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Preface to the Second Edition

As in the first edition the aim has been to provide an up-to-date presentation of

both the theoretical and applied aspects of multivariate analysis using the

invariance approach for readers with a basic knowledge of mathematics and

statistics at the undergraduate level. This new edition updates the original book

by adding new results, examples, problems, and references. The following new

subsections are added. Section 4.3 deals with the symmetric distributions: its

properties and characterization. Section 4.3.6 treats elliptically symmetric

distributions (multivariate) and Section 4.3.7 considers the singular symmetrical

distribution. Regression and correlations in symmetrical distributions are

discussed in Section 4.5.1. The redundancy index is included in Section 4.7. In

Section 5.3.7 we treat the problem of estimation of covariance matrices and the

equivariant estimation under curved model of mean, and covariance matrix is

treated in Section 5.4. Basic distributions in symmetrical distributions are given

in Section 6.12. Tests of mean against one-sided alternatives are given in Section

7.3.1. Section 8.5.2 treats multiple correlation with partial information and

Section 8.1 deals with tests with missing data. In Section 9.5 we discuss the

relationship between discriminant analysis and cluster analysis.

A new Appendix A dealing with tables of chi-square adjustments to the Wilks’

criterion U (Schatkoff, M. (1966), Biometrika, pp. 347–358, and Pillai, K.C.S.

and Gupta, A.K. (1969), Biometrika, pp. 109–118) is added. Appendix B lists the

publications of the author.

In preparing this volume I have tried to incorporate various comments of

reviewers of the first edition and colleagues who have used it. The comments of

v



my own students and my long experience in teaching the subject have also been

utilized in preparing the Second Edition.

Narayan C. Giri
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Preface to the First Edition

This book is an up-to-date presentation of both theoretical and applied aspects of

multivariate analysis using the invariance approach. It is written for readers with

knowledge of mathematics and statistics at the undergraduate level. Various

concepts are explained with live data from applied areas. In conformity with the

general nature of introductory textbooks, we have tried to include many examples

and motivations relevant to specific topics. The material presented here is

developed from the subjects included in my earlier books on multivariate

statistical inference. My long experience teaching multivariate statistical analysis

courses in several universities and the comments of my students have also been

utilized in writing this volume.

Invariance is the mathematical term for symmetry with respect to a certain

group of transformations. As in other branches of mathematics the notion of

invariance in statistical inference is an old one. The unpublished work of Hunt

and Stein toward the end of World War II has given very strong support to the

applicability and meaningfulness of this notion in the framework of the general

class of statistical tests. It is now established as a very powerful tool for proving

the optimality of many statistical test procedures. It is a generally accepted

principle that if a problem with a unique solution is invariant under a certain

transformation, then the solution should be invariant under that transformation.

Another compelling reason for discussing multivariate analysis through

invariance is that most of the commonly used test procedures are likelihood

ratio tests. Under a mild restriction on the parametric space and the probability

vii



density functions under consideration, the likelihood ratio tests are almost

invariant.

Invariant tests depend on the observations only through maximal invariant. To

find optimal invariant tests we need to find the explicit form of the maximal

invariant statistic and its distribution. In many testing problems it is not always

convenient to find the explicit form of the maximal invariant. Stein (1956) gave a

representation of the ratio of probability densities of a maximal invariant by

integrating with respect to a invariant measure on the group of transformations

leaving the problem invariant. Stein did not give explicitly the conditions under

which his representation is valid. Subsequently many workers gave sufficient

conditions for the validity of his representation. Spherically and elliptically

symmetric distributions form an important family of nonnormal symmetric

distributions of which the multivariate normal distribution is a member. This

family is becoming increasingly important in robustness studies where the aim is

to determine how sensitive the commonly used multivariate methods are to the

multivariate normality assumption. Chapter 1 contains some special results

regarding characteristic roots and vectors, and partitioned submatrices of real and

complex matrices. It also contains some special results on determinants and

matrix derivatives and some special theorems on real and complex matrices.

Chapter 2 deals with the theory of groups and related results that are useful for

the development of invariant statistical test procedures. It also contains results on

Jacobians of some important transformations that are used in multivariate

sampling distributions.

Chapter 3 is devoted to basic notions of multivariate distributions and the

principle of invariance in statistical inference. The interrelationship between

invariance and sufficiency, invariance and unbiasedness, invariance and optimal

tests, and invariance and most stringent tests are examined. This chapter also

includes the Stein representation theorem, Hunt and Stein theorem, and

robustness studies of statistical tests.

Chapter 4 deals with multivariate normal distributions by means of the

probability density function and a simple characterization. The second approach

simplifies multivariate theory and allows suitable generalization from univariate

theory without further analysis. This chapter also contains some characterizations

of the real multivariate normal distribution, concentration ellipsoid and axes,

regression, multiple and partial correlation, and cumulants and kurtosis. It also

deals with analogous results for the complex multivariate normal distribution,

and elliptically and spherically symmetric distributions. Results on vec operator

and tensor product are also included here.

Maximum likelihood estimators of the parameters of the multivariate normal,

the multivariate complex normal, the elliptically and spherically symmetric

distributions and their optimal properties are the main subject matter of Chapter

5. The James–Stein estimator, the positive part of the James–Stein estimator,

viii Preface to the First Edition



unbiased estimation of risk, smoother shrinkage estimation of mean with known

and unknown covariance matrix are considered here.

Chapter 6 contains a systematic derivation of basic multivariate sampling

distributions for the multivariate normal case, the complex multivariate normal

case, and the case of symmetric distributions.

Chapter 7 deals with tests and confidence regions of mean vectors of

multivariate normal populations with known and unknown covariance matrices

and their optimal properties, tests of hypotheses concerning the subvectors of m in

multivariate normal, tests of mean in multivariate complex normal and

symmetric distributions, and the robustness of the T2-test in the family of

elliptically symmetric distributions.

Chapter 8 is devoted to a systematic derivation of tests concerning covariance

matrices and mean vectors, the sphericity test, tests of independence, the R2-test,

a special problem in a test of independence, MANOVA, GMANOVA, extended

GMANOVA, equality of covariance matrice in multivariate normal populations

and their extensions to complex multivariate normal, and the study of robustness

in the family of elliptically symmetric distributions.

Chapter 9 contains a modern treatment of discriminant analysis. A brief

history of discriminant analysis is also included here.

Chapter 10 deals with several aspects of principal component analysis in

multivariate normal populations.

Factor analysis is treated in Chapter 11 and various aspects of canonical

correlation analysis are treated in Chapter 12.

I believe that it would be appropriate to spread the materials over two three-

hour one-semester basic courses on multivariate analysis for statistics graduate

students or one three-hour one-semester course for graduate students in

nonstatistic majors by proper selection of materials according to need.

Narayan C. Giri
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1
Vector and Matrix Algebra

1.0. INTRODUCTION

The study of multivariate analysis requires knowledge of vector and matrix

algebra, some basic results of which are considered in this chapter. Some of these

results are stated herein without proof; proofs can be obtained from Besilevsky

(1983), Giri (1993), Graybill (1969), Maclane and Birkoff (1967), Markus and

Mine (1967), Perlis (1952), Rao (1973), or any textbook on matrix algebra.

1.1. VECTORS

A vector is an ordered p-tuple x1; . . . ; xp and is written as

x ¼
x1
..
.

xp

0
@

1
A:

Actually it is called a p-dimensional column vector. For brevity we shall simply

call it a p-vector or a vector. The transpose of x is given by x0 ¼ ðx1; . . . ; xpÞ. If all
components of a vector are zero, it is called the null vector 0. Geometrically a

p-vector represents a point A ¼ ðx1; . . . ; xpÞ or the directed line segment 0A
!

with
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the point A in the p-dimensional Euclidean space Ep. The set of all p-vectors is

denoted by Vp. Obviously Vp ¼ Ep if all components of the vectors are real

numbers. For any two vectors x ¼ ðx1; . . . ; xpÞ0 and y ¼ ð y1; . . . ; ypÞ0 we define

the vector sum xþ y ¼ ðx1 þ y1; . . . ; xp þ ypÞ0 and scalar multiplication by a

constant a by

ax ¼ ðax1; . . . ; axpÞ0:
Obviously vector addition is an associative and commutative operation, i.e.,

xþ y ¼ yþ x; ðxþ yÞ þ z ¼ xþ ðyþ zÞ where z ¼ ðz1; . . . ; zpÞ0, and scalar

multiplication is a distributive operation, i.e., for constants a; b; ðaþ bÞx ¼
axþ bx. For x; y [ Vp; xþ y and ax also belong to Vp. Furthermore, for scalar

constants a; b; aðxþ yÞ ¼ axþ ay and aðbxÞ ¼ bðaxÞ ¼ abx:
The quantity x0y ¼ y0x ¼Pp

1 xiyi is called the dot product of two vectors x; y
in Vp. The dot product of a vector x ¼ ðx1; . . . ; xpÞ0 with itself is denoted by

kxk2 ¼ x0x, where kxk is called the norm of x. Some geometrical significances of

the norm are

1. kxk2 is the square of the distance of the point x from the origin in Ep,

2. the square of the distance between two points ðx1; . . . ; xpÞ; ð y1; . . . ; ypÞ is
given by kx� yk2,

3. the angle u between two vectors x; y is given by cos u ¼ ðx=kxkÞ0ð y=kykÞ.

Definition 1.1.1. Orthogonal vectors. Two vectors x; y in Vp are said to be

orthogonal to each other if and only if x0y ¼ y0x ¼ 0. A set of vectors in Vp is

orthogonal if the vectors are pairwise orthogonal.

Geometrically two vectors x; y are orthogonal if and only if the angle between
them is 908. An orthogonal vector x is called an orthonormal vector if kxk2 ¼ 1.

Definition 1.1.2. Projection of a vector. The projection of a vector x on yð= 0Þ,
both belonging to Vp, is given by kyk�2ðx0 yÞy. (See Fig. 1.1.)

If 0A
!¼ x; 0B

!¼ y, and P is the foot of the perpendicular from the point A on

0B, then 0P
!¼ kyk�2ðx0 yÞy where 0 is the origin of Ep. For two orthogonal

vectors x; y the projection of x on y is zero.

Definition 1.1.3. A set of vectors a1; . . . ;ak in Vp is said to be linearly

independent if none of the vectors can be expressed as a linear combination of the

others.

Thus if a1; . . . ;ak are linearly independent, then there does not exist a set of

scalar constants c1; . . . ; ck not all zero such that c1a1 þ � � � þ ckak ¼ 0. It may be

verified that a set of orthogonal vectors in Vp is linearly independent.
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Definition 1.1.4. Vector space spanned by a set of vectors. Let a1; . . . ;ak be a

set of k vectors in VP. Then the vector space V spanned by a1; . . . ;ak is the set of

all vectors which can be expressed as linear combinations of a1; . . . ;ak and the

null vector 0.

Thus if a;b [ V , then for scalar constants a; b; aaþ bb and aa also belong

to V. Furthermore, since a1; . . . ;ak belong to Vp, any linear combination of

a1; . . . ;ak also belongs to V
p and hence V , Vp. So V is a linear subspace of Vp.

Definition 1.1.5. Basis of a vector space. A basis of a vector space V is a set

of linearly independent vectors which span V.

In Vp the unit vectors e1 ¼ ð1; 0; . . . ; 0Þ0; e2 ¼ ð0; 1; 0; . . . ; 0Þ0; . . . ; ep ¼
ð0; . . . ; 0; 1Þ0 form a basis of Vp. If A and B are two disjoint linear subspaces of Vp

such that A< B ¼ Vp then A and B are complementary subspaces.

Theorem 1.1.1. Every vector space V has a basis and two bases of V have the

same number of elements.

Theorem 1.1.2. Let the vector space V be spanned by the vectors a1; . . . ;ak.

Any element a [ V can be uniquely expressed as a ¼Pk
1 ciai for scalar

constants c1; . . . ; ck, not all zero, if and only if a1; . . . ;ak is a basis of V.

Definition 1.1.6. Coordinates of a vector. If a1; . . . ;ak is a basis of a vector

space V and if a [ V is uniquely expressed as a ¼Pk
1 ciai for scalar constants

c1; . . . ; ck, then the coefficient ci of the vector ai is called the ith coordinate of a
with respect to the basis a1; . . . ;ak.

Figure 1.1. Projection of x on y
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Definition 1.1.7. Rank of a vector space. The number of vectors in a basis of a

vector space V is called the rank or the dimension of V.

1.2. MATRICES

Definition 1.2.1. Matrix. A real matrix A is an ordered rectangular array of

elements aij (reals)

A ¼
a11 � � � a1q

..

. ..
.

ap1 � � � apq

0
B@

1
CA ð1:1Þ

and is written as Ap�q ¼ ðaijÞ.

A matrix with p rows and q columns is called a matrix of dimension p� q(p by

q), the number of rows always being listed first. If p ¼ q, we call it a square

matrix of dimension p.

A p-dimensional column vector is a matrix of dimension p� 1. Two matrices

of the same dimension Ap�q;Bp�q are said to be equal (written as A ¼ B) if

aij ¼ bij for i ¼ 1; . . . ; p; j ¼ 1; . . . ; q. If all aij ¼ 0, then A is called a null matrix

and is denoted 0. The transpose of a p� q matrix A is a q� p matrix A0:

A0 ¼
a11 � � � ap1

..

. ..
.

a1q � � � apq

0
B@

1
CA ð1:2Þ

and is obtained by interchanging the rows and columns of A. Obviously ðA0Þ0 ¼ A.

A square matrix A is said to be symmetric if A ¼ A0 and is skew symmetric if

A ¼ �A0. The diagonal elements of a skew symmetric matrix are zero. In what

follows we shall use the notation “A of dimension p� q” instead of Ap�q.

For any two matrices A ¼ ðaijÞ and B ¼ ðbijÞ of the same dimension p� q we

define the matrix sum Aþ B as a matrix ðaij þ bijÞ of dimension p� q. The

matrix A� B is to be understood in the same sense as Aþ Bwhere the plus (þ ) is

replaced by the minus (2 ) sign. Clearly ðAþ BÞ0 ¼ A0 þ B0;Aþ B ¼ Bþ A, and

for any three matrices A;B;C; ðAþ BÞ þ C ¼ Aþ ðBþ CÞ. Thus the operation

matrix sum is commutative and associative.

For any matrix A ¼ ðaijÞ and a scalar constant c, the scalar product cA is

defined by cA ¼ Ac ¼ ðcaijÞ. Obviously ðcAÞ0 ¼ cA0, so scalar product is a

distributive operation.
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The matrix product of two matrices Ap�q ¼ ðaijÞ and Bq�r ¼ ðbijÞ is a matrix

Cp�r ¼ AB ¼ ðcijÞ where
cij ¼

Pq
k¼1

aikbkj; i ¼ 1; . . . ; p; j ¼ 1; . . . ; r: ð1:3Þ

The product AB is defined if the number of columns of A is equal to the

number of rows of B and in general AB = BA. Furthermore ðABÞ0 ¼ B0A0. The
matrix product is distributive and associative provided the products are defined,

i.e., for any three matrices A, B, C,

1. AðBþ CÞ ¼ ABþ AC (distributive),

2. ðABÞC ¼ AðBCÞ (associative).

Definition 1.2.2. Diagonal matrix. A square matrix A is said to be a diagonal

matrix if all its off-diagonal elements are zero.

Definition 1.2.3. Identity matrix. A diagonal matrix whose diagonal elements

are unity is called an identity matrix and is denoted by I.

For any square matrix A;AI ¼ IA ¼ A.

Definition 1.2.4. Triangular matrix. A square matrix A ¼ ðaijÞ with

aij ¼ 0; j , i, is called an upper triangular matrix. If aij ¼ 0 for j . i, then A is

called a lower triangular matrix.

Definition 1.2.5. Orthogonal matrix. A square matrix A is said to be orthogonal

if AA0 ¼ A0A ¼ I.

Associated with any square matrix A ¼ ðaijÞ of dimension p� p is a unique

scalar quantity jAj, or det A, called the determinant of A which is defined by

jAj ¼P
p
dðpÞa1pð1Þa2pð2Þ � � � appðpÞ; ð1:4Þ

where p runs over all p! permutations of columns subscripts ð1; 2; . . . ; pÞ and
dðpÞ ¼ 1 if the number of inversions in pð1Þ; . . . ;pðpÞ from the standard order

1; . . . ; p is even and dðpÞ ¼ �1 if the number of such inversions is odd. The

number of inversions in a particular permutation is the total number of times in

which an element is followed by numbers which would ordinarily precede it in

the standard order 1; 2; . . . ; p. From Chapter 3 on we shall consistently use the

symbol det A for the determinant and reserve k for the absolute value symbol.

Definition 1.2.6. Minor and cofactor. For any square matrix A ¼ ðaijÞ of

dimension p� p, the minor of the element aij is the determinant of the matrix

formed by deleting the ith row and the jth column of A. The quantity ð�1Þiþj� the

minor of aij is called the cofactor of aij and is symbolically denoted by Aij.
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The determinant of a submatrix (of A) of dimension i� i whose diagonal

elements are also the diagonal elements of A is called a principal minor of order i.

The set of leading principal minors is a set of p principal minors of orders

1; 2; . . . ; p, respectively, such that the matrix of principal minor of order i is a

submatrix of the matrix of the principal minor of order iþ 1; i ¼ 1; . . . ; p. It is
easy to verify that for any square matrix A ¼ ðaijÞ of dimension p� p

jAj ¼ Pp
j¼1

aijAij ¼
Pp
i¼1

aijAij; ð1:5Þ

and for j = j0; i = i0,

Pp
i¼1

aijAi0j0 ¼
Pp
j¼1

aijAi0j0 ¼ 0: ð1:6Þ

Furthermore, if A is symmetric, then Aij ¼ Aji for all i; j. For a triangular or a

diagonal matrix A of dimension p� p with diagonal elements aii; jAj ¼
Qp

i¼1 aii.

If any two columns or rows of A are interchanged, then jAj changes its sign, and
jAj ¼ 0 if two columns or rows of A are equal or proportional.

Definition 1.2.7. Nonsingular matrix. A square matrix A is called nonsingular if

jAj = 0. If jAj ¼ 0, then we call it a singular matrix.

The rows and the columns of a nonsingular matrix are linearly independent.

Since for any two square matrices A;B; jABj ¼ jAkBj, we conclude that the

product of two nonsingular matrices is a nonsingular matrix. However, the sum of

two nonsingular matrices is not necessarily a nonsingular matrix. One such trivial

case is A ¼ �B where both A and B are nonsingular matrices.

Definition 1.2.8. Inverse matrix. The inverse of a nonsingular matrix A of

dimension p� p is the unique matrix A�1 such that A�1A ¼ AA�1 ¼ I.

Let Aij be the cofactor of the element aij of A and

C ¼

A11

jAj � � � A1p

jAj
..
. ..

.

Ap1

jAj � � � App

jAj

0
BBBBB@

1
CCCCCA

ð1:7Þ

From (1.6) and (1.7) we get AC0 ¼ I. Hence A�1 ¼ C0. The inverse matrix is

defined only for the nonsingular matrix and A�1 is symmetric if A is symmetric.

Furthermore jA�1j ¼ ðjAjÞ�1; ðA0Þ�1 ¼ ðA�1Þ0, and ðABÞ�1 ¼ B�1A�1.
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1.3. RANK AND TRACE OF A MATRIX

Let A be a matrix of dimension p� q. Let RðAÞ be the vector space spanned by the
rows of A and let CðAÞ be the vector space spanned by the columns of A. The

space R(A) is called the row space of A and its rank rðAÞ is called the row rank of

A. The space CðAÞ is called the column space of A and its rank cðAÞ is called the

column rank of A. For any matrix A; rðAÞ ¼ cðAÞ.

Definition 1.3.1. Rank of matrix. The common value of the row rank and the

column rank is called the rank of the matrix A and is denoted by rðAÞ.

For any matrix A of dimension p� q; q , p; rðAÞ may vary from 0 to q. If

rðAÞ ¼ q, then A is called the matrix of full rank. The rank of the null matrix 0 is

0. For any two matrices A, B for which AB is defined, the columns of AB are linear

combinations of the columns of A. Thus the number of linearly independent

columns of AB cannot exceed the number of linearly independent columns of A.

Hence rðABÞ � rðAÞ. Similarly, considering the rows of AB we can argue that

rðABÞ � rðBÞ. Hence rðABÞ � minðrðAÞ; rðBÞÞ.

Theorem 1.3.1. If A, B, C are matrices of dimensions p� q; p� p; q� q,

respectively, then rðAÞ ¼ rðACÞ ¼ rðBAÞ ¼ rðBACÞ.

Definition 1.3.2. Trace of a matrix. The trace of a square matrix A ¼ ðaijÞ of
dimension p� p is defined by the sum of its diagonal elements and is denoted by

trA ¼Pp
1 aii.

Obviously trA ¼ trA0; trðAþ BÞ ¼ trðAÞ þ trðBÞ. Furthermore, trAB ¼ trBA,

provided both AB and BA are defined. Hence for any orthogonal matrix u,
tru0Au ¼ trAuu0 ¼ trA.

1.4. QUADRATIC FORMS AND POSITIVE DEFINITE MATRIX

A quadratic form in the real variables x1; . . . ; xp, is an expression of the form

Q ¼Pp
i¼1

Pp
j¼1 aijxixj, where aij are real constants. Writing x ¼

ðx1; . . . ; xpÞ0;A ¼ ðaijÞ we can write Q ¼ x0Ax. Without any loss of generality

we can take the matrix A in the quadratic form Q to be a symmetric one. Since Q

is a scalar quantity

Q ¼ Q0 ¼ x0A0x ¼ 1

2
ðQþ Q0Þ ¼ x0ððAþ A0Þ=2Þx

and 1
2
ðAþ A0Þ is a symmetric matrix.
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Definition 1.4.1. Positive definite matrix. A square matrix A or the associated

quadratic form x0Ax is called positive definite if x0Ax . 0 for all x = 0 and is

called positive semidefinite if x0Ax � 0 for all x.

The matrix A or the associated quadratic form x0Ax is negative definite or

negative semidefinite if �x0Ax is positive definite or positive semidefinite,

respectively.

Example 1.4.1.

ðx1; x2Þ 2 1

1 3

� �
ðx1; x2Þ0 ¼ 2x21 þ 2x1x2 þ 3x22 ¼ 2 x1 þ 1

2
x2

� �2

þ 5

2
x22 . 0

for all x1 = 0; x2 = 0. Hence the matrix
2 1

1 3

� �
is positive definite.

1.5. CHARACTERISTIC ROOTS AND VECTORS

The characteristic roots of a square matrix A ¼ ðaijÞ of dimension p� p are given

by the roots of the characteristic equation

jA� lIj ¼ 0 ð1:8Þ
where l is real. Obviously this is an equation of degree p in l and thus has exactly

p roots. If A is a diagonal matrix, then the diagonal elements are themselves the

characteristic roots of A. In general we can write (1.8) as

ð�lÞp þ ð�lÞp�1S1 þ ð�lÞp�2S2 þ � � � þ ð�lÞSp�1 þ jAj ¼ 0 ð1:9Þ
where Si is the sum of all principal minors of order i of A. In particular, S1 ¼ trA.

Thus the product of the characteristic roots of A is equal to jAj and the sum of the

characteristics roots of A is equal to tr A. The vector x ¼ ðx1; . . . ; xpÞ0Þ, not
identically zero, satisfying

ðA� lIÞx ¼ 0; ð1:10Þ
is called the characteristic vector of the matrix A, corresponding to its

characteristic root l. Clearly, if x is a characteristic vector of the matrix A

corresponding to its characteristic root l, then any scalar multiple cx; c = 0, is

also a characteristic vector of A corresponding to l. Since, for any orthogonal

matrix u of dimension p� p,

juAu0 � lIj ¼ juAu0 � luu0j ¼ jA� lIj;
the characteristic roots of the matrix A remain invariant (unchanged) with respect

to the transformation A ! uAu0.
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Theorem 1.5.1. If A is a real symmetric matrix (of order p� p), then all its

characteristic roots are real.

Proof. Let l be a complex characteristic root of A and let xþ iy; x ¼
ðx1; . . . ; xpÞ0; y ¼ ðy1; . . . ; ypÞ0, be the characteristic vector (complex)

corresponding to l. Then from (1.10)

Aðxþ iyÞ ¼ lðxþ iyÞ; ðx� iyÞ0Aðxþ iyÞ ¼ lðx0xþ y0yÞ:

But

ðx� iyÞ0Aðxþ iyÞ ¼ x0Axþ y0Ay:

Hence we conclude that l must be real. Q.E.D.

Note The characteristic vector z corresponding to a complex characteristic root

l must be complex. Otherwise Az ¼ lz will imply that a real vector is equal to a

complex vector.

Theorem 1.5.2. The characteristic vectors corresponding to distinct

characteristic roots of a symmetric matrix are orthogonal.

Proof. Let l1; l2 be two distinct characteristic roots of a symmetric (real)

matrix A and let x ¼ ðx1; . . . ; xpÞ0; y ¼ ðy1; . . . ; ypÞ0 be the characteristic vectors

corresponding to l1; l2, respectively. Then

Ax ¼ l1x;Ay ¼ l2y:

So

y0Ax ¼ l1y
0x; x0Ay ¼ l2x

0y:

Thus

l1x
0y ¼ l2x

0y:

Since l1 = l2 we conclude that x0y ¼ 0. Q.E.D.

Let l be a characteristic root of a symmetric positive definite matrix A and let x

be the corresponding characteristic vector. Then

x0Ax ¼ lx0x . 0:

Hence we get the following Theorem.
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Theorem 1.5.3. The characteristic roots of a symmetric positive definite matrix

are all positive.

Theorem 1.5.4. For every real symmetric matrix A, there exists an orthogonal

matrix u such that uAu0 is a diagonal matrix whose diagonal elements are the

characteristic roots of A.

Proof. Let l1 � l2 � � � � lp denote the characteristic roots of A including

multiplicities and let xi be the characteristic vector of A, corresponding to the

characteristic root li; i ¼ 1; . . . ; p. Write

yi ¼ xi=kxik; i ¼ 1; . . . ; p;

obviously y1; . . . ; yp are the normalized characteristic vectors of A. Suppose there

exists sð� pÞ orthonormal vectors y1; . . . ; ys such that ðA� liIÞyi ¼ 0;
i ¼ 1; . . . ; s. Denoting by Ar the product of r matrices each equal to A we get

Aryi ¼ liA
r�1yi ¼ � � � ¼ lri yi; i ¼ 1; . . . ; s:

Let x be orthogonal to the vector space spanned by y1; . . . ; ys. Then

ðArxÞ0yi ¼ x0Aryi ¼ lri x
0yi ¼ 0

for all r including zero and i ¼ 1; . . . ; s. Hence any vector belonging to the vector
space spanned by the vectors x;Ax;A2x; . . . is orthogonal to any vector spanned

by y1; . . . ; ys. Obviously not all vectors x;Ax;A2x; . . . are linearly independent.

Let k be the smallest value of r such that for real constants c1; . . . ; ck

Akxþ c1A
k�1xþ � � � þ ckx ¼ 0:

Factoring the left-hand side of this expression we can, for constants u1; . . . ; uk
write it as

Yk
i¼1

ðA� uiIÞx ¼ 0:

Let

ysþ1 ¼
Yk
i¼2

ðA� uiIÞx:

Then ðA� u1IÞysþ1 ¼ 0. In other words there exists a normalized vector ysþ1 in

the space spanned by ðx;Ax;A2x; . . .Þ which is a characteristic vector of A

corresponding to its root u1 ¼ lsþ1 (say) and ysþ1 is orthogonal to y1; . . . ; ys.
Since y1 can be chosen corresponding to any characteristic root to start with, we

have proved the existence of p orthogonal vectors y1; . . . ; yp satisfying
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Ayi ¼ liyi; i ¼ 1; . . . ; p. Let u be an orthogonal matrix of dimension p� p with

yi as its rows. Obviously then uAu0 is a diagonal matrix with diagonal elements

l1; . . . ; lp. Q.E.D.

From this theorem it follows that any positive definite quadratic form x0Ax can
be transformed into a diagonal form

Pp
i¼1 liy

2
i where y ¼ ðy1; . . . ; ypÞ0 ¼ ux and

the orthogonal matrix u is such that uAu0 is a diagonal matrix with diagonal

elements l1; . . . ; lp (characteristic roots of A). Note that x
0Ax ¼ ðuxÞ0ðuAu0ÞðuxÞ.

Since the characteristic roots of a positive definite matrix A are all positive,

jAj ¼ juAu0j ¼ Qp
i¼1 li . 0.

Theorem 1.5.5. For every positive definite matrix A there exists a nonsingular

matrix C such that A ¼ C0C.

Proof. From Theorem 1.5.4 there exists an orthogonal matrix u such that uAu0 is
a diagonal matrix D with diagonal elements l1; . . . ; lp, the characteristic roots of
A. Let D

1
2 be a diagonal matrix with diagonal elements l

1
2

1; . . . ; l
1
2
p and let

D
1
2u ¼ C. Then A ¼ u0Du ¼ C0C and obviously C is a nonsingular matrix.

Q.E.D.

Any positive definite quadratic form x0Ax can be transformed to a diagonal

form y0y where y ¼ Cx and C is a nonsingular matrix such that A ¼ C0C.
Furthermore, given any positive definite matrix A there exists a nonsingular

matrix B such that B0AB ¼ IðB ¼ C�1Þ.

Theorem 1.5.6. If A is a positive definite matrix, then A�1 is also positive

definite.

Proof. Let A ¼ C0C where C is a nonsingular matrix. Then

x0A�1x ¼ ððC0Þ�1xÞ0ððC0Þ�1xÞ . 0 for all x = 0:

Q.E.D.

Theorem 1.5.7. Let A be a symmetric and at least positive semidefinite matrix

of dimension p� p and of rank r � p. Then A has exactly r positive characteristic

roots and the remaining p� r characteristic roots of A are zero.

The proof is left to the reader.
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Theorem 1.5.8. Let A be a symmetric nonsingular matrix of dimension p� p.

Then there exists a nonsingular matrix C such that

CAC0 ¼ I 0

0 �I

� �

where the order of I is the number of positive characteristic roots of A and that of

�I is the number of negative characteristic roots of A.

Proof. From theorem 1.5.4 there exists an orthogonal matrix u such that

uAu0 is a diagonal matrix with diagonal elements l1; . . . ; lp, the character-

istic roots of A. Without any loss of generality let us assume

that l1 � � � � � lq . 0 . lqþ1 � � � � � lp. Let D be a diagonal matrix with

diagonal elements ðl1Þ�1
2; . . . ; ðlqÞ�1

2; ð�lqþ1Þ�1
2; . . . ; ð�lpÞ�1

2, respectively.

Then

DuAu0D0 ¼ I 0

0 �I

� �

If A is a symmetric square matrix (order p) of rank rð� pÞ then there exists a

nonsingular matrix C such that

CAC0 ¼
I 0 0

0 �I 0

0 0 0

0
@

1
A

where the order of I is the number of positive characteristic roots of A and, the

order of I plus the order of �I is equal to r. Q.E.D.

Theorem 1.5.9. Let A, B be two matrices of dimensions p� q; q� p

respectively. (a) Every nonzero characteristic root of AB is also a

characteristic root of BA. (b) jIp þ ABj ¼ jIqþ BAj.
Proof. (a) Let l be a nonzero characteristic root of AB. Then jAB� lIpj ¼ 0.

This implies

lIp A

B Iq

����
���� ¼ 0:

But we can obviously write this as

lIq B

A Ip

����
���� ¼ 0;

which implies jBA� lIqj ¼ 0.

12 Chapter 1



(b) Since

Ip þAB A

0 Iq

� �
¼ Ip A

�B Iq

� �
Ip 0

B Iq

� �

we get

jIp þ ABj ¼ Ip A

�B Iq

����
����

Similarly from

Ip A

0 Iq þ BA

� �
¼ Ip 0

B Iq

� �
Ip A

�B Iq

� �

we get

jIq þ BAj ¼ Ip A

�B Iq

����
����:

Q.E.D.

Thus it follows from Theorem 1.5.7 that a positive semidefinite quadratic form

x0Ax of rank r � p can be reduced to the diagonal form
Pr

1 liy
2
i where l1; . . . ; lr

are the positive characteristic roots of A and y1; . . . ; yr are linear combinations of

the components x1; . . . ; xp of x.

Theorem 1.5.10. If A is positive definite and B is positive semidefinite of the

same dimension p� p, then there exists a nonsingular matrix C such that CAC0 ¼
I and CBC0 is diagonal matrix with diagonal elements l1; . . . ; lp, the roots of the
equation jB� lAj ¼ 0.

Proof. Since A is positive definite, there exists a nonsingular matrix D such that

DAD0 ¼ I. Let DBD0 ¼ B*0. Since B*0 is a real symmetric matrix there exists an

orthogonal matrix u such that uDBD0u0 is a diagonal matrix. Write uD ¼ C,

where C is a nonsingular matrix. Obviously CAC0 ¼ I and CBC0 is a diagonal

matrix whose diagonal elements are the characteristic roots of B�, which are, in

turn, the roots of jB� lAj ¼ 0. Q.E.D.

Theorem 1.5.11. Let A be a matrix of dimension p� q; p , q. Then AA0 is
symmetric and positive semidefinite if the rank of A , p and positive definite if

the rank of A ¼ p.
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Proof. Obviously AA0 is symmetric and the rank of AA0 is equal to the rank of A.
Let the rank of AA0 be rð� pÞ Since AA0 is symmetric there exists an orthogonal

p� p matrix u such that uAA0u0 is a diagonal matrix with nonzero diagonal

elements l1; . . . ; lr. Let x ¼ ðx1; . . . ; xpÞ0; y ¼ ux. Then

x0AA0x ¼Pr
1

liy
2
i � 0 for all x:

If r ¼ p, then

x0AA0x ¼Pp
1

liy
2
i . 0 for all x = 0:

Q.E.D.

Theorem 1.5.12. Let A be a symmetric positive definite matrix of dimension

p� p and let B be a q� p matrix. Then BAB0 is symmetric and at least positive

semidefinite of the same rank as B.

Proof. Since A is positive definite there exists a nonsingular matrix C such that

A ¼ CC0. Hence BAB0 ¼ ðBCÞðBCÞ0. Proceeding exactly in the same way as in

Theorem 1.5.11 we get the result. Q.E.D.

Theorem 1.5.13. Let A be a symmetric positive definite matrix and let B be a

symmetric positive semidefinite matrix of the same dimension p� p and of rank

r � p. Then

1. all roots of the equation jB� lAj ¼ 0 are zero if and only if B ¼ 0;

2. all roots of jB� lAj ¼ 0 are unity if and only if B ¼ A.

Proof. Since A is positive definite there exists a nonsingular matrix C such that

CAC0 ¼ I and CBC0 is a diagonal matrix whose diagonal elements are the roots of

the equation jCBC0 � lIj ¼ 0 (see Theorem 1.5.10). Since the rank of

CBC0 ¼ rank B, by Theorem 1.5.7, and the fact that jCBC0 � lIj ¼ 0 implies

jB� lAj ¼ 0 we conclude that all roots of jB� lAj ¼ 0 are zero if and only if

the rank of B is zero, i.e., B ¼ 0. Let l ¼ 1� u. Then jB� lAj ¼ jB� Aþ uAj.
By part (i) all roots u of jB� Aþ uAj ¼ 0 are zero if and only if

B� A ¼ 0. Q.E.D.

To prove Theorem 1.5.14 we need the following Lemmas.
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Lemma 1.5.1. Let X be a p� q matrix of rank r � q � p and let U be a r � q

matrix of rank r. If X0X ¼ U0U then there exists a p� p orthogonal matrix u such
that uX ¼ U

0

� �
.

Proof. Let V be the subspace spanned by the columns of X and let V? be the

space of all vectors orthogonal to V. Let R be an orthogonal basis matrix of V?.
Obviously R is a p� ðp� rÞmatrix. Since UU 0 is of rank r ðUU 0Þ�1 exists. Write

u ¼ ðUU 0Þ�1UX0

R0

� �
:

Since X0R ¼ 0 we get

uu0 ¼ ðUU 0Þ�1UU 0UU 0ðUU 0Þ�1 ðUU 0Þ�1UX0R
R0XU0ðUU 0Þ�1 R0R

 !

¼ I 0

0 I

� �
¼ I;

and u is an p� p orthogonal matrix satisfying uX ¼ U
0

� �
. Q.E.D.

Lemma 1.5.2. Let X, Y be p� q matrices with q , p. X0X ¼ Y 0Y if and only if

there exists an p� p orthogonal matrix u such that Y ¼ uX.

Proof. If Y ¼ uX then X0X ¼ Y 0uu0Y ¼ Y 0Y . To prove the converse let us

assume that the rank of ðXÞ ¼ r ¼ rankðYÞ; r � q and letU be a r � qmatrix such

that

U 0U ¼ X0X ¼ Y 0Y:

By Lemma 1.5.1 there exist p� p orthogonal matrices u1; u2 such that

u1X ¼ U

0

� �
¼ u2Y :

This implies that

Y ¼ u02u1X ¼ u3X

where u3 is a p� p orthogonal matrix. Q.E.D.

Theorem 1.5.14. Let A be a p� qðq � pÞ matrix of rank q. There exist a q� q

nonsingular matrix B and a p� p orthogonal matrix u such that

A ¼ u
Iq

0

� �
B:
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Proof. Since A0A is positive definite there exists a q� q nonsingular matrix B

such that A0A ¼ B0B. By Lemma 1.5.1 there exists a p� q matrix uð1Þ such that

A ¼ uð1ÞB where u0ð1Þuð1Þ ¼ Iq. Choosing uð2Þ a p� ðp� qÞ matrix such that u ¼
ðuð1Þ; uð2ÞÞ is orthogonal we get

A ¼ uð1ÞB ¼ u
Iq

0

� �
B:

Q.E.D.

1.6. PARTITIONED MATRIX

A matrix A ¼ ðaijÞ of dimension p� q is said to be partitioned into submatrices

Aij; i; j ¼ 1; 2, if A can be written as

A ¼ A11 A12

A21 A22

� �

where A11 ¼ ðaijÞ ði ¼ 1; . . . ;m; j ¼ 1; . . . ; nÞ; A12 ¼ ðaijÞ ði ¼ 1; . . . ;m; j ¼
nþ 1; . . . ; qÞ; A21 ¼ ðaijÞ ði ¼ mþ 1; . . . ; p; j ¼ 1; . . . ; nÞ; A22 ¼ ðaijÞ ði ¼
mþ 1; . . . ; p; j ¼ nþ 1; . . . ; qÞ: If two matrices A, B of the same dimension

are similarly partitioned, then

Aþ B ¼ A11 þ B11 A12 þ B12

A21 þ B21 A22 þ B22

� �
:

Let the matrix A of dimension p� q be partitioned as above and let the matrix C

of dimension q� r be partitioned into submatrices Cij where C11;C12 have n

rows. Then

AC ¼ A11C11 þ A12C21 A11C12 þ A12C22

A21C11 þ A22C21 A21C12 þ A22C22

� �
:

Theorem 1.6.1. For any square matrix

A ¼ A11 A12

A21 A22

� �

where A11;A22 are square submatrices and A22 is nonsingular, jAj ¼
jA22jjA11 � A12A

�1
22 A21j.
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Proof.

A11 A12

A21 A22

����
���� ¼

A11 A12

A21 A22

����
����

I 0

�A�1
22 A21 I

����
���� ¼

A11 � A12A
�1
22 A21 A12

0 A22

�����

�����

¼ jA22jjA11 � A12A
�1
22 A21j:

Q.E.D.

Theorem 1.6.2. Let the symmetric matrix A of dimension p� p be partitioned

as

A ¼ A11 A12

A21 A22

� �

where A11;A22 are square submatrices of dimensions q� q; ðp� qÞ � ðp� qÞ,
respectively, and let A22 be nonsingular. Then A11 � A12A

�1
22 A21 is a symmetric

matrix of rank r � ðp� qÞ where r is the rank of A.
Proof. Since A is symmetric, A11 � A12A

�1
22 A21 is obviously symmetric. Now

rank A ¼ rank
I �A12A

�1
22

I

� �
A11 A12

A21 A22

� �
I 0

�A�1
22 A21 I

� �� �
:

¼ rank
A11 � A12A

�1
22 A21 0

0 A22

� �
:

But A22 is nonsingular of rank p� q. Hence the rank of A11 � A12A
�1
22 A21 is

r � ð p� qÞ Q.E.D.

Theorem 1.6.3. A symmetric matrix

A ¼ A11 A12

A21 A22

� �

of dimension p� p (A11 is of dimension q� q) is positive definite if and only if

A11;A22 � A21A
�1
11 A12 are positive definite.
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Proof. Let x ¼ ðx0ð1Þ; x0ð2ÞÞ where x0ð1Þ ¼ ðx1; . . . ; xqÞ; x0ð2Þ ¼ ðxqþ1; . . . ; xpÞ. Then

x0Ax ¼ ðxð1Þ þ A�1
11 A12xð2ÞÞ0A11ðxð1Þ þ A�1

11 A12xð2ÞÞ
þ x0ð2ÞðA22 � A21A

�1
11 A12Þxð2Þ:

ð1:11Þ

Furthermore, if A is positive definite, then obviously A11 and A22 are both positive

definite. Now from (1.11) if A11;A22 � A21A
�1
11 A12 are positive definite, then A is

positive definite. Conversely, if A and consequently A11 are positive definite, then

by taking xð= 0Þ such that xð1Þ þ A�1
11 A12xð2Þ ¼ 0 we conclude that A22 �

A21A
�1
11 A12 is positive definite. Q.E.D.

Theorem 1.6.4. Let a positive definite matrix A be partitioned into submatrices

Aij; i; j ¼ 1; 2, where A11 is a square submatrix, and let the inverse matrix

A�1 ¼ B be similarly partitioned into submatrices Bij; i; j ¼ 1; 2. Then

A�1
11 ¼ B11 � B12B

�1
22 B21; A�1

22 ¼ B22 � B21B
�1
11 B12:

Proof. Since AB ¼ I, we get

A11B11 þ A12B21 ¼ I; A11B12 þ A12B22 ¼ 0;

A21B11 þ A22B21 ¼ 0; A21B12 þ A22B22 ¼ I:

Solving these matrix equations we obtain

A11B11 � A11B12B
�1
22 B21 ¼ I; A22B22 � A22B21B

�1
11 B12 ¼ I;

or, equivalently,

A�1
11 ¼ B11 � B12B

�1
22 B21; A�1

22 ¼ B22 � B21B
�1
11 B12:

Q.E.D.

From this it follows that A�1
11 A12 ¼ �B12B

�1
22 ;B12 ¼ �A�1

11 ðA12ÞB22.

Theorem 1.6.5. A symmetric positive definite quadratic form x0Ax, where

A ¼ ðaijÞ, can be transformed to ðTxÞ0ðTxÞ where T is the unique upper triangular

matrix with positive diagonal elements such that A ¼ T 0T .
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Proof. Let Qpðx1; . . . ; xpÞ ¼ x0Ax. Then

Qpðx1; . . . ; xpÞ ¼ ða11Þ12x1 þ
Pp
j¼2

a1j

ða11Þ12
xj

 !2

þ Pp
j;k¼2

a11ajk � a1ja1k

a11

� �
xjxk

¼ a
1
2

11x1 þ
Pp
j¼2

a1j

ða11Þ12
xj

 !2

þ Qp�1ðx2; . . . ; xpÞ:

ð1:12Þ

Let

ða11Þ12x1 þ
Pp
j¼2

a1j

ða11Þ xj ¼
Pp
j¼1

T1jxj:

Since Qp is positive definite Qp�1 is also positive definite so that by continuing

the procedure of completing the square, we can write

Qpðx1; . . . ; xpÞ ¼
Pp
j¼1

T1jxj

 !2

þ Pp
j¼2

T2jxj

 !2

þ � � � þ ðTppxpÞ2 ¼ ðTxÞ0ðTxÞ

where T is the unique upper triangular matrix

T ¼
T11 T12 � � � T1p
0 T22 � � � T2p

..

. ..
. ..

.

0 0 � � � Tpp

0
BBB@

1
CCCA

with Tii . 0; i ¼ 1; . . . ; p. Q.E.D.

Thus a symmetric positive definite matrix A can be uniquely written as A ¼
T 0T where T is the unique nonsingular upper triangular matrix with positive

diagonal elements. From (1.12) it follows that

Qpðx1; . . . ; xpÞ ¼ ðappÞ12xp þ
P1

j¼p�1

apj

ðappÞ12
xj

 !2

þQp�1ðx1; . . . ; xp�1Þ
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so that we can write

Qpðx1; . . . ; xpÞ þ
Pp
j¼1

Tpjxj

 !2

þ Pp�1

j¼1

Tp�1xj

 !2

þ � � � þ ðT11x1Þ2:

Hence, given any symmetric positive definite matrix A there exists a unique

nonsingular lower triangular matrix T with positive diagonal elements, such that

A ¼ T 0T . Let u be an orthogonal matrix in the diagonal form. For any upper

(lower) triangular matrix T, uT is also an upper (lower) triangular matrix and

T 0T ¼ ðuTÞ0ðuTÞ. Thus given any symmetric positive definite matrix A, there

exists a nonsingular lower triangular matrix T, not necessarily with positive

diagonal elements, such that A ¼ T 0T . Obviously such decomposition is not

unique.

Theorem 1.6.6. Let X ¼ ðX1; . . . ;XpÞ0. There exists an orthogonal matrix u of

dimension p� p such that uX ¼ ððX0XÞ12; 0; . . . ; 0Þ0.

Proof. Let

u ¼

x1

ðX0XÞ12
; . . . ;

Xp

ðX0XÞ12
u21 ; . . . ; u2p
..
. ..

.

up1 ; . . . ; upp

0
BBBBBB@

1
CCCCCCA

be an orthogonal matrix of dimension p� p where the uij are arbitrary. Let

Y ¼ ðY1; . . . ; YpÞ0 ¼ uX. Then

Y1 ¼ ðX0XÞ12;

Yi ¼
Pp
j¼1

uijXj ¼ 0; i . 1:

Q.E.D.

Example 1.6.1. Let

S ¼
s11 s12 . . . s1p

s12 s22 . . . s2p

..

. ..
. ..

.

s1p s2p . . . spp

0
BBB@

1
CCCA; T ¼

t11 0 . . . . . . 0

t21 t22 0 . . . 0

..

. ..
. ..

. ..
.

tp1 tp2 . . . . . . tpp

0
BB@

1
CCA
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and S ¼ TT 0. Then

t211 ¼ s11; t11ti1 ¼ si1; i ¼ 1; . . . ; p;

t221 þ t222 ¼ s22; t21ti1 þ t22ti2 ¼ si2; i ¼ 2; . . . ; p:

Continuing in the same way for other rows we obtain

ti1 ¼ si1ffiffiffiffiffiffiffi
s11

p ; i ¼ 1; . . . ; p; tjj ¼
�
sjj �

Pj�1

k¼1

t2jk

�1
2

;

tij ¼ 0; j . i; tij ¼ sij �
Pj�1

k¼1 tjktik

tjj

for j � i; j ¼ 2; . . . ; p.

1.7. SOME SPECIAL THEOREMS ON MATRIX DERIVATIVES

Let x ¼ ðx1; . . . ; xpÞ0 and let the partial derivative operator @
@x be defined by

@

@x
¼ @

@x1
; . . . ;

@

@xp

� �0
:

For any scalar function f ðxÞ of the vector x, the vector derivative of f is defined by
@f

@x
¼ @

@x1
; . . . ;

@

@xp

� �0
:

Let

f ðxÞ ¼ x0Ax

where A ¼ ðaijÞ is a p� p matrix. Since

x0Ax ¼
aiix

2
i þ 2xi

P
j=i aijxj þ

P
k=i
l=i

aklxkxl; if A is symmetric;

aiix
2
i þ xi

P
j=i aijxj þ xj

P
j=i ajixi

þPk=i
l=i

aklxkxl; if A is not symmetric:

8>>><
>>>:

We obtain

@f ðxÞ
@xi

¼
2
Pp

j¼1 aijxj; if A is symmetric;

Pp
j¼1 aijxj þ

Pp
j¼1 ajixj; if A is not symmetric:

8<
:
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Hence

@f ðxÞ
@x

¼ 2Ax if A is symmetric;

ðAþ A0Þx if A is not symmetric:

(

Let A ¼ ðaijÞ be a matrix of dimension p� p. Denoting by Aij the cofactor of aij
we obtain jAj ¼Pp

i¼1 aijAij. Thus

@jAj
@aii

¼ Aii;
@jAj
@aij

¼ Aij:

Let f ðxÞ be a scalar function of a p� q matrix variable x ¼ ðxijÞ. The matrix

derivative of f is defined by the matrix of partial derivatives

@f

@x
¼ @f

@xij

� �
:

From above it follows that

@jAj
@A

¼
jAjðA�1Þ0; if A is not symmetric

jAj½2ðA�1Þ0 � diagðA�1Þ�; if A is symmetric:

8<
:

Hence

@ log jAj
@A

¼ 1

jAj
@jAj
@A

¼
ðA�1Þ0; if A is not symmetric

2ðA�1Þ0 � diagðA�1Þ if A is symmetric:

8<
:

The following results can be easily deduced.

Let A ¼ ðaijÞ be a m� p matrix and x be a p� m matrix. Then

@trðAxÞ
@x

¼ A0

and, for m ¼ p,

@trðxx0Þ
@x

¼ 2x; if x is not symmetric;

2ðxþ x0Þ � 2diagðxÞ; if x is symmetric:

(

Theorem 1.7.1. Let A be a symmetric and at least positive semidefinite matrix

of dimension p� p. The largest and the smallest values of x0Ax=x0x for all x = 0

are the largest and the smallest characteristic roots of A, respectively.

Proof. Let x0Ax=x0x ¼ l. Differentiating l with respect to the components of x

the stationary values of l are given by the characteristic equation ðA� lIÞx ¼ 0.

Eliminating x we get jA� lIj ¼ 0. Thus the values of l are the characteristic
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roots of the matrix A and consequently the largest value of l corresponds to the

largest characteristic root of A, and the smallest value of l corresponds to the

smallest characteristic root of A. Q.E.D.

From this theorem it follows that if g1 � x0Ax=x0x � g2 for all x = 0, then

g1 � l1 � lp � g2 where l1; lp are the smallest and the largest characteristic

roots of A, respectively.

Theorem 1.7.2. Let A be a symmetric and at least positive semidefinite matrix

of dimension p� p and let B be a symmetric and positive definite matrix of the

same dimension. The largest and the smallest values of x0Ax=x0Bx for all x = 0

are the largest and the smallest roots respectively of the characteristic equation

jA� lBj ¼ 0.

Proof. Let x0Ax=x0Bx ¼ l. Differentiating l with respect to the components of

x, the stationary values of l are given by the characteristic equation

ðA� lBÞx ¼ 0; hence by eliminating x we conclude that the smallest and the

largest values of l are given by the smallest and the largest roots of the

characteristic equation jA� lBj ¼ 0. Q.E.D.

If g1 � x0Ax=x0Bx � g2 for all x = 0, then g1 � l1 � lp � g2 where l1; lp
are the smallest and the largest roots of the characteristic equation jA� lBj ¼ 0.

Example 1.7.1. Let A be a positive definite matrix of dimension p� p with

characteristic roots l1 � l2 � � � � � lp . 0 and corresponding normalized

characteristic vectors u1; u2; . . . ; up. Let u be the orthogonal matrix of dimension

p� p with columns u1; u2; . . . ; up;D be the diagonal matrix of dimension p� p

with diagonal elements l1; l2; . . . ; lp. Let A
1
2 ¼ uD

1
2u0; y ¼ u0x; y ¼ ð y1; . . . ; ypÞ0

such that D
1
2D

1
2 ¼ D with D

1
2 diagonal. Now

x0Ax
x0x

¼ x0A
1
2A

1
2x

x0uu0x
¼ y0Dy

y0y
¼
Pp

1 liy
2
iPp

1 y
2
i

:

Hence for all x orthogonal to u1; . . . ; uk we get

0 ¼ u0jx ¼ u0jð
Pp

1 uiyiÞ ¼ y1u
0
ju1 þ � � � þ ypu

0
jup ¼ yj

for j � k and

x0Ax
x0x

¼
Pp

kþ1 liy
2
iPp

kþ1 y
2
i

� lkþ1

Pp
kþ1 y

2
iPp

kþ1 y
2
i

¼ lkþ1:
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Taking ykþ1 ¼ lkþ1; ykþ2 ¼ � � � ¼ yp ¼ 0 we get for all x orthogonal to

u1; . . . ; uk

max
x

x0Ax
x0x

¼ lkþ1:

Let b and d be any two vectors of the same dimension p� 1. Then

b0d ¼ b0A
1
2A

�1
2 d ¼ ðA1

2bÞ0ðA�1
2 dÞ � ðb0AbÞðd0A�1dÞ;

the inequality is obtained by applying the Cauchy-Schwartz to the vectors A
1
2b

and A
�1
2 d.

1.8. COMPLEX MATRICES

In this section we shall briefly discuss complex matrices, matrices with complex

elements, and state some theorems without proof concerning these matrices

which are useful for the study of complex Gaussian distributions. For a proof the

reader is referred to MacDuffee (1946). The adjoint operator (conjugate

transpose) will be denoted by an asterisk (�). The adjoint A� of a complex matrix

A ¼ ðaijÞ of dimension p� q is the q� p matrix A� ¼ ð�aaijÞ0, where the over-bar
ð�Þ denotes the conjugate and the prime ð0Þ denotes the transpose. Clearly for any

two complex matrices A;B; ðA�Þ� ¼ A; ðABÞ� ¼ B�A�, provided AB is defined. A

square complex matrix A is called unitary if AA� ¼ I (real identity matrix) and it

is called Hermitian if A ¼ A�. A square complex matrix is called normal if

AA� ¼ A�A. A Hermitian matrix A of dimension p� p is called positive definite

(semidefinite) if for all complex non-null p-vectors j; j�Aj . 0ð� 0Þ. Since
ðj�AjÞ� ¼ j�Aj

for any Hermitian matrix A, the Hermitian quadratic form j�Aj assumes only real

values.

Theorem 1.8.1. If A is an Hermitian matrix of dimension p� p, there exists a

unitary matrix U of dimension p� p such that U�AU is a diagonal matrix whose

diagonal elements l1; . . . ; lp are the characteristic roots of A.

Since ðU�AUÞ� ¼ U�AU, it follows that all characteristic roots of a Hermitian

matrix are real.

Theorem 1.8.2. A Hermitian matrix A is positive definite if all its characteristic

roots are positive.
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Theorem 1.8.3. Every Hermitian positive definite (semidefinite) matrix A is

uniquely expressible as A ¼ BB� where B is Hermitian positive definite

(semidefinite).

Theorem 1.8.4. For every Hermitian positive definite matrix A there exists a

complex nonsingular matrix B such that BAB� ¼ I.

EXERCISES

1 Prove Theorem 1.1.2.

2 Show that for any basis a1; . . . ;ak of V
k of rank k there exists an orthonormal

basis g1; . . . ; gk of V
k.

3 If a1; . . . ;ak is a basis of a vector space V, show that no set of k þ 1 vectors in

V is linearly independent.

4 Find the orthogonal projection of the vector (1,2,3,4) on the vector (1,0,1,1).

5 Find the number of linearly independent vectors in the set ða; c; . . . ; cÞ0;
ðc; a; c; . . . ; cÞ0; . . . ; ðc; . . . ; c; aÞ0 such that the sum of components of each

vector is zero.

6 Let V be a set of vectors of dimension p and let Vþ be the set of all vectors

orthogonal to V. Show that ðVþÞþ ¼ V if V is a linear subspace of V.

7 Let V1 and V2 be two linear subspaces containing the null vector of 0 and let

Vþ
i denote the set of all vectors orthogonal to Vi; i ¼ 1; 2. Show that

ðV1 < V2Þþ ¼ Vþ
1 > Vþ

2 .

8 Let ðg1; . . . ; gkÞ be an orthogonal basis of the subspace Vk of a vector space

Vp. Show that it can be extended to an orthogonal basis

ðg1; . . . ; gk; gkþ1; . . . ; gpÞ of Vp.

9 Show that for any three vectors x; y; z in Vp, the function d, defined by

dðx; yÞ ¼ max
1�i�p

jxi � yij;

satisfies

(a) dðx; yÞ ¼ dðy; xÞ � 0 (symmetry),

(b) dðx; zÞ � dðx; yÞ þ dðy; zÞ (triangular inequality).
10 Let W be a vector subspace of the vector space V. Show that the rank of

W� rank of V.

11 (Cauchy-Schwarz inequality) Show that for any two vectors x; y in Vp,

ðx0yÞ � kxkkyk:
12 (Triangle inequality) Show that for any two vectors x; y in Vp

kxþ yk � kxk þ kyk:
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13 Let A;B be two positive definite matrices of the same dimension. Show that

for 0 � a � 1,

jaAþ ð1� aÞBj � jAjajBj1�a:

14 (Skew matrix) A matrix A is skew if A ¼ �A0. Show that

(a) for any matrix A, AA is symmetric if A is skew,

(b) the determinant of a skew matrix with an odd number of rows is zero,

(c) the determinant of a skew symmetric matrix is nonnegative.

15 Show that for any square matrix A there exists an orthogonal matrix u such

that Au is an upper triangular matrix.

16 (Idempotent matrix) A square matrix A is idempotent if AA ¼ A. Show the

following:

(a) if A is idempotent and nonsingular, then A ¼ I;

(b) the characteristic roots of an idempotent matrix are either unity or zero;

(c) if A is idempotent of rank r, then trA ¼ r;

(d) let A1; . . . ;Ak be symmetric matrices of the same dimension; if AiAj ¼
0ði = jÞ and if

Pk
i¼1 Ai is idempotent, then show that Ai for each i is an

idempotent matrix and rank ðPk
i¼1 AiÞ ¼

Pk
i¼1 rank ðAiÞ.

17 Show that for any lower triangular matrix A the diagonal elements are its

characteristic roots.

18 Show that any orthogonal transformation may be regarded as the change of

axes about a fixed origin.

19 Show that for any nonsingular matrix A of dimension p� p and non-null

p-vector x,

x0ðAþ xx0Þ�1x ¼ x0A�1x

1þ x0A�1x
:

20 Let A be a nonsingular matrix of dimension p� p and let x; y be two non-null
p-vectors. Show that

ðAþ xy0Þ�1 ¼ A�1 � ðA�1xÞðy0A�1Þ
1þ y0A�1x

21 Let X be a p� q matrix and let S be a p� p nonsingular matrix. Then show

that jXX0 þ Sj ¼ jSkI þ X0S�1Xj.
22 Let X be a p� pmatrix. Show that the nonzero characteristic roots of X0X are

the same as those of XX0.
23 Let A;X be two matrices of dimension q� p. Show that

(a) ð@=@XÞðtrA0XÞ ¼ A

(b) ð@=@XÞðtrAX0Þ ¼ A where @=@X ¼ ð@=@xijÞ;X ¼ ðxijÞ.
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24 For any square symmetric matrix A show that

@

@A
ðtrAAÞ ¼ 2A:

25 Prove

(a) A� AðAþ SÞ�1A ¼ ðA�1 þ S
�1Þ�1 where A;S are both positive definite

matrices.

(b) jIp � hðI þ h0hÞ�1h0j ¼ jIqþ h0hj�1 where h is a p� q matrix.

26 Let A be a q� p matrix of rank q , p. Show that A ¼ CðIq; 0Þu where C is a

nonsingular matrix of dimension q� q and u is an orthogonal matrix of

dimension p� p.

27 Let L be a class of non-negative definite symmetric p� pmatrix and let J be a

fixed nonsingular member of L. Show that if tr J�1B is maximized over all B

in L by B ¼ J, then jBj is maximized by J.
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2
Groups, Jacobian of Some
Transformations, Functions and Spaces

2.0. INTRODUCTION

In multivariate analysis the most frequently used test procedures are often

invariant with respect to a group of transformations, leaving the testing problems

invariant. In such situations an application of group theory results leads us in a

straightforward way to the desired test procedures (see Stein (1959)). In this

chapter we shall describe the basic concepts and some basic results of group

theory. Results on the Jacobian of some specific transformations which are very

useful in deriving the distributions of multivariate test statistics are also

discussed. Some basic materials on functions and spaces are given for better

understanding of the materials presented here.

2.1. GROUPS

Definition 2.1.1. Group. A group is a nonempty set G of elements with an

operation t satisfying the following axioms:

1. O1 For any a; b [ G; atb [ G.

2. O2 There exists a unit element e [ G such that for all a [ G; ate [ G.
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3. O3 For any a; b; c [ G; ðatbÞtc ¼ at ðbtcÞ.
4. O4 For each a [ G, there exists a�1 [ G such that ata�1 ¼ e.

The following properties follow directly from axioms O1 � O4ða; b [ GÞ:

1. ata�1 ¼ a�1ta,
2. ate ¼ eta,
3. atx ¼ b has the unique solution x ¼ a�1tb.

Note: For convenience we shall write atb as ab. The reader is cautioned not to

confuse this with multiplication.

Definition 2.1.2. Abelian group. A group G is called Abelian if ab ¼ ba for

a; b [ G.

Definition 2.1.3. Subgroup. If the restriction of the operation t to a nonempty

subset H of G satisfies the group axioms O1 � O4, then H is called a subgroup of

G.

The following lemma facilitates verifying whether a subset of a group is a

subgroup.

Lemma 2.1.1. Let G be a group and H , G. Then H is a subgroup of G (i) if

and only if H = f (nonempty), (ii) if a; b [ H, then ab�1 [ H.

Proof. If H satisfies (i) and (ii), then H is a group. For if a [ H, then by (ii)

aa�1 ¼ e [ H. Also if b [ H then b�1 ¼ eb�1 [ H. Hence a; b [ H implies

aðb�1Þ�1 ¼ ab [ H. Axiom O3 is true in H as it is true in G. Hence H is a group.

Conversely, if H is a group, then clearly H satisfies (i) and (ii). Q.E.D.

2.2. SOME EXAMPLES OF GROUPS

Example 2.2.1. The additive group of real numbers is the set of all reals with

the group operation ab ¼ aþ b.

Example 2.2.2. The multiplicative group of nonzero real numbers is the set of

all nonzero reals with the group operation ab ¼ a multiplied by b.
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Example 2.2.3. Permutation group. Let X be a nonempty set and letG be the set

of all one-to-one functions of X onto X. Define the group operation t as follows:
for g1; g2 [ G; x [ X; ðg1tg2ÞðxÞ ¼ g1ðg2ðxÞÞ. Then G is a group and is called the

permutation group.

Example 2.2.4. Let X be a linear space. Then under the operation of addition X

is an Abelian group.

Example 2.2.5. Translation group. Let X be a linear space of dimension n and

let x0 [ X. Define gx0 ðxÞ ¼ xþ x0; x [ X. The collection of all gx0 forms an

additive Abelian group.

Example 2.2.6. Full linear group. Let X be a linear space of dimension n. Let

GlðnÞ denote the set of all nonsingular linear transformations of X onto X. GlðnÞ is
obviously a group with matrix multiplication as the group operation and it is

called the full linear group.

Example 2.2.7. Affine group. Let X be a linear space of dimension n and let

GlðnÞ be the linear group. The affine group ðGlðnÞ;XÞ is the set of pairs

ðg; xÞ; g [ GlðnÞ; x [ X, with the following operation: ðg1; x1Þðg2; x2Þ ¼
ðg1g2; g1x2 þ x1Þ. For the affine group the unit element is ðI; 0Þ, where I is the

identity matrix and ðg; xÞ�1 ¼ ðg�1;�g�1xÞ.

Example 2.2.8. Unimodular group. The unimodular group is the subgroup of

GlðnÞ such that g is in this group if and only if the determinant of g is +1.

Example 2.2.9. The set of all nonsingular lower (upper) triangular matrices of

dimension n forms a group with the usual matrix multiplication as the group

operation. Obviously the product of two nonsingular lower (upper) triangular

matrices is a lower (upper) triangular matrix and the inverse of a nonsingular

lower (upper) triangular matrix is a nonsingular lower (upper) triangular matrix.

The unit element for this group is the identity matrix.

Example 2.2.10. The set of all orthogonal matrices of dimension n forms a

group.

2.3. QUOTIENT GROUP, HOMOMORPHISM, ISOMORPHISM

Definition 2.3.1. Normal subgroup. A subgroup H of G is a normal subgroup if

for all h [ H and g [ G; ghg�1 [ H or, equivalently, gHg�1 ¼ H.
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Definition 2.3.2. Quotient group. Let G be a group and let H be a normal

subgroup of G. The set G=H is defined to be set of elements of the form

g1H ¼ g1hjh [ H
	 


; g1 [ G. For g1; g2 [ G we define ðg1HÞðg2HÞ as the set of
all elements obtained by multiplying all elements of g1H by all elements of g2H.

With this operation defined on the elements of G=H, it is a group. We verify this

as follows:

1. g1H ¼ g2H , g�1
2 g1H ¼ H , g�1

2 g1 [ H , g1 [ g2H.

2. Since H is a normal subgroup, we have for g1; g2 [ G; g2H ¼ Hg2 and

ðg1HÞðg2HÞ ¼ g1ðHg2HÞ ¼ g1ðg2HÞH ¼ g1g2H [ G=H.

3. H is the identity element inG=HðgHH ¼ gHÞ. The groupG=H is the quotient

group of G (mod H).

Example 2.3.1. The affine group ðI;XÞ, where X is a linear space of dimension

n and I is the n� n identity matrix, is the normal subgroup of ðGlðnÞ;XÞ. For
g [ GlðnÞ; x [ X,

ðg; xÞðI; xÞðg; xÞ�1

¼ ðg; xÞðI; xÞðg�1;�g�1xÞ ¼ ðg; xÞðg�1;�g�1xþ xÞ ¼ ðI; gxÞ [ ðI;XÞ:
ð2:1Þ

Definition 2.3.3. Homomorphism. Let G and H be two groups. Then a mapping

f of G into H is called a homomorphism if it preserves the group operation; i.e.,

for g1; g2 [ G; f ðg1g2Þ ¼ f ðg1Þf ðg2Þ. This implies that if e is the identity element

of G, then f(e) is the identity element of H and f ðg�1
1 Þ ¼ ½ f ðg1Þ��1. For

(i) f ðg1Þ ¼ f ðg1eÞ ¼ f ðg1Þ f ðeÞ,
(ii) f ðeÞ ¼ f ðg1g�1

1 Þ ¼ f ðg1Þ f ðg�1
1 Þ.

If, in addition, f is a one to one mapping, it is called an isomorphism.

Definition 2.3.4. Direct products. Let G and H be groups and let G� H be the

Cartesian product of G and H. With the operation ðg1; h1Þðg2; h2Þ ¼ ðg1g2; h1h2Þ,
where g1; g2 [ G; h1; h2 [ H, and g1g2; h1h2 are the products in the groups G

and H, respectively, G� H is a group and is known as the direct product of G and

H.

Definition 2.3.5. The group G operates on the space X from the left if there

exists a function on G� X to X whose value at x [ X is denoted by gx such that

1. ex ¼ x for all x [ X and e is the unit element of G;

2. for g1; g2 [ G and x [ X; g1ðg2xÞ ¼ g1g2ðxÞ.
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Note: (1) and (2) imply that g [ G is one-to-one on X to X. To see this, suppose

gx1 ¼ gx2 ¼ y. Then g�1ðgx1Þ ¼ g�1ðgx2Þ ¼ g�1y. Using (1) and (2) we then

have x1 ¼ x2.

Definition 2.3.6. Let the group G operate from the left on the space X. G

operates transitively on X if for every x1; x2 [ X, there exists a g [ G such that

gx1 ¼ x2.

Example 2.3.2. Let X be the space of all n� n nonsingular matrices and let

G ¼ GlðnÞ. Given any two points x1; x2 [ X, there exists a nonsingular matrix

g [ G such that x1 ¼ gx2. In other words, G acts transitively on X.

Example 2.3.3. Let X be a linear space. GlðnÞ acts transitively on X � 0f g.

2.4. JACOBIAN OF SOME TRANSFORMATIONS

Let X1; . . . ;Xn be a sequence of n continuous random variables with a joint

probability density function fX1...;Xn
ðx1; . . . ; xnÞ. Let Yi ¼ giðX1; . . . ;XnÞ be a set

of continuous one to one transformations of the random variables X1; . . . ;Xn.

Let us assume that the functions g1; . . . ; gn have continuous partial derivatives

with respect to x1; . . . ; xn. Let the inverse function be denoted by Xi ¼
hiðY1; . . . ; YnÞ; i ¼ 1; . . . ; n. Denote by J the determinant of the n� n square

matrix

@x1=@y1 � � � @x1=@yn
..
. ..

.

@xn=@y1 � � � @xn=@yn

0
B@

1
CA:

Then J is called the Jacobian of the transformation of X1; . . . ;Xn to Y1; . . . ; Yn.
We shall assume that there exists a region R of points ðx1; . . . ; xnÞ on which J is

different from zero. Let S be the image of R under the transformations. Then
ð
n integrals

� � �
ð
R

fX1;...;Xn
ðx1; . . . ; xnÞdx1; . . . ; dxn

¼
ð
� � �
s

ð
fX1;...;Xn

ðh1ð y1; . . . ; ynÞ; . . . ; hnð y1; . . . ; ynÞÞjJjdy1; . . . ; dyn:
ð2:2Þ

From this it follows that the joint probability density function of the random

variables Y1; . . . ; Yn is given by

fY1;...;Yn ðy1; . . . ; ynÞ ¼
fX1;...;Xn

ðh1ð y1; . . . ; ynÞ; . . . ; hnð y1; . . . ; ynÞÞjJj
0 otherwise:

�
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We shall now state some theorems on the Jacobian (J), but will not give all the

proofs. For further results on the Jacobian the reader is referred to Olkin (1962),

Rao (1965), Roy (1957), and Nachbin (1965).

Theorem 2.4.1. Let V be a vector space of dimension p. For x; y [ V, the

Jacobian of the linear transformation x ! y ¼ Ax, where A is a nonsingular

matrix of dimension p� p, is given by jAj�1.

Theorem 2.4.2. Let the p� n matrix X be transformed to the p� n matrix

Y ¼ AX where A is a nonsingular matrix of dimension p� p. The Jacobian of this

transformation is given by jAj�n.

Theorem 2.4.3. Let a p� q matrix X be transformed to the p� q matrix

Y ¼ AXB where A and B are nonsingular matrices of dimensions p� p and

q� q, respectively. Then the Jacobian of this transformation is given by

jAj�qjBj�p.

Theorem 2.4.4. Let GT be the multiplicative group of nonsingular lower

triangular matrices of dimension p� p. For g ¼ ðgijÞ; h ¼ ðhijÞ [ GT, the

Jacobian of the transformation g ! hg is
Qp

i¼1ðhiiÞ�i.

Proof. Let hg ¼ c ¼ ðcijÞ. Obviously, c [ GT and cij ¼
Pp

k¼1 hikgkj with

hij ¼ 0, gij ¼ 0 if i , j. Then J�1 is given by the determinant of the 1
2
pðpþ

1Þ � 1
2
pðpþ 1Þ matrix

@c11=@g11 @c11=@g21 � � � @c11=@gpp
@c21=@g11 @c21=@g21 � � � @c21=@gpp

..

. ..
. ..

.

@cpp=@g11 @cpp=@g21 � � � @cpp=@gpp

0
BBB@

1
CCCA

It is easy to see that this matrix is a lower triangular matrix with diagonal element

@cij
@gij

¼ hii if i � j;
0 otherwise:

�

Thus among the diagonal elements hii is repeated i times. Hence the Jacobian is

given by
Qp

i¼1ðhiiÞ�i: Q.E.D.

Corollary 2.4.1. The Jacobian of the transformation g ! gh is
Qp

i¼1ðhiii�p�1Þ.
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Proof. Let gh ¼ c ¼ ðcijÞ. Obviously c is a lower triangular matrix. Since

@cij
@gij

¼ hij i � j

0 otherwise;

�

following the same argument as in Theorem 2.4.4 we conclude that the Jacobian

is the determinant of a triangular matrix where hii is repeated pþ 1� i times

among its diagonal elements.. Hence the result. Q.E.D.

Theorem 2.4.5. Let GUT be the group of p� p nonsingular upper triangular

matrices. For g ¼ ðgijÞ; h ¼ ðhijÞ [ GUT, the Jacobian of the transformation g !
hg is

Qp
i¼1ðhiiÞi�p�1.

Proof. Let hg ¼ c ¼ ðcijÞ. Obviously c is an upper triangular matrix and cij ¼Pp
k¼1 hikgkj with hij ¼ 0; gij ¼ 0 if i . j. Then J�1 is given by the determinant of

the matrix of dimension 1
2
pðpþ 1Þ � 1

2
pðpþ 1Þ:

@c11=@g11 @c11=@g12 � � � @c11=@gpp
@c12=@g11 @c12=@g12 � � � @c12=@gpp

..

. ..
. ..

.

@cpp=@g11 @cpp=@g12 � � � @cpp=@gpp

0
BBB@

1
CCCA:

Since

@cij
@gij

¼ hii i � j

0 otherwise;

�

the preceding matrix is an upper triangular matrix such that among its diagonal

elements hii is repeated pþ 1� i times. Hence the Jacobian of this

transformation is
Qp

i¼1ðh�1
ii Þpþ1�i. Q.E.D.

Corollary 2.4.2. The Jacobian of the transformation g ! gh is
Qp

1ðh�1
ii Þi.

The proof follows from an argument similar to that of the theorem.

Theorem 2.4.6. Let S be a symmetric positive definite matrix of dimension

p� p. The Jacobian of the transformation S ! B, where B is the unique lower

triangular matrix with positive diagonal elements such that S ¼ BB0, isQp
i¼1ðbiiÞpþ1�i.
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Theorem 2.4.7. Let GBT be the group of p� p lower triangular nonsingular

matrices in block form, i.e., g [ GBT ;

g ¼
gð11Þ 0 0 � � � 0

gð21Þ gð22Þ 0 � � � 0

..

. ..
. ..

.

gðk1Þ gðk2Þ gðk3Þ � � � gðkkÞ

0
BBB@

1
CCCA;

where gðiiÞ are submatrices of g of dimension di � di such that
Pk

1 di ¼ p. The

Jacobian of the transformation g ! hg; g; h [ GBT, is
Qk

i¼1 jh�1
ðiiÞ jsi where

si ¼
Pi

j¼1 dj;s0 ¼ 0. The Jacobian of the transformation g ! gh isQk
i¼1 jh�1

ðiiÞ jp�si�1 .

Theorem 2.4.8. Let GBUT be the group of nonsingular upper triangular p� p

matrices in block form, i.e., g [ GBUT ;

g ¼
gð11Þ gð12Þ � � � gð1kÞ
0 gð22Þ � � � gð2kÞ
..
. ..

. ..
.

0 0 0 gðkkÞ

0
BBB@

1
CCCA;

where gðiiÞ are submatrices of dimension di � di and
Pk

j¼1 dj ¼ p. For g;
h [ GBUT the Jacobian of the transformation g ! gh is

Qk
j¼1 jhðiiÞjsi and that of

g ! hg is
Qk

i¼1 jhðiiÞjp�si�1 .

Theorem 2.4.9. Let S ¼ ðsijÞ be a symmetric matrix of dimension p� p. The

Jacobian of the transformation S ! CSC0, where C is any nonsingular matrix of

dimension p� p, is jC�1jpþ1.

Proof. To prove this theorem it is sufficient to show that it holds for the

elementary p� p matrices EðijÞ;MiðcÞ, and AðijÞ where EðijÞ is the matrix

obtained from the p� p identity matrix by interchanging the ith and the jth row;

MiðcÞ is the matrix obtained from the p� p identity matrix by multiplying its ith

row by the nonzero constant c; and AðijÞ is the matrix obtained from the p� p

identity matrix by adding the jth row to the ith row. The fact that the theorem is

valid for these matrices can be easily verified by the reader. For example,

MiðcÞSMiðcÞ is obtained from S by multiplying sii by c
2 and sij by cði = jÞ so that

the Jacobian is c2þðp�1Þ ¼ cpþ1. Q.E.D.
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Theorem 2.4.10. Let S ¼ ðsijÞ be a symmetric positive definite matrix of

dimension p� p. The Jacobian of the transformation S ! gSg0; g [ GT is

jg�1jpþ1.

Proof. Let g ¼ ðgijÞ with gij ¼ 0 for i , j and let A ¼ ðaijÞ ¼ gSg0. Then

aij ¼
P

l;k gilslkgjk. Since

@aij
@skk

¼ gikgjk:
@aij
@slk

¼ gilgjk þ gikgjl;

J�1, which is the determinant of the 1
2
pðpþ 1Þ � 1

2
pðpþ 1Þ lower triangular

matrix

@a11=@s11 @a11=@s12 � � � @a11=@spp
..
. ..

. ..
.

@app=@s11 @app=@s12 � � � @app=@spp

0
B@

1
CA;

is equal to
Qp

i¼1ðgiiÞpþ1 ¼ jgjpþ1. Q.E.D.

Theorem 2.4.11. Let A ¼ ðaijÞ be a p� p symmetric nonsingular matrix. The

Jacobian of the transformation A ! A�1 is jAj�2p.

Proof. Let A�1 ¼ B ¼ ðbijÞ. Since BA ¼ I we get

@B

@u

� �
Aþ B

@A

@u

� �
¼ 0;

where

@B

@u

� �
¼

@b11
@u

; . . . ;
@b1p
@u

:; . . . ; :

@bp1
@u

; . . . ;
@bpp
@u

0
BBB@

1
CCCA:

Hence

@B

@u

� �
¼ �B

@A

@u

� �
B ¼ �A�1 @A

@u

� �
A�1:

Let Eab be the p� p matrix whose all elements are zero except that the

element of the ath row and the bth column is unity.
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Taking u ¼ aab we get

@B

@aab

� �
¼ �BEabB� b�bba�

where ba� and b�b are the ath row and the bth column of B. Hence

@bij
@aab

¼ �biabbj:

Thus the Jacobian is the determinant of the p2 � p2 matrix

@bij
@aab

� �����
���� ¼ jðbiabbjÞj ¼ jðB� B0Þj

¼ jBjpjB0jp ¼ jBj2p

¼ jAj�2p:

Q.E.D.

2.5. FUNCTIONS AND SPACES

Let X ;Y be two arbitrary spaces and f be a function on X into Y, written as f :

X ! Y. The smallest closed subset of X on which f is different from zero is

called the support of f. The function f is one-to-one (injective) if f ðx1Þ ¼ f ðx2Þ
implies x1 ¼ x2 for all x1; x2 [ X . An one-to-one onto function is bijective. The

inverse function f�1 of f is a set function defined by f�1ðBÞ ¼ x [ X :f
f ðxÞ [ B;B # Xg.

Definition 2.5.1. Continuous function. The function f : X ! Y is continuous if

f�1ðBÞ for any open (closed) subset B of Y is an open (closed) subset of X .

This definition corresponds to the e� d definition of continuous functions of

calculus: A function f : R ! R (real line) is continuous at a point b [ X if for

every e . 0 there exists a d . 0 such that jx� bj , d implies b� d , x , bþ d
and jf ðxÞ � f ðbÞj , e implies f ðbÞ � e , f ðxÞ , f ðbÞ þ e. The e� d definition of
continuity of f at b is equivalent to x [ ðb� d; bþ dÞ implies

f ðxÞ [ ð f ðbÞ � e; f ðbÞ þ eÞ.
A function f : X ! Y is continuous if it is continuous at every point of X .

Definition 2.5.2. Composition. The composition of any two functions

f ; g; f : X ! Y; g : Y ! Z, is a function gW f : X ! Z defined by

gW f ðxÞ ¼ gð f ðxÞÞ.
If b; g are both continuous so is gW f .
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Definition 2.5.3. Vector space (Linear space). A vector space (Linear space) is

a space X on which the sum xþ y and the scalar product cx, for c scalar and

x; y [ X , are defined.

A vector space with a defined metric is a metric space.

A function f : X ! Y is called linear if

f ðaxþ byÞ ¼ af ðxÞ þ bf ðyÞ
for a; b scalars and x; y [ X . A set A is called convex if

axþ ð1� aÞy [ A

for x; y [ A and 0 � a � 1.

Definition 2.5.4. Convex and Concave function. A real valued function f

defined on a convex set A is convex

f ðaxþ ð1� aÞyÞ � af ðxÞ þ ð1� aÞf ðyÞ
for x; y [ A and 0 , a , 1 and is strictly convex if the inequality is strict for

x = y. If

f ðaxþ ð1� aÞyÞ � af ðxÞ þ ð1� aÞf ðyÞ;
f is called concave and is strictly concave if the inequality is strict for x = y.

Concave functions are bowl shaped and convex functions are upside-down

bowl shaped.

Example 2.5.1. The function f ðxÞ ¼ x2 or ex for x [ R is convex. The function

f ðxÞ ¼ �x2; x [ R or log x; x [ ð0;1Þ is convex. In R2 with x ¼ ðx1; x2Þ0 [
R2; x21 þ x22 þ x1x2 is strictly convex.
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3
Multivariate Distributions and Invariance

3.0. INTRODUCTION

In this chapter we shall discuss the distribution of vector random variables and its

properties. Most of the commonly used test criteria in multivariate analysis are

invariant test procedures with respect to a certain group of transformations

leaving the problem in question invariant. Thus to study the basic properties of

such test criteria we will outline here the “principle of invariance” in some

details. For further details the reader is referred to Eaton (1989); Ferguson (1969);

Giri (1975, 1997); Lehmann (1959), and Wijsman (1990).

3.1. MULTIVARIATE DISTRIBUTIONS

By a multivariate distribution we mean the distribution of a random vector

X ¼ ðX1; . . . ;XpÞ0, where pð�2Þ is arbitrary, whose elements Xi are univariate

random variables with distribution function FXi
ðxiÞ. Let x ¼ ðx1; . . . ; xpÞ0. The

distribution function of X is defined by

FXðxÞ ¼ probðX1 � x1; . . . ;Xp � xpÞ;
which is also written as

FX1;X2;...;Xp
ðx1; x2; . . . ; xpÞ
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to indicate the fact that it is the joint distribution of X1; . . . ;Xp. If each Xi is a

discrete random variable, then X is called a discrete random vector and its

probability mass function is given by

pXðxÞ ¼ pX1;...;Xp
ðx1; . . . ; xpÞ ¼ probðX1 ¼ x1; . . . ;Xp ¼ xpÞ:

It is also called the joint probability mass function of X1; . . . ;Xp. If FXðxÞ is
continuous in x1; . . . ; xp;�1 , xi , 1 for all i, and if there exists a nonnegative

function fX1;...;Xp
ðx1; . . . ; xpÞ such that

FXðxÞ ¼
ðx1
�1

� � �
ðxp
�1

fXðyÞdy1; . . . ; dyp ð3:1Þ

where y ¼ ðy1; . . . ; ypÞ0, then fXðxÞ is called the probability density function of the
continuous random vector X. [For clarity of exposition we have used fXðyÞ instead
of fXðxÞ in (3.1).] If the components X1; . . . ;Xp are independent (statistically),

then

FXðxÞ ¼
Yp

i¼1

FXi
ðxiÞ;

or, equivalently,

fXðxÞ ¼
Yp

i¼1

fXi
ðxiÞ; pXðxÞ ¼

Yp

i¼1

pXi
ðxiÞ:

Given fXðxÞ, the marginal probability density function of any subset of X is

obtained by integrating fXðxÞ over the domain of the variables not in the subset.

For q , p

fX1;...;Xq
ðx1; . . . ; xqÞ ¼

ð
� � �
ð
fXðxÞdxqþ1; . . . ; dxp: ð3:2Þ

In the case of discrete pXðxÞ, the marginal probability mass function of X1; . . . ;Xq

is obtained from pXðxÞ by summing it over the domain of Xqþ1; . . . ;Xp.

It is well-known that

(i) limxp!1 FXðxÞ ¼ FX1;...;Xp�1
ðx1; . . . ; xp�1Þ;

(ii) for each i, 1 � i � p, limxi!�1 FXðxÞ ¼ 0;

(iii) FXðxÞ is continuous from above in each argument.

The notion of conditional probability of events can be used to obtain the

conditional probability density function of a subset of components of X given that

the variates of another subset of components of X have assumed constant

specified values or have been constrained to lie in some subregion of the space

described by their variate values. For a general discussion of this the reader is
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referred to Kolmogorov (1950). Given that X has a probability density function

fXðxÞ, the conditional probability density function of X1; . . . ;Xq where Xqþ1 ¼
xqþ1; . . . ;Xp ¼ xp is given by

fX1;...;XqjXqþ1;...;Xp
ðx1; . . . ; xqjxqþ1; . . . ; xpÞ ¼ fXðxÞ

fXqþ1;...;Xp
ðxq¼1; . . . ; xpÞ ; ð3:3Þ

provided the marginal probability density function fXqþ1;...;Xp
ðxqþ1; . . . ; xpÞ of

Xqþ1; . . . ;Xp is not zero. For discrete random variables, the conditional

probability mass function pX1;...;XqjXqþ1;...;Xp
ðx1; . . . ; xqjxqþ1; . . . ; xqÞ of X1; . . . ;Xq

given that Xqþ1 ¼ xqþ1; . . . ;Xp ¼ xp can be obtained from (3.3) by replacing the

probability density functions by the corresponding mass functions.

The mathematical expectation of a random matrix X

X ¼
X11 � � � Xq1

..

. ..
.

X1p � � � Xqp

0
B@

1
CA

of dimension p� q (the components Xij are random variables) is defined by

EðXÞ ¼
EðX11Þ � � � EðXq1Þ

..

. ..
.

EðX1pÞ � � � EðXqpÞ

0
B@

1
CA ð3:4Þ

Since a random vector X ¼ ðX1; . . . ;XpÞ0 is a random matrix of dimension p� 1,

its mathematical expectation is given by

EðXÞ ¼ ðEðX1Þ; . . . ;EðXpÞÞ0: ð3:5Þ

Thus it follows that for any matrices A, B, C of real constants and for any random

matrix X

EðAXBþ CÞ ¼ AEðXÞBþ C: ð3:6Þ

Definition 3.1.1. For any random vector X, m ¼ EðXÞ and S ¼ EðX � mÞ �
ðX � mÞ0 are called, respectively, the mean and the covariance matrix of X.

Definition 3.1.2. For every real t ¼ ðt1; . . . ; tpÞ0, the characteristic function of

any random vector X is defined by fXðtÞ ¼ Eðeit0XÞ where i ¼ ð�1Þ1=2.
Since Ejeit0Xj ¼ 1, fXðtÞ always exists.
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3.2. INVARIANCE IN STATISTICAL TESTING OF

HYPOTHESES

Invariance is a mathematical term for symmetry and in practice many statistical

testing problems exhibit symmetries. The notion of invariance in statistical tests

is of old origin. The unpublished work of Hunt and Stein (see Lehmann (1959))

toward the end of World War II has given this principle strong support as to its

applicability and meaningfulness in the framework of the general class of all

statistical tests. It is now established as a very powerful tool for proving the

admissibility and minimax property of many statistical tests. It is a generally

accepted principle that if a problem with a unique solution is invariant under a

certain transformation, then the solution should be invariant under that

transformation. The main reason for the strong intuitive appeal of an invariant

decision procedure is the feeling that there should be or exists a unique best way

of analyzing a collection of statistical information. Nevertheless in cases in which

the use of an invariant procedure conflicts violently with the desire to make a

correct decision with high probability or to have a small expected loss, the

procedure must be abandoned.

Let X be the sample space, let A be the s-algebra of subsets of X (a class of

subsets of X which contains X and is closed under complementation and

countable unions), and let V ¼ fug be the parametric space. Denote by P the

family of probability distributions Pu on A. We are concerned here with the

problem of testing the null hypothesis H0 : u [ VH0
against the alternatives

H1 : u [ VH1
. The principle of invariance for testing problems involves

transformations mainly on two spaces: the sample space X and the parametric

space V. Between the two, the most basic is the transformation g on X . The

transformation on V is the transformation �gg, induced by g on V. All

transformations g, considered in the context of invariance, will be assumed to be

(i) one-to-one from X onto X ; i.e., for every x1 [ X there exists x2 [ X such

that x2 ¼ gðx1Þ and gðx1Þ ¼ gðx2Þ implies x1 ¼ x2.

(ii) bimeasurable, to ensure that whenever X is a random variable with values

in X ; gðXÞ (usually written as gX) is also a random variable with values in

X ; gðXÞ (usually written as gX) is also a random variable with values in X
and for any set A [ A; gA and g�1A (the image and the transformed set)

both belongs to A.

The induced transformation �gg corresponding to g on X is defined as follows:

If the random variable X with values inX has probability distribution Pu; gX is

also a random variable with values in X , and has probability distribution Pu 0 ,

where u 0 ¼ �ggu [ V. An equivalent way of stating this fact is (g�1 being the
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inverse transformation corresponding to g)

Puðg�1AÞ ¼ P�gguðAÞ ð3:7Þ

or

PuðAÞ ¼ P�gguðgAÞ ð3:8Þ

for all A [ A. In terms of mathematical expectation this is also equivalent to

saying that for any integrable real-valued function f

Euðfðg�1XÞÞ ¼ E�gguðfðXÞÞ; ð3:9Þ

where Eu refers to expectation when X has distribution Pu.

If, in addition, all Pu; u [ V, are distinct, i.e., if u1 = u2; u1; u2 [ V, implies

Pu1 = Pu2 , then g determines �gg uniquely and the correspondence between g and �gg
is a homomorphism.

The condition (3.7) or its equivalent is known as the condition of invariance of

probability distributions with respect to the transformation g on X .

Definition 3.2.1. Invariance of the parametric space V. The parametric space

V remains invariant under a one-to-one transformation g : X onto X if the

induced transformation �gg on V satisfies (i) �ggu [ V for u [ V, and (ii) for any

u 0 [ V there exists a u [ V such that u 0 ¼ �ggu.
An equivalent way of writing (i) and (ii) is

�ggV ¼ V: ð3:10Þ

If the Pu for different values of u are distinct, then �gg is also one-to-one.

Given a set of transformations, each leaving V invariant, the following

theorem will assert that we can always extend this set to a group G of

transformations whose members also leave V invariant.

Theorem 3.2.1. Let g1 and g2 be two transformations which leave V invariant.

The transformations g2g1 and g�1
1 defined by g2g1ðxÞ ¼ g2ðg1ðxÞÞ; g�1

1 g1ðxÞ ¼ x

for all x [ X leave V invariant and g2g1 ¼ �gg2 �gg1; g
�1
1 ¼ �gg�1.

Proof. If the random variable X with values in X has probability distribution

Pu, then for any transformation g; gX has probability distribution P�ggu with

�ggu [ V. Since �gg1u [ V and g2 leaves V invariant, the probability distribution of

g2g1ðXÞ ¼ g2ðg1ðXÞÞ is P�gg2 �gg1u; �gg2 �gg1u [ V. Thus g2g1 leaves V invariant and

obviously g2g1 ¼ �gg2 �gg1. The reader may find it instructive to verify the other

assertion. Q.E.D.
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Very often in statistical problems there exists a measure l on X such that Pu is

absolutely continuous with respect to l, so that we can write for every A [ A,

PuðAÞ ¼
ð
A

PuðxÞdlðxÞ: ð3:11Þ

It is possible to choose the measure l such that it is left invariant under G i.e.,

lðAÞ ¼ lðgAÞ ð3:12Þ

for all A [ A and all g [ G. Then the condition of invariance of distribution

reduces to

p�gguðxÞ ¼ puðg�1xÞ

for all x [ X and g [ G.

Example 3.2.1. Let X be the Euclidean space and G be the group of

translations defined by

gx1ðxÞ ¼ xþ x1; x1 [ X ; g [ G: ð3:13Þ

Here G acts transitively on X . The n-dimensional Lebesgue measure l is

invariant under G and it is unique up to a positive multiplicative constant.

Let us now consider the problem of testing H0 : u [ VH0
against the

alternatives H1 : u [ VH1
, whereVH0

andVH1
are disjoint subsets ofV. LetG be

a group of transformations which operates from the left on X , satisfying

conditions (3.7) and (3.10).

Definition 3.2.2. Invariance of statistical problems. The problem of testing

H0 : u [ VH0
against H1 : u [ VH1

remains invariant with respect to G if

(i) for g [ G, A [ A, P�gguðgAÞ ¼ PuðAÞ, and
(ii) VH0

¼ �ggVH0
, VH1

¼ �ggVH1
.

Example 3.2.2. Let X1; . . . ;Xn be a random sample of size n from a normal

distribution with mean m and variance s2 and let x1; . . . ; xn be sample
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observations. Denote by X the space of all values (x1; . . . ; xn). Let

�xx ¼ 1

n

Xn
i¼1

xi;

s2 ¼ 1

n

Xn
i¼1

ðxi � �xxÞ2;

�XX ¼ 1

n

Xn
i¼1

Xi;

S2 ¼ 1

n

Xn
i¼1

ðXi � �XXÞ2; u ¼ ðm;s2Þ:

The parametric space V is given by

V ¼ fu ¼ ðm;s2Þ;�1 , m , 1;s2 . 0g
and let

VH0
¼ fð0;s2Þ : s2 . 0g; VH1

¼ fðm;s2Þ : m = 0;s2 . 0g:
The group of transformations G which leaves the problem invariant is the group

of scale changes

Xi ! aXi; i ¼ 1; . . . ; n

with a = 0 and �ggu ¼ ðam; a2s2Þ. Obviously �ggV ¼ V for all g [ G. Since x ¼
ðx1; . . . ; xnÞ [ g�1A implies gx [ A we have, with yi ¼ axi; i ¼ 1; . . . ; n

Puðg�1AÞ ¼
ð
g�1A

1

ð2pÞn=2ðs2Þn=2 exp � 1

2

Xn
i¼1

ðxi � mÞ2
s2

" #
dx1; . . . ; dxn

¼
ð
A

1

ð2pÞn=2ða2s2Þn=2 exp � 1

2a2s2

Xn
i¼1

ðyi � amÞ2
" #

dy1; . . . ; dyn

¼ P �gguðAÞ:

Furthermore �ggVH0
¼ VH0

, �ggVH1
¼ VH1

.

If a statistical problem remains invariant under a group of transformations G

operating on the sample space X , it is then natural to restrict attention to

statistical test f which are also invariant under G, i.e.,

fðxÞ ¼ fðgxÞ; x [ X ; g [ G
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Definition 3.2.3. Invariant function A function TðxÞ defined on X is invariant

under the group of transformations G if TðxÞ ¼ TðgxÞ for all x [ X ; g [ G.

Definition 3.2.4. Maximal invariant A function TðxÞ defined on X is a maximal

invariant under G if (i) TðxÞ ¼ TðgxÞ; x [ X ; g [ G, and (ii) TðxÞ ¼ TðyÞ for
x; y [ X implies that there exists a g [ G such that y ¼ gx.

The reader is referred to Lehmann (1959) for the interpretation of invariant

function and maximal invariant in terms of partition of the sample space.

Let Y be a space and let B be the s-algebra of subsets of Y. Suppose TðxÞ is a
measurable mapping from X into Y. Let h be a one-to-one function on Y to Z. If

TðxÞ with values in Y is a maximal invariant on X , then T W h is a maximal

invariant on X with values in Z. This fact is often used to write a maximal

invariant in a convenient form.

Let fðxÞ be a statistical test (probability of rejecting H0 when x is observed).

For a nonrandomized test fðxÞ takes values 0 or 1. Suppose fðxÞ; x [ X is

invariant under a group of transformations G, operating from the left on X . A

useful characterization of fðxÞ in terms of the maximal invariant TðxÞ (under G)
on X is given by the following theorem.

Theorem 3.2.2. A test fðxÞ is invariant under G if and only if there exists a

function h such that fðxÞ ¼ hðTðxÞÞ.
Proof. Let fðxÞ ¼ hðTðxÞÞ. Obviously

fðxÞ ¼ hðTðxÞÞ ¼ hðTðgxÞÞ ¼ fðgxÞ

for x [ X ; g [ G. Conversely, if fðxÞ is invariant under G and

TðxÞ ¼ TðyÞ; x; y [ X , then there exists a g [ G such that y ¼ gx and therefore

fðxÞ ¼ fðyÞ. Q.E.D.

In general hmay not be a Borel measurable function. However, if the range of

T is Euclidean and T is Borel measurable, then h is Borel measurable. See, for

example, Blackwell (1956).

Let �GG be the group of induced (induced byG) transformations onV. We define

on V, as on X , a maximal invariant on V with respect to �GG.

Theorem 3.2.3. The distribution of TðXÞ with values in the space of Y, where X
is a random variable with values in X , depends on V only through nðuÞ.
Proof. Suppose nðu1Þ ¼ nðu2Þ; u1; u2 [ V. Since nðuÞ is a maximal invariant on

V under �GG, there exists a �gg [ �GG such that u2 ¼ �ggu1. Now for any measurable set

C in B [by (3.7)]

Pu1 ðTðXÞ [ CÞ ¼ Pu1 ðTðgXÞ [ CÞ ¼ P�ggu1ðTðXÞ [ CÞ ¼ Pu2ðTðXÞ [ CÞ. Q.E.D.
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Example 3.2.3. Consider Example 3.2.2. Here

TðxÞ ¼ ffiffiffi
n

p
�xx
Xn
i¼1

ðxi � �xxÞ2
n� 1

" #�1=2

; nðuÞ ¼ ð ffiffiffi
n

p
mÞ=s ¼ l

where l is an arbitrary designation. The probability density function of T is given

by (see Giri (1993))

fT ðtÞ ¼ ðn� 1Þðn�1Þ=2

Gððn� 1Þ=2Þ
expð�l2=2Þ

ðn� 1þ t2Þn=2
X1
j¼0

G
nþ j

2

� �
lj

j!
2t2

n� 1þ t2

� �j=2

:

For point estimation problems the term “equivariant” is used instead of

invariant.

Definition 3.2.5. Equivariant estimator. A point estimator defined on x is

equivariant under the group of transformations G on x if TðgxÞ ¼ gTðxÞ for all
x [ x and g [ G.

Example 3.2.4. Let X be Nðu; 1Þ. TðxÞ is an equivariant point estimator of u if

and only if

Tðxþ gÞ ¼ TðxÞ þ g

for all x; g [ R1. Taking g ¼ �x we conclude that T is equivariant if and only if

TðxÞ ¼ xþ a where a is some fixed real number.

The unique maximum likelihood estimator is an equivariant estimator.

3.3. ALMOST INVARIANCE AND INVARIANCE

To study the relative performances of different test criteria we need to compare

their power functions. Thus it is of interest to study the implication of the

invariance of power functions of the tests rather than the tests themselves. Since

the power function of invariant tests depends only on the maximal invariant onV,

any invariant test has invariant power functions. The converse that if the power

function of a test f is invariant under the induced group �GG, i.e.,

Eufðg�1XÞ ¼ E�ggufðXÞ; ð3:14Þ
then the test f is invariant under G, does not always hold well. To investigate this

further we need to define the notions of almost invariance and equivalence to an

invariant test.
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Definition 3.3.1. Equivalence to an invariant test. Let G be a group of

transformations satisfying (3.8) and (3.10). A test cðxÞ; x [ X , is equivalent to an

invariant test fðxÞ; x [ X , with respect to the group of transformations G if

fðxÞ ¼ cðxÞ for all x [ X � N

where PuðNÞ ¼ 0 for u [ V.

Definition 3.3.2. Almost invariance. Let G be a group of transformations on X
satisfying (3.8) and (3.10). A test fðxÞ is said to be almost invariant with respect

to G if for g [ G;fðxÞ ¼ fðgxÞ for all X � Ng where PuðNgÞ ¼ 0; u [ V.

It is tempting to conjecture that an almost invariant test is equivalent to an

invariant test. If any test c is equivalent to an invariant test f, then it is almost

invariant. For example, take

Ng ¼ N
[

ðg�1NÞ:

Obviously x [ X � Ng implies x [ X � N and gx [ X � N. Hence for

x [ X � Ng;cðxÞ ¼ fðxÞ ¼ fðgxÞ ¼ cðgxÞ. Since Puðg�1NÞ ¼ P�gguðNÞ ¼ 0;
PuðNgÞ ¼ 0. Conversely, if the group G is countable, for any almost invariant

test c, take

N ¼
[
g[G

Ng;

where cðxÞ ¼ cðgxÞ; x [ X � Ng; g [ G, so that PuðNÞ ¼ 0. Then

cðxÞ ¼ cðgxÞ; x [ X � N. Now define fðxÞ such that

fðxÞ ¼ 1 if x [ N

cðxÞ if x [ X � N:

�

Obviously fðxÞ is an invariant function and cðxÞ is equivalent to an invariant test.
(Note that gN ¼ N; g [ G.) If the group G is uncountable, such a result does not,

in general, hold well.

Let X be the sample space and let A be the s-field of subsets of X . Suppose

that G is a group of transformations operating on X and that B is a s-field of

subsets of G. Let for any A [ A, the set of pairs (x; g), such that gx [ A, belong

to A� B. Suppose further that there exists a s-finite measure m (i.e., for

B1;B2; . . . in B such that <Bi ¼ G and mðBiÞ , 1 for all i) on G such that

mðBÞ ¼ 0 implies mðBgÞ ¼ 0

for all g [ G. Then any almost invariant function on X with respect to G is

equivalent to an invariant function with respect to G. For a proof of this result the

reader is referred to (Lehmann (1959), p. 225). This requirement is satisfied in
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particular when

mðBgÞ ¼ mðBÞ; B [ B; g [ G:

In other words, m is a s-finite right invariant measure. Such a right invariant

measure m exists for a large number of groups.

Example 3.3.1. Let G ¼ Ep (Euclidean p-space) where the group operation is

addition. The Lebesgue measure in the space of Ep is the right invariant measure.

Since G is Abelian, the right invariant measure is also left invariant, i.e., mðgBÞ ¼
mðBÞ for g [ G.

Example 3.3.2. Let G be the positive half of the real line with multiplication as

the group operation. The right invariant measure m is given by (B [ B)

mðBÞ ¼
ð
B

dg

g
:

Example 3.3.3. Let G be the multiplicative group of p� p nonsingular real

matrices g ¼ ðgijÞ. Write

dg ¼
Y
i;j

dgij:

The right invariant measure m on G is given by

mðBÞ ¼
ð
B

dg

j det gjp :

This follows from the fact that the Jacobian of the transformation

g ! gh; g; h [ G;

is ðdetðhÞÞ�p. Furthermore it is also left invariant.

Example 3.3.4. Let G be the group of affine transformations of the real line R

onto itself, i.e., g [ G has the form (a; b) such that for x [ R

ða; bÞx ¼ axþ b:

Here the group operation is defined by

g1g2 ¼ ða1a2; a1b2 þ b1Þ
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where g1 ¼ ða1; b1Þ; g2 ¼ ða2; b2Þ. The Jacobian of the transformation g1 ! g1g2
is ða2Þ�1. So the right invariant measure m on G is given by

mðBÞ ¼
ð
B

dadb

a
:

Note that the left invariant measure in this case is given by

mðBÞ ¼
ð
B

dadb

a2

Example 3.3.5. LetG be the group of affine transformations of Vp (a real vector

space of dimension p) onto itself; i.e., for x [ Vp; g ¼ ðc; bÞ [ G where

c [ GlðpÞ, the group of p� p nonsingular real matrices, and b is a p-vector,

gx ¼ cxþ b:

The group operation in G is defined by

g1g2 ¼ ðc1c2; c1b2 þ b1Þ

where g1 ¼ ðc1; b1Þ; g2 ¼ ðc2; b2Þ; b1; b2 [ Vp, and c1; c2 [ GlðpÞ. The right

invariant measure m on G is defined by

mðBÞ ¼
ð
B

dcdb

j det cjp :

The left invariant measure in this case is given by

mðBÞ ¼
ð
B

dcdb

j det cjpþ1
:
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Example 3.3.6. Let GT be the multiplicative group of p� p nonsingular lower

triangular matrices g, given by

g ¼

g11 0 0 � � � 0

g21 g22 0 � � � 0

..

. ..
. ..

.

gk1 gk2 gk3 � � � gkk

0
BBB@

1
CCCA

where gii is a submatrix of g of dimension di � di such that
Pk

1 di ¼ p. The right

invariant measure m on G is given by

mðBÞ ¼
ð
B

dg

Pk
i¼1j det giijp�si�1

where si ¼
Pi

j¼1 dj with s0 ¼ 0. The left invariant measure on G is given by

mðBÞ ¼
ð
B

dg

Pk
i¼1j det giijsi

For further results on invariant measure the reader is referred to Nachbin (1965).

It is now evident that any almost invariant test function with respect to a group

of transformations G on X has an invariant power function with respect to the

induced group �GG on V. The converse of this is not true in general. However, in

cases in which prior to the application of invariance the problem can be reduced

to one based on a sufficient statistic on the sample space whose distributions

constitute a boundedly complete family, the converse is true.

Let T be sufficient for fPu; u [ Vg and let the distribution fPT
u ; u [ Vg of T be

boundedly complete; i.e., for any bounded function gðTÞ of T , if
E
gðTÞ
u ; 0 ð3:15Þ

for all u [ V, then gðTÞ ¼ 0 almost everywhere with respect to the probability

measure PT
u . For any almost invariant test function cðTÞ with respect to the group

of transformations G on the space of the sufficient statistic T we have, for g [ G,

EucðTÞ ¼ EucðgTÞ ¼ E�ggucðTÞ:
Conversely, if

EucðTÞ ¼ E�ggucðTÞ;
then for g [ G [note gTðxÞ ¼ TðgxÞ],

EucðTÞ ¼ EucðgTÞ
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or, equivalently,

EuðcðgTÞ � cðTÞÞ ; 0

for all u [ V. Since the distribution of T is boundedly complete, we obtain

cðtÞ ¼ cðgtÞ
almost everywhere with respect to the probability measure PT

u .

Since for any test fðxÞ on the original sample space X ,

cðtÞ ¼ EðfðXÞjT ¼ tÞ
is also a test based on the sufficient statistic T with the same power function as

that of fðxÞ, we can conclude that if there exists a uniformly most powerful

almost invariant test among all tests based on the sufficient statistic T , then that

test is uniformly most powerful among all tests based on the original observations

x and its power function depends only on the maximal invariant on the parametric

space V.

Example 3.3.7. Consider Example 3.2.3. Let us first show that the sufficient

statistic ( �XX; S2) for (m;s2) is boundedly complete. The joint probability density

function of ( �XX; S2) is given by (see Giri (1993))

f �XX;S2 ð�xx; s2Þ ¼
K

ðs2Þn=2 expf�
1
2
s 2ðns2 þ nð�xx� mÞ2Þgðns2Þðn�3Þ=2

where

K ¼ ffiffiffi
n

p
=½ð2pÞ1=22ðn�1Þ=2Gððn� 1Þ=2Þ�:

For any bounded function gð�xx; s2Þ

Eðgð �XX; S2ÞÞ ¼ K

ð
gð�xx; s2Þ
ðs2Þn=2 exp � 1

2s2
ðns2 þ nð�xx� mÞ2Þ

� �
ðns2Þðn�3Þ=2ds2d�xx:

Let 1=s2 ¼ 1� 2u and ð1� 2uÞ�1t ¼ m. Then

Eðgð �XX; S2ÞÞ ¼ K

ð
gð�xx; s2Þð1� 2uÞn=2ðns2Þðn�3Þ=2

� expf� 1
2
½ð1� 2uÞðns2 þ n�xx2Þ � 2nt�xxþ nt2=ð1� 2uÞ�gds2d�xx

ð3:16Þ
If

Eðgð �XX; S2ÞÞ ; 0
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for all (m;s2), then from (3.16) we obtain

K

ð
gð�xx; ns2 þ n�xx2 � n�xx2Þðns2Þðn�3Þ=2

� expf� 1
2
ðns2 þ n�xx2Þ þ uðns2 þ n�xx2Þ þ nt�xxgds2d�xx ; 0:

This is the Laplace transformation of

gð�xx; ns2 þ n�xx2 � n�xx2ÞKðns2Þðn�3Þ=2 expf� 1
2
ðn�xx2 þ ns2Þg

with respect to the variables n�xx; ns2 þ n�xx2. Since this is zero for all (m;s2), we

obtain

gð�xx; s2Þ ¼ 0

except for a set of (�xx; s2) with probability measure 0. So the distribution of ( �XX; S2)
is boundedly complete. Second, from Example 3.2.3 we can conclude that for

testing H0 : m ¼ 0, the test which rejects H0 whenever jtj � t1�a=2, where t1�a=2

is the upper 1� a=2 percent point of the central t-distribution with n� 1 degrees

of freedom, is uniformly most powerful among all test whose power function

depends only on
ffiffiffi
n

p
m=s.

3.4. SUFFICIENCY AND INVARIANCE

It is well known that some simplification is introduced in a testing problem by

characterizing the statistical tests as a function of the sufficient statistic and thus

reducing the dimension of the sample space to the dimension of the space of the

sufficient statistic. On the other hand, invariance by reducing the dimension of the

sample space to that of the space of the maximal invariant also shrinks the

parametric space. Thus a question naturally arises: Is it possible to use both

principles simultaneously and if so in what order, i.e., first sufficiency and then

invariance, or first invariance and then sufficiency. Under certain conditions this

reduction can be done by using both principles, and the order in which the

reduction is made is immaterial in such cases. The reader is referred to Hall et al.

(1965) for these conditions and some related results.

One can also avoid the task of verifying these conditions by replacing the

sample space by the space of the sufficient statistic before looking for the group of

transformations which leave the problem invariant and then look for the group of

transformations on the space of the sufficient statistic that leave the problem

invariant.
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3.5. UNBIASEDNESS AND INVARIANCE

The discussions presented in this and the following section are sketchy. For

further study and details relevant references are given.

In testing statistical hypotheses, the principle of unbiasedness plays an

important role in deriving a suitable test statistic in complex situations involving

composite hypotheses. A size a test f is said to be unbiased for testing H0 :
u [ VH0

against H1 : u [ VH1
if EufðXÞ � a for u [ VH1

. In many such

problems the principle of unbiasedness and the principle of invariance seem to

complement each other in the sense that each is successful in the cases in which

the other is not. For example, it is well known that a uniformly most powerful

unbiased test exists for testing the hypothesis H0 : s
2 ¼ s2

0 (specified) against the

alternatives H1 : s
2 = s2

0 in a normal distribution with mean m whereas the

principle of invariance does not reduce the problem sufficiently far to ensure the

existence of a uniformly most powerful invariant test. On the other hand, for

problems involving general linear hypotheses there exists a uniformly most

powerful invariant test (F-test) but no uniformly most powerful unbiased test

exists if the null hypothesis has more than one degree of freedom. However, if

both principles can be applied successfully, then they lead to the same (almost

everywhere) optimum test. Consider the problem of testing H0 : u [ VH0
against

the alternatives H1 : u [ VH1
. Let us assume that it is invariant under the group

of transformations G. Let Ca be the class of unbiased tests of size að0 , a , 1Þ.
For any test fðxÞ define the test function fg by

fgðxÞ ¼ fðgxÞ; x [ X ; g [ G:

Obviously f [ Ca if and only if fg [ Ca. Thus if the test f
� is a unique (up to

measure 0) uniformly most powerful unbiased test for this problem, then

Euðf�gðXÞÞ ¼ E�gguðf�ðXÞÞ ¼ sup
f[Ca

E�gguðfðXÞÞ ¼ sup
fg[Ca

EuðfðgðXÞÞÞ

¼ sup
f[Ca

EuðfgðXÞÞ ¼ Euf
�ðXÞ:

Thus f� and f�g have the same power function. Hence under the assumption of

completeness of the sufficient statistic, f� is almost invariant. Therefore if there

exists a uniformly most powerful almost invariant test f��, we have

Euf
��ðXÞ � Euf

�ðXÞ ð3:17Þ
for u [ VH1

. Comparing this with the trivial level a invariant test fðxÞ ¼ a, we
conclude that f�� is also unbiased, and hence

Euf
��ðXÞ � Euf

�ðXÞ ð3:18Þ
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for u [ VH1
. Thus from (3.17) and (3.18) it follows that f� and f�� have the

same power function. Since f� is unique f� ¼ f�� almost everywhere.

Thus for a testing problem which is invariant under G, if there exists a unique

uniformly most powerful unbiased test f� and if there exists a unique uniformly

most powerful almost invariant test f��, then f� ¼ f�� almost everywhere.

3.6. INVARIANCE AND OPTIMUM TESTS

Apart from the important fact that the performance of an invariant test is

independent of the nuisance parameters, a powerful support of the principle

comes from the famous unpublished Hunt-Stein theorem which asserts that under

certain conditions on the group G there exists an invariant test which is minimax

among all size a tests. It is well known that given any test function on the sample

space we can always replace it by a test which depends only on the sufficient

statistic such that both have the same power function. Such a result is too strong

to expect from the maximal invariant statistic on the sample space. The

appropriate weakening of this property and the conditions under which it holds

constitute the Hunt-Stein theorem which asserts that for testing H0 : u [ VH0

against H1 : u [ VH1
(which is invariant under G), under certain conditions on

the group G, given any test function f on the sample space X , there exists an

invariant test c such that

sup
u[VH0

Euf � sup
u[VH0

Euc; inf
u[VH1

Euf � inf
u[VH1

Euc: ð3:19Þ

In other words, c performs at least as well as f in the worst possible cases. For

the exact statement of this theorem the reader is referred to (Lehmann (1959)

p. 335).

This method has been successfully used by Giri et al. (1963), Giri and Kiefer

(1964a), Linnik et al. (1966), and Salaevskii (1968) to solve the long time open

problem of the minimax character of Hotelling’s T2test, and by Giri and Kiefer

(1964b) to prove the minimax character of the R2test in some special cases.

It may be remarked here that the conditions of Hunt-Stein’s theorem, whether

algebraic or topological, are almost entirely on the group and are nonstatistical in

nature. For verifying the admissibility of statistical tests through invariance the

situation is more complicated. Aside from the trivial case of compact groups only

the one-dimensional translation parameter case has been studied by Lehmann and

Stein (1953). If G is a finite or a compact group, the most powerful invariant test

is admissible. For other groups statistical structure plays an important role.

For further relevant results in this context the reader is referred to Kiefer

(1957, 1966), Ghosh (1967), and Pitman (1939).
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3.7. MOST STRINGENT TESTS AND INVARIANCE

Consider the problem of testing H0 : u [ VH0
against the alternatives H1 : u [

VH1
where VH0

>VH1
is a null set. Let Qa denote the class of all level a tests of

H0 and let

b�
aðuÞ ¼ sup

f[Qa

Euf; u [ VH1
:

b�
aðuÞ is called the envelope power function and it is the maximum power that can

be obtained at level a against the alternative u.

Definition 3.7.1. Most stringent test. A test f that minimizes supu[VH1
ðb�

aðuÞ �
EuðfÞÞ is said to be most stringent. In other words, it minimizes the maximum

shortcomings.

If the testing problem is invariant under a group of transformations G and if

there exists a uniformly most powerful almost invariant test f� with respect to G
such that the group satisfies the conditions of the Hunt-Stein theorem (see

Lehmann (1959), p. 336), then f� is most stringent. For details and further

reading in this context the reader is referred to Lehmann (1959a), Kiefer (1958),

and Giri and Kiefer (1964a).

3.8. LOCALLY BEST AND UNIFORMLY MOST POWERFUL

INVARIANT TESTS

Let X be a random variable (vector or matrix valued) with probability density

function fXðxjuÞ; u [ V. Consider the problem of testing the null hypothesis

H0 : u [ V0 against the alternatives H1 : u [ V1 where V0 and V1 are disjoint

subsets ofV. Assume that the problem of testing H0 against H1 is invariant under

the group G of transformations g, transforming x ! gx. Let TðxÞ be a maximal

invariant under G in the sample space X of X whose distribution depends on the

corresponding maximal invariant nðuÞ in the parametric space V. Any invariant

test depends on X only through TðXÞ and its power depends only on nðuÞ.

Definition 3.8.1. Uniformly most powerful invariant test. An invariant test f�

of size a is uniformly most powerful for testing H0 against H1 if its power

Euf
� � Euf; u [ V1

for any other invariant test f of the same size.
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Definition 3.8.2. Locally best invariant test. An invariant test f� of size a is

locally best invariant for testing H0 against H1 if there exists an open

neighborhood ~VV1 of V0 such that its power

Euf
� � Euf; u [ ~VV1 �V0

for any other invariant test f of the same size.

3.9. RATIO OF DISTRIBUTIONS OF MAXIMAL INVARIANT,

STEIN’S THEOREM

Invariant tests depend on observations only through a maximal invariant in the

sample space. To find the optimum invariant test we need to find the form of the

maximal invariant explicitly and its distribution. In many multivariate testing

problems the explicit forms of maximal invariants are not easy to obtain. Stein

(1956) gave a representation of the ratio of densities of a maximal invariant with

respect to a group G of transformations g, leaving the testing problem invariant.

To state this representation we require the following concepts.

Definition 3.9.1. Relatively left invariant measure. Let G be a locally compact

group and let B be the s-algebra of compact subsets of G. A measure n on (G;B)
is relatively left invariant with left multiplier xðgÞ if

nðgBÞ ¼ xðgÞnðBÞ;B [ B; g [ G:

Examples of such locally compact topological groups includes Ep, the linear

group GlðpÞ, the affine group, the group GT ðpÞ of p� p nonsingular lower

triangular matrices and the group GUT ðpÞ of p� p upper triangular nonsingular

matrices. The multiplier xðgÞ is a continuous homomorphism from G ! Rþ. In
other words

xðg1g2Þ ¼ xðg1Þxðg2Þ for g1; g2 [ G:

From this it follows that

xðeÞ ¼ 1; xðg�1Þ ¼ 1=xðgÞ

where e is the identity element of G and g [ G. If n is a relatively left invariant

with left multiplier xðgÞ then xðgÞnðdgÞ is a left invariant measure.

For example the Lebesgue measure dg; g [ GlðpÞ is relatively left invariant

with xðgÞ ¼ the absolute value of detðgÞ, which is the Jacobian of the inverse

transformation Y ¼ gX ! X, X [ X ¼ Ep.
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Definition 3.9.2. A group G acts topologically on X if the function

f : G� X ! X ; given by f ðg; xÞ ¼ gx; g [ G; x [ X ; is continuous.

For example if we define gx to be matrix product of g with the vector x, then

GlðpÞ acts topologically on Ep.

Definition 3.9.3. (Cartan G-space). Let G act topologically on X . Then X is

called a Cartan G-space if for every x [ X , there exists a neighborhood V of x

such that ðV;VÞ ¼ fg [ GjðgVÞ> V = fg has a compact closure.

Definition 3.9.4. (Proper action). Let G be a group of transformations acting

topologically from the left on the space x and let h be a mapping on

G�X ! X �X

given by

hðg; xÞ ¼ ðgx; xÞ; x [ X ; g [ G:

The group G acts properly on X if for every compact

C , X � X

h�1ðCÞ is compact. IfG acts properly onX thenX is a called CartanG-space. The

action is proper if for every pair (A;B) of compact subsets of X
ððA;BÞÞ ¼ fg [ GjðgAÞ> B = fg

is closed. If G acts properly on X then X is a Cartan G-space. It is not known if

the converse is true. Wijsman (1967) has studied the properness of several groups

of transformations used in multivariate testing problems. We refer to this paper

and the references contained therein for the verification of these two concepts.

Theorem 3.9.1. (Stein (1956)). Let G be a group of transformations g operating

on a topological space (X ;A) and l a measure onX which is left-invariant under

G. Suppose that there are two given probability densities p1; p2 with respect to l
such that

P1ðAÞ ¼
ð
A

p1ðxÞdlðxÞ

P2ðAÞ ¼
ð
A

p2ðxÞdlðxÞ
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for A [ A and P1;P2 are absolutely continuous. Let TðXÞ : X ! X be a

maximal invariant under G. Denote by P�
i , the distribution of TðXÞ when X has

distribution Pi; i ¼ 1; 2. Then under certain conditions

dP�
2ðTÞ

dP�
1ðTÞ

¼
Ð
G
p2ðgxÞdmðgÞÐ

G
p1ðgxÞdmðgÞ ð3:20Þ

where m is a left invariant Haar measure on G.

An alternative form of (3.20) is given by

dP�
2ðTÞ

dP�
1ðTÞ

¼
Ð
G
f2ðgxÞXðgÞdnðgÞÐ

G
f1ðgxÞXðgÞdnðgÞ ð3:21Þ

where fiðgxÞ; i ¼ 1; 2 denote the probability density function with respect to

relatively invariant measure n with left multiplier XðgÞ. Stein gave the statement

of Theorem 3.9.1 without giving explicitly the conditions under which it holds.

However this theorem was successfully used by Giri (1961, 1964, 1965) and

Schwartz (1967). Schwartz (1967) gave also a set of conditions (rather

complicated) which must be satisfied for this theorem to hold. Wijsman (1967a)

gave a sufficient condition for this theorem using the concept of Cartan G-space.

Koehn (1970) gave a generalization of the results of Wijsman (1967). Bonder

(1976) gave a condition for (3.21) through topological arguments. Anderson

(1982) obtained certain conditions for the validity of (3.20) in terms of “proper

action” on groups. Wijsman (1985) studied the properness of several groups of

transformations commonly used for invariance in multivariate testing problems.

The presentation of materials in this section is very sketchy. We refer to

references cited above for further reading and for the proof of Theorem 3.9.1.

3.10. DERIVATION OF LOCALLY BEST INVARIANT TESTS

(LBI)

Let X be the sample space of X and let G be a group of transformations g acting

on the left of X . Assume that the problem of testing H0 : u [ V0 against the

alternative H1 : u [ V1 is invariant under G, transforming X ! gX and let TðXÞ
be a maximal invariant on X under G. The ratio R of the distributions of TðXÞ, for
u1 [ V1; u0 [ V0 (by (3.21)) is given by

R ¼ dPu1ðTÞ
dPu0ðTÞ

¼ D�1

ð
G

fu1 ðgxÞXðgÞdnðgÞ ð3:22Þ
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where

D ¼
ð
G

fu0ðgxÞXðgÞdnðgÞ:

Let

fuðxÞ ¼ bðuÞqðcðxjuÞÞ; u [ V ð3:23Þ
where bðuÞ, c and q are known functions and q is ½0;1Þ to ½0;1Þ. For

multivariate normal distributions qðzÞ ¼ expð�zÞ and cðxj0Þ is a quadratic

function of x. Assuming q and b are continuously twice differentiable we expand

fu1 ðxÞ
fu1 ðxÞ ¼ bðu1Þfqðcðxju0ÞÞ þ qð1Þðcðxju0ÞÞ½cðxju1Þ � cðxju0Þ�

þ 1
2
qð2ÞðzÞ½cðxju1Þ � cðxju0Þ�2 þ oðku1 � u0ÞkÞg

ð3:24Þ

where bðu1Þ ¼ bðu0Þ þ oðku1 � u0kÞ; z ¼ acðxju0Þ þ ð1� aÞcðxju1Þ; 0 � a �
1; ku1 � u0k is the norm of u1 � u0 and qðiÞðxÞ ¼ diðqÞ=dxi. From (3.22)

and (3.24)

R ¼ 1þ D�1

ð
G

qð1Þðcðgxju0ÞÞ½cðgxju1Þ

� cðgxju0Þ�xðgÞnðdgÞ þMðx; u1; u0Þ
ð3:25Þ

where M is the remainder term.

Assumptions

1. The second term in the right-hand side of (3.25) is a function lðu1; u0ÞSðxÞ,
where SðxÞ is a function of TðxÞ.

2. Any invariant test fðXÞ of size a satisfies Eu0ðfðXÞMðX; u1; u0ÞÞ ¼
oðku1 � u0kÞÞ uniformly in f.

Under above assumptions the power function Eu1ðfðXÞÞ satisfies
Eu1 ðfÞ ¼ aþ Eu0 ðfðXÞlðu1; u0ÞSðXÞÞ þ oðku1 � u0kÞ ð3:26Þ

By the Neyman-Pearson lemma the test based SðxÞ is LBI.
The following simple characterization of LBI test has been given by Giri

(1968). Let R1; . . . ;Rp be maximal invariant in the sample space and let

u1; . . . ; up be the corresponding maximal invariant in the parametric space. For

notational convenience we shall write (R1; . . . ;Rp) as a vector R and (u1; . . . ; up)
as a vector u though R and u may very well be diagonal matrices with diagonal

elements R1; . . . ;Rp and u1; . . . ; up respectively.
For fixed u suppose that pðr;uÞ is the pdf of R with respect to the Lebesgue

measure. For testing H0 : u ¼ u0 ¼ ðu01; . . . ; u0pÞ against alternatives
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H1 : u ¼ ðu1; . . . ; upÞ = u0, suppose that

pðr;uÞ
pðr;u0Þ ¼ 1þ

Xp

i¼1

ðui � u0Þ½gðu; u0Þ þ Kðu; u0ÞUðrÞ� þ Bðr; u; u0Þ ð3:27Þ

where gðu; u0Þ and Kðu; u0Þ are bounded for u in the neighborhood of u0;
Kðu; u0Þ . 0 Bðr; u; u0Þ ¼ oðPp

i¼1ðui � u0i ÞÞ; UðRÞ is bounded and has

continuous distribution function for each u in V. If (3.27) is satisfied we say

that a test is LBI for testing H0 against H1 if its rejection region is given by

UðrÞ � C

where the constant C depends on the level a of the test.

EXERCISES

1 Let fPu; u [ Vg, the family of distributions on (X ;A), be such that each Pu is

absolutely continuous with respect to a s-finite measure m; i.e., if mðAÞ ¼ 0 for

A [ A, then PuðAÞ ¼ 0. Let pu ¼ @Pu=@m and define the measure mg�1 for

g [ G, the group of transformations on X , by

mg�1ðAÞ ¼ mðg�1AÞ:

Suppose that

(a) m is absolutely continuous with respect to mg�1 for all g [ G;

(b) puðxÞ is absolutely continuous in u for all x;

(c) V is separable;

(d) the subspaces VH0
and VH1

are invariant with respect to G. Then show that

sup
VH1

puðxÞ= sup
VH0

puðxÞ

is almost invariant with respect to G.

2 Let X1; . . . ;Xn be a random sample of size n from a normal population with

unknown mean m and variance s2. Find the uniformly most powerful invariant

test ofH0 : s
2 , s2

0 (specified) against the alternatives s
2 . s2

0 with respect to

the group of transformations which transform Xi ! Xi þ c;�1 , c , 1;
i ¼ 1; . . . ; n.

3 Let X1; . . . ;Xn be a random sample of size n1 from a normal population with

mean m and variance s 2
1; and let Y1; . . . ; Yn2 be a random sample of size n2

from another normal population with mean n and variance s 2
2. Let
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(X1; . . . ;Xn1 ) be independent of (Y1; . . . ; Yn2 ). Write

�XX ¼ 1

n1

Xn1
i¼1

Xi;

S21 ¼
Xn1
i¼1

ðXi � �XXÞ2;

�YY ¼ 1

n2

Xn2
i¼1

Yi;

S22 ¼
Xn2
i¼1

ðYi � �YYÞ2:

The problem of testing H0 : s
2
1=s

2
2 � l0 (specified) against the alternatives

H1 : s
2
1=s

2
2 . l0 remains invariant under the group of transformations

�XX ! �XX þ c1; �YY ! �YY þ c2; S21 ! S21; S22 ! S22;

where �1 , c1; c2 , 1 and also under the group of common scale changes

�XX ! a �XX; �YY ! a �YY; S21 ! a2S21; S22 ! a2S22;

where a . 0. A maximal invariant under these two groups of transformations is

F ¼ S21
n1 � 1

=
S22

n2 � 1
:

Show that for testing H0 againstH1 the test which rejects H0 whenever F � Ca,

where Ca is a constant such that PðF � CaÞ ¼ a when H0 is true, is the

uniformly most powerful invariant. Is it uniformly most powerful unbiased for

testing H0 against H1?

4 In exercise 3 assume that s 2
1 ¼ s 2

2. Let S
2 ¼ S21 þ S22.

(a) The problem of testing H0 : n� m � 0 against the alternatives H1 :
n� m . 0 is invariant under the group of transformations

�XX ! �XX þ c; �YY ! �YY þ c; S2 ! S2;

where �1 , c , 1, and also under the group of transformations

�XX ! a �XX; �YY ! a �YY; S2 ! a2S2;

0 , a , 1. Find the uniformly most powerful invariant test with respect to

these transformations.
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(b) The problem of testing H0 : n� m ¼ 0 against the alternatives H1 :
n� m = 0 is invariant under the group of affine transformations

Xi ! aXi þ b; Yj ¼ aYj þ b;

a = 0;�1 , b , 1; i ¼ 1; . . . ; n1; j ¼ 1; . . . ; n2. Find the uniformly

most powerful test of H0 against H1 with respect to this group of

transformations.

5 (Linear hypotheses) Let Y1; . . . ; Yn be independently distributed normal

random variables with a common variance s2 and with means

EðYiÞ ¼ mi; i ¼ 1; . . . ; sðs , nÞ
0; i ¼ sþ 1; . . . ; n

�

and let d2 ¼Pr
i¼1 m

2
i =s

2. Show that the test which rejects

H0 : m1 ¼ � � � ¼ mr ¼ 0; r , s, whenever

W ¼
Pr

i¼1 Y
2
i

r
=

Pn
i¼sþ1 Y

2
i

n� s
� k;

where the constant k is determined so that the probability of rejection is a
whenever H0 is true, is uniformly most powerful among all tests whose power

function depends only on d2.
6 (General linear hypotheses) Let X1; . . . ;Xn be n independently distributed

normal random variables with mean ji; i ¼ 1; . . . ; n and common variance s2.

Assume that j ¼ ðj1; . . . ; jnÞ lies in a linear subspace of PV of dimension

s , n. Show that the problem of testing H0 : j [ Pv , PV can be reduced to

Exercise 5 by means of an orthogonal transformation. Find the test statistic W

(of Exercise 5) in terms of X1; . . . ;Xn.

7 (Analysis of variance, one-way classification) Let Yij; j ¼ 1; . . . ; ni;
i ¼ 1; . . . ; k, be independently distributed normal random variables with

means EðYijÞ ¼ mi and common variance s 2. Let H0 : m1 ¼ � � � ¼ mk. Identify

this as a problem of general linear hypotheses. Find the uniformly most

powerful invariant test with respect to a suitable group of transformations.

8 In Example 3.2.3 show that for testing H0 : m ¼ 0 against H1 : d
2 . 0,

student’s test is minimax. Is it stringent for H0 against H1?
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4
Properties of Multivariate Distributions

4.0. INTRODUCTION

We will first define the multivariate normal distribution in the classical way by

means of its probability density function and study some of its basic properties.

This definition does not include the cases in which the covariance matrix is

singular and also the cases in which the dimension of the random vector is

countable or uncountable. We will then define multivariate normal distribution in

the general way to include such cases. A number of characterizations of the

multivariate normal distribution will also be given in order to enable the reader to

study this distribution in Hilbert and Banach spaces.

The complex multivariate normal distribution plays an important role in

describing the statistical variability of estimators and of functions of the elements

of a multiple stationary Gaussian time series. This distribution is also useful in

analyzing linear models with complex covariance structures which arise when

they are invariant under cyclic groups. We treat it here along with some basic

properties.

Multivariate normal distribution has many advantages from the theoretical

viewpoints. Most elegant statistical theories are centered around this distribution.

However, in practice, it is hard to ascertain if a sample of observation is drawn

from a multivariate normal population or not. Sometimes, it is advantageous to

consider a family of distributions having certain similar properties. The family of

elliptically symmetric distributions include, among others, the multivariate

normal, the compound multivariate normal, the multivariate t-distribution and
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the multivariate Cauchy distribution. For all probability density functions in this

family the shapes of contours of equal densities are elliptical. We shall treat it

here along with some of its basic properties.

Another deviation from the multivariate normal family is the family of

multivariate exponential power distributions where the multivariate normal

distribution is enlarged through the introduction of an additional parameter u and
the deviation from the multivariate normal family is described in terms of u. This
family (problem 25) includes the multivariate normal family (u ¼ 1),

multivariate double exponential family (u ¼ 1
2
) and the asymptotically uniform

distributions (u ! 1). The univariate case ( p ¼ 1) is often treated in Bayesian

inference (Box and Tiao (1973)).

4.1. MULTIVARIATE NORMAL DISTRIBUTION (CLASSICAL

APPROACH)

Definition 4.1.1. Multivariate normal distribution. A random vector X ¼
ðX1; . . . ;XpÞ0 taking values x ¼ ðx1; . . . ; xpÞ0 in Ep (Euclidean space of dimension

p) is said to have a p-variate normal distribution if its probability density function

can be written as

fXðxÞ ¼ 1

ð2pÞp=2jSj12
exp � 1

2
ðx� mÞ0S�1ðx� mÞ

� �
; ð4:1Þ

where m ¼ ðm1; . . . ;mpÞ0 [ Ep and S is a p� p symmetric positive definite

matrix.

In what follows a random vector will always imply a real vector unless it is

specifically stated otherwise.

We show now that fXðxÞ is an honest probability density function of X. Since S
is positive definite, ðx� mÞ0S�1ðx� mÞ � 0 for all x [ Ep and detðSÞ . 0. Hence

fXðxÞ � 0 for all x [ Ep. Furthermore, since S is a p� p positive definite matrix

there exists a p� p nonsingular matrix C such that S ¼ CC0. Let y ¼ C�1x. The

Jacobian of the transformation x ! y ¼ C�1x is detC. Writing

n ¼ ðn1; . . . ; npÞ0 ¼ C�1m, we obtainð
Ep

1

ð2pÞp=2ðdetSÞ12
exp � 1

2
ðx� mÞ0S�1ðx� mÞ

� �
dx

¼
ð
Ep

1

ð2pÞp=2 exp � 1

2
ðy� nÞ0ðy� nÞ

� �
dy

¼
Yp

i¼1

ð1
�1

1

ð2pÞ1=2 exp � 1

2
ðyi � niÞ2

� �
dyi

¼ 1:
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Theorem 4.1.1. If the random vector X has a multivariate normal distribution

with probability density function fXðxÞ, then the parameters m and S are given by

EðXÞ ¼ m;EðX � mÞðX � mÞ0 ¼ S.

Proof. The random vector Y ¼ C�1X, with S ¼ CC0, has probability density

function

fY ðyÞ ¼
Yp

i¼1

1

ð2pÞ1=2 exp � 1

2
ðyi � niÞ2

� �

Thus EðYÞ ¼ ðEðY1Þ; . . . ;EðYpÞÞ0 ¼ n ¼ C�1m,

covðYÞ ¼ EðY � nÞðY � nÞ0 ¼ I: ð4:2Þ

From this

EðC�1XÞ ¼ C�1EðXÞ ¼ C�1m

EðC�1X � C�1mÞðC�1X � C�1mÞ0 ¼ C�1EðX � mÞðX � mÞ0C�10 ¼ I:

Hence

EðXÞ ¼ m;EðX � mÞðX � mÞ0 ¼ S:

Q.E.D.

We will frequently write S as

S ¼
s2

1 s12 � � � s1p

s21 s2
2 � � � s2p

..

. ..
.

sp1 sp2 � � � s2
p

0
BBB@

1
CCCA with sij ¼ sji

The fact that S is symmetric follows from the identity

E½ðX � mÞðX � mÞ0�0 ¼ EðX � mÞðX � mÞ0.
The term covariance matrix is used here instead of the matrix of variances and

covariances of the components.

We will now prove some basic characteristic properties of multivariate normal

distributions in the following theorems.

Theorem 4.1.2. If the covariance matrix of a normal random vector X ¼
ðX1; . . . ;XpÞ0 is a diagonal matrix, then the components of X are independently

distributed normal variables.
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Proof. Let

S ¼
s2

1 0 � � � 0

0 s2
2 � � � 0

..

. ..
.

0 0 � � � s2
p

0
BBB@

1
CCCA

Then

ðx� mÞ0S�1ðx� mÞ ¼
Xp

i¼1

xi � mi

si

� �2

; detS ¼
Yp

i¼1

s2
i

Hence

fXðxÞ ¼
Yp

i¼1

1

ð2pÞ1=2si

exp � 1

2

xi � mi

si

� �2
( )

;

which implies that the components are independently distributed normal random

variables with means mi and variance s2
i . Q.E.D.

It may be remarked that the converse of this theorem holds for any random

vector X. The theorem does not hold if X is not a normal vector. The following

theorem is a generalization of the above theorem to two subvectors.

Theorem 4.1.3. Let X ¼ ðX0
ð1Þ; X0

ð2ÞÞ0; Xð1Þ ¼ ðX1; . . . ;XqÞ0; Xð2Þ ¼
ðXqþ1; . . . ;XpÞ0, let m be similarly partitioned as m ¼ ðm0

ð1Þ;m
0
ð2ÞÞ0, and let S be

partitioned as

S ¼ S11 S12

S21 S22

� �

where S11 is the upper left-hand corner submatrix of S of dimension q� q. If X

has normal distribution with means m and positive definite covariance matrix S
and S12 ¼ 0, then Xð1Þ;Xð2Þ are independently normally distributed with means

mð1Þ;mð2Þ and covariance matrices S11;S22 respectively.

Proof. Under the assumption that S12 ¼ 0, we obtain

ðx� mÞ0S�1ðx� mÞ ¼ ðxð1Þ � mð1ÞÞ0S�1
11 ðxð1Þ � mð1ÞÞ þ ðxð2Þ � mð2ÞÞ0

� S
�1
22 ðxð2Þ � mð2ÞÞ; detS ¼ ðdetS11ÞðdetS22Þ:
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Hence

fXðxÞ ¼ 1

ð2pÞq=2ðdetS11Þ1=2
exp � 1

2
ðxð1Þ � mð1ÞÞ0S�1

11 ðxð1Þ � mð1ÞÞ
� �

� 1

ð2pÞðp�qÞ=2ðdetS22Þ1=2
exp � 1

2
ðxð2Þ � mð2ÞÞ0S�1

22 ðxð2Þ � mð2ÞÞ
� �

and the result follows. Q.E.D.

This theorem can be easily extended to the case where X is partitioned into

more than two subvectors, to get the result that any two of these subvectors are

independent if and only if the covariance between them is zero. An important

reproductive property of the multivariate normal distribution is given in the

following theorem.

Theorem 4.1.4. Let X ¼ ðX1; . . . ;XpÞ0 with values x in Ep be normally

distributed with mean m and positive definite covariance matrix S. Then the

random vector Y ¼ CX with values y ¼ Cx in Ep where C is a nonsingular matrix

of dimension p� p has p-variate normal distribution with mean Cm and

covariance matrix CSC0.

Proof. The Jacobian of the transformation x ! y ¼ Cx is ðdetCÞ�1. Hence the

probability density function of Y is given by

fY ðyÞ ¼ fxðC�1yÞðdetCÞ�1 ¼ 1

ð2pÞp=2ðdetCSC0Þ1=2

� exp � 1

2
ðy� CmÞ0ðCSC0Þ�1ðy� CmÞ

� �

Thus Y has p-variate normal distribution with mean Cm and positive definite

covariance matrix CSC0. Q.E.D.

Theorem 4.1.5. Let X ¼ ðX0
ð1Þ;X

0
ð2ÞÞ0 be distributed as Npðm;SÞ where Xð1Þ;Xð2Þ

are as defined in Theorem 4.1.3. Then

(a) Xð1Þ;Xð2Þ � S21S
�1
11 Xð1Þ are independently normally distributed with means

mð1Þ;mð2Þ � S21S
�1
11 mð1Þ and positive definite covariance matrices

S11;S22:1 ¼ S22 � S21S
�1
11 S12 respectively.

(b) The marginal distribution of Xð1Þ is q-variate normal with mean mð1Þ and
covariance matrix S11.

(c) The condition distribution of Xð2Þ given Xð1Þ ¼ xð1Þ is normal with mean

mð2Þ þ S21S
�1
11 ðxð1Þ � mð1ÞÞ and covariance matrix S22:1.
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Proof.

(a) Let

Y ¼ Yð1Þ
Yð2Þ

� �
¼

Xð1Þ

Xð2Þ � S21S
�1
11 Xð1Þ

 !
:

Then

Y ¼ I1 0

�S21S
�1
11 I2

� �
Xð1Þ
Xð2Þ

� �
¼ CX

where I1 and I2 are identity matrices of dimensions q� q and ðp� qÞ �
ðp� qÞ respectively and

C ¼ I1 0

�S21S
�1
11 I2

� �
:

Obviously C is a nonsingular matrix. By Theorem 4.1.4 Y has p-variate

normal distribution with mean

Cm ¼
mð1Þ

mð2Þ � S21S
�1
11 mð1Þ

 !

and covariance matrix

CSC0 ¼ S11 0

0 S22:1

� �
:

Hence by Theorem 4.1.3 we get the result.

(b) It follows trivially from part (a).

(c) The Jacobian of the inverse transformation Y ¼ CX is unity. From (a) the

probability density function of X can be written as

fXðxÞ ¼
expf� 1

2
ðxð1Þ � mð1ÞÞ0S�1

11 ðxð1Þ � mð1ÞÞg
ð2pÞq=2ðdetS11Þ1=2

� 1

ð2pÞðp�qÞ=2ðdetS22:1Þ1=2

� exp � 1

2
ðxð2Þ � mð2Þ � S21S

�1
11 ðxð1Þ � mð1ÞÞÞ0

�

S
�1
22:1ðxð2Þ � mð2Þ � S21S

�1
11 ðxð1Þ � mð1ÞÞÞ

o

ð4:3Þ
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Hence the results. Q.E.D.

Thus it is interesting to note that if X has p-variate normal distribution, the

marginal distribution of any subvector of X is also a multivariate normal and the

conditional distribution of any subvector given the values of the remaining

subvector is also a multivariate normal.

Example 4.1.1. Bivariate normal. Let

S ¼ s2
1 rs1s2

rs1s2 s2
2

� �

with s2
1 . 0;s2

2 . 0;�1 , r , 1. Since detS ¼ s2
1s

2
2ð1� r2Þ . 0;S�1

exists

and is given by

S
�1 ¼

1

s2
1

�r

s1s2

�r

s1s2

1

s2
2

0
BBB@

1
CCCA

1

1� r2
:

Furthermore, for x ¼ ðx1; x2Þ0 = 0

x0Sx ¼ ðs1x1 þ rs2x2Þ2 þ ð1� r2Þs2
2x

2
2 . 0:

Hence S is positive definite. With m ¼ ðm1;m2Þ0,

ðx� mÞ0S�1ðx� mÞ ¼ 1

1� r2
x1 � m1

s1

� �2

þ x2 � m2

s2

� �2
"

�2r
x1 � m1

s1

� �
x2 � m2

s2

� ��
:

The probability density function of a bivariate normal random variable with

values in E2 is

1

2ps1s2ð1� r2Þ1=2 � exp � 1

2ð1� r2Þ
x1 � m1

s1

� �2

þ x2 � m2

s2

� �2
"(

�2r
x1 � m1

s1

� �
x2 � m2

s2

� ���
:

The coefficient of correlation between X1 and X2 is

covðX1;X2Þ
ðvarðX1ÞvarðX2ÞÞ1=2

¼ r:
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If r ¼ 0;X1;X2 are independently normally distributed with means m1;m2 and

variances s2
1;s

2
2, respectively. If r . 0, then X1;X2 are positively related; and if

r , 0, then X1;X2 are negatively related.

The marginal distributions of X1 and of X2 are both normal with means m1 and

m2, and with variances s2
1 and s2

2, respectively. The conditional probability

density of X2 given X1 ¼ x1 is a normal with

EðX2jX1 ¼ x1Þ ¼ m2 þ r
s2

s1

� �
ðx1 � m1Þ; varðX2jX1 ¼ x1Þ ¼ s2

2ð1� r2Þ:

Figures 4.1 and 4.2 give the graphical presentation of the bivariate normal

distribution and its contours.

We now give an example to show that the normality of marginal distributions

does not necessarily imply the multinormality of the joint distribution though the

converse is always true.

Figure 4.1. Bivariate normal with mean 0 and S ¼ 1 1
2

1
2

1

� �
.
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Example 4.1.2. Let

f ðx1; x2jr1Þ ¼
1

2pð1� r21Þ1=2
exp � 1

2ð1� r21Þ
ðx21 þ x22 � 2r1x1x2Þ

� �

f ðx1; x2jr2Þ ¼
1

2pð1� r22Þ1=2
exp � 1

2ð1� r22Þ
ðx21 þ x22 � 2r2x1x2Þ

� �

be two bivariate normal probability functions with 0 means, unit variances and

different correlation coefficients. Let

f ðx1; x2Þ ¼ 1

2
f ðx1; x2jr1Þ þ

1

2
f ðx1; x2jr2Þ:

Obviously f ðx1; x2Þ is not a bivariate normal density function though the

marginals of X1 and of X2 are both normals.

Theorem 4.1.6. Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m
and positive definite covariance matrix S. The characteristic function of the

Figure 4.2. Contours of bivariate normal in Figure 4.1.
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random vector X is given by

fXðtÞ ¼ Eðeit0XÞ ¼ exp it0m� 1

2
t0St

� �
ð4:4Þ

where

t ¼ ðt1; . . . ; tpÞ0 [ Ep; i ¼ ð�1Þ1=2:

Proof. Since S is positive definite, there exists a nonsingular matrix C such that

S ¼ CC0. Write y ¼ C�1x; a ¼ ða1; . . . ;apÞ0 ¼ C0t;q ¼ C�1m ¼ ðq1; . . . ;qpÞ0.
Then

Eðeit0XÞ ¼
ð
Ep

ð2pÞ�p=2 exp ia0y� 1

2
ð y� qÞ0ðy� qÞ

� �
dy

¼
Yp

j¼1

ð
ð2pÞ1=2 exp iajyj � 1

2
ð yj � qjÞ2

� �
dyj

¼
Yp

j¼1

exp iajqj � 1

2
a2
j

� �
¼ exp ia0q� 1

2
a0a

� �

¼ exp it0m� 1

2
t0St

� �

as the characteristic function of a univariate normal random variable is

expfitm� 1
2
t2s2g. Q.E.D.

Since the characteristic function determines uniquely the distribution function

it follows from (4.4) that the p-variate normal distribution is completely specified

by its mean vector m and covariance matrix S. We shall therefore use the notation

Npðm;SÞ for the density function of a p-variate normal random vector involving

parameter m;S whenever S is positive definite.

In Theorem 4.1.4 we have shown that if C is a nonsingular matrix then CX is a

p-variate normal whenever X is a p-variate normal. The following theorem will

assert that this restriction on C is not essential.

Theorem 4.1.7. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Npðm;SÞ and let Y ¼
AX where A is a matrix of dimension q� p of rank qðq , pÞ. Then Y is distributed

as NqðAm;ASA0Þ.
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Proof. Let C be a nonsingular matrix of dimension p� p such that

C ¼ A

B

� �
;

where B is a matrix of dimension ðp� qÞ � p of rank p� q, and let Z ¼ BX. Then

by Theorem 4.1.4.
�
Y
Z

�
has p-variate normal distribution with mean

Cm ¼ Am
Bm

� �

and covariance matrix

CSC0 ¼ ASA0 ASB0

BSA0 BSB0

� �
:

By Theorem 4.1.5(b) we get the result. Q.E.D.

This theorem tells us that if X is distributed as Npðm;SÞ, then every linear

combination of X has a univariate normal distribution. We will now show that if,

for a random vector X with mean m and covariance matrix S, every linear

combination of the components of X having a univariate normal distribution, then

X has a multivariate normal distribution.

Theorem 4.1.8. Let X ¼ ðX1; . . . ;XpÞ0. If every linear combination of the

components of X is distributed as a univariate normal, then X is distributed as a

p-variate normal.

Proof. For any nonnull fixed real p-vector L, let L0X have a univariate normal

with mean L0m and variance L0SL. Then for any real t the characteristic function

of L0X is

fðt; LÞ ¼ EðeitL0XÞ ¼ exp itL0m� 1

2
t2L0SL

� �
:

Hence

fð1; LÞ ¼ EðeiL0XÞ ¼ exp iL0m� 1

2
L0SL

� �
;

which as a function of L is the characteristic function of X. By the inversion

theorem of the characteristic function (see Giri (1993), or Giri (1974)) the

probability density function of X is Npðm;SÞ. Q.E.D.
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Motivated by Theorem 4.1.7 and Theorem 4.1.8 we now give a more general

definition of the multivariate normal distribution.

Definition 4.1.2. Multivariate normal distribution. A p-variate random vector

X with values in Ep is said to have a multivariate normal distribution if and only if

every linear combination of the components of X has a univariate normal

distribution.

When S is nonsingular, this definition is equivalent to that of the multivariate

normal distribution given in 4.1.1. If X has a multivariate normal distribution

according to Definition 4.1.2, then each component Xi of X is distributed

as univariate normal so that �1 , EðXiÞ , 1; varðXiÞ , 1, and hence

covðXi;XiÞ ¼ s2
i ; covðXi;XjÞ ¼ sij. Then EðXÞ; covðXÞ exist and we denote

them by m;S respectively.

In Definition 4.1.2 it is not necessary that S be positive definite; it can be

semipositive definite also.

Definition 4.1.2 can be extended to the definition of a normal probability

measure on Hilbert and Banach spaces by demanding that the induced

distribution of every linear functional be univariate normal. The reader is referred

to Fréchet (1951) for further details. One other big advantage of Definition 4.1.2

over Definition 4.1.1 is that certain results of univariate normal distribution can

be immediately generalized to the multivariate case. Readers may find it

instructive to prove Theorems 4.1.1–4.1.8 by using Definition 4.1.2. As an

illustration let us prove Theorem 4.1.3 and then Theorem 4.1.7.

Proof of Theorem 4.1.3. For any nonzero real p-vector L ¼ ðl1; . . . ; lpÞ0 the
characteristic function of L0X is

fðt; LÞ ¼ exp itL0m� 1

2
t2L0SL

� �
: ð4:5Þ

Write L ¼ ðL0ð1Þ; L0ð2ÞÞ0 where Lð1Þ ¼ ðl1; . . . ; lqÞ0.

Then

L0m ¼ L0ð1Þmð1Þ þ L0ð2Þmð2Þ; L
0SL ¼ L0ð1ÞS11Lð1Þ þ L0ð2ÞS22Lð2Þ

Hence

fðt; LÞ ¼ exp itL0ð1Þmð1Þ �
1

2
t2L0ð1ÞS11Lð1Þ

� �

� exp itL0ð2Þmð2Þ �
1

2
t2L0ð2ÞS22Lð2Þ

� �

80 Chapter 4



In other words the characteristic function of X is the product of the characteristic

functions of Xð1Þ and Xð2Þ and each one is the characteristic function of a

multivariate normal distribution. Hence Theorem 4.1.3 is proved.

Proof of Theorem 4.1.7. Let Y ¼ AX. For any fixed nonnull vector L,

L0Y ¼ ðL0AÞX:
By Definition 4.1.2 L0AX has univariate normal distribution with mean L0Am and

variance L0ASA0L. Since L is arbitrary, this implies that Y has q-variate normal

distribution with mean Am and covariance matrix ASA0. Q.E.D.

Using Definition 4.1.2 we need to establish the existence of the probability

density function of the multivariate normal distribution. Let us now examine the

following question: Does Definition 4.1.2 always guarantee the existence of the

probability density function? If not, under what conditions can we determine

explicitly the probability density function?

Evidently Definition 4.1.2 does not restrict the covariance matrix to be

positive definite. If S is a nonnegative definite of rank q, then for any real nonnull

vector L, L0SL can be written as

L0SL ¼ ða0
1LÞ2 þ � � � þ ða0

qLÞ2 ð4:6Þ
where ai ¼ ðai1; . . . ;aipÞ0 i ¼ 1; . . . ; q are linearly independent vectors. Hence

the characteristic function of X can be written as

exp iL0m� 1

2

Xq

j¼1

ða0
jLÞ2

( )
: ð4:7Þ

Now expfiL0mg is the characteristic function of a p-dimensional random variable

Z0 which assumes value m with probability one and expf� 1
2

Pq
j¼1ða0

jLÞ2g is the
characteristic function of a p-dimensional random variable

Zi ¼ ðai1Ui; . . . ;aipUiÞ0

where U1; . . . ;Uq are independently, identically distributed (real) random

variables with mean zero and variance unity.

Theorem 4.1.9. The random vector X ¼ ðX1; . . . ;XpÞ0 has p-variate normal

distribution with mean m and with covariance matrix S of rank qðq � pÞ if and
only if

X ¼ mþ aU;aa0 ¼ S;

where a is a p� q matrix of rank q and U ¼ ðU1; . . . ;UqÞ0 has q-variate normal
distribution with mean 0 and covariance matrix I (identity matrix).
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Proof. Let X ¼ mþ aU, aa0 ¼ S, and U be normally distributed with mean 0

and covariance matrix I. For any nonnull fixed real p-vector L,

L0X ¼ L0mþ ðL0aÞU:

But ðL0aÞU has univariate normal distribution with mean zero and variance

L0aa0L. Hence L0X has univariate normal distribution with mean L0m and variance

L0aa0L. Since L is arbitrary, by Definition 4.1.2 X has p-variate normal

distribution with mean m and covariance matrix S ¼ aa0 of rank q.

Conversely, if the rank of S is q and X has a p-variate normal distribution with

mean m and covariance matrix S, then from (4.7) we can write

X ¼ Z0 þ Z1 þ � � � þ Zq ¼ mþ aU;

satisfying the conditions of the theorem. Q.E.D.

4.1.1. Some Characterizations of the Multivariate Normal

Distribution

We give here only two characterizations of the multivariate normal distribution

which are useful for our purpose. For other characterizations we refer to the book

by Kagan et al. (1972).

Before we begin to discuss characterization results we need to state the

following results due to Cramer (1937) regarding univariate random variables.

If the sum of two independent random variables X; Y is normally distributed,

then each one is normally distributed. For a proof of this the reader is referred to

Cramer (1937). The following characterizations of the multivariate normal

distribution are due to Basu (1955).

Theorem 4.1.10. If X; Y are two independent p-vectors and if X þ Y has a p-

variate normal distribution, then both X; Y have p-variate normal distribution.

Proof. Since X þ Y has a p-variate normal distribution, for any nonnull p-

vector L; L0ðX þ YÞ ¼ L0X þ L0Y has univariate normal distribution. Since L0X
and L0Y are independent, by Cramer’s result, L0X; L0Y are both univariate normal

random variables. This, by Definition 4.1.2, implies that both X; Y have p-variate

normal distribution. Q.E.D.

82 Chapter 4



Theorem 4.1.11. Let X1; . . . ;Xn be a set of mutually independent p-vectors and

let

X ¼
Xn
i¼1

aiXi; Y ¼
Xn
i¼1

biXi

where a1; . . . ; an; b1; . . . ; bn are two sets of real constants.

(a) If X1; . . . ;Xn are identically normally distributed p-vectors and ifPn
i¼1 aibi ¼ 0, then X and Y are independent.

(b) If X and Y are independently distributed, then each Xi for which aibi = 0

has p-variate normal distribution.

Note: Part (b) of this theorem is a generalization of the Darmois-Skitovic

theorem which states that if X1; . . . ;Xn are independently distributed random

variables, then the independence of
Pn

i¼1 aiXi;
Pn

i¼1 biXi, implies that each Xi is

normally distributed provided aibi = 0 (See Darmois (1953), Skitovic (1954), or

Basu (1951)).

Proof.

(a) For any nonnull p-vector L

L0X ¼ a1ðL0X1Þ þ � � � þ anðL0XnÞ:
If X1; . . .Xn are independent and identically distributed normal random

vectors, then L0X1; . . . ; L
0Xn are independently and identically distributed

normal random variables and hence L0X has univariate normal distribution

for all L. This implies that X has a p-variate normal distribution. Similarly Y

has a p-variate normal distribution. Furthermore, the joint distribution of

X; Y is a 2p-variate normal. Now

covðX; YÞ ¼ Siaibi covðXiÞ ¼ S � 0 ¼ 0:

Thus X; Y are independent.

(b) For any nonnull real p-vector L

L0X ¼
Xn
i¼1

aiðL0XiÞ; L0Y ¼
Xn
i¼1

biðL0XiÞ:

Since L0Xi are independent random variables, independence of L0X, L0Y and

aibi = 0 implies L0Xi has a univariate normal distribution. Since L is

arbitrary, Xi has a p-variate normal distribution.

Q.E.D.
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4.2. COMPLEX MULTIVARIATE NORMAL DISTRIBUTION

A complex random variable Z with values in C (field of complex numbers) is

written as Z ¼ X þ iY where i ¼ ffiffiffiffiffiffiffi�1
p

;X; Y are real random variables. The

expected value of Z is defined by

EðZÞ ¼ EðXÞ þ iEðYÞ; ð4:8Þ

assuming both EðXÞ and EðYÞ exist. The variance of Z is defined by

varðZÞ ¼ EðZ � EðZÞÞðZ � EðZÞÞ*;
¼ varðXÞ þ varðYÞ ð4:9Þ

where ðZ � EðZÞÞ* denote the adjoint of ðZ � EðZÞÞ, i.e. the conjugate and

transpose of ðZ � EðZÞÞ.
Note that for 1-dimensional variables the transpose is superfluous. It follows

that for a; b [ C

varðaZ þ bÞ ¼ EððaðZ � EðZÞÞðaðZ � EðZÞÞ*Þ
¼ aa*varðZÞ:

The covariance of any two complex random variables Z1; Z2 is defined by

covðZ1; Z2Þ ¼ EðZ1 � EðZ1ÞÞðZ2 � EðZ2ÞÞ*: ð4:10Þ

Theorem 4.2.1. Let Z1; . . . ; Zn be a sequence of n complex random variables.

Then

(a) covðZ1; Z2Þ ¼ ðcovðZ2; Z1ÞÞ*.
(b) For a1; . . . ; an [ C; b1; . . . ; bn [ C,

cov
Xn
j¼1

ajZj;
Xn
j¼1

bjZj

 !

¼
Xn
j¼1

aj �bbjvarðZjÞ þ 2
X
j,k

aj �bbkcovðZj; ZkÞ:
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Proof.

(a) Let Zj ¼ Xj þ iYj; j ¼ 1; . . . ; n, where X1; . . . ;Xn; Y1; . . . ; yn are real

random variables.

covðZ1; Z2Þ ¼ covðX1;X2Þ þ covðY1; Y2Þ
þ iðcovðY1;X2Þ � covðX1; Y2ÞÞ;

covðZ2; Z1Þ ¼ covðX1;X2Þ þ covðY1; Y2Þ
� iðcovðY1;X2Þ � covðX1; Y2ÞÞ:

Hence the result.

cov
X
j

ajZj;
X
j

bjZj

 !
¼ E

X
j

ajðZj � EðZjÞÞ
 ! 

X
j

bjðZj � EðZjÞÞ
 !

*
!

¼
X
j

ajb
�
j varðZjÞ þ 2

X
j,k

ajb
�
kcovðZj; ZkÞ:

Q.E.D.

A p-variate complex random vector with values in C
p

Z ¼ ðZ1; . . . ; ZpÞ0;

with Zj ¼ Xj þ iYj, is a p-tuple of complex random variables Z1; . . . ; Zp. The
expected value of Z is

EðZÞ ¼ ðEðZ1Þ; . . . ;EðZpÞÞ0: ð4:11Þ

The complex covariance of Z is defined by

S ¼ EðZ � EðZÞÞðZ � EðZÞÞ*: ð4:12Þ

Since S* ¼ S, S is a Hermitian matrix.

Definition 4.2.1. Let Z ¼ X þ iY [ C
p be a complex vector of p-dimension

½Z� ¼ X

Y

� �
[ E2p: ð4:13Þ

This representation defines an isomorphism between Cp and E2p.

(b)
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Theorem 4.2.2. Let Cp be the space of p� p complex matrices and let C ¼
Aþ iB [ Cp where A and B are p� p real matrices. For Z [ C

p

½CZ� ¼ kCl½Z�; ð4:14Þ
where

kCl ¼ A �B

B A

� �
: ð4:15Þ

Proof.

½CZ� ¼ ½ðAþ iBÞðX þ iYÞ� ¼ ½AX � BY þ iðBX þ AYÞ�

¼ AX� BY

BXþ AY

� �
¼ kCl½Z�:

Q.E.D.

Definition 4.2.2. A univariate complex normal random variable is a complex

random variable Z ¼ X þ iY such that the distribution of ½Z� ¼ �
X
Y

�
is a bivariate

normal.

The probability density function of Z can be written as

fZðzÞ ¼ 1

pvarðZÞ exp � ðz� aÞðz� aÞ*
varðZÞ

� �
¼ 1

pðvarðXÞ þ varðYÞÞ

� exp � ðx� mÞ2 � ðy� nÞ2
varðXÞ þ varðYÞ

� �

where a ¼ mþ in ¼ EðZÞ.

Definition 4.2.3. A p-variate complex random vector

Z ¼ ðZ1; . . . ; ZpÞ0;
with Zj ¼ Xj þ iYj is a p-tuple of complex normal random variables Z1; . . . ; Zp
such that the real 2p-vector ðX1; . . . ;Xp; Y1; . . . ; YpÞ0 has a 2p-variate normal

distribution.

Let

a ¼ EðZÞ ¼ EðXÞ þ iEðYÞ ¼ mþ in;S ¼ EðZ � aÞðZ � aÞ*;
where S [ Cp is a positive definite Hermitian matrix; a [ Cp; m; n [ Ep;

X ¼ ðX1; . . . ;XpÞ [ Ep; Y ¼ ðY1; . . . ; YpÞ0 [ Ep. The joint probability density
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function of X; Y can be written as

fZðzÞ ¼ 1

pp detðSÞ expf�ðz� aÞ*S�1ðz� aÞg

¼ 1

pp det
2G �2D

2D 2G

� �� �1
2

ð4:16Þ

� exp � x �m

y �n

� �0
2G �2D

2D 2G

� ��1
x �m

y �n

� �( )

where S ¼ 2Gþ i2D, G is a positive definite matrix and D ¼ �D0 (skew

symmetric). Hence EðXÞ ¼ m;EðYÞ ¼ n and the covariance matrix of
�
X
Y

�
is

given by

G �D
D G

� �

Thus if Z has the probability density function fZðzÞ given by (4.16), then

EðZÞ ¼ mþ iq; covðZÞ ¼ S.

Example 4.2.1. Bivariate complex normal. Here

Z ¼ ðZ1; Z2Þ0; Z1 ¼ X1 þ iY1; Z2 ¼ X2 þ iY2;EðZÞ
¼ a ¼ ða1;a2Þ0 ¼ ðm1;m2Þ0 þ iðn1; n2Þ0:

Let

covðZj; ZkÞ ¼ s2
k if j ¼ k;

ðajk þ ibjkÞsjsk if j = k:

�

Hence

S ¼ s2
1 ða12 þ ib12Þs1s2

ða12 � ib12Þs1s2 s2
2

 !
;

detS ¼ s2
1s

2
2 � ða2

12 þ b2
12Þs2

1s
2
2;

S
�1 ¼ 1

ð1� a2
12 � b2

12Þs2
1s

2
2

� s2
2 �ða12 þ ib12Þs1s2

�ða12 � ib12Þs1s2 s2
2

 !
:
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Thus

fZðzÞ ¼ 1

p2ð1� a2
12 � b2

12Þ
exp½ðð1� a2

12 � b2
12Þs2

1s
2
2Þ�1

� f�s2
2ðz1 � a1Þ*ðz1 � a1Þ þ s2

1ðz2 � a2Þ*ðz� a2Þ�ðz� a2Þ
� 2s1s2ða12 þ ib12Þðz1 � a1Þ*ðz2 � a2Þg�

The numerator inside the braces can be expressed as

s2
2½ðx1 � m1Þ2 þ ðy1 � n1Þ2� þ s2

1½ðx2 � m2Þ2 þ ðy2 � n2Þ2� � 4s1s2

� ½a12ððx1 � m1Þðx2 � m2Þ þ ðy1 � n1Þðy2 � n2ÞÞ
þ b12ððx1 � m1Þðy2 � m2Þ � ðx2 � m2Þðy1 � m1ÞÞ�:

The special case of the probability density function of the complex random vector

Z given in (4.16) with the added restriction

EðZ � aÞðZ � aÞ0 ¼ 0 ð4:17Þ

is of considerable interest in the literature. This condition implies that the real and

imaginary parts of different components are pairwise independent and the real

and the imaginary parts of the same components are independent with the same

variance.

With the density function fZðzÞ in (4.16) one can obtain results analogous to

Theorems 4.1.1–4.1.5 for the complex case. We shall prove below three

theorems which are analogous to Theorems 4.1.3–4.1.5.

Theorem 4.2.3. Let Z ¼ ðZ1; . . . ; ZpÞ0 with values in Cp be distributed as the

complex p-variate normal with mean a and Hermitian positive definite

covariance matrix S. Then CZ, where C is a complex nonsingular matrix of

dimension p� p, has a complex p-variate normal distribution with mean Ca and

Hermitian positive definite covariance matrix CSC*.

Proof.

½CZ� ¼ AX � BY

BX þ AY

� �
¼ A �B

B A

� �
X

Y

� �

¼ kCl½Z�

88 Chapter 4



Since ½Z� is distributed as

N2p a;
G �D
D G

� �� �
;

A �B

B A

� �
½Z�

is distributed as 2p-variate normal with mean

Am� Bn
Bmþ An

� �

and 2p� 2p covariance matrix

AGA0 � BDA0 þ ADB0 � BGB0 �BGA0 � BDB0 þ AGB0 � ADA0

BGA0 þ BDB0 � AGB0 þ ADA0 AGA0 � BDA0 þ ADB0 þ BGB0

� �

Hence CZ is distributed as p-variate complex normal with mean Ca and p� p

complex covariance matrix

2ðAGA0 � BDA0 þ BGB0 þ ADB0Þ
þ i2ðBGA0 þ ADA0 � AGB0 þ BDB0Þ ¼ CSC*:

Q.E.D.

Theorem 4.2.4. Let Z ¼ ðZ 0
ð1Þ; Z

0
ð2ÞÞ0, where Zð1Þ ¼ ðZ1; . . . ; ZqÞ0; Zð2Þ ¼

ðZqþ1; . . . ; ZpÞ0 be distributed as p-variate complex normal with mean a ¼
ða0

ð1Þ;a
0
ð2ÞÞ0 and positive definite Hermitian covariance matrix S and let S be

partitioned as

S ¼ S11 S12

S21 S22

� �

where S11 is the upper left-hand corner submatrix of dimension q� q. If S12 ¼ 0,

then Zð1Þ; Zð2Þ are independently distributed complex normal vectors with means

að1Þ;að2Þ and Hermitian covariance matrices S11;S22 respectively.

Proof. Under the assumption that S12 ¼ 0, we obtain

ðz� aÞ*S�1ðz� aÞ ¼ ðzð1Þ � að1ÞÞ*S�1
11 ðzð1Þ � að1ÞÞ

þ ðzð2Þ � að2ÞÞ*S�1
22 ðzð2Þ � að2ÞÞ;

detS ¼ ðdetS11ÞðdetS22Þ:
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Hence

fZðzÞ ¼ 1

pq detS11

expf�ðzð1Þ � að1ÞÞ*S�1
11 ðzð1Þ � að1ÞÞg

� 1

pðp�qÞ detS22

expf�ðzð2Þ � að2ÞÞ*S�1
22 ðzð2Þ � að2ÞÞg

and the result follows. Q.E.D.

Theorem 4.2.5. Let Z ¼ ðZ 0
ð1Þ; Z

0
ð2ÞÞ0, where Zð1Þ; Zð2Þ are as defined in Theorem

4.2.4.

(a) Zð1Þ; Zð2Þ � S21S
�1
11 Zð1Þ are independently distributed complex normal

random vectors with means að1Þ;að2Þ � S21S
�1
11 að1Þ and positive definite

Hermitian covariance matrixes S11;S22:1 ¼ S22 � S21S
�1
11 S12 respectively.

(b) The marginal distribution of Zð1Þ is a q-variate complex normal with means

að1Þ and positive definite Hermitian covariance matrix S11.

(c) The conditional distribution of Zð2Þ given Zð1Þ ¼ zð1Þ is complex normal with
mean að2Þ þ S21S

�1
11 ðzð1Þ � að1ÞÞ and positive definite Hermitian covariance

matrix S22:1.

Proof. (a) Let

U ¼ U1

U2

� �
¼

Zð1Þ

Zð2Þ � S21S
�1
11 Zð1Þ

 !
:

Then

U ¼ I1 0

�S21S
�1
11 I2

� �
¼ Zð1Þ

Zð2Þ

� �
¼ CZ

where I1 and I2 are identity matrices of dimensions q� q and ðp� qÞ � ðp� qÞ
respectively and C is a complex nonsingular matrix. By theorem 4.2.3 U has a p-

variate complex normal distribution with mean

Ca ¼
að1Þ

að2Þ � S21S
�1
11 að1Þ

 !

and (Hermitian) complex covariance matrix

CSC* ¼ Sð11Þ 0

0 S22:1

� �
:

By Theorem 4.2.4 we get the result.
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(b) and (c). They follow from part (a) above. Q.E.D.

The characteristic function of Z is given by

E expfiRðt*ZÞg ¼ expfiRðt*aÞ � t*Stg ð4:18Þ
for t [ Cp and R denotes the real part of a complex number. As in the real case

we denote a p-variate complex normal with mean a and positive definite

Hermitian matrix S by CNpða;SÞ.
From Theorem 4.2.3 we can define a p-variate complex normal distribution in

the general case as follows.

Definition 4.2.4. A complex random p-vector Z with values in Cp has a

complex normal distribution if, for each a [ Cp; a*Z has a univariate complex

normal distribution.

4.3. SYMMETRIC DISTRIBUTION: ITS PROPERTIES AND

CHARACTERIZATIONS

In multivariate statistical analysis multivariate normal distribution plays a very

dominant role. Many results relating to univariate normal statistical inference

have been successfully extended to the multivariate normal distribution. In

practice, the verification of the assumption that a given set of data arises from a

multivariate normal population is cumbersome. A natural question thus arises

how sensitive these results are to the assumption of multinormality. In recent

years one such investigation involves in considering a family of density functions

having many similar properties as the multinormal. The family of elliptically

symmetric distributions contains probability density functions whose contours of

equal probability have elliptical shapes. In recent years this family is becoming

increasingly popular because of its frequent use in “filtering and stochastic

control” (Chu (1973)), “random signal input” (McGraw and Wagner (1968)),

“stock market data analysis” (Zellner (1976)) and because some optimum results

of statistical inference in the multivariate normal preserves their properties for all

members of the family. The family of “spherically symmetric distributions” is a

special case of this family.

They contain the multivariate student-t, compound (or scale mixed)

multinormal, contaminated normal, multivariate normal with zero mean vector

and covariance matrix I among others.

It is to be pointed out that these families do not possess all basic requirements

for an ideal statistical inference. For example the sample observations are not

independent, in general, for all members of these families.
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4.3.1. Elliptically and Spherically Symmetric Distribution

(Univariate)

Definition 4.3.1.1. Elliptically symmetric distribution (univariate). A random

vector X ¼ ðX1; . . . ;XpÞ0 with values x in Rp is said to have a distribution

belonging to the family of elliptically symmetric distributions (univariate) with

location parameter m ¼ ðm1; . . . ;mpÞ0 [ Rp and scale matrix S (symmetric

positive definite) if its probability density function (pdf ), if it exists, can be

expressed as a function of the quadratic form ðx� mÞ0S�1ðx� mÞ and is given by
fXðxÞ ¼ ðdetSÞ�1

2qððx� mÞ0S�1ðx� mÞÞ; ð4:19Þ
where q is a function on ½0;1Þ satisfying Ð

Rp qð y0yÞdy ¼ 1 for y [ Rp.

Definition 4.3.1.2. Spherically symmetric distribution (univariate). A random

vector X ¼ ðX1; . . . ;XpÞ0 is said to have a distribution belonging to the family of

spherically symmetric distributions if X and OX have the same distributions for

all p� p orthogonal matrices O.

Let X ¼ ðX1; . . . ;XpÞ0 be a random vector having elliptically symmetric pdf

(4.19) and let Y ¼ C�1ðX � mÞ where C is a p� p nonsingular matrix satisfying

S ¼ CC0 (by Theorem 1.5.5). The pdf of Y is given by

fY ðyÞ ¼ ðdetSÞ�1=2qððCyÞ0S�1ðCyÞÞ detC

¼ ðdetðC�1SC�10ÞÞ�1=2qð y0ðC�1SC�10Þ�1yÞ ð4:20Þ
¼ qðy0yÞ

as the Jacobian of the transformation X ! C�1ðX � mÞ ¼ Y is detðCÞ.
Furthermore

ðOyÞ0Oy ¼ y0y

for all p� p orthogonal matrixO and the Jacobian of the transformation Y ! OY

is unity. Hence fY ðyÞ is the pdf of a spherically symmetric distribution.

We denote the elliptically symmetric pdf (4.19) of a random vector X by

Epðm;S; qÞ and the spherically symmetric pdf (4.20) of a random vector Y by

Epð0; I; qÞ. When the mention of q is unnecessary we will omit q in the notations.

4.3.2. Examples of Ep(m,S, q)

Example 4.3.2.1. Multivariate normal Npðm;SÞ. The pdf of X ¼ ðX1; . . . ;XpÞ0
is

fXðxÞ ¼ ð2pÞ�p
2 ðdetSÞ�1

2etr � 1

2
ðx� mÞ0S�1ðx� mÞ

� �

for x [ Rp. Here qðzÞ ¼ ð2pÞ�p=2 expð� 1
2
zÞ; z � 0.
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Example 4.3.2.2. Multivariate student-t with m degrees of freedom. The pdf of

X ¼ ðX1; . . . ;XpÞ0 is

fXðxÞ ¼
Gð1

2
ðmþ pÞÞðdetSÞ�1

2

ðpmÞ12pGð1
2
mÞ

1þ 1

m
ðx� mÞ0S�1ðx� mÞ

� ��1
2
ðmþpÞ

: ð4:21Þ

Here

qðzÞ ¼ Gð1
2
ðmþ pÞÞ

ðpmÞ12pGð1
2
mÞ

1þ z

m

 ��1
2
ðmþpÞ

:

Wewill denote the pdf of the multivariate student-t withm degrees of freedom

and with parameter ðm;SÞ by tpðm;S;mÞ in order to distinguish it from the

multivariate student-t based on spherically symmetric distribution with pdf given

by

fY ðyÞ ¼
Gð1

2
ðmþ pÞÞ

ðpmÞ12pGð1
2
mÞ

1þ 1

m
y0y

� ��1
2
ðmþpÞ

: ð4:22Þ

where: Y ¼ S
�1

2ðX � mÞ. Since the Jacobian of the transformation X ! Y is

ðdetSÞ12 the pdf of Y is given by (4.22).

To prove fY ðyÞ or fXðxÞ is a pdf we use the identity

ð1
�1

ð1þ x2Þ�ndx ¼
ð1
0

ð1þ yÞ�ny
1
2
�1dy

¼
ð1
0

ð1� uÞnþ1
2
�1u

1
2
�1du

¼ Gðnþ 1
2
ÞGð1

2
Þ

Gðnþ 1Þ :

Let A be a k � p matrix of rank kðk � pÞ and let C be a p� p nonsingular

matrix such that

C ¼ A

B

� �

where B is a ðp� kÞ � p matrix of rank p� k. Then

Z ¼ CX ¼ AX

BX

� �
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is distributed as tpðCm;CSC0;mÞ and

Cm ¼ Am
Bm

� �
; CSC0 ¼ ASA0 ASB0

BSA0 BSB0

� �
:

Using problem 24 we get Y ¼ AX is distributed as tkðAm;ASA0;mÞ.
Figures 4.3 and 4.4 give the graphical representation of the bivariate student-t

with 2 degrees of freedom and its contour.

Example 4.3.2.3. Scale mixed (compound) multivariate normal. Let X ¼
ðX1; . . . ;XpÞ0 be a random vector with pdf

fXðxÞ ¼
ð1
0

ð2pzÞ�1
2
pðdetSÞ�1

2

� exp � 1

2
ðx� mÞ0S�1ðx� mÞz�1

� �
dGðzÞ

where Z is a positive random variable with distribution function G. The

Figure 4.3. Bivariate student-t with 2 degrees of freedom and m ¼ 0, S ¼ 1 1
2

1
2

1

� �
.
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multivariate t distribution given in (4.21) can be obtained from this by takingG to

be the inverse gamma, given by,

dGðzÞ
dz

¼ ð1
2
Þ12m

Gð1
2
mÞ z

1
2
m�1 expf�m=2zg:

4.3.3. Examples of Ep(0, I)

Example 4.3.3.1. Contaminated normal. Let X ¼ ðX1; . . . ;XpÞ0. The pdf of a

contaminated normal is given by

fXðxÞ ¼ a

ð2pÞ12pðz21Þ
1
2
p
exp � x0x

2z21

� �

þ ð1� aÞ
ð2pÞ12p

ðz22Þ
1
2
p exp � x0x

2z22

� �

with 0 � a � 1; z2i . 0; i ¼ 1; 2.

Figure 4.4. Contours of bivariate student-t in Figure 4.3.
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Example 4.3.3.2. Multivariate student-t with m degrees of freedom. Its pdf is

given by (4.22).

4.3.4. Basic Properties of Ep(m,S, q) and Ep(0, I, q)

Theorem 4.3.4.1. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ. Then

(a) EðXÞ ¼ m for all q,

(b) CovðXÞ ¼ EðX � mÞðX � mÞ0 ¼ KqS where Kq is a positive constant

dependinq on q,

(c) the correlation matrix R ¼ ðRijÞ with

Rij ¼ CovðXi;XjÞ
½varðXiÞvarðXjÞ�12

ð4:23Þ

for all members of Epðm;S; qÞ are identical.

Proof.

(a) Let Z ¼ C�1ðX � mÞ where C is a p� p nonsingular matrix such that

S ¼ CC0 and let Y ¼ X � m. Since the Jacobian of the transformation

Y ! Z is detC and qðZ 0ZÞ is an even function of Z we get

EðX � mÞ ¼
ð
Rp

ðx� mÞðdetSÞ�1
2

� qððx� mÞ0S�1ðx� mÞÞ dx

¼
ð
Rp

yðdetSÞ�1
2qðy0S�1

yÞ dy

¼ C

ð
Rp

zqðz0zÞ dz

¼ 0:

Hence EðXÞ ¼ m for all q.

(b)

EðX � mÞðX � mÞ0 ¼
ð
Rp

yy0ðdetSÞ12qðy0S�10
yÞ dy

¼ C

ð
Rp

ðzz0Þqðz0zÞ dz
� �

C0:
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Using the fact that qðz0zÞ is an even function of z ¼ ðz1; . . . ; zpÞ0 we

conclude that

EðzizjÞ ¼ p�1Kq; for all i ¼ j;
0; for all i = j;

�

where Kq is a positive constant depending on q. Hence

ð
Rp

ðzz0Þqðzz0Þ dz ¼ p�1KqI ð4:24Þ

where I is the p� p identity matrix. This implies that

Kq ¼
ð
Rp

trðzz0Þqðzz0Þ dz: ð4:25Þ

Let

L ¼ trZZ 0; ei ¼ Z2
i

L
; i ¼ 1; . . . ; p:

We will prove in Theorem 6.12.1 that L is independent of (e1; . . . ; ep) and
the joint pdf of (e1; . . . ; ep) is Dirichlet Dð12 ; . . . ; 12Þ with pdf

f ðe1; . . . ; epÞ ¼
Gð1

2
pÞ

ðGð1
2
ÞÞp

Yp�1

i¼1

e
1
2
�1

i

" #
1�

Xp�1

1

ei

 !1
2�1

ð4:26Þ

with 0 � ei � 1;
Pp

i¼1 ei ¼ 1 and the pdf of L is

fLðlÞ ¼ p
1
2
p

G

�
p

2

� l
1
2
p�1qðlÞ: ð4:27Þ

From (4.24) and (4.25) we get

Kq ¼ EðLÞ: ð4:28Þ
Hence CovðXÞ ¼ p�1KqS.

(c) Since the covariance of X depends on q through Kq and the Kq factor cancels

in Rij we get part (c). Q.E.D.

Example 4.3.4.1. Consider Example 4.3.1.1. Here

qðlÞ ¼ ð2pÞ�1
2
p exp � 1

2
l

� �
:
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Hence

EðLÞ ¼ p
1
2
p

ð2pÞp2Gð1
2
pÞ

ð1
0

l
1
2
ðpþ2Þ�1 exp � 1

2
l

� �
dl

¼ p:

Thus EðXÞ ¼ m, CovðXÞ ¼ S.

Example 4.3.4.2. Consider Example 4.3.2.2. Here

qðlÞ ¼ Gð1
2
ðmþ pÞÞ

ðpmÞ12pGð1
2
mÞ

1þ l

m

� ��1
2
ðmþpÞ

:

From (4.27)

fLðlÞ ¼ p
1
2
p

Gð1
2
pÞ l

1
2
p�1qðlÞ: ð4:29Þ

Hence

EðLÞ ¼ Gð1
2
ðmþ pÞÞ

Gð1
2
mÞGð1

2
pÞ
ð1
0

l

m

� �1
2
ðpþ2Þ�1

1þ l

m

� ��1
2
ðmþpÞ

dl

¼ mGð1
2
ðmþ pÞÞ

Gð1
2
mÞGð1

2
pÞ

ð1
0

u
1
2
ðpþ2Þ�1ð1þ uÞ�1

2
ðmþpÞdu

¼ mGð1
2
ðmþ pÞÞ

Gð1
2
mÞGð1

2
pÞ

ð1
0

z
1
2
ðpþ2Þ�1ð1� zÞ�1

2
ðm�2Þdz

¼ mp

ðm� 2Þ :

Hence EðXÞ ¼ m, CovðXÞ ¼ m

m� 2
S with m . 2.

Theorem 4.3.4.2. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ. Then
Y ¼ CX þ b, where C is a p� p nonsingular matrix and b [ Rp, is distributed as

EpðCmþ b;CSC0; qÞ.

Proof. The pdf of X is

fXðxÞ ¼ ðdetSÞ�1
2 qððx� mÞ0S�1ðx� mÞÞ:
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Since the Jacobian of the transformation X ! Y ¼ CX þ b is ðdetCÞ�1 we get

fY ðyÞ ¼ ðdetSÞ�1
2qððC�1ðy� bÞ � mÞ0S�1ðC�1ðy� bÞ � mÞÞðdetCÞ�1

¼ ðdetðCSC0ÞÞ�1
2qððy� Cm� bÞðCSC0Þ�1ðy� Cm� bÞÞ:

Q.E.D.

Example 4.3.4.3. Let X be distributed as Epðm;S; qÞ and let Y ¼ CðX � mÞ
where C is a p� p nonsingular matrix such that CSC0 ¼ I. Then Y is distributed

as Epð0; I; qÞ.

Theorem 4.3.4.3. Let X ¼ ðX1; . . . ;XpÞ0 ¼ ðX0
ð1Þ;X

0
ð2ÞÞ with Xð1Þ ¼

ðX1; . . . ;Xp1Þ0;Xð2Þ ¼ ðXp1þ1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ. Let m ¼
ðm1; . . . ;mpÞ0 and S be similarly partitioned as

m ¼ ðm0
ð1Þ;m

0
ð2ÞÞ0; S ¼ S11 S12

S21 S22

� �

where S11 is the p1 � p1 upper left-hand corner submatrix of S. Then

(a) the marginal distribution of Xð1Þ is elliptically symmetric Ep1 ðmð1Þ;S11; �qqÞ
where �qq is a function on ½0;1Þ satisfying

ð
Rp2

�qqðw0
ð1Þwð1ÞÞdwð1Þ ¼ 1;

(b) the conditional distribution of Xð2Þ given Xð1Þ ¼ xð1Þ is elliptically symmetric
Ep�p1 ðmð2Þ þ S21S

�1
11 ðxð1Þ � mð1ÞÞ;S22:1; ~qqÞ where S22:1 ¼ S22 � S21S

�1
11 S12

and ~qq is a function on ½0;1Þ satisfying
ð
Rp�p1

~qqðw0
ð2Þwð2ÞÞdwð2Þ ¼ 1:

Proof. Since S is positive definite, by Theorem 1.6.5 there exists a p� p

nonsingular lower triangular matrix T in the block form

T ¼ T11 0

T21 T22

� �

where T11 is a p1 � p1 matrix such that TST 0 ¼ Ip. This implies that

T11S11T
0
11 ¼ Ip1 . Let Y ¼ TðX � mÞ be similarly partitioned as X. From

Theorem 4.3.3.2 the pdf of Y is

fY ðyÞ ¼ qðy0yÞ ¼ qðy0ð1Þyð1Þ þ y0ð2Þyð2ÞÞ:
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Thus

fYð1Þ ðyð1ÞÞ ¼
ð
qðy0ð1Þyð1Þ þ y0ð2Þyð2ÞÞdyð2Þ

¼ �qqðy0ð1Þyð1ÞÞ:
ð4:30Þ

Obviously �qq is from ½0;1Þ to ½0;1Þ satisfying
ð
�qqðy0ð1Þyð1ÞÞdyð1Þ ¼ 1

and �qq is determined only by the functional form of q and by the number of

components in the vector Xð1Þ and does not depend on m;S. Hence all marginal

pdf of any dimension do not differ in their functional form. Since Yð1Þ ¼
T11ðXð1Þ � mð1ÞÞ we obtain from (4.30)

fXð1Þ ðxð1ÞÞ ¼ fYð1Þ ðT11ðxð1Þ � mð1ÞÞÞðdetS11Þ�1
2

¼ ðdetS11Þ�1
2 �qqððxð1Þ � mð1ÞÞ0S�1

11 ðxð1Þ � mð1ÞÞÞ:
ð4:31Þ

(b) Let

u ¼ xð2Þ � mð2Þ � S21S
�1
11 ðxð1Þ � mð1ÞÞ:

Then

ðx� mÞ0S�1ðx� mÞ ¼ ðxð1Þ � mð1ÞÞ0S�1
11 ðxð1Þ � mð1ÞÞ þ u0S�1

22:1u:

Let

Wð1Þ ¼ S
�1

2

11 ðXð1Þ � mð1ÞÞ

Wð2Þ ¼ S
�1

2

22:1U:

The joint pdf of (Wð1Þ;Wð2Þ) is given by

fWð1Þ;Wð2Þ ðwð1Þ;wð2ÞÞ ¼ qðw0
ð1Þwð1Þ þ w0

ð2Þwð2ÞÞ:

The marginal pdf of Wð1Þ is

fWð1Þ ðwð1ÞÞ ¼ �qqðw0
ð1Þwð1ÞÞ

¼
ð
qðw0

ð1Þwð1Þ þ w0
ð2Þwð2ÞÞdwð2Þ:
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Hence the conditional pdf of Wð2Þ given Wð1Þ ¼ wð1Þ is

fWð2ÞjWð1Þ ðw2jw1Þ ¼
qðw0

ð1Þwð1Þ þ w0
ð2Þwð2ÞÞ

�qqðw0
ð1Þwð1ÞÞ

¼ ~qqðw0
ð2Þwð2ÞÞ:

Obviously ~qq is a function from ½0;1Þ to ½0;1Þ satisfying
ð
~qqðw0

ð2Þwð2ÞÞdwð2Þ ¼ 1:

Thus the conditional pdf of Xð2Þ given that Xð1Þ ¼ xð1Þ is

fXð2ÞjXð1Þ ðxð2Þjxð1ÞÞ ¼ ðdetðS22:1ÞÞ�1
2

� ~qq½ðxð2Þ � mð2Þ � S21S
�1
11 ðxð1Þ � mð1ÞÞÞ0

� S
�1
22:1ðxð2Þ � mð2Þ � S21S

�1
11 ðxð1Þ � mð1ÞÞÞ�

which is Ep�p1ðmð2Þ þ S21S
�1
11 ðxð1Þ � mð1ÞÞ;S22:1; ~qqÞ. Q.E.D.

Using Theorem 4.3.4.1 we obtain from Theorem 4.3.4.3

EðXð2ÞjXð1Þ ¼ xð1ÞÞ ¼ mð2Þ þ S21S
�1
11 ðxð1Þ � mð1ÞÞ;

CovðXð2ÞjXð1Þ ¼ xð1ÞÞ ¼ K�qqðxð1ÞÞS22:1

ð4:32Þ

where K is a real valued function of xð1Þ.

Theorem 4.3.4.4. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ and let

Y ¼ DX, where D is a m� p matrix of rank m � p. Then Y is distributed as

EmðDm;DSD0; �qqÞ, where �qq is a function from ½0;1Þ to ½0;1Þ satisfying
ð
Rm

�qqðu0uÞdu ¼ 1:

Proof. Let A be a ðp� mÞ � p matrix such that C ¼ �
D
A

�
is a p� p nonsingular

matrix. Then from Theorem 4.3.4.2 CX is distributed as EpðCm;CSC0; qÞ. But

CX ¼ DX

AX

� �
; Cm ¼ Dm

Am

� �
; CSC ¼ DSD0 DSA0

ASD0 ASA0

� �
:

From Theorem 4.3.4.3 we get the theorem. Q.E.D.
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Theorem 4.3.4.5. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ. The

characteristic function of X is Eðeit0XÞ ¼ expfit0mgcðt0StÞ for some function c on

½0;1Þ; t ¼ ðt1; . . . ; tpÞ0 [ Rp and i ¼ ffiffiffiffiffiffiffi�1
p

.

Proof. Let Y ¼ S
�1

2ðX � mÞ;a ¼ S
1
2t. Then

Eðeit0XÞ ¼ Eðeit0meit0ðX�mÞÞ:

¼ expfit0mg
ð
eia

0yqðy0yÞdy:

Using Theorem 1.6.6 we can find a p� p orthogonal matrix 0 such that

0a ¼ ðða0aÞ12; 0; . . . ; 0Þ0:

Let Z ¼ ðZ1; . . . ; ZpÞ0 ¼ 0Y . Hence

Eðeit0XÞ ¼ expfit0mg
ð
eiða

0aÞ12Z1qðz0zÞdz

¼ expfit0mgcða0aÞ
¼ expfit0mgcðt0StÞ

for some function c on ½0;1Þ. Q.E.D.

Example 4.3.4.4. Consider Example 4.3.2.1. Here

fXðxÞ ¼ ðdetSÞ�1
2qððx� mÞ0S�1ðx� mÞÞ

with

qðzÞ ¼ ð2pÞ�1
2
p exp � 1

2
z

� �
:

Let Y ¼ TðX � mÞ ¼ ðY1; . . . ; YpÞ0 ¼ ðY 0
ð1Þ; Y

0
ð2ÞÞ0; Yð1Þ ¼ ðY1; . . . ; Yp1Þ0 where T is

given in Theorem 4.3.4.3. We get

qðy0yÞ ¼ qðy0ð1Þyð1Þ þ y0ð2Þyð2ÞÞ

¼ ð2pÞ�1
2
p exp � 1

2
ð y0ð1Þyð1Þ þ y0ð2Þyð2ÞÞ

� �
:
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Hence with p2 ¼ p� p1

�qqðy0ð1Þyð1ÞÞ ¼ ð2pÞ�1
2
p1 exp � 1

2
y0ð1Þyð1Þ

� �

�
ð
ð2pÞ�1

2
p2 exp � 1

2
y0ð2Þyð2Þ

� �
dyð2Þ:

Thus

fXð1Þ ðxð1ÞÞ ¼ ð2pÞ�1
2
p2 ðdetS11Þ�1

2

� exp � 1

2
ðxð1Þ � mð1ÞÞ0S�1ðxð1Þ � mð1ÞÞ

� �
:

From Theorem 4.3.4.3

~qqðw0
ð2Þwð2ÞÞ ¼

ð2pÞ�1
2
p expf� 1

2
ðw0

ð1Þwð1Þ þ w0
ð2Þwð2ÞÞg

ð2pÞ�1
2
p1 expf� 1

2
w0
ð1Þwð1Þg

¼ ð2pÞ�1
2
p2 exp � 1

2
w0
ð2Þwð2Þ

� �
:

Hence

fXð2ÞjXð1Þ ðxð2Þjxð1ÞÞ ¼ ð2pÞ�1
2
p2 ðdetðS22:1ÞÞ�1

2

� exp � 1

2
ðxð2Þ � mð2Þ � S21S

�1
11 ðxð1Þ � mð1ÞÞÞ0S�1

22:1

�
ð4:33Þ

� xð2Þ � mð2Þ � S21S
�1
11 ðxð1Þ � mð1ÞÞÞ

 o
:
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Example 4.3.4.5. Consider Example 4.3.2.2. Let X ¼ ðX1; . . . ;XpÞ0 ¼
ðX0

ð1Þ;X
0
ð2ÞÞ0;Xð1Þ ¼ ðX1; . . . ;Xp1Þ0; p ¼ p1 þ p2. The marginal pdf of Xð1Þ is

fXð1Þ ðxð1ÞÞ ¼
Gð1

2
ðmþ p1ÞÞ

Gð1
2
mÞðmpÞ12p1

ðdetS11Þ�1
2

� 1þ 1

m
ðxð1Þ � mð1ÞÞ0S�1

11 ðxð1Þ � mð1ÞÞ
� ��1

2
ðmþp1Þ

; ð4:34Þ

fXð2ÞjXð1Þ ðxð2Þjxð1ÞÞ ¼
Gð1

2
ðmþ p2ÞÞ

Gð1
2
mÞðmpÞ12p2

ðdetS22:1Þ�1
2

� 1þ 1

m
ðxð2Þ � mð2Þ � S21S

�1
11 ðxð1Þ � mð1ÞÞÞ0S�1

22:1

�

� ðxð2Þ � mð2Þ � S21S
�1
11 ðxð1Þ � mð1ÞÞ

i�1
2
ðmþp2Þ

: ð4:35Þ

4.3.5. Multivariate Normal Characterization of Ep(m,S, q)

We now give several normal characterization of the elliptically symmetric

probability density functions.

Theorem 4.3.5.1. Let X ¼ ðX1; . . . ;XpÞ0 have the distribution Epðm;S; qÞ. If
the marginal probability density function of any subvector of X is multinormal

then X is distributed as Npðm;SÞ.
Proof. Let X ¼ ðX0

ð1Þ;X
0
ð2ÞÞ0;Xð1Þ ¼ ðX1; . . . ;Xp1 Þ0 and let t ¼ ðt1; . . . ; tpÞ0 be

similarly partitioned as X. From Theorem 4.3.4.5

Eðexpfit0XgÞ ¼ expfit0mgcðt0StÞ:

From this it follows that

Eðexpfit0ð1ÞXð1ÞgÞ ¼ expfit0ð1Þmð1Þgcðt0ð1ÞS11tð1ÞÞ:

Thus the characteristic function of X has the same functional form as that of the

characteristic function of Xð1Þ. If Xð1Þ is distributed as Np1 ðmð1Þ;S11Þ then

cðt0ð1ÞS11tð1ÞÞ ¼ exp � 1

2
t0ð1ÞS11tð1Þ

� �
:
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Thus

cðt0StÞ ¼ exp � 1

2
t0St

� �
;

which implies that X is distributed as Npðm;SÞ. Q.E.D.

Theorem 4.3.5.2. Let X ¼ ðX1; . . . ;XpÞ0 have the distribution Epðm;S; qÞ and
let S be a diagonal matrix with diagonal elements s2

1; . . . ;s
2
p. If X1; . . . ;Xp are

independent then X is distributed as Npðm;SÞ.
Proof. Let Y ¼ ðY1; . . . ; YpÞ0 ¼ X � m. Using Theorem 4.3.4.5 the

characteristic function of Y is given by

Eðexpfit0YgÞ ¼ cðt0StÞ

¼ c
Xp

j¼1

t2j s
2
j

 !
:

If Y1; . . . ; Yp are independent

c
Xp

j¼1

t2j s
2
j

 !
¼ c

Xp

j¼1

a2
j

 !

¼
Yp

j¼1

cða2
j Þ

ð4:36Þ

where aj ¼ tjsj. The equation (4.36) is known as the Hamel equation and has the

solution

cðxÞ ¼ expfkxg ð4:37Þ

for some constant k. Since S is positive definite and the right side of (4.37) is the

characteristic function we must have k , 0. This implies that Y is distributed as

Npð0;SÞ or equivalently X is distributed as Npðm;SÞ. Q.E.D.

Theorem 4.3.5.3. Let X ¼ ðX1; . . . ;XpÞ0 ¼ ðX0
ð1Þ;X

0
ð2ÞÞ0 with Xð1Þ ¼

ðX1; . . . ;Xp1Þ0 distributed as Epðm;S; qÞ. If the conditional distribution of Xð2Þ
given Xð1Þ ¼ xð1Þ is multinormal for any p1 then X is distributed as Npðm;SÞ.

Properties of Multivariate Distributions 105



Proof. From Theorem 4.3.4.3 part (b) the conditional pdf of Wð2Þ given Wð1Þ ¼
wð1Þ is given by

fWð2ÞjWð1Þ ðwð2Þjwð1ÞÞ ¼ ~qqðw0
ð2Þwð2ÞÞ

¼ qðw0
ð1Þwð1Þ þ w0

ð2Þwð2ÞÞ
�qqðw0

ð1Þwð1ÞÞ :

Let us assume that

~qqðw0
ð2Þwð2ÞÞ ¼ ð2pÞ�1

2
ðp�p1Þ exp � 1

2
w0
ð2Þwð2Þ

� �
:

Hence we get

qðw0
ð1Þwð1Þ þ w0

ð2Þwð2ÞÞ ¼ �qqðw0
ð1Þwð1ÞÞ

� ð2pÞ�1
2
ðp�p1Þ exp � 1

2
w0
ð2Þwð2Þ

� �
:

Since for the conditional distribution of Wð2Þ;Wð1Þ is fixed and the joint pdf of

Wð1Þ and Wð2Þ is

fWð1Þ;Wð2Þ ðwð1Þ;wð2ÞÞ ¼ qðw0
ð1Þwð1Þ þ w0

ð2Þwð2ÞÞ

¼ �qqðw0
ð1Þwð1ÞÞð2pÞ�1

2
ðp�p1Þ exp � 1

2
w0
ð2Þwð2Þ

� �
;

we conclude that

fWð1Þ;Wð2Þ ðwð1Þ;wð2ÞÞ ¼ ð2pÞ�1
2
p exp � 1

2
ðw0

ð1Þwð1Þ þ w0
ð2Þwð2ÞÞ

� �
:

From this it follows that X is distributed as Npðm;SÞ. Q.E.D.

4.3.6. Elliptically Symmetric Distribution Multivariate

Let X ¼ ðXijÞ ¼ ðX1; . . . ;XNÞ0, where Xi ¼ ðXi1; . . . ;XipÞ0, be a N � p random

matrix with

EðXiÞ ¼ mi ¼ ðmi1; . . . ;mipÞ0:

Definition 4.3.6.1. Elliptically symmetric distribution (multivariate). A N � p

matrix X with values x [ ENp is said to have a distribution belonging to the

family of elliptically symmetric distribution (multivariate) with location

parameter m ¼ ðm1; . . . ;mNÞ0 and scale matrix D ¼ digðS1; . . . ;SNÞ if its
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probability density function (assuming it exists) can be written as

fXðxÞ ¼ ðdetDÞ�1=2q
XN
i¼1

ðxi � miÞ0S�1
i ðxi � miÞ

 !
; ð4:38Þ

where q is a function on ½0;1Þ of the sum of N quadratic forms

ðxi � miÞ0S�1
i ðxi � miÞ; i ¼ 1; . . . ;N.

Let us define for any N � p random matrix X ¼ ðX1; . . . ;XNÞ0;Xi ¼
ðXi1; . . . ;XipÞ0; i ¼ 1; . . . ;N

v ¼ vecðxÞ ¼ ðx01; . . . ; x0NÞ0: ð4:39Þ
It is a Np� 1 vector. In terms of v;m and D we can rewrite (4.38) as a elliptically

symmetric distribution (univariate) as follows:

fXðxÞ ¼ ðdetDÞ�1=2qððv� dÞ0D�1ðv� dÞÞ ð4:40Þ
where d ¼ vecðmÞ.

We now define another convenient way of rewriting (4.40) in terms of tensor

product of matrices.

Definition 4.3.6.2. Tensor product. Let a ¼ ðaijÞ;b ¼ ðbijÞ be two matrices of

dimensions N � m and l� k respectively. The tensor product a� b of a;b is the

matrix a� b given by

a� b ¼
a11b a12b ; . . . ; a1mb
a21b a22b ; . . . ; a2mb
� � . . . �

aN1b aN2b ; . . . ; aNmb

0
BB@

1
CCA

The following theorem gives some basic properties of the vec operation and the

tensor product.

Theorem 4.3.6.1. Let a;b; g be arbitrary matrices. Then,

(a) ða� bÞ � g ¼ a� ðb� gÞ;
(b) ða� bÞ0 ¼ a0 � b0;
(c) if a;b are orthogonal matrices, then a� b is also an orthogonal matrix;

(d) if a;b are square matrices of the same dimension trða� bÞ ¼ ðtr aÞðtr bÞ;
(e) if a;b are nonsingular square matrices, then ða� bÞ�1 ¼ a�1 � b�1;

(f) if a;b are nonsingular square matrices, then ða� bÞ0 ¼ a0 � b0;
(g) if a;b are positive definite matrices, then a� b is also a positive definite

matrix;

(h) if a;b are square matrices of dimensions p� p and q� q respectively, then

detða� bÞ ¼ ðdetaÞqðdetbÞp;
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(i) let a;X;b be matrices of dimensions q� p; p� N;N � r respectively, then

vecðaXbÞ ¼ ðb0 � aÞvecðXÞ;
(j) let a;b be matrices of dimensions p� q; q� r respectively, then

vecðabÞ ¼ ðIr � aÞvecðbÞ ¼ ðb0 � IpÞvecðaÞ
¼ ðb0 � aÞvecðIqÞ

where IN is the N � N identity matrix;

(k) trðaXbÞ ¼ veca0ðI � XÞvecðbÞ.
The proofs are straightforward and are left for the readers.

If X has the probability density function given in (4.38) then its characteristic

function has the form

exp i
XN
j¼1

t0jmj

( )
c
XN
j¼1

t0jSjtj

 !
ð4:41Þ

for some function c on ½0;1Þ and tj [ Ep; j ¼ 1; . . . ;N.

Example 4.3.6.1. Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently

distributed normal random vectors with the same mean m and the same

covariance matrix S and let

X ¼ ðX1; . . . ;XNÞ0; x ¼ ðx1; . . . ; xNÞ0

Then the probability density function X is

fXðxÞ ¼
YN
a¼1

fXa ðxaÞ

¼ ð2pÞ�Np
2 ðdetSÞ�N=2 exp � 1

2
trS

�1ðSN
a¼1ðxa � mÞðxa � mÞ0Þ

� �

¼ ð2pÞ�Np
2 ðdetðS� IÞÞ�1

2

� exp � 1

2
trðS� IÞ�1ðx� e� mÞðx� e� mÞ0

� �

where e ¼ ð1; . . . ; 1Þ0 is an N vector with all components equal to unity and I is

the N � N identity matrix.
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Example 4.3.6.2.

fXðxÞ ¼ ðdetSÞ�1
2
NqðSN

j¼1ðxj � mÞ0S�1ðxj � mÞÞ ð4:42Þ
and qðzÞ ¼ ð2pÞ�1

2
Np expf� 1

2
zg; z � 0.

Then X1; . . . ;XN are independently and identically distributed Npðm;SÞ. We

denote the pdf (4.42) by ENpðm;S; qÞ.

Example 4.3.6.3. Let X be distributed as ENp
ðm;S; qÞ and let Y ¼

ðY1; . . . ; YNÞ0 ¼ ððX1 � mÞ; . . . ; ðXN � mÞÞ0S�1
2 and Yi ¼ ðYi1; . . . ; YipÞ0. Then

fY ðyÞ ¼ q
XN
i¼1

y0iyi

 !
¼ qðy0yÞ:

Let e ¼ ð1; . . . ; 1Þ0 be a N � 1 vector, m ¼ ðm1; . . . ;mpÞ0 [ Rp. The pdf of X

having distribution ENpðm;S; qÞ can also be written as

fXðxÞ ¼ ðdetSÞ�1
2
NðqðtrS�1ðx� em0Þ0ðx� em0ÞÞ: ð4:43Þ

Obviously ENpð0;S; qÞ satisfies the condition that X and OX, where O is a N � N

orthogonal matrix, have the same distribution. This follows from the fact that the

Jacobian of the transformation X ! OX is unity.

Definition 4.3.6.3. ENpð0;S; qÞ is called the pdf of a spherically symmetric

(multivariate) distribution.

4.3.7. Singular Symmetrical Distributions

In this section we deal with the case where S is not of full rank. Suppose that the

rank of S is kðk , pÞ. We consider the family of elliptically symmetric

distributions Epðm;S; qÞ with rank of S ¼ k , p and prove Theorem 4.3.7.1

(below). For this we need the following stochastic representation due to

Schoenberg (1938) (without proof).

Definition 4.3.7.1. The generalized inverse (g-inverse) of a m� n matrix A is

an n� m matrix A� such that X ¼ A�Y is a solution of the equation AX ¼ Y .

Obviously A� is not unique and A� ¼ A�1 if A is nonsingular. A necessary and

sufficient condition for A� to be the g-inverse of A is AA�A ¼ A. We refer to Rao

and Mitra (1971) for results of g-inverse.

Lemma 4.3.7.1. Schoenberg (1938). If fk; k � 1, is the class of all functions f
on ½0;1Þ to R1 such that fðktk2Þ; t [ Rk, is a characteristic function, then
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f [ fk if and only if

fðuÞ ¼
ð1
0

Vkðr2uÞdFðrÞ; u � 0 ð4:44Þ

for some distribution F on ½0;1Þ, where Vkðktk2Þ; t [ Rk, is the characteristic

function of a k-dimensional random vector U which is uniformly distributed on

the unit sphere in Rk. Also fk # f1 and f [ f1 if and only if f is given by (4.44)

with Vkðr2xÞ ¼ expf� 1
2
r2xg.

Theorem 4.3.7.1. X ¼ ðX1; . . . ;XpÞ0 is distributed as Epðm;S; qÞ with rank

ðSÞ ¼ k , p if and only if X is distributed as mþ RAU where R � 0 is distributed

independently of U ¼ ðU1; . . . ;UkÞ0;S ¼ AA0 with A a p� k matrix of rank k,

and the distribution F of R is related to f as in (4.44).

Proof. The if part follows from (4.44). Since A�ðX � mÞ ¼ Y has the

characteristic function fðktk2Þ; t [ Rk we conclude that f [ fk and using

(4.44) we get Y is distributed as RU which implies that X is distributed as

mþ RAU. This proves the only if part of the Theorem. Q.E.D.

4.4. CONCENTRATION ELLIPSOID AND AXES

(MULTIVARIATE NORMAL)

It may be observed that the probability density function [given in Eq. (4.1)] of a

p-variate normal distribution is constant on the ellipsoid

ðx� mÞ0S�1ðx� mÞ ¼ C

in Ep for every positive constant C. The family of ellipsoids obtained by varying

CðC . 0Þ has the same center m, their shapes and orientation are determined by S
and their sizes for a given S are determined by C. In particular,

ðx� mÞ0S�1ðx� mÞ ¼ pþ 2 ð4:45Þ
is called the concentration ellipsoid of X (see Cramer (1946)).

It may be verified that the probability density function defined by the uniform

distribution

fXðxÞ ¼
Gð1

2
pþ 1Þ

ðdetSÞ1=2ððpþ 2ÞpÞp=2
� �

if ðx� mÞ0S�1ðx� mÞ � pþ 2;

0 otherwise;

8><
>:

ð4:46Þ

has the same mean EðXÞ ¼ m and the same covariance matrix

EðX � mÞðX � mÞ0 ¼ S
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of the p-variate normal distribution. Representing any line through the center m to

the surface of the ellipsoid

ðx� mÞ0S�1ðx� mÞ ¼ C

by its coordinates on the surface, the principal axis of the ellipsoid

ðx� mÞ0S�1ðx� mÞ ¼ C

will have its coordinates x which maximize its squared half length

ðx� mÞ0ðx� mÞ
subject to the restriction that

ðx� mÞ0S�1ðx� mÞ ¼ C:

Using the Lagrange multiplier l we can conclude that the coordinates of the first

(longest) principal axis must satisfy

ðI � lS�1Þðx� mÞ ¼ 0

or, equivalently

ðS� lIÞðx� mÞ ¼ 0 ð4:47Þ

From (4.47) the squared length of the first principal axis of the ellipsoid

ðx� mÞ0S�1ðx� mÞ ¼ C

for fixed C, is equal to

4ðx� mÞ0ðx� mÞ ¼ 4l1ðx� mÞ0S�1ðx� mÞ ¼ 4l1C

where l1 is the largest characteristic root of S. The coordinates of x, specifying
the first principal axis, are proportional to the characteristic vector corresponding

to l1. Thus the position of the first principal axis of the ellipsoid

ðx� mÞ0S�1ðx� mÞ ¼ C

is specified by the direction cosines which are the elements of the normalized

characteristic vector corresponding to the largest characteristic root of S.
The second (longest) axis has the orientation given by the characteristic vector

corresponding to the second largest characteristic root of S. In Chapter 1 we have
observed that if the characteristic roots of S are all different, then the

corresponding characteristic vectors are all orthogonal and hence in this case the

positions of the axes are uniquely specified by pmutually perpendicular axes. But

if any two successive roots of S (in descending order of magnitude) are equal, the
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ellipsoid is circular through the plane generated by the corresponding

characteristic vectors. However, two perpendicular axes can be constructed for

the common root, though their position through the circle is hardly unique. If gi is
a characteristic root of S of multiplicity ri, then the ellipsoid has a hyperspherical

shape in the ri-dimensional subspace.

Thus for any p-variate normal random vector X we can define a new p-variate

normal random vector Y ¼ ðY1; . . . ; YpÞ0 whose elements Yi have values on the

ellipsoid by means of the transformation (called the principal axis

transformations)

Y ¼ A0ðx� mÞ ð4:48Þ
where the columns of A are the normalized characteristic vectors ai of S. If the
characteristic roots of S are all different or if the characteristic vectors

corresponding to the multiple characteristic roots of S have been constructed to

be orthogonal, then the covariance of the principal axis variates Y is a diagonal

matrix whose diagonal elements are the characteristic roots of S. Thus the

principal axis transformation of the p-variate normal vector X results in

uncorrelated variates whose variances are proportional to axis length of any

specified ellipsoid.

Example 4.4.1. Consider Example 4.1.1 with m ¼ 0 and s2
1 ¼ s2

2 ¼ 1. The

characteristic roots of S are g1 ¼ 1þ r; g2 ¼ 1� r, and the corresponding

characteristic vectors are

1ffiffiffi
2

p ;
1ffiffiffi
2

p
� �

1ffiffiffi
2

p ;� 1ffiffiffi
2

p
� �

:

If r . 0, the first principal axis (major axis) is y2 ¼ y1 and the second axis (minor

axis) is y2 ¼ �y1. For r , 0 the first principal axis is y2 ¼ �y1 and the second

axis is y2 ¼ y1.

4.5. REGRESSION, MULTIPLE AND PARTIAL CORRELATION

We define these concepts in details dealing with the multivariate normal

distribution though they apply to other multivariate distributions defined above.

We observed in Theorem 4.1.5 that the conditional probability density

function of Xð2Þ given that Xð1Þ ¼ xð1Þ, is a ðp� qÞ-variate normal with mean

mð2Þ þ S21S
�1
11 ðxð1Þ � mð1ÞÞ and covariance matrix S22:1 ¼ S22 � S21S

�1
11 S12. The

matrix S21S
�1
11 is called the matrix of regression coefficients of Xð2Þ on Xð1Þ ¼ xð1Þ.

The quantity

EðXð2ÞjXð1Þ ¼ xð1ÞÞ ¼ mð2Þ þ S21S
�1
11 ðxð1Þ � mð1ÞÞ ð4:49Þ
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is called the regression surface of Xð2Þ on Xð1Þ. This is a linear regression since it

depends linearly on xð1Þ. This is used to predict Xð2Þ from the observed value xð1Þ
of Xð1Þ. It will be shown in Theorem 4.5.1 that among all linear combinations

aXð1Þ, the one that minimizes

varðXqþi � aXð1ÞÞ
is the linear combination bðiÞS

�1
11 Xð1Þ where a is a row vector and bðiÞ denotes the

ith row of the matrix S21.

Since (4.49) holds also for the multivariate complex (Theorem 4.2.4) and for

Epðm;SÞ (Theorem 4.3.4.3) the same definition applies for these two families of

distributions.

The regression terminology is due to Galton (1889) who first introduced it in

his studies of the correlation (association) between diameter of seeds of parents

and daughters of sweet peas and between heights of fathers and sons. He observed

that the heights of sons of either unusually short or tall fathers tend more closely

to the average height than their deviant father’s values did to the mean for their

generation; the daughters of dwarf peas are less dwarfish and the daughters of

giant peas are less giant than their respective parents. Galton called his

phenomenon “regression (or reversion) to mediocrity” and the parameters of the

linear relationship as regression parameters.

From (4.49) it follows that

EðXqþijXð1Þ ¼ xð1ÞÞ ¼ mqþi þ bðiÞðxð1Þ � mð1ÞÞ
where bðiÞ denotes the ith row of ðp� qÞ � q matrix S21.

Furthermore the covariance between Xqþ1 and bðiÞS
�1
11 Xð1Þ is given by

EððXqþi � mqþiÞðbðiÞS
�1
11 ½Xð1Þ � mð1Þ�Þ0Þ ¼ EðXqþi � mqþiÞ

� ðXð1Þ � mð1ÞÞ0S�1
11 b

0
ðiÞ ¼ bðiÞS

�1
11 b

0
ðiÞ

and

varððXqþiÞ ¼ s2
qþi; varðbðiÞS

�1
11 Xð1ÞÞ

¼ EðbðiÞS
�1
11 ðXð1Þ � mð1ÞÞ

ðXð1Þ � mð1ÞÞ0S�1
11 b

0
ðiÞ ¼ b0

ðiÞS
�1
11 bðiÞ

The coefficient of correlation between Xqþi and bðiÞS
�1
11 Xð1Þ is defined by the

positive square root of b0
ðiÞS

�1
11 bðiÞ and is written as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0
ðiÞS

�1
11 bðiÞ

s2
qþi

vuut ð4:50Þ
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Its square r2 is known as the coefficient of determination. Note that 0 � r � 1

unlike an ordinary correlation coefficient.

Definition 4.5.1. Multiple correlation. The term r, as defined above, is called

the multiple correlation between the component Xqþi of Xð2Þ and the linear

function ðbðiÞXð1ÞÞ. Note: For the p-variate complex normal distribution

r2 ¼ b�
ðiÞS

�1
11 bðiÞ.

The following theorem will show that the multiple correlation coefficient r is

the correlation between Xqþi and its best linear predictor.

Theorem 4.5.1. Of all linear combinations aXð1Þ of Xð1Þ, the one that minimizes
the variance of ðXqþi � aXð1ÞÞ and maximizes the correlation between Xqþi and

aXð1Þ is the linear function bðiÞS
�1
11 Xð1Þ.

Proof. Let b ¼ bðiÞS
�1
11 . Then

varðXqþi � aXð1ÞÞ ¼ EðXqþi � mqþi � aðXð1Þ � mð1ÞÞÞ2

¼ EððXqþi � mqþiÞ

� bðXð1Þ � mð1ÞÞÞ2 þ Eððb� aÞðXð1Þ � mð1ÞÞÞ2

þ 2EðXqþi � mqþi � bðXð1Þ � mð1ÞÞÞððb� aÞðXð1Þ � mð1ÞÞÞ0:

But EðbðXð1Þ � mð1ÞÞðXqþi � mqþiÞ ¼ bb0
ðiÞ ¼ bðiÞS

�1
11 b

0
ðiÞ; EððXqþi � mqþiÞ �

bðXð1Þ� mð1ÞÞÞðXð1Þ � mð1ÞÞ0 ¼ bðiÞ � bðiÞ ¼ 0;

Eððb� aÞðXð1Þ � mð1ÞÞÞ2 ¼ ðb� aÞEðXð1Þ � mð1ÞÞðXð1Þ � mð1ÞÞ0ðb� aÞ0

¼ ðb� aÞS11ðb� aÞ0;

EðXqþi � mqþiÞ � bðXð1Þ � mð1ÞÞÞ2 ¼ s2
qþi � 2bðiÞS

�1
11 b

0
ðiÞ þ bðiÞS

�1
11 b

0
ðiÞ

¼ s2
qþi � bðiÞS

�1
11 b

0
ðiÞ:

Hence

varðXqþi � aXð1ÞÞ ¼ s2
qþi � bðiÞS

�1
11 b

0
ðiÞ þ ðb� aÞS11ðb� aÞ0:
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Since S11 is positive definite, ðb� aÞS11ðb� aÞ0 � 0 and is equal to zero if

b ¼ a. Thus bXð1Þ is the linear function such that Xqþi � bXð1Þ has the minimum

variance.

We now consider the correlation between Xqþi and aXð1Þ and show that this

correlation is maximum when a ¼ b. For any nonzero scalar C;CaXð1Þ is a linear
function of Xð1Þ. Hence

EðXqþi � mqþi � bðXð1Þ � mð1ÞÞÞ2 � EðXqþi � mqþi � CaðXð1Þ � mð1ÞÞÞ2 ð4:51Þ
Dividing both sides of (4.51) by sqþi½EðbðXð1Þ � mð1ÞÞÞ2�1=2 and choosing

C ¼ EðbðXð1Þ � mð1ÞÞÞ2
EðaðXð1Þ � mð1ÞÞÞ2
" #1=2

we get from (4.51)

EðXqþi � mqþiÞðbðXð1Þ � mð1ÞÞÞ
sqþi½EðbðXð1Þ � mð1ÞÞÞ2�1=2

� EðXqþi � mqþiÞðaðXð1Þ � mð1ÞÞÞ
sqþi½EðaðXð1Þ � mð1ÞÞÞ2�1=2

Q.E.D.

Definition 4.5.2. Partial correlation coefficient. Let sij�1; . . . ; q be the ði; jÞth
element of the matrix S22:1 ¼ S22 � S21S

�1
11 S12 of dimension ðp� qÞ � ðp� qÞ.

Then

rij�1; . . . ; q ¼ sij�1; . . . ; q

ðsii�1; . . . ; qsjj�1; . . . ; qÞ12
ð4:52Þ

is called the partial correlation coefficient (of order q) between the components

Xqþi and Xqþj when X1; . . . ;Xq are held fixed.

Thus the partial correlation is the correlation between two variables when the

combined effects of some other variables of them are eliminated.

We would now like to find a recursive relation to compute the partial

correlation of order k (say) from the partial correlations of order (k � 1).

Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m and positive

definite covariance matrix S. Write

X ¼ ðX0
ð1Þ;X

0
ð2Þ;X

0
ð3ÞÞ0

where

Xð1Þ ¼ ðX1; . . . ;Xp1 Þ0;Xð2Þ ¼ ðXp1þ1; . . . ;Xp1þp2 Þ0;
Xð3Þ ¼ ðXp1þp2þ1; . . . ;XpÞ0;
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and

S ¼
S11 S12 S13

S21 S22 S23

S31 S32 S33

0
@

1
A;

where Sij are submatrices of S of dimensions pi � pj; i; j ¼ 1; 2; 3 satisfying

p1 þ p2 þ p3 ¼ p. From Theorem 4.1.5(c)

cov
Xð2Þ
Xð3Þ

� �����Xð1Þ ¼ xð1Þ

� �
¼ S22 S23

S32 S33

� ��1

� S21

S31

� �
S
�1
11 ðS12S13Þ:

Following the same argument we can deduce that

covðXð3ÞjXð2Þ ¼ xð2Þ;Xð1Þ ¼ xð1ÞÞ

¼ S33 � ðS31S32Þ
S11 S12

S21 S22

� ��1
S13

S23

� �

¼ ðS33 � S31S
�1
11 S13Þ

� ðS32 � S31S
�1
11 S12ÞðS22 � S21S

�1
11 S12Þ�1ðS23 � S21S

�1
11 S12Þ:

Now taking p1 ¼ q� 1; p2 ¼ 1; p3 ¼ p� q we get for the ði; jÞth element

i; j ¼ qþ 1; . . . ; p,

sij�1; . . . ; q ¼ sij�1;...;q�1 � siq�1; . . . ; q� 1 sjq�1; . . . ; q� 1

sqq�1; . . . ; q� 1
: ð4:53Þ

If j ¼ i, we obtain

sii�1; . . . ; q ¼ sii�1;...;q�1ð1� r2iq�1; . . . ; q� 1Þ:
Hence from (4.53) we obtain

rij�1; . . . ; q ¼ rij�1;...;q�1 � riq�1;...;q�1 rjq�1;...;q�1

½ð1� r2iq�1;...;q�1Þð1� r2jq�1;...;q�1Þ�1=2
ð4:54Þ

In particular,

r34:12 ¼
r34:1 � r32:1r42:1

½ð1� r232:1Þð1� r242:1Þ�1=2

and

r23:1 ¼
r23 � r21r31

½ð1� r221Þð1� r231Þ�1=2
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where rij ¼ covðXi;XjÞ. Thus if all partial correlations of certain order are zero,

then all higher order partial correlations must be zero.

In closing this section we observe that in the case of the p-variate and normal

and the p-variate complex normal distributions r2 ¼ 0 implies the independence

of Xqþi and Xð1Þ. But this does not hold, in general, for the family of elliptically

symmetric distributions.

4.5.1. Regressions and Correlations in Symmetric

Distributions

We discuss in brief analogous results for the family of symmetric distributions.

Let X ¼ ðX1; . . . ;XpÞ0 ¼ ðX1;X
0
ð2ÞÞ0 with

Xð2Þ ¼ ðX2; . . . ;XpÞ0;m ¼ ðm1; . . . ;mpÞ0 ¼ ðm1;m
0
ð2ÞÞ0;S ¼ S11 S12

S21 S22

� �
;

where S22 is the lower right-hand corner ðp� 1Þ � ðp� 1Þ submatrix of S. From
Theorem 4.3.4.3, the conditional distribution of X1 given Xð2Þ ¼ xð2Þ is E1ðm1 þ
S12S

�1
22 ðxð2Þ � mð2ÞÞ;S11 � S12S

�1
22 S21; ~qqÞ if X is distributed as Epðm;S; qÞ. Thus

varðX1jXð2Þ ¼ xð2ÞÞ ¼ K~qqðxð2ÞÞðS11 � S12S
�1
22 S21Þ

where K~qqðxð2ÞÞ is a function of xð2Þ and it depends on q. The regression of X1 on

Xð2Þ is given by

EðX1jXð2Þ ¼ xð2ÞÞ ¼ m1 þ S12S
�1
22 ðxð2Þ � mð2ÞÞ:

It does not depend on q. Let b ¼ S12S
�1
22 . The multiple correlation r between X1

and Xð2Þ is given by

r ¼ rðX1;bXð2ÞÞ

¼ EðX1 � m1ÞðbðXð2Þ � mð2ÞÞÞ0
½varðX1ÞvarðbXð2ÞÞ�12

¼ EðX1 � m1ÞðXð2Þ � mð2ÞÞ0b0

½varðX1ÞðbEðXð2Þ � mð2ÞÞðXð2Þ � mð2ÞÞ0b0Þ�12
ð4:55Þ

¼ K~qqðS12S
�1
22 S21Þ

K ~qq½S11ðS12S
�1
22 S21Þ�12

¼ S12S
�1
22 S21

S11

" #1
2
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Obviously r does not depend on q in Epðm;S; qÞ. The proof of Theorem 4.5.1 for

Epðm;S; qÞ is straightforward.
Let X ¼ ðX1; . . . ;XpÞ0 ¼ ðX0

ð1Þ;X
0
ð2ÞÞ0 with Xð1Þ ¼ ðX1; . . . ;Xp1 Þ0 be distributed

as Epðm;S; qÞ. From Theorem 4.3.4.3 it follows (changing the role of Xð1Þ by Xð2Þ
and vice versa) that the conditional distribution of Xð1Þ given Xð2Þ ¼ xð2Þ is

elliptically symmetric with mean mð1Þ þ S12S
�1
22 ðxð2Þ � mð2ÞÞ and covariance

matrix K~qqðxð2ÞÞðS11 � S12S
�1
22 S21Þ where K~qqðxð2ÞÞ is a positive constant related to

the conditional distribution ~qq. Partial correlation coefficients as defined in (4.52)

do not depend on q of Epðm;S; qÞ.

4.6. CUMULANTS AND KURTOSIS

Let Y be a random variable with characteristic function fY ðtÞ, and let mj ¼
EðY � EðYÞÞ j; j ¼ 1; 2; . . . be the jth central moment of Y . The coefficients

b1 ¼
m2
3

m3
2

;b2 ¼
m4

m2
2

ð4:56Þ

are called measures of skewness and kurtosis, respectively, of the distribution of

Y . For the univariate normal distribution with mean m and variance

s2;b1 ¼ 0;b2 ¼ 3.

Assuming that all moments of Y exist, the cumulants kj of order j of the

distribution of Y are the coefficients kj in

logfY ðtÞ ¼
X1
j¼0

kj
ðitÞ j
j!

In terms of the raw moments mj ¼ EðYjÞ; j ¼ 1; 2; . . . the first four cumulants are

given by

k1 ¼ m1

k2 ¼ m2 � m2
1

k3 ¼ m3 � 3m2m1 þ 2m2
1

k4 ¼ m4 � 4m1m3 � 3m2
2 þ 12m2m

2
1 � 6m4

1:

ð4:57Þ

We now define cumulants for the multivariate distributions. Let

fXðtÞ; t ¼ ðt1; . . . ; tpÞ0 [ Rp, be the characteristic function of the random vector

X ¼ ðX1; . . . ;XpÞ0.
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Definition 4.6.1. Cumulants. Assuming that all moments of the distribution of

X exist, the cumulants of the distribution of X are coefficients k1...pr1...rp
in

logfXðtÞ ¼
X1

r1...rp¼0

k1...pr1...rp

ðit1Þr1 . . . ðitpÞrp
r1! . . . rp!

: ð4:58Þ

The superscript on k refers to coordinate variables X1; . . . ;Xp and the subscript

on k refers to the order of the cumulant.

Example 4.6.1. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Npðm;SÞ with m ¼
ðm1; . . . ;mpÞ0 and S ¼ ðsijÞ. Then

EðXi � miÞðXj � mjÞ ¼ sij;

EðXi � miÞðXj � mjÞðXl � mlÞ ¼ 0; i = j = l;

EðXi � miÞðXjmjÞðXe � meÞðXm � mmÞ
¼ sijslm þ silsjm þ simsjl:

Hence

k12...p10...0 ¼ m1; k
12...p
010...0 ¼ m2; . . . ; k

12...p
0...01 ¼ mp;

k12...p20...0 ¼ s11; k
12...p
020...0 ¼ s22; . . . ; k

12...p
0...02 ¼ spp;

k12...p110...0 ¼ s12; and etc:

and all cumulants for which
Pp

i¼1 ri . 2 are zero. Let X ¼ ðX1; . . . ;XpÞ0, be
distributed as Epðm;S; qÞ..From Theorem 4.3.4.5, the characteristic function of

X is given by fXðtÞ ¼ expfit0mgcðt0StÞ for some function c on ½0;1Þ and t [ Rp.

The covariance matrix of X is given by

D ¼ EðX � mÞðX � mÞ0 ¼ �2c0ð0ÞS ¼ ðsijÞ ðsayÞ ð4:59Þ

where c 0ð0Þ ¼ ð@=@tÞcðt0StÞjt¼0. Assuming the existence of the moments of

fourth order and differentiating logfXðtÞ, it is easy to verify that the marginal

distribution of each component of X has zero skewness and the same kurtosis

b2 ¼
3½c 00ð0Þ � c 0ð0Þ�2

ðc 0ð0ÞÞ2 ¼ 3k ðsayÞ ð4:60Þ

All fourth order cumulants are

kijlm1111 ¼ kðsijslm þ silsjm þ simsjlÞ: ð4:61Þ
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For more relevant basic results in the context of elliptically symmetric

distributions we refer to Cambanis et al. (1981); Das Cupta et al. (1972); Dawid

(1977, 1978); Giri (1993, 1996); Kariya and Sinha (1989); Kelkar (1970).

4.7. THE REDUNDANCY INDEX

Let Xð1Þ : p� 1;Xð2Þ : q� 1 be two random vectors with EðXðiÞÞ ¼ mðiÞ; i ¼ 1; 2
and covariance Sij ¼ E½ðXðiÞ � mðiÞÞðXðjÞ � mðjÞÞ0; i; j ¼ 1; 2. The population

redundancy index rI, introduced by Stewart and Love (1968) and generalized

by Gleason (1976) is given by

rI ¼ trS12S
�1
22 S21

trS11

ð4:62Þ

It is related to the prediction of Xð1Þ by Xð2Þ by multiple linear regression. Lazraq

and Cléroux (2002) gives an up-to-date reference on this index. It is evident that

0 � rI � 1. rI equals to the squared simple correlation coefficient if p ¼ q ¼ 1

and it reduces to the square multiple correlation if p ¼ 1 and q . 1.

EXERCISES

1 Find the mean and the covariance matrix of the random vector X ¼ ðX1;X2Þ0
with probability density function fXðxÞ ¼ ð1=2pÞ expf� 1

2
ð2x21 þ x22 þ 2x1x2 �

22x1 � 14x2 þ 65Þg and x [ E2.

2 Show that if the sum of two independent random variables is normally

distributed, then each one is normally distributed.

3 Let X ¼ ðX1;X2Þ0 be a random vector with the moment generating function

Eðexpðt1X1 þ t2X2ÞÞ ¼ aðexpðt1 þ t2Þ þ 1ÞÞ
þ bðexpðt1Þ þ expðt2ÞÞ;

where a; b are positive constants satisfying aþ b ¼ 1
2
. Find the covariance of

matrix of X.

4 (Intraclass covariance). Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Npðm;SÞ

S ¼ s2

1 r �� r
r 1 �� r
� �� �� �
r �� � 1

0
BB@

1
CCA;

where s2 . 0;�1=ðp� 1Þ , r , 1.
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(a) Show that detS ¼ ðs2Þpð1þ ðp� 2ÞrÞð1� rÞp�1.

(b) Show that

S
�1 ¼ ðs ijÞ;s ii ¼ ð1þ ðp� 2ÞrÞ

s2ð1� rÞð1þ ðp� 1ÞrÞ ;

sij ¼ �r=ðs2ð1þ ðp� 1ÞrÞð1� rÞ; i; j ¼ 1; . . . ; p:

(c) Write down the probability density function of X in terms of m; r and s2.

(d) Find the joint probability density function of ðX1 þ X2;X1 � X2Þ0.
5 Let X ¼ ðX1;X2Þ0 be distributed as N2ð0;SÞ with

S ¼ 1 r
r 1

� �
;�1 , r , 1:

Show that

(a) PðX1X2 . 0Þ ¼ 1
2
þ ð1=pÞ sin�1 r.

(b) PðX1X2 , 0Þ ¼ ð1=pÞ cos�1 r.
In Theorem 4.1.5 show that

(a) The marginal distribution of Xð2Þ is Np�qðmð2Þ;S22Þ.
(b) The conditional distribution of Xð1Þ given Xð2Þ ¼ xð2Þ is q-variate normal

with mean mð1Þ þ S12S
�1
22 ðxð2Þ � mð2ÞÞ and covaniance matrix

S11 � S12S
�1
22 S21.

(c) Show that

x0S�1
x ¼ ðxð1Þ � S12S

�1
22 xð2ÞÞ0ðS11 � S12S

�1
22 S21:Þ�1

� ðxð1Þ � S12S
�1
22 xð2ÞÞ þ x0ð2ÞS

�1
22 xð2Þ:

6 Let Xi; i ¼ 1; . . . ; n be independently distributed Npðmi;SiÞ. Show that the

distribution of SiaiXi where a1; . . . ; an are real, is distributed as

NpðSiaimi;Sia
2
i SiÞ.

7 Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Npðm;SÞ where m ¼
ðm1; . . . ;mpÞ0;S ¼ ðsijÞ and let Y ¼ ðY1; . . . ; YpÞ0 where Yi ¼ Xpþ1�i;
i ¼ 1; . . . ; p. Find the probability density function of Y .

8 (The best linear predictor). Let X ¼ ðX1; . . . ;XpÞ0 be a random vector with

EðXÞ ¼ 0 and covariance S. Show that among all functions g of X2; . . . ;Xp

EðX1 � gðX2; . . . ;XpÞÞ2
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is minimum when

gðx2; . . . ; xpÞ ¼ EðX1jX2 ¼ x2; . . . ;Xp ¼ xpÞ:

9 Let Z1; . . . ; Zn be independently distributed complex normal random

variables with EðZjÞ ¼ aj; varðZjÞ ¼ s2
j ; j ¼ 1; . . . ; n. Show that for aj; bj [

C; j ¼ 1; . . . ; n;
Pn

j¼1ðajZj þ bjÞ is distributed as a complex normal with

mean
Pn

j¼1ðajaj þ bjÞ and variance
Pn

j¼1ðaj �aajs2
j Þ.

10 In Theorem 4.2.5 find

(a) The marginal distribution of Zð2Þ;
(b) The conditional distribution of Zð1Þ given Zð2Þ ¼ zð2Þ.

11 Let Z be distributed as a p-variate complex normal. Show that its

characteristic function is given by (4.18).

12 Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ with characteristic

function

eit
0mCðt0StÞ; t [ Ep;

where C is a function on ½0;1Þ. Show that EðXÞ ¼ m,

covðXÞ ¼ �C0ð0ÞS

where

C0ð0Þ ¼ @cðt0StÞ
@t

jt¼0:

13 In Theorem 4.3.4.3 show that

(a) the marginal distribution of Xð2Þ is Ep�qðmð2Þ;S22; �qqÞ withÐ
Rp2

�qqðw0
ð2Þwð2ÞÞdwð2Þ ¼ 1,

(b) find the conditional distribution of Xð1Þ given Xð2Þ ¼ xð2Þ.
14 Let X ¼ ðX1;X2;X3Þ0 be a random vector whose first and second moments are

assumed known. Show that among all linear functions aþ bX2 þ cX3, the

linear function that minimizes

EðX1 � a� bX2 � cX3Þ2

is given by

EðX1Þ þ bðX2 � EðX2ÞÞ þ gðX3 � EðX3ÞÞ
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where

b ¼ covðX1;X2Þs11 þ covðX1;X3Þs12;

g ¼ covðX1;X2Þs21 þ covðX1;X3Þs22;

s11 ¼ varðX3Þ=D;s22 ¼ varðX2Þ=D;
s12 ¼ s21 ¼ �covðX2;X3Þ=D;
D ¼ varðX2ÞvarðX3Þð1� r2ðX2;X3ÞÞ;

and rðX2;X3Þ is the coefficient of correlation between X2, and X3.

15 (Residual variates). Let X ¼ ðX0
ð1Þ;X

0
ð2ÞÞ0, be a p-dimensional normal random

vector with mean m ¼ ðm0
ð1Þ;m

0
ð2ÞÞ0 and covariance matrix

S ¼ S11 S12

S21 S22

� �

where S11 ¼ covðXð1ÞÞ. The random vector

X1:2 ¼ Xð1Þ � mð1Þ � S12S
�1
22 ðXð2Þ � mð2ÞÞ

is called the residual variates since it represents the discrepancies of the

elements of Xð1Þ from their values as predicted from the mean vector of the

conditional distribution of Xð1Þ given Xð2Þ ¼ xð2Þ. Show that

(a) EðXð1Þ � mð1ÞÞX0
1:2 ¼ S11 � S12S

�1
22 S21,

(b) EðXð2Þ � mð2ÞÞX0
1:2 ¼ 0.

16 Show that the multiple correlation coefficient r1ð2;...;pÞ of X1 on X2; . . . ;Xp of

the normal vector X ¼ ðX1; . . . ;XpÞ0 satisfies

1� r21ð2;...;pÞ ¼ ð1� r212Þð1� r213:2Þ � � � ð1� r21p:2;3;...;p�1Þ:

17 Show that the multiple correlation r1ð2;...;jÞ between X1 and ðX2; . . . ;XjÞ;
j ¼ 2; . . . ; p, satisfy

r21ð2Þ � r21ð23Þ � � � � � r21ð2;...;pÞ

In other words, the multiple correlation cannot be reduced by adding to the set

of variables on which the dependence of X1 has to be measured.
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18 Let the covariance matrix of a four dimensional normal random vector X ¼
ðX1; . . . ;X4Þ0 be given by

S ¼ s2

1 r r2 r3

r 1 r r2

r2 r 1 r
r3 r2 r 1

0
BB@

1
CCA:

Find the partial correlation coefficient between the ðiþ 1Þth and ði� 1Þth
component of X when the ith component is held fixed.

19 Let X ¼ ðX1;X2;X3Þ0 be normally distributed with mean 0 and covariance

matrix

S ¼
3 1 1

1 3 1

1 1 3

0
@

1
A:

Show that the first principal axis of its concentration ellipsoid passes through

the point (1, 1, 1).

20 (Multinomial distribution). Let X ¼ ðX1; . . . ;XpÞ0 be a discrete p-dimensional

random vector with probability mass function

pX1;...;Xp
ðx1; . . . ; xpÞ ¼

n!

x1! . . . xp!

Yp

i¼1

pxii if 0 � xi � n for all n;
Pp
1

xi ¼ n;

0 otherwise;

8><
>:

where pi � 0;
Pp

l pi ¼ 1.

(a) Show that

EðXiÞ ¼ npi; varðXiÞ ¼ npið1� piÞ;
covðXi;XjÞ ¼ �npipjði = jÞ:

(b) Find the characteristic function of X.

(c) Show that the marginal probability mass function of

Xð1Þ ¼ ðX1; . . . ;XqÞ0; q � p;
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is given by

pX1;...;Xq
ðx1; . . . ; xqÞ ¼ n!

x1! . . . xq!ðn� noÞ!

�
Yq

i¼1

pxii ð1� p1 � � � � � pqÞn�no if
Xq

1

xi ¼ no:

(d) Find the conditional distribution of X1 given X3 ¼ x3; . . . ;Xq ¼ xq.

(e) Show that the partial correlation coefficient is

r12:3;...;q ¼
p1p2

ð1� p2 � p3 � � � � � pqÞð1� p1 � p3 � � � � � pqÞ
� �1=2

(f) Show that the squared multiple correlation between X1 and ðX2; . . . ;XpÞ0
is

r ¼ p1ðp2 þ � � � þ pqÞ
ð1� p1Þð1� p2 � � � � � pqÞ :

(g) Let Yi ¼ ðXi � npiÞ=
ffiffiffi
n

p
. Show that as n ! 1 the distribution of

ðY1; . . . ; Yp�1Þ0 tends to a multivariate normal distribution. Find its mean

and its covariance matrix.

21 (The multivariate log-normal distribution). Let X ¼ ðX1; . . . ;XpÞ0 be

normally distributed with mean m and positive definite (symmetric)

covariance matrix S ¼ ðsijÞ. For any random vector Y ¼ ðY1; . . . ; YpÞ0 let
us define

log Y ¼ ðlog Y1; . . . ; logYpÞ0

and let log Yi ¼ Xi; i ¼ 1; . . . ; p. Then Y is said to have a p-variate log-

normal distribution with probability density function

fY ðyÞ ¼ ð2pÞ�p=2ðdetSÞ�1=2
Yp

i¼1

y�1
i

 !

� exp � 1

2
ðlog y� mÞ0S�1ðlog y� mÞ

� �

when yi . 0; i ¼ 1; . . . ; p and is zero otherwise.
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(a) Show that for any positive integer r

EðYr
i Þ ¼ exp rmi þ

1

2
r2sii

� �
;

varðYiÞ ¼ expf2mi þ 2siig � expf2mi þ siig;

covðYiYjÞ ¼ exp mi þ mj þ
1

2
ðsii þ sjjÞ

� �

¼ exp mi þ mj þ
1

2
ðsii þ sjjÞ

� �
:

(b) Find the marginal probability density function of ðY1; . . . ; YqÞq , p.

22 (The multivariate beta (Dirichlet) distribution). Let X ¼ ðX1; . . . ;XpÞ0 be a p-
variate random vector with values in the simplex

S ¼ x ¼ ðx1; . . . ; xpÞ0 : xi � 0 for all
Xp

1

xi � 1

( )
:

X has a multivariate beta distribution with parameters n1; . . . ; npþ1; ni . 0, if

its probability density function is given by

fXðxÞ

¼
Gðn1 þ � � � npþ1Þ
Gðn1Þ � � �Gðnpþ1Þ

Yp

i¼1

xni�1

 !
1�Pp

1

xi

� �npþ1�1

if x [ S;

0 otherwise:

8><
>:

(a) Show that

EðXiÞ ¼ ni
n1 þ � � � þ npþ1

; i ¼ 1; . . . ; p;

varðXiÞ ¼ niðn1 þ � � � þ npþ1 � niÞ
ðn1 þ � � � þ npþ1Þ2ð1þ n1 þ � � � þ npþ1Þ

;

covðXiXjÞ ¼ �ninj

ðn1 þ � � � þ npþ1Þ2ð1þ n1 þ � � � þ npþ1Þ
ði = jÞ:

(b) Show that the marginal probability density function of X1; . . . ;Xq is a

multivariate beta with parameters n1; . . . ; nq; nqþ1 þ � � � þ npþ1.

23 Let Z ¼ ðZ1; . . . ; ZpÞ0 be distributed as Epð0; IÞ and let L ¼ Z 0Z;
e2i ¼ Z2

i =L; i ¼ 1; . . . ; p.
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(a) Show that L is independent of (e1; . . . ; ep).
(b) The joint distribution of e1; . . . ; ep is Dirichlet as given in (4.26).

24 (Multivariate Student t-distribution). The random vector X ¼ ðX1; . . . ;XpÞ0
has a p-variate Student t-distribution with N degrees of freedom if the

probability density function of X can be written as

fXðxÞ ¼ CðdetSÞ�1=2ðN þ ðx� mÞ0S�1ðx� mÞÞ�ðNþpÞ=2

where x [ Ep;m ¼ ðm1; . . . ;mpÞ0;S is a symmetric positive definite matrix

of dimension p� p and

C ¼
NN=2G

N þ p

2

� �

pp=2G
N

2

� � :

(a) Show that

EðXÞ ¼ m if N . 1; covðXÞ ¼ ½N=ðN � 2Þ�S;N . 2:

(b) Show that the marginal probability density function of ðX1; . . . ;XqÞ0;
q , p, is distributed as a q-variate Student t-distribution.

25 (Multivariate exponential power distribution). Let X ¼ ðX1; . . . ;XpÞ0 has a p-
variate exponential power distribution if its probability density function is

given by

fXðxÞ ¼ CðuÞ
ðdetSÞ12

exp � 1

2
fðx� mÞ0S�1ðx� mÞgu

� �
;

u [ Rþ ¼ fr [ R; r . 0g;m [ Rp;S . 0 and CðuÞ is a positive constant.

Show that

CðuÞ ¼ uG
p

2

 �
½21=up��p

2 ½Gðp=2uÞ��1:
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Das Cupta, S., Eaton, M. L., Olkin, I., Pearlman, M., Savage, L. J., Sobel,

M. (1972). Inequalities on the probability content of convex regions for

elliptically contoured distributions. In: Proc. Sixth Berkeley Symp. Math.

Statist. Prob. 2, Univ. of California Press, Berkeley, pp. 241–264.

Dawid, A. P. (1978). Extendibility of spherical matrix distributions.

J. Multivariate. Anal. 8:559–566.

Dawid, A. P. (1977). Spherical matrix distributions and a multivariate model.

J. Roy. Statist. Soc. B, 39:254–261.
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5
Estimators of Parameters and Their
Functions

5.0. INTRODUCTION

We observed in Chapter 4 that the probability density function (when it exists)

of the multivariate normal distribution, the multivariate complex normal

distribution and the elliptically symmetric distribution depends on the parameter

m and S. In this chapter we will estimate these parameters and some of their

functions, namely the multiple correlation coefficient, partial correlation

coefficients of different orders, and regression coefficients on the basis of

information contained in a random sample of size N from the multivariate normal

and the multivariate complex normal distribution, and, elliptically symmetric

distribution (multivariate) where m1 ¼ � � � ¼ mN ¼ m and S1 ¼ � � � ¼ SN ¼ S.
Equivariant estimation under curved models will be treated in this chapter.

The method of maximum likelihood (Fisher, 1925) has been very successful in

finding suitable estimators of parameters in many problems. Under certain

regularity conditions on the probability density function, the maximum

likelihood estimator is strongly consistent in large samples (Wald (1943);

Wolfowitz (1949); LeCam (1953); Bahadur (1960)). Under such conditions, if

the dimension p of the random vector is not large, it seems likely that the sample

size N occuring in practice would usually be large enough for this optimum result

to hold. However, if p is large it may be that the sample size N needs to be
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extremely large for this result to apply; for example, there are cases where N=p3

must be large. The fact that the maximum likelihood is not universally good has

been demonstrated by Basu (1955), Neyman and Scott (1948), and Kiefer and

Wolfowitz (1956), among others.

In recent years methods of multivariate Bayesian analysis have proliferated

through virtually all aspects of multivariate Bayesian analysis. Berger (1993)

gave a brief summary of current subjects in multivariate Bayesian analysis along

with recent references on this topic.

5.1. MAXIMUM LIKELIHOOD ESTIMATORS OF m;S IN

Npðm;SÞ

Let xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N be a sample of size N from a normal

distribution Npðm;SÞ with mean m and positive definite covariance matrix S, and
let

�xx ¼
XN
a¼1

xa=N; s ¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0

We are interested here in finding the maximum likelihood estimates of (m;S).
The likelihood of the sample observations xa;a ¼ 1; . . . ;N is given by

Lðx1; . . . ; xNÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2

XN
a¼1

ðxa � mÞ0S�1ðxa � mÞ
( )

¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1
XN
a¼1

ðxa � mÞðxa � mÞ0
( )

¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1ðsþ Nð�xx� mÞð�xx� mÞ0Þ
� �

as

XN
a¼1

ðxa � mÞðxa � mÞ0

¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0 þ Nð�xx� mÞð�xx� mÞ0 þ 2
XN
a¼1

ðxa � �xxÞð�xx� mÞ0

¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0 þ Nð�xx� mÞð�xx� mÞ0
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Since S is positive definite

Nð�xx� mÞ0S�1ð�xx� mÞ � 0

for all �xx� m and is zero if and only if �xx ¼ m. Hence

Lðx1; . . . ; xNm;SÞ � ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1
s

� �

and the equality holds if m ¼ �xx. Thus �xx is the maximum likelihood estimator of m
for all S. We will assume throughout that N . p; the reason for such an

assumption will be evident from Lemma 5.1.2. Given xa;a ¼ 1; . . . ;N; L is a

function of m and S only and we will denote it simply by Lðm;SÞ. Hence

Lðm̂m;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1
s

� �
ð5:1Þ

We now prove three Lemmas which are useful in the sequel and for subsequent

presentations.

Lemma 5.1.1. Let A be any symmetric positive definite matrix and let

f ðAÞ ¼ cðdetAÞN=2 exp � 1

2
tr A

� �

where c is a positive constant. Then f ðAÞ has a maximum in the space of all

positive definite matrices when A ¼ NI, where I is the identity matrix of

dimension p� p.

Proof. Clearly

f ðAÞ ¼ c
Yp

i¼1

ðuN=2i expf�ui=2gÞ

where u1; . . . ; up are the characteristic roots of the matrix A. But this is maximum

when u1 ¼ � � � ¼ up ¼ N, which holds if and only if A ¼ NI. Hence f ðAÞ is

maximum if A ¼ NI. Q.E.D.

Lemma 5.1.2. Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently

distributed normal random vectors with the same mean vector m and the same

positive definite covariance matrix S, and let

S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0 where �XX ¼ 1

N
Xa:
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Then

(a) �XX; S are independent,
ffiffiffiffi
N

p
�XX has a p-dimensional normal distribution with

mean
ffiffiffiffi
N

p
m and covariance matrix S, and S is distributed as

XN�1

a¼1

ZaZa0

where Za;a ¼ 1; . . . ;N � 1 are independently distributed normal p-vectors with

the same mean 0 and the same covariance matrix S;
(b) S is positive definite with probability one if and only if N . p.

Proof.

(a) Let 0 be an orthogonal matrix of dimension N � N of the form

0 ¼

011 � � � 01N
..
. ..

.

0N�11 � � � 0N�1N

1=
ffiffiffiffi
N

p � � � 1=
ffiffiffiffi
N

p

0
BBB@

1
CCCA

The last row of 0 is the equiangular vector of unit length. Since Xa;a ¼ 1; . . . ;N
are independent,

EðXa � mÞðXb � mÞ0 ¼ 0 if a = b
S if a ¼ b

:

�

Let

Za ¼
XN
b¼1

0abX
b;a ¼ 1; . . . ;N:

The set of vectors Za;a ¼ 1; . . . ;N, has a joint normal distribution because the

entire set of components is a set of linear combinations of the components of the

set of vectors Xa, which has a joint normal distribution.
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Now

EðZNÞ ¼
ffiffiffiffi
N

p
m;

EðZaÞ ¼
XN
b¼1

m0ab ¼
ffiffiffiffi
N

p
m
XN
b¼1

0ab
1ffiffiffiffi
N

p ¼ 0;a = N;

covðZaZgÞ ¼
XN
b¼1

0ab0gbEðXb � mÞðXb � mÞ0 ¼ 0 if a = g

S if a ¼ g
:

�

Furthermore,

XN
a¼1

ZaZa0 ¼
XN
a¼1

XN
b¼1

0abX
b
XN
g¼1

0agX
0
g

¼
XN
b¼1

XN
g¼1

XN
a¼1

0ab0ag

 !
XbXg0 ¼

XN
b¼1

XbXb0
:

Thus it is evident that Za;a ¼ 1; . . . ;N are independent and Za;
a ¼ 1; . . . ;N � 1, are normally distributed with mean 0 and covariance matrix

S. Since

ZN ¼
ffiffiffiffi
N

p
�XX

S ¼
XN
a¼1

XaXa0 � ZNZN 0 ¼
XN�1

a¼1

ZaZa0
;

we conclude that �XX; S are independent, ZN has p-variate normal distribution with

mean
ffiffiffiffi
N

p
m and covariance matrix S and S is distributed as

PN�1
a¼1 Z

aZa0
.

(b) Let B ¼ ðZ1; . . . ; ZN�1Þ. Then S ¼ BB0 where B is a matrix of dimension

p� ðN � 1Þ. This part will be proved if we can show that B has rank p with

probability one if and only if N . p. Obviously by adding more columns to B we

can not diminish its rank and if N � p, then the rank of B is less than p. Thus it

will suffice to show that B has rank p with probability one when N � 1 ¼ p.

For any set of ðp� 1Þ p-vectors ða1; . . . ;ap�1Þ in Ep let Sða1; . . . ;ap�1Þ be the
subspace spanned by a1; . . . ;ap�1. Since S is p� p nonsingular, for any given
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a1; . . . ;ap�1,

PfZi [ Sða1; . . . ;ap�1Þg ¼ 0:

Now, as Z1; . . . ; Zp are independent and identically distributed random p-

vectors,

PfZ1; . . . ; Zp are linearly dependentg

�
Xp

i¼1

PfZi [ SðZ1; . . . ; Zi�1; Ziþ1; . . . ; ZpÞg

¼ pPfZ1 [ SðZ2; . . . ; ZpÞg

¼ pE½PfZ1 [ SðZ2; . . . ; ZpÞjZ2 ¼ z2; . . . ; Zp ¼ zpg�
¼ pEð0Þ ¼ 0;

Q.E.D.

This lemma is due to Dykstra (1970). A similar proof also appears in the

lecture notes of Stein (1969).

This result depends heavily on the normal distribution of Z1; . . . ; Zp.

Subsequently Eaton and Pearlman (1973) have given conditions in the case of a

random matrix whose columns are independent but not necessarily normal or

identically distributed.

Note: The distribution of S is called the Wishart distribution with parameter S
and degrees of freedom N � 1. We will show in Chapter 6 that its probability

density function is given by

ðdet sÞðN�p�2Þ=2 expf� 1
2
tr S

�1
sg

2ðN�1Þp=2ppðp�1Þ=4ðdetSÞðN�1Þ=2Qp
i¼1 GððN � iÞ=2Þ : ð5:2Þ

for S positive definite and zero otherwise.

The following lemma gives an important property, usually called the

invariance property of the method of maximum likelihood in statistical

estimation. Briefly stated, if ûu is a maximum likelihood estimator of u [ V, then

f ðûu Þ is a maximum likelihood estimator of f ðuÞ, where f ðuÞ is some function of u.

Lemma 5.1.3. Let u [ V (an interval in a K-dimensional Euclidean space)

and let LðuÞ denote the likelihood function—a mapping from V to the real line R.

Assume that the maximum likelihood estimator ûu of u exists so that ûu [ V and

Lðûu Þ � LðuÞ for all u [ V. Let f be any arbitrary transformation mapping V to
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V� (an interval in an r-dimensional Euclidean space, 1 � r � k). Then f ðûu Þ is a
maximum induced likelihood estimator of f ðuÞ.

Proof. Let w ¼ f ðuÞ is a function, f ðûu Þ is a unique number ðŵwÞ of V�. For each
w [ V�

FðwÞ ¼ fu; u [ V such that f ðuÞ ¼ wg;
MðwÞ ¼ sup LðuÞ:

u [ FðwÞ

The function MðwÞ on V� is the induced likelihood function of f ðuÞ. Clearly
fFðwÞ : v [ V�g is a partition of V and ûu belongs to one and only one set of the

partition. Let us denote this set by Fðv̂vÞ. Moreover

Lðûu Þ ¼ sup
u[FðŵwÞ

LðuÞ ¼ MðŵwÞ � sup
w[V�

MðwÞ ¼ sup
u[w

Lðu ¼ Lðûu Þ;

and MðŵwÞ ¼ sup
V�

MðwÞ:

Hence ŵw is a maximum likelihood estimator of f ðuÞ. Since ûu [ FðŵwÞ we get

f ðûu Þ ¼ ŵw. Q.E.D.

From this it follows that if ûu ¼ ðûu1; . . . ; ûukÞ is a maximum likelihood

estimator of u ¼ ðu1; . . . ; ukÞ and if the transformation

u ! ð f1ðuÞ; . . . ; fkðuÞÞ

is one to one, then f1ðûu Þ; . . . ; fkðûu Þ are the maximum likelihood estimators of

f1ðuÞ; . . . ; fkðuÞ respectively. Furthermore, if ûu1; . . . ; ûuk are unique, then

f1ðûu Þ; . . . ; fkðûu Þ are also unique.

Since N . p by assumption, from Lemma 5.1.2 we conclude that s is positive

definite. Hence we can write s ¼ aa0 where a is a nonsingular matrix of

dimension p� p. From (5.1) we can write

Lðm̂m;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1
s

� �

¼ ð2pÞ�Np=2ðdet sÞ�N=2ðdetða0S�1aÞÞN=2 exp � 1

2
tr a0S�1a

� �

Using Lemmas 5.1.1 and 5.1.3 we conclude that

a0ðŜSÞ�1a ¼ NI

Estimators of Parameters and Their Functions 137



or equivalently, ŜS ¼ s=N. Hence the maximum likelihood estimator of m is �XX and

that of S is S=N.

5.1.1. Maximum Likelihood Estimator of Regression, Multiple

and Partial Correlation Coefficients, Redundancy Index

Let the covariance matrix of the random vector X ¼ ðX1; . . . ;XpÞ0 be denoted by

S ¼ ðsijÞ

with sii ¼ s2
i . Then

rij ¼ sij=sisj

is called the Pearson correlation between the ith and jth components of the

random vector X. (Karl Pearson, 1986, gave the first justification for the estimate

of rij.)
Write s ¼ ðsijÞ. The maximum likelihood estimate of sij, on the basis of

observations xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, is ð1=NÞsij. Since mi ¼ mi and

s2
i ¼ sii; rij ¼ sij=ðsii;sjjÞ1=2 is a function of the sij, the maximum likelihood

estimates of mi;s
2
i , and rij are

m̂mi ¼ �xxi; ŝs
2
i ¼ 1

N

XN
a¼1

ðxai � �xxiÞ2 ¼ s2i
N
;

r̂rij ¼
sij

ðs2i s2j Þ1=2
¼

PN
a¼1ðxai � �xxiÞðxaj � �xxjÞPN

a¼1ðxai � �xxiÞ2
� �1=2 PN

a¼1ðxaj � �xxjÞ2
� �1=2 ð5:3Þ

¼
PN

a¼1ðxai � �xxiÞxajPN
a¼1ðxai � �xxiÞ2

� �1=2 PN
a¼1ðxaj � �xxjÞ2

� �1=2 ¼ rij ðsayÞ:

Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean vector m ¼
ðm1; . . . ;mpÞ0 and positive definite covariance matrix S. We observed in Chapter

4 that the regression surface of Xð2Þ ¼ ðXqþ1; . . . ;XpÞ0 On Xð1Þ ¼ ðX1; . . . ;XqÞ0 ¼
xð1Þ ¼ ðx1; . . . ; xqÞ0 is given by

EðXð2ÞjXð1Þ ¼ xð1ÞÞ ¼ mð2Þ þ bðxð1Þ � mð1ÞÞ

where

b ¼ S21S
�1
11

138 Chapter 5



is the matrix of regression coefficients of Xð2Þ on Xð1Þ ¼ xð1Þ and S;m are

partitioned as

S ¼ S11 S12

S21 S22

� �
;m ¼ ðm0

ð1Þ;m
0
ð2ÞÞ0;mð1Þ ¼ ðm1; . . . ;mqÞ0;

with S11 the upper left-hand corner submatrix of S of dimension q� q. Let

s ¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0

be similarly partitioned as

s ¼ s11 s12
s21 s22

� �
:

From Lemma 5.1.3 we obtain the following theorem.

Theorem 5.1.1. On the basis of observations xa ¼ ðxa1; . . . ; xapÞ0;
a ¼ 1; . . . ;N, from the p-dimensional normal distribution with mean m and

positive definite covariance matrix S, the maximum likelihood estimates of

b;S22:1 and S11 are given by b̂b ¼ s21s
�1
11 ; ŜS22:1 ¼ ð1=NÞðs22 � s21s

�1
11 s12Þ;

ŜS11 ¼ s11=N.
Let sij�1;...;q be the (i; j)th element of the matrix s22 � s22s

�1
11 s12 of dimension

ðp� qÞ � ðp� qÞ. From Theorem 5.1.1 the maximum likelihood estimate of the

partial correlation coefficient between the components Xi and Xjði = jÞ; i; j ¼
qþ 1; . . . ; p of X, when Xð1Þ ¼ ðX1; . . . ;XqÞ0 is held fixed, is given by

r̂rij�1;...;q ¼
sij�1;...;q

ðsii�1;...;qÞ1=2ðsjj�1;...;qÞ1=2
¼ rij�1;...;q ð5:4Þ

where rij�1;...;q is an arbitrary designation.

In Chapter 4 we defined the multiple correlation coefficient between the ith

component Xqþi of Xð2Þ ¼ ðXqþ1; . . . ;XpÞ0 and Xð1Þ as

r ¼ b0
ðiÞS

�1
11 bðiÞ

s2
qþi

 !1=2

where bðiÞ is the ith row of the submatrix S21 of dimension ðp� qÞ � q of S.
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If q ¼ p� 1, then the multiple correlation coefficient between Xp and

ðX1; . . . ;Xp�1Þ0 is

r ¼ S21S
�1
11 S12

S22

 !1=2

:

Since (r;S21;S11) is a one-to-one transformation of S, the maximum likelihood

estimator of r is given by

r̂r ¼ s21s
�1
11 s12

s22

� �1=2

¼ r

where r is an arbitrary designation. Since S is positive definite R2 � 0.

Furthermore

1� R2 ¼ S22 � S21S
�1
11 S12

S22
¼ det S

S22ðdet S11Þ :

In the general case the maximum likelihood estimate of r is obtained by

replacing the parameters by their maximum likelihood estimates.

In Chapter 4 we have defined the redundancy index rI by

rI ¼ tr S12S
�1
22 S21

tr S11

between two random vectors Xð1Þ : p� 1 and Xð2Þ : q� 1 with

EðXðiÞÞ ¼ mðiÞ; i ¼ 1; 2;EðXðiÞ � mðiÞÞðXðjÞ � mðjÞÞ0 ¼ Sij; i; j ¼ 1; 2. It is related

to the prediction of Xð1Þ by Xð2Þ by means of multivariate regression, given by,

EðXð1Þ � mð1ÞjXð2Þ ¼ xð2ÞÞ ¼ Bðxð2Þ � mð2ÞÞ

where B, the q� p regression matrix. Let xa ¼ ðxa0
ð1Þ; x

a0
ð2ÞÞ0;a ¼ 1; . . . ;N be a

random sample of size N from X ¼ ðX0
ð1Þ;X

0
ð2ÞÞ0. Write N �XXðiÞ ¼

PN
a¼1 X

a
ðiÞ;

Sij ¼
PN

i¼1ðXa
ðiÞ � �XXðiÞÞðXa

ðjÞ � �XXðjÞÞ0; i; j ¼ 1; 2. The least square estimate of B is

B̂B ¼ S12S
�1
22 . The sample estimate of rI is RI given by

RI ¼ tr S12S
�1
22 S21

tr S11

It is called the sample redundancy index.
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5.2. CLASSICAL PROPERTIES OF MAXIMUM LIKELIHOOD

ESTIMATORS

5.2.1. Unbiasedness

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently and identically

distributed normal p-vectors with the same mean vector m and the same positive

definite covariance matrix S and let N . p. The maximum likelihood estimator

of m is

�XX ¼ 1

N

XN
a¼1

Xa

and that of S is

S

N
¼ 1

N

XN
a¼1

ðXa � �XXÞðXa � �XXÞ0

Furthermore we have observed that S is distributed independently of �XX as

S ¼
XN�1

a¼1

ZaZa0

where Za ¼ ðZa1; . . . ; ZapÞ0;a ¼ 1; . . . ;N � 1, are independently and identi-

cally distributed normal p-vectors with the same mean vector 0 and the same

positive definite covariance matrix S. Since

Eð �XXÞ ¼ m;E
S

N � 1

� �
¼ 1

N � 1

XN�1

a¼1

EðZaZa0 Þ ¼ S;

we conclude that �XX is an unbiased estimator of m and S=ðN � 1Þ is an unbiased

estimator of S.

5.2.2. Sufficiency

A statistic TðX1; . . . ;XNÞ, which is a function of the random sample

Xa;a ¼ 1; . . . ;N, only, is said to be sufficient for a parameter u if the

conditional distribution of X1; . . . ;XN given T ¼ t does not depend on u and it is
said to be minimal sufficient for u if the sample space of Xa;a ¼ 1; . . . ;N,
cannot be reduced beyond that of TðX1; . . . ;XNÞ without losing sufficiency.

Explicit procedures for obtaining minimal sufficient statistics are given by

Lehmann and Scheffie (1950) and Bahadur (1955). It has been established that the

sufficient statistic obtained through the following Fisher-Neyman factorization

theorem is minimal sufficient.
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Fisher-Neyman Factorization Theorem

Let

Xa ¼ ðXa1; . . . ;XapÞ0

a ¼ 1; . . . ;N, be a random sample of size N from a distribution with probability

density function fXðxjuÞ; u [ V. The statistic TðX1; . . . ;XNÞ is sufficient for u if

and only if we can find two nonnegative functions gT ðtjuÞ (not necessarily a

probability density function) and KðX1; . . . ;XNÞ such that

YN
a¼1

fXa ðxaÞ ¼ gT ðtjuÞKðx1; . . . ; xNÞ

where gT ðtjuÞ depends on x1; . . . ; xN only through Tðx1; . . . ; xNÞ and depends on

u, and K is independent of u.
For a proof of this theorem the reader is referred to Giri (1993) or (1975) or to

Halmos and Savage (1949) for a general proof involving some deeper theorems

of measure theory.

If Xa;a ¼ 1; . . . ;N, is a random sample of size N from the p-dimensional

normal distribution with mean m and positive definite covariance matrix S, the
joint probability density function of Xa;a ¼ 1; . . . ;N is given by

ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
trðS�1

sþ NS
�1ð�xx� mÞð�xx� mÞ0Þ

� �
:

Using the Fisher-Neyman factorization theorem we conclude that ( �XX; S) is a

minimal sufficient statistic for (m;S). In the sequel we will use sufficiency to

indicate minimal sufficiency.

5.2.3. Consistency

A real valued estimator TN (function of a random sample of size N) is said to be

weakly consistent for a parametric function gðuÞ; u [ V, if TN converges to

gðuÞ; u [ V in probability i.e. for every e . 0

limit
N!1 PfjTN � gðuÞj , 1g ¼ 1

and is strongly consistent if

Pflimit
N!1 TN ¼ gðuÞg ¼ 1

In the case of a normal univariate random variable with mean m and variance s2,

the sample mean �XX of a random sample X1; . . . ;XN of size N is both weakly and

strongly consistent (see Giri, 1993). When the estimator TN is a random matrix
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there are various ways of defining the stochastic convergence TN ! gðuÞ. Let

TN ¼ ðTijðNÞÞ; gðuÞ ¼ ðgijðuÞÞ

be matrices of dimension p� q. For any matrix A ¼ ðaijÞ let us define two

different norms

N1ðAÞ ¼ tr AA0; N2ðAÞ ¼ max
ij

jaijj:

Some alternative ways of defining the convergence of TN to gðuÞ are
1. TijðNÞ converges stochastically to gijðuÞ for all i; j.
2. N1ðTN � gðuÞÞ converges stochastically to zero. (5.5)

3. N2ðTN � gðuÞÞ converges stochastically to zero.

It may be verified that these three different ways of defining stochastic

convergence are equivalent. We shall establish stochastic convergence by using

the first criterion.

To show that �XX converges stochastically to m ¼ ðm1; . . . ;mpÞ0, S=ðN � 1Þ
converges stochastically to S ¼ ðsijÞ;sii ¼ s2

i , we need to show that �XXi

converges stochastically to mi for all i, Sij=ðN � 1Þ converges stochastically to sij

for all ði; jÞ, where �XX ¼ ð �XX1; . . . ; �XXpÞ0 and S ¼ ðSijÞ. Since

�XXi ¼ 1

N

XN
a¼1

Xai

where Xai;a ¼ 1; . . . ;N, are independently and identically distributed normal

random variables with mean mi and variance s2
i , using the Chebychev inequality

and the Kolmogorov theorem (see Giri, 1993), we conclude that �XXi is both weakly

and strongly consistent for mi; i ¼ 1; . . . ; p. Thus �XX is a consistent estimator of m.
From Lemma 5.1.2 S can be written as

S ¼
XN�1

a¼1

ZaZa0

where Za;a ¼ 1; . . . ;N � 1 are independently and identically distributed

normal p-vectors with mean 0 and positive definite covariance matrix S. Hence

Sij

N � 1
¼ 1

N � 1

XN�1

a¼1

ZaiZaj ¼ 1

N � 1

XN�1

a¼1

Zaði; jÞ
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where Zaði; jÞ ¼ ZaiZaj. Obviously Zaði; jÞ;a ¼ 1; . . . ;N � 1, are independently

and identically distributed random variables with

EðZaði; jÞÞ ¼ sij

varðZaði; jÞÞ ¼ EðZ2
aiZ

2
ajÞ � E2ðZaiZajÞ

� ðEðZ4
aiÞEðZ4

ajÞÞ1=2 � s2
ij � s2

i s
2
j ð3� r2ijÞ , 1

where rij is the coefficient of correlation between the ith and the jth component of

Za. Now applying the Chebychev inequality and the Kolmogorov theorem we

conclude that Sij=ðN � 1Þ is weakly and strongly consistent for sij for all i; j.

5.2.4. Completeness

Let T be a continuous random variable (univariate or multivariate) with

probability density function fT ðtjuÞ; u [ V—the parametric space. The family of

probability density functions ffT ðtjuÞ; u [ Vg is said to be complete if for any real

valued function gðTÞ
EuðgðTÞÞ ¼ 0 ð5:6Þ

for every u [ V implies that gðTÞ ¼ 0 for all values of T for which fT ðtjuÞ is
greater than zero for some u [ V. If the family of probability density functions of

a sufficient statistic is complete, we call it a complete sufficient statistic.

We would like to show that ( �XX; S) is a complete sufficient statistic for (m;S).
From (5.2) the joint probability density function of �XX; S is given by

cðdetSÞ�1
2
Nðdet sÞðN�p�2Þ=2 exp

�
� 1

2
tr S

�1
sþ Nð�xx� mÞ0S�1ð�xx� mÞ

�
ð5:7Þ

where

c�1 ¼ 2Np=2ppðpþ1Þ=4N�p=2
Yp

i¼1

G
N � i

2

� �
:

For any real valued function gð �XX; SÞ of ð �XX; SÞ

Egð �XX; SÞ ¼ c

ð
gð�xx; sÞðdetSÞ�N=2ðdet sÞðN�p�2Þ=2

� exp � 1

2
trðS�1

sþ Nð�xx� mÞ0S�1ð�xx� mÞ
� �

d�xx ds

ð5:8Þ
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where d�xx ¼ Pid �xxi; ds ¼ Pijdsij. Write S
�1 ¼ I � 2u where I is the identity

matrix of dimension p� p and u is symmetric. Let

m ¼ ðI � 2uÞ�1a:

If Egð �XX; SÞ ¼ 0 for all (m;S), then from (5.8) we get

c

ð
gð�xx; sÞðdetðI � 2uÞÞN=2ðdet sÞðN�p�2Þ=2

� exp � 1

2
½trðI � 2uÞðsþ N �xx�xx0Þ � 2Na0 �xxþ Na0ðI � 2uÞ�1a�

� �

� d�xx ds ¼ 0;

or

c

ð
gð�xx; sþ N �xx�xx0 � N �xx�xx0Þðdet sÞðN�p�2Þ=2

� exp � 1

2
½trðsþ N �xx�xx0Þ þ tr uðsþ N �xx�xx0Þ þ Na0 �xx�

� �

� d�xx ds ¼ 0

ð5:9Þ

identically in u and a. We now identify (5.9) as the Laplace transform of

cgð�xx; sþ N �xx�xx0 � N �xx�xx0Þðdet sÞðN�p�2Þ=2 exp � 1

2
trðsþ N �xx�xx0Þ

� �

with respect to variables N �xx; sþ N �xx�xx0. Since this is identically equal to zero for

all a and u we conclude that gð�xx; sÞ ¼ 0 except possibly for a set of values of

( �XX; S) with probability measure 0. In other words, ( �XX; S) is a complete sufficient

statistic for (m;S).

5.2.5. Efficiency

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N be a random sample of size N from a

distribution with probability density function fXðxjuÞ; u [ V. Assume that u ¼
ðu1; . . . ; ukÞ0 and V is Ek (Euclidean k-space) or an interval in Ek.

Consider the problem of estimating parametric functions

gðuÞ ¼ ðg1ðuÞ; . . . ; grðuÞÞ0:
We shall denote an estimator

TðX1; . . . ;XNÞ ¼ ðT1ðX1; . . . ;XNÞ; . . . ; TrðX1; . . . ;XNÞÞ0

simply by T ¼ ðT1; . . . ; TrÞ0.
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An unbiased estimator T of gðuÞ is said to be an efficient estimator of gðuÞ if for
any other unbiased estimator U of gðuÞ

covðTÞ � covðUÞ for all u [ V ð5:10Þ
in the sense that covðUÞ � covðTÞ is nonnegative definite for all u [ V.

The efficient unbiased estimator of gðuÞ can be obtained by the following two

methods.

Generalized Rao-Cramer Inequality for a Vector Parameter

Let

LðuÞ ¼ Lðx1; . . . ; xN juÞ ¼
YN
a¼1

fXa ðxajuÞ

Pij ¼ � @2 log LðuÞ
@ui@uj

; Iij ¼ EðPijÞ:

The k � k matrix

I ¼ ðIijÞ ð5:11Þ
is called the Fisher information measure on u or simply the information matrix

(provided the Pij exist).

For any unbiased estimator T�� of gðuÞ let us assume that

@

@uj

ð
T��
i Lðx1; . . . ; xN juÞdx1; . . . ; dxN ¼

ð
T��
i

@LðuÞ
@uj

dx1; . . . ; dxN

¼ @giðuÞ
@uj

; i ¼ 1; . . . ; r; j ¼ 1; . . . ; k;

and let

D ¼ @giðuÞ
@uj

� �
ð5:12Þ

be a matrix of dimension r � k. Then it can be verified that (see, e.g., Rao (1965))

covðT��Þ � DI�1D0 ð5:13Þ
is nonnegative definite. Since DI�1D0 is defined independently of any estimation

procedure it follows that for any unbiased estimator T�� of gðuÞ

varðT��
i Þ �

Xk
m¼1

Xk
n¼1

Imn
@gi
@um

@gi
@un

; i ¼ 1; . . . ; r; ð5:14Þ
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where I�1 ¼ ðImnÞ. Hence the efficient unbiased estimator of gðuÞ is an estimator

T (if it exists) such that

covðTÞ ¼ DI�1D0: ð5:15Þ
If gðuÞ ¼ u, then D is the identity matrix and the covariance of the efficient

unbiased estimator is I�1. From (5.13) it follows that if for any unbiased estimator

T ¼ ðT1; . . . ; TrÞ0 of gðuÞ

varðTiÞ ¼
Xk
m¼1

Xk
n¼1

Imn
@gi
@um

@gi
@un

; i ¼ 1; . . . ; r; ð5:16Þ

then

covðTi; TjÞ ¼
Xk
m¼1

Xk
n¼1

Imn
@gi
@um

@gj
@un

for all i = j: ð5:17Þ

Thus (5.16) implies that

covðTÞ ¼ DI�1D0: ð5:18Þ
Thus any unbiased estimator of gðuÞ is efficient if (5.16) holds. Now we would

like to establish that (5.16) holds well if

Ti ¼ giðuÞ þ
Xk
j¼1

jij
1

LðuÞ
@LðuÞ
@uj

; i ¼ 1; . . . ; r; ð5:19Þ

where ji ¼ ðji1; . . . ; jikÞ0 ¼ const� I�1bi with

bi ¼
@giðuÞ
@u1

; . . . ;
@giðuÞ
@uk

� �0
:

To do that let

U ¼ Ti � giðuÞ;W ¼
Xk
j¼1

jij
1

LðuÞ
@LðuÞ
@uj

where ji ¼ ðji1; . . . ; jikÞ0 is a constant nonnull vector which is independent of

xa;a ¼ 1; . . . ;N, but possibly dependent on u. Since
ð

@

@ui
Lðx1; . . . ; xN juÞdx1; . . . ; dxN ¼ @

@ui

ð
Lðx1; . . . ; xN juÞdx1; . . . ; dxN

¼ 0 for all i;
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we get EðWÞ ¼ 0. Also EðUÞ ¼ 0. The variances and covariance of U;W are

given by

varðUÞ ¼ varðTiÞ;

varðWÞ ¼ var
Xk
j¼1

jij
1

LðuÞ
@LðuÞ
@uj

 !

¼
Xk
j¼1

Xk
j0¼1

jijjij0 cov
1

LðuÞ
@LðuÞ
@uj

;
1

LðuÞ
@LðuÞ
@uj0

� �

¼
Xk
j¼1

Xk
j0¼1

jijjij0 Ijj0 ¼ j0iIji;

covðU;WÞ ¼
Xk
j¼1

jijE ðTi � giðuÞÞ 1

LðuÞ
@LðuÞ
@uj

� �

¼
Xk
j¼1

jijE Ti
1

LðuÞ
@LðuÞ
@uj

� �

¼
Xk
j¼1

jij
@giðuÞ
@uj

¼ j0ibi

where bi ¼ ð@giðuÞ=@u1; . . . ; @giðuÞ=@ukÞ0. Now applying the Cauchy-Schwarz

inequality, we obtain

ðj0ibiÞ2 � varðTiÞðj0iIjiÞ;
which implies that

varðTiÞ � ðj0ibiÞ2
j0iIji

:

Since ji is arbitrary (nonnull), this implies

varðTiÞ � sup
ji=0

ðj0ibiÞ2
j0iIji

¼ b0
iI
�1bi ð5:20Þ

and the supremum is attained when

ji ¼ cI�1bi ¼ j0i ;

where c is constant and j0i is an arbitrary designation.
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The equality in (5.20) holds if and only if

U ¼ const�W ¼ const�
Xk
j¼1

j0ij
1

LðuÞ
@LðuÞ
@uj

with probability 1, i.e.,

Ti ¼ giðuÞ þ
Xk
j¼1

jij
1

LðuÞ
@LðuÞ
@uj

with probability 1 where ji ¼ const� I�1bi.

To prove that the sample mean �XX is efficient for m we first observe that �XX is

unbiased for m. Let

S
�1 ¼ ðsijÞ; u ¼ ðm1; . . . ;mp;s

11; . . . ;sppÞ0

where u is a vector of dimension pðpþ 3Þ=2. Let

gðuÞ ¼ ðg1ðuÞ; . . . ; gpðuÞÞ0 ¼ ðm1; . . . ;mpÞ0:

Take Ti ¼ �XXi; giðuÞ ¼ mi. The likelihood of x1; . . . ; xN is

Lðx1; . . . ; xN juÞ ¼ LðuÞ

¼ ð2pÞ�Np=2ðdetS�1ÞN=2

� exp � 1

2
trðS�1

sþ NS
�1ð�xx� mÞð�xx� mÞ0Þ

� �
:

Hence

@ log L

@mi

¼ Nsiið�xxi � miÞ þ N
X
jð=iÞ

sijð�xxj � mjÞ;

@giðuÞ
@mj

¼ 1 if j ¼ i;

0 if j = i;

�

@giðuÞ
@si0j0 ¼ 0 for all i0; j0; i:

Hence

bi ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ0; i ¼ 1; . . . ; p;
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which is a unit vector with unity as its ith coordinate. Since

@2 log LðuÞ
@m2

i

¼ �Nsii;
@2 log LðuÞ
@mi@mj

¼ �Nsij;

we get, for i = j; ‘0; ‘ ¼ 1; . . . ; p,

E � @2 log LðuÞ
@m2

i

� �
¼ �Nsii;E � @2 log LðuÞ

@mi@mj

 !
¼ Nsij;

E � @2 log LðuÞ
@mi@s

ll0

� �
¼ 0:

Thus, the information matrix I is given by

I ¼ NS
�1

0

0 A

� �

where A is a nonsingular matrix of dimension 1
2
pðpþ 3Þ � 1

2
pðpþ 3Þ. (It is not

necessary, in this context, to evaluate A specifically.) So

I�1bi ¼ ð1=NÞðs1i; . . . ;spi; 0; . . . ; 0Þ0:
Choosing jðiÞ ¼ I�1bi, we obtain

Xk
j¼1

jij
1

LðuÞ
@LðuÞ
@uj

¼ ð�xxi � miÞðs1is1i þ � � � þ spispiÞ

þ
X
jð=iÞ

ð�xxj � mjÞðs1js1i þ � � � þ spjspiÞ ¼ �xxi � mi

since S
�1
S is the identity matrix. Hence we conclude that �XX is efficient

for m.

Second Method

Let T� ¼ ðT1�; . . . ; Tk�Þ0 be a sufficient (minimal) estimator of u and let the

distribution of T� be complete. Given any unbiased estimator T�� ¼
ðT��

1 ; . . . ; T��
r Þ0 of gðuÞ, the estimator

T ¼ EðT��jT�Þ ¼ ðEðT��
1 jT�Þ; . . . ;EðT��

r jT�ÞÞ0

is at least as good as T�� for gðuÞ, in the sense that covðT��Þ � covðTÞ is

nonnegative definite for all u [ V.

This follows from the fact that for any nonnull vector L; L0T�� is an unbiased

estimator of the parametric function L0gðuÞ and by the Rao-Blackwell theorem
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(see Giri, 1993), the estimator

L0T ¼ EðL0T��jT�Þ
is at least as good as L0T�� for all u. Since this holds well for all L = 0 it follows

that covðT��Þ � covðTÞ is nonnegative definite for all u. Thus given any unbiased
estimator T�� of gðuÞ which is not a function of T�, the estimator T is better than

T��. Hence in our search for efficient unbiased estimators we can restrict attention

to unbiased estimators which are functions of T� alone. Furthermore, if f ðT�Þ and
gðT�Þ are two unbiased estimators of gðuÞ, then

Euð f ðT�Þ � gðT�ÞÞ ; 0 ð5:21Þ
for all u [ V. Since the distribution of T� is complete (5.21) will imply f ðT�Þ �
gðT�Þ ¼ 0 almost everywhere. Thus we conclude that there exists a unique

unbiased efficient estimator of gðuÞ and this is obtained by exhibiting a function

of T� which is unbiased for gðuÞ.
We established earlier that ( �XX; S) is a complete sufficient statistic of (m;S) of

the p-variate normal distribution. Since Eð �XXÞ ¼ m and EðS=ðN � 1ÞÞ ¼ S, it

follows that �XX and S=ðN � 1Þ are unbiased efficient estimators of m and S,
respectively.

5.3. BAYES, MINIMAX, AND ADMISSIBLE CHARACTERS

Let X be the sample space and let A be the s-algebra of subsets of X , and let

Pu; u [ V, be the probability on (X ;A), whereV is an interval in EP. LetD be the

set of all possible estimators of u. A function

Lðu; dÞ; u [ V; d [ D;

defined onV� D, represents the loss of erroneously estimating u by d. (It may be

remarked that d is a vector quantity.) Let

Rðu; dÞ ¼ EuðLðu; dÞÞ ¼
ð
Lðu; dðxÞÞfXðxjuÞdx ð5:22Þ

where fXðxjuÞ denotes the probability density function of X with values x [ X ,

corresponding to Pu with respect to the Lebesgue measure dx. Rðu; dÞ is called the
risk function of the estimator d [ D for the parameter u [ V. Let hðuÞ; u [ V,

denote the prior probability density on V. The posterior probability density

function of u given that X ¼ x is given by

hðujxÞ ¼ fXðxjuÞhðuÞÐ
fXðxjuÞhðuÞdu ð5:23Þ
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The prior risk [Bayes risk of d with respect to the prior hðuÞ] is given by

Rðh; dÞ ¼
ð
Rðu; dÞhðuÞdðuÞ: ð5:24Þ

If Rðu; dÞ is bounded, we can interchange the order of integration in Rðh; dÞ and
obtain

Rðh; dÞ ¼
ð ð

Lðu; dðxÞÞ fXðxjuÞdx
� �

hðuÞdu

¼
ð

~ff ðxÞ
ð
Lðu; dðxÞÞhðujxÞdu

� �
dx

ð5:25Þ

where

~ff ðxÞ ¼
ð
fXðxjuÞhðuÞdu: ð5:26Þ

The quantity

ð
Lðu; dðxÞÞhðujxÞdu ð5:27Þ

is called the posterior risk of d given X ¼ x (the posterior conditional expected

loss).

Definition 5.3.1. Bayes estimator. A Bayes estimator of u with respect to the

prior density hðuÞ is the estimator d0 [ D which takes the value d0ðxÞ for X ¼ x

and minimizes the posterior risk given X ¼ x. In other words, for every x [ X ;
d0ðxÞ is defined as

ð
Lðu; doðxÞÞhðujxÞdu ¼ inf

d[D

ð
Lðu; dÞhðujxÞdu ð5:28Þ

Note:

i. It is easy to check that the Bayes estimator d0 also minimizes the prior risk.

ii. The Bayes estimator is not necessarily unique. However, if Lðu; dÞ is strictly
convex in d for given u, then d0 is essentially unique.

For a thorough discussion of this the reader is referred to Berger (1980) or

Ferguson (1967). Raiffa and Schlaifer (1961) have discussed in considerable

detail the problem of choosing prior distributions for various models.

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a sample of size N from a p-

dimensional normal distribution with mean m and positive definite covariance
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matrix S. Let

X ¼ ðX1; . . . ;XNÞ; x ¼ ðx1; . . . ; xNÞ:
Then

fXðxÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2

� exp � 1

2
trðS�1

sþ NS
�1ð�xx� mÞð�xx� mÞ0Þ

� � ð5:29Þ

Let

Lðu; dÞ ¼ ðm� dÞ0ðm� dÞ: ð5:30Þ
The posterior risk

Eððm� dÞ0ðm� dÞjX ¼ xÞ ¼ Eðm0mjX ¼ xÞ ¼ 2d0EðmjX ¼ xÞ þ d0d

is minimum when

dðxÞ ¼ EðmjX ¼ xÞ:
In other words, the Bayes estimator is the mean of the marginal posterior density

function of m. Since

@2Eððm� dÞ0ðm� dÞjX ¼ xÞ
@d0@d

¼ 2I;

EðmjX ¼ xÞ actually corresponds to the minimum value.

Let us take the prior as

hðuÞ ¼ hðm;SÞ ¼ KðdetSÞ�ðnþ1Þ=2

� exp � 1

2
½ðm� aÞ0S�1ðm� aÞbþ tr S

�1
H�

� � ð5:31Þ

where b . 0; n . 2p;H is a positive definite matrix, and K is the normalizing

constant. From (5.29) and (5.31) we get

hðujX ¼ xÞ ¼ K 0ðdetSÞ�ðNþnþ1Þ=2 exp
�
� 1

2
tr S

�1
sþ H þ ðN þ bÞ½

� m� N �xxþ ab

N þ b

� �
m� N �xxþ ab

N þ b

� �0
ð5:32Þ

þ Nb

N þ b
ð�xx� aÞð�xx� aÞ0

��
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where K 0 is a constant. Using (5.2), we get from (5.32)

hðmjX ¼ xÞ ¼ C

�
det sþ H þ Nb

N þ b

� ��
sþ H þ Nb

N þ b
ð�xx� aÞð�xx� aÞ0

þ ðN þ bÞ m� N �xxþ ab

N þ b

� �
m� N �xxþ ab

N þ b

� �0���ðNþn�pÞ=2

¼ C

det sþ H þ Nb

N þ b
ð�xx� aÞð�xx� aÞ0

� �� ��ðNþn�pÞ=2

1þ ðN þ bÞ m� N �xxþ ab

N þ b

� �0
�

�

�
sþ H þ Nb

N þ b
ð�xx� aÞð�xx� aÞ0

��1�
m� N �xxþ ab

N þ b

�#ðN�n�pÞ=2

ð5:33Þ

where C is a constant.

From Exercise 4.15 it is easy to calculate that

EðmjX ¼ xÞ ¼ ðN �xxþ abÞ=ðN þ bÞ;

which is the Bayes estimate of m for the prior (5.31).

For estimating S by an estimator d let us consider the loss function

Lðu; dÞ ¼ trðS� dÞðS� dÞ: ð5:34Þ

The posterior risk with respect to this loss function is given by

Eðtr SSjX ¼ xÞ � 2Eðtr dSjX ¼ xÞ þ tr dd ð5:35Þ

The posterior risk is minimized (see Exercise 1.14) when

d ¼ EðSjX ¼ xÞ ð5:36Þ

From (5.32), integrating out m, the marginal posterior probability density

function of S is given by

hðSjX ¼ xÞ ¼ KðdetS�1ÞðNþnÞ=2

� exp � 1

2
tr S

�1
sþ H þ Nb

N þ b
ð�xx� aÞð�xx� aÞ0

� �� � ð5:37Þ
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where K is the normalizing constant independent of S. Identifying the marginal

distribution of S as an inverted Wishart distribution,

W�1 sþ H þ Nb

N þ b
ð�xx� aÞð�xx� aÞ0; p;N þ n

� �

we get from Exercise 5.8

EðSjX ¼ xÞ

¼ sþ H þ ½Nb=ðN þ bÞ�ð�xx� aÞð�xx� aÞ0
N þ n� 2p� 2

;N þ n� 2p . 2
ð5:38Þ

as the Bayes estimate of S for the prior (5.31).

Note. If we work with the diffuse prior hðuÞ/ ðdetSÞð�pþ1Þ=2 which is obtained
from (5.31) by putting b ¼ 0;H ¼ 0; n ¼ p, and which ceases to be a probability

density onV, we get �xx and s=ðN � p� 2Þ; ðN . pþ 2Þ, as the Bayes estimates of

m and S, respectively. Such estimates are called generalized Bayes estimates.

Thus for the multivariate normal distribution, the maximum likelihood estimates

of m and S are not exactly Bayes estimates.

Definition 5.3.2. Extended Bayes estimator. An estimator d0 [ D is an

extended Bayes estimator for u [ V if it is e-Bayes for every e . 0; i.e., given

any e . 0, there exists a prior heðuÞ on V such that

EheðuÞðRðu; d0ÞÞ � inf
d[D

EheðuÞðRðu; dÞÞ þ [ : ð5:39Þ

Definition 5.3.3. Minimax estimator. An estimator d� [ D is minimax for

estimating u [ V if

sup
u[V

Rðu; d�Þ ¼ inf
d[D

sup
u[V

Rðu; dÞ: ð5:40Þ

In other words, the minimax estimator protects against the largest possible risk

when u varies over V.

To show that �XX is minimax for the mean m of the normal distribution (with

known covariance matrix S) with respect to the loss function

Lðm; dÞ ¼ ðm� dÞ0S�1ðm� dÞ; ð5:41Þ

we need the following theorem.
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Theorem 5.3.1. An extended Bayes estimator with constant risk is minimax.

Proof. Let d0 [ D be such that Rðu; d0Þ ¼ C, a constant for all u [ V, and let

d0 also be an extended Bayes estimator; i.e., given any[ . 0, there exists a prior

density heðuÞ on V such that

Ehe ðuÞRðu; d0Þ � inf
d[D

Ehe ðuÞfRðu; dÞg þ [ : ð5:42Þ

Suppose d0 is not minimax; then there exists an estimator d� [ D such that

sup
u[V

Rðu; d�Þ , sup
u[V

Rðu; d0Þ ¼ C: ð5:43Þ

This implies that

sup
u[V

Rðu; d�Þ � C � [0 for some [0 . 0; ð5:44Þ

or

Rðu; d�Þ � C � [0 for all u [ V;

which implies

EfRðu; d�Þg � C � [0;

where the expectation is taken with respect to any prior distribution overV. From

(5.42) and (5.44) we get for every [ . 0 and the corresponding prior density

heðuÞ over V

C � [ � inf
d[D

Eh[ðuÞðRðu; dÞÞ � Eh[ðuÞðRðu; d�ÞÞ � C � [0;

which is a contradiction for 0 , [ , [0. Hence d0 is minimax. Q.E.D.

We first show that �XX is the rninimax estimator for m when S is known. Let

Xa ¼ ðXa1; . . . ;XapÞ;a ¼ 1; . . . ;N, be independently distributed normal vectors

with mean m and with a known positive definite covariance matrix S. Let

X ¼ ðX1; . . . ;XNÞ; �XX ¼ 1

N

XN
a¼1

Xa; S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0:

Assume that the prior density hðmÞ of m is a p-variate normal with mean 0 and

covariance matrix s2S with s2 . 0. The joint probability density function of X
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and m is given by

hðm; xÞ ¼ ð2pÞ�ðNþ1Þp=2ðdetSÞ�ðNþ1Þ=2ðs2Þ�p=2

� exp � 1

2
tr S

�1
s� 1

2
Nð�xx� mÞ0S�1ð�xx� mÞ � 1

2s2
m0S�1m

� �

¼ ð2pÞ�ðNþ1Þp=2ðdetSÞ�ðNþ1Þ=2ðs2Þ�p=2

� exp � 1

2
trS

�1
s

� �
exp � 1

2

N

Ns2 þ 1

� �
�xx0S�1 �xx

� �

� exp

�
� 1

2
N þ 1

s2

� �
m� N �xx

N þ 1=s2

� �0

� S
�1 m� N �xx

N þ 1=s2

� ��
:

ð5:45Þ

From above the marginal probability density function of X is

ð2pÞ�Np=2ðdetSÞ�N=2ð1þ Ns2Þ�p=2

expf�ðN=2Þ�xx0S�1 �xxðNs2 þ 1Þ�1g:
ð5:46Þ

From (5.45) and (5.46) the posterior probability density function of m, given
X ¼ x, is a p-variate normal with mean NðN þ 1=s2Þ�1 �xx and covariance matrix

ðN þ 1=s2Þ�1S. The Bayes risk of NðN þ 1=s2Þ�1 �XX with respect to the loss

function given in (5.41) is

Efðm� NðN þ 1=s2Þ�1 �xxÞ0S�1ðm� NðN þ 1=s2Þ�1 �xxÞjX ¼ xg

¼ Eftr S�1ðm� NðN þ 1=s2Þ�1 �xxÞðm� NðN þ 1=s2Þ�1 �xxÞ0jX ¼ xg ð5:47Þ

¼ pðN þ 1=s2Þ�1:

Thus, although �XX is not a Bayes estimator of m with respect to the prior density

hðmÞ, it is almost Bayes in the sense that the Bayes estimators NðN þ 1=s2Þ�1 �XX
which are Bayes with respect to the prior density hðmÞ [with the loss function as

given in (5.41)], tend to �XX as s2 ! 1. Furthermore, since NðN þ 1=s2Þ �XX is

Bayes with respect to the prior density hðmÞ, we obtain

inf
d[D

EhðmÞðRðm; dÞÞ ¼ EhðmÞðRðm;NðN þ 1=s2Þ�1 �XXÞ ¼ pðN þ 1=s2Þ�1:
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To show that �XX is extended Bayes we first compute

EhðmÞðRðm; �XXÞÞ ¼ p=N:

Hence

EhðmÞRðm; �XXÞ ¼ inf
d[D

EhðmÞðRðm; dÞÞþ [ :

where [ ¼ p=NðNs2 þ 1Þ . 0. Thus �XX is [-Bayes for every [ . 0.

Also, �XX has constant risk and hence, by Theorem 5.3.1, �XX is minimax for

estimating m when S is known.

We now show that �XX is minimax for estimating m with loss function (5.41)

when S is unknown. Let S
�1 ¼ R. Suppose that the joint prior density PðuÞ of

ðm;RÞ is given by (5.31), which implies that the conditional prior of m given R is

Npða;S�1
bÞ and the marginal prior of R is a Wishart Wpða;HÞ, with a degrees

of freedom and parameter H with n ¼ 2a� p . p. From this it follows that

the posterior joint density PðujX ¼ xÞ of ðm;RÞ is the product of the conditional
posterior density PðmjR ¼ r;X ¼ xÞ given R ¼ r;X ¼ x and the marginal

posterior density PðrjX ¼ xÞ of R given X ¼ x where

PðmjR ¼ r;X ¼ xÞ is Np

N �xxþ ab

N þ b
; ðbþ nÞ�1S

� �
;

PðrjX ¼ xÞ is Wpðaþ n;S�Þ;
ð5:48Þ

with S
� ¼ H þ sþ Nb

N þ b
ð�xx� aÞð�xx� aÞ0. Thus the Bayes estimator of m is given

by

N �xxþ ab

N þ b
:

For the loss (5.41) its risk is pðN þ bÞ�1. Hence, taking the expectation with

respect to PðuÞ, we obtain

EðRðu; �XXÞÞ � inf
d[D

Rðm; dÞ ¼ p

N
� p

bþ N
¼ bp

Nðbþ NÞ ¼ [ . 0:

Thus �XX is [-Bayes for every[ . 0. Since �XX has constant risk p=N we conclude

that �XX is minimax when S is unknown.
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5.3.1. Admissibility of Estimators

An estimator d1 [ D is said to be as good as d2 [ D for estimating u if

Rðu; d1Þ � Rðu; d2Þ
for all u [ V.

An estimator d1 [ D is said to be better than or strictly dominates d2 [ D if

Rðu; d1Þ � Rðu; d2Þ
for all u [ V with strict inequality for at least one u [ V.

Definition 5.3.4. Admissible estimator. An estimator d� [ D, which is not

dominated by any other estimator in D, is called admissible.

For further studies on Bayes, minimax and admissible estimators the reader is

referred to Brandwein and Strawderman (1990), Berger (1980), Stein (1981) and

Ferguson (1967) among others.

Admissible Estimation of Mean

It is well known that if the dimension p of the normal random vector is unity,

the sample mean �XX is minimax and admissible for the population mean with the

squared error loss function (see for example Giri (1993)). As we have seen earlier

for general p the sample mean �XX is minimax for the population mean with the

quadratic error loss function. However, Stein (1956) has shown that the square

error loss function and S ¼ I (identity matrix), �XX is admissible for p ¼ 2 and it

becomes inadmissible for p � 3. He showed that estimators of the form

1� a

bþ k �XXk2
� �

�XX ð5:49Þ

dominates �XX for a sufficiently small a and b sufficiently large for p � 3. James

and Stein (1961) improved this result and showed that even with one observation

on the random vector X having p-variate normal distribution with mean m and

covariance matrix S ¼ I the class of estimators

1� a

kXk2
� �

X; 0 , a , 2ðp� 2Þ;

dominates X for p � 3. Their results led many researchers to work in this area

which produced an enormous amount of rich literature of considerable

importance in statistical theory and practice. Actually this estimator is a special
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case of the more general estimator

1� a

X0S�1
X

� �
X ð5:50Þ

where X has normal distribution with mean m and known positive definite

covariance matrix S. We now add Stein’s proof of inadmissibility of one

observation for the mean vector m from the p-dimensional normal distribution

(p � 3) with mean m and known covariance matrix I under the squared-error loss

function. His method of proof depends on the Poisson approximation of the

noncentral chi-square. In 1976 Stein (published 1981) gave a new method based

on the “unbiased estimation of risk” which simplifies the computations

considerably. This method depends on Lemma 5.3.2 to be proved later in this

section.

Let

d1 ¼ X; d2 ¼ 1� p� 2

X0X

� �
X:

Now using (5.41)

Rðm; d1Þ � Rðm; d2Þ

¼ Em 2� p� 2

X0X

� �
ð p� 2Þ � 2

ð p� 2ÞX0m
X0X

� �
:

ð5:51Þ

To achieve our goal we need the following lemma.

Lemma 5.3.1. Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m and

covariance matrix I. Then

ðaÞ E
m0X
X0X

� �
¼ Ed2

2l

p� 2þ 2l

� �
; ð5:52Þ

ðbÞ E
p� 2

X0X

� �
¼ Ed2

p� 2

p� 2þ 2l

� �
ð5:53Þ

where d2 ¼ m0m and l is a Poisson random variable with parameter 1
2
d2.

Proof.

(a) Let Y ¼ OX where O is an orthogonal p� p matrix such that Y1 ¼ m0X=d. It
follows that

E
m0X
X0X

� �
¼ dE

Y1

Y 0Y

� �
ð5:54Þ
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where Y ¼ ðY1; . . . ; YpÞ0 and Y1; . . . ; Yp are independently distributed normal

random variables with unit variance and EðY1Þ ¼ d;EðYiÞ ¼ 0; i . 1. The

conditional probability density function of Y1, given Y 0Y ¼ v, is given by

fY1jY 0Y ðy1jvÞ ¼
K expfdy1gfv� y21Þðp�3Þ=2

P1
j¼0

ðd2=2Þjvðpþ2j�2Þ=2

2ðpþ2jÞ=2Gððpþ 2jÞ=2Þ
; if y22 , v;

0; otherwise

8>>><
>>>:

ð5:55Þ

where K is the normalizing constant independent of m. From (5.55) we get

ð
y2
1
�v

K expfdy1gðv� y21Þðp�3Þ=2dy1 ¼
X1
j¼0

ðd2=2Þjvðpþ2jÞ=2�1

2ðpþ2jÞ=2Gððpþ 2jÞ=2Þj! ð5:56Þ

identically in m [ V. Differentiating (5.56) with respect to d

EðY1jY 0Y ¼ vÞ ¼ d

ðd2=2Þjvðpþ2jÞ=2
P1

j¼0 j!2ðpþ2þ2jÞ=2Gðð pþ 2þ 2jÞ=2Þ
P1

j¼0

ðd2=2Þjvð pþ2jÞ=2�1

j!2ðpþ2jÞ=2Gððpþ 2jÞ=2Þ

ð5:57Þ

The probability density function of Y 0Y is given by

fY 0Y ðvÞ ¼ exp � 1

2
d2

� �X1
j¼0

ðd2=2Þj
j!

e�v=2vðpþ2jÞ=2�1

2ðpþ2jÞ=2Gððpþ 2jÞ=2Þ ð5:58Þ

which is gamma Gð1
2
; p=2þ lÞ where l is a Poisson random variable with

parameter 1
2
d2. From (5.57–5.58) we obtain

E
Y1

Y 0Y

� �
¼ E fEðY1jY 0Y ¼ vÞg 1

v

� �

¼ d exp � 1

2
d2

� �X1
j¼0

ðd2=2Þj
j!

�
ð1
0

e�v=2vðpþ2jÞ=2�1dv

2ðpþ2þ2jÞ=2Gððpþ 2þ 2jÞ=2Þ
� �

¼ d exp � 1

2
d2

� �X1
j¼0

ðd2=2Þj
j!Gððpþ 2jÞ=2Þ

ð5:59Þ
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Hence

E
m0X
X0X

� �
¼ dE

Y1

Y 0Y

� �

¼ exp � 1

2

� �
d2Þ

X1
j¼0

ðd2=2Þj
j!

2j

p� 2þ 2j

¼ E
2l

p� 2þ 2l

� �
:

(b) Since X0X is distributed as gamma Gð1
2
; 1
2
þ lÞ, where l is Poisson random

variable with mean 1
2
d2, we can easily show as in (a) that

E
p� 2

X0X

� �
¼ E

p� 2

p� 2þ 2l

� �
:

Q.E.D.

From (5.51) and Lemma 5.3.1 we get

Rðm; d1Þ � Rðm; d2Þ ¼ ðp� 2Þ2E 1

p� 2þ 2l

� �
. 0

if p � 3. In other words, X is inadmissible for m for p � 3.

Note

a. Let X ¼ ðX1; . . . ;XpÞ0 be such that EðXÞ ¼ u and the components X1; . . . ;Xp

are independent with variance s2, the James-Stein estimator is

1� ð p� 2Þs2

X0X

� �
X: ð5:60Þ

b. If we choose m0 instead of 0 to be origin, the James-Stein estimator is

m0 þ 1� ð p� 2Þs2

ðX � m0Þ0ÞðX � m0Þ
� �

ðX � m0Þ: ð5:61Þ

The next theorem gives a more general result, due to James and Stein (1961).
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Theorem 5.3.2. Let X be distributed as Npðm; IÞ and Lðm; dÞ ¼
ðm� dÞ0ðm� dÞ. Then

daðXÞ ¼ 1� a

X0X

 �
X ð5:62Þ

dominates X for 0 , a , 2ðp� 1Þ; p � 3 and dp�2ðXÞ is the uniformly best

estimator of m in the class of estimators daðXÞ; 0 , a , 2ðp� 1Þ.

Proof. Using Lemma 5.3.1

Rðm; daðXÞÞ ¼ E ðX � mÞ0ðX � mÞ � 2aX0ðX � mÞ
X0X

þ a2
1

X0X

� �

¼ pþ a2E
1

p� 2þ 2l

� �
þ 2a E

2l

p� 2þ 2l

� �
� 1

� �

¼ pþ ½a2 � 2aðp� 2Þ�E 1

p� 2þ 2l

� �
:

Since a2 � 2aðp� 2Þ , 0 for 0 , a , 2ðp� 2Þ and a2 � 2aðp� 2Þ is minimum

at a ¼ p� 2 we get the results. Q.E.D.

Note

(a)

Rð0; dp�2ðXÞÞ ¼ pþ ðp� 2Þ2E 1

X0X

� �
� 2ðp� 2Þ

¼ pþ ðp� 2Þ � 2ðp� 2Þ ¼ 2:

(b) Since the James-Stein estimator has smaller risk than that of X and X is

minimax, the James-Stein estimator is minimax.

5.3.2. Interpretation of James-Stein Estimator

The following geometric interpretation of the above estimators is due to Stein

(1962). Let X ¼ ðX1; . . . ;XpÞ0 be such that EðXÞ ¼ m and the components

X1; . . . ;Xp are independent with the same variance s2. Since

EðX � mÞ0m ¼ 0
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X � m;m are expected to be orthogonal especially when m0m is large. Because

EðX0XÞ ¼ Eðtr X0XÞ ¼ EðtrðX � mÞðX � mÞ0 þ m0m
¼ pþ m0m;

it appears that, as an estimator of m;X might be too long. A better estimator of m
may be given by the projection of m on X. Let the projection of m on X be

ð1� aÞX.
Since the projection of m on X depends on m, in order to approximate it we

may assume

X0X ¼ ps2 þ m0m

and X � m is orthogonal to m.
Thus we obtain (âa being an estimate of a)

Y 0Y ¼ ðX � mÞ0ðX � mÞ � âa2X0X ¼ ps2 � âa2X0X;

Y 0Y ¼ m0m� ð1� âaÞ2X0X:

Hence

ps2 � âa2X0X ¼ X0X � ps2 � ð1� âaÞ2X0X:

Or

ð1� 2âaÞX0X ¼ X0X � 2ps2

which implies that âa ¼ ps2ðX0XÞ�1. Thus the appropriate estimate of m is

ð1� âaÞX ¼ 1� ps2

X0X

� �
X:

A second interpretation of James-Stein estimator is a Bayes estimator given in

(5.45–5.46) where X is distributed as Npðm; IÞ and the prior density of m is

Npð0; bIÞ with b unknown. The Bayes estimator of m in this setup is

b

bþ 1
X ¼ 1� 1

1þ b

� �
X

To estimate b we proceed as follows. Since X � m given m is Npð0; ð1þ bÞIÞ,
which implies that ð1þ bÞ�1X0X is distributed as x2p. Hence Eðð1þ bÞ=X0XÞ ¼
1=p� 2, provided p . 2. Thus a reasonable estimate of ð1þ bÞ�1 is

ð p� 2Þ=X0X. So the Bayes estimator of m is

1� p� 2

X0X

� �
X
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which is the James-Stein estimator of m. If covðXÞ ¼ s2I, the Bayes estimator of

m is ð1� ðð p� 2Þs2=X0XÞX.

5.3.3. Positive Part of James-Stein Estimator

The James-Stein Estimator has the disadvantage that for smaller values of ðX0XÞ,
the multiplicative factor of the James-Stein Estimator can be negative. In other

words this estimator can be in the direction from the origin opposite to that of X.

To remedy this situation a “shrinkage estimator” in terms of the positive part of

the James-Stein estimator has been introduced and it is given by

dþ2 ¼ 1� p� 2

X0X

� �þ
X ð5:63Þ

where, by definition, for any function

gðtÞ ¼ 1� p� 2

t

� �
;

gþðtÞ ¼ gðtÞ; if gðtÞ . 0;

0; otherwise:

� ð5:64Þ

The theorem below will establish that the positive part of the James-Stein

estimator has smaller risk than the James-Stein estimator. This implies that the

James-Stein estimator is not admissible. It is known that the positive part of the

James-Stein estimator is also not admissible. However one can obtain smoother

shrinkage estimator than the positive part of James-Stein estimator. We will deal

with it in Theorem 5.3.3.

Theorem 5.3.3. The estimator dþ2 has smaller risk than d2 and is minimax.

Proof. Let

hðX0XÞ ¼ 1� p� 2

X0X

� �
;

hþðX0XÞ ¼ hðX0XÞ; if hðX0XÞ . 0;

0; otherwise

� �
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Then

Rðm; d2Þ � Rðm; dþ2 ÞÞ
¼ EðhðX0XÞX � mÞ0ðhðX0XÞX � mÞ
� EðhþðX0XÞX � mÞ0ðhþðX0XÞÞX � mÞ

¼ E½ðhðX0XÞÞ2ðX0XÞ � ððhþðX0XÞÞ2X0XÞ�
� 2E½m0XhðX0XÞÞ � m0XðhþðX0XÞ�:

Using (5.54)

E½m0XðhðX0XÞÞ � m0XðhþðX0XÞÞ�

¼ d

ð2pÞp=2
ð1
�1

y1½hðy0yÞ � hþðy0yÞ�

� exp � 1

2

Xp

1

y2i � 2y1dþ d2

 !( )
dy

¼ d exp � 1

2
d2

� � ð1
�1

� � �
ð1
�1

y1½hðy0yÞ � hþðy0yÞ� expfy1dg

� 1

ð2pÞp=2 exp � 1

2

Xp

i¼1

y2i

( )
dy ¼ d exp � 1

2
d2

� � ð1
�1

� � �
ð1
�1

�
y1ððhðy0yÞÞ � hþðy0yÞÞ � ðexpðy1dÞ � expð�y1dÞÞ

� exp � 1

2

Xp

i¼1

y2i

( )�
dy � 0:

Since

EððhðX0XÞÞ2ðX0XÞ � ðhþðX0XÞ2ðX0XÞÞÞ � 0;

we conclude that

Rðm; d2Þ � Rðm; dþ2 Þ � 0:

Q.E.D.
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5.3.4. Unbiased Estimation of Risk

As stated earlier we have used the technique of the Poisson approximation of

noncentral chi-square to evaluate the risk function. Stein, during 1976, (published

in Stein (1981)) gave a new technique based on unbiased estimation of risk for the

evaluation of the risk function which simplifies the computations considerably.

His technique depends on this lemma.

Lemma 5.3.2. Let X be distributed as Nðm; 1Þ and let hðXÞ be a function of X

such that for all a , b

hðbÞ � hðaÞ ¼
ðb
a

h0ðxÞdx:

Assume that Eðjh0ðXÞjÞ , 1. Then

covðhðXÞ; ðX � mÞÞ ¼ EhðXÞðX � mÞ ¼ Eðh0ðXÞÞ:

Proof.

EðhðXÞðX � mÞÞ ¼
ð1
�1

hðxÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp

�
� 1

2
ðx� mÞ2

�
dx

¼
ð1
m

ðhðxÞ � hðmÞÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðx� mÞ2

� �
dx

þ
ðm
�1

ðhðxÞ � hðmÞÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðx� mÞ2

� �
dx

¼
ð1
m

ðx
m

h0ðyÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðx� mÞ2

� �
dy dx

�
ðm
�1

ðm
x

h0ðyÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðx� mÞ2

� �
dy dx:
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Interchanging the order of integration which is permitted by Fubini’s theorem we

can write

EðhðXÞðX � mÞÞ ¼
ð1
m

ð1
y

h0ðyÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðx� mÞ2

� �
dx dy

�
ðm
�1

ðy
�1

h0ðyÞðx� mÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðx� mÞ2

� �
dx dy

¼
ð1
�1

h0ðyÞ 1ffiffiffiffiffiffi
2p

p exp � 1

2
ðy� mÞ2

� �
dy

¼ Eðh0ðXÞÞ:

Q.E.D.

5.3.5. Smoother Shrinkage Estimator of Mean

We now turn to the problem of finding a smoother shrinkage factor than the

positive part of the James-Stein estimator. The following Lemma, due to

Baranchik (1970), allows us to obtain such smoother factors.

Lemma 5.3.3. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as ðNpðm; IÞ.

The estimator

1� rðX0XÞ
X0X

� �
X ð5:65Þ

is minimax with loss (5.30) provided that 0 � rðX0XÞ � 2ðp� 2Þ and rðX0XÞ is
monotonically increasing in ðX0XÞ.

Proof. Using Lemma 5.3.2

E ðX � mÞ0X rðX0XÞ
X0X

� �

¼ pE
rðX0XÞ
X0X

� �
� 2E

rðX0XÞ
X0X

� �
þ 2Eðr0ðX0XÞÞ

� ðp� 2ÞE rðX0XÞ
X0X

� �
;

if rðX0XÞ is monotonically increasing in ðX0XÞ.
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Now the risk of

1� rðX0XÞ
X0X

� �
X

is

E 1� rðX0XÞ
X0X

� �
X � m

� �0
1� rðX0XÞ

X0X

� �
X � m

� �

¼ EðX � mÞ0ðX � mÞ þ E
r2ðX0XÞ
X0X

� 2
ðX � mÞ0XrðX0XÞ

X0X

� �

� pþ ½2ðp� 2Þ � 2ðp� 2Þ�E rðX0XÞ
X0X

� �

¼ p ¼ Risk of ðXÞ:

Since X is minimax for m we conclude that ð1� ðrðX0XÞ=X0XÞÞX is also minimax

for m. Q.E.D.

This lemma gives smoother shrinkage factor than the positive part of James-

Stein estimator. We shall now show that such smoother shrinkage estimators can

be obtained as Bayes estimators.

Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Npðm; IÞ and let us consider a two-

stage prior density of m such that at the first stage the prior density PðmjlÞ of m
given l is Npð0; ðl=1� lÞIÞ and at the second stage the prior density of l is

pðlÞ ¼ ð1� bÞl�b

with b , 1; 0 � l � 1. With the loss (5.30) the Bayes estimator (using Exercise

4.15)

EðmjXÞ ¼ EðEðmjl;XÞjXÞ

¼ E 1� 1

1þ ½ð1� lÞl�1�

� �
XjX

� �
ð5:66Þ

¼ ð1� EðljXÞÞX;
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where

EðljXÞ

ðX0XÞ�1 pþ 2� 2b� 2

ð1
0

l
1
2
p�b exp

1

2
ð1� lÞX0X

� �
dl

� ��1
" #

¼ rðX0XÞ
X0X

where rðX0XÞ is the expression inside the brackets. Since rðX0XÞ � pþ 2� 2b

and
Ð 1
0
l

1
2
p�b expf1

2
ð1� lÞX0Xgdl is increasing in X0X, using Lemma 5.3.3, we

conclude that the Bayes estimator ð1� ðrðX0XÞ=X0XÞX is minimax if pþ 2�
2b � 2ðp� 2Þ or b � ð6� pÞ=2.

Since b , 1, this implies p � 5. Hence we get the following theorem.

Theorem 5.3.4. The Bayes estimator (5.66) is minimax for p � 5 if
1
2
ð6� pÞ � b , 1.

Strawderman (1972) showed that no Bayes minimax estimator exists for

p , 5.

5.3.6. Estimation of Mean with S Unknown

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;NðN . pÞ be a sample from a p-variate

normal population with unknown mean m and unknown covariance matrix S. Let
�XX ¼ 1=N

PN
a¼1 X

a; S ¼PN
a¼1ðXa � �XXÞðXa � �XXÞ0. We have proved that �XX is

minimax for estimating m with the loss function

Lðu; dÞ ¼ Nðm� dÞ0S�1ðm� dÞ
with u ¼ ðm;SÞ and S is unknown. James and Stein (1961) considered the

estimator

�dd ¼ 1� p� 2

NðN � pþ 2Þ �XX0
S�1 �XX

 ! ffiffiffiffi
N

p
�XX ð5:67Þ

for estimating
ffiffiffiffi
N

p
m. Using the fact that N �XX

0
S�1 �XX is distributed as the ratio

x2pðNm0S�1mÞ=x2N�p of two independent chi-squares (see Section 6.8) and with

arguments similar to that above we can derive

Rðu; �ddÞ ¼ p� N � p

N � pþ 2

� �
ðp� 2Þ2E 1

p� 2þ 2K

� �
ð5:68Þ
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where K is a Poisson random variable with parameter

N

2
m0S�1m and u ¼ ð

ffiffiffiffi
N

p
;m;SÞ:

Hence

Rðu;
ffiffiffiffi
N

p
�XXÞ � Rðu; �ddÞ

¼ ð p� 2Þ2ðN � pÞ
N � pþ 2

E
1

p� 2þ 2K

� �
� 0; if p � 3:

The problem of the determination of the confidence region for m is discussed in

Chapter 6.

5.3.7. Estimation of Covariance Matrix

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;NðN . pÞ be a sample of size N from a

p-variate normal population with mean m and covariance matrix S and let

N �XX ¼PN
a¼1 X

a; S ¼PN
a¼1ðXa � �XXÞðXa � �XXÞ0. We will show in Section 6.1 that

S has a central Wishart distributionWpðn;SÞ with n ¼ N � 1 degrees of freedom

and EðSÞ ¼ nS. We will use here some more results onWishart distritution which

will be proved in Chapter 6.

We consider here the problem of estimating S by ŜS ¼ dðSÞ, a p� p positive

definite matrix with elements that are functions of S. The performance of any

estimator is evaluated in terms of the risk function of a given loss function. Two

commonly used loss functions are

L1ðS; dÞ ¼ tr S
�1d� log detðS�1dÞ � p;

L2ðS; dÞ ¼ trðS�1d� IÞ2 ¼ trðd� SÞS�1ðd� SÞS�1:
ð5:69Þ

They are non negative and are zero when d ¼ S. There are other loss functions

with these properties but these two are relatively easy to work with. The loss

function L1 is known as Stein’s loss and was first considered by Stein (1956) and

James and Stein (1961). The estimation of S using L2 was considered by Olkin

and Seillah (1977) and Haff (1980). Begining with the works of Stein (1956) and

James and Stein (1961) the problem of estimating the matrix of regression

coefficients in the normal case has been considered by Robert (1994), Kubokawa

(1998), Kubokawa and Srivastava (1999) among others. If we restrict our

attention to the estimators of the form aS, where a is a scalar, the following

theorem will show that the unbiased estimator S=n of S is the best in the sense

that it has the minimum risk for the loss function L1 and the estimator S=ðnþ
pþ 1Þ of S is the best for the loss function L2.
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Theorem 5.3.5. Among all estimators of the form aS of S, the unbiased

estimator S=n is the best for the loss L1 and the estimator S=ðnþ pþ 1Þ is the best
for the loss L2.

Proof. For the loss L1 the risk of aS is

R1ðS;aSÞ ¼ E½atrðS�1
SÞ � log detðaS�1

SÞ � p�

¼ atr S�1
EðSÞ � p loga� E log

det S

detS

� �
� p:

Using Theorem 6.6.1 we get

R1ðS;aSÞ ¼ apn� p loga� E log
Yp

i¼1

x2nþ1�i

" #
� p

¼ apn� n loga�
Xp

i¼1

Eðlog x2nþ1�iÞ � p

and R1ðS;aSÞ is minimum when a ¼ 1=n.
Since S . 0, there exists g [ G‘ðpÞ such that gSg0 ¼ I. Let

gSg0 ¼ S� ¼ ðS��ij Þ. Hence with d ¼ aS, using Section 6.3, we get

R2ðS;aSÞ ¼ EIL2ðI;aS�Þ

¼ EI trðaS� � IÞ2

¼ EI a2
Xp

i;j¼1

S�2ij � 2a
Xp

i¼1

S��ii þ p

 !
:

Since S��ii w x2n and S�2ij w x21 ði = jÞ we get

EIðS�2ii Þ ¼ 2nþ n2 ¼ nðnþ 2Þ;EIðS�2ij Þ ¼ 1ði = jÞ:
Hence

R2ðS;aSÞ ¼ a2½nðnþ 2Þpþ npðp� 1Þ� � 2anpþ p

which is minimum when a ¼ ðnþ pþ 1Þ�1.

Hence we get the Theorem. Q.E.D.

The minimum value of R1ðS;aSÞ is p log n�Pp
i¼1 Eðlog x2nþ1�iÞ and the

minimum value of R2ðS;aSÞ is pðpþ 1Þðnþ pþ 1Þ�1.

Stein (1975) pointed out that the characteristic roots of S=n spread out more

than the corresponding characteristic roots of S and the problem gets more
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serious when S w Ip. This fact suggests that S=n should be shrunk towards a

middle value. A similar phenomenon exists in the case of Stein type estimation of

the multivariate normal mean. We refer to Stein (1975, 1977a,b), Young and

Berger (1994) and the cited references therein. The problem of minimax

estimation of S was first considered by James and Stein (1961). They utilised a

result of Kiefer (1957) which states that if an estimator is minimax in the class of

equivariant estimators with respect to a group of transformations which is

solvable then it is minimax among all estimators. Here the group G‘ð pÞ, full
linear group of p� p nonsingular matrices, is not solvable but the subgroup

GT ð pÞ of p� p nonsingular lower triangular matrices and the subgroup GUT ð pÞ
of p� p nonsingular upper triangular matrices, are solvable. If dðSÞ is an

estimator of S and g [ G‘ð pÞ then d should satisfy

dðgSg0Þ ¼ gdðSÞg0:

Because gSg0 has the Wishart distributionWpðn; gSg0Þ; gSg0 estimates gSg0 as
does gSðSÞg0. If this holds for all g [ G‘ðpÞ then dðSÞ ¼ aS for some scalar a.
Since G‘ð pÞ is not solvable we can not assert the minimax property of aS from

Theorem 5.3.5.

In the approach of James and Stein (1961) we consider GT ð pÞ instead ofG‘ð pÞ
and find the best estimator dðSÞ satisfying

dðgSg0Þ ¼ gdðSÞg0 ð5:70Þ

for all g [ GT ð pÞ. It may be remarked that dðSÞ ¼ aS satisfies (5.70). Since

GT ð pÞ is solvable. The best estimator will be minimax.

Since (5.70) holds for all Sð. 0Þ, taking S ¼ I, in particular, we get

dðgg0Þ ¼ gdðIÞg0: ð5:71Þ

Now, let g be a diagonal matrix with diagonal elements +1. Obviously g [ GT

and gg0 ¼ I. From (5.71) we get dðIÞ ¼ gdðIÞg0 for all such g. This implies that

dðIÞ is a diagonal matrix D with diagonal elements d1; . . . ; dp (say).
Write S ¼ TT 0 where T ¼ ðTijÞ [ GT ðpÞ with positive diagonal elements

(which we need to impose for the uniqueness). From (5.71) we get

dðSÞ ¼ dðTT 0Þ ¼ TdðIÞT 0 ¼ TDT 0: ð5:72Þ

Theorem 5.3.6. The best estimator of S in the class of all estimators satisfying

(5.70) (hence minimax) is dðSÞ ¼ TDT 0 where S ¼ TT 0 with T a p� p lower

triangular nonsingular matrix with positive diagonal elements and D is a

diagonal matrix with diagonal elements d1; . . . ; dp, given by

a. di ¼ ðnþ 1þ p� 2iÞ�1; i ¼ 1; . . . ; p, when the loss function is L1;
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b. ðd1; . . . ; dpÞ0 ¼ A�1b, where A ¼ ðaijÞ is a p� p symmetric matrix with

aii ¼ ðnþ p� 2iþ 1Þðnþ p� 2iþ 3Þ
aij ¼ nþ p� 2jþ 1; i , j

b ¼ ðb1; . . . ; bpÞ0 with bi ¼ nþ p� 2iþ 1;

when the loss function is L2.

Proof. (a) For the loss function L1, using (6.32),

ESðL1ðS; dðSÞÞÞ

¼ ESðtr S�1dðSÞ � log detS
�1dðSÞ � pÞ

¼ ðdetSÞ�n=2cn;p

�
ð
½tr S�1dðsÞ � log detS

�1dðsÞ � p�
�

� exp � 1

2
tr S

�1
s

� �
ðdet sÞðn�p�1=2Þdsg:

Let S
�1 ¼ g0g; g [ GT ðpÞ by (5.70)

tr S
�1dðSÞ � log detS

�1dðSÞ � p

¼ tr g0gdðSÞ � log det g0gdðSÞ � p

¼ tr gdðSÞg0 � log det gdðSÞg0 � p

¼ tr d ðgSg0Þ � log det dðgSg0Þ � p:

Transform s ! u ¼ gsg0. From Theorem 2.4.10 the Jacobian of this

transformation is ðdet gÞ�ðpþ1Þ. Hence
ESL1ðS; dðSÞÞ ¼ cn;p½det gg0�n=2

�
ð
½tr dðgsg0Þ � log det dðgsg0Þ � p�

� exp � 1

2
tr gsg0

� �
ðdet sÞn�p�1=2ds

¼ cn;p

ð
½tr dðuÞ � log det dðuÞ � p�

� � 1

2
tr u

� �
ðdet uÞn�p�1=2du

¼ EIL1ðI; dðSÞÞ:

ð5:73Þ
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Hence the risk R1ðS; dÞ ¼ ESðL1ðS; dðSÞÞ does not depend on S. Now, using
Theorem 6.6.1 and results of Section 6.7, the Tij in (5.72) are independent. T2

ii is

distributed as x2n�iþ1 and T2
ijði = jÞ is distributed as x21. Hence

R1ðI; dÞ ¼ EIðtr dðSÞ � log det dðSÞ � pÞ
¼ EIðtr TDT 0 � log det TDT 0 � pÞ

¼
Xp

i¼1

diEðT2
iiÞ þ

Xp

i; j¼1
j,i

diEðT2
ijÞ

�
Xp

i¼1

Eðlogx2nþ1�iÞ � log detD� p

¼
Xp

i¼1

diðnþ 1þ p� 2iÞ þ
Xp

i; j¼1
j,i

di

�
Xp

i¼1

E log x2nþ1�i � log detD� p

¼
Xp

i¼1

diðnþ 1þ p� 2iÞ �
Xp

i¼1

log di �
Xp

i¼1

E logx2nþ1�i � p:

This attains its minimum value at di ¼ ðnþ 1þ p� 2iÞ�1; i ¼ 1; . . . ; p and the

minimum risk is
Pp

i¼1 logðnþ 1þ p� 2iÞ �Pp
i¼1 E log x2nþ1�i.

(b) R1ðS; dÞ ¼ ESL2ðS; dðSÞÞ does not depend on S. Now using (5.72)–(5.73)

and the above arguments we get

EIðL2ðI; dðSÞÞ ¼ EI trðdðSÞ � IÞ2

¼ EI trðTDT 0 � IÞ2
¼ EI trðTDTTDT 0 � 2TDT 0 þ IÞ

¼ EI

Xp

i;j;k;‘¼1

TijdjTkjTk‘d‘Ti‘

 !
ð5:74aÞ

� 2EI

Xp

i;j¼1

T2
ijdj

 !
þ p

¼ ðd1; . . . ; dpÞAðd1; . . . ; dpÞ0
� 2b0ðd1; . . . ; dpÞ0 þ p:
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Since ðd1; . . . ; dpÞAðd1; . . . ; dpÞ0 ¼ EðtrðTDT 0Þ2Þ . 0, D is positive definite

and (5.74a) has a unique minimum at ðd1; . . . ; dpÞ0 ¼ A�1b. The minimum value

of EIL2ðI; dðSÞÞ ¼ p� b0A�1b. Q.E.D.

5.3.8. Estimation of Parameters in CNp(a, S)

Let Zi ¼ ðZi1; . . . ; ZipÞ0; i ¼ 1; . . . ;N be independently and identically distrib-

uted as CNpða;SÞ and let

�ZZ ¼ 1

N

XN
i¼1

Zi;A ¼
XN
i¼1

ðZi � �ZZÞðZi � �ZZÞ�:

To find the maximum likelihood estimator of a;Swe need the following Lemma.

Lemma 5.3.4. Let f ðSÞ ¼ cðdetSÞn expf�tr Sg where S is positive definite

Hermitian and c is a positive constant.

Then f ðSÞ is maximum at S ¼ ŜS ¼ nI.

Proof. By Theorem 1.8.1. there exists a unitary matrix U such that U�SU is a

diagonal matrix with diagonal elements l1; . . . ; lp, the characteristic roots of S
and li . 0 for all i. Hence

f ðSÞ ¼ cðdetðU�SUÞÞn expf�trðU�SUÞg

¼ c
Yp

i¼1

ðlni e�liÞ ¼ c
Yp

i¼1

ðlni e�li=nÞn;

which is maximum if li ¼ n; i ¼ 1; . . . ; p. Hence f ðSÞ is maximum when

S ¼ nI. Q.E.D.

Theorem 5.3.7. The maximum likelihood estimates of âa; ŜS of a;S respectively

are given by âa ¼ �ZZ; ŜS ¼ A=N.

Proof. From (4.18) the likelihood of zi; i ¼ 1; . . . ;N is

Lðz1; . . . ; zNÞ ¼ p�NpðdetSÞ�N

exp �tr S
�1

XN
i¼1

ðzi � aÞðzi � aÞ�
 !( )

¼ p�NpðdetSÞ�N expf�tr S
�1ðAþ Nð�zz� aÞð�zz� aÞ�Þg:

176 Chapter 5



Hence

max
a;S

Lðz1; . . . ; zNÞ ¼ max
S

½p�NpðdetSÞ�N expf�tr S
�1
Ag�

and the maximum likelihood estimate of a is âa ¼ �zz. Let us assume that A is

positive definite Hermitian, which we can do with probability one if N . p. By

Theorem 1.8.3 there exists a Hermitian nonsingular matrix B such that A ¼ BB�,
so that

max
a;S

Lðz1; . . . ; zNÞ ¼ max
S

½p�NpðdetSÞ�N expf�tr B�S�1
Bg�

¼ max
S

½p�NpðdetðBB�ÞÞ�NðdetðB�S�1
BÞÞN expf�tr B�S�1

Bg�

By Lemma 5.3.4 the maximum likelihood estimate of S is ŜS ¼ BB�=
N ¼ A=N. Q.E.D.

Theorem 5.3.8.
ffiffiffiffi
N

p
�ZZ;A are independent in distribution.

ffiffiffiffi
N

p
�ZZ has a p-variate

complex normal distribution with mean
ffiffiffiffi
N

p
a and complex covariance S; A is

distributed as
PN

i¼2 j
ij i� where j i; i ¼ 2; . . . ;N are independently and

identically distributed CNpð0;SÞ.

Proof.Let U ¼ ðuijÞ be a N � N unitary matrix with first row ðN�1=2; . . . ;N�1=2Þ.
Consider the transformations from ðZ1; . . . ; ZNÞ to ðj1; . . . ; jNÞ, given by

j1 ¼ N1=2 �ZZ;

j i ¼
XN
j¼1

uijZ
j; i � 1

It may be verified that

Eðj1Þ ¼ N1=2a;EðjiÞ ¼ 0; i � 2;

covðji; jjÞ ¼ S; if i ¼ j;

0; if i = j;

�

A ¼
XN
i¼2

jiji�:

By Theorem 4.2.3 and Theorem 4.2.5 ji; i ¼ 1; . . . ;N are independently

distributed p-variate complex normals. Hence we get the theorem. Q.E.D.
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The distribution of A is known as the complex Wishart distribution with

parameter S and degrees of freedom N � 1 with pdf given by (Goodman, 1963)

f ðAÞ ¼ ðdetAÞN�p�1

IðSÞ expf�tr S
�1
Ag ð5:75Þ

where IðSÞ ¼ ppðp�1Þ=2ðdetSÞN�1Qp
i¼1 GðN � iÞ. From Theorem 5.3.8

EðAÞ ¼ ðN � 1ÞS. Since
Lðz1; . . . ; zNÞ ¼ ð2pÞ�NpðdetSÞ�N expf�tr S

�1ðAþ Nð�zz� aÞðz� aÞ�Þg
ð �ZZ;AÞ is sufficient for ða;SÞ (Halmos and Savage (1949)).

5.3.9. Estimation of Parameters in Symmetrical Distribution

and Related Results

Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;SÞ with pdf

fXðxÞ ¼ ðdetSÞ�1=2qððx� mÞ0S�1ðx� mÞÞ
where q is a function on ½0;1Þ such that

Ð
qðy0yÞdy ¼ 1.

Theorem 5.3.9. Let q be such that up=2qðuÞ has finite positive maximum uq.

Suppose that on the basis of one observation x from

fXðxÞ ¼ ðdetSÞ�1=2qððx� mÞ0S�1ðx� mÞÞ
the maximum likelihood estimators ðm̂m; ŜSÞ, under Npðm;SÞ exist and are unique

and that ŜS . 0 with probability one. Then the maximum likelihood estimators

ð �mm; �SSÞ of ðm;SÞ for a general q are given by

�mm ¼ m̂m; �SS ¼ p

uq
ŜS:

Proof. Let D ¼ S=ðdetSÞ1=p and let d ¼ ðx� mÞ0S�1ðx� mÞ.

Then

d ¼ ðx� mÞ0D�1ðx� mÞ=ðdetSÞ1=p and detD ¼ 1:

Hence

fXðxÞ ¼ ½ðx� mÞ0D�1ðx� mÞ��p=2dp=2qðdÞ: ð5:76Þ
Under Npðm;SÞ; qðdÞ ¼ ð2pÞ�p=2 expf� 1

2
dg and the maximum of (5.76) is

attained at m ¼ m̂m;D ¼ D̂D ¼ ðŜS=ðdet ŜSÞ1=pÞ and d ¼ p. For a general q the

maximum of (5.76) is attained at m ¼ �mm ¼ m̂m , D ¼ �DD ¼ D̂D and d ¼ �dd ¼ uq.

Hence the maximum likelihood estimator of S is �SS ¼ ðdet �SSÞ1=pD̂D ¼ ððdet �SSÞ1=p=
ðdet ŜSÞ1=pÞŜS.
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Since

p ¼ ðx� m̂mÞ0D̂D�1ðx� m̂mÞ
ðdet ŜSÞ1=p

; uq ¼ ðx� �mmÞ0 �DD�1ðx� �mmÞ
det �SS

1=p

¼ ðx� m̂mÞ0D̂D�1ðx� m̂mÞ
det �SS

1=p
¼ pðdet ŜSÞ1=p

ðdet �SSÞ1=p

we get

p

uq
¼ ðdet �SSÞ1=p

ðdet ŜSÞ1=p
:

Hence the maximum likelihood estimators under a general q are

�mm ¼ m̂m; �SS ¼ p=uqŜS. Q.E.D.

Let X ¼ ðX1; . . . ;XNÞ0, where Xi ¼ ðXi1; . . . ;XipÞ0, be a N � p random matrix

having an elliptically symmetric distribution with pdf , as given in (4.36) with

mi ¼ m;Si ¼ S for all i. Define �XX ¼ 1=N
PN

i¼1 Xi; S ¼PN
i¼1ðXi � �XXÞðXi � �XXÞ0.

Using Theorem 5.3.6 we get the maximum likelihood estimators �mm; �SS of m;S are

given by

�mm ¼ �XX; �SS ¼ p

uq
S ð5:77Þ

where uq is the maximum value of uNp=2qðuÞ.
Let X ¼ ðX1; . . . ;XpÞ0 be distributed as a contaminated normal with pdf

fXðxÞ ¼
ð
ð2pÞ�p=2s�p exp � 1

2s2
ðx� mÞ0ðx� mÞ

� �
dGðsÞ

where Gð�Þ is a known distribution function. To estimate m with loss (5.30)

Strawderman (1974) showed that the estimator

1� a

X0X

 �
X

has smaller risk than X provided 0 , a , 2=EðX0XÞ�1.

To estimate m with loss (5.30) in spherically symmetric distribution with pdf

fXðxÞ ¼ qððx� mÞ0ðx� mÞÞ
where q is on ½0;1� and EðX0XÞ;EðX0XÞ�1 are both finite Brandwein (1979)

showed that for p � 4 the estimator ð1� ða=X0XÞÞX has smaller risk than X

provided

0 , a , 2ðp� 2Þp�1½EðX0XÞ��1:

Let X ¼ ðX1; . . . ;XNÞ0 be an N � p matrix having elliptically symmetric

distribution with parameters m;S. Let �XX ¼ N�1
PN

a¼1 Xa; S ¼PN
a¼1ðXi � �XXÞðXi � �XXÞ0.

Estimators of Parameters and Their Functions 179



Srivastava and Bilodeau (1989) have shown that for estimating m with S
unknown with loss (5.30) the estimator ð1� ðk=N �XX

0
S�1 �XXÞÞ �XX has smaller risk

than �XX provided that 0 , k , 2ðp� 2ÞðN � pþ 2Þ�1 and p � 3. Kubakawa and

Srivastava (1999) have shown that the minimax estimator of the covariance

matrix S obtained under the multivariate normal model remains robust under the

elliptically symmetric distributions. For non negative estimation of multivariate

components of variance we refer to Srivastava and Kubokawa (1999). The

determination of the confidence region of m is discussed in Chapter 7.

Example 5.3.1. Observations were made in the Indian Agricultural Research

Institute, New-Delhi, India, on six different characters:

X1 plant height at harvesting (cm)

X2 number of effective tillers

X3 length of ear (cm)

X4 number of fertile spikelets per 10 ears

X5 number of grains per 10 ears

X6 weight of grains per 10 ears

for 27 randomly selected plants of Sonalika, a late-sown variety of wheat in two

consecutive years (1971, 1972). The observations are recorded in Table 5.1.

Assuming that each year’s data constitute a sample from a six-variate normal

distribution with mean m and covariance matrix S, we obtain the following

maximum likelihood estimates.

For 1971

i.

m̂m ¼

84:8911
186:2963

9:7411
13:4593

304:3701
13:6259

0
BBBBBB@

1
CCCCCCA

ii. ŜS ¼ s=27

X1 X2 X3 X4 X5 X6

X1 12.247

X2 14.389 353.293

X3 20.245 2.703 0.191

X4 0.209 3.278 0.155 0.519

X5 14.000 173.400 8.519 7.003 1130.456

X6 20.464 8.403 0.465 0.313 40.970 2.383
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iii. The matrix of sample correlation coefficients R ¼ ðrijÞ is

Table 5.1.

Plant

No.

X1 X2 X3 X4 X5 X6

1971 1972 1971 1972 1971 1972 1971 1972 1971 1972 1971 1972

1 82.85 74.35 150 162 8.97 9.76 12.6 12.2 261 337 11.8 13.7

2 79.10 66.05 163 145 10.19 10.10 13.1 12.5 320 351 14.3 13.9

3 86.95 80.30 181 156 9.63 10.71 13.5 13.8 339 424 15.4 17.7

4 83.31 77.60 205 148 9.47 10.75 13.8 13.0 287 379 12.7 17.3

5 88.90 80.45 187 142 9.59 9.56 13.3 12.4 308 327 14.3 13.8

6 83.10 81.00 182 200 9.19 10.48 12.8 13.9 314 378 13.9 15.7

7 89.50 85.05 152 163 9.60 10.90 13.5 13.3 311 367 13.5 16.3

8 86.50 80.75 188 170 9.30 10.65 12.5 13.0 281 372 12.9 15.1

9 87.30 80.95 170 165 9.00 10.57 12.7 13.8 264 357 11.8 14.6

10 88.75 64.40 193 142 9.78 10.21 13.4 12.2 293 352 14.0 14.8

11 84.60 75.90 188 157 10.43 10.79 14.2 13.6 346 357 16.7 13.8

12 83.60 69.00 164 170 9.58 8.61 13.9 9.8 290 258 13.0 9.4

13 86.60 82.25 193 156 10.43 11.06 15.3 13.8 336 404 15.7 17.5

14 84.55 80.75 200 156 9.07 11.14 12.6 14.7 237 412 10.4 17.1

15 87.95 82.25 202 164 9.31 10.30 14.4 13.3 287 390 11.7 17.2

16 85.50 79.55 225 174 10.32 10.75 12.9 13.4 355 400 16.5 16.9

17 86.30 81.90 184 163 9.50 10.75 12.7 13.4 300 355 13.4 16.5

18 86.10 83.55 198 182 9.73 11.43 13.7 14.3 295 406 12.8 15.0

19 81.80 65.45 203 147 10.41 9.55 13.9 11.3 314 300 13.1 12.0

20 75.20 68.00 185 156 10.10 9.88 13.4 11.7 320 330 15.9 13.2

21 78.60 66.85 174 194 9.77 9.56 12.6 11.9 310 304 13.8 9.3

22 85.20 81.45 159 192 9.92 11.12 13.5 14.2 286 384 12.1 17.8

23 81.05 75.65 189 191 9.74 10.93 15.0 13.7 307 380 13.6 13.0

24 86.65 77.30 198 170 10.22 11.09 14.0 14.1 324 404 13.4 16.3

25 89.30 81.35 212 186 9.90 10.41 13.5 13.3 323 340 14.4 12.5

26 84.50 79.45 173 165 9.86 10.79 13.0 13.6 282 384 12.2 14.4

27 88.30 81.35 212 198 10.08 10.53 13.6 13.4 328 310 15.0 13.8

X1 X2 X3 X4 X5 X6

X1 1.000

X2 0.219 1.000

X3 20.160 0.329 1.000

X4 0.083 0.242 0.491 1.000

X5 0.119 0..274 0.579 0.289 1.000

X6 20.086 0.290 0.689 0.281 0.789 1.000
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iv. The maximum likelihood estimate of the regression of X6 on X1 ¼
x1; . . . ;X5 ¼ x5 is

ÊEðX6jX1 ¼ x1; . . . ;X5 ¼ x5Þ ¼ 3:39768� 0:03721x1 � 0:00008x2

� 0:14427x3 � 0:15360x4 þ 0:05544x5:

v. The maximum likelihood estimate of the square of the multiple correlation

coefficient of X6 on ðX1; . . . ;X5Þ is
r2 ¼ 0:85358:

vi. The maximum likelihood estimates of some of the partial correlation

coefficients are

r23:5 ¼ 0:0156

r23:1 ¼ �0:2130

r23:15 ¼ �0:2363

r23:16 ¼ �0:1982

r23:456 ¼ 0:0100

r23:45 ¼ �0:0063

r23:46 ¼ �0:1823

r23:145 ¼ �0:2252

r23:146 ¼ �0:1906

r23:14 ¼ �0:2000

r23:56 ¼ 0:0328

r23:156 ¼ �0:2074

r23:1456 ¼ �0:1999

For 1972

i.

m̂m ¼

77:1444
167:1852
10:4585
13:0963

361:5553
14:7630

0
BBBBBB@

1
CCCCCCA
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ii. ŜS ¼ s=27

iii. The matrix of sample correlation coefficients R ¼ ðrijÞ is

iv. The maximum likelihood estimate of the regression of X6 on X1 ¼
x1; . . . ;X5 ¼ x5 is

ÊEðX6jX1 ¼ x1; . . . ;X5 ¼ x5Þ ¼ �4:82662þ 0:12636x1 � 0:03436x2

þ 0:61897x3 � 0:28526x4 þ 0:03553x5:

v. The maximum likelihood estimate of the square of the multiple correlation

coefficient of X6 on ðX1; . . . ;X5Þ is

r2 ¼ 0:80141:

X1 X2 X3 X4 X5 X6

X1 38.829

X2 32.872 299.772

X3 2.603 2.102 0.404

X4 4.899 4.997 0.632 1.138

X5 141.722 211.799 21.470 35.591 1553.795

X6 9.027 26.689 1.090 1.779 76.664 5.318

X1 X2 X3 X4 X5 X6

X1 1.000

X2 0.305 1.000

X3 0.657 0.191 1.000

X4 0.737 0.271 0.932 1.000

X5 0.577 20.017 0.857 0.846 1.000

X6 0.628 20.168 0.743 0.723 0.843 1.000

Estimators of Parameters and Their Functions 183



vi. The maximum likelihood estimates of some of the partial correlation

coefficients are

r23:4 ¼ 0:7234 r23:46 ¼ 0:3539 r23:456 ¼ 0:3861

r23:5 ¼ 0:2776 r23:14 ¼ 0:4887 r23:145 ¼ 0:4578

r23:6 ¼ 0:2042 r23:56 ¼ 0:2494 r23:146 ¼ 0:4439

r23:1 ¼ 0:3226 r23:15 ¼ 0:3194 r23:156 ¼ 0:3795

r23:45 ¼ 0:4576 r23:16 ¼ 0:3709 r23:1456 ¼ 0:4532

5.4. EQUIVARIANT ESTIMATION UNDER CURVED MODELS

In the recent years some attention has been focused on the estimation of

multivariate mean with constrain. This problem was originally considered by

R.A. Fisher a long time ago. It is recently focused again in the works of Efron

(1978), Cox and Hinkley (1977), Kariya (1989), Kariya, Giri and Perron (1988),

Perron and Giri (1990), Marchand and Giri (1993), Marchand (1994), Fourdrinier

and Strawderman (1996), Fourdrinier and Onassou (2000) among others. The

motivation behind it is primarily based on the observed fact that in the univariate

normal population with mean m and variance s2, s becomes large proportionally

to m so that jmj=s remains constant. This is also evident in the multivariate

observations. But in the multivariate case no well accepted measure of variation

between the mean vector m and the covariance matrix S is available.

Let

l ¼ m0S�1m; n ¼ S
�1

2m ð5:78Þ
where S

1
2 is a p� p lower triangular matrix with positive diagonal elements such

that S
1
2S

1
2 ¼ S. Kariya, Giri and Perron (1990) considered the problem of

estimating m with either l or n known under the loss (5.30) in the context of

curved models. In all cases the best invariant estimators (BEE) are obtained as

infinite series which in some special cases can be expressed as a finite series.

They also proved that the BEE improves uniformly on the maximum likelihood

estimator (MLE). Marchand (1994) gave a explicit expression for BEE and

proved that the BEE dominates the MLE and the best linear estimator (BLE).

Marchand and Giri (1993) obtained an optimal estimator within the class of

James-Stein type estimators when the underlying distribution is that of a variance

mixture of normals and when the norm kmk is known. When the norm is

restricted to a known interval, typically no optimum James-Stein type estimator

exists.
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When m is restricted, the most usual constraint is a ball, that is a set for which

kmk is bounded by some constant m. By an invariance argument and analyticity

considerations Bickel (1981) noted that the minimax estimator is Bayes with

respect to a unique spherically symmetric least favorable prior distribution

concentrating on a finite number of spherical shells, that is kmk is constant. More

recently Berry (1990) specified that when m is small enough, the corresponding

prior is supported by a single spherical shell. This result is related to a more

general class of models where Das Gupta (1985) showed that, when the

parameter is restricted to a arbitrary bounded convex set in Rp, the Bayes

estimator against the least favorable prior on the boundary of the parameter space

is minimax.

Let (X ;AÞ be a measure space and let V be the parametric space of u. Denote
by fPu; u [ Vg the set of probability distribution on X . Let G be a group of

transformations operating on X such that g [ G; g : X ! X (sample space) is

one to one onto (bijective). Let �GG be the corresponding group of induced

transformations �gg on V. Assume

a. for ui [ V; i ¼ 1; 2; u1 = u2;Pu1 = Pu2 ,

b. PuðAÞ ¼ P�gguðgAÞ;A [ A; g [ G; �gg [ �GG.

Let lðuÞ be a maximal invariant on V under �GG and let

V� ¼ fuju [ V with lðuÞ ¼ l0g ð5:79Þ

where l0 is known. We assume that N is the space of minimal sufficient statistic

for u. A point estimator ûu ðXÞ;X [ X is equivariant if ûu ðgXÞ ¼ gûu ðXÞ; g [ G.

For notational simplification we take G to be the group of transformations on

ûu ðXÞ.
Let TðXÞ;X [ X be a maximal invariant under G (definition 3.2.4). Since the

distribution of TðXÞ depends on u [ V only through lðuÞ, given lðuÞ ¼ l0, TðXÞ
is an ancillary statistic.

Definition 5.4.1. Ancillary Statistic. It is defined to be a part of the minimal

sufficient statistic whose marginal distribution is parameter free.

Such models are assumed to be generated as an orbit under the induced group
�GG onV and the ancillary statistic is realized as the maximal invariant on X under

G.

Definition 5.4.2. Curved Model. A model with admits an ancillary statistic is

called a curved model.
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5.4.1. Best Equivariant Estimation of m with l Known

Let X1; . . . ;XNðN . pÞ be independently and identically distributed Npðm;SÞ.
We want to estimate m with loss function

Lðm; dÞ ¼ ðd � mÞ0S�1ðd � mÞ ð5:80Þ

when l ¼ m0S�1m ¼ l0 (known). Let N �XX ¼PN
i¼1 Xi; S ¼PN

i¼1ðXi �
�XXÞðXi � �XXÞ0. The minimal sufficient statistic for ðm;SÞ is ð �XX; SÞ and

ffiffiffiffi
N

p
�XX is

distributed independently of S as Npð
ffiffiffiffi
N

p
m;SÞ and S is distributed as Wishart

WpðN � 1;SÞ with N � 1 degrees of freedom and parameter S (see (6.32)).

Under the loss function (5.80) this problem remains invariant under the full linear

group G‘ðpÞ of p� p nonsingular matrices g transforming ð �XX; SÞ ! ðg �XX; gSg0Þ.
The corresponding group �GG of induced transformations �gg on the parametric space

V transforms u ¼ ðm;SÞ ! �ggu ¼ ðgm; gSg0Þ. In Chapter 7 we will show that

T2 ¼ NðN � 1Þ �XX0
S�1 �XX is a maximal invariant in the space of ð ffiffiffiffi

N
p

�XX; SÞ and the

corresponding maximal invariant in the parametric space V in l ¼ m0S�1m and

the distribution of T2 depends on the parameters only through l. Hence, given
l ¼ l0, T

2 is an ancillary statistic. Since for any equivariant estimator �mmðXÞ of m,
the risk

Rðu; �mmÞ ¼ Euð �mm� mÞ0ð �mm� mÞ

¼ Euðg �mm� gmÞ0ðgSg0Þ�1ðg �mm� gmÞ

¼ Euð �mmðgXÞ � gmÞ0ðgSg0Þ�1ð �mmðXÞ � gmÞ ð5:81Þ

¼ E�gguð �mmðXÞ � gmÞ0ðgSg0Þ�1ð �mmðXÞ � gmÞ
¼ Rð�ggu; �mmÞ

for g [ G‘ðpÞ and �gg is the induced transformation on V corresponding to g on X .

Since �GG‘ðpÞ acts transitively on V we conclude from (5.80) that the risk Rðu; �mmÞ
for any equivariant estimator �mm is a constant for all u [ V. Taking l0 ¼ 1

without any loss of generality and using the fact that Rðu; �mmÞ is a constant.

Theorem 1.6.6 allows us to choose m ¼ e ¼ ð1; 0; . . . ; 0Þ0 and S ¼ I. To find the

BEE which minimizes Rðu; �mmÞ among all equivariant estimators �mm satisfying

�mmðg �XX; gSg0Þ ¼ g �mmð �XX; SÞ

we need to characterize �mm. Let GT ðpÞ be the subgroup of G‘ðpÞ containing all

p� p lower triangular matrices with positive diagonal elements. Since S is

positive definite with probability one because of the assumption N . p we can
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write S ¼ WW 0;W [ GT ðpÞ. Let

V ¼ W�1Y; Q ¼ V

kVk
where Y ¼ ffiffiffiffi

N
p

�XX; kVk2 ¼ V 0V ¼ T2=ðN � 1Þ.

Theorem 5.4.1. If �mm is an equivariant estimator of m under G‘ðpÞ then
�mmðY; SÞ ¼ KðUÞWQ ð5:82Þ

where KðUÞ is a measurable function of U ¼ T2=ðN � 1Þ.

Proof. Since �mm is equivariant under G‘ðpÞ we get for g [ G‘ðpÞ
�gg �mmðY; SÞ ¼ �mmðgY; gSg0Þ: ð5:83Þ

Replacing Y by W�1Y , g by W and S by I in (5.83) we get

�mmðY; SÞ ¼ W �mmðV; IÞ: ð5:84Þ
Let O be a p� p orthogonal matrix with Q ¼ V

kVk as its first column. Then

�mmðV; IÞ ¼ �mmð000V; 000Þ

¼ 0 �mmð
ffiffiffiffi
U

p
e; IÞ:

Since the columns of O except the first one are arbitrary as far as they are

orthogonal to Q, all components of mð ffiffiffiffi
U

p
e; IÞ, except the first component

m1ð
ffiffiffiffi
U

p
e; IÞ, are zero. Hence

�mmðV; IÞ ¼ Qm1ð
ffiffiffiffi
U

p
e; IÞ:

Q.E.D.

Theorem 5.4.2. Under the loss function (5.79) the unique BEE of m is

m ¼ K̂KðUÞWQ ð5:85Þ
where

K̂KðUÞ ¼ EðQ0W 0ejUÞ=EðQ0W 0WQjUÞ: ð5:86Þ
Proof. From Theorem 5.4.1 the risk function of an equivariant estimator m,
given that l0 ¼ 1 is

Rðu; �mmÞ ¼ Rððe; IÞ; �mmÞ
¼ EðKðUÞWQ� eÞ0ðKðUÞWQ� eÞ:
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Since U is ancillary a unique BEE is �mm ¼ K̂KðUÞWQ, where K̂KðUÞ minimizes the

conditional risk given U

EððKðUÞWQ� eÞ0ðKðUÞWQ� eÞjUÞ:
Using results of Section 1.7 we conclude that K̂KðUÞ is given by (5.84). Q.E.D.

Maximum likelihood estimators

The maximum likelihood estimators m̂m; ŜS of m;S respectively under the

restriction l0 ¼ 1 are obtained by maximizing

� N

2
log detS� 1

2
tr SS

�1

� N

2
ð�xx� mÞ0S�1ð�xx� mÞ � g

2
ðm0S�1m� 1Þ

ð5:87Þ

with respect to m and S where g is the Lagrange multiplier. Maximizing (5.85)

we obtain

m̂m ¼ N �XX

N þ g
; ŜS ¼ S

N
þ g �XX �XX

0ðgþ NÞ�1:

Since m̂mS
�1m̂m ¼ 1 we obtain

m̂m ¼ U � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð4þ 5UÞp
2U

 !
�XX;

ŜS ¼ S

N
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð1þ 5UÞp

2U
�XX �XX

0
:

ð5:88Þ

The maximum likelihood estimators are equivariant estimators. Hinkley (1977)

investigated some properties of the model associated with Fisher information.

Amari (1982a,b) proposed through a geometric approach what he called the dual

mle which is also equivariant.

5.4.2. A Special Case

As a special case of l constant we consider here the case S ¼ ðm0m=C2ÞI where
C2 is known. Let Y ¼ ffiffiffiffi

N
p

�XX andW ¼ tr S. Then ðY;WÞ is a sufficient statistic and
C2W=ðm0mÞ is distributed as x2ðN�1Þp. We are interested here to estimate m with

respect to the loss function.

Lðm; dÞ ¼ ðd � mÞ0ðd � mÞ
ðm0mÞ : ð5:89Þ
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The problem of estimating m remains invariant under the group G ¼ Rþ � 0ðpÞ,
Rþ being the multiplicative group of positive reals and 0ðpÞ being the

multiplicative group of p� p orthogonal matrices transforming

Xi ! bGXi; i ¼ 1; . . . ;N

d ! bGd

m;
m0m
C2

� �
I

� �
! bGm; b2

m0m
C2

� �
I

� �

where ðb;GÞ [ G with b [ Rþ;G [ 0ðpÞ. The transformation induced by G on

ðY;WÞ is given by

ðY;WÞ ! ðbGg; bWÞ:

A representation of an equivariant estimator under G is given in the following

Theorem.

Theorem 5.4.3. An estimator dðY;WÞ is equivariant if and only if there exists a
measurable function h : Rþ ! R such that

dðY;WÞ ¼ h
Y 0Y
W

� �
Y

for all ðY;WÞ [ Rp � Rþ.

Proof. If h is a measurable function from Rþ ! R and dðY;WÞ ¼ hðY 0Y=WÞY
then clearly d is equivariant under G. Conversely if d is equivariant under G, then

dðY;WÞ ¼ bGd
G0Y
b

;
W

b2

� �
ð5:90Þ

for all G [ 0ðpÞ; Y [ Rp; b . 0;W . 0. We may assume without any loss of

generality that Y 0Y . 0.

Let Y and W be fixed and

d ¼ d1
d2

� �

where d1 is the first component of the p-dimensional vector d. Let A [ 0ðpÞ be a
fixed p� p matrix such that Y 0A ¼ ðkYk; 0; . . . ; 0Þ (see Theorem 1.6.6).
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We now partition the matrix A ¼ ðA1;A2Þ where A1 ¼ kYk�1Y , and choose

G ¼ ðA1;A2BÞ with B [ Oðp� 1Þ and b ¼ kYk. From (5.86) we get

dðY;WÞ ¼ d1 ð1; 0; . . . ; 0Þ; W

Y 0Y

� �
Y

þ kYkA2Bd2 ð1; 0; . . . ; 0Þ; W

Y 0Y

� �
:

ð5:91Þ

Since the result holds for any choice of B [ Oðp� 1Þ we must have

dðY;WÞ ¼ d1 ð1; 0; . . . ; 0Þ; W

Y 0Y

� �
Y :

Q.E.D.

It may be verified that a maximal invariant under G in the space of sufficient

statistic is V ¼ W�1ðY 0YÞ and a corresponding invariant in the parametric space

is

m0 ðm0mÞI
C2

� ��1

m ¼ C2:

As the group G acts transitively on the parametric space the risk function

Rðm; dÞ ¼ EmðLðm; dÞÞ
of any equivariant estimator d is constant. Hence we can take

m ¼ m0 ¼ ðC; 0; . . . ; 0Þ0. Thus the risk of any equivariant estimator d can be

written as

Rðm0; dÞ ¼ Em0
L m0; h

Y 0Y
W

� �
Y

� �� �

¼ Em0
E L m0; h

Y 0Y
W

� �
Y

� �
jV ¼ v

� �� �
:

To find a BEE we need the function h0 satisfying

Em0
ðLðm0; h0ðVÞYÞjV ¼ vÞ � Em0

ðLðm0; hðVÞYÞjV ¼ vÞ
for all h : Rþ ! R measurable functions and for all values v of V . Since

Em0
ðLðm0; h0ðvÞYÞjV ¼ vÞ
¼ h2ðvÞEm0

ðY 0YÞjV ¼ vÞ � 2hðvÞEm0
ðY1jV ¼ vÞ þ 1
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where Y ¼ ðY1; . . . ; YpÞ0, we get

h0ðvÞ ¼
Em0

ðY1jV ¼ vÞ
Em0

ðY 0Y jV ¼ vÞ : ð5:92Þ

Theorem 5.4.4. The BEE d0ðX1; . . . ;XN;CÞ ¼ d0ðY;WÞ is given by

d0ðY;WÞ ¼ NC2

2

X1
i¼1

Gð1
2
Npþ iþ 1Þ

Gð1
2
pþ iþ 1Þi!

NC2

2

� �i

X1
i¼1

Gð1
2
Npþ iþ 1Þ

Gð1
2
pþ iÞi!

NC2t

2

� �i

2
66664

3
77775
�XX

where t ¼ vð1þ vÞ�1.

Proof. The joint probability density function of Y and W under the assumption

that m ¼ m0 is

fY;W ðy;wÞ ¼

expf�ðC2=2Þðy0y� 2
ffiffiffiffi
N

p
y1 þ N þ wÞgwððN�1Þp�1Þ=2

2Np=2ðC2Þ�Np=2ðGð1
2
ÞpGððN � 1Þp=2Þ ; if w . 0

0; otherwise:

8><
>:

Changing ðY;WÞ ! ðY;V�1Y 0YÞ, the joint probability density function of Y and

V is

fY;V ðy; vÞ ¼
expfC2=2½ðð1þ vÞ=vÞðy0yþ N�g

2Np=2ðC2Þ�Np=2½Gð1
2
Þ�pGððN � 1Þp=2Þ

� expf ffiffiffiffi
N

p
C2y1gðy0yÞðN�1Þp=2ðvÞð�N�1Þp=2�1; if v . 0

0; otherwise:

8>>>><
>>>>:
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Hence, with t ¼ ð1þ vÞ=v, we get

h0ðvÞ ¼
Ð
Rp y1 fY;V ðy; vÞdyÐ

Rpðy0yÞ fY;V ðy; vÞdy

¼
ffiffiffiffi
N

p C2

2

P1
i¼1

GðNp=2þ iþ 1Þ
Gð p=2þ iþ 1Þi!

NC2t

2

� �i

P1
i¼0

GðNp=2þ iþ 1Þ
Gð p=2þ iÞi!

NC2t

2

� �i
:

Q.E.D.

Theorem 5.4.5. If m ¼ ðN � 1Þp=2 is an integer, the BEE is given by

d0ðY;WÞ ¼ NC2

2
h0ðvÞ ¼ gðtÞ �XX ð5:93Þ

with gðtÞ ¼ uðtÞ=wðtÞ where

uðtÞ ¼
Xmþ1

i¼0

i

mþ 1

� �
mþ 1

i

� �

Gð p=2þ iÞ
NC2

2

� �i

ti;

wðtÞ ¼
Xmþ1

i¼0

mþ 1

i

� �
NC2

2

� �i

Gð p=2þ iÞ tiþ1:

Proof. Let Yk be distributed as x2k . Then

EðYa
k Þ ¼ 2a

Gðk=2þ aÞ
Gðk=2Þ if a . � k

2
:

Hence with m as integer

h0ðvÞ ¼
ffiffiffiffi
N

p
C2

X1
i¼0

EðYm
pþ2iþ2Þ exp �NC2t

2

� �
NC2t

2

� �i
1

i!

X1
i¼0

EðYmþ1
pþ2iÞ exp �NC2t

2

� �
NC2t

2

� �i
1

i!

¼
ffiffiffiffi
N

p
C2 EðVm

1 Þ
EðVmþ1

2 Þ ;

ð5:94Þ
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where V1 is distributed as noncentral x2pþ2ðNC2tÞ and V2 is distributed as

noncentral x2pðNC2tÞ. For V ¼ x2nðd2Þ and r integer

EðVrÞ ¼ 2r
Xr
k¼0

Gðn=2þ rÞ
Gðn=2þ kÞ

r

k

� �
d2

r

� �k

: ð5:95Þ

From (5.94) and (5.95) we get (5.93). Q.E.D.

It may be verified that gðtÞ is a continuous function of t and

lim
t!0þ

gðtÞ ¼ NC2

p
;

lim
t!1

gðtÞ ¼ gð1Þ , 1;

and gðtÞ . 0 for all t . 0 (see Perron and Giri (1990) for details). Thus when Y 0Y
is large the BEE is less than �XX.

We can also write d0 ¼ ð1� ðtðnÞ=nÞÞ �XX where tðnÞ=n ¼ 1� gðtÞ. This form is

very popular in the literature. Perron and Giri (1990) have shown that gðtÞ is a
strictly decreasing function of t and tðnÞ is strictly increasing in n. The result that
gðtÞ is strictly decreasing in t tells what one may intuitively do if he has an idea of

the true value of C and observe many large values concentrated. Normally one is

suspicious of their effects on the sample mean and they have the tendency to

shrink the sample mean towards the origin. That is what our estimator does. The

result that tðnÞ is strictly increasing in n relates the BEE of the mean for C known

with the class of minimax estimators of the mean for C unknown. Efron and

Morris (1973) have shown that a necessary and sufficient condition for an

equivariant estimator of the form gðtÞ �XX to be minimax is gðtÞ ! 1 as t ! 1. So

our estimator fails to be minimax if we do not know the value of C. On the other

hand they have shown that an estimator of the form d ¼ ð1� ðtðnÞ=nÞÞ �XX is

minimax if (i) t is an increasing function, (ii)

0 � tðnÞ � ð p� 2Þ=ðn� 1Þ þ 2 for n [ ð0;1Þ:

Thus our estimator satisfies (i) but fails to satisfy (ii). So a truncated version of

our estimator could be a compromise solution between the best when one knows

the value of C and the worst, one can do by using the incorrect value of C.
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5.4.3. Maximum Likelihood Estimator (mle)

The likelihood of x1; . . . ; xN with C known is given by

Lðx1; . . . ; xN jmÞ ¼

2N

C2

� ��Np=2

ðm0mÞNp=2 exp C2

2m0m
ðwþ y0y� 2

ffiffiffiffi
N

p
y0mþ Nm0mÞ

� �
:

Thus the mle m̂m of m (if it exists) is given by

½Np=c2�ðm̂m 0m̂mÞ � ½wþ y0y� 2
ffiffiffiffi
N

p
y0m̂m jm̂m ¼

ffiffiffiffi
N

p
m̂m 0m̂my: ð5:96Þ

If this equation in m̂m has a solution it must be collinear with y and hence

k½ðNp=C2Þðy0yÞk2 þ
ffiffiffiffi
N

p
y0yk � ðy0yþ wÞ� ¼ 0

Two nonzero solutions of k are

k1 ¼
�1� 1þ 4p

C2

1þ n

n

� �� �1
2

2
ffiffiffiffi
N

p
p=C2

; k2 ¼
�1þ 1þ 4p

C2

1þ n

n

� �� �1
2

2
ffiffiffiffi
N

p
p=C2

:

To find the value of k which maximizes the likelihood we compute the matrix of

mixed derivatives

@2ð� log LÞ
@m0@m

����
m¼ky

¼ C2

k4ðy0yÞ2
ffiffiffiffi
N

p
kðy0yÞI þ 2Np

C2
k2yy0

� �

and assert that matrix should be positive definite. The characteristic roots of this

matrix are given by

l1 ¼
ffiffiffiffi
N

p
C2

k3y0y
; l2 ¼

ffiffiffiffi
N

p
C2 þ 2Npk

k2y0y
:

If k ¼ k1, then l1 , 0 and l2 , 0. But if k ¼ k2, then l1 . 0, l2 . 0, hence the

mle m̂m ¼ d1ðx1; . . . ; xN;CÞ is given by

d1ðx1; . . . ; xN ;CÞ ¼ ð1þ 4p=C2tÞ12 � 1

2p

" #
C2 �xx:

Since the maximum likelihood estimator is equivariant and it differs from the

BEE d0, the mle d1 is inadmissible. The risk function of d0 depends on C. Perron

and Giri (1990) computed the relative efficiency of d0 when compared with d1,

the James-Stein estimator d2, the positive part of the James-Stein estimator d3,

and the sample mean �XX (d4) for different values of C, N, and p. They have

concluded that when the sample size N increases for a given p and C the relative
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efficiency of d0 when compared with di; i ¼ 1; . . . ; 4 does not change

significantly. This phenomenon changes markedly when C varies. When C is

small, d0 is markedly superior to others. On the other hand, when C is large all

five estimators are more or less similar. These conclusions are not exact as the

risk of d0; d1 are evaluated by simulation. Nevertheless, it gives us significant

indication that for small value of C the use of BEE is advantageous.

5.4.4. An Application

An interesting application of this model is given by Kent, Briden and Mardia

(1983). The natural remanent magnetization (NRM) in rocks is known to have, in

general, originated in one or more relatively short time intervals during rock

forming or metamorphic events during which NRM is frozen in by falling

temperature, grain growth, etc. The NRM acquired during each such event is a

single vector magnetization parallel to the then-prevailing geometric field and is

called a component of NRM. By thermal, alternating fields or chemical

demagnetization in stages these components can be identified. Resistance to these

treatments is known as “stability of remanence”. At each stage of the

demagnetization treatment one measures the remanent magnetization as a vector

in 3-dimensional space. These observations are represented by vectors

X1; . . . ;XN in R3. They considered the model given by Xi ¼ ai þ bi þ ei
where ai denotes the true magnetization at the ith step, bi represents the model

error, and ei represents the measurement error. They assumed that bi and ei are

independent, bi is distributed as N3ð0; t2ðaiÞIÞ, and ei is distributed as

N3ð0;s2ðaiÞIÞ. The ai are assumed to possess some specific structures, like

collinearity etc., which one attempts to determine. Sometimes the magnitude of

model error is harder to ascertain and one reasonably assumes t2ðaiÞ ¼ 0. In

practice s2ðaiÞ is allowed to depend on ai and plausible model for ðs2ðaiÞ which
fits many data reasonably well is s2ðaÞ ¼ aða0aÞ þ b with a . 0; b . 0. When

a0a large, b is essentially 0 and a is unknown.

5.4.5. Best Equivariant Estimation in Curved Covariance

Models

Let X1; . . . ;XN ðN . p . 2Þ be independently and identically distributed

Npðm;SÞ. Let S and S ¼PN
i¼1ðXi � �XXÞðXi � �XXÞ0 be partitioned as

S ¼ 1

p� 1

1 p� 1

S11 S12

S21 S22

0
@

1
A; S ¼ 1

p� 1

1 p� 1

S11 S12
S21 S22

0
@

1
A

where N �XX ¼PN
i¼1 Xi. We are interested to find the BEE of b ¼ S

�1
22 S12 on the

basis of N observations x1; . . . ; xN when one knows the value of the multiple
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correlation coefficient r2 ¼ S
�1
11 S12S

�1
22 S21. If the value of r2 is significant one

would naturally be interested to estimate b for the prediction purpose and also to

estimate S22 to ascertain the variability of the prediction variables.

Let H1 be the subgroup of the full linear group G‘ðpÞ, define by

H1 ¼ h [ G‘ðpÞ : h ¼ h11 0

0 h22

� �
with h11 is 1� 1

� �

and let H2 be the additive subgroup in R
p. Define G ¼ H1 	 H2, the direct sum of

H1 and H2. The transformation g ¼ ðh1; h2Þ [ G transforms

Xi ! h1Xi þ h2; i ¼ 1; . . . ;N

ðm;SÞ ! ðh1mþ h2; h1Sh
0
1Þ:

The corresponding transformation on the sufficient statistic ð �XX; SÞ is given by

ð �XX; SÞ ! ðh1 �XX þ h2; h1Sh
0
1Þ. A maximal invariant in the space of ð �XX; SÞ under G

is

R2 ¼ S�1
11 S12S

�1
22 S21

and a corresponding maximal invariant in the parametric space of ðm;SÞ is r2
(see Section 8.3.1).

5.4.6. Charcterization of Equivariant Estimators of S

Let Sp, be the space of all p� p positive definite matrices and let Gþ
T ðpÞ be the

group of p� p lower triangular matrices with positive diagonal elements. An

equivariant estimator dð �XX; SÞ of S with respect to the group of transformations G

is a measurable function dð �XX; SÞ on Sp � Rp to Sp satisfying

dðh �XX þ j; hSh0Þ ¼ hdð �XX; SÞh0

for all S [ Sp, h [ H1 and �XX; j [ Rp. From this definition it is easy to conclude

that if d is equivariant with respect to G then dð �XX; SÞ ¼ dð0; SÞ for all
�XX [ Rp; S [ Sp. Thus without any loss of generality we can assume that d is a

mapping from Sp to Sp. Furthermore, if u is a function mapping Sp into another

space Y (say) then d� is an equivariant estimator of uðSÞ if and only if d� ¼ u � d
for some equivariant estimator d of S.

Let

ur ¼ fðm;SÞ : S�1
11 S12S

�1
22 S21 ¼ r2g

and let �GG be the group of induced transformations corresponding to G on Qr.
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Theorem 5.4.6. �GG acts transitively on Qr.

Proof. It is sufficient to show that there exists a h ¼ ðh; jÞ [ G with h [
H1; j [ Rp such that

ðhmþ j; hSh0Þ ¼ 0;
1 r 0

r 1 0

0 0 I

0
@

1
A

0
@

1
A ð5:97Þ

with I ¼ Ip�2. If r ¼ 0, i.e. S12 ¼ 0, we take h11 ¼ S
�1=2
11 � j ¼ �hm to obtain

(5.97). If r = 0, choose h11 ¼
P�1=2

11 ; h22 ¼ G
P�1=2

22 where G is a ðp� 1Þ �
ðp� 1Þ orthogonal matrix such that

S
�1

2

11S12S
�1

2

22G ¼ ðr; 0; . . . ; 0Þ;
and j ¼ �hm to get (5.97). Q.E.D.

The Theorem below gives a characterization of the equivariant estimator dðSÞ
of S.

Theorem 5.4.7. An estimator d of S is equivariant if and only if it admits the

decomposition

dðSÞ ¼

a11ðRÞ a12ðRÞR�1S12

a12ðRÞR�1S21 R�2a22ðRÞS21S�1
11 S12 þ CðRÞðS22 � S21S

�1
11 S12Þ

 ! ð5:98Þ

where CðRÞ . 0 and

AðRÞ ¼ a11ðRÞ a12ðRÞ
a21ðRÞ a22ðRÞ

� �

is a 2� 2 positive definite matrix. Furthermore

d�1
11 d12d

�1
22 d21 ¼ r2 ¼ S

�1
11 S12S

�1
22 S21

if and only if a�1
11 a12a

�1
22 a21 ¼ r2.

Note The dij are submatrices of d as partitioned in (5.98) and aij ¼ aijðRÞ.

Proof. The sufficiency part of the proof is computational. It consists in verifying

dðhSh0Þ ¼ hdðSÞh0 for all h [ H, S [ Sp and d�1
11 d12d

�1
22 d21 ¼ a�1

11 a12a
�1
22 a21. It

can be obtained in a straightforward way from the computations presented in the

necessary part.
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To prove the necessary part we observe that if

P ¼ 1 R

R 1

� �
; R . 0

and d satisfies

d
P 0

0 Ip�2

� �
¼ I2 0

0 G

� �
d

P 0

0 Ip�2

� �
I2 0

0 G0

� �

for all G [ Oðp� 2Þ, then

d
P 0

0 Ip�1

� �
¼ AðRÞ 0

0 CðRÞIp�2

� �

with CðRÞ . 0. In general, S has a unique decomposition of the form

S ¼ S11 S12

S21 S22

� �

¼ T1 0

0 T2

� �
1 U 0

U Ip�1

� �
T 0
1 0

0 T 0
2

� �

where T1 [ Gþ
T ð1Þ, T2 [ Gþ

T ð p� 1Þ, and U ¼ T�1
2 S21T

�1
1 .

Without any loss of generality we may assume that U = 0. Corresponding to

U there exists a B [ 0ðp� 1Þ such that U0B ¼ ðR; 0; . . . ; 0Þ with R ¼
kUk ¼ ðS�1

11 S12S
�1
22 S21Þ1=2 . 0. For p . 2, B is not uniquely determined but its

first column is R�1U. Using such a B we have the decomposition

1 U0

U Ip�1

� �
¼ 1 0

0 B

� �
P 0

0 Ip�2

� �
1 0

0 B0

� �
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and

dðSÞ ¼ T1 0

0 T2

� �
1 0

0 B

� �
AðRÞ 0

0 Ip�2

� �
1 0

0 B0

� �
T 0
1 0

0 T 0
2

� �

¼ T1 0

0 T2

� �

� a11ðRÞ R�1a12ðRÞU0

R�1a21ðRÞU R�2a22ðRÞUU 0 þ CðRÞðIp�1 � UU 0Þ

 !

� T 0
1 0

0 T 0
2

� �

¼ a11ðRÞS11 R�1a12ðRÞS12
R�1a21ðRÞS21 R�2ðRÞS21S�1

11 S12 þ CðRÞðS22 � S21S
�1
11 S12Þ

 !

which proves the necessary part of the Theorem. Q.E.D.

5.4.7. Characterization of Equivariant Estimators of b

The following Theorem gives a characterization of the equivariant estimator of b.

Theorem 5.4.8. If d� is an equivariant estimator of b then d�ðSÞ has the form
d�ðSÞ ¼ R�1aðRÞS�1

22 S21

where aðRÞ : Rþ ! R1.

Proof. Define u : Sp ! Rp�1 by uðSÞ ¼ b ¼ S
�1
22 S21. If d

�ðSÞ is equivariant,

from Theorem 5.4.7, we get

d�ðSÞ ¼ ðR�2a22ðRÞS21S�1
11 S12

þ CðRÞðS22 � S21S
�1
11 S12ÞÞ�1S21R

�1a21ðRÞ

¼ ðT2ðR�2a22ðRÞUU 0 þ CðRÞðIp�1 � UU 0ÞT 0
2Þ�1S21R

�1a21ðRÞ

¼ R�1ða22ðRÞ þ ð1� R2ÞCðRÞÞ�1a21ðRÞS�1
22 S21

¼ R�1aðRÞS�1
22 S21

Q.E.D.
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The risk function of an equivariant estimator d� of b is given by

Rðb; d�Þ ¼ ESðLðb; d�ÞÞ
¼ ESfS�1

11 ðR�1aðRÞS12S�1
22 � bÞ0S22ðR�1aðRÞS�1

22 S21 � bÞg ð5:99Þ
¼ ESfa2ðRÞ � 2R�1aðRÞS�1

11 S12bþ S�1
11 b

0S22bg:

Theorem 5.4.9. The best equivariant estimator of b given r, under the loss

function L, is given by

R�1a�ðRÞS�1
22 S21 ð5:100Þ

where

a�ðRÞ ¼ Rr2

P1
i¼0 G

N þ 1

2
þ i

� �
G

N � 1

2
þ i

� �
ðR2r2Þi=i!G pþ 1

2
þ i

� �

P1
j¼0 G

2 N � 1

2
þ j

� �
ðr2R2Þj=j!G p� 1

2
þ j

� � :

ð5:101Þ

Proof. From (5.94), the minimum of Rðb; d�Þ is attained when aðRÞ ¼
a�ðRÞ ¼ ESðS�1

11 S12bR
�1=RÞ. Since the problem is invariant and d� is equivariant

we may assume, without any loss of generality, that

S ¼ Sr ¼ CðrÞ 0

0 Ip�2

� �

with

CðrÞ ¼ 1 r
r 1

� �
:

To evaluate a�ðRÞ we write

S22 ¼ TT 0; T [ Gþ
T ðp� 1Þ; T ¼ ðtijÞ;

S21 ¼ RTW; 0 , R , 1;W [ Rp�1;

S11 ¼ W 0W :
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The joint probability density function of ðR;W; TÞ (see Chapter 6) is given by

fR;W;T ðr;w; tÞ ¼ K�1rp�2ð1� r2ÞðN�pÞ=2�1ðw0wÞðN�pÞ=2

� exp � 1

2

Xp�1

i¼2

Xi
j¼1

t2ij

( )

� exp � 1

2ð1� r2Þ ðw
0wþ t211 � 2rrt11w1Þ

� �

�
Yp�1

i¼1

ðtiiÞN�i�1

ð5:102Þ

where

K ¼ ð1� r2ÞðN�1Þ=2ppðp�1Þ=42ðN�3Þp=2Yp

i¼1

G
N � i

2

� �
:

A straightforward computation gives (5.100). Q.E.D.

The following Lemma reduces the last expression in (5.101) into a rational

polynomial when ðN � pÞ=2 is an integer.

Lemma 5.4.1. Let b . 0; g [ ð0; 1Þ and m [ N. Then

X1
i¼0

Gðaþ mþ iÞGðbþ iÞ
Gðaþ iÞi! g i ¼ ð1� gÞ�b

�
Xm
j¼0

m

j

� �
Gðaþ mÞGðbþ jÞ

Gðaþ jÞ
g

1� g

� �j
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Proof.

X1
i¼0

Gðaþ mþ iÞ
Gðaþ iÞ

Gðbþ iÞ
i!

g i

¼ dm

dtm
taþm�1ð1� gtÞ�bGðbÞjt¼1

¼ ð1� gÞ�bGðbÞ d
m

dum
ð1þ uÞaþm�1 � g

1� g
u

� ��b����
u¼0

¼ ð1� gÞ�b
Xm
j¼0

m

j

� �
Gðaþ mÞ
Gðaþ jÞ Gðbþ jÞ g

1� g

� �j

:

Q.E.D.

If ðN � pÞ is even then with m ¼ ðN � pÞ=2,

a�ðRÞ ¼ ðN � 1Þ
2

Rr2

P1
i¼1

m

i

� �
G

N � 1

2
þ i

� ��
G

pþ 1

2
þ i

� �� �
R2r2

1� R2r2

� �i

Pm
j¼0

m

j

� �
G

N � 1

2
þ j

� ��
G

p� 1

2
þ j

� �� �
R2r2

1� R2r2

� �j
:

If the value of r2 is such that terms of order ðRrÞ2 and higher can be neglected, the
BEE of b is approximately equal to r2ðN � 1Þðp� 1Þ�1S�1

22 S21. The mle of b is

S�1
22 S21.

For the BEE of S22 we refer to Perron and Giri (1992).

EXERCISES

1 The data in Table 5.2 were collected in an experiment on jute in Bishnupur

village of West Bengal, India, in which the weights of green jute plants (X2)

and their dry jute fibers (X1) were recorded for 20 randomly selected

individual plants. Assume that X ¼ ðX1;X2Þ0 is normally distributed with

mean m ¼ ðm1;m2Þ0 and positive defiite covariance matrix S.
(a) Find maximum likelihood estimates of m;S.
(b) Find the maximum likelihood estimate of the coefficient of correlation r

between the components.

(c) Find the maximum likelihood estimate of EðX1jX2 ¼ x2Þ.
2 The variability in the price of farmland per acre is to be studied in relation to

three factors which are assumed to have major influence in determining the

selling price. For 20 randomly selected farms, the price (in dollars) per acre
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ðX1Þ, the depreciated cost (in dollars) of building per acre ðX2Þ, and the

distance to the nearest shopping center (in miles) ðX3Þ are recorded in Table

5.3. Assuming that X ¼ ðX1;X2;X3Þ0 has three-variate normal distribution,

find the maximum likelihood estimates of the following:

(a) EðX1jX2 ¼ x2;X3 ¼ x3Þ;
(b) the partial correlation coefficient between X1 and X3 when X2 is kept

fixed;

(c) the multiple correlation coefficient between X1 and ðX2;X3Þ.

Table 5.2.

Weight (gm) Weight (gm)

Plant No. X1 X2 Plant No. X1 X2

1 68 971 11 33 462

2 63 892 12 27 352

3 70 1125 13 21 305

4 6 82 14 5 84

5 65 931 15 14 229

6 9 112 16 27 332

7 10 162 17 17 185

8 12 321 18 53 703

9 20 315 19 62 872

10 30 375 20 65 740

Table 5.3.

Farm X1 X2 X3 Farm X1 X2 X3

1 75 15 6.0 11 13.5 13 0.5

2 156 6 2.5 12 175 12 2.5

3 145 60 0.5 13 240 7 2.0

4 175 24 3.0 14 175 27 4.0

5 70 5 2.0 15 197 16 6.0

6 179 8 1.5 16 125 6 5.0

7 165 14 4.0 17 227 13 5.0

8 134 13 4.0 18 172 13 11.0

9 137 7 1.5 19 170 34 2.0

10 175 19 2.5 20 172 19 6.5
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3 Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random sample of size N from

a p-variate normal distribution with mean m and positive definite covariance

matrix S. Show that the distribution of �XX ¼ ð1=NÞPN
a¼1 X

a is complete for

given S.
4 Prove the equivalence of the three criteria of stochastic convergence of a

random matrix as given in (5.5).

5 Let Xa ¼ ðXa1; . . . ;Xa1Þ0;a ¼ 1; . . . ;N, be a random sample of size N from

a p-dimensional normal distribution with mean m positive definite covariance

matrix S.

(a) Let m ¼ ðm; . . . ;mÞ0,

S ¼

1 r r � � � r
r 1 r � � � r

..

. ..
. ..

. ..
.

r r r � � � 1

0
BBB@

1
CCCAs2;

with �1=ðp� 1Þ , r , 1. Find the maximum likelihood estimators of r,
s2, and m.

(b) Let m ¼ ðm1; . . . ;mpÞ0,

S ¼

s2
1 rs1s2 rs1s3 � � � rs1sp

rs1s2 s2
2 rs2s3 � � � rs2sp

..

. ..
. ..

. ..
.

rs1sp rs2sp rs3sp � � � s2
p

0
BBBB@

1
CCCCA

with �1=p� 1 , r , 1. Find the maximum likelihood estimator of

m; r;s2
1; . . . ;s

2
p.

6 Find the maximum likelihood estimators of the parameters of the multivariate

log-normal distribution and of the multivariate Student’s t-distribution as

defined in Exercise 4.

7 Let Y ¼ ðY1; . . . ; YNÞ0 be normally distributed with

EðYÞ ¼ Xb; covðYÞ ¼ s2I

where X ¼ ðxijÞ is an N � p matrix of known constants xij, and b ¼
ðb1; . . . ;bpÞ0;s2 are unknown constants.

(a) Let the rank of X be p. Find the maximum likelihood estimators of b̂b ; ŝs2

of b;s2. Show that b̂b ; ŝs2 are stochastically independent and Nŝs2=s2 is

distributed as chi-square with N � p degrees of freedom.

(b) A linear parametric function L0b; L ¼ ðl1; . . . ; lpÞ0 = 0, is called

estimable if there exists a linear estimator b0Y; b ¼ ðb1; . . . ; bNÞ0 = 0,
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such that

Eðb0YÞ ¼ L0b:

Let the rank of X be less than p and let the linear parametric function L0b
be estimable. Find the unique minimum variance linear unbiased

estimator of L0b.
8 [Inverted Wishart distribution—W�1

p ðA;NÞ] A p� p symmetric random

matrix V has an inverted Wishart distribution with parameter A (symmetric

positive definite matrix) and with N degrees of freedom if its probability

density function is given by

cðdetAÞðN�p�1Þ=2ðdetV�1ÞN=2 exp � 1

2
tr V�1A

� �

where

c�1 ¼ 2ðN�p�1Þp=2ppðp�1Þ=4Pp
i¼1ðN � p� iÞ=2;

provided 2p , N and V is positive definite, and is zero otherwise.

(a) Show that if a p� p random matrix S has a Wishart distribution as given

in (5.2), then S�1 has an inverted Wishart distribution with parameters

S
�1

and with N þ p degrees of freedom.

(b) Show that EðS�1Þ ¼ S
�1=ðN � p� 1Þ.

9 Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N1, be a random sample of size N1

from a p-dimensional normal distribution with mean m ¼ ðm1; . . . ;mpÞ0 and
positive definite covariance matrix S, and let Ya ¼ ðYa1; . . . ; YapÞ0;
a ¼ 1; . . . ;N2, be a random sample of size N2 (independent of

Xa;a ¼ 1; . . . ;N1) from a normal distribution with mean n ¼ ðn1; . . . ; npÞ0
and the same covariance matrix S.
(a) Find the maximum likelihood estimators of m̂m; n̂n; ŜS of m; n and S,

respectively.

(b) Show that m̂m; n̂n; ŜS are stochastically independent and that ðN1 þ N2ÞŜS is

distributed as
PN1þN2�2

a¼1 ZaZa0
, where Za ¼ ðZa1; . . . ; ZapÞ0; a ¼ 1; . . . ;

N1 þ N2 � 2, are independently distributed p-variate normal random

variables with mean 0 and the same covariance matrix S.

10 [Giri (1965); Goodman (1963)] Let jb ¼ ðjb1
; . . . ; jbpÞ0;b ¼ 1; . . . ;N, be N

independent and identically distributed p-variate complex Gaussian random

variables with the same mean EðjbÞ ¼ a and with the same Hermitian

positive definite complex covariance matrix S ¼ Eðjb � aÞðjb � aÞ�, where
ðjb � aÞ� is the adjoint of (jb � aÞ.
(a) Show that, if a is known, the maximum likelihood estimator of S is

ŜS ¼ 1=N
PN

b¼1ðjb � aÞðjb � aÞ�. Find EðŜSÞ.
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(b) Show that, if a;S are unknown, ðĵj ; ŜSÞ where

ĵj ¼ 1

N

XN
b¼1

jb; ŜS ¼ 1

N

XN
b¼1

ðjb � �jjÞðjb � �jjÞ�:

is sufficient for ða;SÞ.
11 Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Npðm; g2SÞ and let A be a p� p

positive definite matrix. Show that (a)

E
XðX � mÞ0
X0AX

� �
¼ g2E

1

X0AX
I � 2XX0A

X0AX

� �� �
S;

and (b)

E
X0ðX � mÞ
X0AX

� �
¼ g2ðp� 2ÞE 1

X0AX

� �
; if S ¼ I

12 Prove (5.68) and (5.71).

13 Show that
ð1
m

ð1
y

h0ðyÞðx� mÞ 1ffiffiffiffiffiffi
2p

p
s
exp � 1

2

x� m

s

 �2� �
dx dy

¼
ð1
m

jh0ðyÞj 1ffiffiffiffiffiffi
2p

p
s
e�

1
2
ðx� mÞ2

s2

� �
dy:

14 Let L be a class of nonnegative definite symmetric p� p matrices, and

suppose J is a fixed nonsingular member of L. If J�1B (over B in L) is

maximized by J, then detB is also maximized by J. Conversely, if L is convex

and J maximizes detB then J�1B is maximized by B ¼ J.

15 In Theorem 5.3.6 for p ¼ 2, compute d1; d2 and the risk of the minimax

estimator. Show that the risk is 2ð2n2 þ 5nþ 4Þðn3 þ 5n2 þ 6nþ 4Þ�1.

REFERENCES

Amari, S. (1982(a)). Differential geometry of curved exponential families—

curvature and information loss. Ann. Statist. 10:357–385.

Amari, S. (1982(b)). Geometrical theory of asymptotic ancillary and conditional

inference. Biometrika 69:1–17.

Bahadur, R. R. (1955). Statistics and subfields. Ann. Math. Statist. 26:490–497.

Bahadur, R. R. (1960). On the asymptotic efficiency of tests and estimators.

Sankhya 22:229–252.

206 Chapter 5



Baranchik, A. J. (1970). A family of minimax estimator of the mean of a

multivariate normal distribution. Ann. Math. Statist. 41:642–645.

Basu, D. (1955). An inconsistency of the method of maximum likelihood. Ann.

Math. Statist. 26:144–145.

Berry, P. J. (1990). Minimax estimation of a bounded normal mean vector. Jour.

Mult. Anal. 35:130–139.

Bickel, P. J. (1981). Minimax estimation of the mean of a normal distribution

when the parameter space is restricted. Ann. Statist. 9:1301–1309.

Brandwein, A. C., Strawderman, W. E. (1990). Stein estimation: the spherically

symmetric case. Statistical Science 5:356–369.

Brandwein, A. C. (1979). Minimax estimation of the mean of spherically

symmetric distribution under general quadratic loss. J. Mult. Anal. 9:579–

588.

Berger, J. (1980). A robust generalized Bayes estimator and confidence region for

a multivariate normal mean. Ann. Statist. 8:716–761.

Das Gupta, A. (1985). Bayes minimax estimation in multiparameter families

when the parameter is restricted to a bounded convex set. Sankhya A, 47:281–

309.

Cox, D. R., Hinkley, D. V. (1977). Theoritical Statistics. London: Chapman and

Hall.

Dykstra, R. L. (1970). Establishing the positive definiteness of the sample

covariance matrix. Ann. Math. Statist. 41:2153–2154.

Eaton, M. L., Pearlman, M. (1973). The nonsingularity of generalized sample

covariance matrix. Ann. Statist. 1:710–717.

Efron, B. (1978). The geometry of exponential families. Ann. Statist. 6:362–376.

Efron, B. Morris, C. (1973) Stein’s estimation rule and its competitors. An

empirical Bayes approach. J. Amer. Statist. Assoc. 68:117–130.

Ferguson, T. S. (1967). Mathematical Statistics, A Decision Theoritic Approach.

New York: Academic Press.

Fisher, R. A. (1925). Theory of statistical estimation. Proc. Cambridge Phil. Soc.

22:700–715.

Fourdrinier, D., Strawderman, W. E. (1996). A paradox concerning shrinkage

estimators: should a known scale parameter be replaced by an estimated value

in the shrinkage factor? J. Mult. Anal. 59:109–140.

Estimators of Parameters and Their Functions 207



Fourdrinier, D., Ouassou, Idir (2000). Estimation of the mean of a spherically

symmetric distribution with constraints on the norm. Can. J. Statistics

28:399–415.

Giri, N. (1965). On the complex analogues of T2- and R2-tests. Ann. Math. Statist.

36:664–670.

Giri, N. (1975). Introduction to Probability and Statistics, Part 2, Statistics. New

York: Dekker.

Giri, N. (1993). Introduction to Probability and Statistics, (revised and expanded

edition). New York: Dekker.

Goodman, N. R. (1963). Statistical analysis based on a certain multivariate

Gaussian distributions (an introduction). Ann. Math. Statist. 34:152–177.

Haff, L. R. (1980). Empirical Bayes estimation of the multivariate normal

covariance matrix. Ann. Statist. 8:586–597.

Halmos, P. L., Savage, L. J. (1949). Application of Radon-Nikodyn theorem of

the theory of sufficient statistics. Ann. Math. Statist. 20:225–241.

Hinkley, D. V. (1977). Conditional inference about a normal mean with known

coefficient of variation. Biometrika 64:105–108.

James, W., Stein, C. (1961). Estimation with quadratic loss. Barkeley Symp.

Math. Statist. Prob. 2, 4:361–379.

Kariya, T. (1989). Equivariant estimation in a model with ancillary statistic. Ann.

Statist. 17:920–928.

Kariya, T., Giri, N., Perron. F. (1988). Equivariant estimation of a mean vector m
of Nðm;SÞ with m0S�1m ¼ 1 or S

�1=2m ¼ c or S ¼ s2ðm0mÞI. J. Mult. Anal.

27:270–283.

Kent, B., Briden, C., Mardia, K. (1983). Linear and planar structure in ordered

multivariate data as applied to progressive demagnetization of palaemagnetic

remanance. Geophys. J. Roy. Astron. Soc. 75:593–662.

Kiefer, J. (1957). Invariance, minimax and sequential estimation and continuous

time processes. Ann. Math. Statist. 28:573–601.

Kiefer, J., Wolfowitz, J. (1956). Consistency of maximum likelihood estimator in

the presence of infinitely many incident parameters. Ann. Math. Statist.

27:887–906.

Kubokawa, T. (1998). The Stein phenomenon in simultaneous estimation, a

review. In: Ahmad, S.E., Ahsanullah, M., Sinha, B. K., eds. Applied Statistical

Sciences, 3. New York: Nova, pp. 143–173.

208 Chapter 5



Kubokawa, T., Srivastava, M. S. (1999). Robust improvement in estimation of a

covariance matrix in an elliptically contoured distribution. Ann. Statist.

27:600–609.

LeCam, L. (1953). On some asymptotic properties of the maximum likelihood

estimates and related Bayes estimates. Univ. California Publ. Statist. 1:277–

330.

Lehmann, E. L. (1959). Testing Statistical Hypotheses. New York: Wiley.

Lehmann, E. L., Scheffie, H. (1950). Completeness, similar regions and unbiased

estimation, part 1. Sankhya 10:305–340.

Marchand, E., Giri, N. (1993). James-Stein estimation with constraints on the

norm. Commun. Statist., Theory Method 22:2903–2924.

Marchand, E. (1994). On the estimation of the mean of a Npðm;SÞ population
with m0S�1m known. Statist. Probab. Lett. 21:6975.

Neyman, J., Scott, E. L. (1948). Consistent estimates based on partially consistent

observations. Econometrika 16:1–32.

Olkin, I., Selliah, J. B. (1977). Estimating covariance in a multivariate normal

distribution. I: Gupta, S. S., Moore, D. S., eds. Statistical Decision Theory and

Related Topics, Vol II, pp. 312–326.

Pearson, K. (1896). Mathematical contribution to the theory of evolution III,

regression, heridity and panmixia. Phil. Trans. A. 187:253–318.

Perron, F., Giri, N. (1990). On the best equivariant estimation of mean of a

multivariate normal population. J. Mult. Anal. 32:1–16.

Perron, F., Giri, N. (1992). Best equivariant estimator in curved covariance

models. J. Mult. Anal. 44:46–55.

Press, S. J. (1972). Applied Multivariate Analysis. New York: Holt.

Raiffa, H., Schlaifer, R. (1961). Applied Statistical Decision Theory. Cambridge,

Massachusetts: Harvard University Press.

Robert, C. P. (1994). The Bayesian Choice a Decision Theoritic Motivation.

N.Y.: Springer.

Rao, C. R. (1965). Linear Statistical Inference and its Applications. New York:

Wiley.

Srivastava, M. S., Bilodeau, M. (1989). Stein estimation under elliptical

distributions. J. Mult. Anal. 28:247–259.

Estimators of Parameters and Their Functions 209



Strawderman, W. E. (1972). On the existance of proper Bayes minimax

estimators of the mean of a multivariate normal distribution. Proc. Barkeley

Symp. Math. Stat. Prob. 1, 6th:51–55.

Strawderman, W. E. (1974). Minimax estimation of location parameters of

certain spherically symmetric distributions. J. Mult. Anal. 4:255–264.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a

multivariate normal distribution. Barkeley Symp., Math. Stat. Prob. 3rd,

5:196–207.

Stein, C. (1962). Confidence sets for the mean of a multivariate normal

distribution. J. Roy Statist. Soc. Ser. B 24:265–285.

Stein, C. (1969). Multivariate analysis I (notes recorded by M. L. Eaton). Tech.

Rep. No. 42, Statist. Dept., Stanford Univ., California.

Stein, C. (1981). Estimation of the mean of a multivariate normal distribution.

Ann. Statist. 9:1135–1151.

Stein, C. (1975). Estimation of a Covariance Matrix. Rietz Lecture, 39th IMS

Annual Meeting, Atlanta, Georgia.

Stein (1977a). Estimating the Covariance Matrix. Unpublished manuscript.

Stein (1977b). Lectures on the theory of many parameters. In: Ibrogimov, I. A.,

Nikulin, M. S., eds. Studies in the Statistical Theory of Estimation. I.

Proceedings of Scientific Seminars of the Steklov Institute, Leningrad

Division, 74, pp. 4–65 (In Russian).

Young, R., Bergen, J. O. (1994). Estimation of a covariance matrix using

reference prior. Ann. Statist. 22:1195–1211.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters

when the number of observations is large. Trans. Am. Math. Soc. 54:426–482.

Wolfowitz, J. (1949). On Wald’s proof of the consistency of the maximum

likelihood estimate. Ann. Math. Statist. 20:601–602.

Zacks, S. (1971). The Theory of Statistical Inference. New York: Wiley.

Zehna, P. W. (1966). Invariance of maximum likelihood estimation. Ann. Math.

Statist. 37:744.

210 Chapter 5



6
Basic Multivariate Sampling Distributions

6.0. INTRODUCTION

This chapter deals with some basic distributions connected with multivariate

distributions. We discuss first the basic distributions connected with multi-

variate normal distributions. Then we deal with distributions connected with

multivariate complex normal and basic distributions connected with elliptically

symmetric distributions. The distributions of other multivariate test statistics

needed for testing hypotheses concerning the parameters of multivariate

populations will be derived where relevant. For better understanding and future

reference we will also describe briefly the noncentral chi-square, noncentral

Student’s t, and noncentral F-distributions. For derivations of these noncentral

distributions the reader is referred to Giri (1993).

6.1. NONCENTRAL CHI-SQUARE, STUDENT’S t-,
F-DISTRIBUTIONS

6.1.1. Noncentral Chi-square

Let X1; . . . ;XN be independently distributed normal random variables with

EðXiÞ ¼ mi; var ðXiÞ ¼ s2
i ; i ¼ 1; . . . ;N. Then the random variable

Z ¼
XN
i¼1

X2
i

s2
i
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has the probability density function given by

fZðzjd2Þ ¼
expf� 1

2
ðd2 þ zÞgzðN2�1Þ
ffiffiffiffi
p

p
2N=2

X1
j¼0

ðd2ÞjzjGðjþ 1=2Þ
ð2jÞ!GðN=2þ jÞ ; z � 0;

0; otherwise;

8><
>:

ð6:1Þ

where d2 ¼PN
i ðm2

i =s
2
i Þ. This is called the noncentral chi-square distribution

with N degrees of freedom and with the noncentrality parameter d2. The random
variable Z is often written as x2Nðd2Þ. The characteristic function of Z is (t real)

fZðtÞ ¼ Eðeit ZÞ ¼ ð1� 2itÞ�N=2 expfit d2=ð1� 2itÞg ð6:2Þ

with i ¼ ð�1Þ1=2. From this it follows that if Y1; . . . ; Yk are independently

distributed noncentral chi-square random variables x2Ni
ðd2i Þ; i ¼ 1; . . . ; k thenPk

1 Yi is distributed as x2Pk

1
Ni

ðPk
1 d

2
i Þ. Furthermore,

Eðx2Nðd2ÞÞ ¼ N þ d2; varðx2Nðd2ÞÞ ¼ 2N þ 4d2: ð6:3Þ

Since for any integer k

Gð2k þ 1Þ ffiffiffiffi
p

p ¼ 22kG k þ 1

2

� �
Gðk þ 1Þ; ð6:4Þ

we can write fZðzjd2Þ as

fZðzjd2Þ ¼
X1
k¼0

pKðkÞfx2
Nþ2k

ðzÞ ð6:5Þ

where pKðkÞ is the probability mass function of the Poisson random variable K

with parameter 1
2
d2 and fx2

Nþ2k
ðzÞ is the probability density function of the central

chi-square random variable with N þ 2k degrees of freedom.

6.1.2. Noncentral Students’s t

Let the random variable X, distributed normally with mean m and variance s2,

and the random variable Y such that Y=s2 has a chi-square distribution with n

degrees of freedom, be independent and let t ¼ ffiffiffi
n

p
X=

ffiffiffiffi
Y

p
. The probability
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density function of t is given by

ftðtjlÞ ¼

nn=2 expf� 1
2
l2g

ðnþ t2Þðnþ1Þ=2
X1

j¼0

Gððnþ jþ 1Þ=2Þlj
j!

2t2

nþ t2

� �j=2

; �1 , t , 1;

0 otherwise;

8><
>:

ð6:6Þ
where l ¼ m=s. The distribution of t is known as the noncentral t-distribution

with n degrees of freedom and the noncentrality parameter l.

6.1.3. Noncentral F-Distribution

Let the random variable X, distributed as x2mðd2Þ, and the random variable Y ,

distributed as x2n, be independent and let

F ¼ n

m

x2mðd2Þ
x2n

The distribution F is known as the noncentral F-distribution and its probability

density function is given by

fFðzÞ ¼

m

n
expð� 1

2
d2Þ

X1
j¼0

ðd2=2ÞjGððmþ nÞ=2þ jÞððm=nÞzÞm=2þj�1

Gðm=2þ jÞGðn=2Þð1þ ðm=nÞzÞðmþnÞ=2þj
; z � 0;

0; otherwise:

8><
>:

ð6:7Þ

6.2. DISTRIBUTION OF QUADRATIC FORMS

Theorem 6.2.1. Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m
and symmetric positive definite covariance matrix S, and let

X0S�1
X ¼ Q1 þ � � � þ Qk; ð6:8Þ

where Qi ¼ X0AiX and the rank of Ai is pi; i ¼ 1; . . . ; k. Then the Qi are

independently distributed as noncentral chi-square x2piðm0AimÞ with pi degrees of

freedom and the noncentrality parameter m0Aim if and only if S
k
l pi ¼ p, in which

case m0S�1m ¼ S
k
1m

0Aim.

Basic Multivariate Sampling Distributions 213



Proof. Since S is symmetric and positive definite there exists a nonsingular

matrix C such that S ¼ CC0. Let Y ¼ C�1X. Obviously Y has a p-variate normal

distribution with mean v ¼ C�1m and covariance matrix I (identity matrix). From

(6.8) we get

Y 0Y ¼ Y 0B1Y þ � � � þ Y 0BkY; ð6:9Þ
where Bi ¼ C0AiC. Since C is nonsingular, rank ðAiÞ ¼ rankðBiÞ; i ¼ 1; . . . ; k.
Obviously the theorem will be proved if we show that Y 0BiY; i ¼ 1; . . . ; k, are
independently distributed noncentral chi-squares x2pi ðv0BivÞ if and only if

S
k
1pi ¼ p, in which case v0v ¼ S

k
i¼1v

0Biv. Let us suppose that Y
0BiY; i ¼ 1; . . . ; k,

are independently distributed as x2piðv0BivÞ. Then S
k
i¼1Y

0BiY is distributed as

noncentral chi-square x2
Sk
i¼1pi

ðSk
i¼1v

0BivÞ. Since Y 0Y is distributed as x2pðv0vÞ and
(6.9) holds, it follows from the uniqueness of the characteristic function that

S
k
1pi ¼ p and v0v ¼ S

k
i¼1v

0Biv, which proves the necessity part of the theorem. To

prove the sufficiency part of the theorem let us assume that S
k
1pi ¼ p. SinceQi is a

quadratic form in Y of rank pi (rank of Bi) by Theorem 1.5.8,Qi can be expressed

as

Qi ¼
Xpi
j¼1

+Z2
ij ð6:10Þ

where the Zij are linear functions of Y1; . . . ; Yp. Let

Z ¼ ðZ11; . . . ; Z1p1 ; . . . ; Zk1; . . . ; Zkpk Þ0

be a vector of dimension S
k
1pi ¼ p. Then

Y 0Y ¼
Xk
1

Qi ¼ Z 0DZ; ð6:11Þ

where D is a diagonal matrix of dimension p� p with diagonal elements þ1 or

�1. Let Z ¼ AY be the linear transformation that transforms the positive definite

quadratic form Y 0Y to Z 0DZ. Since

Y 0Y ¼ Z 0DZ ¼ Y 0A0DAY ð6:12Þ
for all values of Y we conclude that A0DA ¼ I. In other words, A is nonsingular.

Thus Z 0DZ is positive definite and hence D ¼ I;A0A ¼ I. Since A is orthogonal

and Y has a p-variate normal distribution with mean v and covariance matrix I,

the components of Z are independently normally distributed with unit variance.

So Qiði ¼ 1; . . . ; kÞ are independently distributed chi-square random variables

with pi degrees of freedom and noncentrality parameter v0Biv; i ¼ 1; . . . ; k (see
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Exercise 6.1). But Y 0Y is distributed as x2pðv0vÞ. Therefore

v0v ¼
Xk
1

v0Biv:

Q.E.D.

Theorem 6.2.2. Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m
and positive definite covariance matrix S. Then X0AX is distributed as a

noncentral chi-square with k degrees of freedom if and only if SA is an

idempotent matrix of rank k, i.e., ASA ¼ A.

Proof. Since S is positive definite there exists a nonsingular matrix C such that

S ¼ CC0. Let X ¼ CY . Then Y has a p-variate normal distribution with mean

v ¼ C�1m and covariance matrix I, and

X0AX ¼ Y 0BY ð6:13Þ
where B ¼ C0AC and rankðAÞ ¼ rankðBÞ. The theorem will now be proved if we

show that Y 0BY has a noncentral chi-square distribution x2kðv0BvÞ if and only if B

is an idempotent matrix of rank k. Let us assume that B is an idempotent matrix of

rank k. Then there exists an orthogonal matrix u such that uBu0 is a diagonal

matrix

D ¼ I 0

0 0

� �

where I is the identity matrix of dimension k � k (see Chapter 1). Write

Z ¼ ðZ1; . . . ; ZpÞ0 ¼ uY . Then

Y 0BY ¼ Z 0DZ ¼
Xk
i¼1

Z2
i ð6:14Þ

is distributed as chi-square x2kðv0BvÞ (see Exercise 6.1). To prove the necessity of

the condition let us assume that Y 0BY is distributed as x2kðv0BvÞ. If B is of rank m,

there exists an orthogonal matrix u such that uBu0 is a diagonal matrix with m

nonzero diagonal elements l1; . . . ; lm, the characteristic roots of B (we can

without any loss of generality assume that the first m diagonal elements are

nonzero). Let Z ¼ uY . Then

Y 0BY ¼
Xm
i¼1

liZ
2
i : ð6:15Þ

Since the Z2
i are independently distributed each as noncentral chi-square with one

degree of freedom and Y 0BY is distributed as non-central x2kðv0BvÞ, it follows from
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the uniqueness of the characteristic function that m ¼ k and li ¼ 1; i ¼ 1; . . . ; k.
In other words, uBu0 is a diagonal matrix with k diagonal elements each equal

to unity and the rest are zero. This implies that B is an idempotent matrix of

rank k. Q.E.D.

From this theorem it follows trivially that

(a) X0S�1
X is distributed as noncentral chi-square x2pðm0S�1mÞ;

(b) ðX � mÞ0S�1ðX � mÞ is distributed as x2p;
(c) for any vector a ¼ ða1; . . . ;apÞ0; ðX � aÞ0S�1ðX � aÞ is distributed as

x2pððm� aÞ0S�1ðm� aÞÞ.

Theorem 6.2.3. Let X ¼ ðX1; . . . ;XpÞ0 be a normally distributed p-vector with

mean m and positive definite covariance matrix S and let B be an m� pmatrix of

rank mð, pÞ. Then the quadratic form X0X is distributed independently of the

linear form BX if BSA ¼ 0.

Proof. Since S is positive definite there exists a nonsingular matrix C such that

S ¼ CC0. Write X ¼ CY . Obviously Y is normally distributed with mean v ¼
C�1m and covariance matrix I. Now

X0AX ¼ Y 0DY;BX ¼ EY ð6:16Þ

whereD ¼ C0AC;E ¼ BC. To prove the theorem we need to show that Y 0DY;EY
are independently distributed if ED ¼ 0. Assume that ED ¼ 0 and that the rank of

D is k (, p). There exists an orthogonal matrix u such that uDu0 is a diagonal

matrix

D1 0

0 0

� �

where D1 is a diagonal matrix of dimension k � k with nonzero diagonal

elements. Now

Y 0DY ¼ Z 0
ð1ÞD1Zð1Þ;EY ¼ Eu0uY ¼ E*Z

where Z ¼ uY ¼ ðZ1; . . . ; ZpÞ0; Zð1Þ ¼ ðZ1; . . . ; ZkÞ0, and

E* ¼ Eu0 ¼ E�
11 E�

12

E�
21 E�

22

� �
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with E�
11 a k � k submatrix of E*. Since ED ¼ 0 implies that E*uDu0 ¼ 0, we get

E�
11D1 ¼ E�

21D1 ¼ 0, and hence

E* ¼ 0 E�
12

0 E�
22

� �
¼ ð0 E�

2Þ ðsayÞ;

and EY is distributed as E�
2Zð2Þ, where Zð2Þ ¼ ðZkþ1; . . . ; ZpÞ0. Since Y1; . . . ; Yp are

independently distributed normal random variables and u is an orthogonal matrix

we conclude that Y 0DY is independent of EY . Q.E.D.

Theorem 6.2.4. Cochran’s Theorem. Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N,
be a random sample of size N from a p-variate normal distribution with mean 0

and positive definite covariance matrix S. Assume that

XN
a¼1

ðXaÞðXaÞ0 ¼ Q1 þ � � � þ Qk; ð6:17Þ

where Qi ¼ S
N
a;b¼1ðXaÞaiabðXbÞ0 with Ai ¼ ðaiabÞ of rank Ni; i ¼ 1; . . . ; k. Then

the Qi independently distributed as

XN1þ���þNi

a¼N1þ���þNi�1þ1

ðZaÞðZaÞ0: ð6:18Þ

where Za ¼ ðZa1; . . . ; ZapÞ0;a ¼ 1; . . . ;Sk
1Ni, are independently distributed

normal p-vectors with mean 0 and covariance matrix S if and only if S
k
1Ni ¼ N.

Proof. Suppose that the Qi are independently distributed as in (6.18). Hence

S
k
1Qi is distributed as

XN1þ���þNk

a¼1

ðZaÞðZaÞ0 ð6:19Þ

From (6.17) and (6.19) and the uniqueness of the characteristic function we

conclude that S
k
1Ni ¼ N. To prove the sufficiency part of the theorem let us

assume that S
k
1Ni ¼ N. In the same way as in Theorem 6.2.1 we can assert that

there exists an orthogonal matrix B

B ¼
B1

..

.

Bk

0
B@

1
CA with Ai ¼ BiB

0
i:
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Since B ¼ ðbabÞ is orthogonal,

Za ¼
XN
b¼1

babX
b;a ¼ 1; . . . ;N;

are independently distributed normal p-vectors with mean 0 and covariance

matrix S. It easy to see that for i ¼ 1; . . . ; k,

Qi ¼
XN
a;b¼1

ðXaÞaiabðXbÞ0 ¼
XN1þ���þNi

a¼N1þ���þNi�1þ1

ðZaÞðZaÞ0:

Q.E.D.

This theorem is useful in generalizing the univariate analysis of variance

results to multivariate analysis of variance problems. There is considerable

literature on the distribution of quadratic forms and related results. The reader is

referred to Cochran (1934), Hogg and Craig (1958), Ogawa (1949), Rao (1965),

and Graybill (1961) for further references and details.

6.3. THE WISHART DISTRIBUTION

In Chapter 5 we remarked that a symmetric random matrix S of dimension p� p

has a Wishart distribution with n degrees of freedom (n � p) and parameter S (a

positive definite matrix) if S can be written as

S ¼
Xn
a¼1

XaðXaÞ0

where Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ; n are independently distributed normal

p-vectors with mean 0 and covariance matrix S. In this section we shall derive the
Wishart probability density function as given in (5.2). In the sequel we shall need

the following lemma.

Lemma 6.3.1. Suppose X with values in the sample space X is a random

variable with probability density function f ðtðxÞÞ with respect to a s-finite
measure m on X where t : X ! Y is measurable. For any measurable subset

B [ Y define the measure n by

nðBÞ ¼ mðt�1ðBÞÞ: ð6:20Þ
Then the probability density function of Y ¼ tðXÞ with respect to the measure n is
f ðyÞ.
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Proof. It suffices to show that if g : Y ! R (real line), then

EðgðYÞÞ ¼
ð
Y
gðyÞf ðyÞdnðyÞ:

From (6.20)

EðgðYÞÞ ¼ EgðtðXÞÞ ¼
ð
X
gðtðxÞÞf ðtðxÞÞdmðxÞ ¼

ð
Y
gðyÞf ðyÞdnðyÞ:

Q.E.D.

We shall assume that n � p so that S is positive definite with probability 1. The

joint probability density function of Xa;a ¼ 1; . . . ; n, is given by

f ðx1; . . . ; xnÞ ¼ ð2pÞ�np=2ðdetS�1Þn=2

� exp � 1

2
trS

�1
Xn
a¼1

xaðxaÞ0
( )

:
ð6:21Þ

For any measurable set A in the space of S, the probability that S belongs to A

depends on S and is given by

PSðS [ AÞ ¼ ð2pÞ�np=2

ð
Sn
a¼1x

aðxaÞ0¼s[A

ðdetSÞ�n=2 exp � 1

2
trS

�1
s

� �

�
Yn
a¼1

dxa ¼ ð2pÞ�np=2

ð
s[A

ðdetSÞ�n=2 exp � 1

2
trS

�1
s

� �
dmðsÞ

ð6:22Þ

where m is the measure corresponding to the measure n of (6.20). Let us now

define the measure m* on the space of S by

dm*ðsÞ ¼ dmðsÞ
ðdet sÞn=2 : ð6:23Þ

Then

PSðS [ AÞ

¼ ð2pÞ�np=2

ð
A

ðdetðS�1
sÞÞn=2 exp � 1

2
trS

�1
s

� �
dm*ðsÞ:

ð6:24Þ

Obviously to find the probability density function of S it is sufficient to find

dm*ðsÞ. To do this let us first observe the following: (i) Since S is positive definite

there exists C [ GlðpÞ, the multiplicative group of p� p nonsingular matrices,
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such that, S ¼ CC0. (ii) Let

~SS ¼ C�1SðC�1Þ0 ¼
XN
a¼1

ðC�1XaÞðC�1XaÞ0: ð6:25Þ

Since C�1Xa are independently normally distributed with mean 0 and covariance

matrix I, ~SS is distributed as Wpðn; IÞ. Thus by (6.20)

PCC0 ðS [ AÞ ¼ PIðC ~SSC0 [ AÞ: ð6:26Þ
Now

PCC0 ðS [ AÞ ¼ ð2pÞ�np=2

ð
A

ðdetððCC0Þ�1sÞÞn=2

� exp � 1

2
trðCC0Þ�1s

� �
dm*ðsÞ; ð6:27Þ

PiðC ~SSC0 [ AÞ ¼ ð2pÞ�np=2

ð
C~ssC0[A

ðdetð~ssÞÞm=2 exp � 1

2
tr~ss

� �
dm*ð~ssÞ

¼ ð2pÞ�np=2

ð
A

ðdetððCC0Þ�1sÞÞn=2

� exp � 1

2
trððCC0Þ�1sÞ

� �
dm*ðC�1sC0�1Þ: ð6:28Þ

Since (6.26) holds for all measurable sets A in the space of S we must then have

dm*ðsÞ ¼ dm*ðCsC0Þ ð6:29Þ
for all C [ GlðpÞ and all s in the space of S. This implies that for some positive

constant k

dm*ðsÞ ¼ kds

ðdet sÞðpþ1Þ=2 ð6:30Þ

where ds stands for the Lebesgue measure
Q

i�j dsij in the space of S. By Theorem

2.4.10 for the Jacobian of the transformation s ! CsC0;C [ GlðpÞ, is

ðdetðCC0ÞÞðpþ1Þ=2. Hence

dm*ðCsC0Þ ¼ kdðCsC0Þ
ðdetðCsC0ÞÞðpþ1Þ=2 ¼

kds

ðdet sÞðpþ1Þ=2 ð6:31Þ

In other words, dm*ðsÞ is an invariant measure on the space of S under the action

of the group of transformations defined by s ! CsC0;C [ GlðpÞ. Now (6.30)

follows from the uniqueness of invariant measures on homogeneous spaces (see

Nachbin, 1965; or Eaton, 1972). From (6.24) and (6.30) the probability density
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functionWpðn;SÞ of a Wishart random variable S with m degrees of freedom and

parameter S is given by (with respect to the Lebesgue measure ds)

Wpðn;SÞ ¼
KðdetSÞ�n=2ðdet sÞðn�p�1Þ=2 expf� 1

2
trS

�1
sg;
if s is positive definite;

0; otherwise

8<
:

ð6:32Þ

where K is the normalizing constant independent of S. To specify the probability
density function we need to evaluate the constant K. Since K is independent of S,
we can in particular take S ¼ I for the evaluation of K. Since K is a function of n

and p, we shall denote it by Cn;p. Let us partition S ¼ ðSijÞ as

S ¼ Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� �

with Sð11Þ a ðp� 1Þ � ðp� 1Þ) submatrix of S, and let

Z ¼ Sð22Þ � Sð21ÞS�1
ð11ÞSð12Þ:

From (6.32)

1 ¼
ð
Cn;pðdet sð11ÞÞðn�p�1Þ=2ðsð22Þ � sð21Þs�1

ð11Þsð12ÞÞðn�p�1Þ=2

� exp � 1

2
trðsð22Þ þ sð11ÞÞ

� �
dsð11Þdsð12Þdsð22Þ

¼ Cn;p

ð
ðdetðsð11ÞÞÞðn�p�1Þ=2 exp � 1

2
trsð11Þ

� �

�
ð
exp � 1

2
sð21Þs�1

ð11Þsð12Þ

� �
dsð12Þ dsð11Þ

�
ð6:33Þ

�
ð1
0

zðn�p�1Þ=2 exp � 1

2
z

� �
dz

¼ Cn;p2
ðn�pþ1Þ=2G

n� pþ 1

2

� �
ð2pÞðp�1Þ=2

ð
ðdet sð11ÞÞðn�pÞ=2

� exp � 1

2
trsð11Þ

� �
dsð11Þ
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as
ð1
0

zðn�p�1Þ=2 exp � 1

2
z

� �
dz ¼ 2ðn�pþ1Þ=2G

n� pþ 1

2

� �
;

�
ð
exp � 1

2
sð21Þs�1

ð11Þsð12Þ

� �
dsð12Þ ¼ ð2pÞðp�1Þ=2ðdetðsð11ÞÞÞ1=2:

Since Wpðn; IÞ is a probability density function with the constant K ¼ Cn;p, we

obtain
ð
ðdet sð11ÞÞðn�pÞ=2 exp � 1

2
trsð11Þ

� �
dsð11Þ ¼ ðCn;p�1Þ�1: ð6:34Þ

From (6.33) and (6.34) we get

Cn;p ¼ G
n� pþ 1

2

� �
2n=2pðp�1Þ=2

� ��1

Cn;p�1

¼ G
n� pþ 1

2

� �
2n=2pðp�1Þ=2

� ��1

� � � G
n� 1

2

� �
2n=2p1=2

� ��1

� Cn;1:

ð6:35Þ

But Cn;1 is given by

Cn;1

ð1
0

xðn�2Þ=2 exp � 1

2
x

� �
dx ¼ 1;

that implies

Cn;1 ¼ ½Gðn=2Þ2n=2��1: ð6:36Þ
From (6.35) and (6.36) we get

ðCn;pÞ�1 ¼
Yp�1

i¼0

G
n� i

2

� � !
2np=2pðpðp�1Þ=4 ¼ K�1: ð6:37Þ

The derivation of the Wishart distribution, which is very fundamental in

multivariate analysis, was a major breakthrough for the development of

multivariate analysis. Several derivations of the Wishart distribution are

available in the literature. The derivation given here involves a property of

invariant measure and is quite short and simple in nature.

Alternate Derivation. Since the preceding derivation of the Wishart

distribution involves some deep theoretical concepts, we will now give a

straightforward derivation. S is distributed as S
N�1
a¼1X

aðXaÞ0, where

Xa;a ¼ 1; 2; . . . ;N � 1, are independently distributed normal p-vectors with
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mean 0 and positive definite covariance matrix S. Let

S ¼ CC0; Ya ¼ C�1Xa;a ¼ 1; 2; . . . ;N � 1;

where C is a nonsingular matrix. Let us first consider the distribution of

A ¼
XN�1

a¼1

YaðYaÞ0:

Write Y ¼ ðY1; . . . ; YN�1Þ. Then A ¼ YY 0. By the Gram-Schmidt orthogonaliza-

tion process on the row vectors Y1; . . . ; Yp of Y we obtain new row vectors

Z1; . . . ; Zp such that

ZZ 0 ¼ I;

where

Z ¼
Z1

..

.

Zp

0
B@

1
CA

Let the transformation involved in transforming Y to Z be given by Z ¼ B�1Y .

Obviously B ¼ ðbijÞ is a random lower triangular nonsingular matrix. Now

A ¼ YY 0 ¼ BZZ 0B ¼ BB0;

where B ¼ ðbijÞ is a random lower triangular nonsingular matrix with positive

diagonal elements satisfying Y ¼ BZ. Thus we get

Yi ¼
Xi
j¼1

¼ bijZj; i ¼ 1; . . . ; p;

and ZjY
0
i ¼ bij. Hence with A ¼ ðaijÞ,

aii ¼ YiY
0
i ¼

Xi
j¼1

b2ij; b2ii ¼ aii �
Xi�1

j¼1

b2ij:

In other words,

bi1

..

.

bi;i�1

0
B@

1
CA ¼

Z1

..

.

Zi�1

0
B@

1
CAY 0

i

Since ZZ 0 ¼ I, the components of Ya;a ¼ 1; . . . ;N � 1, are independently

distributed normal variables with mean 0 and variance 1, and Z1; . . . ; Zi�1 are

functions of Y1; . . . ; Yi�1, the conditional distributions of bi1; . . . ; bi;i�1, given
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Z1; . . . ; Zi�1 are independent normal with mean 0 and variance 1,

b2ii ¼ YiY
0
i �

Xi�1

j¼1

b2ij

is distributed as x2N�i, and all bij; j ¼ 1; . . . ; i, are independent. Since the

conditional distributions of bij; j ¼ 1; . . . ; i, do not involve Z1; . . . ; Zi�1, these

conditional distributions are also the unconditional distributions of

bij; j ¼ 1; . . . ; i� 1. Furthermore, bi1; . . . ; bii are distributed independently of

Y1; . . . ; Yi�1 and hence of brs; r; s ¼ 1; . . . ; i� 1ðr � sÞ, and Z1; . . . ; Zi�1, which

are functions of Y1; . . . ; Yi�1 only. Hence bij; i; j ¼ 1; . . . ; pði . pÞ, are

independently distributed normal random variables with mean 0 and variance

1, and b2ii; i ¼ 1; . . . ; p, are independently distributed (independently of the bij) as
x2N�i. From Theorem 2.4.6 the Jacobian of the transformations B ! A ¼ BB0 is
2p
Qp

i¼1ðbiiÞi�p�1. Hence the distribution of A is

fAðaÞ ¼ Kðdet aÞðN�p�2Þ=2 exp � tr a

2

n o

provided a is positive definite, where K is a constant depending on N and p. By

Theorem 2.4.9 the probability density function of S ¼ CAC0 is given by (6.32).

The Wishart distribution was first derived by Fisher (1915) for p ¼ 2. Wishart

(1928) gave a geometrical derivation of this distribution for general p. Ingham

(1933) derived this distribution from its characteristic function. Elfving (1947),

Mauldan (1955), and Olkin and Roy (1954) used matrix transformations to derive

the Bartlett decomposition of the Wishart matrix from sample observations and

then derived the distribution of the Wishart matrix. Khirsagar (1959) used

random orthogonal transformations to derive the Wishart distribution and the

distribution of Bartlett decomposition. Sverdrup (1947) derived this distribution

by straightforward integration over the sample space. Narain (1948) and Ogawa

(1953) used the regression approach, Ogawa’s approach being more elegant.

Rasch (1948) and Khatri (1963) also gave alternative derivations of this

distribution.

6.4. PROPERTIES OF THE WISHART DISTRIBUTION

This section deals with some important properties of the Wishart distribution

which are often used in multivariate analysis.

Theorem 6.4.1. Let

S ¼ Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� �
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where Sð11Þ is the q� q left-hand corner submatrix of Sðq , pÞ, be distributed as

Wpðn;SÞ, and let S be similarly partitioned into

S ¼ Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� �

Then

(a) Sð11Þ � Sð12ÞS�1
ð22ÞSð21Þ is distributed as Wishart Wqðn� ðp� qÞ;

Sð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ;

(b) Sð22Þ is distributed as Wishart Wp�qðn;Sð22ÞÞ;
(c) the conditional distribution of Sð12ÞS�1

ð22Þ given that Sð22Þ ¼ sð22Þ is normal

with mean Sð12ÞS
�1
ð22Þ and covariance matrix ðSð11Þ � Sð12ÞS

�1
ð22ÞSð21ÞÞ � s�1

ð22Þ;
(d) Sð11Þ � Sð12ÞS�1

ð22ÞSð21Þ is independent of ðSð12Þ; Sð22ÞÞ.

Proof. Let S
�1 ¼ L be partitioned into

L ¼ Lð11Þ Lð12Þ
Lð21Þ Lð22Þ

� �

where Lð11Þ is a q� q submatrix of L and let ðSð11Þ; Sð12Þ; Sð22ÞÞ be transformed to

ðW;U;VÞ where

W ¼ Sð11Þ � Sð12ÞS�1
ð22ÞSð21Þ;U ¼ Sð12ÞS

�1=2
ð22Þ ;V ¼ Sð22Þ ð6:38Þ

or, equivalently,

Sð11Þ ¼ W þ UU 0; Sð12Þ ¼ UV1=2; Sð22Þ ¼ V:

The Jacobian of this transformation is given by the absolute value of the

determinant of the following matrix of partials:

Sð11Þ
Sð12Þ
Sð22Þ

W U V

I � �
0 A �
0 0 I

0
BB@

1
CCA

where the dash indicates some matrix which need not be known and A is the

matrix of partial derivatives of the transformation Sð12Þ ! UV1=2 (V fixed). By a

result analogous to Theorem 2.4.1, the Jacobian is

j detðAÞj ¼ j detðVÞjq=2 ð6:39Þ
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Now

tr
X�1

s ¼ tr Ls

¼ trðLð11ÞÞsð11Þ þ Lð12Þsð21ÞÞ þ trðLð21Þsð12Þ þ Lð22Þsð22ÞÞ

¼ trðLð11Þsð11Þ þ Lð12Þsð21Þ þ sð12ÞLð21Þ þ L�1
ð11ÞLð12Þsð22ÞLð21ÞÞ

þ trðLð22Þ � Lð21ÞL
�1
ð11ÞLð12ÞÞsð22Þ

¼ tr Lð11Þðwþ uu0Þ þ 2tr Lð12Þv1=2u0 þ tr Lð21ÞL�1
ð11ÞLð12Þv

þ trðLð22Þ � Lð21ÞL
�1
ð11ÞLð12ÞÞv

¼ tr Lð11Þwþ tr Lð11Þuu0 þ 2tr Lð12Þv1=2u0

þ tr Lð12ÞvLð21ÞL�1
ð11Þ þ trðLð22Þ � Lð21ÞL�1

ð11ÞLð12ÞÞv

¼ tr Lð11Þwþ tr Lð11Þðuþ L�1
ð11ÞL12v

1=2Þðuþ L�1
ð11ÞLð12Þv1=2Þ0

þ trðLð22Þ � Lð21ÞL�1
ð11ÞLð12ÞÞv:

ð6:40Þ

Since

Lð11Þ ¼ ðSð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ�1;

S
�1
ð22Þ ¼ ðLð22Þ � Lð21ÞL

�1
ð11ÞLð12ÞÞ;

L�1
ð11ÞLð12Þ ¼ �Sð12ÞS

�1
ð22Þ;

detðSÞ ¼ detðSð22ÞÞ detðSð11Þ � Sð12ÞS�1
ð22ÞSð21ÞÞ;

detS ¼ detðSð22ÞÞ detðSð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ;

from (6.39), (6.40), and (6.32), the joint probability density function of ðW;U;VÞ
can be written as

fW;U;V ðw; u; vÞ ¼ fW ðwÞfUjV ðujvÞfV ðnÞ ð6:41Þ
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where

fW ðwÞ ¼ k1ðdetðSð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞÞ�ðn�ðp�qÞÞ=2

� ðdetðwÞÞðn�ðp�qÞ�q�1Þ=2

� exp � 1

2
trðSð11Þ � Sð12ÞS

�1
ð22ÞSð21ÞÞ�1w

� �
;

fUjV ðu; vÞ ¼ k2ðdetððSð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ � Ip�qÞÞ�1=2

� exp � 1

2
trððSð11Þ � Sð12ÞS

�1
ð22ÞSð21ÞÞ � Ip�qÞ�1

�

� ðu� Sð12ÞS
�1
ð22Þv

1=2Þ0ðu� Sð12ÞS
�1
ð22Þv

1=2Þ
�
;

fV ðvÞ ¼ k3ðdetSð22ÞÞ�n=2ðdet vÞðn�ðp�qÞ�1Þ=2 exp � 1

2
trS

�1
ð22Þv

� �
;

where k1; k2; k3 are normalizing constants independent of S. Thus Sð11Þ �
Sð12ÞS�1

ð22ÞSð21Þ is distributed as Wishart

Wqðn� ðp� qÞ;Sð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ

and is independent of ðSð12Þ; Sð22ÞÞ. The conditional distribution of Sð12ÞS�1=2
ð22Þ given

Sð22Þ ¼ sð22Þ, is normal (in the sense of Example 4.3.6.0 with mean Sð12ÞS
�1
ð22Þs

1=2
ð22Þ

and covariance matrix ðSð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ � Ip�q. Multiplying Sð12ÞS

�1=2
ð22Þ by

S
�1=2
ð22Þ we conclude that the conditional distribution of Sð12ÞS

�1=2
ð22Þ given Sð22Þ ¼ sð22Þ

is normal in the sense of Example 4.3.6.0 with mean Sð12ÞS
�1
ð22Þ and covariance

matrix ðSð11Þ � Sð12ÞS
�1
ð22ÞSð21ÞÞ � s�1

ð22Þ. Finally, Sð22Þ is distributed as Wishart

Wðp�qÞðn;Sð22ÞÞ. Q.E.D.

Theorem 6.4.2. If S is distributed as Wpðn;SÞ and C is a nonsingular matrix of

dimension p� p, then CSC0 is distributed as Wpðn;CSC0Þ.

Proof. Since S is distributed as Wpðn;SÞ; S can be written as

S ¼
Xn
a¼1

YaðYaÞ0

where Ya ¼ ðYa1; . . . ; YapÞ0;a ¼ 1; . . . ; n, are independently distributed normal

p-vectors with mean 0 and the same covariance matrix S. Hence CSC0 is
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distributed as

Xn
a¼1

ðCYaÞðCYaÞ0 ¼
Xn
a¼1

ZaðZaÞ0;

where Za ¼ ðZa1; . . . ; ZapÞ0;a ¼ 1; . . . ; n, are independently and identically

distributed normal p-vectors with mean 0 and covariance matrix CSC0 and hence
the theorem. Q.E.D.

Theorem 6.4.3. Let the p� p symmetric random matrix S ¼ ðSijÞ be distributed
as Wpðn;SÞ. The characteristic function of S (i.e., the characteristic function of

S11; S22; . . . ; Spp; 2S12; . . . ; 2Sp�1;p) is given by

EðexpðitruSÞÞ ¼ ðdetðI � 2iSuÞÞ�n=2 ð6:42Þ

where u ¼ ðuijÞ is a real symmetric matrix of dimension p� p.

Proof. S is distributed as S
n
a¼1Y

aðYaÞ0 where the Ya;a ¼ 1; . . . ; n, have the

same distribution as in Theorem 6.4.2. Hence

EðexpðitruSÞÞ ¼ E exp itru
Xn
a¼1

YaðYaÞ0
 ! !

¼
Yn
a¼1

EðexpðitruYaðYaÞ0ÞÞ ð6:43Þ

¼ EðexpðitruYðYÞ0ÞÞn;

where Y has p-dimensional normal distribution with mean 0 and covariance

matrix S. Since u is real and S is positive definite there exists a nonsingular

matrix C such that

C0S�1
C ¼ I and C0uC ¼ D;
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where D is a diagonal matrix of diagonal elements dii. Let Y ¼ CZ. Then Z has a

p-dimensional normal distribution with mean 0 and covariance matrix I. Hence

EðexpðitrY 0uYÞÞ ¼ EðexpðitrZ 0DZÞÞ

¼
Yp

j¼1

EðexpðidjjZ2
j ÞÞ ¼

Yp

j¼1

ð1� 2idjjÞ�1=2

¼ ðdetðI � 2iDÞÞ�1=2 ¼ ðdetðI � 2iC0uCÞÞ�1=2

¼ ðdetðC0CÞÞ�1=2ðdetðS�1 � 2iuÞÞ�1=2

¼ ðdetðI � 2iuSÞÞ�1
2:

Hence

EðexpðitruSÞÞ ¼ ðdetðI � 2iuSÞÞ�n=2

Q.E.D.

From this it follows that

EðSÞ ¼ nS; covðSÞ ¼ 2nS� S: ð6:44Þ

Theorem 6.4.4. If Si; i ¼ 1; . . . ; k are independently distributed as Wpðni;SÞ
then

Pk
1 Si is distributed as Wpð

Pk
1 ni;SÞ.

Proof. Since Si; i ¼ 1; . . . ; k, are independently distributed as Wishart we can

write

Si ¼
Xn1þ���þni

a¼n1þ���þni�1þ1

YaðYaÞ0; i ¼ 1; . . . ; k;

where Ya ¼ ðYa1; . . . ; YapÞ0;a ¼ 1; . . . ;
Pk

1 ni, are independently distributed p-

dimensional normal random vectors with mean 0 and covariance matrix S. Hence

Xk
1

Si ¼
Xn1þ���þnk

a¼1

YaðYaÞ0

is distributed as Wpð
Pk

1 ni;SÞ. Q.E.D.
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Theorem 6.4.5. Let S be distributed as Wpðn;SÞ and let B be a k � p matrix of

rank k � p. Then ðBS�1BÞ�1 is distributed as

Wkðn� pþ k; ðBS�1
B0Þ�1Þ:

Proof. Let A ¼ S
�1=2

SS
�1=2

where S
1=2

is the symmetric positive definite

matrix such that S ¼ S
1=2

S
1=2

. From Theorem 6.4.2 A is distributed as Wpðn; IÞ.
Now

ðBS�1B0Þ�1 ¼ ðBS�1=2
A�1S

�1=2
B0Þ�1

¼ ðMA�1M0Þ�1;
ð6:45Þ

and

ðBS�1
B0Þ�1 ¼ ðMM0Þ�1 ð6:46Þ

whereM ¼ BS
�1=2

. SinceM is a k � pmatrix of rank k, by Theorem 1.5.14 there

exist a k � k nonsingular matrix C and a p� p orthogonal matrix u such that

M ¼ CðIk; 0Þu: ð6:47Þ

Let D ¼ uAu0. Then

ðMA�1M0Þ�1 ¼ ðC0Þ�1½ðIk; 0ÞD�1ðIk; 0Þ0��1C�1 ð6:48Þ

and D is distributed Wpðn; IÞ. Write

D�1 ¼ H ¼ H11 H12

H21 H22

� �
; D ¼ D11 D12

D21 D22

� �
ð6:49Þ

where H11;D11 are left-hand corner submatrices of order k � k. From (6.48) and

(6.49)

ðMA�1M0Þ�1 ¼ ðC0Þ�1H�1
11 C

�1;

H�1
11 ¼ D11 � D12D

�1
22 D21

By Theorem 6.4.1 (since D is Wpðn; IÞÞ H�1
11 is distributed as aWkðn� pþ k; IkÞ.

Hence ðC0Þ�1H�1
11 C

�1 is distributed as Wkðn� pþ k; ðCC0Þ�1Þ and, from (6.47),

ðCC0Þ�1 ¼ ðMM0Þ�1 ¼ ðBS�1
B0Þ�1. Q.E.D.
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Theorem 6.4.6. (Inverted Wishart). Let S be distributed as Wpðn;SÞ. Then the

distribution of A ¼ S�1 is given by

fAðaÞ ¼
KðdetS�1Þn=2ðdet aÞ�ðnþp�1Þ

2 e�
1
2
trS�1

a�1

;
if a is positive definite;

0; otherwise

8<
:

ð6:50Þ
where K is given in (6.32).

Proof. From Theorem 2.4.11 the Jacobian of the transformation S ! A ¼ S�1

is jAj2p. Using (6.32) the distribution of A is given by (6.50). Q.E.D.

6.5. THE NONCENTRAL WISHART DISTRIBUTION

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently distributed normal p-

vectors with mean ma ¼ ðma1; . . . ;mapÞ0 and the same covariance matrix S. Let

X ¼ ðX1; . . . ;XNÞ;D ¼ XX0;M ¼ ðm1; . . . ;mNÞ:
The probability density function of X is given by

fXðxÞ ¼ ð2pÞNp=2ðdetSÞ�N=2 exp � 1

2
trS

�1ðx�MÞðx�MÞ0
� �

: ð6:51Þ

The distribution of D is called the noncentral Wishart distribution. Its probability

density function in its most general form was first derived by James, 1954, 1955,

1964; see also Constantine, 1963; Anderson, 1945, 1946, and it involves the

characteristic roots of S
�1
MM0. The noncentral Wishart distribution is said to

belong to the linear case if the rank ofM is 1, and to the planar case if the rank of

M is 2. In particular, if S ¼ I, the probability density function of D can be written

as (with respect to the Lebesgue measure)

fDðdÞ ¼ 2�Np=2p�pðp�1Þ=4 Yp

i¼1

G
N � iþ 1

2

� �" #�1

� exp � 1

2
ðtrMM0 þ trdÞ

� �
ðdet dÞðN�p�1Þ=2 ð6:52Þ

�
ð
0ðNÞ

expf�trM0xugdu
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where OðNÞ is the group of N � N orthogonal matrices u and du is the Lebesgue

measure in the space of OðNÞ. In particular, if S ¼ I and

M ¼
m1 � � � mN

0 � � � 0

0 � � � 0

0
@

1
A

then the distribution of D ¼ ðDijÞ is given by ½d ¼ ðdijÞ�

fDðdÞ ¼ exp � 1

2
l2

� �X1
a¼0

ðl2=2Þa
a!

GðN=2Þ
GðN=2þ aÞ

d11

2

� �a

ð6:53Þ

where l2 ¼ S
N
1 m

2
i . This is called the canonical form of the noncentral Wishart

distribution in the linear case.

6.6. GENERALIZED VARIANCE

For the p-variate normal distribution with mean m and covariance matrix S, detS
is called the generalized variance of the distribution (see Wilks, 1932). Its

estimate, based on sample observations xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N,

det
1

N � 1

XN
a¼1

ðxa � �xxÞðxa � �xxÞ0
 !

¼ 1

ðN � 1Þp detðsÞ

is called the sample generalized variance or the generalized variance of the

sample observations xa;a ¼ 1; . . . ;N. The sample generalized variance occurs

in many test criteria of statistical hypotheses concerning the means and

covariance matrices of multivariate distributions. We will now consider the

distribution of det S where S is distributed as Wpðn;SÞ.

Theorem 6.6.1. Let S be distributed as Wpðn;SÞ. Then det S is distributed as

ðdetSÞQp
i¼1 x

2
nþ1�i, where x2nþ1�i; i ¼ 1; . . . ; p, are independent central chi-

square random variables.

Note. W1ðn; 1Þ is a central chi-square random variable with n degrees of

freedom.

Proof. Since S is positive definite there exists a nonsingular matrix C such that

CSC0 ¼ I. Let S� ¼ CSC0. Then S� is distributed as Wishart Wpðn; IÞ. Now
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det S� ¼ ðdetS�1Þðdet SÞ. Hence det S is distributed as ðdetSÞðdet S�Þ. Write S� ¼
ðS�ijÞ as

S� ¼ S�ð11Þ S�ð12Þ
S�ð21Þ S�ðppÞ

� �

where S�ðppÞ is 1� 1. Then det S� ¼ S�ðppÞ detðS�ð11Þ � S�ð12ÞS
��1
ðppÞS

�
ð21ÞÞ. By Theorem

6.4.1 S�ðppÞ is distributed as W1ðn; 1Þ independently of ðS�ð11Þ � S�ð21ÞS
��1
ðppÞS

�
ð12ÞÞ and

S�ð11Þ � S�ð21ÞS
��1
ðppÞS

�
ð12Þ is distributed asWp�1ðn� 1; Ip�1Þ, where Ip�1 is the identity

matrix of dimension ðp� 1Þ � ðp� 1Þ. Thus detðWpðn; IpÞÞ is distributed as the

product of x2n and detðWp�1ðn� 1; Ip�1ÞÞ where x2n and Wp�1ðn� 1; Ip�1Þ are

independent. Repeating this argument p� 1 times we conclude that det S� is

distributed as
Qp

i¼1 x
2
nþ1�i; where x2nþ1�i; i ¼ 1; . . . ; p, are independent chi-

square random variables. Q.E.D.

6.7. DISTRIBUTION OF THE BARTLETT DECOMPOSITION

(RECTANGULAR COORDINATES)

Let S be distributed as Wpðn;SÞ and n � p. As we have observed earlier, S is

positive definite with probability 1. Let B ¼ ðBijÞ;Bij ¼ 0; i , j, be the unique

lower triangular matrix with positive diagonal elements such that

S ¼ BB0 ð6:54Þ
(see Theorem 1.6.5). By Theorem 2.4.6 the Jacobian of the transformation S ! B

is given by ½s ¼ ðsijÞ; b ¼ ðbijÞ�

det
@s

@b

� �
¼ 2p

Yp

i¼1

ðbiiÞpþ1�i ð6:55Þ

From (6.32), (6.54), and (6.55) the probability density function of B with respect

to the Lebesgue measure db is given by

fBðbÞ ¼ K2pðdetSÞ�n=2ðdet bÞn�p�1 exp � 1

2
trS

�1
bb0

� �Yp

i¼1

ðbiiÞpþ1�i

¼ K2pðdetSÞ�n=2
Yp

i¼1

ðbðn�iÞ
ii Þ exp � 1

2
trS

�1
bb0

� � ð6:56Þ

where K is given by (6.37).

Let T ¼ ðTijÞ be a nonsingular lower triangular matrix (not necessarily with

positive diagonal elements). Then we can write T ¼ Bu where u is a diagonal

matrix with diagonal entries +1. Since the Jacobian of the transformation B !
T ¼ Bu is unity, from (6.56) the probability density function of T is given by
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(with respect to the Lebesgue measure dt)

fT ðtÞ ¼ K2pðdetSÞ�n=2ðdetðtt0ÞÞðn�p�1Þ=2

� exp � 1

2
trS

�1
tt0

� �Yp

i¼1

jtiijpþ1�i;
ð6:57Þ

t ¼ ðtijÞ, where K is given by (6.37). If S ¼ I, (6.57) reduces to

fT ðtÞ ¼ K2p exp � 1

2

Xp

i¼1

Xi
j¼1

t2ij

( )Yp

i¼1

ðt2iiÞðn�iÞ=2: ð6:58Þ

From (6.58) it is obvious that in this particular case the Tij are independently

distributed and T2
ii is distributed as central chi-square with n� iþ 1 degrees of

freedom ði ¼ 1; . . . ; pÞ, and Tijði = jÞ is normally distributed with mean 0 and

variance 1.

6.8. DISTRIBUTION OF HOTELLING’S T 2

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently distributed p-variate

normal random variables with the same mean m and the same positive definite

covariance matrix S. Let

�XX ¼ 1

N

XN
1

Xa; S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0:

We have observed that
ffiffiffiffi
N

p
�XX has a p-variate normal distribution with mean

ffiffiffiffi
N

p
m

and covariance matrix S and that it is independent of S, which is distributed asPN�1
a¼1 Y

aðYaÞ0, where Ya ¼ ðYa1; . . . ; YapÞ0;a ¼ 1; . . . ;N � 1, are indepen-

dently and identically distributed normal p-vectors with mean 0 and covariance

matrix S. We will prove the following theorem (due to Bowker).

Theorem 6.8.1. N �XX
0
S�1 �XX is distributed as

x2pðNm0S�1mÞ
x2N�p

ð6:59Þ

where x2pðNm0S�1mÞ and x2N�p are independent.

Proof. Since S is positive definite there exists a nonsingular matrix C such that

CSC0 ¼ I. Define Z ¼ ffiffiffiffi
N

p
C �XX;A ¼ CSC0, and n ¼ ffiffiffiffi

N
p

cm. Then Z is normally

distributed with mean n and covariance matrix I, and A is distributed as
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PN�1
a¼1 Z

aðZaÞ0 where Za ¼ ðZa1; . . . ; ZapÞ0;a ¼ 1; . . . ;N � 1, are independently

and identically distributed normal p-vectors with mean 0 and covariance matrix I.

Furthermore, A and Z are independent. Consider a random orthogonal matrix Q

of dimension p� p whose first row is Z 0ðZ 0ZÞ�1=2 and whose remaining p� 1

rows are defined arbitrarily. Let

U ¼ ðU1; . . . ;UpÞ0 ¼ QZ;B ¼ ðBijÞ ¼ QAQ0:

Obviously,

U1 ¼ ðZ 0ZÞ1=2;Ui ¼ 0; i ¼ 2; . . . ; p

and

N �XX
0
S�1 �XX ¼ Z 0A�1Z ¼ U0B�1U ¼ U2

1=ðB11 � Bð12ÞB�1
ð22ÞBð21ÞÞ ð6:60Þ

where

B ¼ B11 Bð12Þ
Bð21Þ Bð22Þ

� �

Since the conditional distribution of B given Q is Wishart with N � 1 degrees of

freedom and parameter I, by Theorem 6.4.1, the conditional distribution of

B11 � Bð12ÞB�1
ð22ÞBð21Þ givenQ is central chi-square with N � p degrees of freedom.

As this conditional distribution does not depend on Q, the unconditional

distribution of B11 � Bð12ÞB�1
ð22ÞBð21Þ is also central chi-square with N � p degrees

of freedom. By the results presented in Section 6.1, Z 0Z is distributed as a

noncentral chi-square with p degrees of freedom and the noncentrality para-

meter n0n ¼ Nm0S�1m. The independence of Z 0Z and B11 � Bð12ÞB�1
ð22ÞBð21Þ is

obvious. Q.E.D.

We now need the following lemma to demonstrate the remaining results in this

section.

Lemma 6.8.1. For any p-vector Y ¼ ðY1; . . . ; YpÞ0 and any p� p positive

definite matrix A

Y 0ðAþ YY 0Þ�1Y ¼ Y 0A�1Y

1þ Y 0A�1Y
ð6:61Þ

Proof. Let

ðAþ YY 0Þ�1 ¼ A�1 þ C:

Then

I ¼ ðA�1 þ CÞðAþ YY 0Þ ¼ I þ A�1YY 0 þ CAþ CYY 0:
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Since ðAþ YY 0Þ is positive definite,

C ¼ �A�1YY 0ðAþ YY 0Þ�1

Now

Y 0ðAþ YY 0Þ�1Y ¼ Y 0A�1Y � ðY 0A�1YÞðY 0ðAþ YY 0Þ�1YÞ;
or

Y 0ðAþ YY 0Þ�1Y ¼ Y 0A�1Y

1þ Y 0A�1Y

Q.E.D.

Notations

For any p-vector Y ¼ ðY1; . . . ; YpÞ0 and any p� p matrix A ¼ ðaijÞ we shall

write for i ¼ 1; . . . ; k and k � p

Y ¼ ðYð1Þ; . . . ; YðkÞÞ0;
Y½i� ¼ ðYð1Þ; . . . ; YðiÞÞ0;
A½ij� ¼ ðAði1Þ; . . . ;AðijÞÞ;
A½ji� ¼ ðAð1iÞ; . . . ;Að jiÞÞ;

A ¼
Að11Þ � � � Að1kÞ

..

. ..
.

Aðk1Þ � � � AðkkÞ

0
BB@

1
CCA

A½ii� ¼
Að11Þ � � � Að1iÞ

..

. ..
.

Aði1Þ � � � AðiiÞ

0
BB@

1
CCA

where YðiÞ are subvectors of Y of dimension pi � 1, and AðiiÞ are submatrices of A

of dimension pi � pi, where the pi are arbitrary integers including zero such thatPk
1 pi ¼ p. Let us now define R1; . . . ;Rk by

Xi
j¼1

Rj ¼ n �XX
0
½i�ðS½ii� þ N �XX½i� �XX

0
½i�Þ�1 �XX½i�

¼ N �XX
0
½i�S

�1
½ii� �XX½i�

1þ N �XX
0
½i�S

�1
½ii� �XX½i�

; i ¼ 1; . . . ; k:

ð6:62Þ
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Since S is positive definite with probability 1 (we shall assume N . p),

S½ii�; i ¼ 1; . . . ; k, are positive definite and hence Ri � 0 for i ¼ 1; . . . ; k with

probability 1. We are interested here in showing that the joint probability density

function of R1; . . . ;Rk is given by

fR1;...;Rk
ðr1; . . . ; rkÞ ¼ G

N

2

� �
G

1

2
N �

Xk
1

pi

 ! !Yk
i¼1

G
1

2
pi

� �� �" #�1

�
Yk
i¼1

ðriÞpi=2�1 1�
Xk
i¼1

ri

 ! N�
Pk

1
pi

� �
=2�1

� exp � 1

2

Xk
1

d2i þ
1

2

Xk
j¼1

rj
X
i.j

d2i

( )

�
Yk
i¼1

f
1

2
ðN � si�1Þ; 1

2
pi;

1

2
rid

2
i

� �

ð6:63Þ

where

si ¼
Xi
j¼1

pj ðwith s0 ¼ 0Þ

Xi
j¼1

d2j ¼ Nm0
½i�S

�1
½ii�m½i�; i ¼ 1; . . . ; k

and fða; b; xÞ is the confluent hypergeometric function given by

fða; b; xÞ ¼ 1þ a

b
xþ aðaþ 1Þ

bðbþ 1Þ
x2

2!
þ aðaþ 1Þðaþ 2Þ
bðbþ 1Þðbþ 2Þ

x3

3!
þ � � � : ð6:64Þ

For k ¼ 1,

R1 ¼ N �XX
0
S�1 �XX

1þ N �XX
0
S�1 �XX

; d21 ¼ Nm0S�1m:

From (6.59) its probability density function is given by

fR1
ðr1Þ ¼

Gð1
2
NÞ

Gð1
2
ðN � pÞÞGð1

2
pÞ r

p=2�1
1 ð1� r1ÞðN�pÞ=2�1

� exp � 1

2
d21

� �
f

1

2
N;

1

2
p;

1

2
r1d

2
1

� � ð6:65Þ
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which agrees with (6.63). To prove (6.63) in general we first consider the case

k ¼ 2 and then use this result for the case k ¼ 3. The desired result for the general

case will then follow from theses cases. The statistics R1; . . . ;Rk play an

important role in tests of hypotheses concerning means of multivariate

distributions with unknown covariance matrices (see Chapter 7) and tests of

hypotheses concerning discriminant coefficients of discriminant analysis (see

Chapter 9). Let us now prove (6.63) for k ¼ 2; p1 þ p2 ¼ p. Let

S ¼
Sð11Þ Sð12Þ

Sð21Þ Sð22Þ

 !

W ¼ Sð22Þ � Sð21ÞS�1
ð11ÞSð12Þ; U ¼ Sð21ÞS�1

ð11Þ; V ¼ Sð11Þ: ð6:66Þ

Identifying Sð22Þ with Sð11Þ; Sð21Þ with Sð12Þ, and vice versa in Theorem 6.4.1 we

obtain: W is distributed as Wp2ðN � 1� p1;Sð22Þ � Sð21ÞS
�1
ð11ÞSð12ÞÞ, the

conditional distribution of U, given that Sð11Þ ¼ sð11Þ is normal with mean

Sð21ÞS
�1
ð11Þ and covariance matrix ðSð22Þ � Sð21ÞS

�1
ð11ÞSð12ÞÞ � s�1

ð11Þ; V is distributed

as Wp1 ðN � 1;Sð11ÞÞ and W is independent of ðU;VÞ. Hence the conditional

distribution of

ffiffiffiffi
N

p
Sð21ÞS�1

ð11Þ �XXð1Þ

given that �XXð1Þ ¼ �xxð1Þ; Sð11Þ ¼ sð11Þ is a p2-variate normal with meanffiffiffiffi
N

p
Sð21ÞS

�1
ð11Þ �xxð1Þ and covariance matrix

ðN �xx0ð1ÞS
�1
ð11Þ �xxð1ÞÞðSð22Þ � Sð21ÞS

�1
ð11ÞSð12ÞÞ:

Now let

W1 ¼ N �XX
0
ð1ÞS

�1
ð11Þ �XXð1Þ ¼ R1ð1� R1Þ�1;

W2 ¼
Nð �XXð2Þ � Sð21ÞS�1

ð11Þ �XXð1ÞÞ0ðSð22Þ � Sð21ÞS�1
ð11ÞSð12ÞÞ�1ð �XXð2Þ � Sð21ÞS�1

ð11Þ �XXð1ÞÞ
1þW1

¼ fðR1 þ R2Þð1� R1 � R2Þ�1 ð6:67Þ

� R1ð1� R1Þ�1gð1þ R1ð1� R1Þ�1Þ�1

¼ R2ð1� R1 � R2Þ�1:
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Then

N �XX
0
S�1 �XX ¼ N �XX

0
ð1ÞS

�1
ð11Þ �XXð1Þ

þ Nð �XXð2Þ � Sð21ÞS�1
ð11Þ �XXð1ÞÞ0ðSð22Þ � Sð21ÞS�1

ð11ÞSð12ÞÞ�1

� ð �XXð2Þ � Sð21ÞS�1
ð11Þ �XXð1ÞÞ

¼ W1 þW2ð1þW1Þ:

Similarly, from Nm0S�1m ¼ d21 þ d22; d
2
1 ¼ Nm0

ð1ÞS
�1
ð11Þmð1Þ, we get

d22 ¼ Nðmð2Þ � Sð21ÞS
�1
ð11Þmð1ÞÞ0ðSð22Þ � Sð21ÞS

�1
ð11ÞSð12ÞÞ�1

� ðmð2Þ � Sð21ÞS
�1
ð11Þmð1ÞÞ:

ð6:68Þ

Since
ffiffiffiffi
N

p
�XX is independent of S and is distributed as a p-variate normal with meanffiffiffiffi

N
p

m and covariance matrix S, the conditional distribution of N �XXð2Þ given that

Sð11Þ ¼ sð11Þ and �XXð1Þ ¼ �xxð1Þ is a p2-variate normal with mean
ffiffiffiffi
N

p ðmð2Þ þ
Sð21ÞS

�1
ð11Þð�xxð1Þ � mð1ÞÞÞ and covariance matrix Sð22Þ � Sð21ÞS

�1
ð11ÞSð12Þ. Furthermore

this conditional distribution is independent of the conditional distribution offfiffiffiffi
N

p
Sð21ÞS�1

ð11Þ �XXð1Þ given that Sð11Þ ¼ sð11Þ and �XXð1Þ ¼ �xxð1Þ. Hence the conditional

distribution of

ffiffiffiffi
N

p
ð �XXð2Þ � Sð21ÞS�1

ð11Þ �XXð1ÞÞð1þW1Þ�1=2

given that Sð11Þ ¼ sð11Þ; �XXð1Þ ¼ �xxð1Þ is a p2-variate normal with mean
ffiffiffiffi
N

p ðmð2Þ �
Sð21ÞS

�1
ð11Þmð1ÞÞð1þ w1Þ�1=2 (w1 is that value of W1 corresponding to Sð11Þ ¼

sð11Þ; �XXð1Þ ¼ �xxð1ÞÞ and covariance matrix Sð22Þ � Sð21ÞS
�1
ð11ÞSð12Þ. Since Sð22Þ �

Sð21ÞS�1
ð11ÞSð12Þ is distributed independently of ðSð21Þ; Sð11ÞÞ and �XX as

Wp2ðN � 1� p1;Sð22Þ � Sð21ÞS
�1
ð11ÞSð12ÞÞ, by Theorem 6.8.1, the conditional

distribution of W2 given that Sð11Þ ¼ sð11Þ; �XXð1Þ ¼ �xxð1Þ, is

x2p2 ðd22ð1þ w1Þ�1Þ=x2N�p1�p2
ð6:69Þ

where x2p2 ðd22ð1þ w1Þ�1Þ and x2N�p1�p2
are independent. Furthermore by the same

theorem W1 is distributed as

x2p1ðd21Þ=x2N�p1
; ð6:70Þ
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where x2p1 ðd21Þ and x2N�p1
are independent. Thus the joint probability density

function of ðW1;W2Þ is given by

fW1;W2
ðw1;w2Þ

¼ exp � 1

2
d22ð1þ w1Þ�1

� �

�
X1
b¼1

ð1
2
d22ð1þ w1Þ�1Þbðw2Þp2=2þb�1Gð1

2
ðN � p1Þ þ bÞ

b!ð1þ w2ÞðN�p1Þ=2þbGð1
2
p2 þ bÞGð1

2
ðN � pÞÞ

� exp � 1

2
d21

� �X1
j¼0

ð1
2
d21Þ jwp1=2þj�1

1 Gð1
2
ðN þ jÞ

j!ð1þ w1ÞN=2þjGð1
2
p1 þ jÞGð1

2
ðN � p1ÞÞ

:

ð6:71Þ

Now transforming ðW1;W2Þ ! ðR1;R2Þ as given by (6.67) the joint probability

density function of R1;R2 is

fR1;R2
ðr1; r2Þ ¼ G

1

2
N

� �
G

1

2
ðN � pÞ

� �
G

1

2
p1

� �
G

1

2
p2

� �� ��1

� ðr1Þp1=2�1ðr2Þp2=2�1ð1� r1 � r2ÞðN�pÞ=2�1 ð6:72Þ

� exp � 1

2
ðd21 þ d22Þ þ

1

2
d22r1

� �Y2
i¼1

f N � si�1;
1

2
pi;

1

2
rid

2
i

� �
;

which agrees with (6.63) for k ¼ 2. Let us now consider the case k ¼ 3. Let

W3 ¼ ðN �XX
0
S�1 �XX � N �XX

0
½2�S

�1
½22� �XX½2�Þ=ð1þ N �XX

0
½2�S

�1
½22� �XX½2�Þ: ð6:73Þ

Now Sð33Þ � Sð32ÞS�1
½22�S½23� is distributed as

Wp3ðN � 1� p1 � p2; ðSð33Þ � S½32�S
�1
½22�S½23�ÞÞ

and is independent of S½22� and S½32�. Also, the conditional distribution of
ffiffiffiffi
N

p
�XXð3Þ

given that S½22� ¼ s½22�; �XX½2� ¼ �xx½2� is normal with mean
ffiffiffiffi
N

p ðmð3Þ� S½32�S
�1
½22�ð�xx½2� �

m½2�ÞÞ and covariance matrix Sð33Þ � S½32�S
�1
½22�S½23� and is independent of the

conditional distribution of
ffiffiffiffi
N

p
S½32�S�1

½22� �XX½2� given that S½22� ¼ s½22� and �XX½2� ¼ �xx½2�,
which is normal with mean

ffiffiffiffi
N

p
S½32�S

�1
½22� �xx½2� and covariance matrix

ðN �xx0½2�s
�1
½22� �xx½2�ÞðSð33Þ � S½32�S

�1
½22�S½23�Þ. Hence as before the conditional distribution

of W3 given that S½22� ¼ s½22� and �XX½2� ¼ �xx½2� or, equivalently, given that W1 ¼
w1;W2 ¼ w2; is given by

fW3jW1;W2
ðw3jw1;w2Þ ¼ x2p3 ðd23ð1þ w1Þðw1 þ w2 þ w1w2Þ�1Þ=x2N�p ð6:74Þ
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where x2p3ð�Þ and x2N�p are independent. Thus the joint probability density

function of W1;W2;W3 is

fW1;W2;W3
ðw1;w2;w3Þ ¼

x2p3 ðd23ð1þ w1Þðw1 þ w2 þ w1w2Þ�1Þ
x2N�p

� x2p2 ðd22ð1þ w1Þ�1Þ
X2
N�p1�p2

� x2p1ðd21Þ
x2N�p

:

ð6:75Þ

Now replacing the Wi by Ri we get

W1 ¼ R1ð1� R1Þ�1;W2 ¼ R2ð1� R1 � R2Þ�1

W3 ¼ ððR1 þ R2 þ R3Þð1� R1 � R2 � R3Þ�1

� ðR1 þ R2Þð1� R1 � R2Þ�1Þð1� R1 � R2Þ

¼ R3ð1� R1 � R2 � R3Þ�1:

From (6.75) the joint probability density function of R;R2;R3 is given by

fR1;R2;R3
ðr1; r2; r3Þ ¼ G

1

2
N

� �
G

1

2
ðN � pÞ

� �Y3
i¼1

G
1

2
pi

� �" #�1

�
Y3
i¼1

ðriÞ
pi
2
�1 1�

X3
1

ri

 !ðN�pÞ=2�1

� exp � 1

2

X3
1

d2j þ
1

2

X3
j¼1

rj
X3
i.j

d2i

( )

�
Y3
i¼1

f
1

2
ðN � si�1Þ; 1

2
pi;

1

2
rid

2
i

� �

ð6:76Þ

which agrees with (6.63) for k ¼ 3. Proceeding exactly in this fashion we get

(6.63) for general k.

6.9. MULTIPLE AND PARTIAL CORRELATION COEFFICIENTS

Let S be distributed as WpðN � 1;SÞ and let

S ¼ ðSijÞ ¼ S11 Sð12Þ
Sð21Þ Sð22Þ

� �
; S ¼ ðSijÞ ¼ S11 Sð12Þ

Sð21Þ Sð22Þ

� �
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We shall first find the distribution of

R2 ¼ Sð12ÞS�1
ð22ÞSð21Þ
S11

: ð6:77Þ

From this

R2

1� R2
¼ Sð12ÞS�1

ð22ÞSð21Þ
S11 � Sð12ÞS�1

ð22ÞSð21Þ

¼ Sð12ÞS�1
ð22ÞSð21Þ

S11 � Sð12ÞS
�1
ð22ÞSð21Þ

 !�
S11 � Sð12ÞS�1

ð22ÞSð21Þ

S11 � Sð12ÞS
�1
ð22ÞSð21Þ

 !
¼ X

Y
;

ð6:78Þ

where

X ¼ Sð12ÞS�1
ð22ÞSð21Þ

S11 � Sð12ÞS
�1
ð22ÞSð21Þ

; Y ¼ Sð11Þ � Sð12ÞS�1
ð22ÞSð21Þ

ðS11 � Sð12ÞS
�1
ð22ÞSð21ÞÞ

From Theorem 6.4.1, Y is distributed as central chi-square with N � p degrees of

freedom and is independent of ðSð12Þ; Sð22ÞÞ and the conditional distribution of

Sð12ÞS
�1=2
ð22Þ given that Sð22Þ ¼ sð22Þ is a ðp� 1Þ-variate normal distribution with

mean Sð12ÞS
�1
ð22Þs

1=2
ð22Þ and covariance matrix ðS11 � Sð12ÞS

�1
ð22ÞSð21ÞÞI. Hence the

conditional distribution of X given that Sð22Þ ¼ sð22Þ is noncentral chi-square

x2p�1

Sð12ÞS
�1
ð22Þsð22ÞS

�1
ð22ÞSð21Þ

S11 � Sð12ÞS
�1
ð22ÞSð21Þ

 !
: ð6:79Þ

Since Sð22Þ is distributed asWp�1ðN � 1;Sð22ÞÞ (see Theorem 6.4.1) by Exercise 4,

Sð12ÞS
�1
ð22Þsð22ÞS

�1
ð22ÞSð21Þ

S12S
�1
22 S21

ð6:80Þ

is distributed as x2N�1. Since

Sð12ÞS
�1
ð22ÞSð21Þ

S11 � Sð12ÞS
�1
ð22Sð21Þ

� r2

1� r2
; ð6:81Þ

where

r2 ¼ Sð12ÞS
�1
ð22ÞSð21Þ
S11

; ð6:82Þ

R2=ð1� R2Þ is distributed as the ratio (of independent random variables) X=Y ,
where Y is distributed as x2N�p and X is distributed as x2p�1ððr2=ð1� r2ÞÞx2ðN�1ÞÞ
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with random noncentrality parameter

ðr2=ð1� r2ÞÞx2N�1:

Since, from (6.5), a noncentral chi-square Z ¼ x2NðlÞ is distributed as x2Nþ2K

where K is a Poisson random variable with parameter l=2, i.e., its probability
density function is given by

fZðzÞ ¼
X1
k¼0

fx2
Nþ2k

ðzÞpKðkÞ;

where pKðkÞ is the Poisson probability mass function with parameter l=2, it
follows that the conditional distribution of X given that x2N�1 ¼ t is x2p�1þ2K ,

where the conditional distribution of K given that x2N�1 ¼ t is Poisson with

parameter 1
2
tðr2=ð1� r2ÞÞ. Let l=2 ¼ 1

2
ðr2=ð1� r2ÞÞ. The unconditional

probability mass function of K is given by

pKðkÞ ¼
ð1
0

exp � 1

2
lt

� � ðlt=2Þk
k!

tððN�1Þ=2Þ�1 expf� 1
2
tgdt

2ðN�1Þ=2Gð1
2
ðN � 1ÞÞ

¼ Gð1
2
ðN � 1Þ þ kÞ

k!Gð1
2
ðN � kÞÞ ðr2Þkð1� r2ÞðN�1Þ=2; k ¼ 0; 1; 2; . . .

ð6:83Þ

This implies that the unconditional distribution of K is negative binomial. Hence

the probability density function of X is given by

fXðxÞ ¼
X1
k¼0

fx2
p�1þ2k

ðxÞpKðkÞ; ð6:84Þ

where fx2
p�1þ2k

ðxÞ is the probability density function of x2p�1þ2k and pKðkÞ is given
by (6.83). Thus we get the following theorem.

Theorem 6.9.1. The probability density function of R2=ð1� R2Þ is given by the
probability density function of the ratio X=Y of two independently distributed

random variables X; Y , where X is distributed as a chi-square random variable

x2p�1þ2K with K a negative binomial random variable with probability mass

function given in (6.83) and Y is distributed as x2N�p.
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It is now left to the reader as an exercise to verify that the probability density

function of R2 is given by

fR2ðr2Þ ¼

ð1� r2ÞðN�1Þ=2ð1� r2ÞðN�p�2Þ=2

Gð 1
2
ðN � 1ÞÞGð1

2
ðN � pÞÞ

�P1
j¼0

ðr2Þjðr2Þðp1Þ=2þj�1G2ð1
2
ðN � 1Þ þ jÞ

j!Gð1
2
ðp� 1Þ þ jÞ

if r2 � 0;
0; otherwise:

8>>>>>>>><
>>>>>>>>:

ð6:85Þ

This derivation is studied by Fisher (1928). For p ¼ 2, the special case studied by

Fisher in 1915, the probability density function of R is given by

fRðrÞ

¼ 2N�3ð1� r2ÞðN�1Þ=2ð1� r2ÞðN�4Þ=2

ðN � 3Þ!p
X1
j¼0

ð2rrÞj
j!

G2 1

2
ðN � 1Þ þ j

� �
ð6:86Þ

¼ ð1� r2ÞðN�1Þ=2ð1� r2ÞðN�4Þ=2

pðN � 3Þ!
dn�1

dxn�1

cos�1ð�xÞ
ð1� x2Þ1=2
� �

x ¼ rp
�� �;

�

which follows from (6.85) with p ¼ 2 and the fact that

GðnÞG nþ 1

2

� �
¼ ffiffiffiffi

p
p

Gð2nÞ=22n�1: ð6:87Þ

It is well known that as N ! 1, the distribution of ð ffiffiffiffi
N

p ðR� rÞÞ=ð1� r2Þ tends
to normal distribution with mean 0 and variance 1.

Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m and covariance

matrix S ¼ ðsijÞ and let rij ¼ sii=ðsiisjjÞ1=2. It is now obvious that the

distribution of the sample correlation coefficient Rij between the ith and jth

components of X, based on a random sample of size N, is obtained from (6.86) by

replacing r by rij. Let X
a ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random sample

of size N from the distribution of X and let

S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0

be partitioned as

S ¼ Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� �

where Sð11Þ is a q� q submatrix of S. We observed in Chapter 5 that the sample

partial correlation coefficients rij:1;...;q can be computed from sð11Þ � sð21Þs�1
ð11Þsð12Þ

in the same way that the sample simple correlation coefficients rij are computed

from s. Furthermore, we observed that to obtain the distribution of Rij (random
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variable corresponding to rij) we needed the fact that S is distributed as

WpðN � 1;SÞ. Since, from Theorem 6.4.1, Sð22Þ � Sð21ÞS�1
ð11ÞSð12Þ is distributed as

Wp�qðN � q� 1;Sð22Þ � Sð21ÞS
�1
ð11ÞSð12ÞÞ and is independent of ðSð11Þ; Sð12ÞÞ, it

follows that the distibution Rij:1;...;q based on N obserations is the same as that of

the simple correlation coefficient Rij based on N � q observations with a

corresponding population parameter rij:1;...;q.

6.10. DISTRIBUTION OF MULTIPLE PARTIAL CORRELATION

COEFFICIENTS

Let Xa;a ¼ 1; . . . ;N be a random sample of size N from Npðm;SÞ and let

�XX ¼ 1
N

PN
a¼1 X

a; S ¼PN
a¼1ðXa � �XXÞðXa � �XXÞ0. Assume that N . p so that S is

positive definite with probability one. Partition S and S as

S ¼
S11 S12 S13

S21 S22 S13

S31 S32 S33

0
@

1
A; S ¼

S11 S12 S13
S21 S22 S23
S31 S32 S33

0
@

1
A ð6:88Þ

with S22; S22 each of dimension p1 � p1;S33; S33 each of dimension p2 � p2
where p1 þ p2 ¼ p� 1. Let

r21 ¼ S12S
�1
22 S21=S11

r2 ¼ r21 þ r22 ¼ ðS12S13Þ
S22 S23

S32 S33

� ��1

ðS12S13Þ0=S11

�RR1 ¼ S12S
�1
22 S21=S11

R2 ¼ �RR1 þ �RR2 ¼ ðS12S13Þ
S22 S23

S32 S33

� ��1

ðS12S13Þ0=S11

We shall term r21; r
2
2 as population multiple partial correlation coefficients and

�RR1; �RR2 as sample multiple partial correlation coefficients. The following theorem

gives the joint probability density function of �RR1; �RR2. A more general case has

been treated by Giri and Kiefer (1964).
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Theorem 6.10.1. The joint pdf of �RR1; �RR2 on the set fð�rr1; �rr2Þ : �rr1 þ �rr2 , 1g is
given by

f �RR1; �RR2
ð�rr1; �rr2Þ ¼ Kð1� r2ÞN=2ð1� �rr1 � �rr2Þ1=2ðN�p�1Þ

�
Y2
i¼1

ð�rriÞ12 pi�1 1þ
X2
i¼1

�rri
ð1� r2Þ

gi
� 1

� �" #�N=2

ð6:89Þ

�
X1
b1¼0

X1
b2¼0

Y2
i¼1

Gð1
2
ðN þ pi � siÞÞGð12 þ biÞu bi

i

ð2biÞ!Gð12 pi þ biÞ

" #

where

gi ¼ 1�
Xi
j¼1

r2j ; g0 ¼ 1;si ¼
Xi
j¼1

pj

a2
i ¼ r2i ð1� r2Þ=gigi�1

ui ¼ 4�rria
2
i

1þP2
i¼1 �rri

1� r2

gi
� 1

� �

and K is the normalizing constant.

Proof. We prove that ð �RR1; �RR2Þ is a maximal invariant statistic and in deriving its

distribution we can, without any loss of generality assume that

S11 ¼ 1;S22 ¼ Ip1 ;S33 ¼ Ip2 ;S13 ¼ 0;S23 ¼ 0

where Ik is the k � k identity matrix. Let

U1 ¼
�RR1S11

1� r21

S½13�:2 ¼
S11:2 S13:2

S31:2 S33:2

� �

¼ S11 S13

S31 S33

� �
� S12

S32

� �
S�1
22 ðS21S23Þ

S½13�:2 ¼
S11:2 S13:2

S31:2 S33:2

� �

¼ S11 S13

S31 S33

� �
� S12

S32

� �
S
�1
22 ðS21S23Þ:
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By Theorem 6.4.1 U1 and S½13�:2 are independent and S½13�:2 is distributed as

Wishart

W1þp2 ðN � 1þ p2;S½13:2�Þ

and the pdf of U1 is given by

fU1
ðu1Þ ¼ ð1� r21ÞðN�1Þ=2 1

2p1=2Gðp1=2Þ

� exp � 1

2
u1

� �
ðu1Þp1=2�1

� f
N � 1

2
;
p1

2
;
u1 �rr

2
1

2

� �

where f is the confluent hypergeometric function given in (6.64). Define

U2 ¼ S13:2S
�1
33:2S31:2

S11:2 � S13:2S
�1
33:2S31:2

¼ S11 �RR2

ð1� r21 � r22Þ

U3 ¼ S11:2 � S13:2S
�1
33:2S31:2

S11:2 � S13:2S
�1
33:2S31:2

¼ S11ð1� �RR1 � �RR2Þ
1� r21 � r22

Applying Theorem 6.4.1 to S½13�:2 we conclude that U2 and U3 are independent

and U2 is distributed as x2N�p. The pdf of U3 is given by

fU3
ðu3Þ ¼ 1� r21 � r22

1� r21

� �ðN�p1�1Þ=2
1

2p2=2Gðp2=2Þ ð6:90Þ

� exp � 1

2
u3

� �
ðu3Þp2=2�1

� f
1

2
ðN � p1 � 1Þ; p2=2; u3r22=2ð1� r21ÞÞ

�

Basic Multivariate Sampling Distributions 247



From (6.90) the joint pdf of T2; T3 where

T2 ¼ U1ð1� r21Þ
ð1� r21 � r22ÞðU2 þ U3Þ ¼

�RR1

1� �RR1

T3 ¼ U2

U2 þ U3

ð6:91Þ

¼ �RR2=ð1� �RR1Þ
is given by writing Bðm; nÞ ¼ GðmÞGðnÞ

Gðmþ nÞ
� �

fT2;T3 ðt2; t3Þ

¼
X1
j¼0

X1
k¼0

aibk

j!k!

1� r21 � r22
1� r21

� �j

t
p1=2þj�1
2 1þ 1� r21 � r22

1� r21

� �
t2

� ��ðn
2
þjþkÞ" #

Bðp1=2þ j; ðn� p1Þ=2þ kÞ

� ðt3Þp2=2þk�1ð1� t3Þðn�p1�p2Þ=2�1

Bðp2=2þ k; ðn� p1 � p2Þ=2Þ

( )
ð6:92Þ

where

aj ¼ G
n

2
þ j

 �
ð1� r21Þn=2ðr21Þ j=Gðn=2Þ

bk ¼ Gððn� p1Þ=2þ kÞ r22
1� r21

� �k
1� r21 � r22

1� r21

� �n=2

=Gððn� p1Þ=2Þ:

From (6.92), using (6.91) we get (6.89). Q.E.D.

6.11. BASIC DISTRIBUTIONS IN MULTIVARIATE COMPLEX

NORMAL

Theorem 6.11.1. Let Z ¼ ðZ1; . . . ; ZpÞ0 be a p-variate complex normal random
vector with mean a and positive definite Hermitian covariance matrix S having

property (4.19). Then Z�S�1
Z is distributed as x22pð2a�S�1aÞ.

Proof. Let U ¼ CX, C is a p� p nonsingular complex matrix such that

CSC� ¼ I. By Theorem 4.2.3 U is distributed as a p-variate complex random

vector with mean b ¼ Ca and covariance I. Write U ¼ ðU1; . . . ;UpÞ0 with Uj ¼
Xj þ iYj;b ¼ ðb1; . . . ;bpÞ0 with bj ¼ bjR þ ibjC. We obtain

X1 � b1R; . . . ;Xp � bpR; Y1 � b1C; . . . ; Yp � bpC are independently and

identically distributed real normal random variables with the same mean 0 and
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the same variance 1/2. Hence 2
Pp

j¼1ðX2
j þ Y2

j Þ ¼ 2U�U ¼ 2Z�S�1
Z is

distributed as x22pðl2Þ where l2 ¼ 2
Pp

j¼1ðb2
jR þ b2

jCÞ ¼ 2b�b ¼ 2a�S�1a.
Q.E.D.

Theorem 6.11.2. Let Zj ¼ ðZj1; . . . ; ZjpÞ0; j ¼ 1; . . . ;N be independently and

identically distributed as CNpða;SÞ and let �ZZ ¼ 1=N
PN

j¼1 Z
j,

A ¼PN
j¼1ðZj � �ZZÞðZj � �ZZÞ�. Then T2

C ¼ N �ZZ
�
A�1 �ZZ is distributed as the ratio

x22pð2Na�S�1aÞ=x22ðN�pÞ where x22pð2Na�S�1aÞ and x22ðN�pÞ are independent.

Proof. Since S is Hermitian positive definite, by Theorem 1.8.4 there exists a

complex p� p nonsingular matrix C such that CSC� ¼ I. Let

V ¼ ðV1; . . . ;VpÞ0 ¼
ffiffiffiffi
N

p
C �ZZ, W ¼ CAC�, and n ¼ ffiffiffiffi

N
p

Ca. From (5.71) W is

distributed as the complex Wishart Wcðn; IÞ with n ¼ N � 1 degrees of freedom

and parameter I. Let Q be an p� p unitary matrix with first row

ðV1ðV�VÞ�1=2; . . . ;VpðV�VÞ�1=2Þ
and the remaining rows are defined arbitrarily. Writing U ¼ ðU1; . . . ;UpÞ0 ¼
QV;B ¼ QWQ� we obtain

T2
c ¼ U�B�1U ¼ ðU�

1U
�
1 Þ=ðB11 � B12B

�1
22 B

�
12Þ

¼ ðV�VÞ=ðB11 � B12B
�1
22 B

�
12Þ;

where B is partitioned as

B ¼ B11 B12

B21 B22

� �

where B22 is ðp� 1Þ � ðp� 1Þ. From (5.71) taking S ¼ I the joint pdf of B22;B12

and H ¼ ðB11 � B12B
�1
22 B21Þ is

IoðdetB22ÞN�p�1ðdetHÞN�p�1 expf�trðH þ B12B
�1
22 B

�
12 þ B22Þg ð6:93Þ

where

Io ¼ ppðp�1Þ=2Yp

j¼1

GðN � jÞ:

From (6.93), using (5.71) we conclude that H is independent of B22 and B12; and

H is distributed as complex Wishart with degrees of freedom N � p and

parameter unity. From Theorem 5.3.4, the conditional distribution of B given Q,

is that of
PN

a¼2 V
aðVaÞ�, where conditionally given Q;Va;a ¼ 2; . . . ;N, are

independent and each has a p-variate complex normal distribution mean 0 and
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covariance I. Hence B11 � B12B
�1
22 B21, given Q, is distributed as

PN�p
a¼1 WaW

�
a

where Wa;a ¼ 1; . . . ;N � p, given Q are independent and each has a single

variate complex normal distribution with mean 0 and variance unity. From

Theorem 6.11.1 and the fact that the sum of independent chi-squares is a chi-

square we conclude that

2ðB11 � B12B
�1
22 B21Þ;

conditionally given Q, is distributed as x22ðN�pÞ. Since this distribution does not

involve Q2ðB11 � B12B
�1
22 B21Þ is unconditionally distributed as x22ðN�pÞ. The

quantity 2V�V (using Theorem 6.11.1) is distributed as x22pð2Na�S�1aÞ. Hence
from Theorem 5.3.5 we get the Theorem. Q.E.D.

Theorem 6.11.3. Let A;S be similarly partitioned into submatrices as

A ¼ A11 A12

A21 A22

� �
; S ¼ S11 S12

S21 S22

� �

where A11 and S11 are 1� 1. Then the pdf of

R2
c ¼ A12A

�1
22 A

�
12=A11

is given by

fR2
c
ðr2c Þ ¼

GðN � 1Þ
Gðp� 1ÞGðN � pÞ ð1� r2cÞN�1ðr2c Þp�2ð1� r2c ÞN�p�1

� FððN � 1Þ;N � 1; p� 1; r2cr
2
cÞ

where F is given in exercise 17b. We refer to Goodman (1963) for the proof. For

more relevent results in connection with multivariate distributions we refer to

Bartlett (1933), Giri (1965, 1971, 1972, 1973), Giri, Kiefer and Stein (1963),

Karlin and Traux (1960), Kabe (1964, 1965), Khatri (1959), Khirsagar (1972),

Mahalanobis, Bose and Roy (1937), Olkin and Rubin (1964), Roy and

Ganadesikan (1959), Stein (1969), Wijsman (1957), Wishart (1948), and Wishart

and Bartlett (1932, 1933).

6.12. BASIC DISTRIBUTIONS IN SYMMETRICAL

DISTRIBUTIONS

We discuss here some basic distribution results related to symmetrical

distributions.
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Theorem 6.12.1. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epð0; IÞ with PðX ¼
0Þ ¼ 0 and let W ¼ ðW1; . . . ;WpÞ0 be distributed as Npð0; IÞ.

(a)
X

kXk and
W

kWk; where kXk2 ¼ X0X; kWk2 ¼ W 0W , are identically

distributed.

(b) Let Z ¼ ðZ1; . . . ; ZpÞ0 ¼ X

kXk and let ei ¼ Z2
i ; i ¼ 1; . . . ; p. Then

ðe1; . . . ; epÞ has the Dirichlet distribution Dð1
2
; . . . ; 1

2
Þ with probability

density function

f ðe1; . . . ; epÞ ¼ Gðp=2Þ
ðGð1

2
ÞÞp

Yp�1

j¼1

ðejÞ1=2�1

" #
1�

Xp�1

j¼1

ej

 !1=2�1

ð6:94Þ

(c) where 0 � ei � 1;
Pp

j¼1 ej ¼ 1.

Proof.

(a) Let U ¼ ðUijÞ ¼ ðU1; . . . ;UpÞ;Ui ¼ ðUi1; . . . ;UipÞ0; i ¼ 1; . . . ; p, be a p�
p random matrix such that U1; . . . ;Up, are independently and identically

distributed Npð0; IÞ and U is independent of X.

Let SðUa1; . . . ;UakÞ denote the subspace spanned by the values of

Ua1; . . . ;Uak. Under above assumptions on U.

PfU1; . . . ;Up; are linearly dependentg

�
Xp

i¼1

pfUi [ SðU1; . . . ;Ui�1;Uiþ1; . . . ;Upg

¼ pPfU1 [ SðU2; . . . ;UPÞg
¼ pEðPfU1 [ SðU2; . . . ;UpÞjU2 ¼ u2; . . . ;Up ¼ upgÞ
¼ pEð0Þ ¼ 0;

since the probability that U1 lies in a space of dimension less than p is zero.

Hence U is nonsingular with probability one. Let f ¼ fðUÞ be an p� p

orthogonal matrix obtained by applying Gram-Schmidt orthogonalization

process on U1; . . . ;Up, such that U ¼ fT , where T is a p� p upper

triangular matrix with positive diagonal elements. Obviously

fðOUÞ ¼ OfðUÞ, for any p� p orthogonal matrix O. Since U and OU

are identically distributed, fðUÞ and OfðUÞ are also identically distributed.
Let Z ¼ X=kXk. Since X andOX have the same distribution, Z and f0Z have
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the same distribution. Hence, for t [ Ep,

Eðexpðit0ZÞÞ ¼ EðEðexpfit0f0ðUÞZgjUÞÞ
¼ EðEðexpfit0f0ðUÞZgjZÞÞ
¼ EðEðexpfit0f0ðUÞO0ZgÞjZÞ
¼ Eðexpfit0f1ðUÞgÞ;

where O is a p� p orthogonal matrix such that O0Z ¼ ð1; 0; . . . ; 0Þ0 and f1

is the first row of f. Since the characteristic function determines uniquely

the distribution function we conclude that X=kXk and f1ðUÞ are identically
distributed whatever may be the distribution of X in Epð0; IÞ provided that

PðX ¼ 0Þ ¼ 0. Now, since Npð0; IÞ is also a member of Epð0; IÞwe conclude
that X=kXk and W=kWk have the same distribution.

(b) Let Vi ¼ W2
i ; i ¼ 1; . . . ; p;V ¼ ðV1; . . . ;VpÞ0; L ¼Pp

i¼1 Vi. Then

fV ðvÞ ¼ 1

ð2pÞp=2 exp � 1

2

Xp

i¼1

vi

( ) Yp

i¼1

ðviÞ1=2�1

( )
: ð6:95Þ

From (6.95) it follows that the joint probability density function of

e1; . . . ; ep is given by (6.94).

Q.E.D.

Theorem 6.12.2. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epð0; IÞ. The

probability density function of L ¼ X0X is given by

fLðlÞ ¼ pp=2

Gðp=2Þ l
p=2qðlÞ; l � 0; ð6:96Þ

where the probability density function of X is qðx0xÞ.

Proof. Let r ¼ kXk and let

X1 ¼ r sinO1 sinO2 � � � sinOp�2 sinOp�1

X2 ¼ r sinO1 sinO2 � � � sinOp�2 cosOp�1

..

.

Xp�1 ¼ r sinO1 cosO1

Xp ¼ r cosO1

with r . 0; 0 , Oi � p; i ¼ 1; . . . ; p� 2; 0 , Op�1 � 2p.

We first note that
X2
1 þ � � �X2

p ¼ r2:
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The Jacobian of the transformation from ðX1; . . . ;XpÞ to ðr;O1; . . . ;OpÞ is

ð½ðsinO1Þp�2ðsinO2Þp�3 � � � ðsinOp�2Þ�Þ: ð6:98Þ

Hence the probability density function of L;O1; . . . ;Op�1 is

1

2
ðlÞp=2�1qðlÞðsinO2Þp�2ðsinO2Þp�3 � � � ðsinOp�2Þ

� �� �
: ð6:99Þ

Thus L is independent of ðO1; . . . ;OpÞ and the probability density function of Oi

is proportional to ðsinOiÞp�1�i; i ¼ 1; . . . ; p� 1.

Since the integration of ½ðsinO1Þp�2ðsinO2Þp�3 � � � ðsinOp�2Þ� with respect to

O1; . . . ;Op�1 results 2pp=2

Gðp=2Þ, the probability density function of L is given by

(6.96). Q.E.D.

Example 6.12.1. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epðm;S; qÞ and let

qðZÞ ¼ ð2pÞ�1=2 expf� 1
2
Zg. Then L ¼ ðX � mÞ0S�1ðX � mÞ has the probability

density function

fLðlÞ ¼ 2�1=2p

Gð1=2pÞ l
1
2
p expf� 1

2
lg

which is a central x2p. In other words if X is distributed as Npðm;SÞ then L is

distributed as x2p.

Theorem 6.12.3. X ¼ ðX1; . . . ;XpÞ0 is distributed as Epðm;S; qÞ with S
positive definite if and only if X is distributed as mþ RS

1=2
U, where S

1=2
is the

symmetric matrix satisfying S
1=2

S
1=2 ¼ S and L ¼ R2 is distributed,

independently of U, with pdf given by (6.96) and U is uniformly distributed on

fU [ Rp with U0U ¼ 1g.

Proof. Let S
�1=2ðX � mÞ ¼ Y . Then Y is distributed as Epð0; I; qÞ. From

Theorems 4.12.1 and 4.12.2 we conclude that Y ¼ RU with Y 0Y ¼ R2 ¼ L and U

is a function of angular variables u1; . . . ; up�1, the variables R and U are

independent. Thus the distribution of Y is characterized by the distribution of R

and U. For all Y , U is uniformly distributed on fU [ Rp with U 0U ¼ 1g.Q.E.D.

Theorem 6.12.4. Let X ¼ ðX1; . . . ;XpÞ0 ¼ ðX0
ð1Þ;X

0
ð2ÞÞ0 with Xð1Þ ¼

ðX1; . . . ;XkÞ0; k � p be distributed as Epð0; I; qÞ and let

R2
1 ¼ X0

ð1ÞXð1Þ; R2
2 ¼ X0

ð2ÞXð2Þ:
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Then

(a) the joint probability density function of ðR1;R2Þ is given by ðwith s ¼ p� kÞ

fR1R2
ðr1; r2Þ ¼ 4p

1
2
p

Gð1
2
kÞGð1

2
sÞ r

k�1
1 rs�1

2 qðr21 þ r22Þ; ð6:100Þ

(b) U ¼ X0
ð1ÞXð1Þ=X0X is distributed as Beta ð1

2
k; 1

2
sÞ independently of q.

Proof.

(a) Transform

X1 ¼ R1ðsin u1Þ � � � ðsin uk�2Þðsin uk�1Þ;
X2 ¼ R1ðsin u1Þ � � � ðsin uk�2Þðcos uk�1Þ;

..

.

Xk�1 ¼ R1ðsin u1Þðcos u1Þ
Xk ¼ R1 cos u1

with R1 . 0; 0 , ui , p; i ¼ 1; . . . ; k � 2; 0 , uk�1 , 2p,

Xkþ1 ¼ R2ðsinf1Þ � � � ðsinfr�1Þ
Xkþ2 ¼ R2ðsinf1Þ � � � ðsinfr�2Þðcosfr�1Þ

..

.

Xp�1 ¼ R2ðsinf1Þðcosf1Þ
Xp ¼ R2 cosf1;

with R2 . 0; 0 , fi , p; i ¼ 1; . . . ; r � 2; 0 , fr�1 , 2p. Using calcu-

lations of Theorem 6.12.1 we get (6.100).

(b) Let L1 ¼ R2
1; L2 ¼ R2

2. From (6.100)

fL1;L2 ðl1; l2Þ ¼
p

1
2
p

Gð1
2
kÞGð1

2
sÞ l

1
2
k�1

1 l
1
2
s�1

2 qðl1; l2Þ: ð6:101Þ

Transform ðL1; L2Þ ! ðX ¼ L1 þ L2; L1Þ. The joint pdf of ðX;UÞ is

fX;L1 ðx; l1Þ ¼
p

1
2
p

Gð1
2
kÞGð1

2
sÞ l

1
2
k�1

1 ðx� l1Þ12 s�1qðxÞ: ð6:102Þ
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From (6.101) the joint pdf of ðX;UÞ is

fX;Uðx; uÞ ¼
Gð1

2
pÞ

Gð1
2
kÞGð1

2
sÞ u

1
2 k�1ð1� uÞ12 s�1x

1
2 p�1qðxÞ:

Hence the pdf of U is given by (using Theorem 6.12.1)

fUðuÞ ¼
Gð1

2
pÞ

Gð1
2
kÞGð1

2
sÞ u

1
2
k�1ð1� uÞ12 s�1:

Q.E.D.

Notation

Let Y ¼ ðY1; . . . ; YpÞ0 have pdf Epð0; I; qÞ. We shall denote the pdf of L ¼ Y 0Y
by

gpðlÞ ¼ p
1
2
p

Gð1
2
pÞ l

1
2
p�1 exp � 1

2
l

� �
ð6:103Þ

which is x2p.
Hence gkðlÞ will denote the pdf of L ¼ Y 0Y where Y ¼ ðY1; . . . ; YkÞ0 and Y is

distributed as Ekð0; I; qÞ.

Example 6.12.2. Let Y ¼ ðY1; . . . ; YpÞ0 be distributed as Epð0; I; qÞ and

qðzÞ ¼ ð2pÞ�1
2
p exp � 1

2
z

� �
:

Then

gpðlÞ ¼ 1

2
1
2
pGð1

2
pÞ l

1
2
p�1 exp � 1

2
l

� �

To prove the next two theorems we need the following lemma which can be

proved using Theorem 6.4.1.

Lemma 6.12.1. Let Y ¼ ðY1; . . . ; YpÞ0. If
Xp

i¼1

Y2
i ¼ Q1 þ � � � þ Qk ð6:104Þ

where Q1; . . . ;Qk are nonnegative quadratic forms in Y of ranks p1; . . . ; pk
respectively, then a necessary and sufficient condition that there exists an
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orthogonal transformation Y ¼ OZ with Z ¼ ðZ1; . . . ; ZpÞ0 such that

Q1 ¼
Xp1
i¼1

Z2
i ; Q2 ¼

Xp1þp2

i¼p1þ1

Z2
i ; . . . ;Qk ¼

Xp

i¼p�pkþ1

Z2
i

is p1 þ � � � þ pk ¼ p.

Theorem 6.12.5. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as Epð0;S; qÞ and let the
fourth moment of the components of X be finite. For any p� p matrix B of rank

k � p, X0BX is distributed as gkð�Þ if and only if

rankðBÞ þ rankðS�1 � BÞ ¼ p:

Proof. Suppose that rankðBÞ þ rankðS�1 � BÞ ¼ p. Since S . 0, by Theorem

1.5.5 there exists a nonsingular matrix C such that S ¼ CC0. Let X be

transformed to Y ¼ C�1X. Since

X0S�1
X ¼ X0BX þ X0ðS�1 � BÞX ð6:105Þ

we get

Y 0Y ¼ Y 0C0BCY þ Y 0ðI � C0BCÞY ð6:106Þ

and the pdf of Y is fY ðyÞ ¼ qðy0yÞ. Using Lemma 6.12.1 we obtain, from (6.106),

that

Y 0ðC0BCÞY ¼
Xk
i¼1

Z2
i

where Zð1Þ ¼ ðZ1; . . . ; ZkÞ0 is distributed as Ekð0; I; qÞ. Thus Y 0C0BCY ¼ X0BX is

distributed as gkð�Þ.
To prove the necessity part let us assume that X0BX is distributed as gkð�Þ

which implies that X0BX ¼Pk
i¼1 Z

2
i where ðZ1; . . . ; ZkÞ0 is distributed as

Ekð0; I; qÞ. Since C is nonsingular and rankðBÞ ¼ k, there exists a p� p

orthogonal matrix O such that O0C0BCO is a diagonal matrix D with k nonzero

diagonal elements l1; . . . ; lk (say). Hence

Y 0C0BCY ¼
Xk
i¼1

liZ
2
i ð6:107Þ
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where OY ¼ Z ¼ ðZ1; . . . ; ZpÞ0. Since qðz0zÞ is an even function of z we conclude
that

EðZiÞ ¼ 0 for all i;

EðZ2
i Þ ¼ a for all i;

EðZ2
i Z

2
j Þ ¼ b for all i = j;

EðZ4
i Þ ¼ c for all i;

where a; b; c are positive constants. Since X0BX is distributed as gkð�Þ we obtain

ka ¼
Xk
i¼1

li

 !
a;

Xk
i¼1

l2i

 !
cþ

X
i=j

liljb

¼ kcþ bkðk � 1Þ
¼ kðc� bÞ þ bk2:

ð6:108Þ

From (6.108) we conclude that

Xk
i¼1

li ¼
Xk
i¼1

l2i ¼ k:

This implies that li ¼ 1 for all i. Hence the equation (6.105) can be written as

Z 0Z ¼
Xk
i¼1

Z2
i þ

Xp

i¼kþ1

Z2
i :

Applying Lemma 6.12.1 we get rankðBÞ þ rankðS�1 � BÞ ¼ p. Q.E.D.

Theorem 6.12.6. Let X ¼ ðX1; . . . ;XpÞ0 be distributed as EPð0;S; qÞ and

assume that forth moments of all components of X are finite. Then X0BX, with
rankðBÞ ¼ k, is distributed as gkð�Þ if and only if BSB ¼ B.

Proof. Let S ¼ CC0 where C is a p� p nonsingular matrix and let Y ¼ C�1X.

Then Y is distributed as Epð0; I; qÞ and X0BX ¼ Y 0DY with D ¼ C0BC and

rankðBÞ ¼ rankðDÞ. Since BSB ¼ B implies C0BCC0BC ¼ C0BC or DD ¼ D, we

need to prove that Y 0DY has the pdf gkð�Þ if and only if D is idempotent of rank k.
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If D is idempotent of rank k then there exists an p� p orthogonal matrix u
such that (see Theorem 1.5.8)

uDu0 ¼ I 0

0 0

� �

where I is the k � k identity matrix. Write

Z ¼ uY ¼ ðZ1; . . . ; ZpÞ0:
Then Z is distributed as Epð0; I; qÞ and

Y 0DY ¼ Z 0 I 0

0 0

� �
Z ¼

Xk
i¼1

Z2
i :

Hence X0BX is distributed as gkð�Þ.
To prove the necessity of the condition let us assume that Y 0DY has the pdf

gkð�Þ. If the rank ofD is m then there exists an p� p orthogonal matrix u such that
uDu0 is diagonal matrix with m nonzero diagonal elements l1; . . . ; lm. Assuming

without any loss of generality that the first m diagonal elements of uDu0 are
nonzero we get, with Z ¼ uY; Y 0DY ¼Pm

i¼1 liZ
2
i . Proceeding exactly in the

same way as in Theorem 6.12.5 we conclude that m ¼ k and
Pk

i¼1 li ¼
Pk

i¼1 l
2
i .

Hence li ¼ 1; i ¼ 1; . . . ; k, which implies that D is idempotent of rank k.

Q.E.D.

EXERCISES

1 Show that if a quadratic form is distributed as a noncentral chi-square, the

noncentrality parameter is the value of the quadratic form when the variables

are replaced by their expected values.

2 Show that the sufficiency condition of Theorem 6.2.3 is also necessary for the

independence of the quadratic form X0AX and the linear form BX.

3 Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m and covariance

matrix S. Show that two quadratic forms X0AX and X0BX are independent if

ASB ¼ 0.

4 Let S be distributed as Wpðn;SÞ. Show that for any nonnull p-vector l ¼
ðl1; . . . ; lpÞ0 (a) l0Sl=l0Sl is distributed as x2n, (b) l

0S�1
1=l0S�1l is distributed as

x2n�pþ1.

5 Let S ¼ ðSijÞ be distributed as Wpðn;SÞ; n � p;S ¼ ðsðijÞÞ. Show that

EðSijÞ ¼ nsij; varðSijÞ ¼ nðs2
ij þ siisjjÞ;

covðSij; SklÞ ¼ nðsiksjl þ silsjkÞ:
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6 Let S0; S1; . . . ; Sk be independently distributed Wishart random variables

Wpðni; IÞ; i ¼ 1; . . . ; k, and let Vj ¼ S
�1=2
0 SjS

�1=2
0 ; j ¼ 1; . . . ; k. Show that the

joint probability density function of V1; . . . ;Vk is given by

C
Yk
i¼1

ðdetViÞðni�p�1Þ=2 det I þ
Xk
1

Vi

 ! !�
Pk

1
ni

� �
=2

where C is the normalizing constant.

7 Let S0; S1; . . . ; Sk be independently distributed as Wpðni;SÞ; i ¼ 0; 1; . . . ; k.
(a) Let, for j ¼ 1; . . . ; k,

Wj ¼
Xk
0

Sj

 !�1=2

Sj
Xk
0

Sj

 !�1=2

; Vj ¼ S
�1=2
0 SJS

�1=2
0

Zj ¼ I þ
Xk
1

Vj

 !�1=2

Vj I þ
Xk
1

Vi

 !�1=2

:

Show that the joint probability density function ofW1; . . . ;Wk is given by

(with respect to the Lebesgue measure
Qk

j¼1 dwj)

fW1;...;Wk
ðw1; . . . ;wkÞ

¼ C
Yk
j¼1

ðdetwjÞðni�p�1Þ=2 det I �
Xk
j¼1

wj

 ! !ðn0�p�1Þ=2

where C is the normalizing constant. Also verify that the joint probability

density function of Z1; . . . ; Zk is the same as that of W1; . . . ;Wk.

(b) Let Tj be a lower triangular nonsingular matrix such that

S1 þ � � � þ Sj ¼ TjT
0
j ; j ¼ 1; . . . ; k � 1;

and let

Wj ¼ T�1
j Sjþ1T

0�1
j ; j ¼ 1; . . . ; k � 1:

Show that W1; . . . ;Wk�1 are independently distributed.

(c) Let

Yj ¼ ðS1 þ � � � þ Sjþ1Þ�1=2Sjþ1ðS1 þ � � � þ Sjþ1Þ�1=2;

j ¼ 1; . . . ; k � 1:

Show that Y1; . . . ; Yk�1 are stochastically independent.
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8 Let S be distributed as Wpðn;SÞ; n � p, let T ¼ ðTijÞ be a lower triangular

matrix such that S ¼ TT 0, and let

X2
ii ¼ T2

ii þ
Xi�1

j¼1

T2
ij; i ¼ 1; . . . ; p;

Xii�1 ¼ ðT2
ii � T2

i1 � � � � � T2
ii�2Þ1=2

Tii�1=ðn� iþ 1Þ1=2
1þ T2

ii�1=ðn� iþ 1Þ
� �

;

Xii�2 ¼ ðT2
ii � T2

i1 � � � � � T2
ii�3Þ1=2

Tii�2=ðn� iþ 2Þ1=2
1þ T2

ii�1=ðn� iþ 2Þ
� �

;

..

.

Xi1 ¼ Tii
Ti1=ðn� 1Þ1=2
1þ T2

i1=ðn� 1Þ :

Obtain the joint probability density function of X2
ii; i ¼ 1; . . . ; p, and all

Tij; i = j; i , j. Show that the X2
ii are distributed as central chi-squares

whereas the Tij have Student’s t-distributions.

9 Let Y be a k � n matrix and let D be a ðp� kÞ � n matrix, n . p. Show that

ð
YY 0¼G;YD0¼V

dY ¼ 2�k
Yk
i¼1

Cðn� pþ iÞ
 !

ðdetðDD0ÞÞ�p=2

� ðdetðG� VðDD0Þ�1V 0ÞÞðn�p�1Þ=2;

where CðnÞ is the surface area of a unit n-dimensional sphere.

10 Let S be distributed as Wpðn;SÞ; n � p, and let S and S be similarly

partitioned into

S ¼ Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� �
; S ¼ Sð11Þ Sð12Þ

Sð21Þ Sð22Þ

� �

Show that if Sð12Þ ¼ 0, then

det S

ðdet Sð11ÞÞðdet Sð22ÞÞ
is distributed as a product of independent beta random variables.

11 Let Si; i ¼ 1; 2; . . . ; k, be independently distributed Wishart random variables

Wpðni;SÞ; ni � p. Show that

(a) the characteristic roots of detðS1 � lðS1 þ S2ÞÞ ¼ 0 are independent of

S1 þ S2;

(b) ðdet S1Þ= detðS1 þ S2Þ is distributed independently of S1 þ S2;
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(c) ðdet S1Þ= detðS1 þ S2Þ; detðS1 þ S2Þ= detðS1 þ S2 þ S3Þ; . . . are all inde-

pendently distributed.

12 Let �XX; S be based on a random sample of size N from a p-variate normal

population with mean m and covariance matrix S;N . p, and let X be an

additional random observation from this population. Find the distribution of

(a) X � �XX
(b) ðN=ðN þ 1ÞÞðX � �XXÞ0S�1ðX � �XXÞ.

13 Show that given the joint probability density function of R1; . . . ;Rk as in

(6.63), the marginal probability density function of R1; . . . ;Rj; 1 � j � k, can

be obtained from (6.63) by replacing k by j. Also show that for k ¼ 2; d21 ¼
0; d22 ¼ 0; ð1� R1 � R2Þ=ð1� R1Þ is distributed as the beta random variable

with parameter ð1
2
ðN � p1 � p2Þ; 12 p2Þ.

14 (Square root of Wishart). Let S be distributed as Wpðn;SÞ; n � p, and let

S ¼ CC0 where C is a nonsingular matrix of dimension p� p. Show that the

probability density function of C with respect to the Lebesgue measure dc in

the space of all nonsingular matrices c of dimension p� p is given by

KðdetSÞ�n=2 exp � 1

2
trS

�1
cc0

� �
ðdetðcc0ÞÞðn�pÞ=2:

[Hint: Write C ¼ Tu where T is the unique lower triangular matrix with

positive diagonal elements such that S ¼ TT 0 and u is a random orthogonal

matrix distributed independently of T . The Jacobian of the transformation

C ! ðT; uÞ is Qp
i¼1ðtiiÞp�ihðuÞ where hðuÞ is a function of u only (see Roy,

1959).]

15 (a) Let G be the set of all p� rðr � pÞ real matrices g and let a ¼
ðR; 0; . . . ; 0Þ0 be a real p-vector, b ¼ ðd; 0; . . . ; 0Þ0 a real r-vector. Show
that for k . 0 (dg stands for the Lebesgue measure on G)

ð
G

ðdetðgg0ÞÞk exp � 1

2
trðgg0 � 2gua0Þ

� �
dg

¼ exp � 1

2
R2d2

� �
ð2pÞpr=2Eðx2r ðR2d2ÞÞk

Yp�1

i¼1

Eðx2r�iÞk:

(b) Let x ¼ ðx1; . . . ; xpÞ0; y ¼ ðy1; . . . ; yrÞ0; d ¼ ðy0yÞ1:2;R ¼ ðx0xÞ1=2. Show

that for k . 0

ð
G

ðdetðgg0ÞÞk exp � 1

2
trðgg0 � 2gyx0Þ

� �
dg

¼ exp � 1

2
R2d2

� �
ð2pÞpr=2Eðx2r ðR2d2ÞÞk

Yp�1

i¼1

Eðx2r�iÞk:
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16 Consider Exercise 12. Let S be a positive definite matrix of dimension p� p.

Show that for k . 0,

ð
G

ðdetðgg0ÞÞk exp � 1

2
trSðgg0 � 2gyx0Þ

� �
dg

¼ ðdetSÞ�ð2k�pÞ=2 exp � 1

2
ðx0SxÞðy0yÞ

� �

�
ð
G

ðdetðgg0ÞÞk exp � 1

2
trðg� zy0Þðg� zy0Þ0

� �
dg

where z ¼ Cx and C is a nonsingular matrix such that S ¼ CC0.
Let B be the unique lower triangular matrix with positive diagonal

elements such that S ¼ BB0, where S is distributed independently of
ffiffiffiffi
N

p
�XX

(normal with mean
ffiffiffiffi
N

p
m and covariance S), as WpðN � 1;SÞ, and let

V ¼ B�1 �XX. Show that the probability density function of V is given by

fV ðvÞ ¼ 2pC

ð
GT

exp � 1

2
trðgg0 þ Nðgv� rÞðgv� rÞ0Þ

� �

�
Yp

i¼1

jgiijN�i
Y
i�j

dgij;

where

C ¼ Np=2 2Np=2ppðpþ1Þ=4Yp

i¼1

GððN � iÞ=2Þ
" #�1

and g ¼ ðgijÞ [ GT where GT is the group of p� p nonsingular triangular

matrices with positive diagonal elements. Use the distribution of V to find the

probability density function of R1; . . . ;Rp as defined in (6.63) with k ¼ p.

17 Let ja;a ¼ 1; . . . ;NðN . pÞ, be a random sample of size N from a p-variate

complex normal distribution with mean a and complex positive definite

Hermitian matrix S, and let

S ¼
XN
a¼1

ðja � �jjÞðja � �jjÞ�; �jj ¼ 1

N

XN
1

ja:

(a) Show that the probability density function of S is given by

fSðsÞ ¼ kðdetSÞ�ðN�1Þðdet sÞN�p�1 expf�trS
�1
sg

where K�1 ¼ ppðp�1Þ=2Qp
i¼1 GðN � iÞ.
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(b) Let S ¼ ðSðijÞÞ;S ¼ ðSijÞ be similarly partitioned into submatrices

S ¼ S11 Sð12Þ
Sð21Þ Sð22Þ

� �
; S ¼ S11 Sð12Þ

Sð12Þ Sð22Þ

� �
;

where S11 and S11 are 1� 1. Show that the probability density function of

R2
c ¼

Sð12ÞS�1
ð22ÞSð21Þ
S11

is given by

fR2
c
ðr2c Þ ¼

GðN � 1Þ
Gðp� 1ÞGðN � pÞ ð1� r2cÞN�1ðr2c Þp�2ð1� r2c ÞN�p�1

� FðN � 1;N � 1; p� 1; r2cr
2
cÞ;

where

r2c ¼
Sð12ÞS

�1
ð22ÞSð21Þ
S11

Fða; b; c; xÞ ¼ 1þ ab

c
xþ aðaþ 1Þbðbþ 1Þ

cðcþ 1Þ
x2

2!
þ � � � :

(c) Let T ¼ ðTijÞ be a complex upper triangular matrix with positive real

diagonal elements Tii such that T�T ¼ S. Show that the probability

density function of T is given by

KðdetSÞN�1
Yp

j¼1

ðTjjÞ2n�ð2j�1Þ expf�trS
�1
T�Tg:

(d) Define R1; . . . ;Rk in terms of S (complex) and �jj; d1; . . . ; dk in terms of a,
and S in the same way as in (6.63) and (6.64) for the real case. Show that

the joint probability density function of R1; . . . ;Rk is given by ðk � pÞ
fR1;...;Rk

ðr1; . . . ; rkÞ

¼ GðNÞ GðN � pÞ
Yk
i¼1

GðpiÞ
" #�1

1�
Xk
1

ri

 !N�p�1Yk
i¼1

r
pi�1
i

� exp �
Xk
1

d2j þ
Xk
1

rj
X
1.j

d2i

( )Yk
i¼1

fðN � si�1; pi; rid
2
i Þ
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7
Tests of Hypotheses of Mean Vectors

7.0. INTRODUCTION

This chapter deals with testing problems concerning mean vectors of multivariate

distributions. Using the same developments of the appropriate test criteria we will

also construct the confidence region for a mean vector. It will not be difficult for

the reader to construct the confidence regions for the other cases discussed in this

chapter. The matrix S is rarely known in most practical problems and tests of

hypotheses concerning the mean vectors must be based on an appropriate

estimate of S. However, in cases of long experience with the same experimental

variables, we can sometimes assume S to be known. In deriving suitable test

criteria for different testing problems we shall use mainly the well-known

likelihood ratio principle and the approach of invariance as outlined in Chapter

3. The heuristic approach of Roy’s union-intersection principle of test

construction also leads to suitable test criteria. We shall include it as an

exercise. For further material on this the reader is referred to Giri (1965), books

on multivariate analysis by Anderson (1984), Eaton (1988), Farrell (1985),

Kariya (1985), Kariya and Sinha (1989), Muirhead (1982), Rao (1973), and Roy

(1957). Nandi (1965) has shown that the test statistic obtained from Roy’s union-

intersection principal is consistent if the component tests (univariate) are so,

unbiased under certain conditions, and admissible if again the component tests

are admissible. We first deal with testing problems concerning means of

multivariate normal populations, then we treat the case of multivariate complex
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normal and that of elliptically symmetric distributions. In Section 7.3.1 we treat

the problem of mean vector against one-sided alternatives for the multivariate

normal populations.

7.1. TESTS: KNOWN COVARIANCES

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random sample of size N from a p-

variate normal population with mean m and positive definite covariance matrix S.
We will consider the problem of testing the hypothesis H0;m ¼ m0 (specified)

and a related problem of finding the confidence region for m under the assumption

that S is known. In the univariate case ( p ¼ 1) we use the fact that the difference

between the sample mean and the population mean is normally distributed with

mean 0 and known variance and use the existing table of standard normal

distributions to determine the significance points or the confidence interval. In the

multivariate case such a difference has a p-variate normal distribution with mean

0 and known covariance matrix, and hence we can set up the confidence interval

or prescribe the test for each component as in the univariate case.

Such a solution has several drawbacks. First, the choice of confidence limits is

somewhat arbitrary. Second, for testing purposes it may lead to a test whose

performance may be poor against some alternatives. Finally, and probably most

important for p . 2 detailed tables for multivariate normal distributions are not

available. The procedure suggested below can be computed easily and can be

given a general intuitive and theoretical justification. Let �XX ¼ ð1=NÞSN
a¼1X

a. By

Theorem 6.2.2, under H0;Nð �XX � m0Þ0S�1ð �XX � m0Þ has central chi-square

distribution with p degrees of freedom and hence the test which rejects H0 :
m ¼ m0 whenever

Nð�xx� m0Þ0S�1ð�xx� m0Þ � x2p;a; ð7:1Þ
where x2p;a is a constant such that Pðx2p � x2p;aÞ ¼ a, has the power function

which increases monotonically with the noncentrality parameter

Nðm� m0Þ0S�1ðm� m0Þ. Thus the power function of the test given in (7.1) has

the minimum value a (level of significance) when m ¼ m0 and its power is

greater than a when m = m0. For a given sample mean �xx, consider the inequality

Nð�xx� mÞ0S�1ð�xx� mÞ � x2p;a: ð7:2Þ
The probability is 1� a that the mean of a sample of size N from a p-variate

normal distribution with mean m and known positive definite covariance matrix S
satisfies (7.2). Thus the set of values of m satisfying (7.2) gives the confidence

region for m with confidence coefficient 1� a, and represents the interior and the
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surface of an ellipsoid with center �xx, with shape depending on S and size

depending on S and x2p;a.
For the case of two p-dimensional normal populations with mean vectors m; v

but with the same known positive definite covariance matrix S we now consider

the problem of testing the hypothesis H0 : m� v ¼ 0 and the problem of setting a

confidence region for m� v with confidence coefficient 1� a. Let

Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N1, be a random sample of size N1 from the

normal distribution with mean m and covariance matrix S, and let

Ya ¼ ðYa1; . . . ; YapÞ0;a ¼ 1; . . . ;N2, be a random sample of size N2 (indepen-

dent of Xa;a ¼ 1; . . . ;N1) from the other normal distribution with mean v and

the same covariancc matrix S. If

�XX ¼ 1

N1

XN1

a¼1

Xa; �YY ¼ 1

N2

XN2

a¼1

Ya;

then by Theorem 6.2.2, under H0,

N1N2

N1 þ N2

ð �XX � �YYÞ0S�1ð �XX � �YYÞ

is distributed as chi-square with p degrees of freedom. Given sample observations

xa;a ¼ 1; . . . ;N1, and ya;a ¼ 1; . . . ;N2, the test rejects H0 whenever

N1N2

N1 þ N2

ð�xx� �yyÞ0S�1ð�xx� �yyÞ � x2p;a; ð7:3Þ

has a power function which increases monotonically with the noncentrality

parameter

N1N2

N1 þ N2

ðm� vÞ0S�1ðm� vÞ; ð7:4Þ

its power is greater than a (the level of significance) whenever m = v, and the

power function attains its minimum value a whenever m ¼ v. Given

xa;a ¼ 1; . . . ;N1, and ya;a ¼ 1; . . . ;N2, the confidence region of m� v with

confidence coefficient 1� a is given by the set of values of m� v satisfying

N1N2

N1 þ N2

ð�xx� �yy� ðm� vÞÞ0S�1ð�xx� �yy� ðm� vÞÞ � x2p;a; ð7:5Þ

which is an ellipsoid with center �xx� �yy and whose shape depends on S. In this

context it is worth noting that the quantity

ðm� vÞ0S�1ðm� vÞ ð7:6Þ
is called the Mahalanobis distance between two p-variate normal populations

with the same positive definite covariance matrix S but with different mean
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vectors. Consider now k p-variate normal populations with the same known

covariance matrix S but with different mean vectors mi; i ¼ 1; . . . ; k. Let �XXi be

the mean of a random sample of size Ni from the ith population and let �xxi be its
sample value. An appropriate test for the hypothesis

H0 :
Xk
i¼1

bimi ¼ m0; ð7:7Þ

where the bi are known constants and m0 is a known p-vector, rejects H0

whenever

C

�Xk
1

bi �xxi � m0

�0
S
�1

Xk
1

bi �xxi � m0

 !
� x2p;a; ð7:8Þ

where the constant C is given by

C�1 ¼
Xk
i¼1

b2
i

Ni

ð7:9Þ

Obviously

C

�Xk
i¼1

bi
�XXi � m0

�0
S
�1

Xk
i¼1

bi
�XXi � m0

 !

is distributed as noncentral chi-square with p degrees of freedom and with

noncentrality parameter Cðm� m0Þ0S�1ðm� m0Þ where S
k
1bimi ¼ m. Given,

�xxi; i ¼ 1; . . . ; k, the (1� a) 100% confidence region for m is given by the

ellipsoid

C

�Xk
i¼1

bi �xxi � m

�0
S
�1

Xk
i¼1

bi �xxi � m

 !
� x2p;a ð7:10Þ

with center S
k
i¼1bi �xxi.

7.2. TESTS: UNKNOWN COVARIANCES

In most practical problems concerning mean vectors the covariance matrices are

rarely known and statistical testing of hypotheses about mean vectors has to be

carried out assuming that the covariance matrices are unknown. We shall first

consider testing problems concerning the mean m of a p-variate normal

population with unknown covariance matrix S. Testing problems concerning

mean vectors of more than one multivariate normal population with unknown

covariance matrices will be treated as applications of these problems.

272 Chapter 7



7.2.1. Hotelling’s T2-Test

Let xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, be a sample of size NðN . pÞ from a p-

variate normal distribution with unknown mean m and unknown positive definite

covariance matrix S. On the basis of these observations we are interested in

testing the hypothesis H0 : m ¼ m0 against the alternatives H1 : m = m0 where S
is unknown and m0 is specified. In the univariate case ( p ¼ 1) this is a basic

problem in statistics with applications in every branch of applied science, and the

well-known Student t-test is its optimum solution. For the general multivariate

case we shall show that a multivariate analog of Student’s t is an optimum

solution. This problem is commonly known as Hotelling’s problem since

Hotelling (1931) first proposed the extension of Student’s t-statistic for the two-

sample multivariate problem and derived its distribution under the null

hypothesis. We shall now derive the likelihood ratio test of this problem. The

likelihood of the observations xa;a ¼ 1; . . . ;N is given by

Lðx1; . . . ; xN jm;SÞ

¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1
XN
a¼1

ðxa � mÞðxa � mÞ0
 !( ) ð7:11Þ

Given xa;a ¼ 1; . . . ;N, the likelihood L is a function of m;S, for simplicity

written as Lðm;SÞ. Let V be the parametric space of ðm;SÞ and let v be the

subspace of V when H0;m ¼ m0 is true. Under v the likelihood function reduces

to

ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1
XN
a¼1

ðxa � m0Þðxa � m0Þ0
 !( )

: ð7:12Þ

By Lemma 5.1.1, we obtain from (7.12)

max
v

Lðm;SÞÞ ¼ ð2pÞNp=2 det
1

N

XN
a¼1

ðxa � m0Þðxa � m0Þ0
 !" #�N=2

� exp � 1

2
Np

� �
:

ð7:13Þ

We observed in Chapter 5 that under V; Lðm;SÞ is maximum when

m ¼ 1

N

XN
a¼1

xa ¼ �xx; S ¼ 1

N

XN
a¼1

ðxa � �xxÞðxa � �xxÞ0 ¼ s

N
:
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Hence

max
V

Lðm;SÞÞ ¼ ð2pÞNp=2 det
1

N

XN
a¼1

ðxa � �xxÞðxa � �xxÞ0
 !" #�N=2

� exp � 1

2
Np

� � ð7:14Þ

From (7.13) and (7.14) the likelihood ratio test criterion for testing H0 : m ¼
m0 is given by

l ¼ maxv Lðm;SÞ
maxV Lðm;SÞ ¼

det s

detðSN
a¼1ðxa � m0Þðxa � m0Þ0Þ

" #N=2

¼ det s

detðsþ Nð�xx� m0Þð�xx� m0Þ0 Þ
� �N=2

ð7:15Þ

¼ ð1þ Nð�xx� m0Þ0s�1ð�xx� m0ÞÞ�N=2

The right-hand side of (7.15) follows from Exercise 1.12. Since l is a

monotonically decreasing function of Nð�xx� m0Þ0s�1ð�xx� m0Þ, the likelihood ratio
test of H0;m ¼ m0 when S is unknown rejects H0 whenever

NðN � 1Þð�xx� m0Þ0s�1ð�xx� m0Þ � c; ð7:16Þ
where c is a constant depending on the level of significance a of the test.

Note In connection with tests we shall use c as the generic notation for the

significance point of the test. From (6.60) the distribution of

T2 ¼ NðN � 1Þð �XX � m0Þ0S�1ð �XX � m0Þ
is given by

fT2ðt2jd2Þ ¼ expf� 1
2
d2g

ðN � 1ÞGð1
2
ðN � pÞÞ

�
X1
j¼0

ð1
2
d2Þjðt2=ðN � 1ÞÞp=2þj�1Gð1

2
N þ jÞ

j!Gð1
2
pþ jÞð1þ t2=ðN � 1ÞÞN=2þj

; t2 � 0

ð7:17Þ

where d2 ¼ Nðm� m0Þ0S�1ðm� m0Þ. This is often called the distribution of T2

with N � 1 degrees of freedom. Under H0;m ¼ m0; d
2 ¼ 0, and ðT2=ðN � 1ÞÞ�

ððN � pÞ=pÞ is distributed as central F with parameter ðp;N � pÞ. Thus for any
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given level of significance a; 0 , a , 1, the constant c of (7.16) is given by

C ¼ ðN � 1Þp
N � p

Fp;N�p;a; ð7:18Þ

where Fp;N�p;a is the ð1� aÞ 100% point of the F-distribution with degrees of

freedom ðp;N � pÞ. Tang (1938) has tabulated the type II error (1-power) of this

test for various values of d2; p;N � p and for a ¼ 0:05 and 0.01. Lehmer (1944)

has computed values of d2 for given values of a and type II error. This table is

useful for finding the value d2 (or equivalently, the value of N for given m and S)
needed to make the probability of accepting H0 very small whenever H0 is false.

Hsu (1938) and Bose and Roy (1938) have also derived the distribution of T2 by

different methods. Another equivalent test procedure for testing H0 rejects H0

whenever

r1 ¼ N �xx0s�1 �xx

1þ N �xx0s�1 �xx
� c: ð7:19Þ

From (6.66) the probability density function of R1 (random variable

corresponding to r1) is

fR1
ðr1Þ ¼

Gð1
2
NÞ

Gð1
2
pÞGð1

2
ðN � pÞÞ r

p=2�1
1 ð1� r1ÞðN�pÞ=2�1

� exp � 1

2
d2

� �
f

1

2
ðN � pÞ; 1

2
p;

1

2
r1d

� �
; 0 , r1 , 1

ð7:20Þ

Thus under H0;R1 has a central beta distribution with parameter ð1
2
p; 1

2
ðN � pÞÞ.

The significance points for the test based on R1 are given by Tang (1938). From

(7.17) and (7.20) it is obvious that the power of Hotelling’s T2-test or its

equivalent depends only on the quantity d2 and increases monotonically with d2.

7.2.2. Optimum Invariant Properties of the T2-Test

To examine various optimum properties of the T2-test, we need to verify that the

statistic T2 is the maximal invariant in the sample space under the group of

transformations acting on the sample space which leaves the present testing

problem invariant. In effect we will prove a more general result since it will be

useful for other testing problems concerning mean vectors considered in this

chapter. It, is also convenient to take m0 ¼ 0, which we can assume without any

loss of generality.
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Let

�XX ¼ 1

N

XN
1

Xa; S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0

be partitioned as

�XX ¼ ð �XXð1Þ; . . . ; �XXðkÞÞ0; S ¼
Sð11Þ � � � Sð1kÞ
..
. ..

.

Sðk1Þ � � � SðkkÞ

0
B@

1
CA ð7:21Þ

where the �XXðiÞ are subvectors of �XX of dimension pi � 1 and the SðijÞ are

submatrices of S of dimension pi � pj such that S
k
1pi ¼ p. Let

�XX½i� ¼ ð �XXð1Þ; . . . ; �XXðiÞÞ0; S½ii� ¼
Sð11Þ � � � Sð1iÞ
..
. ..

.

Sði1Þ � � � SðiiÞ

0
B@

1
CA ð7:22Þ

We shall denote the space of values of �XX by X 1 and the space of values of S by

X 2 and write X ¼ X1 �X 2, the product space of X1;X 2. Let GBT be the

multiplicative group of nonsingular lower triangular matrices g

g ¼
gð11Þ 0 0 � � � 0

gð21Þ gð22Þ 0 � � � 0

..

. ..
. ..

.

gðk1Þ gðk2Þ � � � gðkkÞ

0
BBB@

1
CCCA ð7:23Þ

of dimension p� p where the gðijÞ are submatrices of g of dimension

pi � pj; j ¼ 1; . . . ; k; and let GBT operate on X as

ð �XX; SÞ ! ðg �XX; gSg0Þ; g [ GBT :

Define R�
1; . . . ;R

�
k by

Xi
j¼1

R�
j ¼ N �XX

0
½i�S

�1
½ii� �XX½i�; i ¼ 1; . . . ; k: ð7:24Þ

Since N . p by assumption, S is positive definite with probability 1 and hence

R�
i . 0 for all i with probability 1. It may be observed that if p1 ¼ p;

pi ¼ 0; i ¼ 2; . . . ; k, then R�
1 ¼ T2=ðN � 1Þ.
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Lemma 7.2.1. The statistic ðR�
1; . . . ;R

�
k Þ is a maximal invariant under GBT ,

operating as

ð �XX; SÞ ! ðg �XX; gSg0Þ g [ GBT :

Proof. We shall prove the lemma for the case k ¼ 2, the general case following

obviously from this. First let us observe the following.

(a) If ð �XX; SÞ ! ðg �XX; gSg0Þ; g [ GBT , then

ð �XXð1Þ; Sð11ÞÞ ! ðgð11Þ �XXð1Þ; gð11ÞSð11Þg0ð11ÞÞ:
Thus ðR�

1;R
�
1 þ R�

2Þ is invariant under GBT .

(b) Since

N �XX
0
S�1 �XX ¼ N �XX

0
ð1ÞS

�1
ð11Þ �XXð1Þ

þ Nð �XXð2Þ � Sð21ÞS�1
ð11Þ �XXð1ÞÞ0ðSð22Þ � Sð21ÞS�1

ð11ÞSð12ÞÞ�1

� ð �XXð2Þ � Sð21ÞS�1
ð11Þ �XXð1ÞÞ; ð7:25Þ

R�
2 ¼ Nð �XXð2Þ � Sð21ÞS�1

ð11Þ �XXð1ÞÞ0ðSð22Þ � Sð21ÞS�1
ð11ÞSð12ÞÞ�1

� ð �XXð2Þ � Sð21ÞS�1
ð11Þ �XXð1ÞÞ:

(c) For any two p-vectors X; Y [ Ep;X0X ¼ Y 0Y if and only if there exists an

orthogonal matrix O of dimension p� p such that X ¼ OY .

Let �XX; �YY [ X 1 and S; T [ X2 be similarly partitioned and let

N �XX
0
ð1ÞS

�1
ð11Þ �XXð1Þ ¼ N �YY

0
ð1ÞT

�1
ð11Þ �YY ð1Þ ð7:26Þ

N �XX
0
S�1 �XX ¼ N �YY

0
T�1 �YY: ð7:27Þ

To show that ðR�
1;R

�
2Þ is a maximal invariant under GBT we must show that there

exists a g1 [ GBT such that

�XX ¼ g1 �YY; S ¼ g1Tg
0
1:

Choose

g ¼ gð11Þ 0

gð21Þ gð22Þ

� �

with gð11Þ ¼ S
�1=2
ð11Þ ; gð22Þ ¼ ðSð22Þ � Sð21ÞS�1

ð11ÞSð12ÞÞ�1=2, and gð21Þ ¼
�gð22ÞSð21ÞS�1

ð11Þ.
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Then

gSg0 ¼ I ð7:28Þ
Similarly, choose h [ GBT such that

hTh0 ¼ I: ð7:29Þ
Since (7.26) implies

ðgð11Þ �XXð1ÞÞ0ðgð11Þ �XXð1ÞÞ ¼ ðhð11Þ �YY ð1ÞÞ0ðhð11Þ �YY ð10ÞÞ ð7:30Þ
from (c) we conclude that there exists an orthogonal matrix u1 of dimension

p1 � p1 such that

gð11Þ �XXð1Þ ¼ u1hð11Þ �YY ð1Þ: ð7:31Þ
From (7.27), (7.28), and (7.29) we get

ðg �XXÞ0ðg �XXÞ ¼ kgð11Þ �XXð1Þk2 þ kgð21Þ �XXð1Þ þ gð22Þ �XXð2Þk2

¼ ðh �YYÞ0ðh �YYÞ ¼ khð11Þ �YY ð1Þk2 þ khð21Þ �YY ð1Þ þ hð22Þ �YY ð2Þk2

where k k denotes the norm, and hence from (7.30) we obtain

kgð21Þ �XXð1Þ þ gð22Þ �XXð2Þk2 ¼ khð21Þ �YY ð1Þ þ hð22Þ �YY ð2Þk2 ð7:32Þ
From this we conclude that there exists an orthogonal matrix u2 of dimension

p2 � p2 such that

gð21Þ �XXð1Þ þ gð22Þ �XXð2Þ ¼ u2ðhð21Þ �YY ð1Þ þ hð22Þ �YY ð2ÞÞ: ð7:33Þ
Letting

u ¼ u1 0

0 u2

� �
;

we get from (7.31) and (7.33)

�XX ¼ g�1uh �YY
0 ¼ g1 �YY;

where g1 ¼ g�1uh [ GBT , and from

gSg0 ¼ I ¼ hTh0 ¼ uhTh0u0

we get S ¼ g1Tg
0
1. Hence ðR�

1;R
�
1 þ R�

2Þ or, equivalently, ðR�
1;R

�
2Þ is a maximal

invariant under GBT on X . The proof for the general case is established by

showing that ðR�
1;R

�
1 þ R�

2; . . . ;R
�
1 þ � � � þ R�

k Þ is a maximal invariant under

GBT . The orthogonal matrix u needed is a diagonal matrix in the block form.

Q.E.D.
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It may be remarked that the statistic ðR1; . . . ;RkÞ defined in Chapter 6 is a one
to one transformation of ðR�

1; . . . ;R
�
k Þ, and hence ðR1; . . . ;RkÞ is also a maximal

invariant under GBT . The induced transformation GT
BT on the parametric space V

corresponding to GBT on X is identically equal to GBT and is defined by

ðm;SÞ ! ðgm; gSg0Þ; g [ GBT ¼ GT
BT :

Thus a corresponding maximal invariant in V under GBT is ðd21; . . . ; d2kÞ, where

Xi
j¼1

d2j ¼ Nm0
½i�S

�1
½ii�m½i�; i ¼ 1; . . . ; k: ð7:34Þ

The problem of testing the hypothesis H0 : m ¼ 0 against the alternatives H1 :
m = 0 on the basis of observations xa;a ¼ 1; . . . ;NðN . pÞ, remains invariant

under the group G of linear transformations g (set of all p� p nonsingular

matrices) which transform each xa to gxa. These transformations induce on the

space of the sufficient statistic ð �XX; SÞ the transformations

ð�xx; sÞ ! ðg�xx; gsg0Þ:

Obviously G ¼ GBT if k ¼ 1 and p1 ¼ p. A maximal invariant in the space of

ð �XX; SÞ is ðN � 1ÞR�
1 ¼ T2 ¼ NðN � 1Þ �XX0

S�1 �XX. The corresponding maximal

invariant in the parametric space V under G is d21 ¼ Nm0S�1m ¼ d2 (say). Its

probability density function is given in (7.17). The following two theorems give

the optimum character of the T2-test among the class of all invariant level a tests

for H0 : m ¼ 0. To state them we need the following definition of a statistical test.

Definition 7.2.1. Statistical test. A statistical test is a function of the random

sample Xa;a ¼ 1; . . . ;N, which takes values between 0 and 1 inclusive such that
EðfðX1; . . . ;XNÞÞ ¼ a, the level of the test when H0 is true.

In this terminology fðx1; . . . ; xNÞ is the probability of rejecting H0 when

x1; . . . ; xN are observed.

Theorem 7.2.1. Let xa;a ¼ 1; . . . ;N, be a sequence of N observations from

the p-variate normal distribution with mean m and unknown positive definite

covariance matrix S. Among all (statistical) tests fðX1; . . . ;XNÞ of level a for

testing H0 : m ¼ 0 against the alternatives H1 : m = 0 which are invariant with

respect to the group of transformations G transforming xa ! gxa;a ¼
1; . . . ;N; g [ G Hotelling’s T2-test or its equivalent (7.19) is uniformly most

powerful.
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Proof. Let fðX1; . . . ;XNÞ be a statistical test which is invariant with respect to

G. Since ð �XX; SÞ is sufficient for ðm;SÞ;EðfðX1; . . . ;XNÞj �XX ¼ �xx; S ¼ sÞ is

independent of ðm;SÞ and depends only on ð�xx; sÞ. Since f is invariant, i.e.,

fðX1; . . . ;XNÞ ¼ fðgX1; . . . ; gXNÞ; g [ G;Eðfj �XX ¼ �xx; S ¼ sÞ, is invariant

under G. Since EðEðfj �XX; SÞÞ ¼ EðfÞ;Eðfj �XX; SÞ and f have the same power

function. Thus each test in the larger class of level a tests which are functions of

Xa;a ¼ 1; . . . ;N, can be replaced by one in the smaller class of tests which are

function of ð �XX; SÞ having identical power functions. By Lemma 7.2.1 and

Theorem 3.2.2 the invariant test Eðfj �XX; SÞ depends on ð �XX; SÞ only through the

maximal invariant T2. Since the distribution of T2 depends only on

d2 ¼ Nm0S�1m, the most powerful level a invariant test of H0 : d
2 ¼ 0 against

the simple alternatives d2 ¼ d20, where d
2
0 is specified, rejects H0 (by the Neyman-

Pearson fundamental lemma) whenever

fT2 ðt2jd20Þ
fT2 ðt2j0Þ ¼ Gð1

2
pÞ expð� 1

2
d20Þ

Gð1
2
NÞ

X1
j¼0

ð1
2
d20ÞjGð12N þ jÞ
j!Gð1

2
pþ jÞ

� t2=ðN � 1Þ
1þ t2=ðN � 1Þ
� �j

� c;

ð7:35Þ

where the constant c is chosen such that the test has level a. Since the left-hand
side of this inequality is a monotonically increasing function of t2=ðN � 1þ t2Þ
and hence of t2, the most powerful level a test ofH0 against the simple alternative

d2 ¼ d20ðd20 = 0Þ rejectsH0 whenever t
2 � c, where the constant c depends on the

level a of the test. Obviously this conclusion holds good for any nonzero value of

d2 instead of d20. Hence Hotelling’s T2-test which rejects H0 whenever t
2 � c is

uniformly most powerful invariant for testing H0 : m ¼ 0 against the alternatives

m = 0. Q.E.D.

The power function of any invariant test depends only on the maximal

invariant in the parametric space. However, in general, the class of tests whose

power function depends on the maximal invariant d2 contains the class of

invariant tests as a subclass. The following theorem proves a stronger optimum

property of T2-test than the one proved in Theorem 7.2.1. Theorem 7.2.2. is due

to Semika (1941), although the proof presented here differs from the original

proof.

Theorem 7.2.2. On the basis of the observations xa;a ¼ 1; . . . ;N, from the p-

variate normal distribution with mean m and positive definite covariance matrix

S, among all tests of H0 : m ¼ 0 against the alternatives H1 : m = 0 with power

functions depending only on d2 ¼ Nm0S�1m, the T2-test is uniformly most

powerful.
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Proof. In Theorem 7.2.1 we observed that each test in the larger class of tests

that are functions of Xa;a ¼ 1; . . . ;N, can be replaced by one in the smaller

class of tests that are functions of the sufficient statistic ð �XX; SÞ, having the

identical power function. Let fð �XX; SÞ be a test with power function depending on
d2. Since d2 is a maximal invariant in the parametric space of ðm;SÞ under the
transformation ðm;SÞ ! ðgm; gSg0Þ; g [ G, we get

Em;Sfð �XX; SÞ ¼ Eg�1m;g
�1Sg�10fð �XX; SÞ ¼ Em;Sðg �XX; gSg0Þ: ð7:36Þ

Since the distribution of ð �XX; SÞ is boundedly complete (see Chapter 5) and

Em;Sðfð �XX; SÞ � fðg �XX; gSg0ÞÞ ¼ 0 ð7:37Þ
identically in m;S we conclude that

fð �XX; SÞ � fðg �XX; gSg0Þ ¼ 0

almost everywhere (may depend on particular g) in the space of ð �XX; SÞ. In other

words, f is almost invariant with respect toG (see Definition 3.2.6). As explained

in Chapter 3 if the groupG is such that there exists a right invariant measure onG,

then almost invariance implies invariance. Such a right invariant measure on G is

given in Example 3.2.6. Hence if the power of the test fð �XX; SÞ depends only on

d2 ¼ Nm0S�1m, then fð �XX; SÞ is almost invariant under G, which for our problem

implies that fð �XX; SÞ is invariant with respect to G transforming

ð �XX; SÞ ! ðg �XX; gSg0Þ; g [ G. Since by Theorem 7.2.1 the T2-test is uniformly

most powerful among the class of tests which are invariant with respect G, we

conlude the proof of the theorem. Q.E.D.

7.2.3. Admissibility and Minimax Property of T2

We shall now consider the optimum properties of the T2-test among the class of

all level a tests. In almost all standard hypothesis testing problems in multivariate

analysis—in particular, in normal ones—no meaningful nonasymptotic (in the

sample size N) optimum properties are known either for the classical tests or for

any other tests. The property of being best invariant under a grouo of

transformations that leave the problem invariant, which is often possessed by

some of these tests, is often unsatisfactory because the Hunt-Stein Theorem (see

Chapter 3) is not valid. In particular, for the case of the T2-test the property of

being uniformly most powerful invariant under the full linear group G causes the

same difficulty since G does not satisfy the conditions of the Hunt-Stein theorem.

The following demonstration is due to Stein as reported by Lehmann (1959,

p. 338).

Let X ¼ ðX1; . . . ;XpÞ0; Y ¼ ðY1; . . . ; YpÞ0 be independently distributed normal

p-vectors with the same mean 0 and with positive definite covariance matrices
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S; dS, respectively, where d is an unknown scalar constant. The problem of

testing the hypothesis H0 : d ¼ 1 against the alternatives H1 : d . 1, remains

invariant under the full linear group G transforming X ! gX; Y ! gY; g [ G.

Since the full linear group G is transitive (see Chapter 2) over the space of values

of ðX; YÞ with probability 1, the uniformly most powerful level a invariant test

underG is the trivial test fðx; yÞ ¼ awhich rejectsH0 with constant probability a
for all values ðx; yÞ of ðX; YÞ. Thus the maximum power that can be achieved over

the alternatives H1 by any invariant test under G is also a. On the other hand,

consider the test which rejects H0 whenever x21=y
2
1 � c for any observed x; y (c

depending on a). This test has strictly increasing power function bðdÞ whose
minimum over the set d � d1 . 1 is bðd1Þ . bð1Þ ¼ a.

The admissibility of various classical tests in the univariate and multivariate

situations is established by using (1) the Bayes procedure, (2) exponential

structure of the parametric space, (3) invariance, and (4) local properties. For a

comprehensive presentation of this the reader is referred to Kiefer and Schwartz

(1965). The admissibility of the T2-test was first proved by Stein (1956) using the

exponential structure of the parametric space and by showing that no other test of

the same level is superior to T2 when d2 ¼ Nm0S�1m is large (very far from H0),

and later by Kiefer and Schwartz (1965) using the Bayes procedure. It is the latter

method of proof that we reproduce here. A special feature of this proof is that it

yields additional information on the behavior of the T2-test closer to H0. The

technique is to select suitable priors (probability measures or positive constant

multiples thereof) P1 and P0 (say) for the parameters ðm;SÞ under H1 and for S
under H0 so that the T2-test can be identified as the unique Bayes test which, by

standard theory, is then admissible. The T2-test can be written as

X0ðYY 0 þ XX0Þ�1X � c

where X ¼ ffiffiffiffi
N

p
�XX; S ¼ S

N¼1
a¼1Y

aYa0
; Y ¼ ðY1; . . . ; YN�1Þ; Yas are independently

and identically distributed normal p-vectors with mean 0 and covariance matrix

S. It may be recalled that if u ¼ ðm;SÞ and the Lebesgue density function of

V ¼ ðX; YÞ on a Euclidean set is denoted by fV ðvjuÞ, then every Bayes rejection

region for the 0� 1 loss function is of the form

v :

ð
fV ðvjuÞP1ðduÞ

� �ð
fV ðvjuÞPoðduÞ

� �
� c

�
ð7:38Þ

for some cð0 � c � 1Þ. Since in our case the subset of this set corresponding to

equal to c has probability 0 for all u in the parametric space, our Bayes procedure

will be essentially unique and hence admissible.

Let both P1 and P0 assign all their measure to the u for which S
�1 ¼ I þ hh0

for some random p-vector h under bothH0 andH1, and for which m ¼ 0 underH0

and m ¼ Sh with probability 1 under H1. Regarding the distribution of h on the

282 Chapter 7



p-dimension Euclidean space Ep we assume that

under H1 :
dP1ðhÞ
dh

/ ½detðI þ hh0Þ��N=2 exp
1

2
h0ðI þ hh0Þ�1h

� �

under H0 :
ðdP0ðhÞ

dh
/ ½detðI þ hh0Þ��N=2:

ð7:39Þ

That these priors represent bona fide probability measures follows from the fact

that if h0ðI þ hh0Þ�1h is bounded by unity and detðI þ hh0Þ ¼ 1þ h0h so thatð
Ep

ð1þ h0hÞ�N=2dh , 1 ð7:40Þ

if and only if N . p (which is our assumption). Since in our case

fV ðvjuÞ ¼ fXðxjm;SÞfY ðyjSÞ ð7:41Þ
where

fXðxjm;SÞ ¼ ð2pÞ�p=2ðdetSÞ�1=2 exp � 1

2
tr S

�1ðx� mÞðx� mÞ0
� �

;

fY ðyjSÞ ¼ ð2pÞ�ðN�1Þp=2ðdetSÞ�ðN�1Þ=2 exp � 1

2
tr S

�1
yy0

� �
;

it follows from (7.39) that
Ð
fV ðvjuÞP1ðduÞÐ
fV ðvjuÞP0ðduÞ

¼
ð
ðdetðI þ hh0ÞÞN=2

� expf� 1
2
trðI þ hh0Þðxx0 þ yy0Þ þ hx0 � 1

2
ðI þ hh0Þ�1hh0gP1ðdhÞÐ ðdetðI þ hh0ÞÞN=2 expf� 1

2
trðI þ hh0Þðxx0 þ yy0ÞgP0ðdhÞ

¼ exp
1

2
trðxx0 þ yy0Þ�1xx0

� �

�
Ð
expf� 1

2
trðxx0 þ yy0Þ�1ðh� ðxx0 þ yy0Þ�1xÞðh� ðxx0 þ yy0Þ�1xÞ0gdhÐ

expf� 1
2
trðxx0 þ yy0Þhh0gdh

¼ exp � 1

2
trðxx0 þ yy0Þ�1xx0

� �
: ð7:42Þ

But X0ðXX0 þ YY 0Þ�1X ¼ c has probability 0 for all u. Hence we conclude the

following.
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Theorem 7.2.3. For each c � 0 the rejection region X0ðXX0 þ YY 0Þ�1X � c or,

equivalently, the T2-test is admissible for testing H0 : m ¼ 0 against H1 : m = 0.

We shall now examine the minimax property of the T2-test for testing H0 :
m ¼ 0 against the alternatives Nm0S�1m . 0. As shown earlier the full linear

group G does not satisfy the conditions of the Hunt-Stein theorem. But the

subgroup GT ðGBT with k ¼ p), the multiplicative group of p� p nonsingular

lower triangular matrices which leaves the present problem invariant operating as

ð �XX; S;m;SÞ ! ðg �XX; gSg0; gm; gSg0Þ; g [ GT ;

satisfies the conditions of the Hunt-Stein theorem (see Kiefer, 1957; or Lehmann,

1959, p. 345). We observed in Chapter 3 that on GT there exists a right invariant

measure. Thus there is a test of level a which is almost invariant under GT , and

hence in the present problem there is such a test which is invariant under GT and

which maximizes among all level a tests the minimum power over H1. Whereas

T2 was a maximal invariant under G with a single distribution under each of H0

and H1 for each d
2, the maximal invariant under GT is the p-dimensional statistic

ðR�
1; . . . ;R

�
pÞ as defined in Section 7.2.1 with k ¼ p; p1 ¼ � � � ¼ pk ¼ 1, or its

equivalent statistic ðR1; . . . ;RpÞ as defined in Chapter 6 with k ¼ p. The

distribution of R ¼ ðR1; . . . ;RpÞ has been worked out in Chapter 6. As we have

observed there, under H0ðd21 ¼ � � � ¼ d2p ¼ 0Þ, R has a single distribution, but

under H1 with d2 fixed, it depends continuously on a ð p� 1Þ-dimensional vector

D ¼ fðd21; . . . ; d2pÞ : d2i � 0;Sp
1d

2
i ¼ d2g for each fixed d2. Thus for N . p . 1

there is no uniformly most powerful invariant test under GT for testing H0 against

H1 : Nm
0S�1m . 0. Let fRðrjDÞ; fRðrj0Þ denote the probability density function of

R under H1 (for fixed d
2) and H0, respectively. Because of the compactness of the

reduced parametric spaces f0g under H0 and

G ¼ fðd21; . . . ; d2pÞ : d2i � 0;Sp
1d

2
i ¼ d2g

under H1 and the continuity of fRðrjDÞ in D, it follows that (see Wald, 1950) every

minimax test for the reduced problem in terms of R is Bayes. In particular,

Hotelling’s test which rejects H0 whenever S
p
1ri � c, which has constant power

on each contour Nm0S�1m ¼ d2 (fixed) and which is also GT invariant,

maximizes the minimum power over H1 for each fixed d2 if and only if there is a

probability density measure l on G such that for some constant K

ð
G

fRðrjDÞ
fRðrj0Þ lðdDÞ

.
¼
,

8<
:

9=
;K ð7:43Þ
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according as

Xp

1

ri

.
¼
,

8<
:

9=
;c

except possibly for a set of measure 0. Obviously c depends on the level of

significance a and the measure l and the constant K may depend only on c and

the specific value of d2. From (6.64) with k ¼ p, we get

fRðrjDÞ
fRðrj0Þ ¼ exp � 1

2
d2 þ

Xp

j¼1

rj
X
i.j

d2i =2

( )

�Pp
i¼1f

1

2
ðN � iþ 1Þ; 1

2
;
1

2
rid

2
i

� �

An examination of the integrand in this expression allows us to replace (7.43) by

its equivalent

ð
G

fRðrjDÞ
fRðrj0Þ lðdDÞ ¼ K if

Xp

i¼1

ri ¼ c: ð7:44Þ

Clearly (7.43) implies (7.44). On the other hand, if there are a l and a K for which

(7.44) is satisfied and if r� ¼ ðr�1; . . . ; r�pÞ0 is such that S
p
i¼1r

�
i ¼ c0 . c, writing

f ðrÞ ¼ fRðrjDÞ=fRðrj0Þ and r�� ¼ cr�=c0, we see at once that f ðr�Þ ¼
f ðc0r��=cÞ . f ðr��Þ ¼ K, because of the form of f and the fact that c0=c . 1

and S
p
i¼1r

��
i ¼ c. This and a similar argument for the case c0 , c show that (7.44)

implies (7.43). [Of course we do not assert that the left-hand side of (7.44) still

depends only on S
p
i¼1ri if S

p
i¼1ri = c.]

The computations in the next section are somewhat simplified by the fact that

for fixed c and d2 we can at this point compute the unique value of K for which

(7.44) can possibly be satisfied. Let R̂R ¼ ðR1; . . . ;Rp�1Þ0 and write fR̂Rðr̂rjD; uÞ for
the version of the conditional Lebesgue density of R̂R given that S

p
i¼1Ri ¼ u which

is continuous in r̂r and u for ri . 0;Sp�1
i¼1 ri , u , 1, and is zero elsewhere. Write

fUðujd2Þ for the probability density function of U ¼ S
p
i¼1Ri which depends on D

only through d2, and is continuous for 0 , u , 1 and vanishes elsewhere. Then

(7.44) can be written as

ð
fR̂Rðr̂rjD; cÞlðdDÞ ¼ K

fUðcj0Þ
fUðcjd2Þ

� �
fR̂Rðr̂rj0; cÞ ð7:45Þ

for ri . 0;Sp�1
i¼1 ri , c. The integral of (7.45), being a probability mixture of

probability densities, is itself a probability density in r̂r, as is fR̂Rðr̂rj0; cÞ. Hence the
expression in brackets equals 1. It is well known that, for 0 , c , 1 (see
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Theorem 6.8.1),

fUðcjd2Þ ¼
Gð1

2
NÞ expf� 1

2
d2g

Gð1
2
pÞGð1

2
ðN � pÞÞ c

ðp�2Þ=2ð1� cÞðN�p�2Þ=2f
1

2
N;

1

2
p;

1

2
cd2

� �
:

Hence (7.44) becomes

ð
G

exp
Xp

j¼1

rj
X
i.j

1

2
d2i

( )Yp

i¼1

f
1

2
ðN � iþ 1Þ; 1

2
;
1

2
rid

2
i

� �
lðdDÞ

¼ f
1

2
N;

1

2
p;

1

2
cd2

� �
if

Xp

i¼1

ri ¼ c:

ð7:46Þ

For p ¼ 2;N ¼ 3, writing

l ¼ cd2;bi ¼ d2i =d
2; ti ¼ lri=c;

G1 ¼ ðb1; . . . ;bpÞ : bi � 0;
Xp

i¼1

bi ¼ 1

( )

l� for the measure associated with l on G ½l�ðAÞ ¼ lðd2AÞ� and noting that

fð3
2
; 1
2
; 1
2
xÞ ¼ ð1þ xÞ expf1

2
xg, we obtain from (7.46)

ð1
0

½1þ ðg� t2Þð1� b2Þ�f 1;
1

2
;
1

2
b2t2

�
dl�ðb2Þ

�

¼ exp
1

2
ðt2 � gÞ

� �
f

3

2
;
1

2
;
1

2
g

� �
:

ð7:47Þ

Writing

B ¼ exp � 1

2
g

� �
f

3

2
; 1;

1

2
gÞ; mi ¼

ð1
0

bidl�ðbÞ;
�

0 � i , 1, for the ith moment of l� we obtain from (7.47)

1þ l� lm1 ¼ B;

�ð2r � 1Þmr�1 þ ð2r þ gÞmr � gmrþ1 ¼ B
Gðr þ 1

2
Þ

r!Gð1
2
Þ

" #
; r � 1:

ð7:48Þ
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Giri, et al. (1963) after lengthy calculations showed that there exists an absolutely

continuous probability measure l� whose derivative mgðxÞ is given by

mgðxÞ ¼
expf� 1

2
gxg

2px1=2ð1� xÞ1=2
ð1
0

exp � 1

2
gu

� �
B

1þ u
� u1=2

ð1þ uÞ3=2
� ��

du ð7:49Þ

þ B

ðx
0

expð1
2
guÞ

1� u
du

�
;

proving that for p ¼ 2;N ¼ 3, the T2-test is minimax for testing H0 against H1.

Later Salaevskii (1968), using this reduction of the problem, after voluminous

computations was able to show that there exists a probability measure l for

general p and N, establishing that the T2-test is minimax in general.

Giri and Kiefer (1962) developed the theory of local (near the null hypothesis)

and asymptotic (far in distance from the null hypothesis) minimax tests for

general multivariate problems. This theory serves two purposes. First, there is the

obvious point of demonstrating such properties for their own sake, though well-

known and valid doubts have been raised as to the extent of meaningfulness of

such properties. Second, local and asymptotic minimax properties can give an

indication of what to look for in the way of genuine minimax or admissibility

properties of certain test procedures, even though the latter do not follow from

these properties. We present in the following section the theory of local and

asymptotic minimax tests as developed by Giri and Kiefer (1962) and use them to

show that the T2-test possesses both of these properties for every a;N; p. This
lends to the conjecture that the T2-test is minimax for all N; p. For relevant

further results in connection with the minimax property of the T2-test the reader is

also referred to Linnik et al. (1966). For a more complete presentation of

minimax tests in the multivariate setup the reader is referred to Giri (1975).

7.2.4. Locally and Asymptotically Minimax Tests

Locally Minimax Tests

Let X be a space with an associated s-field which, along with the other

obvious measurability considerations, we will not mention in what follows. For

each point ðd2;hÞ in the parametric space Vðd2 � 0 and h may be a vector or

matrix) suppose that f ð�; d2;hÞ is a probability density function on X with respect

to a s-finite measure m. The range of h may depend on d2. For fixed

a; 0 , a , 1, we shall be interested in testing, at level a, the null hypothesis

H0 : d
2 ¼ 0 against the alternative H1 : d

2 ¼ l, where l is a specified positive

value. This is a local theory in the sense that f ðx; l;hÞ is close to f ðx; 0;hÞwhen l
is small. Throughout this presentation, such expressions as oð1Þ; oðhðlÞÞ; . . . ; are
to be interpreted as l ! 0.
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For each a; 0 , a , 1, we shall consider rejection regions of the form

R ¼ fx : UðxÞ . Cag, where U is bounded and positive and has a continuous

distribution function for each ðd2;hÞ, equicontinuous in ðd2;hÞ for d2 , some d2

and where

P0;hfRg ¼ a;Pl;hfRg ¼ aþ hðlÞ þ qðl;hÞ ð7:50Þ
where qðl;hÞ ¼ oðhðlÞÞ uniformly in h, with hðlÞ . 0 for l . 0 and

hðlÞ ¼ oð1Þ. We shall also be concerned with probability measures j0;l and

j1;l on the sets d2 ¼ 0 and d2 ¼ l, respectively, for which
Ð
f ðx;l;hÞj1;lðdhÞÐ
f ðx;l;hÞj0;lðdhÞ

¼ 1þ hðlÞ½gðlÞ þ rðlÞUðxÞ� þ Bðx; lÞ; ð7:51Þ

where 0 , C1 , rðlÞ , C2 , 1 for l sufficiently small, and where gðlÞ ¼ 0ð1Þ
and Bðx; lÞ ¼ oðhðlÞÞ uniformly in x.

Theorem 7.2.4. Locally minimax. If R satisfies (7.50) and if for sufficiently

small l there exist j0;l and j1;l satisfying (7.51), then R is locally minimax of

level a for testing H0 : d
2 ¼ 0 against H1 : d

2 ¼ l as l ! 0; that is,

lim
l!0

infh Pl;hfRg � a

supfl[Qa
infh Pl;hffl rejects H0g � a

¼ 1; ð7:52Þ

where Qa is the class of tests of level a.

Proof. Write

tl ¼ 1=f2þ hðlÞ½gðlÞ þ CarðlÞ�g; ð7:53Þ
so that

ð1� tlÞ=tl ¼ 1þ hðlÞ½gðlÞ þ CarðlÞ�: ð7:54Þ
A Bayes rejection region relative to a priori distribution jl ¼ ð1� tlÞj0;l þ
tlj1;l (for 0� 1 losses) is, by (7.51) and (7.54),

Bl ¼ x : UðxÞ þ Bðx; lÞ
rðlÞhðlÞ . Ca

� �
: ð7:55Þ

Write

P�
0;lfAg ¼

ð
P0;lfAgj0;lðdhÞ; P�

1;lfAg ¼
ð
Pl;hfAgj1;lðdhÞ:

Let Vl ¼ Rl � Bl and Wl ¼ Bl � R. Using the fact that supx jBðx; lÞ=hðlÞj ¼
oð1Þ and our continuity assumption on the distribution function of U, we have

P�
0;lfVl þWlg ¼ oð1Þ: ð7:56Þ
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Also, for Ul ¼ Vl or Wl,

P�
1;lfUlg ¼ P�

0;lfUlg½1þ OðhðlÞÞ�: ð7:57Þ
Write r�1;lðAÞ ¼ ð1� tlÞP�

0;lfAg þ tlð1� P�
1;lfAgÞ. From (7.53) and (7.57), the

integrated Bayes risk relative to jl is then

r�lðBlÞ ¼ r�lðRÞ þ ð1� tlÞðP�
0;lfWlg � P�

0;lfVlgÞ
þ tlðP�

1;lfVlg � P�
1;lfWlgÞ

¼ r�lðRÞ þ ð1� 2tlÞðP�
0;lfWlg � P�

0;lfVlgÞ ð7:58Þ
þ P�

0;lfVl þWlg0ðhðlÞÞ
¼ r�lðRÞ þ oðhðlÞÞ:

If (7.52) is false, we could, by (7.53), find a family of tests fflg of level a such

that fl has power function aþ gðl;hÞ on the set d2 ¼ l, with

lim sup
l!0

½infh gðl;hÞ � hðlÞ�
hðlÞ

� �
. 0:

The integrated risk r0l of fl with respect to jl would then satisfy

lim sup
l!0

r�lðRÞ � r0l
hðlÞ

� �
. 0;

thus contradicting (7.58). Q.E.D.

Asymptotically Minimax Tests

Here we treat the case l ! 1, and expressions such as oð1Þ; oðHðlÞÞ are to be
interpreted in this light. Suppose that in place of (7.50) R satisfies

P0;hfRg ¼ a; Pl;hfRg ¼ 1� expf�HðlÞð1þ oð1ÞÞg; ð7:59Þ
where HðlÞ ! 1 with l and the oð1Þ term is uniform in h. Suppose, replacing
(7.51), that

Ð
f ðx;l;hÞj1;hðdhÞÐ
f ðx; 0;hÞj0;lðdhÞ

¼ expfHðlÞ½GðlÞ þ RðlÞUðxÞ� þ Bðx; lÞg; ð7:60Þ

where supx jBðx; lÞj ¼ oðHðlÞÞ and 0 , C1 , RðlÞ , C2 , 1. Our only other

regularity assumption is that Ca, is a point of increase from the left of the

distribution of U, when d2 ¼ 0, uniformly in h; that is,

inf
h
P0;hfU � Ca � 1g . a ð7:61Þ

for every 1 . 0.
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Theorem 7.2.5. If R satisfies (7.59) and (7.61) and if for sufficiently large l
there exist j0;l and j1;l satisfying (7.60), then R is asymptotically logarithmically

minimax of level a for testing H0 : d
2 ¼ 0 against H1 : d

2 ¼ l so that l ! 1;

that is,

lim
l!1

infhf� log½1� Pl;hfRg�g
supfl[Qa

infhf� log½1� Pl;hffl rejects H0g�g ¼ 1: ð7:62Þ

Proof. Suppose, contrary, to (7.62), that there is an 1 . 0 and an unbounded

sequence G of values l with corresponding tests fl in Qa for which

Pl;hfRg . 1� expf�HðlÞð1þ 51Þg for all h: ð7:63Þ
There are two cases: (7.64) and (7.67). If l [ G and

�1� GðlÞ � RðlÞCa þ 21; ð7:64Þ
consider the a priori distribution given by ji;l and by tl satisfying

tl=ð1� tlÞ ¼ expfHðlÞð1þ 41Þg: ð7:65Þ
The integrated risk of any Bayes procedure Bl must satisfy

r�lðBlÞ � r�lðflÞ � ð1� tlÞaþ tl expf�HðlÞð1þ 51Þg
¼ ð1� tlÞ½aþ expð�1HðlÞÞ�; ð7:66Þ

by (7.63) and (7.65). But from (7.60) a Bayes critical region is

Bl ¼ x :
UðxÞ þ Bðx; lÞ

RðlÞHðlÞ � �ð1þ 41Þ � GðlÞ
RðlÞ

� �
:

Hence if l is so large that supx jBðx; lÞ=HðlÞj , 1=C2, we get from (7.64)

Bl . fx : UðxÞ . Ca � 1=C2g ¼ B0
l say:

The assumption (7.61) implies that

P0;hfB0
lg . aþ 10

with 10 . 0, contradicting (7.66) for large l. On the other hand, if l [ G and

�1� GðlÞ . RðlÞCa þ 21; ð7:67Þ
let

tl=ð1� tlÞ ¼ expfHðlÞð1þ 1Þg: ð7:68Þ
Then by (7.60)

Bl ¼ x :
UðxÞ þ Bðx; lÞ

RðlÞHðlÞ � �ð1þ 1Þ � GðlÞ
RðlÞ

� �
:
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Hence if supx jBðx; lÞ=HðlÞRðlÞj , 1=2C2, we conclude from (7.67) that

Bl , R, so that, by (7.59) and (7.68),

r�ðBlÞ . tl expf�HðlÞ½1þ oð1Þ�g
¼ ð1� tlÞ expfHðlÞð1� oð1ÞÞg: ð7:69Þ

But

r�ðBlÞ � r�ðflÞ � ð1� tlÞaþ tl expf�HðlÞð1þ 51Þg
¼ ð1� tlÞ½aþ expf�41HðlÞg�;

which contradicts (7.69) for sufficiently large l. Q.E.D.

Theorem 7.2.6. For every p;N, and a, Hotelling’s T2-test is locally minimax

for testing H0 : d
2 ¼ 0 against H1 : d

2 ¼ l as l ! 0.

Proof. In our search for a locally minimax test as l ! 0 we look for a level a
test which is almost invariant under GT and which minimizes among all level a
tests the minimum power under H1 (as discussed in the case of the genuine

minimax property of the T2-test). So we restrict our attention to the space

of R ¼ ðR1; . . . ;RpÞ0, the maximal invariant under GT in the space of ð �XX; SÞ.
We now verify the assumption of Theorem 7.2.4 with x ¼ r; hi ¼ d2i =d

2;
h ¼ h ¼ ðh1; . . . ;hpÞ0, and UðxÞ ¼Pp

i¼1 ri. We can take hðlÞ ¼ bl with b a

positive constant. Of course, Pl;hfRg does not depend on h. From (6.66)

f ðr; l;hÞ
f ðr; 0; 0Þ ¼ 1þ l

2
�1þ

Xp

j¼1

rj
X
i.j

hi þ ðN � jþ 1Þhj

" #( )

þ Bðr;h; lÞ;
ð7:70Þ

where Bðr;h; lÞ ¼ oðlÞ uniformly in r and h. Here the set fd2 ¼ 0g is a single

point. Also the set fd2 ¼ lg is a convex finite-dimensional Euclidian set where in

each component hi is 0ðhðlÞÞ. If there exists any j1;l satisfying (7.51), the

degenerate j01;l which assigns measure 1 to the mean of j1;l also satisfies (7.51),

and (7.51) is satisfied by letting j0;l give measure 1 to the single point h ¼ 0,

whereas j1;l gives measure 1 to the single point h� (say) whose jth coordinate is

ðN � jÞ�1ðN � jþ 1Þ�1p�1NðN � pÞ, so that
P

i.j h
�
i þ ðN � jþ 1Þh�

j ¼ N=p
for all j. Applying Theorem 7.2.4 we get the result. Q.E.D.

Theorem 7.2.7. For every a; p;N, Hotelling’s T2-test is asymptotically

(logarithmically) minimax for testing H0 : d
2 ¼ 0 against the alternative H1 :

d2 ¼ l as l ! 1.
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Proof. From (6.64) [since fða; b; xÞ ¼ expðxð1þ oð1ÞÞÞ as x ! 1] we get

f ðr; l;hÞ
f ðr; 0;hÞ ¼ exp

l

2
�1þ

Xp

j¼1

rj
X
i�j

hi

" #
ð1þ Bðr;h; lÞÞ

( )
ð7:71Þ

with supr;h jBðr;h; lÞj ¼ oð1Þ as l ! 1. From this and the smoothness of

f ðr; 0;hÞ we see (e.g., putting hp ¼ 1, the density of U being independent of h)
that

Pl;hfU , Cag ¼ exp
1

2
lðCa � 1Þ½1þ oð1Þ�

� �
ð7:72Þ

as l ! 1. Thus (7.59) is satisfied with HðlÞ ¼ 1
2
ð1� CaÞ. Next, letting j1;l

assign measure 1 to the point h1 ¼ � � � ¼ hp�1 ¼ 0, hp ¼ 1, and j0;l assign

measure 1 to (0,0), we obtain (7.60). Finally (7.61) is trivial. Applying Theorem

7.2.5 we get the result. Q.E.D.

Suppose, for a parameter set V0 ¼ fðu;hÞ : u [ Q;h [ Hg with associated

distributions, with Q a Euclidean set, that every test f has a power function

bfðu;hÞwhich, for each h is twice continuously differentiable in the components

of u at u ¼ 0, an interior point of Q. Let Qa be the class of locally strictly

unbiased level a tests of H0 : u ¼ 0 against H1 : u = 0; our assumption on bf

implies that all tests in Qa are similar and that @bf=@uiju¼0 ¼ 0 for f in Qa. Let

DpðhÞ be the determinant of the matrix BfðhÞ of second derivatives of bfðu;hÞ
with respect to the components of u at u ¼ 0. We assume the parametrization to

be such that D0
fðhÞ . 0 for all h for at least one f0 in Qa.

A test f� is said to be of type E if f� [ Qa and Df�ðhÞ ¼ maxf[Qa
DfðhÞ for

all h. If H is a single point, f� is said to be of type D.

Write

�DDðhÞ ¼ max
f[Qa

DfðhÞ:

A test f� will be said to be of type DA if f [ Qa and

max
h

½ �DDðhÞ � Df�ðhÞ� ¼ min
f[Qa

max
h

½ �DDðhÞ � DfðhÞ�

and of type DM if

max
h

½ �DDðhÞ=Df�ðhÞ� ¼ min
f[Qa

max
h

½ �DDðhÞ=DfðhÞ�:

The notion of type D and E regions is due to Isaacson (1951). The DA and DM

criteria resemble stringency and regret criteria employed elsewhere in statistics.

The reader is referred to Giri and Kiefer (1964) for the proof that the T2-test is not
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of type D among all GT invariant tests and hence is not of type DA or DM or E

among all tests.

7.2.5. Applications of the T2-Test

Confidence Region of Mean Vector

Let xa ¼ ðXa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, be a sample of size N from a p-variate

normal distribution with unknown mean m and unknown positive definite

covariance matrix S. Let

�xx ¼ 1

N

XN
1

xa; s ¼
XN
1

ðxa � �xxÞðxa � �xxÞ0:

For the corresponding random sample Xa;a ¼ 1; . . . ;N;NðN � 1Þ �
ð �XX � mÞ0S�1ð �XX � mÞ is distributed as Hotelling’s T2 with N � 1 degrees of

freedom. Let T2
0 ðaÞ, for 0 , a , 1, be such that PðT2 � T2

0 ðaÞÞ ¼ a. Then the

probability of drawing a sample xa;a ¼ 1; . . . ;N, of size N with mean �xx and

sample covariance s such that

NðN � 1Þð�xx� mÞ0s�1ð�xx� mÞ � T2
0 ðaÞ

is 1� a. Hence given Xa;a ¼ 1; . . . ;N, the 100 ð1� aÞ% confidence region of

m consists of all p-vectors m satisfying

NðN � 1Þð�xx� mÞ0s�1ð�xx� mÞ � T2
0 ðaÞ: ð7:73Þ

The boundary of this region is an ellipsoid whose center is at the point �xx and
whose size and shape depend on s and a.

7.2.6. Simultaneous Confidence Interval

Let b1; . . . ;bk be a set of parameters and let Ii; i ¼ 1; . . . ; k, be the set of

confidence intervals for bi; i ¼ 1; . . . ; k satisfying

Pfbi [ Ii; i ¼ 1; . . . ; kg ¼ 1� a: ð7:73aÞ
Then the Ii are called the ð1� aÞ% confidence intervals of b1; . . . ;bk. From

(7.73) we obtain simultaneous confidence intervals for linear functions ‘0m;
‘ [ Ep by the use of the following lemma.

Lemma 7.2.2. Let S be positive definite and symmetric. Then for all

‘ ¼ ð‘1; . . . ; ‘pÞ0 [ Ep,

ð‘0yÞ2 � ð‘0S‘Þðy0S�1yÞ: ð7:73bÞ
where y ¼ ð �XX � mÞ.
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Proof. Put g ¼ ‘0yð‘0S‘Þ�1. Since S is positive definite and symmetric we get

ðy� gS‘Þ0S�1ðy� gS‘Þ � 0:

Hence

y0S�1y� 2g‘0SS�1yþ g2‘0SS�1S‘ ¼ y0S�1y� ð‘0yÞ2
‘0S‘

� 0;

which implies (7.73b). Q.E.D.

Now using (7.73) we conclude with confidence ð1� aÞ% that the mean vector

m satisfies for all ‘ [ Ep

j‘0 �XX � ‘0mj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘0S‘ÞðT2

o ðaÞÞ=NðN � 1Þ
q

:

Test for the Equality of Two Mean Vectors

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N1, be a random sample of size N1 from

a p-variate normal population with mean vector m and positive definite

covariance matrix S, and let Ya ¼ ðYa1; . . . ; YapÞ0;a ¼ 1; . . . ;N2, be a random

sample of size N2 from another independent normal population with mean n and

positive definite covariance matrix S. Let

�XX ¼ 1

N1

XN1

1

Xa; �YY ¼ 1

N2

XN2

1

Ya;

S ¼
XN1

1

ðXa � �XXÞðXa � �XXÞ0 þ
XN2

1

ðYa � �YYÞðYa � �YYÞ0:

It can be verified that ð �XX; �YY; SÞ is a complete sufficient statistic for

ðm; n;SÞ; ðN1N2=ðN1 þ N2ÞÞ1=2ð �XX � �YYÞ has p-variate normal distribution with

mean ðN1N2=ðN1 þ N2ÞÞ1=2ðm� nÞ and positive definite covariance matrix S, and
S is distributed as Wishart WpðN1 þ N2 � 2;SÞ independently of ð �XX; �YYÞ. The
problem of testing the hypothesis H0 : m� n ¼ 0 against the alternatives H1 :
m� n = 0 remains invariant under the group of affine transformations

Xa ! gXa þ b;a ¼ 1; . . . ;N1; Y
a ! gYa þ b;a ¼ 1; . . . ;N2, where g [ G;

b [ Ep (Eudidean p-space). The maximal invariant under the group of affine

transformations in the space of ð �XX; �YY; SÞ is given by

T2 ¼ ðN1 þ N2 � 2ÞðN1N2=ðN1 þ N2ÞÞð �XX � �YYÞ0S�1ð �XX � �YYÞ
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and T2 is distributed as Hotelling’s T2 with N1 þ N2 � 2 degrees of freedom and

the noncentrality parameter

d2 ¼ ðN1N2=ðN1 þ N2ÞÞðm� nÞ0S�1ðm� nÞ:
An optimum test for this problem is the Hotelling’s T2-test which rejects H0 for

large values of T2. This test possesses all the properties of the T2-test discussed

above.

Example 7.2.1. Consider Example 5.3.1 and assume that the two p-variate

normal populations have the same positive definite covariance matrix S
(unknown). Let the mean of population I (1971) be m and that of population II

(1972) be n. We are interested here in testing the hypothesisH0 : m� n ¼ 0. Here

N1 ¼ N2 ¼ 27:

�xx ¼ ð84:89; 186:30; 9:74; 13:46; 304:37; 13:63Þ0
�yy ¼ ð77:14; 167:18; 10:45; 13:10; 361:55; 14:76Þ0

s

52
¼

1
CCCCCCCCCA

0
BBBBBBBBB@

1 2 3 4 5 6

1 1143:07

2 57:40 3:84

3 70:16 4:25 25:54

4 79:48 0:66 23:62 326:56

5 15:28 0:77 1:18 2:40 0:30

6 21:60 1:04 2:56 4:14 0:39 0:83

The value of

t2 ¼ ðN1N2=ðN1 þ N2ÞÞðN1 þ N2 � 2Þð�xx� �yyÞ0s�1ð�xx� �yyÞ ¼ 217:55:

The 1% significance value of T2 is 21.21. Thus we reject the hypothesis that the

means of the two populations are equal.

Problem of Symmetry and Tests of Significance of Contrasts

Let xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, be a sample of size N from a p-variate

normal population with mean m ¼ ðm1; . . . ;mpÞ0 and covariance matrix S. We

are interested in testing the hypothesis

H0 : m1 ¼ � � �mp ¼ g ðunknownÞ:
Let E ¼ ð1; . . . ; 1Þ0 be a p-vector with components all equal to unity. A matrix C

of dimension ðp� 1Þ � p is called a contrast matrix if CE ¼ 0.
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Example 7.2.2. The ðp� 1Þ � p matrix C1

C1 ¼
1 �1 0 � � � 0 0

0 1 �1 � � � 0 0
..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 1 �1

0
BB@

1
CCA

is a contrast matrix of rank p� 1. The ðp� 1Þ � p matrix C2

C2 ¼

1

ð1:2Þ1:2
�1

ð1:2Þ1=2 0 � � � 0

1

ð2:3Þ1=2
1

ð2:3Þ1=2
�2

ð2:3Þ1=2 � � � 0

..

. ..
. ..

. ..
.

1

ðð p� 1ÞpÞ1=2
1

ðð p� 1ÞpÞ1=2
1

ðð p� 1ÞpÞ1=2 � � � �ð p� 1Þ
ðð p� 1ÞpÞ1=2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

is an orthogonal contrast matrix of rank ðp� 1Þ and is known as a Helmert matrix.

Obviously from the relation CE ¼ 0 we conclude that all rows of C are

orthogonal to E and the sum of the elements of any row of C is zero. Furthermore

any two contrast matrices C1;C2 are related by

C1 ¼ DC2; ð7:74Þ

where D is a nonsingular matrix of dimension ðp� 1Þ � ðp� 1Þ. Under H0;m ¼
gE and hence EðCXaÞ ¼ 0 for any contrast matrix C. Conversely, if EðCXaÞ ¼ 0

for some contrast matrix C (for each a), we have Cm ¼ 0. But on account of

(7.74) C ¼ DC1, where C1 is defined in Example 7.2.2, and hence 0 ¼ DC1m,
which implies C1m ¼ 0, and thus m1 ¼ � � � ¼ mp.

Furthermore, for any contrast matrix C of dimension ðp� 1Þ � p (of rank

p� 1), the matrix
�
E
C

�
is a nonsingular matrix and hence CXa;a ¼ 1; . . . ;N, are

independently and identically distributed ðp� 1Þ-dimensional normal vectors

with mean Cm and positive definite co-variance matrix CSC0. Hence the

appropriate test for H0 : Cm ¼ 0 rejects H0 if

t2 ¼ NðN � 1ÞðC�xxÞ0ðCsC0Þ�1ðC�xxÞ � k;

where CSC0 is distributed independently of C �XX as Wishart Wp�1ðN � 1;CSC0Þ
and the constant k is chosen such that the test has level a. Obviously the statistic

T2 (in this case) is distributed as Hotelling’s T2 based on a random sample

CXa;a ¼ 1; . . . ;N, of size N. It may be noted that T2 does not depend on the

particular choice of the contrast matrix C. As for any other contrast matrix C1 we
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can write C1 ¼ DC where D is nonsingular and

T2 ¼ ðN � 1ÞNðC1
�XXÞ0ðC1SC

0
1Þ�1ðC1

�XXÞ

¼ ðN � 1ÞNðC �XXÞ0ðCSC0Þ�1ðC �XXÞ:
The noncentrality parameter of this distribution is

NðCmÞ0ðCSC0Þ�1ðCmÞ:
Example 7.2.3. An interesting application of this was given by Rao (1948) in

the case of a four-dimensional normal vector X ¼ ðX1;X2;X3;X4Þ0, where

X1; . . . ;X4 represent the thickness of cork borings on trees in the four directions

north, south, east, and west, respectively. The hypothesis in this case is that of

equal bark deposit in every direction. The contrast matrix C in this case is

C ¼
1 1 �1 �1

1 �1 0 0

0 0 1 �1

0
@

1
A

For numerical data and the results the reader is referred to Rao (1948).

Example 7.2.4. Randomized block design with correlated observations.

Consider a randomized block design with N blocks and p treatments. Let yij
denote the yield of the ith treatment of the jth block and let Yij be the

corresponding random variables. Assume that the Yij are normally distributed

with

EðYijÞ ¼ mþ mi þ bj;

covðYij; Yi0j0 Þ ¼
sii0 if j ¼ j0;
0 otherwise;

�

varðYijÞ ¼ sii;

i ¼ 1; . . . ; p; j ¼ 1; . . . ;N, where mi is the ith treatment effect, and bj is the jth

block effect. Such a case arises when, for example the bj are random variables

(random effect model). Write Y ¼ ðY1; . . . ; YNÞ; Ya ¼ ðYa1; . . . ; YapÞ0;
a ¼ 1; . . . ;N. Y is a p� N random matrix of elements Yij and S is a p� p

matrix of elements sii0 . Then covðYÞ ¼ S� I where I is the identity matrix of

dimension N � N. The usual hypothesis in this case is H0 : m1 ¼ � � � ¼ mp. With

the contrast matrix C1 in Example 7.2.2, under H0,

EðC1YÞ ¼
m1 � m2

m2 � m3

..

.

mp�1 � mp

0
BBB@

1
CCCAE ¼ 0;
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where E is an N vector with all components equal to unity and

covðC1YÞ ¼ ðC1SC
0
1Þ � I. Under the assumption of normality the column

vectors of C1Y are independently distributed ðp� 1Þ-variate normal vectors with

mean 0 underH0 and with covariance matrix C1SC
0
1. The appropriate test statistic

for testing H0 rejects H0 when

t2 ¼ ðN � 1ÞNðC1 �yyÞ0ðC1sC
0
1Þ�1ðC1 �yyÞ � c;

where c is a constant depending on the level a of the test and

�yy ¼ ð1=NÞPN
1 ya; s ¼PN

1 ðya � �yyÞðya � �yyÞ0. It is easy to see that C1S1C
0
1ðN .

pÞ is distributed independently of �YY as Wp�1ðN � 1;C1SC
0
1Þ. Thus T2 is

distributed as Hotelling’s T2 with the noncentrality parameter

d2 ¼ Nðm1 � m2;m2 � m3; . . . ;mp�1 � mpÞ0ðC1SC
0
1Þ�1

� ðm1 � m2;m2 � m3; . . . ;mp�1 � mpÞ:

Paired T 2-Test and the Multivariate Analog of the Behren-Fisher

Problem

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N1, be a random sample of size N1 from

a p-variate normal population with mean m and positive definite covariance

matrix S1, and let Ya ¼ ðYa1; . . . ; YapÞ0;a ¼ 1; . . . ;N2, be a random sample of

size N2 from another independent p-variate normal population with mean v and

positive definite covariance matrix S2. We are interested here in testing the

hypothesis H0 : m ¼ v. It is well known that even for p ¼ 1 the likelihood ratio

test is very complicated and is not suitable for practical use. If S1 ¼ S2, we

have shown that the T2-test is the appropriate solution. However, if S1 = S2

but N1 ¼ N2 ¼ N, a suitable solution is reached by using the following paired

device. Define Za ¼ Xa � Ya;a ¼ 1; . . . ;N. Obviously Za;a ¼ 1; . . . ;N,
constitute a random sample of size N from a p-variate normal distribution with

mean u ¼ m� v and positive definite covariance matrix S1 þ S2 ¼ S (say).

The testing problem reduces to that of testing H0 : u ¼ 0 when S is unknown.

Define

�ZZ ¼ 1

N

XN
1

Za; S ¼
XN
1

ðZa � �ZZÞðZa � �ZZÞ0:
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On the basis of sample observations Za;a ¼ 1; . . . ;N, the likelihood ratio test of
H0 rejects H0 whenever

t2 ¼ ðN � 1ÞN�zz0s�1�zz � c;

where the constant c depends on the level a of the test, and it possesses all the

optimum properties of Hotelling’s T2-test (obviously in the class of tests based

only on the differences Za;a ¼ 1; . . . ;N).
When S1 = S2, the multivariate analog of Scheffé’ solution (Scheffé, 1943)

gives an appropriate solution. This extension is due to Bennett (1951). Assume

without any loss of generality that N1 , N2. Define

Za ¼ Xa � N1

N2

� �1=2

Ya þ 1

ðN1N2Þ1=2
XN1

1

Ya � 1

N2

XN2

1

Ya;

a ¼ 1; . . . ;N1:

It is easy to verify that Za;a ¼ 1; . . . ;N1, are independently distributed normal

p-vectors with the same mean m� v and the same covariance matrix

S1 þ ðN1=N2ÞS2. Let

�ZZ ¼ 1

N1

XN1

1

Za; S ¼
XN1

1

ðZa � �ZZÞðZa � �ZZÞ0:

Obviously �ZZ and S are independent, �ZZ has a p-variate normal distribution with

mean m� v and with positive definite covariance matrix ðS1 þ ðN1=N2ÞS2Þ, and
S is distributed as WpðN1 � 1;S1 þ ðN1=N2ÞS2Þ. An appropriate solution for

testing H0 : m� v ¼ 0 is given by

t2 ¼ ðN1 � 1ÞN1�zz
0s�1�zz � c;

where c depends on the level a of the test and T2 has Hotelling’s T2-distribution

with N1 � 1 degrees of freedom and the noncentrality parameter

N1ðm� vÞ0ðS1 þ ðN1=N2ÞS2Þ�1ðm� vÞ.

7.3. TESTS OF SUBVECTORS OF m IN MULTIVARIATE

NORMAL

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random sample of size N from a p-

variate normal distribution with mean m and positive definite covariance matrix

S. We shall use the notations of Section 7.2.2 for the presentation of this section.

We shall consider the following two testing problems concerning subvectors of

m. The two-sample analogs of these problems are obvious and their appropriate

solutions can be easily obtained from the one-sample results presented here.
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(a) In the notation of Section 7.2.2, let k ¼ 2; p1 þ p2 ¼ p. We are interested

here in testing the hypothesis H0 : mð1Þ ¼ 0 when S is unknown. Let V be the

parametric space of ðm;SÞ and v ¼ fð0;mð2ÞÞ;Sg be the subspace ofVwhenH0 is

true. The likelihood of the observations xa;a ¼ 1; . . . ;N, on Xa;a ¼ 1; . . . ;N,
is

Lðm;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2

� exp � 1

2
tr S

�1
XN
a¼1

ðxa � mÞðxa � mÞ0
( )

:

Obviously

max
V

Lðm;SÞ ¼ ð2pÞ�Np=2½detðs=NÞ��N=2 exp � 1

2
Np

� �
: ð7:75Þ

It is also easy to verify that

max
v

Lðm;SÞ ¼ ð2pÞ�Np=2 det
sð11Þ þ N �xxð1Þ �xx0ð1Þ

N

� �� ��N=2

� det
sð22Þ � sð21Þs�1

ð11Þsð12Þ
N

 !" #�N=2

exp � 1

2
Np

� �
:

ð7:76Þ

The likelihood ratio criterion for testing H0 is given by

l ¼ maxv Lðm;SÞ
maxV Lðm;SÞ ¼

det sð11Þ
detðsð11Þ þ N �xxð1Þ �xx0ð1ÞÞ

" #�N=2

¼ ð1þ r�1Þ�N=2:

ð7:77Þ

Thus the likelihood ratio test of H0 rejects H0 whenever

ðN � 1Þr�1 . c;

where the constant c depends on the level of significance a of the test. In terms of

the statistic R1, this is also equivalent to rejecting H0 whenever r1 � c. From

Chapter 6 the probability density function of R1 is given by

fR1
ðr1jd22Þ ¼

Gð1
2
NÞ

Gð1
2
p1ÞGð12 ðN � p1ÞÞ

r
p1=2�1
1 ð1� r1ÞðN�p1Þ=2�1

� � 1

2
d21

� �
f

1

2
N;

1

2
p1;

1

2
r1d

2
1

� �

300 Chapter 7



provided r1 � 0 and is zero elsewhere, where d21 ¼ Nm0
ð1ÞS

�1
ð11Þmð1Þ and R�

1 is a

Hotelling’s T2-statistic based on the random sample Xa
ð1Þ ¼ ðXa1; . . . ;Xap1 Þ0;

a ¼ 1; . . . ;N, from a p1-variate normal distribution with mean mð1Þ and positive

definite covariance matrix Sð11Þ.
Let T1 be the translation group such that t1 [ T1 translates the last p2

components of each Xa and let GBT be as defined in Section 7.2.2 with k ¼ 2.

This problem remains invariant under the affine group ðGBT ; T1Þ transforming

Xa ¼ gXa þ t1; a ¼ 1; . . . ;N1; g [ GBT ; t1 [ T1:

Note that t1 can be regarded as a p-vector with its first p1 components equal to

zero. A maximal invariant in the space of ð �XX; SÞ is R1 and the corresponding

maximal invariant in the parametric space V is d21. From the computations in

connection with the T2-test it is now obvious that this test possesses the same

optimum properties as those of Hotelling’s T2-test (Theorems 7.2.1, 7.2.2, 7.2.3,

and the minimax property).

(b) In the notation of Section 7.2.2 let k ¼ 3; p1 þ p2 þ p3 ¼ p. We are

interested here in testing the hypothesis H0 : m½2� ¼ 0 when m;S are unknown

and the parametric space V ¼ fð0;mð2Þ;mð3ÞÞ;Sg. It may be verified that

max
V

Lðm;SÞ ¼ ð2pÞ�Np=2½detðs=NÞ��N=2ð1þ N �xx0ð1Þs
�1
ð11Þ �xxð1ÞÞ�N=2

� exp � 1

2
Np

� �
; ð7:78Þ

max
v

Lðm;SÞ ¼ ð2pÞ�Np=2½detðs=NÞ��N=2ð1þ N �xx0½2�s
�1
½22� �xx½2�Þ�N=2

� exp � 1

2
Np

� �
; ð7:79Þ

where v is the subspace ofV when H0 is true. Hence the likelihood ratio criterion

l is

l ¼ maxv Lðm;SÞ
maxV Lðm;SÞ ¼

1þ N �xx0ð1Þs
�1
ð11Þ �xxð1Þ

1þ N �xx0½2�s
�1
½22� �xx½2�

 !�N=2

¼ 1þ r�1 þ r�2
1þ r�1

� �N=2

¼ 1� r1

1� r1 � r2

� �N=2

ð7:80Þ

Hence the likelihood ratio test of H0 : m½2� ¼ 0 rejects H0 whenever

ð1� r1 � r2Þ=ð1� r1Þ � c, where c is a constant depending on the level of

significance a. From Chapter 6 the joint probability density function of ðR1;R2Þ is
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given by

fR1;R2
ðr1; r2jd21; d22Þ ¼

Gð1
2
NÞ

Gð1
2
p1ÞGð12 ðN � p1ÞÞ

r
p1=2�1
1 r

p2=2�1
2

� ð1� r1 � r2ÞðN�p1�p2Þ=2�1

� exp � 1

2
ðd21 þ d22Þ þ

1

2
r1d

2
2

� �
ð7:81Þ

� f
1

2
N;

1

2
p1;

1

2
r1d

2
1

� �

� f
1

2
ðN � p1Þ; 1

2
p2;

1

2
r2d

2
2

� �

provided r1 � 0; r2 � 0 and

d21 ¼ Nm0
ð1ÞS

�1
ð11Þmð1Þ; d21 þ d22 ¼ Nm0

½2�S
�1
½22�m½2�:

Under H0; d
2
2 ¼ d22 ¼ 0. From (7.81) it follows that under H0

Z ¼ ð1� R1 � R2Þ=ð1� R1Þ
is distributed as a central beta random variable with parameter

1

2
ðN � p1 � p2Þ; 1

2
p2

� �
:

Let T2 be the transformation group which translates the last p3 components of

each Xa, and let GBT be as defined in Section 7.2.2 with k ¼ 3; p1 þ p2 þ p3 ¼ p.

This problem remains invariant under the group ðGBT ; T2Þ of affine

transformations, transforming

Xa ! gXa þ t; a ¼ 1; . . . ;N;

g [ GBT (with k ¼ 3), t [ T2 (t can be considered as a p-vector with the first

p1 þ p2 components equal to zero). A maximal invariant in the space of ð �XX; SÞ
[the induced transformation on ð �XX; SÞ is ð �XX; SÞ ! ðg �XX þ t; gSg0Þ� is ðR1;R2Þ [also
its equivalent statistic ðR�

1;R
�
2Þ]. A corresponding maximal invariant in V is

ðd21; d22Þ. Under H0; d
2
1 ¼ d22 ¼ 0 and under the alternatives H1; d

2
2 . 0; d21 ¼ 0.

From (7.81) it follows that the likelihood ratio test is not uniformly most

powerful (optimum) invariant for this problem and that there is no uniformly

most powerful invariant test for the problem. However, for fixed p, the likelihood

ratio test is nearly optimum as N becomes large (Wald, 1943). Thus, if p is not

large, it seems likely that the sample size occurring in practice was usually large

enough for this result to be relevant. However, if the dimension p is large, it may
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be that the sample size N must be extremely large for this result to apply. Giri

(1961) has shown that the difference of the powers of the likelihood ratio test and

the best invariant test is oðN�1Þ when p1; p are both equal to OðNÞ and

d22 ¼ Oð ffiffiffiffi
N

p Þ. For the minimax property Giri (1968) has shown that no invariant

test under ðGBT ; T2Þ is minimax for testing H0 against H1 : d
2
1 ¼ l for every

choice of l. However Giri (1968) has shown that the test which rejects H0 :
d22 ¼ 0 against the alternatives H1 : d

2
2 ¼ l . 0 whenever R1 þ ððn� p1Þ=

p2ÞR2 � c where c depends on the level a of the test is locally best invariant and

locally minimax as l ! 0.

7.3.1. Test of Mean Against One-sided Alternatives

Let xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;NðN . pÞ be a sample of size N from a p-

variate normal distribution with mean m ¼ ðm1; . . . ;mpÞ0 and positive definite

covariance matrix S. The problem of testing H0 : m ¼ 0 against alternatives

H1 : m � 0 (i.e. mi � 0 for all i ¼ 1; . . . ; p with at least one strict inequality for

some i) has been treated by many authors including Bartholomeu (1961), Chacko

(1963), Kodô (1963), Nüesch (1966), Sharack (1967), Pearlman (1969), Eaton

(1970), Marden (1982), Kariya and Cohen (1992), Wang and McDermott (1998).

This problem has received considerable interest in statistical literature in the

context of clinical trials, particularly for the case S is known. We refer to Wang

and McDermott (1998) and the references therein for the application aspects of

the problem. We derive here the likelihood ratio test of H0 against H1 when S is

known. We refer to Pearlman (1969) for the case S is unknown. The maximum

likelihood estimates of the parameters under H1 are not very easy to compute.

The algorithm of computing these estimates is not simple because of the

dependence between the components.

The likelihood of xa;a ¼ 1; . . . ;N is given by

Lðm;SÞ ¼ Lðx1; . . . ; xN jm;SÞ

¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
tr S

�1

�

XN
a¼1

ðxa � mÞðxa � mÞ0
 !)

where S is a known positive definite matrix.

The likelihood ratio test of H0 against H1 rejects H0 whenever

l ¼ max
H0

Lðm;SÞ=max
H1

Lðm;SÞ � l0
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where l0 is a constant depending on the size a of the test. Let N �xx ¼PN
a¼1 xa.

Then

l ¼ exp �N

2
�xx0S�1 �xx

� �
�max exp

m�0

�N

2
ð�xx� mÞ0S�1ð�xx� mÞ

� �
: ð7:81aÞ

Evaluation of (7.81a) enables us to examine the following statistic

�xx2 ¼ Nf�xx0S�1 �xx�min
m�0

ð�xx� mÞ0S�1ð�xx� mÞg:

To compute �xx2 we need the minimum of the quadratic form ð�xx� mÞ0ÞS�1ð�xx� mÞ
when m � 0 and S is known. In general this can be done by quadratic

programming (for example see Nüesch (1966)).

A geometric interpretation of the statistic �xx2, which will give us an actual

picture useful for its computation as well as for the derivation of its distribution,

is as follows. Since S . 0, there exists a p� p nonsingular matrix A such that

ASA0 ¼ I. Let A�1 ¼ ðaijÞ and Y ¼ ðY1; . . . ; YpÞ0 ¼ A �XX. Then Y is distributed as

Npðm;N�1IÞ and
�xx2 ¼ NfY 0Y �min

m�0
ðY � mÞ0ðY � mÞg ð7:81bÞ

where m ¼ ðm1; . . . ;mpÞ0 ¼ AEð �XXÞ ¼ Am. Hence �xx2 is proportional to the

difference between the square length of the vector Y in the p-dimensional

Euclidean space of m and the distance between a point Y and a closed convex

polyhedral cone C defined by the inequalities

mi ¼
Xp

j¼1

aijmj � 0; i ¼ 1; . . . ; p:

If Y [ C then the second term in (7.81b) vanishes and we have

�xx2 ¼ NY 0Y ¼ N �XX
0
S
�1 �XX:

Complication arises if Y � C. In any case there exists a vector m̂m ¼ ðm̂m1; . . . ; m̂mpÞ0
such that m̂mi . 0; i ¼ 1; . . . ; p and

min
m�0

ð �XX � mÞ0S�1ð �XX � m̂mÞ ¼ ð �XX � m̂mÞ0S�1ð �XX � m̂mÞ:

The point m̂m is the maximum likelihood estimate of m under H1. The following

theorem gives some insight about m̂m .

Theorem 7.3.1. The point m̂m is the maximum likelihood estimate of m under H1

if and only if one of the ith components of the two vectors m̂m and f�S
�1ð �XX � m̂mÞg

is zero and the other is non-negative.

304 Chapter 7



Proof. For m [ C we have

ð �XX � mÞ0S�1ð �XX � mÞ � ð �XX � m̂mÞ0S�1ð �XX � m̂mÞ

¼ ðm� m̂mÞ0S�1ðm� m̂mÞ � 2ðm� m̂mÞ0S�1ð �XX � m̂mÞ
ð7:81cÞ

Since S . 0, the first term in (7.81c) is positive. The second term is the inner

product of �2S
�1ð �XX � m̂mÞ and ðm� m̂mÞ. From the condition of the Theorem it

follows that if a component of the first vector is positive then the corresponding

components of m̂m and ðm� m̂mÞ are zero and non-negative respectively and all the

non-positive components of the first are zero. Thus the second term in (7.81c) is

positive and hence the right-hand of (7.81c) is positive. This establishes the

sufficiency of the condition.

To prove the necessity part let us first note that �2S
�1ð �XX � m̂mÞ is the vector of

derivatives of

gðm̂mÞ ¼ ð �XX � m̂mÞ0S�1ð �XX � m̂mÞ

with respect to m̂m . So if the condition is violated we can find a p-vector X ¼
ðX1; . . . ;XpÞ0 (say) whose components are non-negative in the neighbourhood of

m̂m where the quadratic form has smaller value and this contradicts the assumption

that m̂m is the maximum likelihood estimator. Q.E.D.

The actual computation of the maximum likelihood estimator m̂m when �XX is

given may need successive approximations. As Kudô (1963) observed the

convergence of this approximation is not fast but one can sometimes judge at a

comparatively early stage of the calculation, by observing �XX only, which of the

components should be zero and which should be positive. We refer to this paper

for an example concerning the computation of m̂m .

Geometrically the maximum likelihood estimate m̂m is the projection of the

vector �XX along regression planes onto the positive orthant of the sample space. If

one uses the linear transformation of �XX to a uncorrelated Y , which exists as

S . 0, the projection is orthogonal onto a polyhedral half cone, the affine image

of the positive orthant. Thus m̂m is a vector whose components are either positive

or zero. This leads to a partition of the sample space into 2p disjoint regions. Let

us denote by xk any of the
�
p
k

�
regions of the sample space with exactly k of the

m̂mj’s positive. We assume, without any loss of generality, that the k positive m̂mj’s

are the last k components. We write

xk ¼ f �XXjm̂mð1Þ ¼ 0; m̂mð2Þ . 0g
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where m̂mð2Þ contains the last k components of m̂m . Similarly partition
�XX ¼ ð �XX0

ð1Þ; �XX
0
ð2ÞÞ0. Let S�1 ¼ D. Partition

S ¼ S11 S12

S21 S22

� �
; D ¼ D11 D12

D21 D22

� �

with S22;D22 are both k � k submatrices. From Theorem 7.3.1 we get

�D11
�XXð1Þ þ D12ðm̂mð2Þ � �XXð2ÞÞ . 0

�D12
�XXð1Þ þ D22ðm̂mð2Þ � �XXð2ÞÞ ¼ 0

ð7:81dÞ

solving we get

m̂mð2Þ ¼ �XXð2Þ þ D�1
22 D21

�XXð1Þ ¼ �XXð2Þ � S21S
�1
11

�XXð1Þ: ð7:81eÞ

Using (7.81c) and (7.81d) we get

�ðD11 � D12D
�1
22 D21Þ �XXð1Þ ¼ �S

�1
11

�XXð1Þ . 0:

Hence

xk ¼ f �XX : fS�1
11

�XXð1Þ , 0g> f �XXð2Þ � S21S
�1
11

�XXð1Þ . 0gg:

Since Theorem 7.3.1 implies

m̂m 0S�1ð �XX � m̂mÞ ¼ 0;

we can write

�xx2 ¼ Nm̂m 0S�1m̂m

and the likelihood ratio test of H0 against H1 rejects H0 whenever Nm̂m
0S�1m̂m � C

where C is a constant depends on the size a of the test.

Theorem 7.3.2.

PðNm̂m 0S�1m̂m � CÞ ¼
Xp

k¼1

wðp; kÞPðx2k � CÞ

where the weights wðp; kÞ are the probability content of all xk’s for a fixed k and

x2k is the central chi-square random variable with k degrees of freedom.
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Proof. Let R denotes the rejection region of the likelihood ratio test of H0

against H1:

PðRjH0Þ ¼
Xp

k¼1

X
xk

PðR> xkÞ

¼
Xp

k¼1

X
xk

PðxkÞPðxkÞPðRjxkÞ:

Since R> x0 ¼ f (null set), the summation starts from 1. But

PðRjxkÞ ¼ PðNm̂mS
�1m̂m � CjH0Þ

¼ PðNm̂mS
�1m̂m � Cjfm̂mð1Þ ¼ 0g> fm̂mð2Þ . 0gÞ:

Since under H0 m̂mð2Þ is a k-variate normal with mean 0 and covariance S22:1 ¼
S22 � S21S

�1
11 S12 we get m̂m 0

ð2ÞS
�1
22:1m̂mð2Þ is distributed as x2k .

In addition fm̂mð2Þ . 0g and fNm̂m 0
ð2ÞS

�1
22:1m̂mð2Þ � Cg are independent. Hence

PðRjH0Þ ¼
Xp

k¼1

wðp; kÞPðx2k � CÞ:

Q.E.D.

7.4. TESTS OF MEAN VECTOR IN COMPLEX NORMAL

Let z1; . . . ; zN be a sample of size N from CNpðb;SÞ. We consider the problem of

testing H0 : b ¼ 0 against the alternative H1 ¼ b�S�1b ¼ d2 . 0 on the basis of

these observations. This problem is the complex analog of Hotelling’s T2

problem in the real case. The complex analog of other testing problems of mean

vectors, considered in Sections 7.2, 7.3 can be analyzed by minor modifications

of the results developed for the real cases (see also Goodman (1962)). The
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likelihood of the observations z1; . . . ; zN is

Lðz1; . . . ; zN jb;SÞ ¼ p�NpðdetSÞ�N

� exp �tr S
�1

XN
a¼1

ðza � bÞðza � bÞ�
 !( )

¼ p�NpðdetSÞ�N

� expf�tr S
�1ðAþ Nð�zz� bÞð�zz� bÞ�Þg

where A ¼PN
a¼1ðza � �zzÞðza � �zzÞ�; �zz ¼ ð1=NÞPN

a¼1 z
a.

Using Lemma 5.3.3 and Theorem 5.3.4 we obtain

l ¼ maxH0
Lðz1; . . . ; zN jb;SÞ

maxV Lðz1; . . . ; zN jb;SÞ

¼ detðAÞ
ðdetðAþ N�zz�zz�Þ
� �N

¼ ð1þ t2c Þ�N

where t2c ¼ Nz�A�1z. Thus the likelihood ratio test rejects H0 whenever

t2c � k ð7:82Þ
where the constant k is chosen such that

PðT2
c � kjH0Þ ¼ a:

We are using T2
c as the random variables with values t2c . From Theorem 6.11.2 the

distribution of T2
c is given by

fT2
c
ðt2c jd2Þ ¼

expf�d2g
GðN � pÞ

X1
j¼0

ðd2ÞjGðN þ jÞðt2c Þpþj�1

j!Gðpþ jÞð1þ t2c ÞNþj�1
ð7:83Þ

where d2 ¼ Nb�S�1b. Under H0 : d
2 ¼ 0.

The problem of testing H0 : b ¼ 0 against H1 : d
2 . 0 remains invariant

under the full linear group G‘ðpÞ of p� p nonsingular complex matrices g

transforming

ð�zz;A;b;SÞ ! ðg�zz; gAg�; gb; gSg�Þ:
From Section 7.2.2 it follows that T2

c is a maximal invariant in the space of ð �ZZ;AÞ
underG‘ðpÞ. A corresponding maximal invariant in the parametric space of ðb;SÞ
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is d2. From (7.83)

fT2
c
ðt2c jd2 ¼ lÞ

fT2
c
ðt2c jd2 ¼ 0Þ ¼

expf�lgGðpÞ
GðNÞ

X1
j¼0

GðN þ jÞ
Gðpþ jÞj!

lt2c
1þ t2c

� �j
: ð7:84Þ

Since the right-hand side of (7.84) is a monotonically increasing function of

½t2c=1þ t2c � and hence of t2c for all l ðfixedÞ . 0 we prove (as Theorem 7.2.1) the

following:

Theorem 7.4.1. For testing H0 : b ¼ 0 against H1 : d
2 . 0 the likelihood ratio

test which rejects H0 whenever t
2
c � k, where the constant k is chosen to get the

size a, is uniformly most powerful invariant with respect to the group of

transformations G‘ðpÞ of p� p nonsingular complex matrices.

7.5. TESTS OF MEANS IN SYMMETRIC DISTRIBUTIONS

Let X ¼ ðXijÞ ¼ ðX1; . . . ;XnÞ0; X0
i ¼ ðXij; . . . ;XipÞ0; i ¼ 1; . . . ; nðn . pÞ be a

n� p random matrix with pdf

fXðxÞ ¼ ðdetSÞ�n=2qðtr S�1ðx� em0Þ0S�1ðx� em0ÞÞ

¼ ðdetSÞ�n=2q
Xn
i¼1

ðxi � mÞ0S�1ðxi � mÞ
 ! ð7:85Þ

where x ¼ ðxijÞ is a value of X;m ¼ ðm1; . . . ;mpÞ0 [ Ep;S is a p� p positive

definite matrix, e ¼ ð1; . . . ; 1Þ0 n-vector and q is a function only of the sum of n

quadratic forms ðxi � mÞ0S�1ðxi � mÞ satisfying

ð
qðtr u0uÞdu ¼ 1:

This is a subclass of the family of elliptically symmetric distributions with

location parameter em0 and scale matrix S. We shall assume that n . p so that by

Lemma 5.1.2 S ¼ X0ðI � ðee0=nÞÞX ¼Pn
i¼1ðXi � �XXÞðXi � �XXÞ0 is positive definite

with probability one, where �XX ¼ ð1=nÞPn
i¼1 Xi.
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7.5.1. Test of Mean Vector

Likelihood ratio test. We consider the problem of testing H0 : m ¼ 0 when S is

unknown on the basis of an observation x on X. The likelihood of x is

Lðxjm;SÞ ¼ ðdetSÞ�n=2q
Xn
i¼1

ðxi � mÞ0S�1ðxi � mÞ
 !

¼ ðdetSÞ�n=2qðtr S�1ðsþ nð�xx� mÞð�xx� mÞ0ÞÞ

where s ¼Pn
i¼1ðxi � �xxÞðxi � �xxÞ0. LetV ¼ fðm;SÞg be the parametric space. From

Theorem 5.3.6 the maximum likelihood estimators of m;S are

m̂m ¼ �xx; ŜS ¼ p

uq
s

where uq maximize unp=2qðuÞ. The likelihood ratio is given by

l ¼ maxH0
Lðxjm;SÞ

maxV Lðxjm;SÞ

¼
det

ps

uq

� �� �n=2
q

uq

p

� �

det
pðsþ n�xx�xx0Þ

uq

� �� �n=2
q

uq

p

� � ð7:86Þ

¼ ð1þ n�xx0s�1 �xxÞ�n=2

The likelihood ratio test of H0 : m ¼ 0 is given by

reject H0 whenever n�xx
0s�1 �xx � C ð7:87Þ

or its equivalent, given by

r1 ¼ n�xx0s�1 �xx

1þ n�xx0s�1 �xx
� C

1� C
ð7:88Þ

where C is a constant depending on the size a of the test.

To determine C we need the distribution of T2 ¼ n �XX
0
S�1 �XX under H0. The

following lemma will show that the distribution of T2 under H0 does not depend

on a particular choice of q in (7.85). Taking, in particular, X1; . . . ;Xn to be

independently and identically distributed Npð0;SÞ we conclude from (6.60) that

n �XX
0
S�1 �XX has Hotelling’s T2 distribution with n� 1 degrees of freedom under H0.
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Its pdf is given by

fT2 ðt2Þ ¼
G

n

2

 �

G
p

2

 �
G

n� p

2

 � ðt2Þp=2�1

ð1þ t2Þn=2 ; t2 � 0: ð7:89Þ

Lemma 7.5.1. Let Y ¼ ðY1; . . . ; YnÞ0; Yi ¼ ðYi1; . . . ; YipÞ0; i ¼ 1; . . . ; n be a

n� p random matrix with spherically symmetric distribution with pdf given by

fY ðyÞ ¼ q
Xn
i¼1

y0iyi

 !
:

(a) Let Y ¼ ðY 0
ð1Þ; Y

0
ð2ÞÞ0, with Yð1Þ ¼ ðY1; . . . ; YkÞ0; Y2 ¼ ðYkþ1; . . . ; YnÞ0 and

n� k � p � k. The distribution of

Yð1ÞðY 0
ð2ÞYð2ÞÞ�1Y 0

ð1Þ

does not depend on a particular choice of q in (7.85).

(b) If k ¼ 1; Yð1ÞðY 0
ð2ÞYð2ÞÞ�1Y 0

ð1Þ has Hotelling’s T2 distribution with ðn� 1Þ
degrees of freedom under H0.

(c) Let k ¼ 1; Y1 ¼ ðY ð1Þ
1 ; Y ð2Þ

1 Þ where Y
ð1Þ
1 ; Y ð2Þ

1 are 1� q; 1� ðp� qÞ sub-

vectors of Y1 respectively, and A ¼ Y 0
ð2ÞYð2Þ ¼

�
A11

A21

A12

A22

�
where A11 is the

left-hand cornered q� q submatrix of A. Define

T2
1 ¼ ðY ð1Þ

1 ÞA�1
11 ðY ð1Þ

1 Þ0 ¼ R1

1� R1

T2 ¼ T2
1 þ T2

2 ¼ Y1A
�1Y 0

1 ¼
R1 þ R2

1� R1 � R2

:

The joint distribution of ðT2
1 ; T

2
2 Þ and equivalently the joint distribution of

ðR1;R2Þ under H0 does not depend on q.

Proof.

(a) Since n � p, Y 0Y is positive definite with probability one. Hence there exists

a p� p upper triangular nonsingular matrix B such that Y 0Y ¼ BB0.
Transform Y to U such that Y ¼ UB where U is a n� p matrix having the

property U 0U ¼ I. Since the Jacobian of the transformation Y ! U is

ðdetðBÞÞn, the joint pdf of U;B is

fU;Bðu; bÞ ¼ qðtrðbb0ÞÞðdetðbÞÞn:
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Hence the distribution of U with U 0U ¼ I is uniform and U is distributed

independently of B. Write

U ¼ ðU 0
ð1Þ;U

0
ð2ÞÞ0

where Uð1Þ;Uð2Þ, are k � p; ðn� kÞ � p submatrices of U. Since

Y ¼ UB

we get

YðiÞ ¼ UðiÞB; i ¼ 1; 2:

So

Yð1ÞðY 0
ð2ÞYð2ÞÞ�1Y 0

ð1Þ ¼ Uð1ÞBðB0U 0
ð2ÞUð2ÞBÞ�1B0U0

ð1Þ

¼ Uð1ÞðU0
ð2ÞUð2ÞÞ�1U 0

ð1Þ:

Hence the distribution of Yð1ÞðY 0
ð2ÞYð2ÞÞ�1Y 0

ð1Þ does not depend on any

particular choice of q.

(b) Here k ¼ 1. Since Yð1ÞðY 0
ð2ÞYð2ÞÞ�1Yð1Þ has a completely specified distribution

for all q in (7.85) we assume without any loss of generality that Y1; . . . ; Yn
are independently distributed Npð0; IÞ. Hence Y 0

ð2ÞYð2Þ ¼
Pn

i¼2 YiY
0
i is

distributed as Wishart Wpðn� 1; IÞ independently of Yð1Þ. Hence by

Theorem 6.8.1 Yð1ÞðY 0
ð2ÞYð2ÞÞ�1Yð1Þ has Hotelling’s T2 distribution with n� 1

degrees of freedom.

(c) Let U ¼ ðU1; . . . ;UnÞ0;Ui ¼ ðUi1; . . . ;UipÞ0; i ¼ 1; . . . ; n; and let U1 be

similarly partitioned as Y1. Since Yð2Þ ¼ Uð2ÞB and Y1 ¼ U1B we get

Y 0
ð2ÞYð2Þ ¼ B0CB;

Y
ð1Þ
1 ¼ U

ð1Þ
1 B11

ð7:90Þ

where C ¼ U0
ð2ÞUð2Þ and B is partitioned as

B ¼ B11 B12

0 B22

� �

with B11 a q� q submatrix. Partition C similarly as

C ¼ C11 C12

C21 C22

� �
:

From (7.90) we get

A11 ¼ B0
11C11B11:
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Hence

T2
1 ¼ U

ð1Þ
1 B11ðB0

11C11B11Þ�1B0
11U

ð1Þ0
1

¼ U
ð1Þ
1 C�1

11 U
ð1Þ0
1 ;

T2
1 þ T2

2 ¼ U1ðU 0
ð2ÞUð2ÞÞ�1U 0

1:

Hence the joint distribution of ðT2
1 ; T

2
2 Þ under H0 does not depend on q.

Taking Y1; . . . ; Yn to be independent and identically distributed Npð0; IÞ and
using (6.73) we get

fR1;R2
ðr1; r2Þ ¼

G
n

2

 �

G
n� p

2

 �
G

q

2

 �
G

p� q

2

 � rq=2�1
1 r

ðp�qÞ=2�1
2

� ð1� r1 � r2Þðn�pÞ=2�1 ð7:91Þ
if 0 , ri , 1; i ¼ 1; 2:

Q.E.D.

Invariance and Ratio of Densities of T 2

Let G‘ðpÞ be the multiplicative group of p� p nonsingular matrices g

transforming ð �XX; S;m;SÞ ! ðg �XX; gSg0; gm; gSg0Þ. From Section 7.2 a maximal

invariant under G‘ðpÞ in the space of ð �XX; SÞ is T2 ¼ n �XX
0
S�1 �XX. A corresponding

maximal invariant in the parametric space is d2 ¼ nm0S�1m. The distribution of

T2 depends on the parameters only through d2.
Using Theorem 3.8.1 we find the ratio of densities of T2. Since the Jacobian of

the transformation

g ! hg

g; h [ G‘ðpÞ is ðdet hÞp (see Example 3.2.8) a left invariant Haar measure on

G‘ðpÞ is

dmðgÞ ¼ dg

ðdet gÞp ;

and by Theorem 2.4.2 a left invariant measure on the sample space X is

dlðxÞ ¼ dx

ðdet sÞn=2 :

Hence the pdf of X [ X under H1 : m = 0 with respect to l is

p2ðxÞ ¼ ðdet sÞn=2ðdetS�1Þn=2qðtr S�1ðsþ nð�xx� mÞð�xx� mÞ0Þ:
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The pdf p1ðxÞ of X under H0 : m ¼ 0 is the value of p2ðxÞ with m ¼ 0. Using

Theorem 3.8.1 we obtain

dPðt2jd2Þ
dPðt2j0Þ

¼

ð
G‘ðpÞ

ðdet gsg0Þn=2ðdetS�1Þn=2qðtr S�1ðgðsþ n�xx�xx0Þg0 � 2ng�xxm0 þ nmm0ÞÞ dg

ðdet gÞpð
G‘ðpÞ

ðdet gsg0Þn=2ðdetS�1Þn=2qðtr S�1ðgðsþ n�xx�xx0Þg0ÞÞ dg

ðdet gÞp
ð7:92Þ

Since S is positive definite we can write

S ¼ S
1=2

S
1=2

where S
1=2

is a p� p symmetric nonsingular matrix. Let

S
�1

2m ¼ n; S
�1

2g ¼ h:

Then h [ G‘ðpÞ and nm0S�1m ¼ nn0n ¼ d2. The numerator of (7.92) can be

written as

ð
G‘ðpÞ

ðdet hsh0Þn=2qðtrðhðsþ n�xx�xx0Þh0Þ � 2nh�xxn0 þ nn0nÞ dh

ðdet hÞ p

Since sþ n�xx�xx0 is positive definite with probability one we can similarly write

sþ n�xx�xx0 ¼ kk

where k ¼ ðsþ n�xx�xx0Þ1=2. Let

y ¼ k�1 �xx; g ¼ hk with g [ G‘ðpÞ:

Then the ratio (7.92) can be written as

Ð
G‘ðpÞðdet gg0Þ

ðn�pÞ=2qðtrðgg0 � 2ngyn0 þ nnn0ÞÞdgÐ
G‘ðpÞðdet gg0Þ

ðn�pÞ=2qðtrðgg0ÞÞdg ð7:93Þ

Using the fact (see Theorem 6.8.1) that given any a ¼ ða1; . . . ;apÞ0 there exists
an p� p orthogonal matrix u such that

ua ¼ ðða0aÞ1=2; 0; . . . ; 0Þ0;
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and denoting ug ¼ g ¼ ðgijÞ for notational convenience. We rewrite (7.93) as

Ð
G‘ðpÞðdet gg0Þ

ðn�pÞ=2qðtrðgg0 � 2g11
ffiffi
r

p
dþ d2ÞdgÐ

G‘ðpÞðdet gg0Þ
ðn�pÞ=2qðtrðgg0ÞÞdg ð7:94Þ

where r ¼ n�xx0s�1 �xx

1þ n�xx0s�1 �xx
.

Note From (7.89) the pdf of R ¼ n �XX
0
S�1 �XX

1þ n �XX
0
S�1 �XX

under H0 is given by

fRðrÞ ¼
G

n

2

 �

G
p

2

 �
G

n� p

2

 � ðrÞp=2�1ð1� rÞðn�pÞ=2�1; 0 , r , 1: ð7:95Þ

In the following theorem we prove the uniformly most powerful invariant

property of the T2-test in Epðm;SÞ under the assumption that q is convex and

nonincreasing from ½0;1Þ to ½0;1Þ. In the proof of the theorem the nonincreasing

property of q is not used. Since fXðxÞ is the pdf of X, the convexity property of q

implies that q is nonincreasing.

Theorem 7.5.1 Let X ¼ ðX1; . . . ;XnÞ0;Xi ¼ ðXi1; . . . ;XipÞ0; i ¼ 1; . . . ; n be a

n� p random matrix with pdf

fXðxÞ ¼ ðdetSÞ�n=2qðtr S�1ðSn
i¼1ðxi � mÞðxi � mÞ0Þ

where q is convex and nonincreasing from ½0;1Þ to ½0;1Þ. Assume that if

ðm;SÞ [ V (parametric space) then ðm; cSÞ [ V for c . 0. Among all tests fðxÞ
of level a for testing H0 : m ¼ 0 against H1 : m = 0 which are invariant under

the group of transformations G‘ðpÞ transforming

Xi ! gXi; i ¼ 1; . . . ; n; g [ G‘ðpÞ, Hotelling’s T2 test (7.87) or its equivalent

(7.88) is uniformly most powerful invariant (UMPI).

Proof. For invariant tests, the problem reduces to testing H0 : d
2 ¼ nm0S�1m ¼

0 against the alternatives H1 : d
2 . 0. Using the Neyman-Pearson lemma and

(7.94) the most powerful invariant test of H0 against the simple aternative H0
1 :

d2 ¼ d20 (d
2
0 specified) is given by

Ð
G‘ðpÞðdet gg0Þ

ðn�pÞ=2qðtr gg0 � 2g11
ffiffi
r

p
d0 þ d20ÞdgÐ

G‘ðpÞðdet gg0Þ
ðn�pÞ=2qðtr gg0Þdg � c ð7:96Þ

where the constant c depends on the level a of the test.
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Let Hð ffiffi
r

p Þ denote the numerator of (7.96). Transforming g ! �g we get

Hð ffiffi
r

p Þ ¼
ð
G‘ðpÞ

ðdet gg0Þðn�pÞ=2qðtr gg0 þ 2g11
ffiffi
r

p
d0 þ d20Þdg

¼ Hð� ffiffi
r

p Þ:
Since q is convex, for 1

2
� a � 1, we get

Hð ffiffi
r

p Þ ¼ aHð ffiffi
r

p Þ þ ð1� aÞHð� ffiffi
r

p Þ � Hð ffiffi
r

p ð2a� 1ÞÞ:
Hence we conclude that Hð ffiffi

r
p Þ is a nondecreasing function of

ffiffi
r

p
. Since this

holds for any d0 . 0 we conclude that Hotelling’s T2 test or its equivalent as

given in (7.88) is UMPI. Q.E.D.

7.5.2. Tests of Hypotheses of Subvectors of m

Let X ¼ ðX1; . . . ;XnÞ0;Xi ¼ ðXi1; . . . ;XipÞ0; i ¼ 1; . . . ; nðn . pÞ be a n� p

random matrix with pdf given in (7.85). Using the notations of Section 7.3 we

consider the following two testing problems concerning subvectors of m.

(a) Let k ¼ 2; p1 þ p2 ¼ p. We consider the problem of testing H0 : mð1Þ ¼ 0

when mð2Þ;S are unknown. Let V be the parametric space of ðm;SÞ with S
positive definite. Obviously ðm; cSÞ [ V with c . 0 and let w ¼
fð0;m0

ð2ÞÞ0;Sg be the subspace of V when H0 is true. Using (7.75) and

(7.76) when X1; . . . ;Xn are independent Npðm;SÞ and Theorem 5.3.6 we get

(as in (7.86))

l ¼ maxw Lðm;SÞ
maxV Lðm;SÞ ¼

det sð11Þ
detðsð11Þ þ n�xxð1Þ �xx0ð1ÞÞ

" #n=2

¼ ð1þ n�xx0ð1Þs
�1
ð11Þ �xxð1ÞÞ�n=2:

ð7:97Þ

Hence the likelihood ratio test of H0 rejects H0 whenever

t21 ¼ n�xx0ð1Þs
�1
ð11Þ �xxð1Þ � c ð7:98Þ

where the constant c depends on the level a of the test. From Lemma 7.5.1

the pdf of T2
1 ¼ n �XX

0
ð1ÞS

�1
ð11Þ �XXð1Þ under H0 is given by

fT2
1
ðt21Þ ¼

G
n

2

 �

G
p1

2

 �
G

n� p1

2

 � ðt21Þp1=2�1

ð1þ t2Þn=2 ; t21 � 0: ð7:99Þ

The invariance of this problem has been discussed in Section 7.3. A

maximal invariant in the sample space is T2
1 and a corresponding maximal

316 Chapter 7



invariant in the parametric space is d21 ¼ nm0
ð1Þ
P�1

ð11Þ mð1Þ. Under the

assumption that q is convex and nonincreasing and proceeding as in

Theorem 7.5.1 it is obvious that the likelihood ratio test for this problem is

UMPI.

(b) In the notation of Section 7.3 let k ¼ 2; p1 þ p2 ¼ p. We treat here the

problem of testing H0 : mð2Þ ¼ 0 against the alternatives H1 : mð2Þ = 0,

when it is given that mð1Þ ¼ 0. Using (7.78), (7.79) and Theorem 5.3.6 the

likelihood ratio test of H0 : mð2Þ ¼ 0 rejects H0 whenever

z ¼ 1� r1 � r2

1� r1
� c ð7:100Þ

where the constant c depends on the level a of the test. From (7.91)

ð1� R1 � R2=1� R1Þ is distributed as central beta under H0 with parameter

ð1
2
ðn� pÞ; 1

2
p2Þ. The invariance of the problem and other properties are

discussed in Section 7.3.

7.5.3. Locally Minimax Tests

We state only the results and refer the readers to relevant references. For testing

H0 : m ¼ 0 against H1 : nm
0S�1m ¼ l . 0 for pdf given in (7.85) Giri and Sinha

(1987) have shown that Hotelling’s T2 test given in (7.87) or its equivalent (7.88)

is locally minimax as l ! 0.

For testing H0 : mð1Þ ¼ 0 against H1 : d
2
1 ¼ nm0

ð1Þ
P�1

ð11Þ mð1Þ ¼ l . 0 (see

problem (a) above) Giri and Sinha (1987) have shown that the likelihood ratio

test given in (7.97) is locally minimax as l ! 0.

For problem (b) above Giri (1987) has shown that for testing H0 : mð2Þ ¼ 0

against the alternatives H1 : d
2
2 ¼ nm0S�1m� d21 ¼ l . 0 the test which rejects

H0 whenever

r1 þ n� p1

p2
r2 � c

where c depends on the level a of the test, is locally minimax as l ! 0.

EXERCISES

1 Prove (7.48).

2 Prove (7.50) and (7.51).

3 Test the hypothesis H0 given in (7.7) when S is unknown.

4 Let T2 be distributed as Hotelling’s T2 with N � 1 degrees of freedom. Show

that ððN � pÞ=pÞðT2=ðN � 1ÞÞ is distributed as a noncentral F with ðp;N � pÞ
degrees of freedom.
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5 Let
ffiffiffiffi
N

p
�XX be distributed as a p-dimensional normal random variable with

mean
ffiffiffiffi
N

p
m and positive definite covariance matrix S and let S be distributed,

independently of �XX, as WpðN � 1;SÞ. Show that the distribution of T2 ¼
NðN � 1Þ �XX0

S�1 �XX remains unchanged if m is replaced by ðd; 0; . . . ; 0Þ0 and S
by I where d2 ¼ m0S�1m.

6 (Test of symmetry of biological organs). Let Xa;a ¼ 1; . . . ;N, be a random
sample of size N from a p-variate normal population with mean m and

positive definite covariance matrix S. Assume that p is an even integer,

p ¼ 2k. Let m ¼ ðmð1Þ;mð2ÞÞ;mð1Þ ¼ ðm1; . . . ;mkÞ0. On the basis of the

observations xa on Xa;a ¼ 1; . . . ;N, find the appropriate T2-test of

H0 : mð1Þ ¼ mð2Þ.
Note: In many anthropological problems x1; . . . ; xk represent measurements

on characters on the left side and xkþ1; . . . ; xp, represent measurements on the

same characters on the right side.

7 (Profile analysis). Suppose a battery of p psychological tests is administered

to a group and m1; . . . ;mp, are their expected scores. The profile of the group

is defined as the graph obtained by joining the points ði;miÞ; i ¼ 1; . . . ; p,
successively. For two different groups with expected scores ðm1; . . . ;mpÞ and
ðn1; . . . ; npÞ, respectively, for the same battery of tests we obtain two different

profiles, one obtained from the points ði;miÞ and the other obtained from the

points ði; niÞ; i ¼ 1; . . . ; p. Two profiles are said to be similar if line segments

joining the points ði;miÞ; ðiþ 1;miþ1Þ are parallel to the corresponding line

segments joining the points ði; niÞ; ðiþ 1; niþ1Þ. For two groups of sizes

N1;N2, respectively, let x
a ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N1, be the scores of

N1 individuals from the first group and let ya ¼ ðya1; . . . ; yapÞ0;
a ¼ 1; . . . ;N2, be the scores of N2 individuals from the second group.

Assume that they are samples from two independent p-variate normal

populations with different mean vectors m ¼ ðm1; . . . ;mpÞ0; n ¼ ðn1; . . . ; npÞ0
and the same covariance matrix S. On the basis of these observations test the
hypothesis

H0 : mi � miþ1 ¼ ni � niþ1; i ¼ 1; . . . ; p� 1:

Hint Let C1 be the contrast matrix as defined in Example 7.2.2. HypothesisH0

is equivalent to testing the hypothesis that EðC1X
aÞ ¼ EðC1Y

bÞ;
a ¼ 1; . . . ;N1;b ¼ 1; . . . ;N2.

8 (Union-intersection principle). Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a
random sample of size N from a p-variate normal distribution with mean m
and positive definite covariance matrix S. The hypothesis H0 : m ¼ 0 is true

if and only if Hl : l
0m ¼ 0 for any nonnull vector l [ Ep is true. Thus H0 will

be rejected if at least one of the hypothesis Hl; l [ L ¼ Ep � f0g, is rejected
and hence H0 ¼ >l[LHl. Let vl denote the rejection region of the hypothesis
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Hl. Obviously the rejection region of H0 is v ¼ <l[Lvl. The sizes of vl

should be such that v is a size a rejection region of H0. This is known as the

union-intersection principle of Roy.

It is evident that Hl : l
0m ¼ 0 is the hypothesis about the scalar mean of the

random variables l0Xa;a ¼ 1; . . . ;N, with variances l0Sl, and that the

optimum test for this univariate problem is Student’s t-test. Show that the

union-intersection principle for testing H0 leads to the T2-test.

9 Let Xa
i ¼ ðXia1; . . . ;XiapÞ0;a ¼ 1; . . . ;Ni; i ¼ 1; . . . ; k, be a random sample

of size Ni from k independent p-variate normal populations with mean vectors

mi ¼ ðmi1; . . . ;mipÞ0 and positive definite covariance matrix Si. Let

N1 ¼ mini Ni. Define for known scalar constants b1; . . . ;bk

Ya ¼ b1X
a
1 þ

Xk
i¼2

bi

N1

Ni

� �1=2

� Xa
i � 1

N1

XN1

b¼1

X
b
i þ 1

ðN1NiÞ1=2
XNi

g¼1

X
g
i

 !
; a ¼ 1; . . . ;N1

�YY ¼ 1

N1

XN1

1

Ya; S ¼
XN1

a¼1

ðYa � �YYÞðYa � �YYÞ0:

Consider the problem of testing H0 :
Pk

1 bim
i ¼ m0 (specified). Show that

T2 ¼ N1ðN1 � 1Þð �YY � m0Þ0S�1ð �YY � m0Þ

is disributed as Hotelling’s T2 with N1 � 1 degrees of freedom under H0.

10 [Giri, 1965]. Let Z ¼ ðZ1; . . . ; ZpÞ0 be a complex p-dimensional Gaussian

random variable with mean a ¼ ða1; . . . ;apÞ0 and positive definite Hermitian

complex covariance matrix S ¼ EðZ � aÞðZ � aÞ�, and let Za ¼
ðZa1; . . . ; ZapÞ0; a ¼ 1; . . . ;N, be a sample of size N from the distribution

of Z. On the basis of these observations find the likelihood ratio test of the

following testing problems.

(a) To test the hypothesis H0 : a ¼ 0, when S is unknown.

(b) To test the hypothesis H0 : a1 ¼ � � � ¼ ap1 ¼ 0; p1 , p, when S is

unknown.

(c) To test the hypothesis H0 : a1 ¼ � � � ¼ ap1þp2 ¼ 0; p1 þ p2 , p, when it

is given that a1 ¼ � � � ¼ ap1 ¼ 0, when S is unknown.

11 Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N1, be a random sample of size N1

from a p-dimensional normal distribution with mean m ¼ ðm1; . . . ;mpÞ0 and
positive definite covariance matrix S1 (unknown), and let Ya ¼
ðYa1; . . . ; YapÞ0; a ¼ 1; . . . ;N2, be a random sample of size N2 from another
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independent p-dimensional normal distribution with mean n ¼ ðn1; . . . ; npÞ0
and positive definite covariance matrix S2 (unknown). Find the appropriate

test of H0 : mi � ni ¼ 0; i ¼ 1; . . . ; p1 , p.

12 Prove (7.87) and (7.100).
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8
Tests Concerning Covariance Matrices and
Mean Vectors

8.0. INTRODUCTION

In Sections 8.1–8.7 we develop techniques for testing hypotheses concerning

covariance matrices, and covariance matrices and mean vectors of several p-

variate normal populations. Then we treat the cases of multivariate complex

normals and multivariate elliptically symmetric distributions in Sections 8.8 and

8.9 respectively. The tests discussed are invariant tests, and most of the problems

and tests considered are generalizations of univariate ones. In Section 8.1 we

discuss the problem of testing the hypothesis that the covariance matrix of a p-

variate normal population is a given matrix. In Section 8.2 we consider the

sphericity test, that is, where the covariance matrix is equal to a given matrix

except for an unknown proportionality factor, which has only a trivial

corresponding univariate hypothesis. In Section 8.3 we divide the set of p-

variates having a joint multivariate normal distribution into k subsets and study

the problem of mutual independence of these subsets. We consider, in detail, the

special case of two subsets where the first subset has only one component and

where the R2-test is the appropriate test statistic. Sections 8.4 and 8.5 deal with

the admissibility and the minimax properties of tests of independence and the R2-

test. Section 8.7 deals with the multivariate general linear hypothesis. In Section

8.5 we study problems of testing hypotheses of equality of covariance matrices
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and equality of both covariance matrices and mean vectors. The asymptotic

distribution of the likelihood ratio test statistics under the null hypothesis is given

for each problem. In Section 8.5.2 we treat the problem of multiple correlation

with partial information.

Because of space requirements we treat only the problem of testing r2 ¼ 0 in

p-variate complex normal in Section 8.8. Section 8.9 will deal with several

testing problems concerning the scale matrix S in Epðm;SÞ. Sections 8.10 will

treat incomplete data.

8.1. HYPOTHESIS: A COVARIANCE MATRIX IS UNKNOWN

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random sample of size NðN . pÞ
from a p-variate normal distribution with unknown mean m and unknown positive

definite covariance matrix S. As usual we assume throughout that N . p, so that

the sample covariance matrix S is positive definite with probability 1. We are

interested in testing the null hypothesis H0 : S ¼ S0 against the alternatives

H1 : S = S0 where S0 is a fixed positive definite matrix. Since S0 is positive

definite there exists a nonsingular matrix g [ Glð pÞ, the full linear group, such

that gS0g
0 ¼ I. In particular, we can take g�1 ¼ S

1=2
0 where S

1=2
0 is a symmetric

matrix such that S0 ¼ S
1=2
0 S

1=2
0 .

Let Ya ¼ gXa;a ¼ 1; . . . ;N; n ¼ gm, and S
� ¼ gSg0. Then Ya;

a ¼ 1; . . . ;N, constitute a random sample of size N from a p-variate normal

distribution with unknown mean n and unknown positive definite covariance

matrix S
�
. The problem is transformed to testing the null hypothesis H0 : S

� ¼ I

against alternatives that S
� = I on the basis of sample observations ya on

Ya;a ¼ 1; . . . ;N. The parametric space V ¼ fðn;S�Þg is the space of n and S
�
,

and under H0 it reduces to the subspace v ¼ fðn; IÞg. Let

�xx ¼ 1

N

XN
a¼1

xa; �yy ¼ 1

N

XN
a¼1

ya; s ¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0

b ¼
XN
a¼1

ðya � �yyÞðya � �yyÞ0:

Obviously �yy ¼ g�xx; b ¼ gsg0. The likelihood of the observations ya;a ¼ 1; . . . ;N
is

Lðn;S�Þ ¼ ð2pÞ�Np=2ðdetS�Þ�N=2

� expð� 1
2
tr S

��1fSN
a¼1ð ya � nÞð ya � nÞ0gÞ

ð8:1Þ
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By Lemma 5.1.1,

max
V

Lðn;S�Þð¼ 2p=NÞ�Np=2ðdetðbÞÞ�N=2 expf� 1
2
Npg ð8:2Þ

Under H0; Lðn;S�Þ reduces to

Lðn; IÞ ¼ ð2pÞ�Np=2 expf� 1
2
tr S

N
a¼1ðya � nÞðya � nÞ0g; ð8:3Þ

so

max
v

Lðn;S�Þ ¼ ð2pÞ�Np=2 expf� 1
2
tr bg ð8:4Þ

Hence the likelihood ratio criterion for testing H0 : S
� ¼ IðS ¼ S0Þ is given by

l ¼ maxv Lðn;S�Þ
maxV Lðn;S�Þ ¼

e

N

 �Np=2
ðdetðbÞÞN=2 expf� 1

2
tr bg

¼ e

N

 �Np=2
ðdetðS�1

0 sÞÞN=2 expf� 1
2
tr S

�1
0 sg

ð8:5Þ

as g0g ¼ S
�1
0 . Thus we get the following theorem.

Theorem 8.1.1. The likelihood ratio test of H0 : S ¼ S0 rejects H0 whenever

l ¼ ðe=NÞNp=2ðdetS�1
0 sÞN=2 expf� 1

2
tr S

�1
0 sg � C;

where the constant C, is chosen in such a way that the test has size a.

To evaluate the constant C, we need the distribution of l under H0. Let B be

the random matrix corresponding to b; that is, B ¼ S
N
a¼1ðYa � �YYÞðYa � �YYÞ0. Then

B has aWishart distribution with parameter I and N � 1 degrees of freedom when

H0 is true. The characteristic function fðtÞ of �2 log l under H0 is given by

(using (6.32) and (6.37)).

fðtÞ ¼ Eðexpf�2it log lgÞ ¼ Eðl�2itÞ

¼
ð
K

e

N

 ��ipNt

ðdet bÞ1=2ðN�p�2�2iNtÞ exp � 1

2
ð1� 2itÞtr b

� �
db

¼ 2e

N

� ��ipNt

ð1� 2itÞ�1
2
pðN�1�2iNtÞPp

j¼1

Gð1
2
ðN � jÞ � iNtÞ
Gð1

2
ðN � jÞÞ

¼ Pp
j¼1fjðtÞ;

ð8:6Þ

Covariance Matrices and Mean Vectors 327



where fjðtÞ; j ¼ 1; . . . ; p, is given by

fjðtÞ ¼
ð2e=NÞ�iNtð1� 2itÞ�ðN�1�2iNtÞ=2Gð1

2
ðN � jÞ � iNtÞ

Gð1
2
ðN � jÞÞ ð8:7Þ

But as N ! 1, using Stirling’s approximation for the gamma function, we obtain

fjðtÞ v 2�iNte�iNtð1� 2itÞð2iNt�Nþ1Þ=2

� expf�½1
2
ðN � jÞ � iNt�g½1

2
ðN � j� 2Þ � iNt�ðN�j�1Þ=2�iNt

expf�½1
2
ðN � jÞ�g½1

2
ðN � j� 2Þ�ðN�j�1Þ=2

¼ ð1� 2itÞ�j=2 1� itð jþ 2Þ
1
2
ðN � j� 2Þð1� 2itÞ

 !ðN�jÞ=2�1=2

� 1� itð jþ 2Þ
itNð1� 2itÞ

� ��iNt

! ð1� 2itÞ�j=2:

Thus as N ! 1

fðtÞ !
Yp

j¼1

ð1� 2itÞ�j=2: ð8:8Þ

Since ð1� 2itÞ�j=2 is the characteristic function of a chi-square random variable

x2j with j degrees of freedom, as N ! 1;�2 logl is distributed as
Pp

j¼1 x
2
j ,

where the x2j are independent whenever H0 is true. Thus�2 log l is distributed as

x2pð pþ1Þ=2 when H0 is true and N ! 1. For small values of n ¼ N � 1

Nagarsenker and Pillai (1973) have tabulated the upper 1% and 5% points of the

null distribution of �2 log l�, where l� is the modified likelihood ratio test

criterion.

The problem of testing H0 : S
� ¼ I against the alternatives H1 : S

� = I

remains invariant under the affine group G ¼ ðOð pÞ;EpÞ where Oð pÞ is the

multiplicative group of p� p orthogonal matrices, and Ep is the translation

group, operating as

Ya ! gYa þ a; g [ Oð pÞ; a [ Ep; a ¼ 1; . . . ;N: ð8:9Þ

This induces in the space of the sufficient statistic ð �YY;BÞ the transformation

ð �YY;BÞ ! ðg �YY þ a; gBg0Þ.
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Lemma 8.1.1. A set of maximal invariants in the space of ð �YY;BÞ under the

affine group G comprises the characteristic roots of B, that is, the roots of

detðB� lIÞ ¼ 0: ð8:10Þ
Proof. Since detðgðB� lIÞg0Þ ¼ detðB� lIÞ, the roots of the equation detðB�
lIÞ ¼ 0 are invariant under G. To see that they are maximal invariant suppose

that detðB� lIÞ ¼ 0 and detðB� � lIÞ ¼ 0 have the same roots, where B; B� are
two symmetric positive definite matrices; we want to show that there exists a

g [ Oð pÞ such that B� ¼ gBg0. Since B;B� are symmetric positive definite

matrices there exist orthogonal matrices g1; g2 [ Oð pÞ such that

g1Bg
0
1 ¼ D; g2B

�g02 ¼ D;

where D is a diagonal matrix whose elements are the roots of (8.10). Since

g1Bg
0
1 ¼ g2B

�g02 we get

B� ¼ g02g1Bg
0
1g2 ¼ gBg0

where g ¼ g02g1 [ Oð pÞ. Q.E.D.

We shall denote the characteristic roots of B by R1; . . . ;Rp. Similarly the

corresponding maximal invariants in the parametric space of ðn;S�Þ under G are

u1; . . . ; up, the roots of detðS� � lIÞ ¼ 0. Under H0 all ui ¼ 1, and under H1 at

least one ui = 1. The likelihood ratio test criterion l in terms of the maximal

invariants ðR1; . . . ;RpÞ can be written as

l ¼ ðe=NÞNp=2
Yp

i¼1

ðriÞN=2 expf� 1
2
S
p
i�1rig: ð8:11Þ

The modified likelihood ratio test for testing H0 : S ¼ S0 rejects H0 when

ðe=NÞNp=2ðdetS�1
0 sÞðN�1Þ=2 expf� 1

2
tr S

�1
0 sg � C0;

where the constant C0 depends on the size a of the test. Note that the modified

likelihood ratio test is obtained from the corresponding likelihood ratio test by

replacing the sample size N by N � 1. Since e=N is constant, we do not change

the constant term in the modified likelihood ratio test for the sake of convenience

only.

It is well known that (see, e.g., Lehmann, 1959, p. 165) for p ¼ 1 the rejection

region of the likelihood ratio test is not unbiased. The same result also holds in

this case (Das Gupta, 1969). However, the modified likelihood ratio test is

unbiased. The following theorem is due to Sugiura and Nagao (1968).

Theorem 8.1.2. For testing H0 : S ¼ S0 against the alternatives S = S0 for

unknown m, the modified likelihood ratio test is unbiased.
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Proof. Let g [ Oð pÞ be such that gS�1=2
0 SS

�1=2
0 g0 is a diagonal matrix G where

S
�1=2
0 is the inverse matrix of the symmetric matrix S

1=2
0 such that S

1=2
0 S

1:2
0 ¼ S0.

As indicated earlier we can assume, without any loss of generality, that S0 ¼ I

and S ¼ G, the diagonal matrix whose diagonal elements are the characteristic

roots of S
�1=2
0 SS

�1=2
0 . Hence S has a Wishart distribution with parameter G when

H1 is true. Let v be the acceptance region of the modified likelihood ratio test,

that is,

v ¼ fsjs is positive definite and ðe=NÞNp=2ðdetS�1
0 sÞðN�1Þ=2

� expf� 1
2
tr S

�1
0 sg . C0g:

Then the probability of accepting H0 when H1 is true is given by [see (6.32)]

PfvjH1g ¼
ð
v

Cn;pðdet sÞðN�p�2Þ=2ðdetGÞ�ðN�1Þ=2 expf� 1
2
tr G�1sg ds

¼
ð
v�
Cn;pðdet uÞðN�p�2Þ=2 expf� 1

2
tr ug du;

ð8:12Þ

where u ¼ G�1=2sG�1=2 and v� is the set of all positive definite matrices u

such that G1=2uG1=2 belongs to v. Note that the Jacobian is

detð@u=@sÞ ¼ ðdetGÞ�ð pþ1Þ=2. Since v� ¼ v when H0 is true and in the region v

ðdet uÞðN�p�2Þ=2 expf� 1
2
tr ug � C0ðe=NÞNp=2ðdet uÞ�ð pþ1Þ=2; ð8:13Þ

we get

ð
v�v>v�

ðdet uÞðN�p�2Þ=2 expf� 1
2
tr ug du

exists. Also

ð
v�v>v�

ðdet uÞðN�p�2Þ=2 expf� 1
2
tr ug du

� C0 e

N

 �Np=2ð
v�v>v�

ðdet uÞ�ð p�2Þ=2du;

ð8:14Þ

and

�
ð
v�v>v�

ðdet uÞðN�p�2Þ=2 expf� 1
2
tr ug du

� C0 e

N

 �Np=2ð
v�v>v�

ðdet uÞ�ð p�2Þ=2du:

ð8:15Þ
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Combining (8.14) and (8.15) with the fact that
ð
v>v�

ðdet uÞ�ð pþ1Þ=2du , 1;

we get

PfvjH0g � PfvjH1g

¼ Cn;p

ð
v�v>v�

�
ð
v��v>v�

� �
ðdet uÞðN�p�2Þ=2 expf� 1

2
tr ug du

� Cn;pC
0 e

N

 �Np=2 ð
v�v>v�

�
ð
v��v>v�

� �
ðdet uÞ�ð pþ1Þ=2du

¼ Cn;pC
0 e

N

 �Np=2 ð
v

�
ð
v�

� �
ðdet uÞ�ð pþ1Þ=2du ¼ 0:

ð8:16Þ

The last inequality follows from the fact (see Example 3.2.8) that ðdet uÞ�ð pþ1Þ=2

is the invariant measure in the space of the u under the full linear group Glð pÞ
transforming u ! gug0; g [ Glð pÞ; that is;ð

v�
ðdet uÞ�ð pþ1Þ=2du ¼

ð
v

ðdet uÞ�ð pþ1Þ=2du;

and hence the result. Q.E.D.

The acceptance region of the likelihood ratio test does not possess this

property, and within the acceptance region we have

ðdet uÞðN�p�2Þ=2 expf� 1
2
tr ug � Cðe=NÞ�Np=2ðdet uÞ�ð pþ2Þ=2

instead of (8.13). Anderson and Das Gupta (1964a) showed that (this will follow

trivially from Theorem 8.5.2) any invariant test for this problem (obviously it

depends only r1; . . . ; rp) with the acceptance region such that if ðr1; . . . ; rpÞ is in
the region, so also is ð�rr1; . . . ; �rrpÞ with �rri � ri; i ¼ 1; . . . ; p, has a power function
that is an increasing function of each ui where u1; . . . ; up are the characteristic

roots of S
�
.

Das Gupta (1969) obtained the following results.

Theorem 8.1.3. The likelihood ratio test for H0 : S ¼ S0 (i) is biased against

H1 : S = S0, and (ii) has a power function bðuÞ that increases as the absolute

deviation jui � 1j increases for each i.

Proof. As in the Theorem 8.1.2 we take S0 ¼ I and S ¼ G, the diagonal matrix

with diagonal elements ðu1; . . . ; upÞ. S has a Wishart distribution with parameter
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G and N � 1 degrees of freedom. Let S ¼ ðSijÞ. Then

ðdet sÞN=2 expf� 1
2
tr sg ¼ det s

Pp
i¼1sii

� �N=2 Yp

i¼1

s
N=2
ii expf� 1

2
siig

" #
: ð8:17Þ

From (6.32), since G is a diagonal matrix, Sii=ui; i ¼ 1; . . . ; p are independently

distributed x2N�1 random variables and for any kð. 0Þ½det S=Pp
i¼1Sii�k and the Sii

(or any function thereof) are mutually independent. Furthermore, the distribution

of ½det S=Pp
i¼1Sii�N=2 is independent of u1; . . . ; up. From Exercise 5 it follows that

there exists a constant u�p such that 1 , u�p , N=ðN � 1Þ and

PfSN=2pp expð� 1
2
SppÞ � Cjup ¼ 1g

, PfSN=2pp expð� 1
2
SppÞ � Cju�p ¼ upg

ð8:18Þ

irrespective of the value of C chosen. Hence if we evaluate the probability with

respect to Spp, keeping S11; . . . ; Sp�1;p�1 and ½det S=Pp
i¼1Sii�N=2 fixed, we obtain

Pfðdet SÞN=2 expf� 1
2
tr Sg � CjH1g

. Pfðdet SÞN=2 expf� 1
2
tr Sg � CjH0g

ð8:19Þ

Thus the acceptance region v of the likelihood ratio test satisfies

PðvjH1Þ � PðvjH0Þ . 0. Hence the likelihood ratio test is biased. From

Exercise 5 it follows that if 2r ¼ m, then bðuÞ increases as ju� 1j increases.
Hence from the fact noted in connection with the proof of (i) we get the proof of

(ii). Q.E.D.

Das Gupta and Giri (1973) proved the following theorem. Consider the class

of rejection regions CðrÞ for r � 0, given by

CðrÞ ¼ fsjs is positive definite and

ðdetS�1
0 sÞr=2 expf� 1

2
tr S

�1
0 sg � kg:

ð8:20Þ

Theorem 8.1.4. For testing H0 : S ¼ S0 against the alternatives H1 : S =
S0 : ðaÞPfCðrÞjH1g increases monotonically as each ui (characteristic root of

S
�1=2
0 SS

�1=2
0 ) deviates from r=ðN � 1Þ either in the positive or in the negative

direction; ðbÞCðrÞ for which ð1� detðS�1=2
0 SS

�1=2
0 ÞÞðr � nÞ � 0 is unbiased for

H0 against H1.
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The proof follows from Theorems 8.1.2 and 8.1.3 and the fact that CðrÞ (with
S0 ¼ I) can also be written as

ðdet s�ÞðN�1Þ=2 expf� 1
2
tr s�g � k�;

where s� ¼ ððN � 1Þ=rÞs.
Using the techniques of Kiefer and Schwartz (1965), Das Gupta and Giri

(1973) have observed that the following rejection regions are unique (almost

everywhere), Bayes, and hence admissible for this problem whenever N � 1 . p:

ðiÞ ðdetS�1
0 sÞr=2 expf� 1

2
tr S

�1
0 sg � k; 1 , r;, 1;

ðiiÞ ðdetS�1
0 sÞr=2 expf� 1

2
tr S

�1
0 sg � k;�1 , r , 0:

For this problem Kiefer and Schwartz (1965) have shown that the test which

rejects H0 whenever

ðdetS�1
0 sÞ � C; ð8:21Þ

where the constant C is chosen such that the test has the level of significance a, is
admissible Bayes against the alternatives that S0 � S is negative definite. The

value of C can be determined from Theorem 6.6.1. Note that

detðS�1
0 SÞ ¼ detðS�1=2

0 SS
�1=2
0 Þ. They have also shown that for testing

H0 : S ¼ S0, the test which rejects H0 whenever

tr S
�1
0 s � C1 or � C2; ð8:22Þ

where C1;C2 are constants depending on the level of significance a of the test, is

admissible against the alternatives H1 : S = S0. This is in the form that is

familiar to us when p ¼ 1. It is easy to see that trðS�1
0 SÞ has a x2 distribution with

ðN � 1Þp degrees of freedom when H0 is true. John (1971) derived the LBI test

for this problem. To establish the LBI property of the test based on tr S
�1
0 S we

need the following preliminaries. Let Oð pÞ be the group of p� p orthogonal

matrices O ¼ ðOijÞ ¼ ðO1; . . . ;OpÞ, where Oi ¼ ðOi1; . . . ;OipÞ0; i ¼ 1; . . . ; p. An
invariant probability measure m on Oð pÞ is given by the joint distribution of the

Oi, where for each i ðO2
i1; . . . ;O

2
ipÞ has Dirichlet distribution Dð12 ; . . . ; 12Þ as given

in Theorem 4.3.6. This measure can be constructed from the normal distribution

as follows.

Let U ¼ ðU1; . . . ;UpÞ with Ui ¼ ðUi1; . . . ;UipÞ0; i ¼ 1; . . . ; p be a p� p

random matrix where U1; . . . ;Up, are independently and identically distributed

Npð0; IÞ. As in Theorem 4.3.6 write U ¼ OT with O [ Oð pÞ and T is a p� p

upper triangular matrix with positive diagonal elements obtained from U by

applying the Gram-Schmidt orthogonalization process on U1; . . . ;Up, and O ¼
ðOijÞ is the p� p orthogonal matrix such that for each i ðOi1; . . . ;OipÞ ¼ Oi is
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distributed as

Ui1

kUik ; . . . ;
Uip

kUik
� �

This implies that

ðO2
i1; . . . ;O

2
ipÞ

has the Dirichlet distribution Dð1
2
; . . . ; 1

2
Þ. From this it follows that

ð
oð pÞ

OijOlkmðdOÞ ¼ dildjk
p

ð8:23Þ

where dij is Kronecker’s d.
Let A ¼ ðaijÞ;B ¼ ðbijÞ be p� p matrices. Since

tr AOBO0 ¼
X
i

X
j

X
k

X
l

aijbklOjlOil

It follows that

ð
Oð pÞ

ðtr AOBO0ÞdmðOÞ ¼ ðtr AÞðtr BÞ
p

ð8:24Þ

It is now left to the reader to verify that

ð
Oð pÞ

ðtr AOBO0Þ2dmðOÞ ¼ ðtrðA2ÞÞðtrðB2ÞÞ
pð pþ 1Þ

ð
Oð pÞ

ðtr AOÞðtrðBOÞdmðOÞ ¼ trðAB0Þ
p

:

ð8:25Þ

Theorem 8.1.5. For testing H0 : S ¼ S0 (equivalently S
� ¼ S

�1=2
0 SS

�1=2
0 ¼ I)

against the alternative H1 : S� S0 is positive definite (equivalently S
� � I is

positive definite ), the test which rejects H0 whenever

tr S
�1
0 s � C

is LBI under the affine group G of transformations (8.9).

Proof. From Lemma 8.1.1, R1; . . . ;Rp is a minimal invariant under G in the

sample space whose distribution depends only on u1; . . . ; up the corresponding

maximal invariant in the parametric space. Let R and u be diagonal matrices with

diagonal elements R1; . . . ;Rp and u1; . . . ; up, respectively. From (3.20) the ratio

334 Chapter 8



of densities of R is given by (with m the invariant probability measure on Oð pÞ)

dPðRjuÞ
dPðRjIÞ ¼

Ð
Oð pÞðdet uÞ�n=2 expf� 1

2
tr u�1ORO0gdmðOÞÐ

Oð pÞ expf� 1
2
tr RgdmðOÞ

Using (3.24) we get

dPðRjuÞ
dPðRjIÞ ¼ 1þ

ð
Oð pÞ

1
2
ðtrðI � u�1ÞORO0dmðOÞ � n

2
trðI � u�1Þ

þ
ð
Oð pÞ

½1
2
ðtrðI � u�1ÞORO0Þ�2dmðOÞ

þ o
Xp

i¼1

ð1� u�1
i Þ

 !
:

Using (8.24) and (8.25) we get

dPðRjuÞ
dPðRjIÞ ¼ 1þ trðI � u�1Þ tr R

2p
� n

2

� �
þ o

Xp

i¼1

ð1� u�1
i Þ

 !

when
Pp

i¼1ð1� u�1
i Þ ! 0. Hence from the results presented in Section 3.7 we

get the theorem. Q.E.D.

We now derive several admissible tests for this problem. Given two positive

definite matrices S0L and S0U let us consider the problem of testing H0 : S ¼ S0

against H1 : S is one of the pair ðS0L;S0UÞ or else that either S� S0L or S0U � S
is positive definite and find the admissible test of H0 against H1 by using the

Bayes approach of Kiefer and Schwartz (1965) as discussed in Section 7.2.3. Let

the prior P0 under H0 be such that

P0ðS ¼ S0Þ ¼ 1;

P0ðdnÞ ¼ 1

ð2pÞp=2½detðS0U � S0Þ�1=2

� exp f� 1
2
trðn� n0Þ0ðS0U � S0Þ�1ðn� n0Þg

where n ¼ ffiffiffiffi
N

p
m, n0 is a fixed vector and let the prior P1 under H1 be given by

P1 ¼ c1P1a þ ð1� c1ÞP1d
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where 0 , c1 , 1 and

P1aðS ¼ SoLÞ ¼ 1;

P1aðdnÞ ¼ 1

ð2pÞp=2ðdetðS0U � S0LÞÞ1=2

� expf� 1
2
trðn� n0Þ0ðS0U � S0LÞ�1ðn� n0Þg;

P1dðS ¼ S0; n ¼ n0Þ ¼ 1:

Using (7.38) the rejection region of the admissible Bayes test is given by,
Ð
f ðx1; . . . ; xN jDÞP1ðdDÞÐ
f ðx1; . . . ; xN jDÞP0ðdDÞ ¼

��
c1ðdetS0LÞ�ðN�1Þ=2ðdetS0UÞ�1=2

� exp � tr

2
ðS�1

0L s� GÞ
n o

þ ð1� c1ÞðdetS0UÞ�N=2 exp
tr

2

�
S
�1
0Us� G

���

�
ðdetS0Þ�ðN�1Þ=2ðdetS0UÞ�1=2

� exp � tr

2
ðS�1

0Us� GÞ
n o��

� c

for some c; 0 � c , / and

G ¼ S
�1
0Uð

ffiffiffiffi
N

p
�xx� n0Þð

ffiffiffiffi
N

p
�xx� n0Þ0:

From above the rejection region of the admissible Bayes test can be written as

c2 expf12 trðS�1
0 � S

�1
0L Þsg þ c3 exp

tr

2
ðS�1

0 � S
�1
0UÞs

n o
� 1 ð8:26Þ

where c2; c3 are nonnegative constants (not both zero).

Let us suppose that there are positive constants aL and aU such that S0L ¼
aLS0 and S0U ¼ aUS0, then (8.26) reduces to

tr S
�1
0 s � c4 or � c5 ð8:27Þ

where c4 and c5 are arbitrary constants depending on the level a of the test. Hence

we get the following theorem.

Theorem 8.1.6. For testing H0 : S ¼ S0 against H1 : S ¼ aS0; a = 1, the test

given in (8.27) is admissible.
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Remark. If c4 ¼ 1 or c5 ¼ 0 (8.27) reduces to one-sided tests.

For testing H0 : S ¼ S0 against the alternatives H1 : S� S0 is positive

definite, the admissible Bayes character of the rejection region

detS
�1
0 s � c ð8:28Þ

where c is a constant depending on the level a of the test, can be established using

the Bayes approach by letting P1 assign all its measure to S
�1 ¼ S

�1
0 þ hh0

(independently of n) under H1 with h a p� 1 random vector having

P1ðdhÞ ¼ ðdetðS�1
0 þ hh0ÞÞ�ðN�1Þ=2

and P0ðS ¼ S0Þ ¼ 1.

The local minimax property of the LBI test follows from the fact that the affine

group ðOð pÞ;EpÞ satisfies the conditions of Hunt-Stein theorem (Section 7.2.3).

8.2. THE SPHERICITY TEST

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random sample of size NðN . pÞ
from a p-variate normal population with unknown mean m and unknown positive

definite covariance matrix S. We are interested here in testing the null hypothesis

H0 : S ¼ s2S0 against the alternatives H1 : S = s2S0 where S0 is a fixed

positive definite matrix and s2;m are unknown. Since S0 is positive definite,

there exists a g [ Glð pÞ such that gS0g
0 ¼ I. Let Ya ¼ gXa; a ¼ 1; . . . ;N;

v ¼ gm; S� ¼ gSg0. Then Ya;a ¼ 1; . . . ;N, constitute a random sample of size

N from a p-variate normal population with mean v and positive definite

covariance matrix S
�
. The problem is reduced to testing H0 : S

� ¼ s2I against

H1 : S
� = s2I when s2;m are unknown. Since under H0 : S

� ¼ s2I, the

ellipsoid ðy� vÞ0S��1ðy� vÞ ¼ const reduces to the sphere

ðy� vÞ0ðy� vÞ=s2 ¼ const, the hypothesis is called the hypothesis of sphericity.

Let �XX; S; �YY;B be as defined as in Section 8.1. The likelihood of the observations

ya on Ya;a ¼ 1; . . . ;N, is given by

Lðv;S�Þ ¼ ð2pÞ�Np=2ðdetS�Þ�N=2

� exp � 1
2
tr S

��1
XN
a¼1

ðya � vÞðya � vÞ0
 !( )

:
ð8:29Þ
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The parametric space V ¼ fðv;S�Þg is the space of v and S�
. Under H0 it reduces

to v ¼ fðv;s2IÞg. From (8.29)

Lðv;s2IÞ ¼ ð2pÞ�Np=2ðs2Þ�Np=2

� exp � 1

2s2
tr
XN
a¼1

ðya � vÞðya � vÞ0
 !( )

:
ð8:30Þ

Hence

max
v

Lðv;s2IÞ ¼ ð2pÞ�Np=2 tr b

Np

� ��Np=2

expf� 1
2
Npg; ð8:31Þ

since the maximum likelihood estimate of s2 is trðbÞ=Np. Thus we get

l ¼ maxv Lðv;s2IÞ
maxV Lðv;S�Þ ¼

det b

ððtr bÞ=pÞp
� �N=2

¼ detS
�1
0 s

ððtr S�1
0 sÞ=pÞp

" #N=2

: ð8:32Þ

Theorem 8.2.1. For testing H0 : S ¼ s2S0 where s
2;m are unknown and S0 is

a fixed positive definite matrix, the likelihood ratio test of H0 rejects H0 whenever

l ¼ ðdetS�1
0 sÞN=2

ððtr S�1
0 sÞ=pÞNp=2 � c; ð8:33Þ

where the constant c is chosen such that the test has the required size a.

The corresponding modified likelihood ratio test of this problem is obtained

from the likelihood ratio test by replacing N by N � 1.

To find the constant cwe need the probability density function of l whenH0 is

true. Mauchly (1940) first derived the test criterion and obtained various

moments of this criterion under the null hypothesis. WritingW ¼ l2=N , Mauchly

showed that

EðWkÞ ¼ pkp
Gð1

2
pðN � 1ÞÞ

Gð1
2
pðN � 1Þ þ pkÞ

�
Yp

j¼1

Gð1
2
ðN � jÞ þ kÞ

Gð1
2
ðN � jÞÞ ; k ¼ 0; 1; . . .

ð8:34Þ

For p ¼ 2 (8.34) reduces to

EðWkÞ ¼ N � 2

N � 2þ 2k
¼ ðN � 2Þ

ð1
0

ðzÞN�3þ2kdz: ð8:35Þ
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Thus under H0;W is distributed as Z2 where the probability density function of Z

is

fZðzÞ ¼ ðN � 2ÞzN�3 0 � z � 1

0 otherwise:

�
ð8:36Þ

Khatri and Srivastava (1971) obtained the exact distribution of W in terms of

zonal polynomials and Meijer’s G-function. Consul (1968) obtained the null

distribution of W . Nagarsenker and Pillai (1973) tabulated various percentage

points of the distribution of W .

From Anderson (1958, Section 8.6) we obtain

Pf�ðN � 1Þr logW � zg ¼ Pfx2f � zg þ v2½Pfx2fþ4 � zg

� Pfx2f � zg� þ Oð1=N3Þ;
ð8:37Þ

where

1� r ¼ 2p2 þ pþ 2

6pðN � 1Þ ; v2 ¼ ð pþ 2Þð p� 1Þð p� 2Þð2p3 þ 6p2 þ 3pþ 2Þ
288p2ðN � 1Þ2p2 ;

f ¼ 1
2
ð pÞð pþ 1Þ þ 1:

Thus for large N

Pf�ðN � 1Þr logW � zg ¼ Pfx2f � zg:
The problem of testing H0 : S

� ¼ s2I against the alternatives H1 : S
� ¼ s2V

where V is an unknown positive definite p� p matrix not equal to I remains

invariant under the group G ¼ Rþ � Ep � Oð pÞ of affine transformations

g ¼ ðb; a;OÞ ð8:38Þ
with b [ Rþ; a [ Ep;O [ Oð pÞ transforming

Ya ! bOYa þ a;a ¼ 1; . . . ;N: ð8:39Þ
A set of maximal invariants in the sample space under G is

R1

S
p
i¼1Ri

; . . . ;
Rp

S
p
i¼1Ri

� �

where R1; . . . ;Rp, are the characteristic roots of B. A corresponding maximal

invariant in the parametric space is

u1
S
p
i¼1ui

; . . . ;
up

S
p
i¼1ui

� �
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where u1; . . . ; up, are the characteristic roots of V . Under H0; ui ¼ 1 for all i and

under H1 at least one ui = 1. We shall now prove that the modified likelihood

ratio test for this problem is unbiased. This was first proved by Glesser (1966),

then by Sugiura and Nagao (1968), whose proof we present here.

Theorem 8.2.2. For testing H0 : S ¼ s2S0 against the alternatives

H1 : S = s2S, where s2 is an unknown positive quantity, m is unknown, and

S0 is a fixed positive definite matrix, the modified likelihood ratio test with the

acceptance region

v ¼ s : s is positive definite and
ðdetS�1

0 sÞðN�1Þ=2

ððtr S�1
0 sÞ=pÞðN�1Þp=2Þ � c0

( )
ð8:40Þ

is unbiased.

Proof. As in Theorem 8.1.2, considering gS
�1=2
0 sS

�1=2
0 g0 instead of s where

g [ Oð pÞ such that gS
�1=2
0 SS

�1=2
0 g0 ¼ G we can without any loss of generality

assume that S0 ¼ I and S ¼ G, the diagonal matrix whose diagonal elements are

the p characteristic roots u1; . . . ; up, of ðS�1=2
0 SS

�1=2
0 Þ. Thus S has a Wishart

distribution with parameter G and N � 1 degrees of freedom. Hence

PfvjH1g ¼ Cn;p

ð
v

ðdet sÞðN�p�2Þ=2ðdetGÞ�ðN�1Þ=2 expf� 1
2
tr G�1sg ds

¼ Cn;p

ð
v�
ðdet uÞðN�p�2Þ=2 expf� 1

2
tr ug du;

ð8:41Þ

where u and v� are defined as in Theorem 8.1.2. Transform u to v11v where the

symmetric matrix v is given by

v ¼
1 v12 � � � v1p
v21 v22 � � � v2p

..

. ..
. ..

.

vp1 vp2 � � � vpp

0
BBB@

1
CCCA ð8:42Þ

The Jacobian of this transformation is v
pð pþ1Þ=2�1
11 . Since the region remains

invariant under the transformation u ! cu, where c is a positive real number, we
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get

PfvjH1g ¼ Cn;p

ð
v�
ðv11ÞðN�1Þp=2�1ðdet vÞðN�p�2Þ=2

� expf� 1
2
trðv11vÞgdv11dv

¼ Cn;p2
ðN�1Þp=2Gð1

2
ðN � 1ÞpÞ

ð
v��

ðdet vÞðN�p�2Þ=2

� ðtrðvÞÞ�ðN�1Þp=2dv

ð8:43Þ

where v** is the set of positive definite matrices v such that G1=2vG1=2 belongs to

v. Now proceeding as in Theorem 8.1.2

PfvjH0g � PfvjH1g � 2pðN�1Þ=2Gð1
2
pðN � 1ÞÞCn;pc

0

�
ð
v

�
ð
v��

� �
ðdet vÞ�ð pþ1Þ=2dv

ð8:44Þ

Transform v ! x ¼ u�1
1 G1=2vG1=2 in the second integral of (8.44). Since the

Jacobian of this transformation is ðdetGÞð pþ1Þ=2u�pð pþ1Þ=2
1 , we get

ð
v��

ðdet vÞ�ð pþ1Þ=2dv ¼
ð
v

ðdet xÞ�ð pþ1Þ=2dx;

and hence the result. Q.E.D.

Kiefer and Schwartz (1965) showed that the likelihood ratio test for this

problem is admissible Bayes whenever N � 1 . p. Das Gupta (1969) showed

that the likelihood ratio test for this problem is also unbiased for testing H0

against H1. The proof proceeds in the same way as that of Theorem 8.1.3.

The following theorem gives the LBI test of H0 : S
� ¼ s2I against

H1 : S
� ¼ s2V = s2I. In terms of ui’s H0 reduces to ui ¼ 1 for all i and the

local alternatives correspond to the absolute value ju�1
i � 1j being small but not

equal to zero for all i.

Theorem 8.2.3. For testing H0 against H1 the level a test which rejects H0

whenever

tr B2

ðtr BÞ2 � c ð8:45Þ

where c is a constant depending on the level a of the test, is LBI.

Proof. Since the Jacobian of the inverse transformation (8.39) is ðbÞnp and db=b
is an invariant measure on Rþ, using (3.21) we get (with R; u diagonal matrices

Covariance Matrices and Mean Vectors 341



with diagonal elements R1; . . . ;Rp and u1; . . . ; up respectively),

dPðRjs2uÞ
dPðRjs2IÞ

¼

ð
Rþ

ð
0ð pÞ

ðdet uÞ�n=2ðb2Þ12ðnp�1Þ exp � b2

2s2
tr u�10R00

� �
dmð0Þdb

ð
Rþ

ð
0ð pÞ

ðb2Þ12ðnp�1Þ exp � b2

2s2
tr R

� �
dmðOÞdb

ð8:46Þ

¼ ðdet uÞ�n=2

ð
0ð pÞ

ð1þ FÞ�np=2dmðOÞ

where 1þ F ¼ ðtr u�10R00=tr RÞ and m is the invariant probability measure on

Oð pÞ. Using (3.24) we expand the integrand in (8.46) as

1� np

2
F þ npðnpþ 2Þ

8
F2 � npðnpþ 2Þðnpþ 4Þ

48
F3ð1þ aFÞ�ðnpþ6Þ

2 ð8:47Þ

where 0 , a , 1. Since F ¼ ðtrðu�1 � IÞ0R00=tr RÞ and u�1 � I � ðPp
i¼1 ju�1

i �
1jÞI where k stand for the absolute value symbol, we get jFj ,Pp

i¼1 ju�1
i � 1j.

From Equations (8.23–8.25) we get

dPðRjs2uÞ
dPðRjs2IÞ ¼ 1þ 3nðnpþ 2Þ

8ð pþ 1Þ
tr B2

ðtr BÞ2
� �

ðtrðu�1 � IÞ2Þ þ oðtrðu�1 � IÞ2Þ: ð8:48Þ

Hence the power of any level a invariant test f is

aþ nðnpþ 2Þ
8ð pþ 1Þ EH0

f
tr B2

ðtr BÞ2 g
2

� �
þ oðg2Þ

where g2 ¼ trðu�1 � 1Þ2 ¼ trðV�1 � IÞ2. Using (3.26) we get the theorem.

Q.E.D.

The LBI Lest was first derived by Sugiura (1972). The local minimax property

of this LBI test follows from the fact that the group G ¼ Rþ � Ep � Oð pÞ
satisfies the conditions of the Hunt-Stein Theorem (Section 7.2.3). Following the

Kiefer and Schwartz (1965) approach the likelihood ratio test can be shown to be

admissible.

8.3. TESTS OF INDEPENDENCE AND THE R 2-TEST

Let X ¼ ðX1; . . . ;XpÞ0 be a normally distributed p-vector with unknown mean m
and positive definite covariance matrix S. Let Xa ¼ ðXa1; . . . ;XapÞ0;
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a ¼ 1; . . . ;N, be a random sample of size NðN . pÞ from this population. Let

�XX ¼ 1

N

XN
a¼1

Xa; S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0: ð8:49Þ

We shall use the notation of Section 7.2.2. Partition �XX;m; S;S as

m ¼ ðm0
ð1Þ; . . . ;m

0
ðkÞÞ0;

�XX ¼ ð �XX0
ð1Þ; . . . ; �XX

0
ðkÞÞ0;

X ¼ ðX0
ð1Þ; . . . ;X

0
ðkÞÞ0; S ¼

Sð11Þ � � � Sð1kÞ
..
. ..

.

Sðk1Þ � � � SðkkÞ

0
B@

1
CA

S ¼
Sð11Þ � � � Sð1kÞ
..
. ..

.

Sðk1Þ � � � SðkkÞ

0
B@

1
CA:

We are interested in testing the null hypothesis that the subvectors Xð1Þ; . . . ;XðkÞ
are mutually independent. The null hypothesis can be stated, equivalently, as

H0 : SðijÞ ¼ 0 for all i = j: ð8:50Þ

Note that both the problems considered earlier in this chapter can be transformed

into the problem of independence of components of X.

Let V be the parametric space of ðm;SÞ. Under H0;V is reduced to v ¼
fðm;SDÞg where SD is a diagonal matrix in the block form with unknown

diagonal elements SðiiÞ; i ¼ 1; . . . ; k. The likelihood of the sample observations

xa on Xa;a ¼ 1; . . . ;N is given by

Lðm;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2

� exp � 1
2
tr S

�1
XN
a¼1

ðxa � mÞðxa � mÞ0
 !( )

:
ð8:51Þ

Hence

max
V

Lðm;SÞ ¼ ð2pÞ�Np=2½detðs=NÞ��N=2 expf� 1
2
Npg: ð8:52Þ
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Under H0,

Lðm;SDÞ
Yk
i¼1

ð2pÞ�Npi=2ðdetSðiiÞÞ�N=2

� exp � 1
2
tr S

�1
ðiiÞ

XN
a¼1

ðxaðiÞ � mðiÞÞðxaðiÞ � mðiÞÞ0
 !( ) ð8:53Þ

where xa ¼ ðxað1Þ; . . . ; xaðkÞÞ0, and xaðiÞ is pi � 1. Now

max
v

Lðm;SDÞ ¼
Yk
i¼1

max
SðiiÞmðiÞ

ð2pÞ�Npi=2ðdetSðiiÞÞ�N=2
�

� exp � 1
2
tr S

�1
ðiiÞ
XN
a¼1

ðxaðiÞ � mðiÞÞðxaðiÞ � mðiÞÞ0
( )#

ð8:54Þ

¼
Yk
i¼1

fð2pÞ�Npi=2½detðsðiiÞ=NÞ��N=2 expf� 1
2
Npigg:

From (8.52) and (8.54), the likelihood ratio criterion l for testing H0 is given by

l ¼ max Lðm;SDÞ
maxV Lðm;SÞ ¼

det s

Pk
i¼1 det sðiiÞ

" #N=2

¼ vN=2; ð8:55Þ

where v ¼ ðdet sÞ=ðQk
i¼1 det sðiiÞÞ. Hence we have the following theorem.

Theorem 8.3.1. For testing H0 : S ¼ SD, the likelihood ratio test rejects H0

whenever l � c0 or, equivalently, v � c, where c0 or c is chosen such that the test
has level of significance a.

Let s ¼ ðsijÞ. Writing rij ¼ sij=ðsiisjjÞ1=2, the matrix r of sample correlation

coefficients rij is

r ¼
1 r12 � � � r1p
r21 1 � � � r2p

..

. ..
. ..

.

rp1 rp2 � � � 1

0
BBB@

1
CCCA: ð8:56Þ
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Obviously det s ¼ ðQp
i¼1 det siiÞ det r. Let us now partition r into submatrices rðijÞ

similar to s as

r ¼
rð11Þ � � � rð1kÞ
rð21Þ � � � rð2kÞ
..
. ..

.

rðk1Þ � � � rðkkÞ

0
BBB@

1
CCCA: ð8:57Þ

Then

det sðiiÞ ¼ detðrðiiÞÞ
Yp1þ���þpi

j¼p1þ���þpi�1þ1

sjj: ð8:58Þ

Thus

v ¼ detðrÞ
Pk

i¼1 detðrðiiÞÞ
ð8:59Þ

gives a representation of v in terms of sample correlation coefficients.

Let GBD be the group of p� p nonsingular block diagonal matrices g of the

form

g ¼

gð11Þ 0 � � � 0

0 gð22Þ � � � 0

..

. ..
. ..

.

0 0 ..
.

gðkkÞ

0
BBB@

1
CCCA; ð8:60Þ

where gðiiÞ is a pi � pi submatrix of g and S
k
1pi ¼ p. The problem of testing

H0 : S ¼ SD against the alternatives H1 : S = SD remains invariant under the

group g of affine transformations ðg; aÞ; g [ GBD and a [ Ep, transforming each

Xa to gXa þ a. The corresponding induced group of transformations in the space

of ð �XX; SÞ is given by ð �XX; SÞ ! ðg �XX þ a; gSg0Þ. Obviously this implies that

�XXðiÞ ! gðiiÞ �XXðiÞ þ aðiÞ SðiiÞ ! gðiiÞSðiiÞg0ðiiÞ; ð8:61Þ
and hence

det s

Pk
i¼1 det sðiiÞ

¼ detðgsg0Þ
Pk

i¼1 detðgðiiÞsðiiÞg0ðiiÞÞ
: ð8:62Þ

To determine the likelihood ratio test or the test based on v we need the

distribution of V under H0. Under H0; S has a Wishart distribution with parameter

SD and N � 1 degrees of freedom; the XðiÞ are mutually independent; the

marginal distribution of SðiiÞ is Wishart with parameter SðiiÞ and N � 1 degrees of

freedom; and SðiiÞ is distributed independently of Sð jjÞði = jÞ. Using these facts it
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can be shown that under H0,

EðVhÞ ¼ Pp
i¼1Gð12 ðN � iÞ þ hÞPk

i¼1fPpi
j¼1Gð12 ðN � jÞÞg

Pp
i¼1Gð12 ðN � iÞÞPk

i¼1fPpi
j¼1Gð12 ðN � jÞ þ hÞÞg ;

h ¼ 0; 1; . . .

ð8:63Þ

Since 0 � V � 1, these moments determine the distribution of V uniquely. Since

these moments are independent of SD when H0 is true, from (8.63) it follows that

when H0 is true V is distributed as Pk
i¼2fPpi

j¼1Xijg where the Xij are independently

distributed central beta random variables with parameters

ð1
2
ðN � di�1 � jÞ; 1

2
di�1Þ with dj ¼

Xj

i¼1

pi; d0 ¼ 0:

If all the pi are even, pi ¼ 2ri (say), then under H0;V is distributed as

Pk
i¼2fPri

j¼1Y
2
ijg where the Yij, are independently distributed central beta random

variables with parameters ððN � di�1 � 2jÞ; di�1Þ.
Wald and Brookner (1941) have given a method for deriving the distribution

when the pi are odd. For further results on the distribution we refer the reader to

Anderson (1958, Section 9.4)

Let

f ¼ 1
2

pð pþ 1Þ �
Xk
i¼1

pið pi þ 1Þ
" #

;

r ¼ 1� 2ð p3 � S
k
i¼1p

3
i Þ þ 9ð p2 � S

k
i¼1p

2
i Þ

6Nð p2 � S
k
i¼1p

2
i Þ

;

a ¼ rN; l2 ¼ p4 � S
k
i¼1p

4
i

48
� 5ð p2 � S

k
i¼1p

2
i Þ

96
� ð p3 � S

k
i¼1p

3
i Þ2

72ð p2 � S
k
i¼1p

2
i Þ
:

Using Box (1949), we obtain

Pf�a logV � zg ¼ Pfx2f � zg þ l2
a2

½Pfx2fþ4 � zg � Pfx2f � zg� þ oða�3Þ:

Thus for large N

Pf�a logV � zg w Pfx2f � zg: ð8:64Þ
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8.3.1. The R 2-Test

If k ¼ 2; p1 ¼ 1; p2 ¼ p� 1, then the likelihood ratio test criterion l is given by

l ¼ det s

s11 detðsð22ÞÞ
� �N=2

¼ s11 � sð12Þs�1
ð22Þs21Þ

s11

 !N=2

¼ ð1� r2ÞN=2
ð8:65Þ

where r2 ¼ sð12Þs�1
ð22Þsð21Þ=s11 is the square of the sample multiple correlation

coefficient between X1 and ðX2; . . . ;XpÞ. The distribution of R2 ¼
Sð12ÞS�1

ð22ÞSð21Þ=S11 is given in (6.86), and depends on r2 ¼ Sð12ÞS
�1
ð22ÞSð21ÞS

�1
11 ,

the square of the population multiple correlation coefficient between X1 and

ðX2; . . . ;XpÞ. Since Sð22Þ is positive definite, r2 ¼ 0 if and only if Sð12Þ ¼ 0. From

(6.86) under H0; ðN � pÞ=ð p� 1ÞðR2=ð1� R2Þ) is distributed as a central

Fp�1;N�p with ð p� 1;N � pÞ degrees of freedom.

Theorem 8.3.2. The likelihood ratio test of H0 : r
2 ¼ 0 rejects H0 whenever

N � p

p� 1

r2

1� r2
� Fp�1;N�p;a

where Fp�1;N�p;a is the upper significance point corresponding to the level of

significance a.

Observe that this is also equivalent to rejecting H0 whenever r
2 � c, where the

constant c depends on the level of significance a of the test.

Example 8.3.1. Consider the data given in Example 5.3.1. Let r2 be the square
of the population multiple correlation coefficient between X6 and ðX1; . . . ;X5Þ.
The square of the sample multiple correlation coefficient r2 based on 27

observations for each year’s data is given by

r2 ¼ 0:85358 for 1971 observations;

r2 ¼ 0:80141 for 1972 observations:

We wish to test the hypothesis at a ¼ 0:01 that the wheat yield is independent of
the variables plant height at harvesting ðX1Þ, number of effective tillers ðX2Þ,
length of ear ðX3Þ, number of fertile spikelets per 10 ears ðX4Þ, and number of

grains per 10 ears ðX5Þ. We compare the value of ð21=5Þðr2=ð1� r2ÞÞ with

F5;21;0:01 ¼ 9:53 for each year’s data. Obviously for each year’s data

ð21=5Þðr2=ð1� r2ÞÞ . 9:53, which implies that the result is highly significant.

Thus the wheat yield is highly dependent on ðX1; . . . ;X5Þ.
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As stated earlier the problem of testing H0 : Sð12Þ ¼ 0 against H1 : Sð12Þ = 0

remains invariant under the group G of affine transformations ðg; aÞ; g [ GBD,

with k ¼ 2; p1 ¼ 1; p2 ¼ p� 1; a [ Ep, transforming ð �XX; S;m;SÞ ! ðg �XX þ a;
gSg0; gmþ a; gSg0Þ. A maximal invariant in the space of ð �XX; SÞ under G is

R2 ¼ Sð12ÞS�1
ð22ÞSð21Þ
S11

ð8:66Þ

and the corresponding maximal invariant in the parametric space V is

r2 ¼ Sð12ÞS
�1
ð22ÞSð21Þ
S11

ð8:67Þ

Under H0; r
2 ¼ 0 and under H1; r

2 . 0. The probabifity density function of R2 is

given in (6.86).

Theorem 8.3.3. On the basis of observations xi ¼ ðxi1; . . . ; xipÞ0;
i ¼ 1; . . . ;NðN . pÞ, from a p-variate normal distribution with unknown mean

m and unknown positive definite covariance matrix S, among all tests

fðX1; . . . ;X
NÞ of H0 : Sð12Þ ¼ 0 against the alternatives H1 : Sð12Þ = 0 which

are invariant under the group of affine transformations G, the test which rejects

H0 whenever the square of the sample multiple correlation coefficient r2 . C,

where the constant C depends on the level of significance a of the test (or

equivalently the likelihood ratio test), is uniformly most powerful.

Proof. Let fðX1; . . . ;XNÞ be an invariant test with respect to the group of affine
transformations G. Since ð �XX; SÞ is sufficient for ðm;SÞ;EðfðX1; . . . ;XNÞj �XX ¼
�xx; S ¼ sÞ is independent of ðm;SÞ and depends only on ð�xx; sÞ. As f is invariant

under G;Eðfj �XX ¼ �xx; S ¼ sÞ is invariant under G, and f;Eðfj �XX; SÞ have the same

power function. Thus each test in the larger class of level a tests which are

functions of Xi; i ¼ 1; . . . ;N, can be replaced by one in the smaller class of tests

which are functions of ð �XX; SÞ having identical power functions. Since R2 is a

maximal invariant in the space of ð �XX; SÞ under G, the invariant test Eðfj �XX; SÞ
depends on ð �XX; SÞ only through R2, whose distribution depends on ðm;SÞ only
through r2. The most powerful level a invariant test of H0 : r

2 ¼ 0 against the

simple alternative r2 ¼ r20, where r20 is a fixed positive number, rejects H0

whenever [from (6.86)]

ð1� r20ÞðN�1Þ=2X1
j¼0

ðr20Þ jðr2Þ j�1G2ð1
2
ðN � 1Þ þ jÞGð1

2
ð p� 1ÞÞ

j!G2ð1
2
ðN � 1ÞÞGð1

2
ð p� 1Þ þ jÞ � C0; ð8:68Þ
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where the constant C0 is so chosen that the test has level a. From (8.68) it is now

obvious that R2-test which rejects H0 whenever r2 � C is uniformly most

powerful among all invariant level a tests for testing H0 : r
2 ¼ 0 against the

alternatives H1 : r
2 . 0. Q.E.D.

Simaika (1941) proved the following stronger optimum property of the R2-test

than the one presented in Theorem 8.3.3.

Theorem 8.3.4. On the basis of observations xi; i ¼ 1; . . . ;N, from the p-

variate normal distribution with unknown mean m and unknown positive definite

covariance matrix S, among all tests (level a) of H0 : r
2 ¼ 0 against H1 : r

2 . 0

with power functions depending only on r2, the R2-test is uniformly most

powerful.

This theorem can be proved from Theorem 8.3.3 in the same way as Theorem

7.2.2 is proved from Theorem 7.2.1. It may be added that the proof suggested here

differs from Simaika’s original proof.

8.4. ADMISSIBILITY OF THE TEST OF INDEPENDENCE AND

THE R 2-TEST

The development in this section follows the approach of Section 7.2.2. To prove

the admissibility of the R2-test we first prove the admissibility of the likelihood

ratio test of independence using the approach of Kiefer and Schwartz (1965) and

then give the modifications needed to prove the admissibility of the R2-test.

Let V ¼ ðY;XÞ, where X ¼ ffiffiffiffi
N

p
�XX; Y ¼ ðY1; . . . ; YN�1Þ are such that

S ¼ YY 0 ¼ S
N�1
i¼1 Y

iYi0, and Y1; . . . ; YN�1 are independently and identically

distributed normal p-vectors with mean 0 and covariance matrix S, and X is

distributed, independently of Y1; . . . ; YN�1, as p-variate normal with mean n ¼ffiffiffiffi
N

p
m and covariance matrix S. It may be recalled that if u ¼ ðm;SÞ and the

Lebesgue density function of V on a Euclidean set is denoted by fV ðvjuÞ, then
every Bayes rejection region for the 0� 1 loss function is of the form

v :

Ð
fV ðvjuÞp0ðduÞÐ
fV ðvjuÞp1ðduÞ � C

� �
ð8:69Þ

for some constant Cð0 � C � 1Þ where p1 and p0 are the probability measures

(or positive constant multiples thereof) for the parameter u under H1 and H0,

respectively. Since in our case the subset of this set corresponding to equality sign

C has probability 0 for all u in the parametric space, our Bayes procedures will be

essentially unique and hence admissible.

Covariance Matrices and Mean Vectors 349



Write Y 0 ¼ ðY 0
ð1Þ; . . . ; Y

0
ðkÞÞ, where the Y 0

ðiÞ are submatrices of dimension

ðN � 1Þ � pi. Then SðiiÞ ¼ YðiÞY 0
ðiÞ and the likelihood ratio test of independence

rejects H0 whenever

detðyy0Þ
�Yk

i¼1

detð yðiÞy0ðiÞÞ � C: ð8:70Þ

Let p1 assign all its measure to values of u for which S�1 ¼ I þ hh0 for some

random p-vector h and V ¼ ShZ for some random variable Z. Let the conditional

(a priori) distribution of V given S under H1 be such that with a priori probability

1;S�1
V ¼ hZ where Z is normally distributed with mean 0 and variance

ð1� h0ðI þ hh0Þ�1hÞ�1, and let the marginal distribution p�
1 of S under H1 be

given by

dp�ðhÞ
dh

¼ ½detðI þ hh0Þ��ðN�1Þ=2; ð8:71Þ

which is integrable on Ep (Euclidean p-space) provided N � 1 . p. Let p0 assign

all its measure to values of u for which S ¼ SD with

S
�1
D ¼

Ið1Þ þ hð1Þh
0
ð1Þ 0 0 0

0 Ið2Þ þ hð2Þh
0
ð2Þ 0 0

..

. ..
. ..

. ..
.

0 0 0 IðkÞ þ hðkÞh
0
ðkÞ

0
BBB@

1
CCCA ð8:72Þ

for some random vector h ¼ ðh0
ð1Þ; . . . ;h

0
ðkÞÞ0 where the hðiÞ are subvectors of

dimension pi � 1 with S
k
i¼1 pi ¼ p and V ¼ SDhZ for some random variable Z.

Let the conditional a priori distribution of V under H0 given SD be such that with

a priori probability 1;S�1
D V ¼ hZ where Z is normally distributed with mean 0

and variance ð1� S
k
i¼1½h0

ðiÞðIðiÞ þ hðiÞh
0
ðiÞÞ�1hðiÞ�Þ�1, and let the marginal (a priori)

distribution of S under H0 be given by

dp�
0ðhÞ
dh

¼
Yk
i¼1

½detðIðiÞ þ hðiÞh
0
ðiÞÞ��ðN�1Þ=2; ð8:73Þ

which is integrable on Ep provided N � 1 . p. The fact that these a prioris

represent bona fide probability measures follows from Exercise 8.4. Since in our
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case

fV ðvjuÞ ¼ fXðxjn;SÞfY ðyjSÞ

¼ ð2pÞ�Np=2ðdetSÞ�N=2 expf� 1
2
tr S

�1ð yy0
þ ðx� nÞðx� nÞ0Þg;

ð
fV ðvjuÞp1ðduÞ ¼

ð
½ð2pÞ�ðNpþ1Þ=2ðdetðI þ hh0ÞÞN=2

� expf� 1
2
tr½ðI þ hh0Þðyy0 þ xx0Þ

þ hx0z� 1
2
ðI þ hh0Þ�1hh0z2�g

� ðdetðI þ hh0ÞÞ�ðN�1Þ=2ð1� h0ðI þ hh0Þ�1hÞ1=2

� expf� 1
2
z2ð1� h0ðI þ hh0Þ�1hÞg dhdz

¼ A expf� 1
2
xx0g

ð
expf� 1

2
trðI þ hh0Þðyy0Þg dh;

ð8:74Þ

where A is a constant independent of h. Similarly,

ð
fV ðvjuÞp0ðduÞ ¼ A expf� 1

2
xx0g

�
Yk
i¼1

ð
expf� 1

2
trðIðiÞ þ hðiÞh

0
ðiÞÞyðiÞy0ðiÞg dhðiÞ

¼ A expf� 1
2
trðyy0 þ xx0Þg

�
Yk
i¼1

ð
expf� 1

2
trðhðiÞh

0
ðiÞyðiÞy

0
ðiÞÞg dhðiÞ:

ð8:75Þ

From (8.74) and (8.75), using the results of Exercise 8.4 we obtain

Ð
fV ðvjuÞp0ðduÞÐ
fV ðvjuÞp1ðduÞ ¼

detðyy0Þ
Pk

i¼1 detðyðiÞy0ðiÞÞ

" #1=2

¼ det s

Pk
i¼1 detðsðiiÞÞ

" #1=2

: ð8:76Þ

Hence we get the following theorem.
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Theorem 8.4.1. For testing H0 : S ¼ SD against the alternatives H1 : S = SD

when m is unknown the likelihood ratio test that rejects H0 whenever

½detðsÞ=Pk
i¼1 detðsðiiÞ�N=2 � C, where the constant C depends on the level of

significance a of the test, is admissible Bayes whenever N � 1 . p.

This approach does not handle the case of the minimum sample size

ðN � 1 ¼ pÞ. In the special case k ¼ 2; p1 ¼ 1; p2 ¼ p� 1, a slightly different

trick, used by Lehmann and Stein (1948), will work even when N � 1 ¼ p. Let

p1 assign all its measure under H1 to values of u for which

S
�1 ¼ I þ 1 h0

h hh0

� �

where h is a ð p� 1Þ � 1 random vector and the marginal (a priori) distribution of

S under H1 is

dp�
1ðhÞ
dh

¼ det I þ 1 h0

h hh0

� �� �� ��p=2

; ð8:77Þ

which is integrable on Ep�1, and let the conditional distribution of V given S
under H1 remain the same as the general case above.

Let p0 assign all its measure to S
�1
, which is of the form

S
�1 ¼ I þ 1� b 0

0 hh0

� �
; ð8:78Þ

where h is a ð p� 1Þ � 1 random vector, 0 � b � 1, and the marginal (a priori)

distribution of S under H0 is

dp�
0ðhÞ
dh

¼ det I þ 1� b 0

0 hh0

� �� �� ��p=2

; ð8:79Þ

which is integrable on Ep�1, and let the conditional distribution of V given S
under H0 remain the same as the general case above.

Consider the particular Bayes test which rejects H0 whenever

Ð
fV ðvjuÞp0ðduÞÐ
fV ðvjuÞp1ðduÞ � 1:

Carrying out the integration as in the general case with the modified marginal

distribution of S under H0;H1, we obtain the rejection region

expf1
2
byð1Þy0ð1Þg= expf12 yð1Þy0ð2Þðyð2Þy0ð2ÞÞ�1yð2Þy0ð1Þg � 1:
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Taking logarithms of both sides we finally get the rejection region

sð12Þs�1
ð22Þsð21Þ
sð11Þ

� b;

which in the special case is equivalent to (8.76). Thus we have the following

theorem.

Theorem 8.4.2. For testing H0 : r
2 ¼ 0 against the alternatives H1 : r

2 . 0,

the R2-test (based on the square of the sample multiple correlation coefficient R2),

which rejects H0 whenever r
2 � C, the constant C depending on the level a of the

test, is admissible Bayes.

8.5. MINIMAX CHARACTER OF THE R 2-TEST

The solution presented here is due to Giri and Kiefer (1964b) and parallels that of

Giri et al. (1963), as discussed in Section 7.2.3 for the corresponding T2-results,

the steps are the same, the detailed calculations in this case being slightly more

complicated. The reader is referred back to Section 7.2.3 for the discussion of the

Hunt-Stein theorem, its validity under the group of real lower triangular

nonsingular matrices, and its failure under the full linear group.

We have already proved that among all tests based on the sufficient statistic

ð �XX; SÞ, the R2-test is best invariant for testing H0 : r
2 ¼ 0 against the simple

alternative r2 ¼ r20ð. 0Þ under the group of affine transformations G. For p . 2,

this does not imply our minimax result because of the failure of the Hunt-Stein

theorem.

We consider, without any loss of generality, test functions which depend on

the statistic ð �XX; SÞ. It can be verified that the group H of translations

ð �XX; S;m;SÞ ! ð �XX þ a; S;mþ a;SÞ leaves the testing problem in question

invariant, that H is a normal subgroup in the group G� generated by H and the

groupGT , the multiplicative group of p� p nonsingular lower triangular matrices

whose first column contains only zeros except for the first element, and that GT

andH (and henceG�) satisfy the Hunt-Stein conditions. Furthermore it is obvious

that the action of the tranformations in H is to reduce the problem to that where

m ¼ 0 (known) and S ¼ S
N
a¼1X

aXa0
is sufficient for S, where N has been reduced

by unity from what it was originally. Using the standard method of reduction in

steps, we can therefore treat the latter formulation, considering X1; . . . ;XN to

have 0 mean. We assume also that N � p � 2 (note that N is really N � 1 when

the mean vector is not 0). Furthermore with this formulation, we need only

consider test functions which depend on the sufficient statistic S ¼ S
N
a¼1X

aXa0
,

the Lebesgue density of which is given in (6.32).
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We now consider the group GT (of nonsingular matrices). A typical element

g [ GT can be written as

g ¼ g11 0

0 gð22Þ

� �

where gð22Þ is ð p� 1Þ � ð p� 1Þ lower triangular. It is easily seen that the group

GT operating as ðS;SÞ ! ðgSg0; gSg0Þ leaves this reduced problem invariant.

We now compute a maximal invariant in the space of S under GT in the usual

fashion. If a test function f (of S) is invariant under GT , then fðSÞ ¼ fðgSg0Þ for
all g [ GT and for all S. Since S is symmetric, writing

S ¼ S11 Sð12Þ
Sð21Þ Sð22Þ

� �

we get

fðS11; Sð12Þ; Sð22ÞÞ ¼ fðg11S11g11; g11Sð12Þg0ð22Þ; gð22ÞSð22Þg0ð22ÞÞ
Since S is symmetric and positive definite with probability 1 for all S, there is an
F in GT with positive diagonal elements such that

FF0 ¼ S11 0

0 Sð22Þ

� �
:

Let g ¼ LF�1 where L is any diagonal matrix with values+1 in any order on the

main diagonal. Then f is a function only of Lð22ÞF�1
ð22ÞSð21ÞL11=F11, and hence

because of the freedom of choice of L, of jF�1
ð22ÞSð21Þ=F11j, or equivalently, of the

ð p� 1Þ-vector whose ith component Zið2 � i � pÞ is the sum of squares of the

first i components of jF�1
ð22ÞSð21Þ=F11j (whose components are indexed 2; 3; . . . ; p).

Write b½i� for the ði� 1Þ-vector consisting of the first i� 1 components of the

ð p� 1Þ-vector b and C½i� for the upper left-hand ði� 1Þ � ði� 1Þ submatrix of a

ð p� 1Þ � ð p� 1Þ matrix C. Then Zi can be written as

Zi ¼
Sð12Þ½i�ðF�1

ð22Þ½i�Þ0ðF�1
ð22Þ½i�ÞS0ð12Þ½i�

S11
¼ S12½i�S�1

ð22Þ½i�S
0
ð12Þ½i�

S11
: ð8:80Þ

The vector Z ¼ ðZ2; . . . ; ZpÞ0 is thus a maximal invariant under GT if it is

invariant under GT , and it is easily seen to be the latter. Zi is essentially the

squared sample multiple correlation coefficient computed from the first i

coordinates of Xj; j ¼ 1; . . . ;N. Let us define a ð p� 1Þ-vector R ¼ ðR2; . . . ;RpÞ0
by

Xi
j¼1

Rj ¼ Zi; 2 � i � p: ð8:81Þ
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Obviously Ri ¼ Zi � Zi�1, where we define Z1 ¼ 0. It now follows trivially that R

is maximal invariant under GT and Ri � 0 for each i;Sp
i¼2Ri � 1, and of course

Xp

i¼2

Ri ¼
Sð12ÞS�1

ð22ÞSð21Þ
S11

¼ R2 ð8:82Þ

We shall find it more convenient to work with the equivalent statistic R instead of

with Z. A corresponding maximal invariant D ¼ ðd22; . . . ; d2pÞ0 in the parametric

space of S under GT , when H1 is true, is given by

Xi
j¼2

d2j ¼
Sð12Þ½i�S

�1
ð22Þ½i�S

0
ð12Þ½i�

S11

; 2 � i � p: ð8:83Þ

It is clear that d2j � 0 and S
p
j¼2d

2
j ¼ r2. The corresponding maximal invariant

under H0 takes on the single value 0. Thus the Lebesgue density function fRðrjDÞ
depends only on D under H1 and is fixed fRðrj0Þ under H0.

We can assume S11 ¼ 1;Sð22Þ ¼ I [the ð p� 1Þ � ð p� 1Þ identity matrix],

and Sð21Þ ¼ ðd2; . . . ; dpÞ0 ¼ d� in (6.32), since fRðrjDÞ depends only on D. With

this choice of SðS�
, say) we can write (6.32) as [also denote it by

f ðs11; sð12Þ; sð22ÞjSÞ]
WpðN;S�Þ ¼ Kð1� r2Þ�N=2

� expf� 1
2
tr½ð1� r2Þ�1s11 � 2ð1� r2Þ�1d�

0
sð21Þ ð8:84Þ

þ ðI � d�d�
0 Þ�1sð22Þ�gðdet sÞðN�p�2Þ=2:

Let B be the unique lower triangular matrix belonging to GT with positive

diagonal elements Biið1 � i � pÞ such that Sð22Þ ¼ Bð22ÞB0
ð22Þ; S11 ¼ B2

11, and let

V ¼ B�1
ð22ÞSð21Þ. One can easily compute the Jacobians

@Sð22Þ
@Bð22Þ

¼ 2p�1
Yp

i¼2

ðBiiÞpþ1�i;
@Sð21Þ
@V

¼
Yp

i¼2

Bii;
@S11
@B11

¼ 2B11; ð8:85Þ

so the joint probability density of B11, V , and Bð22Þ is

hðb11; v; bð22ÞjS�Þ ¼ 2pf ðb211; v0b0ð22Þ; bð22Þb0ð22ÞjS�Þb11
Yp

i¼2

b
pþ2�i
ii : ð8:86Þ

Putting W ¼ ðW2; . . . ;WpÞ0 with Wi ¼ jVijð2 � i � pÞ, and noting that the

ð p� 1Þ-vectorW can arise from any of the 2p�1 vectors V ¼ Mð22ÞV whereMð22Þ
is a ð p� 1Þ � ð p� 1Þ diagonal matrix with diagonal entries +1, we write

g ¼ bM, where with M11 ¼ +1,

M ¼ M11 0

0 Mð22Þ

� �
; ð8:87Þ
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g ranging over all matrices in GT . We obtain for the density of W , writing

gijði � j � 2Þ for the elements of gð22Þ,

fW ðwjS�Þ ¼ 2p
ð
f ðg211;w0gð22Þ; gð22Þg0ð22ÞÞ

Yp

i¼2

jgiijpþ2�i

� jg11j
Y
i� j�2

dgijdg11

¼ ð1� r2Þ�N=22pK

ð
expf� 1

2
ð1� r2Þ�1

� trðg211 � d�w0g0ð22Þ � d�
0
gð22Þw ð8:88Þ

þ ð1� r2ÞðI � d�d�
0 Þ�1gð22Þg0ð22ÞÞg

�
Yp

i¼2

jgiijNþ1�ijg11jN�pð1� w0w=g211ÞðN�p�1Þ=2

�
Y
i�j�2

dgijdg11:

Writing W ¼ g11U and Rj ¼ U2
j ð2 � j � pÞ we obtain from (8.88) that the

probability density function of R ¼ ðR2; . . . ;RpÞ0 is

fRðrjDÞ ¼ ð1� r2Þ�N=22K

S
p
i¼2r

1=2
i

�
ð
exp � 1

2
ð1� r2Þ�1trðg211 � 2g11d

�gð22Þr�
�

þ ð1� r2ÞðI � d�d�
0 Þ�1gð22Þg0ð22ÞÞ

�
ð8:89Þ

� 1�
Xp

j¼2

rj

 !N�p�2Þ=2
jg11jN�1

Yp

i¼2

jgiijNþ1�i

�
Y
i� j�2

dgijdg11;

where r� ¼ ðr1=22 ; . . . ; r1=2p Þ0. Let C ¼ ð1� r2Þ�1ðI � d�d�
0 Þ. Since C is positive

definite, there exists a lower triangular ð p� 1Þ � ð p� 1Þ matrix T with positive

diagonal elements Tiið2 � i � pÞ such that TCT 0 ¼ I. Writing h ¼ Tgð22Þ, we
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obtain

@h

@gð22Þ
¼
Yp

i¼2

Ti�1
ii : ð8:90Þ

Let us define for 2 � i � p,

li ¼ 1�
Xi
j¼2

d2j ; l1 ¼ 1 ðlp ¼ 1� r2Þ;

ai ¼ ðd2i lp=li�1liÞ1=2; a ¼ ða2; . . . ;apÞ0:
ð8:91Þ

A simple calculation yields ðT½i�d�½i�Þ0ðT½i�d�½i�Þ ¼ lpð1� liÞ=li, so that a ¼ Td�.
Since Cd� ¼ d�, by direct computation, we obtain

a ¼ TCd� ¼ ðT�1Þ0d�:

From this and the fact that detC ¼ ð1� r2Þ2�p, we obtain

a ¼ TCd� ¼ ðT�1Þ0d�:

From this and the fact that detC ¼ ð1� r2Þ2�p, we obtain

fRðrjDÞ ¼ 2Kð1� r2Þ�Nð p�1Þ=2Yp

i¼2

r
�1=2
i 1�

Xp

j¼2

rj

 !ðN�p�1Þ=2

�
ð
exp � 1

2
ð1� r2Þ�1g211

� �
jg11jN�1

�
ð
exp � 1

2
ð1� r2Þ�1

X
i� j�2

½h2ij � 2air
1=2
j hijg11�

( )(

�
Yp

i¼2

jhiijNþ1�i
Y
i� j�2

dhij

)
dg11;

ð8:92Þ

the integration being from �1 to 1 in each variable. For i . j the integration

with respect to hij yields a factor

ð2pÞ1=2ð1� r2Þ1=2 expfa2
i rjg

2
11=2ð1� r2Þg: ð8:93Þ
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For i ¼ j we obtain a factor

ð2pÞ1=2ð1� r2ÞðNþ2�iÞ=2 exp½a2
i rig

2
11=2ð1� r2Þ�

� Eðx21ða2
i rig

2
11=ð1� r2ÞÞðNþ1�iÞ=2

¼ ½2ð1� r2Þ�ðNþ2�iÞ=2Gð1
2
ðN � iþ 2ÞÞ

� f
1

2
ðN � iþ 2Þ; 1

2
; ria

2
i g

2
11=2ð1� r2Þ

�
ð8:94Þ

where x21ðbÞ is a noncentral chi-square with one degree of freedom and

noncentrality parameter b, and f is the confluent hypergeometric function.

Integrating with respect to g11 we obtain, from (8.93–8.94), that the probability

density function of R is (for r [ H ¼ fr : ri � 0; 2 � i � p;Sp
i¼2ri , 1g)

fRðrjDÞ ¼ ð1� r2ÞN=2ð1� S
p
i¼2riÞðN�p�1Þ=2

ð1þ S
p
i¼2riðð1� r2Þ=li � 1ÞN=2Gð1

2
ðN � pþ 1ÞÞpð p�1Þ=2

� 1

S
p
i¼2fr1=2i Gð1

2
ðN � iþ 2ÞÞ

X1
b2¼0

� � �
X1
bp¼0

G
Xp

j¼2

bj þ
1

2
N

 !

�
Yp

i¼2

Gð1
2
ðN � iþ 2Þ þ biÞ

ð2biÞ!
4ria

2
i

1þ S
p
j¼2rjðð1� r2Þ=lj � 1Þ

" #bi

8<
:

9=
;:

The continuity of fRðrjDÞ in D over its compact domain G ¼ fðd22; . . . ; d2pÞ : d2i �
0;Sp

j¼2d
2
j ¼ d2g is evident. As in the case of the T2-test, we conclude here also

that the minimax character of the critical region S
p
j¼2Rj � C is equivalent to the

existence of a probability measure l satisfying

ð
G

fRðrjDÞ
fRðrj0Þ lðdDÞ

.
¼
,

8<
:

9=
;K ð8:96Þ

according to whether S
p
i¼2ri is greater than, equal to, or less than C, except

possibly for a set of measure 0. We can replace (8.96) by its equivalent

ð
G

fRðrjDÞ
fRðrj0Þ lðdDÞ ¼ K if

Xp

i¼2

ri ¼ C: ð8:97Þ

Clearly (8.96) implies (8.97). On the other hand, if there are a l and a constant K

satisfying (8.97) and if �rr ¼ ð�rr2; . . . ; �rrpÞ0 is such that
Pp

i¼2 ri ¼ C0 . C, writing

f ðrÞ ¼ ½ fRðrjDÞ=fRðrj0Þ� and ���r ¼ ðC=C0Þ�rr;
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we see at once that

f ð�rrÞ ¼ f ðC0���r=CÞ . f ð���rÞ ¼ K;

because of the form of f and the fact that C0=C . 1 and S
p
i¼2

���ri ¼ C [note that

l�1
i ð1� r2Þ � 1 ¼ �Sj.1d

2
j =li and that li . 0]. This and a similar argument for

the case C0 , C show that (8.96) implies (8.97).

Using the same argument as in the case of the T2-test, we can similarly show

that the value of K which satisfies (8.97) is given by

K ¼ ð1� d2ÞN=2F 1

2
N;

1

2
N;

1

2
ð p� 1Þ;Cd2

� �
; ð8:98Þ

where Fða; b; c; xÞ is the ordinary ð2F1Þ hypergeometric series, given by

Fða; b; c; xÞ ¼
X1
a¼0

xaGðaþ aÞGðbþ aÞGðcÞ
a!GðaÞGðbÞGðcþ aÞ ð8:99Þ

Giri and Kiefer (1964b) considered the case p ¼ 3;N ¼ 3 (or N ¼ 4 if m is

unknown). Proceeding exactly the same way as in the T2-test they showed that

there exists a probability measure l whose derivative is given by

mzðxÞ ¼ ð1� zxÞ1=2
2px1=2ð1� xÞ1=2 Bz

ðx
0

du

ð1� uÞð1� zuÞ3=2
�

þ
ð1
0

Bzu
1=2

ð1þ uÞðzþ uÞ3=2 þ
1

½uð1þ uÞðzþ uÞ�1=2
�

ð8:100Þ

�2
u1=2

ð1þ uÞ1=2ðzþ uÞ3=2
�
du

�

where z ¼ Cd2;Bz ¼ ð1� zÞ5=2Fð3
2
; 3
2
; 1; zÞ. The reader is referred to the original

references for details of the proof of (8.100) and the other results that follow in

this section. Taking (8.100) for granted we have proved the following theorem.

Theorem 8.5.1. For testing H0 : r
2 ¼ 0 against the alternatives H1 : r

2 . 0,

the R2-test is minimax for the case p ¼ 3;N ¼ 3 (or N ¼ 4 if u is unknown).

Let us examine the local minimax property of the R2-test in the sense of Giri

and Kiefer (1964a) as outlined in Chapter 7. We shall be interested in testing at

level a the hypothesisH0 : r
2 ¼ 0 against the alternativesH1 : r

2 . l, as l ! 0.

Let

hi ¼ d2i =d
2; h ¼ ðh2; . . . ;hpÞ0; d2 . 0:
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From (8.95), as l ! 0,

fRðrjl;hÞ
fRðrj0;hÞ ¼ 1þ 1

2
Nl �1þ

Xp

j¼2

rj
X
i.j

hi þ ðN � jþ 2Þhj

" #( )

þ Bðr;h; lÞ;
ð8:101Þ

where Bðr;h; lÞ ¼ oðlÞ uniformly in h and r. As in the case of the T2-test

(Chapter 7) we see that the assumptions of Theorem 7.2.4 are again satisfied with

U ¼ S
p
i¼2Ri ¼ R2 with hðlÞ ¼ bl, and j1;l assigns measure 1 to the point h

whose jth coordinate ð2 � j � pÞ is

ðN � jþ 1Þ�1ðN � jþ 2Þ�1ð p� 1Þ�1NðN � pþ 1Þ:

Hence we have the following theorem.

Theorem 8.5.2. For every p, N, and a, the rejection region of the R2-test is

locally minimax for testing H0 : r
2 ¼ 0 against H1 : r

2 ¼ l as l ! 0.

The asymptotic minimax property of the T2-test (Chapter 7) is obviously

related to the underlying exponential structure which yields it to the Stein (1956)

admissibility result. It is interesting to note that the same departure from this

structure (in behavior as r2 ! 1) which prevents Stein’s method from proving

the admissibility of the R2-test, also prevents us from applying the asymptotic (as

r2 ! 1) minimax theory in the R2-test.

8.5.1. Independence of Two Subvectors

We now consider the more general case of two subvectors of dimensions p1; p2
respectively with pi . 1; i ¼ 1; 2 with p1 þ p2 ¼ p. We assume without any loss

of generality that p1 , p2. Partition S; S as

S ¼ S11 S12

S21 S22

� �
; S ¼ S11 S12

S21 S22

� �

where S11; S11 are p1 � p1 submatrtices. We consider the problem of testing

H0 : S12 ¼ 0 against the alternatives H1 : S12 = 0. This problem remains

invariant under the group of transformation G ¼ GBD � Ep, where GBD is defined

in Section 8.3 with k ¼ 2, transforming

Xa ! gXa þ a; a ¼ 1; . . . ;N ð8:102Þ

360 Chapter 8



with

g ¼ gð11Þ 0

0 gð22Þ

� �
[ GBD and a [ Ep:

The corresponding induced transformation on ð �XX; SÞ is given by

ð �XX; SÞ ! ðg �XX þ a; gSg0Þ: ð8:103Þ
A maximal invariant in the space of ð �XX; SÞ under G is R1; . . . ;Rp1 , the

characteristic roots of S�1
11 S12S

�1
22 S21. A corresponding maximal invariant in the

parametric space is given by u1; . . . ; up1 , the characteristic roots of

S
�1
11 S12S

�1
22 S21. Denote by R; u, the diagonal matrices with elements

R1; . . . ;Rp1 and u1; . . . ; up1 respectively. For invariant tests this problem reduces

to testing H0 : u ¼ 0 against alternatives H1 : u = 0. Several invariant tests are

often used for this problem. They are:

i. Roy’s test: it rejects H0 whenever the largest characteristic roots of

S�1
11 S12S

�1
22 S21 is greater than a constant depending on the level a of the test;

ii. Lawley-Hotelling’s test: it rejects H0 whenever tr S�1
11 S12ðS22 þ

S21S
�1
11 S12Þ�1S21 is greater than a constant depending on the level a of the

test;

iii. Pillai’s test: it rejectsH0 whenever tr S
�1
11 S12S

�1
22 S21 is greater than a constant

depending on the level a of the test;

iv. The likelihood ratio test: it rejects H0 whenever detðI � S�1
11 S12S

�1
22 S21Þ is

greater than a constant depending on the level a of the test.

Since under the transformation G;Sij is transformed to gðiiÞSijg
0
ð jjÞ; i; j ¼ 1; 2,

and gð11Þ; gð22Þ are nonsingular matrices, we can without any loss of generality

assume that

S ¼ Ip1 G
G0 Ip2

� �
; G ¼ ðu; 0Þ:

This implies that

S
�1 ¼ ðI � GG0Þ�1 �ðI � GG0Þ�1G

�ðI � G0GÞ�1G0 ðI � G0GÞ�1

 !

¼
ðI � uu0Þ�1 �½ðI � uu0Þ�1u; 0�

�½ðI � uu0Þ�1u; 0�0 ðI � uu0Þ�1 0

0 I

" #
0
BB@

1
CCA

ð8:104Þ

Since the Jacobian of the inverse transformation given in (8.103) is ðdet gÞN ¼
ðdet gð11ÞÞNðdet gð22ÞÞN and the invariant measure on GBD (with k ¼ 2) is
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dg=½ðdet gð11ÞÞp1 ðdet gð22ÞÞp2 �, we write the ratio of densities of R (using (3.21)) as

dPðRjuÞ
dPðRj0Þ ¼

Ð ½detðI � uu0Þ��ðN�1Þ=2 expf� 1
2
tr S

�1
gsg0gmðdgÞÐ

expf� 1
2
tr gsg0gmðdgÞ ð8:105Þ

where the measure m is given by

mðdgÞ ¼ ðdet gð11ÞÞN�p1�1ðdet gð22ÞÞN�p2�1dgð11Þdgð22Þ

Let hð11Þ ¼ gð11Þs
�1=2
11 , hð22Þ ¼ gð22Þs

�1=2
22 and w ¼ s

�1=2
22 s21s

�1=2
11 . Then

h ¼ hð11Þ 0

0 hð22Þ

� �
[ GBD:

Hence

tr S
�1
gsg0 ¼ trðI � uu0Þ�1gð11Þs11g0ð22Þ

� 2tr½ðI � uu0Þ�1u; 0�gð22Þs22g0ð22Þ

þ tr
ðI � uu0Þ�1 0

0 I

" #
gð22Þs21g0ð11Þ

¼ trðI � uu0Þ�1hð11Þh0ð11Þ

� 2tr½ðI � uu0Þ�1u; 0�hð22Þwh0ð11Þ

þ tr
ðI � uu0Þ�1 0

0 I

" #
hð22Þh0ð22Þ:

Let hð22Þ ¼ ðh012; h022Þ0 where h12 is p1 � p2. Then

tr S
�1
gsg0 � tr gsg0 ¼ nðh; uÞð1þ oðd2ÞÞ

where

nðh; uÞ ¼ tr uu0hð11Þh0ð11Þ � 2tr uh12wh
0
ð11Þ þ tr uu0h12h012;

d2 ¼
Xp1
i¼1

u2i ;

Now

ðI � uu0Þ ¼ I þ uu0 þ oðd2Þ;

ðI � uu0Þ�1u ¼ uþ oðd2Þ:
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Letting

nðdhÞ ¼ exp � tr

2
ðhð11Þh0ð11Þ þ hð22Þh0ð22ÞÞ

n o

� ðdet hð11ÞÞN�p1�1ðdet hð22ÞÞN�p2�1dgð11Þdgð22Þ

ð8:106Þ

and using (3.24) we rewrite (8.105) as

dPðRjuÞ
dPðRjIÞ ¼ 1þ ðN � 1Þ

2
tr uu0

� �
1þ 1

2D

ð
nðh; uÞnðdhÞ

�

þ 1

8D

ð
½nðh; uÞ�2nðdhÞ

þ 1

48D

ð
½nðh; uÞ�3 expf� 1

2
ðtrðhh0Þ

þ ð1� aÞnðh; uÞÞ
�
mðdhÞ

�

ð8:107Þ

where

D ¼
ð
expf� 1

2
trðhð11Þh0ð11Þ þ hð22Þh0ð22ÞÞgmðdhÞ: ð8:108Þ

It may be verified that (see Kariya and Sinha (1989))

ð
½tr uu0ðhð11Þh0ð11Þ þ h12h

0
12Þ�k½trðuh12wh0ð11ÞÞ�2jþ1nðdhÞ ¼ 0;

k ¼ 1; 2; j ¼ 0; 1; 2;

ð
½tr uu0ðhð11Þh0ð11Þ þ h12h

0
12Þ�nðdhÞ ¼ K1tr uu

0;

ð
½tr uu0ðhð11Þh0ð11Þ þ h12h

0
12Þ�2nðdhÞ ¼ oðd2Þ;

ð
½tr uu0ðhð11Þh0ð11Þ þ h12h

0
12Þ�½trðuh12wh0ð11Þ�nðdhÞ ¼ oðd2Þ;

ð
½tr uh12wh0ð11Þ�2nðdhÞ ¼ K2trðuu0Þtrðs�1

11 s12s
�1
22 s21Þ;

ð8:109Þ
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where K1;K2 are constants and K2 . 0. Using (8.109) and (8.105) we obtain

dPðRjuÞ
dPðRj0Þ ¼ 1þ K1 þ N � 1

2

� �
tr uu0

þ 1
2
K2D

�1ðtr uu0Þðtr s�1
11 s12s

�1
22 s21Þ þ oðd2Þ:

ð8:110Þ

From (8.110) the power function of any invariant test f of level a is given by

a½ððN � 1Þ=2þ K1Þtrðuu0Þ� þ K2

2D
tr uu0EH0

ðftr S�1
11 S12S

�1
22 S21Þ þ oðd2Þ ð8:111Þ

which is maximized by taking f to be unity whenever tr s�1
11 s12s

�1
22 s21 is greater

than a constant depending on the level a of the test. So we get the following

theorem.

Theorem 8.5.3. For testing H0 : S12 ¼ 0 against the alternatives

H1 : S12 = 0, the level a test which rejects H0 whenever

tr s�1
11 s12s

�1
22 s21 � c ð8:112Þ

is LBI when d2 ! 0.

The LBI property of Pillai’s test was first proved by Schwartz (1967). The

following theorem establishes the admissible Bayes character of the likelihood

ratio test for testing the independence of several subvectors as treated in Section

8.3.

Theorem 8.5.4. Let H0 be given by (8.50). The likelihood ratio test of H0 is

admissible Bayes if N � 1 . p.

Proof. Let u ¼ ðm;SÞ and f ðx1; . . . ; xN juÞ be the joint pdf of Xa;a ¼ 1; . . . ;N.
Let P1 (the a priori under H1) assign all its measure to S of the form S ¼
ðI þ hh0Þ�1 and m ¼ ðI þ hh0Þ�1hz where h is a p� 1 random vector with pdf

proportional to

ðdetðI þ hh0ÞÞ�1
2
ðN�1Þ ¼ ð1þ h0hÞ�1

2
ðN�1Þ ð8:113Þ

and the conditional distribution of Z given h is normal with mean 0 and variance

ð1þ h0hÞ=N. Under H0 the prior P0 assigns all its measure to ðmðiÞ;SðiiÞÞ of the
form

SðiiÞ ¼ ðIpi þ hðiÞh
0
ðiÞÞ�1;

mðiÞ ¼ ðIpi þ hðiÞh
0
ðiÞÞ�1hðiÞZi; i ¼ 1; . . . ; k
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where hðiÞ is a pi � 1 random vector with pdf proportional to

ðdetðIpi þ hðiÞh
0
ðiÞÞÞ�

1
2
ðN�1Þ ¼ ð1þ h0

ðiÞhðiÞÞ�
1
2
ðN�1Þ

with h ¼ ðh0
ð1Þ; . . . ;h

0
ðkÞÞ0 and the conditional pdf of Zi given hðiÞ is normal with

mean 0 and variance N�1ð1þ h0
ðiÞhðiÞÞ and ðhð1Þ; Z1Þ; . . . ; ðhðkÞ; ZkÞ are mutually

independent. Using (7.38) the rejection region of the admissible Bayes test with

respect to priors P1, and P0 is given by

Ð
f ðx1; . . . ; xN juÞP1ðduÞÐ
f ðx1; . . . ; xN juÞP0ðduÞ � c ð8:114Þ

for some c; 0 � c , 1. Now with K a normalizing constant, we can write the

numerator of the left-hand side of (8.114) as

K

ð
ð1þ h0hÞN=2 exp � 1

2

XN
a¼1

ðxa � ðI þ hh0Þ�1hzÞ0
("

� ðI þ hh0Þðxa � ðI þ hh0Þ�1hzÞ
�

ð8:115Þ

�ð1þ h0hÞ�N=2 exp �
1
2
Nz2

1þ h0h

( )#
dhdz:

Using Lemma 6.8.1 we get

XN
a¼1

ðxa � ðI þ h0hÞ�1hzÞ0ðI þ hh0Þðxa � ðI þ h0hÞ�1hzÞ þ Nz2

1þ h0h

¼
XN
a¼1

xaxa
0 � 2Nzh0 �xxþ Nz2 þ

XN
a¼1

xa
0
hh0xa

¼ trðsþ N �xx�xx0Þ þ h0ðsþ N �xx�xx0Þhþ Nðz� �xx0hÞ2:

Since for h real

ð
Ep

ð1þ h0hÞ�1
2
hdh , 1 if and only if h . p;

using Lemma 6.8.1 the value of the integral in (8.115) is given by

constant ðdet sÞ�1=2 exp � 1

2
trðsþ h�xx�xx0Þ

� �
:
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Similarly the denominator of (8.114) is obtained as

constant
Yk
i¼1

ðdet sðiiÞÞ�1=2

" #
exp � 1

2
trðsþ h�xx�xx0Þ

� �
:

Hence the left-hand side of (8.114) is proportional to

Qk
i¼1 det sðiiÞ
det s

 !1=2

:

Q.E.D.

8.5.2. Test of Multiple Correlation with Partial Information

Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed p-dimensional random vector with

mean m and positive definite covariance matrix S and let Xa;a ¼ 1; . . . ;N
ðN . pÞ be a random sample of size N from this distribution. Partition X ¼
ðX1;X

0
ð1Þ;X

0
ð2ÞÞ0 where X1 is one-dimensional, Xð1Þ is p1-dimensional and Xð2Þ is p2-

dimensional and 1þ p1 þ p2 ¼ p. Let r21 and r2 denote the multiple correlation

coefficients of X1 with Xð1Þ and with ðX0
ð1Þ;X

0
ð2ÞÞ0 respectively. Denote by

r22 ¼ r2 � r21. We consider the following testing problems:

a. to test H10 : r
2 ¼ 0 against the alternatives H1l : r22 ¼ 0; r21 ¼ l . 0;

b. to test H20 : r
2 ¼ 0 against the alternatives H2l : r21 ¼ 0; r22 ¼ l . 0:

Let N �XX ¼PN
a¼1 X

a; S ¼PN
a¼1ðXa � �XXÞðXa � �XXÞ0; b½i� denote the i-vector

consisting of the first i components of a vector b and C½i� denote the i� i

upper-left submatrix of a matrix C. Partition S and S as

S ¼
S11 Sð12Þ Sð13Þ
Sð21Þ Sð22Þ Sð23Þ
Sð31Þ Sð32Þ Sð33Þ

0
@

1
A; S ¼

S11 Sð12Þ Sð13Þ
Sð21Þ Sð22Þ Sð23Þ
Sð31Þ Sð32Þ Sð33Þ

0
@

1
A

where Sð22Þ;Sð22Þ are each of dimension p1 � p1; Sð33Þ;Sð33Þ are each of dimension

p2 � p2. Then

r21 ¼ Sð12ÞS
�1
ð22ÞSð21Þ=S11;

r2 ¼ r21 þ r22 ¼ ðSð12ÞSð13ÞÞ
Sð22Þ Sð23Þ
Sð32Þ Sð33Þ

� ��1

ðSð22ÞSð13ÞÞ0=S11:
ð8:115aÞ
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Let

�RR1 ¼ Sð12ÞS�1
ð22ÞSð21Þ=S11;

�RR1 þ �RR2 ¼ ðSð12ÞSð13ÞÞ
Sð22Þ Sð23Þ
Sð32Þ Sð33Þ

� ��1

ðSð12ÞSð13ÞÞ0=S11:
ð8:115bÞ

The transformation group transforming

ð �XX; S;m;SÞ ! ð �XX þ b; S;mþ b;SÞ
b [ Rp leaves the present problem invariant and this, along with the full linear

group G of p� p nonsingular matrices g,

g ¼
g11 0 0

0 gð22Þ gð23Þ
0 gð32Þ gð33Þ

0
@

1
A

with g11 : 1� 1; gð22Þ : p1 � p1; gð22Þ : p2 � p2, generates a group of transform-

ations which leaves the present problem invariant. The action of these

transformations is to reduce the problem to that where m ¼ 0 and S ¼PN
a¼1 X

aXa0
is sufficient for S, where N has been reduced by one from what it

was originally. We treat the latter formulation considering Xa;a ¼ 1; . . . ;N
ðN � p � 2Þ to have a zero mean and consider only the group G of

transformations g operating as

ðS;SÞ ! ðgSg0; gSg0Þ
for the invariance of the problem. A maximal invariant in the sample space under

G is ð �RR1; �RR2Þ as defined in (8.115b). Since S . 0 with probability one, �RR1 . 0,
�RR2 . 0 and �RR1 þ �RR2 ¼ R2, the squared sample multiple correlation coefficient

between the first and the remaining p� 1 components of the random vector X. A

corresponding maximal invariant in the parametric space under G is ðr21; r22Þ.
From Giri (1979) the joint probability density function of ð �RR1; �RR2Þ is given by

fDð�rr1; �rr2Þ ¼ Kð1� r2Þ�N=2ð1� �rr1 � �rr2Þ12ðN�p�1ÞY2
i¼1

ð�rriÞ12pi�1

� 1þ
X2
i¼1

�rri
1� r2

gi
� 1

� �" #�N=2

ð8:115cÞ

�
X1
b1¼0

X1
b2¼0

Y2
i¼1

Gð1
2
ðN þ pi � siÞ þ biÞGðbi þ 1

2
Þ

ð2biÞ!Gð12 pi þ biÞ
ðuiÞbi
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where

gi ¼ 1�
Xi
j¼1

r2j ; with g0 ¼ 1;

si ¼
Xi
j¼1

pj; a2
i ¼ r2i ð1� r2Þ=gigi�1;

ui ¼ 4�rria
2
i 1þ

X2
i¼1

�rri
1� r2

gi
� 1

� � !�1

and K is the normalizing constant.

By straightforward computations the likelihood ratio test of H10 when

parameter space V ¼ fðm;SÞ : Sð13Þ ¼ 0g rejects H10 whenever

�rr1 � C ð8:115dÞ

where the constant C depends on the size a of the test and under H10
�RR1 has a

central beta distribution with parameter ð1
2
p1;

1
2
ðN � p1ÞÞ. The likelihood ratio

test of H20 when V ¼ fðm;S : Sð12Þ ¼ 0g rejects H20 whenever

z ¼ 1� �rr1 � �rr2

1� �rr1
� C ð8:115eÞ

where the constant C depends on the size a of the test and under H20 the

corresponding random variable Z is distributed independently of �RR1 as central

beta with parameter ð1
2
ðN � p1 � p2Þ; 12 p2Þ.

Theorem 8.5.5. For testing H10 against H1l the likelihood ratio test given in

(8.115d) is UMP invariant.

Proof. Under H10 gi ¼ 1; i ¼ 0; 1; 2. Hence a2
i ¼ 0; ui ¼ 0; i ¼ 1; 2. Under

H1l; r
2
1 ¼ l; r22 ¼ 0; g0 ¼ 1; g1 ¼ 1� la2

1 ¼ 1� l;a2
2 ¼ 0; u1 ¼ 4�rr1l and

u2 ¼ 0. Thus

fH1l
ð�rr1; �rr2Þ

fH10
ð�rr1; �rr2Þ ¼ Kð1� lÞ�N=2

X1
i¼0

Gð1
2
N þ iÞð4�rr1lÞi

ð2iÞ! :

Now using Neyman-Pearson Lemma we get the theorem. Q.E.D.
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Theorem 8.5.6. The likelihood ratio test of H20 against H21 is UMP invariant

among all test fð �RR1; �RR2Þ based on ð �RR1; �RR2Þ satisfying
EH20

ðfð �RR1; �RR2Þj �RR1 ¼ �rr1Þ ¼ a:

Proof. Under H2l; r
2
1 ¼ 0; r22 ¼ l; g0 ¼ 1; g1 ¼ 1; g2 ¼ 1� l; a2

1 ¼ 0; a2
2 ¼

l; u1 ¼ 0; u2 ¼ 4�rr2lð1� �rr1lÞ�1. Hence

fH2l
ð�rr2j�rr1Þ=fH20

ð�rr2j�rr1Þ ¼ fH2l
ð�rr1; �rr2Þ=fH20

ð�rr1; �rr2Þ

¼ Kð1� lÞ�N=2ð1� �rr1lÞ�N=2

�
X1
i¼0

Gð1
2
ðN � p1Þ þ iÞ

ð2iÞ!
4�rr2l

1� �rr1l

� �i

:

Hence fH2l
ð�rr2j�rr1Þ has a monotone likelihood ratio in �rr2 ¼ ð1� zÞð1� �rr1Þ. Now

using Lehmann (1939) we get the theorem. Q.E.D.

8.6. MULTIVARIATE GENERAL LINEAR HYPOTHESIS

In this section we generalize the univariate general linear hypothesis and analysis

of variance with fixed effect model to vector variates. The algebra is essentially

the same as that of the univariate case. Unlike the univariate general linear

hypothesis, there is more latitude in the choice of the test criteria in the

multivariate case, although the distributions of different test criteria are quite

involved. The reader is referred to Giri (1993) for a treatment of the univariate

general linear hypothesis, which is very appropriate for following the

developments here, to Roy (1953, 1957) for the union-intersection approach

for obtaining a suitable test criterion which is also appropriate for this problem,

and to Constantine (1963) for some connected distribution results. We shall first

state and solve the problem in the most general form and then give the

formulation of the multivariate general linear hypothesis in terms of multiple

regression. The latter formulation is useful for analyzing multivariate design

models.

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be N independently distributed p-

variate normal vectors with mean EðXaÞ ¼ ma ¼ ðma1; . . . ;mapÞ0 and a common

positive definite covariance matrix S. A multivariate linear hypothesis is

defined in terms of two linear subspaces pV;pv of dimensions sð, NÞ;
s� rð0 � s� r , sÞ, respectively. It is assumed throughout that all vectors

ðm1i; . . . ;mNiÞ0; i ¼ 1; . . . ; p, lie in pV, and it is desired to test the null hypothesis

H0 that they lie in pv. We shall also assume that N � s � p so that we have

enough degrees of freedom to estimate S.
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Example 8.6.1. Let N ¼ N1 þ N2 and let Xa;a ¼ 1; . . . ;N1, be a random

sample of size N1 from a p-variate normal population with mean m1 ¼
ðm11; . . . ;m1pÞ0 and covariance matrix S (unknown). Let Xa;a ¼ N1 þ 1; . . . ;N,
be a random sample of size N2 from another p-variate normal population with

mean m2 ¼ ðm21; . . . ;m2pÞ0 and the same covariance matrix S. We are interested

in testing the null hypothesis H0 : m
1 ¼ m2. Here s ¼ 2 and s� r ¼ 1. Let

X ¼
X11 � � � X1p

X21 � � � X2p

..

. ..
.

XN1 � � � XNp

0
BBB@

1
CCCA ¼

X10

X20

..

.

XN 0

0
BB@

1
CCA;S ¼ ðsijÞ: ð8:116Þ

This problem can be reduced to a canonical form by applying to each of the N

vectors ðX1i; . . . ;XNiÞ0; i ¼ 1; . . . ; p an orthogonal transformation which

transforms X to Y ¼ OX where O is an N � N orthogonal matrix

O ¼
O11 � � � O1N

O21 � � � O2N

..

. ..
.

ON1 � � � ONN

0
BB@

1
CCA ¼

O1

..

.

ON

0
@

1
A ð8:117Þ

such that its first s row vectors O1; . . . ;Os, span pV with Orþ1; . . . ;Os spanning

pv. Write

Y ¼
Y10

Y20

..

.

YN 0

0
BB@

1
CCA; Ya ¼ ðYa1; . . . ; YapÞ0; a ¼ 1; . . . ;N: ð8:118Þ

Thus EðYaÞ ¼ 0 for a ¼ sþ 1; . . . ;N if and only if all ðm1i; . . . ;mNiÞ0 [
pV; i ¼ 1; . . . ; p; and EðYaÞ ¼ 0;a ¼ 1; . . . ; r; sþ 1; . . . ;N, if and only if all

ðm1i; . . . ;mNiÞ0 [ pv; i ¼ 1; . . . ; p. Now the covariance of Yai ¼ S
N
l¼1OalXli;

Ybj ¼ S
N
d¼1ObdXdj is

covðYai; YbjÞ ¼
XN
l¼1

XN
d¼1

OalObdcovðXliXd jÞ ¼ sij

XN
l¼1

OalObl

¼ sij when a ¼ b

0 when a=b;

�

since covðXli;XdjÞ ¼ sij when l ¼ d; covðXli;XdjÞ ¼ 0 when l = d. Thus the

row vectors of Y are independent normal p-vectors with the same covariance
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matrix S and under pV,

EðYaÞ ¼ va ðsayÞ; a ¼ 1; . . . ; s;
0; a ¼ sþ 1; . . . ;N

�

and under pv,

EðYaÞ ¼ va; a ¼ r þ 1; . . . ; s;
0; a ¼ 1; . . . ; r; sþ 1; . . . ;N

�

Hence in the canonical form we have the following problem: Ya;a ¼ 1; . . . ;N,
are independently distributed normal p-vectors with the same positive definite

covariance matrix S (unknown) and the means EðYaÞ ¼ 0;a ¼ sþ 1; . . . ;N. It
is desired to test the null hypothesis H0 : EðYaÞ ¼ 0;a ¼ 1; . . . ; r.

The likelihood of the observations ya on Ya;a ¼ 1; . . . ;N, is given by

Lðv1; . . . ; vs;SÞ ¼ ð2pÞ�Np=2ðdetS�1ÞN=2

� exp � 1
2
tr S

�1
Xs
a¼1

ðya � vaÞðya � vaÞ0
"(

ð8:119Þ

þ
XN

a¼sþ1

yaya
0
#)

:

Using Lemma 5.1.1 we obtain

max
pV

Lðv1; . . . ; vs;SÞ ¼ ð2p=NÞ�Np=2

� ½detðSN
a¼sþ1y

aya
0 Þ��N=2 expf� 1

2
Npg:

ð8:120Þ

Under H0, L is reduced to

Lðvrþ1; . . . ; vs;SÞ ¼ ð2pÞ�Np=2ðdetS�1ÞN=2

� exp � 1
2
S
�1

Xr
a¼1

yaya
0

"(

þ
Xs

a¼rþ1

ðya � vaÞðya � vaÞ0þ
XN

a¼sþ1

yaya0
#)
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and

max
pv

Lðvrþ1; . . . ; vs;SÞ ¼ 2p

N

� ��Np=2

� det
Xr
a¼1

yaya0 þ
XN

a¼sþ1

yaya
0

 !" #�N=2

expf� 1
2
Npg:

ð8:122Þ

Hence the likelihood ratio test of H0 rejects H0 whenever

l ¼ det b

detðaþ bÞ
� �N=2

� c ð8:123Þ

or equivalently,

u ¼ det b

detðaþ bÞ � c0; ð8:124Þ

where c; c0 are constants chosen in such a way that the corresponding test has size
a and a ¼ S

r
a¼1y

aya
0
; b ¼PN

a¼sþ1 y
aya

0
. This result is due to Hsu (1941) and

Wilks (1932). From Sections 6.3 and 6.5 we conclude that the corresponding

random variables A ¼ S
r
a¼1Y

aYa0
;B ¼PN

a¼sþ1 Y
aYa0

are independently dis-

tributed Wishart matrices of dimension p� p, and B has a central Wishart

distribution with parameter S and N � s degrees of freedom. Under H0, A is

distributed as central Wishart with parameter S and r degrees of freedom whereas

under H1 it is distributed as noncentral Wishart.

In application to specific problems it is not straightforward to carry out the

reduction to the canonical form just given explicitly. The test statistic u can be

expressed in terms of the original random variables X. Let ðm̂m1i; . . . ; m̂mNiÞ0 and
ð ^̂mm̂mm1i; . . . ;

^̂mm̂mmNiÞ0 be the projections of the vector ðX1i; . . . ;XNiÞ0 on pV and pv,

respectively. Then S
N
a¼1ðXai � m̂maiÞðXai � m̂maiÞ is the inner product of two

vectors, each of which is the difference of the given vector ðX1i; . . . ;XNiÞ0 and its
projection on pV, and it remains unchanged under the orthogonal transformation

of the coordinate system in which the variables are expressed. Now

OðX1i; . . . ;XNiÞ0 can be interpreted as expressing ðX1i; . . . ;XNiÞ0 in a new

coordinate system with the first s coordinate axes lying in pV. Hence the

projection on pV of the transformed vector ðY1i; . . . ; YNiÞ0 is

ðY1i; . . . ; Ysi; 0; . . . ; 0Þ0 so that the difference between the vector and its

projection is ð0; . . . ; 0; Ysþ1;i; . . . ; YNiÞ. The ði; jÞth element of S
N
a¼sþ1Y

aYa0
is

therefore given by

XN
a¼sþ1

YaiYaj ¼
XN
a¼1

ðXai � m̂maiÞðXaj � m̂majÞ: ð8:125Þ
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Similarly, for the transformed vector ðY1i; . . . ; YNiÞ0 the difference between its

projections on pV and pv is therefore ðY1i; . . . ; Yri; 0; . . . ; 0Þ0. Thus Sr
a¼1YaiYaj is

equal to the inner product (for the ith and the jth vectors) of the difference of these

projections. Comparing this with the expression of the same inner product in the

original coordinate system, we obtain

Xr
a¼1

YaiYaj ¼
XN
a¼1

ðm̂mai � ^̂mm̂mmaiÞðm̂maj � ^̂mm̂mmajÞ ð8:126Þ

In terms of the variable Y the problem of testing H0 against H1 : L ¼
ðv1; . . . ; vrÞ0 = 0 remains invariant under the following three groups of

transformations.

1. The group of translations T which translates Ya ! Ya þ da;
a ¼ r þ 1; . . . ; s, and da ¼ ðda1; . . . ; dapÞ0 [ T . The maximal invariant

under T in the space of Y is ðY1; . . . ; Yr; Ysþ1; . . . ; YNÞ.
2. Let Z be an r � p matrix such that Z 0 ¼ ðY1; . . . ; YrÞ, and let W be the

ðN � sÞ � p matrix such that W 0 ¼ ðYsþ1; . . . ; YNÞ. The group of r � r

orthogonal transformations OðrÞ operating in the space of Z as

Z ! OZ;O [ OðrÞ, and the group of ðN � sÞ � ðN � sÞ orthogonal

transformations OðN � sÞ operating in the space of W as W ! OW;
O [ OðN � sÞ, affect neither the independence nor the covariance matrix of

the row vectors of Z and W .

Lemma 8.6.1. Z 0Z ¼ S
r
a¼1Y

aYa0
is a maximal invariant under OðrÞ in the

space of Z.

Proof. Since ðOZÞ0ðOZÞ ¼ Z 0Z, the matrix Z 0Z will be a maximal invariant if

we show that for any two elements Z�; Z in the same space, Z�0Z� ¼ Z 0Z implies

the existence of an orthogonal matrix O [ OðrÞ such that Z� ¼ OZ.

Consider first the case r ¼ p. Without any loss of generality we can assume

that the p columns of Z are linearly independent (the exceptional set of Z’s for

which this does not hold has probability measure 0). Now Z�0Z� ¼ Z 0Z implies

thatO ¼ Z�Z�1 is an orthogonal matrix and that Z� ¼ OZ. Consider now the case

r . p. Without any loss of generality we can assume that the columns of Z are

linearly independent. Since for any two p-dimensional subspaces of the r-space

there exists an orthogonal transformation transforming one to the other, we

assume that after a suitable orthogonal transformation the p column vectors of Z

and Z� lie in the same subspace and the problem is reduced to the case r ¼ p. If

r , p, the first r column vectors of Z can be assumed to be linearly independent.

Write Z ¼ ðZ1; Z2Þ, where Z1; Z2 are submatrices of dimensions r � r and

Covariance Matrices and Mean Vectors 373



r � ð p� rÞ, respectively, and similarly for Z�. Since Z�0Z� ¼ Z 0Z, we obtain

Z�0
1 Z

�
1 ¼ Z 0

1Z1; Z�0
1 Z

�
2 ¼ Z 0

1Z2 and Z�0
2 Z

�
2 ¼ Z 0

2Z2: ð8:127Þ

Now by the previous argument Z�0
1 Z

�
1 ¼ Z 0

1Z1 implies that there exists an

orthogonal matrix B ¼ ðZ�0
1 Þ�1Z 0

1 such that Z
�
1 ¼ BZ1. Also Z

�0
1 Z

�
2 ¼ Z 0

1Z2 implies

that Z�
2 ¼ BZ2. Obviously Z�0

2 Z2 ¼ Z 0
2Z2 with Z�

2 ¼ BZ2. Q.E.D.

Similarly a maximal invariant in the space of W under OðN � sÞ is

W 0W ¼ S
N
a¼sþ1Y

aYa0
.

The problem remains invariant under the full linear group Glð pÞ
(multiplicative group of p� p nonsingular matrices) of transformation g

transforming Z to gZ;W to gW . The corresponding induced transformation in the

space of ðA;BÞ is given by ðA;BÞ ! ðgAg0; gBg0Þ. By Exercise 7 the roots of

detðA� lBÞ ¼ 0 (the characteristic roots of AB�1) are maximal invariant in the

space of ðA;BÞ under Glð pÞ. Let R1; . . . ;Rp denote the roots of detðA� lBÞ ¼ 0.

A corresponding maximal invariant in the parametric space is ðu1; . . . ; upÞ, the
characteristic roots of LL0S�1

where L ¼ EðZ 0Þ. The test statistic U in (8.124)

can be written as

detðBðAþ BÞ�1Þ ¼
Yp

i¼1

ð1þ RiÞ�1: ð8:128Þ

Anderson (1958) called this statistic Up;r;N�s. Some other invariant tests are also

proposed for this problem. They are as follows. In all cases the constant c will

depend on the level of significance a of the test.

1. Wilks’ criterion (Wilks, 1932; Hsu, 1940):

Reject H0 whenever det aðbþ aÞ�1 � c:

For large N;W ¼ �½N � s� 1
2
ð p� r þ 1Þ� logUp;r;N�s has a limiting x2pr

distribution with pr degrees of freedom (Box (1949)). Let

Pðx2pr � x2prðaÞÞ ¼ a

PðU � up;r;N�sðaÞjH0Þ ¼ a:
ð8:129Þ

Define

Cp;r;N�sðaÞ ¼
�ðN � s� 1

2
ð p� r þ 1ÞÞ log up;r;N�sðaÞ

x2prðaÞ
: ð8:130Þ
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To test H0 one computes the chisquare adjustment Cp;r;N�s and rejects H0 at

level a if

W � �½N � s� 1
2
ð p� r þ 1Þ� logUp;r;N�s

¼ Cp;r;N�sðaÞx2prðaÞ
ð8:131Þ

Tables of values of Cp;r;N�sðaÞ have been prepared by Schatzoff (1966),

Pillai and Gupta (1969) and Lee (1971) for different values p; r;N � s and a.
Tables of Schatzoff, Pillai and Gupta are given in Appendix A.

2. Lawley’s V (Lawley, 1938) and Hotelling’s T2
0 (Hotelling, 1951) criterion.

Reject H0 whenever

q ¼ tr ab�1 ¼ T2
0

N � p
� C: ð8:132Þ

Percentage points of the null distribution of T2
0 are given in Pillai and

Sampson (1959), Davis (1970, 1980) and Hughes and Saw (1972).

Asymptotic distribution of T2
0 in the non-null case has been studied by

Siotani (1957, 1971), Ito (1960), Fujikoshi (1970) and Muirhead (1972).

In the null case Ntr AB�1 is approximately x2pr (Morrow (1948)) when

N ! 1.

3. The largest and the smallest root criteria of Roy (Roy, 1957)

Reject H0 whenever max
i

ri � C ð8:133Þ

Reject H0 whenever min
i

ri � C ð8:134Þ

Percentage points of the distribution of maxi Ri are given in Heck (1960),

Pillai and Bantegui (1959) and Pillai (1964, 1965, 1967). Khatri (1972) has

obtained the exact distribution of maxi Ri as a finite series of Laguerre

polynomals in a special non-null case. We refer to Krishnaiah (1978) for

references and results in this context.

4. Pillai’s statistic (Pillai, 1955):

Reject H0 whenever tr aðaþ bÞ�1 � C: ð8:135Þ
Pillai (1960) obtained 1% and 5% signifance points of tr AðAþ BÞ�1 for

p ¼ 2; . . . ; 8. Mijares (1964) extended the tables to p ¼ 50. Asymptotic

expansions of the distribution of ðN � pÞtr AðAþ BÞ�1 in the non-null case

have been obtained by Fujikoshi (1970) and Lee (1971).

These test statistics are functions of R1; . . . ;Rp. Among these invariant tests,

test 4 has received much less attention than the others. These tests 1–4, of course,

reduce to Hotelling’s T2-test when r ¼ 1, and if r . 1 and minð p; rÞ . 1, there
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does not exist a uniformly most powerful invariant test. All these tests reduce to

the univariate F-test when p ¼ 1 and to the two-tailed t-test when p ¼ r ¼ 1. In

theory, we would be able to derive the distribution of these statistics from

the joint distribution of R1; . . . ;Rp. Since for any g [ Glð pÞ;
detðgAg0 � lgBg0Þ ¼ detðgg0Þ detðA� lBÞ, choosing g such that gSg0 ¼ I we

conclude that to find the joint distribution of ðR1; . . . ;RpÞ under H0, we can

without any loss of generality assume that S ¼ I. In other words, the joint

distribution is independent of S under H0 and under H1 : L = 0 this distribution

depends only on u1; . . . ; up.

8.6.1. Distribution of (R1, . . . ,Rp) under H0

From Section 6.3, B and A are independently distributed (Wishart matrices) as

WpðS;N � sÞ and WpðS; rÞ, respectively, provided N � s � p; r � p. Let

N � s ¼ n2; r ¼ n1, let R1; . . . ;Rp, be the characteristic roots of AB�1, and let

R1 . R2 . � � � . Rp . 0 denote the ordered characteristic roots of AB�1 (the

probability of two roots being equal is 0). Rather than finding the distribution of

ðR1; . . . ;RpÞ directly, we will find it convenient to first find the joint distribution

of V1; . . . ;Vp such that Vi ¼ Ri=ð1þ RiÞ; i ¼ 1; . . . ; p. Obviously V1; . . . ;Vp are

the characteristic roots of AðAþ BÞ�1, that is, the roots of detðA� lðAþ BÞÞ ¼ 0.

Let V be a diagonal matrix with diagonal elements V1; . . . ;Vp and let C ¼ Aþ B.

We can write

C ¼ WW 0; A ¼ WVW 0 ð8:136Þ
where W ¼ ðWijÞ is a nonsingular matrix of dimension p� p. To determine W

uniquely we require here thatWi1 � 0; i ¼ 1; . . . ; p (the probability ofWi1 ¼ 0 is

0). Writing J for Jacobian, the Jacobian of the transformation ðA;BÞ ! ðW;VÞ is
equal to

J½ðA;BÞ ! ðW;VÞ� ¼ J½ðA;BÞ ! ðA;CÞ� � J½ðA;CÞ ! ðW;VÞ�: ð8:137Þ
It is easily seen that J½ðA;BÞ ! ðA;CÞ� ¼ 1. By exercise 8 [see also Olkin

(1952)] the Jacobian of the transformation ðA;CÞ ! ðW;VÞ is

2pðdetWÞpþ2
X
i,j

ðVi � VjÞ: ð8:138Þ

As indicated earlier we can take S ¼ I, and hence the joint probability density

function of A;B is (by Section 6.3)

Cn1;pCn2;pðdet aÞðn1�p�1Þ=2ðdet bÞðn2�p�1Þ=2 expf� 1
2
trðaþ bÞg ð8:139Þ
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where Cn;p is given by (6.32). From (8.137–8.139) the joint probability density

function of ðW;VÞ is

fW;V ðw; vÞ ¼ Cn1pCn2p

Yp

i¼1

½vðn1�p�1Þ=2
i ð1� viÞðn2�p�1Þ=2�

�
Y
i,j

ðvi � vjÞðdetðww0ÞÞðn1þn2�pÞ=2 expf� 1
2
tr ww0g

ð8:140Þ

Now integrating out w in (8.140), we obtain the probability density function of V

as

fV ðvÞ ¼ KCn1;pCn2;p

Yp

i¼1

v
ðn1�p�1Þ=2
i ð1� viÞðn2�p�1Þ=2Y

i,j

ðvi � vjÞ; ð8:141Þ

where

K ¼ ð2pÞp2=2
ð

1

ð2pÞp2=2
2p½detðww0Þ�ðn1þn2�pÞ=2 expf� 1

2
tr ww0gdw

¼ ð2pÞp2=2E½detðWW 0Þ�ðn1þn2�pÞ=2
ð8:142Þ

and W ¼ ðWijÞ, the Wij are independently distributed normal random variables

with mean 0 and variance 1. Thus the p� p matrix S ¼ WW 0 is distributed as

WpðI; pÞ and its probability density function [by (6.32)] is

fSðsÞ ¼ Cp;pðdet sÞ�1
2 expf� 1

2
tr sg: ð8:143Þ

Hence

EðdetðWW 0ÞÞðn1þn2�pÞ=2 ¼ Cp;p

ð
ðdet sÞðn1þn2�p�1Þ=2 expf� 1

2
tr sgds

¼ Cp;p

Cn1þn2;p
:

ð8:144Þ

Thus

K ¼ ð2pÞp2=2Cp;p

Cn1þn2;p
ð8:145Þ

Since dVi ¼ ð1þ R2
i Þ�1dRi, from (8.141) the probability density of R, a diagonal

matrix with diagonal elements R1; . . . ;Rp, is

fRðrÞ ¼ C
Yp

i¼1

r
ðn1�p�1Þ=2
i ð1þ riÞ�ðn1þn2Þ=2

Y
i,j

ðri � rjÞ ð8:146Þ
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where

C ¼ pp=2Pp
i¼1ð12 ðn1 þ n2 � iþ 1ÞÞ

Pp
i¼1Gð12 ðn1 � iþ 1ÞÞGð1

2
ðn2 � iþ 1ÞÞGð1

2
ð pþ 1� iÞÞ : ð8:147Þ

Let us now consider the distribution of the characteristic roots of A where A is

distributed as WpðI; n1Þ. Since B is distributed as WpðI; n2Þ;B=n2 ! I almost

surely as n2 ! 1. Thus the roots of the equation detðA� lðB=n2ÞÞ ¼ 0 converge

almost surely to the roots of detðA� lIÞ ¼ 0. Let l1 . l2 . � � � . lp . 0 be the

ordered characteristic roots of A. To find the joint distribution of the li, it is
sufficient to find the limit as n2 ! 1 of the probability density function of the

roots of detðA� lðB=n2ÞÞ ¼ 0. From (8.147), the probability density function of

the roots ðl1; . . . ; lpÞ of detðA� lðB=n2ÞÞ ¼ 0 is given by

Cðn2Þ�n1p=2
Yp

i¼1

lðn1�p�1Þ=2
i 1þ li

n2

� ��ðn1þn2Þ=2Y
i,j

ðli � ljÞ: ð8:148Þ

Since

Ltn2!1
Yp

i¼1

1þ li
n2

� ��ðn1þn2Þ=2
¼ exp � 1

2

Xp

i¼1

li

( )
;

Ltn2!1
Gð1

2
ðn1 þ n2 � 1ÞÞ

ðn2Þn1=2Gð12 ðn2 � jÞÞ ¼ 2�n1=2;

we get

Ltn2!1Cðn2Þ�n1p=2

¼ p�p=2 2n1p=2
Yp

i¼1

Gð1
2
ðn1 � iþ 1ÞÞGð1

2
ð pþ 1� iÞÞ

" #�1

ð8:149Þ

¼ C0 ðsayÞ
Thus the probability density function of the ordered characteristic roots

l1; . . . ; lp, of A is (with l a diagonal matrix with diagonal elements l1; . . . ; lp)

flðlÞ ¼ C0Yp

i¼1

lðn1�p�1Þ=2
i exp � 1

2

Yp

i¼1

li

( )Y
i,j

ðli � ljÞ: ð8:150Þ

8.6.2. Multivariate Regression Model

We now discuss a different formulation of the multivariate general linear

hypothesis which is very appropriate for the analysis of design models. Let
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Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently distributed normal p-

vectors with means

EðXaÞ ¼ bza; a ¼ 1; . . . ;N; ð8:151Þ

where za ¼ ðza1; . . . ; zasÞ0;a ¼ 1; . . . ;N are known vectors and b ¼ ðbijÞ is a

p� s matrix of unknown elements bij. As in the general formulation we shall

assume that N � s � p, and that the rank of the s� N matrix Z ¼ ðz1; . . . ; zNÞ is
s. Let b ¼ ðb1;b2Þ, where b1;b2 are submatrices of dimensions p� r and

p� ðs� rÞ, respectively. We are interested in testing the null hypothesis

H0 : b1 ¼ b0
1 ða fixed matrixÞ

where b2 and S are unknown. Here the dimension of pV is s s and that of pv is

s� r. The likelihood of the sample observations xa on Xa;a ¼ 1; . . . ;N, is given
by

Lðb;SÞ ¼ ð2pÞ�Np=2ðdetS�1ÞN=2

� exp � 1
2
tr S

�1
XN
a¼1

ðxa � bzaÞðxa � bzaÞ0
 !( ) ð8:152Þ

Let

A ¼ ZZ 0 ¼
XN
a¼1

zaza
0
; C ¼ xZ 0 ¼

XN
a¼1

xaza
0
; x ¼ ðx1; . . . ; xNÞ:

Using Section 1.7, the maximum likelihood estimate b̂b of b is given by

b̂bA ¼ C: ð8:153Þ

Since the rank of Z is s, A is nonsingular and the unique maximum likelihood

estimate of b is given by

b̂b ¼ CA�1: ð8:154Þ

Now using Lemma 5.1.1, the maximum likelihood estimate of S under pV is

ŜS ¼ 1

N

XN
a¼1

ðxa � b̂b zaÞðxa � b̂b zaÞ0 ¼ 1

N

XN
a¼1

xaxa0 � b̂bAb̂b 0
 !

: ð8:155Þ
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Thus

max
b;S

Lðb;SÞ ¼ ð2pÞ�Np=2 det
XN
a¼1

ðxa � b̂b zaÞðxa � b̂b zaÞ0
N

" #( )�N=2

� exp � 1

2
Np

� �
:

ð8:156Þ

To find the maximum of the likelihood function under H0, let

za ¼ zað1Þ
zað2Þ

� �
; ya ¼ xa � b0

1z
a
ð1Þ; a ¼ 1; . . . ;N;

where zað1Þ ¼ ðza1; . . . ; zarÞ0. Now Ya ¼ Xa � b0
1z

a
ð1Þ;a ¼ 1; . . . ;N, are indepen-

dently normally distributed with mean b2z
a
ð2Þ and the same covariance matrix S.

Let C ¼ ðC1;C2Þ with C1 a p� r submatrix and

Z ¼ Z1
Z2

� �
; A ¼ Að11Þ Að12Þ

Að21Þ Að22Þ

� �
; b̂b ¼ ðb̂b1; b̂b2Þ

where Z1 is r � N; Að11Þ is r � r, and b̂b1 is p� r. Under H0, the likelihood

function can be written as

Lðb2;SÞ ¼ ð2pÞ�Np=2ðdetS�1ÞN=2

� exp � 1
2
tr S

�1
XN
a¼1

ðya � b2z
a
ð2ÞÞðya � b2z

a
ð2ÞÞ0

" #( )
:

ð8:157Þ

Proceeding exactly in the same way as above we obtain the maximum likelihood

estimates of b2 and S under H0 as

^̂
bb̂bb 2 ¼

XN
a¼1

yaza
0

ð2Þ
XN
a¼1

zað2Þz
a0
ð2Þ

 !�1

¼ ðC2 � b0
1Að12ÞÞA�1

ð22Þ;

^̂
SŜSS ¼ 1

N

XN
a¼1

ðya � ^̂
bb̂bb 2z

a
ð2ÞÞðya � ^̂

bb̂bb 2z
a
ð2ÞÞ0 ð8:158Þ

¼ 1

N

XN
a¼1

ðxa � b0
1z

a
ð1Þ � ^̂

bb̂bb 2z
a
ð2ÞÞðxa � b0

1z
a
ð1Þ � ^̂

bb̂bb 2z
a
ð2ÞÞ0:

Lemma 8.6.2.

N
^̂
SŜSS ¼ NŜSþ ðb̂b1 � b0

1ÞðAð11Þ � Að12ÞA�1
ð22ÞAð21ÞÞðb̂b1 � b0

1Þ0:
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Proof. Since

C ¼ b̂bA;

C2 ¼ ðb̂b1; b̂b2Þ
Að12Þ
Að22Þ

� �
¼ b̂b1Að12Þ þ b̂b2Að22Þ:

ð8:159Þ

Thus

b̂b2 ¼ C2A
�1
ð22ÞÞ � b̂b1Að12ÞA�1

ð22Þ;
^̂
bb̂bb 2 � b̂b2 ¼ ðb̂b1 � b0

1ÞAð12ÞA�1
ð22Þ:

Now under H0

X � bZ ¼ A� b̂bZ þ ðb̂b2 � b2ÞZ2 þ ðb̂b1 � b0
1ÞZ1

¼ ðX � b̂bZÞ þ ð ^̂bb̂bb 2 � b2ÞZ2 � ð ^̂bb̂bb 2 � b̂b2ÞZ2 þ ðb̂b1 � b0
1ÞZ1 ð8:160Þ

¼ ðX � b̂bZÞ þ ð ^̂bb̂bb 2 � b2ÞZ2 þ ðb̂b1 � b0
1ÞðZ1 � Að12ÞA�1

ð22ÞZ2Þ:
Now

ðZ1 � Að12ÞA�1
ð22ÞZ2ÞZ 0

2 ¼ Að12Þ � Að12Þ ¼ 0:

Since

ðX � bZÞZ 0 ¼ XZ 0 � XZ 0ðZZ 0Þ�1ZZ 0 ¼ XZ 0 � XZ 0 ¼ 0;

which implies that

ðX � b̂bZÞZi ¼ 0; i ¼ 1; 2;

we obtain

ðX � bZÞðX � bZÞ0

¼ ðX � b̂bZÞðX � b̂bZÞ0 þ ð ^̂bb̂bb 2 � b2ÞAð22Þð ^̂bb̂bb 2 � b2Þ0 ð8:161Þ

þ ðb̂b � b0
1ÞðAð11Þ � Að12ÞA�1

ð22ÞA21Þðb̂b1 � b0
1Þ0:

Subtracting ð ^̂bb̂bb 2 � b2ÞZ2 from both sides of (8.160), we obtain

ðX � b0
1Z1 � ^̂

bb̂bb 2Z2Þ ¼ ðX � b̂bZÞ þ ðb1 � b0
1ÞðZ1 � Að12ÞA�1

ð22ÞZ2Þ:
Thus

N
^̂
SŜSS ¼ ðX � b̂bZÞðX � b̂bZÞ0

þ ðb̂b1 � b0
1ÞðAð11Þ � Að12ÞA�1

ð22ÞAð21ÞÞðb̂b1 � b0
1Þ0:

Q.E.D.
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Using this lemma and (8.156–8.157), we conclude that the likelihood ratio

test of H0 : b1 ¼ b0
1 when b2 and S are unkown rejects H0 whenever

u ¼ det½SN
a¼1ðxa � b̂b zaÞðxa � b̂b zaÞ0�

det½SN
a¼1ðxa� b̂b zaÞðxa� b̂b zaÞ0 þðb̂b1�b0

1ÞðAð11Þ �Að12ÞA�1
ð22ÞAð21ÞÞðb̂b1�b0

1Þ0�

� C;

ð8:162Þ
where the constant C depends on the level of significance a of the test. We shall

now show that the statistic U is distributed as the statistic U in (8.124). Wilks

(1932) first derived the likelihood ratio test criterion for the special case of testing

the equality of mean vectors of several populations. Wilks (1934) and Bartlett

(1934) extended its use to regression coefficients.

In what follows we do not distinguish between an estimate and the

corresponding estimator. For simplicity we shall use the same notation for both.

For the maximum likelihood estimator b̂b

Eðb̂b Þ ¼ E
XN
a¼1

Xaza0A�1

 !
¼ bAA�1 ¼ b; ð8:163Þ

and the covariance between the ith row vector b̂bi and the jth row vector b̂bj of b̂b is

given by

Eðb̂bi � biÞðb̂bj � bjÞ0

¼ A�1E
XN
a¼1

ðXai � EðXaiÞÞza
XN
l¼1

ðXli � EðXliÞÞ
 !

zl
0

( )
A�1

¼ A�1
XN
a¼1

sijz
aza0A�1 ¼ sijA

�1:

Obviously, thus, the row vectors ðb̂b1; . . . ; b̂bpÞ are normally distributed with mean

ðb1; . . . ;bpÞ and covariance matrix

s11A
�1 � � � s1pA

�1

s21A
�1 � � � s2pA

�1

..

. ..
.

sp1A
�1 � � � sppA

�1

0
BBB@

1
CCCA ¼ S� A�1: ð8:164Þ

Theorem 8.6.1. NŜS ¼ S
N
a¼1X

aXa0 � b̂bAb̂b 0 is distributed independently of b̂b
as WpðW � s;SÞ.
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Proof. Let F be an s� s nonsingular matrix such that FAF0 ¼ I. Let E2 ¼ FZ.

Then E2E
0
2 ¼ FZZ 0F0 ¼ I. This implies that the s rows of E2 are orthogonal and

are of unit length. Thus it is possible to find an ðN � sÞ � N matrix E1 such that

E ¼ E1

E2

� �

is an N � N orthogonal matrix. Let Y ¼ ðY1; . . . ; YNÞ ¼ XE0. Then the columns

of Y are independently distributed (normal vectors) with the same covariance

matrix S and

EðYÞ ¼ bZE0 ¼ bF�1E2ðE0
1;E

0
2Þ ¼ ðO;bF�1Þ: ð8:155Þ

Since

XX0 ¼
XN
a¼1

XaXa0 ¼ YY 0 ¼
XN
a¼1

YaYa0

b̂bAb̂b 0 ¼ ðXZ 0A�1ÞAðXZ 0A�1Þ0 ¼ YEE0
2ðF�1Þ0A�1F�1E2E

0Y 0 ð8:166Þ

¼ Y
0

I

� �
ð0; IÞY 0 ¼

XN
a¼N�sþ1

YaYa0;

we get

NŜS ¼
XN�2

a¼1

YaYa0; ð8:167Þ

where Ya;a ¼ 1; . . . ;N � s, are independently distributed normal p-vectors with

means 0 and the same covariance matrix S. From (8.166) and (8.167) NŜS is

distributed as WpðN � s;SÞ independently of b̂b . Q.E.D.

Theorem 8.6.2. Under H0; ðb̂b � b0
1ÞðAð11Þ � Að12ÞA�1

ð22ÞÞðb̂b � b0
1Þ0 is distributed

as WpðS; rÞ (independently of NŜS).

Proof. From (8.164) the covariance of the ith and the jth rows of the estimator

b̂b1 is sijðAð11Þ � Að12ÞA�1
ð22ÞAð21ÞÞ�1. Let E be an r � r nonsingular matrix such that

EðAð11Þ � Að12ÞA�1
ð22ÞAð21ÞÞE0 ¼ I; ð8:168Þ

and let

b̂b1 � b0
1 ¼ YE ¼ ðY1; . . . ; YrÞE: ð8:162Þ
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Then

ðb̂b1 � b0
1ÞðAð11Þ � Að12ÞA�1

ð22ÞAð21ÞÞðb̂b1 � b0
1Þ0 ¼

Xr
a¼1

YaYa0: ð8:170Þ

Obviously under H0½Eð�Þ denotes the expectation symbol]

EðYÞ ¼ E½ðb̂b1 � b0
1ÞE�1� ¼ 0; ð8:171Þ

since Eðb̂b1Þ ¼ b0
1. Let the ith and the jth row of Y be Yi and Yj, respectively, and

let the ith and the jth row of b̂b1 be b̂bi1 and b̂bj1, respectively. Then

EðY 0
i YjÞ ¼ EððE�1Þ0ðb̂bi1 � b0

i1Þ0ðb̂bj1 � b0
j1ÞE�1Þ

¼ sij½EðAð11Þ � Að12ÞA�1
ð22ÞAð21ÞÞE0��1 ¼ sijI:

Thus S
r
a¼1Y

aYa0 is distributed as WpðS; rÞ when H0 is true. Q.E.D.

Hence the statistics U as given in (8.124) and (8.162) have identical

distributions.

8.6.3. The Distribution of U under H0

Anderson (1958) called the statistic U;Up;r;N�s. Computing various moments of

U under H0 we can show that

EðUkÞ ¼
Yp

i¼1

EðXk
i Þ; k ¼ 0; 1; . . . ; ð8:172Þ

where X1; . . . ;Xp are independently distributed central beta random variables

with parameter ð1
2
ðN � s� iþ 1Þ; 1

2
rÞ; i ¼ 1; . . . ; p. Since U lies between 0 and

1, these moments determine the distribution of U (under H0) uniquely. Thus,

under H0, U is distributed as

U ¼
Yp

i¼1

Xi: ð8:173Þ

Furthermore, under H0, Up;r;N�s and Ur;p;N�p�sþr have the same distribution.

From (8.172) it is easy to see that

ðiÞ 1� U

U

N � s

r

� �
ð8:174Þ
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has central F-distribution with degrees of freedom ðr;N � sÞ when p ¼ 1.

ðiiÞ 1� ffiffiffiffi
U

p
ffiffiffiffi
U

p N � s� 1

r

� �
ð8:175Þ

has central F-distribution with degrees of freedom ð2r; 2ðN � s� 1ÞÞ when

p ¼ 2. Box (1949) gave an asymptotic expansion for the distribution of a

monotone function of the likelihood ratio statistic l½¼ ðUp;r;N�sÞÞN=2� when H0 is

true. The expansion converges extremely rapidly, and therefore the level of

significance derived from it will be quite adequate even for moderate values of N.

For large N, the Box result is equivalent to the large sample result of Wilks

(1938); that is, under H0;�2 log l is distributed as central x2pr with pr degrees of
freedom as N ! 1. The Box approximation (with p � r) is, under H0,

Pf�r logUp;r;N�s � z g ¼ Pfx2pr � zg þ ðg=r2Þ½Pfx2prþ4 � zg

� Pfx2pr � zg� þ OðN�4Þ;
ð8:176Þ

where g ¼ prð p2 þ r2 � 5Þ=48. If just the first term is used, the total error of

approximation is OðN�2Þ; if both terms are used, the error is OðN�4Þ. If r , p, we

use the result that under H0, Up;r;N�s is distributed as Ur;p;N�s�pþr.

For the likelihood ratio criterion, exact tables are available only for p � 4. The

Lawley-Hotelling test criterion cannot be used for small samples sizes and

appropriate p, since only a result asymptotic in sample size is available (see

Anderson, 1958, p. 224; Pillai, 1954). Morrow (1948) has shown that, under H0,

N trðAB�1Þ has central x2pr when N ! 1. The largest and the smallest root

criteria of Roy can be used in the general case, although percentage point tables

are available only for the restricted values of the parameters. Appropriate tables

are given by Foster and Rees (1957), Foster (1957, 1958), Heck (1960), and Pillai

(1960). Different criteria for this problem have been compared on the basis

of their power functions, in some detail, by Smith et al. (1962) and Gabriel

(1969).

8.6.4. Optimum Properties of Tests of General Linear

Hypotheses

Using the argument that follows Stein’s proof of admissibilily of Hotelling’s T2-

test (a generalization of a result of Birnbaum, 1955) Schwartz (1964a) has shown

that for testing H0 : L ¼ 0 against H1 : L = 0, the test (Pillai, 1955) that rejects

H0 whenever tr aðaþ bÞ�1 � c, where the constant c depends on the level of

significance a of the test, is admissible. He also obtained the following results:
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i. For testingH0 : L ¼ 0 against the alternatives tr LL0S�1 ¼ d, Pillai’s test is
locally minimax in the sense of Giri and Kiefer (1964a) as d ! 0.

ii. Among all invariant level a tests of H0 which depend only on R1; . . . ;Rp

and which therefore have power functions of the form a þ
ctrðLL0S�1Þ þ oðLL0S�1Þ, Pillai’s test minimizes the value of c.

Ghosh (1964), using Stein’s approach, has shown that the Lawley-Hotelling

trace test, which rejects H0 whenever trðab�1Þ � c, and Roy’s test based on

maxiðriÞ are admissible for testing H0 : L ¼ 0 against H1 : L = 0. Thus as a

consequence of the following result of Anderson et al. (1964), they are unbiased

for this problem.

Anderson et al. (1964) gave sufficient conditions on invariant tests (depending

only on R1; . . . ;Rp) for the power functions to be monotonically increasing

functions of each ui; i ¼ 1; . . . ; p. Further, they have shown that the likelihood

ratio test, the Lawley and Hotelling trace test, and Roy’s maximum characteristic

root test satisfy these conditions. The monotonicity of the power function of

Roy’s test has been demonstrated by Roy and Mikhail (1961) using a geometric

argument.

Kiefer and Schwartz (1965) have shown, using the Bayes approach, that

Pillai’s test is admissible Bayes for this problem. The proof proceeds in the same

way as that of the admissibility of the T2- and R2-tests. The interested reader may

consult the original reference for details. This test is fully invariant, similar, and

as a consequence of the result given in the preceding paragraph, unbiased. Using

the same approach, these authors have also proved the admissibility of the

likelihood ratio test under the restriction that N � s � pþ r � 1, although the

admissibility of the likelihood ratio test can be proved without this added

restriction (see Schwartz, 1964b). Sihna and Giri (1975) proved the Bayes

character (and, hence, admissibility) of the likelihood ratio test whenever

N � s . p. Narain (1950) has shown that the likelihood ratio test is unbiased. We

refer to Nandi (1963) for a related admissibility result and to John (1971) for an

optimality result.

The unbiasedness property of the likelihood ratio test, Lawley-Hotelling’s

trace test, Roy’s maximum root test and Pillai’s trace test has been proved in

Anderson, Das Gupta and Mudholkar (1964) and Pearlman and Olkin (1980). A

number of numerical comparisons of power functions of these four tests have

been made by Schatzoff (1966), Mikhail (1965), Pillai and Jayachandran (1967),

Fujikoshi (1970), and Lee (1971) among others. If u0is are not equal the Lawley-
Hotelling trace test is better than the likelihood ratio test (LRT) and the LRT is

better than Pillai’s trace test. If u0is are not very different then the reverse is true.

Roy’s maximum root test has the largest power among these four tests if the

alternative is one-dimensional, i.e. u2 ¼ � � � ¼ ur ¼ 0. However if the alternative

is not one-dimensional then it is inferior.
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8.6.5. Multivariate One-Way, Two-Way Classifications

Most of univariate results in connection with design of experiments can be

extended to the multivariate case. We consider here one-way and two-way

classifications as examples.

One-Way Classification

Suppose we have r p-variate normal populations with the same positive

definite covariance matrix S but with different mean vectors mi; i ¼ 1; . . . ; r. We

are interested here in testing the null hypothesis

H0 : m1 ¼ � � � ¼ mr:

Let xij ¼ ðxij1; . . . ; xijpÞ0; j ¼ 1; . . . ;NiðNi . pÞ; i ¼ 1; . . . ; r, be a sample of size

Ni from the ith p-variate normal population with mean mi and covariance matrix

S. Define

N ¼
Xr
i¼1

Ni; Nixi: ¼
XNi

j¼1

xij; Nx:: ¼
Xr
i¼1

Nixi:;

si ¼
XNi

j¼1

ðxij � xi:Þðxij � xi:Þ0; ð8:177Þ

s ¼
Xr
i¼1

XNi

j¼1

ðxij � x::Þðxij � x::Þ0:

A straightforward calculation shows that the likelihood ratio test of H0 rejects H0

whenever

l ¼ det
Pr

i¼1 si
� �
det s

� �N=2
� c; ð8:178Þ

where c depends on the level of significance of the test.

Since

Xr
i¼1

XNi

j¼1

ðxij � x::Þðxij � x::Þ0

¼
Xr
i¼1

XNi

j¼1

ðxij � xi:Þðxij � xi:Þ0 þ
Xr
i¼1

Niðxi: � x::Þðxi: � x::Þ0;
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we obtain

l ¼ det b

detðaþ bÞ
� �N=2

ð8:179Þ

where

a ¼
Xr
i¼1

Niðxi: � x::Þðxi: � x::Þ0; b ¼
Xr
i¼1

si: ð8:180Þ

Under H0, the corresponding random matrices A;B are independently distributed

as WpðS;N � rÞ;WpðS; r � 1Þ, respectively. Thus under H0,

U ¼ detB

detðAþ BÞ ð1:181Þ

is distributed as Up;r�1;N�r, and we have discussed its distribution in the context

of the general linear hypothesis.

Two-Way Classification

Suppose we have a set of independently normally distributed p-dimensional

random vectors Xij ¼ ðXij1; . . . ;XijpÞ0; i ¼ 1; . . . ; r; j ¼ 1; . . . ; c, with EðXijÞ ¼
mþ ai þ bj, and the same covariance matrix S, where

m ¼ ðm1; . . . ;mpÞ0; ai ¼ ðai1; . . . ;aipÞ0; bj ¼ ðbj1; . . . ;bjpÞ0;
Xr
1

ai ¼ 0;
Xc
j¼1

bj ¼ 0:

ð8:182Þ
We are interested in testing the null hypothesis

H0 : bj ¼ 0 for all j:

In the univariate case, the problem can be treated as a problem of regression by

assigning Z suitable values. The same algebra can be used without any difficulty

in the multivariate case to reduce the problem to the multiple regression problem.

Define

X:: ¼ 1

rc

Xr
i¼1

Xc
j¼1

Xij; Xi: ¼ 1

c

Xc
j¼1

Xij; X:j ¼ 1

r

Xr
i¼1

Xij; ð8:183Þ

The statistic U, analogous to the multiple regression model, is

U ¼ detB

detðAþ BÞ ð8:184Þ
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where

B ¼
Xr
i¼1

Xc
j¼1

ðXij � Xi: � X:j þ X::ÞðXij � Xi: � X:j þ X::Þ0

A ¼ r
XC
j¼1

ðX:j � X::ÞðX:j � X::Þ0:
ð8:185Þ

UnderH0;U has the distributionUp;r;N�s with r ¼ c� 1; N � s ¼ ðr � 1Þðc� 1Þ.
In order for B to be positive definite we need to have p � ðr � 1Þðc� 1Þ.

Example 8.6.2. Let us analyze the data in Table 8.1 pertaining to 12 double

crosses of barley which were raised during 1971–1972 in Hissar, India. The

column indices run over different crosses of barley and the row indices run over

four different locations. The observation vector has two components, the first

being the height of the barley plant in centimeters and the second the average ear

weight in grams. Here

b ¼ 774437:429 131452:592
131452:592 22903:067

� �
; a ¼ 772958:191 131499:077

131499:077 22418:604

� �
;

det b= detðaþ bÞ ¼ 0:4632. Now

1� ð0:4632Þ1=2
ð0:4632Þ1=2

32

11

� �
¼ 1:37

is to be compared with F22;64 at a 5% level of significance. Thus our data show

there is no difference between crosses.

8.7. EQUALITY OF SEVERAL COVARIANCE MATRICES

Let Xij ¼ ðXij1; . . . ;XijpÞ0; j ¼ 1; . . . ;Ni, be a random sample of size Ni from a

p-variate normal distribution with unknown mean vectors mi ¼ ðmi1; . . . ;mipÞ0
and positive definite covariance matrices Si; i ¼ 1; . . . ; k.

We shall consider the problem of testing the null hypothesis

H0 : S1 ¼ � � � ¼ Sk ¼ S ðsayÞ
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when mi; i ¼ 1; . . . ; k, are unknown. Let S
k
i¼1Ni ¼ N and let

Si ¼
XNi

j¼1

ðXij � Xi:ÞðXij � Xi:Þ0;

S ¼
Xk
i¼1

Si; Xi: ¼ 1

Ni

XNi

j¼1

Xij:

The parametric spaceV is the space fm1; . . . ;mk;S1; . . . ;SkÞg, which reduces
to the subspace v ¼ fðm1; . . . ;mk;Sg under H0. The likelihood of the

observations xij on Xij is

LðVÞ ¼ ð2pÞ�Np=2
Yk
i¼1

ðdetSiÞ�Ni=2

� exp � 1

2
tr
Xk
i¼1

S
�1
i

XNi

j¼1

ðxij � miÞðxij � miÞ0
 !( )

:

Using Lemma 5.1.1, a straightforward calculation will yield

max
V

LðVÞ ¼ ð2pÞ�Np=2
Yk
i¼1

½detðsi=NiÞ��Ni=2 expf� 1
2
Npg: ð8:186Þ

When H0 is true the likelihood function reduces to

LðvÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2

� expf� 1
2
tr S

�1ðSk
i¼1S

Ni

j¼1ðxij � miÞðxij � miÞ0Þg;

and

max
v

LðvÞ ¼ ð2pÞ�Np=2½detðs=NÞ��N=2 expf� 1
2
Npg: ð8:187Þ

Thus the likelihood ratio test of H0 rejects H0 whenever

l ¼ maxv LðvÞ
maxV LðVÞ ¼

NpN=2
Qk

i¼1ðdet siÞNi=2

ðdet sÞN=2Qk
i¼1 N

pNi=2
i

� c; ð8:188Þ

where the constant c is chosen so that the test has the required size a.
From Section 6.3 it follows that the Si are independently distributed p� p

Wishart random matrices with parameters Si and degrees of freedom Ni � 1 ¼ ni
(say). Bartlett, in the univariate case, suggested modifying l by replacing Ni by ni
and N by S

k
i¼1ni ¼ n (say).
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In the case of two populations ðk ¼ 2; p ¼ 1Þ the likelihood ratio test reduces

to the F-test, and Bartlett in this case gave an intuitive argument for replacing Ni

by ni. He argued that if N1 (say) is small, s1 is given too much weight in l and

other effects may be missed. The modified likelihood ratio test in the general case

rejects H0 whenever

l0 ¼ nnp=2
Qk

i¼1ðdet siÞni=2
ðdet sÞN=2Qk

i¼1 n
pni=2
i

� c0; ð8:189Þ

where c0 is determined so that the test has the required size a. For p ¼ 1 the

modified likelihood ratio test is based on the F-distribution, but for p . 1 the

distribution is more complicated.

Define

a ¼ 1�
Xk
i¼1

1

ni
� 1

n

 !
2p2 þ 3p� 1

6ð pþ 1Þðk � 1Þ

b ¼ pð pþ 1Þ
48a3

ð p� 1Þð pþ 2Þ
Xk
i¼1

1

n2i
� 1

n2

 !
� 6ðk � 1Þð1� aÞ2

" #
ð8:190Þ

f ¼ 1
2
pð pþ 1Þðk � 1Þ:

It was shown by Box (1949) that a close approximation to the distribution of log l
under H0 is given by

Pf�2a logl � zg ¼ Pfx2f � zg þ b½Pfx2fþ4 � zg

� Pfx2f � zg� þ OððN � kÞ�3Þ:
ð8:191Þ

From this it follows that in large samples under H0

Pf�2a logl � zg w Pfx2f � zg:
Giri (1972) has shown that if S1; . . . ;Sk are such that they can be diagonalized by

the same orthogonal matrix [a necessary and sufficient condition for this to be

true is that SiSj ¼ SjSi for all ði; jÞ], then the test with rejection region

Yk
i¼1

ðdet siÞai=ðdet sÞbÞ � const; ð8:192Þ

where b ¼ S
k
i¼1ai ¼ cn, c being a positive constant, is unbiased for testing H0

against the alternatives detS1 � detSi when 0 , ai � cni for all i, and against

the alternatives detS1 � detSi when ai . cni for all i. A special case of this

additional restriction, which arises in the analysis of variance components, is the
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alternatives H0
1 : S1 ¼ l2S2 ¼ � � � ¼ lkSk where the li are unknown scalar

constants.

Federer (1951) has pointed out that this type of model is also meaningful in

certain genetic problems. From the preceding it follows trivially that for testing

H0 againstH
0
1, the test given in (8.192) is unbiased if li � 1 when 0 , ai � cni for

all i and if li � 1 when ai . cni for all i.

Kiefer and Schwartz (1965) have shown that if 0 , ai � ni � p for all i and b

(not necessarily equal to S
k
i¼1aiÞ � n� p, then the test given in (8.192) is

admissible Bayes and similar for testing H0 against the alternatives that not all Si

are equal. It is also similar and fully invariant if S
k
i¼1ai ¼ b. Such a test can be

obtained from the simplest choice of ai ¼ 1 with b ¼ k, provided that ni . p for

all i. The likelihood ratio test (respectively the modified likelihood ratio test) can

be obtained in this way by setting ai ¼ c1ðni þ 1Þ (respectively ai ¼ c1ni) and

b ¼ S
k
i¼1ai where c1 , 1.

Some satisfactory solutions to this problem (which cannot be obtained

otherwise) can be obtained in the special case k ¼ 2. Khatri and Srivastava

(1971) have derived the exact nonnull distribution of the modified likelihood

ratio test in this case in terms of the H-function. The problem of testing H0 :
S1 ¼ S2 against H1 : S1 = S2 remains invariant under the group of affine

transformations G ¼ ðGlð pÞ; TÞ, where Glð pÞ is the full linear group of p� p real

nonsingular matrices and T is the group of translations, transforming

Xij ! gXij þ bi; j ¼ 1; . . . ;Ni; i ¼ 1; 2; ð8:193Þ
g [ Glð pÞ; bi ¼ ðbi1; . . . ; bipÞ0 [ T . The induced transformation in the space of

the sufficient statistic ðX1:; S1;X2:; S2Þ is given by

ðX1:; S1;X2:; S2Þ ! ðgX1: þ b1; gS1g
0; gX2: þ b2; gS2g

0Þ ð8:194Þ
and the corresponding induced transformation in the parametric space V is given

by

ðm1;S1;m2;S2Þ ! ðgm1 þ b1; gS1g
0; gm2 þ b2; gS2g

0Þ: ð8:195Þ
Theorem 8.7.1. A maximal invariant in the space of sufficient statistic

ðX1:; S1;X2:; S2Þ under the group G of transformations (8.194) is ðR1; . . . ;RpÞ, the
characteristic roots of S1S

�1
2 .

Proof. Let R be the diagonal matrix with diagonal elements R1; . . . ;Rp. Since,

for g [ Glð pÞ,
ðgS1g0ÞðgS2g0Þ�1 ¼ gS1S

�1
2 g�1 ð8:196Þ

and S1S
�1
2 ; gS1S

�1
2 g�1 have the same characteristic roots, ðR1; . . . ;RpÞ is

invariant under G. To show that it is a maximal invariant in the space of

ðX1:; S1;X2:; S2Þ suppose that for any two elements ðY1:;A1; Y2:;A2Þ;
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ðX1:; S1;X2:; S2Þ in this space S1S
�1
2 ;A1A

�1
2 have the same characteristic roots

R1; . . . ;Rp. By Theorem 1.5.10 there exists g1; g2 belonging to Glð pÞ such that

g1S1g
0
1 ¼ R and g1S2g

0
1 ¼ I;

g2A1g
0
2 ¼ R and g2A2g

0
2 ¼ I:

Hence, with g ¼ g�1
2 g1, we get

A1 ¼ g�1
2 Rg0�1

2 ¼ g�1
2 g1S1g

0
1g

0�1
2 ¼ gS1g

0;

A2 ¼ g�1
2 g0�1

2 ¼ gS2g
0:

Writing

b1 ¼ �gX1: þ Y1:;

b2 ¼ �gX2: þ Y2::

we get Y1: ¼ gX1: þ b1; Y2: ¼ gX2: þ b2:. Q.E.D.

A corresponding set of maximal invariants in the parametric space V is

ðu1; . . . ; upÞ, the characteristic roots of S1S
�1
2 . In terms of these parameters the

null hypothesis can be stated as

H0 : u1 ¼ � � � ¼ up ¼ 1: ð8:197Þ
Several invariant tests have been proposed for this problem:

1. a test based on detðS1S�1
2 Þ;

2. a test based on trðS1S�1
2 Þ;

3. Roy’s test based on the largest and the smallest characteristic roots of S1S
�1
2

(Roy, 1953);

4. a test based on det½ðS1 þ S2ÞS�1
2 � (Kiefer and Schwartz, 1965).

We shall now prove some interesting properties of these tests.

Consider two independent random matrices U1 of dimension p� n1 and U2 of

dimension p� n2, such that the column vectors of U1 are independently and

normally distributed with mean 0 and covariance matrix S1 and the column

vectors of U2 are independently and normally distributed with mean vector 0 and

covariance matrix S2. Then

S1 ¼ U1U
0
1; S2 ¼ U2U

0
2:

Theorem 8.7.2. Let v be a set in the space of ðR1; . . . ;RpÞ, the characteristic
roots of ðU1U

0
1ÞðU2U

0
2Þ�1 such that when a point ðr1; . . . ; rpÞ [ v, so is every
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point ð�rr1; . . . ; �rrpÞ for which �rri � ri; i ¼ 1; . . . ; p. Then the probability of the set v
depends on S1 and S2 only through ðu1; . . . ; upÞ and is a monotonically

decreasing function of each ui.

Proof. Since S1;S2 are positive definite, there exists a g [ Glð pÞ such that

S1 ¼ gug0;S2 ¼ gg0 where u is a diagonal matrix with diagonal elements

u1; . . . ; up. Write V1 ¼ g�1U1;V2 ¼ g�1U2. It follows that the column vectors of

V1 are independently normally distributed with mean 0 and covariance matrix u,
the column vectors of V2 are independently normally distributed with mean 0 and

covariance matrix I, and ðU1U
0
1ÞðU2U

0
1Þ�1 and ðV1V

0
1ÞðV2V

0
2Þ�1 have the same

characteristic roots. Let

Qðu1; u2Þ ¼ fðu1; u2Þ : ðr1; . . . ; rpÞ [ vg ð8:198Þ

and let fUi
ðuijSiÞ be the probability density function of Ui; i ¼ 1; 2. Then

ð
Qðu1;u2Þ

fU1
ðu1jS1Þ fU2

ðu2jS2Þdu1du2

¼
ð
Qðv1;v2Þ

fV1
ðv1juÞ fV2

ðv2jIÞdv1dv2 ¼ Pfvjug ðsayÞ:
ð8:199Þ

Consider V2 ¼ v2 fixed and let ðv2v02Þ�1 ¼ TT 0 where T is a p� p nonsingular

matrix. The probability density function of W ¼ TV1 is fW ðwjTuT 0Þ. Obviously
ðV1V

0
1Þðv2v02Þ�1 andWW 0 have the same characteristic roots. Then for V2 ¼ v2 we

have

ð
Rðv1Þ

fV1
ðv1juÞdv1 ¼

ð
RðwÞ

fW ðwjTuT 0Þdw ð8:200Þ

where Rðv1Þ ¼ fv1: characteristic roots of ðv1v01Þðv2v02Þ�1 belong to vg. Let u� be a
diagonal matrix such that u� � u is positive semidefinite. It now follows from

Exercise 8.11 that (denoting Chi as the ith characteristic root)

ChiðTu�T 0Þ ¼ Chiðu�1=2T 0Tu�1=2Þ � Chiðu1=2T 0Tu1=2Þ ¼ ChiðTuT 0Þ: ð8:201Þ

From Exercise 8.12 and from (8.200) we get for V2 ¼ v2 (fixed)

ð
Rðv1Þ

fV1
ðv1juÞdv1 �

ð
Rðv1Þ

fV1
ðv1ju�Þdn1: ð8:202Þ

Multiplying both sides of (8.202) by fV2
ðv2jIÞ and integrating with respect to v2

we obtain PðvjuÞ � Pðvju�Þ whenever u� � u is positive semidefinite. Q.E.D.
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From this theorem it now follows that:

Corollary 8.7.1. If an invariant test with respect to G has an acceptance

region v0 such that if ðr1; . . . ; rpÞ [ v0, so is ð�rr1; . . . ; rpÞ for �rri � ri; i ¼ 1; . . . ; p,
then the power function of the test is a monotonically increasing function of

each ui.

Corollary 8.7.2. The cumulative distribution function of Ri1 ; . . . ;Rik where

i1; . . . ; ik is a subset of ð1; . . . ; pÞ is a monotonically decreasing function of each

ui.

Corollary 8.7.3. If gðr1; . . . ; rpÞ is monotonically increasing in each of its

arguments, a test with acceptance region gðr1; . . . ; rpÞ � const has a

monotonically increasing power function in each ui.

In particular, Corollary 8.7.3 includes tests with acceptance regions

Xk
i¼1

diTi � const ð8:203Þ

where di � 0 and Ti is the sum of all different products of r1; . . . ; rp taken i at a

time. Special cases of these regions are

1.
Qp

i¼1 ri ¼ detðs1s�1
2 Þ � const

2.
Qp

i¼1 ri ¼ trðs1s�1
2 Þ � const.

In addition it can be verified that it also includes tests with acceptance region

S
p
i;j¼1aijvij � const with aij � 0 and vij ¼ Ti=Tjði . jÞ. Roy’s tests based on the

largest and the smallest characteristic roots with acceptance regions maxi ri �
const and mini ri � const, respectively, are also special cases of Corollary 8.7.3.

Sugiura and Nagao (1968) proved the following property of the modified

likelihood ratio test.

Theorem 8.7.3. For testing H0 : S1 ¼ S2 against the alternatives H1 : S1 =
S2 the modified likelihood ratio test with acceptance region

v ¼ ðs1; s2Þ :
Y2
i¼1

ðdet siðs1 þ s2Þ�1ÞÞni=2 � c0
( )

; ð8:204Þ

where the constant c0 is chosen such that the test has size a, is unbiased.

396 Chapter 8



Proof. As observed earlier, we can take S2 ¼ I and S1 ¼ u, the diagonal matrix

with diagonal elements u1; . . . ; up. Now

PfvjH1g ¼ cn1;pcn2;p

ð
ðs1;s2Þ[v

ðdet s1Þðn1�p�1Þ=2ðdet s2Þðn2�p�1Þ=2

� ðdet uÞn1=2 expf� 1
2
trðu�1s1 þ s2Þgds1ds2

¼ cn1;pcn2;p

ð
ðI;u2Þ[v

ðdet u1Þðn�p�1Þ=2ðdet u2Þðn2�p�1Þ=2ðdet uÞ�n1=2

� expf� 1
2
trðu�1 þ u2Þu1gdu1du2

¼ b

ð
ðI;u2Þ[v

ðdet u2Þðn2�p�1Þ=2ðdet uÞðn1=2ðdetðu�1 þ u2ÞÞ�n=2du2;

where S1 ¼ U1; S2 ¼ U
1=2
1 U2U

1=2
1 , with U

1=2
1 a symmetric matrix such that U1 ¼

U
1=2
1 U

1=2
1 and b ¼ cn1;pcn2;p=cn;p. The Jacobian of the transformation ðs1; s2Þ !

ðu1; u2Þ is given by

det
@ðs1; s2Þ
@ðu1; u2Þ
� �

¼ ðdet u1Þð pþ1Þ=2:

Write V ¼ u1=2U2u
1=2. Let v� be the set of all p� p positive definite matrices v

such that ðI; u�1=2vu�1=2Þ [ v, and let �vv be the set of all p� p positive definite

symmetric matrices v such that ðI; vÞ [ v. Then

PfvjH0g � PfvjH1g

¼ b

ð
�vv

�
ð
v�

� �
ðdet vÞðn2�p�1Þ=2ðdetðI þ vÞÞ�n=2dv

¼ b

ð
�vv� �vv>v�

�
ð
v�� �vv>v�

� �
ðdet vÞn2=2

� ðdetðI þ vÞÞ�n=2ðdet vÞ�ð pþ1Þ=2dv

� bc0
ð
�vv� �vv>v�

�
ð
v�� �vv>v�

� �
ðdet vÞ�ð pþ1Þ=2dv

¼ bc0
ð
�vv

�
ð
v�

� �
ðdet vÞ�ð pþ1Þ=2dv ¼ 0
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since

ð
�vv

ðdet vÞðn2�p�1Þ=2ðdetðI þ vÞÞ�n=2dv , 1; ð8:205Þ

and for any subset of v0 of �vv

ð
v0
ðdet vÞðn2�p�1Þ=2ðdetðI þ vÞÞ�n=2dv � c0

ð
v0
ðdet vÞ�ð pþ1Þ=2dv , 1: ð8:206Þ

Hence the theorem. Q.E.D.

Subsequently Das Gupta and Girl (1973) considered the following class of

rejection regions for testing H0 : S1 ¼ S2:

cða; bÞ ¼ ðs1; s2Þ : ½detðs1s�1
2 Þ�a

½detðs1s�1
2 þ IÞ�b � k

( )
; ð8:207Þ

where k is a constant depending on the size a of the rejection regions. For the

likelihood ratio test of this problem a ¼ N1; b ¼ N1 þ N2, and for the modified

likelihood ratio test a ¼ n1ð¼ N1 � 1Þ and b ¼ n1 þ n2ð¼ N1 þ N2 � 2Þ. Das
Gupta (1969) has shown that the likelihood ratio test is unbiased for testing

H0 : S1 ¼ S2 against H1 : S1 = S2 if and only if N1 ¼ N2 (it follows trivially

from Exercise 5b). In what follows we shall assume that 0 , a , b, in which

case the rejection regions cða; bÞ are admissible.

Theorem 8.7.4.

(a) The rejection region cða; n1 þ n2Þ is unbiased for testing S1 ¼ S2 against
the alternatives S1 = S2 for which ðdetS1 � detS2Þ ðn1 � aÞ � 0.

(b) The rejection region Cða; bÞ is biased for testing S1 ¼ S2 against the

alternatives S1 = S2, for which the characteristic roots of S1S
�1
2 lie in the

interval with endpoints d and 1, where d ¼ aðn1 þ n2Þ=bn1.
Proof. Note that

½detðs1s�1
2 Þ�a

ðdet s1s�1
2 þ IÞn ¼ ½detðs1s�1

2 Þ�a�n1

Q2
i¼1ðdet siÞni

ðdetðs1 þ s2ÞÞn : ð8:208Þ
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Proceeding exactly in the same way as in Theorem 8.7.3 ( �CC being the

complement of C) we can get

Pf �CCða; nÞju ¼ Ig � Pf �CCða; nÞjug

� Að p; n1; n2; kÞf1� ðdet uÞða�n1Þ=2g
ð
�CCða;nÞ

ðdet vÞða�n1�p�1Þ=2dv

� 0

where A is a constant. To prove part (b), consider a family of regions given by

Rða; bÞ ¼ fy : yað1þ yÞ�b � k; y � 0g:

These regions are either intervals or complements of intervals. When 0 , a ,
b;Rða; bÞ is a finite interval not including zero (excluding the trivial extreme

case). Consider a random variable Y such that Y=sðs . 0Þ is distributed as the

ratio of independent x2N ; x
2
N2

random variables. Let bðdÞ ¼ PfY [ Rða; bÞg. It can
be shown by differentiation that bðdÞ . bð1Þ if d lies in the open interval with

endpoints d; 1. Define a random variable Z by

ðdet S1Þaðdet S2Þb�a

½detðS1 þ S2Þ�b
¼ ðSð1Þ11 ÞaðSð2Þ11 Þb

ðSð1Þ11 þ S
ð2Þ
11 Þb

" #
Z ð8:209Þ

where Sk ¼ ðSðkÞij Þ; k ¼ 1; 2, and suppose that u2 ¼ � � � ¼ up ¼ 1. Then the

distribution of Z is independent of u1 and is independent of the first factor in the

right-hand side of (8.209). From Exercise 5b the power of the rejection regions

Cða; bÞ is less than its size if u1 lies strictly between d and 1. Q.E.D.

Let u be the diagonal matrix with diagonal elements u1; . . . ; up. From

Theorem 3.2.3 the distribution of R depends only on u.

Theorem 8.7.5. Let fRðrjuÞ be the joint pdf of R1; . . . ;Rp and let

s ¼ trðu� IÞ ¼ trðS1S
�1
2 � IÞ. For testing H0 : u ¼ I against H1 : s . 0, the

test which rejects H0 whenever

tr s2ðs1 þ s2Þ�1 � c

where c is a constant depending on the level of significance a of the test, is LBI

when s ! 0.

Proof. From Example 3.2.6 the Jacobian of the transformation

g ! hg; g; h [ Glð pÞ; is ðdetðhh0ÞÞp=2. Hence a left invariant Haar measure on
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Glð pÞ is

dmðgÞ ¼ dg

ðdetðgg0ÞÞp=2 ð8:210Þ

where dg ¼Q
ij dgij; g ¼ ðgijÞ. Using (3.20) we get

pRðrjuÞ
pRðrjIÞ

¼

ð
Glð pÞ

½detS1��ðN1�1Þ=2½detS2��ðN2�1Þ=2

� exp � 1

2
trðS�1

1 gs1g
0 þ S

�1
2 gs2g

0Þ
� �

½detðgg0:Þ�
N � p� 2

2
dg

ð
Glð pÞ

½detS1��ðN�2Þ=2 exp � 1

2
trS

�1
1 ðgs1g0 þ gs2g

0Þ
� �

dg

ð8:211Þ

where N ¼ N1 þ N2. Using Theorem 1.5.5 we get

b ¼
ð
Glð pÞ

½detS1��ðN�2Þ=2 expf� 1
2
tr S

�1
1 ðgs1g0 þ gs2g

0Þg½det gg0� N � p� 2

2
dg

¼
ð
Glð pÞ

expf� 1
2
trðhs1h0 þ hs2h

0Þg½det hh0�N � p� 2

2
dh ð8:212Þ

¼
ð
Glð pÞ

expf� 1
2
trðgrg0 þ gg0Þg½det gg0�N � p� 2

2
dg

where S
�1
1 ¼ g01g1; g1 [ Gl; g1g ¼ h and hg2 ¼ g; g2 [ Glð pÞ such that

g�1
2 s2g

0
2 ¼ I and g�1

2 s1g
0�1
2 ¼ r. Applying similar transformations to the

numerator of (8.211) we get

pRðrjuÞ
pRðrjIÞ ¼ b�1

ð
Glð pÞ

½det u�ðN2�1Þ=2

� expf� 1
2
trðgrg0 þ ugg0Þg½det gg0�N � p� 2

2
dg

ð8:213Þ

Writing det u ¼ detðI þ DÞ with D ¼ u� I we get

½det u�12ðN2�1Þ ¼ 1þ 1
2
ðN2 � 1Þsþ oðsÞ ð8:214Þ
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as s ¼ tr D ! o. Using (3.24) we get from (8.213)

pRðrjuÞ
pRðrjIÞ ¼ 1þ 1

2
ðN2 � 1Þs� 1

2
b�1

ð
Glð pÞ

½tr Dgg0�

� expf� 1
2
gðr þ IÞg0g½det gg0�N � p� 2

2
dgþ oðsÞ

ð8:215Þ

Since expf� 1
2
tr gg0g½det gg0�12ðN�p�2Þ is invariant under the change of sign of g to

�g we get

ð
Glð pÞ

gij expf� 1
2
tr gg0g½det gg0�12ðN�p�2Þdg ¼ 0; for all i ¼ j;

ð
gijgi0j0 expf� 1

2
tr gg0g½det gg0�12ðN�p�2Þdg ¼ K; if i ¼ i0; j ¼ j0

0 otherwise;

� ð8:216Þ

where K is a positive constant. The integral in (8.215) is equal to (using (8.216))

ð
Glð pÞ

½tr DgðI þ rÞ�1g0� expf� 1
2
tr gg0g½det gg0�12ðN�p�2Þdg

¼ S
p
i¼1ðui � 1ÞSp

j¼1ð1þ rjÞ�1

ð
Glð pÞ

g2ij expf� 1
2
tr gg0g½det gg0�12ðN�p�2Þdg

¼ KS
p
i¼1ðui � 1ÞSp

j¼1ð1þ rjÞ�1

¼ Ktrðu� IÞtr s2ðs1 þ s2Þ�1

Hence from (8.216) we get

pRðrjuÞ
pRðrjIÞ ¼ 1þ 1

2
s½ðN2 � 1Þ � b�1Ktr s2ðs1 þ s2Þ�1� þ oðsÞ: ð8:217Þ

Now using the result of Section 3.9 we get the theorem. Q.E.D.

We now prove the locally minimax property of the LBI test. Since Glð pÞ does
not satisfy the condition of the Hunt-Stein theorem (Section 7.2.3) we replace

Glð pÞ by GT ð pÞ, the group of p� p nonsingular lower triangular matrices, for

which the theorem holds. As pointed out in Section 3.8 the explicit evaluation of

the maximal invariant under GT ð pÞ is not essential and the ratio of densities of a
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maximal invariant under GT ð pÞ is
ð
GT ð pÞ

½detS1��
ðN1�1Þ

2 ½detS2��
ðN2�1Þ

2

� exp � 1

2
trðS�1

1 gs1g
0 þ S

�1
2 gs2g

0Þ
� �Qp

1ðg2iiÞ
N � 2� i

2
dg

Ð
GT ð pÞ½detS1��

ðN�2Þ
2 exp � 1

2
trS

�1
1 ðgs1g0 þ gs2g

0Þ
� �Qp

1ðg2iiÞ
N � 2� i

2
dg

ð8:218Þ

where dg ¼ Q
i� j dgij; g ¼ ðgijÞ [ GT ð pÞ. Note that (Example 3.2.9) a left

invariant Harr measure on GT ð pÞ is
dgQp

1ðg2iiÞi=2
:

In what follows we write for a p� p nonsingular symmetric matrix A;A1=2

as a p� p lower triangular nonsingular matrix such that A1=2ðA1=2Þ0 ¼ A;
ðA1=2Þ�1 ¼ A�1=2. Let

G ¼ ðGijÞ ¼ S
�1=2
2 S1ðS�1=2

2 Þ0;

G� I ¼ f;V ¼ S
�1=2
2 S1S

�1=2
2 ; ð8:219Þ

D ¼
ð
GT ð pÞ

expf� 1
2
tr gðvþ IÞg0g

Yp

1

ðg2iiÞ
N � i� 2

2
dg:

Using (3.24) and (8.219) the ratio (8.218) can be written as

�RR ¼ D�1

ð
GT ð pÞ

ðdetGÞ12ðN2�1Þ expf� 1
2
trðgðvþ GÞg0Þg

Yp

1

ðg2iiÞ
N � i� 2

2
dg

¼ 1þ s

2
ðN2 � 1Þ � D�1

2

ð
GT ð pÞ

trðfgg0Þ expf� 1
2
tr gðvþ IÞg0g

�
Yp

1

ðg2iiÞ
N � i� 2

2
dgþ oðsÞ ð8:220Þ

¼ 1þ s

2
ðN2 � 1Þ � D�1

2

ð
GT

trðfgðI þ vÞ�1g0Þ expf� 1
2
tr gg0g

�
Yp
I

ðg2iiÞ
N � i� 2

2
dgþ oðsÞ:
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To prove the locally minimax result we first prove the following lemma whose

proof is straightforward and hence is omitted.

Lemma 8.7.1. Write GT ð pÞ ¼ GT . Let g ¼ ðgijÞ [ GT . Then

(a)
Ð
GT

gij expf� 1
2
tr gg0gQp

1ðg2iiÞN�i�2=2dg ¼ 0,

(b) D�1

ð
GT

gijgi0j0 expf� 1
2
tr gg0gQp

1ðg2iiÞN�i�2=2

dg ¼ 1; if ði; jÞ ¼ ði0; j0Þði = jÞ
0 if ði; jÞ = ði0; j0Þ;

�

(c) D�1
Ð
GT

g2ii expf� 1
2
tr gg0gQp

1ðg2iiÞN�i�2=2dg ¼ ðN � i� 1Þ,
(d) D�1

Ð
GT

gðI þ VÞ�1g0 expf� 1
2
tr gg0gQp

1ðg2ijÞN�i�2=2dg ¼ H where H ¼ ðhijÞ
is a diagonal p� p matrix with diagonal elements

dii ¼ ðN � i� 1ÞWii þ Sj,iWij

with W ¼ ðWijÞ ¼ ðI þ VÞ�1,

(e) let f ¼ ðfijÞ ¼ G� I,

D�1

ð
GT

trðfgg0Þ expf� 1
2
gðV þ IÞg0Þg

Yp

1

ðg2iiÞN�i�2=2dg

¼ S
p
1Wii½ðN � i� 1Þfii þ Sj.ifjj� ð8:221Þ

¼ sSp
1Wii½ðN � i� 1Þhii þ Sj.ihjj�;

where hjj ¼ fjj=s.

Theorem 8.7.6. For testing H0 : G ¼ I against H1 : s . 0, the LBI test is

locally minimax as s ! 0.

Proof. From (8.220), using Lemma 8.7.1 we get

ð
�RRjðdhÞ ¼ 1þ s

2
ðN2 � 1� S

p
1wii½ðN � i� 1Þh0

ii þ Sj.ih
0
jj�Þ þ oðsÞ ð8:222Þ

where h ¼ ðh11; . . . ;hppÞ and j assigns all measure to the single point h0 (say)

whose j-th coordinate is h0
jj ¼ ðN � 2� jÞ�1ðN � 1� jÞ�1ðN � 2ÞðN � 2� pÞ so

that

Sj.ih
0
jj þ h0

iiðN � 1� iÞ ¼ N � 2

p
: ð8:223Þ
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From (8.222) we get
ð
�RRjðdhÞ ¼ 1þ s

2

�
N2 � 1þ N � 2

p
tr s2ðs1 þ s2Þ�1

�
þ oðsÞ ð8:224Þ

where the term oðsÞ is uniform in w;h. From Theorem 8.7.5 it follows that the

power function of the level a LBI test is of the form aþ hðsÞ þ oðsÞ where
hðsÞ ¼ bs with b a positive constant. From Theorem 7.2.4 we prove the

result. Q.E.D.

For further relevant results of the test we refer the reader to Brown (1939) and

Mikhail (1962).

Example 8.7.1. Consider Example 5.3.1. Assume that the data pertaining to

1971, 1972 constitute two independent samples from two six-variate normal

populations with mean vectors, m1;m2 and positive definite covariance matrices

S1;S2, respectively. We are interested in testing H0 : S1 ¼ S2 when m1;m2 are

unknown. Here N1 ¼ N2 ¼ 27. From (8.190),

�2a log l ¼ 49:7890; b ¼ 0:0158; f ¼ 21;

since asymptotically

Pf�2a log l � zg ¼ Pfx2f � zg ¼ 1� a; ð8:225Þ
for

a ¼ 0:05; z ¼ 32:7; a ¼ 0:01; z ¼ 38:9:

Hence we reject the null hypothesis H0. Since the hypothesis is rejected our

method of solution of Example 7.2.1 is not appropriate. It is necessary to test the

equality of mean vectors when the covariance matrices are unequal, using the

Behrens-Fisher approach.

8.7.1. Test of Equality of Several Multivariate Normal

Distributions

Consider the problem as formulated in the beginning of Section 8.5. We are

interested in testing the null hypothesis

H0 : S1 ¼ � � � ¼ Sk; m1 ¼ � � � ¼ mk:

In Section 8.6 we tested the hypothesis m1 ¼ � � � ¼ mk, given that S1 ¼ � � � ¼ Sk,

and in this section we tested the hypothesis S1 ¼ � � � ¼ Sk. Let l1 be the

likelihood ratio test criterion for testing the null hypothesis m1 ¼ � � � ¼ mk given

that S1 ¼ � � � ¼ Sk and let l2 be the likelihood ratio test criterion for testing the

null hypothesis S1 ¼ � � � ¼ Sk when m1; . . . ;mk are unknown. It is easy to
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conclude that the likelihood ratio test criterion l for testing H0 is given by

l ¼ l1l2 ¼ NpN=2
Qk

i¼1ðdet siÞNi=2

ðdet bÞN=2Qk
i¼1 N

pNi=2
p

where

b ¼
Xk
i¼1

XNi

a¼1

Niðxij � x::Þðxij � x::Þ0 ¼
Xk
i¼1

si þ
Xk
i¼1

Niðxi: � x::Þðxi: � x::Þ0;

and the likelihood ratio test rejects H0 whenever

l � C;

where C depends on the level of significance a. The modified likelihood ratio test

of H0 rejects H0 whenever

w ¼ npn=2
Qk

i¼1ðdet siÞni=2
ðdet bÞn=2Qk

i¼1 n
pni=2
i

� C0

where C0 depends on level a. To determine C0 we need to find the probability

density function of W under H0. Using Box (1949), the distribution of W under

H0 is given by

Pf�2r logW � zg ¼ Pfx2f � zg þ v2½Pfx2fþ4 � zg� þ oðN�3Þ;
where

f ¼ 1
2
ðk � 1Þpð pþ 1Þ;

1� r ¼
Xk
i¼1

1

ni
� 1

n

 !
2p2 þ 3p� 1

6ðk � 1Þð pþ 3Þ
� �

þ p� k þ 2

nð pþ 3Þ ;

w2 ¼ p

288r2
6
Xk
i¼1

1

n2i
� 1

n2

 !
ð pþ 1Þð pþ 2Þð p� 1Þ

"

�
Xk
i¼1

1

ni
� 1

n

� �2ð2p2 þ 3p� 1Þ2
ðk � 1Þð pþ 3Þ � 12

Xk
i¼1

1

ni
� 1

n

 !

� ð2p2 þ 3p� 1Þð p� k þ 2Þ
nð pþ 3Þ � 36

ðk � 1Þð p� k þ 2Þ2
n2ð pþ 3Þ

� 12ðk � 1Þ
n2

ð�2k2 þ 7k þ 3pk � 2p2 � 6p� 4Þ
#
:
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Thus under H0 in large samples

Pf�2r logW � zg ¼ PfPx2f � zg:

8.8. COMPLEX ANALOG OF R 2-TEST

Let Z be a p-variate complex Gaussian random vector with a ¼ EðZÞ and

Hermitian positive definite complex covariance matrix S. Partition S as

S ¼ S11 S12

S
�
12 S22

� �
ð8:226Þ

where S22 is the ð p� 1Þ � ð p� 1Þ lower right-hand submatrix of S. Let

r2c ¼ S12S
�1
22 S

�
12=S11. Consider the problem of testing H0 : S12 ¼ 0 against H1 :

r2c . 0 on the basis of za;a ¼ 1; . . . ;NðN . pÞ observations from CNpða;SÞ.
The likelihood of z1; . . . ; szN is

Lðz1; . . . ; zNÞ ¼ p�NpðdetSÞ�N expf�tr S
�1ðAþ Nð�zz� aÞð�zz� aÞ�Þg; ð8:227Þ

where A ¼PN
1 ðza � �zzÞðza � �zzÞ�;N�zz ¼PN

1 za. Let A be partitioned similarly as

S. Using Theorem 5.3.4 we get

max
V

Lðz1; . . . ; zNÞ ¼ p�Np

�
det

�
A

N

���N

expf�Npg;

max
H0

Lðz1; . . . ; zNÞ ¼ p�Np

�
det

�
A11

N

���N

ðdetðA22

N
ÞÞ�N expf�Npg:

Hence

l ¼ maxH0
Lðz1; . . . ; zNÞ

maxV Lðz1; . . . ; zNÞ ¼
A11 � A12A

�1
22 A

�
12

A11

� �N

¼ ð1� R2
cÞN ð8:228Þ

where R2
c ¼ A12A

�1
22 A

�
22=A11. From (8.228) it follows that the likelihood ratio test

of H0 : S12 ¼ 0 rejects H0 whenever

R2
c � k ð8:229Þ

where the constant k depends on the level a of the test.

The problem of testing H0 against H1 : r
2
c . 0 is invariant under

transformations

ð�zz;A;a;SÞ ! ð�zzþ b;A; aþ b;SÞ
where b is any arbitrary complex p-column vector. The action of these

transformations is to reduce the problem to that where a ¼ 0 and A ¼PN
1 zaðzaÞ�
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is sufficient for S. In this formulation N has been reduced by 1 from what it was

originally. We consider this latter formulation where Za;a ¼ 1; . . . ;N are

independently and identically distributed CNpð0;SÞ to test H0 against H1. Let G

be the group of p� p nonsingular complex matrices g whose first row and first

column contain all zeroes except for the first element. The group G operating as

ðA;SÞ ! ðgAg�; gSg�Þ; g [ G leaves this testing problem invariant and a

maximal invariant under G is R2
c . The distribution of R2

c is given in Theorem

6.11.3. From this it is easy to conclude that the ratio of the pdf of R2
c under H1 to

that of R2
c under H0 is an increasing function of R

2
c for a given r

2
c . Hence we prove

the following theorem.

Theorem 8.8.1. The likelihood ratio test is uniformly most powerful invariant

for testing H0 : S12 ¼ 0 against H1 : r
2
c . 0.

In concluding this section we give some developments regarding the complex

multivariate general linear hypothesis which is defined for the complex

multivariate normal distributions in the same way as that for the multivariate

normal distributions. The distribution of statistics based on characteristic roots of

complex Wishart matrices is also helpful in multiple time series analysis (see

Hannan, 1970). The joint noncentral distributions of the characteristic roots of

complex Wishart matrices associated with the complex multivariate general

linear hypothesis model were given explicitly by James (1964) in terms of zonal

polynomials, whereas Khatri (1964a) expressed them in the form of integrals. In

the case of central complex Wishart matrices and random matrices connected

with the complex multivariate general linear hypotheses, the distribution of

extreme characteristic roots were derived by Pillai and Young (1970) and

Pillai and Jouris (1972). The noncentral distributions of the individual

characteristic roots of the matrices associated with the complex multivariate

general hypothesis and that of traces are given by Khatri (1964b, 1970). Khatri

and Bhavsar (1990) have obtained the asymptotic confidence bounds on location

parameters for linear growth curve model for multivariate complex Gaussian

random variables.

8.9. TESTS OF SCALE MATRICES IN Ep(m,S)

The presentation in this section is not a complete one. We include only a selected

few problems which are appropriate for our purpose. We refer to Kariya and

Sinha (1989) for more results.
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8.9.1. The Sphericity Test

Let X ¼ ðX1; . . . ;XNÞ0;X0
i ¼ ðXi1; . . . ;XipÞ be a N � pðN . pÞ random matrix

with pdf

fXðxÞ ¼ ðdetSÞ�N=2q
XN
i¼1

ðxi � mÞ0S�1ðxi � mÞ
� 

ð8:230Þ

where q is a function on ½0;1Þ of the sum of quadratic forms, m ¼
ðm1; . . . ;mpÞ0 [ Ep and S is positive definite. We are interested in testing H0 :
S ¼ S0 against the alternatives H1 : S = S0 with S0 a fixed positive definite

matrix and m;S are unknown. Transform X ! Y ¼ ðY1; . . . ; YNÞ0; Yi ¼ S
�1=2
0 Xi;

i ¼ 1; . . . ;N. Let S� ¼ S
�1=2
0 SðS�1=2

0 Þ0; n ¼ S
�1=2
0 m. The pdf of Y is

fY ðyÞ ¼ ðdetS�Þ�N=2qðSN
i¼1ðyi � nÞ0ðS�Þ�1ðyi � nÞÞ

¼ ðdetS�Þ�N=2qðtrðS�Þ�1ðAþ Nð�yy� nÞð �yy� nÞ0Þ
ð8:231Þ

where

A ¼
XN
i¼1

ðyi � �yyÞðyi � �yyÞ0 ¼ S
�1=2
0 sS

�1=2
0 ; s ¼

XN
i¼1

ðxi � �xxÞðxi � �xxÞ0;

N �yy ¼
XN
i¼1

yi ¼ NS
�1=2
0 �xx;N �xx ¼

XN
i¼1

xi:

ð8:232Þ

On the basis of Y the problem is transformed to testing H0 : S
� ¼ I. Under the

alternatives S
� = I. It is invariant under the affine group G ¼ ðOð pÞ;EpÞ of

transformations where Oð pÞ is the multiplicative group of p� p orthogonal

matrices and Ep is the translation group operating as

Yi ! gYi þ b; g [ Oð pÞ; b [ Ep; i ¼ 1; . . . ;N:

The induced transformation in the space of sufficient statistic ð �YY;AÞ is given by

ð�yy;AÞ ! ðg�yyþ b; gAg0Þ:
From Lemma 8.1.1 a maximal invariant in the space of ð �YY;AÞ under G is

R1; . . . ;Rp, the characteristic roots of A. A corresponding maximal invariant in

the parametric space is u1; . . . ; up, the characteristic roots of S
�
. In what follows

in this section we write R; u as diagonal matrices with diagonal elements

R1; . . . ;Rp, and u1; . . . ; up respectively. From (3.20) the probability ratio of the

maximal invariant R is given by ðO [ Oð pÞÞ
dPðRjuÞ
dPðRjIÞ ¼ qðtr RÞ

ð
Oð pÞ

ðdet uÞ�N=2qðtr u�1ORO0ÞdmðOÞ ð8:233Þ
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where dmðOÞ is the invariant probability measure on Oð pÞ. But

ðdet u�1ÞN=2 ¼ 1þ N

2
trðu�1 � IÞ þ oðtrðu�1 � IÞÞ

and (by (3.24))

qðtr u�1ORO0Þ ¼ qðtr RÞ þ ½tr½ðu�1 � IÞORO0Þ�qð1Þðtr RÞ

þ 1
2
½tr½ðu�1 � IÞORO0�2qð2ÞðzÞ

ð8:234Þ

where

z ¼ tr Rþ atrðu�1 þ IÞORO0

� tr Rð1þ dÞ

with 0 � a � 1; d ¼ trðu�1 � IÞ; qðiÞðxÞ ¼ ðdiqðxÞ=dxiÞ. From (3.20), (8.23 and

8.24) the probability ratio in (8.233) is evaluated as (assuming qð2ÞðxÞ � 0 for

all x)

1þ N

2
dþ

ð
Oð pÞ

qð1Þðtr RÞ
qðtr RÞ ½trðu�1 � IÞORO0�dmðOÞ þ oðdÞ

¼ 1þ d
qð1Þðtr RÞ
qðtr RÞ trðRÞ þ N

2

� �
þ oðdÞ:

ð8:235Þ

Using (8.233), the power function of any invariant level a test fðRÞ of H0 :
S
� ¼ I against H1 : S

� � I is positive definite, can be written as

aþ dEH0
fðRÞ trðRÞ qð1Þðtr RÞ

qðtr RÞ
� �

þ N

2

� �� �
þ oðdÞ ð8:236Þ

If xqð1ÞðxÞ=qðxÞ is a decreasing function of x, the second term in (8.236) is

maximized, by fðRÞ ¼ 1 whenever tr R . constant and fðRÞ ¼ 0 otherwise.

Thus we get the following theorem.

Theorem 8.9.1. If qð2ÞðxÞ � 0 for all x and xqð1ÞðxÞ=qðxÞ is a decreasing function
of x, the test which rejects H0 whenever tr S

�1
0 s � C, the constant C depends on

the level a of the test is LBI for testing H0 against H1 : S
� � I is positive definite

when d ¼ trðS��1 � IÞ ! 0.

From Section 8.1 it follows that the LBI test is locally minimax as d ! 0.
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8.9.2. The Sphericity Test

In the notations of Section 8.9.1 consider the problem of testing H0 : S ¼ s2S0

against the alternatives H1 : S = s2S0 on the basis of X with pdf (8.227) with

s2 . 0 unknown. In terms of Y1; . . . ; YN with Yi ¼ S
�1=2
0 Xi this problem

is reduced to testing H0 : S
� ¼ S

�1=2
0 SðS�1=2

0 Þ0 ¼ s2I against H1 : S
� ¼

s2V = s2I. From Theorem 5.3.6 and (8.231) we get

l ¼ maxH0
fY ðyÞ

maxV fY ðyÞ ¼
ðdetAÞN=2
tr A

p

� �Np=2
ð8:237Þ

Thus the likelihood ratio test rejects H0 whenever

tr A

tr A

p

� �p=2

2
4

3
5

N=2

� C ð8:238Þ

where the constant C depends on the level a of the test. This problem is invariant

under the affine group of transformation G ¼ Rþ � Ep � Oð pÞ (see (8.39))

transforming

Yi ! b0Yi þ a; i ¼ 1; . . . ;N ð8:239Þ
with b [ Rþ; a [ Ep and O [ Oð pÞ. From (3.27) and Theorem 8.2.3 the

probability ratio of a maximal invariant under G is given by

�RR ¼
Ð
Rþ

Ð
Oð pÞðdet uÞ�N=2ðb2Þ12ðNp�1Þqðb2trðu�1ORO0ÞÞdmðOÞdb

Ð
Rþ

Ð
Oð pÞðb2Þ

1
2
ðNp�1Þqðb2tr RÞdmð0Þdb

¼ ðdet uÞ�N=2

ð
0ð pÞ

ðtr u�1ORO0Þ�Np=2dmðOÞ ð8:240Þ

¼ ðdet uÞ�N=2

ð
0ð pÞ

ð1þ FÞ�Np=2dmðOÞ

where F ¼ trðu�1 � IÞORO0

tr R
. Using (3.24) we now expand ð1þ FÞ�Np=2 as

1� Np

2
F þ NpðNpþ 2Þ

8
F2 � NpðNpþ 2ÞðNpþ 4Þ

48
F3ð1þ aFÞ�ðNpþ6Þ

2

for 0 , a , 1. Since

u�1 � I � ðSp
i¼1ðu�1

i � 1ÞÞI
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we get the absolute value jFj , S
p
1ju�1

i � 1j. From (8.23–8.24) we can write

�RR ¼ 1þ 3NðNpþ 2Þ
8ðpþ 1Þ ½trðu�1 � IÞ2� tr A2

ðtr AÞ2
� �

þ oðtrðu�1 � IÞ2Þ: ð8:241Þ

Hence the power function of an invariant test fðRÞ of level a can be written as

aþ 3NðNpþ 2Þd2
8ð pþ 1Þ EH0

f
tr A2

ðtr AÞ2
� �

þ oðd2Þ ð8:242Þ

where d2 ¼ trðu�1 � IÞ2 ¼ trðV�1 � IÞ2. Hence we get the following theorem.

Theorem 8.9.2. For testing H0 : S
� ¼ s2I against H1 : S

� ¼ s2V = s2I the

test which rejects H0 for large values of tr A2=ðtr AÞ2 is LBI when d2 ! 0 for

all q.

It may be noted from (8.230) that the distributions of tr A2=ðtr AÞ2 under H0

and under H1 does not depend on a particular choice of q and hence they are the

same as under Npðm;SÞ (see Section 8.2). As concluded in Section 8.2 the LBI

test is also locally minimax.

8.9.3. Tests of S12 5 0

Let X ¼ ðX1; . . . ;XNÞ0;X0
i ¼ ðXi1; . . . ;XipÞ be a N � p random matrix with pdf

given (8.230). Let S;S be partitioned as

S ¼ S11 S12
S21 S22

� �
; S ¼ S11 S12

S21 S22

� �

where S11;S11 are 1� 1 and S ¼ S
N
i¼1ðXi � �XXÞðXi � �XXÞ0;N �XX ¼ S

N
i¼1Xi. We are

interested here to test the null hypothesis H0 : S12 ¼ 0. The multivariate normal

analog of this problem has been treated in Section 8.3 and the invariance of this

problem has been treated in Section 8.3.1. This problem remains invariant under

the group G of affine transformations

ðg; aÞ; g [ GBD; g ¼ gð11Þ 0

0 gð22Þ

� �
; gð11Þ

is 1� 1 and g is nonsingular, a [ Ep transforming

ð �XX; S;m;SÞ ! ðg �XX þ a; gSg0; gmþ a; gSg0Þ: ð8:243Þ
A maximal invariant in the space of ð �XX; SÞ is

R2 ¼ S�1
11 S12S

�1
22 S21; ð8:244Þ
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and a corresponding maximal invariant in the parametric space is

r2 ¼ S
�1
11 S12S

�1
22 S21. From Theorem 5.3.6 and (8.230)

maxH0
fXðxÞ

maxV fXðxÞ ¼
det s

ðdet s22Þs11

� �N=2
¼ ð1� R2ÞN=2: ð8:245Þ

Hence the likelihood ratio test rejects H0 whenever r2 � C, the constant C

depends on the level of significance a of the test. The distribution of R2 under H0

is the same as that of R2 in the multivariate normal case (6.86) with r20 ¼ 0. If q in

(8.230) is convex this test is uniformly most powerful invariant for testing H0

against H1 : r
2 . 0. The proof is similar to that of Theorem 8.3.4. We refer to

Giri (1988) and Kariya and Sinha (1989) for details and other relevent results.

8.10. TESTS WITH MISSING DATA

Until now we have discussed statistical inference when the same set of

measurements is taken on each observed individual event. In practice, however, it

is not always realized due to the inherent nature of the population samples (with

skeletal materials all observations can not be taken on each speciman) the nature

of the phase sampling employed (different subsets of measurements are taken on

different individual events for economical reasons) and etc.

Example 8.10.1. An Air Force Flight Dynamics Laboratory is conducting

experiments on pilot performance by changing keyboards in the cockpit of the

aircrafts on different flights. The aim of the experiments is to investigate which of

the keyboards is significantly better than the others. In these experiments, the

scores of the pilot, based on different variables such as pitch steering error, bank

steering error and so on, are measured. Situtions arise when a particular pilot may

be able to participate in experiments involving only some of the keyboards. Also

due to the malfunction of the measuring device the scores of certain pilots on

some keyboards may not be recorded or there may be unexpected environmental

condition like turbulence when some of the experiments are conducted. In order

to compare the keyboards the data conducted under similar environmental

conditions has to be used. Data collected under abnormal environmental

conditions should be discarded when comparing the keyboards. Situations, thus,

arise when some data are missing.

Example 8.10.2. In sample surveys when two types of questionnaires, one

partial and the other complete one, are distributed, the data contain additional

observations. It may also occur when we combine data from different agricultural

field experiments.
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In statistical literature missing data are referred to additional data. We will not

discuss further about missing/additional data. Instead we refer the readers to

Kariya, Krishnaiah and Rao (1983) for overviews of the subject and exhaustive

bibliography. We treat here two testing problems one for the mean vector and the

other for the covariance matrix to see the complications associated with this type

of problems.

Problem of Mean Vector

Consider the problem of testing H0 : m ¼ 0 against H1 : m = 0 on the basis of

a random sample ðX0
a; Y

0
aÞ;a ¼ 1; . . . ;NðN � pþ qþ 1Þ on Z ¼ ðX0; Y 0Þ0 with

X : p� 1; Y : q� 1 which is distributed as Npþqðm;SÞ. Write m ¼ ðm0
1;m

0
2Þ0 with

m1 : p� 1;m2 : q� 1, and

S ¼
S11 S12

S21 S22

 !

with S11 : p� p;S22 : q� q and an independent sample U1; . . . ;UM of size

M . pþ 1 on U which is distributed as Npðm1;S11Þ. The reduced set-up of the

problem in the canonical form is the following.

Let, j; j1; . . . ; jnðnþ 1 ¼ NÞ be independent ð pþ qÞ-dimensional normal

vectors with means EðjÞ ¼ d ¼ ðd01; d02Þ0;EðjiÞ ¼ 0; i ¼ 1; . . . ; n and common

nonsingular covariance matrix

S ¼
S11 S12

S21 S22

 !

where d1 : p� 1; d2 : q� 1. Let V;W1; . . . ;Wmðmþ 1 ¼ MÞ be independent

normal p-vectors with EðVÞ ¼ cd1;EðWiÞ ¼ 0; i ¼ 1; . . . ;m and a common

nonsigular covariance matrix S11. Obviously j ¼ ffiffiffiffi
N

p
�ZZ, d1 ¼

ffiffiffiffi
N

p
m1,

d2 ¼
ffiffiffiffi
N

p
m2, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM=NÞp
,
PM

i¼1 WiW
0
i ¼

PM
i¼1ðUi � �UUÞðUi � �UUÞ0 ¼ SUU (say)

where �UU ¼ M�1
PM

i¼1 Ui. Write ji ¼ ðj0i1; j0i2Þ0; i ¼ 1; . . . ; n and

Xn
i¼1

ji1j
0
i1 ¼

XN
a¼1

ðXa � �XXÞðXa � �XXÞ0 ¼ SXX;

Xn
i¼1

ji1j
0
i2 ¼

XN
a¼1

ðXa � �XXÞðYa � �YYÞ0 ¼ SXY ; ð8:246Þ

Xn
i¼1

ji2j
0
i2 ¼

XN
a¼1

ðYa � �YYÞðYa � �YYÞ0 ¼ SYY ;
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so that

Xn
i¼1

jij
0
i ¼

SXX SXY
SYX SYY

� �
:

For testing H0 : d ¼ 0 against H1 : d = 0 Hotelling’s T2-test based on

ðj; j1; . . . ; jnÞ rejects H0 whenever

j0 jj0 þ
Xn
i¼1

jij
0
i

 !�1

j � C ð8:247Þ

where C is a positive constant such that the level is a.
Eaton and Kariya (1975) derived the likelihood ratio test with additional data

and proved that there does not exist a locally most powerful invariant test for this

problem. Bhargava (1975) derived the likelihood ratio test for a more general

form of missing data and discussed its null distribution. The likelihood ratio test

is not very practical because of its very complicated distribution even under H0.

We will show that the Hotelling’s T2 test given in (8.247) is admissible in the

presence of additional information given by V;W1; . . . ;Wm.

The joint distribution of j’s , W’s and V is given by

ð2pÞ�1
2
ððMþNÞpþMqÞjSj�N

2 jS11j�M
2

� exp � 1

2
ðd0S�1dþ c2d01S

�1
11 d1Þ

� �
ð8:248Þ

� exp � 1

2
tr S

�1 jj0 þ
Xn
i¼1

jij
0
i

 !
þ S

�1
11 vv0 þ

Xm
i¼1

wiw
0
i

 !" #( )
:

Following Stein (1956) we conclude from (8.248) that it is an exponential family

ðx;m; u;PÞ where x is the ð1
2
ð pþ qÞð pþ qþ 1Þ þ 1

2
pð pþ 1Þ þ 2pþ qÞ-dimen-

sional space of ðs; s�; j; vÞ where s ¼Pn
i¼1 jij

0
i is a ð pþ qÞ � ð pþ qÞ matrix,

s� ¼Pm
i¼1 wiw

0
i is a p� p matrix and j; v are pþ q- and q-dimensional vectors

respectively. The measure m is given by

mðAÞ ¼ nð f�1ðAÞÞ
where the function f : the original sample space ! x, and is defined by

f ðj; j1; . . . ; jn; v;w1; . . . ;wmÞ

¼ jj0 þ
Xn
i¼1

jij
0
i; vv

0 þ
Xm
i¼1

wiw
0
i; j; n

 !
:

ð8:249Þ
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The adjoint space x0 has the element

ðG;G�;h;h�Þ
with G a ð pþ qÞ � ð pþ qÞ symmetric positive definite matrix, G� a p� p

symmetric positive definite matrix and h;h�ð pþ qÞ- and p-dimensional vectors

respectively and is defined by

ðG; g�;h;h0Þðs; s�; j; vÞ ¼ � 1

2
trðGsþ G�s� þ h0jþ ch�0nÞ: ð8:250Þ

The elements G;G�;h;h� make the parameter space Q. The correspondence

between this designation of the parameter point and the one in terms of

ðS;S11; d; d1Þ is given by

G ¼ S
�1; G� ¼ S

�1
11 ; h ¼ S

�1d; h� ¼ S
�1
11 d1: ð8:251Þ

The element ðG;G�; 0; 0Þ constituteQ0. Finally (as in Stein (1956)) the function P

is given by

PG;G�;h;h� ðAÞ ¼ 1

cðG;G�;h;h�Þ
ð
A

exp½ðG;G�;h;h�Þðs; s�; j; vÞ�dmðs; s�; j; vÞ

with

cðG;G�;h;h�Þ ¼
ð
x

exp½ðG;G�;h;h�Þðs; s�; j; vÞ�dmðs; s�j; vÞ:

Now writing in terms of the elements of x the acceptance region of Hotelling’s T2

test based on j; j1; . . . ; jn is given by

fðs; s�; j; vÞ : j0s�1j � kg ð8:252Þ
where the constant k depends on the size a of the test.

Theorem 8.10.1. For testing H0 : d ¼ 0 against H1 : d = 0,Hotelling’s T2 test

with the acceptance region (8.252) is admissible.

Proof. The set (2.852) is equivalent to the set A which is the intersection of half

spaces of the form

ðs; s�; j; vÞ : h0j� 1

2
tr hh0s � k

2

� �
ðð8:253Þ

and

ðs; s�; j; vÞ : � 1

2
tr hh0s � 0

� �
: ðð8:254Þ
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These two sets can also be written as

ðhh0; 0;h; 0Þðs; s�; j; vÞ � k

2
; ð8:255Þ

ðhh0; 0; 0; 0Þðs; s�; j; vÞ � 0; ð8:256Þ
Thus if z ¼ ðG;G�;h;h�Þ is any point in x0 for which

fðs; s�; j; nÞ : ðG;G�;h;h�Þðs; s�; j; nÞ . kg> A ¼ f ðnull setÞ;
then it follows (see Stein (1956)) that z must be a limit of positive linear

combination of elements of the type (8.255) or (8.256). This yields, in particular,

that G is a positive definite matrix, G� is a null matrix and h� is a null vector.

Choose a parameter point u1; u1 ¼ ðGð1Þ;G�;hð1Þ;h�ð1ÞÞ with h�ð1Þ = 0. Then it

follows that for any l . 0;Gð1Þ þ lG is positive definite and for safficiently large

l;hð1Þ þ lh is different from a null vector. Hence

u1 þ lz ¼ ðGð1Þ þ lG;G�ð1Þ;hð1Þ þ lh;h�ð1ÞÞ [ Q�Q0:

The proof is completed by applying Stein’s theorem (1955). Q.E.D.

Note This admissible test ignores additional observations. Sinha, Clement and

Giri (1985) obtained other admissible tests depending also on additional data by

using the Bayes approach of Kiefer and Schwartz (1963) and compared their

power functions.

Problem of Covariance Matrix

Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ; n be independently identically distrib-

uted p-variate normal random variable with mean 0 and positive definite

covariance matrix S. For each a;Xa is partitioned as

Xa ¼ ðXa0
1 ;X

a0
2 ;X

a0
3 Þ0

where Xa
i is a subvector of dimension pi with p1 ¼ 1; p1 þ p2 þ p3 ¼ p.

In addition consider vector Ya
i ; i ¼ 1; 2;a ¼ 1; . . . ; ni that are independent

and distributed as X1
i . We treat here the problem of testing independence of X1

1

and X1
3 ðS13 ¼ 0Þ knowing that X1

1;X
1
2 are independent ðS12 ¼ 0Þ. Write

X ¼
Xn
a¼1

XaXa0;

Wi ¼
Xni
a¼1

Ya
i Y

a0
i ; i ¼ 1; 2:

ð8:257Þ
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Partition

S ¼
S11 S12 S13
S21 S22 S23
S31 S32 S33

0
@

1
A; S ¼

S11 S12 S13

S21 S22 S23

S31 S32 S33

0
@

1
A ð8:258Þ

with Sii;Sii are both pi � pi submatrices. The matrices S;W1;W2 are independent

Wishart matrices and they form a sufficient statistic. The pair ðW1;W2Þ is what we
call additional information. We will assume S to be of the form (8.258) with

S12 ¼ 0 and want to test H0 : S13 ¼ 0 against H1 : S13 = 0 on the basis of

ðS;W1;W2Þ. This problem was treated by Perron (1991). The likelihood ratio test

for testing H0 against H1 rejects H0 whenever

R ¼ n� p2

p3

� �
S13:2S

�1
33:2S31:2

S11:2
ð8:259Þ

is large where

Sij�k ¼ Sij � SikS
�1
kk Skj:

This test statistic does not take into account the additional data. When no

additional data is available the locally best invariant test (Giri (1979)) rejects H0

whenever

f1 ¼ ðR� 1Þ n

n� p2

� �
S11:2

S11
ð8:260Þ

is large. We find here the locally best invariant test of H0 against H1 when

additional data is available which uses ðW1;W2Þ. Eaton and Kariya (1983) have

shown that when p1 � 1, p2 ¼ 0 and W3 is Wishart Wp3 ðn3;S33Þ the locally best

invariant test of H0 against H1 rejects H0 whenever

f2 ¼
ðnþ n2Þðnþ n3Þ

p1p3
trfðS11 þW1Þ�1S13ðS33 þW3Þ�1S31g

�
X
i¼1;3

nþ ni

pi
trðSii þWiÞ�1Sii

ð8:261Þ

is large.

Let G be the group of transformations given by

G ¼ g ¼
g11 0 0

0 g22 0

0 g32 g33

0
@

1
A; g [ G‘ð pÞ; gii [ G‘ð piÞ; i ¼ 1; 2; 3

8<
:

9=
;:
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Corresponding to g [ G the transformation on the sufficient statistic ðS;W1;W2Þ
and S are given by

ðS;W1;W2Þ ! ~ggðS;W1;W2Þ ¼ ðgSg0; g211W1; g22W2g
0
22Þ;

S ! gSg0
ð8:262Þ

where ~gg is the induced transformation on the sufficient statistic corresponding to

g [ G. A maximal invariant in the parameter space is given by

r ¼ S
�1
11 S13S

�1
33:2S31: ð8:263Þ

Since the power function of any invariant test is constant on each orbit of the

parametric space of S, there is no loss of generality in working on a class of its

representatives instead of working on the original parametric space. Let

AðdÞ ¼
1 0 dD0

0 I 0

dD 0 I

0
@

1
A ð8:264Þ

with D ¼ ð0; 0; . . . ; 0; 1Þ0. The set fAðdÞ; d [ ½0; 1Þg consists of a class of

representatives for the orbits of the parameter space and rðAðdÞÞ ¼ d2. We will

show in Theorem 8.10.2 below that the locally best invariant test, of H0 : d ¼ 0

against H1 : d ¼ l as l ! 0, rejects H0 whenever

f3 ¼
ðn� p2Þ
ðnþ n1Þ ð1� RÞ S11:2

ðS11 þW1Þ ð8:265Þ

is large.

Note that the statistic f3 is the product of two factors. The first factor is

equivalent to the likelihood ratio test statistic and it essentially measures the

multiple correlation between X1 and X3 after removing the effect of X2, where

X ¼
X10
..
.

Xn0

0
@

1
A ¼ ðX1;X2;X3Þ

with Xi n� pi submatrices. The second factor is the ratio of two estimates of S11.

The additional data is used to get an improved estimator in the denominator.

Giri’s test (Giri, 1979) has n1 ¼ 0;W1 ¼ 0. The second factor provides a measure

of orthogonality with X1 and the columns of X2. The fact that this test is locally

most powerful suggests that as X1 becomes more nearly orthogonal to the
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columns of X2, the first factor becomes more effective in detecting near-zero

correlation. The test f3 does not involve Y2. In this context we note that Giri’s test

uses X2 only through the projection matrix X2ðX0
2X2Þ�1X0

2 which contains no

information on S22. It is not surprising that additional information on S22 is

ignored.

Using Theorem 3.9.1 the ratio �RR of the probability densities of the maximal

invariant (under G) under H1 to that under H0 is given by

�RR ¼ rðd; s;w1;w2Þ
rðo; s;w1;w2Þ ð8:266Þ

where

rðd; s;w1;w2Þ ¼
ð
f ð~ggðs;w1;w2ÞjAðdÞÞlðdgÞ;

lðdgÞ is a left invariant measure on G and f ð�jSÞ is the joint probability density

function of ðS;W1;W2Þ with respect to an invariant measure m when the

parameter is S. The measures l and m are unique up to a multiplicative constant.

Let

lðdgÞ ¼ jg33g033j�
p2
2

Y2
i¼1

lpiðdgiiÞ ð8:267Þ

and

mðdðs;w1;w2ÞÞ ¼ mpðdsÞmp1
ðdw1Þmp2

ðdw2Þ ð8:268Þ

where lqðdhÞ ¼ jhh0j�q
2dh is a left-invariant measure on the space of all q� q

matrices h and mqðdwÞ ¼ jwj�ðqþ1Þ
2

Q
i;j dwij is an invariant measure on the space of

all q� q positive definite matrices w ¼ ðwijÞ. The joint probability density of

ðs;w1;w2Þ with respect to the measure m is given by

f ðs;w1;w2jSÞ ¼ KjS�1
sj12n

Y2
i¼1

jS�1
ii wij12ni

� exp � 1

2
tr S

�1
sþ

X2
i¼1

tr S
�1
ii wi

 !( ) ð8:269Þ

where K is the normalizing constant independent of S.
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Theorem 8.10.2.

(a) �RR ¼ ð1� d2Þ12nð1þ nþ n1

2
þ n� p2

2
ðR� 1Þ nþ n1

n� p2

s11:2

s11 þ w1

þ oðd3ÞÞ.
(b) The locally best invariant test of H0 against H1 : d

2 ¼ l as l ! 0 rejects

H0 whenever f3 is large.

Proof.

(a) From (8.269)

f ð�ggðs;w1;w2ÞjAðdÞÞ

¼ Kð1� d2Þn2jsjn2jw1j
n1
2 jw2j

n2
2

� ðg211Þ
1
2
ðn1þn2Þjg22g022j

1
2
ðnþn2Þjg33g033j

1
2
n

� exp � 1

2
½fs11 þ ð1� d2Þw1gg211 þ trfg22ðs22 þ w2Þg022g

�

þ tr g33s33g
0
33 þ tr g32s22g

0
32 þ 2tr g32s23g

0
33

þ 2dg11D
0g32s21 þ 2dg11D

0g32s21 þ 2dg11D
0g33s31�

�
:

Let

h32 ¼ ðg32 þ g33s32s
�1
22 þ dDg11s12s

�1
22 Þs

1
2

22

hii ¼ giivi;

v1 ¼ ðs11 þ w1Þ12;

v2 ¼ ðs22 þ w2Þ12;

v3 ¼ s
1
2

33:2;

lðdgÞ ¼ js22j�1
2
p3lðdhÞ:
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Then, with z ¼ s
�1=2
11 w1 and r1 ¼ s12s

�1
22 s21s

�1
11 , we get

rðd; s;w1;w2Þ

¼ Kð1� d2Þn=2jsjn=2js22j�1
2
p3v

�ðnþn1Þ
1 jv�ðnþn2Þ

2

� jv3j�nw
1
2
n1
1 jw2j12n2

ð
G

ðh211Þ
1
2
ðnþn1Þjh22h022j

1
2
ðnþn2Þ

� jh33h033j
1
2
ðn�p2Þ exp½� 1

2
fh211 þ tr h22h

0
22 þ tr h33h

0
33

þ tr h32h
0
32 þ 2dD0h33v�1

3 s31:2v
�1
1 h11 � 2d2h211s11v

�2
1 ðr1 þ zÞg�

lðdhÞ:

Integrating over h22; h32 and expanding the exponential close to zero we get

rðd; s;w1;w2Þ

¼ ð1� d2Þn=2bðs;w1;w2Þ

�
�ð

G‘ð p1Þ

ð
G‘ð p3Þ

½1� D0h33v�1
3 s31:2v

�1
1 h11d

1
2
fðD0h33v�1

3 s31:2Þ2 þ s11ðr1 þ zÞgd2v�2
1 h211�

� ðh211Þ
1
2
ðnþn1Þjh33h033j

1
2
ðn�p3Þ

� exp½� 1
2
fh211 þ tr h33h

0
33g�lp1 ðdh11Þlp3 ðdh33Þ

�

þ Qðd; s;w1;w2Þ;

where Q ¼ oðd3Þ uniformly in s, w1, w2 and b is a function depending only

on s;w1;w2.

We now decompose G‘ð pÞ ¼ GT ð pÞ � Oð pÞ where GT ð pÞ is the group

of p� p nonsingular lower triangular matrices and Oð pÞ is the group of

p� p orthogonal matrices. Write g ¼ to; g [ G‘ð pÞ; t [ GT ð pÞ; o [ Oð pÞ.
According to this decomposition we can write lpðdgÞ ¼ tpðdtÞ � npðdoÞ
where tp, is a left-invariant measure on GT ð pÞ and np is a left invariant

probability measure on Oð pÞ. Using James (1954) we get, for A a p� p
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matrix,

ð
Oð pÞ

trðAOÞnpðdOÞ ¼ 0;

ð
Oð pÞ

tr2ðAOÞnpðdOÞ ¼ trðAA0Þ=p:

Hence

rðd; s;w1;w2Þ

¼ ð1� d2Þn=2bðs;w1;w2Þ

�
ð
GT ð p1Þ

ð
GT ð p3Þ

1þ 1
2

D0T33T 0
33Dr2

p3
þ zþ r1

� ���

� ð1þ zÞ�1T2
11d

2gTnþn1
11 jT33jn�p2

� exp½� 1
2
fT2

11 þ trðT33T 0
33Þgtp1 ðdT1Þtp3 ðdT33Þ þ oðd3Þ�:

Using the Bartlett decomposition of a Wishart matrix (Giri, 1996) we obtain

rðd; s;w1;w2Þ
rð0; s;w1;w2Þ

¼ ð1� d2Þ 1þ 1
2
E

D0U1Dr2

p3
þ zþ r1

� ��

U2ð1þ zÞ�1d2 þ oðd3Þ
�

¼ ð1þ d2Þn=2 1þ nþ n1

2ð1þ zÞ
n� p2

p3
r2 þ zþ r1

� �
d2 þ oðd3Þ

� �

¼ ð1þ d2Þn=2 1þ nþ n1

2
þ n� p2

2
ðr � 1Þ



þ nþ n1

n� p2

s11:2

ðs11 þ w1Þ þ oðd3Þ
�
;

where U1 is Wp1 ðI; n� p2Þ, U2 is x2n1þn2
with R2 ¼ S13:2S

�1
33:2S31:2S

�1
11 ,

R ¼ ððn� p2Þ=p3Þ ðR2=ð1� R1ÞÞ.
Part (b) follows from part (a). Q.E.D.
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EXERCISES

1 Prove (8.3).

2 Prove (8.17).

3 Prove (8.18), (8.21b) and (8.21c).

4 Show that if h and z are ð p� mÞ matrices and t is a p� p positive definite

matrix, then (Emp, Euclidean space of dimension mp)

(a)
Ð
Emp

expf� 1
2
trðthh0 � 2zh0Þgdh ¼ Cðdet tÞ�m=2 expf� 1

2
trðt�1zz0Þg where

C is a constant.

(b) Show that

ð
Emp

½detðI þ hh0Þ��h=2dh , 1

if and only if h . mþ p� 1.

5 (a) Let X be a random variable such that X=uðu . oÞ has a central chi-square
distribution with m degrees of freedom. Then show that for r . 0

bðuÞ ¼ PfXr expf� 1
2
Xg � Cg

satisfies

dbðuÞ
du

.
¼
,

8<
:

9=
;0 according as u

,
¼
.

8<
:

9=
;
2r

m
:

(b) Let Y be a random variable such that dYðd . 0Þ is distributed as a central
F-distribution with ðn1 � 1; n2 � 1Þ degrees of freedom, and let

bðdÞ ¼ P
Yn1

ð1þ YÞn1þn2
� kjd

� �
:

Assuming that n1 , n2, show that there exists a constant lð, 1Þ
independent of k such that

bðdÞ . bð1Þ
for all d lying between l and 1.

6 Prove Theorem 8.3.4.

7 (a) Let A;B be defined as in Section 8.6. Show that the roots of detðA�
lBÞ ¼ 0 comprise a maximal invariant in the space of ðA;BÞ under Glð pÞ
transforming ðA;BÞ ! ðgAg0; gBg0Þ; g [ Glð pÞ.

(b) Show that if r þ ðN � sÞ . p, the p� p matrix Aþ B is positive definite

with probability 1.
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(c) Show that the roots of detðA� lBÞÞ ¼ 0 also comprise a maximal

invariant in the space of ðA;BÞ under Glð pÞ.
8 Show that for the transformation given in (8.137) the Jacobian of the

transformation ðA;CÞ ! ðW;VÞ is

2pðdetWÞpþ2
Y
i,j

ðVi � VjÞ:

9 (Two-way classifications with K observations per cell). Let Xijk ¼
ðXijk1; . . . ;XijkpÞ0; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; k ¼ 1; . . . ;K, be independently

normally distributed with

EðXijkÞ ¼ mþ ai þ bj þ lij; covðXijkÞ ¼ S

where m ¼ ðm1; . . . ;mpÞ0; ai ¼ ðai1; . . . ;aipÞ0; bj ¼ ðbj1; . . . ;bjpÞ0; lij ¼
ðlij1; . . . ; lijpÞ0; S is positive definite, and

S
I
i¼1ai ¼ S

J
j¼1bj ¼ S

I
i¼1lij ¼ S

J
j¼1lij ¼ 0:

Assume that p � IJðK � 1Þ.
(a) Show that the likelihood ratio test of H0 : ai ¼ 0 for all i rejects H0

whenever

u ¼ det b= detðaþ bÞ � C;

where C is a constant depending on the level of significance, and

b ¼ S
I
i¼1S

J
j¼1S

K
k¼1ðxijk � xij:Þðxijk � xij:Þ0

a ¼ JKS
I
i¼1ðxi:: � x:::Þðxi:: � x:::Þ0

xij: ¼ 1

K
S
K
k¼1xijk, xi:: ¼

1

JK
Sj;kxijk, x::: ¼ 1

IJK
Si;j;kxijk, and so forth.

(b) Find the distribution of the corresponding test statistic U under H0.

(c) Test the hypothesis H0 : b1 ¼ � � � ¼ bJ ¼ 0.

10 Let Xj denote the change in the number of people residing in Montréal,

Canada from the year j to the year jþ 1, who would prefer to live in

integrated neighborhoods, j ¼ 1; 2; 3. Suppose X ¼ ðX1; . . . ;X3Þ0 with

EðXÞ ¼ zb where

z ¼
1 0

0; 1

1; 1

0
@

1
A; b ¼ b1

b2

� �
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of unknown quantities b1;b2 and

covX ¼ s2
1 r r
r 1 r
r r 1

0
@

1
A; � 1

2
, r , 1:

Let X ¼ ð�4; 6; 2Þ0.
(a) Estimate b.
(b) If r ¼ 0, estimate b and s2.

11 Let A be a positive definite matrix of dimension p� p and D;D� be two

diagonal matrices of dimension p� p such that D� � D is positive

semidefinite and D is positive definite. Then show that the ith characteristic

root satisfies

xðADA0Þ � xðAD�A0Þ for i ¼ 1; . . . ; p: ð8:270Þ
12 Anderson and Das Gupta (1964a). Let X be a p� nðn � pÞ random matrix

having probability density function

fXðxjSÞ ¼ ð2pÞ�np=2ðdetSÞ�n=2 expf� 1
2
tr S

�1
xx0g; ð8:271Þ

where S is a symmetric positive definite matrix.

(a) Show that the distribution of the characteristic roots of XX0 is the same as

the distribution of the characteristic roots of ðDYÞðDYÞ0 where Y is a p� n

random matrix having the probability density function f with S ¼ I, and

D is a diagonal matrix with diagonal elements u1; . . . ; up, the

characteristic roots of S.
(b) Let C1 � C2 � � � � � Cp be the characteristic roots of XX

0 and let v be a

set in the space of ðC1; . . . ;CpÞ such that when a point ðC1; . . . ;CpÞ is in
v, so is every point ðC1; . . . ; �CCpÞ for which �CCi � Ciði ¼ 1; . . . ; pÞ. Then
show that the probability of the set v depends on S only through

u1; . . . ; up and is a monotonically decreasing function of each ui.

13 Analyze the data in Table 8.2 pertaining to 10 double crosses of barley which

were raised in Hissar, India during 1972. Column indices run over different

crosses of barley; the row indices run over four different locations. The

observation vector has four components ðx1; . . . ; x4Þ,
x1 plant height in centimeters,

x2 average number of grains per ear,

x3 average yield in grams per plant,

x4 average ear weight in grams.

14 Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be independently normally dis-

tributed with mean m and positive definite covariance matrix S. On the basis
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of observations xa on Xa find the likelihood ratio test of H0 : S ¼ S0;m ¼ m0

where S0 is a fixed positive definite matrix and m0 is also fixed. Show that the

likelihood ratio test is unbiased for testing H0 against the alternatives

H1 : S = S0;m = m0.

15 Let Xij ¼ ðXij1; . . . ;XijpÞ0; j ¼ 1; . . . ;Ni be a random sample of size Ni from a

p-variate normal population with mean mi and positive definite covariance

matrix Si; i ¼ 1; . . . ; k. On the basis of observations on the Xij, find the

likelihood ratio test of H0 : Si ¼ s2Si0; i ¼ 1; . . . ; k, when the Si0 are fixed

positive definite matrices and m1; . . . ;mk;s
2 are unknown. Show that both

the likelihood ratio test and the modified likelihood ratio test are unbiased for

testing H0 against H1 : Si = s2Si0; i ¼ 1; . . . ; k.
16 Prove (8.162).
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9
Discriminant Analysis

9.0. INTRODUCTION

The basic idea of discriminant analysis consists of assigning an individual or a

group of individuals to one of several known or unknown distinct populations, on

the basis of observations on several characters of the individual or the group and a

sample of observations on these characters from the populations if these are

unknown. In scientific literature, discriminant analysis has many synonyms, such

as classification, pattern recognition, character recognition, identification,

prediction, and selection, depending on the type of scientific area in which it is

used. The origin of discriminant analysis is fairly old, and its development

reflects the same broad phases as that of general statistical inference, namely, a

Pearsonian phase followed by Fisherian, Neyman-Pearsonian, and Waldian

phases.

Hodges (1950) prepared an exhaustive list of case studies of discriminant

analysis, published in various scientific literatures. In the early work, the problem

of discrimination was not precisely formulated and was often viewed as the

problem of testing the equality of two or more distributions. Various test statistics

which measured in some sense the divergence between two populations were

proposed. It was Pearson (see Tildesley, 1921) who first proposed one such

statistic and called it the coefficient of racial likeness. Later Pearson (1926)

published a considerable amount of theoretical results on this coefficient of racial

435



likeness and proposed the following form for it:

N1N2

N1 þ N2

ð�xx� �yyÞ0s�1ð�xx� �yyÞ

on the basis of sample observations xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N1, from the

first distribution, and ya ¼ ðya1; . . . ; yapÞ0;a ¼ 1; . . . ;N2; from the second

distribution, where the components characterizing the populations are dependent

and

�xx ¼ 1

N1

XN1

a¼1

xa; �yy ¼ 1

N2

XN2

a¼1

ya;

s ¼
XN1

a¼1

ðxa � �xxÞðxa � �xxÞ0 þ
XN2

a¼1

ðya � �yyÞðya � �yyÞ0:

The coefficient of racial likeness for the case of independent components was

later modified by Morant (1928) and Mahalanobis (1927, 1930). Mahalanobis

called his statistic the D 2-statistic. Subsequently Mahalanobis (1936) also

modified his D 2-statistic for the case in which the components are dependent.

This form is successfully applied to discrimination problems in anthropological

and craniometric studies. For this problem Hotelling (1931) suggested the use of

the T 2-statistic which is a constant multiple of Mahalanobis’ D 2-statistic in the

Studentized form, and obtained its null distribution. For a comprehensive review

of this development the reader is referred to Das Gupta (1973).

Fisher (1936) was the first to suggest a linear function of variables

representing different characters, hereafter called the linear discriminant function

(discriminator) for classifying an individual into one of two populations. Its early

applications led to several anthropometric discoveries such as sex differences in

mandibles, the extraction from a dated series of the particular compound of

cranial measurements showing secular trends and solutions of taxonomic

problems in general. The motivation for the use of the linear discriminant

function in multivariate populations came from Fisher’s own idea in the

univariate case.

For the univariate case he suggested a rule which classifies an observation x

into the ith univariate population if

jx� �xxij ¼ minðjx� �xx1j; jx� �xx2jÞ; i ¼ 1; 2;

where �xxi, is the sample mean based on a sample of size Ni from the ith population.

For two p-variate populations p1 and p2 (with the same covariance matrix) Fisher

replaced the vector random variable by an optimum linear combination of its

components obtained by maximizing the ratio of the difference of the expected

values of a linear combination under p1 and p2 to its standard deviation. He then
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used his univariate discrimination method with this optimum linear combination

of components as the random variable.

The next stage of development of discriminant analysis was influenced by

Neyman and Pearson’s fundamental works (1933, 1936) in the theory of

statistical inference. Advancement proceeded with the development of decision

theory. Welch (1939) derived the forms of Bayes rules and the minimax Bayes

rules for discriminating between two known multivariate populations with the

same covariance matrix. This case was also considered by Wald (1944) when the

parameters were unknown; he suggested some heuristic rules, replacing the

unknown parameters by their corresponding maximum likelihood estimates.

Wald also studied the distribution problem of his proposed test statistic. Von

Mises (1945) obtained the rule which maximizes the minimum probability of

correct classification. The problem of discrimination into two univariate normal

populations with different variances was studied by Cavalli (1945) and Penrose

(1947). The multivariate analog of this was studied by Smith (1947).

Rao (1946, 1947a,b, 1948, 1949a,b, 1950) studied the problem of

discrimination following the approaches of Neyman-Pearson and Wald. He

suggested a measure of distance between two populations, and considered the

possibility of withholding decision though doubtful regions and preferential

decision. Theoretical results on discriminant analysis from the viewpoint of

decision theory are given in the book by Wald (1950) and in the paper by Wald

and Wolfowitz (1950). Bahadur and Anderson (1962) also considered the

problem of discriminating between two unknown multivariate normal

populations with different covariance matrices. They derived the minimax rule

and characterized the minimal complete class after restricting to the class of

discriminant rules based on linear discriminant functions. For a complete

bibliography the reader is referred to Das Gupta (1973) and Cacoullos (1973).

9.1. EXAMPLES

The following are some examples in which discriminant analysis can be applied

with success.

Example 9.1.1. Rao (1948) considered three populations, the Brahmin,

Artisan, and Korwa castes of India. He assumed that each of the three populations

could be characterized by four characters—stature ðx1Þ, sitting height ðx2Þ, nasal
depth ðx3Þ, and nasal height ðx4Þ—of each member of the population. On the basis

of sample observations on these characters from these three populations the

problem is to classify an individual with observation x ¼ ðx1; . . . ; x4Þ0 into one of
the three populations. Rao used a linear discriminator to obtain the solution.
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Example 9.1.2. On a patient with a diagnosis of myocardial infarction,

observations on his systolic blood pressure ðx1Þ, diastolic blood pressure ðx2Þ,
heart rate ðx3Þ, stroke index ðx4Þ, and mean arterial pressure ðx5Þ are taken. On the
basis of these observations it is possible to predict whether or not the patient will

survive.

Example 9.1.3. In developing a certain rural area a question arises regarding

the best strategy for this area to follow in its development. This problem can be

considered as one of the problems of discriminant analysis. For example, the area

can be grouped as catering to recreation users or attractive to industry by means

of variables such as distance to the nearest city ðx1Þ, distance to the nearest major

airport ðx2Þ, percentage of land under lakes ðx3Þ, and percentage of land under

forests ðx4Þ.

Example 9.1.4. Admission of students to the state-supported medical program

on the basis of examination marks in mathematics ðx1Þ, physics ðx2Þ, chemistry

ðx3Þ, English ðx4Þ, and bioscience ðx5Þ is another example of discriminant

analysis.

9.2. FORMULATION OF THE PROBLEM OF DISCRIMINANT

ANALYSIS

Suppose we have k distinct populations p1; . . . ;pk. We want to classify an

individual with observation x ¼ ðx1; . . . ; xpÞ0 or a group of N individuals with

observations xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, on p different characters,

characterizing the individual or the group, into one of p1; . . . ;pk. When

considering the group of individuals we make the basic assumption that the group

as a whole belongs to only one population among the k given. Furthermore, we

shall assume that each of the pi can be specified by means of the distribution

function Fi (or its probability density function fi with respect to a Lebesgue

measure) of a random vector X ¼ ðX1; . . . ;XpÞ0, whose components represent

random measurements on the p different characters. For convenience we shall

treat only the case in which the distribution possesses a density function, although

the case of discrete distributions can be treated in almost the same way.

We shall assume that the functional form of Fi, for each i, is known and that

the Fi are different for different i. However, the parameters involved in Fi may be

known or unknown. If they are unknown, supplementary information about these

parameters is obtained through additional samples from these populations. These

additional samples are generally called training samples by engineers.

Let us denote by E p the entire p-dimensional space of values of X. We are

interested here in prescribing a rule to divide E p into k disjoint regions R1; . . . ;Rk
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such that if x (or xa;a ¼ 1; . . . ;N) falls in Ri, we assign the individual (or the

group) to pi. Evidently in using such a classification rule we may make an error

by misclassifying an individual to pi when he really belongs to pjði = jÞ. As in
the case of testing of statistical hypotheses ðk ¼ 2Þ, in prescribing a rule we

should look for one that controls these errors of misclassification. Let the cost

(penalty) of misclassifying an individual to pj when he actually belongs to pi be

denoted by Cð jjiÞ. Generally the Cð jjiÞ are not all equal, and depend on the

relative importance of these errors. For example, the error of misclassifying a

patient with myocardial infarction to survive is less serious than the error of

misclassifying a patient to die. Furthermore, we shall assume throughout that

there is no reward (negative penalty) for correct classification. In other words

CðijiÞ ¼ 0 for all i. Let us first consider the case of classifying a single individual

with observation x to one of the Piði ¼ 1; . . . ; kÞ. Let R ¼ ðR1; . . . ;RkÞ. We shall

denote a classification rule which divides the space E into disjoint and exhaustive

regions R1; . . . ;Rk by R. The probability of misclassifying an individual with

observation x, from pi, as coming from pj (with the rule R) is

Pð jji;RÞ ¼
ð
Rj

fiðxÞdx ð9:1Þ

where dx ¼ Pp
i¼1dxi.

The expected cost of misclassifying an observation from pi (using the rule R)

is given by

riðRÞ ¼
Xk

j¼1; j=i

Cð jjiÞPð jji;RÞ; i ¼ 1; . . . ; k: ð9:2Þ

In defining an optimum classification rule we now need to compare the cost

vectors rðRÞ ¼ ðr1ðRÞ; . . . ; rkðRÞÞ for different R.

Definition 9.2.1. Given any two classification rules R, R� we say that R is as

good as R� if riðRÞ � riðR�Þ for all i and R is better than R� if at least one

inequality is strict.

Definition 9.2.2. Admissible rule. A classification rule R is said to be

admissible if there does not exist a classification rule R� which is better than R.

Definition 9.2.3. Complete class. A class of classification rules is said to be

complete if for any rule R� outside this class, we can find a rule R inside the class

which is better than R�.

Obviously the criterion of admissibility, in general, does not lead to a unique

classification rule. Only in those circumstances in which rðRÞ for different R can
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be ordered can one expect to arrive at a unique classification rule by using this

criterion.

Definition 9.2.4. Minimax rule. A classification rule R� is said to be minimax

among the class of all rules R if

max
i

riðR�Þ ¼ min
R

max
i

riðRÞ ð9:3Þ

This criterion leads to a unique classification rule whenever it exists and it

minimizes the maximum expected loss (cost). Thus from a conservative

viewpoint this may be considered as an optimum classification rule.

Let pi denote the proportion of pi in the population (of which the individual is

a member), i ¼ 1,. . ., k. If the pi are known, we can define the average cost of

misclassifying an individual using the classification rule R. Since the probability

of drawing an observation from pi is pi, the probability of drawing an observation

from pi and correctly classifying it to pi with the help of the rule R is given by

piPðiji;RÞ; i ¼ 1; . . . ; k. Similarly the probability of drawing an observation pi,

and misclassifying it to pjði = jÞ is piPð jji;RÞ. Thus the quantity
Xk
i¼1

pi
Xk

j¼1; j=i

Cð jjiÞPð jji;RÞ ð9:4Þ

is the average cost of misclassification for the rule R with respect to the a priori

probabilities p ¼ ð p1; . . . ; pkÞ.

Definition 9.2.5. Bayes rule. Given p, a classification rule R which minimizes

the average cost of misclassification is called a Bayes rule with respect to p.

It may be remarked that a Bayes rule may result in a large probability of

misclassification, and there have been several attempts to overcome this difficulty

(see Anderson, 1969). In cases in which the a priori probabilities pi are known,

the Bayes rule is optimum in the sense that it minimizes the average expected

cost. For further results and details about these decision theoretic criteria the

reader is referred to Wald (1950), Blackwell and Girshik (1954), and Ferguson

(1967).

We shall now evaluate the explicit forms of these rules in cases in which each

pi admits of a probability density function fi; i ¼ 1; . . . ; k. We shall assume that

all the classification procedures considered are the same if they differ only on sets

of probability measure 0.

Theorem 9.2.1. Bayes rule. If the a priori probabilities pi; i ¼ 1; . . . ; k, are
known and if pi admits of a probability density function fi with respect to a
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Lebesgue measure, then the Bayes classification rule R� ¼ ðR�
1; . . . ;R

�
k Þ which

minimizes the average expected cost is defined by assigning x to the region R�
l if

Xk
i¼1;i=l

pifiðxÞCðljiÞ ,
Xk

i¼1;i=j

pi fiðxÞCð jjiÞ; j ¼ 1; . . . ; k; j = l: ð9:5Þ

If the probability of equality between the right-hand side and the left-hand side of

(9.5) is 0 for each l and j and for each pi, then the Bayes classification rule is

unique except for sets of probability measure 0.

Proof. Let

hiðxÞ ¼
Xk

i¼1ði=jÞ
pi fiðxÞCð jjiÞ: ð9:6Þ

Then the average expected cost of a classification rule R ¼ ðR1; . . . ;RkÞ with
respect to the a priori probabilities pi; i ¼ 1; . . . ; k, is given by

Xk
j¼1

ð
Rj

hjðxÞdx ¼
ð
hðxÞdx ð9:7Þ

where

hðxÞ ¼ hjðxÞ if x [ Rj: ð9:8Þ
For the Bayes classification rule R�, h(x) is equal to

h�ðxÞ ¼ min
j

hjðxÞ: ð9:9Þ

In other words, h�ðxÞ ¼ hjðxÞ ¼ mini hiðxÞ for x [ R�
j . The difference between

the average expected costs for any classification rules R and R� is
ð
½hðxÞ � h�ðxÞ�dx ¼

X
j

ð
Rj

½hjðxÞ �min
i

hiðxÞ�dx � 0;

and the equality holds if hjðxÞ ¼ mini hiðxÞ for x in Rj (for all j). Q.E.D.

Remarks

(i) If (9.5) holds for all jð= lÞ except for h indices, for which the inequality is

replaced by equality, then x can be assigned to any one of these ðhþ 1Þpi

terms.
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(ii) If CðijjÞ ¼ Cð= 0Þ for all ði; jÞ; i = j, then in R�
i we obtain from (9.5)

Xk
i0¼1;i=l

pifiðxÞ ,
Xk

i¼1;i=j

pi fiðxÞ; j ¼ 1; . . . ; k; j = l;

which implies in R�
l

pj fjðxÞ , pl flðxÞ; j ¼ 1; . . . ; k; j = l:

In other words, the point x is in R�
l if l is the index for which pi fiðxÞ is a

maximum. If two different indices give the same maximum, it is irrelevant

as to which index is selected.

Example 9.2.1. Suppose that

fiðxÞ ¼
b�1
i exp

�x

bi

� �
0 , x , 1

0 otherwise;

8<
:

i ¼ 1; . . . ; k, and b1 , � � � , bk are unknown parameters, and let

pi ¼ 1=k; i ¼ 1; . . . ; k. If x is observed, the Bayes rule with equal CðijjÞ
requires us to classify x to pi if

pi fiðxÞ � max
jð=iÞ

pj fjðxÞ;

in other words, for i , j if

b�1
i exp

�x

bi

� �
� b�1

j exp
�x

bj

 !
;

which holds if and only if

x � bibj

bj � bi

ðlogbj � logbiÞ:

It is easy to show that this is an increasing function of bj for fixed bi , bj and is

an increasing function of bi for fixed bj , bi. Since fiðxÞ is decreasing in x for

x . 0, it implies that we classify x to pi if

xi�1 � x , xi

where

x0 ¼ 0; xk ¼ 1; and xi ¼ bibiþ1

biþ1 � bi

ðlogbiþ1 � logbiÞ:
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It is interesting to note that if pi is proportional to bi, then the Bayes rule consists

of making no observation on the individual and always classifying him to pk.

Example 9.2.2 Let

fiðxÞ ¼
1

ð2pÞ1=2 exp �1

2
ðx� miÞ2

� �
�1 , x , 1

0 otherwise;

8><
>:

where the mi are unknown parameters, and let pi ¼ 1=k; i ¼ 1; . . . ; k. The Bayes
rule with equal CðijjÞ requires us to classify an observed x to pj if

ðx� mjÞ2 , max
i;i=j

fðx� miÞ2g: ð9:10Þ

For the particular case k ¼ 2, the Bayes classification rule against the a priori

ðp1; p2Þ is given by

Assign x to

p1 if
f1ðxÞ
f2ðxÞ .

Cð1j2Þp2
Cð2j1Þp1

p2 if
f1ðxÞ
f2ðxÞ ,

Cð1j2Þp2
Cð2j1Þp1

one of p1 and p2 if
f1ðxÞ
f2ðxÞ ¼

Cð1j2Þp2
Cð2j1Þp1:

8>>>>>>><
>>>>>>>:

ð9:11Þ

However, if under pi; i ¼ 1; 2,

P
f1ðxÞ
f2ðxÞ ¼

Cð1j2Þp2
Cð2j1Þp1

��pi

� �
¼ 0; ð9:12Þ

Then the Bayes classification rule is unique except for sets of probability measure

0.

Some Heuristic Classification Rules

A likelihood ratio classification rule R ¼ ðR1; . . . ;RkÞ is defined by

Rj : Cj fjðxÞ . max
i;i=j

Ci fiðxÞ ð9:13Þ

for positive constants C1, . . . ,Ck. In particular, if the Ci are all equal, the

classification rule is called a maximum likelihood rule.

If the distribution Fi is not completely known, supplementary information on it

or on the parameters involved in it is obtained through a training sample from the

corresponding population. Then assuming complete knowledge of the Fi, a good
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classification rule R ¼ ðR1; . . . ;RkÞ (i.e., Bayes, minimax, likelihood ratio rule) is

chosen. A plug-in classification rule R� is obtained from R by replacing the Fi or

the parameters involved in the definition of R by their corresponding estimates

from the training samples.

For other heuristic rules based on the Mahalanobis distance the reader is

referred to Das Gupta (1973), who also gives some results in this case and

relevant references.

In concluding this section we state without proof some decision theoretic

results of the classification rules. For a proof of these results see, for example,

Wald (1950, Section 5.1.1), Ferguson (1967), and Anderson (1958).

Theorem 9.2.2. Every admissible classification rule is a Bayes classification

rule with respect to certain a priori probabilities on p1; . . . ;pk.

Theorem 9.2.3. The class of all admissible classification rules is complete.

Theorem 9.2.4. For every set of a priori probabilities p ¼ ð p1; . . . ; pkÞ on

p ¼ ðp1; . . . ;pkÞ, there exists an admissible Bayes classification rule.

Theorem 9.2.5. For k ¼ 2, there exists a unique minimax classification rule R

for which r1ðRÞ ¼ r2ðRÞ:

Theorem 9.2.6. Suppose that Cð jjiÞ ¼ C . 0 for all i = j and that the

distribution functions F1; . . . ;Fk characterizing the populations p1; . . . ;pk are

absolutely continuous. Then there exists a unique minimax classification rule R

for which

r1ðRÞ ¼ � � � ¼ rkðRÞ: ð9:14Þ
It may be cautioned that if either of these two conditions is violated, then (9.14)

may not hold.

9.3. CLASSIFICATION INTO ONE OF TWO MULTIVARIATE

NORMALS

Consider the problem of classifying an individual, with observation x on him, into

one of two-known p-variate normal population with means m1 and m2,

respectively, and the same positive definite covariance matrix S. Here

fiðxÞ ¼ ð2pÞ�p=2ðdetSÞ�1=2 exp � 1

2
ðx� miÞ0S�1ðx� miÞ

� �
; i ¼ 1; 2: ð9:15Þ
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The ratio of the densities is

f1ðxÞ
f2ðxÞ ¼ exp � 1

2
ðx� m1Þ0S�1ðx� m1Þ þ

1

2
ðx� m2Þ0S�1ðx� m2Þ

� �

¼ exp x0S�1ðm1 � m2Þ �
1

2
ðm1 þ m2Þ0S�1ðm1 � m2Þ

� �
: ð9:16Þ

The Bayes classification rule R ¼ ðR1;R2Þ against the a priori probabilities

ðp1; p2Þ is given by

R1 : x� 1

2
ðm1 þ m2Þ

� �0
S
�1ðm1 � m2Þ � k;

R2 : x� 1

2
ðm1 þ m2Þ

� �0
S
�1ðm1 � m2Þ , k;

ð9:17Þ

where k ¼ logðp2Cð1j2ÞÞ=ðp1Cð2j1ÞÞ. For simplicity we have assigned the

boundary to the region R1, though we can equally assign it to R2 also. The linear

function ðx� 1
2
ðm1 þ m2ÞÞ0S�1ðm1 � m2Þ of the components of the observation

vector x is called the discriminant function, and the components of S
�1ðm1 � m2Þ

are called discriminant coefficients. It may be noted that if p1 ¼ p2 ¼ 1=2 and

Cð1j2Þ ¼ Cð2j1Þ, then k ¼ 0. Now suppose that we do not have a priori

probabilities for the pi. In this case we cannot use the Bayes technique to obtain

the Bayes classification rule given in (9.17). However, we can find the minimax

classification rule by finding k such that the Bayes rule in (9.17) with unknown k

satisfies

Cð2j1ÞPð2j1;RÞ ¼ Cð1j2ÞPð1j2;RÞ: ð9:18Þ
According to Ferguson (1967) such a classification rule is called an equalizer

rule.

Let X be the random vector corresponding to the observed x and let

U ¼ X � 1

2
ðm1 þ m2Þ

� �0
S
�1ðm1 � m2Þ: ð9:19Þ

On the assumption that X is distributed according to p1, U is normally

distributed with mean and variance

E1ðUÞ ¼ 1

2
ðm1 � m2Þ0S�1ðm1 � m2Þ ¼

1

2
a

varðUÞ ¼ Efðm1 � m2Þ0S�1ðX � m1ÞðX � m1Þ0S�1ðm1 � m2Þg

¼ ðm1 � m2Þ0S�1ðm1 � m2Þ ¼ a:

ð9:20Þ
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If X is distributed according to p2, then U is normally distributed with mean and

variance

E2ðUÞ ¼ � 1

2
a; varðUÞ ¼ a: ð19:21Þ

The quantity a is called the Mahalanobis distance between two normal

populations with the same covariance matrix. Now the minimax classification

rule R is given by, writing u ¼ UðxÞ,
R1 : u � k; R2 : u , k; ð9:22Þ

where the constant k is given by

Cð2j1Þ
ðk
�1

1

ð2paÞ1=2 exp � 1

2a

u� a

2

 �2� �
du

¼ Cð1j2Þ
ð1
k

1

ð2paÞ1=2 exp � 1

2a

uþ a

2

 �2� �
du

or, equivalently, by

Cð2j1Þf k � a=2ffiffiffi
a

p
� �

¼ Cð1j2Þ 1� f
k þ a=2ffiffiffi

a
p

� �� �
ð9:23Þ

where fðzÞ ¼ Ð z
�1ð2pÞ�1 expf�1=2t2gdt.

Suppose we have a group of N individuals, with observations

xa;a ¼ 1; . . . ; N, to be classified as a whole to one of the pi; i ¼ 1; 2. Since,
writing �xx ¼ ð1=NÞSN

1 x
a,

YN
a¼1

f1ðxaÞ
f2ðxaÞ ¼ exp N �xx� 1

2
ðm1 þ m2Þ

� �0
S
�1ðm1 � m2Þ

� �
ð9:24Þ

and Nð�xx� 1=2ðm1 þ m2ÞÞ0S�1ðm1 � m2Þ is normally distributed with means

Na=2;�Na=2 and the same variance Na under p1 and p2, respectively, the

Bayes classification rule R ¼ ðR1;R2Þ against the a priori probabilities ðp1; p2Þ is
given by

R1 : N �xx� 1

2
ðm1 þ m2Þ

� �0
S
�1ðm1 � m2Þ � k;

R2 : N �xx� 1

2
ðm1 þ m2Þ

� �0
S
�1ðm1 � m2Þ , k:

ð9:25Þ
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The minimax classification rule R ¼ ðR1;R2Þ is given by (9.25), where k is

determined by

Cð2j1Þf k � Na=2

ðNaÞ1=2
� �

¼ Cð1j2Þ 1� f
k þ Na=2

ðNaÞ1=2
� �� �

: ð9:26Þ

If the parameters are unknown, estimates of these parameters are obtained

from independent random samples of sizes N1 and N2 from p1 and p2,

respectively. Let xð1Þa ¼ ðx1a1; . . . ; x1apÞ0;a ¼ 1; . . . ;N1; x
ð2Þ
a ¼ ðx2a1; . . . ; x2apÞ0;

a ¼ 1; . . . ;N2, be the sample observations (independent) from p1;p2,

respectively, and let

�xxðiÞ ¼ 1

Ni

XNi

a¼1

xðiÞa ; i ¼ 1; 2

ðN1 þ N2 � 2Þs ¼
X2
i¼1

XNi

a¼1

ðxðiÞa � �xxðiÞÞðxðiÞa � �xxðiÞÞ0:
ð9:27Þ

We substitute these estimates for the unknown parameters in the expression for U

to obtain the sample discriminant function ½vðxÞ�

v ¼ x� 1

2
ð�xxð1Þ þ �xxð2ÞÞ

� �0
s�1ð�xxð1Þ � �xxð2ÞÞ; ð9:28Þ

which is used in the same way as U in the case of known parameters to define the

classification rule R. When classifying a group of N individuals instead of a single

one we can further improve the estimate of S by taking its estimate as s, defined

by

ðN1 þ N2 þ N � 3Þs ¼
X2
i¼1

XNi

a¼1

ðxðiÞa � �xxðiÞÞðxðiÞa � �xxðiÞÞ0

þ
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0:

The sample discriminant function in this case is

v ¼ N �xx� 1

2
ð�xxð1Þ þ �xxð2ÞÞ

� �0
s�1ð�xxð1Þ � �xxð2ÞÞ: ð9:29Þ

The classification rule based on v is a plug-in rule. To find the cutoff point k it is

necessary to find the distribution of V. The distribution of V has been studied by

Wald (1944), Anderson (1951), Sitgreaves (1952), Bowker (1960), Kabe (1963),
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and Sinha and Giri (1975). Okamoto (1963) gave an asymptotic expression for

the distribution of V.

Write

Z ¼ X � 1

2
ð �XXð1Þ þ �XX

ð2ÞÞ; Y ¼ �XX
ð1Þ � �XX

ð2Þ
;

ðN1 þ N2 � 2ÞS ¼
X2
i¼1

XNi

a¼1

ðXðiÞ
a � �XX

ðiÞÞðXðiÞ
a � �XX

ðiÞÞ0:
ð9:30Þ

Obviously both Y and Z are distributed as p-variate normal with

EðYÞ ¼ m1 � m2; covðYÞ ¼
1

N1

þ 1

N2

� �
S;

E1ðYÞ ¼ 1

2
ðm1 � m2Þ;E2ðZÞ ¼ 1

2
ðm2 � m1Þ;

covðZÞ ¼ 1þ 1

4N1

þ 1

4N2

� �
S; covðY; ZÞ ¼ 1

2N2

� 1

2N1

� �
S;

ð9:31Þ

and ðN1 þ N2 � 2ÞS is distributed independently of Z; Y as Wishart WpðN1 þ
N2 � 2;SÞ when Ni . p; i ¼ 1; 2. If N1 ¼ N2; Y and Z are independent. Wald

(1944) and Anderson (1951) obtained the distribution of V when Z, Y are

independent. Sitgreaves (1952) obtained the distribution of Z 0S�1Y where Z, Y are

independently distributed normal vectors whose means are proportional and S is

distributed as Wishart, independently of ðZ; YÞ. It may be remarked that the

distribution of V is a particular case of this statistic. Sinha and Giri (1975)

obtained the distribution of Z 0S�1Y when the means of Z and Y are arbitrary

vectors and Z, Y are not independent. However, all these distributions are too

complicated for practical use.

It is easy to verify that if N1 ¼ N2, the distribution of V if X comes from p1 is

the same as that of2V if X comes from p2. A similar result holds for V depending

on X. If v � 0 is the region R1 and v , 0 is the region R2 (v is an observed value of

V), then the probability of misclassifying x when it is actually from p1 is equal to

the probability of misclassifying it when it is from p2. Furthermore, given
�XX
ðiÞ ¼ �xxðiÞ; i ¼ 1; 2; S ¼ s, the conditional distribution of V is normal with means
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and variance

E1ðVÞ ¼ m1 �
1

2
ð�xxð1Þ þ �xxð2ÞÞ

� �0
s�1ð�xxð1Þ � �xxð2ÞÞ

E2ðVÞ ¼ m2 �
1

2
ð�xxð1Þ þ �xxð2ÞÞ

� �0
s�1ð�xxð1Þ � �xxð2ÞÞ

varðVÞ ¼ ð�xxð1Þ � �xxð2ÞÞ0s�1ð�xxð1Þ � �xxð2ÞÞ:

ð9:32Þ

However, the unconditional distribution of V is not normal.

9.3.1. Evaluation of the Probability of Misclassification

Based on V

As indicated earlier if N1 ¼ N2, then the classification rule R ¼ ðR1;R2Þ where
v . 0 is the region R1; v , 0 is the region R2, has equal probabilities of

misclassification. Various attempts have been made to evaluate these two

probabilities of misclassification for the rule R in the general case N1 = N2. This

classification rule is sometimes referred to as Anderson’s rule in literature. As

pointed out earlier in this section, the distribution of V, though known, is too

complicated to be of any practical help in evaluating these probabilities. Let

P1 ¼ Pð2j1;RÞ; P2 ¼ Pð1j2;RÞ: ð9:33Þ
We shall now discuss several methods for estimating P1;P2. Let us recall that

when the parameters are known these probabilities are given by [taking k ¼ 0 in

(9.23)]

P1 ¼ f � 1

2

ffiffiffi
a

p� �
; P2 ¼ 1� f

1

2

ffiffiffi
a

p� �
: ð9:34Þ

Method 1 This method uses the sample observations xð1Þa , a ¼ 1; . . . ;N1, from

p1, x
ð2Þ
a , a ¼ 1; . . . ;N2, from p2, used to estimate the unknown parameters, to

assess the performance of R based on V. Each of these N1 þ N2 observations x
ðiÞ
a ,

a ¼ 1; . . . ;Ni, is substituted in V and the proportions of misclassified

observations from among these, using the rule R, are noted. These proportions

are taken as the estimates of P1, P2. This method, which is sometimes called the

resubstitution method, was suggested by Smith (1947). It is obviously very crude

and often gives estimates of P1 and P2 that are too optimistic, as the same

observations are used to compute the value of V and also to evaluate its

performance.

Method 2 When the population parameters are known, using the analog

statistic U, we have observed that the probabilities of misclassification are given
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by (9.34). Thus one way of estimating P1 and P2 is to replace a by its estimates

from the samples xðiÞa , a ¼ 1; . . . ;Ni, i ¼ 1; 2,

âa ¼ ð�xxð1Þ � �xxð2ÞÞ0s�1ð�xxð1Þ � �xxð2ÞÞ; ð9:35Þ
as is done to obtain the sample discriminant function V from U. It follows from

Theorem 6.8.1 that

EðâaÞ ¼ N1 þ N2 � 2

N1 þ N2 � pþ 1
aþ pN1N2

N1 þ N2

� �
: ð9:36Þ

Thus fð1
2

ffiffiffî
aa

p
Þ is an underestimate of fð1

2

ffiffiffi
a

p Þ. A modification of this method will

be to use an unbiased estimate of a, which is given by

~aa ¼ N1 þ N2 � pþ 1

N1 þ N2 � 2
âa� pN1N2

N1 þ N2

: ð9:37Þ

Method 3 This method is similar to the “jackknife technique” used in statistics

(see Quenouille, 1956; Tukey, 1958; Schucany et al., 1971). Let xðiÞa ,
a ¼ 1; . . . ;Ni, i ¼ 1; 2, be samples of sizes N1, N2 from p1, p2, respectively.

In this method one observation is omitted from either xð1Þa or xð2Þa ; and v is

computed by using the omitted observation as x and estimating the parameters

from the remaining N1 þ N2 � 1 observations in the samples. Since the estimates

of the parameters are obtained without using the omitted observation, we can now

classify the omitted observation which we correctly know to be from p1 or p2,

using the statistic V and the rule R, and note if it is correctly or incorrectly

classified. To estimate P1 we repeat this procedure, omitting each xð1Þa ,

a ¼ 1; . . . ;N1. Let m1 be the number of xð1Þa that are misclassified. Then m1=N1 is

an estimate of P1. To estimate P2 the same procedure is repeated with respect to

xð2Þa , a ¼ 1; . . . ;N2. Intuitively it is felt that this method is not sensitive to the

assumption of normality.

Method 4 This method is due to Lachenbruch and Mickey (1968). Let vðxðiÞa Þ be
the value of V obtained from xðiÞa , a ¼ 1; . . . ;Ni, i ¼ 1; 2, by omitting xðiÞa as in

Method 3, and let

u1 ¼ 1

N1

XN1

a¼1

vðxð1Þa Þ; u2 ¼ 1

N2

XN2

a¼1

vðxð2Þa Þ;

ðN1 � 1Þs21 ¼
XN1

a¼1

ðvðxð1Þa Þ � u1Þ2;

ðN2 � 1Þs22 ¼
XN2

a¼1

ðvðxð2Þa Þ � u2Þ2:

ð9:38Þ
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Lachenbruch and Mickey propose fð�u1=s1Þ as the estimate of P1 and fðu2=s2Þ
as the estimate of P2.

When the parameters are known, the probabilities of misclassifications for the

classification rule R ¼ ðR1;R2Þ where R1 : u � 0, R2 : u , 0 are given by

Pi ¼ f ð�1Þi EiðUÞ
ðVðUÞÞ1=2

� �
; i ¼ 1; 2: ð9:39Þ

In case the parameters EiðUÞ;VðUÞ are unknown, for estimating E1ðUÞ and VðUÞ,
we can take vðxð1Þa Þ, a ¼ 1; . . . ;N1, as a sample of N1 observations on U. So u1, s

2
1

are appropriate estimates of E1ðUÞ and VðUÞ. In other words, an appropriate

estimate of P1 is fð�u1=s1Þ. Similarly, fðu2=s2Þ will be an appropriate estimate

of P2.

It may be added here that since U has the same variance irrespective of

whether X comes from p1 or p2, a better estimate of VðUÞ is
ðN1 � 1Þs21 þ ðN2 � 1Þs22

N1 þ N2 � 2

It is worth investigating the effect of replacing VðUÞ by such an estimate in Pi.

Method 5 Asymptotic case. Let

�XX
ðiÞ ¼ 1

Ni

XNi

a¼1

XðiÞ
a ; i ¼ 1; 2;

ðN1 þ N2 � 2ÞS ¼
Xa
i¼1

XNi

a¼1

ðXðiÞ
a � �XX

ðiÞÞðXðiÞ
a � XðiÞÞ0

where XðiÞ
a ;a ¼ 1; . . . ;N1, and Xð2Þ

a ;a ¼ 1; . . . ;N2, are independent random

samples from p1 and p2, respectively. Since �XX
ðiÞ
is the mean of a random sample

of size N1 from a normal distribution with mean mðiÞ and covariance matrix S,
then as shown in Chapter 6 �XX

ðiÞ
converges to mi in probability as Ni ! 1;

i ¼ 1; 2. As also shown S converges to S in probability as both N1 and N2 tend to

1. Hence it follows that S�1ð �XXð1Þ � �XX
ð2ÞÞ converges to S

�1ðm1 � m2Þ and ð �XXð1Þ þ
�XXð2ÞÞ0S�1ð �XXð1Þ � �XX

ð2ÞÞ converges to ðm1 þ m2Þ0S�1ðm1 � m2Þ in probability as

both N1;N2 ! 1. Thus as N1;N2 ! 1 the limiting distribution of V is normal

with

E1ðVÞ ¼ 1

2
a; E2ðVÞ ¼ � 1

2
a; and varðVÞ ¼ a:

If the dimension p is small, the sample sizes N1;N2 occurring in practice will

probably be large enough to apply this result. However, if p is not small, we will

probably require extremely large sample sizes to make this result relevant for our
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purpose. In this case one can achieve a better approximation of the probabilities

of misclassifications by using the asymptotic results of Okamoto (1963).

Okamoto obtained

P1 ¼f � 1

2
a

� �
þ a1

N1

þ a2

N2

þ a3

N1 þ N2 � 2
þ b11

N2
1

þ b22

N2
2

þ b12

N1N2

þ b13

N1ðN1 þ N2 � 2Þ þ
b23

N2ðN1 þ N2 � 2Þ þ
b33

ðN1 þ N2 � 2Þ2 þ O3

ð9:40Þ

where O3 is Oð1=N3
i Þ, and he gave a similar expression for P2. He gave the values

of the a and b in terms of the parameters m1;m2, and S and tabulated the values of

the a and b terms for some specific cases. To evaluate P1 and P2, a is to be

replaced by its unbiased estimate as in (9.37) and the a and b are to be estimated

by replacing the parameters by their corresponding estimates.

Lachenbruch and Mickey (1968) made a comparative study of all these

methods on the basis of a series of Monte Carlo experiments. They concluded that

Methods 1 and 2 give relatively poor results. Methods 3–5 do fairly well overall.

If approximate normality can be assumed, Methods 4 and 5 are good. Cochran

(1968), while commenting on this study, also reached the conclusion that Method

5 rank first, with Methods 3 and 4 not far behind. Obviously Method 5 needs

sample sizes to be large and cannot be applied for small sample sizes. Methods 3

and 4 can be used for all sample sizes, but perform better for large sample sizes.

For the case of the equal covariance matrix, Kiefer and Schwartz (1965)

indicated a method for obtaining a broad class of Bayes classification rules that

are admissible. In particular, these authors showed that the likelihood ratio

classification rules are admissible Bayes when S is unknown.

Rao (1954) derived an optimal classification rule in the class of rules for which

P1;P2 depend only on a (the Mahalanobis distance) using the following criteria:

(i) to minimize a linear combination of derivatives of P1;P2 with respect to a at

a ¼ 0, subject to the condition that P1;P2 at a ¼ 0 leave a given ratio; (ii) the

first criterion with the additional restriction that the derivatives of P1;P2 at a ¼ 0

bear a given ratio. See Kudo (1959, 1960) also for the minimax and the most

stringent properties of the maximum likelihood classification rules.

9.3.2. Penrose’s Shape and Size Factors

Let us assume that the common covariance matrix S of two p-variate normal

populations with mean vectors m1 ¼ ðm11; . . . ;m1pÞ0;m2 ¼ ðm21; . . . ; u2pÞ0 has
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the particular form

S ¼
1 r � � � r
r 1 � � � r

..

. ..
. ..

.

r r � � � 1

0
BBB@

1
CCCA; ð9:41Þ

since

x0S�1ðm1 � m2Þ ¼ ðm1 � m2Þ0S�1
x

¼ S
P
i¼1ðm1i � m2iÞ
pð1� rÞ b0xþ 1� r

1þ ð p� 1Þr
Xb
i¼1

xi

( )
;

ð9:42Þ

where

b0x ¼ pðm1 � m2Þ0x
S
p
i¼1ðm1i � m2iÞ

�
Xp

i¼1

xi: ð9:43Þ

Hence the discriminant function depends on two factors, b0x and
Pp

i¼1 xi. Penrose

(1947) called
Pp

i¼1 xi the size factor, since it measures the total size, and b0x the
shape factor. This terminology is more appropriate for biological organs where S
is of the form just given and

Pp
i¼1 xi; b

0x measure the size and the shape of an

organ. It can be verified that

Ei

Xp

j¼1

Xj

 !
¼
Xp

j¼1

mij; Eiðb0XÞ ¼ b0mi; i ¼ 1; 2;

cov b0X;
Xp

i¼1

Xi

 !
¼ 0; var

Xp

i¼1

Xi

 !
¼ pð1þ pr� rÞ

varðb0XÞ ¼ pð1� rÞ pðm1 � m2Þ0ðm1 � m2ÞPp
i¼1ðm1i � m2iÞ2

� 1

" #
:

ð9:44Þ

Thus the random variables corresponding to the size and the shape factors are

independently normally distributed with the means and variances just given. If

the covariance matrix has this special form, the discriminant analysis can be

performed with the help of two factors only. If S does not have this special form,

it can sometimes be approximated to this form by first standardizing the variates

to have unit variance for each component Xi and then replacing the correlation rij
between the components Xi;Xj of X by r, the average correlation among all pairs

(i, j). No doubt the discriminant analysis carried out in this fashion is not as

efficient as with the true covariance matrix but it is certainly economical.
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However, if rij for different (j, j) do not differ greatly, such an approximation may

be quite adequate.

9.3.3. Unequal Covariance Matrices

The equal covariance assumption is rarely satisfied although in some cases the

two covariance matrices are so close that it makes little or no difference in the

results to assume equality. When they are quite different we obtain

f1ðxÞ
f2ðxÞ ¼

detðS2Þ
detðS1Þ
� �1=2

exp � 1

2
x0ðS�1

1 � S
�1
2 Þxþ x0ðS�1

1 m1 � S
�1
2 m2Þ

�

� 1

2
ðm0

1S
�1
1 m1 � m0

2S
�1
2 m2Þ

�
:

The Bayes classification rule R ¼ ðR1;R2Þ against the prior probabilities ðp1; p2Þ
is given by

R1 :
1

2
log

detS2

detS1

� �
� 1

2
m0
1S

�1
1 m1 þ

1

2
m0
2S

�1
2 m2

� 1

2
ðx0ðS�1

1 � S
�1
2 Þx� 2x0ðS�1

1 m1 � S
�1
2 m2ÞÞ � k;

where k ¼ logðp2Cð1j2Þ=p1Cð2j1ÞÞ. The quantity

x0ðS�1
1 � S

�1
2 Þx� 2x0ðS�1

1 m1 � S
�1
2 m2Þ ð9:45Þ

is called the quadratic discriminant function, and in the case of unequal

covariance matrices one has to use a quadratic discriminant function since S
�1
1 �

S
�1
2 does not vanish. For the minimax classification rule R one has to find k such

that (9.18) is satisfied. Typically this involves the finding of the distribution of the

quadratic discriminant function when x comes from pi; i ¼ 1; 2. It may be

remarked that the quadratic discriminant function is also the statistic involved in

the likelihood ratio classification rule for this problem. The distribution of this

quadratic function is very complicated. It was studied by Cavalli (1945) for the

special case p ¼ 1; by Smith (1947), Cooper (1963, 1965), and Bunke (1964); by

Okamoto (1963) for the special case m1 ¼ m2; by Bartlett and Please (1963) for

the special case m1 ¼ m2 ¼ 0 and

Si ¼
1 ri � � � ri
ri 1 � � � ri
..
. ..

. ..
.

ri ri � � � 1

0
BBB@

1
CCCA; ð9:46Þ
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and by Han (1968, 1969, 1970) for different special forms of Si. Okamoto (1963)

derived the minimax classification rule and the form of a Bayes classification rule

when the parameters are known. He also studied some properties of Bayes

classification risk function and suggested a method of choosing components.

Okamoto also treated the case when the Si are unknown and the common value of

mi may be known or unknown. The asymptotic distribution of the sample

quadratic discriminant function (plug-in-log likelihood statistic) was also

obtained by him. Bunke (1964) showed that the plug-in minimax rule is

consistent. Following the method of Kiefer and Schwartz (1965), Nishida (1971)

obtained a class of admissible Bayes classification rules when the parameters are

unknown. Since these results are not very elegant for presentation we shall not

discuss them here. The reader is referred to the original references for these

results. However, we shall discuss a solution of this problem by Bahadur and

Anderson (1962), based on linear discriminant functions only.

Let bð= 0Þ be a p-column vector and c a scalar. An observation x on an

individual is classified as from p1 if b0x � c and as from p2 if b0x . c. The

probabilities of misclassification with this classification rule can be easily

evaluated from the fact that b0x is normally distributed with mean b0m1 and

variance b0S1b if X comes from p1, and with mean b0m2 and variance b0S2b if X

comes from p2, and are given by

P1 ¼ Pð2j1;RÞ ¼ 1� fðz1Þ; P2 ¼ Pð1j2;RÞ ¼ 1� fðz2Þ; ð9:47Þ

where

z1 ¼ c� b0m1

ðb0S1bÞ1=2
; z2 ¼ b0m2 � c

ðb0S2bÞ1=2
: ð9:48Þ

We shall assume in this treatment that Cð1j2Þ ¼ Cð2j1Þ. Hence each procedure

(obtained by varying b) can be evaluated in terms of the two probabilities of

misclassification P1;P2. Since the transformation by the normal cumulative

distribution fðzÞ is strictly monotonic, comparisons of different linear procedures

can just as well be made in terms of the arguments z1; z2 given in (9.48). For a

given z2, eliminating c, we obtain from (9.48)

z1 ¼ b0d� z2ðb0S2bÞ1=2
ðb0S1bÞ1=2

;

where d ¼ ðm2 � m1Þ. Since z1 is homogeneous in b of degree 0, we can restrict b

to lie on an ellipse, say b0S1b ¼ const, and on this bounded closed domain z1 is

continuous and hence has a maximum. Thus among the linear procedures with a

specified z2 coordinate (equivalently, with a specified P2) there is at least one

procedure which maximizes the z1 coordinate (equivalently, minimizes P1).
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Lemma 9.3.1. The maximum z1 coordinate is a decreasing function of z2.

Proof. Let z�2 . z2 and let b� be a vector maximizing z�1 for given z�2. Then

max z1 ¼ max
b

b0d� z2ðb0S2bÞ1=2
ðb0S1bÞ1=2

� b�0d� z2ðb�0S2b
�Þ1=2

ðb�0S1b�Þ1=2

.
b�d� z�2ðb�0S2b

�Þ1=2
ðb�0S1b�Þ1=2

¼ max z�1:

ð9:49Þ

The set of z2 with corresponding maximum z1 is thus a curve in the ðz1; z2Þ plane
running downward and to the right. Since d = 0, the curve lies above and to the

right of the origin. Q.E.D.

Theorem 9.3.1. A linear classification rule R with P1 ¼ 1� fðz1Þ;
P2 ¼ 1� fðz2Þ, where z1 is maximized with respect to b for a given z2, is

admissible.

Proof. Suppose R is not admissible. Then there is a linear classification rule

R� ¼ ðR�
1;R

�
2Þ with arguments ðz�1; z�2Þ such that z�1 � z1; z

�
2 � z2 with at least one

inequality being strict. If z�2 ¼ z2, then z�1 . z1, which contradicts the fact that z1
is a maximum. If z�2 . z2, the maximum coordinate corresponding to z�2 must be

less than z1, which contradicts z�1 � z1. Q.E.D.

Furthermore, it can be verified that the set of admissible linear classification

rules is complete in the sense that for any linear classification rule outside this set

there is a better one in the set.

We now want to characterize analytically the admissible linear classification

rules. To achieve this the following lemma will be quite helpful.

Lemma 9.3.2. If a point ða1;a2Þ with ai . 0; i ¼ 1; 2, is admissible, then there
exists ti . 0; i ¼ 1; 2, such that the corresponding linear classification rule is

defined by

b ¼ ðt1S1 þ t2S2Þ�1d ð9:50Þ
c ¼ b0m1 þ t1b

0S1b ¼ b0m2 � t2b
0S2b: ð9:51Þ

Proof. Let the admissible linear classification rule be defined by the vector b
and the scalar g. The line

z1 ¼ s� b0m1

ðb0S1bÞ1=2
; z2 ¼ b0m2 � s

ðb0S2bÞ1=2
; ð9:52Þ
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with s as parameter, has negative slope with the point ða1;a2Þ on it. Hence there

exist positive numbers t1; t2 such that the line (9.52) is tangent to the ellipse

z21
t1
þ z22

t2
¼ k ð9:53Þ

at the point ða1;a2Þ. Consider the line defined by an arbitrary vector b and all

scalars c. This line is tangent to an ellipse similar or concentric to (9.53) at the

point ðz1; z2Þ if c in (9.48) is chosen so that �z1t2=z2t1 is equal to the slope of this
line. For a given b, the values of c and the resulting z1; z2 are

c ¼ t1b
0S1bb

0m2 þ t2b
0S2bb

0m1

t1b0S1bþ t2b0S2b
; z1 ¼ t1ðb0S1bÞ1=2b0d

t1b0S1bþ t2b0S2b

z2 ¼ t2ðb0S2bÞ1=2b0d
t1b0S1bþ t2b0S2b

ð9:54Þ

This point ðz1; z2Þ is on the ellipse

z21
t1
þ z22

t2
¼ ðb0dÞ2

b0ðt1S1 þ t2S2Þb : ð9:55Þ

The maximum of the right side of (9.55) with respect to b occurs when b is given

by (9.50). However, the maximum must correspond to the admissible procedure,

for if there were a b such that the constant in (9.55) were larger than k, the point

ða1;a2Þ would be within the ellipse with the constant in (9.55) and would be

nearer the origin than the line tangent at ðz1; z2Þ. Then some points on this line

(corresponding to procedures with b and scalar c) would be better. The

expressions for the value of c in (9.54) and (9.51) are the same if we use the value

of b as given in (9.50). Q.E.D.

Remark. Since S1;S2 are positive definite and ti . 0; i ¼ 1; 2; t1S1 þ t2S2 is

positive definite, any multiples of (9.50) and (9.51) are equivalent solutions.

When b in (9.50) is normalized so that

b0d ¼ b0ðt1S1 þ t2S2Þ�1b ¼ d0ðt1S1 þ t2S2Þ�1d; ð9:56Þ
then from (9.54) we get

z1 ¼ t1ðb0S1bÞ1=2; z2 ¼ t2ðb0S2bÞ1=2: ð9:57Þ
Since these are homogeneous of degree 0 in t1 and t2 for b given by (9.50) we

shall find it convenient to take t1 þ t2 ¼ 1 when ti . 0; i ¼ 1; 2; t1 � t2 ¼ 1 when

t1 . 0; t2 , 0, and t2 � t1 ¼ 1 when t2 . 0; t1 , 0.
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Theorem 9.3.2. A linear classification rule with

b ¼ ðt1S1 þ t2S2Þ�1d; ð9:58Þ
c ¼ b0m1 þ t1b

0S1b ¼ b0m2 � t2b
0S2b ð9:59Þ

for any t1; t2 such that t1S1 þ t2S2 is positive definite is admissible.

Proof. If ti . 0; i ¼ 1; 2, the corresponding z1; z2 are also positive. If this linear
classification rule is not admissible, there would be a linear admissible

classification rule that would be better (as the set of all linear admissible

classification rules is complete) and both arguments for this rule would also be

positive. By Lemma 9.3.2 the rule would be defined by

b ¼ ðt1S1 þ t2S2Þ�1d

for ti . 0; i ¼ 1; 2, such that t1 þ t2 ¼ 1. However, by the monotonicity

properties of z1; z2 as functions of t1, one of the coordinates corresponding to t1
would have to be less than one of the coordinates corresponding to t1. This shows

that the linear classification rule corresponding to b is not better than the rule

defined by b. Hence the theorem is proved for ti . 0; i ¼ 1; 2.
If t1 ¼ 0, then z1 ¼ 0; b ¼ S

�1
1 d; z2 ¼ ðd0S�1

2 dÞ1=2. However, for any b if

z1 ¼ 0, then z2 ¼ b0dðb0S2bÞ�1=2, and z2 is maximized if b ¼ S
�1
2 d. Similarly if

t2 ¼ 0, the solution assumed in the theorem is optimum.

Now consider t1 . 0; t2 , 0, and t1 � t2 ¼ 1. Any hyperbola

z21
t1
þ z22

t2
¼ k ð9:60Þ

for k . 0 cuts the z1 axis at +ðt1kÞ1=2. The rule assumed in the theorem has

z1 . 0 and z2 , 0. From (9.48) we get

ðc� b0m1Þ2
t1b0S1b

þ ðb0m2 � cÞ2
t2b0S2b

¼ k: ð9:61Þ

The maximum of this expression with respect to c for given b is attained for c as

given in (9.54). Then z1; z2 are of the form (9.54), and (9.61) reduces to (9.55).

The maximum of (9.61) is then given by b ¼ ðt1S1 þ t2S2Þ�1d. It is easy to argue
that this point is admissible because otherwise there would be a better point

which would lie on a hyperbola with greater k.

The case t1 , 0; t2 . 0 can be similarly treated. Q.E.D.
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Given t1; t2 so that t1S1 þ t2S2 is positive definite, one would compute the

optimum b such that

ðt1S1 þ t2S2Þb ¼ d ð9:62Þ
and then compute c as given in (9.51). Usually t1; t2 are not given. A desired

solution can be obtained as follows. For another solution the reader is referred to

Bahadur and Anderson (1962).

Minimization of One Probability of Misclassification Given the

Other

Suppose z2 is given and let z2 . 0. Then if the maximum z1 . 0, we want to

find t2 ¼ 1� t1 such that z2 ¼ t2ðb0S2bÞ1=2 with b given by (9.62). The solution

can be approximated by trial an error. For t2 ¼ 0; z2 ¼ 0 and for

t2 ¼ 1; z2 ¼ ðb0S2bÞ1=2 ¼ ðb0dÞ1=2 ¼ ðd0S�1
2 dÞ1=2, where S2b ¼ d. One could try

other values of t2 successively by solving (9.62) and inserting the solution in

b0S2b until t2ðb0S2bÞ1=2 agrees closely enough with the desired z2.

For t2 . 0; t1 , 0, and t2 � t1 ¼ 1; z2 is a decreasing function of t2ðt2 � 1Þ
and at t2 ¼ 1; z2 ¼ ðd0S�1

2 dÞ1=2. If the given z2 is greater than ðd0S2dÞ1=2, then
z1 , 0 and we look for a value of t2 such that z2 ¼ t2ðb0S2bÞ1=2. We require that t2
be large enough so that t1S1 þ t2S2 ¼ ðt2 � 1ÞS1 þ t2S2 is positive definite.

The Minimax Classification

The minimax linear classification rule is the admissible rule with z1 ¼ z2.

Obviously in this case z1 ¼ z2 . 0 and ti . 0; i ¼ 1; 2. Hence we want to find

t1 ¼ 1� t2 such that

0 ¼ z21 � z22 ¼ b0ðt21S1 � ð1� t1Þ2S2Þb: ð9:63Þ
The values of b and t1 satisfying (9.63) and (9.62) are obtained by the trial and

error method.

Since S1;S2 are positive definite there exists a nonsingular matrix C such that

S1 ¼ C0DC;S2 ¼ C0C where D is a diagonal matrix with diagonal elements

l1; . . . ; lp, the roots of detðS1 � lS2Þ ¼ 0.

Let b� ¼ ðb�1; . . . ; b�pÞ0 ¼ Cb. Then (9.63) can be written as

Xp

i¼1

ðli � uÞb�2i ¼ 0 ð9:64Þ

where u ¼ ð1� t21Þ=t21. If li � u are all positive or all negative, (9.64) will not

have a solution for b�. To obtain a solution u must lie between the minimum and

the maximum of l1; . . . ; lp. This treatment is due to Banerjee and Marcus
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(1965), and it provides a valuable tool for obtaining b and t1 for the minimax

solution.

9.3.4. Test Concerning Discriminant Coefficients

As we have observed earlier, for discriminating between two multivariate normal

populations with means m1;m2 and the same positive definite covariance matrix

S, the optimum classification rule depends on the linear discriminant function

x0S�1ðm1 � m2Þ � 1=2ðm1 þ m2Þ0S�1ðm1 � m2Þ. The elements of S
�1ðm1 � m2Þ

are called discriminant coefficients. In the case in which S;m1;m2 are unknown

we can consider estimation and testing problems concerning these coefficients

on the basis of sample observations xð1Þa ;a ¼ 1; . . . ;N1, from p1, and xð2Þa ;
a ¼ 1; . . . ;N2, from p2. We have already tackled the problem of estimating these

coefficients; here we will consider testing problems concerning them.

For testing hypotheses about these coefficients, the sufficiency consideration

leads us to restrict our attention to the set of sufficient statistics ð �XXð1Þ
; �XX

ð2Þ
; SÞ as

given in (9.27), where �XX
ð1Þ
; �XX

ð2Þ
are independently distributed p-dimensional

normal random vectors and ðN1 þ N2 � 2ÞS is distributed independently of

ð �XXð1Þ
; �XX

ð2ÞÞ as a Wishart random matrix with parameter S and N1 þ N2 � 2

degrees of freedom. Further, invariance and sufficiency considerations permit us

to consider the statistics ð �XXð1Þ � �XX
ð2Þ
; SÞ instead of the random samples

(independent) Xð1Þ
a ;a ¼ 1; . . . ;N1, from p1, and Xð2Þ

a ;a ¼ 1; . . . ;N2, from p2.

Since ð1=N1 þ 1=N2Þ�1=2ð �XXð1Þ � �XX
ð2ÞÞ is distributed as a p-dimensional normal

random vector with mean ð1=N1 þ 1=N2Þ�1=2ðm1 � m2Þ and positive definite

covariance matrix S, by relabeling variables we can consider the following

canonical form where X is distributed as a p-dimensional normal random vector

with mean m ¼ ðm1; . . . ;mpÞ0 and positive definite covariance matrix S, and S is

distributed (independent of X) as Wishart with parameter S, and consider testing

problems concerning the components of G ¼ S
�1m. Equivalently this problem

can be stated as follows: Let Xa ¼ ðXa1; . . . ;XapÞ0;a ¼ 1; . . . ;N, be a random

sample of size Nð. pÞ from a p-dimensional normal population with mean m and

covariance matrix S. Write

�XX ¼ 1

N

XN
a¼1

Xa; S ¼
XN
a¼1

ðXa � �XXÞðXa � �XXÞ0:

(Note that we have changed the definition of S to be consistent with the notation

of Chapter 7.) Let G ¼ ðG1; . . . ;GpÞ0 ¼ S
�1m. We shall now consider the

following testing problems concerning G, using the notation of Section 7.2.2. We

refer to Giri (1964, 1965) for further details.

A. To test the null hypothesis H0 : G ¼ 0 against the alternatives H1 : G = 0

when m;S are unknown. Since S is nonsingular this problem is equivalent to
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testing H0 : m ¼ 0 against the alternatives H1 : m = 0, which we have discussed

in Chapter 7. This case does not seem to be of much interest in the context of

linear discriminant functions but is included for completeness.

B. Let G ¼ ðGð1Þ;Gð2ÞÞ0, where the GðiÞ are subvectors of dimension

pi � 1; i ¼ 1; 2, with p1 þ p2 ¼ p. We are interested in testing the null hypothesis

H0 : Gð1Þ ¼ 0 against the alternatives H1 : Gð1Þ = 0 when it is given that Gð2Þ ¼ 0

and m;S are unknown. Let S� ¼ Sþ N �XX �XX
0
, and let S�; S; �XX;m, and S be

partitioned as in (7.21) and (7.22) with k ¼ 2. Let V be the parametric space of

ððGð1Þ; 0Þ;SÞ and v ¼ ð0;SÞ be the subspace ofV when H0 is true. The likelihood

of the observations xa on Xa;a ¼ 1; . . . ;N, is

LðGð1Þ;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2

� exp � 1

2
trðS�1

s� � 2NGð1Þ �xx0ð1Þ þ NSð11ÞGð1ÞG0
ð1ÞÞ

� �
:

Lemma 9.3.3.

max
V

LðGð1Þ;SÞ ¼ ð2NpÞ�Np=2ðdet s�Þ�N=2

� ð1� N �xx0ð1Þðsð11Þ þ N �xxð1Þ �xx0ð1ÞÞ�1 �xxð1ÞÞ�N=2 exp � 1

2
Np

� �
:

Proof.

max
V

LðGð1Þ;SÞ ¼ max
S;Gð1Þ

ð2pÞ�Np=2ðdetSÞ�N=2

� exp � 1

2
trðS�1

s� þ NS
�1
ð11Þð�xxð1Þ � Sð11ÞGð1ÞÞ

�

� ð�xxð1Þ � Sð11ÞGð1ÞÞ0 � NS
�1
ð11Þ �xxð1Þ �xx

0
ð1ÞÞ
o

¼ max
S

ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
trðS�1

s� � NS
�1
ð11Þ �xxð1Þ �xx

0
ð1ÞÞ

� �
:

ð9:65Þ
Since S and s� are positive definite there exist nonsingular upper triangular

matrices K and T such that

S ¼ KK 0; s� ¼ TT 0:

Partition K and T as

K ¼ Kð11Þ Kð12Þ
0 Kð22Þ

� �
; T ¼ Tð11Þ Tð12Þ

0 Tð22Þ

� �
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where Kð11Þ; Tð11Þ are (upper triangular) submatrices of K, T, respectively of

dimension p1 � p1. Now

K�1 ¼ K�1
ð11Þ �ðK�1

ð11ÞKð12ÞK�1
ð22ÞÞ

0 K�1
ð22Þ

 !
; T�1 ¼ T�1

ð11Þ �ðT�1
ð11ÞTð12ÞT

�1
ð22ÞÞ

0 T�1
ð22Þ

 !

and Sð11Þ ¼ K 0
ð11ÞKð11Þ; s�ð11Þ ¼ T 0

ð11ÞTð11Þ. Let K ¼ LT and S
� ¼ L0L. Let L;S�

be

partitioned in the same way as K into submatrices LðijÞ;SðijÞ, respectively.

Obviously Kð11Þ ¼ Tð11ÞLð11Þ. Writing z0ð1Þ ¼ x0ð1ÞT
�1
ð11Þ, from (9.65) we obtain

max
V

LðGð1Þ;SÞ

¼ max
K

ð2pÞ�Np=2ðdetKÞ�N

� exp � 1

2
trðK�1ðK 0Þ�1T 0T � NK�1

ð11ÞðK 0
ð11ÞÞ�1 �xxð1Þ �xx0ð1ÞÞ

� �

¼ max
K

ð2pÞ�Np=2ðdet s�Þ�N=2ðdetS�Þ�N=2

� exp � 1

2
trðS��1 � NS

��1
ð11Þ zð1Þz

0
ð1ÞÞ

� �

¼ max
L

ð2pÞ�Np=2ðdet s�Þ�N=2ðdetLð22ÞÞN=2ðdetðLð11Þ � Lð12ÞL
�1
ð22ÞLð21ÞÞÞN=2

� exp � 1

2
trðLð11Þ þ Lð22Þ � ðLð11Þ � Lð12ÞL�1

ð22ÞLð21ÞÞðNzð1Þz0ð1ÞÞÞ
� �

¼ ð2p=NÞ�Np=2ðdet s�Þ�N=2ðdetðI � Nzð1Þz0ð1ÞÞÞ�N=2 exp � 1

2
Np

� �

¼ ð2p=NÞ�Np=2ðdet s�Þ�N=2ð1� N �xx0ð1Þðsð11Þ þ N �xx0ð1ÞÞ�1 �xxð1ÞÞ�N=2

� exp � 1

2
Np

� �
; ð9:66Þ

where ðS�Þ�1 ¼ L and L is partitioned into submatrices LðijÞ similar to those of

S
�
. The next to last step in (9.66) follows from the fact that the maximum

likelihood estimates of Lð22Þ;Lð11Þ are I=N; ðI � Nzð1Þz0ð1ÞÞ=N (see Lemma 5.1.1)

and that of Lð12Þ is 0. Q.E.D.
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Since

> max
v

LðGð1Þ;SÞ ¼ ð2pNÞ�Np=2ðdet s�Þ�N=2 exp � 1

2
Np

� �
;

the likelihood ratio criterion for testing H0 is given by

l ¼ maxv LðGð1Þ;SÞ
maxV LðGð1Þ;SÞ ¼ ð1� N �xx0ð1Þðsð11Þ þ N �xxð1Þ �xx0ð1ÞÞ�1 �xxð1ÞÞN=2

¼ ð1� r1ÞN=2; ð9:67Þ
where r1 is given in Section 7.2.2. (We have used the same notation for the

classification regions R and the statistic R.) Thus the likelihood ratio test of H0

rejects H0 whenever

r1 � C; ð9:68Þ
where the constant C depends on the level of significance a of the test. From

Chapter 6 the probability density function of R1 under H1 is given by

fR1
ðr1jd21Þ ¼

Gð 1
2
NÞ

Gð 1
2
p1ÞGð1=2ðN � p1ÞÞ

r
p1=2�1
1 ð1� r1ÞðN�p1Þ=2�1

� exp � 1

2
d21

� �
f

1

2
N;

1

2
p1;

1

2
ðr1d21Þ

� �
ð9:69Þ

provided r1 � 0 and is zero elsewhere, where d21 ¼ NG0
ð1ÞSð11ÞGð1Þ. Obviously

under H0; d
2
1 ¼ 0 and R1 is distributed as central beta with parameter

ð 1
2
p1;

1
2
ðN � p1ÞÞ.

Let GBT (as defined in Section 7.2.2 with k ¼ 2) be the multiplicative group of

lower triangular matrices

g ¼ gð11Þ 0

gð21Þ gð22Þ

� �

of dimension p� p. The problem of testing H0 against H1 remains invariant

under GBT with k ¼ 2 operating as Xa ! gXa;a ¼ 1; . . . ;N; g [ GBT . The

induced transformation in the space of ð �XX; SÞ is given by ð �XX; SÞ ! ðg �XX; gSg0Þ and
in the space of ðm;SÞ is given by ðm;SÞ ! ðgm; gSg0Þ. A set of maximal

invariants in the space of ð �XX; SÞ under GBT is ðR1;R2Þ as defined in (6.63) with

k ¼ 2. A corresponding maximal invariant in the parametric space of ðm;SÞ is
given by ðd21; d22Þ, where

d21 ¼ NðSð11ÞGð1Þ þ Sð12ÞGð2ÞÞ0S�1
ð11ÞðSð11ÞGð1Þ þ Sð12ÞGð2ÞÞ

d21 þ d22 ¼ NG0SG: ð9:70Þ
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Since Gð2Þ ¼ 0 in this case, we get d22 ¼ 0 and d21 ¼ NG0
ð1ÞSð11ÞGð1Þ. Hence

under H0 : d
2
1 ¼ 0 and under H1 : d

2
1 . 0, the joint probability density function of

ðR1;R2Þ under H1 is given by (6.73). The ratio of the density of ðR1;R2Þ under H1

to its density under H0 is given by

exp � 1

2
d21

� �X1
j¼0

r1d
2
1

2

� �j
Gð 1

2
N þ jÞGð 1

2
p1Þ

j!Gð 1
2
p1 þ jÞGð 1

2
NÞ : ð9:71Þ

Hence we have the following theorem.

Theorem 9.3.3. For testing H0 against H1, the likelihood ratio test which

rejects H0 for large values of R1 is uniformly most powerful invariant.

C. To test the null hypothesis H0 : Gð2Þ ¼ 0 against the alternatives H1 :
Gð2Þ = 0 when m and S are unknown and Gð1Þ;Gð2Þ are defined as in case B. The

likelihood of the observations xa on Xa;a ¼ 1; . . . ;N, is

LðG;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2

� exp � 1

2
trðS�1

s� � 2NG0 �xxþ NSGG0Þ
� �

: ð9:72Þ

Proceeding exactly in the same way as in Lemma 9.3.3, we obtain

max
V

ðG;SÞ ¼ ð2pNÞ�Np=2ðdet s�Þ�N=2ð1� N �xx0ðsþ N �xx�xx0Þ�1 �xxÞ�N=2

� exp � 1

2
Np

� �
; ð9:73Þ

where V ¼ fðG;SÞg. From Lemma 9.3.3 and (9.73) the likelihood ratio criterion

for testing H0 is given by

l ¼ maxv LðG;SÞ
maxV LðG;SÞ ¼

1� r1 � r2

1� r1

� �N=2

; ð9:74Þ

where v ¼ ððGð1Þ; 0Þ;SÞ and r1; r2 are as defined in case B. Thus the likelihood

ratio test for testing H0 rejects H0 whenever

z ¼ 1� r1 � r2

1� r1
� C; ð9:75Þ
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where the constant C depends on the level of significance a of the test. From

(6.73) the joint probability density function of Z and R1 under H0 is given by

exp � 1

2
d21

� �X1
j¼0

G
1

2
N þ j

� �
1

2
r1d

2
1

� �j

ðr1Þp1=2�1

� ð1� r1ÞðN�p1Þ=2�1zðN�p1Þ=2�1ð1� zÞðp�p1Þ=2�1

j!Gð 1
2
p1 þ jÞGð 1

2
ðN � pÞGð 1

2
ð p� p1ÞÞÞ

: ð9:76Þ

From this it follows that under H0, Z is distributed as a central beta random

variable with parameter ð 1
2
ðN � p1Þ; 1

2
p2Þ and is independent of R1.

The problem of testing H0 against H1 remains invariant under the group

of transformations GBT with k ¼ 2, operating as Xa ! gXa; g [ GBT ;
a ¼ 1; . . . ;N. A set of maximal invariants in the space of ð �XX; SÞ under GBT is

ðR1;R2Þ of case B and the corresponding maximal invariant in the parametric

space of ðm;SÞ is ðd21; d22Þ of (9.70). Under H0; d
2
2 ¼ 0 and under H1; d

2
2 . 0 (d21 is

unknown). The joint probability density function of ðR1;R2Þ is given by (6.73).

From this we conclude that R1 is sufficient for d21 when H0 is true, and the

marginal probability density function of R1 when H0 is true is given by (9.69).

This is also the probability density function of R1 when H1 is true.

Lemma 9.3.4. The family of probability density functions f fR1
ðr1jd21Þ; d21 � 0g

is boundedly complete.

Proof. Let Cðr1Þ be any real valued function of r1. Then

Ed21
ðCðR1ÞÞ ¼ exp � 1

2
d21

� �X1
j¼0

1

2
d21

� �j

aj

ð1
0

Cðr1Þrp1=2þj�1
1 ð1� r1ÞðN�p1Þ=2�1dr1

¼ exp � 1

2
d21

� �X1
j¼0

1

2
d21

� �j

aj

ð1
0

C�ðr1Þrj1dr1;

where

aj ¼ Gð1=2N þ jÞ
j!Gð 1

2
ðN � p1ÞÞGð 12 p1 þ jÞ ;C

�ðr1Þ ¼ r
p1=2�1
1 ð1� r1ÞðN�p1Þ=2�1cðr1Þ:

Hence Ed21
ðCðR1ÞÞ ¼ 0 identically in d21 implies that

X1
j¼0

1

2
d21

� �j

aj

ð1
0

C�ðr1Þrj1dr1 ¼ 0 ð9:77Þ
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identically in d21. Since the left-hand side of (9.77) is a polynomial in d21, all its
coefficients must be zero. In other words,

ð1
0

C�ðr1Þrj1dr1 ¼ 0; j ¼ 1; 2; . . . ; ð9:78Þ

which implies that C�þðr1Þ ¼ C��ðr1Þ for all r1, except possibly for a set of

values of r1 of probability measure 0. Hence C�ðr1Þ ¼ 0 almost everywhere,

which implies that Cðr1Þ ¼ 0 almost everywhere. Q.E.D.

Theorem 9.3.4. The likelihood ratio test of H0 : Gð2Þ ¼ 0 when m;S are

unknown is uniformly most powerful invariant similar against the alternatives

H1 : Gð2Þ = 0.

Proof. Since R1 is sufficient for d
2
1 when H0 is true and the distribution of R1 is

boundedly complete, it is well known that (see, e.g., Lehmann, 1959, p. 134) any

level a invariant test fðr1; r2Þ has Neyman structure with respect to R1, i.e.,

Ed21
ðfðR1;R2ÞjR1 ¼ r1Þ ¼ a: ð9:79Þ

Now to find the uniformly most powerful test among all similar invariant tests we

need the ratio of the conditional probability density function of R2 given R1 ¼ r1
under H1 to that under H0, and this ratio is given by

exp � 1

2
d21ð1� r1Þ

� �X1
j¼0

ð 1
2
r2d

2
2ÞjGð 12 ðN � p1Þ þ jÞGð 1

2
p2Þ

j!Gð 1
2
p2 þ jÞGð 1

2
ðN � p1ÞÞ

: ð9:80Þ

Since the distribution of R2 on each surface R1 ¼ r1 is independent of d21,
condition (9.79) reduces the problem to that of testing a simple hypothesis d22 ¼ 0

against the alternatives d22 . 0 on each surface R1 ¼ r1. In this conditional

situation, by Neyman and Pearson’s fundamental lemma, the uniformly most

powerful level a invariant test of d22 ¼ 0 against the alternatives d22 . 0 [from

(9.80)] rejects H0 whenever

X1
j¼0

ð 1
2
r2d

2
2ÞjGð 12 ðN � p1Þ þ jÞGð 1

2
p2Þ

j!Gð 1
2
p2 þ jÞGð 1

2
ðN � p1ÞÞ

� Cðr1Þ; ð9:81Þ

where Cðr1Þ is a constant such that the test has level a on each surface R1 ¼ r1.

Since the left-hand side of (9.81) is an increasing function of r2 and

r2 ¼ ð1� r1Þð1� zÞ, this reduces to rejecting H0 on each surface R1 ¼ r1
whenever z � C, where the constant C is chosen such that the test has level a.
Since, under H0, Z is independent of R1, the constant C does not depend on r1.

Hence the theorem. Q.E.D.
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D. Let G ¼ ðG0
ð1Þ;G

0
ð2Þ;G

0
ð3ÞÞ, where GðiÞ is pi � 1; i ¼ 1; 2; 3, and S3

1pi ¼ p. We

are interested in testing the null hypothesis H0 : Gð2Þ ¼ 0 against the alternatives

H1 : Gð2Þ = 0 when it is given that Gð3Þ ¼ 0 and Gð1Þ is unknown. Here

V ¼ fðGð1Þ;Gð2Þ; 0Þ;Sg;v ¼ fðGð1Þ; 0; 0Þ;Sg:
Let S�; S; �XX;m, and S be partitioned as in (7.21) and (7.22) with k ¼ 3. Using

Lemma 9.3.3 we get from (9.72)

maxv LðG;SÞ
maxV LðG;SÞ ¼

1� r1 � r2

1� r1

� �N=2

; ð9:82Þ

where r1; r2; r3 are given in Section 7.2.2 with k ¼ 3. The likelihood ratio test of

H0 rejects H0 whenever

z ¼ 1� r1 � r2

1� r1
� C; ð9:83Þ

where C is a constant such that the test has size a. The joint probability density

function of R1;R2;R3 (under H1) is given in (6.73) with k ¼ 3, where

d21 ¼ NðSð11ÞGð1Þ þ Sð12ÞGð2ÞÞ0S�1
ð11ÞðSð11ÞGð1Þ þ Sð12ÞGð2ÞÞ

d21 þ d22 ¼ N
Sð11ÞGð1Þ þ Sð12ÞGð2Þ
Sð21ÞGð1Þ þ Sð22ÞGð2Þ

� �0
Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� ��1

� Sð11ÞGð1Þ þ Sð12ÞGð2Þ
Sð21ÞGð1Þ þ Sð22ÞGð2Þ

� �

d23 ¼ NG0
ð3Þ Sð33Þ �

Sð13Þ
Sð23Þ

� �0
Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� ��1
Sð13Þ
Sð23Þ

� � !
Gð3Þ ¼ 0;

ð9:84Þ
and under H0; d

2
2 ¼ 0. From this it follows that the joint probability density

function of Z and R1 under H0 is given by (9.75) with p replaced by p1 þ p2.

Hence under H0, Z is distributed as central beta with parameters ð 1
2
ðN �

p1Þ; 1=2p2Þ and is independent of R1.

The problem of testing H0 against H1 remains invariant under GBT with k ¼ 3

operating as Xa ! gXa; g [ GBT ;a ¼ 1; . . . ;N. A set of maximal invariants in

the space of ð �XX; SÞ under GBT with k ¼ 3 is ðR1;R2;R3Þ, and the corresponding

maximal invariants in the parametric space is ðd21; d22; d23Þ as given in (9.83).

Under H0; d
2
2 ¼ 0 and under H1; d

2
1 . 0, and it is given that d23 ¼ 0. As we have

proved in case C, R1 is sufficient for d21 under H0 and the distribution of R1 is

boundedly complete. Now arguing in the same way as in case C we prove the

following theorem.
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Theorem 9.3.5. For testing H0 : Gð2Þ ¼ 0 the likelihood ratio test which rejects

H0 whenever z � C;C depending on the level a of the test, is uniformly most

powerful invariant similar against H1 : Gð2Þ = 0 when it is given that Gð3Þ ¼ 0.

Tests depending on the Mahalanobis distance statistic are also used for testing

hypotheses concerning discriminant coefficients. The reader is referred to Rao

(1965) or Kshirsagar (1972) for an account of this. Recently Sinha and Giri

(1975) have studied the optimum properties of the likelihood ratio tests of these

problems from the point of view of Isaacson’s type D and type E property (see

Isaacson, 1951).

9.4. CLASSIFICATION INTO MORE THAN TWO

MULTIVARIATE NORMALS

As pointed out in connection with Theorem 9.2.1 if CðijjÞ ¼ C for all i = j, then

the Bayes classification rule R� ¼ ðR�
1; . . . ;R

�
k Þ against the a priori probabilities

ðp1; . . . ; pkÞ classifies an observation x to R�
l if

flðxÞ
fjðxÞ �

pj

pl
for j ¼ 1; . . . ; k; j = l: ð9:85Þ

In this section we shall assume that fiðxÞ is the probability density function of a p-
variate normal random vector with mean mi and the same positive definite

covariance matrix S. Most known results in this area are straightforward

extensions of the results for the case k ¼ 2. In this case the Bayes classification

rule R� ¼ ðR�
1; . . . ;R

�
k Þ classifies x to R�

l whenever

ulj ¼ log
flðxÞ
fjðxÞ ¼ x� 1

2
ðml þ mjÞ

� �0
S
�1ðml � mjÞ � log

pj

pl
: ð9:86Þ

Each ulj is the linear discriminant function related to the jth and the lth

populations and obviously ulj ¼ �ujl.

In the case in which the a priori probabilities are unknown the minimax

classification rule R ¼ ðR1; . . . ;RkÞ classifies x to Rl if

ulj � Cl � Cj; j ¼ 1; . . . ; k; j = l; ð9:87Þ
where the Cj are nonnegative constants and are determined in such a way that all

Pðiji;RÞ are equal. Let us now evaluate Pðiji;RÞ. First observe that random

variable

Uij ¼ X � 1

2
ðmi þ mjÞ

� �0
S
�1ðmi � mjÞ ð9:88Þ
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satisfies Uij ¼ �Uji. Thus we use kðk � 1Þ=2 linear discriminant functions Uij if

the mean vectors mi span a ðk � 1Þ-dimensional hyperplane. Now the Uij are

normally distributed with

EiðUijÞ ¼ 1

2
ðmi � mjÞ0S�1ðmi � mjÞ;

EjðUijÞ ¼ � 1

2
ðmi � mjÞ0S�1ðmi � mjÞ

varðUijÞ ¼ ðmi � mjÞ0S�1ðmi � mjÞ

covðUij;Uij0 Þ ¼ ðmi � mjÞ0S�1ðmi � mj0 Þ; j = j0;

ð9:89Þ

where EiðUijÞ denotes the expectation of Uij when X comes from pi. For a given j

let us denote the joint probability density function of Uji; i ¼ 1; . . . ; k; i = j, by

pj. Then

Pð jj j;RÞ ¼
ð1
Cj�Ck

� � �
ð1
Cj�C1

pjPi=jduji:

Note that the sets of regions given by (9.87) form an admissible class.

If the parameters are unknown, they are replaced by their appropriate

estimates from training samples from these populations to obtain sample

discriminant functions as discussed in the case of two populations. We discussed

earlier the problems associated with the distribution of sample discriminant

functions and different methods of evaluating the probabilities of misclassifi-

cation. For some relevant results the reader is referred to Das Gupta (1973) and

the references therein.

The problem of unequal covariance matrices can be similarly resolved by

using the results presented earlier for the case of two multivariate normal

populations with unequal covariance matrices. For further discussions in this case

the reader is referred to Fisher (1938), Brown (1947), Rao (1952, 1963), and

Cacoullos (1965). Das Gupta (1962) considered the problems where m1; . . . ;mk

are linearly restricted and showed that the maximum likelihood classification rule

is admissible Bayes when the common covariance matrix S is known. Following

Kiefer and Schwartz (1965), Srivastava (1964) obtained similar results when S is

unknown.

Example 9.4.1. Consider two populations p1 and p2 of plants of two distinct

varieties of wheat. The measurements for each member of these two populations
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are

x1 plant height (cm);
x2 number of effective tillers;
x3 length of ear (cm);
x4 number of fertile spikelets per 10 ears;
x5 number of grains per 10 ears;
x6 weight of grains per 10 ears (gm).

Assuming that these are six-dimensional normal populations with different

unknown mean vectors m1;m2 and with the same unknown covariance matrix S
we shall consider here the problem of classifying an individual with observation

x ¼ ðx1; . . . ; x6Þ0 on him to one of these populations. Since the parameters are

unknown we obtained two training samples (Table 9.1) (of size 27 each) from

them (these data were collected from the Indian Agricultural Research Institute,

New Delhi, India). The sample mean vectors and the sample covariance matrix

are given in Table 9.2 [see Eq. (9.27) for the notation]. Using the sample

discriminant function

v ¼ x� 1

2
ð�xxð1Þ þ �xxð2ÞÞ

� �0
s�1ð�xxð1Þ � �xxð2ÞÞ;

writing

d1ðxÞ ¼ x0s�1 �xxð1Þ � 1

2
�xxð1Þ

0
s�1 �xxð1Þ; d2ðxÞ ¼ x0s�1 �xxð2Þ � 1

2
�xxð2Þ

0
s�1 �xxð2Þ;

we classify x

to p1 if d1ðxÞ � d2ðxÞ
to p2 if d1ðxÞ , d2ðxÞ

Sample Covariance Matrix s

3:13548
2:61154 41:76262
0:37533 11:89829 0:82986
0:75635 18:28440 1:27375 3:13548

18:28440 1214:74359 51:04744 90:44476 41:76282
1:27375 51:04744 3:73134 6:54646 0:37415 0:82986

0
BBBBBB@

1
CCCCCCA
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Table 9.1. Samples From Populations

p1 p2

Observation x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

1 77.60 136 9.65 12.6 322 14.7 65.55 166 9.29 11.3 323 13.1

2 83.45 177 9.76 13.1 321 14.5 67.10 132 9.52 11.7 319 13.6

3 76.20 164 10.52 13.9 384 17.1 66.25 173 9.88 12.1 319 13.6

4 80.30 185 9.76 12.5 259 15.4 80.45 155 11.19 13.8 394 17.6

5 82.30 187 9.77 13.4 314 14.4 78.30 202 10.78 13.3 376 16.7

6 86.00 171 9.25 13.0 278 13.0 77.80 155 10.86 14.0 401 18.2

7 90.50 211 9.75 12.9 308 13.6 79.20 161 10.68 14.3 417 17.8

8 81.50 158 10.38 13.6 258 14.8 82.65 158 10.64 12.2 382 17.4

9 79.75 176 9.31 12.0 307 13.2 79.85 156 10.83 13.7 366 16.1

10 86.85 175 10.23 14.2 330 14.6 67.30 157 9.98 11.8 354 14.0

11 72.90 139 10.29 12.9 346 15.5 70.65 173 9.97 12.2 310 12.5

12 73.50 124 9.68 12.0 308 14.1 67.15 159 9.99 12.3 325 11.9

13 86.85 149 10.33 13.5 337 15.1 80.85 160 10.47 12.7 358 15.5

14 89.15 224 9.70 13.0 317 12.4 81.80 162 10.87 13.9 403 18.3

15 78.05 149 9.63 12.6 285 12.5 81.15 178 11.07 13.8 401 16.2

16 81.95 200 9.28 12.8 272 12.5 82.95 177 11.04 13.5 366 16.6

17 81.70 187 9.46 12.6 276 12.3 81.20 172 11.14 14.1 412 19.3

18 89.65 200 9.58 11.1 285 12.5 83.85 192 11.24 14.1 372 17.2

19 79.90 152 9.49 13.2 275 11.7 67.60 164 10.07 11.9 305 11.8

20 71.15 144 9.55 12.0 292 11.9 64.35 170 9.34 11.0 303 11.6

21 83.05 147 10.30 13.3 326 14.2 66.40 158 9.71 11.9 326 12.9

22 87.25 231 10.32 13.1 332 14.7 79.10 162 10.49 12.9 395 17.0

23 78.65 183 9.90 14.1 324 14.6 81.65 171 11.31 14.1 403 17.2

24 79.95 165 9.34 12.5 290 12.1 79.35 162 10.43 12.6 390 15.9

25 86.65 198 10.07 12.7 293 12.3 78.90 166 11.14 14.0 432 18.4

26 92.05 212 9.81 13.1 304 13.9 80.45 172 11.32 14.3 306 18.7

27 76.80 193 9.80 13.1 288 13.4 83.75 202 10.38 13.4 343 13.8

Table 9.2. Sample Means

p1 p2

x1 81.98704 76.13333

x2 175.44444 167.22222

x3 9.81148 10.49741

x4 12.91852 12.99630

x5 305.22222 363.00000

x6 13.82222 15.66296
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Now

d1ðxÞ ¼ 0:10070x1 þ 0:20551x2 þ 75:13581x3 þ 1:69460x4 þ 0:16121x5

� 15:98724x6 � 315:81156

d2ðxÞ ¼ �0:49307x1 þ 0:28011x2 þ 84:84069x3 � 1:88664x4

þ 0:22783x5 � 16:30691x6 � 351:33860:

To verify the efficacy of this plug-in classification rule we now classify the

observed sample observations using the proposed criterion. The results are given

in Table 9.3.

Table 9.3. Evaluations of the Classification Rule

for Sample Observations

Observation

Population p1

Classified to:

Population p2

Classified to:

1 p1 p2

2 p1 p2

3 p2 p2

4 p1 p2

5 p1 p2

6 p1 p2

7 p1 p2

8 p1 p2

9 p1 p2

10 p1 p2

11 p2 p2

12 p1 p2

13 p1 p2

14 p1 p2

15 p1 p2

16 p1 p2

17 p1 p2

18 p1 p2

19 p1 p2

20 p1 p2

21 p1 p2

22 p2 p2

23 p1 p2

24 p1 p2

25 p1 p2

26 p1 p2

27 p1 p2
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9.5. CONCLUDING REMARKS

We have limited our discussions mainly to the case of multivariate normal

distributions. The cases of nonnormal and discrete distributions are equally

important in practice and have been studied by various workers. For multinomial

distributions the works of Matusita (1956), Chernoff (1956), Cochran and

Hopkins (1961), Bunke (1966), and Glick (1969) are worth mentioning. For

multivariate Bernouilli distributions we refer to Bahadur (1961), Solomon (1960,

1961), Hills (1966), Martin and Bradly (1972), Cooper (1963, 1965),

Bhattacharya and Das Gupta (1964), and Anderson (1972). The works of

Kendall (1966) and Marshall and Olkin (1968) are equally important for related

results in connection with discrete distributions. The reader is also referred to the

book edited by Cacoullos (1973) for an up-to-date account of research work in the

area of discriminant analysis. Rukhin (1991) has shown that the natural estimator

of the discriminant coefficient vector G is admissible under quadratic loss

function when S ¼ s2I. Khatri and Bhavsar (1990) have treated the problem of

the estimation of discriminant coefficients in the family of complex elliptically

symmetric distributions. They have derived the asymptotic confidence bounds of

the discriminatory values for the linear Fisher’s discrimination for the future

complex observation from this family.

9.6. DISCRIMINANT ANALYSIS AND CLUSTER ANALYSIS

Cluster analysis is distinct from the discriminant analysis. The discriminant

analysis pertains to a known number of groups and the objective is to assign new

observations to one of these groups. In cluster analysis no assumption is made

about the number of groups (clusters) or their structure and it involves the search

through the observations that are similar enough to each other to be identified as

part of a common cluster. The clusters consist of observations that are close

together and that the clusters themselves are clearly separated. If each

observation is associated with one and only one cluster, the clusters constitute a

partition of the data which is useful for statistical purposes.

The cluster analysis involves a search of the data of observations that are

similar enough to each other to be identified as part of a common cluster. Better

results are achieved by taking into account the cluster structure before attempting

to estimate any of the relationship that may be present. It is not easy to find the

cluster structure except in small problems.

Numerous algorithms have evolved for finding clusters in a reasonably

efficient way. This development of algorithms has, for the most part, come out of

applications-oriented disciplines, such as biology, psychology, medicine,

education, business, etc.
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Let Xa;a ¼ 1; . . . ;N be a random sample from a population characterized by

a probability distribution P. A clustering technique produces some clusters in the

sample. A theoretical model generates some clusters in the population with the

distribution P. We evaluate the technique by asking how well the sample clusters

agree with the population clusters. For further study we refer to “Discriminant

Analysis and Clustering”, by the Panel on Discriminant Analysis, Classification

and Clustering, published in Statistical Sciences, 1989, 4, 34–69, and the

references included therein.

EXERCISES

1 Let p1, p2 be two p-variate normal populations with means m1, m2 and the

same covariance matrix S. Let X ¼ ðX1; . . . ;XpÞ0 be a random vector

distributed, according to p1 or p2 and let b ¼ ðb1; . . . ; bpÞ0 be a real vector.

Show that

½E1ðb0XÞ � E2ðb0XÞ�2
varðb0XÞ

is maximum for all choices of b whenever b ¼ S
�1ðm1 � m2Þ. [Eiðb0XÞ is the

expected value of b0X under pi.)

2 Let xðiÞa , a ¼ 1; . . . ;Ni, i ¼ 1; 2. Define dummy variables yðiÞa

yðiÞa ¼ Ni

N1 þ N2

; a ¼ 1; . . . ;Ni; i ¼ 1; 2:

Find the regression on the variables xðiÞa by choosing b ¼ ðb1; . . . ; bpÞ0 to
minimize

X2
i¼1

XNi

a¼1

ðyðiÞa � b0ðxðiÞa � �xxÞÞ2;

where

�xx ¼ N1 �xx
ð1Þ þ N2 �xx

ð2Þ

N1 þ N2

; Ni �xx
ðiÞ ¼

XNi

a¼1

xðiÞa :

Show that the minimizing b is proportional to s�1ð�xxð1Þ � �xxð2ÞÞ, where

ðN1 þ N2 � 2Þs ¼
X2
i¼1

XNi

a¼1

ðxðiÞa � �xxðiÞÞðxðiÞa � �xxðiÞÞ0:

3 (a) For discriminating between two p-dimensional normal distributions with

unknown means m1, m2 and the same unknown covariance matrix S, show
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that the sample discriminant function v can be obtained from

b0 x� 1

2
ð�xxð1Þ þ �xxð2ÞÞ

� �

by finding b to maximize the ratio

½b0ð�xxð1Þ � �xxð2ÞÞ�2
ðb0sbÞ

where �xxðiÞ, s are given in (9.27).

(b) In the analysis of variance terminology (a) amounts to finding b to

maximize the ratio of the between-population sum of squares to the within-

population sum of squares. With this terminology show that the sample

discriminant function obtained by finding b to maximize the ratio of the

between-population sum of squares to the total sum of squares is proportional

to v.

4 For discriminating between two-p-variate normal populations with known

mean vectors m1, m2 and the same known positive definite covariance matrix

S show that the linear discriminant function u is also good for any p-variate

normal population with mean a1m1 þ a2m2, where a1 þ a2 ¼ 1, and the same

covariance S.
5 Prove Theorems 9.2.2 and 9.2.3.

6 Consider the problem of classifying an individual into one of two populations

p1, p2 with probability density functions f1, f2, respectively.

(a) Show that if Pð f2ðxÞ ¼ 0jp1Þ ¼ 0, Pð f1ðxÞ ¼ 0jp2Þ ¼ 0, then every Bayes

classification rule is admissible.

(b) Show that if Pð f1ðxÞ=f2ðxÞ ¼ kjpiÞ ¼ 0, i ¼ 1; 2; 0 � k � 1, then every

admissible classification rule is a Bayes classification rule.

7 Let v ¼ vðxÞ be defined as in (9.28). Show that for testing the equality of mean

vectors of two p-variate normal populations with the same positive definite

covariance matrix S, Hotelling’s T2-test on the basis of sample observations

xð1Þa , a ¼ 1; . . . ;N1, from the first population and xð2Þa , a ¼ 1; . . . ;N2, from

the second population, is proportional to vð�xxð1ÞÞ and vð�xxð2ÞÞ.
8 Consider the problem of classifying an individual with observation

ðx1; . . . ; xpÞ0 between two p-dimensional normal populations with the same

mean vector 0 and positive definite covariance matrices S1, S2.

(a) Given S1 ¼ s2
1I, S2 ¼ s2

2I, where s2
1, s

2
2 are known positive constants

and Cð2j1Þ ¼ Cð1j2Þ, find the minimax classification rule.
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(b) (i) Let

S1 ¼
1 r1 � � � r1
r1 1 � � � r1
..
. ..

. ..
.

r1 r1 � � � 1

0
BB@

1
CCA; S2 ¼ s2

1 r2 � � � r2
r2 1 � � � r2
..
. ..

. ..
.

r2 r2 � � � 1

0
BB@

1
CCA:

Show that the likelihood ratio classification rule leads to aZ1 � bZ2 ¼ C

as the boundary separating the regions R1, R2 where

Z1 ¼ x0x; Z2 ¼ ðSp
1xiÞ2

a ¼ ð1� r1Þ�1 � ðs2ð1� r2ÞÞ�1;

b ¼ r1
ð1� r1Þð1þ ð p� 1Þr1Þ

� r2
ð1� r2Þs2ð1þ ð p� 1Þr2Þ

:

(ii) (Bartlett and Please, 1963). Suppose that r1 ¼ r2 in (a). Then the

classification rule reduces to: Classify x to p1 if u � c0 and to p2 if u , c0

where c0 is a constant and

U ¼ Z1 � r

1þ ð p� 1Þr Z2:

Show that the corresponding random variable U has a ðð1� rÞs2
i Þx2

distribution with p degrees of freedom where s2
i ¼ 1 if X comes from p1

and s2
i ¼ s2 is X comes from p2.

9 Show that the likelihood ratio tests for cases C and D in Section 9.3 are

uniformly most powerful similar among all tests whose power depends only

on d21 and d22.
10 Giri (1973) Let j ¼ ðj1; . . . ; jpÞ0, h ¼ ðh1; . . . ;hpÞ0 be two p-dimensional

independent complex Gaussian random vectors with complex means

EðjÞ ¼ a, EðhÞ ¼ b and with the same Hermitian positive definite covariance

matrix S.
(a) Find the likelihood ratio rule for classifying an observation into one of

these two populations.

(b) Let j be distributed as a p-dimensional complex Gaussian random vector

with mean EðjÞ ¼ a and Hermitian positive definite covariance matrix S.
Let G ¼ S

�1a. Find the likelihood ratio tests for problems analogous to

B, C, and D in Section 9.3.
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10
Principal Components

10.0. INTRODUCTION

In this and following chapters we will deal with covariance structures of

multivariate distributions. Principal components, canonical correlations, and

factor models are three interrelated concepts dealing with covariance structure.

All these concepts aim at reducing the dimension of observable random variables.

The principal components will be treated in this chapter. Canonical analysis and

Factor analysis will be treated in Chapters 11 and 12 respectively. Though these

concepts will be developed for any multivariate population, statistical inferences

will be made under the assumption of normality. Proper references will be given

for elliptical distributions.

10.1. PRINCIPAL COMPONENTS

Let X ¼ ðX1; . . . ;XpÞ0 be a random vector with

EðXÞ ¼ m; covðXÞ ¼ S ¼ ðsijÞ;
where m is a real p-vector and S is a real positive semidefinite matrix. In

multivariate analysis the dimension of X often causes problems in obtaining

suitable statistical techniques to analyze a set of repeated observations (data) on

X. For this reason it is natural to look for methods for rearranging the data so that
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with as little loss of information as possible, the dimension of the problem is

considerably reduced. We have seen one such attempt in connection with

discriminant analysis in Chapter 9.

This notion is motivated by the fact that in early stages of research interest was

usually focused on those variables that tend to exhibit greatest variation from

observation to observation. Since variables which do not change much from

observation to observation can be treated as constants, by discarding low variance

variables and centering attention on high variance variables, one can more

conveniently study the problem of interest in a subspace of lower dimension. No

doubt some information on the relationship among variables is lost by such a

method; nevertheless, in many practical situations there is much more to gain

than to lose by this approach.

The principal component approach was first introduced by Karl Pearson

(1901) for nonstochastic variables. Hotelling (1933) generalized this concepts to

random vectors. Principal components of X are normalized linear combinations

of the components of X which have special properties in terms of variances. For

example, the first principal components of X is the normalized linear combination

Z1 ¼ L0X; L ¼ ðl1; . . . ; lpÞ0 [ Ep;

where L is chosen so that varðL0XÞ is maximum with respect of L. Obviously each

weight li is a measure of the importance to be placed on the component Xi. We

require the condition L0L ¼ 1 in order to obtain a unique solution for the principal

components. We shall assume that components of X are measured in the same

units; otherwise the requirement L0L ¼ 1 is not a sensible one. It will be seen that

estimates of principal components are sensitive to units used in the analysis so

that different sets of weights are obtained for different sets of units. Sometimes

the sample correlation matrix is used instead of the sample covariance matrix to

estimate these weights, thereby avoiding the problem of units, since the principal

components are then invariant to changes in units of measurement. The use of the

correlation matrix amounts to standardizing the variables to unit sample variance.

However, since the new variables are not really standardized relative to the

population, there is then introduced the problem of interpreting what has actually

been computed. In practice such a technique is not recommended unless the

sample size is large.

The second principal component is a linear combination that has maximum

variance among all normalized linear combinations uncorrelated with Z1 and so

on up to the pth principal component of X. The original vector X can thus be

transformed to the vector of its principal components by means of a rotation of

the coordinate axes that has inherent statistical properties. The choosing of such a

type of coordinate system is to be contrasted with previously treated problems

where the coordinate system in which the original data are expressed is irrelevant.
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The weights in the principal components associated with the random vector X are

exactly the normalized characteristic vectors of the covariance matrix S of X,

whereas the characteristic roots of S are the variances of the principal

components, the largest root being the variance of the first principal component.

It may be cautioned that sample observations should not be indiscriminately

subjected to principal component analysis merely to obtain fewer variables with

which to work. Rather, principal component analysis should be used only if

it complements the overall objective. For example, in problems in which

correlation rather than variance is of primary interest or in which there are likely

to be important nonlinear functions of observations that are of interest, most of

the information about such relationships may be lost if all but the first few

principal components are dropped.

10.2. POPULATION PRINCIPAL COMPONENTS

Let X ¼ ðX1; . . . ;XpÞ0 be a p-variate random vector with EðXÞ ¼ m and known

covariance matrix S. We shall consider cases in which S is a positive

semidefinite matrix or cases in which S has multiple roots. Since we shall only be

concerned with variances and covariances of X we shall assume that m ¼ 0. The

first principal component of X is the normalized linear combination (say) Z1 ¼
a0X;a ¼ ða1; . . . ;apÞ0 [ Ep with a0a ¼ 1 such that

varða0XÞ ¼ max
L

varðL0XÞ ð10:1Þ

for all L [ Ep satisfying L0L ¼ 1. Now

varðL0XÞ ¼ L0SL:

Thus to find the first principal component a0X we need to find the a that

maximizes L0SL for all choices of L [ Ep, subject to the restriction that L0L ¼ 1.

Using the Lagrange multiplier l, we need to find the a that maximizes

f1ðLÞ ¼ L0SL� lðL0L� 1Þ ð10:2Þ
for all choices of L satisfying L0L ¼ 1. Since L0SL and L0L have derivatives

everywhere in a region containing L0L ¼ 1, we conclude that the vector a which

maximizes f1 must satisfy

2Sa� 2la ¼ 0; ð10:3Þ
or

ðS� lIÞa ¼ 0: ð10:4Þ
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Since a = 0 (as a consequence of a0a ¼ 1), Eq. (10.4) has a solution if

detðS� lIÞ ¼ 0: ð10:5Þ
That is, l is a characteristic root of S and a is the corresponding characteristic

vector. Since S is of dimension p� p, there are p values of lwhich satisfy (10.5).

Let

l1 � l2 � � � � lp ð10:6Þ
denote the ordered characteristic roots of S and let

a1 ¼ ða11; . . . ;a1pÞ0; . . . ;ap ¼ ðap1; . . . ;appÞ0 ð10:7Þ
denote the corresponding characteristic vectors of S. Note that since S is positive

semidefinite some of the characteristic roots may be zeros; in addition, some of

the roots may have multiplicities greater than unity. From (10.4)

a0Sa ¼ la0a ¼ l: ð10:8Þ
Thus we conclude that if a with a0a ¼ 1 satisfies (10.4), then

varða0XÞ ¼ a0Sa ¼ l; ð10:9Þ
where l is the characteristic root of S corresponding to a. Thus to maximize

varða0XÞ we need to choose l ¼ l1, the largest characteristic root of S, and
a ¼ a1 the characteristic vector of S corresponding to l1. If the rank of S� l1I
is p� 1, then there is only one solution to

ðS� l1IÞa1 ¼ 0 with a0
1a1 ¼ 1:

Definition 10.2.1. First principal component. The normalized linear function

a0
1X ¼ S

p
i¼1a1iXi, where a1 is the normalized characteristic vector of S

corresponding to its largest characteristic root l1, is called the first principal

component of X.

We have assumed no distributional form for X. If X has a p-variate normal

distribution with positive definite covariance matrix S, then the surfaces of

constant probability density are concentric ellipsoids and Z1 ¼ a0
1X represents

the major principal axis of these ellipsoids. In general under the assumption of

normality of X, the principal components will represent a rotation of coordinate

axes of its components to the principal axes of these ellipsoids. If there are

multiple roots, the axes are not uniquely defined.

The second principal component is the normalized linear function a0X having

maximum variance among all normalized linear functions L0X that are

uncorrelated with Z1. If any normalized linear function L0X is uncorrelated
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with Z1, then

EðL0XZ1Þ ¼ EðL0XZ 0
1Þ ¼ EðL0XX0a1Þ

¼ L0Sa1 ¼ L0l1a1 ¼ l1L
0a1 ¼ 0: ð10:10Þ

This implies that the vectors L and a1 are orthogonal. We now want to find a

linear combination a0X that has maximum variance among all normalized linear

combinations L0X; L [ Ep, which are uncorrelated with Z1. Using Lagrange

multipliers l; n we want to find the a that maximizes

f2ðLÞ ¼ L0SL� lðL0L� 1Þ � 2nðL0Sa1Þ: ð10:11Þ

Since

@f2

@L
¼ 2SL� 2lL� 2nSa1; ð10:12Þ

the maximizing a must satisfy

a0
1Sa� la0

1a� na0
1Sa1 ¼ 0: ð10:13Þ

Since from (10.10) a0
1Sa ¼ 0 and a0

1Sa1 ¼ l1, we get from (10.13),

nl1 ¼ 0: ð10:14Þ

Since l1 = 0, we conclude that n ¼ 0, and therefore from (10.12) we conclude

that l and amust satisfy (10.3) and (10.4). Thus it follows that the coefficients of

the second principal component of X are the elements of the normalized

characteristic vector a2 of S, corresponding to its second largest characteristic

root l2. The second principal component of S is

Z2 ¼ a0
2X:

This is continued to the rth ðr , pÞ principal component Zr. For the ðr þ 1Þth
principal component we want to find a linear combination a0X that has maximum

variance among all normalized linear combinations L0X; L [ Ep, which are

uncorrelated with Z1; . . . ; Zr. So, with Zi ¼ a0
iX,

covðL0X; ZiÞ ¼ L0Sai ¼ L0liai ¼ liL
0ai ¼ 0; i ¼ 1; . . . ; r: ð10:15Þ

To find a we need to maximize

frþ1ðLÞ ¼ L0SL� lðL0L� 1Þ � 2
Xr
i¼1

niL
0Sai; ð10:16Þ
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where l; n1; . . . ; nr are Lagrange multipliers. Setting the vector of partial

derivatives

@frþ1

@L
¼ 0;

the vector a that maximizes frþ1ðLÞ is given by

2Sa� 2la� 2
Xr
i¼1

niSai ¼ 0: ð10:17Þ

Since from this

a0
iSa� la0

ia�
X
i=1

nili ¼ 0 ð10:18Þ

and a0
iSai ¼ li, we conclude from (10.17) and (10.18) that if li = 0,

nili ¼ 0; ð10:19Þ
that is, ni ¼ 0. If li ¼ 0;Sai ¼ liai ¼ 0, so that the factor L0Sai in (10.16)

vanishes. This argument holds for i ¼ 1; . . . ; r, so we conclude from (10.17) that

the maximizing a [satisfying (10.4)] is the characteristic vector of S, orthogonal
to ai; i ¼ 1; . . . ; r, corresponding to its characteristic root l. If lrþ1 = 0, taking

l ¼ lrþ1 and a for the normalized characteristic vector arþ1, corresponding to

the ðr þ 1Þth largest characteristic root lrþ1, the ðr þ 1Þth principal component is

given by

Zrþ1 ¼ a0
rþ1X:

However, if lrþ1 ¼ 0 and some li ¼ 0 for 1 � i � r, then

a0
iSarþ1 ¼ 0

does not imply that a0
iarþ1 ¼ 0. In such cases replacing arþ1 by a linear

combination of arþ1 and the ai for which li ¼ 0, we can make the new arþ1

orthogonal to all ai; i ¼ 1; . . . ; r. We continue in this way to the mth step such

that at the ðmþ 1Þth step we cannot find a normalized vector a such that a0X is

uncorrelated with all Z1; . . . ; Zm. Since S is of dimension p� p, obviously m ¼ p

or m , p. We now show that m ¼ p is the only solution. Assume m , p. There

exist p� m normalized orthogonal vectors bmþ1; . . . ;bp such that

a0
ibj ¼ 0; i ¼ 1; . . . ;m j ¼ mþ 1; . . . ; p ð10:20Þ

Write B ¼ ðbmþ1; . . . ;bpÞ. Consider a root of det(B0SB� lIÞ ¼ 0 and the

corresponding b ¼ ðbmþ1; . . . ;bpÞ0 satisfying
ðB0SB� lIÞb ¼ 0: ð10:21Þ
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Since

a0
iSBb ¼ lia

0
i

Xp

j¼mþ1

bjb
0
j ¼ li

Xp

j¼mþ1

b0
ja

0
ibj ¼ 0;

the vector SBb is orthogonal to ai; i ¼ 1; . . . ; r. It is therefore a vector in the

space spanned by bmþ1; . . . ;bp, and can be written as

SBb ¼ BC;

where C is a ðp� mÞ-component vector. Now

B0SBb ¼ B0BC ¼ C:

Thus from (10.21)

lb ¼ C;SðBbÞ ¼ lBb:

Then ðBbÞ0X is uncorrelated with a0
jX; j ¼ 1; . . . ;m, and it leads to a new amþ1.

This contradicts the assumption that m , p, and we must have m ¼ p. Let

A ¼ ða1; . . . ;apÞ;L ¼
l1 0 � � � 0

0 l2 � � � 0

..

. ..
. ..

.

0 0 � � � lp

0
BB@

1
CCA ð10:22Þ

where l1 � l2 � � � � lp are the ordered characteristic roots of S and a1; . . . ;ap

are the corresponding normalized characteristic vectors. Since AA0 ¼ I and SA ¼
AL we conclude that A0SA ¼ L. Thus with Z ¼ ðZ1; . . . ; ZpÞ0 we have the

following theorem.

Theorem 10.2.1. There exists an orthogonal transformation

Z ¼ A0X

such that covðZÞ ¼ L a diagonal matrix with diagonal elements

l1 � � � � � lp � 0, the ordered roots of detðS� lIÞ ¼ 0. The ith column ai of

A satisfies ðS� liIÞai ¼ 0. The components of Z are uncorrelated and Zi, has

maximum variance among all normalized linear combinations uncorrelated with

Z1; . . . ; Zi�1.

The vector Z is called the vector of principal components of X. In the case of

multiple roots suppose that

lrþ1 ¼ � � � ¼ lrþm ¼ l ðsayÞ:
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Then ðS� lIÞai ¼ 0; i ¼ r þ 1; . . . ; r þ m. That is, ai; i ¼ r þ 1; . . . ; r þ m, are

m linearly independent solutions of ðS� lIÞa ¼ 0. They are the only linearly

independent solutions. To show that there cannot be another linearly independent

solution of

ðS� lIÞa ¼ 0; ð10:23Þ
take S

p
i¼1aiai, where the ai are scalars. If it is a solution of (10.23), we must have

l
Xp

i¼1

aiai ¼ S
Xp

i¼1

aiai

 !
¼
Xp

i¼1

aiSai ¼
Xp

i¼1

ailiai:

Since lai ¼ liai, we must have ai ¼ 0 unless i ¼ r þ 1; . . . ; r þ m. Thus the

rank of ðS� lIÞa is p� m. Obviously if ðarþ1; . . . ;arþmÞ is a solution of

(10.23), then for any nonsingular matrix C,

ðarþ1; . . . ;arþmÞC
is also a solution of (10.23). But from the condition of orthonormality of

arþ1; . . . ;arþm, we easily conclude that C is an orthogonal matrix. Hence we

have the following theorem.

Theorem 10.2.2. If lrþ1 ¼ � � � ¼ lrþm ¼ l, then ðS� lIÞ is a matrix of rank

p� m. Furthermore, the corresponding characteristic vector ðarþ1; . . . ;arþmÞ is
uniquely determined except for multiplication from the right by an orthogonal

matrix.

From Theorem 10.2.1 it follows trivially that

det S ¼ det L; tr S ¼ tr L; ð10:24Þ
and we conclude that the generalized variance of the vector X and its principal

component vector Z are equal, and the same is true for the sum of variances of

components of X and Z. Sometimes tr S is called the total system variance.

If the random vector X is distributed as Epðm;SÞ, the contours of equal

probability are ellipsoids and the principal components represent a rotation of the

coordinate axes to the principal axes of the ellipsoid.

10.3. SAMPLE PRINCIPAL COMPONENTS

In practice the covariance matrix S is usually unknown. So the population

principal components will be of no use and the decision as to which principal

components have sufficiently small variances to be ignored must be made from

sample observations on X. In the preceding discussion on population principal
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components we do not need the specific form of the distribution of X. To deal

with the problem of an unknown covariance matrix we shall assume that X has a

p-variate normal distribution with mean m and unknown positive definite

covariance matrix S. In most applications of principal components all the

characteristic roots of S are different, although the possibility of multiple roots

cannot be entirely ruled out. For an interesting case in which S has only one root

of multiplicity p see Exercise 10.1.

Let xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;NðN . pÞ, be a sample of size N from

the distribution of the random vector X which is assumed to be normal with

unknown mean m and unknown covariance matrix S. Let

�xx ¼ 1

N

XN
a¼1

xa; s ¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0:

The maximum likelihood estimate of S is s=N and that of m is �xx.

Theorem 10.3.1. The maximum likelihood estimates of the ordered char-

acteristic roots l1; . . . ; lp of S and the corresponding normalized characteristic

vectors a1; . . . ;ap of S are, respectively, the ordered characteristic roots

r1; r2; . . . ; rp, and the characteristic vectors a1; . . . ; ap of s=N.

Proof. Since the characteristic roots of S are all different, the normalized

characteristic vectors a1; . . . ;ap are uniquely determined except for

multiplication by +1. To remove this arbitrariness we impose the condition

that the first nonzero component of each ai, is positive. Now since ðm;L;AÞ is a
single-valued function of m;S, by Lemma 5.1.3, the maximum likelihood

estimates of l1; . . . ; lp are given by the ordered characteristic roots r1 . r2 .
� � � . rp of s=N, and that of ai, is given by ai, satisfying

ðs=N � riIÞai ¼ 0; a0iai ¼ 1; ð10:25Þ

with the added restriction that the first nonzero element of ai is positive. Note that

since detðSÞ = 0 and N . p, the characteristic roots of S=N are all different with

probability 1. Since S ¼ ALA0, that is,

S ¼
Xp

i¼1

liaia
0
i; ð10:26Þ
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we obtain

s

N
¼
Xp

i¼1

riaia
0
i: ð10:27Þ

Obviously replacing ai by�ai does not change this expression for s=N. Hence
the maximum likelihood estimate of ai is given by any solution of ðs=N �
riIÞai ¼ 0 with a0iai ¼ 1. Q.E.D.

The estimate of the total system variance is given by

tr
s

N

 �
¼
Xp

i¼1

ri; ð10:28Þ

and is called the total sample variance. The importance of the ith principal

component is measured by

ri

S
p
i¼1ri

ð10:29Þ

which, when expressed in percentage, will be called the percentage of

contribution of the ith principal component to the total sample variance.

If the estimates of the principal components are obtained from the sample

correlation matrix

r ¼ ðrijÞ; rij ¼ sij

ðsiisjjÞ1=2
; ð10:30Þ

with s ¼ ðsijÞ, then the estimate of the total sample variance will be p ¼ trðrÞ.
If the first k principal components explain a large amount of total sample

variance, they may be used in future investigations in place of the original vector

X. For the computation of characteristic roots and vectors standard programs are

now available.

10.4. EXAMPLE

Consider once again Example 9.1.1. We have two groups with 27 observations in

each group. For group 1 the sample covariance matrix s=N and the sample
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correlation matrix r are given by

s

27
¼

30:58

108:70 781:8

0:1107 �0:7453 0:1381

0:4329 0:8684 0:1465 0:4600

�10:72 �98:22 6:302 7:992 840:2

�0:2647 �1:910 0:3519 0:4715 25:76 1:761

0
BBBBBBBB@

1
CCCCCCCCA

r ¼

1:0000

0:7025 1:0000

0:0539 �0:0717 1:0000

0:1154 0:0458 0:5812 1:0000

�0:0669 �0:1212 0:5851 0:4065 1:0000

�0:0361 �0:0515 0:7137 0:5238 0:6698 1:0000

0
BBBBBBBB@

1
CCCCCCCCA

(i) The ordered characteristic roots of s=27 along with the corresponding

percentages of contribution to the total sample variance (given within

parentheses) are

920:312 717:984 15:1837 1:0756 0:3016 0:0533
ð55:61%Þ ð43:39%Þ ð0:92%Þ ð0:06%Þ ð0:02%Þ ð0%Þ

(ii) The characteristic vectors ai (column vectors) of s=27 are

1 2 3 4 5 6

0:0851 �0:1122 0:9898 �0:0029 0:0208 0:0100
0:6199 �0:7720 �0:1408 �0:0017 �0:0012 �0:0020

�0:0058 �0:0047 0:0126 0:1772 �0:1074 �0:9782
�0:0062 �0:0080 0:0186 0:3196 �0:9336 0:1607
�0:7797 �0:6253 �0:0040 �0:0332 �0:0007 0:0017
�0:0232 �0:0204 �0:0061 0:9302 0:3413 0:1312

(iii) The ordered characteristic roots of r along with the corresponding

percentages of contribution to the total sample variance (given within

parentheses) are

2:7578 1:7284 0:5892 0:3700 0:3277 0:2270
ð45:96%Þ ð28:81%Þ ð9:82%Þ ð6:16%Þ ð5:46%Þ ð3:79%Þ
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(iv) The characteristic vectors ai (column vectors) of r are

1 2 3 4 5 6

0:0093 �0:7012 0:0619 �0:1850 0:5296 0:4356
0:0628 �0:6933 0:1615 0:1894 �0:5158 �0:4329

�0:5274 �0:0403 �0:0713 �0:6615 0:1488 0:5454
�0:4436 �0:1455 �0:7751 0:4236 0:0237 0:0364
�0:4861 0:0695 0:5602 0:5342 0:3616 �0:1700
�0:5336 0:0035 0:2245 �0:1660 �0:5478 0:5807

For group 2 the sample covariance matrix and the sample correlation

matrix are given by

s

27
¼

47:05

35:21 214:3

3:831 2:719 0:3976

5:838 4:355 0:6042 1:053

191:6 14:69 17:49 28:58 1598

13:76 2:656 1:308 2:076 76:33 5:702

0
BBBBBBBB@

1
CCCCCCCCA

r ¼

1:0000

0:3506 1:0000

0:8857 0:2945 1:0000

0:8295 0:2899 0:9339 1:0000

0:7007 0:0252 0:6960 0:6987 1:0000

0:8155 0:0761 0:8686 0:8474 0:8019 1:0000

0
BBBBBBBB@

1
CCCCCCCCA

(i) The ordered characteristic roots of s=27 along with the corresponding

percentages of contribution to the total variance (given in parentheses) are

1617:46 219:829 19:0293 1:2743 0:2262 0:0283
ð87:06%Þ ð11:83%Þ ð1:02%Þ ð0:07%Þ ð0:02%Þ ð0%Þ

(ii) The characteristic vectors ai (column vectors) of s=27 are

1 2 3 4 5 6

0:1217 0:1641 0:9476 0:2412 0:0396 �0:0236
0:0136 0:9855 �0:1672 �0:0225 0:0117 �0:0002
0:0111 0:0124 0:0692 �0:1416 �0:3243 0:9326
0:0181 0:0196 0:0924 �0:2749 �0:8873 �0:3576
0:9911 �0:0347 �0:1268 0:0218 �0:0010 0:0011
0:0480 0:0104 0:2114 �0:9194 0:3253 �0:0429
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(iii) The ordered characteristic roots of r along with the corresponding

percentages of contribution to the total sample variance are

4:3060 1:0439 0:3147 0:1685 0:1129 0:0529
ð71:77%Þ ð17:40%Þ ð5:24%Þ ð2:81%Þ ð1:88%Þ ð0:90%Þ

(iv) The characteristic vectors ai (column vectors) of r are

1 2 3 4 5 6

0:4477 0:1098 0:0619 �0:8278 �0:1882 0:2508
0:1418 0:9174 �0:3001 0:1309 0:1752 �0:0174
0:4624 0:0481 0:3534 0:0791 �0:1589 �0:7922
0:4543 0:0414 0:3311 0:5189 �0:3519 0:5378
0:3980 �0:3067 �0:8174 0:1376 �0:2282 �0:0914
0:4481 �0:2195 0:0588 0:0558 0:8560 0:1083

10.5. DISTRIBUTION OF CHARACTERISTIC ROOTS

We shall now investigate the distribution of the ordered characteristic roots

R1; . . . ;Rp of the random (sample) covariance matrix S=N and the corresponding

normalized characteristic vector Ai given by

ðS=N � RiIÞAi ¼ 0; i ¼ 1; . . . ; p; ð10:31Þ

with A0
iAi ¼ 1. In Chapter 8 we derived the joint distribution of R1; . . . ;Rp when

S ¼ I (identity matrix). We now give the large sample distribution of these

statistics, the initial derivation of which was performed by Girshik (1936, 1939).

Subsequently this was extended by Anderson (1965), Anderson (1951, 1963),

Bartlett (1954), and Lawley (1956, 1963). In what follows we shall assume that

the characteristic roots of S are different and N is large. These distribution results

are given below without proof. Let

n ¼ N � 1

Ui ¼ N

n
Ri; i ¼ 1; . . . ; p

and let U, L be diagonal matrices with diagonal elements U1; . . . ;Up and

l1; . . . ; lp respectively. From James (1960) the joint pdf of U1; . . . ;Up is
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given by

ðn=2Þð1=2Þnppð1=2Þp2 ðdetLÞ�n=2

Gpðn=2ÞGpðp=2Þ
Yp

i¼1

ðuiÞðn�p�1Þ=2

�
Yp
i,j

ðui � ujÞ0F0 � 1
2
nu;L�1

� �
ð10:32Þ

where the multivariate gamma function GpðaÞ is given by

GpðaÞ ¼ pðpðp�1ÞÞ=4Yp

i¼1

Gða� 1
2
ði� 1ÞÞ ð10:33Þ

and for large N (Anderson, 1965)

0F0 � 1

2
nu;L�1

� �
w Gpðp=2Þ

pp2=2
exp � n

2

Xp

i¼1

ui

li

( )Yp
i,j

2p

ncij

� �1=2

with cij ¼ ðui � ujÞðli � ljÞ=lilj. A large sample normal approximation is given

in the following theorem:

Theorem 10.5.1. (Girshik, 1939). If S is positive definite and all its

characteristic roots are distinct so that l1 . l2 . � � � . lp . 0, then

(a) as N ! 1, the ordered characteristic roots R1; . . . ;Rp are independent,

unbiased, and approximately normally distributed with

EðRiÞ ¼ li; varðRiÞ ¼ 2l2i =ðN � 1Þ; ð10:34Þ

(b) as N ! 1, ðN � 1Þ1=2ðAi � aiÞ has a p-variate normal distribution with

mean 0 and covariance matrix

li
Xp

j¼1; j=i

li

ðlj � liÞ2
aia

0
i: ð10:35Þ

Roy’s test (Roy, 1953) is based on the smallest or the largest characteristic

root of a sample covariance matrix S. Their exact distribution are not easy to

obtain. Theorem 10.5.1 is useful to obtain their asymptotic distributions.
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Theorem 10.5.2. For x � 0

PðR1 � xÞ �
Yp

i¼1

P x2n �
Nx

li

� �

PðRp � xÞ �
Yp

i¼1

x2n �
Nx

li

� �

where x2n is the chi-square random variable with n degrees of freedom.

Proof. From Theorem 10.1.1 there exists a p� p orthogonal matrix A such that

A0SA ¼ L. Let S� ¼ A0SA. Then S� is distributed as Wishart Wpðn;LÞ and S=N.
S�=N have the same characteristic roots R1; . . . ;Rp. Let R1 . � � � . Rp. Hence

for a [ Ep with a0a ¼ 1

N�1a0S�a ¼ a00R00a ¼ b0Rb ¼
Xp

i¼1

b2i Ri

where b ¼ 00a ¼ ðb1; . . . ; bpÞ0 satisfying b0b ¼ a0000a ¼ a0a ¼ 1. Thus

N�1a0S�a � R1

Xp

1

b2i

 !
¼ R1;

N�1a0S�a � Rp

Xp

1

b2i

 !
¼ Rp:

ð10:36Þ

Giving a the values ð1; 0; . . . ; 0Þ0, ð0; 1; 0; . . . ; 0Þ0; . . . ; ð0; . . . 0; 1Þ0, we conclude
that

NR1 � maxðS�11; . . . ; S�ppÞ;

NRp � minðS�11; . . . ; S�ppÞ
ð10:37Þ

where S� ¼ ðS�ijÞ. Since NS�ij=li, i ¼ 1; . . . ; p are independent chi-square random

variables x2n with n degrees of freedom we conclude from (10.37) that

PðR1 � xÞ � PðmaxðS�11; . . . ; S�ppÞ � NxÞ

¼
Yp

i¼1

PðS�ii � NxÞ

¼
Yp

i¼1

P x2n �
Nx

li

� �
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and

PðRp � xÞ � PðminðS�11; . . . ; S�ppÞ � NxÞ

¼
Yp

i¼1

PðS�ii � NxÞ

¼
Yp

i¼1

P x2n �
Nx

li

� �
:

Q.E.D.

10.6. TESTING IN PRINCIPAL COMPONENTS

The problem of testing the hypothesis H0: l1 ¼ � � � ¼ lp ¼ s2 has been treated

in Chapter 8 under the title sphericity test for Npðm;SÞ and Epðm;SÞ. If H0 is

accepted we conclude that the principal components all have the same variance

and hence contribute equally to the total variation. Thus no reduction in

dimension can be achieved by transforming the variable to its principal

components. On the other hand if H0 is rejected it is natural to test the hypothesis

that l2 ¼ � � � ¼ lp and so on. Theorem 10.6.1 gives the likelihood ratio test of

H0: lkþ1 ¼ � � � ¼ lp ¼ l where l is unknown for Npðm;SÞ. For elliptically

symmetric distributions similar results can be obtained using Theorem 5.3.6.

Theorem 10.6.1. On the basis of N observations xa, a ¼ 1; . . . ;NðN . pÞ
from Npðm;SÞ the likelihood ratio test rejects H0: lkþ1 ¼ � � � ¼ lp whenever

Qp
i¼kþ1 ri

½Pp
kþ1 ri=ðp� kÞ�p�k

� C; ð10:38Þ

or equivalently

q ¼ ðp� kÞðN � 1Þ log ðp� kÞ�1
Xp

kþ1

ri

( )
� N � 1Þ

Xp

kþ1

ri � K ð10:39Þ

where the constant C, K depend on the level a of the test.

Proof. The likelihood of xa, a ¼ 1; . . . ;N is

Lðm;SÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2 expf� 1
2
½trS�1

sþ Nð�xx� mÞ0S�1ð�xx� mÞ�g:
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Hence

max
V

Lðm;SÞ ¼ max
S

LðSÞ

¼ ð2pÞ�Np=2 det
S

N

� �� ��N=2

expf�Np=2g

¼ ð2pÞ�ðNp=2ÞYp

1

ðriÞ�N=2 expf�Np=2g

ð10:40Þ

where

LðSÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2 expf� 1
2
trS

�1
sg: ð10:41Þ

To maximize LðSÞ under H0 we proceed as follows. Let 0ðpÞ be the multiplicative

group of p� p orthogonal matrices. Since S;S are both positive definite there

exists 01; 02 in 0ðpÞ such that

S ¼ 01L0
0
1; S ¼ N02R0

0
2 ð10:42Þ

L, R are diagonal matrices with diagonal elements l1; . . . ; lpðl1 � � � � � lpÞ and
R1; . . . ;RpðR1 . � � � . RpÞ respectively. Letting 0 ¼ 00201 we get 0 [ 0ð pÞ and
under H0

logLðSÞ ¼ �Np

2
log 2p� N

2
S
k
1 log li �

Nð p� kÞ
2

logl

� N

2

L�1
1 0

0 l�1Ik

 !
00R0

ð10:43Þ

where L1 is the k � k diagonal matrix with diagonal elements l1; . . . ; lk. Write

0 ¼ ð0ð1Þ; 0ð2ÞÞ ð10:44Þ

where 0ð1Þ is p� k. Since 000 ¼ 0ð1Þ00ð1Þ þ 0ð2Þ00ð2Þ ¼ I we get

tr
L�1

1 0

0 l�1Ik

 !
00R0 ¼ trL�1

1 00ð1ÞR0ð1Þ þ l�1trR0ð2Þ00ð2Þ

¼ l�1
Xp

1

Ri � trðl�1Ik � L�1
1 Þ00ð1ÞR0ð1Þ:
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Hence

log LðSÞ ¼ �Np

2
log 2p� N

2

Xk
1

log li � Nðp� kÞ
2

log l

� N

2l

Xp

1

Ri þ trðl�1Ik � L�1
1 Þ0�1

ð1ÞR0ð1Þ

ð10:45Þ

It is straightforward to verify that log LðSÞ as a function of 0ð1Þ is maximum (see

Exercise 4) when

0ð1Þ ¼ 0�ð1Þ
0

� �

where 0�ð1Þ is a k � k matrix of the form

0�ð1Þ ¼
+1; 0; 0; ��; 0
0; +1; 0; ��; 0

� � � ��
0; 0; 0; � �+1

0
BB@

1
CCA ð10:46Þ

Thus

max
0[0ðpÞ

LðSÞ ¼ �Np

2
log 2p� N

2

Xk
1

logli � Nð p� kÞ
2

log l

� N

2l

Xp

kþ1

Ri � N

2

Xk
1

Ri

li

ð10:47Þ

From (10.47) it follows that the maximum likelihood estimators l̂li, l̂l of li, l are

given by

l̂li ¼ Ri; i ¼ 1; . . . ; k:

l̂l ¼ S
p
kþ1Ri

p� k

Hence

max
H0

Lðm;SÞ ¼ ð2pÞ�ðNp=2ÞPkðRiÞN=2
S
p
kþ1Ri

p� k

� �ðN=2Þðp�kÞ

� exp �Np

2

� � ð10:48Þ
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From (10.40) and (10.48) we get

l ¼ maxH0
Lðm;SÞ

maxV Lðm;SÞ

¼
Qp

kþ1 Ri

ðp� kÞ�1Pp
kþ1 Ri

" #N=2

;

where V is the parametric space of m, S. Hence we prove the theorem.

Q.E.D.

Using Box (1949) the statistic Q with values q has approximately the central

chi-square distribution with 1
2
ð p� kÞð p� k þ 1Þ � 1 degrees of freedom under

H0 as N ! 1.

From Theorem 10.6.1 it is easy to conclude that for testing

H0: liþ1 ¼ � � � ¼ liþk, iþ k , p the likelihood ratio test rejects H0 whenever

q ¼ kðN � 1Þ logðk�1S
k
j¼1RjÞ � ðN � 1ÞSp

j¼1Rj � C where the constant C

depends on the level a of the test and under H0 the statistic Q with values q

has the central chi-square distribution with 1
2
kðk þ 1Þ � 1 degrees of freedom as

N ! 1.

Partial least square (PLS) regression is often used in applied sciences and, in

particular, in chemometrics. Using the redundancy index Lazzag and Cléroux

(2000) wrote the PLS regression model in terms of the successive PLS

components. These components are very similar to principle components and are

used to explain or predict a set of dependent variables from a set of predictors

particularly when the number of predictors in large but the number of

observations is not so large. They studied their significance and build tests of

hypothesis of this effect.

EXERCISES

1 Let X ¼ ðX1; . . . ;XpÞ0 be normally distributed with mean m and covariance

matrix S, and let S have one characteristic root l1 of multiplicity p.

(a) On the basis of observations xa ¼ ðxa1; . . . ; xaÞ0, a ¼ 1; . . . ;N, show

that the maximum likelihood estimate l̂l1 of l1 is given by

l̂l1 ¼ 1

pN

Xp

i¼1

XN
a¼1

ðxai � �xxiÞ2 where �xxi ¼ 1

N

XN
a¼1

xai:

(b) Show that the principal component of X is given by OX where O is any

p� p orthogonal matrix.
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2 Let X ¼ ðX1; . . . ;XpÞ0 be a random p-vector with covariance matrix

S ¼ s2

1 r � � � r
r 1 � � � r

..

. ..
. ..

.

r r � � � 1

0
BBB@

1
CCCA; 0 , r � 1:

(a) Show that the largest characteristic root of S is

l1 ¼ s2ð1þ ðp� 1ÞrÞ:
(b) Show that the first principal component of X is

Z1 ¼ 1ffiffiffi
p

p
Xp

i¼1

Xi:

3 Let X ¼ ðX1; . . . ;X4Þ0 be a random vector with covariance matrix

S ¼
s2 s12 s13 s14

s2 s14 s13

s2 s12

s2

0
BB@

1
CCA:

Show that the principal components of X are

Z1 ¼ 1
2
ðX1 þ X2 þ X3 þ X4Þ; Z2 ¼ 1

2
ðX1 þ X2 � X3 � X4Þ;

Z3 ¼ 1
2
ðX1 � X2 þ X3 � X4Þ; Z4 ¼ 1

2
ðX1 � X2 � X3 þ X4Þ:

4 Let R, L be as in Theorem 10.6.1. Show that trL�1
1 0ð1ÞR00ð1Þ � S

k
1ðRi=liÞ and

the equality holds if 0ð1Þ is of the from
0�ð1Þ
0

 �
where 0�ð1Þ is defined in Theorem

10.6.1.

5 For the data given in Example 5.3.1 find the the ordered characteristic roots

and the normalized characteristic vectors.
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11
Canonical Correlations

11.0. INTRODUCTION

Suppose we have two sets of variates and we wish to study their interrelations. If

the dimensions of both sets are large, one may wish to consider only a few linear

combinations of each set and study those linear combinations which are highly

correlated. The admission of students into a medical program is highly

competitive. For an efficient selection one may wish to predict a linear

combination of scores in the medical program for each candidate from certain

linear combinations of scores obtained by the candidate in high school.

Economists may find it useful to use a linear combination of easily available

economic quantities to study the behavior of the prices of a group of stocks.

The canonical model was first developed by Hotelling (1936). It selects linear

combinations of variables from each of the two sets, so that the correlations

between the new variables in different sets are maximized subject to the

restriction that the new variables in each set are uncorrelated with mean 0 and

variance 1. In developing the concepts and the algebra we do not need a specific

assumption of normality, though these will be necessary in making statistical

inference. For more relevent materials on this topic we refer to Khirsagar (1972),

Rao (1973), Mardia, Kent, and Biby (1979), Srivastava and Khatri (1979),

Muirhead (1982) and Eaton (1983). Khatri and Bhavsar (1990) derived the

asymptotic distribution of the canonical correlations for two sets of complex

variates.
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11.1. POPULATION CANONICAL CORRELATIONS

Consider a random vector X ¼ ðX1; . . . ;XpÞ with mean m and positive definite

covariance matrix S. Since we shall be interested only in the covariances of the

components of X, we shall take m ¼ 0. Let

X ¼ Xð1Þ
Xð2Þ

� �
;

where Xð1Þ;Xð2Þ are subvectors of X of p1; p2 components, respectively. Assume

that p1 , p2. Let S be similarly partitioned as

S ¼ Sð11Þ Sð12Þ
Sð21Þ Sð22Þ

� �
;

where SðijÞ is pi � pj; i; j ¼ 1; 2. Recall that if p1 ¼ 1, then the multiple

correlation coefficient is the largest correlation attainable between Xð1Þ and a

linear combination of the components of Xð2Þ. For p1 . 1, a natural

generalization of the multiple correlation coefficient is the largest correlation

coefficient r1 (say), attainable between linear combinations of Xð1Þ and linear

combinations of Xð2Þ.
Consider arbitrary linear combinations

U1 ¼ a0Xð1Þ; V1 ¼ b0Xð2Þ;

where a ¼ ða1; . . . ;ap1Þ0 [ Ep1 ;b ¼ ðb1; . . . ;bp2
Þ0 [ Ep2 . Since the coefficient

of correlation between U1 and V1 remains invariant under affine transformations

U1 ! aU1 þ b; V1 ! cV1 þ d;

where a; b; c; d are real constants and a = 0, c = 0, we can make an arbitrary

normalization of a;b to study the correlation. We shall therefore require that

varðU1Þ ¼ a0Sð11Þa ¼ 1; varðV1Þ ¼ b0Sð22Þb ¼ 1; ð11:1Þ
and maximize the coefficient of correlation between U1 and V1. Since EðXÞ ¼ 0,

using (11.1)

rðU1;V1Þ ¼ EðU1V1Þ
ðvarðU1ÞvarðV1ÞÞ1=2

¼ a0Sð12Þb
ðða0Sð11ÞaÞðb0Sð22ÞbÞÞ1=2

¼ a0Sð12Þb ¼ covðU1;V1Þ:
Thus we want to find a;b to maximize covðU1;V1Þ subject to (11.1). Let

f1ða;bÞ ¼ a0Sð12Þb� 1

2
rða0Sð11Þa� 1Þ � 1

2
nðb0Sð22Þb� 1Þ ð11:2Þ
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where r, n are Lagrange multipliers. Differentiating f1 with respect to the

elements of a;b separately and setting the results equal to zero, we get

@f1

@a
¼ Sð12Þb� rSð11Þa ¼ 0;

@f1

@b
¼ Sð21Þa� nSð22Þb ¼ 0: ð11:3Þ

From (11.1) and (11.3) we obtain

r ¼ n ¼ a0Sð12Þb;
�rSð11Þ Sð12Þ
Sð21Þ �rSð22Þ

� �
a
b

� �
¼ 0: ð11:4Þ

In order that there be a nontrivial solution of (11.4) it is necessary that

det
�rSð11Þ Sð12Þ
Sð21Þ �rSð22Þ

� �
¼ 0: ð11:5Þ

The left-hand side of (11.5) is a polynomial of degree p in r and hence has p roots
(say) r1 � � � � � rp and r ¼ a0Sð12Þb is the correlation between U1 and V1

subject to the restriction (11.1). From (11.4–11.5) we get

detðSð12ÞS
�1
ð22ÞSð21Þ � r2Sð11ÞÞ ¼ 0; ð11:6Þ

ðSð12ÞS
�1
ð22ÞSð21Þ � r2Sð11ÞÞa ¼ 0; ð11:7Þ

which has p1 solutions for r
2; r21 � � � � � r2p1 (say), and p1 solutions for a, and

detðSð21ÞS
�1
ð11ÞSð12Þ � r2Sð22ÞÞ ¼ 0; ð11:8Þ

ðSð21ÞS
�1
ð11ÞSð12Þ � r2Sð22ÞÞb ¼ 0; ð11:9Þ

which has p2 solutions for r
2 and p2 solutions for b. Now (11.6) implies that

detðLL0 � r2IÞ ¼ 0; where L ¼ S
�1=2
ð11Þ Sð12ÞS

�1=2
ð22Þ ð11:10Þ

Since

detðLL0 � r2IÞ ¼ detðLL0 � r2IÞ ¼ detðS�1
ð22ÞSð21ÞS

�1
ð11ÞSð12ÞS

ð1=2Þ
ð22Þ � r2IÞ;

we conclude that (11.6) and (11.7) have the same solutions. Thus (11.5) has p

roots of which p2 � p1 are zeros, and the remaining 2p1 nonzero roots are of

the form r ¼ +ri; i ¼ 1; . . . ; p1. The ordered p roots of (11.5) are thus

ðr1; . . . ; rp1 ; 0; . . . ; 0;�rp1 ; . . . ;�r1Þ. We shall show later that ri � 0;
i ¼ 1; . . . ; p1. To get the maximum correlation of U1;V1 we take r ¼ r1. Let
að1Þ;bð1Þ be the solution (11.4) when r ¼ r1. Thus U1 ¼ að1Þ0Xð1Þ;V1 ¼ bð1Þ0Xð2Þ
are normalized (with respect to variance) linear combinations of Xð1Þ;Xð2Þ,
respectively, with maximum correlation r1.

Canonical Correlations 507



Definition 11.1.1. U1 ¼ að1Þ0Xð1Þ;V1 ¼ bð1Þ0Xð2Þ are called the first canonical

variates and r1 is called the first canonical correlation between Xð1Þ and Xð2Þ.

Next we define

U2 ¼ a0Xð1Þ;V2 ¼ b0Xð2Þ;

a [ Ep1 ;b [ Ep2 so that varðU2Þ ¼ varðV2Þ ¼ 1;U2;V2 are uncorrelated with

U1;V1 respectively, and the coefficient of correlation rðU2;V2Þ is as large as

possible. It is now left as an exercise to establish that rðU2;V2Þ ¼ r2, the second
largest root of (11.1). Let að2Þ;bð2Þ be the solution of (11.5) where r ¼ r2.

Definition 11.1.2. U2 ¼ að2Þ0Xð1Þ;V2 ¼ bð2Þ0Xð2Þ are called the second canonical
variates and r2 is called the second canonical correlation.

This procedure is continued and at each step we define canonical variates as

normalized variates, which are uncorrelated with all previous canonical variates,

having maximum correlation. Because of (11.6) and (11.7) the maximum number

of pairs ðUi;ViÞ of positively correlated canonical variates is p1.

Let

U ¼ ðU1; . . . ;Up1Þ0 ¼ A0Xð1Þ; A ¼ ðað1Þ; . . . ;aðp1ÞÞ;

Vð1Þ ¼ ðV1; . . . ;Vp1 Þ0 ¼ B0
1Xð2Þ; B1 ¼ ðbð1Þ; . . . ;bðp1ÞÞ;

ð11:11Þ

and let D be a diagonal matrix with diagonal elements r1; . . . ; rp1 . Since

ðUi;ViÞ; i ¼ 1; . . . ; p1, are canonical variates,

covðUÞ ¼ A0Sð11ÞA ¼ I; covðVð1ÞÞ ¼ B0
1Sð22ÞB1 ¼ I;

covðU;Vð1ÞÞ ¼ A0Sð12ÞB1 ¼ L:
ð11:12Þ

Let B2 ¼ ðbðp1þ1Þ; . . . ;bðp2ÞÞ be a p2 � ðp2 � p1Þ matrix satisfying

B0
2Sð22ÞB1 ¼ 0; B0

2Sð22ÞB2 ¼ I;

and formed one column at a time in the following way: bðp1þ1Þ is a vector

orthogonal to Sð22ÞB1 and bðp1þ1Þ0Sð22Þbðp1þ1Þ ¼ 1;bðp1þ2Þ is a vector orthogonal

to Sð22ÞðB1;b
ðp1þ1ÞÞ and bðp1þ2Þ0Sð22Þbðp1þ2Þ ¼ 1; and so on. Let B ¼ ðB1;B2Þ.

508 Chapter 11



Since B0Sð22ÞB ¼ I, we conclude that B is nonsingular. Now

det

A0 0

0 B0
1

0 B0
2

0
B@

1
CA �rSð11Þ Sð12Þ

Sð21Þ �rSð22Þ

� �
A 0 0

0 B1 B2

� �2
64

3
75

¼ det

�rI D 0

D �rI 0

0 0 rI

0
B@

1
CA ¼ ð�rÞp2�p1 det

�rI D

D �rI

� �

¼ ð�rÞp2�p1 detðr2I � DDÞ

¼ ð�rÞp2�p1
Yp1
i¼1

ðr2 � r2i Þ:

ð11:13Þ

Hence the roots of the equation obtained by setting (11.13) equal to zero are the

roots of (11.5). Observe that for i ¼ 1; . . . ; p1 [from (11.4)]

Sð12ÞbðiÞ ¼ �riSð11Þð�aðiÞÞ; ð11:14Þ

Sð21Þð�aðiÞÞ ¼ �riSð22ÞðbðiÞÞ: ð11:15Þ

Thus, if ri;a
ðiÞ;bðiÞ is a solution so is �ri;�aðiÞ;bðiÞ. Hence if the ri, were

negative, then �ri would be nonnegative and �ri � ri. But since ri was to be a

maximum, we must have ri � �ri and therefore ri � 0.

The components of U are one set of canonical variates, the components of

ðVð1Þ;Vð2ÞÞ ¼ B2Xð2Þ are other sets of canonical variates, and

cov

U

Vð1Þ
Vð2Þ

0
@

1
A ¼

I L 0

L I 0

0 0 I

0
@

1
A:

Definition 11.1.3. The ith pair of canonical variates, i ¼ 1; . . . ; p1, is the pair of
linear combinations Ui ¼ aðiÞ0Xð1Þ;Vi ¼ bðiÞ0Xð2Þ, each of unit variance and

uncorrelated with the first ði� 1Þ pairs of canonical variates ðUj;VjÞ;
j ¼ 1; . . . ; i� 1, and having maximum correlation. The coefficient of cor-

relation between Ui and Vi is called the ith canonical correlation. Hence we have

the following theorem.

Theorem 11.1.1. The ith canonical correlation between Xð1Þ and Xð2Þ is the ith
largest root ri of (11.5) and is positive. The coefficients a

ðiÞ;bðiÞ of the normalized
ith canonical variates Ui ¼ aðiÞ0Xð1Þ;Vi ¼ bðiÞ0Xð2Þ satisfy (11.4) for r ¼ ri.
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In applications the first few pairs of canonical variates usually have

appreciably large correlations, so that a large reduction in the dimension of two

sets can be achieved by retaining these variates only.

11.2. SAMPLE CANONICAL CORRELATIONS

In practice m;S are unknown. We need to estimate them on the basis of sample

observations from the distribution of X. In what follows we shall assume that

X has a p-variate normal distribution with mean m and positive definite covari-

ance matrix S (in the case of nonnormality see Rao, 1973). Let xa ¼
ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, be a sample of N observations on X and let

�xx ¼ 1

N

XN
a¼1

xa; s ¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0:

Partition s, similarly to S, as

s ¼ sð11Þ sð12Þ
sð21Þ sð22Þ

� �
;

where sðijÞ is pi � pj; i; j ¼ 1; 2. The maximum likelihood estimates of the SðijÞ are
sðijÞ=N. The maximum likelihood estimates âaðiÞ; i ¼ 1; . . . ; p1; b̂b

ðjÞ; j ¼ 1; . . . ; p2
and r̂ri; i ¼ 1; . . . ; p1, of a

ðiÞ;bðjÞ, and ri, respectively, are obtained from (11.4)

and (11.5) by replacing SðijÞ by sðijÞ=N. Standard programs are available for the

computation of âaðiÞ; b̂bðjÞ; r̂ri, and we refer to Press (1971) for details. We define the

squared sample canonical correlation R2
i (with values r2i ¼ r̂r2) by the roots of

detðSð12ÞS�1
ð22ÞSð21Þ � r2Sð11ÞÞ ¼ 0; ð11:16Þ

which can be written as

detðB� r2ðAþ BÞÞ ¼ 0; ð11:17Þ
where B ¼ Sð12ÞS�1

ð22ÞSð21Þ;A ¼ Sð11Þ � Sð12ÞS�1
22 Sð21Þ. From Theorem 6.4.1, A, B are

independently distributed, A is distributed as Wishart

Wp1ðSð11Þ � Sð12ÞS
�1
ð22ÞSð21Þ;N � 1� p2Þ:

and the conditional distribution of Sð12ÞS
�1=2
ð22Þ , given that Sð22Þ ¼ sð22Þ, is normal

with mean Sð12ÞS
�1=2
ð22Þ and covariance matrix

ðSð22Þ � Sð21ÞS
�1
ð11ÞSð12ÞÞ � s�1

ð22Þ
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Hence if Sð12Þ ¼ 0, then A, B are independently distributed as

Wp1ðSð11Þ;N � 1� p2Þ;Wp1 ðSð11Þ; p2Þ, respectively. Thus, in the case Sð12Þ ¼ 0,

the squared sample canonical correlation coefficients are the roots of the equation

detðB� r2ðAþ BÞÞ ¼ 0; ð11:18Þ
where A, B are independent Wishart matrices with the same parameter Sð11Þ. The
distribution of these ordered roots R2

1 . R2
2 . � � � . R2

p1
(say) was derived in

Chapter 8 and is given by

K
Yp1
i¼1

ðr2i Þðp2�p1�1Þ=2ð1� r2i ÞðN�1�p1�1Þ=2Y
i,j

ðr2i � r2j Þ; ð11:19Þ

where

K ¼ pp=2
Yp1
i¼1

Gð1
2
ðp2 � iþ 1ÞÞG i

2

� �" #�1Yp1
i¼1

Gð 1
2
ðN � p1 þ p2 � iÞÞ

Gð 1
2
ðN � p1 � iÞÞ : ð11:20Þ

These roots are maximal invariants in the space of the random Wishart matrix S

under the transformations S ! ASA0 where

A ¼ A1 0

0 A2

� �
with Ai : pi � pi; i ¼ 1; 2:

11.3. TESTS OF HYPOTHESES

Let us now consider the problem of testing the null hypothesis H10 : Sð12Þ ¼ 0

against the alternatives H1 : Sð12Þ = 0 on the basis of sample observations

xa;a ¼ 1; . . . ;NðN � pÞ. In other words, H10 is the hypothesis of joint

nonsignificance of the first p1 canonical correlations as a set. It can be easily

calculated that the likelihood ratio test of H10 rejects H10 whenever

l1 ¼ det s

detðsð11ÞÞ detðsð22ÞÞ � c;

where the constant c is chosen so that the test has level of significance a. Narain
(1950) showed that the likelihood ratio test for testingHð10Þ is unbiased againstH1

(see Section 8.3). The exact distribution of

l1 ¼ det S

detðSð11ÞÞ detðSð22ÞÞ
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was studied by Hotelling (1936), Girshik (1939), and Anderson (1958, p. 237).

These forms are quite complicated. Bartlett (1938, 1939, 1941) gave an

approximate large sample distribution of l1. Since

detðSÞ ¼ detðSð22ÞÞ detðSð11Þ � Sð12ÞS�1
ð22ÞSð21ÞÞ

¼ det Sð22Þ detðSð11ÞÞ detðI � S�1
ð11ÞSð12ÞS

�1
ð22ÞSð21ÞÞ;

we can write l1 as

l1 ¼ detðI � S�1
ð11ÞSð12ÞS

�1
ð22ÞSð21ÞÞ ¼

Yp1
i¼1

ð1� R2
i Þ:

Using Box (1949), as N ! 1 and under H10

Pf�n log l1 � zg ¼ Pfx2f � zg;

where n ¼ N � 1
2
ð p1 þ p2 þ 1Þ; f ¼ p1p2.

Now suppose that H10 is rejected; that is, the likelihood ratio test accepts

H1 : Sð12Þ = 0. Bartlett (1941) suggested testing the hypothesis H20: (the joint

nonsignificance of r2; . . . ; rp1 as a set), and proposed the test of rejecting H20

whenever

l2 ¼
Yp1
i¼2

ð1� r2i Þ � c;

where c depends on the level of significance a of the test, and under H20 for

large N

Pf�n log l2 � zg ¼ Pfx2f1 � zg;

where f1 ¼ ð p1 � 1Þð p2 � 1Þ. That is, for large N, Bartlett suggested the

possibility of testing the joint nonsignificance of r2; . . . ; rp1 . If H10 is rejected

and H20 is accepted, then r1 is the only significant canonical correlation. If H20

is also rejected, the procedure should be continued to test H30: (the joint

nonsignificance of r3; . . . ; rp1 as a set), and then if necessary to test H40, and so

on. For Hr0: (the joint nonsignificance of rr; . . . ; rp1 as a set), the tests rejects Hr0

whenever

lr ¼
Yp1
i¼r

ð1� r2i Þ � c;
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where the constant c depends on the level of significance a of the test, and for

large N under Hr0 (see Table 11.1)

Pf�n log lr � zg ¼ Pfx2fr � zg

where fr ¼ ð p1 � rÞð p2 � rÞ.

EXAMPLE 11.3.1. Measurements on 12 different.characters x0 ¼
ðx1; . . . ; x12Þ for each of 27 randomly selected wheat plants of a particular

variety grown at the Indian Agricultural Research Institute, New Delhi, are taken.

The sample correlation matrix is given by

1:0000
0:7025 1:0000
0:0539 �0:0717 1:0000
0:1154 0:0458 0:5811 1:0000

�0:0669 �0:1212 0:5851 0:4065 1:0000
�0:0361 �0:0515 0:7137 0:5238 0:6698 1:0000
0:4381 0:6109 �0:2064 �0:1113 �0:4702 �0:2029 1:0000

�0:1332 0:1667 �0:0708 �0:1186 �0:0686 �0:1693 0:3503 1:0000
0:4611 0:5927 �0:2545 �0:1213 �0:4649 �0:2284 0:8857 0:2945 1:0000
0:5139 0:6633 �0:3099 �0:1602 �0:3441 �0:2141 0:8295 0:2899 0:9339 1:0000
0:4197 0:5148 �0:1491 �0:0216 �0:3475 �0:1929 0:7007 0:0252 0:6960 0:6987 1:0000
0:6601 0:7129 �0:1652 �0:0121 �0:3632 �0:1119 0:8155 0:0761 0:8686 0:8474 0:0815 1:0000

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

We are interested in finding the canonical correlations between the set of first six

characters and the set of the remaining six characters. Ordered sample canonical

correlations r2i and the corresponding normalized coefficient aðiÞ;bðiÞ of the

Table 11.1. Bartlett’s Test of Significance

Sample Canonical

Correlations

Likelihood

Ratio Chi-Square

Degrees of

Freedom

i ri li 2n log li fi

1 0.86018 0.09764 47.70060 36

2 0.64327 0.37527 20.09220 25

3 0.51725 0.64327 9.04426 16

4 0.30779 0.87824 2.66151 9

5 0.17273 0.97015 0.62126 4

6 0.00413 0.99998 0.00035 1
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canonical variates are given by:

r21 ¼ 0:86018

að1Þ ¼ ð0:32592; 0:24328;�0:20063;�0:02249;�0:18167; 0:27907Þ0

bð1Þ ¼ ð0:20072;�0:10910;�0:49652; 0:39825;�0:26955; 0:68558Þ0

r22 ¼ 0:64546

að2Þ ¼ ð�0:09184; 0:02063; 0:22661; 0:05155;�0:36115;�0:01726Þ0

bð2Þ ¼ ð0:17221;�0:01490; 0:66931;�0:69215; 0:12967;�0:16206Þ0

r23 ¼ 0:51725

að3Þ ¼ ð�0:63826; 0:71640; 0:14862;�0:10546; 0:21983;�0:48038Þ0

bð3Þ ¼ ð0:06472; 0:46436;�0:30851; 0:55171; 0:36140;�0:50000Þ0

r24 ¼ 0:30779

að4Þ ¼ ð�0:04954; 0:17225; 0:35083; 0:13124; 0:12220;�0:22384Þ0

bð4Þ ¼ ð�0:13684; 0:30706;�0:39213;�0:42461; 0:11164; 0:73523Þ0

r25 ¼ 0:17273

að5Þ ¼ ð0:19760;�0:18106;�0:09297; 0:28382; 0:12898;�0:43494Þ0

bð5Þ ¼ ð�0:68243;�0:01088; 0:51799;�0:03772; 0:48737;�0:16404Þ0

r26 ¼ 0:00413

að6Þ ¼ ð0:19967;�0:11996; 0:32842;�0:33865; 0:04872;�0:19203Þ0

bð6Þ ¼ ð0:51365;�0:17532;�0:67766; 0:27563; 0:28516;�0:29818Þ0

In the case of elliptically symmetric distributions we refer to Kariya and Sinha

(1989) for the LBI tests and related results of this problem.

EXERCISES

1 Show that the canonical correlations remain unchanged when computed from

S=ðN � 1Þ instead of S=N but the canonical variables do not remain unchanged.
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2 Find the canonical correlations and canonical variates between the variables

ðX1;X2;X3Þ and ðX4;X5;X6Þ for 1971 and 1972 data in Example 5.3.1.

3 Let the covariance matrix of a random vector X ¼ ðX1; . . . ;XpÞ0 be given by

1 r r2 � � � rp�1

r 1 r � � � rp�2

� � � � � � � � �
rp�1 rp�2 � � � � 1

0
BB@

1
CCA

Is it possible to replace X with a vector of lesser dimension for statistical

inference.

4 The correlation between the jth and the kth component of a p-variate random

vector is 1� j j� kj=p. Show that for p ¼ 4 the latent roots are

1=4ð2+ ffiffiffi
2

p Þ; 1=4ð6+ ffiffiffiffiffi
26

p Þ. Show that the system can not be represented

in fewer than p dimensions.
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12
Factor Analysis

12.0. INTRODUCTION

Factor analysis is a multivariate technique which attempts to account for the

correlation pattern present in the distribution of an observable random vector

X ¼ ðX1; . . . ;XpÞ0 in terms of a minimal number of unobservable random

variables, called factors. In this approach each component Xi is examined to see if

it could be generated by a linear function involving a minimum number of

unobservable random variables, called common factor variates, and a single

variable, called the specific factor variate.

The common factors will generate the covariance structure of X where the

specific factor will account for the variance of the component Xi.

Though, in principle, the concept of latent factors seems to have been

suggested by Galton (1888), the formulation and early development of factor

analysis have their genesis in psychology and are generally attributed to

Spearman (1904). He first hypothesized that the correlations among a set of

intelligence test scores could be generated by linear functions of a single latent

factor of general intellectual ability and a second set of specific factors

representing the unique characteristics of individual tests. Thurston (1945)

extended Spearman’s model to include many latent factors and proposed a

method, known as the centroid method, for estimating the coefficients of different

factors (usually called factor loadings) in the linear model from a given

correlation matrix. Lawley (1940), assuming normal distribution for the random
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vector X, estimated these factor loadings by using the method of maximum

likelihood.

Factor analysis models are widely used in behavioral and social sciences. We

refer to Armstrong (1967) for a complete exposition of factor analysis for an

applied viewpoint, to Anderson and Rubin (1956) for a theoretical exposition,

and to Thurston (1945) for a general treatment. We refer to Lawley (1949, 50,

53), Morrison (1967), Rao (1955) and Solomon (1960) for further relevant results

in factor analysis.

12.1. ORTHOGONAL FACTOR MODEL

Let X ¼ ðX1; . . . ;XpÞ0 be an observable random vector with EðXÞ ¼ m and

covðXÞ ¼ S ¼ ðsijÞ, a positive definite matrix. Assuming that each component Xi

can be generated by a linear combination of mðm , pÞ mutually uncorrelated

(orthogonal) unobservable variables Y1; . . . ; Ym upon which a set of errors may

be superimposed, we write

X ¼ LY þ mþ U; ð12:1Þ
where Y ¼ ðY1; . . . ; YmÞ0;U ¼ ðU1; . . . ;UpÞ0 denotes the error vector and L ¼
ðlðijÞÞ is a p� m matrix of unknown coefficients lij which is usually called a

factor loading matrix. The elements of Y are called common factors. We shall

assume that U is distributed independently of Y with EðUÞ ¼ 0 and covðUÞ ¼ D,

a diagonal matrix with diagonal elements s2
1; . . . ;s

2
p; varðUiÞ ¼ s2

i is called the

specific factor variance of Xi. The vector Y in some cases will be a random vector

and in other cases will be an unknown parameter which varies from observation

to observation. A component of U is made up of the error of measurement in the

test plus specific factors representing the unique character of the individual test.

The model (12.1) is similar to the multivariate regression model except that the

independent variables Y in this case are not observable.

When Y is a random vector we shall assume that EðYÞ ¼ 0 and covðYÞ ¼ I, the

identity matrix. Since

EðX � mÞðX � mÞ0 ¼ EðLY þ UÞðLY þ UÞ0 ¼ LL0 þ D; ð12:2Þ
we see that X has a p-variate normal distribution with mean m and covariance

matrix S ¼ LL0 þ D, so that S is positive definite. Furthermore, since

EðXY 0Þ ¼ EððLY þ UÞY 0Þ ¼ L; ð12:3Þ
the elements lij of L are correlations of Xi; Xj. In behavioral science the term

loading is used for correlation. The diagonal elements of LL0 are called

communalities of the components. The purpose of factor analysis is the
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determination of L with elements of D such that

S� D ¼ LL0: ð12:4Þ
If the errors are small enough to be ignored, we can take S ¼ LL0. From this

point of view factor analysis is outwardly similar to finding the principal

components of S since both procedures start with a linear model and end up with

matrix factorization. However, the model for principal component analysis must

be linear by the very fact that it refers to a rigid rotation of the original coordinate

axes, whereas in the factor analysis model the linearity is as much a part of our

hypothesis about the dependence structure as the choice of exactly m common

factors. The linear model in factor analysis allows us to interpret lij as correlation
coefficients but if the covariances reproduced by the m-factor linear model fail to

fit the linear model adequately, it is as proper to reject linearity as to advance the

more usual finding that m common factors are inadequate to explain the

correlation structure.

Existence. Since a necessary and sufficient condition that a p� p matrix A be

expressed as BB0, with B a p� mmatrix, is that A is a positive semidefinite matrix

of rank m, we see that the question of existence of a factor analysis model can be

resolved if there exists a diagonal matrix D with nonnegative diagonal elements

such that S� D is a positive semidefinite matrix of rank m. So the question is

how to tell if there exists such a diagonal matrix D, and we refer to Anderson and

Rubin (1956) for answer to this question.

12.2. OBLIQUE FACTOR MODEL

This is obtained from the orthogonal factor model by replacing covðYÞ ¼ I by

covðYÞ ¼ R, where R is a positive definite correlation matrix; that is, all its

diagonal elements are equal to unity. In other words, all factors in the oblique

factor model are assumed to have mean 0 and variance 1 but are correlated. In this

case S ¼ LRL0 þ D.

12.3. ESTIMATION OF FACTOR LOADINGS

We shall assume that m is fixed beforehand and that X has the p-variate normal

distribution with mean m and covariance matrix S (positive definite). We are

interested in the maximum likelihood estimates of these parameters. Let

xa ¼ ðxa1; . . . ; xapÞ0;a ¼ 1; . . . ;N, be a sample of size N on X. The maximum
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likelihood estimates of m and S are given by

m̂m ¼ �xx ¼ 1

N

XN
a¼1

xa; ŜS ¼ s

N
¼
XN
a¼1

ðxa � �xxÞðxa � �xxÞ0N:

Orthogonal Factor Model

Here S ¼ LL0 þ D. The likelihood of xa;a ¼ 1; . . . ;N, is given by

LðL;D;mÞ ¼ ð2pÞ�Np=2½detðLL0 þ DÞ��N=2

� expf�1
2
tr½ðLL0 þ DÞ�1

ðsþ Nð�xx� mÞð�xx� mÞ0Þ�g: ð12:5Þ

Observe that changingL toLO, whereO is anm� m orthogonal matrix, does not

change LðL;D;mÞ. Thus if L̂L is a maximum likelihood estimate of L, then L̂LO is

also a maximum likelihood estimate of L. To obtain uniqueness we impose the

restriction that

L0D�1L ¼ G ð12:6Þ

is a diagonal matrix with distinct diagonal elements g1; . . . ; gp. We are now

interested in obtaining the maximum likelihood estimates m̂m; L̂L; D̂D of m;L;D
respectively, subject to (12.6).

To maximize the likelihood function the term

trfðLL0 þ DÞ�1Nð�xx� mÞð�xx� mÞ0g

may be put equal to zero in (12.5) since it vanishes when m̂m ¼ �xx. With this in mind

let us find L̂L; D̂D.

Note. L will not depend on the units in which Y1; . . . ; Ym are expressed.

Suppose that Y has an m-dimensional normal distribution with mean 0 and

covariance matrix uu0, where u is a diagonal matrix with diagonal elements

u1; . . . ; um such that u2i ¼ varðYiÞ. Hence

covðXÞ ¼ ðLuÞðLuÞ0 þ D ¼ L�L�0 þ D;

where L� ¼ Lu. Thus for the estimation of factor loadings, without any loss of

generality we can assume that the Yi have unit variance and covðYÞ ¼ R, a

correlation matrix. For the orthogonal factor model R ¼ I and for the oblique

factor model R ¼ R.
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Theorem 12.3.1. The maximum likelihood estimates L̂L; D̂D ofL;D, respectively,
in the orthogonal factor model are given by

diagðD̂Dþ L̂LL̂L0Þ ¼ diag
1

N

� �
s

� �
; ð12:7Þ

s

N

 �
D̂D�1L̂L ¼ L̂LðI þ L̂L0D̂D�1L̂LÞ: ð12:8aÞ

Proof. Let

LðL;DÞ ¼ ð2pÞ�Np=2½detðLL0 þ DÞ��N=2 expf�1
2
trðLL0 þ DÞ�1sg ð12:8bÞ

Then for i ¼ 1; . . . ; p

@ log LðL;DÞ
@s2

i

¼ �1
2
N

ðLL0 þ DÞii
detðLL0 þ DÞ

þ 1
2
trðLL0 þ DÞ�1sðLL0 þ DÞ�1 @D

@s2
i

; ð12:8cÞ

where @D=@s2
i is the p� pmatrix with unity in the ith diagonal position and zero

elsewhere, and ðLL0 þ DÞii is the cofactor of the ith diagonal element of

LL0 þ D. Note that for any symmetric matrix A ¼ ðaijÞ,
@ detA

@aii
¼ Aii;

@ detA

@aij
¼ 2Aij

where the Aij are the cofactors of the elements aij. For LðL;DÞ to be maximum it

is necessary that each of the p derivatives in (12.8c) equal zero at L ¼ L̂L;D ¼ D̂D.

This reduces to the condition that the diagonal elements of ðD̂Dþ L̂LL̂L0Þ�1 �
½I � ðs=NÞðD̂Dþ L̂LL̂L0Þ�1� are zeros, that is,

diag ðD̂Dþ L̂LL̂L0Þ�1 I � s

N

 �
ðD̂Dþ L̂LL̂L0Þ�1

h in o
¼ 0: ð12:8Þ

Now differentiating LðL;DÞ with respect to lij, we get, with LL0 þ D ¼
S ¼ ðsijÞ,

@ log LðL;DÞ
@lij

¼ �N

2
detðLL0 þ DÞ�1S

p
g;h¼1ðLL0 þ DÞgh

@sgh

@lij

þ 1

2
trðLL0 þ DÞ�1 @S

@lij

� �
ðLL0 þ DÞ�1s

¼ � 1

2
NtrS

�1 @S

@lij

� �

þ 1

2
trðLL0 þ DÞ�1 @S

@lij

� �
ðLL0 þ DÞ�1s: ð12:9Þ
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Denoting S
�1 ¼ ðsijÞ, from Exercise 1, we obtain

trS
�1 @S

@lij

� �
¼ 2ðsiÞ0lj; ð12:10Þ

where ðsiÞ0 is the ith row of S
�1

and lj is the jth column of L. Thus the first term
in @ log LðL;DÞ=@L is �ð1=2ÞNðLL0 þ DÞ�1L. Making two cyclic permutations

of matrices within the trace symbol, we get

trðLL0 þ DÞ�1 @S

@lij

� �
ðLL0 þ DÞ�1s

¼ trðLL0 þ DÞ�1sðLL0 þ DÞ�1 @S

@lij

� �
: ð12:11Þ

Write

Z ¼ ðLL0 þ DÞ�1sðLL0 þ DÞ�1 ¼ ðZijÞ
and let the ith row of Z be Z 0

i . From Exercise 1,

trZ
@S

@lij

� �
¼ 2Z 0

ilj: ð12:12Þ

Thus the second term in @ log LðL;DÞ=@L is ZL. From (12.10–12.13) we get

½NðL̂LL̂L0 þ D̂DÞ�1 � ðL̂LL̂L0 þ D̂DÞ�1sðL̂LL̂L0 þ D̂DÞ�1�L̂L ¼ 0

or, equivalently,

NL̂L ¼ sðL̂LL̂L0 þ D̂DÞ�1L̂L: ð12:13Þ
Since

ðD̂Dþ L̂LL̂L0Þ�1L̂L ¼ D�1L̂LðI þ L̂L0D̂D�1L̂LÞ�1;

from (12.13) we get

NL̂L ¼ sD̂D�1L̂LðI þ L̂L0D̂D�1L̂LÞ�1 ð12:14Þ
or

s

N

 �
D̂D�1L̂L ¼ L̂LðI þ L̂L0D̂D�1L̂LÞ;

which yields (12.7). From

ðD̂Dþ L̂LL̂L0Þ�1 ¼ D̂D�1 � D̂D�1L̂LL̂L0ðD̂Dþ L̂LL̂L0Þ�1;

ðD̂Dþ L̂LL̂L0Þ�1D̂D ¼ I � ðD̂Dþ L̂LL̂L0Þ�1L̂LL̂L0;
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we get

D̂DðD̂Dþ L̂LL̂L0Þ�1D̂D ¼ D̂D� L̂LL̂L0ðD̂Dþ L̂LL̂L0Þ�1D̂D

¼ D̂D� L̂LL̂L0 þ L̂LL̂L0ðD̂Dþ L̂LL0Þ�1L̂LL̂L0: ð12:15Þ
Similarly,

D̂DðD̂Dþ L̂LL̂L0Þ�1 s

N

 �
ðD̂Dþ L̂LL̂L0Þ�1D̂D ¼ s

N

 �
� s

N

 �
ðD̂Dþ L̂LL̂L0Þ�1L̂LL̂L0

� L̂LL̂L0ðD̂Dþ L̂LL̂L0Þ�1 s

N

 �
þ L̂LL̂L�1ðD̂Dþ L̂LL̂L0Þ�1 s

N

 �
ðD̂Dþ L̂LL̂L0Þ�1L̂LL̂L0:

ð12:16Þ
Using (12.13) and (12.15–12.16), we get from (12.8),

diagðD̂Dþ L̂LL̂L0Þ ¼ diag
s

N

 �
;

which yields (12.7). It can be verified that these estimates yield a maximum for

LðL;DÞ. Q.E.D.

Oblique Factor Model

Similarly for the oblique factor model with covðYÞ ¼ R (correlation matrix)

we obtain the following theorem.

Theorem 12.3.2. The maximum likelihood estimates L̂L, R̂R, D̂D of L, R, D,
respectively, for the oblique factor model are given by

(1) D̂D ¼ diagðs=N � L̂LR̂RL̂L0Þ;
(2) R̂RL̂LD̂D�1L̂Lþ I ¼ ðL̂LD̂D�1L̂L0Þ�1ðL̂L0D̂D�1ðs=NÞD̂D�1L̂LÞ;
(3) R̂RL̂LðL̂LL̂L0 þ D̂D�1ðI � ðs=NÞðL̂LL̂L0 þ D̂DÞ�1Þ ¼ R̂RL̂L0½I�ðL̂LL̂L0 þ D̂DÞ�1ðs=NÞ�D̂D�1.

For numerical evaluation of these estimates, standard computer programs are

now available (see Press, 1971). Anderson and Rubin (1956) have shown that as

N ! 1,
ffiffiffiffi
N

p ðL̂L� LÞ has mean 0 but the covariance matrix is extremely

complicated.

Identification. For the orthogonal factor analysis model we want to represent

the population covariance matrix as

S ¼ LL0 þ D
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For any orthogonal matrix 0 of dimension p� p

S ¼ LL0 þ D ¼ L000L0 þ D ¼ ðL0ÞðL0Þ0 þ D ¼ L�L�0 þ D:

Thus, regardless of the value of L used, it is always possible to transform L by an

orthogonal matrix 0 to get a new L� which gives the same representation for L.
Furthermore, since S is symmetric, there are pðpþ 1Þ=2 distinct elements in S,
and in the factor representation model there is generally a greater number,

pðmþ 1Þ, of distinct parameters. So in general a unique estimate of l is not

possible and there remains the problem of identification in the factor analysis

model. We refer to Anderson and Rubin (1956) for a detailed treatment of this

topic.

12.4. TESTS OF HYPOTHESIS IN FACTOR MODELS

Let xa ¼ ðxa1; . . . ; xapÞ0, a ¼ 1; . . . ;N, be a sample of size N from a p-variate

normal population with positive definite covariance matrix S. On the basis of

these observations we are interested in testing, with the orthogonal factor model,

the null hypothesis H0 : S ¼ LL0 þ D against the alternatives H1 that S is a

symmetric positive definite matrix. (The corresponding hypothesis in the oblique

factor model is H0 : S ¼ LRL1 þ D.)

The likelihood of the observations xa, a ¼ 1; . . . ;N, is

LðS;mÞ ¼ ð2pÞ�Np=2ðdetSÞ�N=2 exp � 1

2
trS

�1
XN
a¼1

ðxa � mÞðxa � mÞ0
" #( )

and hence

max
H1

LðS;mÞ ¼ ð2pÞ�Np=2ðdetðs=NÞÞ�N=2 exp � 1

2
Np

� �
:

Under H0, LðS; mÞ reduces to (for the orthogonal factor model)

LðL;D;mÞ ¼ ð2pÞ�Np=2ðdetðLL0 þ DÞÞ�N=2

� exp � 1

2
trðLL0 þ DÞ�1

XN
a¼1

ðxa � mÞðxa � mÞ0
" #( )

and

max
H0

LðL;D;mÞ ¼ ð2pÞ�Np=2ðdetðL̂LL̂L0 þ D̂DÞÞ�N=2 exp � 1

2
trðL̂LL̂L0 þ D̂DÞ�1s

� �
;
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where L̂L, D̂D are given in Theorem 12.3.1. Hence the modified likelihood ratio test

of H0 rejects H0 whenever, with N � 1 ¼ n (say),

l ¼ detðs=NÞ
detðL̂LL̂L0 þ D̂DÞ

" #�n=2

exp
1

2
trðL̂LL̂L0 þ D̂DÞ�1s� 1

2
np

� �
� C; ð12:17Þ

where C depends on the level of significance a of the test. In large samples under

H0, using Box (1949),

Pf�2 log l � zg ¼ Pfx2f � zg;

where

f ¼ 1

2
pð pþ 1Þ � ½mpþ p� 1

2
mðmþ 1Þ þ m�: ð12:18Þ

The modification needed for the oblique factor model is obvious and the value of

degrees of freedom f for the chi-square approximation in this case is

f ¼ 1

2
pð p� 2mþ 1Þ: ð12:19Þ

Bartlett (1954) has pointed put that if N � 1 ¼ n is replaced by n0, where

n0 ¼ n� 1

6
ð2pþ 5Þ � 2

3
m; ð12:20Þ

then under H0, the convergence of �2 log l to chi-square distribution is more

rapid.

12.5. TIMES SERIES

A time series is a sequence of observations usually ordered in time. The main

distinguishing feature of time series analysis is its explicit recognition of the

importance of the order in which the observations are made. Although in general

statistical investigation the observations are independent, in a time series

successive observations are dependent. Consider a stochastic process XðtÞ as a
random variable indexed by the continuous parameter t. Let t be a time scale and

the process be observed at the particular p points t1 , t2 � � � , tp. The random

vector

XðtÞ ¼ ðXðt1Þ; . . . ;XðtpÞÞ0

is called a time series. It has a multidimensional distribution characterizing the

process. In most situations we assume that XðtÞ has a p-variate normal

distribution specified by the mean EðXðtÞÞ and covariance matrix with general

elements

covðXðtiÞ;XðtjÞÞ ¼ sisjrðti; tjÞ;
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where varðXðtiÞÞ ¼ s2
i , the term rðti; tjÞ is called the correlation function of the

time series. The analysis of the time series data depends on the specific form of

rðti; tjÞ. A general model of time series can be written as

XðtÞ ¼ f ðtÞ þ UðtÞ;
where f f ðtÞg is a completely determined sequence, often called the systematic

part, and fUðtÞg is the random sequence having different probability laws. They

are sometimes called signal and noise sequences, respectively. The sequence

f f ðtÞg may depend on unknown coefficients and known quantities depending on

time. This model is analogous to the regression model discussed in Chapter 8. If

f ðtÞ is a slowly moving function of t, for example a polynomial of lower degree, it

is called a trend: if it is exemplified by a finite Fourier series, it is called cyclical.

The effect of time may be present both in f ðtÞ (i.e., trend in time or cyclical) and

in UðtÞ as a stochastic process. When f ðtÞ has a given structure involving a finite

number of parameters, we consider the problem of inference about these

parameters. When the stochastic process is specified in terms of a finite number of

parameters we want to estimate and test hypotheses about these parameters. We

refer to Anderson (1971) for an explicit treatment of this topic.

EXERCISE

1 Consider the orthogonal factor analysis model of Section 12.1. Let

S ¼ LL0 þ D. Show that

@S

@lij
¼

0 � � � 0 l1; j 0 � � � 0

..

. ..
. ..

. ..
. ..

.

0 � � � 0 li�1; j 0 � � � 0

l1j � � � li�1; j 2lij liþ1; j � � � lpj
..
. ..

. ..
. ..

. ..
.

0 � � � 0 lpj 0 � � � 0

0
BBBBBBBB@

1
CCCCCCCCA

Hence show that

trS�1 @S

@lij
¼ 2ðsiÞ0lj:
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Appendix A
Tables for the Chi-Square Adjustment
Factor

C ¼ Cp;r;N�sðaÞ

¼ ðN � s� 1
2
ðp� r þ 1ÞÞln½up;r;N�sðaÞ�

x2prðaÞ
for different values of p, r,M ¼ N � s� pþ 1. To obtain the required percentile

point of

�ðN � sÞ � 1

2
ðp� r þ 1Þln½up;r;N�sðaÞ�

one multiplies the corresponding upper percentile point of x2pr by the tabulated

value of the adjustment factor. These tables are reproduced here with the kind

permission of the Biometrika Trustees.
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Table A.1 Tables of chi-square adjustments to Wilks’s criterion U. Factor C for lower

percentiles of U (upper percentiles of x2)
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Table A.1 (cont.)
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Table A.2 Chi-square adjustments to Wilks’s criterion U. Factor C for lower percentiles

of U (upper percentiles of x2), p ¼ 3
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