∀u:�.∃x:�.A(ux) and iarg(ũ,�,x) ∧ �  �

¬∃x:�.A(ũx)↔ false

The following miscellaneous rewrite rule verifies that an input argument is
of the type of the corresponding input parameter.

RT
Given ∀u:�.(¬A(u)↔ B(u)) and ũ ∈ �
¬A(ũ)↔ B(ũ)

3.3 Variable Introduction

The (QT) and (ST) rewrite rules require that input arguments are terms that
do not contain any local variables and that are of type σ. They also require that
output arguments are local variables of type η such that θi � η for each relevant
solution subtype θi. If the requirement on output arguments is not met then it
is possible to introduce new local variables so these rewrite rules can be applied.

Let ¬∃l :φ.[A(ũx̃) ∧ Q] be the negative goal. It can be rewritten to ¬∃l :
φ.x.[A(ũx)∧ (x̃ = x)∧Q] where x be a vector of new local variables each for an
element of x̃. Recall that a bold letter denotes a vector of different variables and a
bold letter with a tilde denotes a vector of terms that are not necessarily different.
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Using (4) and (5), we can rewrite the above negative goal to ∧j∈J [A(ũxj :
θj) ∧ ¬∃l:φ.((x̃ = xj) ∧ Q)] with J being the set of relevant indices provided
that iarg(ũ,σ, l) is true. Let w:ζ be the vector of those elements of l that occur
in x̃ and y:τ be the vector of those elements of l that do not occur in x̃. Then
¬∃l:φ.((x̃ = xj) ∧Q) for each j ∈ J is equivalent to

¬∃wj:ζ.(x̃[w := wj ] = xj) ∨ (x̃[w := wj ] = xj) ∧ ¬∃y:τ .Q[w := wj ]

So, we have the following temporary rewrite rule for exists unique properties.

*

Given (4), (5) and iarg(ũ,�, l)

¬∃l:�.[A(ũx̃) ∧Q]↔

∧j∈J

0
@

A(ũxj:�j) ∧ ¬∃wj:�.(x̃[w := wj ] = xj)
∨

A(ũxj:�j) ∧ (x̃[w := wj ] = xj) ∧ ¬∃y:� .Q[w := wj ]

1
A

where J = {i ∈ I | (typeof (x̃) and �i) �≡ none}
w:� be the vector of those elements of l that occur in x̃
y:� be the vector of those elements of l that do not occur in x̃

where typeof (E) denotes the type of E with E being a term or a vector of terms.
As each variable in a term is typed, the type of the term is defined. In the above
rewrite rule, xj and wj are variables that do not occur in the left-hand side of
the rewrite rule. xj is typed with jth solution subtype while wj inherits the type
of w. Disequality constraints ¬∃wj :ζ.(x̃[w :=wj ] = xj) can be dealt with by
augmenting Chan’s method with types.

A new local variable is introduced for each output argument of A in the above
rewrite rule. As the cost of simplifying disequality constraint ¬∃wj :ζ.(x̃[w :=
wj ] = xj) increases with the number of equations in it, it is desirable to avoid
introducing new local variables whenever possible. In order to avoid introducing
a new local variable for an output argument, the output argument must be a local
variable and if its type intersects with a solution subtype of its corresponding
output parameter then its type must be a supertype of that solution subtype.

Let x̃ be a vector of terms, ỹ a sub-vector of x̃ and σ a vector of types of
the same length as x̃. σỹ�x̃ denotes the vector of elements in σ that correspond
in position to elements of ỹ in x̃. The above considerations lead to the following
rewrite rule for exists unique properties.

QVT

Given (4), (5) and iarg(ũ,�, l)

¬∃l:�.[A(ũx̃) ∧Q]↔

∧j∈J

0
@

A(ũzj:�j
s̃�x̃rj:�j

r�x̃) ∧ ¬∃wj:�.(s̃[rw := rjwj ] = zj)
∨

A(ũzj:�j
s̃�x̃rj:�j

r�x̃) ∧ (s̃[rw := rjwj ] = zj) ∧ ¬∃y:� .Q[rw := rjwj ]

1
A

where J = {i ∈ I | (typeof (x̃) and �i) �≡ none}
r: be a subvector of x̃ such that ∀j ∈ J.(�j

r�x̃  )
s̃ be the vector of the elements of x̃ other than those in r
w:� be the vector of those elements of l that occur in s̃
y:� be the vector of those elements of l that do not occur in x̃



Constructive Negation Using Typed Existence Properties 423

The choice of r:γ in the (QVT) rewrite rule is nondeterministic so long as it
is subvector of x̃ and it satisfies ∀j ∈ J.(θjr�x̃ � γ). In the extreme case, r:γ is
of zero length and the (QVT) rewrite rule degenerates to the (*) rewrite rule.

The same considerations as in the case for exists unique properties lead to
the following rewrite rule for exists sometimes properties.

SVT

Given (4), (6) and iarg(ũ,�, l)

¬∃l:�.[A(ũx̃) ∧Q]↔

∧j∈J

0
BBBB@

¬∃zj:�j
s̃�x̃rj:�j

r�x̃.A(ũzjrj)
∨

A(ũzj:�j
s̃�x̃rj:�j

r�x̃) ∧ ¬∃wj:�.(s̃[rw :=rjwj ] = zj)
∨

A(ũzj:�j
s̃�x̃rj:�j

r�x̃) ∧ (s̃[rw :=rjwj ] = zj) ∧ ¬∃:� .Q[rw :=rjwj ]

1
CCCCA

where J = {i ∈ I | (typeof (x̃) and �i) �≡ none}
r: be a subvector of x̃ such that ∀j ∈ J.(�j

r�x̃  )
s̃ be the vector of the elements of x̃ other than those in r
w:� be the vector of those elements of l that occur in s̃
y:� be the vector of those elements of l that do not occur in x̃

Example 10. The following is the typed version of the exists sometimes property
in example 5.

∀y:Z>0.∀x.(sq(x, y)→ x ∈ Z<0 ∨ x ∈ Z>0)
∀y:Z>0.(∃?x1:Z<0.sq(x1, y) ∧ ∃?x2:Z>0.sq(x2, y))

The local variable x in the negative goal ¬∃x:Z[0,20].(sq(x, y:Z>0) ∧ b(x)) has a
type Z[0,20] which is not a supertype of the sole relevant solution subtype Z>0 of
the corresponding output parameter. Therefore, a new variable z2 of type Z>0

is introduced and the negative goal is rewritten to the following.

¬∃z2:Z>0.sq(z2, y:Z>0)
∨ sq(z2:Z>0, y:Z>0) ∧ ¬∃x:Z[0,20].(x = z2)
∨ sq(z2:Z>0, y:Z>0) ∧ (x:Z[0,20] = z2) ∧ ¬ b(z2)

Solving the typed equality and the typed disequality constraints rewrites the
above formula to the following.

¬∃z2:Z>0.sq(z2, y:Z>0)
∨ sq(z2:Z[21,∞], y:Z>0)
∨ sq(z2:Z[1,20], y:Z>0) ∧ ¬ b(z2)

There is no rewrite rule with introduction of local variables for exists proper-
ties because introducing local variables won’t lead to simplification. Introduction
of local variables is irrelevant to the miscellaneous rewrite rule as miscellaneous
properties have no output parameters.

The above rewrite rules can be used to extract positive information from
negative goals.
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Example 11. The append/3 program satisfies the following exists unique prop-
erty.

∀β.

∀x:list(β), y:list(β).∀z.(append(x, y, z)→ z ∈ list(β))

∧
∀x:list(β), y:list(β)∃!z:list(β).append(x, y, z)




which satisfy (4) and (5). Using (QVT) allows

¬∃z:list(β).(append(x:list(β), y:list(β), z), p(z))
to be rewritten as

append(x:list(β), y:list(β), z:list(β)),¬ p(z)

Both Chan’s method and Stuckey’s first construct an SLD derivation tree of
append(x, y, z), p(z) and collect a frontier of the SLD derivation, say,

{(x = [], y = z, p(z)), (x = [h|x′], y = y′, z = [h|z′], append(x′, y′, z′), p(z))}
Then the negation of this frontier is simplified and put into its disjunctive normal
form. This gives rise to the following four conjunctive formulae.

(1) x �= [], ∀h, x′.(x �= [h|x′])
(2) x �= [], x = [h|x′],¬∃z′.(append(x′, y, z′), p([h|z′]))
(3) x = [], ∀h, x′.(x �= [h|x′]),¬p(y)
(4) x = [], x = [h|x′],¬p(y),¬∃z′.(append(x′, y, z′), p([h|z′]))
Stuckey’s method derives (2) and (3) because the constraint parts of (1) and (4)
are unsatisfiable. Chan’s method derives (1),(2) and (3) as it only tests satisfi-
ability of atomic constraints. The constraint part of (4) is failed by unification
in Chan’s method as [] is not unifiable with [h|x′]. Neither of these methods
is effective as (2) is as complex as the original goal. The exists unique property
allows us to obtain a simpler derived goal without making use of SLD derivation,
and to eliminate unsatisfiable derived goals without satisfiability tests.

As well as rewriting the original goal, our rules can also be used for simplifi-
cation. This will result in a more efficient simplification procedure since unsat-
isfiable goals are pruned without doing an explicit satisfiability test.

Example 12. We have ∀y:all.x.(x = s(y) → x:all) and ∀y:all.∃!x:all.(x = s(y)) in
the Herbrand universe. Consider the following program.

p(y).
r(y) :- x=s(y),q(x).

The goal p(y:all),¬ r(y) is reduced to p(y),¬∃x:all.(x = s(y:all), q(x)) which is
then simplified directly into x:all = s(y), p(y:all),¬ q(x) using the above property.
Without using this property, ¬∃x:all.(x = s(y:all), q(x)) is simplified to

∀x:all.(x �= s(y:all)) ∨ (x:all = s(y:all),¬ q(x))

and a satisfiability test is then used to eliminate ∀ x:all.(x �= s(y :all)). In this
sense, the satisfiability test is pushed into the simplification procedure by the
exists unique property.
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Chan’s simplification rule can be formalised by a set of exists sometimes
properties as follows.

∀x:all.y1:all · · · yn:all.(x = s(y1, · · · , yn)→ y1 ∈ all ∧ · · · ∧ yn ∈ all)
∀x:all.∃?y1:all · · · yn:all.(x = s(y1, · · · , yn))

These satisfy (4) and (6) and allow (SVT) to be applied.
The constructive negation method is sound as it rewrites a formula to another

logically equivalent formula. The issue of completeness doesn’t arise when the
method is used as a simplification rule in other constructive methods [3,17,8].
Used stand-alone, the completeness of the method depends on the completeness
of the available typed existence properties. It is part of our ongoing work to
develop an algorithm for checking the completeness of the method with respect
to a given program and a set of typed existence properties which can be either
declared by the programmer or inferred from the program by static analysis [5].

4 Conclusion

The use of existence properties in [4] for the constructive negation of arithmetic
goals has been generalised. This was done by generalising the notion of existence
properties and by explicitly using types in generalised existence properties. This
in turn allows negation of predicates that have multiple possible solutions. It
also allows application of the rules to any user-defined predicates whose typed
existence properties are known. The method need not do an SLD-derivation of
the negated sub-goal in order to extract positive information. Because of this, it
can be applied at compile time. It can also be used to simplify a frontier of an
SLD-derivation tree. When used for simplification, it removes the need for an
explicit satisfiability test. We have also integrated a powerful type system into
the constructive negation method.
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Abstract. The usual implementations of functional programming lan-
guages based on a weak evaluation paradigm (no reduction inside a
lambda), betray the very spirit, i.e. the higher-order nature, of lambda-
calculus.

1 Introduction

Consider the term
M = (n two I I)

where n and two are church integers, and I is the identity. Obviously, M reduces
to I and, in this case, innermost reduction gives you the normal form in a number
of steps which is linear in n. On the other side, every reduction strategy based
on a weak evaluation paradigm (either eager or lazy) requires exponential time
(check it as an exercise).

As it is clear by the previous example, there is a clear, dramatic problem with
sharing in the usual implementations. The usual point of functional programming
hackers is that situations like the one depicted above never occur in practice. This
essentially amounts to say that functions are never used as real first class citizens;
in particular, they are never used as real computational data. This obviously
contradicts the very spirit of λ-calculus, where every datum is eventually coded
as a function, i.e. by control information.

This talk will be about optimal reduction in functional programming lan-
guages, that exactly provides an optimal implementation of sharing. Optimal
reduction joins the benefit of every possible reduction strategy (even consider-
ing “strategies” in the most liberal acception, i.e. not confined to the restrictive
universe of λ-terms).

In particular, the formal notion of sharing we shall deal with was formalized in
the seventies by Lévy in terms of “families” of redexes with a same origin—more
technically, in terms of sets of redexes that are residuals of a unique (virtual)
redex. The goal of his foundational research was exactly to characterize what an
optimally efficient reduction strategy for the λ-calculus would look like, even if
the technology for its implementation was at the time lacking.

In particular, optimal and correct implementations were known for recursion
schemas, but not ones where higher-order functions could be passed as first-
class values. Actually, more than ten years elapsed between Lévy’s definition of
optimality and its first feasible implementation, by Lamping.
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The complex problem, brilliantly solved by Lamping, is that having a unique
representation for all the redexes in a same family requires the use of a very so-
phisticated sharing technique, where all the computational and expressive power
of higher-order languages really shines. Note in particular that two redexes of a
same family can nest one into the other (for instance, given R = (λx.M)N , its
subterms M and N may contain redexes in the family of R). Therefore, all the
traditional implementation techniques for functional languages (mostly based on
supercombinators, environments or continuations) fail in avoiding useless repeti-
tions of work: no machinery in which the sharing is exploited at the (first order)
level of subterms can be Lévy’s optimal.

Lamping’s breakthrough was a technique to share contexts, that is, to share
terms with an unspecified part, say a hole. Each instance of a context may
fill its holes in a distinct way. Hence, for any shared context, there are several
access pointers to it and, for each hole, a set of possible choices for how to fill
it—a choice for each instance of the context. Lamping’s solution moved from
the idea that some control operator should manage the matching between the
instances of a context and the ways in which its holes may be filled. As a result,
Lamping extended λ-graphs by two sharing nodes called fans: a “fan-in” node
collecting the pointers to a context; a “fan-out” node collecting the ways in
which a hole can be filled (the exit pointers from the context)). Assuming that
each pointer collected by a fan-in or fan-out is associated to a named port, the
correspondence between entering and exiting pointers is kept provided to have
a way to pair fan-in’s and fan-out’s: the instance of the context corresponding
to the pointer connected to a fan-in port with name a fills its holes with the
subgraphs accessed through the ports with name a of the matching fan-out’s.

In this talk we shall try to give a friendly introduction to the topic of optimal
reduction and Lamping’s algorithm, pointing out the main open issues for further
research.
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Abstract. In recent works, we have proposed a general framework for
lazy functional logic programming with algebraic polymorphic types, i.e.,
parametric datatypes whose data constructors fulfill a given set of equa-
tional axioms. The aim of this paper is to investigate implementation
techniques for an extended instance of this framework, namely, lazy func-
tional logic programming with multisets and constraints. We consider a
language (named Seta) which supports a polymorphic datatype Mset(α)
along with specific constraints for multisets: strict equality (already
present in the general framework), disequality, membership and non-
membership. We describe a quite readable Prolog-based implementation
which can be executed on top of any Prolog system that provides the
ability to solve simple arithmetic constraints.

1 Introduction

The combination of different declarative paradigms (specially functional and
logic programming) has been widely treated in the literature (see [12] for a
survey). Many approaches to the integration of functional and logic programming
take constructor-based conditional term rewriting systems as programs. In order
to deal properly with non-strict functions, lazy functional logic languages use
strict equality, which regards two expressions as equal iff they have the same
constructor normal form. Moreover, lazy narrowing (a notion introduced in [20]
and refined in [1,17]) is often chosen as the goal solving mechanism.

As shown in [10], classical equational logic does not supply an adequate se-
mantics for lazy functional logic programming, and a suitably defined construc-
tor based rewriting logic provides a more convenient semantic framework. In two
recent papers [3,4]

We have extended the approach from [10] with algebraic polymorphic types,
i.e., parametric datatypes whose data constructors are governed by a given set C
of equational axioms.

The aim of the present paper is to investigate implementation techniques for
an extended instance of the framework from [3,4]. More precisely, we consider

� This research has been partially supported by the the Spanish National Project
TIC95-0433-C03-01 “CPD” and the Esprit BRA Working Group EP-22457 “CCLII”.
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a language Seta1 which provides the algebraic datatype Mset(α), the data con-
structors {[ ]} :→ Mset(α) (to build the empty multiset) and {[ ·|· ]} : (α,Mset(α))
→ Mset(α) (to add an element to a multiset), required to fulfill the equational
axiom {[x, y|zs ]} ≈ {[ y, x|zs ]}. Here, we have used {[x, y|zs ]} as abbreviation for
{[x|{[ y|zs ]} ]}. In the sequel we will continue using such notation.

As an extension w.r.t. [3,4] (where constraints were absent, with the ex-
ception of strict equations), Seta supports also disequality constraints for all
datatypes, as well as membership and non-membership constraints for multisets.
Some others extensions of logic programming, as e.g. [14,11,9,16], use (multi) set
unification as a particular instance of unification modulo equations [15]; but no
concern on programming with lazy functions is found in these proposals. Being
able to combine lazy functions with multiset unification and constraints, Seta
turns out to be a very expressive language for any kind of problem related to
the general idea of multiset rewriting. This is known to be useful for different
applications, including the Gamma programming model [5], action and change
problems [19,11], and the formal definition of visual languages [18].

Borrowing ideas from several previous works, mainly [17,2], we have devel-
oped a Prolog-based implementation which can be easily understood as an ex-
ecutable specification of Seta’s operational semantics. Our implementation in-
cludes many substantially new techniques, since goal solving in Seta requires a
non-trivial combination of lazy narrowing and unification modulo the equational
axioms for multisets. As in the case of AC1-unification (see [15]), strict equations
involving only constructor terms may have several incomparable unifiers. More-
over, function symbols defined by rewrite rules give rise to additional difficulties.
For instance, assuming the rewrite rules ms → {[A|ns ]} and ns → {[B|ms ]}, we
can see that matching ms with the multiset pattern {[B|xs ]} cannot be solved
simply by reducing ms to head normal form (i.e., variable or outermost construc-
tor), as in lazy functional languages. This shows that lazy evaluation is much
harder to implement in the presence of non-free data constructors.

These and other similar considerations motivate the need of a clever repre-
sentation of multisets, to be used by the Prolog implementation. In fact, we have
chosen to represent a multiset by keeping information about finitely many expres-
sions known to be elements, another expression of type multiset corresponding
to the rest of elements, and some simple arithmetic constraints imposing a lower
bound to the multiset’s cardinality (and eventually supplying the exact value
of that cardinality). Therefore, our implementation must be executed on top of
some Prolog system which can handle arithmetic constraints. We have chosen
Sicstus Prolog 3.3. [21], which provides a solver for real constraints developed
by C. Holzbaur [13].

The rest of the paper is organized as follows: Sect. 2 describes the language
Seta, including a simple but illustrative programming example, within the realm
of action and change problems. Sect. 3 presents a Prolog-based implementation
for Seta. Some topics for future research are pointed in the concluding Sect. 4.

1 Seta is not an acronym, but simply the spanish word for mushroom.
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2 The Language Seta

Our presentation of Seta follows the lines of [3], with suitable extensions to
incorporate constraints. We assume a countable set TVar of type variables α, β
etc., and a countable ranked alphabet TC =

⋃
n≥0 TC n of type constructors

which includes the multiset type constructor Mset ∈ TC 1 . Polymorphic types
τ, τ ′ ∈ TTC (TVar) are built as τ ::= α|T (τ1, . . . , τn), where T ∈ TC n, α ∈ TVar
and τi ∈ TTC (TVar), 1 ≤ i ≤ n. The set of type variables occurring in τ is
written tvar(τ). On top of a given TC , we define a polymorphic signature Σ as
Σ = 〈TC ,DC ,FS ,CS 〉, where:
� DC is a set of type declarations C : (τ1, . . . , τn) → τ0 for data constructors,
with

⋃n
i=1 tvar(τi) ⊆ tvar(τ0). Of course, since Seta handles multisets, the

type declarations: {[ ]} :→ Mset(α) and {[ ·|· ]} : (α,Mset(α)) → Mset(α)
must be contained in DC , where {[ ]} represents the empty multiset and
{[ ·|· ]} is the multiset constructor. The intended meaning of {[x|zs ]} is to add
a new copy of the element x to the multiset zs . The multiset constructor
is governed by the multiset commutativity equation: {[x, y|zs ]} ≈ {[ y, x|zs ]},
which states that the order of elements in a multiset is irrelevant. All the
other data constructors are free.

� FS is a set of type declarations f : (τ1, . . . , τn) → τ0 for defined function
symbols.

� CS ≡ {==, /= : (α, α),∈, �∈: (α,Mset(α))} is a set of type declarations
for atomic constraint symbols, where == and /= stand for strict equality
and disequality respectively, whereas ∈, �∈, are specific constraint symbols for
multisets, representing membership and non-membership respectively.
We require that Σ does not include multiple type declarations for the same

symbol. The types given by declarations inDC∪FS are called principal types. We
will write h ∈ DCn ∪FSn to indicate the arity of a symbol according to its type
declaration in Σ. The notation ♦ ∈ CS will indicate that ♦ ∈ {==, /=,∈, �∈}.

Assuming another countable set DVar of data variables x, y, etc., we build
expressions e, r, l . . . ∈ ExprΣ(DVar) as e ::= x|h(e1, . . . , en), where h ∈ DCn ∪
FSn, ei ∈ ExprΣ(DVar), 1 ≤ i ≤ n. Data terms TermΣ(DVar) ⊆ ExprΣ(DVar)
are built by using variables and data constructors only. In the sequel, we reserve
t, s to denote data terms. An atomic constraint ϕ has the form e♦e′, where
e, e′ ∈ ExprΣ(DVar) and ♦ ∈ CS . We write AConΣ(DVar) for the set of all
atomic constraints.

An environment is defined as any set V of type-annotated data variables x : τ ,
such that V does not include two different annotations for the same variable.
The set Expr τΣ(V ) of all expressions that admit type τ w.r.t. V is defined in
the usual way; see [3]. Expr τΣ(V ) has a subset Termτ

Σ(V ), that is defined in the
natural way.

An atomic constraint e♦e′, ♦ ∈ {==, /=}, is well-typed w.r.t. an environ-
ment V iff e, e′ ∈ ExprτΣ(V ), for some τ ∈ TTC (TVar). If ♦ ∈ {∈, �∈}, then e♦e′
is well-typed iff e ∈ ExprτΣ(V ), and e′ ∈ Expr

Mset(τ)
Σ (V ), for some τ ∈ TTC (TVar ).

Program rules are constructor-based rewrite rules for defined functions. More
precisely, assuming a principal type declaration f : (τ1, . . . , τn) → τ ∈ FS , a
defining rule for f must have the form: f(t1, . . . , tn) → r ⇐ ϕ1, . . . , ϕm, where
the left-hand side is linear (i.e., without multiple occurrences of variables), ti ∈
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TermΣ(DVar), 1 ≤ i ≤ n, r ∈ ExprΣ(DVar), all variables occurring in r occur
also in the left-hand side, and ϕj ∈ AConΣ(DVar), 1 ≤ j ≤ m. Furthermore,
such a defining rule is well-typed iff there is some environment V such that ti ∈
Termτi

Σ(V ), 1 ≤ i ≤ n, r ∈ ExprτΣ(V ) and for all ϕj , 1 ≤ j ≤ m, ϕj is well-typed
w.r.t. V .

Note that, similarly to [10,3,4], neither termination nor confluence are as-
sumed for program rules. Therefore, defined functions can be non-deterministic.
This feature supports some useful programming techniques, as discussed in [10].

Programs are pairs P = 〈Σ,R〉, where Σ is a polymorphic signature and R
is a finite set of defining rules for defined functions symbols in Σ. We will say
that a program P is well-typed iff all program rules in R are well-typed.

Goals G have the form ϕ1, . . . , ϕm, where ϕj ∈ AConΣ(DVar), 1 ≤ j ≤ m.
Furthermore, G is well-typed iff there exists an environment V such that ϕj ,
1 ≤ j ≤ m, are well-typed w.r.t. V . In the following, we will implicitly assume
that all expressions, programs and goals we use are well-typed.

Solutions for Seta goals must sometimes refer to multiset cardinalities. There-
fore, terms and constraints occurring in a solution can include what we call mul-
tiset variables, of the form ys : L, where ys ∈ DVar and L (standing for ys ’s
cardinality) is either an integer number or a variable. In the last case, we speak
of a cardinal variable. A solution S for a goal G is a triple 〈SS , φ,Con〉, where:
� SS ≡ {x1 = t1, . . . , xn = tn} is a system of equations in solved form, i.e.,
each variable xi occurs only once in SS and ti are data terms, 1 ≤ i ≤ n.
The intended meaning of equations of the form xs = ys : L ∈ SS is that xs
represents a multiset of cardinality L.

� φ is a set of constraints in solved form x/=t (with t different from x) or t �∈ xs.
� Con is a set of arithmetic constraints referring to the cardinal variables L
occurring in SS.
Note that SS represents an idempotent substitution of terms for data vari-

ables. As we will show in Section 3, Seta’s Prolog-based implementation is de-
signed in such a way that the substitution described by SS is computed by
Prolog’s unification, whereas the set Con of arithmetic constraints is computed
by a constraint solver. Multiset variables are not allowed to appear in user
given programs and goals, but they help to improve the conciseness and gen-
erality of solutions. For instance, given the goal {[x|xs ]}/={[A,B ]}, Seta can
compute the solution 〈{xs = ys : L}, ∅, {L = \ = 1}〉 (expressing that {[x|xs ]}
and {[A,B ]} have different cardinality), as well as other solutions, including e.g.
〈{xs = ys : 1}, {x/=B,B �∈ ys : 1}, ∅〉.

Goal solving in Seta uses a combination of lazy narrowing and unification
modulo the multiset commutativity equation {[x, y|zs ]} ≈ {[ y, x|zs ]}. Narrowing
is needed to solve any kind of goal involving defined functions. It works by means
of unification with the left-hand sides of program rules, which must be done mod-
ulo multiset commutativity. As in [10,4], goals of the form e==e′ are solved by
narrowing e and e′ to some data terms which are equivalent modulo multiset
commutativity (which amounts to syntactical identity for terms involving no
multisets). Disequality goals between expressions whose main constructor sym-
bol is different from {[ ·|· ]} have the same treatment as in [2], i.e., they are solved
by narrowing both expressions to a sufficient extent for detecting disagreement
of constructor symbols at the same position. Disequality goals between expres-
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sions of type multiset are solved by narrowing both expressions to a sufficient
extent to detect either a discrepancy of cardinality, or equality of cardinalities
and discrepancy in the multiplicity of some element. A more detailed discus-
sion is given in Subsection 3.6. Membership and non-membership goals have the
natural, expected treatment.

The expressive power of multisets in Seta can be used to tackle any kind
of problem which is related to the widely applicable idea of multiset rewriting;
see e.g. [5,19,10,18]. In particular, multiset rewriting is known to be useful for
solving action and change problems declaratively, while avoiding the so-called
frame problem. Several known approaches to this problem are surveyed in [19].
In particular, it is known that action and change problems can be modeled by
means of equational logic programs [11], using a binary AC1 operation ◦ to rep-
resent situations as multisets of facts fact1 ◦ . . . ◦ factn, and a ternary predicate
execPlan(initialSit, plan, finalSit) to model the transformation of an initial situa-
tion into a final situation by the execution of a plan (sequence of actions). In
Seta we can follow the same idea quite naturally, while non-deterministic func-
tions and constraints help to improve expressivity. Let us illustrate this by means
of an action and change problem related to a fictitious case of microorganism
evolution.

Example 1. Microorganisms correspond to facts in our example; they are de-
scribed by an identifier (natural number) and a multiset of genes (natural num-
bers). Natural numbers and microorganisms are built by the data constructors
Zero, S and O respectively, declared as:

Zero :→ Nat S : Nat → Nat O : (Nat , Mset(Nat))→ Micoorganism

Our situations are populations of microorganisms, built by the data constructor:
P : (Nat ,Mset(Microorganism))→ Population

In a population P (i, xs), i represents the least natural number which is not used
as identifier by the microorganisms in xs. Populations can evolve through events
(which correspond to actions in action and change problems). We assume two
kinds of events (which are members of a datatype Event) described by the data
constructors: Mut : Nat → Event and Cross : (Nat ,Nat)→ Event , where:
� Mut(i) represents a mutation of the microorganism with identifier i. A mi-
croorganism can mutate by duplicating one of its genes provided that there
was a single occurrence of that gene. The new microorganism replaces the
old one.

� Cross(i, j) represents a cross of the microorganisms with identifiers i, j. Two
microorganisms can cross by exchanging one gene, provided that they have
the same number of different genes (ignoring duplications). Two new mi-
croorganisms do arise.
The performance of a given event causes a non-deterministic transforma-

tion of a given population. We express such a transformation by means of the
following non-deterministic function:
perf event : (Event , Population)→ Population

perf event(Mut(i), P (n, {[ O(j, {[ x|xs ]})|oths ]}))→ P (n, {[ O(i, {[ x, x|xs ]})|oths ]})
⇐ i==j, x �∈ xs

perf event(Cross(i, j), P (n, {[ O(i1, {[ x|xs ]}), O(j1, {[ y|ys ]})|oths ]}))→
P (S(S(n)), {[ O(i, {[ x|xs ]}), O(j, {[ y|ys ]}), O(n, {[ x|ys ]}), O(S(n), {[ y|xs ]})|oths ]})

⇐ i==i1, j==j1, size({[ x|xs ]})==size({[ y|ys ]})
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size : Mset(α)→ Nat
size({[ ]})→ Zero
size({[ x |xs ]})→ size(xs)⇐ x ∈ xs
size({[ x |xs ]})→ S(size(xs))⇐ x �∈ xs

Plans in action and change problems will be lists of events here, where lists
are described by the data constructors: [ ] :→ List(α) and [·|·] : (α,List(α)) →
List(α). The performance of a plan also transforms a given population. For that,
we use a non-deterministic function (which corresponds to the ternary predicate
execPlan in the equational logic programming approach to planning) defined by
the rules:
perform plan : (List(Event), Population)→ Population

perform plan([ ], pop)→ pop
perform plan([first |rest ], pop)→ perform plan(rest , perf event(first , pop))

Assume now that we are looking for a plan that transforms the population
P (2, {[O(0, {[ 1 ]}), O(1, {[ 2 ]}) ]}) (initial situation in action and change problems),
into a new population containing two microorganisms with genomes {[ 1, 1, 1 ]}
and {[ 2, 2, 2 ]} (final situation in action and change problems), where 2 is an
abbreviation of S (S (Zero)), etc. Then, we can solve the goal:

perform plan(plan, P (2, {[ O(0, {[ 1 ]}), O(1, {[ 2 ]}) ]}))==P (n,microo),
O(i, {[ 1, 1, 1 ]}) ∈ microo, O(j, {[ 2, 2, 2 ]}) ∈ microo

One possible computed answer would be:

n = 6, i = 5, j = 4,
microo = {[ O(0, {[ 1, 1 ]}), O(1, {[ 2, 2 ]}), O(2, {[ 1, 1, 2 ]}),

O(3, {[ 2, 2, 1 ]}), O(4, {[ 2, 2, 2 ]}), O(5, {[ 1, 1, 1 ]}) ]},
plan = [Mut(0 ), Mut(1 ),Cross(0 , 1 ),Mut(2 ), Mut(3 ),Cross(2 , 3 )]

Of course, other solutions can also be computed.

3 A Prolog-Based Implementation for Seta

Along this section we describe the essentials of a Prolog-based implementation
which can be understood as an executable specification of Seta’s operational
semantics (following [3,4], with suitable extensions to deal with constraint solv-
ing). The resulting executable specification borrows ideas from [2] but with a
substantial novelty: we have introduced unification modulo the multiset com-
mutativity equation (predicate mutate in Subsect. 3.3) and multiset constraints
(predicates ==, ∈, /=, �∈ in Subsects. 3.4, 3.5, 3.6, 3.7, respectively).

Those expressions whose principal type is Mset(τ), for some τ ∈ TTC (TVar )
(shortly, multiset expressions in what follows), will be translated into Prolog
terms which keep information about cardinalities. More precisely, we will use
some simple arithmetic constraints to represent this information. For this reason,
our implementation must be executed on top of some Prolog system which pro-
vides a solver for arithmetic constraints (we have chosen Sicstus Prolog 3.3. [21]).

Unless otherwise specified, every time a piece of code depends on a
symbol c (resp. f), we assume that C (resp. f) ranges over DC n − {{[ ]}, {[ ·|· ]}}
(resp. FSn), n ≥ 0. Abusing of notation, we use predicate names not allowed
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in Sicstus, such as ==, /=, ∈, etc.., subscripts to write Prolog variables2, and
f(En), c(Em) to denote f(E1, . . . , En) and c(E1, . . . , Em), respectively.

3.1 Prolog Representation of Seta Expressions

As in [7,17,2] our implementation relies on a translation of Seta expressions,
programs and goals into Prolog. The arithmetical constraints over cardinalities
occurring in the translations of multiset expressions will play a crucial role for the
early detection of failure and success, sometimes avoiding infinite computations.
For example, consider the goal {[ f ]}=={[ f, f ]}, where f is defined by the program
rule f → f . Since both multisets have different cardinalities, the goal should
fail immediately without attempting the evaluation f , which would cause an
infinite computation. Dually, the disequality goal {[ f ]}/={[ f, f ]} should succeed
immediately.

Let P = 〈Σ,R〉 be some given well-typed Seta program. Any expression e
occurring in the program will be translated into a pair PT (e) = 〈te, const〉,
where te is a Prolog term and const is a set of arithmetic constraints. We can
safely assume (see [8]) that the (statically computed) principal types of all the
expressions occurring in the Seta program are available during the translation.
Moreover, we can also assume that all the occurrences of one and the same Seta
variable are given identical translations. For the sake of simplicity, this assump-
tion is not formally reflected in the following recursive definition of PT (e):

� PT (x) = 〈X, ∅〉, for all x ∈ DVar whose type is not of the form Mset(τ). X is
a fresh Prolog variable.

� PT (xs) = 〈Xs : L, {L >= 0}〉, for all xs ∈ DVar whose type is of the form
Mset(τ). Xs, L are two fresh Prolog variables.

� PT ({[ ]}) = 〈empty : 0, ∅〉.
� PT ({[ e|e′ ]}) = 〈ms(te, k : L1) : L, const∪ {L = L1 + 1}〉, where PT (e) = 〈te,

const′〉, PT (e′) = 〈k : L1, const′′〉 and const = const′ ∪ const′′.
� PT (C(e1, . . . , en)) = 〈c(te1, . . . , ten),

⋃n
i=1 consti〉, for every C ∈ DCn,

n ≥ 0, C different from the multiset constructors, where C is translated as a
Prolog data constructor c and PT (ei) = 〈tei, consti〉, 1 ≤ i ≤ n.

� PT (f(e1, . . . , en)) = 〈f(te1, . . . , ten, R, S),
⋃n

i=1 consti〉, for all f ∈ FSn,
n ≥ 0, such that the type of f(e1, . . . , en) is not of the form Mset(τ), where
PT (ei) = 〈tei, consti〉, 1 ≤ i ≤ n. The arguments R and S are two fresh
Prolog variables used to implement sharing following a technique introduced
in [7]. Argument S controls if the expression has already been evaluated to
head normal form (i.e., to an expression which is either a variable or has a
data constructor symbol at head). In such a case, the result of the evaluation
is kept in R.
PT (f(e1, . . . , en)) = 〈f(te1, . . . , ten, R, S) : L,

⋃n
i=1 consti ∪ {L >= 0}〉, L is

a fresh Prolog variable and f(e1, . . . , en) has type Mset(τ).
Let us show a simple example illustrating several translations of expressions.

Example 2. Suppose that we have f : Nat → Mset(Nat) ∈ FS , and also that
Zero :→ Nat and S : Nat → Nat belong to DC . Then:

2 Warning: some occurrences of == in the code refer to the Prolog metapredicate that
checks syntactic identity!
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� PT ({[ Zero ]}) = 〈ms(zero, empty : 0) : L1, {L1 = 0 + 1}〉.
� PT ({[ Zero|xs ]}) = 〈ms(zero, Xs : L1) : L2, {L2 = L1 + 1, L1 >= 0}〉.
� PT ({[ x |f(S(x)) ]}) = 〈ms(X, f(s(X), R, S) : L1) : L2, {L2 = L1 + 1, L1 >= 0}〉.
Note that in the first item, the arithmetic constraint solver of Sicstus Prolog

would bind immediately L1 to 1. More generally, our Prolog translation keeps the
exact cardinality n for any multiset expression of the form {[ e1, . . . , en ]}. Oth-
erwise, our representation keeps a lower bound of the cardinality. For instance,
in the second and third items above, the arithmetic constraints at hand entail
L2 ≥ 1. Notice also how in the third item both occurrences of the variable x have
been translated into the same Prolog variable X.

3.2 Constraint Store and Prolog Translation of Seta Goals

As commented in Section 2, a solution S for a goal G is given by a data substi-
tution (δ), a set of Seta constraints in solved form (φ) and a set of arithmetic
constraints over those cardinal variables occurring in S (Con). Along a com-
putation, Prolog unification together with the arithmetic constraint solver will
compute δ and Con respectively. In order to calculate φ, the implementation
uses a constraint store, always accessible during a computation.

The Prolog structure of the constraint store is similar to that used in [6], i.e., a
Prolog list of the form [v1#c1, . . . , vn#cn], where each so-called constrained vari-
able vi , 1 ≤ i ≤ n, is either a Prolog variable X or a Prolog term X : L (represent-
ing a multiset variable), where X is a Prolog variable and L is an integer number or
a Prolog variable. Each ci, 1 ≤ i ≤ n, is a Prolog list of the form [ci�∈, c

i

/=], where

ci�∈ and c
i

/= are again Prolog lists of terms, representing the non-membership and

disequality constraints associated to the constrained variable vi, respectively. For
those constrained variables in the constraint store which are not multiset vari-
ables ci�∈ reduces to the empty list. As an example of a constraint store we have
[Xs1 : L1#[[c, d], [Xs2 : L2]], Xs2 : L2#[[c], [Xs1 : L1]]], which represents the follow-
ing sequence of constraints in solved form: C �∈ xs1, D �∈ xs1, C �∈ xs2, xs1/=xs2.

The translation PT (G) of a well-typed goal G ≡ e1♦e′1, . . . , en♦e′n, where
♦ ∈ CS , is defined as: PT (G) = 〈(te1♦te′1, te2♦te′2, . . . , ten♦te′n), const〉,
where PT (ei) = 〈tei, consti〉, PT (e′i) = 〈te′i, const′i〉, 1 ≤ i ≤ n, and const =⋃

n

i=1 consti ∪ const′i. Remark again here, that all occurrences of one and the
same (multiset) variable x in G are translated into the same (multiset) Prolog
variable.

Example 3. Consider the goal G ≡ {[x|xs ]}=={[x, x|xs ]}. Then PT (G) will be
equal to 〈(ms(X, Xs : L) : L1==ms(X, ms(X, Xs : L) : L2) : L3), {L >= 0, L1 = L+ 1,
L2 = L+ 1, L3 = L2 + 1}〉.

Thanks to the fact that both occurrences of xs have been translated into
the same Prolog multiset variable Xs : L, the arithmetic constraints occurring in
PT (G) entail that L1 can not be equal to L3, i.e., G’s failure can be detected
very quickly.

Once a goal G has been translated into PT (G) = 〈C, const〉, the follow-
ing Prolog call is generated: const, solve(C, [ ], FCS), where const activates the
arithmetic constraint solver, and predicate solve solves consecutively each one
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of the constraints occurring in C. The last two arguments of the predicate solve
correspond to the initial and final constraint store. Thus, at the beginning of
the computation the initial constraint store is empty (i.e., [ ]), and, after the
execution of solve, the final constraint store FCS will contain the constraints in
solved form composing a solution for G. In general, all Prolog predicates used in
our Seta implementation have two additional arguments (which always appear
as the two last positions). The first one represents the initial constraint store,
whereas the second one represents the final constraint store obtained after a
successful computation. The Prolog code for predicate solve is the following:

solve((Const, Rest), ICS, FCS) :- solve(Const, ICS, CS1), solve(Rest, CS1, FCS).

solve(E♦R, ICS, FCS) :- ♦(E, R, ICS, FCS). % for each ♦ ∈ {==, /=,∈, �∈}
In the sequel we will make use of several Prolog predicates to handle the

constraint store. Due to lack of space, we give only an informal explanation
of their behaviour. The first predicate is extract(ICS, V, Cv, FCS), that, given
an initial constraint store ICS and a (multiset) variable V, returns in Cv the
constraints associated to V in ICS, removing from ICS the element V#Cv and
returning the resulting constraint store in FCS. If the (multiset) variable V does
not appear in ICS as a constrained variable, then Cv is bound to [[ ], [ ]]. The
second predicate that we will use is addconstraints(CS1, CS2, FCS), that, given
two constraint stores CS1 and CS2, returns in FCS the merge of CS1 and CS2,
i.e., for all (multiset) variable V occurring as constrained variable in CS1 (with
constraints [C1, C2]) and CS2 (with constraints [C′1, C′2]), we keep in FCS the con-
strained variable V#[C′′1 , C

′′
2 ], where C

′′
i , 1 ≤ i ≤ 2, is the concatenation of Ci and

C′i. Otherwise, if V occurs as constrained variable in CS1 (with constraints C) but
not in CS2 or vice versa, then we keep in FCS the constrained variable V#C.

3.3 Head Normal Forms and Prolog Translation of Program Rules

An expression is in head normal form (shortly hnf) iff it is a variable or its outer-
most symbol is a data constructor. As in [17,2], we will calculate hnfs by applying
program rules. In contrast to functional programming, a given expression may
have several different hnfs, due to the occurrence of free variables (affected by
narrowing) and/or non-deterministic function symbols.

Predicate hnf(E, H, ICS, FCS) returns in H one of the possible head normal
forms of the expression E. The code associated to this predicate is the following:

hnf(f(En, R, S), H, ICS, FCS) :- S == on, !, H = R, ICS = FCS.

hnf(f(En, R, S), H, ICS, FCS) :- !, #f(En, H, ICS, FCS), S = on, R = H.

hnf(f(En, R, S) : L, H, ICS, FCS) :- S == on, !, H = R, ICS = FCS.

hnf(f(En, R, S) : L, H, ICS, FCS) :- !, #f(En, H, ICS, FCS),S = on, R = H.
hnf(E, H, ICS, FCS) :- H = E, ICS = FCS.

Note that, the clauses of hnf distinguish function calls which are known to
return a multiset (third and fourth clauses) from other function calls (first and
second clauses). In both situations, given a function call whose hnf is not yet
computed (second and fourth clauses), the hnf must be computed by using the
program rules. Therefore, these must be translated into Prolog. More precisely,



438 P. Arenas-Sánchez et al.

for each program rule f(t1, . . . , tn) → r ⇐ C, we produce the following Prolog
clause:

#f(En, H, CS0, CSn+2) :- const, unif(E1, t
′
1, CS0, CS1), . . . , unif(En, t

′
n, CSn−1, CSn),

solve(C′, CSn, CSn+1), hnf(tr, H, CSn+1, CSn+2).

where PT (ti) = 〈t′i, consti〉, 1 ≤ i ≤ n, PT (r) = 〈tr, constn+1〉, PT (C) =
〈C′, constn+2〉 and const =

⋃n+2
i=1 consti. Remark that PT (C) is defined simi-

larly to PT (G), where G is a goal.
This translation of program rules implements a quite näıve narrowing strat-

egy, rather than the more efficient strategy known as needed narrowing [1,17].
Actually, needed narrowing cannot be applied straightforwardly to a language
with algebraic data constructors. The investigation of some suitable extension is
left for future research.

Predicate unif(E, T, ICS, FCS) defined immediately below, unifies an expres-
sion E given as actual parameter for some function call with a linear term T
coming from the left-hand side of some program rule. This unification will re-
duce E as much as needed to match the constructors occurring in T. Predicate
isvar(T) invoked in the first clause of unif succeeds iff T is a Prolog variable
or T is a multiset variable. The code for predicate unif is the following:

unif(E, T, ICS, FCS) :- isvar(T), !, T = E, ICS = FCS.
unif(E, T, ICS, FCS) :- hnf(E, H, ICS, CS1), unifhnf(H, T, CS1, FCS).

unifhnf(X, T, ICS, FCS) :- isvar(X), !, extract(ICS, X, Cx, CS1), X = T,
propag(Cx, X, CS1, FCS).

unifhnf(c(En), c(Tn), ICS, FCS) :- unif(E1, T1, ICS, CS1), . . . , unif(En, Tn, CSn−1, FCS).
unifhnf(empty : 0, empty : 0, ICS, FCS) :- ICS = FCS.

unifhnf(ms(E, Es) : L, ms(R, Rs) : L1, ICS, FCS) :- {L = L1},
mutate(ms(E, Es) : L, ms(E1, Es1) : L, ICS, CS1),
unif(E1, R, CS1, CS2), unif(Es1, Rs, CS2, FCS).

propag([[ ], [ ]], T, ICS, FCS) :- ICS = FCS, !.

propag([[E|R], [ ]], T, ICS, FCS) :- !, �∈ (E, T, ICS, CS1), propag([R, [ ]], T, CS1, FCS).

propag([[ ], [E|R]], T, ICS, FCS) :- !, /=(E, T, ICS, CS1), propag([[ ], R], T, CS1, FCS).

propag([[E|R], [E1|R1]], T, ICS, FCS) :- �∈ (E, T, ICS, CS1),
/=(E1, T, CS1, CS2), propag([R, R1], T, CS2, FCS).

Some comments are needed in order to clarify the behaviour of unif. The
first clause covers the case in which T is a (possibly multiset) variable, and uni-
fication succeeds immediately. Otherwise, E is reduced to hnf and the predicate
unifhnf is invoked. In the first clause for unifhnf we can observe a new predi-
cate propag/4, which must be invoked whenever a (possibly multiset) variable X
is bound to a term T. The task of propag is to impose on T all the constraints
associated to X in the current constraint store. This might lead to failure.

The last clause for predicate unifhnf takes care of unification modulo the
multiset commutativity axiom {[x, y|zs ]} ≈ {[ y, x|zs ]}. As explained in the Intro-
duction, this causes multiplicity of unifiers as well as complications related to the
computation of hnfs. These matters are dealt with predicate mutate/4 defined
below, which reorganizes the representation of a multiset in different ways, trying
to bring all the elements at the head position. For instance, predicate mutate
applied to the multiset {[ e1, e2, e3 ]}, where ei ∈ ExprΣ(DVar), 1 ≤ i ≤ 3,
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would generate the following three mutations: {[ e1, e2, e3 ]}, {[ e2, e1, e3 ]} and
{[ e3, e1, e2 ]}. For multiset expressions including function calls of type multiset,
as e.g. {[ e1|f(e) ]}, mutate may force further computations to hnf, as shown by
its third clause. This is done in order to extract new elements to be brought at
the head. The last clause for mutate also establishes constraints which update
the lower bounds kept in multiset representations. Moreover, the first clause of
predicate mutate calls to predicate propag, because the multiset variable Xs : L
becomes bounded to MX. Predicate mutate is described by the following clauses:

mutate(Xs : L, MX, ICS, FCS) :- var(Xs), !, extract(ICS, Xs : L, Cx, CS1),
Xs : L = MX, propag(Cx, Xs : L, CS1, FCS).

mutate(ms(E, Es) : L, Ms, ICS, FCS) :- Ms = ms(E, Es) : L, ICS = FCS.

mutate(ms(E, Es : L) : L1, ms(R, ms(E, Rs : L2) : L3) : L4, ICS, FCS) :-
hnf(Es : L, HEs, ICS, CS1), mutate(HEs, ms(R, Rs : L2) : L3, CS1, FCS),
{L2 >= 0, L = L2 + 1, L3 = L2 + 1, L4 = L3 + 1}.

3.4 Solving Strict Equations

Predicate == defined below solves strict equations E==R between expressions.
Its associated code is:

==(E, R, ICS, FCS) :- hnf(E, HE, ICS, CS1), hnf(R, HR, CS1, CS2),==hnf(HE, HR, CS2, FCS).

==hnf(X, T, ICS, FCS) :- isvar(X), !, ==var(X, T, ICS, FCS). % and symmetric case

==hnf(c(En), c(Rn), ICS, FCS) :- ==(E1, R1, ICS, CS1), . . . , ==(En, Rn, CSn−1, FCS).

==hnf(empty : 0, empty : 0, ICS, FCS) :- ICS = FCS.

==hnf(ms(E, Es) : L, ms(R, Rs) : L1, ICS, FCS) :- {L = L1},
mutate(ms(E, Es) : L, ms(E1, Es1) : L, ICS, CS1),
==(E1, R, CS1, CS2), ==(Es1, Rs, CS2, FCS).

==var(X, Y, ICS, FCS) :- isvar(Y), X==Y, !, ICS = FCS.

==var(X, Y, ICS, FCS) :- isvar(Y), !, extract(ICS, X, Cx, CS1),
X = Y, propag(Cx, Y, CS1, FCS).

==var(X, c(En), ICS, FCS) :- !, occursnot(X, c(En)), extract(ICS, X, Cx, CS1),

X = c(Vn), propag(Cx, X, CS1, CS2),

==(V1, E1, CS2, CS3), . . . , ==(Vn, En, CSn+1, FCS). % Vn fresh variables

==var(X, empty : 0, ICS, FCS) :- extract(ICS, X, Cx, CS1),
X = empty : 0, propag(Cx, X, CS1, FCS).

==var(X, ms(E, Es) : L, ICS, FCS) :- occursnot(X, ms(E, Es) : L),
extract(ICS, X, Cx, CS1), X = ms(Y, Ys : L1) : L, {L = L1 + 1, L1 >= 0},
propag(Cx, X, CS1, CS2), ==(Y, E, CS2, CS3),
==(Ys : L1, Es, CS3, FCS). % Y, Ys, L1 fresh variables

The last two clauses for predicate ==hnf refer to the resolution of equalities
between multisets. Note that in the fourth clause, predicate mutate (defined in
Subsect. 3.3) is used only once. To mutate both multisets would only generate
redundant solutions. Note also the following: mutate, by itself, does not enu-
merate all the permutations of a given multiset representation; but the recursive
use of mutate within the clauses for the predicate == guarantees that all the
solutions are eventually computed.

A strict equation with one side being a (multiset) variable is solved by pred-
icate ==var. In particular, when both sides of a strict equation are different
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(possibly multiset) variables X, Y, the equation must succeed iff both variables
are not constrained to be different. Furthermore, since both variables will be
bound, only one of them must remain in the constraint store, containing simul-
taneously all constraints for X and Y. This task is realized by the second clause of
predicate ==var. Note that in this clause, predicate extract is invoked in order
to remove X from the constraint store, remaining variable Y. After binding X to Y,
predicate propag will add all constraints associated to X to the constraints for Y
in the constraint store, since all non-membership and disequality constraints to
be solved are in solved form (see predicates /= and �∈ in Subsects. 3.6 and 3.7,
respectively).

In order to bind a (possibly multiset) variable X to an expression E, we must
ensure that X does not occur in E at some position whose ancestor positions are
all occupied by constructor symbols. This is checked by predicate occursnot/2
appearing in the third and last clause3 of predicate ==var, whose Prolog code
is not presented due to lack of space.

3.5 Solving Membership Constraints

The membership of an element E to a multiset R is implemented by means of the
predicate ∈ defined as follows:

∈ (E, R, ICS, FCS) :- hnf(R, HR, ICS, CS1),∈ hnf(E, HR, CS1, FCS).

∈ hnf(E, Xs : L, ICS, FCS) :- var(Xs), !,∈ var(E, Xs : L, ICS, FCS).
∈ hnf(E, ms(E1, Es) : L, ICS, FCS) :- ==(E, E1, ICS, FCS).
∈ hnf(E, ms(E1, Es) : L, ICS, FCS) :- ∈ (E, Es, ICS, FCS).

∈ var(E, Xs : L, ICS, FCS) :- ==(E, Y, ICS, CS1), extract(CS1 , Xs : L, Cx, CS2),
Xs : L = ms(Y, Ys : L1) : L, {L1 >= 0, L = L1 + 1}, propag(Cx, Xs : L, CS2, FCS).

% Y, Ys, L1 fresh variables

Note that predicate ∈ does not require to compute a hnf for E in advance,
because a strict equation between E and some member of the multiset should
eventually succeed. Moreover, solving membership constraints does not require
to mutate the multiset, because the validity of this constraint is independent of
the syntactic order of elements in a multiset representation.

The membership of an expression E to a multiset variable Xs : L (predi-
cate ∈ var defined above) forces the evaluation of E to normal form by invoking
to predicate == with its first argument E and the second one a fresh Prolog
variable. After this, Xs is bound to a pattern representing an arbitrary multiset
one of whose members is Y (which contains the normal form E), and appropriate
constraints are imposed, as usual.

3.6 Solving Disequality Constraints

Disequality constraints are solved by predicate /= defined below. Considering
that disequality constraints involving free constructors are solved by techniques
3 Of course, these two clauses could be optimizated as in [2] by using an incremental

occurs-check.
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borrowed from [2], here we limit ourselves to discuss disequalities between mul-
tisets. We want to implement the following notion of multiset disequality: Two
multisets Ms and Ms1 verify Ms/=Ms1 iff one of the following conditions holds:

(a) Ms and Ms1 have different cardinality;
(b) Ms and Ms1 have the same cardinality but one of the following items holds:

(i) there exists a ∈ Ms such that a �∈ Ms1 or vice versa;
(ii) there exists a ∈ Ms ∩ Ms1 such that the multiplicity of a in Ms (i.e., the

number of occurrences of a as element of Ms) is different from the multi-
plicity of a in Ms1.

For implementing disequality according to this definition, the following case
distinction turns out to be helpful: We say that a multiset expression is closed
iff it is of the form {[ e1, . . . , en ]}, open iff it is of the form {[ e1, . . . , en|xs ]} and
pending iff it is of the form {[ e1, . . . , en|f(e′1, . . . , e′m) ]}, where xs ∈ DVar and
f ∈ FSm. We will assume the existence of the predicate tail(Ms, Tail) (whose
code is not presented due to lack of space) which returns in Tail which kind of
multiset expression Ms is. More precisely: Tail is the atom “c” if Ms is closed,
the atom “o” if Ms is open, or the term “p(n)” if Ms is pending with n elements
before the tail. Let us now present the code for predicate /=:

/=(E, R, ICS, FCS) :- hnf(E, HE, ICS, CS1), hnf(R, HR, CS1, CS2), /=hnf(HE, HR, CS2, FCS).

/=hnf(X, T, ICS, FCS) :- isvar(X), !, /=var(X, T, ICS, FCS). % and symmetric case

/=hnf(c(En), d(Rm), ICS, FCS) :- ICS = FCS.
% C, D with the same principal type, up to variants

/=hnf(c(En), c(Rn), ICS, FCS) :- (/=(E1, R1, ICS, FCS); . . . ; /=(En, Rn, ICS, FCS)).
/=hnf(Ms, Ms1, ICS, FCS):-tail(Ms, V), tail(Ms1, V1), /=hnftail(V, V1, Ms, Ms1, ICS, FCS).

/=hnftail(Id 1, Id2, Ms : L, Ms1 : L1, ICS, FCS) :- ({L = \ = L1}, ICS = FCS ;
{L = L1}, /=hnfbasic(Ms : L, Ms1 : L1, ICS, FCS)). % Id1, Id2 ∈ {c, o}

/=hnftail(c, p(N), Ms : L, Ms1 : L1, ICS, FCS) :- (\+ {L = L1}, !, ICS = FCS ;
getnewelement(Ms1 : L1, Ms2, T, ICS, CS1), /=hnftail(c, T, Ms : L, Ms2, CS1, FCS)).

% and symmetric case

/=hnftail(o, p(N), Ms : L, Ms1, ICS, FCS) :- ({L < N}, ICS = FCS ;
getnewelement(Ms1 , Ms2, T, ICS, CS1), /=hnftail(o, T, Ms : L, Ms2, CS1, FCS)).

% and symmetric case

/=hnftail(p(M), p(N), Ms, Ms1, ICS, FCS) :-
getnewelement(Ms, Ms2, T, ICS, CS1), /=hnftail(p(N), T, Ms1, Ms2, CS1, FCS).

/=hnfbasic(Ms, Ms1, ICS, FCS) :-
mutate(Ms, ms(E, Es) : L, ICS, CS1), �∈ (E, Ms1, CS1, FCS). % and symmetric case

/=hnfbasic(Ms, ms(E, Es) : L, ICS, FCS) :-
mutate(Ms, ms(E1, Es1) : L1, ICS, CS1),==(E1, E, CS1, CS2), /=(Es1, Es, CS1, FCS).

/=var(X, Y, ICS, FCS) :- isvar(Y), !, X\ == Y,
addconstraints([X#[[ ], [Y]], Y#[[ ], [X]]], ICS, FCS).

/=var(X, T, ICS, FCS) :- isterm(T), !, addconstraints([X#[[ ], [T]]], ICS, FCS).

/=var(X, c(En), ICS, FCS):-extract(ICS, X, Cx, CS1), X = d(Um), propag(Cx, X, CS1, FCS).

% C, D with the same principal type, Um fresh Prolog variables

/=var(X, c(En), ICS, FCS) :- extract(ICS, X, Cx, CS1), X = c(Un),

propag(Cx, X, CS1, CS2), /=(X, c(En), CS2, FCS). % Un fresh Prolog variables
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/=var(X, ms(E, Es) : L, ICS, FCS) :- extract(ICS, X, Cx, CS1), X = empty : 0
propag(Cx, X, CS1, FCS).

/=var(X, ms(E, Es) : L, ICS, FCS) :- extract(ICS, X, Cx, CS1), X = ms(C, R : L1) : L2,
{L2 = L1 + 1, L1 >= 0}, propag(Cx, X, CS1, CS2), /=(X, ms(E, Es) : L, CS2, FCS).

% C, R, L1, L2 fresh Prolog variables

The fourth clause for /=hnf states that for solving a disequality between two
multiset expressions in hnf Ms and Ms1, their tails are firstly examined and then
/=hnftail performs a case distinction depending on the results:

(1) If Ms and Ms1 are not pending (the first clause for /=hnftail, which is a
clause schema abbreviating the 4 clauses obtained by choosing values for Id1,
Id2 among “c”, “o”), then we open two alternatives which correspond to the
cases (a) and (b) of the definition of /=.
(1.a) The cardinalities L and L1 of Ms and Ms1 are required to be different. In

some cases the condition {L = \ = L1} behaves as a test of incompatibil-
ity of cardinals, as e.g. when Ms≡ms(a, empty :0) :1 and Ms1≡ms(a, ms(b,
Xs : L) : L1) : L2 along with {L >= 0, L1 = L+ 1, L2 = L1 + 1}. But in ot-
her cases, {L = \ = L1} adds new information to the constraint store and
can contribute to the solution, as e.g. like for Ms ≡ ms(a, Xs : L) : L1 and
Ms1 ≡ ms(a, Ys : L′) : L′1, with additional previous constraints {L >= 0, L1
= L+ 1, L′ >= 0, L′1 = L′ + 1}. In this case, we obtain the solution 〈{xs =
zs : L, ys = ws : L′}, ∅, {L = \ = L′}〉, which cannot be covered by any
finite set of solutions not containing arithmetic constraints over cardinal-
ities.

(1.b) This closely follows the item (b) of the definition of /= above (predicate
/=hnfbasic). Unfortunately, the behaviour of this process may depend
critically on the particular order in which mutations are generated. To
see this, consider Ms = {[ [A|f ], [B] ]} and Ms1 = {[ [A|f ], [C] ]}, where A, B
and C are different constant constructors and f is defined by the program
rule f → [A|f ]. Then Ms/=Ms1 can succeed by picking [B] among the
elements of Ms and checking that [B] �∈ Ms1. However, if we pick [A|f ]
first, then we will have to solve either [A|f ] �∈ Ms1 or else a strict equality
between [A|f ] and some element of Ms1; any of these alternatives will lead
to an infinite computation. In summary, disequalities between multisets of
the same cardinality are very hard to compute, unless all the expressions
occurring as elements can be evaluated to normal form in finitely many
steps.

(2) If Ms is closed and Ms1 is pending (second clause of /=hnftail), it is still
possible that the condition \+ {L = L1} (where \+ is the symbol for negation
as failure in Sicstus Prolog) entails that both multisets may never be equal.
For instance, if Ms ≡ ms(a, empty : 0) : 1 and Ms1 ≡ ms(a, ms(b, e : L) : L1) : L2,
the associated constraints {L >= 0, L1 = L + 1, L2 = L1 + 1} entails L2 >= 2,
i.e., the condition \+ {1 = L2} succeeds without evaluating e (which could
even diverge). The behaviour in this case is “lazy” in the sense that the
evaluation of expressions occurring as elements is avoided.
As a second alternative, getnewelement/5 (whose code is not presented due
to lack of space) extracts a new element from the tail of Ms1 and then a
recursive call to /=hnftail is performed.
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(3) If Ms is open with cardinality L and Ms1 is pending with tail information
p(N) (third clause of /=hnftail), a lazy behaviour similar to the case (2)
above can obtain a solution by imposing the condition {L < N}. There is also
a second alternative, exactly as in item (2).

(4) If Ms and Ms1 are both pending (fourth clause of /=hnftail), the informa-
tion about their cardinalities is useless for the moment. Therefore, we extract
one new element from the tail of Ms and recursively call to /=hnftail, but
switching the arguments in order to give chances to progress in the evaluation
of both multiset tails.

With respect to /=var, remark that a disequality constraint between to dif-
ferent variables X and Y adds X as disequality constraint for Y and vice versa. On
the other hand, all the disequality constraints stored for variables must corre-
spond to data terms; this is checked by predicate isterm whose code has been
omitted. So, when solving a constraint X/=E, where E is not a data term, X be-
comes bound to an imitation binding. This contributes to the lazy behaviour of
disequality solving.

3.7 Solving Non-membership Constraints

Non-membership is solved by predicate �∈ defined below. Differently to the rest of
constraints discussed so far, the non-membership of an element E to a multiset Ms
can succeed without any evaluation of E whenever Ms is the empty multiset. The
code for this predicate is the following:

�∈ (E, R, ICS, FCS) :- hnf(R, HR, ICS, CS1), �∈ hnf(E, HR, CS1, FCS).

�∈ hnf(E, X, ICS, FCS) :- isvar(X), !, �∈ var(E, X, ICS, FCS).
�∈ hnf(E, empty : 0, ICS, FCS) :- !, ICS = FCS.
�∈ hnf(E, ms(E1, Es) : L, ICS, FCS) :- /=(E, E1, ICS, CS1), �∈ (E, Es, CS1, FCS).

�∈ var(T, X, ICS, FCS) :- isterm(T), !, addconstraints([X#[[T], [ ]]], ICS, FCS).

�∈ var(E, X, ICS, FCS) :- extract(ICS, X, Cx, CS1), X = empty : 0, propag(Cx, X, CS1, FCS).

�∈ var(E, X, ICS, FCS) :- extract(ICS, X, Cx, CS1), X = ms(C, R : L) : L1,
{L1 = L + 1, L >= 0}, propag(Cx, X, CS1, CS2), �∈ (E, X, CS2, FCS).

% C, R, L, L1 fresh Prolog variables

In order to understand the behaviour of the clauses above, consider the pro-
gram rule f → Zero and the goal G ≡ S (f) �∈ xs . The most general solution
for such a goal would be S (Zero) �∈ xs. However, the clauses for �∈ var will not
compute this solution; rather, the following infinite sequence of more particular
solutions will be enumerated: xs = {[ ]}; xs = {[Zero ]}; xs = {[Zero,Zero ]}; . . .
The point is that Seta’s implementation has been designed to delay the evalu-
ation of function calls as much as possible. Therefore, goals of the form e �∈ xs
where e is not a data term will often lead to an expensive enumeration of solu-
tions. This is good from a “laziness” point of view. For instance, suppose now
that the function f is defined by the rule f → S (f). Then the enumeration of
solutions has sense since the evaluation to normal form of S (f ) would lead to an
infinite computation without providing any solution.
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4 Conclusions

Following previous work on a general framework for lazy functional programming
with algebraic polymorphic types [3,4], we have presented Seta, a language for
functional logic programming with multisets and constraints. The fragment of
Seta using only strict equality constraints has a firm theoretical foundation,
provided by [3,4]. Seta turns out to be very expressive for any kind of problems
related to the general idea of multiset rewriting; we have shown an illustrative
programming example within the realm of action and change problems.

We have also described a Prolog-based implementation for Seta, easy to un-
derstand as specification of the operational semantics, and actually executable
on top of any Prolog system which supports simple arithmetic constraints (as
e.g. Sicstus Prolog 3.3. [21] which provides a solver for real constraints [13]).
Our implementation extends previous related approaches with substantially new
techniques, tailored to deal with the combination of lazy evaluation and unifica-
tion modulo multisets.

Currently we are working out an extension of [3,4], in order to obtain a
formal model for Seta’s semantics. We also plan to extend Seta’s design, with
real numbers as a predefined type and allowing a richer repertoire of constraints
(including arithmetic constraints) in program rules and goals.
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Artalejo M.: A Rewriting Logic for Declarative Programming. In Proc. ESOP’96,
Springer LNCS 1058, pp. 156–172, 1996. Full version available as TR DIA95/10,
http://mozart.sip.ucm.es 429, 432, 433



Embedding Multiset Constraints into a Lazy Functional Logic Language 445

11. Große G., Hölldobler J., Schneeberger J., Sigmund U., Thielscher M.: Equational
Logic Programming, Actions, and Change. In Proc. ICLP’92, the MIT Press, pp.
177–191, 1992. 430, 433

12. Hanus M.: The Integration of Functions into Logic Programming. A Survey. JLP
(19:20). Special issue Ten Years of Logic Programming, pp. 583–628, 1994. 429

13. Holzbaur C.: OFAI clp(Q,R) Manual.. Edition 1.3.3., Austrian Research Institute
for Artificial Intelligence, Vienna, TR-95-09, 1995. 430, 444

14. Jayaraman B., Plaisted D.A.: Programming with Equations, Subsets, and Relations.
In Proc. ICLP’89, Vol. 2, the MIT Press, pp. 1051–l068, 1989. 430

15. Jouannaud J.P., Kirchner C.: Solving Equations in Abstract Algebras: A Rule-Based
Survey of Unification. In J.L. Lassez and G. Plotking (eds.), Computational Logic,
Essays in Honor of Alan Robinson. The MIT Press, pp. 257–321, 1991. 430
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1 Introduction

The object paradigm has many practical advantages, including its support for
reuse through inheritance, its intuitive appeal, and its affinity for data abstrac-
tion [30]. However, it has not been integrated with the complementary ad-
vantages of the logic (or perhaps more accurately, relational) and functional
paradigms. The advantages of these paradigms include clean declarative seman-
tics, and (for the relational case) natural integration with database query lan-
guages and constraint formalisms. Following [19], we believe that the best way
to combine paradigms is to combine their underlying logics; in this paper we
extend the relational and functional paradigms to the object paradigm by ex-
tending Horn clause logic with equality [19,20] to hidden Horn clause logic with
equality, building on prior work on hidden algebra as a foundation for the object
paradigm [10,13,17]. We first study existential queries in a hidden equational
setting, and obtain a Herbrand theorem that allows solutions to be constructed
in a term algebra. We then extend this theorem to hidden Horn clause logic.

All this provides a semantic foundation for a novel programming style, in
which framing a query can activate methods that change the world so that a
solution actually comes to exist [21,15]. For example, consider a query about a
holiday package, with constraints on cost, flight times, etc.; a solution to this
query would be an actual package, with tickets, etc., satisfying the constraints.

The hidden algebra approach to the object paradigm [17] is a natural ex-
tension of the initial algebra approach to abstract data types [23,9], and allows
reasoning about systems with state. The hidden algebraic approach differs from
classical algebraic approaches in that some sorts are declared to be hidden, and
are used to model the states of objects; intuitively, states cannot be observed di-
rectly, but only indirectly through the attributes of objects. The hidden paradigm
builds on work of Goguen and Meseguer on abstract machines [18,29]; hidden
algebra differs from this mainly in its use of behavioural satisfaction for equa-
tions, an idea first introduced by Reichel [31]. Later, Reichel [32] introduced the
related idea of behavioural equivalence for states, which is also used here.

Section 2 gives a condensed review of overloaded many sorted algebra, and
Sections 3 and 4 introduce hidden algebra and present basic results that support
reasoning about specifications. An important result in this section states that
for certain classes of reachable models, behavioural satisfaction of an equation
reduces to satisfaction by an initial algebra; moreover, for ground equations the
restriction to reachable models is not required.

The classical Herbrand Theorem [25] says that for the models of a set of
Horn clauses, existential queries can be answered by examining a term model,
called the Herbrand universe. This result has been generalised to Horn clause
logic with equality by Goguen and Meseguer, who showed that in this case also
it suffices to examine a term model [19,20]. A hidden Herbrand Theorem is given
in Section 5, stating that if a query is behaviourally satisfied by a certain term
algebra, then it is behaviourally satisfied by all algebras. Section 6 generalises a
result of Diaconescu [5], allowing us to lift results in hidden algebra to hidden
Horn clause logic with equality.
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2 Prerequisites, Notation and Preliminaries

Our presentation of hidden algebra is based on the notion of algebras as collec-
tions of structured sets. We assume familiarity with the ‘overloaded’ approach to
many sorted algebra. To establish notation, we briefly review the main concepts
and results; for compatible expositions with more detail, see [16,29].

An S-sorted set A is a family of sets As indexed by elements s ∈ S. An
S-sorted function f : A → B is a family 〈fs : As → Bs | s ∈ S〉; similarly,
an S-sorted relation R ⊆ A×B is a family 〈Rs ⊆ As×Bs | s ∈ S〉.

A signature (S,Σ) is an S∗×S-sorted set Σ = 〈Σw,s | w ∈ S∗, s ∈ S〉; we
often write just Σ instead of (S,Σ). Notice that this definition permits overload-
ing, in that the sets Σw,s need not be disjoint; this can be useful in many applica-
tions. A signature morphism φ from a signature (S,Σ) to a signature (S′, Σ′)
is a pair (f, g) consisting of a map f : S → S′ of sorts and an S∗×S-sorted family
of maps gw,s : Σw,s → Σ′f∗(w),f(s) on operation symbols, where f∗ : S∗ → S′∗

is the extension of f to strings defined by f∗([ ]) = [ ] and f∗(ws) = f∗(w)f(s),
for w in S∗ and s in S.

A Σ-algebra A consists of an S-sorted set A (the carrier sets) and for each
σ ∈ Σw,s, a function Aσ : Aw → As (for w = s1...sn ∈ S∗, we let Aw =
As1× · · ·×Asn ; in particular, we let A[ ] = {�}, some singleton set). A Σ-
homomorphism from a Σ-algebra A to another B is an S-sorted function
f : A → B such that fs(Aσ(a1, ..., an)) = Bσ(fs1(a1), ..., fsn(an)) for each
σ ∈ Σw,s with w = s1 . . . sn and ai ∈ Asi for i = 1, . . . , n. (When w = [ ],
the condition is simply that f(Aσ) = Bσ.) Let AlgΣ denote the category with
Σ-algebras as objects and Σ-homomorphisms as morphisms.

Given a subsignature Ψ ⊆ Σ, there is a reduct functor, |̀Ψ : AlgΣ → AlgΨ ,
that sends a Σ-algebra A to A|̀Ψ , which is A viewed as a Ψ -algebra by forgetting
about any sorts and operations in Σ that are not in Ψ ; similarly, if f : A → B
is a Σ-homomorphism, then f |̀Ψ : A|̀Ψ → B |̀Ψ is the Ψ -homomorphism obtained
by restricting f to the sorts in Ψ .

Given a many sorted signature Σ and an S-sorted set (of variable symbols) X
(where the sets Xs and Σ[ ],s are disjoint), we let TΣ(X) denote the term alge-
bra with operation symbols from Σ and variable symbols from X ; it is the free
Σ-algebra1 generated by X , in the sense that any assignment, θ : X → A to
a Σ-algebra A, has a unique extension to a Σ-homomorphism θ∗ : TΣ(X)→ A.
We often use the following property of free extensions:

Lemma 1. Given an assignment θ : X → A and a Σ-homomorphism f : A→B,
then (f ◦ θ)∗ = f ◦ θ∗ : TΣ(X)→ B.

We let TΣ denote the initial term Σ-algebra, TΣ(∅); this means there is a
unique Σ-homomorphism !A : TΣ → A for any Σ-algebra A. Given a ground
Σ-term tt ∈ TΣ, let tA denote the element !A(t) in A. Call A reachable iff !A
is surjective, i.e., iff each element of A is ‘named’ by some ground term.
1 Strictly speaking, the usual term algebra is not free if some terms have multiple

parses; however, even then, a closely related term algebra, with operations annotated
by their sort, is free.
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A conditional Σ-equation consists of a variable setX , terms t, t′ ∈ TΣ(X)s
for some sort s, and terms tj , t′j ∈ TΣ(X)sj for j = 1, ...,m, and is written in
the form (∀X) t = t′ if t1 = t′1, ..., tm = t′m. An (unconditional) equation
has m = 0, and is written (∀X) t = t′. A ground equation has X = ∅. A Σ-
algebraA satisfies a conditional equation of the form above iff for all θ : X → A,
we have θ∗(t) = θ∗(t′) whenever θ∗(tj) = θ∗(t′j) for j = 1, ...,m. Given a set E
of (possibly conditional) Σ-equations, let AlgΣ,E denote the full subcategory of
AlgΣ with objects the Σ-algebras that satisfy E; we call these (Σ,E)-algebras.
If A satisfies an equation e, we write A |=Σ e

A Σ-congruence on a Σ-algebra A is an S-sorted family of relations, ≡s
on As, each of which is an equivalence relation and also satisfies the substi-
tutive property, that given σ ∈ Σs1...sn,s, and given ai, a

′
i ∈ Asi for i =

1, ..., n, then Aσ(a1, ..., an) ≡s Aσ(a′1, ..., a′n) whenever asi ≡si a′si
for i =

1, ..., n. The quotient of A by a Σ-congruence ≡, denoted A/≡, has (A/≡)s =
As/≡s

and inherits a Σ-algebra structure by defining (A/≡)σ([a1], . . . , [an]) =
[Aσ(a1, . . . , an)], where [a] denotes the ≡-equivalence class of a.

3 Hidden Algebra

This section summarises the comprehensive introduction to hidden algebra given
in [17]. Hidden algebra captures the fundamental distinction between data values
and internal states by modeling the former with ‘visible’ sorts and the latter with
‘hidden’ sorts. In order to communicate, the various components of a particular
system should share the same representations for data; hence we work with a
fixed collection of data values, which can be bundled together to form a fixed
algebra. Our assumptions and notation for data values are given in the following:

Definition 1. Assume a fixed algebra D of data values, let Ψ be its signature
and let V be its sort set; assume Ψ is such that for each d ∈ Dv with v ∈ V there
is some ψ ∈ Ψ[ ],v such that ψ is interpreted as d in D; for simplicity, we assume
that Dv ⊆ Ψ[ ],v for each v ∈ V . We call (V, Ψ,D) the visible data universe.

Signatures in hidden algebra are defined with respect to a fixed visible data
universe, which may be thought of as containing standard abstract data types
such as the numbers, Booleans, lists, etc.

Definition 2. A hidden signature (over (V, Ψ,D)) is a pair (H,Σ) such that
(V ∪H,Σ) is a many sorted signature with Ψ ⊆ Σ and H∩V = ∅, and such that:

1. if w ∈ V ∗ and v ∈ V , then Σw,v = Ψw,v;
2. for each σ ∈ Σw,s, at most one element of w is in H.

We often write (H,Σ) for Σ, and S for V ∪H. The elements of V are called as
visible sorts, and elements of H hidden sorts. If w ∈ S∗ contains a hidden
sort, then σ ∈ Σw,s is called a method if s ∈ H, and an attribute if s ∈ V .
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Condition (1) expresses data encapsulation, in that if Ψ ⊆ Σ is an inclusion of
modules, then it does not allow new operations on old data. Condition (2) says
that methods and attributes act on single objects.

Definition 3. Given hidden signatures Σ and Σ′, a hidden signature mor-
phism Φ : Σ → Σ′ is a signature morphism Φ = (f, g) : Σ → Σ′ such that:

1. f(v) = v for v ∈ V ;
2. f(H) ⊆ H ′ (where H ′ is the hidden sort set of Σ′);
3. g(ψ) = ψ for ψ ∈ Ψ ; and
4. if σ′ ∈ Σ′w′,s′ and w′ has a sort in f(H), then σ′ = g(σ) for some σ ∈ Σ.

The first three conditions say that hidden signature morphisms preserve visibility
and hiddenness, while the fourth condition expresses encapsulation, in the sense
that no new methods or attributes can be defined on an imported class.

Definition 4. A hidden Σ-algebra is a Σ-algebra A such that A|̀Ψ = D.
A hidden Σ-homomorphism f : A → A′ is a Σ-homomorphism such that
f |̀Ψ = 1D. Let HAlgΣ denote the category of all hidden Σ-algebras.

An equation is satisfied in hidden algebra if the left and right sides are in-
distinguishable by any experiment that produces a visible result. We make this
precise by defining contexts :

Definition 5. A Σ-context of sort s is a visible sorted Σ-term having one
occurrence of a new symbol z of sort s. A context is appropriate for a term t
iff t has the same sort as z, and c[t] denotes the result of substituting t for z
in c. We let TΣ[z] denote the V -sorted set of contexts using the variable z, and
we sometimes write a context c as c[zs] to indicate that z has sort s.

Definition 6. A hidden Σ-algebra A behaviourally satisfies a Σ-equation
(∀X) t = t′ iff for all appropriate contexts c ∈ TΣ[z], we have A |=Σ (∀X) c[t] =
c[t′]. Similarly, A behaviourally satisfies a conditional equation e of the form
(∀X) t = t′ if t1 = t′1, ..., tm = t′m iff for every interpretation θ : X → A, we
have

θ∗(c[t]) = θ∗(c[t′])

for all appropriate contexts c whenever θ∗(cj [tj ]) = θ∗(cj [t′j ]) for j = 1, ...,m, and
for all appropriate contexts cj. We denote behavioural satisfaction by A |≡Σ e
or sometimes just A |≡ e.

A hidden theory is a triple (H,Σ,E), where (H,Σ) is a hidden signature
and E is a set of Σ-equations; we write (Σ,E) for short. A hidden (Σ,E)-
algebra is a hidden Σ-algebra A that behaviourally satisfies each equation in E.
We let HAlgΣ,E denote the full subcategory of HAlgΣ whose objects are hidden
(Σ,E)-algebras.

A hidden (Σ,E)-algebra can be seen as one way of implementing objects in the
class defined by the specification. The hidden (Σ,E)-algebras give all possible
implementations. A standard example is that of stack objects; this is an ubiq-
uitous example, but provides a good benchmark for specification formalisms:
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Example 1. Here we assume that the data universe specified in DATA contains
at least the natural numbers of sort Nat. We use the notation of OBJ [24], but
intend hidden semantics for sorts declared outside DATA.

th STACK is pr DATA .

sort Stack .

op push : Nat Stack -> Stack .

op top_ : Stack -> Nat .

op pop_ : Stack -> Stack .

op empty : -> Stack .

var S : Stack .

var N : Nat .

eq pop push(N,S) = S .

eq top push(N,S) = N .

endth

The first line gives the name STACK to the theory, and imports the data
specification DATA. A hidden sort Stack is declared, and the next four lines
declare the familiar stack operations, whose behaviour is described by the given
equations. The algebras for STACK need only appear to satisfy its equations when
observed through contexts. For example, the usual implementation of a stack by a
pointer and an array does not actually satisfy the equation pop push(N, S) = S ,
although it does satisfy it behaviourally, and hence it is a STACK-algebra.

4 Behavioural Equivalence

This section states some results concerning behavioural satisfaction that will be
useful in following sections. In [17] it is shown that hidden satisfaction can be
defined using a smaller class of contexts; that is, we can restrict the number of
‘experiments’ that are used to distinguish states to what we call local contexts:

Definition 7. A Ψ(X)-term is local iff it is in D or in X; a Σ(X)-term that
is not a Ψ(X)-term is local iff all visible sorted proper subterms are either in D
or else in X. A context is local iff it is a local Σ({z})-term. We write LΣ for
the S-sorted set of local Σ-terms, and LΣ [z] for the V -sorted set of local contexts.

Proposition 1. A conditional equation (∀X) t = t′ if t1 = t′1, . . . , tm = t′m is
behaviourally satisfied by a hidden algebra A iff for all θ : X → A, if θ∗(cj [tj ]) =
θ∗(cj [t′j ]) for j = 1, . . . ,m and all appropriate local contexts cj, then θ∗(c[t]) =
θ∗(c[t′]) for all appropriate local contexts c.

We now consider when two elements of an algebra behave the same way in
all experiments; this gives a semantic notion of behavioural equivalence:

Definition 8. Given a hidden signature Σ with hidden subsignature ∆ ⊆ Σ,
and given a hidden Σ-algebra A, elements a, a′ ∈ As are behaviourally ∆-
equivalent iff Ac(a) = Ac(a′) for all appropriate local ∆-contexts c ∈ L∆[z]
built from operations in ∆, where Ac is the function obtained by interpreting
each σ in c as Aσ; in this case, we write a ≡∆,s a′, or just a ≡∆ a′ if s is
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clear. When we want to emphasise that behavioural Σ-equivalence is defined on
a particular hidden Σ-algebra A, we write ≡A instead of ≡Σ.

A fundamental property of behavioural equivalence is given in the following

Lemma 2. Given ∆ ⊆ Σ and a hidden Σ-homomorphism f : A → B, then
a ≡∆ a′ in A iff f(a) ≡∆ f(a′) in B for all a, a′ in A.

Proof. By definition, a ≡∆ a′ means Ac(a) = Ac(a′) for all c ∈ L∆[z], which
is equivalent to f(Ac(a)) = f(Ac(a′)) for all c ∈ L∆[z], because f is the iden-
tity on visible sorts; moreover, because f is a homomorphism, this is equivalent
to Bc(f(a)) = Bc(f(a′)) for all c ∈ L∆[z], which is by definition f(a) ≡∆ f(a′).

A key property of behavioural equivalence, which justifies a number of tech-
niques for proving behavioural satisfaction [14,28,17], becomes clear if we make
the following definition:

Definition 9. Given ∆ ⊆ Σ, a behavioural ∆-congruence on a hidden Σ-
algebra A is a ∆-congruence ≡ which is equality on visible sorts; that is for v ∈ V
and a, a′ ∈ Av = Dv, we have a ≡v a′ iff a = a′.

Proposition 2. ≡∆ is the greatest behavioural ∆-congruence.2

This result is proved in [17] and means that two states can be shown to be
∆-equivalent by finding any ∆-congruence that relates them: we call this proof
technique hidden coinduction. Here we are more concerned with abstract prop-
erties of behavioural satisfaction than with proof techniques, and the following
lemma is particularly useful, as it links satisfaction to behavioural equivalence:

Lemma 3. A hidden algebra A behaviourally satisfies a conditional equation
(∀X) t = t′ if t1 = t′1, . . . , tm = t′m iff for every assignment θ : X → A, whenever
θ∗(tj) ≡A θ∗(t′j) for j = 1, ...,m, then θ∗(t) ≡A θ∗(t′).
The proof follows straightforwardly from Definition 8.

Corollary 1. Given a hidden Σ-algebra A and a conditional Σ-equation all of
whose terms have visible sort, then A satisfies the equation iff it behaviourally
satisfies the equation.

Corollary 2. If a hidden Σ-algebra A satisfies a conditional Σ-equation all of
whose conditions have visible sort, then it behaviourally satisfies that equation.

Proof. Suppose A satisfies (∀X) t = t′ if t1 = t′1, . . . , tm = t′m, where each ti
and t′i is of visible sort. If θ : X → A is such that θ∗(ti) ≡A θ∗(t′i) for i =
1, . . . ,m, then because ≡A is equality on visible sorts, we have θ∗(ti) = θ∗(t′i),
so θ∗(t) = θ∗(t′) and therefore θ∗(t) ≡A θ∗(t′), as desired.
2 This formulation appeared in a conversation between Grant Malcolm and Rolf Hen-

nicker, for the special case where ∆ = Σ.
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The fixed data algebra D gives a kind of lower bound to the classes of models
of hidden theories. The class of models can be reduced by adding equations to
the theory; however, as soon as these equations confuse data items, the class of
models collapses (since any model A has to have A|̀Ψ = D).

Definition 10. A hidden theory is consistent iff it has at least one model.

We turn now to necessary and sufficient conditions for the existence of stan-
dard models. We give constructions for initial and final models of hidden theories,
and examine their logical properties.

Definition 11. Given a hidden theory P = (H,Σ,E), a ground Σ-term t is
defined iff for every context c (of appropriate sort), there is some d ∈ D such
that E |≡ c[t] = d. P is lexic iff all ground terms are defined.

The following basic result is proved in [17]:

Theorem 1. A hidden theory has an initial model iff it is consistent and lexic.

An important result for initial models is given in Theorem 2, whose proof
uses the following corollary to Lemmas 2 and 1:

Lemma 4. Given a hidden homomorphism f : A → B and an equation e, if
B |≡ e then A |≡ e.
Theorem 2. Given a hidden theory P , we have:

(1) an initial P -algebra behaviourally satisfies an equation iff some P -algebra
behaviourally satisfies it;

(2) a final P -algebra behaviourally satisfies an equation iff all P -algebras be-
haviourally satisfy it.

Lemma 4 states that satisfaction of equations propagates backwards along
hidden homomorphisms; the following results state that satisfaction propagates
forwards for ground equations, and also along surjective homomorphisms. For
reasons of space, we omit the proofs.

Lemma 5. Given a hidden homomorphism f : A→ B and an equation e, if f
is surjective or if e is ground, then A |≡ e implies B |≡ e.
Corollary 3. If P = (Σ,E) is a consistent, lexic hidden theory, and if e is a
ground Σ-equation, then IP |≡ e iff all P -algebras behaviourally satisfy e.

Corollary 4. If P = (Σ,E) is consistent and lexic, and if e is a Σ-equation,
then IP |≡ e iff all reachable hidden P -algebras behaviourally satisfy e.

An immediate corollary to this and Theorem 2 is that for consistent, lexic hidden
theories, the behaviour of all reachable algebras is the same.

Corollary 5. If P = (Σ,E) is a consistent, lexic hidden theory, and if e is a Σ-
equation behaviourally satisfied by some P -algebra, then all reachable hidden P
algebras behaviourally satisfy e.
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A useful technique for showing behavioural satisfaction is equational rea-
soning. We end this section by showing that equational reasoning is sound for
hidden algebra. We begin with the following consequence of Lemma 3:

Lemma 6. For any hidden Σ-algebra A and Σ-equation e, we have A/≡Σ |= e
iff A |≡ e.

We can state soundness of equational deduction as

Proposition 3. If a Σ-equation e is derivable from a set of equations E, then
all hidden (Σ,E)-algebras behaviourally satisfy e.

We prove the more general form below, which says that if all behavioural con-
sequences of an equation follow from E, then all behavioural models of E be-
haviourally satisfy the equation.

Proposition 4. If for every appropriate context c, the Σ-equation (∀X) c[t] =
c[t′] is derivable from a set of equations E, then all hidden (Σ,E)-algebras be-
haviourally satisfy (∀X) t = t′.

Proof. If (∀X) c[t] = c[t′] is derivable from E for each context c, then we have
E |= (∀X) c[t] = c[t′], so for all hidden (Σ,E)-algebras A, we have A/≡Σ |= E
and so A/≡Σ |= (∀X) c[t] = c[t′] for each c, which means that A |≡ (∀X) c[t] =
c[t′] for each c which implies A |≡ (∀X) t = t′.

5 Hidden Queries

Suppose we want to know if every object of some class can be put into a state
that satisfies certain constraints; for example, we might ask ‘can the elements
of a stack be put in increasing order?’ Our approach to the object paradigm
suggests we formalise this by regarding constraints as equations3, and grouping
them together in an existential query. A solution to the query consists of values
for the logical variables such that the equations are behaviourally satisfied by
every hidden P -algebra.

To make this computationally feasible, we would like to find a term algebra
that is ‘representative’ for all other P -algebras, in the sense that a solution
to a query in this algebra systematically translates to a solution in any other.
Our ‘hidden Herbrand Theorem’ says that this is possible in many interesting
cases; in fact, we can use the initial P -algebra. Of course, by Theorem 1, this
requires a consistent, lexic theory. However, we also show that without these
restrictions, equational deduction, and therefore techniques such as narrowing
and paramodulation, are sound for arbitrary hidden theories.

Definition 12. Given a hidden signature Σ, a Σ-query is a sentence q of the
form (∃X) t1 = t′1, . . . , tm = t′m where tj , t

′
j ∈ TΣ(X)sj for j = 1, ...,m. A

hidden Σ-algebra A behaviourally satisfies q, written A |≡Σ q, iff there is an
assignment θ : X → A such that for j = 1, ...,m, we have θ∗(cj [tj ]) = θ∗(cj [t′j ])
for all appropriate contexts cj. Call such an assignment a solution for the query.
3 Section 6 will show how to use first order predicates in constraints.
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Note that X can have both visible and hidden variables.
From the definition of behavioural equivalence we have the following

Proposition 5. Given a Σ-query q of the form (∃X) t1 = t′1, . . . , tm = t′m and
a Σ-algebra A, then A behaviourally satisfies q with solution θ : X → A iff
θ∗(tj) ≡A θ∗(t′j) for j = 1, ...,m.

Corollary 6. Given a behavioural Σ-query and a Σ-algebra A, if A satisfies the
query, then A behaviourally satisfies it.

Example 2. In the setting of Example 1, the behavioural query

(∃S, S′) push(3, S) = pop(S′) ,

asks whether there are two stacks that are related in the indicated way, for any
possible way of implementing STACK. One solution (among many) is

S = empty , S′ = push(0, push(3, empty)) .

The solution in this example can be found in the standard term algebra using
narrowing, as in the language Eqlog [19,6]. Then the unique homomorphism from
it to any other algebra which satisfies STACK gives corresponding values in each of
these algebras. However, it is not obvious that this technique can guarantee the
behavioural satisfaction of the query in all algebras which behaviourally satisfy
STACK. The results given below show that techniques such as term rewriting,
narrowing and coinduction can indeed solve queries over all (Σ,E)-algebras. We
first need the following consequence of Lemma 2:

Lemma 7. Given h : A→ B and a query q, if A |≡ q then B |≡ q.
Theorem 3. Given a hidden theory P , we have:

(1) an initial P -algebra behaviourally satisfies a query iff all P -algebras be-
haviourally satisfy it;

(2) a final P -algebra behaviourally satisfies a query iff some P -algebra behaviour-
ally satisfies it.

Goguen and Meseguer [20,19] give a version of Herbrand’s theorem for Horn
clause logic with equality. It proves that an existential query is satisfied by the
initial model of a specification iff it is satisfied by all models of the specification.
Theorems 4 and 5 constitute a Herbrand Theorem for hidden algebra and a proof
that techniques based on equational deduction are sound for arbitrary hidden
theories. In Section 6 we generalise this to hidden Horn clause logic with equality.

Theorem 4. (Herbrand Theorem) Given a consistent, lexic hidden theory P ,
and a Σ-query q, then IP |≡ q iff every P -algebra behaviourally satisfies q.

The existence of IP is given by Theorem 1, and the result follows immediately
from Theorem 3. A weaker, but still useful corollary to this and Lemma 6 is
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Proposition 6. Given a consistent, lexic hidden theory P and a query q, if IP
satisfies q then all P -algebras behaviourally satisfy q.

Corresponding to Proposition 4 we have the following, which justifies equa-
tional techniques in finding solutions to queries.

Theorem 5. Let q be a Σ-query of the form (∀X) t1 = t′1, . . . , tm = t′m. For
a set E of Σ-equations, and assignment θ : X → TΣ, if E |= (∀∅) θ∗(c[ti]) =
θ∗(c[t′i]) for all appropriate c and for i = 1, . . . ,m, then q is behaviourally satis-
fied by every hidden (Σ,E)-algebra.

Proof. For A a hidden (Σ,E)-algebra, A/≡Σ |= E, so A/≡Σ |= (∀∅) θ∗(c[ti]) =
θ∗(c[t′i]) for each i and appropriate c, which means that !A(θ∗(ti)) ≡Σ!A(θ∗(t′i)),
and so A |≡ (∀∅) θ∗(ti) = θ∗(t′i) as desired.

This means that the technique of narrowing, as described for example in [4], in
conjunction with proof techniques such as coinduction [17], can be used to solve
queries.

6 Hidden Horn Clause Logic

The queries considered so far have used equations. In languages such as Pro-
log and Eqlog [19], sentences are Horn clauses with predicate symbols, which
are interpreted as relations in models. This section generalises a theorem of Dia-
conescu [5] to lift our preceding results to hidden Horn clause logic with equality.

Recall (e.g., from [11]) that a first order signature (with equality) is a
triple (S,Σ,Π) such that (S,Σ) is a many sorted signature and Π is an S+-
sorted family of sets of predicate or relation symbols. We often write (Σ,Π)
for (S,Σ,Π), leaving the sort set implicit. For every sort s ∈ S, there is a
distinquished equality symbol = ∈ Πs s. A morphism (f, g, k) : (S,Σ,Π) →
(S′, Σ′, Π ′) between two first order signatures consists of: a signature morphism
(f, g) together with an S+-sorted family of maps kw : Πw → Π ′f+(w) on pred-
icate symbols, where f+ is f∗ restricted to non-empty strings. A model M
of a first order signature (S,Σ,Π) is a Σ-algebra together with an interpre-
tation Mπ ⊆ Mw for each predicate symbol π ∈ Πw, with the equality sym-
bol always interpreted as true identity. A morphism h : M → M ′ between
(S,Σ,Π)-models M and M ′ is a Σ-homomorphism such that for any predicate
symbol π ∈ Πs1...sn , if (m1, . . . ,mn) ∈Mπ, then (hs1(m1), . . . , hsn(mn)) ∈M ′π.

For a first order signature (Σ,Π), let ModΣ,Π denote the category of (Σ,Π)-
models and morphisms. If (V, Ψ, Υ ) ⊆ (S,Σ,Π) is an inclusion of first order
signatures, then there is a forgetful reduct functor |̀Ψ,Υ : ModΣ,Π → ModΨ,Υ
which maps any (Σ,Π)-model M to the (Ψ, Υ )-model M |̀Ψ,Υ whose carriers
are the V -sorted carriers of M , with operations the Ψ -operations on M , and
relations the Υ -relations on M . If h : M →M ′ is a morphism of (Σ,Π)-models,
then h|̀Ψ,Υ is the (Ψ, Υ )-morphism obtained by restricting h to the sorts in Ψ .

Given a first order signature (Σ,Π) and an S-sorted set X of variables with
the sets Xs disjoint, we can build the Σ,Π-term model TΣ,Π(X) with carriers
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and operations those of TΣ(X), and with TΣ,Π(X)π = ∅ for every π ∈ Π except
when π is the distinguished equality predicate symbol, which is interpreted as
equality in TΣ(X). An assignment θ : X → M is an S-sorted mapping from
an S-sorted set of variables X to a (Σ,Π)-model M ; it extends uniquely to a
morphism θ∗ : TΣ,Π(X) → M . For a ground Σ-term t, we let Mt denote the
element !M (t) of M , where !M : TΣ,Π(∅) → M is the extension to a morphism
of the unique assignment ∅ →M .

Definition 13. Given a many sorted first order signature (Σ,Π), a Π(X)-
atom is a term B of the form π(t1, . . . , tn), for π a predicate symbol in Πs1...sn

and ti ∈ TΣ(X)si . Given a (Σ,Π)-model M , an assignment θ : X →M satisfies
an atom B = π(t1, . . . , tn), written θ |=X B, iff (θ∗(t1), . . . , θ∗(tn)) ∈Mπ.

A (Σ,Π)-Horn clause is an expression of the form (∀X)B if B1, . . . , Bm
where B,B1, . . . , Bm are all Π(X)-atoms. A Horn clause of the above form is
said to be unconditional iff m = 0, and in that case it is written (∀X)B.

Given a (Σ,Π)-Horn clause e of the form (∀X)B if B1, . . . , Bm, and a
(Σ,Π)-model M , we say that M satisfies e, written M |=Σ,Π e, iff for every
assignment θ : X →M , we have θ |=X B whenever θ |=X Bj for j = 1, . . . ,m.

For a set C of (Σ,Π)-Horn clauses, let ModΣ,Π,C denote the full subcategory
of ModΣ,Π whose objects are all models which satisfy each clause in C.

A (Σ,Π)-query is an expression of the form (∃X)B1, . . . , Bm where the Bj
are Π(X)-atoms. If q is such a query, then a (Σ,Π)-model M satisfies q,
written M |=Σ,Π q, iff there is an assignment θ : X → M such that for each
j = 1, . . . ,m, we have θ |=X Bj.

As with equational logic, these concepts have hidden counterparts. We fix a
universe (V, Ψ, Υ,D) of data values, where D is a fixed (V, Ψ, Υ )-model.

Definition 14. A hidden first order signature (over (V, Ψ, Υ,D)) is a first
order signature (Σ,Π), where Σ is a hidden (equational) signature, Υ ⊆ Π, and

1. Πw ⊆ Υw for w ∈ V +;
2. if π ∈ Πw for w ∈ V +, then w has at most one element in H.

For convenience, we assume that for any π ∈ Πw that takes a hidden sorted
argument, that argument is its first.

Definition 15. For a hidden first order signature (Σ,Π), a hidden (Σ,Π)-
model is a (Σ,Π)-model M such that M |̀Ψ,Υ = D. A morphism h : M →M ′

between hidden (Σ,Π)-models is a morphism of many sorted models such that
h|̀Ψ,Υ = 1D. We let HModDΣ,Π,Ψ,Υ denote the category of all hidden (Σ,Π)-
models and their morphisms. We may write HModΣ,Π when the other elements
of the signature are clear from the context.

The notions of behavioural equivalence and satisfaction extends to Horn
clause logic by requiring that no atoms distinguish equivalent states:
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Definition 16. Given a hidden (Σ,Π)-model M and m,m′ ∈ Ms, then m
and m′ are behaviourally equivalent, written m ≡M m′, iff either s ∈ V
and m = m′, or s ∈ H with m ≡Σ m′, as in hidden equational logic, and for
every predicate symbol π ∈ Πs1...sn and appropriate hidden context c, we have
(Mc(m), d2, . . . , dn) ∈Mπ iff (Mc(m′), d2, . . . , dn) ∈Mπ for all di ∈ Dsi .

Given a (Σ,Π)-model M , an assignment θ : X →M behaviourally satis-
fies a Π(X)-atom B iff B is of the form t = t′ and θ∗(t) ≡M θ∗(t′), or B is of
the form π(t1, . . . , tn), where π is not the equality symbol, and θ |=X B. In both
cases we write θ |≡X B.

Given a (Σ,Π)-Horn clause e of the form (∀X)B if B1, . . . , Bm, and a
(Σ,Π)-model M , we say that M behaviourally satisfies e, written M |≡Σ,Π e,
iff for every assignment θ : X → M , we have θ |≡X B whenever θ |≡X Bj for
j = 1, . . . ,m.

Given a (Σ,Π)-query q of the form (∃X)B1, . . . , Bm we say that a (Σ,Π)-
model M behaviourally satisfies q, written M |≡Σ,Π q, iff there is an assign-
ment θ : X →M such that for each j = 1, . . . ,m, we have θ |≡X Bj.

Diaconescu [5] gives a way of translating a first order signature into an al-
gebraic signature by treating the predicate symbols as function symbols with
result sort Bool , where Bool is a new sort with a single new constant true. Here
we extend his definition to a translation between hidden signatures.

Definition 17. For any hidden first order signature (Σ,Π), define a hidden
algebraic signature (Σ ∪Πb) over a universe (V b, Ψ ∪ Υ b, Db) by

– V b = V ∪{Bool}, where Bool is a new sort name;
– Πb is a signature defined by Πb

w,Bool = Πw and Πb
w,s = ∅ for s �= Bool ;

– Υ b is a signature defined by Υ bw,Bool = Υw
– Db is the Ψ ∪Υ b-algebra with Db

v = Dv for v ∈ V and DBool = {true, false},
with Ψ -operation symbols interpreted as in D, and with Db

π(d1, . . . , dn) =
true if (d1, . . . , dn) ∈ Dπ and false otherwise, for π ∈ Πs1...sn and di ∈ Dsi .

Again generalising Diaconescu [5], the corresponding translation from alge-
bras to models uses an adjunction:

Definition 18. Given a hidden first order signature (Σ,Π), define a forget-
ful functor WΣ,Π : HAlgD

b

Σ∪Πb → HModDΣ,Π to map a Σ ∪ Πb-algebra A
to the (Σ,Π)-model whose S-sorted carriers are those of A, with operations
those of A restricted to Σ, and with relations in Π defined by (a1, . . . , an) ∈
W (A)π iff Aπ(a1, . . . , an) = true. If f : A → A′ is a morphism in HAlgΣ∪Πb

then WΣ,Π(f) = f . We often write W instead of WΣ,Π .

It is straightforward to check that WΣ,Π is well-defined.

Theorem 6. Given a hidden signature (Σ,Π), WΣ,Π has an inverse F .

We sketch the proof: given a (Σ,Π)-model M the carriers of F (M) are those
of M . The Σ-operations are interpreted as in M and, for each π ∈ Πw, define
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F (M)π(m) = true if (m) ∈ Mπ and false otherwise. To see that W and F are
each other’s inverse, note that neither change the carriers or Σ-interpretations
of their arguments, and

m ∈W (F (M))π iff F (M)π(m) = true iff m ∈Mπ .

We now consider Horn clause specifications and their models.

Definition 19. Given a set C of (Σ,Π)-Horn clauses, let HModDΣ,Π,Ψ,Υ,C de-
note the full subcategory of HModDΣ,Π,Ψ,Υ whose objects behaviourally satisfy
each clause in C. We shall often write this as HModΣ,Π,C and call its objects
(Σ,Π, Ψ, Υ, C)-models or just (Σ,Π,C)-models if context permits.

Diaconescu [5] defines a translation from Horn clauses to conditional equa-
tions; we extend this to include queries:

Definition 20. Given a (Σ,Π)-Horn clause e and a (Σ,Π)-query q, define α(e),
a conditional Σ ∪Πb-equation, and α(q), a Σ ∪Πb-query, as follows:

1. Every equation t1 = t2 is left untouched;
2. every atom π(t1, . . . tn) not of the above form is translated as π(t1, . . . , tn) =

true.

Some basic properties of this mapping are:

Lemma 8. Given a (Σ∪Πb)-algebra A and elements a, a′ ∈ As for some s ∈ S,
we have a ≡Σ a′ iff a ≡WΣ,Π (A) a

′.

Corollary 7. Given a (Σ ∪ Πb)-algebra A, for any Π(X)-atom B and any
θ : X → A, we have θ |≡X B iff θ∗(t) ≡Σ θ∗(t′), where α(B) = (t = t′) .

Finally, we can formalise the validity of translating behavioural satisfaction
of Horn clauses into behavioural satisfaction of conditional equations:

Proposition 7. For any (Σ ∪Πb)-algebra A, we have

(1) for e a (Σ,Π)-Horn clause, A |=Db

Σ∪Πb α(e) iff WΣ,Π(A) |=DΣ,Π e

(2) for q a (Σ,Π)-query, A |=Db

Σ∪Πb α(q) iff WΣ,Π(A) |=DΣ,Π q

Proof. To see (1), let e be a Horn clause of the form (∀X)B if B1, . . . , Bm,
and let α(e) be (∀X) t = t′ if t1 = t′1, . . . , tm = t′m. Then A |≡ e iff for every
θ :X→A we have θ∗(t) ≡Σ θ∗(t′) whenever θ∗(tj) ≡Σ θ∗(t′j), iff (by Corollary 7)
for every θ : X → A we have θ |≡X B whenever θ |≡X Bj for j = 1, . . . ,m,
which is equivalent to W (A) |≡ e. The proof of (2) is similar.

Corollary 8. Given a (Σ,Π)-Horn clause e and a (Σ,Π)-query q, if M is any
(Σ,Π)-model then

(1) M behaviourally satisfies e iff FΣ,Π(M) behaviourally satisfies α(e);
(2) M behaviourally satisfies q iff FΣ,Π(M) behaviourally satisfies α(q).



A Hidden Herbrand Theorem 459

Proposition 7 and the above corollary means we can check whether a model
behaviourally satisfies a Horn clause by testing whether an algebra behaviourally
satisfies a conditional equation. We now examine standard models.

Definition 21. A set C of (Σ,Π)-Horn clauses is lexic iff α(C) is lexic.

Using this, we can extend Theorem 4 to obtain a ‘hidden Herbrand theorem’
for hidden sorted Horn clause logic with equality. Theorem 4 and Corollary 8
give:

Theorem 7. (Herbrand Theorem) Given a consistent lexic set C of (Σ,Π)-Horn
clauses, then IP |≡ α(q) iff M |≡ q for every model M in HModΣ,Π,C, where
P = (Σ ∪Πb, α(C)).

In the same way, the equivalence between hidden algebras and first order
models allows results from Section 5 to be lifted to first order models. For ex-
ample, the use of narrowing is justified by Theorem 5 to give

Theorem 8. Let q be a (Σ,Π)-query such that α(q) is of the form (∀X) t1 =
t′1, . . . , tm = t′m. For a set C of (Σ,Π)-Horn clauses, and assignment θ : X →
TΣ, if α(C) |= (∀∅) θ∗(c[ti]) = θ∗(c[t′i]) for all appropriate c and for i = 1, . . . ,m,
then q is behaviourally satisfied by every hidden (Σ,Π,C)-model.

7 Conclusions

The results of this paper lay the foundations for a programming paradigm that
combines the advantages of the logic and object paradigms. Our hidden alge-
braic approach differs from classical algebraic approaches in using a notion of be-
havioural satisfaction and a fixed interpretation for data sorts. In this it is quite
similar to Diaconescu’s categorical approach to the constraint paradigm [6,7],
which uses a notion of built in data types. However, in hidden algebra these
built-ins are protected, and hidden specifications have loose semantics with pro-
tected data. It is this loose semantics that allows hidden algebra to capture non-
determinism by underspecification [17]. When a hidden theory is deterministic,
an initial, term-based model exists, which behaviourally satisfies an existential
query iff all models behaviourally satisfy it. This gives rise to the two Herbrand
theorems for hidden equational logic and hidden Horn clause logic, which allow
solutions to be constructed in initial term algebras. There is no completeness re-
sult for hidden algebra, as solving constraints in hidden specifications can involve
arbitrary constraints; however, we have shown that coinduction techniques can
considerably simplify proofs, and in many cases reduce behavioural satisfaction
to standard satisfaction. Some of these techniques have already been incorpo-
rated into the algebraic specification language CafeOBJ [8], and are also used in
related coalgebraic approaches to the object paradigm [33,26,27,2].

A useful direction for future research is to extend our results to include
the kind of subtyping given by order sorted algebra [22,12]. Burstall and Dia-
conescu [1] have extended the hiding process to many other institutions, and
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in particular, to order sorted algebra. Malcolm and Goguen [28] show that hid-
den order sorted logic forms an institution, using a construction that differs
from Burstall and Diaconescu’s in its treatment of error-handling; yet another
treatment of ordered sorts in hidden algebra preserves the relationship between
hidden algebra and coalgebra [3].
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Abstract. Several complete methods for solving linear Diophantine con-
straints have been proposed. They can handle infinite domains, but their
pruning during search is relatively weak. In contrast to those, consistency
techniques based constraint propagation provides stronger pruning and
have been applied successfully to many combinatorial problems, but are
limited to finite domains. This paper studies the combination of (1) a
complete solver which is based on a geometric interpretation and (2)
propagation techniques. We study the pruning potential created through
such a combination, both conceptually and experimentally. In addition,
it turns out that dynamic variables orderings can be easily embedded
in the method. Our result is an extended solver, which is implemented
in Java, based on which we present some interesting features and a few
experimental results.

1 Introduction

Several complete methods for solving linear Diophantine constraints have been
developed in recent years (see e.g. [2,6,8,10,11,15]). Here complete means com-
puting a finite representation of the solution set, the latter is potentially infinite.
An adequate representation is the set of non-decomposable solutions such that
any solution can be written as a N-linear combination of these non-decomposable
solutions. Most of the various mathematical techniques behind these methods
originated in the areas of linear algebra (e.g. [10]), automata theory (e.g. [5,6,15])
and geometric interpretation (e.g. [1,2,6,8]).

An examination of the solving machineries underlying those methods shows
that they do not dynamically exploit constraints during the search. Compared to
approaches based on constraint logic programming (CLP), we observe a lack of
strong pruning criterion driven by constraint-based reasoning. In addition, they
do not embed the power of problem-specific heuristics.
� This work was done while the first author was in LORIA/INRIA-Lorraine. Nancy,
France.
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The success of constraint-based reasoning for pruning search spaces has been
established through many systems that follow the CLP scheme [13,12]. A partic-
ular technique called constraint propagation establishes local consistency during
search (see e.g. [9,12]). Propagation techniques have been applied successfully
and with acceptable efficiency to a large number of discrete combinatorial prob-
lems. The key idea of propagation is to eliminate inconsistent value pairings with
the aim to significantly reduce value domains prior to search steps.

Our work is motivated by the observation that the pruning power of com-
plete solving methods is still too weak for practical reasons. Our idea is to im-
prove pruning by means of constraint propagation. We claim that combining a
complete solving method with propagation techniques yields a competitive con-
straint solver, provided that this combination preserves the advantages of each
of its parts. This paper concentrates precisely on how to integrate constraint
propagation and heuristics into the family of complete methods based on geo-
metric interpretation. As a representative of this family we choose the algorithm
of F. Ajili & E. Contejean [1,2] (named here ACalg) since it is a generalisation of
the algorithms [6,8] and solves systems of both equations and inequations. The
ACalg algorithm searches for solutions starting from canonical tuples. A tuple is
incremented if a successor generation criterion succeeds. This criterion, which is
based on a geometric interpretation, enforces convergence of search and ensures
termination.

Our approach combines ACalg algorithm with constraint propagation. The
combination is achieved by attaching to each search node a local constraint store.
This store contains the information necessary to establish stronger pruning con-
ditions. The constraint store is constructed incrementally in the sense that a
node inherits the store of the predecessor node, and tells additional informa-
tion in the form of relevant constraints. At each node, constraint propagation is
used to derive stronger information, that is, to identify inconsistencies. On this
basis, we can design new pruning rules in charge of cutting off globally inconsis-
tent search branches and skipping inconsistent sub-spaces. Quite interestingly,
it turned out that the freezing mechanism used in [1,2,8] can be encoded by
means of constraints. This is important since the freezing can closely interact
with propagation thus deriving stronger bounds on the domains of variables.
Another issue is the embedding of dynamic variable orderings (DVO for short)
which considerably influences the search behaviour, such as the first fail strategy.
The embedding is achieved at the node level by means of the local constraint
store. This means that existing DVO strategies which are based on the notion
of constraint store can be easily adapted to our method.

The paper is organised as follows. Section 2 introduces some formal prelim-
inaries. In Section 3, we present a generic solving procedure that captures at
an abstract level the common ideas of the family of methods based on geomet-
ric interpretation. Section 4 presents algorithm ACalg as a specific instance of
the generic procedure. Section 5 motivates in greater detail the need for stronger
pruning rules in ACalg. Section 6 makes precise how to integrate constraint store
and propagation into complete solving. Section 7 presents new stronger pruning
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rules. Section 8 addresses implementation issues and provides benchmarks. The
last section concludes and outlines further works. Proofs and technical details
can be found in [3].

2 Formal Preliminaries

As usual N and Z denote respectively the set of naturals and integers. A vector
v = (v1, v2 . . . , vq) of N

q is called a tuple. We denote by ej the jth canonical
tuple of N

q. For a given q, ≤q is the component-wise partial extension of ≤ in N
q.

V = {x1, x2, . . .} is a set of variables taking values in N. A (linear Diophantine)
constraint is

∑
j∈[1..n] cj xj # c0, where c0, cj ∈ Z, xj ∈ V , and #∈ {=?

,≤?}. It is written cX # c0, where c = (c1, . . . , cn) and X = (x1, . . . , xn),
and called homogeneous if c0 = 0. A linear (homogeneous) constraint system
is a conjunction of m (homogeneous) constraints on q variables. It is denoted
CX � c where C is an m × q integer coefficient matrix, � ∈ {=?,≤?}m and
c ∈ Z

m. CX � c can be clearly split into AX =? a ∧ BX ≤? b. Let mB denote
the number of rows of B.

Let [inf..sup], where inf ∈ N and sup ∈ N ∪ {∞}, represent a usual (possibly
infinite) interval of N. For x in V , x ∈? [inf..sup] is said to be a domain (interval)
constraint. We abbreviate a conjunction of q domain constraints

∧
j∈[1..q] xj ∈?

[lj ..uj] by X ∈? [L..U ] where L = (l1, . . . , lq) and U = (u1, . . . , uq).
In this paper, the computation domain we consider for the constraints is N.

Here, Sol(C) means the set of solutions of the constraint system C in N. Let C1

be AX =? 0 ∧ BX ≤? 0. A solution of C1 is said to be non-decomposable
if it is not the sum of any two other non-null solutions of C1. It is well-known
that the set of non-decomposable solutions provides a complete representation
of Sol(C1):

Lemma 1. Sol(C1) is generated by its sub-set of non-decomposable solutions:
any solution of C1 is a N-linear combination of non-decomposable solutions.

Elements of Sol(C1) are the projections over the first q components of elements
of Sol(AX =? 0 ∧ BX+Z =? 0), where Z is anmB-wide tuple of slack variables
such that zi is the slack variable of the ith inequation:

Lemma 2. A solution s ∈ N
q of C1 is non-decomposable if and only if its asso-

ciated solution (s,−Bs) ∈ N
q+mB of Sol(AX =? 0 ∧ BX+Z =? 0), is minimal

w.r.t. ≤q+mB .

Note that if mB = 0 then non-decomposability property coincides with the
minimality w.r.t. ≤q. Solving techniques presented here extend trivially to the
non-homogeneous (in)equations according to the lines of [2,8].

3 A Generic Solving Procedure

Let C1 be the input constraint system on q variables x1, . . . , xq. We define at
an abstract level a generic procedure Proc for solving C1. Proc is parametric in
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four operations Wanted, Generate, Cut, and ρ. An instance of Proc is completely
determined by giving specifications to its parameters.

We further define an abstract data type Node = (v : N
q, σ : Store), where

Store is the constraint language inductively defined by:

Store ::= Store ∧ Store conjunction
| cX ≤? c0 inequation
| cX =? c0 equation
| x ∈? [inf..sup] domain constraint
| T true (1)
| F false (0)

Additionally, the abstract data type Node provides four operations:

Wanted : Node→ {0, 1}
Generate : Node× 2{1,2,...,q} → {0, 1}

Cut : Node→ {0, 1}
ρ : Node→ Node

A node y = (v, σ) of type Node consists of a tuple v(y) and a local constraint
store σ(y). Whenever no ambiguity arises, v(y) and σ(y) are written simply v
and σ. Then, given a node y, yj denotes the j-th component of its tuple v(y).
By slight abuse of notation, we also use ej for (ej , σ(ej)). Informally, the role
of σ(y) is to accumulate information about the current search state.

Let us give an informal description of the abstract machine. Proc maintains
two lists of nodes. P is the list of nodes already reached and pending for de-
velopment, and M is the list of collected nodes. Wanted specifies nodes that
Proc collects inM: this may be solutions, non-decomposable/minimal solutions
. . .. Cut characterises nodes whose descendants cannot satisfy Wanted. Generate
defines how to develop a node into its direct descendants. Finally, ρ expresses
the processing of the local store.

Initialise [ ]; [ρ(e
{j2,...,jq}
j1

), . . . , ρ(e
{jq}
jq−1

), ρ(e
{}
jq
)];

if ej1 ≺0 . . . ≺0 ejq−1 ≺0 ejq

Leaf M; y@P −→ M ; P if Cut(y)
Solution M; y@P −→ y@M ; P if Wanted(y)

Develop M; y@P −→ M; [ρ(y + e
F∪{j2,...,jl}
j1

), . . . , ρ(y + eFjl
)]@P

if Generate(y, {j′1, . . . , j′p}) , {j′1, . . . , j′p} \ F = {j1, . . . , jl} and
ρ(y + ej1) ≺y ρ(y + ej2) ≺y . . . ≺y ρ(y + ejl )

Fig. 1. The Stack Version of Proc(Wanted,Cut,Generate, ρ).
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Proc has both breadth-first and depth-first (or stack) versions (see [8] for
details). The breadth-first version of Proc constructs a direct acyclic graph (dag
for short). A dag contains redundancies: a node may appear as a direct successor
of several nodes. Such redundancies can be avoided by turning the dag into a
forest, which is achieved by imposing a total local ordering ≺y on the direct
successors of y. Assume that a node y has two successors ρ(y+ej1) and ρ(y+ej2)
such that ρ(y+ej1) ≺y ρ(y+ej2). To obtain a forest instead of a dag, one forbids
to increment xj1 in the subtree rooted at ρ(y+ej2). In this case, xj1 is said frozen
in all such a subtree. For the ordering ≺y, one can simply take for instance the
node-independent ordering: ρ(y + ej1) ≺y ρ(y + ej2) iff j2 < j1. This freezing
mechanism [8] associates to each node a freeze pattern F(y) which is a subset
of {1, . . . , q}. A node y with freeze pattern F is denoted by yF . Simultaneously
with freezing, the forest is developed in a depth-first manner by representing P
as a stack. For technical simplicity, we add to each forest a “fictitious” root 0
which contains a tuple of zeros and has an empty freeze pattern.

The complete stack-based procedure is shown in Figure 1. When starting
Proc, Initialise simply sets the lists P and M. Then, it proceeds with the 3
remaining rules until P is empty. At each step, it performs the first applicable
rule in textual order to the top of P .

4 Solving Linear Diophantine Systems

Algorithms which are specific instances of Proc do exist in the literature. In-
deed, the following algorithms can be viewed as instances of Proc. M. Clausen &
A. Fortenbacher [6] solve a single homogeneous equation, E. Contejean & H. De-
vie [8] solve a system of homogeneous equations, and F. Ajili & E. Contejean [1,2]
solve a system of homogeneous equations and inequations. The latter algorithm,
already called ACalg, is a generalisation of the previous approaches since it si-
multaneously solves equations and inequations. Due to its generality, we have
chosen ACalg as a starting point, and will provide its detailed description in the
following. Thereby, we assume that C1 is AX =? 0 ∧ BX ≤? 0.

In ACalg, the abstract data type Node contains only a tuple v but no store σ.
Therefore, in this section we can drop the distinction between tuple and node.
Following Lemma 1, the solution set of C1 is generated by its sub-set of non-
decomposable solutions. Accordingly, Wanted specifies the non-decomposability
property of collected nodes in M:

Wanted(y) = (Ay = 0 ∧ By ≤ 0 ∧ � ∃y0 ∈M, (y0,−By0) ≤q+mB (y,−By))
The operation for processing the constraint store is the identity:

ρ(y) = y

A central issue in all cited approaches is a criterion with a geometric interpreta-
tion which determines the set of descendants of a node. [2] proposed a criterion Ψ
which generalises the one of [8] in order to reflect the presence of inequations. A
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node y is developed into a descendant y + ej if the criterion Ψ(y, j) holds. We
capture this in the following specification of Generate:

Generate(y, {j1, . . . , jp}) = ({j1, . . . , jp} = {j | Ψ(y, j)})

The authors remarked that due to inequations, descendants of a non-decom-
posable solution can be themselves non-decomposable solutions. Thus, to pre-
serve completeness, one has to distinguish which solution nodes can be deleted
from P, and which have to be developed further. A solution node having a
null-defect, that is, By = 0, can be pruned because it naturally subsumes all de-
scendant solutions. This distinction was the reason whyM became split into two
disjoint lists: M =M= ∪M<, where M= is the list of tuples with null-defect.
Cut is then specified accordingly:

Cut(y) = (∃y0 ∈M=, y0 ≤q y)

Moreover, it follows that Wanted is a disjunction of two disjoint sub-relations

Initialise [ ]; [ ]; [e
{j2,...,jq}
j1

, . . . , e
{jq}
jq−1

, e
{}
jq
]; if ej1 ≺0 . . . ≺0 ejq−1 ≺0 ejq

Leaf M=;M<; yF@P−→ M= ;M< ; P if ∃s ∈M= s ≤q y

Solution= M=;M<; yF@P−→ y@M= ;M< ; P if Ay = 0 ∧By = 0

Solution< M=;M<; yF@P−→ M= ; y@M< ; [y + e
F∪{j2,...,jl}
j1

, . . . , y + eFjl
]@P

if Ay = 0 ∧By < 0, � ∃y0 ∈ M< (y0,−By0) ≤q+mB (y,−By),
{ej1 , . . . , ejl} = {ej | (Ψ(y, j) ∧ j �∈ F)}
and y + ej1 ≺y . . . ≺y y + ejl

Develop M=;M<; yF@P−→ M= ;M< ; [y + e
F∪{j2,...,jl}
j1

, . . . , y + eFjl
]@P

if {ej1 , . . . , ejl} = {ej | (Ψ(y, j) ∧ j �∈ F)}
and y + ej1 ≺y . . . ≺y y + ejl

Fig. 2. The Stack Version of the ACalg Algorithm for Solving C1.

Wanted= and Wanted< depending on which list a solution goes. Thus, two corre-
sponding rules Solution= and Solution< are designed. Solution= loads intoM= a
solution having a null-defect. Solution< develops the successors of y according to
the criterion Ψ , and loads y intoM< if it is not already subsumed byM<. The
complete description of the stack version of ACalg is depicted in Figure 2. The al-
ready defined arguments for parameters not only show that ACalg is an instance
of Proc, but also ensure termination, soundness and completeness (see [2]).
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5 Motivation of the Work

The aim of this section is to highlight the limited pruning power of the algorithm
ACalg. As an example, we consider the following constraint system:

C1 ≡

3x1 − 2x3 =? 0
−2x1 + x2 − 3x3 ≤? 0
x2 + 2x3 − x4 ≤? 0

We want to point out the weak pruning of ACalg even in the presence of unbound
variables (no explicit bounds are given). Figure 5 shows a large part of the forest
generated by running the stack version of ACalg on C1. Due to lack of space, we
do not visualise the tree rooted at node (1, 1, 0, 0). A component yj of a forest
node (y1, . . . , yq) is put into a small box iff xj is frozen. A node labelled by a
non-decomposable solution is entirely boxed. Although the sub-tree rooted at

.

(1, 0, 0, 0) ( 0 , 1, 0, 0) ( 0 , 0 , 1, 0)

( 0 , 2, 1, 3)

( 0 , 0 , 0 ,1)

( 0 , 1, 1, 0) ( 0 , 0 , 1, 1)( 0 , 1, 0 , 1)(1, 0 , 1, 0)

(1, 0 , 1, 2)

( 0 , 1, 1, 0)

( 0 , 1, 1, 2)

(1, 0 , 1, 1) ( 0 , 1, 1, 1)

(2, 0 , 2, 3)

(2, 0 , 2 , 4)

( 0 , 2, 1, 2)

( 1 , 0 , 2, 3)

( 1 , 0 , 2, 4)

( 0 , 1 , 1, 3)(1, 0 , 2, 2)

(2, 0 , 2, 2)

(1, 1, 0, 0)

(2, 0 ,3,6)

(2, 0 , 3, 4)

(2, 0 , 3, 5)

(2, 0 , 3, 3)

( 0 , 2, 1, 4)

( 0 , 3, 1, 4)

( 0 , 3, 1, 5)

Fig. 3. A Part of the Forest Developed by ACalg for Solving C1.

( 0 , 0 , 1, 0) cannot contain solutions to C1, ACalg would continue to increment
the components x3 and x4. The subtree is failed because any solution must
satisfy:

x1 =? 0 ∧ x2 =? 0 ∧ 1 ≤? x3 ∧ 0 ≤? x4 ∧ 3x1 − 2x3 =? 0.
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The equation 3x1 − 2x3 =? 0 implies 2x3 ≤? 3x1, which by the above implies
that all the descendants are inconsistent. The reason of failure is that x3 violates
the upper bound imposed by x1. However, algorithm ACalg cannot discover this
fact. With a similar reasoning, one can see that the tree rooted at ( 0 , 1, 1, 0)
cannot contain solutions.

Now, let us study another aspect of ACalg. Consider the tree rooted at
(1, 0 , 1, 0) which contains the solution labelled by tuple (2, 0, 3, 6). Every node
of that tree, which solves C1, must satisfy:

1 ≤? x1 ∧ x2 =? 0 ∧ 1 ≤? x3 ∧ 0 ≤? x4 ∧ 3x1 − 2x3 =? 0

From equality 3x1−2x3 =? 0 and 1 ≤? x3, we can deduce 2 ≤? x1. As an immedi-
ate consequence, x3 cannot be in [1..2], since x3 ≤? 2 ∧ 2 ≤? x1 ∧ 0 =? 3x1−2x3

is unsatisfiable. In sum, all nodes between (1, 0 , 1, 0) and its descendants not
satisfying 2 ≤? x1 ∧ 3 ≤? x3 are inconsistent w.r.t. C1. These nodes are in-
consistent because they violate lower bounds. We would be able to improve the
efficiency of ACalg if we could skip those nodes and jump to the smallest descen-
dant satisfying the lower bounds.

6 Towards the Solving Method

Section 5 motivated why derived lower and upper bounds enhance the pruning
power of method ACalg. That is, a combination of domain constraints with
the freezing mechanism of ACalg enables deriving stronger domain constraints.
Such information can be exploited to detect inconsistencies at earlier stages of
the computation. Compared to this pruning potential, the current relation Cut
is relatively weak because the ACalg algorithm prunes a node only if it is greater
or equal to a previous solution having a null defect or if the criterion Ψ fails. In
practice, we observed that many useless search branches are blindly constructed.
Thus, ACalg needs stronger pruning rules.

The approach we adopt consists of combining complete solving with con-
straint propagation, where the latter plays a central role in the design of powerful
pruning rules. Our starting point is the ACalg algorithm. Following the design
of the generic procedure, the combination is mainly achieved by extending each
search node by a local store in field σ.

Adding a constraint store offers the opportunity to add explicit domain con-
straints to the input constraint system. Hence, we are interested in solving the
following homogeneous constraint system in N

q:

C1 ≡ AX =? 0 ∧ BX ≤? 0 ∧ X ∈? [L..U ]

Note that each variable has a possibly infinite domain. Before continuing the
discussion, let us mention that there is a naive approach to combine the ACalg
solver with static upper bounds. The idea is to apply ACalg to C1 and to freeze
a variable as soon as its upper bound is reached. E. Contejean [7] proposed such
an approach for the case where all variable domains are finite. This approach is
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considered naive because it inherits from ACalg the need for stronger pruning
rules, and, in addition, it does not exploit domain bounds during the solving
process.

6.1 Representation of the Solution Set

In general, the solution set of C1 is not only likely to be large but also infinite.
In the case where all domains are finite, it is even necessary to enumerate all
solutions. This is the reason why we are interested in a compact representation
of Sol(C1).

In order to achieve a complete representation, we first solve a constraint
system where we relax the lower bounds L:

C0 ≡ AX =? 0 ∧ BX ≤? 0 ∧ X ∈? [0..U ]

The “why” is illustrated in the next example:

Example 1. Let C1 ≡ x1 − x2 ≤? 0 ∧ x1 ∈? [3..6] ∧ x2 ∈? [2..5]. The non-
decomposable solutions of x1 − x2 ≤? 0 are s1 = (0, 1) and s2 = (1, 1). None of
them solves x1 ∈? [3..6] ∧ x2 ∈? [2..5]. But, to describe the solution s = (3, 5)
of C1 one needs s1 and s2 since s = 2s1 + 3s2.

Let E = {s1, . . . , se} denote the set of non-decomposable solutions found when
solving C0. In general, the set of solutions obtained by N-linear combination∑

i∈[1..e] λis
i is a superset of the solutions of the original system C1. The idea is

to constrain the parameters λi sufficiently such that both solution sets coincide:

Lemma 3. For any s in Sol(C1) there exist coefficients λ1, . . . , λe ∈ N such
that:

– s =
∑
i∈[1..e] λis

i

– The vector Λ = (λ1, λ2, . . . , λe) solves the constraint system ∆=
∧

j∈[1..q]Ψj,
where

Ψj =
{
lj ≤? Σk∈[1..e]λks

k
j if uj =∞

lj ≤? Σk∈[1..e]λks
k
j ∧ Σk∈[1..e]λks

k
j ≤? uj if uj ∈ N.

The proof is straightforward. In fact, this lemma is a generalisation of Lemma 1
in the presence of domain constraints. In the special case where C1 contains no
domain constraints, the two lemmas coincide.

The variables of ∆ are the parameters λ1, . . . , λe, where e is the size of
E = {s1, . . . , se}. Therefore, we are able to represent Sol(C1) by means of the
expression Θ ≡ ∧

j∈[1..q]xj =
∑

k∈[1..e] λks
k
j and an additional constraint ∆.

Θ provides the general form of solutions of C1, and ∆ specifies both necessary
and sufficient conditions on λ1, . . . , λe that incorporate all domain constraints.
Let Ω = Θ||∆ be called a constrained parametric expression. It stands for the
following set of tuples in N

q:

{(
∑

k∈[1..e]

νks
k
1 , . . . ,

∑
k∈[1..e]

νks
k
q ) | (ν1, . . . , νe) ∈ Sol(∆)}.
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Then, it holds that:

Lemma 4. The constrained parametric expression Ω is a complete representa-
tion of Sol(C1).

The proof is trivial since by construction Sol(C1) and Ω are equivalent. Note
that Sol(C1) is infinite (resp. empty) iff Sol(∆) is infinite (resp. empty).

Example 2 ((1) continued). The constrained parametric expression Ω = Θ||∆
representing Sol(C1) is defined by Θ ≡ x1 = λ1 ∧ x2 = λ1 + λ2 and ∆ ≡ 3 ≤?

λ1 ≤? 6 ∧ 2 ≤? λ1 + λ2 ≤? 5.

Note that in the case where we are concerned by computing one solution there
is no need to relax lower bounds of C1. Moreover, it can be easily shown that
we can usually reach the case of null lower bounds with the price of getting
non-homogeneous system (see Example 3). As said before, the obtained system
can be turned into a homogeneous one. The next example emphasises that :

Example 3 ((1) continued). To get non-null lower bounds, one can introduce two
new variables z1 and z2, and transform C1 into C0 ≡ z1 − z2 ≤? −1 ∧ z1 =?

x1 − 3 ∧ z2 =? x2 − 2 ∧ z1 ∈? [0..3] ∧ z2 ∈? [0..3].

6.2 The Notion of Local Constraint Store

As said before, ACalg does not make use of the field σ. Section 5 motivated the
need for domains in order to detect pruning opportunities. Such information can
be kept in the form of a constraint store which is local to each node.

Definition 1 (Local Constraint Store). Let y = (y1, y2, . . . , yq)F be a node
generated by ACalg. Its local constraint store σ(y) is defined as follows:

σ(y) =




AX =? 0
BX ≤? 0
X ∈? [0..U ]∧

j �∈F xj ≥? yj∧
j∈F xj =? yj

(1)

Recall that xj denotes a variable and yj is the jth component value of the
tuple v(y). This definition provides us with a direct construction of the local
store as a function depending only on the current node y. It is desirable to
design an incremental construction of σ. The base case corresponds to the root
node, and it holds, by definition 1, that σ(0) = C0 since F(0) = ∅. That is:

σ(0) = AX =? 0 ∧ BX ≤? 0 ∧ X ∈? [0..U ] (2)

The general case deals with nodes generated either by rule Solution< or Develop.
Let the current node be y, associated with some ordering≺y, and let zjk = y+ejk
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be its kth direct descendant. According to Figure 2 it holds that F(zjk ) = F(y)∪
{jk+1, . . . , jl}. Therefore, we define:

σ(zjk ) = σ(y) ∧ φjk where
φjk =

(
xjk+1 =? yjk+1 ∧ . . . ∧ xjl =? yjl
xjk ≥? yjk + 1

(3)

It is very important to note that the tuple of zjk solves the constraints φjk . This
fact is at the heart of our rule soundness proofs. The next lemma follows by a
structural induction on nodes.

Lemma 5. For any node, Definition 1 is equivalent to the incremental construc-
tion inductively defined by equations (2) and (3).

In the following sub-section we show that taking the identity for operation ρ as
done in ACalg is not the best choice that one can imagine.

6.3 Local Simplification versus Bound Propagation

Using constraint propagation [9,12], we can strengthen the information in the lo-
cal constraint store to detect inconsistencies earlier. The idea of this technique is
that a constraint enforces the elimination of inconsistent value combinations. We
only need bound propagation, denoted by BProp, which eliminates inconsistent
domain bounds but not values inside domains. BProp is a fix-point operation
with signature Store → Store that ends when changes to variable bounds cease
to occur. Let σ1, σ2 be two constraints of Store. Then, σ1 � σ2 means that σ1

operationally entails σ2, whereas σ1 =⇒ σ2 means that σ1 logically entails σ2. σ
entails failure (ie., σ � F) if some variable domain is empty. We shall use infσ(x)
for the lower bound and supσ(x) for the upper bound of x in σ.

In general, BProp enforces local consistency, but not global consistency, which
is reflected by the law that σ1 � σ2 implies σ1 =⇒ σ2. Our results use the well-
known fact saying that BProp is solution preserving: BProp(σ)⇐⇒ σ.

We now choose BProp for the parameter ρ of the generic solving procedure.
That is, for any node y = (v, σ) we take:

ρ(y) = (v, BProp(σ)) (4)

For a first look, it may seem that the presence of infinite domains in σ could
lead to non-termination of BProp. However, this is not the case. Indeed, from
the fact that, on one side, our method is aiming at finding non-decomposable
solutions and, on the other side, possibly large uniform theoretical bounds for
non-decomposable solutions exist (see e.g. [2,10]) it follows that the latter bounds
on components can simulate infinite domains.

6.4 Encoding Freezing by Constraints

The freezing mechanism can be driven by the constraints of the local store. Two
requirements need to be met:
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(R1) A node y needs to tell σ(y) which components become frozen.
(R2) A node needs to find all already frozen components by asking σ(y).

The incremental construction of the constraint store already meets require-
ment (R1), since for a node y = (v, σ), σ accumulates constraints xj =? vj if j
in F . In order to meet the second requirement, it suffices to test whether σ(y)
contains some constraint xj =? yj. Trivially, if xj was previously frozen then σ
will contain a unary constraint xj =? yj.

Driving freezing by the local store is stronger than using F since a variable
will be considered “frozen” either because it was previously frozen, or because it
is constrained by freezing other variables. Beyond this role, the local store is the
heart of a more powerful pruning engine that is discussed in the next section.

7 Stronger Pruning Rules

Before each rule application, the search engine applies ρ to the current node, and
hence BProp computes stronger upper and lower bounds. We discuss how these
improved bounds can be exploited locally to prune inconsistent subtrees early,
and to skip parts of the search tree containing inconsistent nodes. In addition,
it is shown how search heuristics can be elegantly embedded into the method.

Let y = (v, σ) be the current node (ie., the top of stack P). For any two
nodes y and y′, we write y ↪→ y′ if y′ is a direct successor of y developed by
ACalg. Furthermore,

∗
↪→ is the transitive and reflexive closure of relation ↪→. y′

is called a descendant of y if y
∗
↪→ y′.

7.1 Pruning with Partial Information

The local stores are monotonic w.r.t. to the relation ↪→. In addition, the failure
of the store means that the corresponding node (ie., its tuple) is not a solution.

Lemma 6. Let y be a given node developed by ACalg. Let us denote by u0 =
0 ↪→ u1 ↪→ . . . ↪→ uk = y (1 ≤ k) the unique path from the root 0 to y. The
following properties hold:

P1) ∀i ∈ [0..k − 1]: σ(ui+1) =⇒ σ(ui)
P2) If σ(y) =⇒ F then y is not a solution of C0.

Detecting a local failure σ(y) � F does not only indicate the inconsistency of y,
but also the inconsistency of all nodes of the tree rooted at y. This is cast into
a new pruning rule:

PruneM=;M<; y@P −→ M=;M<;P if σ(y) � F

Recall that � implies =⇒. Prune preserves termination of ACalg since the latter
terminates without Prune and σ(y) � F can be decided in finitely many steps.
In addition, Prune preserves solutions.
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Theorem 1. Let y be a node developed by ACalg algorithm such that σ(y) � F.
Then, there is no descendant of y which is a solution of C0.

Since Prune does not prune solutions then necessarily it does not prune any non-
decomposable solution. That is, it preserves the completeness of ACalg. Prune
is applied before ACalg rules. The reader is invited to observe that Prune is
not subsumed by Leaf and is more powerful than the latter rule. In particular,
when C0 has no solution with null-defect (ie., satisfying BX =? 0), Leaf will
never be applicable, but Prune may be potentially applicable. The example of
Section 5 exhibits this clearly.

7.2 Skipping Inconsistent Sub-Spaces

We now study the case where a given node does not satisfy the current constraint
store σ, but σ is not failed. This can happen after some lower bounds have
changed. Suppose that σ′ is the local store of y before propagation, that is,
σ = BProp(σ′). The set of variables whose lower bounds changed by the execution
of BProp is defined by the index set:

K = {k1, . . . , kp} = {kj | j ∈ [1..p], infσ′ (xkj ) < infσ(xkj )}
The following characterises those descendant nodes z of y developed by ACalg
that do not satisfy the derived lower bounds:

y
∗
↪→ z ∧ ∃j ∈ K, zj < infσ(y)(xj) (5)

As already observed in Section 5, those nodes cannot solve C0, which is formalised
by the next lemma.

Lemma 7. Let y be a node developed by algorithm ACalg satisfying (5). For
any node z such that y

∗
↪→ z: if z satisfies (5), then z does not solve C0.

This lemma suggests to skip those nodes that satisfy condition (5). Intuitively,
one wants to push lower bounds into components. Furthermore, we need to adjust
the constraint store such that it reflects the skip. Let α = ((α1, . . . , αq), σ(α))
be the node depending on y which is constructed as follows:

∀j ∈ [1..q], αj =
(
infσ(xj) if j ∈ K
yj otherwise

σ(α) =
(
σ(y) ∧
xk1 ≥? αk1 ∧ xk2 ≥? αk2 . . . ∧ xkp ≥? αkp if K = {k1, . . . , kp}

Since α is the smallest conflict free node after y, it is taken as the direct descen-
dant of y. We cast this into the following pruning rule:

ForwardM=;M<; y@P −→ M=;M<;α(y)@P if K �= ∅ and σ(y) �� F

This deterministic rule has to be tried before the ACalg rules. Note that Forward
preserves the monotonicity property P1 of Lemma 6 since σ(α) entails σ(y).
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Furthermore, by Lemma 7 it follows that Forward skips only non-solutions nodes.
This means that the completeness of ACalg is preserved. Since α(α(y)) = α(y),
it suffices to apply Forward at most once. This together with the fact that no
infinite path can be developed from α (see [2]) shows that Forward preserves
termination. In general, we can expect that any application of Forward shortens
a search path. Furthermore, branching on non-solution nodes can be delayed,
thus avoiding multiple unfolding blind paths.

7.3 Embedding Dynamic Variable Orderings

The selection order of variables in tree-search algorithms is known to have sub-
stantial influence on the search behaviour and efficiency. Using a variable order-
ing one can try to obtain shorter search paths. In general, orderings are highly
problem specific, may be with exception of the first-fail strategy (FF for short)
which selects at each search step the variable with the smallest domain. Variable
orderings can be classified into static orderings which are fixed prior to search,
and the more powerful dynamic ones which are re-evaluated at each search step.
F. Bacchus & P. Van Run [4] showed that it is not immediately obvious how a
DVO can be embedded in an arbitrary tree-search algorithm.

In our context, the ordering ≺y which determines the freezing pattern is clearly
a variable ordering since it determines the order of descendants on the stack. The
order in the current implementation of ACalg is node-independent and therefore
static. However, the design of ACalg theoretically admits any local ordering ≺y,
and hence DVOs. Unfortunately, it was not clear so far how to maintain infor-
mation required to apply a DVO.

Our solution to this problem is surprisingly simple: the constraint store offers
the means to maintain and derive the necessary information. For instance, in
order to implement the FF strategy we can exploit the domain bounds. This
means also that those existing DVO strategies which are based on the notion of
constraint store can be easily adapted to our method.

Technically, we define a DVO by means of a function which weights a vari-
able x in a local constraint store. The evaluation depends on the domain of x
and the constraint network topology. The weights can be used to determine a to-
tal order ≺y on the variables xj1 , . . . , xjl which via σ(y) depends on the current
node y. This order is lifted to the component level by: ρ(y + eji) ≺y ρ(y + ejk )
iff xji ≺y xjk . Among the descendants, the one corresponding to the vari-
able with the lowest weight will be on top of stack P . As defined in Figure 2,
this descendant freezes all components belonging to variables of higher weight:
y+eF ′

j1 where F ′ = F ∪{j2, . . . , jl}. Thus, y+eF ′
j1 becomes the most constrained

descendant.
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The extended method, previously detailed in Sections 6 and 7 preserves desir-
able properties of ACalg. We cast this in the following main theorem:

Theorem 2 (Termination, Soundness and Completeness). The obtained
method preserves ACalg termination. Furthermore, it is sound and provides a
complete representation of the solution set of C1 according to the definition men-
tioned by Lemma 4.

In addition, it can be shown that the obtained method is still an instance of the
generic solving procedure Proc presented in Section 3.

8 Implementation

In order to investigate the effect of pruning, we have implemented the solver
in Java. The system, called ALalg, solves non-homogeneous linear Diophan-
tine constraint systems. Its architecture basically consists of three main classes:
Solver which coordinates the search, Node which encodes search nodes and
PropagationNode which extends Node by adding local store and propagation
methods. We kept the design flexible by delegating the search strategy into a
separate class: new strategies can be implemented without modifying the Node
class methods. ALalg is used via a graphical user interface offering different views
and navigation on the search tree. Colours and statistics tell additional informa-
tions about nodes and applied rules. An alternative view presents the detailed
internal state of the selected search node. The bound propagation module is
based on computing infimum/supremum terms (see [9,12] for details).

Input N naiveACalg ALalg

LR RL FF

C1 1 8 6 4 4

C2 8 15 14 17 17

C3 1 36 16 6 6

C4 0 204 52 6 6

C5 48 237 48 80 80

C6 278 674 620 457 291

C7 45 112 109 80 80

C8 57 443 161 113 113

C9 15 157 23 19 19

Fig. 4. Experimental results.

The central aim of our implementation is to test the impact of propagation based
pruning and heuristics in complete solving of Diophantine systems in terms of
search tree size, but not in terms of run-times. This is why we have compared
ALalg under a specified search strategy and a C implementation of naiveACalg.
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The allowed search strategies are LR (left to right), RL (right to left) and FF
(first fail). Our evaluation considers the constraints depicted in the Appendix
and is based on the size of the search tree. Figure 4, where N is the cardinality
of the solution set basis, shows that our solver clearly outperforms naiveACalg.
Currently, our implementation is not well-suited to evaluate efficiency in terms of
run-times because Java is currently not competitive compared to C-like compiled
programming languages.

9 Conclusion

This work could be seen as an attempt in closing the gap between existing
mathematical solving methods and consistency techniques widely and success-
fully used in the CLP paradigm [13,12]. Our extension of ACalg facilitates and
enables the performing of constraint based reasoning and integration of DVO
heuristics which reduce significantly the size of the search space. Because of
our Java implementation, we did not evaluate the impact of possible overheads
which may be caused by the call of propagation at each search node. In the near
future, we would like to investigate such a concern by designing a C implemen-
tation which would make meaningful a comparison of the two methods in terms
of run-times.

In addition, this work offers several interesting followups for future research.
One is constraint entailment. Indeed, the compact representation of a (possibly)
large or infinite solution set should be deeply exploited in order to design new
entailment techniques. Finally, it seems worth-while to record some “simple”
local stores and to prune a node as soon as its store is entailed by a previously
recorded one. We would like to emphasis such issue since we frequently observed
regularities in the visualised search tree which indicate further pruning oppor-
tunities. Currently, we are seeking for subsumption rules which capture such
regularities.
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Appendix

C1 =

[
1 1 −2
1 −1 0

]
X =?

[
0
0

]
∧ ∧

i∈[1..3]xi ∈? [0..∞]

[
1 0 −1

]
X ≤?

[
0
]

C2 =
[
3 2 −1 −2

]
X ≤?

[
0
] ∧ ∧

i∈[1..4]xi ∈? [0..∞]

C3 =


 3 0 −2
−2 1 −1

1 −2 4


 X ≤?

[
0
0

]
∧ ∧

i∈[1..3]xi ∈? [0..∞]

C4 =




1 1
1 −1

12 −36
7 −5


 X ≤?




150
−10
115
−6


 ∧ x1 ∈? [0..16] ∧ x2 ∈? [0..8]

C5 =




6 −1 0
2 −1 −7
0 −10 3
1 1 1


 X ≤?




9
−3
9
7


 ∧ x1 ∈? [0..3] ∧ x2 ∈? [0..5] ∧ x3 ∈? [0..9]

C6 =


2 −1 −7

1 −1 3
1 1 2


 X ≤?


−3

5
20


 ∧ x1∈?![0..∞] ∧ x2∈? [0..9] ∧ x3∈? [0..∞]

C7 =


6 −1 0

2 −1 −7
0 1 3


 X ≤?


 9
−3
9


 ∧ ∧

i∈[1..3]xi ∈? [0..∞]

C8 =


 2 −3 1 7 −2
−4 0 6 0 −1

1 1 1 1 1


 X ≤?


−2

5
5


 ∧ ∧

i∈[1..5]xi ∈? [0..∞]

C9 =

[
3 0 −2 0

]
X =? 0[−2 1 −3 0

0 1 2 −1

]
X ≤?

[
0
0

]
∧ ∧

i∈[1..3]xi ∈? [0..∞]
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Abstract. This paper deals with the incremental detection of implicit
equalities using the revised simplex method. This algorithm is more effi-
cient and more suitable to practical problems than the tableau method
usually applied in constraint logic programming. We describe and discuss
the adaptation to the revised simplex of three approaches: the CLP(R),
the Prolog III, and the quasi-dual one. All of these have been inte-
grated into the constraint logic programming language Athena based on
a revised simplex method over exact-precision rationals. This system is
used to compare these methods on a set of typical CLP problems over
linear constraints.

1 Introduction

Detecting implicit equalities is closely related to solving linear constraints in con-
straint logic programming (CLP). An implicit equality is an inequation
a1x1 + · · · + anxn ≤ a0 from a set of constraints S that can be converted into
the equation a1x1 + · · ·+ anxn = a0 without changing the set of solutions of S.
For instance in the set {x1 + x2 ≤ 2, 1 ≤ x1, 1 ≤ x2} all inequations are implicit
equalities. Indeed this set can be rewritten to {x1 + x2 = 2, x1 = 1, x2 = 1}
without changing its set of solutions.

Detecting implicit equalities is one of the fundamental operations in solving
generalized linear constraints [15] that include disequations (�=) and strict in-
equations (<). This method for solving constraints is integrated into languages
like Prolog III [6] and Prolog IV [8].

This detection enables the discovery of all variables fixed to a single value.
This is applied to the delayed solving of non linear constraints [7]. In languages
like CLP(R) [12] or Prolog III [6], solving the non linear constraint 2xy+3z+
t = 0 is delayed until one of the variables x or y is fixed by the linear constraint
solver. For instance, if x becomes fixed to 3, the constraint 6y + 3z + t = 0 is
then added to the linear constraint solver.
� A part of this work was done when the author was in Laboratoire d’informatique de
Marseille, Faculte des sciences de Luminy, 13009 Marseille- France
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Detecting implicit equalities is also useful in cooperating constraint solvers
which associate a constraint propagation based solver (on intervals or finite do-
mains) with a linear constraint solver. The former gives bounds on variables
to the latter while the latter maintains a rational solution of linear constraints
and gives the former fixed variables [3,8,1]. For instance, to solve the system
S = {x−y+z ≤ 0, y−z ≤ 0, y ≤ 2x+1, x ∈ {0, 1, 2}, y ∈ {0, 1, 2}, z ∈ {0, 1, 2}},
it is given to a finite domain constraint solver and the set R = {x − y + z ≤
0, y − z ≤ 0, y ≤ 2x + 1, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2} is given to a
linear constraint solver. The latter detect that the inequation 0 ≤ x is an im-
plicit equality. Consequently x is fixed to 0. With this new bound on x the finite
domain solver can reduce the domain of y and z to {0, 1}. This inference is not
possible with a standard finite domain constraint solver alone.

Linear constraint solving uses mainly a Gaussian elimination method (for
equations and disequations) and a simplex method (for inequations1). Implicit
equalities are incrementally detected by extensions of the simplex method.
Among the first methods developed for this purpose, are the Prolog III
method [9,6], the CLP(R) method [18,12], and the CHIP method [20], which is
now also used in Prolog IV [2]. These methods are implemented with a tableau
simplex algorithm over non-negative variables since that method is easier to
extend to incremental solving of linear constraints.

This work deals with the incremental detection of implicit equalities with the
revised simplex method. This method is widely used for solving practical linear
optimization problems [5,4]. In comparison with the tableau simplex method,
the revised simplex method has the advantages of being much more efficient
(many optimizations are possible), of being more numerically stable (accuracy
of computations can be controlled), and of using less memory (the rate of non-
zero coefficients increases rapidly with the tableau simplex but not with the
revised simplex).

The revised simplex method is applied to solving linear constraints in new
generation CLP languages like CLAIRE [3] or Athena [17,16]. Detection of implicit
equalities is then based on the quasi-dual formulation of a system of inequations
introduced by Lassez [13].

In this article we describe how to incrementally detect the presence of implicit
equalities. We also detail adaptations to the revised simplex of the Prolog III
method, the CLP(R) method, and the quasi-dual based method. The method
using the lexicographic form [20] is not detailed here since it requires the sim-
plex tableau to be applied. For each method, we provide the main theoretical
results without providing proofs. They can be found in references which are
given instead. We also provide the different algorithms that identify all implicit
equalities.

These algorithms have been integrated to the CLP language Athena. This
makes quantitative comparisons possible. The linear constraint solver of Athena
is based on a dynamic revised simplex method over exact-precision rationals [17].
It includes advanced linear programming techniques such as LU factorization and

1 A strict inequation is usually decomposed to an equation and a disequation
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smart pivoting techniques. This system is used to compare these approaches on
a set of typical CLP problems over linear constraints.

The rest of this paper is organized as follows. Definitions and notations are
given in Section 2. The solved form for linear constraints and the revised sim-
plex method are presented in Section 3. Section 4 describes incremental linear
constraint solving and detection of implicit equalities. Section 5 details the ap-
proach of CLP(R). The approach of Prolog III is described in Section 6, and
the quasi-dual method is described in Section 7. Details about implementation
and results from the practical comparison are given in Section 8.

2 Definitions and Notations

Let R be the set of real numbers and R = R∪{−∞,+∞}. Let V be an infinite
and countable set of variables. A linear term is an expression α, αx or t1 + t2
where α is a real number, x is a variable from V and t1 and t2 are linear terms.
A linear constraint is an expression t1 = t2 or t1 ≤ t2 where t1 and t2 are
linear terms. These constraints are called respectively equation and inequation.
A constraint system is a finite set of constraints. A variable has an occurrence
in a term or constraint if it appears with a non zero coefficient in the term or
constraint. Let S be a system of inequations. The system noted S= is composed
of constraints of S where the symbol ≤ is replaced by =.

An assignment is a mapping from set V to set R that assigns a value to each
variable of V . An assignment can be extended naturally to a mapping from the
set of terms to R. A solution of a constraint is an assignment σ such that σ
is a solution of the constraint t1 ✸ t2 if σ(t1) ✸ σ(t2) where ✸ ∈ {=,≤}. An
assignment is a solution of a constraint system if it is a solution of each constraint
of the system. A system having at least one solution is solvable; otherwise it is
unsolvable. A variable is fixed for a constraint system S if every solution of the
system assigns the same value to the variable. An inequation t1 ≤ t2 from a
constraint system S is an implicit equality if every solution of S is a solution
of t1 = t2.

In the following, matrix notations are used. Let A be an m× n matrix. The
expression Ai∗ represents the ith row of A, the expression A∗j represents the jth

column of A. Let P ⊂ {1, . . . ,m}, the expression AP represents a submatrix
of A whose columns are columns of A whose indexes are in P . The inverse of a
square matrix M is denoted by M−1.

If e is a row vector of n real numbers, x a column vector of n variables, b a col-
umn vector of m real numbers and β a real number, the expression
ex ≤ β represents an inequality and the expression Ax = b represents a sys-
tem of equations. We implicitly assume compatibility of the sizes of matrices
and vectors when they are multiplied. Matrices and sets are denoted by upper
case letters, vectors by lower case letters and real numbers by Greek symbols.
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3 Solved Forms and Revised Simplex

3.1 Tableau Solved Form

The tableau solved form is composed of a set of equations and a set of inequations
that bound the value of variables. A system of linear constraints in tableau solved
form is at first in basic form:

S =
{

xB = MxL +M ′xU + b
l ≤ x ≤ u

(1)

where x is a vector of variables, b a column-vector of reals, M and M ′ are
matrices of reals, l and u are vectors of elements of R and where B, L and U
are disjoint sets of indexes such that li �= −∞, for i ∈ L and ui �= +∞, for
i ∈ U . The set of indexes B is called the basis of the system. Variables from
vector xB are called basic variables. Variables from vectors xL and xU are called
non-basic variables. The values li and ui are respectively the lower bound and
the upper bound of the variable xi. For each basic form S there exists a unique
assignment σS such that

σS(xi) =




li if i ∈ L
ui if i ∈ U
σS(t) if i ∈ B and xi is basic in xi = t

When this assignment is also a solution of S the system is in tableau solved form
and σS is called the basic solution of S. It is well known that any solvable system
of linear equations and inequations can be mapped to tableau solved form [5].

3.2 Revised Solved Form

The revised solved form is the basis for the revised simplex method. The main
difference from the tableau solved form is the basic variables that are not elim-
inated in the equations. However eliminating basic variables gives a system in
tableau solved form. A system in revised solved form is a system

S′ =
{

ABxB +ALxL +AUxU = d
l ≤ x ≤ u

(2)

where AB is a non-singular square matrix and such that the system

T (S′) =
{

xB = −A−1
B ALxL −A−1

B AUxU +A−1
B d)

l ≤ x ≤ u

where basic variables are eliminated, is in solved form. The matrix AB of basic
variables coefficients is called the basic matrix of system S

′
.

A regular system is a system in revised solved form that does not contain
implicit equalities. The purpose of this article is to solve and maintain incremen-
tally regular systems.
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3.3 The Revised Simplex Method

The revised simplex method considers a linear program of the form

min{axL + a′xU | S}
The system S is in revised solved form and the term axL + a′xU is an objective
function where basic variables have been eliminated. It computes a solved linear
program (i.e. such that ai > 0 and a′i < 0). The basic solution of S is then an
optimal solution of the linear program (see [5]).

The revised simplex method first chooses an entering variable xk such that
ai < 0 or a′i > 0. A variation of the value σS(xk) decreases the value of the
objective function.

The method next chooses a leaving variable from basic variables in order
to make room for the variable xk entering the basis and to change the value
of xk. To choose the leaving variable, the vector d of coefficients of xk in the
system T (S) is computed:

d = −A−1
B A∗k (3)

This vector is used to obtain the variation αi of xk (in absolute value) allowed
by the bounds of the basic variable xi and by the equation where xi is basic.
The greatest possible variation for xk is αr = min αi. When αr = +∞ the
algorithm stops. The variation of xk is unbounded and thus the linear program
is also unbounded.

In other cases, the system and the objective function are pivoted over the
entering variable xk and the leaving variable xr . The variable xr reaches one
of its bounds and its index is added to one of the sets L or U . The index of
variable xk leaves the set where it appeared (L or U) and is introduced in the
set B. Let B′, L′ and U ′ be the new set of indexes after pivoting. The new
basis matrix is AB′ and the new objective function fxL′ +f ′xU ′ where the basic
variables are eliminated, is computed as follows:

f = eL′ − eB′A−1
B′ AL′ (4)

f ′ = eU ′ − eBA−1
B′ AU ′

It may happen after a pivot that the value of the objective function for the
basic solution has not changed. This is the case if αr = 0. The pivot is then
degenerated.

The efficiency of the revised simplex method hinges around the representation
of the matrix A−1

B and the update of this matrix during a pivot. Some of the
numerous approaches for this are summarized in [5]. The representation used in
Athena is an LU factorization of the basis matrix and the update is based on
matrix accumulation [17,16].

4 Linear Constraint Solving

This section briefly presents some fundamental results for incremental solving
of equation and inequations and the detection of implicit equalities. References
containing more details are provided.
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Linear constraint solving in constraint programming must be incremental.
From a regular system S, and a constraint c, the basic operation is to compute
a regular system S′ equivalent to S ∪ {c}.

4.1 Determining Solvability and the Presence of Implicit Equalities

Assume that the constraint c is an inequation ex ≤ β. Determining the solvability
of the system S ∪ {c} and the presence of implicit equalities in this system
amounts to solving the linear program

γ = min{ex | S}
with, for instance, the revised simplex method. The following three cases have
to be considered:

– if γ > β then S ∪ {c} is unsolvable ;
– if γ < β then S ∪ {c} is solvable and does not contain implicit equalities;
– if γ = β then S ∪ {c} is solvable and contains implicit equalities.

The absence of implicit equalities when γ < β is proven in [15]. This fun-
damental result leads to efficient incremental methods for detecting implicit
equalities. In other words, solving a system that does not contain any implicit
equalities does not require anything more than searching for a solution of this
system.

Observe that when γ = β, the inequation c is an implicit equality itself.
Moreover, it is not the only one in the system S ∪ {c}. Note also that iterations
of the simplex method can terminate as soon as a solution is reached that gives
the objective function a value strictly inferior to β.

If the constraint c is an equation ex = β, adding c is equivalent to adding
the two inequations ex ≤ β and β ≤ ex. The basic solution σS can often discard
one of these two inequations. Indeed, if σS(ex) < β, it is sufficient to search for
a solution of the inequation β ≤ ex. Conversely, if σS(ex) > β, it is sufficient
to search for a solution of the inequation ex ≤ β. When σS(ex) = β, both
inequations must be considered since each of them can be an implicit equality.
However, since S does not contain any implicit equalities, if ex ≤ β is an implicit
equality then the inequation β ≤ ex is not an implicit equality and vice versa.

The constraint is added to the system only if γ < β (we will see later that it
is not necessary to add it when γ = β). This problem have been studied for some
time with the tableau solved form [12,20,11] and more recently with the revised
solved form [17,16,3]. We will not go into further details herein since the purpose
of this work is to describe the incremental computation of a regular system.

4.2 Determining All Implicit Equalities

Once the presence of implicit equalities is proven, the next step is to determine
all implicit equalities of S′ = S∪{c} and to replace them by equations to obtain
a regular system.
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A naive approach is to solve a linear program for each inequation δxi ≤ α of
the system S′ to decide if it is an implicit equality or not. In [19] Telgen proposes
some improvements to this method. He gives some syntactic criteria to identify
some implicit equalities in a tableau solved form. For each system obtained by
the application of the tableau simplex, the criteria identify additional implicit
equalities. Moreover, the basic solution σS that is associated to each system is
used to discard any inequation verifying σS(δxi) < α (that is obviously not an
implicit equality). It remains that in the worst case, this approach can solve n
linear programs for n inequations in the system.

An ideal method would solve a single linear program for each implicit equality
found. Most of the incremental approaches that are described herein are very
close to the ideal method and sometimes better.

Each of the incremental methods considers first the solved linear program
proving the presence of implicit equalities in the system S ∪ {ex ✸ β} where
✸ ∈ {=,≤}:

min{axL + a′xU | S} (5)

This linear program contains informations for determining with certainty a first
non empty set of implicit equalities. Let l ≤ x ≤ u be the set of inequations
of system S. The restrictive inequations of this linear program are the inequa-
tions of S that directly restrict the decrease of the objective function. They are
characterized by the set

R = {li ≤ xi | ai �= 0} ∪ {xi ≤ ui | a′i �= 0}

As a fundamental result, each restrictive inequation of the solved linear program
is an implicit equality in the system S∪{ex ≤ β} (see [16]). This result is applied
in most of the implementations of CLP languages over linear constraints.

It can be proved that the systems S∪{ex ≤ β}, S∪{ex = β} and S∪R= are
all equivalent (see [16]). Consequently, adding the constraint ex ≤ β or ex = β
amounts to fixing the variables appearing in R= to one of their bounds.

Each algorithm presented in the following considers a regular system S and
a constraint axL + a′xU ≤ β such that the linear program min{axL + a′xU | S}
is solved and σS(axL + a′xU ) = β. It returns a regular system S′ equivalent
to S ∪ {axL + a′xU ≤ β}. It always detects implicit equalities as restrictive
inequations of linear programs that are successively solved. The final system is
thus built step by step by replacing each variable fixed to a value by this value.

5 Adaptation of the CLP(R) Method

The method described here is an adaptation of the incremental method devel-
oped in [18]. It has been integrated to the CLP(R) language [12] with the tableau
solved form over non-negative variables.
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5.1 Method Principles

The basic principle of this method is to consider each implicit equality found as
an implicit equality in the solved linear program (5) and to add the correspond-
ing equation in the system. If this addition involves the appearance of implicit
equalities, the new solved linear program that proves this is used to identify a
part of them as restrictive inequations. The corresponding equations are added
the same way. When no more inequations need to be reintroduced, the final
system is regular.

More precisely, for each restrictive inequation li ≤ xi found, the equation
xi = li is added to the system to obtain a system equivalent to

S ∪ {xi = li}

This system is obviously solvable since σS(xi) = li. It is only necessary to decide
if it contains implicit equalities. These are searched for in one of the systems
S ∪ {xi ≤ li} or S ∪ {li ≤ xi}. Since S is regular the constraint li ≤ xi is not an
implicit equality in S and we have to decide if xi ≤ li is an implicit equality in
the system

S′ = (S − {li ≤ xi ≤ ui}) ∪ {xi ≤ li}
For this purpose the linear program min{xi | S′} is solved (the case where the
restrictive inequation is xi ≤ ui is similar).

If one of the inequations xi ≤ li or ui ≤ xi is an implicit equality, the
minimization computes a linear program in revised solved form that gives new
implicit equalities as restrictive inequations. The whole process is then repeated
for each of them.

5.2 Algorithm

The algorithm described in figure 1 begins by computing the set E of restrictive
inequations of the linear program given as input (step 1). An inequation δxi ≤ α
from E is chosen and the bounds on xi are replaced by the inequation α ≤ δxi
(step 2a). The expression δxi is then minimized (step 2b). If min{δxi | S} = α,
the inequation δxi ≤ α is an implicit equality and the restrictive inequations
of the solved linear program are added to E (step 2d). The variable xi is then
explicitly fixed in the system S (step 2e). These steps are repeated until E = ∅.

This algorithm has two main advantages for incrementality. Stuckey empha-
sizes in [18] that the number of steps of the algorithm, and thus the number of
linear programs solved, is equal to the number of implicit equalities found. So this
method is equivalent to the ideal method. Moreover, the minimization at step 2b
for deciding the presence of implicit equalities in the system S∪{δxi ≤ α} is ini-
tialized with a system whose basic solution satisfies the constraint δxi = α. Con-
sequently, few simplex iterations are necessary to prove that min{δxi | S} = α
or min{δxi | S} < α. Assuming that there is no degeneracy, a single pivot is
sufficient to decide. This is often the case in practice.
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input : S a regular system and axL + a′xU ≤ β an inequation
output : S′ a regular system equivalent to S ∪ {axL + a′xU ≤ β}
begin
1. let E be the set of restrictive inequations of min{axL + a′xU | S}
2. repeat

a. remove a constraint δxi ≤ α from E and rewrite S to

S ←
{
(S − {li ≤ xi ≤ ui}) ∪ {xi ≤ li} if α

δ
= li

(S − {li ≤ xi ≤ ui}) ∪ {ui ≤ xi} if α
δ
= ui

b. solve the linear program γ = min{δxi | S},
c. let R be the new set of restrictive inequations
d. if γ = α then E ← E ∪ R
e. S ← S ∪ {xi =

α
δ
}

until E = ∅
3. return S

end

Fig. 1. CLP(R) Method

6 Adaptation of the Prolog III Method

The method presented herein was developed for the linear constraint solver of
Prolog III [6], with the tableau solved form over non-negative variables. The
method is briefly described in [9] ; it has not been detailed nor proven. This ap-
proach is also very similar to the one developped in [10] for the system clp(q,r).

When the first implicit equalities found as restrictive inequations are replaced
by equations, the new system found may contain more implicit equalities. The
Prolog III methods identifies some constraints that, once removed from this
system, lead assuredly to a regular system. Those constraints are then reintro-
duced one by one in this system. If during the introduction the presence of new
implicit equalities is detected, other constraints are removed and reintroduced
the same way later on.

6.1 Definitions and Properties

In the Prolog III linear constraint solver, the constraints removed are the equa-
tions that contain an occurrence of a variable that also appears in the objective
function of the solved linear program proving the presence of implicit equalities.

A more efficient approach is to remove some saturated inequations called
bounding inequations. A saturated inequation of a system S in revised solved
form is an inequation li ≤ xi such that σS(xi) = li or an inequation xi ≤ ui
such that σS(xi) = ui.

Definition 1. (Bounding Inequation) The bounding inequations of a solved lin-
ear program min{axL + a′xU | S} are the saturated inequations over variables
that are basic in an equation of S and whose right hand side of the equation
shares an occurrence of variables with the objective function.
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input : S a regular system and axL + a′xU ≤ β an inequation
output : S′ a regular system equivalent to S ∪ {axL + a′xU ≤ β}
begin
1. let R be the set of restrictive inequations of min{axL + a′xU | S}
2. let E be the set of bounding inequations of min{axL + a′xU | S}
3. S ← (S − E) ∪ R=

4. repeat
a. remove a constraint δxi ≤ α from E and solve γ = min{δxi | S}
b. if γ = α

then S ← S ∪ {xi =
α
δ
}

else S ← S ∪ {δxi ≤ α}
c. let R be the set of restrictive inequations of min{δxi | S} solved
d. let SB be the set of bounding inequations of min{δxi | S} solved
e. S ← (S − SB) ∪R=

f. E ← E ∪ SB.

until E = ∅
4. return S

end

Fig. 2. Prolog III Method

When restrictive inequations are replaced by equations, the resulting system
is not necessarily regular. At this point, the removal of bounding inequations
leads with certainty to a different but regular system [16].

Theorem 1. Let P be a linear program in solved form whose system S is reg-
ular. Let R be set of restrictive inequations of P and SB be its set of bounding
inequations. The system (S − SB) ∪R= is regular.

Computing the system SB requires computing in T (S) the coefficients of
variables that have an occurrence in the objective function. These are obtained
by solving the system (3) for each variable xk that has a non zero coefficient in
the objective function.

6.2 Algorithm

The algorithm described in figure 2 begins by initializing to set R of restrictive
inequations (step 1) and the set E of bounding inequations to remove and rein-
troduce (step 2). It then computes the system (S − E) ∪ R= which is regular
(step 3). An inequation δxi ≤ α is chosen in the set E and is reintroduced in S
by minimizing the term δxi to decide if it is an implicit equality (step 4a). If so,
the variable xi is fixed to the value α

δ , otherwise the inequation is reintroduced
in the system (step 4b). Then the algorithm continues until there are no more
inequations to reintroduce.

Despite the improvement proposed, this algorithm can remove at each step
as many inequations as there are equations. Reintroducing these constraints
requires solving the same number of linear programs. This method is thus weakly
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incremental. However, the basic solution of the system S at step 2e is a solution of
the equation δxj = α and, as in the CLP(R) method, the minimization requires
few iterations in practice. Here again, a single non-degenerate pivot is sufficient
to prove that the inequation is not an implicit equality.

In conclusion this method seems less efficient than the CLP(R) method that
solves only a linear program for each implicit equality found. However, both
methods are unable to prove in one step the absence of implicit equalities in the
system S ∪R=. This is possible with the quasi-dual method.

7 Adaptation of the Quasi-Dual Formulation

The quasi-dual formulation of a system of linear constraints was introduced by
Lassez [14]. The use of this formulation for detecting implicit equalities is sug-
gested in [13] among other possible applications. It is close to the first approach
to finding implicit equalities proposed in [18]. The quasi dual formulation has
been used in the CLAIRE language [3] and in the Athena language [17].

Let S = {Ax ≤ b} be a system of m inequations. The quasi-dual formulation
of this system is the linear program

η = min{yb | yA = 0, y ≥ 0, Σyi = 1}
where y is a row-vector of m variables. If η = 0 then the system S contains
implicit equalities otherwise it does not. With this formulation, the absence of
implicit equalities is decided by solving a single linear program. We consider here
the dual of the quasi-dual, i.e. the linear program

µ = max{x0 | Ax+ u.x0 ≤ b, x0 ≥ 0}
where u is a vector of m coefficients, all of them set to 1. If these two linear
programs are bounded, the well-known relation η = µ holds. As a consequence,
the dual of the quasi-dual can also be solved to detect implicit equalities. This
last formulation is more interesting since it involve fewer modifications of the
original system S.

In the following, we introduce the (tableau or revised) auxiliary form that is
an extension of the dual of the quasi-dual formulation to the (tableau or revised)
solved form. The algorithm presented here computes a system in revised auxiliary
form from a system in revised solved form by introducing a new variable in some
equations. That variable is then minimized. If the optimal value is zero, then the
system contains implicit equalities that are identified as restrictive inequations of
the solved linear program. Those inequations are replaced by the corresponding
equations and the whole process is repeated for the new system to find more
implicit equalities or to prove that there are no more.

7.1 Definitions and Properties

Computing the auxiliary form of a tableau solved form S consists of introducing
a new variable x0 in each equation whose basic variable xb is assigned to one of its
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bounds in the basic solution. The variable x0 is not introduced in every constraint
as in the dual of the quasi-dual formulation because the basic solution of S can
discard a priori some inequations that are not implicit equalities (inequations
li ≤ xi or xi ≤ ui such that li < σS(xi) or σS(xi) < ui).

To clarify this presentation, the adaptation is first presented with the tableau
solved form and then with the revised one.

Definition 2. (Tableau Auxiliary Form) Let S be a system in tableau solved
form (1). The tableau auxiliary form of S is the system

SA =




xB = w.x0 +MxL +M ′xU + b
l ≤ x ≤ u
0 ≤ x0 ≤ +∞

where σSA(x0) = 0 and w is a vector such that

wi =



0 if li < σS(xi) < ui
1 if σS(xi) = li
−1 if σS(xi) = ui

Note that SA is in tableau solved form since its basic solution corresponds
to the basic solution of S on all variables except on x0 which is assigned to zero.

Definition 3. (Revised Auxiliary Form) Let S′ be a system in revised solved
form (2). The revised auxiliary form of S′ is

S′A =




ABxB + w′.x0 +ALxL +AUxU = 0
l ≤ x ≤ u
0 ≤ x0 ≤ +∞

where x0 is a variable assigned to zero in the basic solution of S′A and w′ is a
vector such that w′ = −ABw where w is the vector from definition 2.

Assume that S = T (S′) then SA = T (S′A). The vector w′ is thus the appro-
priate vector to introduce in S′A to verify this relation. The solving of a single
linear program can determine the presence or the absence of implicit equalities
in the system S′.

Theorem 2. With notations of definition 2, the system S′ contains implicit
equalities if and only if min{−x0 | S′A} = 0.

This result leads to the incremental algorithm of figure 3.

7.2 Algorithm

This algorithm is rather simple. It identifies first the restrictive inequations of
the solved linear program (step 1). It fixes the variables appearing in those
inequations (step 2a). The auxiliary revised form is computed (step 2b) and
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input : S a regular system and axL + a′xU ≤ β an inequation
output : S′ a regular system equivalent to S ∪ {axL + a′xU ≤ β}
begin
1. let E be the set of restrictive inequations of min{axL + a′xU | S}
2. repeat

a. S ← S ∪ E=

b. let SA be the revised auxiliary system of S and x0 be the var. introduced.
c. if min{−x0 | SA} < 0

then return S.
else let E be the set of restrictive inequations of min{−x0 | SA} solved.

until false
end

Fig. 3. Quasi Dual Method

the linear program of theorem 2 is solved with the simplex method (step 2c).
If the optimal value is strictly negative, the system S is regular. Otherwise
new restrictive inequalities are found and the algorithm continues. Note that
the iterations of the simplex can be stopped as soon as the term −x0 can be
assigned to a strictly negative value for the basic solution.

In comparison with the previous methods, the quasi-dual method has many
advantages. The computation of the auxiliary form is simple and proving the
absence of implicit equalities requires solving a single linear program. In practice
this proof needs few simplex iterations since the term −x0 is already assigned
to zero in the basic solution of the auxiliary forms.

8 Practical Results

The three approaches above have been integrated to the CLP language Athena.
The linear constraint solver of Athena is based on a revised simplex method on
exact-precision rationals. It includes advanced linear programming techniques
and an efficient procedure for dynamic backtracking [17].

Various examples have been tested with the three approaches. Most of these
examples are typical CLP problems over linear constraints that need to detect
implicit equalities for handling disequations or strict inequalities.

The Donald problem is the well-known cryptarithm problem [6]. Periodic
solves the problem of proving that a mathematical sequence is periodic [6]. It
contains a single disequation, however finding implicit equalities reduces the
search space. The Square problem [6] is a two dimensional placement problem
that is very combinatorial. It consists of filling a rectangle with squares of dif-
ferent sizes such that no squares overlaps. All pivoting operations done to solve
this problem are for detecting implicit equalities. Two instances of this problem
are solved: one with 9 squares, the other with 14 squares. Transport [21] is
a deterministic problem of assigning providers to customers. At the optimum
value all of the 80 variables are fixed showing that there is no other optimal so-
lution. Cut-stock is a cutting stock problem solved to optimality with a branch
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Quasi-dual meth. Prolog III meth. CLP(R) meth.

Problems Nb IE Steps Pivots Piv. IE Steps Pivots Piv. IE Steps Pivots Piv. IE

Square 9 933 607 2826 2826 174 2756 2756 410 2618 2618

Square 14 4293 2939 18485 18485 861 17631 17631 1435 16886 16886

Transport 80 1 125 0 0 125 0 80 125 0

Donald 46 52 179 171 28 145 137 46 127 119

Periodic 39 46 96 96 17 72 72 23 67 67

Cut-stock 245 207 909 887 124 693 671 245 587 565

Fig. 4. Pivots and steps requirement

Problems Quasi-dual meth. Prolog III meth. CLP(R) meth.

Square 9 4360 4850 4680

Square 14 42930 47120 45610

Transport 190 260 280

Donald 780 800 770

Periodic 110 130 120

Cut-stock 5000 5020 4650

Fig. 5. Time requirement in ms.

and bound approach [21]. All these problems are non deterministic except for
Transport.

Figure 4 shows the number of implicit equalities (Nb IE) to be found for each
problem. For each method, it shows the the number of steps of the algorithm
(Steps) which equal the number of linear programs solved to detect implicit
equalities. It shows the total number of pivotings required (Pivots) and the
number of pivoting needed to solve those linear programs (Piv. IE). Figure 5
shows the the computation times2 to solve the problem.

From these results we can see that no method is clearly superior to the others.
The Prolog III method performs much fewer iterations than the other

methods. This result is surprising since it is the worst method in terms of com-
plexity. In terms of computation time, this advantage is negated by the need
to compute columns of the tableau solved form to determine bounding inequal-
ities. This is the case for the Transport where no steps are performed to find
all implicit equalities since there is no bounding inequation, but the column is
computed for each fixed variable to prove this fact. This explains the slowdown
in comparison with the quasi-dual method.

The CLP(R) method is slightly faster than the Prolog III methods. Note
that it does not perform as many iterations as there are implicit equalities be-

2 In milliseconds on a Sun Sparc 10



Approaches to the Incremental Detection of Implicit Equalities 495

cause transforming a restrictive inequation into an equation sometimes leads
to a failure due to disequations. Consequently no linear program is solved for
the remaining restrictive inequations. This method is the one that performs the
least number of pivotings. This can be explained by the fact that only a partial
non degenerate pivot is often sufficient to prove the absence of implicit equali-
ties when inequations are reintroduced. These partial pivots are not taken into
account in computing the total number of pivots necessary to find all implicit
equalities. However the time spent in these partial pivots can be significant since
it requires the computation of the objective function (see formula 4) and the
solving of the systems (see formula 3).

The quasi-dual method is the best one in terms of computation time, but it is
not far better than the others. On average it is 12% faster than the Prolog III
method and 10% faster than the CLP(R) method. However, it can do many
more iterations than the others, since fewer implicit equalities are discovered at
each step. The exception is the Transport problem where the implicit equalities
are all found at one time as restrictive inequations and the quasi-dual method
proves that there are no more of them in only one step.

9 Conclusion

This paper has described how to detect implicit equalities with the revised sim-
plex algorithm. This algorithm is more efficient and more suitable to practical
problems than the tableau method that is usually applied in CLP. We have
described the adaptation to this simplex of three main approaches for the in-
cremental detection of implicit equalities: the CLP(R), the Prolog III, and the
quasi-dual one.

A practical comparison with the CLP language Athena was done on some
classical CLP problems. This comparison shows that these methods are almost
equivalent from the efficiency standpoint. The quasi-dual method, which was
considered the most suitable method for the revised simplex, is not much faster
than the others, while the Prolog III method, which was considered computa-
tionally too costly, is the one that performs the least number of steps.

As a future study it would be interesting to combine the Prolog III and the
quasi-dual methods in order to use the quick detection of the absence of implicit
equalities of the latter and the fewer number of steps of the former.
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