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Preface

This book describes the realization of logic functions using memories. The proposed
methods can be used to impalement designs in field programmable gate arrays (FP-
GAs) that contain both small-scale memories, called look-up tables (LUTs), and
medium-scale memories, called embedded memories.

The basis for memory-based design is functional decomposition, which replaces
a large memory with smaller ones. An LUT cascade is introduced as a new archi-
tecture for logic synthesis. This book introduces the C-measure, which specifies the
complexity of Boolean functions. Functions with a suitably small C-measure can be
efficiently realized by LUT cascades.

This book also shows logic design methods for index generation functions. An
index generation function is a mathematical model for an address table which can
be used to store internet addresses. Such a table must be updated frequently, and the
operation must be performed as fast as possible. In addition, this book introduces
hash-based design methods, which efficiently realize index generation functions
by pairs of smaller memories. Main applications include: IP address table lookup,
packet filtering, terminal access controllers, memory patch circuits, virus scan cir-
cuits, fault map of memory, and pattern matching.

This book is suitable for both FPGA system designers and CAD tool developers.
To read the book, a basic knowledge of logic design and discrete mathematics is
required. Each chapter contains examples and exercises. Solutions for the exercises
are also provided.

Tsutomu Sasao
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Chapter 1
Introduction

1.1 Motivation

Two of the most crucial problems in VLSI design are their high design cost and long
design time. A solution to these problems is to use programmable architectures.
Programmable LSIs reduce the hardware development cost and time drastically,
since one LSI can be used for various applications. This book considers realizations
of logic functions by programmable architectures. Various methods exist to real-
ize multiple-output logic functions by programmable architectures. Among them,
memories and programmable logic arrays (PLAs) directly realize logic functions.
However, when the number of input variables n is large, the necessary hardware
becomes too large. Thus, field programmable gate arrays (FPGAs) are widely used.
Unfortunately, FPGAs require layout and routing in addition to logic design. Thus,
quick reconfiguration is not so easy.

A look-up table (LUT) cascade is a series connection of memories. It efficiently
realizes various classes of logic functions. Since the architecture is simple, LUT
cascades are suitable for the applications where frequent update is necessary. This
book explores the design and application of LUT cascades. In addition, it shows
memory-based methods to realize index generation functions, which are useful for
pattern matching and communication circuits.

1.2 Organization of the Book

This book consists of 13 chapters. Figure 1.1 shows the relation between the chap-
ters, where the arrows show the order to read the chapters. For example, Chaps. 6
and 7 can be read after reading Chap. 5. Chapter 2 reviews the basic elements used
in this book: memory, PLA, content addressable memory (CAM), and FPGA.

Chapter 3 reviews the definitions and basic properties of logic functions. Func-
tional decomposition is the most important theory covered.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_1, 1
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2 1 Introduction

Fig. 1.1 Relation among chapters

Chapter 4 shows multiplexer-based synthesis of logic functions. This method
is universal, i.e., it can realize any logic function. However, the number of LUTs
required to realize the function tends to increase exponentially with 7, the number
of input variables.

Chapter 5 shows a method to realize logic functions using LUT cascades. This
method is not universal, i.e., it can be applied to only a limited class of logic
functions. However, the number of LUTSs to realize the function tends to increase
linearly with n, the number of input variables. The C-measure is used to estimate
the circuit size.

Chapter 6 shows a method to reduce the number of LUTs by considering the
encoding of the functional decomposition.

Chapter 7 shows a class of functions whose C-measures are small. Such functions
are efficiently realized by LUT cascades.

Chapter 8 considers the C-measure of the functions whose number of minterms
is limited. It shows that when the number of minterms is small, the C-measure is
also small.

Chapter 9 introduces index generation functions, which are useful to design IP
address tables, terminal access controllers for local area network, etc.

Chapter 10 introduces a hash-based synthesis of index generation functions. The
method is similar to a hash table for software. Similar to the case of software real-
ization, collisions of data may occur. However, in hardware, we can avoid collisions
by using various circuits that work concurrently.

Chapter 11 shows a reduction method for the number of variables for the hash
circuit. It introduces incompletely specified functions and shows an algorithm to
reduce the number of variables.

Chapter 12 shows various methods to realize index generation functions.

Chapter 13 summarizes the book.



Chapter 2
Basic Elements

This chapter reviews memory, programmable logic array (PLA), content addressable
memory (CAM), and field programmable gate array (FPGA).

2.1 Memory

Semiconductor memories have a long history of research, and various types of
memories have been developed.

A dynamic random access memory (DRAM) uses only a single transistor to store
one bit. However, the peripheral circuit is rather complex, and periodical refreshing
is necessary. Thus, DRAM is suitable for large-scale memory, but not for a small-
scale memory.

A static random access memory (SRAM) uses six transistors to store one bit. The
peripheral circuit is not so complex as in DRAM, and refreshing is unnecessary.
Thus, SRAM is suitable for small-scale memory, but not for large-scale memory.
Both DRAM and SRAM are volatile, i.e., if the power supply is tuned off, the data
are lost.

Read only memories (ROMs), however are nonvolatile and are used for storing
fixed data. For rewritable ROMs, fabrication often requires a dedicated process and
such ROMs are expensive.

To reduce the amount of hardware, memories are often implemented as a two-
dimensional structure that is shown in Fig.2.1. The row address decoder selects
one row. And the sense amplifiers read the data for the selected row. Finally, the
column address decoder selects one bit from the word. In many cases, the memory
has a clock. Such a memory is synchronous. Many FPGAs contain memories, and
many of them are synchronous. However, asynchronous memories (i.e., memories
operating without clock pulses) are also available.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_2, 3
© Springer Science+Business Media, LLC 2011
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Fig. 2.1 Memory architecture

2.2 Programmable Logic Array

PLAs were often used for implementing controllers of microprocessors [94]. A PLA
consists of the AND array and the OR array as shown in Fig.2.2. For example, a
3-input 2-output function can be implemented as shown in Fig.2.3. In the AND
array, a cross-point denotes the AND connection, while in the OR array, a cross-
point denotes the OR connection. Both static and dynamic PLAs exist. In the
dynamic PLA, a clock pulse is used to read out the data. For large-scale PLAs,
dynamic realizations are often used, since static CMOS realization is too large and
the NMOS realization dissipates much static power. In a rewritable PLA, each
cross-point consists of a switch and a memory element [3]. Let n be the number of
inputs, W be the number of columns, and m be the number of outputs. Then, the
size of a PLA is approximated by W(2n + m). The number of columns W can be
reduced by minimizing sum-of-products (SOPs) expressions. Thus, the logic design
is relatively easy.

2.3 Content Addressable Memory

An ordinary memory such as that introduced in Sect. 2.1 uses a memory address to
access data and return the contents of the memory. On the contrary, a CAM searches
using the contents of the memory, and returns the address where the supplied data
were found.
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CAMs are often used in pattern matching [5]. Two types of CAMs exist: a binary
CAM (BCAM) and a ternary CAM (TCAM). In a BCAM, each cell can take one
of two states: 0 and 1. BCAMs are used for exact match. In a TCAM, each cell can
take one of three states: 0, 1, and X (don’t care that matches both 0 and 1). A TCAM
can be used for implementing the longest prefix match to be explained in Chap. 7,
and range match. To store one bit of information, an SRAM requires 6 transistors,
while a TCAM requires 16 transistors [90]. Thus, a TCAM is more expensive than
SRAM. Figure 2.4 shows an example of a CAM. In the CAM, for the input (i.e.,
search data) 01101, the second and the third rows match. However, the priority
encoder selects the lowest address, i.e., 01. Thus, the output of the CAM is 01, the

address of the second line. When the input is 11111, the CAM shows that there is
no match.
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Fig. 2.5 Comparison of CAM
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Figure 2.5 compares an SRAM with a CAM. Note that in an SRAM, only one
row is activated at a time, while in a CAM, all the rows are activated at the same
time. In a CAM, all the rows are charged and discharged in every search operation.
Thus, a CAM dissipates more power than an SRAM with the same number of bits.

2.4 Field Programmable Gate Array

Most FPGAs have an island-style architecture as shown in Fig.2.6. In this
architecture, logic elements are surrounded by interconnection elements such as
switch blocks, connection blocks, and wiring. Logic elements are, in most cases,
look-up tables (LUTs). A K-LUT is a module that realizes an arbitrary K-variable
function. Thus, logically it is a K-input memory. However, unlike an ordinary
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(large-scale) memory presented before, it is often implemented by a register and
selector as shown Fig.2.7. No clock pulse is necessary to read out the data; there-
fore, it is asynchronous. In modern FPGAs, more than 90% of the chip area is for
interconnections. Thus, layout design is as important as logic design. Also, layout
design often requires more CPU time than logic design.

Most FPGAs use SRAMs to store configuration data. At power-up, FPGAs
are blank, and an external nonvolatile memory (EEPROM, flash RAM, MRAM,
or FeRAM) is used to restore the configuration data into SRAM. FPGAs need
to be configured from the external nonvolatile memory at every system power-
up time. The configuration time is tens to hundreds of milliseconds. Also, the
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SRAM for configuration must be kept on even when the system is not used.
As programmable circuits become larger, the numbers of LUTs and embedded
memories increase, and the power dissipation of SRAMs due to leakage current
becomes more serious. In the past, FPGAs with 4 or 5 input LUTs were believed to
be the most efficient [99, 100]; however, in the current technology, FPGAs with 6
inputs are the standard [4, 7, 158]. Thus, we have the following:

Problem: Given an n-variable (multiple-output) function f, find the minimum
number of 6-LUTs needed to realize f, where n < 20.

Unfortunately, this is a very hard problem. So, we try to obtain an upper bound
by using properties or measures of the function. A property of the function should
be easy to detect, such as symmetry, and measures should be efficient to calculate.
Such measures include:

The number of variables (i.e., the support size)

The weight of the function [133]

The C-measure of a function [133]

The number of products in the SOP [78§]

The number of literals in the factored expression [78]
The number of nodes in the decision diagram [107]

Chapters 4 and 5 consider the number of K-LUTs to realize a given function.

2.5 Remarks

This chapter briefly introduced memory, CAM, and FPGA. As for FPGAs, various
architectures are shown in Refs. [15, 100]. As for logic synthesis of FPGAs, see
Refs. [20, 78]. In recent FPGAs, the architecture is quite complicated, and a single
FPGA can implement a multiprocessor system.

Many commercial FPGAs contain memories in addition to LUTs. They are called
embedded memories [4] or embedded block RAMs [156].

Problems

2.1. Design the CAM function shown in Fig. 2.4 by using a PLA.

2.2. Explain why asynchronous memories are used for LUTs in FPGAs instead of
synchronous ones.

2.3. In the past, 4-LUTs or 5-LUTs were mainly used in FPGAs. However, nowa-
days, 6-LUTs are popular in FPGAs. Discuss the reason why 6-LUTs are preferred.

2.4. Explain why dynamic CMOS is used instead of static CMOS in PLAs.
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2.5. Suppose that a TCAM with n inputs and W words is given. Show a method to
implement the same function as the TCAM by using a PLA.

2.6. Suppose that a PLA with n inputs, m outputs, and W products is given. Show
a method to implement the same function as the PLA by using a TCAM and a
memory.






Chapter 3
Definitions and Basic Properties

This chapter first introduces logical expressions and functional decomposition.
Then, it introduces some properties of symmetric functions.

3.1 Functions

Definition 3.1.1. A mapping F : B" — {0,1,...,k — 1}, where B = {0, 1} isa
binary-input integer valued function. A mapping F : B” — B, where B = {0, 1}
is a logic function. If F(a;) #0 (i = 1,2,...,k) for k different input vectors, and
F = 0 for other (2" — k) input vectors, then the weight of the function is k.

3.2 Logical Expression

Definition 3.2.1. Binary variables are represented by x; (i = 1,2,...,n). A literal
of a variable x; is either x;, X;, or the constant 1. An AND of literals is a product,
and an OR of products is a sum-of-products (SOP) expression.

Definition 3.2.2. Let B = {0,1}, X = (x1,x2,...,X), and x; can take a value
in B. Then, we can consider that X takes its value from P = {0,1,...,2" —1}. Let
S be asubset (S € P)of P.Then, X% isaliteral of X. When X € §, X5 = 1, and
when X ¢ S, XS =0.LetS; € P; (i =1,2,...,n), then X;51 X,52 ... X,,5" is
alogical product. \/ (5, 5, s, X151 X552 ... X,,5n is a SOP expression. If S; =
P;, then X; Si = 1 and the logical product is independent of X;. In this case, the
literal X;? is redundant and can be omitted. A logical product is also called a term
or a product term.

Example 3.2.1. Whent = 2, we have P = {0,1,2,3}, and X = (x1, x) takes
four values. In this case, X {1}, X{l’z}, and X10:1.2.3} gre Jiterals. Suppose that P, =
P, = P; ={0,1,2,3}. Then,

F = Xl {0,1,2,3}X2{0}X3{0} V. Xl {0,1}X2{0,1,2,3}X3{1,3}
\/Xl {0,1}X2{2}X3{0,1,2,3}

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_3, 11
© Springer Science+Business Media, LLC 2011



12 3 Definitions and Basic Properties

is a SOP. Note that X{0:1:2:3% = 1, In this case, X %123} is redundant and can be
omitted. By removing redundant literals, this expression can be simplified to

F = XZ{O}X3{0} v Xl{o’l}X3{1’3} Vv XI{O,I}XZ{Z}.

3.3 Functional Decomposition

Definition 3.3.1. [8] Let f(X) be a logic function, and (X1, X2) be a partition
of the input variables, where X; = (x1,x2,...,x;) and X2 = (Xg+1,Xk+2,
..., Xy). The decomposition chart for f is a two-dimensional matrix with 2%
columns and 2" ¥ rows, where each column and row is labeled by a unique binary
code, and each element corresponds to the truth value of f. The function repre-
sented by a column is a column function and is dependent on X,. Variables in X;
are bound variables, while variables in X, are free variables. In the decomposition
chart, the column multiplicity denoted by uj is the number of different column
patterns.

Example 3.3.1. Figure 3.1 shows a decomposition chart of a 4-variable function.
{x1, x2} are the bound variables, and {x3, x4} are the free variables. Since all the
column patterns are different and there are four of them, the column multiplicity is
M2 = 4. ]

Theorem 3.3.1. [25] For a given function f, let X1 be the bound variables, let X,
be the free variables, and let . be the column multiplicity of the decomposition
chart. Then, the function f can be realized with the network shown in Fig. 3.2. In
this case, the number of signal lines connecting blocks H and G is [log, [tk |-

When the number of signal lines connecting two blocks is smaller than the number
of input variables in X, we can often reduce the total amount of memory by the
realization in Fig. 3.2 [51]. When uj; = 2, it is an Ashenhurst decomposition [8] or

0011 X1
0101[x,
0 010001
011100
1 00100
11
Fig. 3.1 Decomposition 0000
chart of a logic function *3 X4
Xi— H
Fig. 3.2 Realization of a —] — G =
: 4 ] f
logic function by X =
decomposition
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a simple disjoint decomposition. When ;. > 2, it is a Curtis decomposition [25],
also called Roth—Karp decomposition [101] or a generalized decomposition. The
number of functions with Curtis decompositions is much larger than those with
Ashenhurst decompositions.

A function with an Ashenhurst decomposition can be written as

f(X1, X2) = g(h1(X1), X2).

A function with a Curtis decomposition can be written as

J(X1, X2) = g(h1(X1), ha(X1), ..., hm(X1), X2),

where m = [log, u].

Lemma 3.3.1. Consider a decomposition chart for f(X1,X32), where X1 = (x1,
X2,...,Xg) and X2 = (Xg41,Xk+2,---,Xn). Then, the column multiplicity does
not change under the permutation of variables within X1 and X». Thus,

w(f(X1, X2)) = n(f (X1, X2)),

where X1 = (Xp(1)s X2(2)» - - - » X)) X2 = (Xa¢k+1)> Xa(k+2)s - - - » Xa(n))» a1, 70
and A denote the permutationon {1,2, ..., k}and{k+1,k+2,...,n}, respectively.

Lemma 3.3.2. An arbitrary function of n variables can be decomposed as

1. f(Xl, Xz) =g(h1(X1), hz(Xl), Xz), where X1 = (Xl,X2, . ,xn_l) and
X2 = (Xn)

2. f(X1,X2) = g(h1(X1), ha(X1), h3(X1), ha(X1), X2)), whereX1= (x1, X2, ...,
Xp—2) and X2 = (Xp—1, Xn).

Figures 3.3 and 3.4 show the circuits for the above decompositions.

A functional decomposition can be of two types: A disjoint decomposition, where
the bound set and the free set are disjoint, as shown in Fig. 3.5. A nondisjoint de-
composition, where the bound set and free set have at least one common element.
Figure 3.6 shows the case where one variable is shared by the bound set and the
free set.

X, — h,
X5 l
2
g

Xp-1 —
Fig. 3.3 Decomposition of X
an arbitrary function, n
where X, = (x,)
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Fig. 3.4 Decomposition of h
an arbitrary function, X — !
where XZ = (xn—ls xn) XZ h2
— h; g
— h4 N
Xp-2
X1
X
Fig. 3.5 Disjoint _
decomposition ] le M X2 =0
i O
Xz { —]
Fig. 3.6 Nondisjoint
decomposition ] ‘Xl N X, 2 # q)
X —

X5

L

3.4 Binary Decision Diagram

A binary decision diagram (BDD) [12] is a graphical representation of a logic
function. It often has a more compact representation than other methods. Thus,
BDDs are widely used in the computer-aided design of logic networks [65].

Definition 3.4.1. A BDD is a directed acyclic graph (DAG) with two terminal
nodes: the O-terminal node and the 1-terminal node. Each nonterminal node is la-
beled by an index of an input variable of the Boolean function, and has two outgoing
edges: the 0-edge and the 1-edge. An ordered BDD (OBDD) is a BDD such that
the input variables appear in a fixed order in all the paths of the graph, and each
variable appears at most once in a path.
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Fig. 3.7 Node elimination

Fig. 3.8 Node sharing

Definition 3.4.2. A reduced ordered BDD (ROBDD) is obtained from an OBDD
by applying the following two reduction rules:

1. Eliminate all the redundant nodes whose two edges point to the same node
(Fig.3.7).
2. Share all the equivalent nodes (Fig. 3.8).

A quasi-reduced ordered BDD (QROBDD) is obtained from an OBDD by apply-
ing the second reduction rule only.

Example 3.4.1. Figure 3.9 is a ROBDD for

S(x1,x2,x3) = (X1X2 V X1X2)X3.

On the other hand, Fig.3.10 is a QROBDD for the same function. In Fig.3.10,
the left node for x5 is redundant, and eliminated in the ROBDD. Note that in an
QROBDD, all the paths from the root node to a terminal node encounter all the
variables. [ ]

Theorem 3.4.1. Let X = (X1, X2) be a partition of X. Suppose that the QROBDD
for f(X) is partitioned into two blocks as shown in Fig. 3.11. Let k be the number of
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Fig. 3.9 Reduced ordered
BDD

Fig. 3.10 Quasi-reduced
OBDD

Fig. 3.11 Computation of
column multiplicity for
functional decomposition
S (X1, X5) = g(h(X1), X>)

Xi
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q1
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the nodes in the lower block that is adjacent to the upper block, and |1 be the column
multiplicity of the decomposition chart for f = g(h(X1), X2). Then, k = .

Example 3.4.2. Consider the function represented by the BDD in Figs. 3.9 and 3.10.
Let X; = (x1, x2) and X, = (x3). Then, the number of the nodes in the lower block
that are adjacent to the upper block is two. The function can be decomposed as
f(Xl, Xz) = g(h(Xl), Xz), where ]’l(Xl) = )_Cl)_Cz V X1X2, and g(h, X2) = hX3.
Figure 3.12 shows the decomposition chart. Note that the column multiplicity is
two. In Fig. 3.10, the left node for x3 represents the constant O function, while the
right node for x3 represents the x3 function. It is clear that the number of different
column patterns in the decomposition chart is equal to the number of nodes for x3
in the QROBDD [106]. ]

Definition 3.4.3. A multiterminal BDD (MTBDD) is an extension of a BDD with
multiple terminal nodes, each of which has an integer value.

An MTBDD can be used to represent a multiple-output function.

Example 3.4.3. Figure 3.13 is an MTBDD for 3-valued output function. Note that
it is a reduced ordered MTBDD (ROMTBDD), but is not a quasi-reduced ordered

MTBDD (QROMTBDD). =
0 0 1 1]x
01 0 1]x
00 O O O
Fig. 3.12 Decomposition 1]t o o1
table of a logic function X3

Fig. 3.13 Multiterminal
BDD
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3.5 Symmetric Functions

Functions that appear in arithmetic circuits, such as adders, often have symmetries.
When logic functions have certain symmetries, they are often realized using fewer
elements.

Definition 3.5.1. A function f is totally symmetric if any permutation of the vari-
ables in f does not change the function. A totally symmetric function is also called
a symmetric function.

Definition 3.5.2. In a function f(xi,...,X;,...,Xj,...,X,), if the function
f(x1,...,xj,...,Xi,...,Xp) that is obtained by interchanging variables x; with
x; is equal to the original function, then f is symmetric with respect to x; and
x ;. If any permutation of subset S of the variables does not change the function f,
then f is partially symmetric.

Definition 3.5.3. The elementary symmetric functions of » variables are

SI = F1% - X,
L = X1X2X3 - Xp—1Xp V X1X2X3 Xp—1Xp V + -+ V X1X2X3 "+ * Xp—1Xp,

n

S =1 iff exactly i out of n inputs are equal to 1. Let A € {0,1,...,n}. A sym-
metric function S’ is defined as follows:

su=\/s"
i€eA

Example 3.5.1. f(x1 , X2, X3) = X1X2X3 V X1X2X3 V X1X2X3 V X1X2Xx3 1S a totally
symmetric function. f = 1 when all the variables are 1, or when only one variable

is 1. Thus, f can be written as S v §3 = 5{31 3 ]

Theorem 3.5.1. An arbitrary n-variable symmetric function f is uniquely repre-
sented by elementary symmetric functions S, ST, ..., Sy as follows:

f=\/S'=5S}4 where AC{0.1.....n}.
i€A

Lemma 3.5.1. There are 2" symmetric functions of n variables.

Definition 3.5.4. Let SB(n, k) be the n-variable symmetric function represented by
the EXOR sum of all the products consisting of k positive literals:
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SB(n,0) =1,

SB(n,1) = Exi,

SB(n,2) = E XiXj,
@i<j)

SB(n.3) = MB xiXjX.
(i<j<k)

SB(n,n) = x1x2+- Xxp.
Example 3.5.2.

SB(4,1) = x1 ® x2 B X3 B X4.

SB(4,2) = x1x2 ® X1X3 B X1X4 D X2X3 B X2X4 D X3X4.
]

SB(n,k) has been used as a benchmark function for an AND-EXOR logic
minimizer [104]. The following two lemmas were derived by Komamiya [50]
and reformulated by the author [110].

Lemma 3.5.2. Let x1, X2,. .., X, be binary variables and r be an integer defined by
r =Xx1+ x3 + -+ + X, where + is an ordinary integer addition. Let the binary
representation of r be

ks Yk=1+---5Y1,.Y0)2, ¥; €4{0,1} (j =0,1,...,k).

In other words,
Xt4 X244 X =250 + 25 e 4 4 201 + o

Then, _
yi = SB(n,2").

Lemma 3.5.3. Let0 < ky < ky < --- < kg, and 2Kt 4+ 2k2 ... 4 2ks < . Then,

/\ SB(n.2%) =SB (n, 22"1‘) .

i=1 i=1

Example 3.5.3.

SB(7,1)SB(7,2)SB(7,4) = SB(7,7),
SB(4,1)SB(4,2) = SB(4,3),
SB(6,2)SB(6,4) = SB(6,6).

| |

Definition 3.5.5. WGTn is an n-input [log, (n + 1)]-output function. It counts the
number of 1’s in the inputs and represents it as a binary number.
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Fig. 3.14 WGT7 X1 I,
*2 | WGT7 —»y1=sB(1.2)
x7 — Y0=SB(7.1)

By Lemma 3.5.2, WGTn produces SB(n,2i), @=0,1,2,...,[logy(n +1)] — 1),
where [a] denotes the smallest integer greater than or equal to a.

Example 3.5.4. WGT7 has xi1,x2,...,x7 as inputs and Yy, Y1, Yo as outputs
(Fig.3.14). By Lemma 3.5.2, we have

y2 = SB(7,4) = E XiXj Xk X]

i<j<k<l

y1 = SB(7,2) = Exixj

i<j
7
Yo=SB(1.1)= Yx
i=1
WGT 7 is also called as rd73. [

The following is an expansion method for symmetric functions using SB(n, k)
functions:

Theorem 3.5.2. An arbitrary n-variable symmetric function f is represented by
yi = SBn,2"),(i =0,1,2,..,t) as follows:

f= X g@.ar..a)yPyi .y
(@0,a1;--»ar)

where g(ap,ai,...,a;) is0or 1, andt = [log,(n +1)] —1.

Proof. A symmetric function f depends only on the number of 1’s in the inputs.
Since WGTr counts the number of 1°s in the input, we can represent f as a function
Ofy(),yl,...,yt. O

Example 3.5.5. A 7-variable symmetric function Sg can be represented as

Sq = 27170
— SB(7.4)-SB(7.2)- SB(1.1).

Note that the binary representation of 0 is (0, 0, 0). Similarly, S7 is represented as

S = Fay1)0
— SB(7.4)- SB(1,2) - SB(7,1).
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Thus, S{70,3} is represented as

Sio.3y = Sg ® 87 = 727170 ® F231¥0
= y2(J150 ® y1y0) = y2(¥1 ® o)
— SB(7.4)- (SB(7.2) & SB(T.1)).

3.6 Technology Mapping

Logic synthesis using embedded memories can be considered as a special case of
FPGA design, where the number of LUT inputs is large. Most existing methods use
LUT-based technology mapping [33]. That is, given a combinational logic circuit,
they partition it into sub-circuits depending on at most K variables [22,53,153]. This
method was originally used for the LUT-based FPGA synthesis. Here, we introduce
the basic idea.

Definition 3.6.1. [23, 57, 71] A combinational network can be converted into a
DAG, where each node represents a logic gate (LUT), a primary input (PI), or
a primary output (PO). When the output of the gate i is an input of gate j, a di-
rected edge (i, j) exists. input(v) denotes the set of nodes which are fanins of gate v.
output(v) denotes the set of nodes which are fanouts of gate v. A cone at v, denoted
as C,, is a subgraph consisting of v and its non-PI predecessors such that any path
connecting a node in C, and v lies entirely in C,. Node v is the root of the cone.
The fanin size of a cone is the number of input edges. A cone with K input edge is
K -feasible and can be implemented with a K-LUT.

Example 3.6.1. InFig.3.15,a,b,c,d, e are Pls, and f denotes the PO. The cone of
v consists of internal nodes v, ¢, u, s, p, ¢, and r. The fanin size of C, is four. Thus,
C, is 4-feasible and can be implemented by a 4-LUT. ]

Fig. 3.15 Example of
directed acyclic graph
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Fig. 3.16 Example of
4-feasible cut-set

Definition 3.6.2. Given a network N with a source s and a sink ¢, a cut (N1, \>)
is a partition of the nodes in the network such that s € N7, t € N, and no nodes
in N, provide input to any node in . A cut-set of a cut is the set of all nodes v
such that v € N1, and v drives a node in A>. If the size of a cut-set is no more than
K, then the cut is K -feasible. A fanout-free cone (FFC) at v, denoted FFC,, is a
cone of v, with output edge only originating from the root of the cone. A maximum
fanout free cone (MFFC) is an FFC that maximizes the number of nodes contained
in the FFC.

Example 3.6.2. In Fig.3.16, let a be a source, and f be a sink. The set of
nodes is partitioned into N7 ={a,b,c,d,e, p,q,r,s,t} and Ny ={u,v, f}. The
cut-set of the cut (N7,N3) is {t, p,d,e}. It is 4-feasible. The MFFC of f is
{p.q,r,s,t,u,v, f}. This is because a cone includes only non-PI nodes, by
Definition 3.6.2. If the output of ¢ is connected to an other output, then MMFC
of f would be {u,v, f}. ]

In a technology mapping algorithm, usually, a given circuit is converted into an
equivalent two-input network. If the DAG is represented as a set of trees, then the
area minimization problem can be solved optimally using dynamic programming
[47]. Unfortunately, most circuits have non-tree structure: There exist many fanouts
and reconvergence. If the circuit is decomposed into a set of MFFCs, then it can also
be solved optimally. In the approach of [22], the circuit is first mapped into LUTs
using the best available algorithm. Then, it extracts large single-output and multiple-
output fanout-free logic blocks and covers them entirely or partially by embedded
memories. Since these design methods start from existing circuits, the quality of the
solutions are not so good [57]. Improvements for technology mapping are shown in
[71]. Especially, an efficient method to enumerate all the cuts up to K = 6 [71] and
a method to compute useful cuts for any number of inputs [72]. In this book, the
major tool for the memory-based design is a functional decomposition, so we will
not go into the detail of the method.



3.8 Remarks 23
Table 3.1 Approximation x 1—x e * Error(x)
error for T —x 0.001 0.999  0.99900050 0.00000050
0.010 0.990 0.99004983 0.00005034
0.100 0.900 0.90483742 0.00537491
0.200 0.800 0.81873075 0.02341344
3.7 The Mathematical Constant ¢ and Its Property
Definition 3.7.1. The mathematical constant ¢ is defined as
1 n
e = lim (1 + —) .
n—00 n
Lemma 3.7.1. When 0 < x << 1, 1 — x can be approximated by e™*.
Proof. The Taylor expansion of a function f(x) is
X @ e RAC) w0
SO = SO+ SO0 + 5 fP0) + 5 OO0 + 4 L PO+
Thus, e* can be expanded as
x_ 1 x2 x* x
e’ = +X+E+§+E+'“.
When x is small, we need only to consider up to the second term, and we have
e ¥ ~1—x. 0

Consider the approximation error of Lemma 3.7.1:

Error(x) = 7
—X

e —(1—x)

Table 3.1 shows that when 0 < x < 0.1, the approximation error is quite small.
Lemma 3.7.1 will be extensively used for the calculation of approximate probability

in Chaps. 9, 10, and 11.

3.8 Remarks

Functional decomposition is the key technique in the memory-based logic synthesis.
It efficiently represents a given Boolean function with reduced total amount
of memory. Most Boolean functions do not have any functional decomposition
[109]. However, practical functions often have functional decompositions. Thus, an
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attempt to find functional decompositions is, in many cases, rewarding. Ashenhurst
decompositions can be efficiently found by BDDs [10, 60]. However, as for Curtis
decomposition, no efficient methods are known. Some heuristic methods are known
[59, 147]. Excellent surveys on FPGA logic synthesis include [20, 78, 103].

Problems

3.1. Using the definition of SB(n, k), verify the following equation:
SB(4,1)- SB(4,2) = SB(4,3).

3.2. Show that most 22 +2" ™" functions have Ashenhurst decompositions of the
form

f(X1, X2) = g(h(X1), X2),

where X1 = (x1,x2,...,Xk) and Xo = (Xg1, Xk42s - Xn)-
3.3. Show that most 22“+2" ™™ functions have Curtis decompositions of the
form
S (X1, X2) = g(h1(X1), ha(X1), ..., hm(X1), X2),
where X7 = (x1,X2,...,X¢) and Xo = (Xg41, Xk425 -+ > Xn)-

3.4. Let f(X) be the function that counts the number of 1’s in the inputs.
{0,1}> - {0,1,2,3,4,5}.

That is, f(d) denotes the number of 1’s in a@. Write the decomposition chart
and obtain the column multiplicity of the decomposition (X1, X5), where X; =
(x1,x2,x3) and X5 = (x4, X5).

3.5. How many functions of # variables with weight k exist?

3.6. Represent the symmetric function of 9 variables: S {93’ 4,5.6) by

y3 = S8B(9,3),
Y2 = SB(9,4),
y1 = SB(9,2),and
yo = SB(9,1).

3.7. SYMI2 is a symmetric function of 12 variables that is 1 iff the number of
I’s in the inputs is between 4 and 8. Consider the decomposition of the function
SYM12 = f(Xl, Xz), where Xl = ()Cl,)Cz, e ,)C9) and X2 = (xlo,xll,xlz).
Show that the column multiplicity of the function with respect to (X1, X2) is
Mo = 8.



Chapter 4
MUX-Based Synthesis

This chapter shows a universal method to realize an n-variable function using mul-
tiplexers (MUXs) and look up tables (LUTs). It also derives upper bounds on the
number of LUTS to realize an n-variable function. Such bounds are useful to esti-
mate the number of LUTs needed to realize a given function when we only know
the number of the input variables n.

4.1 Fundamentals of MUX

Definition 4.1.1. A multiplexer with a single control input (1-MUX) is the selec-
tion circuit shown in Fig. 4.1. It performs the logical operation

g(x,y0,y1) = Xyo V xy1.

A ¢t-MUX is shown in Fig.4.2. It is a multiplexer with ¢ control inputs (x1, ..., x;)
and 2! data inputs (o, y1,...,y2r—1). Let g(X1,...,Xs, Y0, V1,..., Yar—_1) be the
output function. Then, g = y, when the decimal representation of the control in-

put (x1,...,xs) is a. That is, when the control input is (0,0, ...,0), the top data
input yo drives the output. When the control input is (0,0, ..., 1), the second data
input y; drives the output. Also, when the control input is (1,1, ..., 1), the last

data input y,/_ drives the output.

An t-MUX can be realized using 1-MUXs.

Example 4.1.1. A 3-MUX is realized with 23 — 1 = 7 modules of 1-MUXs, as
shown in Fig. 4.3. ]

Lemma 4.1.1. A 1-MUX is realized by using 2! — 1 modules of 1-MUXs.
Proof. This can easily be done by mathematical induction. |

When K > 4, a2-MUZX can be realized with one or two K-LUTs.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_4, 25
© Springer Science+Business Media, LLC 2011
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Fig. 4.1 1-MUX »lc
Yo—] _
—8& =X VXN
1]
Fig. 4.2 t-MUX XX
| ees |
Yo
N |
Y™
Fig. 4.3 3-MUX realized by X3
1-MUXs X5
Yo
V1
X1
Y2
V3
Y4
s
Y6
Y7

Lemma 4.1.2. [57, 73] A 2-MUX can be realized by two 4-LUTs as shown in
Fig. 4.4, where

g = (yoX2 V y1x2)X1 V X1 X2
and
h=gx1V(y28 V y38)x1.

Proof. When x1 = 0, wehave g = yoXoVy1x2andh = g. Thus, h = ygXoVyi1Xxs.
When x1 = 1, wehave g = xp and h = yog Vv y3g. Thus, h = y2X5 V y3xs.
Therefore, the circuit realizes the 2-MUX function. |

Figure 4.4 shows a nondisjoint decomposition. A method to derive this decom-
position is considered in Chap. 6.

When K = 5, a 2-MUX can be realized by two 5-LUTs as shown in Fig.4.5.

When K = 6, a 2-MUX can be realized by a single 6-LUT instead of using three
1-MUXs as shown in Fig.4.6.
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Fig. 4.4 2-MUX realized X] X X1
by 4-LUTs l l l
Yo —
g
V1 —
h -
=
=
Fig. 4.5 2-MUX realized X X
by 5-LUTs
r==~"f{~" "~~~ ==°==7="7="7="7"94°~"~"~°° ':
Yo .
— |
Vi
i |
Y R, —i—»
V2 ! i
V3 | |
s N !
Fig. 4.6 2-MUX realized X2 X;
bya6-Lur
Yo i !
. |
Vi |
i —
V2 i
V3 :

4.2 MUX-Based Realization

Theorem 4.2.1. An arbitrary n-variable function can be represented as follows:

[0, X2) = \/ & (X)) X3,

ieP

where X1 = (x1,X2,...,X¢) and X2 = (Xk41,Xk+2,---,Xn), P = {0,1,...,
2"k _ 13, and the OR is performed with respect to 2" elements.
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Fig. 4.7 Realization of an x6
arbitrary 7-variable function
using 5-LUTs x1

80

X1

82

X1 83

5
+)
5
X1 / 81 l
5
/
/
5
+>

2-MUX

Example 4.2.1. Consider the realization of a 7-variable function f(X;, X»), where
X1=(x1,x2,...,x5), and X5 =(x¢,x7). f is expanded into a sum of four
products:

3
f(X1.X2) = \/ gi (X)X}
i=0
= go(X1)XJ vV g1(X1)X, v &2(X1)XF Vv g3(X1)X;.

As shown in Fig.4.7, a 2-MUX can be realized by using three 1-MUXSs. The top
LUT in the left most column realizes go, which is selected when (x¢, x7) = (0, 0).
The second LUT in the leftmost column realizes g;, which is selected when
(x6,x7) = (0, 1). Other LUTs are derived similarly. ]

Theorem 4.2.2. When 3 < K < n, an arbitrary n-variable function is realized by
using at most 2"~K — 1 modules of 1-MUXs and 2"~ modules of K-LUTs.

Proof. Consider the expansion of Theorem 4.2.1. First, realize an (n — K)-MUX by
using 1-MUXs. By Lemma 4.1.1, we need 2"~X — 1 modules of 1-MUXs. Next,
by connecting g; (X1) to the data inputs of the (n — K)-MUX, realize an arbitrary
n-variable function. To realize g; (X;) (i = 0,1,...,2" K —1), we use 2% mod-
ules of K-LUTs. O

Next, consider several special cases.

Lemma 4.2.1. An arbitrary function of n = K + 1 variables can be realized with
at most three K-LUTs, where K > 3.

Proof. Let X1 = (x1,X2,...,xk) and X, = (xg+1). Then, the function can be
represented as

S(X1,X2) = Xg4+1 f(X1,0) V xg 41 f(X1, 1).
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Fig. 4.8 Realization of a k+1 X, X,
variable function K ‘1, l
2
2 1
Fig. 4.9 Realization of a k+2 X, X,
variable function K ,l, 2 ,l,
4 7 1 —

Thus, f can be realized by three K-LUTs as shown in Fig. 4.8. Note that the left cell
realizes f(X1,0) and f (X1, 1), while the right cell works as a selector (1-MUX) to
realize f. The integer in a cell denotes the number of LUTSs to realize the cell. This
is an LUT cascade, which will be explained in the next chapter. (]

Lemma 4.2.2. An arbitrary function of n = K + 2 variables can be realized with
at most five K-LUTs, where K > 6.

Proof. Let X; = (x1,X2,...,xkg) and X5 = (xg+1,XK+2). Then, the function
can be represented as

f(X1,X2) = X1 Xk+2f(X1,0,0) V Xg 41Xk +2 f(X1,0, 1) v
Xk+1Xk+2 f(X1,1,0) V xg 11Xk 42 f (X1, 1, 1).

Thus, f can be realized by five K-LUTs, as shown in Fig.4.9. Note that the left
cell generates f(X1,0,0), f(X1,0,1), f(X1,1,0),and f(X1, 1, 1), while the right
cell serves as a selector (2-MUX) to realize f. Figure 4.9 can be considered as a
simplified representation of Fig.4.7. O

Theorem 4.2.3. [110] The number of 6-LUTs to realize an arbitrary n-variable
function (n > 6) f is:

o (2"* —1)/3 or less, when n is even.
o (2% 4+ 1)/3 orless, when n is odd.

Proof. Case 1: n is even (n = 2r):
We realize the function f in the form of Theorem 4.2.1, where K = 6. First, realize
a (n — 6)-MUX by using 2-MUXs. This requires

4773 — 1

I ddg g d N o e a4 = =



30 4 MUX-Based Synthesis

6-LUTs. Next, realize g; (X;) (i =0, 1,...,2" % —1). This requires 4"~ modules
of 6-LUTs. So, the total number of 6-LUTs is

473 = 421 2o
3 3 3

Case2:nisodd (n =2r + 1):
The function f can be expanded into the form

S(X1,xp) = Xngo(X1) V X 81(X1), 4.1

where X1 = (x1,X2,...,Xn—1). Since g;(X1) (i = 0,1) are functions with 2r
variables, they can be realized by (4”~2 — 1)/3 modules of 6-LUTs. To realize the
expansion (4.1), we use a 1-MUX. Thus, the total number of 6-LUTS to realize f is

2‘4r—2_1+1_2.4r—2+1_2n—4+1
3 - 3 3

Example 4.2.2. The number of 6-LUTs to realize an n-variable function is:

e 5orless, when n = 8. In this case, g; (X1) (i = 0, 1,2, 3) are realized by four
modules of 6-LUTs, while the 2-MUX is realized by a single 6-LUT, as shown
in Fig.4.10. In the figure, the numbers in the squares denote the numbers of
necessary LUTSs.

e 11 orless, whenn = 9. In this case, g; (X1) ( = 0,1,2,...,7) are realized by
8 modules of 6-LUTs, while the 3-MUX is realized by three 6-LUTs as shown
in Fig. 4.11.

e 21 orless, when n = 10. In this case, g;(X;) (. = 0,1,2,...,15) are realized
by 16 modules of 6-LUTs, while the 4-MUX is realized by using five 6-LUTs as
shown in Fig. 4.12. ]

Theorem 4.2.4. Consider the function f(X1, X2), where X1 = (x1,Xx2,X3,X4)
and Xo = (Xs5,X6,...,XK+3,XK+4). Let i be the column multiplicity of the de-
composition f (X1, X2), where X1 denotes the bound variables. Then, f can be
realized with at most 0 + 5 modules of K-LUTs, where K > 6.

Proof. The function f(X1, X3) can be expanded as

S(X1,X2) = go(do. X2) Vv g1(a1, X2) V g2(d2, X2) V -+- V g15(d1s, X2),

+2

N~

Fig. 4.10 Realization of an
arbitrary 8-variable function
using 6-LUTSs 2-MUX
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Fig. 4.11 Realization of an x7 x8
arbitrary 9-variable function 2
using 6-LUTs +

6 4 x9

/4 1 — l

4+ 2 1 +—

6 4

/ 4 Vi 1 J

7 7

1-MUX
2-MUX
/
N
3-MUX

Fig. 4.12 Realization of an
arbitrary 10-variable function X,
using 6-LUTs

6 8

4-MUX

where do = (0,0,0,0), a; =(0,0,0,1), d =(0,0,1,0),..., and @15 = (1,1, 1,1).
Thus, f (X1, X2) can be realized as the circuit shown in Fig. 4.12. Since the column
multiplicity is 4, the number of different column functions g; (d;, X») is u. So, in
Fig.4.12, the LUTs producing the same functions can be shared, and only  LUTs
are sufficient to produce g; (d;, X»). O

4.3 Remarks

This chapter derived the number of 6-LUTs to realize an n-variable logic function.
The number of required LUTs increases exponentially with n. So, the MUX-based
design is only practical for the functions with a small number of inputs. How-
ever, the MUX-based method sometimes produces circuits with fewer LUTs [134]
than existing methods [73, 76], in particular, for random logic functions. In this
chapter, we represented the function by Shannon expansion. However, if we use
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pseudo-Kronecker expansion [110], we can reduce the number of LUTs by 23%
[107]. In the pseudo-Kronecker expansion, we can select one from 840 possible
expansions to reduce the number of LUTs.

Problems

4.1. Consider a 10-variable function f(X). Let (X1, X») be a partition of the vari-
ables X, where X1 = (x1, X2, X3, X4, X5, X¢) and X2 = (x7, Xg, X9, X10). Assume
that g = 16. That is, the column multiplicity of the decomposition chart is 16.
Show that f can be realized with at most nine 6-LUTs.

4.2, Let (X1, X2) be the partition of the variables X, where X; = (x1, x2, X3, X4)
and X, = (xs, X6, X7, X8, X9, X10). Suppose that the column multiplicity is 10, i.e.,
4 = 10. Then, show that f can be realized with at most 15 copies of 6-LUTs.

4.3. Show that an arbitrary logic function can be represented as

S(x1,x2,Y) = go(Y) ® x181(Y) @ x222(Y) ® x1x283(Y). 4.2

This is the Reed-Muller expansion. Consider the Shannon expansion:
Sl x2,Y) = X1X%2 fo(Y) @ X1x2 f1(Y) @ x1X2 f2(Y) @ x1x283(Y).  (4.3)

Represent go(Y), g1(Y), g2(Y), and g3(Y) by fo(Y), f1(Y), f2(Y), and f3(Y).

4.4. Consider the function f(X1, X3), where X; = (x1,X2,...,X9) and X, =
(X2k+1> X2k 425 - - - » X2k +6)- Let u be the column multiplicity of the decomposition
f(X1, X2), where X denotes the bound variables. Then, show that f can be real-
ized with at most

4k — 1

+
Fr

6-LUTs.



Chapter 5
Cascade-Based Synthesis

The previous chapter presented a multiplexer (MUX)-based realization. Although
such a method is applicable to any n-variable function f, the number of LUTSs
necessary to realize f increases as O(2"). This chapter considers a cascade-based
logic synthesis. A cascade-based realization is applicable to only a limited class of
functions. However, functions with a small C-measure can be realized by cascade-
based realizations with O(n) LUTs.

5.1 Functional Decomposition and LUT Cascade

Before considering the general case, we review special cases.

Lemma 5.1.1. An arbitrary function of n = K + 1 variables can be realized with
at most three K-LUTs, where K > 3.

Proof. This is the same as Lemma 4.2.1. O

Lemma 5.1.2. An arbitrary function of n = K + 2 variables can be realized with
at most five K-LUTs, where K > 6.

Proof. This is the same as Lemma 4.2.2. O

From the definition of a decomposition chart, we have the following:

Theorem 5.1.1. [8] Let pug (n) be the column multiplicity of a decomposition chart
of an n-variable logic function with k bound variables. Then,

Uik (1) < min {21‘, 22nik} .

When circuits are designed by LUTs, functions with smaller column multiplici-
ties tend to have smaller realizations.

Definition 5.1.1. Let f(x1,x2,...,x,) be a logic function. The profile of the
function f is the vector (w1, U2,...,Un), Where ui denotes the column mul-
tiplicity of the decomposition chart for f(Xi1, X2), X1 = (x1,x2,...,x) and

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_5, 33
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X5 = (Xg+15- - - » Xn), assuming that the order of variables (x1, X2, ..., X,) is fixed.
The C-measure of the function f is max(ui, U2, ..., [4zn) and is denoted by w(f).

Note that the order of the variables will affect the C-measure, but we choose the
natural order (x1, x5, ..., X,) of the input variables.

Lemma 5.1.3. Let f be an arbitrary n-variable function. Then,
n(f) < r]?’élx min {2", 22nik} .
=1

For any partition (X, X») of X, we have the decomposition shown in Fig.5.1.
By repeatedly applying functional decompositions to a given function f(X) =
f(X1,X3,...,Xs), we have an LUT cascade [113] shown in Fig.5.2. An LUT
cascade consists of cells. The signal lines connecting adjacent cell are rails. A logic
function with a small C-measure can be realized by a compact LUT cascade.

Lemma 5.1.4. [113] An arbitrary logic function f can be realized by an LUT cas-
cade, whose cells have at most [log, ()] + 1 inputs, and at most [log, i(f)]
outputs, where (L( ) is the C-measure of f.

Lemma 5.1.5. [127] In an LUT cascade that realizes an n-variable function f, let
s be the number of cells; w = [log, u(f)] be the maximum number of rails; K be
the number of inputs to a cell; n > K + 1; and K > [log, u(f)] + 1. Then, an
LUT cascade satisfying the following condition exists:

s = [I"(__m . 5.1

Proof. From the design method of the LUT cascade, we have
K+ (K—-w)(s—1)>n.

Here, K on the left-hand side of the equality denotes the number of inputs of the
leftmost LUT, and (K —w) (s — 1) denotes the sum of inputs for the remaining (s —1)

X— HH
Fig. 5.1 Realization ] 1 G
4 ; il A
of a logic function X =
by decomposition 1
wWed oo oWl Wl Wy
] ] = —
LUT [ ;7| LUT [ | LUT [37= 3| LUT | f
Fig. 5.2 LUT cascade " " —
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Fig. 5.3 .Reahzatlor} X, X,
of a 9-variable function
with C-measure 6 ‘i’ 31—
not exceeding 8 3
3 {1

LUTs. When the actual number of rails is smaller than w, we append dummy rails
to make the number of rails w. From this, we have

n—K n—w
, and s > .
—w K—w

s—1>

Since s is an integer, we have (5.1). When this is the case, we can realize an LUT
cascade for f having s cells with at most K inputs. O

Example 5.1.1. Let f(X1,X2) be a 9-variable function, where X; = (x1, X2,
..., Xg) and X, = (x7, xg, X9). Let (g be the column multiplicity of the decompo-
sition of f with respect to (X1, X5). If ug < 8, then f(X;, X3) can be realized
with four 6-LUTs, as shown in Fig.5.3. Note that the number of rails between
two cells is [log, 8] = 3, by Theorem 3.3.1. In many cases, the natural ordering
of the input variables does not yield the smallest circuit. To check if ug < 8 for
all arrangements of variables, we need to compute the column multiplicities for
(2) = 84 combinations of variables. ]

Lemma 5.1.6. Consider a cascade consisting of K-LUTs.

1. When the number of the external input variables to the output LUT is one, the
number of the rail inputs to the LUT is at most two.

2. When the number of the external input variables to the output LUT is two, the
number of the rail inputs to the LUT is at most four.

Proof. We prove the second case only. The proof for the first case is similar. Let
Xn—1 and x, be external input variables for the output LUT. Consider the decompo-
sition chart, where the rail inputs X; = (x1, x2, ..., X,—2) denotes the set of bound
variables and the external input X, = (x,—1, Xx,) denotes the set of free variables.
In this case, the column multiplicity is at most 16, since there exist at most 222 = 16
different column functions by Theorem 5.1.1. Also by Theorem 3.3.1, the number
of the rail inputs to the output LUT is at most four. O

5.2 Number of LUTs to Realize General Functions

As for realizations by 6-LUTs, we have the following:

Theorem 5.2.1. The number of 6-LUTs needed to realize an arbitrary n-variable
Sfunction with w( f) < 32 is 5n — 35 or less, where n > 8.
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Fig. 5.4 Realization with

X, X, X, X, 1 X
6-LUTs 6 n-3 n-2 n-1

Xy
Xy ]

Xy —

X3 — :.,,: : _f

Proof. From Lemma 5.1.4, an arbitrary function with u(f) < 32 can be realized
by an LUT cascade, whose cells have at most [log, ] + 1 = log,(32) +1 =6
inputs, and w = log,(32) = 5 outputs. Let K = 6. Then, from Lemma 5.1.5, the
number of cells is at most | I’é‘_’; = g = n — 5. Note that each cell except for
the rightmost cell has at most 5 outputs. From Lemma 5.1.6, the second cell from
the right has at most four outputs as shown in Fig. 5.4. So, the total number of cells
is at most n — 6. Note that the second cell from the right has 4 outputs, while the
rightmost cell has just one output. Therefore, the total number of LUTs is at most

5n—8)+4+1=>5n-35. O

Theorem 5.2.2. The number of 6-LUTs needed to realize an arbitrary n-variable
Sunction with u(f) < 16 is 2n — 11 or less, where n > 8.

Proof. Let w= log,(16) =4 and K = 6. From Lemma 5.1.5, we have s < [ =%

— =[50,

When n = 2r, each cell except for the rightmost cell has at most 4 outputs. So,

the total number of LUTs is at most 4x(|_%—| - 1)+1 =2(n—4)—4+1 = 2n—11.
Whenn = 2r + 1, by Lemma 5.1.6, the rightmost cell has one external input and

at most two rail inputs, and the second cell from the right has at most two outputs.

So, the total number of LUTs is atmost4 x ([252] —1)+2+1=2n—11. O

Theorem 5.2.3. The number of 6-LUTs needed to realize an arbitrary n-variable
Sfunction with u(f) < 8 isn — 5 or less when n = 3r, and n — 4 or less when
n # 3r, wheren > 8.

Proof. Letw = log, 8 = 3and K = 6. From Lemma 5.1.5, we have s < |_I"<__”:V =
n—3
( 3W;|16:n n = 3r, each cell except for the rightmost cell has at most 3 outputs. So,
the total number of LUTs is atmost 3x ([252] = 1) +1 = (n—3)-3+1=n->5.
When n = 3r + 1, the rightmost cell has one external input and at most two
rail inputs, and the second cell from the rightmost one has at most 2 outputs. So, the
total number of LUTs is atmost 3x ([252] — 1) +2+1 = (n—4)—3+3 =n—4.
When n = 3r 42, the rightmost cell has two external inputs. So, the total number
of LUTsisatmost3x ([252] = 1) +3+1=n—-5—-3+4=n—4. O

Lemma 5.2.1. The number of K-LUTs needed to realize a (K + 1)-variable k-
output function F with u(F) < 2K=1 4 2K=3 js 3K or less.
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Proof. Consider the circuit shown in Fig.5.5. Since the column multiplicity is at
most 2X~1 4 2K=3 "each pattern can be uniquely represented by a K-bit code. By
using the leftmost cell D, generate K-bit codes that correspond to the column pat-
terns. For the first 2K 1 patterns, assign K-bit codes with the form (0, *, *, ..., %),
where * denotes either 0 or 1. For the remaining 2X=3 patterns, assign K-bit
codes with the form (1,0, 0, *, %, ..., x). Cell 4 in Fig. 5.5 implements the function
for the codes (0, *, *, ..., %), while cell B implements the function for the codes
(1,0,0, %, ..., %). Cell C is used for a selector, which is controlled by the most sig-
nificant bit of the outputs of cell D. In this way, an arbitrary K output function can
be realized by the circuit shown in Fig. 5.5. Note that cell B has K — 2 inputs, and
cell C has three inputs. Cells B and C can be merged and realized by a K-input
LUT. Thus, the total number of LUTSs to implement this circuit is at most 3K. O

Theorem 5.2.4. Let K > 6 and n > K + 3. The number of K-LUTs to realize an
n-variable function f with u(f) < 2571 4+ 283 s 2K(n — K) — 5K + 9 or less.

Proof. Consider the cascade shown in Fig.5.6. Since [log, u] < K, the function
can be realized by a cascade with at most K-rails. Also, by Lemma 5.2.1, each of
the intermediate cells can be realized with at most 2K LUTs. By Lemma 5.1.6, the
rightmost cell has at most four rail inputs and two external inputs. Also, note that
the second cell from the right can be implemented with at most 8 LUTs. Note that

Nie+1

X
7—{ o
K

Fig. 5.5 Realization of

(K + 1)-variable K-output

function

X
S I B §
K K K K 4

K (| 2K (o~ 2K (-~ 8 I~ 1 —

Fig. 5.6 Cascade realization in the proof
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the number of outputs is at most four, and the number of inputs is K + 1. We can
prove that 8 LUTs is sufficient in a similar way to the proof of Lemma 5.2.1. The
leftmost cell can be implemented with K LUTs. Thus, the total number of LUTs is
K+2Kn—K—-3)+9=2K(n—K)—5K +09. O

Theorem 5.2.5.

e The number of 6-LUTs needed to realize an arbitrary n-variable function with
w(f) <40is 12n — 93 or less, where n > 9.

e The number of 7-LUTs needed to realize an arbitrary n-variable function with
w(f) < 80is 14n — 124 or less, where n > 10.

o The number of 8-LUTs needed to realize an arbitrary n-variable function with
w(f) <160is 16n — 159 or less, where n > 11.

5.3 Number of LUTs to Realize Symmetric Functions

When the given function is symmetric, it can be realized more efficiently than a
general function [106, 112]. Efficient algorithms to detect symmetric functions exist,
e.g.,[70,91].

Lemma 5.3.1. Let f be a symmetric function of n-variables. Then, u(f) <n + 1.

Proof. Consider the partition of variables (X7, X3), where X1 = (x1,x2,...,Xk)
and X2 = (Xg41,Xk+25---5Xn). Let ug be the column multiplicity of the decom-
position. Since f is symmetric, the column labels with the same weights have the
same column patterns in the decomposition chart. Thus, the column multiplicity is
at most k + 1. From this, we have the lemma. O

Example 5.3.1. Consider a symmetric function f(X7, X3), where X7 = (x1, X2, X3)
and X, = (x4, X5, Xg). This is an example for k = 3. In this case, the number of
columns is 23 = 8. The column label with weight 0 is (0, 0, 0). The column labels
with weight 1 are (1,0, 0), (0, 1,0), and (0, 0, 1). They have the same column func-
tions. The column labels with weight 2 are (1, 1,0), (1,0, 1), and (0, 1, 1). They
have the same column functions. And the column label with weight 3 is (1,1, 1).
Thus, the number of different column patterns is at most four. [

In Chap. 7, tighter bounds are derived.

Theorem 5.3.1. The number of K-LUTs needed to realize an n-variable symmetric
function is:

e 4orless, whenn = 9 and K = 6. Figure 5.3 shows the realization.
e 7orless, whenn = 12 and K = 6. Figure 5.7 shows the realization.
o [3orless, whenn = 15 and K = 6. Figure 5.8 shows the realization.

Example 5.3.2. Consider SYM12 [110], a symmetric function of 12 variables.
SYM12 is 1 iff the number of 1’s in the inputs is between 4 and 8.
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Fig. 5.7 Realization of a
symmetric function of 12 - 3
variables by 6-LUTs

i

Fig. 5.8 Realization

of a symmetric function of 15 76L. 3 3
variables by 6-LUTs
4
4 [
6 j_|_)
—~ 3 1 —
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—+ 2 /

Fig. 5.9 SYMI2 realized

X1 X5... X, X7 XgXg Xjg Xp7 X
by 6-LUTs 12 6 789 10 411 412

6‘1’ 33+33‘j’

- 1 |—SYM12

1. The column multiplicity of the function with respect to the bound set composed
of K = 6 variables is g = 7. Thus, the number of rails between two blocks is
[log, 7] = 3.

2. We decompose the function with respect to the bound set: x1, X3, ..., X¢. Realize
the first cell using 6-LUTSs, which corresponds to the leftmost cell in Fig. 5.9.

3. The remaining function has 12 — 6 4+ 3 = 9 variables. The bound variables for
the second decomposition are three outputs of the leftmost cell, and x7, xg, x9.
In this case, the column multiplicity is 9 = 8 (Problem 3.8). Thus, the number
of rails between two blocks is [log,8] = 3.

4. We decompose the remaining function with the bound set: three outputs of the
leftmost cell, and x7, xg, x9. Realize the second cell using 6-LUTs, which corre-
sponds to the middle cell in Fig.5.9.

5. The remaining function has 9 — 6 + 3 = 6 variables. Since the number of re-
maining variables is equal to K = 6, realize the function by a 6-LUT, which
corresponds to the rightmost cell in Fig. 5.9.

6. In this way, SYM12 is realized by 3 4+ 3 + 1 = 7 LUTs of 6-inputs. Note that this
realization is different from that shown in Fig.5.7. ]



40 5 Cascade-Based Synthesis

5.4 Remarks

In this chapter, we showed a method to realize a given function by using a cascade
of LUTs. This method is only applicable to the functions whose C-measures are
small.

The C-measure of a logic function f is related to the size of its BDD. Sizes of
BDDs for various classes of functions are considered in [154]. Classes of functions
having small C-measures are considered in Chap. 7.

LSIs for LUT cascades have been fabricated [86—88]. This chapter is based on
[134].

Problems

5.1. Compare the tree-type realization in Fig. 5.7 with the cascade realization in
Fig.5.9. Discuss their advantages and disadvantages.

5.2. Consider the 4-bit adder, where x3, X3, X1, X and y3, y2, y1, Yo denote the
inputs, and z4, z3, 22, 21, Zo denote the outputs. Design the adder using an LUT cas-
cade. Use 6-LUTs. Show the expression of the output function for each LUT.

5.3. Design a 12-input 4-output circuit that counts the number of 1’s in the inputs
and represents this by a binary number (i.e., WGT12) by 6-LUTs.

5.4. Consider a set of three functions f; with 7 variables. Assume that u(f;) < 40
fori = 1,2, 3. Realize these functions by 6-LUTs, using the design method shown
in the proof of Lemma 5.2.1.

5.5. Let g (n) be the column multiplicity of a decomposition chart of an n-variable
function with k bound variables. Show the following relations:

et 1(n) < 24 (n)

pk—1(n) < pz(n)

5.6. Enumerate the 8-variable functions whose C-measures are 32.



Chapter 6
Encoding Method

This chapter shows a method to reduce the number of LUTSs needed to realize logic
functions with nonstandard encodings. In these encodings, intermediate variables in
functional decomposition are represented with fewer variables. This method offers
a way to find a nondisjoint decomposition.

6.1 Decomposition and Equivalence Class

Definition 6.1.1. Let f (X1, X7) be a logic function and (X1, X,) be a partition
of X.|X;| denotes the number of variables in X;. Let B = {0, 1}. Whenn; = |X;|

and ny = | X3/, an equivalence relation ~ on B"! is defined as follows: @ ~ b <

f@a, X,) = f(l;, X5), where ﬁ,g € B!, Let the equivalence classes of B"! be
Wo, Wi,...,¥,—1. In this case, p is equal to the column multiplicity in the de-
composition chart of f* with the partition (X, X5). ¥; is also used to represent the
corresponding logic function.

Example 6.1.1. Consider the function
S(X1, X2) = yoX1X2 V y1X1X2 V y2X1X2 V y3X1X2,

where X1 = (x1, X2, Yo, y1) and X2 = (y2, y3). The decomposition chart is shown
in Fig. 6.1. The logic functions for the various equivalence classes are

Wy = X1X2Yo V X1X2)1 = X1(X2)0 V X2)1),
Yy = x1x2,
\112 = xliz, and

W3 = X1X2)0 V X1X2¥1 = X1(X2Y0 V X2)1).

Note that Wy denotes the logic function for the equivalence class of the column
vector (0,0, 0, 0)", where the symbol 7 denotes the transpose of the vector. Similarly,
¥, corresponds to (0, 1,0, 1)!, ¥, corresponds to (0,0, 1, 1)?, and W5 corresponds
to (1,1,1,1)%. n

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_6, 41
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Fig. 6.1 Example of a decomposition chart

6.2 Disjoint Encoding

Definition 6.2.1. In a functional decomposition, the minimum length encoding
uses [log, p] bits to encode equivalence classes: Wy, ¥y, ..., ¥, _;, where [a] de-
notes the minimum integer greater than a.

Since W; (i =0,1,..., u— 1) represents equivalence classes, ¥; has the following
properties: W; - W; = 0 (i # j)and VI ) ¥; = 1.

Let the intermediate variables be A1, &2, ..., h,, where u = [log, i]. Suppose
that (hy, hy—1,...,h2, h1) denotes the index showing the equivalence class. In this
encoding, all the vectors in an equivalence class are assigned the same codes. Such
an encoding is a disjoint encoding.'

Example 6.2.1. Consider the function in Example 6.1.1. Note that © = 4. When we
use disjoint encoding:

Wy is coded by 00,

W, is coded by 01,

W, is coded by 10, and

W3 is coded by 11.

In this case, we have

l’ll = \Ijl Vv \If3 = X1X2 V )2'1()2'2_)/0 \/Xzyl), and
hy = W vV W3 =x1x2 VX1(X2)0 V X2y1).

Note that
hahy = Wy,
hahy = ¥y,
]’lzﬁ] = \Ijz, and
]’lzhl = Y3,

!'In the previous publications, disjoint encoding was called strict encoding [44, 112].



6.3 Nondisjoint Encoding 43

However, even if x; is realized instead of the function 1, = W, Vv W3, we can still
represent the equivalence class as follows:

¥1hy = %1 (¥270 V x231) = Yo,
X1h1 = X1(X2y0 V x21) = V3,
xlh_l = Xl)_Cz = \Ifz, and

X1/’l1 = X1Xp2 = \Ifl.
]

The above example shows that an appropriate encoding can simplify intermediate
variables. The next section shows a systematic method to simplify intermediate vari-
ables. Here, we assume that a function is simpler if it can be represented with fewer
variables.

6.3 Nondisjoint Encoding

In a disjoint encoding, all the vectors in an equivalence class are assigned to the
same code. However, in general, we can use the code where the vectors in the same
equivalence class may be assigned to different codes, as long as the vectors in the
different classes are assigned to different codes. Such an encoding is a nondisjoint
encoding. This often simplifies intermediate variables.

Various methods exist to encode equivalence classes: Wy, Wq,..., and ¥, _;. In
this chapter, we use the encoding that simplifies the intermediate variable A,,. If we
can design an encoding such that s,(X;) = x;, then the LUT for 4, is not needed,
since X; is available as an input variable.

Example 6.3.1. Consider a 7-variable function f(Xi, X»), where X; = (xi,
X2,Xx3,%x4) and Xp = (xs,Xg,x7). Assume that f is partially symmetric with
respect to X;. In this case, the column multiplicity p of the decomposition chart
for f (X1, X») is at most 5, since it is sufficient to identify if 0, 1,2,3, and 4 of
X1,X2,x3,and x4 are 1. Since ;. < 5 and [log, ;] < 3, f can be realized as shown
in Fig. 6.2.

Assume . = 5. In this case, the circuit requires three intermediate variables: 1,
hz, and h3.

X1 h3
X X2 ho
1Yy A I G
X4
Fig. 6.2 Realization using —
disjoint encoding X2 { —
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Table 6.1 Disjoint encoding hs h, h;|Number of 1’s in X;
0 0 010
0 0 1|1
0 1 012
0 1 113
1 0 0 |4

Disjoint Encoding:

Table 6.1 shows the encoding for A1, h, and h3. Note that (h3, hz, 1) shows the
number of 1’s in the inputs. In this case, we have

h3 = SB(4,4) = X1X2X3X34,
hy = SB(4,2) = x1x2 ® x1X3 B X1X4 D x2X3 B x2x4 D X3X4, and
hi = SB(4,1) =x1 & x2 D x3 D x4.

Note that Table 6.1 represents WGT4, which is realized by the block A in Fig. 6.2.
Since Table 6.1 uses five code words in disjoint encoding, the network for A requires
three 4-LUTs.

The Encoding that Simplifies an Intermediate Variable:

For h3, we realize x instead of SB(4,4):

hs = x1,
h, = SB(4,2), and
hi = SB(4,1).

In this case, (A3, hz, h1) shows the number of 1°s in X, where

(h3,ha,h1) = (0,0,0) Xq hasno 1,
(h3,hy,h1) = (—,0,1) X1 hasone 1,
(h3,h2,h1) = (—,1,0) X; hastwo 1’s,
(h3,ha,h1) = (—,1,1) X; has three 1’s, and
(h3,ha,h1) = (1,0,0) X has four 1’s.

Since the function 43 = x; is available as an input variable, no LUT is necessary
for &3, as shown in Fig. 6.3. The network for A’ realizes a 4-input 2-output function
and can be implemented by only two 4-LUTs. This encoding uses eight different
code words. ]
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Fig. 6.3 Realization using
encoding that simplifies / N
1
h
X x2 9| )
19 x3 A I G
X4
X2 {

Note that the nondisjoint encoding shown in the above example converted a
disjoint decomposition (Fig. 6.2) into a nondisjoint decomposition (Fig. 6.3). Thus,
a disjoint encoding corresponds to a disjoint decomposition, while a nondisjoint en-
coding corresponds to a nondisjoint decomposition. However, not every nondisjoint
encoding leads to a nondisjoint decomposition.

Theorem 6.3.1. [58] Consider the decomposition

(X1, X2) = g(h1(X1), ha(X1), ... hu(X1), X2).

Let V;(X1),(i = 0,1,...,u — 1) be the equivalence classes of the decompo-
sition. Let x; € Xy. If the number of different nonzero functions x;¥;, (i =
0,1,2,...,u—1) is equal to or less than 241 and the number of different nonzero
Sfunctions x;¥;, (i =0,1,2,...,u—1) is equal to or less than 2471 then h,(X1)
can be represented as h,(X1) = x;.

Proof. Algorithm 6.3.1 shows the method to simplify intermediate variables. [

Algorithm 6.3.1. (Simplification of an Intermediate Variable)

1. LetW; i =0,1,...,u—1) and x; € X satisfy the condition of Theorem 6.3.1.
To X;W; # 0, assign code v from 0to 2"~1 — 1.

2. To x;V; # O, if the function X ;V; is already assigned a code v in the previous
step, assign a code v + 2471,

3. If there exists a function x ; W; which has not been assigned a code yet, assign an
unused code t, where 2"~ <t < 21,

We use examples to show the algorithm.
Example 6.3.2. Consider the decomposition f (X7, X5), where X1 = (x1, x2, x3).
Let the equivalence classes for the decomposition be

Wy = X1X2X3,

W, = X1x2 V X2X3 V X3X71,and

\112 = X1X2X3.
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Disjoint Encoding:
Since u = 3, a disjoint encoding requires u = [log, 3] = 2 intermediate variables:

h] = \111 = X1X2 V)E2X3 Vv )E3x1,and

hz = \112 = X1X2X3.

Encoding that Simplifies an Intermediate Variable:

Next, let us use Algorithm 6.3.1 to simplify an intermediate variable. First, confirm
that W;, (i = 0, 1, 2) satisfies the conditions of Theorem 6.3.1:

X1Wo = X1X2X3,
X1 = X1(x2 V X2x3),
x1W¥y =0,

and

x1¥o =0,

x1¥; = x1(X2x3 V X3),and

x1W¥s = X1X2X3.
Since the number of nonzero functions is 2 < 247!, where u = [log, 3] = 2, the
conditions are satisfied. Next, assign codes to the columns:

To X1 W assign 00,
to X1 W, assign 01,
to x;¥; assign 11, and
to x; W, assign 10.

Thus, we have the following intermediate variables:

h =x¥;vvy, = )_cl(xz \2 )_CQ)C3) V)Cl()_Cz)Q, Vv )_63) =y,
hz = X1\IJ] VX1\IJ2 = X1

Note that
hahy = ¥1%2%3 = W
hzﬁ] = X1X2X3 = ‘112.

Therefore, W; (i = 0, 1,2) can be represented by (42, k7). In this encoding, only
the LUTs for /; are needed. No LUT is necessary to implement s, = x, since x
is available as an input. ]
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Example 6.3.3. Consider a function f(X1, X2), where f is partially symmetric
with respect to X1 = (x1, x2, X3, X4). Also, assume that the column multiplicity
for the decomposition f (X1, X») is five. In this case, the equivalence classes for the
decomposition for f with the partition (X1, X,) are

Wy = S¢(x1, X2, X3,X4) = X1 X2¥3¥3,
Y, = Sf(xl,xz,x3,x4),
W, = 83 (x1, X2, X3, X4),
Y3 = S;(xl,XZ,X3,X4),

4
Wy = §;(x1, X2, X3,X4) = X1X2X3X4.

Since u = 5, e variables. Note that

)_61‘114 = 0, and
Xl\IJO = 0.
In this case ¥;, (i =0, 1,...,4) satisfies the conditions of Theorem 6.3.1. Thus, an

intermediate variable /3 can be simplified to x;. Next, assign codes to columns as
follows:

To x1 Wy assign 000,
to X1 W; assign 001,
to X1 W, assign 010,
to x; W3 assign 011,
to x1W¥; assign 101,
to x; W, assign 110.
to x; W3 assign 111, and
to x; W4 assign 100.

Using these codes, we derive the following expressions for the intermediate
variables:

I’ll = )21‘111 V)_Cl\IJ3 Vx1\111 Vx1\113 = \Ifl \ ‘113

hz X1V VX1W3 VvV X1Wr VW3 =W, Vv Y

hs = x1¥ v W v WiV Wy =x;

Note that in this case,

hshahy = Wy,
hahy = ¥y,
hahy = Wy,
hohi = W3, and

/’13};2};1 = Wy.
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Fig. 6.4 WGT7 Xy = snoe
xzf WGT7 —Yy1=SB(.2)
x7 — Y0=SB(7,1)

. — h3=SB(4.4) Z3H
2— _ 2 —
WGT4 — hy=SB(.2
X3 — 2_ 4,2) hl — G2 —»yz =SB(7,4)
X4 — — h1=SB4,1) 5
hag—
X5 — L, h —
5=SB(3.2)
X6 — ]
x? _ WGT3 L., =ssa. Zf . — J; =SB(1.2)
hs— O _
iy — Yo =SB(7.D)

Fig. 6.5 Realization of WGT7 with 8 LUTs

In this encoding, only the LUTs for 4, and &, are needed. No LUT is necessary to
implement 713 = x1, since x; is available as an input. [

Example 6.3.4. Realize WGT7 using LUTs with up to 5 inputs.

(Solution) WGT?7 has seven inputs and three outputs as shown in Fig. 6.4. It counts
the number 1 of 1’s in the input, and represents it by a binary number (y2, y1, yo),
where y, = SB(7,4), y1 = SB(7,2), and yo = SB(7,1). Let X be partitioned
as (X1, Xz), where X; = (x1,x2,x3,x4) and X, = (x5, x¢, x7). Note that the
functions are symmetric with respect to X; and X,. The column multiplicity of the
decomposition chart (X1, X») is five. So, the straightforward realization produces
the network shown in Fig. 6.5, where WGT4 is a 4-input bit-counting circuit and
produces three functions:

h3 = SB(4,4) = X1X2X3X34,

hy = SB(4,2) = x1(x2 @ x3 @ x4) @ x2(x3 @ Xx4) @ x3x4,and
hy = SB(4,1) = x1 ® x2 ® x3 D x4.

Also, WGT3 is a 3-input bit-counting circuit (i.e., a full adder) and produces two
functions:
hs = SB(3,2) = x5x¢ ® x6x7 ® x7X5,and
ha = SB(3,1) = x5 & x6 & x7.

G adds two 2-bit numbers (2, k1) and (hs, ha), producing the two least signif-
icant bits of the sum. And G, adds a 2-bit number (%5, h4) and a 3-bit number
(h3, h2, h1), producing the most significant bit of the sum. In Fig. 6.5, WGT4 has
three outputs and requires three LUTs. Note that
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?1* — 17 =SB(4.,2) Zl —

2— , 2

X4 —] — h1=SB@&4,1) J5—
h 4 —

;5: — 715=SB(3,2) By

ng WGT3 |, j,=spi0) h % ] — ¥, =SB(1.2)

Gi1

hs— _
- — Yy =SB(1.1)

Fig. 6.6 Realization of WGT7 with 7 LUTs

V2 = h3 ® hahs @ hiha(ha @ hs),
y1 = ha @ hs ® h1hs, and
Yo = hy @ hy.
Since each output of G; and G5 in Fig. 6.5 requires one LUT, we need 8 LUTs in

total. However, if 13 = SB(4,4) is replaced by x; as shown in Fig. 6.6, we need
only 7 LUTs. In this case, we use the relation h3 = x1h1h5, and

y2 = xX1hiha @ hahs @ hiha(hy @ hs).

Example 6.3.5. Realize WGTS8 by LUTs with up to 5 inputs.

(Solution) WGTS realizes the four functions SB(8.,8), SB(8.4), SB(8,2), and
SB(8,1). Let X be partitioned as X = (X1, X, X3), where X; = (x1, x2, X3, X4),
X5 = (x5,x6), and X3 = (x7, x3).
First, realize
SB(4, 4) = X1X2X3X34,
SB(4,2) = x1(x2 ® x3 ® x4) @ x2(x3 @ x4) D x3x4,and
SB(4,1) = x1 ® x2 & x3 D x4.

Then, realize

SB(6,4) = SB(4,4) ® SB(4,3)(xs ® x¢) ® SB(4,2)xsx6,
SB(6,2) = SB(4,2) ® SB(4,1)(x5 ® x¢) ® x5x6, and
SB(6,1) = SB(4,1) @ x5 ® xe.

Note that we use the relation in Lemma 3.5.3:

SB(4,3) = SB(4,2)SB(4,1).
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Fig. 6.7 Realization of

WGTS x‘7 x‘s

X3 X4 X5 X6 SB(8.8)|— V3=SB(8.8)

|| || [ ]
o | SB[ sBe.a| T spea |- y2=sBs4

[ | [ | [ |
i; | SB(42) SB(6.2) SB(8,2)|— V1 =SB(8,2)

[ | [ | [ |
2 | SB&,D SB(6,1) SB(8,1)|— Y0=SB(8.1)

Finally, realize

SB(8,8) = SB(6,6)x7xs,

SB(8,4) = SB(6,4) ® SB(6,3)(x7 ® xg) ® SB(6,2)x7xs,
SB(8,2) = SB(6,2) & SB(6,1)(x7 ® x3) & x7x3,and
SB(8,1) = SB(6,1) ® x7 ® x3.

In this case, we use the relation in Lemma 3.5.3:

SB(6,6) = SB(6,4)SB(6,2), and
SB(6,3) = SB(6,2)SB(6, 1).

Thus, WGTS is realized as Fig. 6.7. However, if we use the relation

SB(4, 4) = X1X2X3X4 = X1 SB(4, 2) SB(4, 1),
the LUT for SB(4,4) can be replaced by a variable x;. Thus, WGTS requires only
9 LUTs. -

Example 6.3.6. Realize the 9-input symmetric function SYM9 using LUTs with up
to 5 inputs.

(Solution) SYMD is represented as

= S{93,4,5,6}(X1,x2, e, X9).

f = 1if and only if the number of 1’s in the input is 3, 4, 5, or 6. Suppose that
the function is decomposed as f (X1, X2, X3), where X; = (x1, x2, X3, X4, X5),
X, = (x¢,x7), and X3 = (xg,x9). When X is the set of bound variables, the
equivalence classes are
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Wo = S (X1, X2, X3, X4, X5) = X1 X2 X3%4 s,
Wy = S7(x1, X2, X3, X4, X5),
\IJZ = S25(x1 , X2, X3, X4, )C5),
\IJ3 = S35(x1 , X2, X3, X4, )C5),
v, = Sf(xl,xz,X3,x4,xs),and
Us = S55(x1,xz,X3,X4,xs) = X1X2X3X4X5.
Suppose that the first cell realizes WGTS5. Next, consider the decomposition where

X1 and X, are bound variables. Suppose that the second cell realizes WGT7 as
shown in Fig. 6.8, where

y2 = SB(7.4),
y1 = SB(7,2),and
Yo = SB(7,1).

From the definition of SYM9, we have Table 6.2 showing the function of the right-
most cell. As shown in Fig. 6.8, the network for Table 6.2 requires only one LUT.
Thus, SYMO is realized by seven 5-LUTs.

X6 X7 X§ X9

X] — y_Z
X2 —
X3 —{WGT5 1| -
Xy — Yo
X5 — |
N J
Fig. 6.8 Realization for b
SYM9 WGT7
Table 6.2 Truth table for the Y2 Y1 Yo |Xxs X9 |f
rightmost cell 0 0 0 — 0
0 0 1 1 1 1
0 1 0 1 - 1
0 1 0 - 1 1
0 1 1 - = 1
1 0 0 |- - |1
1 0 1 0 - 1
1 0 1 — 0 1
1 1 0 [0 o0 |1
1 1 1 - 0
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Next, consider whether any output function of WGT?7 can be simplified. Table 6.2
shows that when WGT?7 produces (0,1,1) and (1,0,0), the value of the function is 1,
independent of the values of xg and xo. Thus, the equivalence classes are

Wy = SJ(xX1,X2,...,%7) = X1 %2 ... XeX7,
Uy = S](x1,x2,...,x7),

U, = S;(xl,xz,...,xﬂ,

W3 =8 4 (x1, %2, ..., x7),

Wy = SI(x1,%2,....X7),

Us = SJ(x1,X2,...,X7),and

We = S7(x1,X2,...,X7) = X1X2...XeX7.

In this case, we cannot simplify any output of WGT7 by using Theorem 6.3.1,
since the number of nonzero functions in x;W; and x;¥;, where (i = 0,1,2,
3,4,5,6), is both six. n

Example 6.3.7. Design a 2-MUX using 4-LUTs, where a 2-MUX realizes the

function

S0, Y1, Y2, ¥3, X1, X2) = yoX1X2 V y1X1X2 V Y2X1X2 V y3X1X2.

(Solution) Let (X7, X;) be a partition of the input variables, where X; =
(y0, ¥1, x1,x2) and X = ()2, y3). The equivalence classes for the decomposi-
tion are

Yo = X1(X2y0 V X2¥1),
Uy = X1 (X2y0 V x201),
P, = x1X5,and

U3 = x1Xx3.

Since u = 4, disjoint encoding requires two intermediate variables /27 and /. Note
that

x1¥o =0

x1¥; =0
and

X1V, =0

x1¥3 =0.
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Thus, ¥; (i = 0,1,2,3) satisfies the conditions of Theorem 6.3.1. Next, assign
codes (h3, h1) to columns as follows:

To x1 Wy = Wy assign a code 00,

to x;W; = W; assign acodeOl,

to x;W, = W, assign a code 10, and

to x; W3 = W3 assignacode 11.

In this case, we have the following intermediate variables:

hy = x1¥2 v X1 W3 = X1,
hy = x1W1 vV W = X1 (X2y0 V x2y1) V X1X2 = g.

Note that f can be represented as

S0, y1, 2, ¥3, X1, ¥2) = W1V Wayp Vv Ways,
= hyh Vh2h1y2 \4 h2h1y3,

=X1g VvV x1(gy2 Vv gy3).

In this way, a 2-MUX can be realized by two 4-LUTs as shown in Fig. 4.4. This is a
method to find a nondisjoint decomposition of Lemma 4.1.2. ]

6.4 Remarks

In this chapter, nondisjoint encoding was introduced. It reduces the number of LUTs
in a cascade realization by deriving a nondisjoint decomposition. Nondisjoint en-
coding for symmetric functions was considered in [112]. Experimental results show
that with nondisjoint encodings, the number of LUTs can be reduced by 10-30%
[35, 68, 69], when multiple-output functions were implemented as encoded char-
acteristic function for nonzero outputs (ECFNs). This chapter is based on [112].
Encoding method in the decomposition that minimized the support is considered in
[21,58,155]

Problems
6.1. Consider the decomposition f(X7, X5), where X1 = (x1,x2,X3,x4) and
X, = (x5, X6, X7, xg). Let the equivalence classes of the decomposition be

Wy = X1X2X3,

W = X1x2X3,
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X,
3l€5 TC6)|C7)|C8
X, — h,
xz_ h
X X, 2 f
.x4_ hl
1l =
—
X5 XX 7 Xy
X, i [
X
X, 2 7
X3 —@
X, — hy

Fig. 6.9 Simplification of intermediate variables

Wy = x1X3X4,
W3 = x1X3X4,

‘-IJ4 = X3.
Simplify an intermediate variable if possible.

6.2. Realize the 8-variable symmetric function f = S {80 8) using 5-LUTs. Note that
f=T1iff Y3 x; =0or8.

6.3. By extending Theorem 6.3.1, obtain the condition that the intermediate
variables /1, can be represented by x;, and /,—; can be represented by x;, where
J # k. For example, in Fig. 6.9, two intermediate variables /13 and /i, are replaced
by input variables x; and x3, respectively.



Chapter 7
Functions with Small C-Measures

Recall that the C-measure of a function is the maximum column multiplicity among
a set of functional decompositions f (X7, X;), where X; = (x1,x2,...,x%) and
X2 = (Xk41sXk+2,---,Xn). The C-measure tends to increase exponentially with
the number of input variables, n. However, many practical functions have small
C-measures. This chapter considers classes of functions whose C-measures are
small. Such functions can be efficiently realized by LUT cascades.

7.1 C-Measure and BDDs

The column multiplicity of a decomposition chart is equal to the width of the
quasi-reduced multi-terminal binary decision diagram (QRMTBDD). So, the
C-measure of a logic function is equal to the maximum width of the MTBDD
for the given ordering of the input variables.

Example 7.1.1. Consider two functions:

Ji(x1,x2, X3, X4, X5, X6) = X1X2 V X3X4 V X5X6

and
Sf2(x1, X2, X3, X4, X5,X6) = X1X4 V X2X5 V X3Xe.

Figure 7.1 shows the BDDs for f; and f5. In this case, the C-measures of f; and
Jf2 are 3 and 8, respectively. Note that f> can be obtained from f; by permuting the
input variables. We consider these functions to be different. ]

Lemma 7.1.1. Consider a pair of 2n variable functions:

Si(x1, X2, .. Xop—1,X20) = X1X2 V X3X4 V + -+ V X2p_1X2p

and
Jo(X1,X2, ... X2n—1, X20) = X1Xn41 VY X2Xpq2 V + o+ V XpX2p.

Then, j(f1) = 3 and p(f2) = 2".

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_7, 55
© Springer Science+Business Media, LLC 2011
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Fig. 7.1 BDD for equivalent functions

For certain function, the C-measure is large, but when variables are permuted, the
C-measure becomes smaller. For the other function, the C-measure is large for any
permutation of the input variables. For a given logic function and variable ordering,
the C-measure is easy to obtain and is uniquely defined.

7.2 Symmetric Functions

Functions that appear in arithmetic circuits often have symmetries. When logic func-
tions have some symmetries, they are often realized using fewer elements.

Definition 7.2.1. A function f is a totally symmetric function if any permutation
of the variables in f does not change the function. A totally symmetric function is
also called a symmetric function.

Lemma 7.2.1. Let f be a symmetric function of n variables. Then,
I’L(f) < I]zlrélxmin{k + 1,2n—k+1}-
=1

Proof. Consider the decomposition chart of f, where X1 = (x1, x2,...,x;) de-
notes the bound variables and X, = (X1, Xk+2, - - - , X5 ) denotes the free variables.
The number of different column functions is at most k + 1, since the column pattern
depends only on the number of 1’s in the bound variables. Also, by Lemma 3.5.1,
the number of column functions is at most 2% *1 since the column functions are
symmetric functions of n — k variables. O
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Theorem 7.2.1. Let [ be a symmetric function f of n variables. Then,

u(f)=n, (n=4).
u(f)<n-1,(n=09).
u(f) <n—-2,(n>18).
u(f) <n—=3,(n=>35).

Proof. From Lemma 7.2.1, ux = maxj_, min{k +1, 2n—k+13 Consider the cases,
wherek =n,n —1,n —2,n — 3 and n — 4. In these cases, we have

Wn = min{n + 1,21} =2,(n>1),
pn—1 = min{n + 0,22} = 4, (n > 4),
Jin— = min{n —1,2°} =8, (n = 9),
WUn—3 = min{n —2,2*} = 16, (n > 18), and
Un—4 = min{n —3,2°} = 32, (n > 35).

From the above, we have the theorem. O

7.3 Sparse Functions

An integer function whose number of nonzero output values is much smaller than
the total number of input combinations is called sparse. Sparse functions can be
efficiently realized by an LUT cascade.

Theorem 7.3.1. Let f be an integer valued function or a logic function with
weight k. Then, u(f) <k + 1.

Proof. Consider a decomposition chart with the maximum column multiplicity. In
this case, each nonzero element corresponds to a unique column pattern. Also, there
can be a column with all zero elements. Thus, there is no decomposition chart with
greater column multiplicity. Hence, we have the theorem. O

Sparse functions are considered in Chap. 8.

7.4 LPM Functions

The longest prefix match (LPM) problem is to determine the output port address
from a list of prefix vectors stored in memory based on the longest match. It is
solved by the internet routers to forward packets of data.

Definition 7.4.1. [125] The LPM table stores distinct ternary vectors of the form
VEC, - VEC,, where VEC; is a string of 0’s and 1’s, and VEC; is a string of *’s.
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To assure that the longest prefix address is produced, LPM entries are stored in
descending prefix length. The first match determines the LPM tables output. The
corresponding LPM function is a logic function ]7 : B" — B™, where f (X) is the
smallest index of an entry that is identical to X except possibly for don’t care values.
If no such entry exists, f (X) = 0™. A circuit that realizes the LPM function is an
LPM index generator.

Example 7.4.1. Consider the LPM table shown in Table 7.1. In the third row
VEC: = 01 and VEC, =**, while in the last row VEC; = 0 and VEC, =***.
Table 7.2 shows the corresponding LPM function. The output is the index corre-
sponding to the index of the longest prefix that matches the input. ]

Example 7.4.2. In Internet Protocol version 4 (IPv4), an IP address is represented
by 32 bits or 4 bytes. An IP address is often represented by four decimal num-
bers, each representing a byte. For example, 66.249.122.7 corresponds to the 32-bit
binary number

01000010.11111001.01111010.00000111.

Table 7.1 LPM table Vector

X1 X X3 X4 Index

1 0 0 1

o 1 0 *= 2

o 1 = * 3

1 = %= % 4

0 =*= =*= * 5

Eﬂi;ﬁe LPM function X1 x2 x3 xa fH A S

o 0 o O 1 o 1
0o 0 0 1 1 0 1
0 0 1 0 1 0 1
0o 0 1 1 1 0 1
o 1 0 0 O 1 0
0 1 0 1 0 1 0
0 1 1 0 O 1 1
0 1 1 1 0 1 1
1 O 0 o0 0 o0 1
I 0 0 1 1 0 O
1 0 1 O 1 0 O
1 0 1 1 1 0 0
1 1 0 0 1 0 o0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 0 O
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That is, 66 in the decimal number represents the binary number 01000010; 249 in
the decimal number represents the binary number 11111001; 122 in the decimal
number represents the binary number 01111010; and 7 in the decimal number rep-
resents the binary number 00000111.

Consider the IP forwarding table shown in Fig. 7.2. It finds the longest prefix that
matches the incoming destination address, and produces the corresponding next hop
address. For example, when the input address is 66.249.122.7, the LPM is the first
entry. Note that in this case, both the first and the second entries match. The first
entry matches three bytes (66,249, and 122), while the second entry matches only
two bytes (66 and 249). Thus, we select the first element, and its specified next hop
address 161.4.2.22. n

Ternary content addressable memory, (TCAM) explained in Chap. 2, directly real-
izes an LPM function.

Example 7.4.3. Figure 7.2 is an example of a forwarding table, and Fig. 7.3 shows
the TCAM for the table. In the TCAM, the entries are sorted in the order of decreas-
ing prefix length. When the incoming address is 66.249.122.7, both the first and the

second prefixes match. The priority encoder selects the least index. ]
Prefix Next-hop
66.249.122 161.4.2.22
66.249.122.7 161.4.2.22
—_— 66.249 161.4.2.4 —
65.52 125.33.32.98
58 120.3.3.1
202 10.0.0.111

Fig. 7.2 Example of IP look-up

Location Prefix Next-hop
0 | Pl 66.249.122 161.4.2.22 LT
1| P2 66249 161.4.2.4 1
66049.1207 2 | P3 6552 125333298 1 Priority o
— 5 | P4 S8 120.3.3.1 ¢ | Encoder{
s | Ps 202 10.0.0.111 ’
5 0
0
6 /

Fig. 7.3 Longest prefix matching by TCAM
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Theorem 7.4.1. [125] Let f be an LPM function with k vectors. Then, u(f) <
k+ 1

Proof. Consider a decomposition chart where X; = (x1, x2,...,Xx;) denotes the
bound variables and X, = (X;+1,Xt+2,...,Xn) denotes the free variables. We
prove the theorem for the case where all k entries in the LPM table map to dis-
tinct output values. This is the worst case, since forcing certain entries to have the
same output value can only reduce the column multiplicity.

We prove the theorem by counting the number of distinct columns in the decom-
position chart as LPM vectors are added to the LPM table. Reorder the LPM vectors
so that those vectors with the most * entries are first and those with the fewest are
last. An empty decomposition chart has a unique column pattern (all 0’s). Let the
first vector be @ = (ay,as, ..., am, *, *, ..., *), where a; € B={0,1}.1tm > 1t,
then the first vector changes only a proper subset of elements in one column. If
m =t (m < t), then the new vector changes all elements in one (or more) complete
column(s) to the vector’s output value in the LPM table. In either case, at most one
distinct column pattern is added to the decomposition chart.

Because the second vector has no more * entries than the first vector, adding it
will change columns only among a subset of the two distinct columns so far in the
decomposition chart. Let the new vector be B = (b1,ba, ..., by, %, *, ..., %), where
bj € B.If b = a;,forall 1 < i < m’, then a subset of the columns created
by adding & to the empty decomposition chart are changed. Otherwise, a subset of
the columns containing all 0’s are changed. In either case, at most one additional
column pattern is added. This process continues until all vectors are exhausted. In
all, at most k + 1 column patterns are created. The theorem follows. O

7.5 Segment Index Encoder Function

Definition 7.5.1. [116] A Segment Index Encoder (SIE) function g(X) is a
mapping: g : I — I, where [ is a set of non-negative integers, and a < b
implies g(a) < g(b). Segment index logic function f is the SIE function rep-
resented by binary variables. We assume that the integer represented by X =
(Xn—1,Xn—2s -, X1,%0) i 31— 2 x;.

Example 7.5.1. Table 7.3 shows an example of a SIE function. Note that it is a
monotone-increasing function with respect to X = Z?:o 2'x;. m

Theorem 7.5.1. [116] Let k be the number of segments in an segment index
function g. Let f be the corresponding segment index logic function. Then,
w(f) < k. We assume that the integer represented by X = (Xp—1,Xpn—2,...,
X1, X0) is 3020 20 xi.

Proof. Consider the decomposition chart of a segment index logic function
f(Xl, Xz). Let X = (x,,_p_l, Xn—p—2s+--» xo) and X7 = (Xp—1, Xn—2, ..., xn_p).
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7.5 Segment Index Encoder Function

T?ble 7.3 Ex;mple . X3 x» x1 xo f

of segment index encoder

funct%on 0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 2
0 1 0 1 2
0 1 1 0 2
0 1 1 1 2
1 0 0 0 2
1 0 0 1 3
1 0 1 0 3
1 0 1 1 3
1 1 0 0 4
1 1 0 1 4
1 1 1 0 4
1 1 1 1 5

Fig. 7.4 Partition of the A

domain Y

> x

Assume, without loss of generality, that both the columns and rows are labeled in
ascending order of the values of X; and X», respectively. Because g(X) is a
monotone-increasing function, in scanning left-to-right and then top-to-bottom, the
values of g(X) will never decrease. An increase causes two columns to be distinct.
Conversely, if no increase occurs anywhere across two adjacent columns, they are
identical. In a monotone-increasing k-valued output function, there are k — 1 divid-
ing lines among 2" output values. Dividing lines among values divide columns in
the decomposition chart. Thus, there can be at most k distinct columns. O

The SIE functions are used in numerical function generators (NFGs).

We developed an architecture and a synthesis method for programmable NFGs
for elementary functions such as trigonometric, logarithmic, square root, and recip-
rocal functions [116,122,130]. As shown in Fig. 7.4, a given domain of the function
is partitioned into nonuniform segments. For each segment, the function is approx-
imated by a linear function using the architecture shown in Fig.7.5. By Theorem
7.5.1, when the number of segments is small, the SIE has a small C-measure, and
can be efficiently realized by an LUT cascade. In this way, we can implement fast
and compact NFGs for a wide range of functions.
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Fig. 7.5 Numerical function
generator using first-order

X

approximation
\ 4
Segment Index Encoder
(LUT Cascade)
\ 4 l
v -s;| Coefficients Table
Adder [ (ROM)
¥ cri S(si)+v;
> Multiplier
\ 4
> Adder

7.6 WS Functions

A weighted-sum function (WS function) [120, 127] is a mathematical model
of bit-counting circuits [110], radix converters [43, 119], and distributed arith-
metic [121].

Definition 7.6.1. An n-input WS function F(X) computes

n
WS(X) = wi-xi.
i=1
where X = (x1,x2,...,X,) is the input vector, W = (wy,wz,...,wy) is the
weight vector, and w; (i = 1,2,...,n) is a positive or negative integer. Let

F = (f4=1, f4—2.--., fo) be the binary representation of the WS function. Then,

we have
qg—1

WS(X) =" fi(X)-2'.
i=0
WS functions are used in radix converters and digital filters.

Theorem 7.6.1. Let F(X) be a WS function with the weight vector W = (wq,
wa,...,wp). Let (X1, X2) be a partition of X = (x1, X2, ..., Xn), where X1 = (x1,
X2,...,Xg) and Xo = (Xg41,Xk+2,---,Xn). Consider the decomposition chart of
F, where X1 denotes the bound variables and X, denotes the free variables.
Then, the column multiplicity of the decomposition chart is at most UB1 = 1 +

k



7.6 WS Functions 63

Table 7.4 Decomposition chart for a WS function
X = (w1, 29, 23)

000 001 010 011 100 101 110 111

000 w3 wa wo + ws  |wy wi +ws  |wy + wy  |wy + we + ws

01 wa+ wo+ wo + wz+ | w1+ w1 + ws+ | wy + wo+ | wy + we + wz+
ws ws ws ws ws ws ws ws

10 wa+ wo+ wo + wy+ | w1+ w1 + ws+ | wy + wo+ | wy + we + wy+
Wy wy wy wy wy wy wy wy

11 wa+ wao+ wo + wy+ | w1+ w1 + ws+ | wy + wat | wy + we + wy+
Wy + Ws |Wyq + W5 | W4 + W5 |We + W5 | W4+ W5 |We + W5 |Wa + W5 | Wa + Ws

Table 7.5 A decomposition
chart of a WS function 0.0 0 0 1 1 1 1)n
(integer representation) 000 1 1 .0 0 1 1|z
01 0 1 0 1 0 1/ =z
0 0jo 3 2 5 1 4 3 6
0 1|5 8 7 100 6 9 8 11
1 0|4 7 6 9 5 8 7 10
1 119 12 11 14 10 13 12 15
Ty Ty

Proof. Consider the decomposition chart for WS(X1, X2). In the first row, X, =
(0,0,...,0). Note that the column multiplicity is equal to the number of different
values in the first row. For example, Table 7.4 shows the case of n = 5 and k = 3.
Consider the case where all the weights are positive. In this case, the number of
different values is at most UB1, since WS takes values from 0 to Z];=1 wij.
Consider the case where some of the weights are negative. Assume that
Wi, Wa,...,w; are negative, and wyi 1, W42, ..., wy are positive. Then, the WS
takes values from th=1 w; to Z’]‘-:, 41w, In this case, the number of different
values is at most 1 4+ >5_ |w;| + ZIJC-:,H wip =1+ Z§=1 |w;|. From these,
we can conclude that the column multiplicity of the decomposition chart is at
most UB1. O

Example 7.6.1. Consider the WS function with n = 5 and W = (wy,ws, w3,
wa,ws) = (1,2,3,4,5). Let X1 = (x1,x2,x3) and X = (x4, x5). In this case,
UBl =1+w;+wy+ws =1+1+2+3 = 7. Table 7.5 shows the decomposition
chart of the function. Note that the column multiplicity of the decomposition chart
is 7. So, the bound UB] is tight. ]

Definition 7.6.2. A threshold function f(x¢, x1,...,x,—1) satisfies the relation:

n
f =1if Zwix,- > T,and f = 0 otherwise, where (wg, wy,...,w,—1) is the
i=1

weight vector and T is the threshold.
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Although, a threshold function is not a WS function, we can estimate the column
multiplicity of a threshold function from the theory of WS functions.

Theorem 7.6.2. The column multiplicity of a decomposition chart of the threshold

Sfunction with the weight vector (wg, wi, ..., Wn—1) is at most
n—1
UB =1+ |wl.
i=0

Proof. The column multiplicity of a decomposition chart for f is no greater than
that of the WS function having the same weight vector. By Theorem 7.6.1, the col-
umn multiplicity of the WS function is at most UB. Hence, we have the theorem.

O

When the sum of the weights is large, a monolithic cascade realization of a WS
function can be large. In this case, we can partition the outputs into groups, and
realize each group separately.

Theorem 7.6.3. [120, 127] Let Fsg(X) be the logic function that represents the
least significant q bits of a WS function. Then, F1sg(X) can be realized by an LUT
cascade consisting of cells with g + 1 inputs and q outputs.

A 2g-output WS function can be decomposed into a pair of WS functions as
follows: Let, w; be a weight of a 2¢g-output WS function. Then, w; can be written as

wi =2%w4; +wai,

where w4; denotes most significant g bits, and wp; denotes least significant ¢ bits.
In this case, we can realize the 2g-output WS function using a pair of WS functions
and an adder, as shown in Fig.7.6.

This is an arithmetic decomposition of a WS function. With this method, we
can efficiently realize a WS function with cascades and adders [120, 127].

XN q
=o—— A —
q
qfrlogzN] > +
0 —
\
<
B og, N 1
\
=

Fig. 7.6 Arithmetic decomposition of 2g-output WS function
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7.7 Modulo Function

Definition 7.7.1. Let X = (xp—1,Xp—2...,X1,X0) be the input variables. A
modulo m function is a mapping B” — M, where M ={0,1,...,m — 1}. It
computes

n—1
f(X)= (Z 2fx,-) (mod m).
i=0

Theorem 7.7.1. The C-measure of the modulo m function is m.

The modulo m function can be realized by an LUT cascade with [log, m ] rails. The
depth of the circuit is O (n).

Next, consider the decomposition of the modulo m function:

S (X1, X2) = g(h1(X1), ha(X2)),

where X1 = (Xp—1,Xn—2...,Xp—k), and Xo = (Xy—g—1,Xp—k—2 ..., Xo). In this
case, h1(X1) computes

n—1
hi(Xp—1,Xp—2 ..., Xp—) = ( Z 2ixi) (mod m),

i=n—k
while /1, (X3,) computes
n—k—1 .
o (Xp—k—1>Xn—f—n ..., X0) = ( Z 2’x,-) (mod m).
i=0

1

Also,
g(hy1,ha) = hi + ha(mod m).

Note that the C-measures of /1 (X1) and s, (X>) are also m. By decomposing recur-
sively, we have a tree-type modulo circuit with depth O(log, n).

Lemma 7.7.1. Let a,b,c, and d be integers satisfying the relation a = bc + d,
then
a (modm) = [b (mod m)] x [c¢ (mod m)] + [d (mod m)).

Example 7.7.1. Letm = 19.
1001 =20 x50+ 1
20 (mod 19) =1

50 (mod 19) =20 x2 + 10 (mod 19)
=24+10=12
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Fig. 7.7 Mod 3 circuit with 4 2
LUTs X, - 4, L )
A;
4 2
X 7 4 - »
A, ——
4 2
X; a Ay l_ 2
Ag
4 2
X, 7 4, ]
1001 (mod19) =1x12+1=13
u

Example 7.7.2. Realize the modulo function by k-LUTs, where m = 3, n = 16,
and k = 4.

(Solution): The input variables are partitioned into
X1 = (x15,X14,Xx13,X12), X2 = (X11,X10, X9, Xg), X3 = (X7, X6, Xs5,X4), and
X4 = (x3,x2, X1, Xp)-

Figure 7.7 shows the circuit to compute the modulo m. The circuit A1 computes:

15
hi(x15, X14, X13, X12) = (Z 2[)61‘> (mod 3)

i=12

3

= <21222ixi+12) (mod 3)
i=0

= <Zzixi+12) (mod3)

i=0

The circuit A2 computes:

11
ha(x11, X10, X9, Xg) = ZZixi) (mod 3)
i=8

3
= 2822ixi+8) (mod 3)
i=0

3
= Z2ixi+8) (mOd 3)
i=0
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The circuit A3 computes:

7
h3(x7, X6, X5, X4) = ZZixi) (mod 3)
i=4
3
= 2422"x,~+4) (mod 3)
i =0

1
3

= ZZixi+4) (mod 3).
i=0

The circuit A4 computes:

3
ha(x3, X2, X1, X0) = (Z 2"x,-) (mod 3).
i=0

The circuits AS and A6 compute:

hs = (h1 + hy) (mod 3)
he = (h3 + h4) (mod 3).

And, finally, A7 computes:
(hs + he) (mod 3).
Note that in the above equations, we used the relations:

212 = 28 = 2% = | (mod 3).

7.8 Remarks

Functions with small C-measures have efficient LUT cascade realizations. Practical
functions often have small C-measures, although the fractions of functions with
small C-measures approaches zero as the number of variables increases. An efficient
method to obtain the C-measure of a logic function is to construct the BDD of the
function. Functions that have small BDD representations are considered in [154].

Problems

7.1. Show the profile of a 9-variable symmetric function.

7.2. Let f(X) be _
f= ’72?=0 zlxi—‘
3 )
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and let (X1, X5) be a partition of X = (x4, X3, X2, X1, Xo). Write the decomposition
chart when X; = (x2, x1, x9) and X2 = (x4, x3), and obtain the column multiplicity.
Also, do the same thing for X1 = (x3, X3, X1, Xo) and X2 = (x4).

7.3. Let X = (x4—1,Xp—2 ..., X1, Xg) be the input variables. An interval function
IN(X : A, B) is defined as

| (fA<X<B)
INX:A,B)=
( - B) { 0 (Otherwise).

Here, X is considered as an integer:

n—1
X = Zzlxi.
i=0

Show that the C-measure of the function is at most three.

7.4. Suppose that the given function f is represented as a sum of k products having
two literals. Obtain an upper bound on wu( f).

7.5. Consider the function f(X1, X2, X3, X4), where X7 = (x1,x2,x3), X2 =
(x4,x5), X3 = (x6), and X4 = (x7, xg). Let f be partially symmetric with respect
to X;, wherei = 1,2,3,4.

1. Let (X1, X2) be the bound variables and (X3, X4) be the free variables. Then,
obtain an upper bound on the column multiplicity of the decomposition.

2. Let (X1, X3, X3) be the bound variables and (X4) be the free variables. Then,
obtain an upper bound on the column multiplicity of the decomposition.

7.6. Let (X1, X5, X3) be a partition of the input variables X . Let p; be the column
multiplicity of the decomposition of the function f(X), where X; is the set of bound
variables (i = 1,2). Then, show that the column multiplicity of the decomposition
of f, where (X1, X) is the set of bound variables, is at most j4q (5.

7.7. A priority encoder function has n inputs (x1, X2, ..., x,) and [log,(n + 1)]
outputs. If x; = 1, then the output is 1. Otherwise, if x; = 1 and x; = O for all j
such that (1 < j < i), then the outputis i. If all the inputs are 0, then the output is 0.
Show that the C-measure of the priority encoder function is n + 1.

7.8. Let X = (x¢,x1,X2,x3,x4) and W = (1,2, 3,4, 5). Consider the threshold
function f(X), where W is the weight vector and T = 6 is the threshold.

1. Write the decomposition chart, where X1 = (x2, X1, x¢) denotes the bound vari-
ables and X, = (x4, x3) denotes the free variables.
2. Obtain the column multiplicity.

7.9. Realize the n-input modulo m function with k-LUT, where n = 32, m = 17,
and k£ = 10.
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7.10. Show that

2% = (=1)" (mod 2% + 1)

2k =1 (mod 2% — 1).

7.11. Let f(X) be a threshold function with the weight vector (w1, wa, ..., ws),
where w; > 0. Let (X1, X») be a partition of X, where X; = (x1, x2,...,Xx) and
X> = (Xk+1>Xk+2,---,%n). Then, show that the column multiplicity of f with
respect to the decomposition (X7, X2) is at most 1 + Zle wi.






Chapter 8
C-Measure of Sparse Functions

Let f be a function of n variables. Then, the C-measure of f tends to increase
exponentially with n. However, for the functions with a fixed weight u, (1 <
27=1), C-measure increase as O(n). Thus, functions with small weights have small
C-measures. This chapter considers the C-measure of functions with small weights.

8.1 Logic Functions with Specified Weights

In this section, we derive upper bounds on C-measures for functions with small
weights. Then, we derive the number of LUTs to realize functions with small
weights.

Definition 8.1.1. The weight of a logic function f, denoted by u, is the number of
the binary vectors a such that f(a) = 1.

Let u be the weight of an n-variable function. If « is much smaller than 2", then
f is a sparse function.

Theorem 8.1.1. [8] Let 1. (f) be the column multiplicity of a decomposition chart
of an n-variable logic function f with k bound variables. Then,

i (f) < min{2k, 22"

Example 8.1.1. Table 8.1 shows the profiles

(1, L2y 43, 4y U5, e, (7, (8, o, [L10)

of 10 randomly generated functions with n = 10 and u = 512. Since one-half of the
truth table entries are 1, such functions are not considered to be sparse. The last row
(AVG) denotes the average of the column multiplicities. The upper bound profile
obtained by Theorem 8.1.1 is

(2,4,8,16,32,64,128,16,4,2).

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_8, 71
© Springer Science+Business Media, LLC 2011
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Table 8.1 Profiles of 10-variable random functions with weight 512

NF M % 3 My Ms Ie 7 s Ko Hio
fo 2 4 8 16 32 64 98 16 4 2
h 2 4 8 16 32 64 106 16 4 2
1 2 4 8 16 32 64 99 16 4 2
5 2 4 8 16 32 64 100 16 4 2
fa 2 4 8 16 32 64 97 16 4 2
fs 2 4 8 16 32 64 102 16 4 2
fe 2 4 8 16 32 64 97 16 4 2
fi 2 4 8 16 32 64 95 16 4 2
fs 2 4 8 16 32 64 98 16 4 2
fo 2 4 8 16 32 64 104 16 4 2
AVG 2.0 4.0 8.0 16.0 32.0 64.0 99.6 16.0 4.0 2.0
Table 8.2 Profiles of 10-variable random functions with weight 64

NF Hi M2 M3 M4 s He M7 Hs Mo Hio
fo 2 4 8 16 26 31 21 12 4 2
fi 2 4 8 16 28 27 22 10 4 2
S 2 4 8 16 26 30 20 10 4 2
fi 2 4 8 16 27 30 19 11 4 2
fa 2 4 8 16 27 28 21 9 4 2
fs 2 4 8 16 27 30 19 8 4 2
fe 2 4 8 16 29 30 19 8 3 2
fa 2 4 8 16 29 28 19 10 4 2
fs 2 4 8 16 28 29 20 9 4 2
fo 2 4 8 16 28 31 18 9 4 2
AVG 2.0 4.0 8.0 16.0 27.5 29.4 19.8 9.6 39 2.0

Except for w7, the values of profiles in Table 8.1 are equal to the upper bounds given
by Theorem 8.1.1. Note that

u(A) = max{ui(f1)} = 106,

while

p(f7) = max{u ()} = 95.
n

Example 8.1.2. Table 8.2 shows the profiles of 10 randomly generated functions
with n =10 and u = 64. Since the fraction of 1’s in the truth table is 6.25%,
such functions are considered to be sparse. In this case, the bound given by
Theorems 8.1.1 is not tight for us, ue, 17, and us. ]

In general, when the weight u of a function is much smaller than 2”, the bounds on
the column multiplicity given by Theorem 8.1.1 are not tight and are not so useful.
However, if the weight u of the function is given, then we can derive tighter bounds.
From here, we derive a tighter bound using a combinatorial argument.

Lemma 8.1.1. Consider boxes arranged as a rectangle with t rows and many
columns. Assume that we distribute u nondistinct balls to these boxes so that each
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box has at most one ball. Let A(t,u) be the maximum number of distinct column

patterns. Then, ¢
t
At u) = +r,
o= ()

i=0

where ( is the integer satisfying the relation:

¢ ‘ C+1 p
}:iC)fgu<§:iC>,
i=1 i=1

- M_Z§=li(;)
B I+1 '

Note that A(z, «) is monotone increasing for 0 < u <t - 2° ~1 and takes the constant
value 2 whenu > ¢ - 2171,

and

Example 8.1.3. Consider boxes arranged as a rectangle with £ = 4 rows and many
columns. Assume that we distribute # = 10 nondistinct balls so that each box has
at most one ball. When the balls are distributed as shown in Fig. 8.1, the maximum
number of patterns occur. In this case, the first column has no ball; in the second
to fifth columns, each column has just one ball; and in the last three columns, each
column has two balls. The number of different column patterns can be enumerated

as follows. Since,
1 2
4 4
E j =4<10< E ) = 16,

i=1 i=1

we have { = 1, which shows that all the column patterns with weight 0 and weight
1 occur. Also,

implies that there are three patterns with weight { 4+ 1 = 2. Thus, we have

1
4
AGJ®=§:<)+r=1+4+3=&
1

i=0

which shows the number of different column patterns. ]

1 2 3 4 5 6 7 8

0 1 0 0 0 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

Fig. 8.1 Maximum number
of column patterns for the 0 0 0 0 1 0 0 1
function with weight u = 10
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Table 8.3 Values for A(z, u)

t 23 47 55 95 111 147 191 223 239 375

Hn—2 4 13 16 16 16 16 16 16 16 16 16
Hn—3 8 16 28 32 47 52 64 79 90 94 128
Mn—a 16 20 32 36 56 64 82 104 120 128 176
Hn—s 32 24 40 44 64 72 90 112 128 136 204

Hn—6 64 24 48 56 80 88 106 128 144 152 220

Example 8.1.4. Table 8.3 shows the values of A (¢, u) for t = 4,8, 16, 32, and vari-
ous values of u. [

Theorem 8.1.2. Let i (n,u) be the column multiplicity of a decomposition chart
for an n-variable function with weight u and k bound variables. Then,

pic(n,u) < 42", ).

Note that when u < 2%, A(t,u) = u + 1, while when u > 2"k 12" u) <
u + 1. Thus, we have the following:

Corollary 8.1.1. For any logic function f with weight u, u(f) < u+ 1.

For g (n,u), Theorem 8.1.2 gives better bounds than 22" and Corollary 8.1.1

when

on—k —* +(n—k)—1

n
<u<?2?

From Theorem 8.1.2, we have the following:

Theorem 8.1.3. The number of 6-LUTs needed to realize an n-variable function
with weight u is:

o J0orless, whenn = 9andu < 55

e [5o0rless, whenn = 10 and u < 47

Proof. The profile of a 9-variable function given by Theorem 8.1.1 is

(M1, (b2, 3, 4y [45, [6s [T, 148, H9)
=(2,4,8,16,32,64,16,4,2).
Letn = 9 and u = 55. By Theorem 8.1.2, we have j,—3 = g < A(2"7%,55) =
32. Thus, u(f) < 32, and by Theorem 5.2.1, f can be realized with at most
10 LUTs.
The profile of a 10-variable function given by Theorem 8.1.1 is
(K1, M2, 43, [has (s, ey (b7, 185 1o, 10)
= (2,4,8,16,32,64,128,16,4,2).
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Letn = 10 and u = 47. By Theorem 8.1.2, we have p,_3 = 7 < A(2"77,47) =
28, and fiy—4 = pte < A(2"7°,47) = 32. Thus, u( f) < 32, and by Theorem 5.2.1,
f can be realized with at most 15 LUTs. O

Theorem 8.1.4. The number of 7-LUTs needed to realize an n-variable function
with weight u is:

e 23 orless, whenn = 12 and u < 95
e J[7orless, whenn =11 andu < 111
e ] orless, whenn = 10 and u < 147

Proof. From Theorems 8.1.1 and 8.1.2, and Table 8.3, we have the following pro-
files for 7-LUTs:

When u < 95, (2,4,8,16,32,64,64,56,47,16,4,2).

When u < 111, (2,4, 8,16, 32,64, 64,52,16,4,2).

When u < 147, (2,4,8,16,32,64,64,16,4,2).

In a similar way to the proof of Theorem 8.1.3, we have the numbers of LUTs. [

Theorem 8.1.5. The number of 8-LUTs needed to realize an n-variable function
with weight u is:

e 33 orless, whenn = 14 andu < 191
e 26 orless, whenn = 13 and u < 223
o ][9orless, whenn = 12 and u < 239
o ]2 orless, whenn = 11 andu < 375

Proof. For 8-LUTs, we have the following profiles:

When u < 119, (2,4,8,16,32,64,128,128,112,104,79, 16, 4, 2).

When u <223, (2,4,8, 16,32, 64,128, 128, 120, 90, 16, 4, 2).

When u < 239, (2,4,8,16,32, 64,128,128, 94,16, 4, 2).

When u < 375, (2,4,8,16,32,64,128,128,16, 4, 2).

In a similar way to the proof of Theorem 8.1.3, we have the numbers of LUTs. [

Here, we compare the quality of bounds derived in this section with previous
ones.

Theorem 8.1.6. [78,110] The number of K-LUTs to realize an arbitrary n-variable
function is at most
2n—K+1 1.

When n is even, and K = 6, we have a better bound as follows:

Theorem 8.1.7. [110] Let n be even. The number of 6-LUTs to realize an arbitrary
n-variable function is at most

P |

—3
Proof. This is the same as Theorem 4.2.3. O
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Theorem 8.1.8. [78] Let f be represented by a sum-of-products expression with m
literals and p products. The number of K-LUTs to realize f is at most

m+ p(K —3) n p—1
K—1 K—1]|
Example 8.1.5. Consider the case of K = 6,n = 10, and u = 47. The upper bound
given by Theorem 8.1.7 is

= — =21.
3

On the other hand, the bound given by Theorem 8.1.3 is 15.

When the function is random, we can assume that p = u = 47. Because the func-
tion is sparse and random, the minterms tend to occur as isolated minterms. Thus,
p tends to be the same as u = 47 [105]. Thus, we have m = pn = 47 x 10. In this
case, the upper bound given by Theorem 8.1.8 is

m+ p(K —3) p—1
L K—1 J+[K—1

—‘ =122+10 = 132.

This example shows that the upper bound given by Theorem 8.1.8 is useless for
random functions. ]

8.2 Uniformly Distributed Functions

In the previous section, we considered upper bounds on column multiplicities. In
this section, however, we consider upper bounds on the average column multiplic-
ities. These bounds are only valid when 7 and u are sufficiently large. It is assumed
that 1’s in the truth table occur randomly.

Definition 8.2.1. A set of functions is uniformly distributed, if the probability of
occurrence of any function is the same as any other function.

For example, there are ('7) = 1820 different 4-variable functions with 4 true
minterms. If the functions are uniformly distributed, the probability of the occur-

o 1
rence of any one of them is {g55.

Theorem 8.2.1. Consider a decomposition chart with k bound variables that re-
alizes a set of uniformly distributed functions of n-variables with weight u. The
average number of different column functions with weight i in the decomposition
chart is at most

min{1, No! M~} x (1\1/1)7

where N = 258, M = 2n~F o = u/2", and p =1—a.
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Proof. Consider a column of the decomposition chart. Suppose that the upper i
elements take value 1, while the lower M —i elements take value 0. The probability
of such a column is given by

Oli ﬁM —i )
Since there exist (151 ) different ways to choose the rows with 1, the probability that
a column function with weight i occurs is

(Ail)aiﬂMi'

Also, the number of different column functions with weight i is at most (1;'1 ) Thus,
we have the theorem. O

Note that Theorem 8.2.1 gives upper bounds on the average column multiplicity
Uk - Thus, there may exist functions whose column multiplicities are greater than the
bounds given by Theorem 8.2.1. However, the fraction of such functions approaches
to zero as n increases.

8.3 Experimental Results

We developed a program to derive the bounds on the column multiplicities given by
Theorems 8.1.1 and 8.2.1. Also, we have obtained statistical data for functions with
n=10andn = 16.

8.3.1 Benchmark Functions

An interesting problem is whether the bounds obtained in Sect. 8.1 are applicable to
benchmark functions. The answer is yes when the weights of benchmark functions
are in a range. The fraction of such functions is not so large, but we did find some.
For selected benchmark functions, we counted the number of variables 7, and the
number of true minterms #. For multiple output functions, each output is examined
separately. f; denotes the i-th output, where the index starts from 0. The results are
as follows:

Theorem 8.1.3 is applicable to the following benchmark functions: apex4, f;
(n = 9,u = 55); pdc, fo3 (n = 9,u = 43); spla, fq3 (n = 10,u = 28); spla, fa4
(n = 10,u = 44); amd, fi4 (n = 10,u = 44).

Theorem 8.1.4 is applicable to the following benchmark functions: pdc, fo (n =
10, u = 95); signet, f3 (n = 10, u = 95); pdf, f31, (n = 10, u = 120).

Theorem 8.1.5 is applicable to the following benchmark functions: pdc, fg (n =
11,u = 333); pdc, f33 (n = 11,u = 340); signet, f4 (n = 11,u = 132);in2, f3
(n =12,u = 236); ti, f5 (n = 13,u = 160).
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8.3.2 Randomly Generated Functions

8.3.2.1 10-Variable Random Functions

First, we randomly generated 100 functions with # = 512 and n = 10. Table 8.4
shows the average column multiplicities (AVG), the maximum column multiplicities
(MAX), the upper bound derived by Theorem 8.2.1, and the upper bound derived
by Theorem 8.1.1 for each p. In this case, except for wg and @7, Theorem 8.1.1
gives tight bounds. Also, Theorems 8.1.1 and 8.2.1 give identical bounds.

Second, we randomly generated 10,000 functions with u = 64 and n = 10.
Table 8.5 shows the average column multiplicities (AVG), the maximum column
multiplicities (MAX), the upper bounds derived by Theorem 8.2.1, and the upper
bounds derived by Theorem 8.1.1 for each u. In this case, for uy, where k =
5,6,7,8, Theorem 8.2.1 gives better bounds than Theorem 8.1.1.

Table 8.5 also shows that the average C-measure of 10-variable functions with
weight 64, is less than 30. The maximum column multiplicity occurs when k = 6
and (e = 37. In these experimental results, the order of the input variables is fixed.
If we optimize the order of the variables, then we can reduce the column multiplicity.
We also optimized the order of the variables and confirmed that, in all 10,000 cases,
the column multiplicities are at most 32. Thus, we have the following:

Conjecture 8.3.1. For most 10-variable functions with weight u < 64, the
C-measure is 32 or less, if we optimize the ordering of the input variables.

From Theorem 5.2.1, we have

Conjecture 8.3.2. The number of 6-LUTs needed to realize most of 10-variable
functions with weight u < 64 is 15 or less.

As shown in Theorem 8.1.3, the number of 6-LUTSs needed to realize an arbitrary
10-variable function f with weight u < 47 is 15 or less. Thus, Conjecture 8.3.2 is
true for u < 47.

Table 8.4 Average and maximum profiles of 10-variable functions with weight 512

23 H2 3 22! Hs Mo K7 s K9 1o
AVG 2 4 8 16.00  32.00 63.96 100.86 16 4 2
MAX 2 4 8 16 32 64 111 16 4 2
Theorem 8.2.1 2 4 8 16 32 64 128 16 4 2
Theorem 8.1.1 2 4 8 16 32 64 128 16 4 2

Table 8.5 Average and maximum profiles of 10-variable functions with weight 64

I L - R 7 s M6 L7 8 M9 1o
AVG 2 4 8 1597 2797 29.89 18.36 876 3.88 2
MAX 2 4 8 16 32 37 25 13 4 2
Theorem 8.2.1 2 4 8 16 2744 3375 19.88 10.51 4 2
Theorem 8.1.1 2 4 8 16 32 64 128 16 4 2




8.4 Remarks 79

Table 8.6 Profiles for 16-variable functions

u U3 4 s M6 L7 8 9 410 JA11 12 13 M14 15
Al6  7.73 11.30 13.73 1524 1595 16.20 16.05 15.42 13.90 11.23 8.11 497 3
Cl6 750 11.06 13.56 15.16 16.04 16.51 16.75 16.88 16.94 16.97 9.01 5.01 3
A32 8 14.79 21.52 26.37 28.94 29.64 28.83 26.28 21.46 15.06 8.93 5.02 3.00

C32 8 13.99 21.11 26.18 29.32 31.09 32.03 3251 32.76 17.12 9.05 5.02 3.01
A64 8 15.97 28.69 4148 50.10 53.10 50.52 42.05 2929 17.19 9.23 5.07 3.00
Co4 8 16 26.99 41.23 5136 57.65 61.19 63.07 33.95 17.48 922 509 3.03
A128 8 16 31.84 5642 80.18 91.11 83.70 60.99 3579 18.69 9.57 5.23 3.05
Cl128 8 16 32 53.00 81.49 101.76 11435 7227  36.73 18.84  9.87 537 3.13
A256 8 16 32 65.53 110.64 147.29 136.88 88.38  46.95 2392 1227 632 3.44
C256 8 16 32 63.84 105.05 162.09 17495 91.84 4734 2423 1245 6.49 3.50
A512 8 16 32 64 126.57 214.49 235.14 155.10  83.05 41.66 19.59 8.69 3.85
C512 8 16 32 64 126.69 209.33 262.51 156.60  86.08  44.89 22.57 10.94 4
AlK 8 16 32 64 128 251.86 391.99 327.91 192.81 89.33 33.93 11.07 4
CIK 8 16 32 64 128 252.46 407.99 332.19 214.99 120.75 38.65 11.25 4
A2K 8 16 32 64 128 256 499.80 658.92 45591 176.87 48.40 12.72 4
C2K 8 16 32 64 128 256 504.20 626.67 568.03 188.19 49.43 12.95 4
A4K 8 16 32 64 128 256 512 975.44 1019.90 393.73 86.27 15.10 4
C4K 8 16 32 64 128 256 512 1008.54 1095.05 431.43 99.76 15.25 4
ABK 8 16 32 64 128 256 512 1023.92 1834.20 1055.60 150.52 15.98 4
C8K 8 16 32 64 128 256 512 1024 2020.45 1063.58 163.00 16 4
Al6K 8 16 32 64 128 256 512 1024 2047.48 2738.27 238.61 16 4
CI6K 8 16 32 64 128 256 512 1024 2048 4055.95 256 16 4
A32K 8 16 32 64 128 256 512 1024 2048 3971.75 256 16 4
C32K 8 16 32 64 128 256 512 1024 2048 4096 256 16 4

8.3.2.2 16-Variable Random Functions

In the case of n = 16, for each weight u = 2! wherei = 4-15, we generated 100
functions and obtained the average of profiles.

Table 8.6 compares the profiles of random functions and the average profiles
derived by Theorem 8.2.1. For example, the row for A16 denotes the average profile
of randomly generated functions with weight 16, while the row for C16 denotes
the calculated profile using Theorem 8.2.1. To save space, some fractional numbers
are denoted by integers: 2.00 is denoted by 2. Also, the values for w1, u» and pi¢
are omitted from the table, since w1 = 2, 2 = 4, and 16 = 2, for all cases.

Table 8.6, shows that when u is small (say u = 16), Theorem 8.2.1 gives better
bounds than Theorem 8.1.1, while when u is large (say u = 32,768), Theorem
8.1.1 gives better bounds. In Table 8.6, calculated bounds denoted by integers were
obtained by Theorem 8.1.1, while calculated bounds denoted by fractional numbers
were obtained by Theorem 8.2.1.

8.4 Remarks

In this chapter, we considered sparse functions, where u, the weight of the function,
is much smaller than 2"~!. However, when 0 and 1 are interchanged, the theory also
holds. Thus, these bounds are also useful for the functions where the fraction of
0’s in the truth table is much smaller than the fraction of 1’s. This chapter is based
on [133].
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Problems

8.1. Obtain the value of A(8, 20).

8.2. Suppose that a function is given as a sum-of-products expression. Show an
efficient method to calculate the weigh for f.

8.3. Show a (2" + n)-variable function whose C-measure is 22" .

8.4. How many 6-input LUTs are necessary to realize

1. An arbitrary 8-variable function?

2. An arbitrary 9-variable symmetric function?

3. An arbitrary 10-variable function?

4. An arbitrary 10-variable function with weight 47?



Chapter 9
Index Generation Functions

This chapter introduces index generation functions with various applications. Then,
it shows a method to realize index generation functions by LUTs.

9.1 Index Generation Functions and Their Realizations

Definition 9.1.1. Consider a set of k different binary vectors of n bits. These
vectors are registered vectors. For each registered vector, assign a unique inte-
ger from 1 to k. A registered vector table shows, for each registered vector, its
index. An index generation function produces the corresponding index if the
input matches a registered vector, and produces 0 otherwise. k is the weight of
the index generation function. An index generation function represents a mapping:
B" — {0,1,2,...,k}. An index generator is a circuit that realizes an index gen-
eration function.

Example 9.1.1. Table 9.1 shows a registered vector table with k = 4 vectors. The
corresponding index generation function is shown in Table 9.2. ]

Here, we assume that k is much smaller than 2", the total number of input com-
binations, i.e., the index generation function is sparse.

Index generators are used in address tables for the internet routers, terminal ac-
cess controller (TAC) for local area networks, databases, memory patch circuits,
electronic dictionaries, password lists, etc.

9.2 Address Table

IP addresses used in the internet are often represented with 32-bit numbers. An
address table for a router stores IP addresses and corresponding indices. We assume
that the number of addresses in the table is at most 40, 000. Thus, the number of
inputs is 32 and the number of outputs is 16, which can handle 65,536 addresses.
Note that the address table must be updated frequently.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_9, 81
© Springer Science+Business Media, LLC 2011
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Table 9.1 Registered vector

Vector
table X1 X2 X3 x4 Index
1 0 0 1 1
1 1 1 1 2
o 1 o0 1 3
1 1 0 0 4
Table. 9.2 Index generation Input Output
function Xp X2 X3 X4 Y1 Y2 )3
o 0 0O O o0 o0 o
o 0 o 1 0 o0 o0
o 0 1 o0 0 o0 o
0o 0 1 1 0 0 O
o 1 0 0 0 o0 o0
o 1 o0 1 o0 1 1
o 1 o0 1 0 0 O
0o 1 1 1 0 0 O
1 0 0 0 0 0 O
1 0 0 1 0 o0 1
1 0 1 0 0 0 o0
1 0 1 1 0 0 O
1 1. 0 0 1 0 o
1 1 0 1 0 0 O
1 1 1 0 0 0 O
1 1 1 1 0 1 0

9.3 Terminal Access Controller

A TAC for a local area network checks whether the requested terminal has permis-
sion to access Web addresses outsize the local area network, e-mail, FTP, Telnet, etc.

In Fig. 9.1, eight terminals are connected to the TAC. Some can access all the
resources. Others can access only limited resources because of security issue. The
TAC checks whether the requested computer has permission to access the Web,
e-mail, FTP, Telnet, or not. Each terminal has its unique MAC address represented
by 48 bits. We assume that the number of terminals in the table is at most 255.
To implement the TAC, we use an index generator and a memory. The memory
stores the details of the terminals. The number of inputs for the index generator is
48 and the number of outputs is 8. Note that the table for the TAC must be updated
frequently.

Example 9.3.1. Figure 9.2 shows an example of the TAC. The first terminal has
the MAC address 53:03:74:59:03:02. It is allowed to access everything, including
the Web outside the local area network, e-mail, FTP, and Telnet. The second one is
allowed to access both the Web and e-mail. The third one is allowed to access only
the Web. And, the last one is allowed to access only e-mail. The index generated
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53:03:74:59:03:32 92:6D:56:26:1E:63 0B:97:26:34:08:76

73:6E:58:56:73:52

46:05:76:75:39:89 /

i_ i
f o= a—
"= R
2 T o P e il
83:3A:57:26:46:29 S
64:6E:41:42:56:73

Fig. 9.1 Terminal access controller (TAC)

Index Generator Memory
Address DATA
MAC Address | Index Web | E-mail | FTP | Telnet
53:03:74:59:0332 | 1 | =7 1 1 I 1 1
92:6D:56:26:1E:63 2 2 1 0 0
0B:97:26:34:08:76 3 3 1 0 0 0
73:6E:58:56:73:52 4 4 0 1 0 0
N—
48-bit 4-bit

Fig. 9.2 Index generator for TAC

by the index generator is used as an address to read the memory which stores the
permissions. If we implement the TAC by a single memory, we need 256 Tera words,
since the number of inputs is 48. To reduce the size of the memory, we use an index
generator to produce the index, and an additional memory to store the permission
data for each internal address. ]

9.4 Memory Patch Circuit

The firmware of an embedded system is usually implemented by Read-Only Memo-
ries (ROMs). After shipping the product, it is often necessary to modify a part of the
ROM, for example to upgrade to a later version. To convert the address of the ROM
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Input Bus

[ |

INDEX Generator

J ROM

Patch Memory

] ]

Output Bus

Fig. 9.3 Memory patch circuit

to the address of the patch memory, we use the index generator shown in Fig. 9.3
[28,29,74].

The index generator stores addresses (vectors) of the ROM to be updated, and
their corresponding indices. The patch memory stores the updated data of the
ROM. When the address does not match any elements in the index generation func-
tion, the output of the ROM is sent to the output bus. In this case, the output the
patch memory is disabled. When the address matches to an element in the index
generation function, the index generator produces the corresponding index, and the
corresponding data of the patch memory is sent to the output bus. In this case, the
output of the ROM is disabled. This method can be also used to improve the yield
of large-scale memory, which can be “patched” instead of discarded.

9.5 Periodic Table of the Chemical Elements

Consider Table 9.3, which shows a part of periodic table of the chemical elements.
Figure 9.4 shows its implementation. This stores, Atfomic Number (integer), Chemi-
cal Symbol, Density, Specific Heat, State, and Category. We assume that the number
of elements in the database is at most 127. The database consists of two circuits:

1. A circuit to produce the Atfomic Number from a Chemical Symbol.
2. A circuit to produce Density, State and Category from an Atomic Number.

The first circuit is implemented by an index generator, and the second circuit is
implemented by an ordinary memory. Chemical Symbol consists of two characters
from the 26-letter English alphabet (uppercase and lowercase) and special symbols
(blank, etc.). Since each character requires 6 bits, to represent 2 characters, we need
2 x 6 = 12 bits. On the other hand, to represent an Atomic Number, we need only
7 bits, since the total number of elements in the table is at most 127. In this case,
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Table 9.3 Periodic table of the chemical elements

85

Atomic Chemical English Specific

number symbol name Density heat State  Category

1 H Hydrogen  0.082 14.304 Gas  Other nonmetal

2 He Helium 0.147 5.188 Gas  Noble gas

3 Li Lithium 0.534 3.489  Solid Alkali metal

4 Be Beryllium 1.848 1.824  Solid Alkaline earth metal

5 B Boron 2.34 1.025 Solid Metalloid

6 C Carbon 3.51 0.513 Solid  Other nonmetal

7 N Nitrogen 1.2506  1.042  Gas  Other nonmetal

8 O Oxygen 1.429 0.916  Gas  Other nonmetal

9 F Fluorine 1.696 0.824  Gas  Halogen

10 Ne Neon 0.8999 1.029 Gas Noble gas

11 Na Sodium 0.971 1.227  Solid Alkali metal

12 Mg Magnesium  1.738 1.025  Solid Alkaline earth metal

13 Al Aluminum  2.6989  0.902  Solid Other metal

14 Si Silicon 2.33 0.712  Solid Metalloid

15 P Phosphorus  1.82 0.757 Solid  Other nonmetal

16 S Sulfur 2.07 0.732  Solid Other nonmetal

17 Cl Chlorine 3.214 0.477  Gas  Halogen

18 Ar Argon 1.848 0.138 Gas  Noble gas

19 K Potassium  0.862 0.766  Solid Alkali metal

20 Ca Calcium 1.55 0.653  Solid Alkaline earth metal
Chemical Atomic — Density
Symbol Number Specific
+ Index // Memory Heat

12 Generator 7 ———  State
——— Category

Fig. 9.4 Circuit for the periodic table

the number of possible input combinations is 2'2, while the number of the regis-
tered vectors is at most 127. Note that each chemical element has its unique atomic

number.

9.6 English-Japanese Dictionary

For simple English—Japanese communication, we prepare a dictionary consisting of
1,500 English words. To make a list of 1,500 English words using a single memory
or a single circuit is unrealistic. Therefore, we partition the list into three groups, so
that each list contains at most 500 words. Let the names of the three lists be Word
list A, Word list B, and Word list C. The maximum number of letters in the word
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English Index Japanese
Words Index M Words
Generator / emory
+ v 7@
40 9 80

Fig. 9.5 Implementation of English-Japanese dictionary

lists is 13, but we only consider the first 8 letters. For English words consisting of
fewer than 8 letters, we append blanks to make the length of words 8. We represent
each alphabetic character by 5 bits. So, all the English words are represented by 40
bits. We assume that each group has at most 500 English words, and each word has
unique address from 1 to 500. The address is represented by 9 bits.

Figure 9.5 shows the English-Japanese dictionary consisting of the index gen-
erator and a memory. In this dictionary, the index generator finds the index for
the English word, and the memory produces the Japanese translation. Note that,
in Japanese, 80 outputs are needed to represent the Chinese characters and KANA
characters.

9.7 Properties of Index Generation Functions

The index generators in Sects. 9.2 and 9.3 have common properties:

1. The values of the nonzero outputs are distinct.

2. The number of nonzero output values is much smaller than the total number of
the input combinations.

3. High-speed circuits are required.

4. Data must be updated.

The last condition is very important in communication networks. This means that
index generators must be programmable.

Example 9.7.1. Consider the decomposition chart in Fig. 9.6. It shows an input in-

dex generation function F(X) with weight 7. X1 = (x1, x2, X3, x4) denotes the
bound variables, and X, = (x5) denotes the free variable. Note that the column
multiplicity of this decomposition chart is 7. |

Lemma 9.7.1. The C-measure of an index generation function with weight k is at
most k + 1.

Proof. Since the number of nonzero outputs is k, the column multiplicity never
exceeds k + 1. O
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000O0O0OO0OOO|IZT 1T 1T 1 111T1|mxm
0000111100001 11 1|2
001 100110011001 1|23
0101 01TO0T1T|01 01010 1|y
0/01 003045|0000O0O0O0°O0
110 0 2 000O0G6GIOOO0OO0TO0O0O0
Ts

Fig. 9.6 Decomposition chart for F

Lemma 9.7.2. Let F be an index generation function with weight k. Then, there
exists a functional decomposition

F(Xl,Xz) = G(H(Xl), Xz),

where G and H are index generation functions, and the weight of G is k, and the
weight of H is at most k.

Proof. Consider a decomposition chart, in which X; denotes the bound vari-
ables, and X, denotes the free variables. Let X; = (x1,x2,...,Xp), where
p > [log,(k + 1)]. Let H be a function where the input variables are X, and the
output values are defined as follows: Consider the decomposition chart, where as-
signments of values to X label columns (i.e., bound variables). For the assignments
to X; corresponding to columns with only zero elements, H = 0. For other inputs,
the outputs are distinct integers from 1 to wj, where wj, denotes the number of
columns that have nonzero element(s). Since wy, < k, the weight of H is at most
k, and the number of output values of H is at most k + 1. On the other hand, the
function G is obtained from F by reducing some columns that have all zero outputs
in the decomposition chart. Thus, the number of nonzero outputs in G is equal to
the number of nonzero outputs in F. Thus, G is also an index generation function
with weight k. |

Example 9.7.2. Consider the decomposition chart in Fig. 9.6. Let the function F(X)
be decomposed as F (X1, X2) = G(H(X1), X2), where X; = (x1, x2, X3, x4) and
X> = (x5). Table 9.4 shows the function H. It is a 4-variable 3-output index gen-
eration logic function with weight 6. The decomposition chart for the function G is
shown in Fig. 9.7. As shown in this example, the functions obtained by decomposing
the index generation function F are also index generation functions, and the weights
of F and G are both 7. |
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Table 9.4 Truth table for H

X1 Xy X3 X4 Y1 V2 )3
o 0O o O o0 0 o
0O 0 0 1 0o 0 1
o o0 1 0 0 1 O
0o 0 1 1 0 0 O
o 1 0 0 0 1 1
o 1 o 1 0 0 O
0 1 1 0 1 0 O
0 1 1 1 1 0 1
1 0 0 O O 0 O
1 0 0 1 O 0 O
1 0 1 0 0 0 O
1 0 1 1 0 0 O
1 1 0 0 1 1 0
1 1 0 1 0 0 O
1 1 1 0 0 0 O
1 1 1 I 0 0 O

Fig. 9.7 Decomposition

chart for G o

Y2
Y3

[eoNenll NevllenJan)
O, OO
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9.8 Realization Using (p, ¢)-Elements

Definition 9.8.1. A (p, g)-element realizes an arbitrary p-input g-output logic
function. Its memory size is g27.

Theorem 9.8.1. An arbitrary two-valued input n-variable index generation func-

tion with weight k can be realized as a multilevel network of (p, q)-elements. The
e

number of such elements is at most ’Vp—g—‘, where p > q and g = [log, (k + 1)].
Proof. An index generation logic function F' with weight k can be decomposed as
F(X1, X2) = G(H(X1), X2),

where X; = (x1,x2,...,Xp). In this case, by Lemma 9.7.2, G(X’1, X») is also
an index generation logic function with weight k. Note that the number of input
variables for G is reduced to n — (p — q), since the number of output variables of H

is ¢ = [log,(k + 1)]. By iterating this operation %—‘ times, we can reduce the
number of variables to p or fewer. Thus, the index generator can be realized by using

only (p, ¢)-elements. The number of elements is at most ’V';:S -I +1= {ﬁ—‘. |
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Fig. 9.8 Realization of index

1
generation function F x] —— L — 11
X2 ——] H y2 — 12
X4 ——>
X5 —

Example 9.8.1. The number of nonzero outputs in the 5-variable index generation
function F(X) shown in Fig.9.6 is k = 7. Since g = [log,(k + 1)] = [log,(7 +
1)] = 3, the index generator can be realized by two (4, 3) elements as shown in
Fig.9.8. [

When realizing an index generator by (p, ¢)-elements, increasing p decreases the
number of (p, g)-elements, but increases the total amount of memory. On the other
hand, decreasing p increases the number of (p, ¢)-elements, but decreases the total
amount of memory. The next theorem shows a strategy to design index generators
using (p, q)-elements. It finds a value of p that minimizes the least upper bound on
the total amount of memory without increasing the number of elements.

Theorem 9.8.2. When an index generator is implemented as a multilevel network of
(p, q)-elements, the least upper bound on the total amount of memory is minimized
whenp—q =1lorp—q =2

Proof. When an index generation function is decomposed into (p, g)-elements, for
each decomposition, we can reduce the number of input variables by r = p — ¢. To
reduce n inputs into ¢, we need s = [@] functional decompositions. To realize
the index generator, we need s (p, g)-elements. Thus, the total amount of memory
necessary to implement the index generator is MEM = s -2Pg. When n is suffi-

ciently large, M EM can be approximated by (%) -(n—q)-29q. Since n and g are

fixed for a given problem, only r can be changed. Note that % takes its minimum
when r = 1 or r = 2. Hence we have the theorem. |

Since networks with fewer levels are desirable, we often selectr = p — g = 2
to design the index generator.

Theorem 9.8.1 shows that we can design an index generator as a multilevel net-
work of (p, g)-elements by iterations of functional decompositions.

The next Example 9.8.2 shows that we can generate various multilevel logic net-
works, including cascades.

Example 9.8.2. Let us design index generators, where the number of inputs is
n = 48 and the weight is k = 255. Since ¢ = [log,(255 + 1)] = 8, when
p = 10, the total amount of memory is minimized, and also the number of lev-
els is minimized. For each (p, g)-element, we can reduce the number of input lines
by two. So, by using 20 (p, g)-elements, we can reduce the number of inputs into
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Fig. 9.10 Index generator (p = 10)

8. For example, we have the LUT cascade as shown in Fig.9.9. Or, we have the
multilevel logic network as shown in Fig.9.10, where the number of levels is 10.
In this case, the variables are permuted during functional decompositions. Note
that both structures require the same amount of memory: 160K bits. We can fur-
ther reduce the number of levels by using elements with more inputs. Figure 9.11
shows an example with p = 11 and ¢ = 8. In this case, the number of elements is
(48 —8)/(11 — 8) = 14, the number of levels is 8, and the total amount of memory
is 212 Kibits, where 1 Kibit denotes 210 = 1024 bits. Figure 9.12 show an exam-
ple with p = 12 and ¢ = 8. In this case, the number of elements is (48 — 8)/
(12 — 8) = 10, the number of levels is 5, and the total amount of memory is
320 Kibits. ]

Theorem 9.8.2 shows the strategy for general index generators. It minimizes the
least upper bound on the total amount of memory. For a particular index generator,
the total amount of memory can be minimum for cases other than p — g = 2. The
next example illustrates this.

Example 9.8.3. Consider the 6-variable index generation function F(X) shown in
Table 9.5. Let the function F'(X) be decomposed as F (X1, X2) = G(H(Xy), X>»),
where X; = (x1,x2,x3,x4) and X, = (x5, x6). The column multiplicity of the
decomposition chart in Table 9.5 is 2. Table 9.6 is the truth table of H, and Table 9.7
is the truth table of G. This index generator can be implemented as Fig. 9.13. In this
case, the weight of the function is k = 7, but H is realized by a (4,1)-element. =



9.9 Realization of Logic Functions with Weight k 91

- 3

oo

1=

=

5
6
72LL
8

8 2
= 4 7 8
L |
7
1

4 — 7

!

e 16k x 13 + 4k = 212 kbit

Fig. 9.11 Index generator (p = 11)
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Table 9.5 Index generation
function F
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9.9 Realization of Logic Functions with Weight k&

Up to now, we have considered the realization of index generation functions. Next,
we consider the realization of general logic functions.
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Table 9.6 Truth table for H X| X2 X3 X4 Vi
1 1 1 1 1
- o 0 O
o - 0 0 0
o 0 - 0 O
0 0 -0
Table 9.7 Truth table for G yi X5 xX¢ H o Sz
o 0 0O 0 0 O
o 0 I 0 0 O
o 1 0 0 0 O
o 1 1 0 0 O
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 0 1 1
1 1 1 1 0 0
Fig. 9.13 Index generator for X
Table 9.5 1=
x ES—
’ H
X3 — Ji
X — G —/
X6

Theorem 9.9.1. An arbitrary two-valued n-variable u-output function with weight
k is realized as a multilevel network of (p, q)-elements. The number of elements

needed is at most {;:‘;—I + {g—‘, where p > q and g = [log,(k + 1)].

Proof. An arbitrary logic function with weight k can be realized as a cascade of an
index generator and a decoder, where the index generator produces unique indices
for k input combinations, and the decoder converts each index into corresponding
outputs. The number of inputs of the decoder is at most [log, (k + 1)]. By Theorem

9.8.1, the index generator can be realized with s; = {% elements. Also, note
that the decoder can be realized by s, modules of ¢g-input g-output elements, where

§p s given by s, = ’%—‘ . Thus, total number of elements is 51 + 5, = IV;:Z —‘ + {g—‘

Corollary 9.9.1. An arbitrary two-valued n-variable single-output logic function
with weight k is realized as a multilevel network of (p, q)-elements. The number of

elements needed is at most ’7;:3—‘, where p > q and q = [log,(k + 1)].
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Fig. 9.14 Index generator 6 5
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9.10 Remarks

Index generation functions are multiple-output logic functions useful for pattern
matching and communication circuits. Logic synthesis for index generation func-
tions is considered in Chaps. 10 and 11. This chapter is based on [124].

Problems

9.1. Design an index generator where the number of inputs is n = 32, and
the weight is k = 63. Use 8-input 6-output LUTs. Show both the cascade and
minimum-delay realizations.

9.2. An index generation function can be directly implemented by a PLA. Discuss
the advantage and disadvantage to implement an index generation function using
memory instead of a PLA. Consider the case of n = 48 and k = 400.

9.3. When k < 32, an arbitrary index generation function of 12 variables with
weight k can be realized by the circuit structure shown in Fig. 9.14. Compare this re-
alization with an LUT cascade realization with respect to the size and speed. Assume
that we use 6-LUTs.

9.4. Design an index generator for n = 16 and k = 3 by using (4, 2)-elements.






Chapter 10
Hash-Based Synthesis

In Chap. 5, we considered cascade-based realizations of logic functions with small
C-measure. When the weight k of the function satisfies the relation [log, (k +1)] <
K, the function can be efficiently realized by a cascade of K-input cells. Also, as
shown in Chap. 9, an index generation function can be implemented by a multilevel
network of (p, ¢)-elements, or by a multilevel network with K-LUTs. However,
when [log, (k + 1)] > K, such methods are not directly applicable.

This chapter presents the hybrid method, the super hybrid method, and the
parallel sieve method. These methods efficiently implement index generation func-
tions using memories. They are particularly suitable for FPGA realizations, since
most FPGAs have both LUTs and embedded memories inside. These methods use
pairs of smaller memories to implement most of the registered vectors.

10.1 Hash Function

Hash functions are often used in software implementations. To show the idea, con-
sider the following:

Example 10.1.1. Assume that one needs to find a name of an employee from his or
her 10-digit telephone number, in a company with 5,000 employees. A straightfor-
ward method to do this is to build a complete table of 10-digit telephone numbers
showing the names of the employees. However, this method is unrealistic, since the
table has 10'° entries, most of which are empty. To avoid such a problem, a hash
table can be used. Let x be the telephone number, and consider the hash function':

hash(x) = x (mod 9973).

In this case, the name of the employee can be found from the hash table with 9973
entries, since the value of hash(x) is between 0 and 9972. When two or more

19,973 is the largest prime number less than 10,000.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_10, 95
© Springer Science+Business Media, LLC 2011
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Table 10.1 Registered
vector table

Index  Vector

1 o 0 0 0 1 O
2 o 1 0 0 1 O
3 o 0 1 0 1 0
4 o o0 1 1 1 0
5 0O 0 0 0 0 1
6 1 1 1 0 1 1
7 o 1 0 1 1 1
Table 10.2 Example (?f an XI X2 X3 x4 xs x f
index generation function 0 0 0 0 1 0 1
0 1 0 0 1 0 2
0o 0 1 0 1 0 3
0o 0 1 1 1 0 4
o 0 o0 0 O 1 5
1 1 1 0 1 1 6
0 1 0 1 1 1 7

different employees have the same hash value, a collision occurs. In such a case,
the employees with the same hash value are represented by a linked list. Note that
using a hash table, the number of digits for table look-up is reduced from 10to 4. m

This chapter shows a hash method for hardware implementation. With this method,
the number of variables can be reduced and the size of memories can be also
reduced.

Besides index generation functions, this design method can implement an
n-variable function where the number of nonzero outputs k is much smaller than 2.

Example 10.1.2. Table 10.1 shows a registered vector table consisting of 7 vectors.
The corresponding index generation logic function shown in Table 10.2 produces
a 3-bit number (e.g., 001) of the matched vector. When no entry matches the input
vector, the function produces 000. [

10.2 Index Generation Unit

Figure 10.1 shows the Index Generation Unit (IGU). The programmable hash
circuit has n inputs and p outputs. It is used to rearrange the nonzero elements. We
consider two types of programmable hash circuits. The first type is the double-input
hash circuit shown in Fig. 10.2. It performs a linear transformation y; = x; @ x;
or y; = x;, where i # j. It uses a pair of multiplexers for each variable y;. The
upper multiplexers have the inputs xi, x2, ..., x,. The register with [log, n] bits
specifies which variable to select by the multiplexer. The lower multiplexers have
the inputs xj, X2, ..., X5, except for x;. For the i-th input, the constant input 0O is
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Fig. 10.3 Single-input
hash circuit

connected instead of x;. By setting y; = x; @ 0, we can implement y; = x;. The
second type of a programmable hash circuit is the single-input hash circuit shown
in Fig. 10.3. It consists of only p multiplexers, and selects p variables from » input
variables. Note that both types of hash circuits produce only specific kinds of hash
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functions. We have found that these functions are suitable for our application. The
main memory has p inputs and [log, (k 4 1)] outputs. The main memory produces
correct outputs only for registered vectors. However, it may produce incorrect out-
puts for nonregistered vectors, because the number of input variables is reduced.
In an index generation function, if the input vector is nonregistered, then it should
produce 00...0. To check whether the main memory produces the correct output
or not, we use the AUX memory. The AUX memory has [log,(k + 1)] inputs and
(n — p) outputs: It stores the X, part of the registered vectors for each index. The
comparator checks if the inputs are the same as the registered vector or not. If
they are the same, the main memory produces a correct output. Otherwise, the main
memory produces a wrong output, and the input vector is nonregistered. Thus, the
output AND gates produce 00. . . 0, showing that the input vector is nonregistered.
Note that the main memory produces the correct outputs only for the registered
vectors.

Example 10.2.1. Consider the registered vectors in Table 10.3. The number of vari-
ables is four, but only two variables x; and x4 are necessary to distinguish these
four registered vectors. Figure 10.4 shows the IGU. In this case, the programmable
hash circuit produces Y; = (x1, x4) from X = (x1, X2, X3, x4). The main memory
stores the indices for X1 = Y; = (x1, x4), and the AUX memory stores the values
of X, = (x5, x3) for the corresponding registered vector.

Table 10.3 Index

Inputs Index
generation function ;
X1 X2 X3 X4
0 0 1 0 1
0 1 1 1 2
1 1 0 0 3
1 1 1 1 4
X X x3 x| f
0 0 1 of 1
0 1 1 1| 2
’_|:ll i 1 0 0|3
Y oo [Fx] [oo foot] L1t 1 ]34
L . 01 |010 . 011
¢ 10 o011 |.AUX Memory
11 |100 Xy X3 1
Main M 001, 01
ain Memory 010 11
¢ 011 10 same
X, X; 100, 11
10
a » Comparator

Fig. 10.4 When the input vector is registered
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When the input vector is registered

Suppose that a registered vector (x1, X2, x3,x4) = (1, 1,0, 0) is applied to the IGU
in Fig. 10.4. First, the programmable hash circuit selects two variables, x; and x4,
and produces the value X1 = (x1, x4) = (1, 0). Second, the main memory produces
the corresponding index (0, 1, 1). Third, the AUX memory produces the values of
X, = (x2,x3) = (1,0) corresponding registered vector (1, 1,0, 0). Fourth, the
comparator confirms that the values of X, = (x3, x3) of the input vector is equal to
the output of the AUX memory. And, finally, the AND gate produces the index for
the input vector.

When the input vector is not registered

Suppose that a nonregistered vector (x1, X2, x3,x4) = (1,0, 1,0) is applied to the
IGU in Fig. 10.5. In this case, the main memory also produces the index (0, 1, 1),
and the AUX memory produces the values of X, = (x5, x3) for the corresponding
registered vector (1, 1,0,0). However, in this case, the comparator indicates that
X> = (x3,x3) = (0,1) is different from the output X, = (xz, x3) of the AUX
memory. Thus, the AND gate produces zero output, which shows that the input
vector is not registered. ]

Unfortunately, not all index generation functions have the nice properties of
Example 10.2.1. So, we decompose the given function into two:

1. A function that is implemented by an IGU.
2. The remaining part.

Xi X X3 x| f
0 0 1 0] 1
o 1 1 1 2
i1 0 0] 3
X; X, X5 X il
11 02 13 04 X, X, 00 |oo1 i1 1 1] 4
- 01 (010 ) 000
¢ 10 o011 AUX Memory
11 |100 Xy X3
Main Memory 001, 01
010, 11
[> 011 different
100
Xy X3
0 1

+—> Comparator

Fig. 10.5 When the input vector is not registered
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Given an index generation function f (X1, X2), where X; = (x1,x2,...,x,) and
X2 = (Xp+1,Xp+2, .., Xn), We decompose it into two disjoint subfunctions:

f(X1.X2) = A1, X2) V fo(X1. X2).

where each column of the decomposition chart for fl(Yl, X5) has at most one
nonzero element. In this case, fl (Y1, X3) can be implemented by an IGU, where
the inputs to the main memory is Y1 = (y1,¥2,...,¥p). Since f2(Xi, X>) has
fewer nonzero elements than the original function, it is simpler to implement.

Theorem 10.2.1. Consider the IGU in Fig. 10.1. Assume that Y1=(y1, Y2, ..., Yp),
where y; = x;®x; for j € {p+1, p+2,...,n}, ory; =Xx;, are applied to the input
to the main memory. If the main memory of an IGU implements the function g(Y7),
where g(Y1) produces the nonzero value when the column Y1 of the decomposition
chart for ﬁ(Yl, X») has a nonzero value, and g(Y1) produces 0 otherwise, then
only the values for X, must be stored in the AUX memory.

Proof. Consider the decomposition chart of the function fl (Y1, X5). By construc-
tion, each column of the decomposition chart has at most one nonzero element.
When a registered vector is applied to the IGU, the main memory produces a
nonzero output. In this case, the X, part of the input vector is equal to the output of
the AUX memory, showing that the vector is registered. Thus, the IGU produces the
correct nonzero output.

Assume that the input vector is not registered, but the output of the AUX memory
is equal to the X part of the input vector. We have two cases:

1. The main memory produces the zero-output.
In this case, even if the X, part of the input vector is equal to the output of the
AUX memory, the output of the main memory is zero. Thus, the IGU produces
the correct output.

2. The main memory produces a nonzero output.
Due to the construction of the IGU, the input vector is registered. However, this
contradicts the assumption. So, such a case never happens. |

10.3 Reduction by a Linear Transformation

As will be suggested by Conjecture 11.5.2, most incompletely specified index gen-
eration functions with weight k can be represented by at most p = 2[log,(k +
1)] — 3 variables. However, there exist functions that require more variables.
Example 10.3.1 shows such a function. In this case, we can often reduce the number
of variables by a linear transformation of the input variables.

Example 10.3.1. Consider the incompletely specified index generation function
shown in Table 10.4. Note that all the variables are essential in f. Now, replace
the variables x1, x2, x3, and x4 with y; = X1 @ X4, y2» = X2 ® X4, y3 = X3,
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Table 10.4 Original index

. 3 Inputs Index
generation function T e . e F
1 2 3 4
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4
0 0 0 0 5
Table 10.5 Transformed Inputs Index
index generation function " 7 - -
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
1 1 0 1 4
0 0 0 0 5
Table 10.6 Registered vector Vector

table for a 6-variable function
X1 X2 X3 X4 X5 Xg Index

S OO o= OO
SO~ OO OO
SO = O O O OO
N O R WD =

and y4 = x4, respectively. Then, f can be represented as the index generation
function g(y1, y2, ¥3, y4) shown in Table 10.5. Note that g can be represented us-
ing only y1, y2, and x3, since they can uniquely specify five different patterns. The
programmable hash circuit in Fig. 10.3 performs this linear transformation. ]

Example 10.3.2. In the registered vector table in Table 10.6, the number of 0’s is
much larger than that of 1’s.

1. A single-input hash circuit is used.
In this case, all the variables are necessary to represent the function, since any
change of each variable from (0, 0, 0, 0, 0, 0) will change the value of the func-
tion. Thus, the main memory requires 6 variables.

2. A double-input hash circuit is used.
Consider the transform:

Y1 =Xx19D x5
Y2 =Xx2@ X5
Y3 =Xx3@ X¢
Ya = X4 D X¢
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Table 10.7 Registered vector
table for IGU with
double-input hash circuit

Vector
N » V3 Y4 Index

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
0 0 0 1 4
1 1 0 0 5
0 0 1 1 6
0 0 0 0 7

Table 10.8 Registered vector Vector

table for IGU with

triple-input hash circuit il 2 i Index
1 0 0 1
0 1 0 2
0 0 1 3
0 1 1 4
1 0 1 5
1 1 0 6
0 0 0 7

Table 10.7 shows the transformed function. In this case, all the patterns are

different. This means that these four variables are sufficient to represent the func-

tion. In fact, this is a minimum solution when a double-input hash circuit is used.
3. A triple-input hash circuit is used.

Consider the transform:

721 = X1 D X5 D X¢

X2 D x4 D X6

22
723 = X3 D X4 B X5

Table 10.8 shows the transformed function. In this case, all the patterns are dif-
ferent. This means that three variables are sufficient to represent the function. In
fact, this is a minimum solution when a hash circuit with any number of inputs is
used. ]

We have developed a heuristic algorithm [135] to find a linear transformation that
reduces the number of variables, when the double-input hash circuit is used. To find
a linear transformation, we use the following:

Theorem 10.3.1. Let f(x1,X2,...,Xn) be an incompletely specified index
generation function. Let Y1 = (y1,Y2,....Yp), where y;=x; ® x; and
Jelp+ 1, p+2,...,n}, and X2 = (Xp41, Xp42,...,Xn). Consider the trans-
formed function g(Y1, X2) = f(X1, X2). Then, f can be represented using only
Y1, if each column of the decomposition chart (Y1, X2) has at most one specified
element.
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10.4 Hybrid Method

From here, we consider methods to implement an index generation function using
memories. In the index generation function, the number of registered vectors k, is
usually much smaller than 2", the total number of the input combinations.

Definition 10.4.1. The hybrid method is an implementation of an index generation
function using the circuit consisting of an IGU as shown in Fig. 10.6. An IGU is used
to realize most of the registered vectors, while a rewritable PLA is used to realize
remaining registered vectors. The OR gate in the output combines the indices to
form a single output. The rewritable PLA can be replaced by another circuit, such
as an LUT cascade or a CAM.

In the hybrid method, the main memory has p = ¢ + 2 inputs, and realizes 88% of
the registered vectors, where ¢ = [log,(k + 1)]. The rest of the registered vectors
are implemented by the rewritable PLA.

Example 10.4.1. For the circuit shown in Fig.10.7, the values of only X, =
(x4, x5, x¢) are compared with the output of the AUX memory to check if the main
memory produces the correct output. ]

X, 4 JX, X)

IGU1
o "L
X; =4 J
Rewritable PLA

X, 7

Fig. 10.6 Index generator using hybrid method

X1 X2 X3 X4 X5 Xo

Xi——> ?; 2 D®”

B
X2— Main |22 f2
Memory 'HD—>
X3— V3 Zi E /i
X4 . I B
X5 AUX
Memory
)C()— A
X4 X5 X

Fig. 10.7 6-variable function implemented by a hybrid method
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Table 10.9 Decomposition

chart for f (X1, X2)
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Example 10.4.2. Consider the index generation function defined by Table 10.2.
Table 10.9 is a decomposition chart of a 6-variable function f(X;, X,) with weight
k = 7. In this function, transform the variables X; = (x1,x2,x3) into Y; =
(1, ¥2,y3) = (x1 & x6,X2 @ X5,x3 ® x4). The decomposition chart of the
transformed function f (Y1, X2) is shown in Table 10.10. In the transformed func-
tion, the columns of the original truth tables are permuted. Also, each row has
a different permutation. In the original table, three columns for (x1, x3,x3) =
(0,0,0), (0,1,0), (0,0, 1) have two nonzero elements. On the other hand, in the
decomposition chart in Table 10.10, for the transformed function };(Yl, X5), only
one column (y1, y2, ¥3) = (0, 1,0) has two nonzero elements. Let ﬁ (Y1, X») be
the function where the nonzero element 4 is replaced by 0. The decomposition chart
is shown in Table 10.11. Table 10.12 shows the decomposition chart of the function
fz(Y 1, X») that is realized by the rewritable PLA. In this case, the function has only
one nonzero element. ﬁ(Yl, X>5) is implemented by the main memory shown in
Table 10.13 and the AUX memory shown in Table 10.14. The output of the main
memory f (Y1) shows the nonzero value of the function fl for the column ¥; =
(¥1, ¥2, y3). The AUX memory shown in Table 10.14 stores the corresponding val-
ues of x4, x5, and x¢ when f(X;, X,) takes nonzero values. Figure 10.8 shows
that the pair of the main memory and the AUX memory is sufficient to represent
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Fig. 10.8 Index generator implemented using a sparse matrix technique

the information of Table 10.11. Table 10.13 is implemented by the main memory.
The function that is implemented by the rewritable PLA has nonzero output 4.
The corresponding input values are (x1, X2, X3, X4, X5, %) = (0,0,1,1,1,0). The
nonzero output is 4, and its binary representation is (1,0, 0). This is implemented
by ORing the most significant bit of the AND gates. Figure 10.7 shows the whole
circuit for function f. The AUX memory and comparator check if (x4, x5, X¢) is
the input that produces the nonzero output. ]

10.5 Registered Vectors Realized by Main Memory

In this part, we assume that the nonzero elements in the index generation function
are uniformly distributed in the decomposition chart. In this case, we can estimate
the fraction of registered vectors realized by the main memory.

Lemma 10.5.1. Let f(X) be a uniformly distributed index function of n variables
with weight k. Consider a decomposition chart, and let p be the number of bound
variables. Then, the probability that a column of the decomposition chart has all
zero elements is approximately e ¢, where £ = 2%
Proof. The probability that a function takes a specified value is ¢ = ZL,, The proba-
bility that a function takes a zero value is § = 1 — «. Since the decomposition chart
has 277 rows, the probability that a column of the chart has all zero elements is

B =1—a).
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Since o« = 2% is sufficiently small, by Lemma 3.7.1, 8 = 1 —« can be approximated

by e™®. Thus, we have

where § = ZL,,, |

Theorem 10.5.1. Consider a set of uniformly distributed index generation functions
f(x1,x2,...,xn) withweight k. Consider an IGU whose inputs to the main memory
are X1,Xz, ..., and xp. Then, the expected number of registered vectors of f that
can be realized by the IGU is 2P (1 — e~%), where & = ZL,,

Proof. Let (X1, X) be a partition of the input variables X, where X; =
(x1,x2,...,xp) and X2 = (Xp4+1.Xp42,...,Xn). Consider the decomposition
chart for f(Xy, X,), where X labels the column variables and X, labels the row
variables. If a column has at least one care element, then the IGU can realize an
element of the column. From Lemma 10.5.1, the probability that each column has
at least one nonzero element is 1 —e ™%, where £ = ZL,, Since there are 22 columns,

the expected number of registered vectors realized by the IGU is 22 (1 —e ™). O

Example 10.5.1. Table 10.9 is the decomposition chart for a 6-variable index gen-
eration function with weight k = 7. Note that X; = (x1,x2,x3) denotes the
bound variables, and X, = (x4, X5, Xg) denotes the free variables. In this case,
three columns (x1, x2,x3) = (0,0, 1), (0,1,1), (1,0, 1), and (1, 1, 0) have all zero
elements. In the other words, the fraction of columns that have all zero elements
is % = 0.5. In Lemma 10.5.1, we have n = 6, p = 3, and £ = 2£,, = 0.875. It
shows that the probability that a column has all zero elements is e ¢ = 0.4169. In
Theorem 10.5.1, the expected number of vectors realized by the IGU is

27(1 —e~f) = 8 x 0.583 = 4.665.

In Table 10.9, four vectors for 1, 2, 3, 6 can be realized by an IGU. The remaining
vectors should be realized by other parts of the circuit. ]

Corollary 10.5.1. Consider a set of uniformly distributed incompletely specified in-
dex generation functions f(x1,x2,...,X,) with weight k. Consider an IGU whose
inputs to the main memory are X1, X2, ..., and X . Then, the fraction of registered
vectors of f that can be realized by the IGU is

1—e¢
5§ = ,
3
where £ = 2%
For example, when 2% = %, we have § ~ 0.8848, when 2% = %, we have

§ ~ 0.7869, and when 2% = 1, we have § ~ 0.63212.

Example 10.5.2. Consider the case of n = 40 and k = 1730. Let us compare two
realizations: LUT cascade and hash-based. Since ¢ = [log,(k+1)] = [log,(1730+
1)] = 11, the number of bound variables is p = 13.
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1. Realization with an LUT cascade alone
Let p = 13 be the number of inputs for cells. Then, from Lemma 5.1.5, the
number of levels s of the cascade is given by
5]
— | =15.
2

n—gq 40—-11
S = =
P—q 13-11
For each cell, the size of the memory is 27 x g = 2'3 x 11 bits. Thus, the total
amount of memory is 2!3 x 11 x 15 = 1351680 bits.
2. Realization with the hybrid method

From the Corollary 10.5.1, the fraction of registered vectors of f that can be
realized by the IGU is

£
8~ = 0.9015.

The main memory has p = 13 inputs and ¢ = 11 outputs. The AUX memory
has ¢ = 11 inputs and r = n — p = 27 outputs. The LUT cascade realizes the
index generation function with weight 1730 x (1 — 0.901) ~ 171. In this case,
each cell in the cascade has [log,(171 + 1)] = 8 outputs. Let the number of
inputs of cells be 10. Then, the number of levels in the LUT cascade is

n—q | [40-8] [32] 16

[p—qw - [10—81 a [21 o
Note that the size of a cell except for the last stage is 2!° x 8 bits. The size of the
cell in the last stage is 2!° x 11 bits. Thus, the total amount of memory for the
cascade is 210 x 8 x 15+ 219 x 11 = 134,144 bits. The size of the main memory
is 213 x 11 = 90,112 bits. The size of the AUX memory is 2'! x 27 = 55,296

bits. Thus, the total amount of memory is 279,552 bits, which is 20.7% of the
total memory for the LUT cascade-only realization.

In this example, the hybrid method requires a smaller amount of memory than the
LUT cascade alone. ]

10.6 Super Hybrid Method

In the hybrid method, about 88% of the registered vectors are implemented by an
IGU, and the remaining 12% are implemented by the PLA. When we use two IGUs,
about 96% of the registered vectors are implemented by IGUs and the remaining
4% are implemented by the PLA.

Definition 10.6.1. The super hybrid method is an implementation of an index
generation function using a circuit consisting of two IGUs, as shown in Fig. 10.9.
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Fig. 10.9 Index generator implemented by super hybrid method

I GUj is used to realize most of the registered vectors, / GU, is used to realize the
registered vectors not realized by / GU;, and the rewritable PLA is used to realize
registered vectors not realized by either /GU. The OR gate in the output combines
the indices to form a single output. The rewritable PLA can be replaced by another
circuit, such as an LUT cascade, a CAM or an IGU.

The super hybrid method shown in Fig. 10.9 is more complicated than the hybrid
method, but requires smaller memory overall. In this method, the main memory in
IGU; has p = g + 1 inputs, and realizes 79% of the registered vectors. The main
memory in / GU, has p = ¢ inputs, and realizes 16.6% of registered vectors. The
rest of the registered vectors are implemented by the rewritable PLA.

Hybrid Method. 1In atypical hybrid method, the main memory has p = g+ 2 inputs
and ¢ = [log,(k + 1)] outputs, while the AUX memory has ¢ inputs and n — g — 2
outputs. Therefore, the total amount of memory is

M, :q.2q+2+(n_q_2).2q=(4n+12q_g).24—2.

Super Hybrid Method. In a typical super hybrid method, in / GUj, the main mem-
ory has p; = g + 1 inputs and g outputs, while the AUX memory has ¢ inputs and
n—q— 1 outputs. Also, in / GU,, the main memory has p, = ¢ — 1 inputs and g —2
outputs, while the AUX memory has ¢ — 2 inputs and n — g + 1 outputs. Therefore,
the total amount of memory is

My = q29 4 (n—q—1)-294+(q—2)29" +(n—q+1)2972 = (5n+59-7)-2972.

This implies that, when n < 7log, (k 4+ 1) — 1, the super hybrid method requires
a smaller amount of memory.

Theorem 10.6.1. /. In atypical hybrid method, about 88% of the registered vectors
can be realized by an IGU.
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2. In a typical super hybrid method, about 96% of the registered vectors can be
realized by two IGUs.

Proof. Hybrid Method

In this case, the number of inputs to the main memory is p = [log,(k + 1)] + 2.
Thus, 22 > 4(k 4+ 1) and & = 2% < ﬁ ~ %. From Corollary 10.5.1, the
fraction of registered vectors realized by the IGU is

1—e%
§=—.
§
When § = £, we have § = 4(1 —¢702%) = 0.8848.
Super Hybrid Method
In this case, p1 = [log,(k + 1)] + 1. Thus, 271 > 2(k + 1) and §; < ﬁ ~ %

When &; = %, we have §; = 4(1—e~%%) = 0.7869. Thus, the fraction of remaining
vectors is 0.213.
Note that p» = [log,y(k + 1)] — 1. Thus, 272 > 1(k + 1), and & < 2% ~

0213k~ _ _ 1—e 0426
m ~ 0.426. When, 52 = 0426, we have 82 = o426 — 0.8142.

Thus, the total number of registered vectors realized by /GU; and IGU, is
0.7896k + 0.8142 x 0.2134k = 0.9603 k.

Thus, we have the theorem. O

Example 10.6.1. Consider the index generation function with n = 40 and k =
1730. In this case, g1 = [log,(k + 1)] = [log, (1730 4+ 1)] = 11.

Rewritable PLA

The number of vectors realized by the rewritable PLA is 1730.

Hybrid Method

The main memory has p = g¢; + 2 = 13 inputs and g; = 11 outputs. The AUX
memory has g; = 11 inputs and r = n — p = 27 outputs. Since, § = 127%, from
Corollary 10.5.1, the fraction of registered vectors of f that can be realized by the
IGU is

1—e ¢

8~ = 0.901.

Thus, the number of vectors realized by the /G U is 1730 x 0.901 = 1599, and the
number of remaining vectors to be realized by the rewritable PLA is 171.



10.7 Parallel Sieve Method 111

The size of the main memory is 213 % 11=90,112 bits. The size of the
AUX memory is 2'! x 27 =55,296 bits. Thus, the total amount of memory is
145,408 bits.

Super Hybrid Method

The first main memory has p; = ¢q; + 1 = 12 inputs and g; = 11 outputs. The
first AUX memory has g; = 11 inputs and r; = n — p; = 27 outputs.
Since, & = 1271—320 = 0.422, from Corollary 10.5.1, the fraction of registered

vectors of f that can be realized by /G Uj is

1—e®
8 ~ ———— = 0.8156.
&1

Thus, the number of vectors realized by /GUj is 1730 x 0.8156 = 1411, and the
number of the remaining vectors is 1730 — 1411 = 319.

The second main memory has p, = ¢q; — 1 = 10 inputs and g, = 9 outputs.
The second AUX memory has g, = 9 inputs and 7, = n — p, = 30 outputs. Since
& = g% = 0.3115, the fraction of registered vectors of f that can be realized by
I1GU; is

1—e®
8y >~ ——— = 0.859223.
&

Thus, the number of vectors realized by /GU?2 is 319 x 0.859223 = 274, and the
number of the remaining vectors is 45.

The size of the first main memory is 212 x 11 = 45,056 bits. The size of the first
AUX memory is 2'! x 28 = 57,344 bits. The size of the second main memory is
2199 =9,216 bits. The size of the second AUX memory is 2° x 30 = 15,360 bits.
Thus, the total amount of memory is 126,976 bits. The number of vectors realized
by the rewritable PLA is 45.

Thus, for this problem, the super hybrid method requires a smaller amount of
memory than the hybrid method. |

A problem with the super hybrid method is that the second main memory has
only ¢ — 2 outputs. Thus, the indices of the registered vectors in the second main
memory should be smaller than or equal to 2972 — 1. The first main memory stores
registered vectors whose indices are greater than 2972,

10.7 Parallel Sieve Method

The hybrid method uses only one IGU, while the super hybrid method uses two
IGUs. By increasing the number of IGU’s, we have the parallel sieve method. The
parallel sieve method is especially useful when the number of the registered vectors
is very large [85] (Fig. 10.11).
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Fig. 10.11 Index generator implemented by parallel sieve method

Definition 10.7.1. The parallel sieve method is an implementation of an index
generation function using the circuit consisting of multiple IGUs as shown in
Fig. 10.11. IGU; 4 is used to realize a part of the registered vectors not realized
by IGU;, IGU,, ..., or IGU;. The OR gate in the output combines the indices to
form a single output. In the standard parallel sieve method, the number of inputs
to the main memory is selected as

pi = [logy (ki + DT.

Example 10.7.1. By using the standard parallel sieve method, realize an index gen-
eration function withn = 40 and k1 = 10, 000. Note that g; = [log, (k1 + 1)] = 14.
Consider Fig. 10.11.
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1.

In /G Uy, the number of inputs for the main memory is p; = g1 = 14.

By Theorem 10.5.1, the number of the vectors realized by /GU; is 2P1(1 —
e€1) where &, = 2’%, which is 16384 x (1 — 0.5432) = 7484. The number of
remaining vectors is ko = k; — 7484 = 2516.

In /G Uy, since g2 = [log,(2516 + 1)] = 12, the number of the inputs for the
main memory is pp = g = 12. The number of the vectors realized by /G U is
2P2(1 —e~2) where & = 2’%, which is 4096 x 0.4589 = 1879. The number of
remaining vectors is k3 = k, — 1879 = 637.

In IGUs, since g3 = [log,(637 + 1)] = 10, the number of inputs for the
main memory is p3 = g3z = 10. The number of vectors realized by /G Us is
273(1 —e~3) where £3 = 2’%, which is 1024 x 0.46317 = 474. The number of
remaining vectors is k4 = k3 — 474 = 163.

In IG Uy, since g4 = [log, (163 + 1)] = 8§, the number of inputs for the main
memory is ps = g4 = 8. The number of vectors realized by 1G Uy is 274 (1 —
e_f“) where &4 = 2’%, which is 256 x 0.46317 = 120. The number of remaining
vectors is k4 = k3 — 120 = 43.

In IGUs, since g5 = [log,(43 + 1)] = 6, the number of inputs for the main
memory is ps = g5 = 6. The number of vectors realized by 1GUs is 275(1 —
e~65) where £5 = 2’% which is 64 x 0.48925 = 31. The number of remaining
vectors is ks = k4 — 31 = 12.

In /G Us, since the number of the remaining vectors is only ks = 12, they can
be implemented by an IGU [132], or rewritable PLA or an LUT cascade.

Note that, for each 1 GUj;, the main memory has p; inputs and p; outputs, while the
AUX memory has p; inputs and (n — p;) outputs. Thus, the total amount of memory
for IGU; is

pi2P + (n — p;)2P = n2?".

The amount of memory for each IGU; is:

IGU; : 40 x 2% = 640 x 21°.
IGU, : 40 x 212 = 160 x 219,
IGU5 : 40 x 210,

IGU, : 40 x 28 = 10 x 21°.
IGUs : 40 x 26 = 2.5 x 219,

The total amount of memory for the standard parallel sieve method is

5
ZnZ"" = 640 4+ 160 4+ 40 + 10 + 2.5 = 852.5
i=1

Kibits. [
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10.8 Experimental Results

10.8.1 List of English Words

To demonstrate the usefulness of the design method, first we realized lists of
frequently used English words by the hybrid method shown in Fig. 10.6 and the
super hybrid method shown in Fig. 10.9. Here, we use three kinds of English word
lists: List 1, List 2, and List 3. The numbers of letters in the word lists are at most
13, but we only consider the first 8 letters. For the English words consisting of fewer
than 8 letters, we append blanks to the end of words to make them 8-letter words.
Each English alphabet letter is represented by 5 bits. Thus, each English word is rep-
resented by 40 bits. The numbers of words in the lists are 1,730, 3,366, and 4,705,
respectively. Within each word list, each English word has a unique index, an inte-
ger from 1 to k, where k = 1,730 or 3,360 or 4,705. The numbers of bits for the
indices are 11, 12, and 13, respectively.

The number of inputs for the main memory is [log, (k + 1)] + 2. List 1 consists
of k = 1730 words. The number of bits for the index is ¢ = [log,(1 + k)] =
[log,(1 + 1730)] = 11. The number of bound variables is p = g + 2 = 13. The
number of columns in the decomposition chart is 22 = 2!3 = 8, 192. The number
of columns that has only one nonzero element is 1,389. The number of columns that
has two or more nonzero elements is 165. The number of registered vectors that are
not realized by the main memory is 176. In other words, about 90% of the registered
vectors are realized by the main memory, and the remaining 10% of the registered
vectors are realized by the rewritable PLA. Table 10.15 shows the design results for
three English word lists by the hybrid method shown in Fig. 10.6.

Table 10.15 compares the amount of hardware for the hybrid method, and the
super hybrid method. In the super hybrid method, the number of vectors realized by
the rewritable PLA is smaller than 4% of the registered vectors. This is because we
optimized the hash functions.

Table 10.15 Realization of List 1 List 2 List 3
English d lists by hybrid
18 157 WOrd H1sts by fiybrt # of words: k 1,730  3.366  4.705
method .
# of inputs: n 40 40 40
# of outputs: ¢ 11 12 13
# of inputs for the main p 13 14 15
memory :

# of columns with only one 1389 2752 3980
nonzero element

# of columns with two or 165 293 351
more nonzero elements
# of registered vectors not 176 321 374

realized by main memory
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10.8.2 Randomly Generated Functions

Next, we generated index generation functions with the same sizes by pseudo-
random numbers. We did the similar experiments for List 2 and List 3. The
experimental results using randomly generated functions and English word lists are
close to the theoretical results obtained in Sect. 10.5. This shows that the hash func-
tion generated by the hash network effectively scatters the nonzero elements in the
decomposition charts.

10.8.3 IP Address Table

To verify the effectiveness of the method, we also used IP addresses of computers
that accessed our web site in a certain period. List 1 contains 1,730 addresses, List 2
contains 3,366 addresses, and List 3 contains 4,588 addresses. The number of inputs
are all 32, but the number of outputs for Lists 1-3 are 11,12, and 13, respectively.
Also, in this case, results produced by the real address tables, the data obtained from
the random address tables, and the data obtained by analytical results in Sect. 10.5
were similar (Table 10.16). (Experimental results are omitted.)

Table 10.16 Amount of hardware for English word lists

Size of Lists List 1 List 2 List 3

# of inputs n 40 40 40
# of outputs q 11 12 13
# of vectors k 1,730 3,366 4,705
Hybrid Method List 1 List 2 List 3

# of inputs for main memory P 13 14 15
Size of main memory q2? 90,112 196,608 425,984
Size of AUX memory r24 55,296 106,496 204,800
Total amount of 145,408 303,104 630,784

memory

# of remaining vectors 176 321 374
Super Hybrid Method List 1 List2 List 3

# of inputs for main memory 1 1 12 13 14
# of inputs for main memory 2 P2 10 11 12
Size of main memory 1 q12"! 45,056 98,304 212,992
Size of AUX memory 1 r24 57,344 110,592 212,992
Size of main memory 2 q22"? 9,216 20,480 40,960
Size of AUX memory 2 ry2%2 15,360 2,969 28,672
Total amount of 126,976 232,345 495,616

memory

# of remaining vectors 30 61 42
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10.9 Remarks

This chapter presented the hybrid method, the super hybrid method, and the parallel
sieve method to realize index generation functions. In these methods, an index
generation function f is decomposed into nonoverlapping index generation func-
tions, and each function is realized by an IGU or a rewritable PLA. In this chapter,
a rewritable PLA is used to realize the remaining vectors. However, other methods
can also be used: a CAM, an LUT cascade, or an IGU implemented by the method
shown in Chap. 11. This chapter is based on [126, 128, 136].

Problems

10.1. In Example 10.1.1, suppose that, in a company with 5,000 employees, each
person has a unique employee number between 1 and 5,000 inclusive. Suppose that
hash(x) = x(mod 9973) is used to find the employee number from his or her 10-
digit telephone number. Calculate the expected number of collisions in the hash
table. Do the same calculation when the number of the employees is 2,000, instead
of 5,000. Assume that the hash function produces a uniform distribution.

10.2. Let f(x) be the index generation function, where f(x) = i when x is the i-th
prime number, and f(x) = 0 otherwise. Let 7 (x) be the prime-counting function
that gives the number of primes less than or equal to x, for any integer number X.
For example, 7(8) = 4 because there are four prime numbers (2, 3, 5, and 7) less
than or equal to 8. It is known that 7(100, 000) = 9, 592.

Design the circuit of f(x) that works for x < 100, 000, by the standard parallel
sieve method. Estimate the size of the circuit, and compare it with the single-
memory realization.

10.3. Design an 8-digit ternary-to-binary converter [119]. Use the binary-coded-
ternary code to represent a ternary digit. That is, O is represented by (00); 1 is
represented by (01); and 2 is represented by (10). (11) is an unused code. Let
¥ = (Vm—1>Ym—2.--..,Yo) be the outputs of the converter, where y; € {0, 1}.
Then, in general, y; depends on all the inputs x;(i = 0,1,...,n — 1). When
this converter is implemented by a two-valued logic circuit, unused combinations
occur. So, we have an incompletely specified function. For example, the truth ta-
ble of the 2-digit ternary to 4-bit binary converter is shown in Table 10.17. In the
case of binary-coded-ternary representation, (11) is an undefined input, and the
corresponding output is a don 't care. In Table 10.17, the binary-coded-ternary repre-
sentation is denoted by w = (w3, wa, w1, wo), the ternary representation is denoted
by X = (x1,X0), and the binary representation is denoted by ¥ = (y3, y2, ¥1, Yo).
Design a converter for an 8-digit ternary number to a 13-digit binary number by the
standard parallel sieve method. Compare the memory size with that of the single-
memory realization.
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Table 10.17 Truth table for a ternary-to-binary converter

Binary-coded Ternary =~ Ternary Binary

Decimal
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(=)
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Table 10.18 1-out-of-15 to binary converter
1-out-of-15 code

X5 Xi4 X1z Xip Xjp Xj9 X9 Xg X7 Xg X5 X4 X3 Xy x; Index
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 6
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 7
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 8
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 9
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 11
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 12
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 14
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

10.4. A linear transformation of the input variables, in general, changes a function
into an another function. However, it does not change the weight of the function.
Prove this.

10.5. In the proof of Lemma 10.5.1, 2"~” is approximated by e ¢, where £ = ZL,,,

B =1—« and ¢ = 2% When k = 2P, compute the approximation er-

ror: ERROR = ef — p?"”. Make a table similar to Table 3.1 for « =
271272273 2714 and 2715,

10.6. Consider the 15-variable incompletely specified index generation function
f(X) shown in Table 10.18. Show that at least 14 variables are necessary to repre-
sent the function. Next, consider the linear transformation:
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Y1 =X1 ®x3D x5 x7 D X9 D x11 D x13D X35,
Yo =x2D x3D X6 D x7 D x10 D X11 D X14 D X315,
V3 = X4 D X5 D X6 © X7 D X12 D X13 D X14 D X715,
Ya = Xg D X9 D X10 D xX11 D X12 D X13 D X14 D X15.

Show that f can be represented with yq, y», y3, and y4.



Chapter 11
Reduction of the Number of Variables

This chapter considers a method to reduce the number of variables needed to
represent incompletely specified logic functions. When the number of specified
minterms is k, most functions can be represented with at most 2[log, (k + 1)] — 2
variables.

11.1 Optimization for Incompletely Specified Functions

For completely specified logic functions, logic minimization is a process of reducing
the number of products to represent the given function. However, for incompletely
specified functions (i.e., functions with don’t cares), at least two problems exist
[46]. The first is to reduce the number of the products to represent the function,
and the second is to reduce the number of variables. The first problem is useful for
sum-of-products expression (SOP)-based realizations [13], while the second prob-
lem is useful for memory-based realizations, since reducing the number of variables
reduces the memory size.

Example 11.1.1. Consider the 4-variable function shown in Fig. 11.1, where the
blank cells denote don’t cares. The SOP with the minimum number of products
is F1 = X1Xx4 V x2x3, while the SOP with the minimum number of variables is
Fr = x1x2 V X1X4 V X2X4. Note that F; shown in Fig. 11.2 has two products
and depends on four variables, while F, shown in Fig. 11.3 has three products and
depends on only 3 variables. x3 is a nonessential variable, since F, does not in-
clude it. ]

As shown in this example, the expression corresponding to the minimal number of
products is different from the expression corresponding to the minimal number
of variables. This chapter considers the minimization of the number of variables
in incompletely specified functions. Indeed, it is shown that many variables can be
eliminated when the fraction of don’t cares is large.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_11, 119
© Springer Science+Business Media, LLC 2011
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Fig. 11.1 4-variable X1
incompletely specified logic
function
110
01 1
X4
X3
0
X2

Fig. 11.2 Expression with

the fewest products X1

o

anlk
O

xs{
0

X2

Fig. 11.3 Expression with
the fewest variables

x3{ L

11.2 Definitions and Basic Properties

Definition 11.2.1. An incompletely specified logic function f is a mapping
D — B,where D C B", B = {0, 1}.

Definition 11.2.2. An incompletely specified logic function is represented by a pair
of characteristic functions Fy and Fj, where Fy(a) = 1 iff f(a) = 0, and
Fi(a) = 1iff f(a) = 1. Note that Fg F; = 0.If a € D, then the value of f(d) is
specified, and is called care value. Otherwise, the value of f(d) is unspecified, and
is called don’t care.
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Table 11.1 Function for
Fig. 11.1

_—_- 0 = O O
_ o = O = O
O = —_ OO —
—_—_—_- o o ol™

S OO O = O

Example 11.2.1. Consider the function in Fig. 11.1. In this case n = 4. Table 11.1
also shows this function. The characteristic functions are

Fo = X1X2X3X4 V X1X2X3X4 V X1X2X3X4 and

F1 = X1X2X3X4 V X1X2X3X4 V X1X2X3X4.

In this case, the function is specified for only 6 out of 16 possible minterms. ]

Definition 11.2.3. f depends on x; if there exists a pair of vectors

ai,dz,...,di,...,d,) and

alvazs'-'vbiv"'van)v

such that both f(a) and f (l;) are specified, and f(a) # f (5)

If f depends on x;, then x; is essential in f and x; must appear in every expression
for f.

Definition 11.2.4. Two functions f and g are compatible when the following
condition holds: For any ¢ € B", if both f(a) and g(a) are specified, then
f(@) = g(a.

Lemma 11.2.1. Let fo = f(Jx; = 0) and fi = f(|x; = 1). Then, x; is nonessen-
tial in f iff fo and f1 are compatible.

If x; is nonessential in f, then f can be represented by an expression without x;.

Example 11.2.2. Consider the function f in Fig. 11.4. It is easy to verify that all
the variables are nonessential. Note that f can be represented as F; = X, V x3 or
Fr = x1 D X4. n

Essential variables must appear in every expression for f, while nonessential vari-
ables may appear in some expressions and not in others. Algorithms to represent
a given function by using the minimum number of variables have been considered
[14,32,38,46,67].
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Fig. 11.4 4-variable function X
without essential variables

X4

X3

X2

11.3 Algorithm to Minimize the Number of Variables

This section describes an algorithm to represent an incompletely specified index
generation function f : D — {1,2,...,k}, where D C B", using the minimum
number of variables. To show the idea of the method, we use the following:

Example 11.3.1. Let us minimize the number of variables to represent the index
generation function shown in Fig. 11.5.

1.

Let the four vectors be @y = (1,0,0,1),d, = (1,1,1,1), a3 = (0,1,0, 1), and
ds = (1,1,0,0).

To distinguish @ and a,, either x; or x3 is necessary. Thus, we have the condition
X2 V x3 = 1, where x; = 1 denotes that x; must appear in the expression. Thus,
X2 V x3 = 1 denotes either x, or x3 must appear in the expression. In the same
way, to distinguish @; and d3, we have the condition x; V x = 1; to distinguish
dp and dg4, we have the condition x» V x4 = 1; to distinguish d» and d3, we
have the condition x; V x3 = 1; to distinguish @, and a4, we have the condition
X3 V x4 = 1; and to distinguish d3 and @4, we have the condition x; V x4 = 1.
To distinguish all the vectors, all the conditions must hold at the same time. This
is expressed by the condition R = 1, where

R = (x2 v x3)(x1 Vx2)(x2 Vxa)(x1 VvV X3)(x3 V Xa)(X1 V X4).
By the distributive law, and the absorption law, we have

R = X1X2X4 V X1X2X3 V X2X3X4 V X1X3X4.

. Since every product has three literals, each corresponds to a minimum solution.

Thus, f can be represented by 3 variables. Since no variable appears in all prod-
uct terms, no variable is essential. ]

In principle, the above method produces the minimum number of variables to rep-
resent an incompletely specified index generation function. However, the straight-
forward application is quite inefficient. Also, we have an efficient minimization
algorithm for SOPs, but do not have one for product-of-sums expressions. Thus,
instead of obtaining R directly, first we obtain R, the complement of R, and per-
form simplification, and then convert R into the SOP for R as follows:
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Fig. 11.5 Index generation
function with 4 variables —_—

[T ]

Fig. 11.6 7-segment display

Algorithm 11.3.1. (Algebraic Method)

1. Let A be the set of vectors d;, such that f(da;) =i, wherei = 1,2, ... k.

2. For each pair of vectors a; = (ay,as,...,a,) € A and l_;j = (b1,b2,...,by) €
A, associate a product defined by s(i, j) = \r_, yr, where y, = 1 ifa, = b,
and y, = Xy ifar # by, wherer = 1,2,...,n. Note that there are k(k — 1)/2
pairs.

. Define a covering function R = \/l-<j s(i, j).

. Represent R by the a minimum SOP.

. Represent R, the complement of R by a minimum SOP.

. The product with the fewest literals corresponds to the minimum solution.

[ NI NV

In Algorithm 11.3.1, Steps 4, 5, and 6 compute a minimum covering. Since R has
only complemented literals, we generate only products with complemented literals.
Applying absorption law yields the minimum SOP for R.

By first detecting the essential variables, we can reduce the computational effort
to derive the covering function. The next example illustrates this.

Example 11.3.2. The 7-segment display shown in Fig. 11.6 displays a decimal num-
ber by using 7 segments: a, b, c, d, e, f, and g.

Table 11.2 shows the correspondence between segment data and the binary num-
ber. Consider a logic circuit that converts 7-segment data into the corresponding
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Table 11.2 7-segment to 7-segment BCD code

BCD converter
a b ¢ d e f g 8 4 2 1
01 1 00 O O O0OO0OO01
1 1.0 1 1 01 OO 1O
1 1.1 1.0 01 0 O 1 1
01 1 0 01 1 O 1 0O
1 01 1 0 1 1 0 1 01
1 0 111 1 1 0 1 1 O
1 110 0 0 0O 1 1 1
1 11 1 1 1 1 1 0 O O
1 1.1 1 0 1 1 1 0 O 1
1 11 1 1 1 01 0 10

Binary Coded Decimal (BCD) representation of a digit. The straightforward circuit
requires 7 inputs. However, only 5 inputs are necessary to distinguish the decimal
numbers. This means that only 5 segments are needed to distinguish between the
10 digits.

1. Let the vectors be
a; =(0,1,1,0,0,0,0),a, = (1,1,0,1,1,0,1),a3 = (1,1,1,1,0,0, 1),
das = (0,1,1,0,0,1,1),a5 = (1,0,1,1,0,1,1),a¢ = (1,0,1,1,1,1, 1),
a7 =(1,1,1,0,0,0,0),as = (1,1,1,1,1,1,1),a9 = (1,1,1,1,0,1, 1),
and
ao=(1,1,1,1,1,1,0).

2. First, find the essential variables.

From de and dg, we can see that b is essential. From dg and dg, we can see that
e is essential. From d3 and do, we can see that f is essential. From ag and d g,
we can see that g is essential.

3. Next, we derive R. Since b, e, f, and g are essential, we can ignore the pairs,
where the essential variables are inconsistent. For example, from the pair
(@1, d»), we have the product acdeg. Note that, in this case, two vectors are
inconsistent with the essential variable g. Since the essential variable g is always
included in the solution, we know that ¢ = 1. Thus, we need not generate it.
From d4 and do, we have ad. Thus, R=bVvev gV f vad.

4. By using De Morgan’s law, and the distributive law, we have
R =befglavd)=abefgV bdefg.

5. Since each product has five literals, each corresponds to a minimum solution.
Thus, the binary numbers can be represented by 5 variables.

Thus, we can eliminate either segments ¢ and d, or a and ¢, and still determine
which digit is being represented. ]
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11.4 Analysis for Single-Output Logic Functions

This section derives the number of variables to represent single-output incompletely
specified logic functions. In the analysis that follows, we consider a set of functions
(e.g., all incompletely specified functions) restricted by conditions (e.g. the number
of care values is 2u).

Definition 11.4.1. A set of functions is uniformly distributed, if the probability of
occurrence of any function is the same as any other function.

For example, the set of 4-variable incompletely specified functions with 1 care value
consists of 32 members, 16 having a single 1 and 16 having a single 0. If the func-
tions are uniformly distributed, the probability of the occurrence of any one of them
o1

1S 33

Theorem 11.4.1. Consider a set of uniformly distributed incompletely specified
functions, where u combinations are mapped to 0, u combinations mapped to 1,
and the other 2" — 2u combinations are mapped to don’t cares. Let ) be the prob-
ability that f(x1,x2,...,Xxn) can be represented by using only X1,X2,...,Xp—1,

u

and xp, where p < n. Then, n > (1 — )", where & = 55.

Proof. Let f(X1, X2) be an incompletely specified function, where X1 = (xy,
X2,...,xp)and Xo = (Xp41,Xp+2,...,%,). Consider the decomposition chart of
f(X1, X32), where X labels the columns, and X, labels the rows. If no column has
both 0 and 1, a completely specified function can be formed by setting all column
entries to the same value, yielding a function independent of X,. From here, we
obtain the probability 7.

Assume that u 0’s are already distributed to the decomposition chart. Thus, at most u
columns have 0’s. Next, we distribute u 1’s to the decomposition chart. The probabil-
ity of distributing a single 1 to a column not containing 0’s is at least 2;;“ =1-a.
Thus, the probability of distributing u 1’s to the columns without 0’s is larger than
or equal to (1 — &)". Hence, we have the relation:

nz1-a)
|
Theorem 11.4.1 considers the probability for one partition: X; = (xg,
X2,...,Xp) and X = (Xp41,Xp42,...,X,). However, in practice, we can se-

lect a minimum set of variables to represent the function. The following theorem
considers such a case:

Theorem 11.4.2. Consider a set of uniformly distributed incompletely specified
functions, where u combinations are mapped to 0, u combinations mapped to 1, and
the other 2" — 2u combinations are mapped to don’t cares. Then, the probability
that f(x1,X2,...,Xn) can be represented by using only p variables is at least

1 —O'(Z),
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where 0 = 1 — n, and 1 is the probability that a function can be represented by
using only x1,x2,...,Xp—1, and xp.

Proof. The probability that a function cannot be represented by using xi, x2,.. .,
Xp—1, and x, is 0 = 1 — n. Since there are (;) ways to choose p variables out
of n variables, the probability that a function cannot be represented by using any

n
combinations of p variablesis o (). The probability that a function can be presented
by using at least one combination of p variables is

1—0(2).
O

From Theorem 11.4.2, we have the following:

Conjecture 11.4.1. Consider a set of uniformly distributed functions of n variables,
where u combinations are mapped to 0, u combinations are mapped to 1, and the
other 2" — 2u combinations are mapped to don’t cares. If

p=>2log,u—2,

then more than 95% of the functions can be represented with p variables.

(Explanation supporting the Conjecture) Sinceo = 1—n < 1.0, 1—0() approaches
1.0, as n increases. When p < n, (;) > n(n — 1)/2. Assume that n > 20. The

condition that G(Z) < 0.051s 0 < 0.984. Thus, if n > 0.0156, then at least 95% of
the functions can be realized with p products. When & is sufficiently small, 1 — & is
approximated by e~®. Thus,

2

u

n>(1—@)"~e % =c27,

When p > 2log, u — 2, we have n > e™* = 0.0183. (End of explanation)
From experimental results in Sect. 11.6 , we have the following:

Conjecture 11.4.2. Consider a set of uniformly distributed functions of n variables,
where u combinations are mapped to 0, ¥ combinations are mapped to 1, and the
other 2" —2u combinations are mapped to don’t cares. Then, the fraction of the func-
tions represented with p = 2[log, u] — 2 variables approaches 1.0, as n increases.

11.5 Extension to Multiple-Output Functions

In practical applications, many functions have multiple outputs, and the outputs
values are different for different inputs. So, we now consider such a class of func-
tions. First, we consider the class of index generation functions, which are special
case of multiple-output functions. Then, we extend the theory to general multiple-
output functions.
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11.5.1 Number of Variables to Represent Index Generation
Functions

This section derives the number of variables to represent an incompletely specified
index generation function with k registered vectors. The basic idea is as follows: a
function f(X1, X2) is represented by a decomposition chart, where X labels the
columns and X5 labels the rows. If each column has at most one care element, then
the function can be represented by using only variables in X;. The next example
illustrates this.

Example 11.5.1. Table 11.3 shows a registered vector table consisting of 6 vectors.
When no entry matches the input vector, the function produces 0. Consider the de-
composition chart shown in Table 11.4. In Table 11.4, x;, x», and x3 specify the
columns, and x4 and xs specify the rows, and blank elements denote don’t cares.
Note that, in Table 11.4, each column has at most one care element. Thus, the func-
tion can be represented by only the column variables: x;,x3, and x3. ]

From here, we obtain the probability of such a condition by a statistical analysis.

Theorem 11.5.1. Consider a set of uniformly distributed incompletely specified in-

dex generation functions f(x1,Xa, ..., Xy) with weight k, where2 < k < 2"2, Let
n(k) be the probability that f can be represented with x1, X2, ..., and X, where
p < n. Then,
k2
n(k) >~ exp (—2p+1). (11.1)
Proof. Let (X1, X2) be a partition of the input variables X, where X; = (x,
X2,...,xp)and X = (Xp41,Xp42, ..., Xy). Consider the decomposition chart for
Table 11.3 Registered vector X1 X X3 x4 x5 f
table 00 1 0 0 1
o 1 0 o0 1 2
0 1 1 1 0 3
1 0 0 1 1 4
1 0 0 1 1 5
1 1 1 1 0 6
Table 11.4 Decomposition 0000T1T1T1 1]ag
chart for f (X, X») 0011 1 1|2
010101 1|z
0 O 1
0 1 2 )
1 0 3 6
1 1 4
Ts T4
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f(X1, X3), where X labels the column variables and X, labels the row variables.
If each column has at most one care element, then f can be represented by using
only X;. Assume that k care elements are distributed in the decomposition chart.
Then, the probability that each column has at most one care element is

20 2P 1 2P 2 22 — (k- 1)

n(k)zzp > o o
(%) (1=5) (%)
=1 (1=—=)-(1==1)-.... 1 —
2P 2P 2P
k-1

That is, in such a distribution, ‘1’ can be placed in any column, ‘2’ can be placed in
any column except that for ‘1’, etc.
Next, (k) can be approximated as follows:

k—1 i k—1 i
n(k) ~ l_[ exp (—2—p) = exp (— Z 2_1’)
i=0 ‘

i=1
e (KDY (K
TP\ T2 ) TP T

The above theorem shows the case when the input variables are removed without
considering the property of the function. In practice, we can remove the maximum
number of nonessential variables by an optimization program.

O

Theorem 11.5.2. Consider a set of uniformly distributed incompletely specified in-
dex generation functions f(x1,Xa,...,Xn) with weight k, where 2 < k < 2772,
The probability that f can be represented with p < n variables is greater than

1— 0’(2) ,
where 0 = 1 — n(k), and n(k) is the probability that f can be represented with

X1,X2,...,Xp—1, and xp.

The proof of Theorem 11.5.2 is similar to that of Theorem 11.4.2. From Theorem
11.5.2, we have the following:

Conjecture 11.5.1. Consider a set of uniformly distributed incompletely specified
index generation functions with weight k. If p > 2[log,(k + 1)] — 3, then more
than 95% of the functions can be represented with p variables.
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From experimental results, we have the following:

Conjecture 11.5.2. Consider a set of uniformly distributed incompletely specified
index generation functions with weight k. Then, the fraction of the functions repre-
sented with p = 2[log, (k + 1)] — 3 variables approaches 1.0, as n increases.

Note that there exist functions that require more than p = 2[log,(k + 1)] — 3
variables, as shown below. However, the fraction of such functions approaches 0.0,
as n increases.

Example 11.5.2. Consider the n-variable incompletely specified index generation
function f with weightk = n + 1:

£(1,0,0,...,0,0) =1
£(0,1,0,...,0,0) =2
£(0,0,1,...,0,0) = 3

£(0,0,0,...,1,0) =n—1

£(0,0,0,...,0,1) = n

£(0,0,0,...,0,0) =n + 1
f(ai,az,as,...,an—1,a,) = d (for other combinations).

In this function, all the variables are essential, and no variable can be removed. =

Theorem 11.5.3. To represent an incompletely specified index generation function
with weight k, at least [log, (k + 1)] variables are necessary.

Proof. To distinguish k + 1 outputs, at least [log,(k + 1)] variables are necessary.
Note that one output is used to show that there is no matched vector. Nonzero outputs
denote registered vectors, while zero outputs denote nonregistered vectors. (]

11.5.2 Number of Variables to Represent General
Multiple-Output Functions

Theorem 11.5.4. Let F be an arbitrary n variable m output function, and let D be
a set of k randomly selected vectors in B". Let F be an incompletely specified func-
tion defined on only D. The probability that F can be represented with x1, X2, ...,
and xp, for p < n, is n(k), where n(k) is defined in (11.1).

Proof. For each vector in D, assign a unique index in {1,2,...,k}. From D, we
can define an incompletely specified index generation function: D — {1,2,...,k}.
Next, for each vector in D, obtain the output value of F, and make a truth ta-
ble showing the function {1,2,...,k} — B™. Note that this function can be
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implemented by memory with [log, (k+1)] inputs. Thus, the incompletely specified
function F can be realized as the cascade connection of the index generation circuit
and memory.

By Theorem 11.5.1, the index generation function can be represented with at
most p variables. Thus, the function F can be also represented with at most p
variables. O

Similarly to Conjecture 11.5.2, we have the following:

Conjecture 11.5.3. When k minterms are selected randomly, the fraction of
multiple-output functions with only k& minterms that can be represented by at
most p = 2[log, (k + 1)] — 3 variables approaches 1.0, as n increases.

11.6 Experimental Results

11.6.1 Random Single-Output Functions

For different n, we randomly generated 1,000 functions, where u combinations are
mapped to 0, u combinations are mapped to 1, and the other 2" — 2u combinations
are mapped to don’t cares. We minimized the number of variables by an exact opti-
mization algorithm, which is similar to Algorithm 11.3.1 shown in Sect. 11.3.

Table 11.5 shows the average numbers of variables to represent the single-output
functions, where the set of variables are selected by the optimization algorithm.
For example, 16-variable functions where 15 minterms are mapped to zeros, 15
minterms are mapped to ones, and the other minterms are mapped to don’t cares,
require, on the average, only 5.157 variables to represent the functions.

Table 11.5 shows that the necessary number of variables to represent the func-
tions mainly depends on u. The last column of the table shows the number of
variables to represent incompletely specified functions by Conjecture 11.4.2. For

Table 11.5 Average numbers
of variables to represent
single-output logic functions
withu 1’s and u 0’s

n=16 n=20 n=24 2flog,(u+1]—2
3.334 3.145 3.017 4
15 5.157 4.981 4.940 6
31 7.126 6.980 6.003 8
63 9.179 8.972 8.861 10
127 11.362 10971 10.776 12
255 13.754 12990 12.725 14
511 15.739 15.098 14.805 16
1023 16.000 17.508 16918 18
2047 16.000 19.705 18.996 20
4095 16.000 20.000 21.394 22
8191 16.000 20.000 23.630 24

=N =
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T?ble. 1111.6 Average number k n=16 n=20 n=24 2flog,(k+1)]—3
of variaples to represent 7 3052 3018 3003 3
incompletely specified index

15 4980 4947  4.878 5

generation function
31 6.447 6.115 6.003 7
63 8.257 8.007 8.000 9
127 10304  10.000 9.963 11
255 12589 11996 11.896 13
511  14.890 14.019 13.787 15
1023 15991 16.293 15874 17
2047 16.000 18.758 17.965 19
4095 16.000 19.992 20.093 21

example, when u = 15, to represent a uniformly distributed function, Conjecture
11.4.2 shows that 6 variables are sufficient. On the other hand, experimental results
show that only 4, 5, or, 6 variables are necessary to represent the functions. We note
that the variance is very small.

11.6.2 Random Index Generation Functions

We generated uniformly distributed index generation functions. Table 11.6 shows
the average numbers of variables to represent n-variables index generation functions
with k registered vectors. For the other 2" — k combinations, the outputs are set
to don’t cares. The values are the average of 1,000 randomly generated functions.
Table 11.6 shows that the necessary number of variables to represent the functions
strongly depends on k.

The last column of Table 11.6 shows the number of variables to represent in-
completely specified index generation functions with weight k& given by Conjecture
11.5.2. For example, when k = 31, to represent a uniformly distributed function,
Conjecture 11.5.2 shows that 9 variables are sufficient. On the other hand, ex-
perimental results show that only 6 or 7 variables are necessary to represent the
functions. Again, the variance is very small.

11.6.3 IP Address Table

To verify the effectiveness of the method in a practical application, we used distinct
IP addresses of computers that accessed our web site over a period of a month. We
considered four lists of different sizes: List 1, List 2, List 3, and List 4. Table 11.7
shows the results. The first row shows the number of registered vectors: k. The sec-
ond row shows the number of inputs: n. The third row shows the number of outputs:
q = [log, (k + 1)]. The fourth row shows the number of variables sufficient to rep-
resent the functions given by Conjecture 11.5.2, i.e., 2[log, (k + 1)] — 3. The fifth
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Table 11.7 Realization of IP address tables

List 1 List 2 List 3 List4

# of vectors: k 1,670 3,288 4,591 7,903

# of inputs: n 32 32 32 32

# of outputs: g 11 12 13 13
2[log,(k + D] —3 19 21 23 23

# of variables using Single-input hash: n; 18 20 21 23

# of variables using Double-input hash: n, 17 19 20 21
Single-memory realization (X 10! bits) 4.72 5.15 5.58 5.58
Realization using Single-input hash (x 10° bits) 2.95 12.7 27.5 109.3
Realization using Double-input hash (X 10° bits) 1.51 6.3 13.9 27.5

row shows the number of variables to represent the function, where the number
of variables was minimized by Algorithm 11.3.1. In this case, selected input vari-
ables are connected to the main memory through the single-input hash circuit shown
Fig. 10.3. The sixth row shows the number of variables to represent the function,
where a linear transformation is used to reduce the number of variables. In this case,
the double-input hash circuit shown in Fig. 10.2 is used. The seventh row shows the
number of bits to represent the function by a single memory: ¢g2”. The eighth row
shows the total number of bits to represent the function by using the single-input
hash circuit shown in Fig. 10.3: ¢2"s + n24, where the first term denotes the size of
the main memory, while the second term denotes the size of the AUX memory. The
last row shows the total number of bits needed to represent the function by using the
double-input hash circuit shown in Fig. 10.2: g2"¢ + n24. As shown in Table 11.7,
the total amount of memory can be drastically reduced.

11.6.4 Benchmark Multiple-Output Functions

We reduced the number of variables for selected PLA benchmark functions [159].
Table 11.8 shows the numbers of variables to represent benchmark functions (bc0,
chkn, in2, in7, intb, and vg2) for different values of care minterms k. In the table,
n denotes the number of original input variables, g denotes the number of outputs,
and W denotes the number of products in the PLA. The rightmost column shows
the upper bound derived by Conjecture 11.5.3: 2log, (k + 1)] — 3. Out of 2" com-
binations, we randomly selected k different combinations as care minterms, and set
other 2" — k minterms to don’t cares. Then, we minimized the number of variables.
From the table, we observe that the number of variables strongly depends on k, but
is virtually independent of n, ¢, W, and the function name. Again, for these bench-
mark functions, the upper bounds on the number of products given by the Conjecture
11.5.3 are valid.
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Table 11.8 Number of variables needed to represent incompletely specified multiple-output
PLA benchmark functions

k bcO chkn in2 in7 intb vg2 Conj. 11.5.3
n =26 n =29 n=19 n=27 n=15 n=25
1 q=1 q=17 qg=1 8

q=11 0 ¢g=17 q= Upper

W=179 W=142 W =135 W =55 W =631 W =110 bound
15 4 4 4 4 5 4 5
31 6 5 6 6 7 6 7
63 8 7 7 8 8 7 9
127 9 9 8 8 10 9 11
255 11 10 9 10 12 11 13
511 12 12 10 12 14 13 15
1023 14 14 13 13 15 14 17

11.7 Remarks

For incompletely specified index generation functions, reduction of the number of
variables is quite effective. Combined with the hash method presented in the pre-
vious chapter, this method drastically reduces the amount of memory to implement
the function. An extension to multi-valued input functions is considered in [137].
This chapter is based on [111, 131,132, 137].

Problems

11.1. Minimize the number of variables for the incompletely specified logic func-
tion whose characteristic functions are:

Fo = X5{X1x2(x3 V X4) V X1x2(x3 @ X4)} V X5{X2X3X4 V X1X3X4 V X1X2X3}.

F 2)?35()??1)??2)(3\/)(1)_(3)2'4\/)(1)22)64)\/)65 (X1)2'2)23\/xl)??2)_(4\/)61)(2)63)(4\/)_(1)22)(3)64).

11.2. Consider the incompletely specified function of 8 variables in Table 11.9.
Minimize the number of variables.

11.3. Consider a binary matrix of 8 columns and 7 rows, where 0’s and 1’s are
distributed uniformly.

1. Calculate the probability that all the rows are distinct.
2. Remove the first column. Calculate the probability that all the rows are distinct.

11.4. Let n = 10 and k = 31. Consider a decomposition chart of an index gen-
eration function f(Xi, X,) with weight k, where X; = (x1,x2,...,X9) and
X5 = (x10). Calculate the probability that each column has at most one nonzero el-
ement. Also, calculate the probability, among the 10 partitions, where X; = X —Xx;,
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Tabl.e 11.9 In.completely a b ¢c d e f g h F
\s,zfg]ljii function of 8 "0 01000 0.0 0
w 01 0 0 0 0 1 0 O
vy 001 0 01 1 0 O
w 0 0 0 1 0 0 1 0 1
vs 01 0 0 1 1 0 0 1
v 1 0 0 1 0 1 0 0 1
Table 11.10 .4—Valued. input X1 X2 X3 X4 X5 X X7 Xg f
index generation function A~ A G A G C T A1
A A G C A C G C 2
G A A G A T C A 3
C T G G A G G G 4
T A G G G A T A 5
T A T G C C A G 6
T G A C C G C G 17

Xo = (xj),and X = (x1,x2,...,x10) for (i = 1,2,...,10), there exist at least
one partition, in which each column has at most one nonzero element. It is suggested
that you use a computer or a calculator to obtain this value.

11.5. Consider a set of uniformly distributed incompletely specified index gener-
ation functions of n variables with weight k. Derive the probability that all the
variables are essential, forn = 2r and k = 2".

11.6. Show a 4-variable incompletely specified index generation function satisfying
the following conditions:

1. Four combinations are mapped to 1.

2. Four combinations are mapped to 0.

3. All other 8 combinations are mapped to don’t cares.
4. All the variables are essential.

11.7. The four bases found in deoxyribonucleic acid (DNA) are adenine (abbrevi-
ated A), cytosine (C), guanine (G), and thymine (T). Consider the DNA patterns
shown in Table 11.10. Find the minimum set of variables to distinguish these
patterns.

11.8. Consider a set of uniformly distributed, incompletely specified index gener-
ation functions f : D — I, where B = {0,1}, D C B"and I = {l,...,k}.
Then, the probability that f can be represented with only x1, X2, ..., x,—1 and xp,
where p < nis 8,—p = y} . where y,—p = B g o o = 2%,
B =1—a,and M = 27. Prove this.

11.9. Consider a set of uniformly distritbuted index generation functions f :
B" — I, where B = {0,1} and I = {0,1,...,k}. Let PR be the probability
that f(x1,x2,...,X,) can be represented by using only p variables. Then
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PR=1—(1-8,_p)®,

where 8,_, is the probability that f(xi,x2,...,x,) can be represented by using
only x1, x2,...,Xp—1, and x,. Compute the numerical values of PR whenn = 20
and k = 2047, for p = 17,18, and 19. You can use the results of the previous
problem.

11.10. Consider a group of 64 people. Obtain the probability that the birthdays of
all the people are distinct. Assume that the probabilities of the birth are the same
for all 365 days in a year. Calculate the expected number of distinct birthdays in the
group of 64 people.

11.11. Assume that the probabilities of birth are the same for all 365 days in a year.
Calculate the expected number of distinct birthdays in a room with 365 people.






Chapter 12
Various Realizations

This chapter shows various realizations of index generation functions.

12.1 Realization Using Registers, Gates, and An Encoder

An index generator can be directly implemented using a Programmable Logic Array
(PLA) or a Content Addressable Memory (CAM). An index generator can also be
implemented using ordinary logic elements. Figure 12.1 [98] shows an index gener-
ator for an LPM implemented by registers, gates, and a priority encoder. A register
pair (Reg. 1 and Reg. 0) is used to store each digit of a ternary vector. For exam-
ple, if the digit is * (don’t care), the register pair stores (1,1). Thus, for »n bit data,
we need a 2n-bit register. The comparison circuit consists of an n-input AND gate
and n comparison circuits, each of which produces a 1 if and only if the input bit
matches the stored bit or the stored bit is don’t care (* or 11).

For each prefix vector of an n-input LPM index generator, we need a 2n-bit regis-
ter, n comparison circuits, and an n-input AND gate. For an n-input index generator
with k registered prefix vectors, we need k registers of 2n bits, nk comparison cir-
cuits, and & AND gates with n inputs. In addition, we need a priority encoder with k
inputs and [log, (k + 1)] outputs to generate the LPM address.

The demerit of this circuit is that it becomes complex as the number of registered
vectors increases.

12.2 LUT Cascade Emulator

In an LUT cascade, once the number of inputs and outputs for each cell are fixed,
only a limited class of functions can be realized. Thus, the LUT cascade emula-
tor! having the architecture shown in Fig. 12.2 has been developed [96]. It consists

!'In some publications [113], the emulator was called an LUT cascade. However, later the sequen-
tial circuit that emulates an LUT cascade is called an LUT cascade emulator.

T. Sasao, Memory-Based Logic Synthesis, DOI 10.1007/978-1-4419-8104-2_12, 137
© Springer Science+Business Media, LLC 2011
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Fig. 12.1 Index generator implemented using registers, gates, and a priority encoder
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of a large memory that stores the data for cells, a programmable interconnection
network, and a control circuit. It emulates an LUT cascade sequentially. That is,
the outputs of the various LUTs are produced in sequence starting with the leftmost
LUT. Although the emulator is slower than the LUT cascade, it is more flexible than
the LUT cascade.

A shifter that drives the programmable interconnection network is used for
memory packing [118], while a shifter that drives the output register is used to ac-
cumulate the outputs.

Example 12.2.1. Letus emulate the LUT cascade with four cells shown in Fig. 12.3
by the emulator [123].
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Fig. 12.3 Operation of an LUT cascade emulator

Step 1 To emulate Cell;, the two most significant bits of the address for memory
for logic are set to (0, 0) to specify the first page of the memory for logic, which
corresponds to the first cell. Also, the values of X are set to the lower address
bits of the memory for logic, as shown in Fig. 12.3a. This is done through the
programmable interconnection network in Fig. 12.2. By reading the content of
the first page, we obtain the outputs of Cell;.

Step 2 To emulate Cell,, the two most significant bits of address are set to (0, 1)
to specify the second page. Also, the values of X, are set to the middle address
bits, and the outputs of Cell; are connected to the least significant bits through
the programmable interconnection network, as shown in Fig. 12.3b. By reading
the content of the second page, we obtain the outputs of Cell,.

Step 3 To emulate Cells, the two most significant bits of address are set to (1, 0) to
specify the 3rd page. Also, the values of X3 are set to the middle address bits,
and the outputs of Cell, are connected to the least significant bits through the
programmable interconnection network, as shown in Fig. 12.3c. By reading the
content of the 3rd page, we obtain the outputs of Cells.

Step 4 To emulate Celly, the two most significant bits of address are set to (1, 1) to
specify the last page. Also, the values of X4 are set to the middle address bits,
and the outputs of Cells are connected to the least significant bits through the
programmable interconnection network, as shown in Fig. 12.3d. By reading the
content of the 4th page, we obtain the outputs of Celly4. At this point, the outputs
of all LUTSs have been obtained, and the complete circuit’s output is specified. m

12.3 Realization Using Cascade and AUX Memory

Here, we show a method to reduce hardware by using an auxiliary memory and a
comparator. Figure 12.4 illustrates the idea of the method.
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Fig. 12.4 Index generator using auxiliary memory

Algorithm 12.3.1. (Simplification of Index Generators).

1.

2.

3.

4.

Let [ be an index generation function. Let g be the function where the output
values for the nonregistered inputs in f are replaced by don’t cares.

Reduce the number of variables to represent g. Produce the circuit for g. In
general, the circuit for g is simpler than the circuit for f.

When the query data matches a registered vector, the circuit g produces correct
outputs. When the query data does not match any registered vector, the circuit
for g may produce wrong output values.

To detect the correct outputs, we use an auxiliary (AUX) memory with ¢ =
[log,(k + 1)] inputs and n outputs. The AUX memory stores corresponding reg-
istered vector for each address.

. Apply the output address of the circuit for g to the AUX memory, and read out

the registered vector in the AUX memory. If the output vector of the AUX memory
equals to the input vector, then the circuit for g produces the correct output value.
If the output vector of the AUX memory is different from the input vector, then the
input vector is not registered. In this case, the comparator sends 0 to the AND
gate. Thus, the circuit produces 0.

An ordinary logic circuit can be simplified by don’t cares [110]. The present

method has the following features:

The number of nonzero outputs (k) of the index generation function is much
smaller than the total number of input combinations 2”. In g, the outputs for the
nonregistered inputs are set to don’t cares.

To verify the correctness of the output of the circuit for g, we use the AUX
memory.

The total amount of hardware is smaller than the direct implementation of f. In
logic synthesis using memories, reduction of support variables is important. In the
index generation functions, the fraction of don’t cares is very large, and we can
often reduce the number of support variables. Details are shown in Chap. 11.

Example 12.3.1. (LUT Cascade and LUT Memory) Let us design the index gen-
erator for the registered vector table shown in Table 12.1. Since the number of the
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Table 12.1 Registered

Index x; xp X3 X4 X5 X6 X7 Xg X9 Xio X[|
vector table 1 001 0O0T1O0T1TT1O0O O
2 o011 11 101 0 1
3 oo01 1 111011 O
4 0O1 0 01 1 00 T1TO0 1
5 o1 0 0 1 1 01 1 1 1
6 1 00001 O0O0OT1TTUO0O O
7 1 000110010 1
8 1 0001 1 0T1TO0O0 1
9 1 0001 1 O0T1TT1T1 1
10 1 0100 0O0T1TUO0OTO0O 1
11 1 01001 0O0T1TO0 O
2 1100011010 1
3 11001001 1 1 1
14 1 101 00 O0O0O0O0O0 O
15 1 101 00 O0T1TTO0O0 1
Tal?le 12.2 Reduced Index X X X3 Xg X10 X1l
registered vector table 1 0 0 1 1 0 0
2 0 0 1 0 0 1
3 o 0 1 0 1 0
4 o 1 0 0 0 1
5 o 1 0 1 1 1
6 1 0 0 0 0 0
7 1 0 0 0 0 1
] I o o 1 0 1
9 1 0 0 1 1 1
10 1 0 1 1 0 1
11 1 0 1 0 0 0
12 1 1 0 o0 0 1
13 1 1 0 1 1 1
14 1 1 0 0 0 0
15 1 1 0 1 0 1

registered vectors is 15, the index generator has 4 outputs. It has 11 inputs, as well.
Let g be a function, where the output values for the nonregistered input vectors are
replaced by don’t cares. By reducing the number of variables, g can be represented
with only six variables {x1, x2, X3, X8, X10, X11}. This can be obtained by Algo-
rithm 11.3.1 with the help of a computer program. Sufficiency can be verified by
Table 12.2, where all the reduced vectors are different. Thus, six bits are sufficient
to distinguish the indices. Also, the set is minimal. That is, deletion of any vari-
able makes at least one pair of indices indistinguishable. Next, realize the reduced
function g by an LUT cascade. Figure 12.5 shows an index generator using the AUX
memory. Note that, in Fig. 12.5, only six variables {x;, x5, X3, Xg, X190, X11} are used
as the inputs for the LUT cascade. We designed the cascade with 5-LUTs. Table 12.3
shows the content of the AUX memory, where the values for {x4, x5, x¢, X7, X9} are
stored.
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Fig. 12.5 Index generator using auxiliary memory

:j)zllf 12.1114l e;fll'(l)lth table for B U Y4 Y5 Yo Y1 Y9

ay B o 0 0 1 0 0 1 0 1

0 0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 1

0 1 0 1 0 1 1 0 1

0 1 1 0 0 0 1 0 1

0 1 1 1 0 1 1 0 1

1 0 0 0 0 1 1 0 0

1 0 0 1 0 1 1 0 1

1 0 1 0 0 0 0 0 0

1 0 1 1 0 0 1 0 1

1 1 0 0 0 0 1 1 1

1 1 0 1 0 1 0 0 1

1 1 1 0 1 0 0 0 0

1 1 1 1 1 0 0 0 0

The second cell realizes the temporary index (z3, z2, 21, Zo). This index is used
to read the AUX memory. The output of the AND memory (ya4, Vs, 6, V7, V9) is
compared with the input values (x4, X5, X6, X7, X9). If they agree, the temporary
index is correct, then ( f3, f2, f1, fo) = (23,22, 21, 20) is the output. Otherwise, the
input query data is not in the AUX memory, and ( f3, f2, f1, fo) = (0,0,0,0) is
produced at the output.

Figure 12.5 shows the circuit. The total memory is

32x4x2416x5=256+ 80 =336

bits. Tables 12.4 and 12.5 are truth tables for the cells in the cascade. [
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Table 12.4 Truth table for

Index X1 X2 X3 Xg Xy90 Uy Uy U3 Uy
the first cell ] 0 0 1 1 o 0 0 0 1
2 0O 0 1 0 O 0o 0 1 O
3 0o 0 1 0 1 0o 0 1 1
4 0O 1 0 0 O 0O 1 0 O
5 o 1 0 1 1 0O 1 0 1
6 1 0 0 0 O 0O 1 1 0
7 1 0 0 0 O 0o 1 1 0
8 1 0 0 1 O 1 0 0 O
9 1 0 0 1 1 1 0 0 1
10 1 0 1 1 0 1 0 1 0
11 1 0 1 0 O 1 0 1 1
12 1 1 0 0 O 1 1 0 O
13 1 1 0 1 1 1 1 0 1
14 1 1 0 0 O 1 1 0 O
15 1 1 0 1 O 1 1 1 1
Table 12.5 Truth table for Index w; w, us wus X1 23 2 4 2
the second cell ] o 0 o0 1 o 0 0 0 1
2 0O 0 1 0 1 0O 0 1 O
3 0 0 1 1 0 0o 0 1 1
4 0O 1 0 0 1 0O 1 0 O
5 o 1 0 1 1 o 1 0 1
6 0 1 1 0 0 o 1 1 0
7 o 1 1 0 1 0O 1 1 0
8 1 0 0 0 1 1 0 0 O
9 1 0 0 1 1 1 0 0 1
10 1 0 1 0 1 1 0 1 0
11 1 0 1 1 O 1 0 1 1
12 1 1 0 0 1 1 1 0 O
13 1 1 0 1 1 1 1 0 1
14 1 1 0 0 O 1 1 0 O
15 1 1 1 1 1 1 1 1 1

12.4 Comparison of Various Methods

Example 12.4.1. Estimate the amount of hardware to implement index generation
functions for

1. n =10 and k = 500. Use a single LUT.
2. n = 10and k = 15. Use an LUT cascade.
3. n = 48 and k = 100. Use the hybrid method.
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4. n = 48 and k = 1,000. Use the super hybrid method.
5. n =32and k = 500,000. Use the standard parallel sieve method.

(Solution)

1. Single LUT.
When n = 10 and k& = 500. The number of inputs for the memory is n = 10,
and the number of outputs is ¢ = [log, (500 + 1)] = 9. Thus, the size of the
memory is 219 x 9 = 9 Kibits, where 1 Kibit denotes 2'° bits.

2. LUT Cascade.
Whenn = 10 and k = 15. Consider an LUT cascade with (K = 6)-input LUTs.
The number of inputs is # = 10, the number of rails is w = [log,(15+ 1)] = 4,
and the number of outputs is m = w = 4. The number of cells is

0= H(im - ’7160—_44—‘ B g =3

The total amount of memory is

20x4x3=3x%x2%=0.75x2'0,

or, 0.75 Kibits.

3. Hybrid Method.
When n = 48, ky = 100. ¢ = [log, (100 + 1)] = 7. In this case, an LUT
cascade would be too large, and so we use the hybrid method. Let the number of
inputs to the main memory be p = g + 2 = 9. In this case, by Corollary 10.5.1,
the fraction of remaining registered vectors is

E—14¢e¢
B E—

Since p = 9 and k; = 100, we have £ = 0.1953, and

)/1:1—81:

y1 = 1—-0.9084 = 0.0916.

Thus, the number of remaining vectors is y1k; ~ 9, which can be implemented
by an LUT cascade or a rewritable PLA.
The sizes of memories are as follows:

Main memory: 9-input, 7-outputs: 2° x 7 = 3.5 x 21% = 3.5 Kibits.
AUX memory: 7-input, 41-outputs: 27 x 41 = 5.1 x 219 = 5.1 Kibits.

Thus, the total memory size is 8.6 Kibits.

4. Super Hybrid Method.
When n = 48, ky = 1,000. g1 = [log, (1000 + 1)] = 10. In the hybrid method,
the remaining vector is 10% of the original vectors. That is, 100, which is fairly
large. Thus, we use the super hybrid method. In the super hybrid method, we use
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the first main memory with p; = ¢; + 1 = 11 inputs, and ¢; = 10 outputs. The
fraction of vectors not realized by the first IGU is

Sl — 14+ e_gl
&1 '

When, k; = 1,000 and p; = 11, we have §; = 0.48828 and y; = 0.2088. The
number of remaining vectors is ko = k1y1 =~ 209. g2 = [log,(209 + 1)] = 8.

The second main memory has p» = g2 +1 =8+ 1 = 9inputsand g, = 8
outputs. The fraction of vectors not realized by the second IGU is

’)/1:1—812

—1+e®
1) '

When, k» = 209 and p, = 9, we have & = 0.398437, and y, ~ 0.1752. Thus,
the number of remaining vectors is k3 = kY, >~ 36, which can be implemented
by an LUT cascade or a rewritable PLA.

The sizes of memories are as follows:

y2=1-68=

first main memory: 11-input, 10-outputs: 2'! x 10 = 20 Kibits.

first AUX memory: 10-input, 37-outputs: 2'® x 37 = 37 Kibits.
second main memory: 9-input, 8-outputs: 2° x 8 = 4 x 219 = 4 Kibits.
second AUX memory: 8-input, 39-outputs: 2% x 39 = 9.75 Kibits.

Thus, the total memory size is 70.75 Kibits.

5. Standard Parallel Sieve Method.
When k1 = 500,000, we have g; = [log,(500,000 + 1)] = 19. In the super
hybrid method, the remaining vector is 4% of the original vectors. That is, 20000,
which is very large. Thus, we use the standard parallel sieve method. In the stan-
dard parallel sieve method, the first main memory has p; = g1 = 19 inputs and
g1 = 19 outputs. The fraction of vectors not realized by the first IGU is

S] -1+ e 61
€1

When k1 = 500,000 and p; = 19, we have & = 0.953674 and y; = 0.35546.
Thus, the number of remaining vectors is ko, = kyy; >~ 177,733. and ¢, =
[log, (177733 + 1)] = 18.

The second main memory has p» = ¢, = 18 inputs and g = 18 outputs.
The fraction of vectors not realized by the second IGU is

y1=1—81=

52 — 14+ e—Sz
&2 '

When, k, = 177,733 and p, = 18, we have & = 0.6779976, and the number
of remaining vectors is k3 = kay, >~ 48662.

y2:1—52=
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In the similar way, we have

ps = 16, ks ~ 14,316.
pa =14, ks ~ 4,771,

ps = 13, kg ~ 1,155,

pe = 11, kg ~ 273.

p7 =9, ks~ 62.

Thus, the number of remaining vectors is kg ~ 62, which can be implemented
by an LUT cascade or a rewritable PLA.

Note that for each /GU;, the main memory has p; inputs and p; outputs, while
the AUX memory has p; inputs and (n — p;) outputs. Thus, the total amount of
memory is

pi2Pi + (n — p;)2Pi = n2Pi,

So, the total amount of memory for the parallel sieve method is

r
anpj :32‘(219+218+216+214+213+211 +29)

i=1

It is about 24-Mibit, where 1 Mibit denotes 229 bits. ]

Example 12.4.2. Consider a system that detects computer viruses. A complete sys-
tem using only hardware is too complex, so we use two-stage method: In the first
stage, suspicious patterns are detected by hardware, and in the second stage, a com-
plete match is performed by software only for the patterns detected in the first stage.
Here, we consider the hardware part in the first stage. Assume that we check the
text using a window of four characters, and the number of suspicious patterns is
k = 500,000. Fig. 12.6 shows the circuit to detect the suspicious patterns. Eight
4-stage shift registers are used to store four characters. These registers work as a
window. Note that the number of inputs to the memory is 4 x 8 = 32, and the
number of outputs is [log, (k + 1)] = 19.

8 8

(e 0

: 0e as .

8 + 8 + 8“\ I “‘ Output
[log, (k+1)]

Memory ——

Input (text)

Fig. 12.6 Virus scanning circuit
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A straightforward implementation requires a memory with impractical size:
[og, (k +1)]23? = 76 Gibits, where 1 Gibit denotes 23° bits. If we use the standard
parallel sieve method shown in Example 12.4.1, we need only 24 Mibits. ]

12.5 Code Converter

In this part, we consider a class of code converters that can be treated as index
generation functions.

Definition 12.5.1. An m-out-of-n code consists of (,':l) binary code words whose
weights are m.

Definition 12.5.2. An m-out-of-n to binary converter realizes an index generation
function with (::l) nonzero elements. It has n inputs and [log, (Zl) + 17 outputs.
When the number of 1’s in the inputs is not m, the converter produces the all O code.
The m-out-of-n code is produced in ascending lexicographical order. That is, the
smallest number is denoted by (0,0,...,0,1,1,..., 1), while the largest number is
denoted by (1,1,...1,0,0,...,0).

Example 12.5.1. When n = 6 and m = 3, we have the function shown in
Table 12.6.

Table 12.6 Registered vector
table for 3-out-of-6 to binary

3-out-of-6 code

X1 X X3 X4 X5 X6 Index
converter
0 0 0 1 1 1 1
0 0 1 0 1 1 2
0 0 1 1 0 1 3
0 0 1 1 1 0 4
0 1 0 0 1 1 5
0 1 0 1 0 1 6
0 1 0 1 1 0 7
0 1 1 0 0 1 8
0 1 1 0 1 0 9
0 1 1 1 0 0 10
1 0 0 0 1 1 11
1 0 0 1 0 1 12
1 0 0 1 1 0 13
1 0 1 0 0 1 14
1 0 1 0 1 0 15
1 0 1 1 0 0 16
1 1 0 0 0 1 17
1 1 0 0 1 0 18
1 1 0 1 0 0 19
1 1 1 0 0 0 20
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Theorem 12.5.1. Let f(x1,X2,...,Xn) be a m-out-of-n to binary converter.
Let X1 = (x1,X2,...,%) and X2 = (Xpt1,Xp42,...,%,) be a partition of
X = (x1,x2,...,%4). Then, the column multiplicity [, of the decomposition
f(X] , Xz) is

wp =27 (whenl<p<m)

m
,LL,,:I—FZ(I;) (whenm < p<n—1)
i=0

Hp = (n)—i—l (when p =n—1, orn)
m

Example 12.5.2. Consider the case of m = 2 and n = 9. The profile of the 2-out-
of-9 to binary converter is

(W1, p2, 13, L4, s, e, 7, s, o) = (2,4,8,12,17,23,30,37,37)

Thus, it can be realized by an LUT cascade as shown in Fig. 12.7. Note that the
rightmost LUT has 8 inputs. Lemma 4.2.2 shows that an §-LUT can be realized
with 5 modules of 6-LUTs. Thus, the total number of 6-LUTs to implemented the
functionis 6 +5 4 5 x 6 = 41. ]

Example 12.5.3. Consider the case of m = 2 and n = 20. The profile of the 2-out-
of-20 converter is

(2,4,8,12,17,23,30,38,47,57,68,80,93,107,122, 138, 155,173, 191, 191)

In this case, the LUT cascade realization is not attractive. Thus, we consider a
tree-type realization. Partition the inputs into X1 = (x,x2,...,X10) and X, =
(x11,X12,---,X20). The column multiplicity of the decomposition with respect to
(X1, X2) and (X», X;) are the same and are both 57. Thus, it can be realized by the
circuit shown in Fig. 12.8.

Another implementation is IGU shown in Fig. 10.1. If we can use the linear trans-
formation with many EXOR inputs, then the number of inputs to the main memory
is reduced to 9. The derivation of such a linear transformation is beyond the scope

of the book. ]
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Example 12.5.4. Consider the case of m = 3 and n = 20. The profile of the 3-out-
of-20 converter is

(2,4,8,16,27,43,65,94,131,177,233, 300, 379,471,577, 698, 835, 988,
1141, 1141)

In this case, the LUT cascade realization is impractical. To realize a tree-type circuit,
we partition the inputs into X; = (x1, x2,...,X10) and X5 = (x11, X12,...,X20)-
The column multiplicity of the decomposition with respect to (X, X;) and
(X2, X1) are the same and equal to 177. Thus, it can be realized by the tree-
type circuit shown in Fig. 12.9. Unfortunately, the output LUT has 16 inputs and 11
outputs, and is rather large. Since the function is an index generation function, it
can be realized as shown in Chap. 10.

Another implementation is IGU shown in Fig. 10.1. If we can use the linear trans-
formation with many EXOR inputs, then the number of inputs to the main memory
is reduced to 11. Again, the derivation of such a linear transformation is beyond the
scope of the book. ]

12.6 Remarks

This chapter presented various methods to implement index generation functions.
Given the number of variables n, the number of registered vectors k, and available
devices, we can select the best design method among various methods: single-
memory, LUT cascade, LUT cascade emulator, the hybrid method, the super hy-
brid method, and the standard parallel sieve method. This chapter is based on
[85,97,98,123].



150 12 Various Realizations

Problems

12.1. Realize the index generation function shown in Table 12.1. Use an LUT cas-
cade, where each LUT has at most 6 inputs. Compare the amount of memory to
implement the function by the method shown in Example12.3.1 and the LUT cas-
cade.

12.2. Realize the index generation function shown in Table 12.1. Use an LUT cas-
cade emulator, where each LUT has at most 6 inputs. Explain the operation of the
emulator. Compare the size of memory with the LUT cascade realization.

12.3. The standard parallel sieve method presented in Chapter 10 uses IGUs with
different sizes. Consider the parallel sieve method that uses IGUs with the same
sizes. Discuss the advantage and disadvantage of this approach [136].

12.4. Realize the 2-out-of-12 to binary converter.



Chapter 13
Conclusions

This book showed various methods to realize logic functions with LUTs. These
methods can be used to design FPGAs as well as custom integrated circuits. Main
applications are communication circuits and pattern matching circuits, where fre-
quent reconfiguration is needed. Major results are as follows:

1.

Chapter 4 showed a general method to realize logic functions by LUTs. The
number of 6-LUTSs to realize an n-variable function is (2" ~*—3)/3 or less, when
n=2r.

. Chapter 5 derived the number of LUTs to realize logic functions with small C-

measure (( f). The number of 6-LUTs to realize an n-variable function (n >
8) is:

(a) 5n — 35 orless, when pu(f) < 32.
(b) 2n — 11 or less, when p(f) < 16.
(c) n—5orless, when u(f) <8 (n = 3r).
(d) n —4orless, when u(f) <8 (n # 3r).

. Chapter 6 showed a method to reduce the number of LUTSs using nonstrict en-

coding in a functional decomposition. This method is a way to find a nondisjoint
decomposition.

. Chapter 7 showed various functions with small C-measures. These include

symmetric functions, sparse functions, LPM functions, segment index encoder
functions, and WS functions. Thus, these functions can be efficiently realized by
a cascade-based method.

. Chapter 8 derived upper bounds on the column multiplicity of a decomposition

chart for logic functions with weight u#. The number of 6-LUTs needed to realize
an n variable function is:

(a) 10 orless, whenn = 9 and u < 55.
(b) 15 orless, whenn = 10 and u < 47.
(c) 15 orless, when n 