
Bart Demoen
Phuong-Lan Nguyen

Tom Schrijvers
Remko Tronçon

THE FIRST 10
PROLOG PROGRAMMING

CONTESTS



The First 10
Prolog Programming Contests

Bart Demoen
K.U.Leuven, Belgium

Phuong-Lan Nguyen
UCO, Angers, France

Tom Schrijvers
K.U.Leuven, Belgium

Remko Tronçon
K.U.Leuven, Belgium



Editor Bart Demoen
Cover Design Remko Tronçon

The contents of this book are meant to be reproduced in every possible form and
without further permission of the authors, as long as no profit is made.

ISBN-10: 9090197826
ISBN-13: 9789090197821

Cover Image: Perfect Maze by Remko Tronçon, generated with Prolog, rendered
with METAPOST.

Printed in Belgium - 2005



About the authors

Bart Demoen (23-8-1953) has been involved in Prolog implementation since
1984 when he joined BIM (Everberg, Belgium), a software house with the mis-
sion to market its own Prolog system. Since 1987 he is at the Department of
Computer Science, K.U.Leuven, Belgium where he became a professor in 1992.
He enjoys research, teaching and implementation, and occasionally interferes with
comp.lang.prolog. He co-designed and/or co-implemented BIM-Prolog, dProlog,
ilProlog and hProlog, and contributed to XSB, HAL, SWI-Prolog and ISO Prolog.

Phuong-Lan Nguyen (7-10-1956) worked on Prolog during her Master’s Thesis
(1988) in Grenoble and ever since. She is now a Professeur Associé at the Institut
de Mathématiques Appliquées in Angers, France, and heavily involved in teach-
ing. She has published papers on type systems, efficient emulators and garbage
collection . . . all for Prolog.

Tom Schrijvers (10-6-1978) is currently a post-doc at the Department of Com-
puter Science, K.U.Leuven, Belgium. The subject of his doctoral thesis was the
implementation, analysis and optimization of Constraint Handling Rules and he
continues to be active in this domain. Tom’s favorite implementation language is
Prolog and he has contributed several libraries to SWI-Prolog.

Remko Tronçon (21-1-1980) is currently in the final phase of his Ph.D. at the
Department of Computer Science, K.U.Leuven, Belgium. He is working on the ef-
ficient implementation of query evaluation in the context of inductive learning and
the Prolog system hipP. He is also the current maintainer of the comp.lang.prolog
FAQ. As a member of the Jabber Software Foundation, he is also involved in the
development of instant messaging systems.

iii



iv



Preface

Prolog is an excellent programming contest language: Prolog is close enough to the
ultimate specification language (logic), so that the distance between problem and
solution is not too big. This means that, even if you don’t have a clue about a good
algorithm, you might still end up with a nice program that computes a useful result
(at least for small problem sizes). Prolog is also a real programming language,
which means you can express your favorite nifty optimal solution strategy in it.

Programming is enormously fun. Fun was indeed our main motivation for start-
ing the series of Prolog Programming Contests in 1994. Ask anybody who ever
participated in a Prolog Programming Contest: they loved it! There is a thrill in
trying to solve five problems in two hours, crammed in a small room filled with
ten or more sweaty teams doing the same. And there is a great satisfaction, un-
matched by any other daytime scheduled conference event, when the attempt is
even partially successful.

This book shows solutions to problems that were in the first 10 Prolog Program-
ming Contests. The solutions in this book were not constructed by participants
during the contest, since the contest rules always prevented that. However, many
of our solutions could have been constructed during the contest under extreme
time pressure, and so you will find many solutions using the generate and test
strategy, together with a higher than usual deployment of member/2, append/3,
findall/3 and even reverse/2. On the other hand, we have avoided dynamic
predicates (except in the solution of two problems), and we have often preferred
the Prolog if-then-else and once/1 predicate over the use of the !. We have also
avoided comments in the programs.

Mind you: this book does not attempt to teach you how to program in Prolog.
For that, you will need to read one of the excellent books on Prolog, or go through
one of the on-line Prolog tutorials. You can find them in the comp.lang.prolog

FAQ1. Keep in mind that reading the books is not enough: you must do lots of
exercises!

1Currently at http://www.cs.kuleuven.be/~remko/prolog/faq/

v



vi

So we assume that you have already some basic Prolog programming skills. Then,
how should you use this book? We suggest that you do not try to digest all
questions and answers at once. Read one problem statement, skip the hints, and
solve the problem, preferably with the clock ticking at your side. Oh well, if you
really want, you can read the hints anyway. When you are finished programming,
look at our solution, and compare it with yours. You might be inclined to make a
judgement like ‘My solution is better than yours’, or the other way around. Don’t
just stop there: learn from the differences.

In case you are particularly proud of your solution, or you think your program
is better than ours for some reason, please send it to us. We intend to make
the book available electronically very soon, and your solution might find its place
there - with proper credits to you of course. As an alternative, consider sending
an elaborated version of your program to the Logic Programming Pearls section
of the Journal of Theory and Practice of Logic Programming.

We have made sure that all the solutions in this book run as is in SWI-Prolog.
This means that, together with the lists library and a small contest library (see
Page 145), you always have a working program. Most solutions also run in Ciao,
SICStus Prolog and YAP. When they don’t, the reason is usually a small difference
in the lists library, or a missing common predicate.

Some of the problems lend themselves better to being solved in a different LP
language, such as CLP, CHR, XSB, ASP, . . .Have a go at it and spread the word!

This book is meant to be sold out quickly, so only a small number of copies were
printed. Soon you will be able to download the book for free. The web version of
the book will contain all our programs in a form that you can directly consult, a
set of test cases and, hopefully with your help, new solutions in Prolog and other
logic languages. You can find this material and further contact information at
http://www.cs.kuleuven.be/~dtai/ppcbook/.

Finally, before you dive into the problems, consider this quote from an honest
participant after the first contest: ‘I did my best to write a completely declarative
program, but I now realize this was absolutely unnecessary’. We hope you enjoy
the book!

September 2005
Leuven, Belgium Bart Demoen, Phuong-Lan Nguyen,
Angers, France Tom Schrijvers, Remko Tronçon



The History of the Prolog

Programming Contests

During the ILPS’93 program committee meeting in Philadelphia, it transpired
that Leon Sterling and Bart Demoen had independently been contemplating the
organization of a Prolog Programming Contest (PPC) during major Logic Pro-
gramming conferences. So, we decided to go for it. ILPS’93 was too close, and the
first upcoming opportunity seemed PAP’94 in London. Leon had the credibility
with Al Roth (general chair of PAP’94) to have the first Prolog Programming
Contest there.

The first set of problems was put together by Bart. Leon wanted to be involved, but
unfortunately he was too busy. At that time there were two well-known program-
ming contests: the ACM Programming Contest, and the Duke Internet Program-
ming Contest. We looked at the problem statements of both contests, and found
out they were geared at imperative programming languages: most of their prob-
lems were no fun to do in Prolog. Still, the first two PPCs contain problems that
were adapted from the Internet Programming Contest. We are therefore grate-
ful to Vivek Khera (and his colleagues) for making the IPC problem set publicly
available. Our first set of problems was tried out at the Department of Computer
Science at the K.U.Leuven by several members of the DTAI research group: Mau-
rice Bruynooghe, Alain Callebaut, Marc Denecker, Veronique Dumortier, Gerda
Janssens, André Mariën, Bern Martens, Anne Mulkers, Stef Renkens, and possibly
others. We can’t remember who won.

Back to PAP’94. Chris Moss reserved a computer lab at Imperial College for the
contest. The lab was huge: never again did the contest take place in such a large
lab! However, not a single contestant showed up . . .

In the Ithaca, USA, ILPS’94 PPC, the conditions were perfect, and we now con-
sider this to be the first PPC. The conference hotel was in the middle of nowhere,
and the fact that the contestants needed to walk to a Cornell Uni computer lab
was no problem. The lab was not too big, and that has always proven to be good

vii



viii

for the atmosphere during the contest. Anne Louise Gockel and Orlando Johnson
made sure that the lab was in good order software wise, and Wiktor Marek gave
the contest a good slot in the conference program. Evan Tick joined the orga-
nization effort at some point. Elsevier provided the price for the winning team:
the special “Ten Years of Logic Programming” double-volume issue of the Journal
of Logic Programming for each member of the winning team. SICS provided a
SICStus Prolog license for the duration of the contest; SICStus Prolog remained
the sole contest Prolog until 1999. We started the tradition of offering a Belgian
praline to every team member as soon as the team handed in its first solution.

The second Prolog Programming Contest was during ILPS’95, and took place at
a lab in Portland State University, Washington. Portland has a weather that
inspires taking part in a contest, so there were more people than the year before.
Evan Tick helped in the organization locally and also during the contest. Hannah
Linder and John Jendro from PSU helped in the practical local issues. MIT Press
provided books as prices.

The third Prolog Programming Contest took place in 1996 in Bad Honnef (near
Bonn, Germany) during JICSLP’96. The University of Bonn, Rainer Manthey, and
Lutz Plumer helped getting things off the ground locally, and especially Thomas
Fuchs was wonderful in his system support during the contest when machines
broke down and an expert was needed. One participant complained that ‘This
time, you had to actually read the questions before solving them!’

Up to that point, the problems were concocted solely by Bart, and it was time to
enlarge the permanent team. Phuong-Lan Nguyen joined, and from 1997 on, the
problems were molded into their final shape by the duo. In 1997, during ICLP
in Leuven, Belgium, the local support came from Jean Huens and his systems
support group. Lee Naish and Gerda Janssens were instrumental in making space
and time available in the program. From this year on, the prizes were sponsored
by the conference, i.e. indirectly by the Association of Logic Programming. The
prize was a box of Belgian chocolates and some JLP issues.

In 1998, JICSLP was in Manchester, England. Ian Pratt and Kung Kiu-Lau
provided help locally. This contest is remembered by the participants because
halfway, the fire alarm went off, and we had to clear the building for 15 minutes.
The prize was a University of Manchester mug. Clearly, participating is more
important than winning!

ICLP’99 was in Las Cruces, New Mexico, and was organized by Gopal Gupta.
He and his colleagues Ivan Strnad, Sonja Mendoza and Enrico Pontelli provided
local assistance. The problems could be solved in any reasonable LP language,
and solutions were submitted in XSB, SWI-Prolog, B-Prolog, BinProlog, SICStus
Prolog and even Oz. A novelty during this year’s contest was that we provided the
teams with a small test suite. On the other hand, we didn’t provide any immediate



ix

feedback on the submissions. This was probably what caused this contest to have
no winner. The contest rules indeed stipulated that the winning team must submit
at least three correct solutions, and this was not the case. This rule was relaxed
in later years.

A millennium bug prevented a PPC in 2000.

ICLP2001 was organized in Paphos, Cyprus, by Tony Kakas. He gave the Prolog
Programming Contest an excellent slot in the program, and a very nice room to
hold it in. Maria Tsolakis installed several Prolog systems on a number of ma-
chines. It was the first time that the contest was not held on a set of interconnected
machines. In fact, many teams used their laptop, so this contest is known to us as
the first laptop contest. Solutions were handed in on a floppy. A choice of Prolog
systems could be used: SWI-Prolog, SICStus, GNU, XSB, ECLiPSe and Ciao.
Everything went amazingly smooth. For the first time (and ever since), we also
held a web version of the contest. It starts at the same time as the contest at the
conference, has the same questions, but lasts 24 hours. From now on, the prize for
the winners became a t-shirt with the conference logo and in capital letters the
text ‘Winner’.

The eighth Prolog Programming Contest was at the occasion of ICLP2002 in
Copenhagen, Denmark. Henning Christiansen made sure we had a good room
and Jens Peter Secher was very helpful in making sure the machines were running
well. SICStus Prolog was the contest Prolog.

Mumbay, India was the place of the ninth Prolog Programming Contest, dur-
ing ICLP2003. R.K. Shyamasundar got us a room full of brand new machines
through sponsoring by RedHat India. Anbu and Sachin provided technical sup-
port and installed the software. SWI-Prolog became the official contest Prolog:
Jan Wielemaker helped installing it JIT! The questions were easier than ever: the
results showed it, and the participants were happier than ever.

And finally, the tenth Prolog Programming Contest was in Saint-Malo, France, at
the occasion of ICLP2004. Bart felt he couldn’t combine organizing the contest
with being a program co-chair, so two Ph.D. students working with him, Tom
Schrijvers and Remko Tronçon, took over. Bart Demoen and Vladimir Lifschitz
provided a time slot to hold the contest, while Mireille Ducassé made the local
arrangements to make the contest possible. Before and during the contest, we
could also count on Benjamin Sigonneau for support on site. This year’s formula
gave the contestants the possibility again to choose their favorite system from a
specific selection: Ciao, GNU Prolog, SWI-Prolog, XSB, and YAP.

This book ends with the 2004 Prolog Programming Contest, but the contests go
on: the one at ICLP2005 in Sitges, Spain is being prepared while this book is
written. We wish you can participate, either at the conference or over the net!



x

The Prolog Programming Contest Hall of Fame

The true spirit of the Prolog Programming Contests is that the only losers in this
contest are the people who did not participate. And there are winners of course,
agile Prolog programmers whose name is worth remembering. Here is a complete
list of the winners of the contests at the conferences:

ILPS 1994 Fergus Henderson, Peter Stuckey

ILPS 1995 Thomas Conway, Fergus Henderson, Peter Stuckey

JICSLP 1996 Slim Abdenader, Francesco Bugliesi, Thomas Frühwirth

ICLP 1997 Lee Naish, Peter Schachte, Peter Stuckey

JICSLP 1998 Tony Kusalik, Konstantinos Sagonas, David S. Warren

ICLP 2001 Henk Vandecasteele, Bert Van Nuffelen, Jan Wielemaker

ICLP 2002 Konstantinos Sagonas, Christian Schulte, Peter Stuckey

ICLP 2003 Vitaly Lagoon, Christian Schulte, Peter Stuckey

ICLP 2004 Bart Demoen, Konstantinos Sagonas, Peter Stuckey

The winners of the web contests also deserve eternal glory:

2001 Bernhard Pfahringer

2002 Warwick Harvey, Neil Yorke-Smith

2003 Bernhard Pfahringer

2004 Pierre Alexandre Favier, Jean Michel Leconte



Contents

Preface v

The History of the Prolog Programming Contests vii

The Prolog Programming Contest Hall of Fame . . . . . . . . . . . . . . x

1994 Ithaca, USA 1

Triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Domino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Crossword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1995 Portland, USA 19

Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Palindrome Prolog Program . . . . . . . . . . . . . . . . . . . . . . . . . 27
Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1996 Bonn, Germany 33

Nested Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1997 Leuven, Belgium 43

Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



xii CONTENTS

Hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Codegen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1998 Manchester, UK 59

Remote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Close Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Compress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1999 Santa Cruz, New Mexico 75

Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Similistar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Star Palindrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Möbius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Palm Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2001 Paphos, Cyprus 93

Spiral Cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

M-Queens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Trip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Tolerant Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Shop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2002 Copenhagen, Denmark 107

K4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bicentered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Antwerpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Shunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Mamadee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2003 Mumbay, India 121

Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Cheater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Spanning Spider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Longest Decreasing Subsequence . . . . . . . . . . . . . . . . . . . . . . 128

Cellular Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



CONTENTS xiii

2004 St-Malo, France 133

Cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Turtle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Knights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

The Contest Library 145



xiv CONTENTS



Contest I: 1994 Ithaca, USA

1. Triplets

Write a predicate triplets/1 which by backtracking unifies its argument with
all triplets [X, Y, Z] that satisfy the following two conditions: (1) X, Y and Z are
different integers between 0 and 9 (both included) (2) 10∗X+Y

10∗Y +Z
= X

Z
with infinite

precision.
E.g., suppose that [3, 5, 9] and [3, 1, 6] are the only solutions, then the output

looks as follows:

?- triplets(Triplets).

Triplets = [3, 5, 9] ;

Triplets = [3, 1, 6] ;

No

The order of the solutions is not important.

Hints This is a very small problem, so one can write it most quickly by a
simple generate and test. Reordering the goals makes it faster, but who cares. The
infinite precision condition is just there to slow you down, thinking for a while.

1



2 1994 Ithaca, USA

Solution

:- use_module(contestlib,[for/3]).

triplets([X,Y,Z]) :-

digit(X),

digit(Y),

digit(Z),

Z > 0,

X \== Y,

X \== Z,

Y \== Z,

(10*X + Y)*Z =:= (10*Y + Z)*X.

digit(Digit) :- for(Digit,0,9).



Spiral 3

2. Spiral

Write a predicate spiral/2, which will be called with two positive integers N and
M as arguments. Such a call should draw a rectangle with height N and width
M on the screen. This rectangle must contain the numbers from 1 to N ∗M in a
spiraling fashion. For example:

?- spiral(4,3).

1 2 3

10 11 4

9 12 5

8 7 6

The columns must be properly aligned to the right and occupy Width+1 positions,
where Width is the number of digits in the decimal representation of N ∗M .

Hints It is easy to print out a matrix row by row. The tricky part is computing
the matrix elements. In this case, the value of a matrix entry at position (I,J) is
the distance (+1) from the entry (1,1) along the spiral.

So, the solution is based on the predicate distance(N,M,I,J,D), which gives
in a N×M rectangle the distance between point (1,1) and point (I,J) along the
spiral. This distance is defined recursively, as illustrated by Figure 1.1.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 1.1: The recursive nature of distance.

The other issue in this problem is that you need to put just enough spaces
between the matrix elements. We use int width/2 to compute the number of
decimal positions of a number, and use this number to insert the spaces. The
predicate int width/2 is also used in some other solutions, so it is in the contest
library.



4 1994 Ithaca, USA

Solution

:- use_module(contestlib, [writeN/2, for/3, int_width/2, write_int/2]).

spiral(N,M) :-

NM is N*M,

int_width(NM,Width),

Width1 is Width + 1,

for(I,1,N),

nl,

for(J,1,M),

distance(N,M,I,J,Distance),

write_int(Distance,Width1),

fail.

spiral(_,_).

distance(_,_,1,J,D) :- !, D is J - 1 + 1.

distance(_,M,I,M,D) :- !, D is M + I - 2 + 1.

distance(N,M,N,J,D) :- !, D is N + 2*M - J - 2 + 1.

distance(N,M,I,1,D) :- !, D is 2*N + 2*M - I - 3 + 1.

distance(N,M,I,J,D) :-

N1 is N - 2,

M1 is M - 2,

I1 is I - 1,

J1 is J - 1,

distance(N1,M1,I1,J1,D1),

D is 2*N + 2*M + D1 - 4.



Domino 5

3. Domino

Domino is played as follows: each participant gets a number of stones. Domino
stones have two numbers of them, represented by two sets of dots, as depicted in
Figure 1.2.

������ ������
������ ������
	�	
�
 ������

���� ������
������������

������ ���
��� ������

������������
��� � 

!�!"�"
#�#$�$

%�%&�&
'�'(�(

)�)*�* +�+
,�, -�-.�.

/�/0�01�12�2

Figure 1.2: Some domino stones.

At the beginning of the game, a stone is put on the table, and each player in
turn must either add one of his stones to the ones already on the table, or pass.
The player who first gets rid of all his stones, wins. A stone can only be added if
there is another stone on the table with a free side containing number N , and if
the stone is added with its N -side touching a free N -side on the table. A stone
with two different numbers has two free sides initially (one for each number). A
stone with two equal numbers on it has three free sides. When a stone is put with
a free side touching a free side of another stone, both free sides become occupied.

We will consider a variant called domino solitaire: you get a set of stones and
you are to finish the game all by yourself. So, you start with one of your stones
on the table (you choose which one), and continue adding stones until you have
no more stones. This can fail of course.

Write a predicate domino/1 that, given a set of stones in the form of stone/2
facts, returns the order of the stones to be added incrementally to the table,
provided that the rules of the game are satisfied at all times. Only one solution
should be returned.

For example, given the facts

stone(2,2).

stone(4,6).

stone(1,2).

stone(2,4).

stone(6,2).

the following output would be correct:

?- domino(Stones).

Stones = [stone(1,2),stone(2,2),stone(2,4),stone(4,6),stone(6,2)]



6 1994 Ithaca, USA

Note that the solution list can represent more than one end configuration on
the table, as can be seen in Figure 1.3.

� � �� � � � �� �
� � �� � � � �� �
� � �	 	 
 
 
� �

� �  � � �� �
� �� � � � �� �

� � �� �
� �� �

� �� � � � �� �
� � �� �� �� �

   ! !
" "# #

$ $ $% %
& &' '

( ( () )
* * ** * *+ ++ +

, , ,- -

. ./ / 0 0 01 1
2 23 3 4 4 45 5
6 67 7 8 8 89 9

: : :; ;
< <= =

> >? ? @ @@ @A AA A

B BC C

D DE E
F F FG G

H HI I
J J JK K

L LM M
N N NO O

P PQ Q R RS S
T TU UV VW W

X XY Y Z Z[ [
\ \] ]^ ^_ _

` `a a b bc c
d de e f fg g
h hi i j jk k

l l lm m n no o
p p pq q r rs s
t t tu u v vw w

x x xy y
z z z{ {

Figure 1.3: Two configurations resulting from the solution.

The query would for instance fail on the following set of stones:

stone(1,2).

stone(2,3).

stone(4,5).

stone(5,6).

Hints When you play solitaire domino, it does not matter which stone you put
on the table first: the end result might look different, but whether you can use up
all stones does not depend on the first choice. So, the program starts by collecting
all the stones in a list with findall/3, and the first element of this list is put
on the table as the first stone. A list with free sides (i.e. where you can put new
stones) is initialized and maintained throughout.



Domino 7

Solution

:- use_module(library(lists), [select/3]).

domino(Chain) :-

findall(stone(X,Y),stone(X,Y),[FirstStone|RestStones]),

Chain = [FirstStone|RestChain],

init_freesides(FirstStone,FreeSides),

once(chain(FreeSides,RestStones,RestChain)).

init_freesides(stone(A,A),FreeSides) :- !, FreeSides = [A,A,A].

init_freesides(stone(A,B),FreeSides) :- FreeSides = [A,B].

chain( _, [], []).

chain(FreeSides,Stones,[Stone|Chain]) :-

select(Stone,Stones,RestStones),

add_stone(Stone,FreeSides,RestStones,Chain).

add_stone(stone(A,A),FreeSides,RestStones,Chain) :- !,

once(select(A,FreeSides,RestFreeSides)),

chain([A,A|RestFreeSides],RestStones,Chain).

add_stone(stone(A,B),FreeSides,RestStones,Chain) :-

(

once(select(A,FreeSides,RestFreeSides)),

chain([B|RestFreeSides],RestStones,Chain)

;

once(select(B,FreeSides,RestFreeSides)),

chain([A|RestFreeSides],RestStones,Chain)

).



8 1994 Ithaca, USA

4. Crossword

You get a set of facts as shown below:

size(5).

black(1,3).

black(2,3).

black(3,2).

black(4,3).

black(5,1).

black(5,5).

These facts represent the empty crossword puzzle of Figure 1.4(a).

(a) Empty puzzle

a s p o

d o i k

a o r e

m a u r

l i s

(b) Solved puzzle

Figure 1.4: Empty and solved puzzle.

You also get one fact words/1 with a list of words, for instance:

words([do,ore,ma,lis,ur,as,po,so,pirus,oker,al,adam,ik]).

All words have at least two characters. Fill the puzzle with all the words exactly
once. If that is impossible, fail. The solved puzzle is shown in Figure 1.4(b).
Write a predicate crossword/1, which unifies its argument with a list of words.
The order in this list indicates how these words can be used to fill out the puzzle.
As an example:

?- crossword(Puzzle).

Puzzle = [as,po,do,ik,ore,ma,ur,lis,adam,so,al,pirus,oker]

i.e. first all horizontal words, row by row and in a row as they occur from left
to right, and then all the vertical words, column by column, from high to low.

If there is more than one solution, your program should produce them all by
backtracking. Every non-black square belongs to a word of two or more characters.



Crossword 9

Hints The idea behind our solution is this: we transform the list of words
into a list of character sequences that represent the words, i.e. if the word list is
[abc,de,fghi], the transformed list is: [[a,b,c],[d,e],[f,g,h,i]]. The predicate
word2chars/2 takes care of that. We also transform the empty crossword puzzle
into a list of open spaces, where each open space represents a number of consecutive
white squares as a list of variables: that is done by make empty words/1. Figure
1.5 should clarify that.

A B C D

E F G H

I J K L

M N O P

Q R S

[[A,B], [C,D], [E,F], [G,H], [J,K,L], [M,N], [O,P], [Q,R,S],

[A,E,I,M], [B,F], [N,Q], [C,G,J,O,S], [D,H,L,P]]

Figure 1.5: Left: the puzzle with a variable in each white square; right: the list of
open spaces for words to fill in.

Finally, these two lists (characters and open spaces) are matched. You can
obtain a very efficient program by carefully choosing the order in which these two
lists match up.

This problem is discussed in Pascal Van Hentenryck, Mehmet Dincbas: For-
ward Checking in Logic Programming. Proceedings of ICLP’87, 229-256.



10 1994 Ithaca, USA

Solution

:- use_module(library(lists),[nth1/3, select/3]).

crossword(Puzzle) :-

words(WordList),

word2chars(WordList,CharsList),

make_empty_words(EmptyWords),

fill_in(CharsList,EmptyWords),

word2chars(Puzzle,EmptyWords).

word2chars([],[]).

word2chars([Word|RestWords],[Chars|RestChars]) :-

atom_chars(Word,Chars),

word2chars(RestWords,RestChars).

fill_in([],[]).

fill_in([Word|RestWords],Puzzle) :-

select(Word,Puzzle,RestPuzzle),

fill_in(RestWords,RestPuzzle).

make_empty_words(EmptyWords) :-

size(Size),

make_puzzle(Size,Puzzle),

findall(black(I,J),black(I,J),Blacks),

fillblacks(Blacks,Puzzle),

empty_words(Puzzle,EmptyWords).

make_puzzle(Size,Puzzle) :-

length(Puzzle,Size),

make_lines(Puzzle,Size).

make_lines([],_).

make_lines([L|Ls],Size) :-

length(L,Size),

make_lines(Ls,Size).

fillblacks([],_).

fillblacks([black(I,J)|Blacks],Puzzle) :-

nth1(I,Puzzle,LineI),

nth1(J,LineI,black),

fillblacks(Blacks,Puzzle).



Crossword 11

empty_words(Puzzle,EmptyWords) :-

empty_words(Puzzle,EmptyWords,TailEmptyWords),

size(Size),

transpose(Size,Puzzle,[],TransposedPuzzle),

empty_words(TransposedPuzzle,TailEmptyWords,[]).

empty_words([],Es,Es).

empty_words([L|Ls],Es,EsTail) :-

empty_words_on_one_line(L,Es,Es1),

empty_words(Ls,Es1,EsTail).

empty_words_on_one_line([],Tail,Tail).

empty_words_on_one_line([V1,V2|L],[[V1,V2|Vars]|R],Tail) :-

var(V1), var(V2), !,

more_empty(L,RestL,Vars),

empty_words_on_one_line(RestL,R,Tail).

empty_words_on_one_line([_|RestL],R,Tail) :-

empty_words_on_one_line(RestL,R,Tail).

more_empty([],[],[]).

more_empty([V|R],RestL,Vars) :-

( var(V) ->

Vars = [V|RestVars],

more_empty(R,RestL,RestVars)

;

RestL = R,

Vars = []

).

transpose(N,Puzzle,Acc,TransposedPuzzle) :-

( N == 0 ->

TransposedPuzzle = Acc

;

nth_elements(N,Puzzle,OneVert),

M is N - 1,

transpose(M,Puzzle,[OneVert|Acc],TransposedPuzzle)

).

nth_elements(_,[],[]).

nth_elements(N,[X|R],[NthX|S]) :-

nth1(N,X,NthX),

nth_elements(N,R,S).



12 1994 Ithaca, USA

5. Loops

You get a directed graph in the form of arrow/2 facts as in:

arrow(a,b).

arrow(b,c).

arrow(c,c).

arrow(a,d).

arrow(d,a).

with obvious meaning. Write a predicate loops/1 that unifies its argument with a
(possibly empty) list of all the minimal cycles in the graph. A cycle is represented
by a list containing all the nodes in the cycle in the order in which they are linked
by the arrows, and starts and ends with the same node. A minimal cycle does
not properly contain any other cycle. Every minimal cycle of the graph should be
given exactly once. For the example, your program could give any of the following
lists as solution:

[[c,c],[a,d,a]]

[[c,c],[d,a,d]]

[[a,d,a],[c,c]]

[[d,a,d],[c,c]]

The order in the list of cycles is irrelevant, and so is the actual start node of a
cycle.



Loops 13

Hints A minimal cycle is a cycle that does not contain the same node more
than once. Therefore, to collect all the minimal cycles, we can pick any node and
collect the minimal cycles starting at that node; then, we remove the selected node
from the graph, and restart the procedure.

Figure 1.6(a) shows a graph. Initially, node a is picked, and its minimal cycles
are constructed. There are two of them, and they are indicated in Figure 1.6(b).
Then, the arrows that involve node a are removed, leading to the graph in Figure
1.6(c). At that point, the recursive call to findloops/3 in the program is made.

a

b

c

d

(a) Initial Graph

a

b

c

d

(b) Loops involving
node a

b

c

d

(c) The graph after re-
moving arrows from/to
node a

Figure 1.6: The three basic steps in the program.



14 1994 Ithaca, USA

Solution

:- use_module(library(lists), [append/3, member/2]).

loops(Loops) :-

findall(arrow(A,B),arrow(A,B),AllArrows),

findloops(AllArrows,[],Loops) .

findloops([], AllLoops,AllLoops).

findloops(Arrows,AccLoops,AllLoops) :-

Arrows = [arrow(Start,_)|_],

findall([Start|Path],

path(Start,Start,Arrows,[],Path),LoopsFromStart),

append(LoopsFromStart,AccLoops,NewAccLoops),

delete_node(Arrows,Start,RestArrows),

findloops(RestArrows,NewAccLoops,AllLoops) .

path(Start,Current,Arrows,Visited,Loop) :-

member(arrow(Current,Next),Arrows),

\+ member(Next,Visited),

Loop = [Next|RestLoop],

( Next == Start ->

RestLoop = []

;

path(Start,Next,Arrows,[Next|Visited],RestLoop)

).

delete_node( [], _, []).

delete_node([A|As],Node,Arrows) :-

( (A = arrow(Node,_) ; A = arrow(_,Node)) ->

delete_node(As,Node,Arrows)

;

Arrows = [A|RestArrows],

delete_node(As,Node,RestArrows)

).



Path 15

6. Path

Consider a square board with a start point and a final point. The start point will
always be (1, 1). The final point is given by a fact like goto(1,4,final), and the
size of the board is given by a size/1 fact. There are also facts for goto/3, as in
the following example:

goto(1,1,up).

goto(1,3,right).

goto(3,3,down).

goto(3,2,left).

The above facts mean: when your position is (1, 1), then you must go up; when
your position is (1, 3), go right; . . . By following these goto/3 instructions, it is
easy to construct a path from the start point to the final point. Too easy in fact.

Luckily, a mean demon has removed some information from the board: it
has taken away some goto/3 facts, such that the path is no longer completely
represented. Still, it was not that mean, since no two neighboring squares in the
path have their information removed, neither is the final point, and at most two
neighbors of a removed square belong to the correct path (diagonally touching
squares are not considered neighbors). It has become a bit more difficult, but you
can still easily find the path.

However, a second, much meaner demon has introduced information for every
square not on the path and in such a way that, if you follow this information, you
will either run around in circles or fall off the board (in particular, you will not
meet emptied squares). Figure 1.7(a) shows a mutilated board:

right right left up

right down up

up down up

up down right final

(a) Given board

right right left up

right down up

up down up

up down right final

(b) Same board with
path

Figure 1.7: An example.

That board corresponds to the set of facts:



16 1994 Ithaca, USA

goto(1,4,right). goto(2,4,right). goto(3,4,left). goto(4,4,up).

goto(2,3,right). goto(3,3,down). goto(4,3,up).

goto(1,2,up). goto(2,2,down). goto(4,2,up).

goto(1,1,up). goto(2,1,down). goto(3,1,right). goto(4,1,final).

size(4).

Write a predicate path/1 which delivers the correct path as a list, starting
with (1,1), ending in the final point, and ordered along the path. So, in the above
example, we would get:

?- path(X).

X = [(1,1),(1,2),(1,3),(2,3),(3,3),(3,2),(3,1),(4,1)]

That path is shown in Figure 1.7(b).

Hints Compared to the usual path search in a maze, there are two snags: the
information goto/3 is missing for some points, and some points lead you in a bad
direction (one that leads to a loop or off the board). One doesn’t really need to
distinguish the two possibilities as long as one always checks for loops and stays
on the board. The only thing to take care of is that, when there is no goto/3 fact,
all four directions are tried.



Path 17

Solution

:- use_module(library(lists),[member/2]).

path([StartPoint|RestPath]) :-

StartPoint = (1,1),

Visited = [StartPoint],

complete_path(1,1,Visited,RestPath).

complete_path(I,J,_,ResultPath) :-

goto(I,J,final),

!,

ResultPath = [].

complete_path(I,J,Visited,ResultPath) :-

( goto(I,J,Direction) ->

true

;

true

),

next_square(Direction,I,J,NewI,NewJ),

\+ bad_move(NewI,NewJ,Visited),

ResultPath = [(NewI,NewJ)|TailResultPath],

complete_path(NewI,NewJ,[(NewI,NewJ)|Visited],TailResultPath).

bad_move(I,J,Visited) :- member((I,J),Visited).

bad_move(I,J, _) :- (I < 1 ; J < 1).

bad_move(I,J, _) :- size(N), (I > N ; J > N).

next_square( up, I,J, I,NewJ) :- NewJ is J + 1.

next_square( down, I,J, I,NewJ) :- NewJ is J - 1.

next_square( left, I,J, NewI, J) :- NewI is I - 1.

next_square(right, I,J, NewI, J) :- NewI is I + 1.



18 1994 Ithaca, USA



Contest II: 1995 Portland,

USA

1. Triangle

Write a predicate triangle/1, which is called with its argument N instantiated
to a non-negative integer, and which draws a triangle of size N on the screen. For
example, a triangle of size 5 looks like this:

*
* *

* * *
* * * *

* * * * *

Note that there is a space between every two stars on a horizontal line. Between
the top of a triangle of size N and the left side of the screen, there should not be
more than (N+2) spaces.

Hints In the following picture, the significant leading spaces are indicated by
the symbol . Observe that

*
* *

* * *
* * * *

* * * * *
* * * * * *

= +

*
* *
* * *
* * * *
* * * * *
* * * * * *

So, each line in the picture is a conjunction of a decreasing number of spaces,
an increasing number of stars, and a newline.

19



20 1995 Portland, USA

Solution

:- use_module(contestlib, [writeN/2]).

triangle(N) :-

Stars = 1,

triangle(N,Stars).

triangle(_).

triangle(Spaces,Stars) :-

Spaces > 0,

writeN(Spaces,’ ’),

writeN(Stars,’* ’),

nl,

Spaces1 is Spaces - 1,

Stars1 is Stars + 1,

triangle(Spaces1,Stars1).



Cycle 21

2. Cycle

Write a predicate cycle/3 that is to be called with positive (non-zero) integers
as the first two arguments and a free third argument. Such a call must succeed
exactly once and unify the third argument with a list of integers (from 0 to 9)
that represents the decimal cycle you get when dividing the first argument by the
second. Some examples:

?- cycle(3,4,C) .

C = [0] % since 3/4 = 0.250000...

?- cycle(4,3,C) .

C = [3] % since 4/3 = 1.333...

?- cycle(1,7,C) .

C = [1,4,2,8,5,7] % since 1/7 = 0.142857142857...

In the last example, C = [4,2,8,5,7,1] (and any other rotation of it) is also a
correct answer.

Hints Our solution builds up a list of subsequent remainders and quotients (in
the form Remainder ∗ Quotient). As soon as the same remainder shows up, the
corresponding Quotients form the repeating fraction.



22 1995 Portland, USA

Solution

cycle(Dividend,Divisor,Repetition) :-

Remainder is Dividend mod Divisor,

RemQuotList = [],

divide(Remainder,Divisor,RemQuotList,Repetition).

divide(Remainder,_,RemQuotList,Repetition) :-

find_repetition(RemQuotList,Remainder,[],Repetition),

!.

divide(Remainder,Divisor,RemQuotList,Repetition) :-

Remainder10 is 10 * Remainder,

Quot is Remainder10 // Divisor,

NewRemainder is Remainder10 - Divisor*Quot,

divide(NewRemainder,Divisor,

[Remainder*Quot|RemQuotList],Repetition).

find_repetition([X*Quot|RemQuotList],Remainder,In,Out) :-

( Remainder == X ->

Out = [Quot|In]

;

find_repetition(RemQuotList,Remainder,[Quot|In],Out)

).



Powers 23

3. Powers

Write a predicate powers/3, which is called with as first argument a list of strictly
positive integers, as second argument a strictly positive integer N , and a free third
argument. Such a call must succeed exactly once and unify the third argument
with the list that contains the smallest N integers (in ascending order) that are
a positive (non-zero) power of one of the elements of the first argument. Some
examples:

?- powers([3,5,4],17,Powers) .

Powers = [3,4,5,9,16,25,27,64,81,125,243,256,625,729,1024,2187,3125]

?- powers([2,9999999,9999999],20,Powers) .

Powers = [2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,

65536,131072,262144,524288,1048576]

?- powers([4,2],6,Powers) .

Powers = [2,4,8,16,32,64]

Hints This is a variant of the Hamming problem. We can solve it by simply
generating the first N powers of all the given numbers, collect them with setof/3,
and then take the smallest N. However, just as for the Hamming problem, we can
do better.

Suppose the query is ?- powers([3,2,5],7,Powers). We start by construct-
ing the list of pairs [(2,2),(3,3),(5,5)], which is sorted and which has no two pairs
with the same first component. In a pair (P,F), P is the smallest power of F that
is not in the solution list yet. So, the first component of the first element of the
pair-list is the next element in the output we are constructing. We remove this
pair, compute the next power of F (i.e. P∗F) and insert the pair (P∗F,F) into the
pair-list, respecting the invariants.

You should think about why remove power/3 can actually remove pairs without
taking the F-component of the pairs into account. This is crucial to not generating
duplicates in the output, but it can also reduce the pair-list, as you can check if
you follow the execution of the query ?- powers([2,4],6,Powers).



24 1995 Portland, USA

Solution

powers(Factors,N,Powers) :-

sort(Factors,SFactors),

pair(SFactors,Pairs),

first_powers(N,Pairs,Powers).

pair([],[]).

pair([X|R],[(X,X)|S]) :- pair(R,S).

first_powers(N,[(Power,Factor)|PFs],[Power|Powers]) :-

( N == 1 ->

Powers = []

;

N1 is N - 1,

remove_power(Power,PFs,PFs1),

Power1 is Power * Factor,

sorted_insert(PFs1,(Power1,Factor),PFs2),

first_powers(N1,PFs2,Powers)

).

remove_power(Power,PFsIn,PFsOut) :-

( PFsIn = [(Power,_)|RestPFsIn] ->

remove_power(Power,RestPFsIn,PFsOut)

;

PFsOut = PFsIn

).

sorted_insert([],X,[X]).

sorted_insert([A|R],X,Out) :-

( A @< X ->

Out = [A|RestOut],

sorted_insert(R,X,RestOut)

;

Out = [X,A|R]

).



Exit 25

4. Exit

Consider a maze with the following properties: every location in the maze is
characterized by two coordinates (X,Y), both of which are integers; the maze has
one entry (by convention on position (1,1)), and one exit. You guessed it: you will
have to find the coordinates of the exit. You can interrogate the maze by means
of two predicates: move/2 and at exit/0. The goal at exit succeeds if and only
if your current position is the one of the exit. The action of the goal move/2 is a
bit more complicated: you call it with ground arguments representing a position
(e.g. ?- move(3,4)); if the maze is such that you can go in one step from your
current position to the position (3,4), the call succeeds and the move is made, i.e.
your current position becomes the location (3,4). If you cannot go in one step
from your current position to (3,4) the goal fails, and you are thrown back to the
entry. In other words: whenever you try to make an impossible step, your current
position becomes (1,1) again. The same happens if you call move/2 with free or
otherwise bad arguments. To limit the possibilities: a direct step is only possible
to an adjacent position (X or Y coordinates differ by one).

Write a predicate exit/1, which, when called with a free argument unifies that
argument with the coordinates of the exit of the maze. The size and shape of the
maze is not given (move/2 fails if it is called with a non-existing position, and
throws you back to the entry).

Hints There are three quirks in this problem: (1) you cannot really test your
solution, unless you simulate a maze; (2) you have no idea how large the maze
is, neither do you know its global shape; and (3), if a move fails, you cannot
just backtrack over the attempt, because you are thrown back to the entry of the
maze! It is essential that this failure to move is remembered, and that a new walk
starting from (1,1) is initiated with the additional information. The temptation
to use assert/1 might feel irresistible, but we can do perfectly without it. Our
program keeps track of the walls in the maze, and also of the places visited in the
most recent walk starting from the origin. Note how the failure of a move (and
being thrown back to the entry) does not mean we have to backtrack in the Prolog
program.

Also note how a move must be undone after the recursive call to walk/4 has
failed: upon backtracking, we indeed need to retrace our steps, otherwise we might
attempt new moves from a position we are not at.



26 1995 Portland, USA

Solution

:- use_module(library(lists), [member/2]).

exit(Exit) :-

Walls = [],

BeenTheres = [],

StartPoint = (1,1),

once(walk(StartPoint,Walls,BeenTheres,Exit)).

walk(Point, _, _,Point) :- at_exit.

walk(Point,Walls,BeenTheres,Exit) :-

next_point(Point,NextPoint),

\+ member(NextPoint,BeenTheres),

Wall = wall(Point,NextPoint),

\+ member(Wall,Walls),

( move(NextPoint) ->

(

walk(NextPoint,Walls,[NextPoint|BeenTheres],Exit)

;

move(Point),

fail

)

;

walk((1,1),[Wall|Walls],[],Exit)

).

move((I,J)) :- move(I,J).

next_point((I,J),(NextI,NextJ)) :- NextI = I, NextJ is J + 1.

next_point((I,J),(NextI,NextJ)) :- NextI = I, NextJ is J - 1.

next_point((I,J),(NextI,NextJ)) :- NextJ = J, NextI is I + 1.

next_point((I,J),(NextI,NextJ)) :- NextJ = J, NextI is I - 1.



Palindrome Prolog Program 27

5. Palindrome Prolog Program

A Prolog program (PP) can be executed under the usual Prolog strategy, and
also under the reverse Prolog strategy. The reverse Prolog strategy selects clauses
in reverse lexical order and literals in a clause from right to left. We will only
consider PPs without cut, negation, if-then-else and disjunction in the body. A
PP is a palindrome with respect to a query ?- run(X). if this query computes
exactly the same solutions (order, multiplicity) when executed under the Prolog
strategy as under the reverse Prolog strategy. You must write a predicate ppp/0

that, for a given PP, decides whether the PP is palindrome (a PPP) for the goal
run(X). The PP is given as a set of facts of the form pp/2, whose first argument
is the head of a clause, and whose second argument is the body of a clause (in the
form that Prolog’s clause/2 would have returned it if the PP was in the dynamic
database). Your predicate ppp/0 succeeds if and only if the facts pp/2 represent
a PPP with respect to the query.

pp(run(1),true). pp(run(1),true). pp(run(1),true).

pp(run(2),true). pp(run(2),true). pp(run(2),run(2)).

pp(run(1),true). pp(run(3),true).

?- ppp .

No ?- ppp . ?- ppp2.

Yes No

The only built-in predicate your solution must be able to deal with, is true/0.
You might have noticed that the property PPP is not decidable because the PP
could loop. Still, even though the program in the rightmost example loops (for
both strategies), it is possible to decide that it is not a PPP. You do not need to
explore the whole search tree to detect this.

Start by writing a ppp/0 that works for loop-free programs (this is relatively
easy). When this is finished, write a ppp2/0 that also works on non-PPP-programs
containing a loop (for either strategy), but for which it is still decidable.

Hints Our ppp/0 solution solves the problem for terminating programs. It
works as follows: collect the clauses in a list named Program1; reverse the program
(both the order of the clauses and the order of the goals in a body) to obtain
Program2; then run both programs independently, collecting all their answers with
findall/3, and then compare the answer lists. This approach works because the
program terminates.

Our ppp2/0 solves the problem for (some) non-terminating non-PPPs. If only
Prolog had a built-in that returns the nth answer of a goal . . . we made it ourselves:
find nth answer/3. We count the solutions by using assert/retract on a dynamic
predicate answers to skip/1.

The code common to ppp/0 and ppp2/0 is in the first program.



28 1995 Portland, USA

Solution

:- use_module(library(lists), [member/2]).

ppp :-

findall(pp(Head,Body),pp(Head,Body),Program1),

reverse_program(Program1,[],Program2),

Query = run(_),

findall(Query,exec(Query,Program1),Answers1),

findall(Query,exec(Query,Program2),Answers2),

is_a_copy(Answers1,Answers2).

exec((Goal1,Goal2),Program) :- !,

exec(Goal1,Program),

exec(Goal2,Program).

exec(true,_) :- !.

exec(Head,Program) :-

member(Clause,Program),

copy_term(Clause,pp(Head,Body)),

exec(Body,Program).

reverse_program([],L,L).

reverse_program([pp(H,B)|R],In,Out) :-

reverse_body(B,true,NewB),

reverse_program(R,[pp(H,NewB)|In],Out).

reverse_body((A,B),In,Out) :- !, reverse_body(B,(A,In),Out).

reverse_body(A,In,(A,In)).

is_a_copy(A,B) :-

numbervars(A,1,N),

numbervars(B,1,N),

A = B.



Palindrome Prolog Program 29

:- dynamic answers_to_skip/1.

ppp2 :-

findall(pp(Head,Body),pp(Head,Body),Program1),

reverse_program(Program1,[],Program2),

repeat(0,N),

find_nth_answer(N,Program1,Answer1),

find_nth_answer(N,Program2,Answer2),

( Answer1 == nomore, Answer2 == nomore ->

! % stop the repeat and succeed

; is_a_copy(Answer1,Answer2) ->

fail % ok, try next answers

;

!,

fail % different answers found: fail

).

ppp2.

find_nth_answer(N,Program,Goal) :-

Goal = run(_),

set_answers_to_skip(N),

exec(Goal,Program),

answers_to_skip(M),

( M == 0 ->

!

;

NewM is M - 1,

set_answers_to_skip(NewM),

fail

).

find_nth_answer(_,_,nomore).

repeat(I,I).

repeat(I,J) :-

I1 is I + 1,

repeat(I1,J).

set_answers_to_skip(N) :-

retractall(answers_to_skip(_)),

assert(answers_to_skip(N)).



30 1995 Portland, USA

6. Numbers

Consider an infinite grid with a finite number of its segments lit up. These lit up
segments are represented by the given facts lit/4, which have start and end point
coordinates as arguments. Like on a digital display, these lit up parts can form
numbers from 0 to 9. For example, a grid with every decimal number is depicted
in Figure 2.1(a).

��
��

��
��
�

��
��
�
��
��

��
���
��
�

��
���
��
�

� � � � � � �	 	 	 	 	 	 	 
 
 
 
 
 
 
 
� � � � � � � ��
��


�
��
�

� � � � � � �� � � � � � �

��
��

��
��
�

��
��
�
��
��

� �� �� �

(a) All numbers

� � � � � � � � � � � � � �� � � � � � � � � � � � �

��
��
��
�

��
��
��
��

(b) Not an
eight

��
��

��
��

��
��

� � � � � � � �� � � � � � �

(c) Tilted
and hidden
numbers

Figure 2.1: Examples of grids with numbers.

Write a predicate numbers/1 which unifies its argument with a list (without du-
plicates, order is not important) of all the numbers that are recognizable in the
given set of facts. For Figure 2.1(a), this would be (up to the order in the list):

?- numbers(L).

L = [0,1,2,3,4,5,6,7,8,9]

Suppose the dot in the grid of Figure 2.1(a) indicates the point with coordinates
(0,0), then the number 3 in that figure is represented by the facts:

lit(1,2,2,2). lit(2,2,2,3). lit(2,4,2,3). lit(2,3,1,3). lit(2,4,1,4).

No scaling should be performed, i.e. you should not recognize the number 8 in
Figure 2.1(b). On the other hand, numbers can be rotated and/or recognizable as
a part of a configuration of lit up segments. E.g. in Figure 2.1(c), we have:

?- numbers(L).

L = [1,3,4,7]

The orientation of the numbers does not need to be the same, and one lit up
segment can be used as part of more than one number (for instance, a 4 and a 1
is hidden in a 9, which in turn is also a rotated 6).



Numbers 31

Hints Each number has a description of how it can be formed. This description
is a sequence of instructions up-down-left-right that, starting from a position, form
the number. Numbers can also be rotated 0, 90, 180 or 270 degrees.



32 1995 Portland, USA

Solution

:- use_module(library(lists), [member/2]).

:- use_module(contestlib, [map/3]).

numbers(Numbers) :- findall(Number,number_in_grid(Number),Numbers).

number_in_grid(Number) :-

description(Number,Description),

once(((lit(X,Y,_,_) ; lit(_,_,X,Y)),

map(Description,rotate(_),RotatedDescription),

matches(RotatedDescription,X,Y))).

description(0,[up,up,right,down,down,left]).

description(1,[down,down]).

description(2,[right,down,left,down,right]).

description(3,[right,down,left,right,down,left]).

description(4,[down,right,up,down,down]).

description(5,[left,down,right,down,left]).

description(6,[down,down,right,up,left]).

description(7,[right,down,down]).

description(8,[up,right,down,down,left,up,right]).

description(9,Description) :- description(6,Description).

rotate( 0,X,X).

rotate( 90,A,B) :-

member((A,B),[(down,right),(right,up),(up,left),(left,down)]).

rotate(180,A,B) :-

rotate(90,A,C),

rotate(90,C,B).

rotate(270,A,B) :-

rotate(90,B,A).

matches([],_,_).

matches([Step|Steps],X,Y) :-

nextpoint(Step,X,Y,A,B),

once((lit(X,Y,A,B) ; lit(A,B,X,Y))),

matches(Steps,A,B).

nextpoint( up, X,Y, A,B) :- A = X, B is Y + 1.

nextpoint( down, X,Y, A,B) :- A = X, B is Y - 1.

nextpoint(right, X,Y, A,B) :- A is X + 1, B = Y.

nextpoint( left, X,Y, A,B) :- A is X - 1, B = Y.



Contest III: 1996 Bonn,

Germany

1. Nested Triangle

Write a predicate triangle/1, whose argument is a list L of characters (atoms
of length 1). The predicate draws a set of triangles, which sit inside each other,
and whose circumferences are drawn with the subsequent character from L. For
instance:

?- triangle([a,b,c,d])

a

aba

abcba

abcdcba

abcccccba

abbbbbbbbba

aaaaaaaaaaaaa

Hints There are two separate concerns: the spaces in front of the visible text,
and the visible parts themselves. The spaces follow a simple pattern: each next
line has one less.

The next observation is that the first line contains only the first character, and
that up to the first time all characters appear in a line, it is as if we duplicate
the middle character of the previous line, and put a new character in between.
So, from a given line, we can compute the next line. This is the first part of the
picture, and it is taken care of by part1/4.

From the moment all the characters have been used once (or more) in a line,
the next lines are always made by finding the innermost character, and replacing
it (all its occurrences) by its neighbor. This goes on until we can no longer find
an innermost character with a neighbor. Predicate part2/3 implements this.

33



34 1996 Bonn, Germany

Solution

:- use_module(library(lists), [reverse/2]).

:- use_module(contestlib, [write_elements/1, writeN/2]).

triangle(Chars) :-

length(Chars,Spaces),

Chars = [Middle|RestChars],

End = [],

Spaces1 is 2*Spaces,

part1(Middle,End,RestChars,Spaces1).

triangle(Chars) :-

length(Chars,Spaces),

reverse(Chars,[_|Post]),

part2(Post,5,Spaces).

triangle(_).

part1(Middle,End,RestChars,Spaces) :-

writeN(Spaces,’ ’),

reverse_write_elements(End),

write_elements([Middle|End]),

nl,

Spaces1 is Spaces - 1,

RestChars = [NewMiddle|NewRestChars],

part1(NewMiddle,[Middle|End],NewRestChars,Spaces1).

part2([X|Cs],Len,Spaces) :-

writeN(Spaces,’ ’),

reverse_write_elements(Cs),

writeN(Len,X),

write_elements(Cs),

nl,

Spaces1 is Spaces - 1,

Len1 is Len + 4,

part2(Cs,Len1,Spaces1).

reverse_write_elements(L) :-

reverse(L,RL),

write_elements(RL).



Base 35

2. Base

Write a predicate base/2, whose first argument is a ground list (we will refer to
this list as the Elements), and whose second argument must be unified with the
base of the Elements.

You get a predicate lub/3. This predicate can only be called with its first
two arguments elements of Elements or terms you got as (ground) output (third
argument) of calls to lub/3; its third argument will then be unified with the
least upper bound of the first two arguments. lub/3 is associative, commutative
and idempotent. For example, lub/3 could be the bitwise or, the least common
multiple of two positive integers, . . .

The base of a set S is the subset of all elements E of S, such that E cannot
be formed by lub-bing two or more elements from S \ {E}. The order in a base is
not important.

For example, suppose

lub(A,B,C) :- C is A \/ B .

then

?- base([1,2,3,4,5,6,7],Base) .

Base = [1,2,4]

as can be seen in the lattice formed by lub/3:

7

3

�������
5 6

>>>>>>>

1

�������
2

>>>>>>>

�������
4

>>>>>>>

Hints Since lub/3 has all these nice properties, it is sufficient to compute all
subsets of the input and check whether they produce an element that is not in the
subset. Such an element is not in the base.



36 1996 Bonn, Germany

Solution

:- use_module(library(lists), [member/2]).

:- use_module(contestlib, [sublist/2]).

base(Elements,Base) :- findall(X,is_base(Elements,X),Base).

is_base(Elements,X) :-

member(X,Elements),

\+ is_no_base(Elements,X).

is_no_base(Elements,X) :-

sublist(Elements,Sub),

\+ member(X,Sub),

luball(Sub,X).

luball([X],X).

luball([X|Y],Z) :-

luball(Y,O),

lub(O,X,Z).



Board 37

3. Board

You get an N×N board with a binary arithmetic operator and an integer operand
on each square. You start off with 0 as current value, and you choose a path that
visits each square of the board exactly once. For each visited square, you perform
the operation on the square with the current value as left operand of the operation,
and the number on the square as right operand, and continue with the result as
the current value. At the end of the path, your current value depends on the path
chosen; this is the end value of the path. You should find the minimal end value
of all paths, and the number of paths that have this minimal end value.

Below, you see a board and its corresponding data structure representation:

[[op(*,-1), op(-, 3), op(-,555), op(-, 3)],

[op(-, 3), op(-,2000), op(*,133), op(-,555)],

[op(*, 0), op(*, 133), op(-, 2), op(+, 19)],

[op(-, 3), op(-,1000), op(-, 2), op(*, 3)]]

∗(−1) −3 −555 −3

−3 −2000 ∗133 −555

∗0 ∗133 −2 +19

−3 −1000 −2 ∗3

Write a predicate board/3, which has as first (input) argument the board, and
which unifies the minimal end value with the second argument and the number of
different paths having this minimal end value with the third argument. A path
can start on any square, and two subsequent squares in a path must touch with a
side of the squares.

Hints We need to follow all paths without loops in this N ×N board, starting
from every location. In this solution, we first transform each square of the board,
such that for instance op(*,8) becomes \Z.Z*8.

Here, Z is a fresh variable for each square. With this representation, we access
each square by using its coordinates in calls to nth1/3. The Z variable in each
square must be free, otherwise the square has been visited before. This way, we
avoid loops. By unifying Z with a current value, we can compute the next value
by evaluating the expression on the square. The program first generates all pos-
sible values within a setof/3, picks out the minimal value, uses this value in a
findall/3 to generate all paths with that minimal value, and then counts them
with length/2.



38 1996 Bonn, Germany

Solution

:- use_module(library(lists),[nth1/3]).

:- use_module(contestlib,[for/3, map/3]).

:- op(100,xfx,.).

:- op(200,fy,\).

board(InitialBoard,Min,HowMany) :-

length(InitialBoard,Size),

mknewboard(InitialBoard,NewBoard),

setof(Value,NewBoard^value(NewBoard,Size,Value),[Min|_]),

findall(Min,value(NewBoard,Size,Min),MinVals),

length(MinVals,HowMany).

value(Board,Size,Value) :-

for(X,1,Size),

for(Y,1,Size),

keepmoving(Size*Size,X,Y,Board,Size,0,Value).

keepmoving(N,X,Y,Board,Size,CurrentVal,Result) :-

nth1(X,Board,XRow),

nth1(Y,XRow,Lambda),

eval(Lambda,CurrentVal,CurrentVal1),

N1 is N - 1,

( N1 == 0 ->

Result = CurrentVal1

;

next(X,Y,NextX,NextY),

0 < NextX, NextX =< Size,

0 < NextY, NextY =< Size,

keepmoving(N1,NextX,NextY,Board,Size,CurrentVal1,Result)

).

eval(\Z.Expr,In,Out) :- var(Z), Z = In, Out is Expr.

next(X,Y,NextX,NextY) :- NextX = X, NextY is Y + 1.

next(X,Y,NextX,NextY) :- NextX = X, NextY is Y - 1.

next(X,Y,NextX,NextY) :- NextX is X + 1, NextY = Y.

next(X,Y,NextX,NextY) :- NextX is X - 1, NextY = Y.

mknewboard(In,Out) :- map(In,mknewrow,Out).

mknewrow(In,Out) :- map(In,mknewsquare,Out).

mknewsquare(op(A,B),\Z.Expr) :- Expr =.. [A,Z,B].



Preprocessor 39

4. Preprocessor

We have just invented a great new optimization for Prolog, but unfortunately it
only works for programs that have neither disjunction nor if-then-else in the body,
and in which there is at most one user defined predicate with more than one clause.
This means we cannot even compile the naive reverse program. Of course, we will
not force the future users of our system to program with this restriction, so we
need a preprocessor that accepts almost any Prolog program and transforms it to
the form we like: an equivalent Prolog program with at most one predicate with
more than one clause, and of course no disjunction nor if-then-else.

Since we are still in the prototyping phase, the input Prolog programs contain
no disjunction nor if-then-else, but all the built-in predicates are allowed (including
cut). predicate property(Term,built in) tells you whether Term is actually a
built-in goal. You may assume that the program does not contain directives or
queries.

Write the predicate pre/2, which will be called with a program represented as
a list of clauses as its first argument. For example, the code for the naive reverse
benchmark is represented as

[(nrev([],[]) :- true),

(nrev([X|R],O) :- nrev(R,O2), append(O2,[X],O)),

(append([],L,L) :- true),

(append([X|L1],L2,[X|L3]) :- append(L1,L2,L3))

]

The predicate pre/2 must unify its second argument with an equivalent program
represented similarly, but with only one predicate with more than one definition.
There is of course more than one correct answer. A good way to test whether
an answer is correct is by running it and checking whether it complies with the
other requirements. One more thing: queries are not transformed; they should
run directly in your transformed program! You may assume that no symbol in
the given program starts with my ; this can make it easier to invent unique new
symbols.

Hints It is all much simpler than it appears at first sight. Here is an example
of what the given solution does:

?- pre([ (a:-b), (a:-c), (d :- write(ok))], NewProg).

NewProg = [ (my_pred(a):-b), (my_pred(a):-c), (my_pred(d):-write(ok)),

(a:-my_pred(a)), (d:-my_pred(d))]

As you can see, there is no need to transform the clause bodies. The heads are
just wrapped in a my pred/1 wrapper, and for every defined predicate (like d/0)
we add one clause (like d :- my pred(d)).



40 1996 Bonn, Germany

Solution

pre(ProgIn,ProgOut) :-

transform(ProgIn,[],ProgOut).

transform([],Preds,PredCalls) :-

sort(Preds,UniquePreds),

makepredcalls(UniquePreds,PredCalls).

transform([(Head :- Body)|RestProgIn],Preds,[NewClause|RestProgOut]) :-

functor(Head,Name,Arity),

NewPreds = [Name/Arity | Preds],

NewClause = (my_pred(Head) :- Body),

transform(RestProgIn,NewPreds,RestProgOut).

makepredcalls([],[]).

makepredcalls([Name/Arity|R],[(Head :- my_pred(Head))|S]) :-

functor(Head,Name,Arity),

makepredcalls(R,S).



Warp 41

5. Warp

Consider a finite maze with a space warp. The maze is a set of connected squares.
Its shape is unknown, but, apart from the warp, it is flat. The squares are possibly
connected at their south, north, west and/or east side. When you are standing
on a square, you can try to go to the neighboring (say) south square by asking
(kindly) move(south,Where), and you will get the name of the square you arrive
at (unifying it with Where). This is all very straightforward, except for the space
warp in this maze. The space warp connects two squares, and when you step on
one of them, you arrive at the other end of the warp. It works as an instantaneous
tunnel. For example, suppose the warp has begin-end squares with names here
and there, you were standing on the north neighbor of here, and you would ask to
move(south,Where); then Where will be unified with there (not with here as you
would expect). So, both ends of the warp have a name, and you have to figure out
the name of either end (or beginning) of the warp. It does not matter which end.

You start off at a square named start, which is guaranteed not to be part of
the warp. All names of squares are ground and different.

You probably noticed that the move request has no argument indicating from
which square you want to move. Of course, the maze knows where you are! The
maze also likes you to ask kindly to move, which means that the direction (argu-
ment 1) should be a correct direction, that the place of arrival has a name which
can unify with argument 2, and that the move is possible. I.e.,if you ask to move to
the north of your current position when this is impossible, this both embarrassing
and unkind to the maze. Therefore, the maze will throw you to nowhere and you
will not be able to move anymore! But the maze is also kind to you: you can
always find out which directions are possible from the current position by asking
directions(WhereToGo), where WhereToGo will be unified with a list of directions
(in no particular order) which you can go in (e.g. [north, east, west]). This
also has to be asked kindly!

The warp works both ways and as often as you step on either side. There is
guaranteed to be exactly one warp that you can reach from the start position.

To sum up: you get the predicates move/2 and directions/1, and you have
to write the predicate warp/1, which unifies its free argument with the name of
one warp end.

Hints The solution explores the maze exhaustively, i.e. from a position, every
direction is tried in predicate explore/3. Of course we avoid loops. The predicate
at warp/2 checks whether we have moved to either end of a warp, by setting a
step back: if we get back where we started from, it was not a warp end.



42 1996 Bonn, Germany

Solution

:- use_module(library(lists), [member/2]).

warp(End) :-

Explored = [],

Current = start,

once(explore(Current,Explored,End)).

explore(Current,Explored,End) :-

directions(Directions),

member(Direction,Directions),

move(Direction,NewPoint),

(

\+ member(NewPoint,Explored),

( at_warp(Direction,Current) ->

End = NewPoint

;

explore(NewPoint,[Current|Explored],End)

)

;

goback(Direction),

fail

).

goback(Dir) :-

oppositedir(Dir,Opposite),

move(Opposite,_).

at_warp(Dir,Current) :-

oppositedir(Dir,Opposite),

directions(Dirs),

once(member(Opposite,Dirs)),

move(Opposite,NewCurrent),

move(Dir,_),

Current == NewCurrent,

!,

fail.

at_warp(_,_).

oppositedir(south,north).

oppositedir(north,south).

oppositedir(east,west).

oppositedir(west,east).



Contest IV: 1997 Leuven,

Belgium

1. Snake

The body of the Belgian snake shows a repeating pattern. However, the pattern
is not necessarily repeated an integral number of times. A pattern consists of a
sequence of rings, and a ring has an identifier which is an atom of length 1. When
the Belgian snake takes a nap, it likes to lie coiled up in a particular way: it always
lies in a rectangle, its head in the upper left corner and filling the rectangle row
by row (see the query below). Write a predicate snake/3, which displays such
a coiled up Belgian snake. This predicate will be called with the following three
arguments: a list of atoms representing a pattern, a list whose length is equal to
the number of rings in one column and a list whose length is equal to the number
of rings in one row. Your snake/3 should draw the coiled up snake as output on
the screen. For example:

?- snake([a,b,c,d],[_,_,_,_,_],[_,_,_]).

abcda

badcb

cdabc

This snake would look like abcdabcdabcdabc when stretched out.
There is a catch: Belgian snakes dislike arithmetic computations very much.

Therefore, we urge you to avoid any arithmetic.

Hints The snake consists of an ever repeating pattern, and one way of rep-
resenting this is by a cyclic list: it contain the pattern and bites its tail. This
cyclic list is used as a infinite supply of the pattern, from which we need to take
pieces with the same length as the list in the second argument. This piece must be
reversed for even rows.

43



44 1997 Leuven, Belgium

Solution

:- use_module(library(lists), [reverse/2]).

:- use_module(contestlib, [write_elements/1]).

snake(Pattern,Cols,Rows) :-

infinite_snake(Pattern,InfSnake,InfSnake),

produce_snake(Rows,Cols,InfSnake,Snake),

coil_it(Snake,odd).

infinite_snake([],S,S).

infinite_snake([A|R],[A|T],S) :-

infinite_snake(R,T,S).

produce_snake([],_,_,[]).

produce_snake([_|Rows],Cols,InfSnake,[Part|Tail]) :-

part_of_snake(Cols,InfSnake,NewInfSnake,Part),

produce_snake(Rows,Cols,NewInfSnake,Tail).

part_of_snake([],RestSnake,RestSnake,[]).

part_of_snake([_|R],[Ring|Rings],RestSnake,[Ring|RestRings]) :-

part_of_snake(R,Rings,RestSnake,RestRings).

coil_it([],_).

coil_it([Line|Lines],odd) :-

write_elements(Line), nl,

coil_it(Lines,even).

coil_it([Line|Lines],even) :-

reverse(Line,Line1),

write_elements(Line1), nl,

coil_it(Lines,odd).



Index 45

2. Index

The readability index of a Prolog program clause is defined in terms of the following
entities:

� nlit : the total number of literals in the clause

� narg : the total number of arguments of literals in the clause

� ndisj : the total number of disjunctions

� niff : the total number of if-then-elses

� neq : the number of occurrences of the literal =/2

� neckcut : (0 or 1) whether the clause has a ! as first goal

� ncut : the total number of cuts in the clause

� maxarg : the maximal depth of the arguments

Note that the head of the clause also counts as a literal. The best formula
combining these entities is debatable, and therefore arbitrarily decided to be:

nlit + 7 ∗ narg + 2 ∗ neq + 3 ∗ ndisj + niff + neckcut + 12 ∗ ncut + maxarg

Write a predicate index/2 that, given a clause as first argument, unifies its read-
ability index with the second argument. Clauses are always given as (Head :-

Body) and facts have a Body equal to true. Do not worry about higher order
arguments. The depth of an argument equals:

if the argument is atomic or a variable: 0

else: 1 + the maximum of the depths of its arguments

For the following clauses, their characteristics are:

clause nlit narg ndisj niff neq neckcut ncut maxarg

a :- true. 2 0 0 0 0 0 0 0
a :- b,c. 3 0 0 0 0 0 0 0
a :- b;c. 3 0 1 0 0 0 0 0
a :- b → c ; d. 4 0 1 1 0 0 0 0
a :- b → c. 3 0 0 1 0 0 0 0
a([1,2,3]) :- true. 2 1 0 0 0 0 0 3
a :- !, b, !. 4 0 0 0 0 1 2 0
a :- X = 1, Y = f(X). 3 4 0 0 2 0 0 1

Hints This is a very boring exercise, sorry. Just be systematic.



46 1997 Leuven, Belgium

Solution

:- use_module(library(lists), [member/2]).

index((H:-B),Index) :-

count((B,H),Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth),

Index is Nlit + 7*Narg + 2*Neq + 3*Ndisj + Niff

+ Neckcut + 12*Ncut + MaxDepth.

count(Body,Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth) :-

var(Body), !,

(Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth) =

( 1, 0, 0, 0, 0, 0, 0, 0).

count(Body,Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth) :-

control_construct(Body,A,B,PlusDisj,PlusIff), !,

count(A,Nlit1,Narg1,Ndisj1,Niff1,Neq1,Neckcut,Ncut1,MaxDepth1),

count(B,Nlit2,Narg2,Ndisj2,Niff2,Neq2, _,Ncut2,MaxDepth2),

Nlit is Nlit1 + Nlit2,

Narg is Narg1 + Narg2,

Ndisj is Ndisj1 + Ndisj2 + PlusDisj,

Niff is Niff1 + Niff2 + PlusIff,

Neq is Neq1 + Neq2,

Ncut is Ncut1 + Ncut2,

MaxDepth is max(MaxDepth1,MaxDepth2).

count(Goal,Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth) :-

Goal = (_ = _), !,

(Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut) =

( 1, 2, 0, 0, 1, 0, 0),

max_depth(Goal,MaxDepth).

count(!,Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth) :- !,

(Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut) =

( 1, 0, 0, 0, 0, 1, 1),

MaxDepth = 0.

count(Goal,Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut,MaxDepth) :-

functor(Goal,_,Narg),

(Nlit,Narg,Ndisj,Niff,Neq,Neckcut,Ncut) =

( 1,Narg, 0, 0, 0, 0, 0),

max_depth(Goal,MaxDepth).

control_construct((A,B),A,B,0,0).

control_construct((A;B),A,B,1,0).

control_construct((A->B),A,B,0,1).



Index 47

max_depth(Term,MaxDepth) :-

atomic(Term), !,

MaxDepth = 0.

max_depth(Term,MaxDepth) :-

setof(D,depth(Term,D),[M|_]),

MaxDepth is -M - 1.

depth(Term,Depth) :-

compound(Term), !,

Term =.. [_|L],

member(X,L),

depth(X,Depth1),

Depth is Depth1 - 1.

depth(_,0).



48 1997 Leuven, Belgium

3. Hex

You get a large hexagon composed of smallhexagons, numbered as in Figure 4.1.
Write a predicate hex/4, which has the size S of the large hexagon (i.e. the number
of hexagons in its first row) as the first argument, the number of a small hexagon
H as the second argument, and a distance N as its third argument. The predicate
hex/4 should unify the fourth argument with a sorted list of the numbers of the
small hexagons which are at distance N from H in this hexagon.

Figure 4.1 shows a hexagon of size 3 and the small numbered hexagons..

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 4.1: The size 3 hexagon.

The neighbors at distance 1 of 15 are [10,11,14,16,18,19]. Here are some more
example calls and answers:

?- hex(4,11,0,L). ?- hex(4,11,1,L).

L = [11] L = [5,6,10,12,17,18]

?- hex(4,11,5,L). ?- hex(4,19,500,L).

L = [22,28,33,37] L = []

?- hex(4,19,3,L).

L = [1,2,3,4,5,9,10,15,16,22,23,28,29,33,34,35,36,37]



Hex 49

Hints We visualize the hexagon as a sequence of columns, numbered from 1
(at the left) to 2 ∗ HexSize− 1. HexSize denotes the size of the first column, and
is also the first argument to the query to hex/4. ColNr is a variable throughout
the program that denotes a column number.

The predicate column of point figures out which is the textttColNr of the given
textttPoint (the second argument of the query), and also computes the minimal
value in the column. Such a minimal value is denoted by the variable textttColMin
in the program. Finally, it also tells the column size textttColSize.

Both the textttColSize and ColNr for the columns of a hexagon of HexSize 4
are shown in Figure 4.2.

The column in which Point is found contains two potential neighbors at dis-
tance Dist. These two are at distance UpD and LowD from the minimal element of
the column of the given Point. The program maintains these up and low distances
while moving from the Point column to the left or the right. Their values are
shown at the bottom of Figure 4.2.

1

5

10

16

23

26

29

34

1

4

2

5

3

6

4

7

5

6

6

5

7

4

ColNr

ColSize

3

1

4

1

7

1

6

0

5

0

4

0

3

0

UpD

LowD

ColMin

Figure 4.2: HexSize = 4, Point = 26, Distance = 3.

The program starts by moving to the left of the initial ColNr (in which Point

was found), and collects all the neighbors at the correct distance. This is done with
an accumulating parameter, since we want the neighbors ordered in the end. To
the right, this can be done with a simple output parameter.

In between moving left and right, the neighbors in the column of Point are
added to the result.



50 1997 Leuven, Belgium

Solution

hex(HexSize, Point, Dist, Neighbours) :-

column_of_point(HexSize, Point,1,ColNr,ColSize,1,ColMin),

UpD is Point - ColMin + Dist,

LowD is Point - ColMin - Dist,

LeftStop is max(1,ColNr-Dist),

RightStop is min(ColNr+Dist,2*HexSize - 1),

addmoreleft(UpD,LowD,HexSize,ColNr,ColMin,ColSize,

LeftStop,Dist,Acc,Neighbours),

add(ColMin, ColSize, UpD, LowD, Acc1, Acc),

addmoreright(UpD,LowD,HexSize,ColNr,ColMin,ColSize,

RightStop,Dist,Acc1).

column_of_point(HexSize,Point,CurrentColNr,PointColNr,ColSize,

CurrentColMin,ColMin) :-

col_size(CurrentColNr,HexSize,CurrentColSize),

NextColMin is CurrentColMin + CurrentColSize,

( Point < NextColMin ->

PointColNr = CurrentColNr,

ColMin = CurrentColMin,

ColSize = CurrentColSize

;

NextColNr is CurrentColNr + 1,

column_of_point(HexSize,Point,NextColNr,PointColNr,ColSize,

NextColMin,ColMin)

).

col_size(Col,HexSize,ColSize) :-

( Col =< HexSize ->

ColSize is HexSize + Col - 1

;

ColSize is 3*HexSize - Col - 1

).



Hex 51

addmoreleft(UpD,LowD,HexSize,ColNr,ColMin,ColSize,Stop,Dist,Acc,Result) :-

( Stop == ColNr ->

Result = Acc

;

ColNr1 is ColNr - 1,

( ColNr > HexSize ->

LowD1 is LowD + 1,

UpD1 = UpD,

ColSize1 is ColSize + 1

;

UpD1 is UpD - 1,

LowD1 = LowD,

ColSize1 is ColSize - 1

),

ColMin1 is ColMin - ColSize1,

( Dist == 1 ->

addall(LowD1,UpD1,ColMin1,ColSize1,Acc,Result)

;

add(ColMin1,ColSize1,UpD1,LowD1,Acc,Acc1),

Dist1 is Dist - 1,

addmoreleft(UpD1,LowD1,HexSize,ColNr1,ColMin1,

ColSize1,Stop,Dist1,Acc1,Result)

)

).

addall(LowD,UpD,Min,ColSize,Tail,List) :-

From is max(Min,Min+LowD),

To is min(Min+ColSize-1,Min+UpD),

interval(From,To,Tail,List).

add(ColMin,ColSize,UpD,LowD,Acc,Acc1) :-

P1 is ColMin + UpD,

P2 is ColMin + LowD,

( ColMin =< P1, P1 < ColMin + ColSize ->

Ns = [P1|Acc]

;

Ns = Acc

),

( ColMin =< P2, P2 < ColMin + ColSize, P1 \== P2 ->

Acc1 = [P2|Ns]

;

Acc1 = Ns

).



52 1997 Leuven, Belgium

addmoreright(UpD,LowD,HexSize,ColNr,ColMin,ColSize,Stop,Dist,Result) :-

( Stop == ColNr ->

Result = []

;

ColNr1 is ColNr + 1,

( ColNr < HexSize ->

LowD1 is LowD + 1,

UpD1 = UpD,

ColSize1 is ColSize + 1

;

UpD1 is UpD - 1,

LowD1 = LowD,

ColSize1 is ColSize - 1

),

ColMin1 is ColMin + ColSize,

( Dist == 1 ->

addall(LowD1,UpD1,ColMin1,ColSize1,[],Result)

;

add(ColMin1,ColSize1,UpD1,LowD1,Result1,Result),

Dist1 is Dist - 1,

addmoreright(UpD1,LowD1,HexSize,ColNr1,ColMin1,

ColSize1,Stop,Dist1,Result1)

)

).

interval(From,To,Tail,List) :-

( From > To ->

List = Tail

;

List = [From|Rest],

From1 is From + 1,

interval(From1,To,Tail,Rest)

).



Codegen 53

4. Codegen

Consider a machine with registers r1 up to rn, organized in a ring. This machine
has only two instructions:

� move(i) copies the contents of ri to ri+1 for 1 ≤ i < n, and from rn to r1

for i = n.

� swap(i,j) swaps the contents of ri and rj .

You get the initial contents of all registers (some can be wild cards) and the
desired final contents of all registers (again some can be wild cards). Generate
a shortest instruction sequence of move/1 and swap/2 that transforms the initial
contents into the final contents, or fails if this is impossible.

Write the predicate codegen/3 whose first argument is a list of the initial
contents of the registers, and whose second argument is their final contents. The
sequence of instructions that effectuate the transition is unified with the third
argument, as in

?- codegen([a,b,c,d],[a,d,a,b],L).

L = [move(2),move(1),swap(2,3),swap(2,4)]

Wild cards are represented as a *. Initially, their meaning is “don’t know the
contents”; in the description of the final contents, they mean “don’t care about the
contents”. Accordingly:

?- codegen([a,*,c],[c,a,*],L).

L = [swap(1,2),swap(1,3)]

and there are five more correct answers, but one is enough.
One more example:

?- codegen([a,b,c],[a,a,*],L).

L = [move(1)]

Hints We will do this with a simple iterative deepening generate and test: we
generate longer and longer sequences of instructions, and test whether they trans-
form the initial registers into the final registers. Before starting that, we trans-
form the final register list, such that stars are replaced by new variables. Checking
whether we have reached the desired final contents then reduces to a unification.
This transformation happens through the predicate preprocess/3, which also col-
lects the values in input and output. The required instruction sequence can be
generated if and only if the output does not contain any new values. This check
prevents generating instruction sequences forever.



54 1997 Leuven, Belgium

Solution

:- use_module(library(lists), [append/3, member/2]).

codegen(Initial,Final,Instrs) :-

preprocess(Initial,_,Vali),

preprocess(Final,Final1,Valf),

\+ (member(X,Valf), \+ member(X,Vali)),

once((length(Instrs,_),

effectuate(Instrs,Initial,Final1))).

preprocess([],[],[]) .

preprocess([X|IR],[Y|FR],Symb) :-

( X = (*) ->

preprocess(IR,FR,Symb)

;

Y = X,

Symb = [X|RS],

preprocess(IR,FR,RS)

).

effectuate([],Final,Final).

effectuate([Instr|RI],Initial,Final) :-

apply_instr(Instr,Initial,Initial2),

effectuate(RI,Initial2,Final).

apply_instr(swap(I,J),Initial,Final) :-

append(BeforeI,[XI|AfterI],Initial),

append(BeforeJ,[XJ|AfterJ],AfterI),

append(BeforeJ,[XI|AfterJ],NewAfterI),

append(BeforeI,[XJ|NewAfterI],Final),

length(BeforeI,I1),

length(BeforeJ,J1),

I is I1 + 1,

J is I1 + J1 + 2.

apply_instr(move(From),Initial,Final) :-

append(Front,[X|Back],Initial),

( Back == [] ->

Initial = [_|Rest],

Final = [X|Rest]

;

Back = [_|Back1],

append(Front,[X,X|Back1],Final)

),

length(Front,I),

From is I + 1.



Shapes 55

5. Shapes

You get an N × M matrix, filled with the colors black and white. The blacks
are background, and a connected component of whites form a shape. You are to
determine the number of shapes in the matrix. A more precise definition of a shape
is: 2 whites of the matrix belong to the same shape if there is a path from one to
the other over whites, where a path consist of successive points with coordinates
(i,j) and (k,l) such that |i− k| ≤ 1 and |j − l| ≤ 1.

The matrix is given as a list of lists as the first argument of the predicate
shapes/2, which you have to write. Your program should not use any of the
following built-in predicates: arg/3, =../2, functor/3, name/2. It should use
arithmetic either.

Here are some example calls and the matrix corresponding to the input:

?- shapes([[black,white,black],

[white,black,black],

[white,black,white]],N).

N = 2

?- shapes([[white,white,white],

[white,black,black],

[white,black,black],

[white,black,black]],N).

N = 1



56 1997 Leuven, Belgium

Hints The general idea of our solution is this: replace every white in the matrix
by a variable, and unify two variables that are neighbors. At the end, counting the
number of different variables is done by numbervars: no other arithmetic is used.
More specifically, from the matrix

[[black,white,black],

[white,black,black],

[white,black,white]]

we compute

[[black, white(A), black ],

[white(B), black, black ],

[white(C), black, white(D)]]

While doing that, we unify neighbors if possible, which results in

[[black, white(A), black ],

[white(A), black, black ],

[white(A), black, white(D)]]

which has two variables, and hence two shapes. Note the similarity with the
union-find algorithm.

We could have done without the white/1 data structure, but we would have
had to use some impure predicate.

Note how a line that is already transformed is used for taking the three neighbors
of the element we are considering in the next line. These three neighbors are the
P0, P1 and P2 in the program. It is convenient to have an extra black neighbor at
the left and right, and new neighbor/3 caters that. It even caters for an unlimited
supply of black cells starting from the empty list, and we use that in the second
argument of the top call to transform/3.



Shapes 57

Solution

shapes(Matrix,N) :-

transform(Matrix,[],Matrix1),

numbervars(Matrix1,0,N).

transform([],_,[]).

transform([Line|RestMatrix],PrevLine,[Line1|RestMatrix1]) :-

new_neighbor(PrevLine,P1,PrevLine1),

new_neighbor(PrevLine1,P2,PrevLine2),

transformline(Line,black,P1,P2,PrevLine2,white(_),Line1),

transform(RestMatrix,Line1,RestMatrix1).

transformline([],_,_,_,_,_,[]).

transformline([black|Xs],_,P1,P2,RP,_,[black|Ys]) :-

new_neighbor(RP,P3,RestRP),

transformline(Xs,P1,P2,P3,RestRP,white(_),Ys).

transformline([white|Xs],P0,P1,P2,RP,WhiteVar,[WhiteVar|Ys]) :-

new_neighbor(RP,P3,RestRP),

bind(P0,WhiteVar),

bind(P1,WhiteVar),

bind(P2,WhiteVar),

transformline(Xs,P1,P2,P3,RestRP,WhiteVar,Ys).

bind(black,_).

bind(white(V),white(V)).

new_neighbor([],black,[]).

new_neighbor([X|R],X,R).



58 1997 Leuven, Belgium



Contest V: 1998 Manchester,

UK

1. Remote

I am a TV addict and I have a television in each of the four corners of my living
room. They are all on all the time. Wherever I sit, I can always see (at least) one
TV. I do not care what I watch, but I want all four TVs to show the same channel.
Unfortunately, I can only receive five channels, named 1,2,3,4 and 5. When I wake
up in the morning (after falling asleep on the TV room table while watching some
late night show), the first thing I want to do is set all TVs to the same channel,
not caring which channel. Of course, I use my remote control for this, but it is
harder than it sounds. During the night, all TVs switch randomly to one of the
five channels. And my remote control only has a next button with which I can
choose the next channel (modulo 5). On top of that, my TVs refuse to change
channel twice in a row, so, in order to change one particular TV twice, I have to
change channels on at least one other TV in between. And this while I am in a
hurry to make all TVs play the same channel.

Write a predicate remote/2, which has as its first argument a list of the chan-
nels for the four TVs (i.e. a list of four integers between 1 and 5), and which
unifies its second argument with a list of TVs I should change consecutively to
achieve my goals. Moreover, this list should have minimal length. One solution is
enough.

For example:

?- remote([3,1,3,3],L).

L = [1,2,3,2,4,2]

Yes

Hints Iterative deepening with generate and test will do the trick . . .

59



60 1998 Manchester, UK

Solution

:- use_module(contestlib, [for/3]).

remote(Channels,Zaps) :- once(gen_shortest(Channels,Zaps)).

gen_shortest(Channels,Zaps) :-

LastZapped = none,

length(Zaps,_),

gen_allowed_zapping(Zaps,LastZapped),

check_zaps(Zaps,Channels,[X,X,X,X]).

gen_allowed_zapping([],_).

gen_allowed_zapping([Zap|Zaps],LastZapped) :-

for(Zap,1,5),

Zap \== LastZapped,

gen_allowed_zapping(Zaps,Zap).

check_zaps([],Channels,Channels).

check_zaps([Zap|Zaps],ChannelsIn,ChannelsOut) :-

zap(Zap,ChannelsIn,Channels1),

check_zaps(Zaps,Channels1,ChannelsOut).

zap(1,[A,B,C,D],[A1,B,C,D]) :- zap(A,A1).

zap(2,[A,B,C,D],[A,B1,C,D]) :- zap(B,B1).

zap(3,[A,B,C,D],[A,B,C1,D]) :- zap(C,C1).

zap(4,[A,B,C,D],[A,B,C,D1]) :- zap(D,D1).

zap(X,Y) :- Y is (X mod 5) + 1.



Choices 61

2. Choices

Prof. N. Ocut only writes very pure Prolog programs. She never uses any built-in
predicate (in particular cut), and she even refuses to use if-then-else and dis-
junction. Still, she claims that all her programs are highly deterministic. More
precisely, she claims that, if the Prolog implementation has full indexing on all
arguments, the execution of her queries never creates a choice point. However,
she recently started to doubt her ability to write such programs, and she would
feel better of this were checked. Not by global analysis (good lord, no!), but by
running what she believes is a typical set of queries, and observing the choicepoint
stack. Help her by writing a predicate named choices/2: it will be called with as
first argument a (typical) query, and it should unify its second argument with a
list (order not important) of subgoals (instantiated as they were at the moment of
the call) which require a choice point. Below, you find a program Prof. N. Ocut
wrote, and some queries to choices/2 with their answers:

aa :- b(X), c(X,Y), d(Y).

append([],L,L). b(1). c(1,3). d(3).

append([X|R],S,[X|T]) :- b(1). c(1,3). d(4).

append(R,S,T). b(2). c(2,4). d(4).

?- choices(aa,L). ?- choices(b(3),L).

L = [b(_93),d(4),c(1,_89)] L = []

?- choices((b(X),b(X)),L). ?- choices((aa,b(9)),L).

L = [b(_86),b(1)] L = [b(_99),d(4),c(1,_95)]

?- choices((c(1,X),d(X)),L). ?- choices(append(X,Y,[1]),L).

L = [c(1,_84)] L = [append(_93,_94,[1])]

?- choices(append(X,Y,[1,2]),L). ?- choices(append(X,Y,[]),L).

L = [append(_95,_96,[1,2]), L = []

append(_123,_124,[2])]

As you see, choices/2 does not (need to) produce an answer in its first argu-
ment, only in its second argument. Moreover, even if the first argument as a goal
fails, choices/2 should succeed. The answer should not contain duplicates.

You can assume that you can use clause/2 on the goals you are given. You
can also assume that execution of any given query terminates. Of course, you can
use some of the dirty features of Prolog, like cut for instance. In fact, everything is
allowed, except for the assert/retract/record-family of predicates. That would
annoy Prof. N. Ocut too much, and we would rather please her, no?



62 1998 Manchester, UK

Hints We will solve this by writing an enhanced meta interpreter. We add one
output argument to the classical 3-line meta interpreter, which we will call Multi.
Multi is unified with a list of (a copy of) every goal that unified with more than
one head during the execution of the top goal. The meta-interpreter must succeed
for every goal, and can even produce a non-empty multi list for a failing goal.

The predicate exec/2 produces a list of literals, so if answers from exec/2 are
collected with findall/3, we end up with a list of lists of literals, and we need to
flatten/2 it.

In the end, the duplicates (variants in fact) are removed.
The last clause of exec/2 is worth explaining a bit. The invariant is that

exec/2 succeeds once and that its second argument is unified with a possibly empty
list of subgoals that require a choice point. That means that the BodyMultis build
by the findall goal can be empty only if the goal clause(Head,Body) had no
solutions - in which case obviously no subgoal of Head needed a choice point. If
BodyMultis is a list with only one element, clearly clause(Head,Body) did suc-
ceed only once, so the Head didn’t need a choice point. If BodyMultis contains
more than one element, the Head needed a choice point itself.



Choices 63

Solution

:- use_module(library(lists), [flatten/2, member/2]).

choices(Goal,ChoiceList) :-

exec(Goal,Multis),

elim_dupl(Multis,ChoiceList).

exec((A,B),MultiAB) :- !,

exec(A,MultiA),

findall(Multi,(A,exec(B,Multi)),MultiB),

flatten([MultiA,MultiB],MultiAB).

exec(true,[]) :- !.

exec(Head,MultiH) :-

findall(Multi,(clause(Head,Body),exec(Body,Multi)),BodyMultis),

(

BodyMultis == [] ->

MultiH = []

;

BodyMultis = [MultiH] ->

true

;

copy_term(Head,HeadC),

flatten([HeadC|BodyMultis],MultiH)

).

elim_dupl([],[]).

elim_dupl([X|R],Out) :-

( member(Y,R), variants(Y,X) ->

elim_dupl(R,Out)

;

Out = [X|NewOut],

elim_dupl(R,NewOut)

).

variants(X,Y) :-

\+ \+ (numbervars(X,1,N),numbervars(Y,1,N),X = Y).



64 1998 Manchester, UK

3. Close Valves

My plumber has left the plumbing of my house in a deplorable state. The pipe
network seems randomly welded together. Luckily, he installed valves in some
pipes so that I can prevent flow (in either direction) through that pipe. This
morning, one faucet was dripping, and before I left the house, I wanted to shut
enough valves to prevent that faucet from dripping. Of course, I don’t want to
close too many valves, such that a maximum number of other faucets would still
be able to give water. This looked straightforward to me. I figured out from a
plan of the house which valves to close, but alas: the faucet was still dripping!
It turned out that some valves do not close properly: I cannot rely on the plan.
So, please help me and write a program for that. What you get is the plan of the
house as a set of facts describing the pipe network:

� inlet/1 (exactly one)

� faucet/1 (at least one)

� dripping/1 (exactly one)

� pipe/2 (meaning that 2 nodes in the pipe network are connected by a pipe)

� valve/2 (a subset of pipe/2, meaning that a valve was installed on that
pipe)

The arguments of all these facts are ground terms representing a node, the inlet,
or a faucet.

You may also use a predicate gets water/2, which you call with its first ar-
gument a faucet and its second argument a list of valves (i.e. terms of the same
form as the facts for valve/2) you want closed. Such a call succeeds if and only
if the closing of the valves has not prevented the flow of water from the inlet to
the faucet. It is the analogue of me running up and down the stairs, closing valves
(in the basement) and checking whether a faucet (upstairs) is still active, but you
will not get so tired.

Write a predicate close valves/1, which is called with a free variable, and
unifies it with a list of valves that need to be closed such that the dripping faucet
stops, and that the number of other faucets still capable of running water is max-
imal. Oh, my plumber might have been so bad that it is not possible to stop the
dripping! Then close valves can fail (finitely of course). One more thing: I am
not sure all faucets are connected to the inlet. My plumber is really bad!

Hints The problem statement is longer than the solution. We want a subset of
valves which stops the dripping, and which leaves the maximal number of faucets
active. This is just too easy in Prolog!



Close Valves 65

Solution

:- use_module(library(lists), [last/2]).

:- use_module(contestlib, [sublist/2]).

close_valves(Valves) :-

setof((N-Valves),valves_activefaucets(Valves,N),L),

last(L,N-Valves).

valves_activefaucets(Valves,N) :-

setof(valve(A,B),valve(A,B),AllValves),

dripping(Drip),

sublist(AllValves,Valves),

\+ gets_water(Drip,Valves),

findall(Faucet,(faucet(Faucet),gets_water(Faucet,Valves)),Faucets),

length(Faucets,N).



66 1998 Manchester, UK

4. Diamond

Write a predicate diamond/1 which draws a diamond on the screen. The predi-
cate diamond/1 is called with a positive integer, giving the size of the diamond.
Generalize from the examples:

?- diamond(2).

1

3 2

4

?- diamond(3).

1

4 2

7 5 3

8 6

9

?- diamond(8).

1

9 2

17 10 3

25 18 11 4

33 26 19 12 5

41 34 27 20 13 6

49 42 35 28 21 14 7

57 50 43 36 29 22 15 8

58 51 44 37 30 23 16

59 52 45 38 31 24

60 53 46 39 32

61 54 47 40

62 55 48

63 56

64



Diamond 67

Solution

:- use_module(contestlib, [writeN/2, int_width/2, write_int/2]).

diamond(N) :-

N1 is N*N,

int_width(N1,W),

Spaces1 is N*W,

first(N,1,1,N,Spaces1,W),

Start is N*(N - 1) + 2,

Spaces2 is 2*W,

last(N,Start,N,Spaces2,W).

first(0,_,_,_,_,_) :- !.

first(I,Start,Row,N,Spaces,W) :-

I1 is I - 1,

Start1 is Start + N,

Row1 is Row + 1,

Spaces1 is Spaces - W,

writeN(Spaces,’ ’),

writeline(Row,Start,N,W),

first(I1,Start1,Row1,N,Spaces1,W).

last(1,_,_,_,_) :- !.

last(I,Start,N,Spaces,W) :-

I1 is I - 1,

Start1 is Start + 1,

writeN(Spaces,’ ’),

Spaces1 is Spaces + W,

writeline(I1,Start,N,W),

last(I1,Start1,N,Spaces1,W).

writeline(0,_,_,_) :- !, nl.

writeline(R,S,N,W) :-

write_int(S,W),

writeN(W,’ ’),

S1 is S - N + 1,

R1 is R - 1,

writeline(R1,S1,N,W).



68 1998 Manchester, UK

5. Compress

We will be considering sequences of alphabetic letters (i.e. a to z) as input (e.g.
xcaabaabaabccadadcaabaabaabccadady). This sequence can be compressed by a
simple compression algorithm which replaces n (say 7) consecutive occurrences of
a symbol (say p) by the symbol followed by n (i.e. p7), and p7 is clearly shorter
than ppppppp. The same compression can also be applied to subsequences, i.e.
ababab can be compressed to (ab)3 . Note that (ab)3 has length 5. Hence, the long
sequence shown before can be compressed to x(c(a2b)3c2(ad)2)2y. However, this
is not the shortest compression, because of the occurrence of (ad)2 in it. Indeed,
(ad)2 has a length that is one more than the length of adad. It is clear when
brackets are needed and when not. Since digits nor brackets can occur in the
input string, there is no ambiguity.

Write a predicate compress/2 that takes as input a sequence (represented as
a list of letters, i.e. atoms of length 1), and unifies its second argument with one
shortest compressed equivalent list. The example below shows that there can be
more than one correct answer:

?- compress([x,c,a,a,b,a,a,b,a,a,b,c,c,a,d,a,d,

c,a,a,b,a,a,b,a,a,b,c,c,a,d,a,d,y],L).

L = [x,(,c,(,a,2,b,),3,c,2,a,d,a,d,),2,y] ;

L = [x,(,c,(,a,a,b,),3,c,c,a,d,a,d,),2,y]

Even if the repetition factor is larger than 9, it still only counts as one for
computing the length:

?- compress([a,a,a,a,a,a,a,a,a,a,a,a],L).

L = [a, 12]

i.e. a12 means a repeated 12 times and its length is 2.



Compress 69

Hints It is clear that the length of the input list is an upper bound on the length
of the shortest solution. So, we start a computation which has an upper bound as
an argument, and we avoid computations that lead to a solution which has a length
larger (or equal) than the current upper bound. As soon as we find a shorter one,
we use its length as a new upper bound in a new computation, and we do this until
we cannot get a shorter solution, meaning we have found the shortest one. This
is basically what happens in compress/4. Maybe branch-and-bound rings a bell.

The strategy of compressing consists further in first trying whether the input
can be divided into a number of equal sublists (which could lead to a shorter com-
pression), and calling compress/2 on that repeating sublist. If that fails, we try to
divide the input in two parts on which compress/2 is called recursively.

Together, these two give a correct algorithm. However, it is very inefficient
because it will compute a shortest compression of sublists of the original list over
and over again. So, we introduce some extra power to avoid that. Every time
a call to compress/2 succeeds, we assert the result in the form of the predicate
memo compress/2 (e.g. assert(memo compress([a,a,a,a,a,a],[a,6]))). We
use these asserted facts at the start of a new compress/2 computation, by calling
memo compress/2 to check whether we have already computed the result for the
given input. In a Prolog system with tabling (like XSB), we would simply add the
declaration :- table compress/2. The dynamic predicate memo compress/2 has
initially two facts describing an optimal compression of sequences of one and two
characters.

The predicate compress/2 delivers only one solution, although there could be
more than one shortest compressed form for a given input. Convince yourself that
our introduction of memoing does not affect optimality, even though some optimal
solutions are not recorded.



70 1998 Manchester, UK

Solution

:- use_module(library(lists), [append/3]).

:- dynamic(memo_compress/2).

memo_compress([C],[C]).

memo_compress([C1,C2],[C1,C2]).

compress(Initial,Compressed) :-

( memo_compress(Initial,Compressed) ->

true

;

length(Initial,LenInitial),

CurrentBest = Initial,

LenCurrentBest = LenInitial,

compress(Initial,CurrentBest,LenCurrentBest,Compressed),

assert(memo_compress(Initial,Compressed))

).

compress(Initial,CurrentBest,LenCurrentBest,Compressed) :-

( compress_with_bound(Initial,LenCurrentBest,NewBest) ->

length(NewBest,NewLenBest),

compress(Initial,NewBest,NewLenBest,Compressed)

;

Compressed = CurrentBest

).

compress_with_bound(Initial,LenBound,Better) :-

repetition_compress(Initial,LenBound,Better).

compress_with_bound(Initial,LenBound,Better) :-

two_piece_compress(Initial,LenBound,Better).

repetition_compress(Initial,LenBound,Better) :-

chopup(Initial,Piece,Repeated),

( Piece = [C] ->

2 < LenBound,

Better = [C,Repeated]

;

compress(Piece,CompressedPiece),

append([’(’|CompressedPiece], [’)’,Repeated], Better),

length(Better,LenBetter),

LenBetter < LenBound

).



Compress 71

two_piece_compress(Initial,LenBound,Better) :-

append(Piece1,Piece2,Initial),

Piece1 \== [],

Piece2 \== [],

compress(Piece1,Compressed1),

length(Compressed1,LenCompressed1),

LenCompressed1 < LenBound,

compress(Piece2,Compressed2),

length(Compressed2,LenCompressed2),

LenCompressed1 + LenCompressed2 < LenBound,

append(Compressed1,Compressed2,Better).

chopup(List,Part,Repeated) :-

append(Part,Rest,List),

Part \== [], Rest \== [],

count_parts(Rest,Part,1,Repeated).

count_parts([],_,I,O) :- !, O = I.

count_parts(Rest,Part,I,O) :-

append(Part,Rest1,Rest),

I1 is I + 1,

count_parts(Rest1,Part,I1,O).



72 1998 Manchester, UK

6. Exchange

Write a predicate exchange/2, which is called with as first argument a ground
list of positive integers, and with the second argument free. It should unify the
second argument with the maximal value of the first argument. The value of a list
of integers is the alternating sum and difference of its elements, e.g.

value([9, 8, 2]) = 9− 8 + 2 = 3

value([1, 4, 89, 12]) = 1− 4 + 89− 12 = 74

Any other value of the list is the value of a list you get by exchanging numbers
in the list. This operation of exchanging numbers is a bit tricky, though. First
of all, it works on the decimal representation of the integers in the list. Secondly,
you can exchange numbers only between neighboring places in the list. Here are
some examples of exchanges between 2 neighboring elements in the list:

exchange(17, 34) = (43, 71)

exchange(123, 45) = (54, 321)

Got it? Two neighbors swap numbers, swapping the order at the same time.
One more restriction: numbers cannot move further than to the neighboring place
in the list, so transforming [12,34,56] into [43,65,12] is not possible, because the
12 has moved two positions in the list.

Here are some examples of expected behavior:

?- exchange([1,2],V). ?- exchange([12,56,34],V).

V = 1 V = 78

Hints If there were no restriction on the swaps, then we would be talking about
all permutations of the initial list. However, with this restriction, there are much
fewer ways to transform a list, and so we do this with a simple generate and test.
Convince yourself that the program never swaps an element more than once.



Exchange 73

Solution

:- use_module(library(lists), [reverse/2, last/2]).

exchange(List,Value) :-

setof(Value,values(List,Value),AllValues),

last(AllValues,Value).

values(List,Value) :-

swap(List,LSwapped),

value(LSwapped,Value).

swap([],[]).

swap([A|R],[A|RestOut]) :-

swap(R,RestOut).

swap([A,B|R],Out) :-

reverse_int(A,ARev),

reverse_int(B,BRev),

Out = [BRev,ARev|RestOut],

swap(R,RestOut).

reverse_int(Int,IntRev) :-

number_codes(Int,IntL),

reverse(IntL,IntLRev),

number_codes(IntRev,IntLRev).

value(L,V) :-

InitialValue = 0,

value(L,InitialValue,V).

value([],FinalValue,FinalValue).

value([X],InitialValue,FinalValue) :-

FinalValue is InitialValue + X.

value([X,Y|R],InitialValue,FinalValue) :-

InitialValue1 is InitialValue + X - Y,

value(R,InitialValue1,FinalValue).



74 1998 Manchester, UK



Contest VI: 1999 Santa

Cruz, New Mexico

1. Star

Write a predicate star/1, which is called with a list of commands as input, and
which draws on the screen the picture corresponding to the list of commands.

There are 5 different commands: up, down, right, left, star.
What does a sequence of these commands mean? Imagine there is a rectangular

grid on the screen, and that you start off at some position. The command up

obviously means that you move up one step in the grid on the screen. Similarly
reasonable interpretations can be made for down, left and right. The star

command means that you must write a * on the screen at the current position.
It is clear that, by executing the list of commands, a picture of *s is drawn on
the screen. However, since the starting position is not given1, there is a problem.
Indeed, we want the picture on the screen to be touching the left border of the
screen/window. This means for instance that the following queries all produce the
same picture:

?- star([right,right,right,right,right,star]).

?- star([left,left,left,left,left,star]).

?- star([left,right,left,right,right,star,left,left,right]).

?- star([down,star,left,down,right,up,star,right]).

namely, a * in the left column on the screen.
Get the idea?
To summarize: write a predicate star/1, with as first argument a list of com-

mands, and which draws the picture corresponding to the commands on the screen,
such that a left-most star of the picture is in the left-most column of the screen.

1Ancient Greek history explains why, but we have no time for that now.

75



76 1999 Santa Cruz, New Mexico

Hints The program starts by transforming the input into a list of locations
(coordinates) where a star appears. We start off (arbitrarily) at (0,0), and keep
track of the current location while executing the commands. Every time there is a
star in the command sequence, we add a star(i,j) to that list, where (i,j) is the
current location (i being the x-coordinate, and j the y-coordinate). The program
then finds the lowest x-coordinate and the highest y-coordinate, so that printing on
the screen can start.

The next two problems are also related to the star problem, so we have grouped
some code common to the solutions of these problems on Page 78.



Star 77

Solution

:- use_module(library(lists), [member/2]).

star(Commands) :-

collect_stars(Commands,Stars),

Stars = [star(StartCol,StartLine0)|RestStars],

max_line(RestStars,StartLine0,StartLine),

write_stars(Stars,StartLine,StartCol).

write_stars([],_,_).

write_stars(Lines,StartLine,StartCol) :-

Lines = [_|_],

write1line(Lines,StartLine,StartCol),

findall(star(A,B),(member(star(A,B),Lines),

B \== StartLine), RestLines),

StartLine1 is StartLine - 1,

write_stars(RestLines,StartLine1,StartCol).

write1line(Lines,StartLine,StartCol) :-

findall(Col,member(star(Col,StartLine),Lines),Cols),

sort(Cols,ColsS),

writecols(ColsS,StartCol),

nl.

writecols([],_).

writecols([X|R],Col) :-

Col1 is Col + 1,

( Col == X ->

write(’*’),

writecols(R,Col1)

;

write(’ ’),

writecols([X|R],Col1)

).



78 1999 Santa Cruz, New Mexico

% code common to star, similistar and starpalindrome

collect_stars(Commands,Stars) :-

once(collect_stars(Commands,0,0,UnorderedStars)),

sort(UnorderedStars,Stars).

collect_stars([] ,_,_,[]).

collect_stars([up | Commands],I,J,Stars) :-

J1 is J + 1,

collect_stars(Commands,I,J1,Stars).

collect_stars([down | Commands],I,J,Stars) :-

J1 is J - 1,

collect_stars(Commands,I,J1,Stars).

collect_stars([left | Commands],I,J,Stars) :-

I1 is I - 1,

collect_stars(Commands,I1,J,Stars).

collect_stars([right| Commands],I,J,Stars) :-

I1 is I + 1,

collect_stars(Commands,I1,J,Stars).

collect_stars([star | Commands],I,J,[star(I,J)| Stars]) :-

collect_stars(Commands,I,J,Stars).

max_line([],Max,Max).

max_line([star(_,L)|RestStars],MaxSoFar,Max) :-

( L > MaxSoFar ->

max_line(RestStars,L,Max)

;

max_line(RestStars,MaxSoFar,Max)

).



Similistar 79

2. Similistar

Write a predicate similistar/2, whose arguments are as the command sequence
in the star problem. It decides whether the two command sequences produce a
similar star picture, according to the earlier star problem. A call to similistar/2

succeeds if the two arguments produce a similar picture, and fails otherwise. For
example:

?- similistar([left,left,star,left,left,star],

[right,star,right,right,star]).

Yes

Hints A standard way to decide whether two things are similar is to make a
canonical representation, and test whether the canonical representations are equal.
In the solution to the star problem, we were already close to a canonical repre-
sentation: we constructed a list of coordinates where stars should occur. We now
can move the picture so that all x are ≥ 0, all y coordinates are ≤ 0, and some x
and y coordinate is equal to 0.



80 1999 Santa Cruz, New Mexico

Solution

similistar(Commands1,Commands2) :-

collect_stars(Commands1,Stars1),

collect_stars(Commands2,Stars2),

canonical_stars(Stars1,Canonical1),

canonical_stars(Stars2,Canonical2),

Canonical1 == Canonical2.

canonical_stars([],[]).

canonical_stars(Stars,CanonicalStars) :-

Stars = [star(StartCol,InitialLine)|RestStars],

max_line(RestStars,InitialLine,StartLine),

canonical_stars(Stars,StartCol,StartLine,CanonicalStars).

canonical_stars([],_,_,[]).

canonical_stars([star(X,Y)|R],StartCol,StartLine,[star(X1,Y1)|R1]) :-

X1 is X - StartCol,

Y1 is Y - StartLine,

canonical_stars(R,StartCol,StartLine,R1).



Star Palindrome 81

3. Star Palindrome

A picture produced by a command sequence as in the star problem is a star
palindrome if and only if it can be produced by a command sequence that is itself
a palindrome. You can imagine what a palindrome command sequence is, so here
is just one example:

star down left star up up star left down star

Write a predicate starpalindrome/1, which accepts as input a command se-
quence, which succeeds if the picture corresponding to the sequence is a star
palindrome, and which fails otherwise.

Hints Iterative deepening and generate and test might look an attractive ap-
proach, but when to stop if the picture is not a palindrome? We attack the problem
from a different angle . . .

Suppose we have a command sequence for a picture. We can abstract it to a
sequence of the stars occurring in it, where each star has its coordinates, just like
in the representation in the star problem. I.e. the sequence

up up star right down star left

has as abstract form: [star(0,2) star(1,1)]. Any abstract sequence can be
made into a concrete command sequence, such that executing this sequence results
in the same picture. We use this representation to prove there is a symmetry point
in every star palindrome.

Suppose a picture has a palindrome command sequence S. Abstract it to its
abstract form A. There are two possibilities: A has odd length and is of the
form Aleftstar(x,y)Aright, or A has even length and is of the form Aleft Aright,
where Aleft and Aright have the same length. Rewrite Aleftstar(x,y)Aright to
Aleftstar(x,y)star(x,y)Aright. This results in a palindrome of the other form, and
so we can focus on the form Aleft Aright.

Let star(xl
i,y

l
i) be i-th element in the sequence Aleft (starting with i = 1 at the

left), and let star(xr
i ,y

r
i ) be the i-th element in the sequence Aright (starting with i

= 1 at the right). These are corresponding elements in the palindrome. Compute
(Xi,Yi) = (xr

i + xl
i, yr

i + yl
i). Convince yourself that (Xi,Yi) is independent of i.

Now, (Xi/2,Yi/2) is the symmetry point for the picture.
So, every star palindrome has a symmetry point. Conversely, if a picture has a

symmetry point, it is a star palindrome: you can construct an abstract palindrome
sequence, and from there easily generate a palindrome command sequence.

Conclusion: there must exist a point of symmetry, and this is all our program
tries to establish.

One small point: the formula for the coordinates of the midpoint of two points
involves a division by 2. It is better to avoid that division.



82 1999 Santa Cruz, New Mexico

Solution

:- use_module(library(lists), [member/2]).

starpalindrome(Commands) :-

collect_stars(Commands,Stars),

( Stars == [] ->

true

;

check_palindrome(Stars)

).

check_palindrome(Stars) :-

setof((X,Y),symmetry_point(Stars,X,Y),SymmetryPoints),

member((X,Y),SymmetryPoints),

\+ some_star_has_no_symmetric_star(Stars,X,Y).

some_star_has_no_symmetric_star(Stars,X,Y) :-

member(star(A,B),Stars),

\+ has_symmetric_star(A,B,Stars,X,Y).

has_symmetric_star(A,B,Stars,X,Y) :-

member(star(C,D),Stars),

X is A + C,

Y is B + D.

symmetry_point(Stars,X,Y) :-

member(star(X1,Y1),Stars),

member(star(X2,Y2),Stars),

X is X1 + X2,

Y is Y1 + Y2.



Division 83

4. Division

The following is a well known true Statement in arithmetics:

Statement:
If a number in decimal representation consists of 3 consecutive digits,
then the number is divisible by 3.

Examples of such numbers are: 123 and 786. We now introduce Statement(Base,M,Divisor),
which has 3 parameters:

Statement(N,M,P):
If a number in base Base representation consists of M consecutive
digits, then the number is divisible by Divisor.

It is clear that the above Statement equals Statement(10,3,3).
You are to write a program that checks the instances of the Statement(Base,M,Divisor)

for given values of Base, M and Divisor. Write a predicate division/3, which
gets as three parameters the numbers Base, M, Divisor, and that succeeds or fails
according to whether Statement(Base,M,Divisor) is true or not.

Here are some examples:

?- division(10,3,3). ?- division(7,3,3).

Yes Yes

?- division(15,4,4). ?- division(451,9,9).

No Yes

Hints The first idea that comes to mind is: generate all numbers with consec-
utive digits of the required length and in the given base, and then test whether they
all pass the division test. There is a problem with this approach. E.g. let the query
be ?- division(10,3,3). Our naive program would generate and test both 876
and 786, and all permutations of the numbers 8, 7 and 6. We can avoid testing all
these permutations by making the simple observation that two such permutations
differ by a multiple of 9 (that is Base− 1), so if all permutations must be divisible
by Divisor, also Base−1 must be divisible by Divisor. And vice versa: if Divisor
divides Base− 1, and one of the permutations is divisible by Divisor, all of them
are.



84 1999 Santa Cruz, New Mexico

Solution

:- use_module(contestlib,[numlist/3]).

:- use_module(library(lists), [append/3]).

division(Base,M,Divisor) :-

0 =:= (Base - 1) mod Divisor,

\+ exists_non_divsible_subsequence(Base,M,Divisor).

exists_non_divsible_subsequence(Base,M,Divisor) :-

Base1 is Base - 1,

numlist(0,Base1,AllDigits),

length(SubSeq,M),

append(_,Part,AllDigits),

append(SubSeq,_,Part),

ModBase is Base mod Divisor,

compute_mod(SubSeq,0,ModBase,Divisor,Result),

Result =\= 0.

compute_mod([],Res,_,_,Res).

compute_mod([X|R],Acc,Base,Divisor,Res) :-

NewAcc is (Acc*Base + X) mod Divisor,

compute_mod(R,NewAcc,Base,Divisor,Res).



Möbius 85

5. Möbius

You probably know what a Möbius ring is and how you make one: start off with a
ring of paper, cut it somewhere, twist one end, and glue the ends together again.
You can do this more than once and at different places. Now imagine you cut out
a piece of paper from a book, and that this piece is exactly one line of the book.
Say, for example, you have cut out the line:

h e l l o w o r l d

At the other side of the strip of paper, there will also be text, say:

f i n g e r l a d y

And, of course, the d on the first side lines up with the f on the other side. Now
glue together both end points, but without twisting the strip. You get a ring, with
on the outside side written ‘hello world’, and on the inside ‘finger lady’. We call
this the initial state.

Imagine you have a current position which is at the beginning of the text on
the outside, i.e. at the h in the example. Now there are some commands you must
be able to execute. The first command is print, which prints the characters on
the band starting from the current position, moving a character to the right, one
at a time, until you reach the position in which you were at the beginning of the
print command. If you would execute a print in the initial state of the example,
the screen would show:

hello world

The second command is skip, which skips the current position one character
to the right. Starting from the initial state of the example, executing the sequence
of commands

skip skip print

results in

llo worldhe

Then, there is the twist command, which cuts the band just before the current
position (cutting is always between two characters), turns one end 180 degrees (a
half twist of the end with the current position), and glues the ends back together.
After this, the new current position is just to the right of the cut. Some letters
will appear upside down now, but we will not care about that. For example, the
sequence

skip skip twist print

results in



86 1999 Santa Cruz, New Mexico

al regnifydllo worldhe

Finally, there is the command stop, indicating that you are no longer required
to do anything more.

Write a predicate mobius/3, which gets as first argument a list of characters
representing the outside of the initial ring, a list of characters representing the
inside of the initial ring, and a list of commands as described above, ending with
stop. Your program ought to execute all commands (in the given order of course),
and then stop. For example:

?- mobius([h,e,l,l,o,’ ’,w,o,r,l,d],[f,i,n,g,e,r,’ ’,l,a,d,y],

[print,skip,skip,twist,print,stop]).

hello world

al regnifydllo worldhe

?- mobius([h,e,l,l,o,’ ’,w,o,r,l,d],[f,i,n,g,e,r,’ ’,l,a,d,y],

[print,skip,skip,twist,print,skip,twist,print,stop]).

hello world

al regnifydllo worldhe

l regnifydl

Hints A good representation helps a lot. Imagine the initial band as if the
paper were see through - we take two short words: abc and 123. From the outside
you see the sequence of letters in abc and you see more vaguely the letters 321.
First observe that the letters a and 3 stay together on the band, whatever com-
mand is executed. The image of this band represented by the open ended term
normal(a/3,normal(b/2,normal(c/1,Tail0))). The functor normal/2 indi-
cates that there was no twist at this place. Skipping one position to the right results
in the representation normal(b/2,normal(c/1,normal(a/3,Tail1))). Suppose
we now execute a twist, then the representation changes to
twisted(b/2,normal(c/1,normal(a/3,Tail1))). And another skip results in
normal(c/1,normal(a/3,twisted(b/2,Tail2))). Twisting twice at the same
place reinstalls the normal situation. Now how about printing . . . we keep track of
how many times a twist was made - actually we need only the parity: if it is even,
the number of characters to be printed is equal to the lenght of one of the words.
This corresponds to the fact that the band really has two sides. If the parity is odd,
the band has only one side and we need to print both words. Which character of
a pair to select, depends on whether there was a twist just before, and on whether
we print the outside or the inside of the band.



Möbius 87

Solution

:- use_module(library(lists),[reverse/2]).

mobius(Side1,Side2,Commands) :-

make_band(Side1,Side2,Band,TailBand),

Twists = even,

execute_commands(Commands,Side1,Twists,Band,TailBand).

make_band(Side1,Side2,Band,TailBand) :-

reverse(Side2,Side3),

bandmerge(Side1,Side3,Band,TailBand).

bandmerge([],[],Tail,Tail).

bandmerge([A|L1],[B|L2],normal(A/B,RestBand),Tail) :-

bandmerge(L1,L2,RestBand,Tail).

execute_commands([],_,_,_,_).

execute_commands([Command|Commands],Len,Twists,Band,TailBand) :-

execute_command(Command,Len,Twists,Band,TailBand,

NewTwists,NewBand,NewTailBand),

execute_commands(Commands,Len,NewTwists,NewBand,NewTailBand).

execute_command(print,Len,Twists,Band,TailBand,Twists,Band,TailBand) :-

write_band(Len,even,Band),

( Twists == odd ->

write_band(Len,odd,Band)

;

true

),

nl.

execute_command(twist,_,Twists,Band,TailBand,NewTwists,NewBand,TailBand) :-

even_odd(Twists,NewTwists),

twist(Band,NewBand).

execute_command(skip,_,Twists,Band,TailBand,Twists,NewBand,NewTailBand) :-

skip_character(Band,TailBand,NewBand,NewTailBand).

write_band([],_,_).

write_band([_|R],Odd_or_Even,normal(Chars,Rest)) :-

select_char(Odd_or_Even,Chars,Char),

write(Char),

write_band(R,Odd_or_Even,Rest).

write_band([_|R],Odd_or_Even,twisted(Chars,Rest)) :-

even_odd(Odd_or_Even,Even_or_Odd),

select_char(Even_or_Odd,Chars,Char),

write(Char),

write_band(R,Even_or_Odd,Rest).



88 1999 Santa Cruz, New Mexico

even_odd(odd,even).

even_odd(even,odd).

twist(normal(E,L),twisted(E,L)).

twist(twisted(E,L),normal(E,L)).

skip_character(normal(Chars,Tail),normal(Chars,NewTail),Tail,NewTail).

skip_character(twisted(Chars,Tail),twisted(Chars,NewTail),Tail,NewTail).

select_char(even, X/_, X).

select_char(odd , _/X, X).



Palm Tree 89

6. Palm Tree

The garden of our hotel on Cyprus has beautiful palm trees, and they need water
every morning. The gardener is a nice man who can follow and interpret orders.
He must start every morning exactly at 6, and he has to give each palm tree the
exact amount of water prescribed by the manager. She usually is very precise,
but she has not realized how much freedom her orders really leave the gardener.
Indeed, in an attempt to make sure that he is never idle, she has set up a set of
rules he must obey. But before showing you the rules, here is how watering of the
palm trees proceeds: the gardener fills his bucket with water at the well, walks
to a palm tree, pours the required amount of water, walks to another palm tree,
pours, walks, . . . until his bucket is empty; he then walks back to the well, fills
the bucket, walks to a palm tree, and so on until all palm trees are watered. He
then walks back to the well and his watering job is done. These are the rules the
gardener must obey:

� Going from one tree to another or to or from the well must be done in straight
lines, and the gardener is to walk at a steady pace. We will model this by
just giving you the time it takes to walk from one point to another.

� The bucket must be empty when returning to the well, except perhaps on
the last return.

� The bucket must always be filled completely at the well, and this takes a
fixed amount of time.

� Each tree must be visited exactly once.

� The gardener is not doing anything else but filling, pouring and walking.

The gardener knows that when he is finished watering the palm trees, he will have
to start digging holes for new trees. He prefers watering over digging, so he exploits
the rules to make the watering job as long as possible (of course within the rules
set by the manager). This is not such a straightforward task, though, so he needs
your program to help him. Your program can use given facts representing the
bucket size, the distances between palm trees and the well, and the needs of each
palm tree. Here is an example (from which you should be able to make a correct
generalization):

% distances between palm trees

palm2palm(jasmine,sheherazade,18).

palm2palm(sheherazade,nina,12).

palm2palm(jasmine,nina,19).

palm2palm(elisa,nina,8).

palm2palm(elisa,sheherazade,20).



90 1999 Santa Cruz, New Mexico

% distances from palm trees to well

palm2well(jasmine,13).

palm2well(sheherazade,19).

palm2well(nina,22).

palm2well(elisa,34).

% amount of water per tree

palm_needs(jasmine,2).

palm_needs(sheherazade,1).

palm_needs(nina,2).

palm_needs(elisa,4).

% bucket size

bucket(5).

Do not worry about non-Euclidean distances here. The garden has obstacles
like swimming pools for the guests, a bar, flower beds, . . . , and it is not always
possible to walk from one tree to the other. You might have noticed that the
gardener gives girls’ names to his trees.

Write a predicate palmtree/1, which unifies its argument with an optimal com-
pliant palm tree trajectory, or fails if no such trajectory exists. A palm tree tra-
jectory is just a sequence of palm tree names, e.g. [nina,jasmine,elisa,nina].
A palm tree trajectory is compliant if the gardener could visit all the palm trees
in the order of the trajectory, while obeying the watering prescriptions from his
manager. The previous example is clearly not compliant, since it visits nina twice.
The following is a compliant trajectory: [sheherazade,jasmine,nina,elisa].

A compliant trajectory is optimal if the time it takes for the gardener to follow
the trajectory during watering is maximal.

All distances, durations and water quantities are integers.

Hints The program is of the generate and test type: all possible trajectories are
generated (i.e. permutations of the palm trees), and then checked whether they are
compliant, while computing their duration. All this happens inside a setof, such
that we just need to pick out the largest one at the end, and we are done. Well,
setof/3 sorts in ascending order, so if we compute the negative of the duration,
we can take the first one from the list produced by setof/3.

The fixed amount of time it takes for filling the bucket is totally irrelevant for
the problem.



Palm Tree 91

Solution

:- use_module(library(lists),[select/3]).

palmtree(LongestVisit) :-

setof(Tree,palm(Tree),Trees),

setof(Duration-Visit,visit(Trees,Duration,Visit),AllVisits),

AllVisits = [_-LongestVisit|_].

visit(Trees,Duration,Visit) :-

permute(Trees,Visit),

time_from_well(Visit,0,Duration).

time_from_well([],Duration,FinalDuration) :- FinalDuration is -Duration.

time_from_well([T|Trees],Duration,FinalDuration) :-

palm2well(T,Time),

Duration1 is Duration + Time,

bucket(FullBucket),

palm_needs(T,Cap),

NewBucket is FullBucket - Cap,

NewBucket > -1,

time_from_tree(Trees,T,NewBucket,Duration1,FinalDuration).

time_from_tree([],Tree,_,DurationIn,DurationOut) :-

palm2well(Tree,Time),

DurationOut is DurationIn + Time.

time_from_tree([T|Trees],Tree,Bucket,Duration,FinalDuration) :-

( Bucket == 0 ->

palm2well(Tree,Time),

Duration1 is Duration + Time,

time_from_well([T|Trees],Duration1,FinalDuration)

;

palm_needs(T,Cap),

NewBucket is Bucket - Cap,

NewBucket >= 0,

p2p(T,Tree,Time),

Duration1 is Duration + Time,

time_from_tree(Trees,T,NewBucket,Duration1,FinalDuration)

).

palm(X) :- palm2palm(X,_,_) ; palm2palm(_,X,_) ; palm2well(X,_).

p2p(X,Y,T) :- once((palm2palm(X,Y,T) ; palm2palm(Y,X,T))).

permute([],[]).

permute([X|R],O) :- permute(R,RP), select(X,O,RP).



92 1999 Santa Cruz, New Mexico



Contest VII: 2001 Paphos,

Cyprus

1. Spiral Cross

Write a predicate cross/1, which takes as input a positive integer, and draws a
cross composed of . . . what the heck, just look at what is expected for some queries:

?- cross(3). ?- cross(6).

1 2 1 2

5 5 6

4 3 9 10

12 11

8 7

4 3

You can look at the picture as a spiral of numbers.
Make sure that the columns are properly aligned. The argument to cross/1

is not larger than 49.

Hints Another way to look at the picture is as a set of shrinking rectangles
sitting inside each other. This leads directly to an inductive definition of the picture
in terms of the number that needs to be drawn in the upper left corner, the number
of spaces before that number, and the number of spaces between the two numbers
on the first line.

The limitation on the input ensures that no printed number has more than two
decimals.

93



94 2001 Paphos, Cyprus

Solution

:- use_module(contestlib, [writeN/2, write_int/2]).

cross(N) :-

FirstIndent = 5,

MiddleIndent is 2*N - (N mod 2) - 3,

UpperLeft = 1,

cross(N,FirstIndent,UpperLeft,MiddleIndent).

cross(0,_,_,_) :- !.

cross(1,FirstIndent,UpperLeft,_) :- !,

writeN(FirstIndent,’ ’),

write_int(UpperLeft,2),

nl.

cross(N,FirstIndent,UpperLeft,MiddleIndent) :-

UpperRight is UpperLeft + 1,

write1line(FirstIndent,UpperLeft,MiddleIndent,UpperRight),

N1 is N - 2,

FirstIndent1 is FirstIndent + 2,

UpperLeft1 is UpperLeft + 4,

MiddleIndent1 is MiddleIndent - 4,

cross(N1,FirstIndent1,UpperLeft1,MiddleIndent1),

DownLeft is UpperLeft + 3,

DownRight is UpperLeft + 2,

write1line(FirstIndent,DownLeft,MiddleIndent,DownRight).

write1line(Spaces1,I1,Spaces2,I2) :-

writeN(Spaces1,’ ’),

write_int(I1,2),

writeN(Spaces2,’ ’),

write_int(I2,2),

nl.



M-Queens 95

2. M-Queens

The famous N-queens problem is actually just a crude approximation of the less
famous M-queens problem, which consists in finding all maximally safe configu-
rations of queens on an M × M chess board. A configuration is maximally safe
if no queen can be added without the configuration becoming unsafe. The usual
definition of a safe configuration applies here too: no queen can beat any other
queen. So, write a predicate mqueens/2, which, given as input a number, unifies
the second argument with all maximally safe configurations through backtracking.
The answers for input 1, 2 and 3 are given below:

?- mqueens(1,L). ?- mqueens(3,L).

L = [1] L = [1,3,none]

L = [1,none,2]

L = [2,none,1]

?- mqueens(2,L). L = [2,none,3]

L = [1,none] L = [3,1,none]

L = [2,none] L = [3,none,2]

L = [none,1] L = [none,1,3]

L = [none,2] L = [none,2,none]

L = [none,3,1]

The order in which solutions are delivered is not important. Each solution should
be given only once. The convention is clear, but just to make sure: a solution
[none,3,none,1] denotes a configuration in which there is no queen in the first
column, one queen in column 2 in row 3, no queen in column 3 and one queen in
row 1 of column 4.

Hints We can adapt an ordinary N-queens program to generate (potential) so-
lutions with empty columns as well. However, we need something to check whether
or not we can put an extra queen in any of the empty columns. One way to do
this is to check whether all squares on the board are attacked by the queens in the
solution. For instance, the generation phase might generate [3,none,none], but
the square (3,2) is not attacked, so we can still place a queen in column three, and
so [3,none,none] is rejected.



96 2001 Paphos, Cyprus

Solution

:- use_module(library(lists),[member/2]).

:- use_module(contestlib,[numlist/3]).

mqueens(M,Solution) :-

findall(sq(A,B),(numlist(1,M,Rows),

member(A,Rows),member(B,Rows)),Squares),

mqueens(M,Squares,[],Solution).

mqueens(M,NotAttacked,PartialSolution,Solution) :-

( M == 0 ->

NotAttacked = [],

Solution = PartialSolution

;

M1 is M - 1,

(

member(sq(M,X),NotAttacked),

safe(PartialSolution,1,X),

delete_attacked(NotAttacked,M,X,NotAttacked1)

;

X = none,

NotAttacked1 = NotAttacked

),

mqueens(M1,NotAttacked1,[X|PartialSolution],Solution)

).

safe([],_,_).

safe([X|R],Dist,Y) :-

( X == none ->

true

;

X =\= Y,

abs(X - Y) =\= Dist

),

Dist1 is Dist + 1,

safe(R,Dist1,Y).

delete_attacked([],_,_,[]).

delete_attacked([sq(A,B)|R],I,J,Squares) :-

( (A =:= I ; B =:= J ; A-B =:= I-J ; A+B =:= I+J) ->

delete_attacked(R,I,J,Squares)

;

Squares = [sq(A,B)|S],

delete_attacked(R,I,J,S)

).



Trip 97

3. Trip

Teleportation has its limitations: teleportation gates cannot be visited by more
than one object at the same time (whether this object is a Vulcan, a bulk trans-
porting ship, or a black hole is immaterial), and not every gate is connected to
every other gate. Nevertheless, teleportation is useful, and in fact heavily used for
the transportation of silk. So much even that the silk transportation ships have
a fixed schedule. This was only possible by the invention of the universal clock
(which is really universal, because all universal clocks in the universe indicate the
same time at every moment), and the convention that every teleportation trip in
the universe departs on the hour. The schedule is maintained centrally by UTS
(Universal Teleportation Systems). This avoids collisions, and allows for maximal
use of the teleportation network. Of course, when individuals plan their holidays,
they wish to use the teleportation system as well. They can submit a request to
UTS for a trip from, say, the Betelgeuse gate to Rigel at a particular hour. UTS
sends back the schedule the individual has to follow. The schedule consists of a
sequence of gates, starting with Betelgeuse and ending with Rigel, and a starting
time. In order to avoid collisions, it is sometimes necessary to wait at a gate (actu-
ally outside) for some time (always an integral number of hours of course). Hence,
the schedule also contains terms of the form wait(3), meaning: wait 3 hours be-
fore performing the next hop, or, to be more precise, let the next 3 occasions for
teleportation pass.

Write the scheduling predicate trip/6 for UTS. The gate network is given in
the form of a set of facts connection/2, as in the example below. The fixed and
already committed schedules are given in the form of fixed trip/2 facts, as in

connection(a,b).

connection(a,c).

connection(c,a). % connections are not always symmetric!

fixed_trip(345,[a,b,wait(2),c,wait(1),z]).

fixed_trip(346,[a,wait(1),b,c,z]).

The first argument is the starting hour of the trip, the second has been explained
before.

When you want a schedule for your trip, you should send a query to UTS like

?- trip(344,348,350,a,z,Trip).

where the first and second argument indicate the earliest and latest starting hour
you find acceptable, the third indicates the latest arrival time, the fourth and fifth
indicate the begin and end gate of your intended trip, and the last argument should
be unified with a trip fact that avoids collisions with previously existing trips. If
no such trip exists, the query fails. Only one trip is delivered as an answer, and it
must be the (or rather a) trip with the earliest possible starting hour.



98 2001 Paphos, Cyprus

Just to be precise: no two arrivals at the same gate can be at the same moment,
and neither can two departures. Teleportation itself takes 6 seconds, so an arrival
and departure can be scheduled at the same hour at a particular gate. And
remember that departures are on the hour.

Hints The proposed solution simply generates all trips, then filters out the ones
that conflict with the predefined ones. What remains is collected by setof/3, and
the first is a trip with a earliest arrival time. Conflicts are found by extracting the
departure and arrival events from a trip. The fixed predefined trips and the newly
planned one should not have an event in common.

It makes no sense to let a trip start by waiting at a gate, and a trip should not
have two waits at the same gate, so the first argument if the predicate any trip/7

tells whether a wait can be generated or not.



Trip 99

Solution

:- use_module(contestlib,[for/3]).

trip(EarliestStart,LatestStart,LatestEnd,Begin,End,Trip) :-

setof(Arrival-Trip,

good_trip(EarliestStart,LatestStart,LatestEnd,

Begin,End,Trip,Arrival),

[_ - Trip|_]).

good_trip(EarliestStart,LatestStart,LatestEnd,

Begin,End,trip(Start,Path),Arrival) :-

for(Start,EarliestStart,LatestStart),

Start =< LatestEnd,

any_trip(nowait,Start,LatestEnd,Begin,End,Path,Arrival),

\+((Path = [Gate|Gates],

tripevent(Gates,Gate,Start,Event),

fixed_trip(FixedStart,[FixedGate|FixedRestGates]),

tripevent(FixedRestGates,FixedGate,FixedStart,Event))).

tripevent([wait(N)|RGs],Gate,Start,Event) :- !,

NewStart is Start + N,

tripevent(RGs,Gate,NewStart,Event).

tripevent([_|_],Gate,Start,departure(Start,Gate)).

tripevent([G|_], _,Start,arrival(Start,G)).

tripevent([G|RGs], _,Start,Event) :-

NewStart is Start + 1,

tripevent(RGs,G,NewStart,Event).

any_trip( _, Start, _,Begin,Begin,[Begin],Start).

any_trip(wait, Start,LatestEnd,Begin,End,[wait(Wait)|R],Arrival) :-

N is LatestEnd - Start,

for(Wait,1,N),

NewStart is Start + Wait,

NewStart =< LatestEnd,

any_trip(nowait,NewStart,LatestEnd,Begin,End,R,Arrival).

any_trip( _, Start,LatestEnd,Begin,End,[Begin|R],Arrival) :-

connection(Begin,NewBegin),

NewStart is Start + 1,

NewStart =< LatestEnd,

any_trip(wait,NewStart,LatestEnd,NewBegin,End,R,Arrival).



100 2001 Paphos, Cyprus

4. Tolerant Unification

Some systems enforce type declarations, or do type checking/inference. The reason
is basically that some program errors are avoided if the compiler can tell you that
you have misspelled the name of an identifier. Such policy is supposed to make
your software more robust, under the slogan Well-typed programs can’t go wrong!.
The underlying philosophy derives from the observation that bla = bla succeeds,
while bla = blo (note the misspelling of bla to blo!) fails.

A more modern vision on this phenomenon consists in not bothering the pro-
grammer with annoying type error messages at compile time, and allowing unifi-
cation to succeed on a certain amount of possible misspellings at run time. Even
though you misspelled bla by blo in some place, the unification bla = blo can
still succeed. But if you later (in the forward continuation of bla = blo) try to
unify bla (or blo) with bli, this must fail. Indeed, you cannot misspell inconsis-
tently! This new unification procedure is called tolerant unification. In order to
incorporate tolerant unification in a 3-line meta-interpreter (which is written in a
non-tolerant kernel of the language) you will, as a first experiment, implement a
predicate tu/1, which can execute a conjunction of (tolerant) unifications of the
form Term1 = Term2, with Termi just terms. tu/1 succeeds once or fails. No
messages are printed. Here are a few examples:

?- tu(foo(X,bla) = bar(blo,X)). ?- tu((bla = blo, blo = bli)).

X = bla % or X = blo No

?- tu(bla(blo) = blo(bli)). ?- tu(bla(_,_) = bla(_)).

Yes No

The last two examples show that tolerant unification is arity sensitive1. In this
version of tolerant unification, we will allow almost any sort of misspelling, not
just one-character misspellings. This means that x = qwertyuio also succeeds.
However, during experiments, it was noticed that very few people misspell a list
into another functor of arity two, and that misspelling an empty list by another
atom is also rare, so unifications like [a] = dot(a,[]) and [a|nil] = [a] should
fail. Also, we do not allow numbers to be misspelled.

1There is still some research to be done in this area. Eventually, totally tolerant unification
(TTU) will also let terms with different arities unify, such that many programs in which you have
added an extra argument to some of the functor occurrences will continue running as intended.
Even when a limited number of arguments are in different positions, your program will still make
sense under the TTU paradigm. However, TTU is a bit hard to specify within the scope of this
book. Also, first argument indexing is non-trivial.



Tolerant Unification 101

Solution

:- use_module(library(lists),[member/2]).

tu(Goal) :- tu_goal(Goal,[],_).

tu_goal((T1=T2,Goal),ToleranceIn,ToleranceOut) :-

tu_terms(T1,T2,ToleranceIn,Tol),

tu_goal(Goal,Tol,ToleranceOut).

tu_goal(T1=T2,ToleranceIn,ToleranceOut) :-

tu_terms(T1,T2,ToleranceIn,ToleranceOut).

tu_terms(T1,T2,ToleranceIn,ToleranceOut) :-

( (special(T1) ; special(T2)) ->

T1 = T2,

ToleranceOut = ToleranceIn

; (atom(T1) ; atom(T2)) ->

atom(T1), atom(T2),

tolerance_lookup(T1,T2,ToleranceIn,ToleranceOut)

; (T1 = [_|_] ; T2 = [_|_]) ->

T1 = [A1|R1], T2 = [A2|R2],

tu_terms(A1,A2,ToleranceIn,Tol),

tu_terms(R1,R2,Tol,ToleranceOut)

;

functor(T1,N1,A),

functor(T2,N2,A),

tolerance_lookup(N1/A,N2/A,ToleranceIn,Tol),

T1 =.. [_|As1],

T2 =.. [_|As2],

tu_terms(As1,As2,Tol,ToleranceOut)

).

tolerance_lookup(X,Y,ToleranceIn,ToleranceOut) :-

( X = Y ->

ToleranceOut = ToleranceIn

; member(X=YY,ToleranceIn) ->

Y = YY,

ToleranceOut = ToleranceIn

; member(Y=XX,ToleranceIn) ->

X = XX,

ToleranceOut = ToleranceIn

;

ToleranceOut = [X=Y,Y=X|ToleranceIn]

).

special(T) :- (var(T) ; number(T) ; T == []).



102 2001 Paphos, Cyprus

5. Shop

Aikia finally understood her mission in life: to open a furniture shop in all major
cities around the world. She started by designing a leaflet, or rather the leaflet.
Superficially, the leaflet was just a linear map of the shop, intended for customers
(she preferred to name them clients) to find their way. But to Aikia (and future
generations), it was more: the number of islands in the shop (she prefers to name
them milieus), their contents, their interconnection and their relation to the outside
world would be fixed for all Aikia shops until the next major comet impact. We
have no permission to reproduce the full leaflet here, but a reduced one can be
admired in Figure 7.1.

reception bed table chair

couch

restokitchenflowercash

IN

OUT

Figure 7.1: Abstract shop layout.

The idea is that the client comes in at IN, and follows the main path, indicated
by the solid arrows: from the reception to the milieu with beds, then to the table
milieu and so on. However, if the client is in a hurry, she2 can use a shortcut. Our
example has one such shortcut, from the table milieu to the flower milieu (indicated
by a dashed arrow). Actually, the direction of the arrows is not important, as
clients can retrace their steps (if not from memory, then from the objects they
picked up and have put in their carriage).

Her next move was more cunning than a black adder can imagine. She had
3 zillion copies of the leaflet printed on non-recycled paper, the price of wood
rose, and the furniture market was left in the shambles. It still is, but . . . Aikia
managed to open her shops in every worthy place on earth3. And, although the
leaflet was a fact of life, invariable and ever lasting, the shops looked different from
the outside. Figure 7.2 shows two examples of a realization of the leaflet, where
both shops consist of 9 cubicles of course. To make sure that the client follows
the intended path, there are solid walls between, for instance, the table milieu and
the restaurant. But between the couch and chair milieu, there is no barrier (in

2Men get nervous breakdowns in Aikia’s shops.
3And in some unworthy places as well.



Shop 103

the figure represented by a dotted line). A shortcut is realized by a flapping door
(drawn as a dashed line in the picture), like between flower and table.

couch

resto

kitchen

chair

table

flower

reception

bed

cash

IN

OUT

reception bed table chair

cash flower couch

kitchen resto

IN

OUT

Figure 7.2: Two shop layouts in reality, but according to the leaflet.

This is where you come in4: given an empty shop (that is, the arrangement of
its cubicles), you need to assign a milieu to each cubicle. So, let us see how the
leaflet and an empty shop are specified:

� If there are N cubicles, they have integer names 1 up to N , and the fact
numberofcubes(N) is given.

� Cubicle I is next to cubicle J (which means that one can go from one to the
other directly), is represented by the fact nextto(I,J).

� For each cubicle I that has an outer wall (and can thus serve as entrance or
exit), there is a fact outerwall(I)

For the left shop in Figure 7.2, the numbering of the cubicles could be as in
Figure 7.3.

7

4

1

8

5

2

9

6

3

Figure 7.3: Cubicle numbering.

The given facts for this example are:

4No, don’t worry, not into the shop, just into the problem.



104 2001 Paphos, Cyprus

nextto(1,2). numberofcubes(9).

nextto(1,4).

nextto(2,3). outerwall(1).

nextto(2,5). outerwall(2).

nextto(3,6). outerwall(3).

nextto(4,5). outerwall(4).

nextto(4,7). outerwall(6).

nextto(5,6). outerwall(7).

nextto(5,8). outerwall(8).

nextto(6,9). outerwall(9).

nextto(7,8).

nextto(8,9).

Every manager knows the leaflet by heart! It is specified as one fact milieus/1
whose argument is a list of atoms, denoting the main trajectory, and a series of
shortcut(atom1, atom2) facts.

The above leaflet would be represented by:

milieus([reception,bed,table,chair,couch,resto,kitchen,flower,cash]).

shortcut(table,flower). % there can be several of them

Write a predicate shop/1, which, assuming you are given the real original leaflet
and an empty shop (in the form of the facts above), unifies its argument with one
(!, no pun intended) realization of the leaflet, in the form of a list of associations
between a cubicle and the milieu which must go in it. For the realization in the
left half of figure 7.2, this might be:

[1-kitchen,2-flower,3-cash,4-resto,5-table,6-bed,7-couch,8-chair,9-reception]

Your realization must take into account that the entrance and exit cubicles are
the first and last in the milieus list (which must have an outer wall), and that
there are shortcuts. The order in your answer list is not important.



Shop 105

Solution

:- use_module(library(lists),[member/2, select/3]).

:- use_module(contestlib,[numlist/3]).

shop(Shop) :-

numberofcubes(N),

numlist(1,N,Ns),

milieus(Milieus),

shop(Ns,Milieus,[],Shop),

\+ has_obstructed_shortcut(Shop).

shop([],[],Shop,Shop) :-

Shop = [ExitI-_|_],

outerwall(ExitI).

shop(Ns,[Mil|Mils],ShopIn,ShopOut) :-

select(N,Ns,NewNs),

check_passage(ShopIn,N),

NewShopIn = [N-Mil|ShopIn],

shop(NewNs,Mils,NewShopIn,ShopOut).

check_passage([],I) :- outerwall(I).

check_passage([J-_|_],I) :- no_wall_between(I,J).

no_wall_between(X,Y) :- nextto(X,Y).

no_wall_between(X,Y) :- nextto(Y,X).

has_obstructed_shortcut(Shop) :-

shortcut(MI,MJ),

member(I-MI,Shop), member(J-MJ,Shop),

\+(no_wall_between(I,J)).



106 2001 Paphos, Cyprus



Contest VIII: 2002

Copenhagen, Denmark

1. K4

Write a predicate kay4/1 which draws the famous K4 graph on the screen. The
input to the predicate kay4/1 is an integral number. Below are the pictures that
must appear on the screen for various input:

?- kay4(7). ?- kay4(6).

a-----b a----b

|\ /| |\ /|

| \ / | | \/ |

| X | | /\ |

| / \ | |/ \|

|/ \| c----d

c-----d

The input can be anything larger than 2.

Hints Imagine there is an X axis parallel to the (a,b) edge, a Y axis parallel
to the (a,c) edge, and let point a have coordinates (1,1). It suffices to describe the
mapping from the coordinates (1,1) up to (N,N) to the character that must be writ-
ten in that position. This mapping is described by the predicate point contains/4.
We generate the coordinates in the correct order, and write out the character.

107



108 2002 Copenhagen, Denmark

Solution

:- use_module(contestlib,[for/3]).

kay4(N) :-

for(X,1,N),

for(Y,1,N),

point_contains(X,Y,N,C),

write(C),

fail.

point_contains(1,1,_,C) :- !, C = a.

point_contains(1,N,N,C) :- !, C = ’b\n’.

point_contains(1,_,_,C) :- !, C = ’-’.

point_contains(N,1,N,C) :- !, C = c.

point_contains(N,N,N,C) :- !, C = ’d\n’.

point_contains(N,_,N,C) :- !, C = ’-’.

point_contains(_,1,_,C) :- !, C = ’|’.

point_contains(_,N,N,C) :- !, C = ’|\n’.

point_contains(X,Y,N,C) :-

(X =< N//2 ; (N - X) < N//2), !,

( X == Y ->

C = ’\\’

; X + Y =:= N + 1 ->

C = ’/’

;

C = ’ ’

).

point_contains(_,Y,N,C) :-

( Y =:= N//2 + 1 ->

C = ’X’

;

C = ’ ’

).



Bicentered Trees 109

2. Bicentered Trees

The distance between two nodes v and u in a graph is the length of a shortest
path between v and u, where the length of a path is simply the number of edges
in that path. The eccentricity of a node v is the maximal distance between v and
any other node in the graph. A node with minimal eccentricity is named a center
of the graph. There is a special class of trees which have exactly two centers; these
are named . . . bicentered trees (surprise, surprise!)

Ground Prolog terms are trees. Your task is to write a predicate bicentered/2
that, given a ground Prolog term as first argument, unifies its second argument
with a list of the two centers of the term if the Prolog term is a bicentered tree.
If it is not a bicentered tree, the predicate should fail.

The Prolog term could look like: f(g(a),h(b),i(k(c))). The functor (and
atom) names of all the nodes in the given term are always different. This term is
a bicentered tree, and the list of centers is [f,i] or [i,f]. So,

?- bicentered(f(g(a),h(b),i(k(c))),Centers).

answers either Centers = [f,i] or Centers = [i,f], and has no other solu-
tions.

Hints The solution first transforms the Prolog term into a list of edges: this
happens in the first goal of bicentered/2. Once that is done, we treat it as the
graph problem. Note that a simple path between two nodes in a tree is also the
shortest path: that is why path/5 removes the traversed edges and computes the
length of only one path.



110 2002 Copenhagen, Denmark

Solution

:- use_module(library(lists),[member/2, select/3, last/2]).

bicentered(Term,Centers) :-

findall(Edge,is_edge(Term,Edge),Edges),

setof(Node,is_node(Node,Edges),Nodes),

two_centers(Edges,Nodes,Centers).

is_edge(Term,Edge) :-

Term =.. [ParentName|Children],

member(Child,Children),

(

Child =.. [ChildName|_],

Edge = ParentName-ChildName

;

is_edge(Child,Edge)

).

is_node(Node,Edges) :- member(Node-_,Edges) ; member(_-Node,Edges).

two_centers(Edges,Nodes,[Center1,Center2]) :-

setof(Ecc-Node,eccentricity(Edges,Nodes,Ecc,Node),EccNodes),

EccNodes = [Ecc-Center1,Ecc-Center2|Rest],

(

Rest = []

;

Rest = [Ecc2 - _|_],

Ecc2 > Ecc

).

eccentricity(Edges,Nodes,Ecc,Node) :-

member(Node,Nodes),

setof(Dist,distance(Node,Nodes,Edges,Dist),Dists),

last(Dists,Ecc).

distance(Node,Nodes,Edges,NegDist) :-

member(Node1,Nodes),

path(Node,Node1,Edges,0,NegDist).

path(Node,Node,_,DistIn,DistOut) :- !, DistIn = DistOut.

path(Node,Node2,Edges,DistIn,DistOut) :-

(select(Node-Node1,Edges,Edges1) ; select(Node1-Node,Edges,Edges1)),

DistIn1 is DistIn + 1,

path(Node1,Node2,Edges1,DistIn1,DistOut).



Antwerpen 111

3. Antwerpen

The Towers of Antwerpen problem1 is a variant of the Towers of Hanoi problem.
You start off with a configuration of 3 pegs (say a, b and c), where each peg has
N disks. The disks have sizes N down to 1, and a disk is never placed on a disk
with strictly smaller size (equal size is OK, otherwise you could not move any disk
at all). The disks on peg a are colored black, the disks on peg b are yellow, and
the disks on peg c are red2. You can move one disk at a time, from one peg to
another, but you can never place a disk on a strictly smaller one. Still, you should
move the disks such that the black ones go all to peg c, the yellow ones to peg a,
and the red ones to peg b. You must do this in the smallest number of moves.

The query is of the form ?- antwerpen(N,MoveList). where N is the given
number of disks on each peg. A move is of the form x->y, meaning that the
topmost disk from peg x moves to peg y. So, a list of moves [(a->b),(c->b)]

means that the top disk is moved from peg a to b, and then the top disk from c
to b.

There is no need to produce a move list of minimal length, but you might want
to pay attention to performance.

Hints The paper by Minsker contains an optimal algorithm, but one cannot
expect anyone to reconstruct it under time pressure. It is easy to implement an
iterative deepening solution that is guaranteed to give the smallest number of moves,
but it is horribly slow. What we present is not optimal, but can serve as a first
step in understanding how the optimal solution by Minsker works.

Suppose we had the following operation already implemented:

From the starting configuration, produce a tower on peg a with all the disks,
such that the order of the equal disks is always black, yellow, red. See Figures
8.1(a) and 8.1(b) for an illustration.

We can now switch the pegs b and c, and reverse the construction of that tower.
We will then end up in the situation from Figure 8.1(c). We have just described
the clause for exchange/5!

Hence, the problem of exchanging the contents of two pegs is reduced to the
problem of constructing a tower with all the disks on one peg. We will break this
down in smaller problems.

Suppose there is only one disk (so N equals 1) on each peg. Then, it is easy to
make the full tower on a: just move the disk from b to a, and move the disk from
c to a.

1S. Minsker, The towers of Antwerpen problem, Information Processing Letters, 38, 107-111,
1991.

2The colors of the Belgian flag.



112 2002 Copenhagen, Denmark

a b c

(a) Initial towers

a b c

(b) All disks on
peg a

a b c

(c) After switch-
ing b and c, and
redistributing

Figure 8.1: Construct the tower, switch b and c, and deconstruct the tower.

Suppose you know how to make full tower with the first N-1 disks of each peg,
how would you make a full tower of N disks? The series of pictures in Figure 8.2
shows how:

1. Make the N-1 tower on peg c

2. Move the remaining disk from b to a

3. Move the N-1 tower from c to b

4. Move the remaining disk from c to a

5. Move the N-1 tower from b to a

Step i above corresponds to the construction of command sequence Ci in the
second clause of make tower/5.

We are now left with solving the problem of moving a full N tower. If N equals
0, this is easy. Suppose we know how to do it for a full N-1 tower, then we can
move a full N tower (say from a to b) as follows:

1. Move the top full N-1 tower on a to b

2. Move the two top disks from a to c

3. Move the full N-1 tower from b to c

4. Move the last disk from a to b

5. Move the N-1 tower from c to a

6. Move the two disks from c to b

7. Move the N-1 tower from a to b

Step i above, corresponds to the construction of command sequence Ci in the
second clause of move tower/5. Figure 8.3 shows how a tower can be moved.

Once we know how to exchange the contents of two pegs, we can go from the
initial situation to the required final one by exchanging peg b and c, and then
exchanging peg a and c.



Antwerpen 113

a b c

(a) Initial towers

a b c

(b) Full N-1 tower
on c

a b c

(c) Moved last
disk from b to a

a b c

(d) Moved N-1
full tower from c
to b

a b c

(e) Moved last
disk from c to a

a b c

(f) Moved N-1
full tower from b
to a

Figure 8.2: How to build a full tower.

a b c

(a) Initial full N
tower on a

a b c

(b) Full N-1 tower
moved to b

a b c

(c) Top two disks
from a to c

a b c

(d) Moved full N-
1 tower from b to
c

a b c

(e) Moved last
disk from a to b

a b c

(f) Moved full N-
1 tower from c to
a

a b c

(g) Moved two
disks from c to b

a b c

(h) Moved full N-
1 tower from a to
b

Figure 8.3: How to move a full tower from a to b.



114 2002 Copenhagen, Denmark

Solution

:- use_module(library(lists),[append/3, flatten/2]).

antwerpen(N,Commands) :-

exchange(N,b,c,a,Cbc),

exchange(N,a,c,b,Cac),

append(Cbc,Cac,Commands).

exchange(N,PegB,PegC,PegA,Commands) :-

make_tower(N,PegA,PegB,PegC,C1),

invert_commandsequence(C1,PegB,PegC,[],C2),

append(C1,C2,Commands).

make_tower(1,PegA,PegB,PegC,Commands) :- !,

Commands = [(PegB->PegA),(PegC->PegA)].

make_tower(N,PegA,PegB,PegC,Commands) :-

N1 is N - 1,

make_tower(N1,PegB,PegA,PegC,C1),

C2 = [(PegC->PegA)],

move_tower(N1,PegB,PegC,PegA,C3),

C4 = [(PegB->PegA)],

move_tower(N1,PegC,PegA,PegB,C5),

flatten([C1,C2,C3,C4,C5],Commands).

move_tower(1,PegA,PegB,PegC,Commands) :- !,

Commands = [(PegA->PegC),(PegA->PegC),

(PegA->PegB),(PegC->PegB),(PegC->PegB)].

move_tower(N,PegA,PegB,PegC,Commands) :-

N1 is N - 1,

move_tower(N1,PegA,PegB,PegC,C1),

C2 = [(PegA->PegC),(PegA->PegC)],

move_tower(N1,PegB,PegC,PegA,C3),

C4 = [(PegA->PegB)],

move_tower(N1,PegC,PegA,PegB,C5),

C6 = [(PegC->PegB),(PegC->PegB)],

move_tower(N1,PegA,PegB,PegC,C7),

flatten([C1,C2,C3,C4,C5,C6,C7],Commands).

invert_commandsequence([],_,_,In,In).

invert_commandsequence([(A->B)|R],X,Y,In,Out) :-

switch(A,X,Y,A1), switch(B,X,Y,B1),

invert_commandsequence(R,X,Y,[(B1->A1)|In],Out).

switch(A,A,B,B) :- !.

switch(A,B,A,B) :- !.

switch(A,_,_,A).



Shunt 115

4. Shunt

You are an engine driver, and your train is specified in the form [c1,c2,c3,. . . ,cn],
where the ci are wagons. The locomotive of the train is at the c1 side of the train,
and is otherwise not explicitly represented. You are in a shunting station with a
given train, and your task is to transform the train into a given permutation of
the initial train. The station has two shunting tracks on which you can push and
pop any number of wagons. See how the train [a,b,c] is transformed to [b,c,a]

in the series of pictures in Figure 8.4.

a cb

(a)

a

b c

(b)

b c

a

(c)

a

b c

(d)

b c a

(e)

Figure 8.4: [a,b] to [b,a] in 4 moves.

This series of pushes and pops is represented by the following list:

[one/2, two/1, one/ -2, two/ -1]

This list means: push two wagons on rail one; push one wagon on rail two, pop
two wagons from rail one; pop one wagon from rail two. The first wagon pushed
must go to rail one. Other series of pushes and pops might result in the same end
configuration, but we are interested in the shortest one only.

Your task is to write a predicate shunt/3, which can be called as

?- shunt([a,b,c],[b,c,a],L).

and which could answer with the above list, since that is a shortest sequence of
pushes and pops to transform the [a,b,c] train into the [b,c,a] train.



116 2002 Copenhagen, Denmark

Hints We treat this as a graph search problem, where a node is a state of the
rails (i.e. which wagons are on it), and edges between nodes are between states
that can be obtained from another by a push or a pop. We use iterative deepening
on the length of the paths constructed, and so the first path we find is the shortest,
and we don’t need to check for loops in the path.

Note that in a shortest solution, the successive moves alternate between the
tracks.



Shunt 117

Solution

:- use_module(library(lists), [append/3]).

shunt(In,Out,Moves) :-

StartNode = node(In,[],[]),

EndNode = node(Out,[],[]),

LastTrack = two,

length(Moves,_),

path(Moves,StartNode,EndNode,LastTrack),

!.

path([],Node,Node,_).

path([OtherTrack/N|Moves],Node,EndNode,LastTrack) :-

opposite(LastTrack,OtherTrack),

edge(Node,NextNode,OtherTrack,N),

path(Moves,NextNode,EndNode,OtherTrack).

edge(node(X1,A1,B), node(X2,A2,B), one, N) :- pop(A1,A2,X1,X2,N).

edge(node(X1,A1,B), node(X2,A2,B), one, N) :- push(A1,A2,X1,X2,N).

edge(node(X1,A,B1), node(X2,A,B2), two, N) :- pop(B1,B2,X1,X2,N).

edge(node(X1,A,B1), node(X2,A,B2), two, N) :- push(B1,B2,X1,X2,N).

pop(A1,A2,X1,X2,N) :-

append(F,A2,A1),

F \== [],

append(X1,F,X2),

length(F,M),

N is -M.

push(A1,A2,X1,X2,N) :-

append(X2,F,X1),

F \== [],

append(F,A1,A2),

length(F,N).

opposite(one,two).

opposite(two,one).



118 2002 Copenhagen, Denmark

5. Mamadee

You are the programmer for a malicious maze designer (MMD3) who likes designing
mazes from which no escape is possible (unless by going back). But the MMD also
has a handicap: he needs to use partially pre-constructed mazes (PPCM), which
means that blocking walls can be put up only in predefined slots, and that the
number of walls that can be used is limited. These PPCMs also have a predefined
set of entrances, and one predefined exit (because the doors open differently). So,
when the new PPCM model comes out, the MMD wants to place the walls such
that the least number of entrances allow for finding the exit. You are to solve a
part of this problem: for a given entry and exit, a given maximal number of walls
and given slots you can put the walls in, determine whether it is possible to place
the walls in such a way that there is no path from the entry to the exit. So, write
a predicate mamadee/5, which will be typically called as

?- mamadee(5,(1,4),(3,1),7,

[wall((0,2),(1,2)), wall((1,2),(2,2)), wall((2,2),(2,3)),

wall((2,2),(3,2)), wall((3,2),(3,1)), wall((4,1),(5,1)),

wall((1,3),(1,4)), wall((2,4),(2,5)), wall((2,0),(2,1))],

BlockingListOfWalls).

In this query, the first argument is the size of the maze (the maze is always rect-
angular); the second and third argument represent the entry and the exit of the
maze; the fourth argument is the maximal number of walls that can be used; the
fifth argument is a list with the specification of wall slots in the maze. If it is pos-
sible to place no more of these walls than the number of allowed walls (specified
in argument 4) and such that the way from the entry to the exit is blocked, then
the last argument must be unified with a shortest list of walls (from argument 5)
doing so. The order in argument 5 is not important, but it should not contain
duplicates, nor unnecessary walls. If there is no way to prevent the existence of a
path from the entry to the exit, the query above must (finitely) fail.

The maze with its wall slots specified in the above query, is shown in Picture
8.5. The entry (and exit) is given as a tuple of coordinates of the entry (or exit)
square. Squares have coordinates from (1, 1) to (N, N) where N is the size of the
maze. Moreover, the exit is guaranteed to be different from the entry.

A wall slot always has length one and is given as wall/2 term, which contains
two tuples of coordinates, giving the begin and end point of the wall. For instance,
the term wall((0,2),(1,2))blocks the direct passage from square (1, 2) to square
(1, 3). You cannot count on a specific order in the arguments of the wall/2 term.

This example query fails.

3Pronounced ma-ma-dee.



Mamadee 119

(0,0)

(5,5)

in

out

Figure 8.5: A 5x5 maze with entry, exit and possible wall slots.

Hints There is one annoying thing about the problem statement: the naming of
squares in the maze does not seem to match up with the one of the walls. So, some
code is needed to compute a wall from two adjacent squares. This also happens in
the predicate step/4.

Instead of computing a minimal set of blocking walls (i.e. without redundant
walls), we search for a smallest one: we use iterative deepening on the size of the
output.



120 2002 Copenhagen, Denmark

Solution

:- use_module(library(lists),[member/2]).

:- use_module(contestlib,[sublist/2, for/3]).

mamadee(MazeSize,Entry,Exit,MaxWalls,Walls,Blocking) :-

for(I,1,MaxWalls),

length(Blocking,I),

sublist(Walls,Blocking),

Been = [Entry],

\+ exists_path(Entry,Exit,MazeSize,Been,Blocking),

!.

exists_path(Entry,Exit,MazeSize,Been,Blocking) :-

( Exit == Entry ->

true

;

step(Entry,NewEntry,MazeSize,Blocking),

\+ member(NewEntry,Been),

exists_path(NewEntry,Exit,MazeSize,[NewEntry|Been],Blocking)

).

step((A,B),(X,Y),MazeSize,Blocking) :-

(

X = A, Y is B + 1,

C is A - 1, D = B,

U = A, V = B

;

X = A, Y is B - 1,

C is X - 1, D = Y,

U = X, V = Y

;

Y = B, X is A + 1,

C = A, D is B - 1,

U = A, V = B

;

Y = B, X is A - 1,

C = X, D is Y - 1,

U = X, V = Y

),

1 =< X, X =< MazeSize,

1 =< Y, Y =< MazeSize,

\+ member(wall((C,D),(U,V)),Blocking),

\+ member(wall((U,V),(C,D)),Blocking).



Contest IX: 2003 Mumbay,

India

1. Stop

Write a predicate stop/1 which draws in the screen a stop sign. A stop sign is
an 8-sided board, all red, except for a white horizontal strip in the middle. A size
3 stop sign - drawn by the query ?- stop(3). - looks like Figure 9.1(a) on the
screen.

RRR
R R

R R
R WWW R
R R

R R
RRR

(a) N = 3

RRRRR
R R

R R
R R

R R
R R
R WWWWWWWWW R
R R
R R

R R
R R

R R

RRRRR

(b) N = 5

Figure 9.1: Stop Signs.

As you can see, only the contour is red (denoted by the capital letter R), and
the horizontal white strip is indicated by the capital letter W.

As another example, ?- stop(5). produces Figure 9.1(b).
The input to stop/1 is larger than 2 and odd.

121



122 2003 Mumbay, India

Hints Figure 9.2 shows a stop sign of size N = 5, and the distances that are
important in the program.

RRRRR
R R

R R
R R

R R
R R
R WWWWWWWWW R
R R
R R

R R
R R

R R

RRRRR

N − 2

N − 2

N

N//2 3N − 6

3N − 4

Figure 9.2: N = 5 and related sizes for the program.



Stop 123

Solution

:- use_module(contestlib,[writeN/2]).

stop(N) :-

first_last_line(N),

slope(N - 2,N - 2,N,-1),

vertical(N//2,3*N - 4),

mid(3*N - 6),

vertical(N//2,3*N - 4),

slope(N - 2,1,3*N - 6,1),

first_last_line(N).

first_last_line(N) :-

N1 is N - 1,

space(N1),

red(N),

nl.

slope(M,SpaceBefore,SpaceMiddle,I) :-

( M > 0 ->

space(SpaceBefore), red(1), space(SpaceMiddle), red(1), nl,

M1 is M - 1,

SpaceBefore1 is SpaceBefore + I,

SpaceMiddle1 is SpaceMiddle - I - I,

slope(M1,SpaceBefore1,SpaceMiddle1,I)

;

true

).

mid(N) :- red(1), space(1), white(N), space(1), red(1), nl.

vertical(N,Space) :-

( N > 0 ->

red(1), space(Space), red(1), nl,

N1 is N - 1,

vertical(N1,Space)

;

true

).

red(N) :- writeN(N,’R’).

space(N) :- writeN(N,’ ’).

white(N) :- writeN(N,’W’).



124 2003 Mumbay, India

2. Cheater

N tourists have booked a day tour which includes one trip in a gondola. There is
only one gondola, operating all day. These tourists can board any time the gondola
is at the departure spot. After the trip, everyone must leave the gondola. Each
tourist has a sticker on his/her shirt, so that the gondola driver can immediately
see whether someone is entitled to board the gondola. The gondola driver is payed
by the number of people who have actually taken the trip, so he counts how many
people enter his gondola, and at the end of the day reports that number to the
tourist office. However, at the end of the day, the gondola driver reports that
(N + 1) tourists have taken the trip, and while he expects to be payed for (N + 1)
tourists, the tourist office is decided to find out who cheated and took the gondola
trip twice. The only thing they can rely on is the memory of the N tourists
themselves. Every non-cheating tourist tells exactly which other tourists (s)he
saw on the same gondola trip. The cheating tourist knows this of course, so (s)he
mentions the union of the people (s)he saw on both boat trips. The result is a
sequence of Prolog facts saw/2 (which should be interpreted as their commutative
closure). Examples will follow later.

Because the tourist office foresees that it will have to deal with this problem
regularly, it lets you - the poor programmer - write a predicate cheater/1, which
unifies its argument with the name of the cheater. There are a couple more things
you know: (1) there is at most one cheater, and the cheater cheated just once; (2)
the gondola does not make trips with just one tourist; (3) maybe it is the gondola
driver who cheated. The latter means that your predicate cheater/1 might also
have to unify its argument with gondola driver!

Here are some sample saw/2 sets and the answer that goes with them:

saw(anna,beata). saw(anna,beata).

saw(anna,christa). saw(anna,christa).

saw(beata,christa). ?- cheater(C).

saw(donna,eva). C = anna

?- cheater(C).

C = gondola_driver

Hints This problem is a much simplified version of the “Berge mystery story”,
usually solved by the notion of interval graphs. Without mentioning the graph
theory context in the problem statement above, about half of the people trying to
solve this problem come up with a program that tries to find two complete subgraphs
of the saw/2 graph with exactly one node in common. The other people come up
with the direct translation of the logic involved: the cheater is someone who saw two
different people who did not see each other; if no such person exists, the gondola
driver is the cheater.



Cheater 125

Solution

cheater(Cheater) :-

saw_each_other(Cheater, Person1),

saw_each_other(Cheater, Person2),

Person1 \== Person2,

\+ saw_each_other(Person1,Person2),

!.

cheater(gondola_driver).

saw_each_other(Person1,Person2) :- saw(Person1,Person2).

saw_each_other(Person1,Person2) :- saw(Person2,Person1).



126 2003 Mumbay, India

3. Spanning Spider

A spanning spider of a graph is a spanning tree (a subgraph that is a tree and
contains all vertices) that is also a spider. A spider is a graph with at most one
vertex whose degree is 3 or more. Not every graph has a spanning spider, and you
will have to write a predicate spanspid/0which succeeds once if a given graph has
a spanning spider, and finitely fails otherwise. The graph is given as a predicate
consisting of facts edge/2, which have as arguments nodes that are connected by
an edge. We are dealing with undirected graphs, and you may assume that the
graph is connected. Three example edge/2 sets with the query and answer are
shown below:

edge(d,a). edge(a,e). edge(a,b).

edge(d,b). edge(b,e). edge(b,c).

edge(d,c). edge(e,f). edge(a,c).

edge(d,e). edge(f,d). edge(d,a).

edge(a,x). edge(f,c). edge(d,b).

edge(b,y). edge(d,c).

edge(c,z).

edge(a,b).

edge(y,c).

?- spanspid. ?- spanspid. ?- spanspid.

Yes No Yes

a

b c

da
e

b

c

df

a

x

d
e

b
c

y

z

Figure 9.3: The three graphs: their spanning spider is in bold (if it exists).

Hints The program generates all subgraphs consisting of one edge less than the
number of nodes in the graph, while covering all nodes. Such a subgraph is always
a spanning tree. The program then tests for each of these spanning trees whether
it has at most one node with degree 3 or more.



Spanning Spider 127

Solution

:- use_module(library(lists), [member/2]).

:- use_module(contestlib, [sublist/2]).

spanspid :-

findall(edge(X,Y),edge(X,Y),AllEdges),

setof(X,is_node_in(X,AllEdges),AllNodes),

AllNodes = [_|OneLess],

length(OneLess,Len),

length(SubGraph,Len),

sublist(AllEdges,SubGraph),

setof(X,is_node_in(X,SubGraph),NodesSubGraph),

NodesSubGraph = AllNodes,

findall(Node,bigdegree_node(SubGraph,Node,AllNodes),BigDegrees),

sort(BigDegrees,BigDegreesUnique),

BigDegreesUnique \= [_,_|_],

!.

bigdegree_node(SubGraph,Node,Nodes) :-

member(Node,Nodes),

setof(Connected,connected(Node,Connected,SubGraph),ListConnected),

ListConnected = [_,_,_|_].

connected(N1,N2,Edges) :- member(edge(N1,N2),Edges).

connected(N1,N2,Edges) :- member(edge(N2,N1),Edges).

is_node_in(Node,Edges) :- connected(Node,_,Edges).



128 2003 Mumbay, India

4. Longest Decreasing Subsequence

The Erdős-Szekeres theorem says:

Every sequence of n∗m+1 different real numbers contains a decreasing
subsequence of length m+1 or an increasing subsequence of length n+1.

Some proofs of this theorem start by ‘Take a longest decreasing subsequence . . . ’,
and this leads to the following problem: write a predicate ld/2 that, given a
sequence of different numbers (as first argument), determines a longest decreasing
subsequence by unifying such a subsequence with the second argument. Sequences
are represented by lists, so a typical query (and its answer) is:

?- ld([3,6,7,4,5,1,2],L).

L = [7,5,2]

Another correct answer would be [6,4,1] and there are some more.
The input list is never empty.

Hints The optimal algorithm for this problem is quadratic in the length of
the input (try it!). Our solution is a terribly inefficient, yet simple and quick to
implement generate and test method. It is exactly the thing one would write under
time pressure, and it makes good use of the libraries.



Longest Decreasing Subsequence 129

Solution

:- use_module(contestlib,[sublist/2]).

:- use_module(library(lists),[reverse/2, last/2]).

ld(List,LongestDecrSub) :-

setof(Len-DecrSub,decreasing_sublist(List,Len,DecrSub),AllDecrSubs),

last(_-LongestDecrSub,AllDecrSubs).

decreasing_sublist(List,Len,DecrSub) :-

sublist(List,DecrSub),

sort(DecrSub,DecrSubSorted),

reverse(DecrSubSorted,DecrSub),

length(DecrSub,Len).



130 2003 Mumbay, India

5. Cellular Automaton

An elementary cellular automaton (e-celauton) consists of an infinite array (both
directions) of cells each having one of two possible colors (black and white), and
rules that describe how one array is transformed into another one. The new color
of a cell depends only on its old color and the old color of its two neighbors. We
will use o for white and x for black for simplicity. Such e-celautons are described
in details for instance in the book “A New Kind of Science” by S. Wolfram .

We will assume that (initially) there are only a finite number of black cells (*).
The rules of an e-celauton can be described by pictures of the kind:

oxo oxx

o x

meaning that a black cell with two white neighbors turns white, and a black cell
with a left white neighbor and a black right neighbor remains black.

We will always assume that the e-celauton has the bleak rule:

ooo

o

The computing power of e-celautons is amazing (well, that is, if you amaze
easily, e.g. by universal Turing machines). Starting from an initial array of black
and white cells (obeying (*)), and because we have the bleak rule, we can watch
the evolution of an e-celauton as in the next example:

oxo

oxoxo

oxoxoxo

The first line (or generation) contains only one black cell. Because of (*) and
the bleak rule, we do not need to represent the infinite white parts at the left and
the right. In this picture, you see three generations in total.

One natural problem in this context is the cellular automaton inverse problem:
given a sequence of generations, decide whether there exists an e-celauton that is
responsible for this sequence . . .

Because we start with a finite number of blacks, and because of the presence
of the bleak rule, we can represent a generation by a finite list of o’s and x’s. A
sequence of generations will be represented by a list of generations. Just to make
sure that it is clear how to fit two generations under each other, the generation at
time t(i + 1) has two more cells explicitly represented than the generation at time
t(i): one cell at the left and one cell at the right (even if that means that there
are redundant white cells at the sides). For example:

[ [o,x,o],

[o,x,o,x,o],

[o,x,o,x,o,x,o]] (9.1)



Cellular Automaton 131

is the representation of the sequence of generations above, and can be generated
by the rules

oxo oox xoo xox

o x x x

plus the bleak rule and some 11 other rules which are of no consequence for the
evolution shown.

These 4 rules + the bleak rule are represented as follows:

[[o,o,o,o],[o,x,o,o], [o,o,x,x], [x,o,o,x], [x,o,x,x]] (9.2)

The order of the rules does not matter here.
The input to the predicate you have to write is a list as in 9.1. The output is

a list of rules as in 9.2.
For example:

?- celauton([[o,x,o],[o,x,o,x,o],[o,x,o,x,o,x,o]],Rules).

Rules = [[o,o,o,o],[o,x,o,o], [o,o,x,x], [x,o,o,x], [x,o,x,x]]

is correct and so is any permutation of the Rules list.
The Rules list must be the minimal required set of rules needed to cause the

given sequence of generations. To put it another way: every e-celauton that causes
this particular sequence of generations must have these rules. It is possible that
no e-celauton exists for the given sequence of generations. In that case, the query
must finitely fail. For instance:

?- celauton([ [o,x,o,x,o],

[o,o,o,o,x,o,o]],L).

fails.

Hints Aspects of this problem are studied in more depth for cyclic, finite one-
dimensional automata in “A cellular automaton inverse problem”, Ph.D. thesis by
Billie J. Rinaldi, August 2003, and with other restrictions by A. Adamatzky in one
of his books.

As before, a generate and test approach will do. The program collects every
locally used rule in a list, and if they are not in conflict, that is the result. Conflict
testing (predicate consistent/1) is made easy by first sorting the locally used rules
(which also removes duplicates).



132 2003 Mumbay, India

Solution

:- use_module(library(lists), [append/3]).

celauton(Evolution,Rules) :-

setof(Rule, needed_rule(Evolution,Rule), Rules),

consistent(Rules).

needed_rule([T1,Time2|_],Rule) :-

append([o,o|T1],[o,o],Time1),

needed_rule(Time2,Time1,Rule).

needed_rule([_|Evolution],Rule) :-

needed_rule(Evolution,Rule).

needed_rule([X|_],[A,B,C|_],[A,B,C,X]).

needed_rule([_|Time2],[_|Time1],Rule) :-

needed_rule(Time2,Time1,Rule).

consistent([_]).

consistent([[A1,B1,C1,_],[A2,B2,C2,_]|R]) :-

[A1,B1,C1] \== [A2,B2,C2],

consistent([[A2,B2,C2,_]|R]).



Contest X: 2004 St-Malo,

France

1. Cross

Write a predicate cross/1, for which cross(N) draws a cross figurer.

*
*
*
*
*

*
*
*
*
*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*
*
*
*

*
*
*
*
*

3×N

N N N

(a) N = 5

*
*
*

*
*
*

*
*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*
*

*
*
*

*
*
*

(b) N = 3

Figure 10.1: Example output of cross/1

In Figure 10.1(a) you see the cross for N=5 with arrows indicating the size,
and in Figure 10.1(b) you see the cross for N=3.

Your program should work for any odd number N between 3 and 23. Do not
add any redundant space characters.

133



134 2004 St-Malo, France

Hints The structural decomposition shown in Figure 10.2 for the cross of size
5 is reflected in the solution.

*
*
*
*
*

*
*
*
*
*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
*
*
*
*

*
*
*
*
*

= *
+

+

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

+
* * * *
* * * *
* * * *
* * * *

+
* *

* *

**
**

+
* ** *
* ** *
* ** *
* ** *

+

Figure 10.2: Structural decomposition of the cross.



Cross 135

Solution

:- use_module(contestlib, [writeN/2]).

cross(N) :-

hor_line(N),

N1 is N - 1,

B1 is N1 // 2,

Middle is N1 + B1,

down(N,’*’,0,N1),

down(N,’ ’,N1,B1),

blanks(1), blanks(Middle), stars(1), nl,

up(N,’ ’,Middle,B1),

up(N,’*’,N1,N1),

hor_line(N).

hor_line(N) :- stars(N), blanks(N), stars(N), nl.

down(_,_,_,0) :- !.

down(N,Delimiter,Outer,Lines) :-

write_line(Delimiter,Outer,N),

Outer1 is Outer + 1,

Lines1 is Lines - 1,

down(N,Delimiter,Outer1,Lines1).

up(_,_,_,0) :- !.

up(N,Delimiter,Outer,Lines) :-

Outer1 is Outer - 1,

write_line(Delimiter,Outer1,N),

Lines1 is Lines - 1,

up(N,Delimiter,Outer1,Lines1).

write_line(Delimiter,OuterSpace,N) :-

write(Delimiter),

blanks(OuterSpace),

stars(1),

InnerSpace is 3*N - 4 - 2*OuterSpace,

blanks(InnerSpace),

stars(1),

blanks(OuterSpace),

write(Delimiter),

nl.

blanks(N) :- writeN(N,’ ’).

stars(N) :- writeN(N,’*’).



136 2004 St-Malo, France

2. Station

Belgium is a railway country. On the 5th of May 1835, the first train on the
mainland of Europe connected the capital Brussels with the provincial city of
Mechelen. Many more lines and tracks have followed, and turned Belgium into a
country with a very dense railway net. Trains are always late, and there is nothing
we can do about that.

However, we can live in any part of the country we like and still be able to go to
work in any other part without wasting more time than, say, a commuter on Long
Island who works in Manhattan, or a Ph.D. student who lives at the outskirts of
Melbourne and has an office at Melbourne Uni.

Since proximity to public transport is not an issue, other preferences determine
where to live in Belgium. Write a predicate station/1 that unifies its argument
with the best station (and hence the best city, because every city has just one
station). The predicate only has to succeed once if there is a best station, or fail
finitely if there is none.

Small cities are cities with at most two direct connections to other cities. Con-
versely, big cities have more than two direct connections.

A good city, is a small city that is equally close to the closest two big cities, each
on a different line leaving the city. This is for example convenient for shopping.
The best city is the good city that is closest (among all good cities) to its two
closest big cities, as we do not want to go too far for our shopping sprees.

The railway network is given as rail/2 facts. All rails are bi-directional and
equally long. The distance between two cities is the length of the shortest path
between the cities.

Here are some examples:

rail(brussel,mechelen). rail(brussel,charleroi).

rail(brussel,antwerpen). rail(brussel,haacht).

rail(brussel,gent). rail(haacht,mechelen).

rail(antwerpen,mechelen). rail(mechelen,berchem).

rail(antwerpen,gent). rail(berchem,antwerpen).

rail(gent,brugge). rail(brussel,boom).

rail(boom,antwerpen).

rail(antwerpen,turnhout).

?- station(X). ?- station(X).

X = mechelen X = boom

Hints The solution uses a straightforward generate and test approach. It does
not fully exploit the properties of big and small cities.



Station 137

Solution

:- use_module(library(lists), [member/2]).

station(Station) :-

setof(Distance-City,good_city(City,Distance),[_-Station|_]).

good_city(City,Distance) :-

small_city(City),

setof(big_city(Distance,BigCity,OutRail),

reachable_big_city(City,BigCity,Distance,OutRail),BigCities),

BigCities = [big_city(Distance,City1,OutRail1)|Rest],

Rest = [big_city(Distance,City2,OutRail2)|_],

City1 \== City2,

OutRail1 \== OutRail2.

reachable_big_city(City,BigCity,Distance,OutRail) :-

rail_c(City,OutRail),

Visited = [City],

reachable(OutRail,BigCity,Visited,Distance),

big_city(BigCity).

reachable(City,City,Visited,Distance) :- length(Visited,Distance).

reachable(City,TargetCity,Visited,Distance) :-

rail_c(City,City1),

\+ member(City1,Visited),

reachable(City1,TargetCity,[City|Visited],Distance).

big_city(City) :-

rail_c(City,CityA),

rail_c(City,CityB),

rail_c(City,CityC),

CityA \== CityB,

CityA \== CityC,

CityB \== CityC.

small_city(City) :-

rail_c(City,_),

\+ big_city(City).

rail_c(From,To) :- rail(From,To).

rail_c(From,To) :- rail(To,From).



138 2004 St-Malo, France

3. Turtle

Logo and Basic both have their turtle graphics drawing instructions. It was time
that Prolog becomes more accessible for children, so we implemented a similar
turtle system in Prolog. The system has the following specifications:

� Initially the turtle starts at coordinate (0, 0) in a 2-D plane, facing (0,∞).

� Wherever the turtle goes, it leaves a trail of ink.

� Since Prolog is a declarative language, the turtle follows only simple com-
mands:

– step: the turtle performs a unit step in the direction it is facing.

– rotate: the turtle turns 90
�

clockwise.

� The turtle receives all its commands in a list and processes them sequentially
from the first to the last.

Now, we want to encourage our little users to become compiler writers, so we
want to instill them with a notion of optimality.

Write a predicate turtle/2, which will be called with a list of commands as the
first argument, and which unifies the second argument with the shortest possible
list of commands that would have the turtle make the same drawing as the input
list.

Hints The program can be solved using generate and test. Programs of in-
creasing length are generated, until one is found that draws the same figure as the
original program. A canonical representation is handy for comparing equality of
drawings.



Turtle 139

Solution

turtle(Program,ShortProgram):-

Coordinate = (0,0),

Orientation = (1,0),

canonical_drawing(Program,Coordinate,Orientation,Drawing),

length(ShortProgram,_),

canonical_drawing(ShortProgram,Coordinate,Orientation,Drawing),

!.

canonical_drawing(Program,Coordinate,Orientation,Drawing) :-

generate(Program,Coordinate,Orientation,ADrawing),

sort(ADrawing,Drawing).

generate([],_,_,[]).

generate([rotate|Program],Coordinate,(DX,DY),O) :-

generate(Program,Coordinate,(DY,-DX),O).

generate([step|Program],(X,Y),(DX,DY),Drawing) :-

X1 is X + DX,

Y1 is Y + DY,

Drawing = [(X,Y)-(X1,Y1),(X1,Y1)-(X,Y)|RestDrawing],

generate(Program,(X1,Y1),(DX,DY),RestDrawing).



140 2004 St-Malo, France

4. Knights

The N-queens problem is a well-established programming problem: fit N queens
on an N ×N board without any one queen attacking another. Also the M-queens
problem has been tackled before on page 95: fit as many queens as possible on an
M ×M board.

Enough of those stuffy old queens! Time for some action! Time for whinnying
horses, the stench of blood, battle clamor and steel against steel. . . Time for the
knights to ride out!

Write a predicate knights/2, which will be called with the first argument the
size N of the board, and which unifies its second argument with the maximum
number of knights that fit on a N ×N chess board, without any knight attacking
another.

Remember, a knight attacks any position that is two steps in one direction and
one step to the side, as illustrated in the following figure:

x

x

x

x

x

x

x

x

-2

-2

-1

-1

0

0

1

1

2

2

Hints The program recursively computes for each square the maximum of
assignable knights for the remaining squares, where the square is either empty
or contains a knight (if it is not attacked).

Do not spoil the fun by simply implementing the formula:

knights(N) =

{

N2 , N ≤ 2
⌈

N2

2

⌉

, N > 2



Knights 141

Solution

:- use_module(library(lists), [member/2]).

:- use_module(contestlib, [for/3]).

knights(N,Max) :-

PlacedKnights = [],

findall((X,Y),(for(X,1,N),for(Y,1,N)),Squares),

knights(Squares,PlacedKnights,Max).

knights([],PlacedKnights,Max) :-

length(PlacedKnights,Max).

knights([(X,Y)|Squares],PlacedKnights,Max) :-

( is_attacked(X,Y,PlacedKnights) ->

knights(Squares,PlacedKnights,Max)

;

knights(Squares,[knight(X,Y)|PlacedKnights],Max1),

knights(Squares,PlacedKnights,Max2),

Max is max(Max1,Max2)

).

is_attacked(X,Y,PlacedKnights) :-

( NX is X - 1, NY is Y - 2

; NX is X - 1, NY is Y + 2

; NX is X + 1, NY is Y - 2

; NX is X + 1, NY is Y + 2

; NX is X - 2, NY is Y - 1

; NX is X - 2, NY is Y + 1

; NX is X + 2, NY is Y - 1

; NX is X + 2, NY is Y + 1

),

member(knight(NX,NY),PlacedKnights).



142 2004 St-Malo, France

5. 3-D

The last question is a practical experiment in genetic evolution. We ask ourselves
whether programmers who work on a flat screen all day long still retain the three
dimensional visual skills that were essential for their mammoth-hunting ancestors.
Or will we just find out who has been playing too much 3D-tetris?

The problem at hand is fairly simple. Consider a large cube consisting of
3 × 3 × 3 small cubes. Every small cube has just one color, but different small
cubes can have different colors. Now we take away zero or more of the small cubes
and present you with two adjacent side views. With these two side views only,
you cannot possibly compute how many small cubes remain in the large cube, but
you can make a conservative guess.

Write a predicate threed/3 that, given the two views as first arguments, unifies
the third argument with the maximum number of small cubes that can be in the
large cube. A view is a list of rows, and a row is a list of color of small cubes. A
color is simply represented by an atom. The atom * is used if you can see straight
through the large cube. The first view’s rightmost column touches the second
view’s leftmost column.

For example:

?- threed(

[[a,a,a],

[a,a,a],

[a,a,a]],

[[a,a,a],

[a,a,a],

[a,a,a]], MaxCubes).

MaxCubes = 27

An example of a non-maximal cube for this query (containing only 25 small cubes)
looks like this:

Two more examples:



3-D 143

?- threed(

[[a,a,a],

[a,*,a],

[a,a,a]],

[[a,a,a],

[a,a,a],

[a,a,a]], MaxCubes).

MaxCubes = 24

?- threed(

[[a,a,a],

[a,a,b],

[a,a,a]],

[[a,a,a],

[a,b,a],

[a,a,a]], MaxCubes).

MaxCubes = 26

Hints The problem can be solved for each horizontal slice separately. When
looking at one slice from above, you see the small cubes as

A B C

D E F

G H I

and the two views (arguments to threed slice) are from the GHI and IFC side.
We name the sequence GDA a tube: either G has a color (and DA are not visible)
or G is not there (so you see through and then we must consider what happens to
the tube DA). The names of the small cubes (A up to I) are used in the program
as Prolog variables: they can be unified with a color (which can be any atom), or
with the term color(none), or remain free if their color is immaterial (because
the cube is not visible).



144 2004 St-Malo, France

Solution

:- use_module(library(lists),[member/2, last/2]).

threed([View1Slice1,View1Slice2,View1Slice3],

[View2Slice1,View2Slice2,View2Slice3],Max) :-

threed_slice(View1Slice1,View2Slice1,Max1),

threed_slice(View1Slice2,View2Slice2,Max2),

threed_slice(View1Slice3,View2Slice3,Max3),

Max is Max1 + Max2 + Max3.

threed_slice(View1,View2,Max) :-

findall(M,consistent_slice(View1,View2,M),Ms),

sort(Ms,L),

last(L,Max).

consistent_slice([Color1,Color2,Color3],[Color4,Color5,Color6],M) :-

visible_color([G,D,A],Color1),

visible_color([H,E,B],Color2),

visible_color([I,F,C],Color3),

visible_color([I,H,G],Color4),

visible_color([F,E,D],Color5),

visible_color([C,B,A],Color6),

count_cubes([A,B,C,D,E,F,G,H,I],0,M).

visible_color(Cubes,Color) :-

( Color == (*) ->

see_through(Cubes)

;

first_visible_is(Cubes,Color)

).

see_through([]).

see_through([color(none)|R]) :- see_through(R).

first_visible_is([Color|_],Color).

first_visible_is([color(none)|R],Color) :- first_visible_is(R,Color).

count_cubes(Cubes,_,N) :-

findall(C,(member(C,Cubes), C \== color(none)),Cs),



The Contest Library

This appendix contains a few predicates that are used in more than one solution:
depending on the Prolog system you use, some of them can be found in the libraries.

:- module(contestlib,

[sublist/2,

write_elements/1,

writeN/2,

for/3,

numlist/3,

int_width/2,

write_int/2,

map/3]).

sublist([],[]).

sublist([X|R],[X|S]) :- sublist(R,S).

sublist([_|R],S) :- sublist(R,S).

write_elements([]).

write_elements([X|R]) :- write(X), write_elements(R).

writeN(N,C) :-

( N > 0 ->

M is N - 1,

write(C),

writeN(M,C)

;

true

).

for(I,I,J) :- I =< J.

for(K,I,J) :- I < J,

I1 is I + 1,

for(K,I1,J).

145



146 The Contest Library

numlist(I,J,List) :-

( I =< J ->

List = [I|Rest],

I1 is I + 1,

numlist(I1,J,Rest)

;

List = []

).

int_width(N,Width) :-

( N > 9 ->

M is N // 10,

int_width(M,WidthM),

Width is WidthM + 1

;

Width = 1

).

write_int(Int,Width) :-

int_width(Int,WidthInt),

Spaces is Width - WidthInt,

writeN(Spaces,’ ’),

write(Int).

map([],_,[]).

map([X|R],C,[CX|CR]) :-

call(C,X,CX),

map(R,C,CR).


