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Preface

This book is about the global character of solutions of the third-order ra-
tional difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, ... (1)

with nonnegative parameters α, β, γ, δ, A,B, C, D and with arbitrary nonneg-
ative initial conditions x−2, x−1, x0 such that the denominator is always pos-
itive.

We are primarily concerned with the boundedness nature of solutions, the
stability of the equilibrium points, the periodic character of the equation,
and with convergence to periodic solutions including periodic trichotomies.
However, our ultimate goal should be to extend and generalize the results of
rational equations to equations

xn+1 = f(xn, . . . , xn−k), n = 0, 1, . . .

of the most general pattern.

For Eq.(1) and for each of its 225 special cases, we present the known re-
sults and/or derive some new ones. We also pose a large number of thought-
provoking open problems and conjectures on the boundedness character, the
global stability, and the periodic behavior of solutions of various special cases
of Eq.(1). The open problems are quite challenging and the conjectures
are based on numerous computer observations and analytic investigations.
We believe that research work on these open problems and conjectures is of
paramount importance for the development of the basic theory of the global
behavior of solutions of nonlinear difference equations of order greater than
one.

The large number of open problems and conjectures in rational difference
equations will be a great source of attraction for research investigators in this
dynamic area where, at the beginning of the third millennium, we know so
surprisingly little.

The methods and techniques that we develop to understand the dynamics
of rational difference equations and the theory we obtain will be useful in
analyzing the equations in any mathematical model that involves difference
equations.



Chapter 1 contains some basic definitions and some general results needed
throughout the monograph.

Chapter 2 deals with the special cases of Eq.(1) that have bounded solutions
only and Chapter 3 deals with the remaining cases, where the equations have
unbounded solutions in some range of their parameters.

Chapter 4 is about the seven nonlinear known periodic trichotomies of third-
order rational difference equations.

Chapter 5 presents the known results on each of the 225 special cases of
Eq.(1). This chapter is the reason we wrote this book. The four preceding
chapters present general results needed in order to discuss the character of
each equation and how it relates to the other special cases.

Appendix A at the end of the book presents at a glance the boundedness
character of each of the 225 special cases of Eq.(1) and gives important results
and references related to each special case.

Appendix B contains information on the boundedness character for all
fourth-order rational difference equations. The large number of conjectures
listed in Appendix B on the boundedness character of fourth-order rational
difference equations will help give new directions for future investigations in
this fascinating area.
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Introduction

In this book we are interested in the global character of solutions of the third-
order rational difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . , (0.0.1)

where the parameters α, β, γ, δ,A,B,C, D are nonnegative real numbers and
the initial conditions x−2, x−1, x0 are arbitrary nonnegative real numbers
such that the denominator is always positive.

We are primarily concerned with the boundedness nature of solutions, the
stability of the equilibrium points, the periodic character of the equation, and
with convergence to periodic solutions including periodic trichotomies.

If we allow one or more of the parameters in Eq.(0.0.1) to be zero, then we
can see that Eq.(0.0.1) contains

(24 − 1)(24 − 1) = 225

special cases, each with positive parameters and positive or nonnegative initial
conditions.

For Eq.(0.0.1) and for each of its 225 special cases, we present the known
results and/or derive some new ones. For most of the equations we also pose
some thought-provoking open problems and conjectures on the boundedness
character, the global stability, and the periodic behavior of their solutions.
The open problems we pose are quite challenging and the conjectures are
thought provoking and based on numerous computer observations and ana-
lytic investigations. We believe that research work on these open problems
and conjectures is of paramount importance for the development of the basic
theory of the global behavior of solutions of nonlinear difference equations.
The large number of interesting open problems and conjectures in rational dif-
ference equations will be a great source of attraction for future investigators
in this dynamic area of research.

Out of the 225 special cases of Eq.(0.0.1), 39 cases are about equations that
are linear or reducible to linear or Riccati difference equations, or equations
reducible to Riccati. See Appendix A.
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Another 28 equations were investigated in the Kulenovic/Ladas book [175],
which deals with the second-order rational difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . . (0.0.2)

There remain 158 equations, each of which is a nonlinear third-order difference
equation crying to be thoroughly investigated.

It is an amazing fact that Eq.(0.0.1) contains a large number of special cases
whose dynamics have not been investigated yet.

According to David Hilbert “The art of doing mathematics consists in find-
ing that special case which contains all the germs of generality” and according
to Paul Halmos “The source of all good mathematics is the special case, the
concrete example.”

We strongly believe that the special cases of Eq.(0.0.1) contain a lot of
the germs of generality of the theory of difference equations of order greater
than one about which, at the beginning of the third millennium, we know so
surprisingly little. We also believe that the mathematics behind the special
cases of Eq.(0.0.1) is beautiful, surprising, and interesting.

The methods and techniques we develop to understand the dynamics of
various special cases of rational difference equations and the theory that we
obtain will also be useful in analyzing the equation in any mathematical model
that involves difference equations.
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Preliminaries

1.0 Introduction

In this chapter we state some definitions and some known results that will be
useful in the subsequent chapters. For details, see [12], [13], [84], [95], [96],
[130], [131], [147], [202], [211], and [213].

The results from Theorem 1.6.7 to the end of this chapter were recently
obtained by the authors while working on various special cases of rational
difference equations and provide useful generalizations and some unifications
in some special cases.

1.1 Definitions of Stability

A difference equation of order (k + 1) is an equation of the form

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . (1.1.1)

where F is a function that maps some set Ik+1 into I. The set I is usually an
interval of real numbers, or a union of intervals, or a discrete set such as the
set of integers Z = {. . . ,−1, 0, 1, . . .}.

A solution of Eq.(1.1.1) is a sequence {xn}∞n=−k that satisfies Eq.(1.1.1) for
all n ≥ 0.

A solution of Eq.(1.1.1) that is constant for all n ≥ −k is called an equilib-
rium solution of Eq.(1.1.1). If

xn = x̄, for all n ≥ −k

is an equilibrium solution of Eq.(1.1.1), then x̄ is called an equilibrium point,
or simply an equilibrium of Eq.(1.1.1).

DEFINITION 1.1 (Stability)

3



4 Dynamics of Third-Order Rational Difference Equations

(i) An equilibrium point x̄ of Eq.(1.1.1) is called locally stable if, for every
ε > 0, there exists δ > 0 such that if {xn}∞n=−k is a solution of Eq.(1.1.1)
with

|x−k − x̄ |+ |x1−k − x̄ |+ · · ·+ |x0 − x̄ | < δ,

then
|xn − x̄ | < ε, for all n ≥ 0.

(ii) An equilibrium point x̄ of Eq.(1.1.1) is called locally asymptotically
stable if, x̄ is locally stable, and if in addition there exists γ > 0 such
that if {xn}∞n=−k is a solution of Eq.(1.1.1) with

|x−k − x̄ |+ |x−k+1 − x̄ |+ · · ·+ |x0 − x̄ | < γ,

then
lim

n→∞
xn = x̄.

(iii) An equilibrium point x̄ of Eq.(1.1.1) is called a global attractor if, for
every solution {xn}∞n=−k of Eq.(1.1.1), we have

lim
n→∞

xn = x̄.

(iv) An equilibrium point x̄ of Eq.(1.1.1) is called globally asymptotically
stable if x̄ is locally stable, and x̄ is also a global attractor of Eq.(1.1.1).

(v) An equilibrium point x̄ of Eq.(1.1.1) is called unstable if x̄ is not locally
stable.

1.2 Linearized Stability Analysis

Suppose that the function F is continuously differentiable in some open neigh-
borhood of an equilibrium point x̄. Let

qi =
∂F

∂ui
(x̄, x̄, . . . , x̄), for i = 0, 1, . . . , k

denote the partial derivative of F (u0, u1, . . . , uk) with respect to ui evaluated
at the equilibrium point x̄ of Eq.(1.1.1). Then the equation

yn+1 = q0yn + q1yn−1 + · · ·+ qkyn−k, n = 0, 1, . . . (1.2.1)
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is called the linearized equation of Eq.(1.1.1) about the equilibrium point x̄,
and the equation

λk+1 − q0λ
k − · · · − qk−1λ− qk = 0 (1.2.2)

is called the characteristic equation of Eq.(1.2.1) about x̄.
The following result, known as the Linearized Stability Theorem, is very

useful in determining the local stability character of the equilibrium point x̄
of Eq.(1.1.1). See [13], [95], [131], and [202].

Theorem 1.2.1 (The Linearized Stability Theorem)
Assume that the function F is a continuously differentiable function defined
on some open neighborhood of an equilibrium point x̄. Then the following
statements are true:

1. When all the roots of Eq.(1.2.2) have absolute value less than one, then
the equilibrium point x̄ of Eq.(1.1.1) is locally asymptotically stable.

2. If at least one root of Eq.(1.2.2) has absolute value greater than one,
then the equilibrium point x̄ of Eq.(1.1.1) is unstable.

The equilibrium point x̄ of Eq.(1.1.1) is called hyperbolic if no root of
Eq.(1.2.2) has absolute value equal to one. If there exists a root of Eq.(1.2.2)
with absolute value equal to one, then the equilibrium x̄ is called nonhyper-
bolic.

An equilibrium point x̄ of Eq.(1.1.1) is called a saddle point if it is hyperbolic
and if there exists a root of Eq.(1.2.2) with absolute value less than one and
another root of Eq.(1.2.2) with absolute value greater than one.

An equilibrium point x̄ of Eq.(1.1.1) is called a repeller if all roots of
Eq.(1.2.2) have absolute value greater than one.

A solution {xn}∞n=−k of Eq.(1.1.1) is called periodic with period p if there
exists an integer p ≥ 1 such that

xn+p = xn, for all n ≥ −k. (1.2.3)

A solution is called periodic with prime period p if p is the smallest positive
integer for which Eq.(1.2.3) holds.

The following three theorems state necessary and sufficient conditions for
all the roots of a real polynomial of degree two, three, or four, respectively, to
have modulus less than one. For every equation of order two, three, or four
that we investigate in this book we have to use one of these three theorems
to determine the local asymptotic stability of the equilibrium points of the
equation.
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Theorem 1.2.2 Assume that a1 and a0 are real numbers. Then a necessary
and sufficient condition for all roots of the equation

λ2 + a1λ + a0 = 0

to lie inside the unit disk is

|a1| < 1 + a0 < 2.

Theorem 1.2.3 Assume that a2, a1, and a0 are real numbers. Then a nec-
essary and sufficient condition for all roots of the equation

λ3 + a2λ
2 + a1λ + a0 = 0

to lie inside the unit disk is

|a2 + a0| < 1 + a1, |a2 − 3a0| < 3− a1, and a2
0 + a1 − a0a2 < 1.

Theorem 1.2.4 Assume that a3, a2, a1, and a0 are real numbers. Then a
necessary and sufficient condition for all roots of the equation

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0

to lie inside the unit disk is

|a1 + a3| < 1 + a0 + a2, |a1 − a3| < 2(1− a0), a2 − 3a0 < 3,

and

a0 + a2 + a2
0 + a2

1 + a2
0a2 + a0a

2
3 < 1 + 2a0a2 + a1a3 + a0a1a3 + a3

0.

The following result is a sufficient condition for all roots of an equation of
any order to lie inside the unit disk. See [74] or [157, p. 12].

Theorem 1.2.5 Assume that q0, q1, . . . , qk are real numbers such that

| q0 |+ | q1 |+ · · ·+ | qk | < 1.

Then all roots of Eq.(1.2.2) lie inside the unit disk.

1.3 Semicycle Analysis

Let x̄ be an equilibrium point of Eq.(1.1.1), and assume that {xn}∞n=−k is a
solution of the equation.
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A positive semicycle of {xn}∞n=−k is a “string” of terms {xl, xl+1, . . . , xm},
all greater than or equal to x̄, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 < x̄

and
either m = ∞ or m < ∞ and xm+1 < x̄.

A negative semicycle of {xn}∞n=−k is a “string” of terms {xl, xl+1, . . . , xm},
all less than x̄, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 ≥ x̄

and
either m = ∞ or m < ∞ and xm+1 ≥ x̄.

A solution {xn}∞n=−k of Eq.(1.1.1) is called nonoscillatory about x̄, or sim-
ply nonoscillatory, if there exists N ≥ −k such that either

xn ≥ x̄, for all n ≥ N

or
xn < x̄, for all n ≥ N.

Otherwise, the solution {xn}∞n=−k is called oscillatory about x̄, or simply
oscillatory.

1.4 A Comparison Result

The following comparison result is a very useful tool in establishing bounds
for solutions of nonlinear equations in terms of the solutions of equations with
known behavior, for example, linear or Riccati.

Theorem 1.4.1 Let I be an interval of real numbers, let k be a positive in-
teger, and let

F : Ik+1 → I

be a function increasing in all of its arguments. Assume that {xn}∞n=−k,
{yn}∞n=−k, and {zn}∞n=−k are sequences of real numbers such that





xn+1 ≤ F (xn, . . . , xn−k), n = 0, 1, . . .

yn+1 = F (yn, . . . , yn−k), n = 0, 1, . . .

zn+1 ≥ F (zn, . . . , zn−k), n = 0, 1, . . .
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and
xn ≤ yn ≤ zn, for all − k ≤ n ≤ 0.

Then
xn ≤ yn ≤ zn, for all n > 0 . (1.4.1)

PROOF Clearly,

x1 ≤ F (x0, . . . , x−k) ≤ F (y0, . . . , y−k) = y1

and
y1 = F (y0, . . . , y−k) ≤ F (z0, . . . , z−k) ≤ z1 .

Hence,
x1 ≤ y1 ≤ z1

and (1.4.1) follows by induction.

1.5 Full Limiting Sequences

The following result about full limiting sequences sometimes is useful in es-
tablishing that all solutions of a given difference equation converge to the
equilibrium of the equation. See [101], [144], [145], and [208].

Theorem 1.5.1 Consider the difference equation

xn+1 = F (xn, xn−1, . . . , xn−k) (1.5.1)

where F ∈ C(Jk+1, J) for some interval J of real numbers and some non-
negative integer k. Let {xn}∞n=−k be a solution of Eq.(1.5.1). Set I = lim inf

n→∞
xn

and S = lim sup
n→∞

xn, and suppose that I, S ∈ J. Let L0 be a limit point of the

solution {xn}∞n=−k. Then the following statements are true:

1. There exists a solution {Ln}∞n=−∞ of Eq.(1.5.1), called a full limiting
sequence of {xn}∞n=−k, such that L0 = L0, and such that for every N ∈
{. . . ,−1, 0, 1, . . .}, LN is a limit point of {xn}∞n=−k. In particular,

I ≤ LN ≤ S, for all N ∈ {. . . ,−1, 0, 1, . . .}.

2. For every i0 ∈ {. . . ,−1, 0, 1, . . .}, there exists a subsequence {xri}∞i=0 of
{xn}∞n=−k such that

LN = lim
i→∞

xri+N , for every N ≥ i0.
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1.6 Convergence Theorems

The following convergence result will be useful in studying certain rational
equations. See [101] and [103].

Theorem 1.6.1 Let I be an interval of real numbers and let F ∈ C(Ik+1, I).
Assume that the following three conditions are satisfied:

1. F is increasing in each of its arguments.

2. F (z1, . . . , zk+1) is strictly increasing in each of the arguments zi1 , zi2 , . . . , zil
,

where 1 ≤ i1 < i2 < . . . < il ≤ k + 1, and the arguments i1, i2, . . . , il are
relatively prime.

3. Every point c in I is an equilibrium point of Eq.(1.1.1).

Then every solution of Eq.(1.1.1) has a finite limit.

The following convergence result is due to Hautus and Bolis. See [132] and
Theorem 2.6.2 in [157, p. 53].

Theorem 1.6.2 Let I be an open interval of real numbers, let F ∈ C(Ik+1, I),
and let x̄ ∈ I be an equilibrium point of the Eq.(1.1.1). Assume that F satisfies
the following two conditions:

1. F is increasing in each of its arguments.

2. F satisfies the negative feedback property:

(u− x̄)[F (u, u, . . . , u)− u] < 0, for all u ∈ I − {x̄}.

Then the equilibrium point x̄ is a global attractor of all solutions of Eq.(1.1.1).

The next two global attractivity results were motivated by second-order
rational equations and have several applications.

Theorem 1.6.3 [157, p. 27] Assume that the following conditions hold:

(i) f ∈ C[(0,∞)× (0,∞), (0,∞)].

(ii) f(x, y) is decreasing in x and strictly decreasing in y.

(iii) xf(x, x) is strictly increasing in x.

(iv) The equation
xn+1 = xnf(xn, xn−1), n = 0, 1, . . . (1.6.1)

has a unique positive equilibrium x̄.
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Then x̄ is a global attractor of all positive solutions of Eq.(1.6.1).

Theorem 1.6.4 [106] Assume that the following conditions hold:

(i) f ∈ C[[0,∞)× [0,∞), (0,∞)].

(ii) f(x, y) is decreasing in each argument.

(iii) xf(x, y) is increasing in x.

(iv) f(x, y) < f(y, x) ⇔ x > y.

(v) The equation

xn+1 = xn−1f(xn−1, xn), n = 0, 1, . . .

has a unique positive equilibrium x̄.

Then x̄ is a global attractor of all positive solutions.

The following global attractivity result from [175] is very useful in estab-
lishing convergence results in many situations.

Theorem 1.6.5 Let [a, b] be a closed and bounded interval of real numbers
and let F ∈ C([a, b]k+1, [a, b]) satisfy the following conditions:

1. The function F (z1, . . . , zk+1) is monotonic in each of its arguments.

2. For each m,M ∈ [a, b] and for each i ∈ {1, . . . , k + 1}, we define

Mi(m,M) =

{
M, if F is increasing in zi

m, if F is decreasing in zi

and
mi(m,M) = Mi(M,m)

and assume that if (m, M) is a solution of the system:

M = F (M1(m,M), . . . , Mk+1(m,M))
m = F (m1(m, M), . . . , mk+1(m, M))

}
,

then M = m.

Then there exists exactly one equilibrium x̄ of the equation

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . (1.6.2)

and every solution of Eq.(1.6.2) converges to x̄.
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The following period-two convergence result of Camouzis and Ladas was
motivated by several period-two convergence results in rational equations.
(See Chapters 4 and 5.) Thanks to this result, several open problems and
conjectures posed in the Kulenovic and Ladas book have now been resolved
and the character of solutions of many rational equations has now been clar-
ified. See Theorems 4.2.2, 4.3.1, 5.74.2, 5.86.1, 5.109.1, 5.145.2.

Theorem 1.6.6 [61] Let I be a set of real numbers and let

F : I × I → I

be a function F (u, v), which decreases in u and increases in v. Then for every
solution {xn}∞n=−1 of the equation

xn+1 = F (xn, xn−1), n = 0, 1, . . . ,

the subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 of even and odd terms of the
solution do exactly one of the following:

(i) They are both monotonically increasing.

(ii) They are both monotonically decreasing.

(iii) Eventually, one of them is monotonically increasing and the other is
monotonically decreasing.

PROOF
Assume that (i) and (ii) are not true for a solution {xn}∞n=−1. Then for

some N ,
x2N+2 ≥ x2N and x2N+3 ≤ x2N+1 (1.6.3)

or
x2N+2 ≤ x2N and x2N+3 ≥ x2N+1. (1.6.4)

Assume that (1.6.3) holds. The case where (1.6.4) holds is similar and will
be omitted. Then

x2N+4 = F (x2N+3, x2N+2) ≥ F (x2N+1, x2N ) = x2N+2

and
x2N+5 = F (x2N+4, x2N+3) ≤ F (x2N+2, x2N+1) = x2N+3

and the result follows by induction.

The results in the remainder of this chapter were recently obtained by the
authors while working on various special cases of rational difference equations
and provide useful generalizations and some unifications in some special cases.
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In order to simplify and unify several convergence results for the difference
equation

xn = f(xn−i1 , . . . , xn−ik
), n = 1, 2, . . . , (1.6.5)

where k ≥ 2 and the function f(z1, . . . , zk) is monotonic in each of its argu-
ments, we introduce some notation and state several hypotheses.

For every pair of numbers (m,M) and for each j ∈ {1, . . . , k}, we define

Mj = Mj(m,M) =

{
M, if f is increasing in zj

m, if f is decreasing in zj

and
mj = mj(m,M) = Mj(M,m).

(H1) : f ∈ C([0,∞)k, [0,∞)) and f(z1, . . . , zk) is monotonic in each of
its arguments.

(H∗
1) : f ∈ C((0,∞)k, (0,∞)) and f(z1, . . . , zk) is monotonic in each of

its arguments.

(H′
1) : f ∈ C([0,∞)k, [0,∞)) and f(z1, . . . , zk) is strictly monotonic in

each of its arguments.

(H′′
1) : f ∈ C((0,∞)k, (0,∞)) and f(z1, . . . , zk) is strictly monotonic in

each of its arguments.

(H2) : For each m ∈ [0,∞) and M > m, we assume that

f(M1, . . . ,Mk) ≥ M (1.6.6)

implies
f(m1, . . . ,mk) > m. (1.6.7)

(H′
2) : For each m ∈ (0,∞) and M > m, we assume that

f(M1, . . . ,Mk) ≥ M (1.6.8)

implies
f(m1, . . . ,mk) > m. (1.6.9)

(H3) : For each m ∈ [0,∞) and M > m, we assume that

either

(f(M1, . . . ,Mk)−M)(f(m1, . . . ,mk)−m) > 0 (1.6.10)

or
f(M1, . . . ,Mk)−M = f(m1, . . . ,mk)−m = 0. (1.6.11)
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(H′
3) : For each m ∈ (0,∞) and M > m, we assume that

either

(f(M1, . . . ,Mk)−M)(f(m1, . . . ,mk)−m) > 0 (1.6.12)

or
f(M1, . . . ,Mk)−M = f(m1, . . . ,mk)−m = 0. (1.6.13)

We also define the following sets:

S = {is ∈ {i1, . . . , ik} : f strictly increases in xn−is} = {is1 , . . . , isr}
and

J = {ij ∈ {i1, . . . , ik} : f strictly decreases in xn−ij} = {ij1 , . . . , ijt}.
Clearly when H ′

1 or H ′′
1 holds,

S
⋃

J = {i1, . . . , ik}.
(H4) : The set S consists of even indices only and the set J consists
of odd indices only.

(H5) : Either the set S contains at least one odd index, or the set J
contains at least one even index.
(H6) : The greatest common divisor of the indices in the union of
the sets S and J is equal to 1.

The next few theorems can be used to establish global attractivity and
period-two convergence results in many special cases of rational equations
including the following:

#20− 22, #24, #27, #29, #31,
#54, #58, #63, #66, #77− 78,
#83− 84, #89, #91, #96− 97, #101− 106,
#108− 110, #112, #118, #123, #128,
#134− 136, #146, #149, #165− 166, #171− 172,
#178− 179, #184, #189− 191, #196− 197, #202− 203,
#205− 207, #209− 211, #213, #217− 223, #225.

See Chapters 4 and 5.

Theorem 1.6.7 The following statements are true:
(a) Assume that (H1) and (H2) hold for the function f(z1, . . . , zk) of Eq.(1.6.5).
Then every solution of Eq.(1.6.5) which is bounded from above converges to a
finite limit.

(a′) Assume that (H∗
1 ) and (H ′

2) hold for the function f(z1, . . . , zk) of Eq.(1.6.5).
Then every solution of Eq.(1.6.5) which is bounded from above and from below
by positive constants converges to a finite limit.
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PROOF (a) Let {xn} be a bounded solution of Eq.(1.6.5). Set

I = lim inf
n→∞

xn and S = lim sup
n→∞

xn

and assume, for the sake of contradiction, that

S > I.

Clearly, there exists a sequence of indices {nm} and positive numbers L−r,
for r ∈ {1, . . . , k}, such that

S = lim
m→∞

xnm and L−r = lim
m→∞

xnm−ir .

From Eq.(1.6.5) and the monotonic character of f we see that

S = f(L−1, . . . , L−k) ≤ f(M1(I, S), . . . , Mk(I, S)). (1.6.14)

Similarly, we see that

I ≥ f(m1(I, S), . . . ,mk(I, S)). (1.6.15)

But from (1.6.14) and the Hypothesis (H2) we see that

f(m1(I, S), . . . , mk(I, S))− I > 0,

which contradicts (1.6.15). The proof is complete in this case.
(a′) The proof in this case is similar to the proof in part (a) and will be
omitted.

Theorem 1.6.8 Assume that for any of the following three equations of order
three:

xn+1 = f(xn, xn−1, xn−2), n = 0, 1, . . . (1.6.16)

xn+1 = f(xn, xn−2), n = 0, 1, . . . (1.6.17)

or
xn+1 = f(xn−1, xn−2), n = 0, 1, . . . (1.6.18)

the hypotheses (H ′′
1 ) and (H ′

3) are satisfied for the arguments shown in the
equation and, furthermore, assume that the function f is:

strictly increasing in xn or xn−2, or strictly decreasing in xn−1.

Then every solution of this equation bounded from below and from above by
positive constants converges to a finite limit.



Preliminaries 15

PROOF Let {xn} be a solution bounded from above and from below by
positive constants. Set

I = lim inf
n→∞

xn and S = lim sup
n→∞

xn.

Clearly, there exists a sequence of indices {ni} and positive numbers L−j , for
j ∈ {0, 1, . . .}, such that

S = lim
i→∞

xni+1 and L−j = lim
i→∞

xni−j .

First we will consider Eq.(1.6.16) and give the proof when the function f(z1, z2, z3)
is strictly increasing in z3. The proof when the function f(z1, z2, z3) is strictly
decreasing in z2, or when the function f(z1, z2, z3) is strictly increasing in z1,
is similar and will be omitted.

Case 1: The function f(z1, z2, z3) is strictly increasing in each argument.

Actually in this case we can show that the Hypotheses of Theorem 1.6.1
are satisfied from which the result follows. However, we give the details of the
proof for completeness and practice.

From Eq.(1.6.16) and the monotonic character of f we see that

S = f(L0, L−1, L−2) ≤ f(S, S, S).

Similarly, we find
I ≥ f(I, I, I). (1.6.19)

Now assume that
S < f(S, S, S).

Then from (1.6.12)
I < f(I, I, I),

which contradicts (1.6.19). Hence,

S = f(L0, L−1, L−2) = f(S, S, S) > 0. (1.6.20)

Then from (1.6.20) we find that

L0 = L−1 = L−2 = S

otherwise and, because of the strict monotonicity of f in all of its arguments,

S = f(L0, L−1, L−2) < f(S, S, S),

which is a contradiction.
Clearly, for an arbitrarily small positive number ε there exists N sufficiently

large such that
S − ε < xnN

, xnN−1, xnN−2 < S + ε.
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Also, clearly,

f(S + ε, S + ε, S + ε) = S + ε and f(S − ε, S − ε, S − ε) = S − ε

because otherwise and in view of (1.6.12) with

m = S and M = S + ε

or with
m = S − ε and M = S

we would have
f(S, S, S) 6= S,

which contradicts (1.6.20). Hence,

S − ε = f(S − ε, S − ε, S − ε) < xnN+1 = f(xnN
, xnN−1, xnN−2)

< f(S + ε, S + ε, S + ε) = S + ε

and by induction for all k ≥ 1

S − ε < xnN+k < S + ε,

from which it follows that

lim
k→∞

xnN+k = S.

The proof is complete in this case.

Case 2: The function f(z1, z2, z3) is strictly increasing in z3 and is strictly
decreasing in one of the other two arguments.

From Eq.(1.6.16) and the monotonic character of f we see that

S = f(L0, L−1, L−2) ≤ f(M1,M2, S),

where
Mi = Mi(I, S).

Similarly, we find
I ≥ f(m1,m2, I), (1.6.21)

where
mi = mi(I, S).

Now assume that
S < f(M1,M2, S).

Then from (1.6.12)
I < f(m1,m2, I),
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which contradicts (1.6.21). Hence,

S = f(L0, L−1, L−2) = f(M1,M2, S) > 0, (1.6.22)

which, in view of (1.6.13), implies that

I = f(m1,m2, I) > 0.

Then from (1.6.22) we find that

L0 = M1, L−1 = M2, and L−2 = S

otherwise and, because of the strict monotonicity of f in all of its arguments,

S = f(L0, L−1, L−2) < f(M1,M2, S),

which is a contradiction. When

M1 = S,

the function is strictly increasing in z1 and so it must be strictly decreasing
in z2. Hence,

M2 = I = L−1.

From

M1 = S = f(M1,M2, S) = f(S, I, S) = L0 = f(L−1, L−2, L−3)

it follows that
L−1 = S.

Hence,
I = L−1 = S.

When
M1 = I

clearly
m1 = S

and from
M1 = I = f(S,m2, I) = f(L−1, L−2, L−3)

we obtain
m2 = L−2 = S

and so clearly
M2 = L−1 = I.

Hence,
I = L−1 = S.



18 Dynamics of Third-Order Rational Difference Equations

The proof is complete in this case.

Next we will consider Eq.(1.6.17) and we give the proof when the function
f(z1, z3) is strictly increasing in z1. The proof when the function is strictly
decreasing in z3 is similar and will be omitted.
We divide the proof into the following two cases:

Case 3: The function f(z1, z3) is strictly increasing in each argument. In
this case the proof is similar to the proof in case 1 and will be omitted.

Case 4: The function f(z1, z3) is strictly increasing in z1 and strictly de-
creasing in z3.

From Eq.(1.6.17) and the monotonic character of f we see that

S = f(L0, L−2) ≤ f(S, I).

Similarly, we find
I ≥ f(I, S). (1.6.23)

Now assume that
S < f(S, I).

Then from (1.6.12)
I < f(I, S),

which contradicts (1.6.23). Hence,

S = f(L0, L−2) = f(S, I) > 0, (1.6.24)

which, in view of (1.6.13), implies that

I = f(I, S) > 0.

Then from (1.6.24) we find that

L0 = S and L−2 = I

otherwise and because of the strict monotonicity of f ,

S = f(L0, L−2) < f(S, I),

which is a contradiction. Similarly, we find

L−1 = S and L−3 = I

and
L−2 = S and L−4 = I.

Hence,
I = L−2 = S.
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The proof is complete in this case.

Finally, we consider Eq.(1.6.18) and we give the proof when the function
f(z2, z3) is strictly decreasing in z2. The proof when the function is strictly
increasing in z3 is similar and will be omitted.
We divide the proof into the following two cases:

Case 5: The function f(z2, z3) is strictly decreasing in z2 and strictly in-
creasing in z3.

From Eq.(1.6.18) and the monotonic character of f we see that

S = f(L−1, L−2) ≤ f(I, S).

Similarly, we find
I ≥ f(S, I). (1.6.25)

Now assume that
S < f(I, S).

Then from (1.6.12)
I < f(S, I),

which contradicts (1.6.25). Hence

S = f(L−1, L−2) = f(I, S) > 0 (1.6.26)

which, in view of (1.6.13), implies that

I = f(S, I) > 0.

Then from (1.6.26) we find that

L−1 = I and L−2 = S

otherwise and, because of the strict monotonicity of f in all of its arguments,

S = f(L−1, L−2) < f(I, S),

which is a contradiction. Similarly, we find

L−3 = S and L−4 = I

and
L−4 = S and L−5 = I.

Hence,
I = L−4 = S.

The proof is complete in this case.
Case 6: The function f(z2, z3) is strictly decreasing in both arguments.
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From Eq.(1.6.18) and the monotonic character of f we see that

S = f(L−1, L−2) ≤ f(I, I).

Similarly, we find
I ≥ f(S, S). (1.6.27)

Now assume that
S < f(I, I).

Then from (1.6.12)
I < f(S, S),

which contradicts (1.6.27). Hence,

S = f(L−1, L−2) = f(I, I) > 0, (1.6.28)

which, in view of (1.6.13), implies that

I = f(S, S) > 0.

Then from (1.6.28) we find that

L−1 = I and L−2 = I

otherwise and because of the strict monotonicity of f ,

S = f(L−1, L−2) < f(I, I),

which is a contradiction. Similarly, we find

L−3 = S and L−4 = S

and
L−4 = S and L−5 = S

and
L−5 = I and L−6 = I.

Hence,
I = L−5 = S.

The proof is complete.

Theorem 1.6.9 Assume that for any of the three equations (1.6.16), (1.6.17),
or (1.6.18) the hypotheses (H ′′

1 ) and (H ′
3) are satisfied for the arguments

shown in the equation, and, furthermore, assume that the function f is:

strictly decreasing in xn, for Eqs.(1.6.16) and (1.6.17),
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and

strictly increasing in xn−1 for Eqs.(1.6.16) and (1.6.18),

and
strictly decreasing in xn−2.

Then every solution of this equation bounded from above and from below by
positive constants converges to a (not necessarily prime) period-two solution.

PROOF We will give the proof for Eq.(1.6.16) under the assumption that
the function is strictly decreasing in xn and xn−2 and strictly increasing in
xn−1. The proof for the other two equations is similar and will be omitted.

Let {xn} be a solution bounded from above and from below by positive
constants. Set

I = lim inf
n→∞

xn and S = lim sup
n→∞

xn.

Clearly, there exists a sequence of indices {ni} and positive numbers {L−j},
for j ∈ {0, 1, 2}, such that

S = lim
i→∞

xni+1 and L−j = lim
i→∞

xni−j .

From Eq.(1.6.16) and the monotonic character of f we see that

S = f(L0, L−1, L−2) ≤ f(I, S, I). (1.6.29)

Similarly, we find
I ≥ f(S, I, S). (1.6.30)

Now assume that
S < f(I, S, I).

Then from (1.6.12) we see that

I < f(S, I, S),

which contradicts (1.6.30). Hence,

S = f(I, S, I),

which, in view of (1.6.13), implies that

I = f(S, I, S).

From (1.6.29) we find that

L0 = L−2 = I and L−1 = S



22 Dynamics of Third-Order Rational Difference Equations

otherwise and because of the strict monotonicity of f ,

S < f(I, S, I),

which is a contradiction. At this point we claim that there exist arbitrarily
small positive numbers, ε1 and ε2, such that

S − ε1 = f(I + ε2, S − ε1, I + ε2).

Assume, for the sake of contradiction and without loss of generality, that for
all positive numbers ε1 and ε2 we have

S − ε1 < f(I + ε2, S − ε1, I + ε2).

By letting ε1 → 0 we obtain

S ≤ f(I + ε2, S, I + ε2),

from which it follows that

S ≤ f(I + ε2, S, I + ε2) < f(I, S, I) = S

which is a contradiction and so our claim holds.

Let N be sufficiently large and such that

xnN , xnN−2 < I + ε2 and xnN−1 > S − ε1.

Then

xnN+1 = f(xnN
, xnN−1, xnN−2) > f(I + ε2, S − ε1, I + ε2) = S − ε1

and, similarly,
xnN+2 < I + ε2.

Inductively, we find

x2j+1+nN > S − ε1 and x2j+nN < I + ε2,

from which the result follows.

Theorem 1.6.10 Assume that for any of the three equations (1.6.16), (1.6.17),
or (1.6.18) the Hypotheses (H ′

1) and (H3) are satisfied for the arguments
shown in the equation, and, furthermore, assume that the function f is:

strictly decreasing in xn, for Eqs.(1.6.16) and (1.6.17),
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and

strictly increasing in xn−1 for Eqs.(1.6.16) and (1.6.18),

and
strictly decreasing in xn−2.

Then every solution of this equation bounded from above converges to a (not
necessarily prime) period-two solution.

The results in this section can be extended and generalized to higher order
equations as follows:

Theorem 1.6.11 The following statements are true:
(a) Assume that (H ′

1), (H3), (H4), and (H6) hold. Then every bounded solu-
tion of Eq.(1.6.5) converges to a (not necessarily prime) period-two solution.

(a′) Assume that (H ′′
1 ), (H ′

3), (H4) and (H6) hold. Then every solution of
Eq.(1.6.5) bounded from above and from below by positive constants converges
to a (not necessarily prime) period-two solution.

(b) Assume that (H ′
1), (H3), (H5), and (H6) hold. Then every bounded solu-

tion of Eq.(1.6.5) converges to a finite limit.

(b′) Assume that (H ′′
1 ), (H ′

3), (H5), and (H6) hold. Then every solution of
Eq.(1.6.5) bounded from above and from below by positive constants converges
to a finite limit.

PROOF We will prove (a′) and (b′) together. Let {xn} be a solution
bounded from above and from below by positive constants. Clearly, there
exists a full limiting sequence {L−q}∞q=0 such that

L0 = S.

We divide the proof into the following two cases:

Case 1: S, J 6= ∅ and all the indices is1 , . . . , isr of the set S are even. The
proof when S = ∅ is similar and will be omitted. The proof when J = ∅
follows from Theorem 1.6.1.

In this case when (H ′′
1 ), (H ′

3), (H4), and (H6) hold, all the indices of the
set J are odd and when (H ′′

1 ), (H ′
3), (H5), and (H6) hold, there exists at least

one index j1, . . . , jt of the set J that is odd and also at least one index that
is even.

Clearly, from Eq.(1.6.5) and the monotonic character of f we obtain

L0 = S = f(L−i1 , . . . , L−ik
) ≤ f(M1(I, S), . . . , Mk(I, S)).
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Similarly, we find
I ≥ f(m1(I, S), . . . ,mk(I, S)).

Now assume that
S < f(M1(I, S), . . . , Mk(I, S)).

Then from (1.6.12) we see that

I < f(m1(I, S), . . . ,mk(I, S)),

which is a contradiction. Hence,

S = f(M1(I, S), . . . , Mk(I, S)). (1.6.31)

Similarly, we see that

I = f(m1(I, S), . . . ,mk(I, S)). (1.6.32)

Hence,

L−is1
= . . . = L−isr

= S and L−ij1
= . . . = L−ijt

= I

otherwise and because of the strict monotonicity of f ,

S < f(M1(I, S), . . . , Mk(I, S)),

which is a contradiction. Similarly,

L−2ij1
= . . . = L−2ijt

= S

and also for every positive linear combination

T =
r∑

l=1

φlisl
+

t∑
p=1

ψpijp

we see that
L−T ∈ {I, S}. (1.6.33)

There exists n0 large enough such that for each n ≥ n0 there exist integers
{φl,n}r

l=1, {ψp,n}t
p=1 such that

n =
r∑

l=1

φl,nisl
+

t∑
p=1

ψp,nijp .

From this and (1.6.33) it follows that for all n ≥ n0

L−n ∈ {I, S}.
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From Eqs.(1.6.5) and (1.6.31) we obtain

L−n = f(L−n−i1 , . . . , L−n−ik
) = f(M1(I, S), . . . , Mk(I, S)) ∈ {I, S}

or

L−n = f(L−n−i1 , . . . , L−n−ik
) = f(m1(I, S), . . . , mk(I, S)) ∈ {I, S}.

From this it follows that for each l ∈ {1, . . . , r}

L−n = L−n−isl
for all n ≥ n0

and for each p ∈ {1, . . . , t}

L−n = L−n−2ijp
for all n ≥ n0.

Therefore, the sequence {L−q}∞q=n0
is periodic with periods

is1 , . . . , isr , 2ij1 , . . . , 2ijt .

But
gcd{is1 , . . . , isr , 2ij1 , . . . , 2ijt} = 2

and so the sequence {L−q}∞q=0 is periodic with period two. In fact, it has the
following form,

. . . , I, S, . . . .

When (H ′′
1 ), (H ′

3), (H4), and (H6) hold, assume without loss of generality
that, for all j ≥ 0,

L−2j = I and L−2j−1 = S.

At this point we claim that there exist arbitrarily small positive numbers, ε1
and ε2, such that

S − ε1 = f(M1(I, S) + X1, . . . , Mk + Xk)

and
I + ε2 = f(m1(I, S) + x1, . . . , mk + xk)

where, for each r ∈ {1, . . . , k},

Xr = ε2

when f decreases in xn−ir and

Xr = −ε1

when f increases in xn−ir
and

xr = −ε1
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when f decreases in xn−ir and

xr = ε2

when f increases in xn−ir . Assume, for the sake of contradiction and without
loss of generality, that for all positive numbers ε1 and ε2 we have

S − ε1 < f(M1(I, S) + X1, . . . , Mk(I, S) + Xk).

By letting ε1 → 0 we obtain

S ≤ f(M1(I, S) + Y1, . . . ,Mk(I, S) + Yk)

where, for each r ∈ {1, . . . , k},
Yr = ε2

when f decreases in xn−ir and

Yr = 0

when f increases in xn−ir . From this it follows that

S ≤ f(M1(I, S) + Y1, . . . ,Mk + Yk) < f(M1(I, S), . . . , Mk) = S,

which is a contradiction. Similarly, it follows that

I + ε2 = f(m1(I, S) + x1, . . . , mk + xk)

and so our claim holds.

Let N be sufficiently large such that, for each r ∈ {1, . . . , k},
xnN−ir < I + ε2

when the function f decreases in xnN−ir and

xnN−ir > S − ε1

when the function f increases in xnN−ir . Then

xnN = f(xnN−i1 , . . . , xnN−ik
) > f(M1(I, S)+x1, . . . , Mk(I, S)+xk) = S− ε1

and, similarly,
xnN+1 < I + ε2.

Inductively, we find

x2j+nN
> S − ε1 and x2j+1+nN

< I + ε2,

from which the result follows.
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When (H ′′
1 ), (H ′

3), (H5), and (H6) hold, there exist two even indices is1 ∈ S
and ijt0

∈ J such that
L−is1

= S

and
L−ijt0

= I.

Due to the fact that L−is1
and L−ijt0

belong to the period-two solution
{L−q}∞q=0, it follows that

I = S.

Case 2: The set I contains at least one index isr0
such that

isr0
= 2R + 1.

In this case, clearly,
L−(2R+1)ω = S, ω = 0, 1 . . .

and for each ijt ∈ J
L−(2φ+1)jt

= I, φ = 0, 1 . . .

and
L−2φjt = S, φ = 0, 1 . . . .

Hence, there exist positive integers φ and ω such that

L−(2R+1)ω = S = L−(2φ+1)jt
= I.

The proof is complete in this case.
The proofs of (a) and (b) are similar and will be omitted.
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Equations with Bounded Solutions

2.0 Introduction

Consider the third-order rational difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (2.0.1)

with nonnegative parameters α, β, γ, δ, A,B, C, D and with arbitrary nonneg-
ative initial conditions x−2, x−1, x0, such that the denominator is always pos-
itive.

This equation contains 225 special cases of equations with positive parameters.
It was conjectured in [69] that in 135 of these special cases, every solution of
the equation is bounded and, in the remaining 90 cases, the equation has
unbounded solutions in some range of their parameters and for some initial
conditions.

For each of the 225 special cases of Eq.(2.0.1) we assign a number from 1
to 225. See Appendix A for the number assigned to each equation. See also
[192].

In this chapter we present several theorems on the boundedness of every
solution of several equations of the form of Eq.(2.0.1) and in particular we es-
tablish that in all 135 special cases of Eq.(2.0.1), every solution of the equation
is bounded.

In Section 2.1 we present a large number of special cases of Eq.(2.0.1)
where every solution of the equation is easily seen to be bounded. Actually,
this section will account for the boundedness of every solution in 91 special
cases of Eq.(2.0.1). The remaining sections will account for the remaining 44
additional special cases.

In Section 2.2 we present in detail the proof of the boundedness of solutions

29
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of the second-order rational difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (2.0.2)

when
C > 0.

This section will account for the boundedness of every solution in eight addi-
tional special cases of Eq.(2.0.1).

When
C = 0 and B = 0,

Eq.(2.0.2) reduces to a linear equation that has unbounded solutions in some
range of its parameters, unless

β = γ = 0.

Finally, when
C = 0 and B > 0 (2.0.3)

that is for the equation

xn+1 =
α + βxn + γxn−1

A + Bxn
, n = 0, 1, . . . , (2.0.4)

we will see in Chapters 3 and 4 that it has unbounded solutions if and only if

γ > β + A.

Equivalently, when B > 0, every solution of Eq.(2.0.4) is bounded if and only
if

γ ≤ β + A.

In Section 2.3 we establish the boundedness of 16 additional special cases of
Eq.(2.0.1) by the method of iteration, that is, by observing that when we
write xn+2 or xn+3 in terms of xn, xn−1, and xn−2, every solution of the
resulting equation is bounded.

In Section 2.4 we establish that every solution of the (normalized) special case

#58 : xn+1 = β +
xn−2

xn
, n = 0, 1, . . .

with
β > 0

is bounded. By using similar ideas, we establish in Section 2.5 the bounded-
ness of every solution of the equation

xn+1 =
α + βxn + xn−2

A + xn
, n = 0, 1, . . . (2.0.5)
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with

α + β, β + A ∈ (0,∞). (2.0.6)

This confirms the boundedness of solutions in four additional special cases of
Eq.(2.0.1).

In Section 2.6 we establish that every solution of the (normalized) special
case

#63 : xn+1 = γ +
xn−2

xn−1
, n = 0, 1, . . .

with

γ > 0

is bounded. By using similar ideas, in Section 2.7 we establish the bounded-
ness of every solution of the equation

xn+1 =
α + βxn + γxn−1 + xn−2

A + xn−1
, n = 0, 1, . . . (2.0.7)

with

γ + A,α + β + γ ∈ (0,∞). (2.0.8)

This confirms the boundedness of solutions in 10 additional special cases of
Eq.(2.0.1).

In Section 2.8 we establish that every solution of the equation

xn+1 =
α + βxn + γxn−1

Cxn−1 + Dxn−2
, n = 0, 1, . . . (2.0.9)

with

α ≥ 0 and β, γ, C,D ∈ (0,∞). (2.0.10)

is bounded.

Finally, in Section 2.9 we establish that every solution of the equation

xn+1 =
α + βxn + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (2.0.11)

with

α ≥ 0 and β, C ∈ (0,∞)

is bounded. This confirms the boundedness of solutions of the remaining two
cases of Eq.(2.0.1).
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2.1 Some Straightforward Cases

In this section we present several special cases of Eq.(2.0.1) where every solu-
tion of the equation is easily seen to be bounded. Actually, this section will
account for the boundedness of every solution in 91 special cases of Eq.(2.0.1).

Clearly, in all four trivial linear cases of Eq.(2.0.1), every solution of the
equation is bounded. They are the following special cases:

#1, #6, #11, #16.

See Appendix A.

Next, in all 15 special cases of Eq.(2.0.1) that are either Riccati or of the
Riccati type, every solution of the equation is bounded. They are the following
special cases:

#2, #3, #4, #17, #18, #19, #23, #30
#37, #42, #47, #52, #65, #72, #79.

See Appendix A.

Actually, in each of the above 15 cases, either every solution of the equation
is periodic or the solutions of the equation converge to an equilibrium point.
See Section 5.65 on Riccati equations in Chapter 5.

One can see that in every special case of Eq.(2.0.1) where all of the terms
in the numerator are also contained in the denominator, every solution of the
equation is bounded. By this we mean that if the constant α is present in the
numerator of this special case, so is the constant A in the denominator. If the
coefficient β of xn is present in the numerator, so is the coefficient B of xn in
the denominator, and so on. This idea establishes the boundedness of every
solution in each of the following 52 additional special cases of Eq.(2.0.1):

#26, #27, #32, #34, #39, #40, #86, #93,
#100, #101, #102, #103, #105, #106, #108, #109,
#111, #112, #114, #115, #116, #133, #134, #135,
#136, #141, #142, #145, #147, #150, #151, #153,
#156, #158, #160, #163, #164, #189, #190, #191,
#192, #193, #194, #201, #206, #211, #216, #217,
#218, #219, #220, #225.

See Appendix A.
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As an example of the preceding idea, every solution of the equation in the
special case

#217 : xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . .

is bounded. Indeed, for n ≥ 0,

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1 + Dxn−2
≤ max{α, β, γ}(1 + xn + xn−1)

min{A, B,C, D}(1 + xn + xn−1 + xn−2)

≤ max{α, β, γ}
min{A,B, C, D} .

A minor extension of the above idea establishes the boundedness of every
solution of any rational equation of the form

xn+1 =
α + βxn + γxn−1 + δxn−2

Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (2.1.1)

with α > 0 under the condition that

when β > 0, then B > 0,
when γ > 0, then C > 0,

and
when δ > 0, then D > 0.

The above result for Eq.(2.1.1) establishes the boundedness of every solution
in each of the following 20 special cases of Eq.(2.0.1):

#20, #21, #22, #68, #69, #74, #76,
#81, #82, #104, #144, #148, #152, # 168,
#175, #182, #204, #208, #212, #224.

See Appendix A.
In this section we accounted for the boundedness of every solution in 91

special cases of Eq.(2.0.1).
The following theorem unifies all the 91 special cases discussed in this sec-

tion and extends the results to rational equations of any order k. It is amazing
that for k = 3, this theorem presents with detailed proofs the boundedness of
every solution in 91 special cases of Eq.(2.0.1). See [66].
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Theorem 2.1.1 Consider the (k + 1)st-order rational difference equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . . (2.1.2)

with nonnegative parameters

α, A, β0, . . . , βk, B0, . . . , Bk

and with arbitrary nonnegative initial conditions x−k, . . . , x0 such that the
denominator is always positive. Assume that for every i ∈ {0, 1, . . . , k} for
which the parameter βi in the numerator is positive, the corresponding param-
eter Bi in the denominator is also positive. Then every solution of Eq.(2.1.2)
is bounded.

PROOF Let us denote by I and I0 the following subsets of {0, 1, . . . , k}:

I = {i ∈ {0, 1, . . . , k} : βi > 0 and Bi > 0}

and
I0 = {i ∈ {0, 1, . . . , k} : βi = 0 and Bi > 0}.

Then
I ∪ I0 ⊂ {0, 1, . . . , k}

and Eq.(2.1.2) is equivalent to

xn+1 =
α +

∑
i∈I βixn−i

A +
∑

i∈I Bixn−i +
∑

i∈I0
Bixn−i

, n = 0, 1, . . . (2.1.3)

with βi, Bi ∈ (0,∞) for every i ∈ I and with Bi > 0 for every i ∈ I0. Of
course, I or I0, or both, may be empty sets.

First we show that when

A > 0 or α = 0,

every solution of Eq.(2.1.2) is bounded. Indeed, when A > 0,

xn+1 ≤
maxi∈I(α, βi)(1 +

∑
i∈I xn−i)

mini∈I(A,Bi)(1 +
∑

i∈I xn−i)
=

maxi∈I(α, βi)
mini∈I(A,Bi)

and so every solution of Eq.(2.1.2) is bounded.
In the above inequality by maxi∈I(α, βi), we mean α if I = ∅ and the

maximum of α and maxi∈I βi otherwise. Similarly for the minimum. Also, if
I = ∅, we define ∑

i∈I

xn−i = 0.
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Next assume that α = 0. Then the set I must be nonempty and

xn+1 ≤
∑

i∈I βixn−i∑
i∈I Bixn−i

≤ (maxi∈I βi)
∑

i∈I xn−i

(mini∈I Bi)
∑

i∈I xn−i
=

maxi∈I βi

mini∈I Bi

and every solution is bounded.

In the remaining part of the proof we assume that

A = 0 and α > 0.

Now the proof depends on whether I or I0 is empty.

Case 1: I0 = ∅. Then, because A = 0, I 6= ∅ and

xn+1 =
α +

∑
i∈I βixn−i∑

i∈I Bixn−i
>

mini∈I βi

maxi∈I Bi
, for n ≥ 0.

So if we set
L =

mini∈I βi

maxi∈I Bi
,

it follows that for n ≥ k,

xn+1 ≤ α

L
∑

i∈I Bi
+

maxi∈I βi

mini∈I Bi

and every solution of Eq.(2.1.2) is bounded from below and from above. Ac-
tually in this case the equation is permanent.

Case 2: I = ∅. Then I0 6= ∅. In this case the Eq.(2.1.2) reduces to

xn+1 =
α∑

i∈I0
Bixn−i

, n = 0, 1, . . . (2.1.4)

with ∑

i∈I0

Bi > 0.

We will prove that every solution of Eq.(2.1.4) is bounded. To this end, let
{xn} be a solution of Eq.(2.1.4) and assume, without loss of generality, that
the solution is positive for all n ≥ −k. Let L,U be chosen in such a way that

x−k, . . . , x0 ∈ (L, U)

and
LU =

α∑
i∈I0

Bi
.

Then

L =
α

U
∑

i∈I0
Bi

< x1 =
α∑

i∈I0
Bix−i

<
α

L
∑

i∈I0
Bi

= U.
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Hence,
x1 ∈ (L,U)

and by induction
xn ∈ (L,U) for n ≥ −k.

Case 3: Both I and I0 are nonempty sets. In this case, as in case 2, we will
assume, without loss of generality, that a solution {xn} is positive and show
that there exists an interval (L, U) that contains the entire solution.

To see how the interval is found observe that

x1 ∈ (L,U)

if and only if

L <
α +

∑
i∈I βix−i∑

i∈I Bix−i +
∑

i∈I0
Bix−i

< U

if and only if
∑

i∈I

(LBi − βi)x−i + (L
∑

i∈I0

Bix−i − α) < 0

and ∑

i∈I

(UBi − βi)x−i + (U
∑

i∈I0

Bix−i − α) > 0

if
L <

βi

Bi
< U for all i ∈ I

and
α

U
<

∑

i∈I0

Bix−i <
α

L
.

But
L

∑

i∈I0

Bi <
∑

i∈I0

Bix−i < U
∑

i∈I0

Bi

and so it suffices to choose L and U such that

x−k, . . . , x0 ∈ (L,U),

L < min
i∈I

(
βi

Bi
,
Bi

βi

α∑
j∈I0

Bj
),

and
LU =

α∑
j∈I0

Bj
.

With the above choice of (L, U), it is now easy to show that

x1 ∈ (L,U)
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and then by induction

xn ∈ (L,U), for n ≥ −k.

The proof is complete.

One can see that Theorem 2.1.1 accounts for the boundedness of every
solution in

1 + 2
k∑

i=1

(
k

i

)
(21+i − 1) = 4(3k+1 − 2k)− 1

special cases of Eq.(2.1.2). See [66].

2.2 The Second-Order Rational Equation

The second-order rational difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (2.2.1)

was investigated in the book by Kulenovic and Ladas (see [175]). This equa-
tion contains 49 special cases and the boundedness character of most of them
follows from the results in [175]. See also [39]. However, the boundedness
character of the entire equation (2.2.1) including cases not discussed in [175],
like #166, #168, and #201, was presented in [134]. Of the 49 special cases
of Eq.(2.2.1), 35 cases have bounded solutions only and 14 special cases have
unbounded solutions in some range of their parameters.

It is an amazing fact that when

C > 0,

every solution of Eq.(2.2.1) is bounded and when

C = 0 and B > 0,

Eq.(2.2.1) has unbounded solutions if and only if

γ > β + A.

Finally, when
C = 0 and B = 0
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Eq.(2.2.1) reduces to a linear equation that has unbounded solutions in some
range of its parameters unless

β = γ = 0,

in which case every solution of the equation is bounded.

The main result in this section is the following theorem, which estab-
lishes the boundedness of every solution in eight additional special cases of
Eq.(2.0.1), namely:

#7, #24, #43, #55,
#66, #84, #119, #166.

See Appendix A.

The proof of the following theorem is a self-contained proof for all 28 special
cases of Eq.(2.2.1) with C > 0, and in particular contains the proof of the
boundedness of every solution of each of the above eight special cases.

Theorem 2.2.1 Assume that C > 0. Then every solution of Eq.(2.2.1) is
bounded.

PROOF The proof is divided into the following eight cases:

Case 1:
A > 0 and B > 0.

Here for n ≥ 0,

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
≤ max{α, β, γ}(1 + xn + xn−1)

min{A,B,C}(1 + xn + xn−1)

=
max{α, β, γ}
min{A,B, C}

and so every solution is bounded.

Case 2:
A > 0 and B = 0.

Here for n ≥ 1,

xn+2 =
α + βxn+1 + γxn

A + Cxn
=

α + γxn

A + Cxn
+

β

A + Cxn

α + βxn + γxn−1

A + Cxn−1

=
α + γxn

A + Cxn
+

β

A + Cxn

α + γxn−1

A + Cxn−1
+

β2xn

(A + Cxn)(A + Cxn−1)
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≤ max{α, γ}
min{A,C} +

β

A
· max{α, γ}
min{A,C} +

β2

AC

and so every solution is bounded.

Case 3:
A = 0 and B > 0.

When α = 0, every solution of Eq.(2.2.1) is bounded because for n ≥ 0,

xn+1 =
βxn + γxn−1

Bxn + Cxn−1
≤ max{β, γ}

min{B, C} .

On the other hand, when α > 0 we consider the following four subcases:

Subcase 3(i):
A = 0, B > 0, and β = γ = 0.

Let {xn} be a positive solution and choose L,U ∈ (0,∞) such that

x−1, x0 ∈ (L,U) and LU =
α

B + C
.

Then
L =

α

(B + C)U
< x1 =

α

Bxn + Cxn−1
<

α

(B + C)L
= U

and by induction,
xn ∈ (L,U), for all n ≥ 0.

Subcase 3(ii):

A = 0, B > 0, and β, γ, C ∈ (0,∞).

Here, clearly, for n ≥ 0,

xn+1 =
α + βxn + γxn−1

Bxn + Cxn−1
>

βxn + γxn−1

Bxn + Cxn−1
>

min{β, γ}
max{B,C} .

Set

L =
min{β, γ}
max{B, C} .

Then for n ≥ 2,

xn+1 =
α

Bxn + Cxn−1
+

βxn + γxn−1

Bxn + Cxn−1

≤ α

(B + 1)L
+

max{β, γ}
min{B, C}

and so every solution is bounded.
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Subcase 3(iii):

A = 0, B > 0, β > 0, and γ = 0.

For simplicity we normalize the equation in the following form

xn+1 =
α + xn

xn + Cxn−1
, n = 0, 1, . . . .

Let {xn} be a positive solution and choose positive numbers L,U such that

x−1, x0 ∈ (L,U), 0 < L < min{1,
α

C
}, and LU =

α

C
. (2.2.2)

Then

x1 − U =
α + x0

x0 + Cx−1
− α

CL
=

αCL− αCx−1 + (CL− α)x0

CL(x0 + Cx−1)
< 0

and

x1 − L =
(α− CLx−1) + x0(1− L)

x0 + Cx−1
> 0.

That is,
x1 ∈ (L,U),

and the boundedness of {xn} follows by induction.

Subcase 3(iv):

A = 0, B > 0, β = 0, and γ > 0.

Here we can normalize the equation in the form

xn+1 =
α + xn−1

Bxn + xn−1
, n = 0, 1, . . . .

Let {xn} be a positive solution and as in the above case choose positive
numbers L and U such that (2.2.2) holds with C replaced by B. Then, as in
the above case, we can show that

x1 ∈ (L,U)

and the proof follows by induction.

Subcase 4(i):
A = 0, B = 0, and γ = 0.



Equations with Bounded Solutions 41

Here the equation reduces by a change of variables to the well-known Lyness’s
equation

xn+1 =
α + xn

xn−1
, n = 0, 1, . . . .

Lyness’s equation is gifted with the invariant

(a + xn + xn−1)(1 +
1

xn−1
)(1 +

1
xn

) = constant, for n ≥ 0.

It is now clear from this invariant that no subsequence of {xn} can converge
to ∞ and so every solution of Lyness’s equation is bounded.

Subcase 4(ii):
A = 0, B = 0, and γ > 0.

A change of variables reduces the equation in this case to an equation of the
form

yn+1 =
α + yn

γ + yn−1
, n = 0, 1, . . .

for which the boundedness was established in case 2. The proof is complete.

2.3 Boundedness by Iteration

In this section we will confirm the boundedness of 16 additional special cases
of Eq.(2.0.1), namely:

#25, #60, #67, #91, #107, #124, #143, #155,
#159, #173, #188, #200, #203, #207, #215, #223.

See Appendix A.

Theorem 2.3.1 Assume that

β, A,C, D ∈ (0,∞) and α, γ, δ ∈ [0,∞).

Then every solution of the equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Cxn−1 + Dxn−2
, n = 0, 1, . . .

is bounded.
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PROOF The proof is a consequence of the fact that for n ≥ 1 we have

xn+2 =
α + γxn + δxn−1

A + Cxn + Dxn−1
+

β

A + Cxn + Dxn−1
· α + βxn + γxn−1 + δxn−2

A + Cxn−1 + Dxn−2
.

Corollary 2.3.1 Every solution of each of the following eight special cases is
bounded:

#107, #143, #155, #159, #203, #207, #215, #223.

See Appendix A.

Theorem 2.3.2 Assume that

α, β ∈ [0,∞) and γ, δ, C,D ∈ (0,∞).

Then every positive solution of the equation

xn+1 =
α + βxn + γxn−1 + δxn−2

Cxn−1 + Dxn−2
, n = 0, 1, . . .

is bounded from above and from below by positive numbers.

PROOF We have

xn+1 ≥ γxn−1 + δxn−2

Cxn−1 + Dxn−2
≥ min{γ, δ}

max{C, D}
and so {xn} is bounded from below by the positive number

m =
min{γ, δ}

max{C,D} .

Furthermore, for n ≥ 1,

xn+2 =
α + βxn+1 + γxn + δxn−1

Cxn + Dxn−1

≤ α

(C + D)m
+

γxn + δxn−1

Cxn + Dxn−1
+

β

Cxn + Dxn−1
· α + βxn + γxn−1 + δxn−2

Cxn−1 + Dxn−2

and so the solution is also bounded from above.

Corollary 2.3.2 Every solution of each of the two special cases, #188 and
#200, is bounded.
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See Appendix A.

Theorem 2.3.3 Assume that

α, δ,A ∈ [0,∞) and β, δ + A ∈ (0,∞).

Then every solution of

xn+1 =
α + βxn + δxn−2

A + xn−2
, n = 0, 1, . . .

is bounded.

PROOF Note that for n ≥ 2,

xn+3 =
α + βxn+2 + δxn

A + xn
=

α + δxn

A + xn
+

β

A + xn
· α + βxn+1 + δxn−1

A + xn−1

=
α + δxn

A + xn
+

β

A + xn

[
α + δxn−1

A + xn−1
+ β · α + βxn + δxn−2

(A + xn−1)(A + xn−2)

]

=
α + δxn

A + xn
+

β

A + xn
· α + δxn−1

A + xn−1
+

β2

(A + xn)(A + xn−1)

[
α + δxn−2

A + xn−2
+

βxn

A + xn−2

]

from which the boundedness of {xn} follows.

Corollary 2.3.3 Every solution of each of the following six special cases is
bounded:

#25, #60, #67, #91, #124, #173.

See Appendix A.

Theorems 2.3.1, 2.3.2, and 2.3.3 have straightforward extensions to fourth-
order rational difference equations. See [66]. Actually, we can use these
extensions to establish the boundedness of every solution in 104 special cases
of the fourth-order rational difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2 + εxn−3

A + Bxn + Cxn−1 + Dxn−2 + Exn−3
, n = 0, 1, . . . . (2.3.1)

When we deal with difference equations of order k ≥ 4 it will be convenient to
switch to a new notation for the special cases. In this notation the kth-order
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rational difference equation is written, for the sake of the new notation, in the
form

xn =
β0 +

∑k
i=1 βixn−i

B0 +
∑k

i=1 Bixn−i

, n = 0, 1, . . . . (2.3.2)

Now for a special case of Eq.(2.3.2), we define

vi =

{
22i, if βi > 0
0, if βi = 0

and Vi =

{
22i+1, if Bi > 0
0, if Bi = 0.

Then the identifying number assigned to a special case of Eq.(2.3.2) is

k∑

i=1

(vi + Vi).

In this book, we will use the above numbering system for equations of order
≥ 4. For equations of order ≤ 3, we still use the numbers listed in Appendix
A. See also [66].

In this notation 104 special cases of order 4 of Eq.(2.3.1) are the following:

#518− 519 #694− 695 #820− 823
#530− 531 #710− 711 #902− 903
#534− 535 #722− 723 #914− 915
#538− 539 #726− 727 #918− 919
#542− 543 #730− 731 #922− 923
#550− 551 #734− 735 #926− 927
#566− 567 #742− 743 #934− 935
#646− 647 #758− 759 #950− 951
#658− 659 #772− 775 #964− 967
#662− 663 #784− 791 #976− 983
#666− 667 #794− 797 #986− 991
#670− 671 #798− 799 #998− 999
#678− 679 #806− 807 #1012− 1015.

See Appendix B.

For higher-order rational difference equations the following result extends
Theorems 2.3.1, 2.3.2, and 2.3.3 and establishes by the method of iteration
the boundedness of every solution of the following rational difference equation

xn =
α +

∑k
i=1 βixn−i

A +
∑k

i=1 Bixn−i

, n = 0, 1, . . . (2.3.3)

with nonnegative parameters and arbitrary nonnegative initial conditions such
that the denominator is always positive. See [66].
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Theorem 2.3.4 Let Iβ and IB denote the following sets:

Iβ = {j ∈ {1, 2, . . . , k} : βj > 0}

and
IB = {j ∈ {1, 2, . . . , k} : Bj > 0}

and assume that either
A > 0

or
A = 0, IB 6= ∅, and IB ⊂ Iβ .

Furthermore, assume that for every infinite sequence

{cm}∞m=1 with cm ∈ Iβ

there exist positive integers N1 and N2 such that

(
N2∑

m=N1

cm) ∈ IB .

Then every solution of Eq.(2.3.3) is bounded.

Theorem 2.3.4 establishes by the method of iteration the boundedness
of every solution in 126 special cases of Eq.(2.3.3), with k = 4. These are the
six second-order equations:

#24, #55, #66, #84, #119, #166,

the 16 third-order equations:

#25, #60, #67, #91, #107, #124, #143, #155
#159, #173, #188, #200, #203, #207, #215, #223,

and the 104 fourth-order equations listed previously.

Open Problem 2.3.1 Assume that k ≥ 5. How many special cases of Eq.(2.3.3)
are predicted, by Theorem 2.3.4, that have bounded solutions only?

Open Problem 2.3.2 For k ∈ {3, 4}, determine all special cases of Eq.(2.3.3)
with bounded solutions only. In particular, confirm or refute our conjecture
that, when k = 4, Eq.(2.3.3) has 542 special cases with bounded solutions only.

Conjecture 2.3.1 For each equation listed in Appendices A and B with a B
next to the equation, prove that local stability of an equilibrium point implies
that the equilibrium point is a global attractor of all positive solutions.
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2.4 Boundedness of the Special Case #58

In this section we establish the boundedness of every solution of the special
case #58 which for convenience we normalize in the form

#58 : xn+1 = β +
xn−2

xn
, n = 0, 1, . . . (2.4.1)

with the parameter β positive and with arbitrary positive initial conditions
x−2, x−1, x0.

The following theorem is the main result in this section.

Theorem 2.4.1 Every solution of Eq.(2.4.1) is bounded.

PROOF First we make the following useful general observations about
the solutions of Eq.(2.4.1):

xn+1 > β, for n ≥ 0. (2.4.2)

xn+1 < β +
1
β

xn−2, for n ≥ 1. (2.4.3)

xn+1 < β +
1
β

(
β +

xn−5

xn−3

)

< β + 1 +
1
β2

xn−5, for n ≥ 4. (2.4.4)

xni+1 →∞⇒ xni−2 →∞. (2.4.5)

xni+1 → β ⇒ xni →∞. (2.4.6)

Now assume for the sake of contradiction that Eq.(2.4.1) has an unbounded
solution {xn}. Then there exists a sequence of indices {ni} such that

xni+1 →∞ (2.4.7)

and, for every i,
xni+1 > xj , for all j < ni + 1. (2.4.8)
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From (2.4.7) and (2.4.5) it follows that

xni−2 →∞, xni−5 →∞, and xni−8 →∞. (2.4.9)

Next we claim that the subsequence {xni−4} is bounded. Otherwise, there
would exist a subsequence of {ni}, which we still denote by {ni}, such that

xni−4 →∞, xni−7 →∞, and xni−10 →∞. (2.4.10)

Note that, for every i,
xni−4 = β +

xni−7

xni−5

and
xni−7 = β +

xni−10

xni−8
.

Hence, in view of (2.4.9) and (2.4.10), we have eventually

xni−7 > xni−5 and xni−10 > xni−8 (2.4.11)

and
xni−7

xni−5
→∞ and

xni−10

xni−8
→∞. (2.4.12)

Then, from (2.4.11) and (2.4.4), we see that eventually

xni+1 < β + 1 +
1
β2

xni−7

= β + 1 +
1
β2

(
β +

xni−10

xni−8

)

= β + 1 +
1
β

+
1
β2

·
(

xni−10

xni−8

)
.

From (2.4.10), it follows that the right-hand side of the above inequality is
eventually less than xni−10, which contradicts (2.4.8) and establishes our claim
that {xni−4} is bounded. From this and (2.4.9) we have

xni−1 = β +
xni−4

xni−2
→ β.

Also,
lim inf
i→∞

xni−3 > β.

Otherwise, a subsequence of {xni−3} would converge to β and then from
(2.4.6), {xni−4} would be unbounded, which is not true.

Hence, eventually,
xni = β +

xni−3

xni−1
> β + 1
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and so, for i sufficiently large,

xni+1 = β +
xni−2

xni

< β +
xni−2

β + 1
< xni−2,

which contradicts (2.4.8). The proof is complete.

2.5 Boundedness of xn+1 =
α + βxn + xn−2

A + xn

In this section we will confirm the boundedness of four additional special cases
of Eq.(2.0.1), namely:

#77, #89, #122, #171.

See Appendix A.

Theorem 2.5.1 Assume that

α + β > 0 and β + A > 0. (2.5.1)

Then every solution of Eq.(2.0.5) is bounded.

The proof of the theorem will be established through a series of lemmas.
Throughout this section, unless otherwise stated, we will assume that (2.5.1)
holds and also that

A < 1.

Lemma 2.5.1 Every solution {xn} of Eq.(2.0.5) is eventually bounded from
below by β.

PROOF When β = 0, the result is trivial. Assume

β > 0.

Also assume, without loss of generality, that the initial conditions x−2, x−1, x0

are positive and suppose for the sake of contradiction that there exists N
sufficiently large such that

xN+1 =
α + βxN + xN−2

A + xN
≤ β.
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Then
xN−2 ≤ βA.

Similarly,
xN−5 ≤ βA2,

which inductively leads to a contradiction.

In the sequel, whenever we refer to a solution {xn} of Eq.(2.0.5), unless oth-
erwise stated, we will assume that, for n ≥ −2,

xn > β.

Lemma 2.5.2 Every solution {xn} of Eq. (2.0.5) satisfies the following in-
equality, for n ≥ 0 and j ∈ {−1, 0, . . . },

xn+1 < α

j+2∑
s=1

1
(A + β)s

+ β

j+1∑
s=0

1
(A + β)s

+
xn−5−3j

(A + β)j+2
. (2.5.2)

PROOF The proof is by induction. Clearly, for n ≥ 0,

xn+1 =
α + βxn + xn−2

A + xn
<

α

A + β
+ β +

xn−2

A + β

and so (2.5.2) holds, when j = −1. Assume that, for n ≥ 0 and j > −1,

xn+1 < α

j+2∑
s=1

1
(A + β)s

+ β

j+1∑
s=0

1
(A + β)s

+
xn−5−3j

(A + β)j+2
.

Clearly, for n ≥ 0 and j > −1,

xn−5−3j =
α + βxn−6−3j + xn−8−3j

A + xn−6−3j
<

α

A + β
+ β +

xn−5−3(j+1)

A + β

and the result follows by combining the last two inequalities.

Lemma 2.5.3 Let {xn} be a solution of Eq.(2.0.5). Assume that {xni} is a
subsequence of the solution {xn}, which converges to β. Then the subsequence
{xni−1} is unbounded.

PROOF Suppose for the sake of contradiction that the subsequence
{xni−1} is bounded. Rearranging Eq.(2.0.5) we have

Axni
+ xni−1(xni

− β) = α + xni−3, i = 0, 1, . . . (2.5.3)

and so
Aβ = α + lim inf

i→∞
xni−3 ≥ α + β,
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which implies that either

β > 0 and 0 > (A− 1)β ≥ α

or
α = β = 0.

This is a contradiction and the proof is complete.

Lemma 2.5.4 Let {xni+1} be a subsequence of a solution {xn} such that

lim
i→∞

xni+1 = ∞ (2.5.4)

with
max{xn : −2 ≤ n < ni + 1} < xni+1, i = 0, 1, . . . . (2.5.5)

Then for j ∈ {0, 1, . . .}, the following hold:

lim
i→∞

xni−2−3j = ∞ (2.5.6)

lim sup
i→∞

xni−4−3j < ∞ (2.5.7)

lim
i→∞

xni−1−3j = β (2.5.8)

lim inf
i→∞

xni−3−3j > β. (2.5.9)

PROOF From (2.5.2), for i ≥ 0 and j ≥ 0,

xni+1 < α

j+1∑
s=1

1
(A + β)s

+ β

j∑
s=0

1
(A + β)s

+
xni−2−3j

(A + β)j+1

and so, clearly, (2.5.6) is satisfied. To establish (2.5.7), suppose for the sake
of contradiction that, for some j ≥ 0,

xni−4−3j →∞.

Then, clearly,
xni−7−3j , xni−10−3j →∞. (2.5.10)

Also from (2.5.6)
xni−5−3j , xni−8−3j →∞. (2.5.11)

For N sufficiently large, in view of (2.5.10) and (2.5.11), we see that, for
i ≥ N ,

xni−4−3j > β + 2 and xni−5−3j > α−A(β + 2).

Now we claim that, for i ≥ N ,

xni−7−3j > xni−5−3j . (2.5.12)
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Suppose for the sake of contradiction that there exists i0 ≥ N such that

xni0−5−3j ≥ xni0−7−3j .

Then

xni0−4−3j =
α + βxni0−5−3j + xni0−7−3j

A + xni0−5−3j
≤ α + (β + 1)xni0−5−3j

A + xni0−5−3j
< β + 2,

which is a contradiction. The proof of (2.5.12) is complete. From (2.5.2), for
i ≥ 0 and j ≥ 0, we have

xni+1 < α

j+2∑
s=1

1
(A + β)s

+ β

j+1∑
s=0

1
(A + β)s

+
xni−5−3j

(A + β)j+2
.

From this and (2.5.12) we obtain

xni+1 < α

j+2∑
s=1

1
(A + β)s

+ β

j+1∑
s=0

1
(A + β)s

+
xni−7−3j

(A + β)j+2

and so, for i ≥ 0 and j ≥ 0,

xni+1 < α

j+3∑
s=1

1
(A + β)s

+ β

j+2∑
s=0

1
(A + β)s

+
1

(A + β)j+2

xni−10−3j

xni−8−3j
.

Then for N sufficiently large, in view of (2.5.10) and (2.5.11), we see that, for
j ≥ 0,

xnN+1 < max{xnN−10−3j , xnN−8−3j},
which contradicts (2.5.5). The proof of (2.5.7) is complete. To establish
(2.5.8), note that, for i ≥ 0 and j ≥ 0,

xni−1−3j =
α + βxni−2−3j

A + xni−2−3j
+

xni−4−3j

A + xni−2−3j
.

By taking limits in the last equation as i →∞, in view of (2.5.6) and (2.5.7),
we find that, for j ≥ 0,

xni−1−3j → β

and so (2.5.8) is established. To establish (2.5.9), suppose for the sake of
contradiction that, for some j ≥ 0,

lim inf
i→∞

xni−3−3j = β.

From this and Lemma 2.5.3 we have

lim sup
i→∞

xni−4−3j = ∞



52 Dynamics of Third-Order Rational Difference Equations

which contradicts (2.5.7). The proof is complete.

PROOF The proof of the theorem is divided into the following eight cases:

Case 1: β < A− 1. Clearly, for n ≥ 0,

xn+1 <
α

A
+ β +

1
A

xn−2.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ α + βA

A− 1
.

Case 2: β = A− 1 and β > 0 . Clearly, for n ≥ 0,

xn+1 <
α

β + 1
+ β +

1
β + 1

xn−2.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ α + β(β + 1)
β

.

Case 3: β = 0 and A = 1. Without loss of generality assume that the initial
conditions x−2, x−1, x0 are positive. Let m > 0 be such that

m < min{x−2, x−1, x0,
α

x−2
,

α

x−1
,

α

x0
}.

We claim that, for all n ≥ −2,

m < xn <
α

m
. (2.5.13)

Indeed,

m =
α + m

1 + α
m

< x1 =
α + x−2

1 + x0
<

α + α
m

1 + m
=

α

m

and the proof follows by induction.

Case 4: β > A− 1 > 0. Clearly, for n ≥ 0,

xn+1 <
α

A
+ β +

1
A

xn−2.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ α + βA

A− 1
.
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Case 5: β > 0 and A = 1 . Without loss of generality assume that the
initial conditions x−2, x−1, x0 are positive. Let m > 0 be such that

m < min{β, x−2, x−1, x0}.

We claim that, for all n ≥ −2,

xn > m. (2.5.14)

Indeed,

x1 −m =
α + (β −m)x0 + (x−2 −m)

1 + x0
> 0

and the proof of (2.5.14) follows by induction. In view of (2.5.14) it follows
that, for all n ≥ 0,

xn+1 < α + β +
1

1 + m
xn−2.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ (α + β)(m + 1)
m

.

Case 6: β > 1−A > 0. For n ≥ 0, in view of Lemma 2.5.1 we have

xn+1 <
α

A + β
+ β +

1
A + β

xn−2.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ α + β(β + A)
β + A− 1

.

Case 7: 1−A > β ≥ 0. Suppose for the sake of contradiction that {xni+1} is
a subsequence of the solution {xn} such that (2.5.4) and (2.5.5) hold. From
(2.5.6) we have

lim
i→∞

xni−2 = ∞.

Without loss of generality, assume that, for i ≥ 0,

xni−2 >
α + βx̄

A + x̄− 1
,

where

x̄ =
β + 1−A +

√
(β + 1−A)2 + 4α

2
is the positive equilibrium of Eq.(2.5.6). Now we claim that, for i ≥ 0,

xni
< x̄. (2.5.15)
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Otherwise, for some i0, xni0
≥ x̄. Then

xni0+1 =
α + βxni0

+ xni0−2

A + xni0

≤ α + βx̄ + xni0−2

A + x̄
< xni0−2,

which contradicts (2.5.5). Hence, (2.5.15) holds. Let 0 < ε < 1 − A − β and
let s be sufficiently large such that

α
s+1∑
t=1

1
(A + β + ε)t

> x̄.

Then for N sufficiently large and i ≥ N , and in view of (2.5.8) and (2.5.9),
we see that, for j ≥ 0,

xni−3−3j > β + ε and xni−1−3j < β + ε.

Hence,

xni =
α + βxni−1 + xni−3

A + xni−1
>

α

A + β + ε
+

xni−3

A + β + ε
> . . .

> α
s+1∑
t=1

1
(A + β + ε)t

> x̄,

which contradicts (2.5.15).

Case 8: β = 1−A > 0. The proof in this case is along the same lines as the
proof in Case 7 and will be omitted.

2.6 Boundedness of the Special Case #63

In this section we establish the boundedness of every solution of the special
case #63, which for convenience we normalize in the form

#63 : xn+1 = γ +
xn−2

xn−1
, n = 0, 1, . . . (2.6.1)

with the parameter γ positive and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0 such that the denominator is always positive.

The following theorem is the main result in this section.

Theorem 2.6.1 Every solution of Eq.(2.6.1) is bounded.
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PROOF First we make the following useful general observations about
the solutions of Eq.(2.6.1):

xn+1 > γ, for n ≥ 0. (2.6.2)

xn+1 < γ +
1
γ

xn−2, for n ≥ 2. (2.6.3)

xn+1 < γ +
1
γ

(
γ +

xn−5

xn−4

)

< γ + 1 +
1
γ2

xn−5, for n ≥ 5. (2.6.4)

xn+1 →∞⇒ xn−2 →∞. (2.6.5)

xn+1 → γ ⇒ xn−1 →∞. (2.6.6)

Now assume for the sake of contradiction that Eq.(2.6.1) has an unbounded
solution {xn}. Then there exists a sequence {ni} such that

xni+1 →∞ (2.6.7)

and, for every i,
xni+1 > xj , for all j < ni + 1. (2.6.8)

From (2.6.7) and (2.6.5) it follows that

xni−2 →∞, xni−5 →∞, and xni−8 →∞. (2.6.9)

Next we claim that the subsequence {xni−6} is bounded. Otherwise, there
would exist a subsequence of {ni}, which we still denote by {ni} such that

xni−6 →∞, xni−9 →∞, and xni−12 →∞. (2.6.10)

From
xni−6 = γ +

xni−9

xni−8
, i = 0, 1, . . .

and
xni−9 = γ +

xni−12

xni−11
, i = 0, 1, . . .

and (2.6.10), we see that, eventually,

xni−9 > xni−8 and xni−12 > xni−11. (2.6.11)
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Then from (2.6.11) and (2.6.4), we see that, eventually,

xni+1 < γ + 1 +
1
γ2

xni−5

= γ + 1 +
1
γ2

(
γ +

xni−8

xni−7

)

< γ + 1 +
1
γ

+
1
γ3

xni−8

< γ + 1 +
1
γ

+
1
γ3

xni−9

= γ + 1 +
1
γ

+
1
γ3

(
γ +

xni−12

xni−11

)
.

From (2.6.9), (2.6.10), and (2.6.11), we can see that the right-hand side of the
above inequality is eventually less than xni−12, which contradicts (2.6.8) and
establishes our claim that {xni−6} is bounded.

Therefore, from (2.6.9),

xni−3 = γ +
xni−6

xni−5
→ γ.

Also,

lim inf
i→∞

xni−4 > γ.

Otherwise, a subsequence of {xni−4} would converge to γ and then from
(2.6.6), {xni−6} would be unbounded, which is not true.

Hence, eventually,

xni−1 = γ +
xni−4

xni−3
> γ + 1

and so, for i sufficiently large,

xni+1 = γ +
xni−2

xni−1
< γ +

xni−2

γ + 1
< xni−2,

which contradicts (2.6.8) and completes the proof of the theorem.
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2.7 Boundedness of xn+1 =
α + βxn + γxn−1 + xn−2

A + xn−1

In this section we will confirm the boundedness of 10 additional special cases
of Eq.(2.0.1), namely:

#78, #90, #96, #127, #131,
#139, #172, #178, #184, #196.

See Appendix A.

Theorem 2.7.1 Assume that

γ + A > 0 and α + β + γ > 0. (2.7.1)

Then every solution of Eq.(2.0.7) is bounded.

The proof of the Theorem will be established through a series of lemmas. For
the rest of this section, unless otherwise stated, we will assume that (2.7.1)
holds and that

β + 1 > A .

Lemma 2.7.1 Every solution {xn} of Eq.(2.0.7) is eventually bounded from
below by γ.

PROOF Suppose for the sake of contradiction that there exists N , suffi-
ciently large, such that

xN+1 =
α + βxN + γxN−1 + xN−2

A + xN−1
≤ γ.

Then clearly

min{xN , xN−2} ≤ γ · A

β + 1
.

Similarly

min{xN , xN−1, xN−2, xN−3, xN−5} ≤ γ(
A

β + 1
)2.

Sufficient repetition of this argument leads to a contradiction.
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In the sequel, whenever we refer to a solution of Eq.(2.0.7), unless otherwise
stated, we will assume that

xn > γ, n = −2,−1, ... .

Lemma 2.7.2 Let {xni+1} be a subsequence of a solution {xn} such that

lim
i→∞

xni+1 = ∞ (2.7.2)

with
max{xn : −2 ≤ n < ni + 1} < xni+1, i = 0, 1, . . . . (2.7.3)

Also assume that

xni+1 ≤ P +
Q +

∑r
t=0 atxni−t

R + xni−m
, i = 0, 1 . . . , (2.7.4)

where P , Q, R, m, and {ar}, r ∈ {0, 1, . . .} are nonnegative real numbers.
Then

lim sup
i→∞

xni−m < ∞. (2.7.5)

PROOF Suppose for the sake of contradiction that {xni−m} is an un-
bounded sequence. Then for N sufficiently large,

xnN+1 < max{max
0≤t≤r

xnN−t, xnN−m}.

This contradicts (2.7.3). The proof is complete.

Lemma 2.7.3 Assume β > 0. Let {xni+1} be a subsequence of a solution
{xn} that satisfies (2.7.2) and (2.7.3). Also assume that

xni ≥ xni−2, i = 0, 1, . . . . (2.7.6)

Then

lim sup
i→∞

xni−1 < ∞, lim sup
i→∞

xni−2 < ∞, lim sup
i→∞

xni−5 < ∞, lim inf
i→∞

xni−4

xni−3
> 0

(2.7.7)
and

lim
i→∞

xni−3 = ∞, lim
i→∞

xni−4 = ∞. (2.7.8)

PROOF For i ≥ 0,

xni+1 =
α + βxni + γxni−1 + xni−2

A + xni−1
<

β + 1
A + γ

xni +
α

A + γ
+ γ
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and so
lim

i→∞
xni = ∞.

Clearly, for i ≥ 0,

xni+1 =
α + βxni + γxni−1 + xni−2

A + xni−1
<

α

A + γ
+ γ +

(β + 1)xni

A + xni−1
.

From this and (2.7.5) it follows that

lim sup
i→∞

xni−1 < ∞.

Furthermore,

xni =
α + βxni−1 + γxni−2 + xni−3

A + xni−2

<
1

A + γ
xni−3 + γ +

β

A + γ
xni−1 +

α

A + γ
.

Hence,
lim

i→∞
xni−3 = ∞. (2.7.9)

Furthermore, for i ≥ 0,

xni+1 <
α

A + γ
+ γ +

β + 1
A + γ

α + βxni−1 + γxni−2 + xni−3

A + xni−2
.

From this and (2.7.5) it follows that

lim sup
i→∞

xni−2 < ∞.

Also,

xni−2 > β
xni−3

A + xni−4
= β

xni−3

xni−4

1
A

xni−4
+ 1

.

From this, the fact that subsequence {xni−2} is bounded, and from (2.7.9) it
follows that

lim
i→∞

xni−4 = ∞
and

lim inf
i→∞

xni−4

xni−3
> 0.

Also, for i ≥ 0,

xni+1 <
α + γ(β + 1)

A + γ
+

(α + β)(β + 1)
(A + γ)2

+ γ

+
β + 1

(A + γ)2
α + βxni−4 + γxni−5 + xni−6

A + xni−5
.
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From this and (2.7.5) it follows that

lim sup
i→∞

xni−5 < ∞.

The proof of (2.7.7) and (2.7.8) is complete.

The proof of the following identity is straightforward and will be omitted.

Lemma 2.7.4 Every solution {xn} of Eq.(2.0.7) satisfies:

xn+1 =
βxn−3(A + xn−3)(A + xn−4)∏1

t=0[A(A + xn−3−t) + α + βxn−2−t + γxn−3−t + xn−4−t]

+
α + γxn−1 + xn−2

A + xn−1
+

β(α + βxn−1 + γxn−2)
(A + xn−1)(A + xn−2)

. (2.7.10)

Lemma 2.7.5 Assume β > 0. Let {xni+1} be a subsequence of a solution
{xn} that satisfies (2.7.2), (2.7.3), and (2.7.6). Then the following are true,
with ε > 0 and i ≥ 0:

A(A + xni−4) + α + βxni−3 + γxni−4 + xni−5 > (β + ε)(A + xni−3) (2.7.11)

and

A(A + xni−3) + α + βxni−2 + γxni−3 + xni−4 > A + xni−4. (2.7.12)

PROOF The proof is a consequence of (2.7.7) and (2.7.8).

Lemma 2.7.6 Assume β > 0. Let {xni+1} be a subsequence of a solution
{xn} such that (2.7.2) and (2.7.3) hold. Also assume that

xni−2 > xni , i = 0, 1, . . . . (2.7.13)

Then

lim sup
i→∞

xni−1, lim sup
i→∞

xni
, lim sup

i→∞

xni−2

xni−3
, lim sup

i→∞

xni−3

xni−2
< ∞ (2.7.14)

and
lim

i→∞
xni−2 = lim

i→∞
xni−3 = ∞. (2.7.15)
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PROOF For i ≥ 0 and M sufficiently large,

xni+1 <
α + γxni−1

A + xni−1
+

(β + 1)xni−2

A + xni−1
< M +

(β + 1)xni−2

A + xni−1
.

From this and (2.7.5) it follows that

lim sup
i→∞

xni−1 < ∞. (2.7.16)

Also,

xni+1 <
α

γ + A
+ γ +

β + 1
γ + A

xni−2, i = 0, 1, . . . .

Hence,
lim

i→∞
xni−2 = ∞. (2.7.17)

Furthermore,
xni−1 > β

xni−2

A + xni−3
, i = 0, 1, . . .

and so
lim

i→∞
xni−3 = ∞. (2.7.18)

For i ≥ 0,

xni+1 <
α

A + γ
+ γ +

β + 1
A + γ

α + βxni−3 + γxni−4 + xni−5

A + xni−4
.

From this and (2.7.5) it follows that

lim sup
i→∞

xni−4 < ∞. (2.7.19)

In view of (2.7.19),
xni−2

xni−3
>

β

A + xni−4
> m > 0

and so
lim sup

i→∞

xni−3

xni−2
< ∞. (2.7.20)

Also,

xni =
α

A + xni−2
+

βxni−1

A + xni−2
+

γxni−3

A + xni−2
.

Thus, in view of (2.7.16), (2.7.17), and (2.7.20), we have

lim sup
i→∞

xni < ∞. (2.7.21)

The proof of (2.7.14) and (2.7.15) is complete.
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Lemma 2.7.7 Assume β > 0. Let {xni+1} be a subsequence of a solution
{xn} such that (2.7.2), (2.7.3), and (2.7.13) hold. Then, for s = 0, 1, . . . , the
following hold:

lim sup
i→∞

xni−4s−1, lim sup
i→∞

xni−4s, lim sup
i→∞

xni−4s−2

xni−4s−3
, lim sup

i→∞

xni−4s−3

xni−4s−2
< ∞

(2.7.22)
and

lim
i→∞

xni−4s−2 = lim
i→∞

xni−4s−3 = ∞. (2.7.23)

PROOF The proof will be by induction. When s = 0, (2.7.22) and
(2.7.23) follow from (2.7.14) and (2.7.15). Assume that, for s = j, (2.7.22)
and (2.7.23) hold. In view of (2.7.22) and (2.7.23), there exists M > 0, such
that, for i ≥ 0,

xni−4j−1, xni−4j ,
xni−4j−1

xni−4j−2
,

xni−4j−2

xni−4j−3
,

xni−4j−3

xni−4j−2
< M. (2.7.24)

From Eq’s.(2.0.7) and (2.7.24), it is easy to see that, for i ≥ 0,

xni+1 < L +
xni−3

β
< . . . < L

j∑
t=0

1
βt

+
xni−4j−3

βj+1
(2.7.25)

and
xni−4j−3 < Mxni−4j−2,

where
L =

α + βM

A + γ
+ γ +

A

β
.

Combining the last two inequalities we find

xni+1 < L

j∑
t=0

1
βt

+
M

βj+1

α + βxni−4j−3 + γxni−4j−4 + xni−4j−5

A + xni−4j−4
.

From this and (2.7.5) it follows that

lim sup
i→∞

xni−4j−4 = lim sup
i→∞

xni−4(j+1) < ∞. (2.7.26)

From (2.7.25) we have, for i ≥ 0,

xni+1 < L

j∑
t=0

1
βt

+
1

βj+1

(
α

A + γ
+ γ +

βxni−4j−4 + xni−4j−6

A + γ

)

and so, clearly,
lim

i→∞
xni−4j−6 = ∞. (2.7.27)
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From (2.7.25) we have, for i ≥ 0,

xni+1 < L

j∑
t=0

1
βt

+
1

βj+1

α + βxni−4j−4 + γxni−4j−5 + xni−4j−6

A + xni−4j−5
, i = 0, 1, . . . .

From this and (2.7.5) it follows that

lim sup
i→∞

xni−4j−5 = lim sup
i→∞

xni−4(j+1)−1 < ∞. (2.7.28)

Finally, note that the following hold:

xni−4j−4 >
xni−4j−7

A + xni−4j−6
, i = 0, 1, . . .

and
xni−4j−5 >

βxni−4j−6

A + xni−4j−7
, i = 0, 1, . . . .

From these inequalities, in view of (2.7.26), (2.7.27), and (2.7.28) we have

lim sup
i→∞

xni−4(j+1)−3

xni−4(j+1)−2
, lim sup

i→∞

xni−4(j+1)−2

xni−4(j+1)−3
< ∞

and
lim

i→∞
xni−4(j+1)−3 = ∞.

The proof of (2.7.22) and (2.7.23) is complete.

Lemma 2.7.8 Assume β = 0. Then every solution {xn} of Eq.(2.0.7) satis-
fies the following inequality for j ≥ −2:

xn+1 < α

j+3∑
s=1

1
(A + γ)s

+ γ

j+2∑
s=0

1
(A + γ)s

+
xn−8−3j

(A + γ)j+3
. (2.7.29)

PROOF Clearly, for n ≥ 0

xn+1 =
α + γxn−1 + xn−2

A + xn−1
<

α

A + γ
+ γ +

xn−2

A + γ
.

From this it follows that (2.7.29) holds when j = −2. Assume that for j > −2

xn+1 < α

j+2∑
s=1

1
(A + γ)s

+ γ

j+1∑
s=0

1
(A + γ)s

+
xn−5−3j

(A + γ)j+2
, n = 0, 1, . . . .

Furthermore,

xn−5−3j =
α + γxn−7−3j + xn−8−3j

A + xn−7−3j
<

α

A + γ
+γ+

xn−5−3(j+1)

A + γ
, n = 0, 1, . . . .

The result follows by combining the last two inequalities.
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Lemma 2.7.9 Assume β = 0. Let {xn} be a solution of Eq.(2.0.7). Assume
that {xni} is a subsequence of {xn} that converges to γ. Then the subsequence
{xni−2} is unbounded.

PROOF Rearranging Eq.(2.0.7) we have

Axni+1 + xni−1(xni+1 − γ) = α + xni−2, i = 0, 1, . . . . (2.7.30)

Suppose for the sake of contradiction that the subsequence {xni−1} is bounded.
Then from (2.7.30) we find that

Aγ = α + lim inf
i→∞

xni−2 ≥ α + γ

and so either
γ > 0 and 0 > γ(A− 1) ≥ α

or
α = γ = 0.

This is a contradiction and the proof is complete.

Lemma 2.7.10 Assume β = 0. Let {xni+1} be a subsequence of a solution
{xn} that satisfies (2.7.2) and (2.7.3). Then, for j ≥ 0, the following hold:

lim
i→∞

xni−2−3j = ∞ (2.7.31)

lim
i→∞

xni−3−3j = γ (2.7.32)

lim inf
i→∞

xni−4−3j > γ (2.7.33)

and
lim sup

i→∞
xni−6−3j < ∞. (2.7.34)

PROOF From (2.7.29) for i ≥ 0

xni+1 < α

j+1∑
s=1

1
(A + γ)s

+ γ

j∑
s=0

1
(A + γ)s

+
xni−2−3j

(A + γ)j+1
, j = 0, 1, . . .

and so, clearly, (2.7.31) is satisfied. To establish (2.7.34), suppose for the sake
of contradiction that for some j ≥ 0

lim
i→∞

xni−6−3j = ∞.

Then, clearly, from (2.7.29)

lim
i→∞

xni−6−3j = lim
i→∞

xni−9−3j = lim
i→∞

xni−12−3j = ∞. (2.7.35)
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Also from (2.7.31)

lim
i→∞

xni−5−3j = lim
i→∞

xni−8−3j = lim
i→∞

xni−11−3j = ∞. (2.7.36)

Without loss of generality, in view of (2.7.35) and (2.7.36), assume that

xni−6−3j > γ + 2, xni−8−3j > α−A(γ + 2), i = 0, 1, . . . . (2.7.37)

We now claim that, for i ≥ 0,

xni−9−3j > xni−8−3j . (2.7.38)

Suppose that there exists i0 ≥ 0 such that

xni0−8−3j ≥ xni0−9−3j .

From this and (2.7.37) we see that

xni0−6−3j =
α + γxni0−8−3j + xni0−9−3j

A + xni0−8−3j
≤ α + (γ + 1)xni0−8−3j

A + xni0−8−3j
< γ + 2,

which contradicts (2.7.37). The proof of (2.7.38) is complete. From (2.7.29)
for i ≥ 0

xni+1 < α

j+3∑
s=1

1
(A + γ)s

+ γ

j+2∑
s=0

1
(A + γ)s

+
xni−8−3j

(A + γ)j+3
.

From this and (2.7.38) we have

xni+1 < α

j+3∑
s=1

1
(A + γ)s

+ γ

j+2∑
s=0

1
(A + γ)s

+
xni−9−3j

(A + γ)j+3

and so for i ≥ 0

xni+1 < α

j+4∑
s=1

1
(A + γ)s

+ γ

j+3∑
s=0

1
(A + γ)s

+
xni−12−3j

(A + γ)j+3xni−11−3j
. (2.7.39)

From this and (2.7.5) it follows that

lim sup
i→∞

xni−11−3j < ∞.

This is a contradiction. The proof of (2.7.34) is complete. For i, j ≥ 0

xni−3−3j =
α

A + xni−5−3j
+

γxni−5−3j

A + xni−5−3j
+

xni−6−3j

A + xni−5−3j
.
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By taking limits in the last equation as i →∞, in view of (2.7.34) and (2.7.36),
we find that for j ∈ {0, 1, . . .}

lim
i→∞

xni−3−3j = γ.

Finally, from (2.7.34) and Lemma 2.7.9 we have for j ∈ {0, 1, . . .}
lim inf
i→∞

xni−4−3j > γ.

The proof is complete.

PROOF We divide the proof of Theorem 2.7.1 into the following nine
cases:

Case 1: β + 1 < A. Clearly, for n ≥ 0

xn+1 =
α + βxn + γxn−1 + xn−2

A + xn−1
<

α

A
+ γ +

β + 1
A

max{xn, xn−2}.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ α + γA

β + 1−A
.

Case 2: β + 1 = A, γ > 0, and α > 0. Without loss of generality, assume
that the initial conditions x−2, x−1, x0 are positive. Let m > 0 be such that

m < min{γ, x−2, x−1, x0}.
We claim that

xn > m, for n = −2,−1, 0, . . . . (2.7.40)

Indeed,

x1 −m =
α + β(x0 −m) + (γ −m)x−1 + x−2 −m

β + 1 + x−1
> 0

and the proof of (2.7.40) follows by induction. Then

xn+1 =
α + βxn + γxn−1 + xn−2

β + 1 + xn−1

<
α

β + 1 + m
+ γ +

β + 1
β + 1 + m

max{xn, xn−2}, n = 0, 1, . . . .

By using Theorem 1.4.1 we find that

lim sup
n→∞

xn ≤ α + γ(β + 1 + m)
m

.
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Case 3: β + 1 = A, γ > 0, and α = 0. Let M > 0 be such that

M > max{γ, x−2, x−1, x0}.

We claim that
xn < M, n = −2,−1, 0, . . . . (2.7.41)

Indeed,

x1 −M =
β(x0 −M) + (γ −M)x−1 + x−2 −M

β + 1 + x−1
< 0

and the proof follows by induction.

Case 4: β + 1 = A, α > 0, and γ = 0. Without loss of generality, assume
that the initial conditions x−2, x−1, x0 are positive. Let m > 0 be such that

m < min{x−2, x−1, x0,
α

x−2
,

α

x−1
,

α

x0
}.

We claim that
m < xn <

α

m
, n = −2,−1, 0, . . . . (2.7.42)

Indeed,

m =
α + βm + m

β + 1 + α
m

< x1 =
α + βx0 + x−2

β + 1 + x−1
<

α + β α
m + α

m

β + 1 + m
=

α

m

and the proof follows by induction.

Case 5: β + 1 = A, γ = 0, and α = 0. Clearly, for n ≥ 0

xn+1 < max{xn, xn−2}

and so
xn+1 < max{x−2, x−1, x0}, n = 0, 1, . . . .

Case 6: β + 1 > A and β > 0. Suppose for the sake of contradiction that
{xni+1} is a subsequence of a solution {xn} such that (2.7.2) and (2.7.3) hold.

We consider two subcases:

Subcase 6(i): xni ≥ xni−2, for i ∈ {0, 1, . . .}. In view of (2.7.7) and (2.7.8),
there exist L, M > 0 such that

xni−2, xni−1 < M

and
α + γxni−1 + xni−2

A + xni−1
+

β(α + βxni−1 + γxni−2)
(A + xni−1)(A + xni−2)

< L.
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From (2.7.10), (2.7.11), (2.7.12), and the last inequality we have

xni+1 < L +
β

β + ε
xni−3

Then, for i sufficiently large,

xni+1 < xni−3,

which contradicts (2.7.3).

Subcase 6(ii): In this case we assume that there exists a subsequence of
{ni}, which for the sake of simplicity we still denote by {ni} such that for
i ∈ {0, 1, . . .}

xni−2 > xni .

Clearly, for s ≥ 0

xni−4s =
α

A + xni−4s−2
+

βxni−4s−1

A + xni−4s−2
+

γxni−4s−2

A + xni−4s−2
+

xni−4s−3

xni−4s−2

1
A

xni−4s−2
+ 1

(2.7.43)

and

xni−4s−2

xni−4s−3
=

α

xni−4s−3(A + xni−4s−4)
+

β

A + xni−4s−4
+

γxni−4s−4

xni−4s−3(A + xni−4s−4)
+

xni−4s−5

xni−4s−3(A + xni−4s−4)
. (2.7.44)

From (2.7.22) it follows that for s ∈ {0, 1, . . .} the subsequences {xni−4s}
are bounded. Let l−4s be accumulation points of the bounded subsequences
{xni−4s}. By taking limits in (2.7.43) and (2.7.44) as i → ∞, in view of
(2.7.22) and (2.7.23) we find

l−4s = γ +
l−4s−4

β
.

For s sufficiently large,

γ
s∑

t=0

1
βt

> l0.

Then

l0 = γ +
l−4

β
= . . . = γ

s∑
t=0

1
βt

+
l−4s

βs+1
> l0,

which is a contradiction.
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Case 7: γ > 1−A > 0 and β = 0. Clearly, for n ≥ 0,

xn+1 =
α + γxn−1 + xn−2

A + xn−1
<

α

A + γ
+ γ +

1
A + γ

xn−2.

By using Theorem 1.4.1 it follows that

lim sup
n→∞

xn ≤ α + γ(γ + A)
γ + 1−A

.

Case 8: 1 − A > γ ≥ 0 and β = 0. Suppose for the sake of contradiction
that {xni+1} is a subsequence of a solution {xn} such that (2.7.2) and (2.7.3)
hold. From (2.7.31) we have

lim
i→∞

xni−2 = ∞.

Without loss of generality, assume that, for i ≥ 0,

xni−2 >
α + γx̄

A + x̄− 1
, (2.7.45)

where

x̄ =
γ + 1−A +

√
(γ + 1−A)2 + 4α

2
is the positive equilibrium of Eq.(2.0.7). We now claim that

xni−1 < x̄. (2.7.46)

Otherwise, for some i0,
xni0−1 ≥ x̄.

Then

xni0+1 =
α + γxni0−1 + xni0−2

A + xni0−1
≤ α + γx̄ + xni0−2

A + x̄
< xni0−2,

which contradicts (2.7.3). The proof of (2.7.46) is complete. Let 0 < ε <
1−A− γ and let s be sufficiently large such that

α
s+1∑
t=1

1
(A + γ + ε)t+1

> x̄.

Then for N sufficiently large and i ≥ N , in view of (2.7.32) and (2.7.33), we
have, for 0 ≤ j ≤ s,

xni−4−3j > γ + ε, xni−3−3j < γ + ε.



70 Dynamics of Third-Order Rational Difference Equations

Hence,

xni−1 =
α + γxni−3 + xni−4

A + xni−3
>

α

A + γ + ε
+

xni−4

A + γ + ε
> . . .

> α

j+1∑
s=1

1
(A + γ + ε)s+1

, > x̄

which contradicts (2.7.46).

Case 9: γ = 1 − A > 0 and β = 0. The proof in this case is similar to the
proof in Case 8 and will be omitted.

2.8 Boundedness of xn+1 =
α + βxn + xn−1

xn−1 + Dxn−2

In this section we establish the boundedness of every solution of the equation
in the title with

α ≥ 0 and β, D ∈ (0,∞).

This will confirm the boundedness of the following two special cases of Eq.(2.0.1),
namely:

#88 and #170.

See Appendix A.

We present the proof for the case

α = 0.

The case where α is positive is similar and will be omitted.
So for the remainder of this section we deal with the equation

xn+1 =
βxn + xn−1

xn−1 + Dxn−2
, n = 0, 1, . . . (2.8.1)

with positive parameters β and D and with arbitrary positive initial conditions
x−2, x−1, x0.

The main result in this section is the following.

Theorem 2.8.1 Every solution of Eq.(2.8.1) is bounded.
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PROOF First we make the following useful observations:

xn+1 =
xn−1

xn−1 + Dxn−2
+ β · βxn−1 + xn−2

xn−1 + Dxn−2
· 1
xn−2 + Dxn−3

, n = 1, 2, . . .

(2.8.2)
xn−1

xn−1 + Dxn−2
≤ 1 (2.8.3)

min(β, 1)
max(D, 1)

≤ βxn−1 + xn−2

xn−1 + Dxn−2
≤ max(β, 1)

min(D, 1)
(2.8.4)

xn+1 →∞⇒ xn−2 + Dxn−3 → 0 ⇒ xn−2 → 0 and xn−3 → 0 (2.8.5)

xn+1 → 0 ⇒ xn−2 + Dxn−3 →∞ . (2.8.6)

Now assume for the sake of contradiction that Eq.(2.8.1) has a positive
unbounded solution {xn}. Then there exists a subsequence {xni} such that

xni+1 →∞ (2.8.7)

and for every i,
xni+1 > xj , for all j < ni + 1. (2.8.8)

Then
xni−2 → 0 and xni−3 → 0 (2.8.9)

and
xni−5 + Dxni−6 →∞ and xni−6 + Dxni−7 →∞. (2.8.10)

Next we claim that
lim inf
i→∞

xni−1 > 0. (2.8.11)

Otherwise, there exists a subsequence of {ni}, which for economy of notation
we still denote by {ni}, such that

xni−1 → 0.

Then
xni−4 + Dxni−5 →∞.

Also from (2.8.2), there exists a positive constant M such that

xni+1 ≤ 1 + M · 1
xni−3

= 1 + M · xni−5 + Dxni−6

βxni−4 + xni−5

≤ 1 + M(1 +
Dxni−6

βxni−4 + xni−5
)

and eventually
xni+1 < xni−6,

which contradicts (2.8.8) and establishes our claim that (2.8.11) holds.
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We have

xni−1 =
βxni−2 + xni−3

xni−3 + Dxni−4
=

β · (xni−2

xni−3
) + 1

1 + D · (xni−4

xni−3
)

and

xni−1 =
βxni−2 + xni−3

xni−3 + Dxni−4
=

β + xni−3

xni−2
xni−3

xni−2
+ D · (xni−4

xni−2
)

and so the following statements are true:

If the sequence {xni−2

xni−3
} is bounded, then

lim inf
i→∞

(
xni−3

xni−4
) > 0

and if the sequence {xni−2

xni−3
} is unbounded, then

lim inf
i→∞

(
xni−2

xni−4
) > 0.

Hence, there exists µ > 0 such that, eventually,

either xni−2 > µxni−4

or xni−3 > µxni−4.

Then from (2.8.2) and for some positive constant K,

xni+1 ≤ 1 + β · max(β, 1)
min(D, 1)

· 1
xni−2 + Dxni−3

< 1 + K · 1
xni−4

= 1 + K · xni−6 + Dxni−7

βxni−5 + xni−6

≤ 1 + K(1 +
Dxni−7

βxni−5 + xni−6
).

Therefore, eventually,
xni+1 < xni−7

which contradicts (2.8.8) and completes the proof.

2.9 Boundedness of xn+1 =
α + βxn + xn−2

Cxn−1 + xn−2

In this section we establish the boundedness of every solution of the following
two special cases of Eq.(2.0.1), namely:

#94 and #176.
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See [152] and Appendix A.
We present the proof for the case

α = 0.

The case where α is positive is similar and will be omitted. So for the remain-
der of this section we deal with the equation

xn+1 =
βxn + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (2.9.1)

with positive parameters β and C and with positive initial conditions x−2,
x−1, x0.

The main result in this section is the following.

Theorem 2.9.1 Every solution of Eq.(2.9.1) is bounded from above and from
below by positive constants.

PROOF Note that for n ≥ 0,

Cxn+2 + xn+1 = C · βxn+1 + xn−1

Cxn + xn−1
+

βxn + xn−2

Cxn−1 + xn−2

>
βxnxn−1 + C2x2

n−1 + xn−2(Cxn + xn−1)
C2xnxn−1 + Cx2

n−1 + xn−2(Cxn + xn−1)
>

min
(
β,C2, 1

)

max (C2, C, 1)
= K

Then for n ≥ 0,

xn+4 =
βxn+3 + xn+1

Cxn+2 + xn+1
≤ β

K
· xn+3 + 1.

Now using the above two estimates we see that for n ≥ 0,

xn+5 =
βxn+4 + xn+2

Cxn+3 + xn+2

≤
β2

K xn+3 + β + xn+2

Cxn+3 + xn+2
≤ β

K
+

max
(

β2

K , 1
)

min(C, 1)
= U

and so all solutions of Eq.(2.9.1) are eventually bounded from above by the
positive constant U .

From

xn+7 =
βxn+6 + xn+4

Cxn+5 + xn+4
≥ β

(C + 1)U
· xn+6, n = 0, 1, . . .

and

xn+8 =
βxn+7 + xn+5

Cxn+6 + xn+5
≥

β · β
(C+1)U · xn+6 + xn+5

Cxn+6 + xn+5
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≥
min

(
β2

(C+1)U , 1
)

max (C, 1)
= L, n = 0, 1, . . . ,

we see that that all solutions of Eq.(2.9.1) are eventually bounded from below
by the positive constant L. The proof is complete.



3

Existence of Unbounded Solutions

3.0 Introduction

Consider the third-order rational difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, ... (3.0.1)

with nonnegative parameters α, β, γ, δ, A,B, C, D and with arbitrary nonneg-
ative initial conditions x−2, x−1, x0, such that the denominator is always pos-
itive.

This equation contains 225 special cases of equations with positive parame-
ters. It was conjectured in [69] that in 135 of these special cases, every solution
of the equation is bounded and, in the remaining 90 cases, the equation has
unbounded solutions in some range of their parameters and for some initial
conditions.

In this chapter we present several theorems on the existence of unbounded
solutions of some equations of the form of Eq.(3.0.1) and in particular we
establish that in 85 special cases of Eq.(3.0.1) there exist unbounded solutions
in some range of their parameters. The only five special cases of Eq.(3.0.1)
where it has been conjectured that they have unbounded solutions but we are
unable yet to confirm it are the following:

#28, #44, #56, #70, #120.

See Appendix A. These five special cases can be summarized in the following
conjecture.

Conjecture 3.0.1 Show that for each of the following five third-order ratio-
nal difference equations, which are written in normalized form, there exist
unbounded solutions in some region of its parameters and for some initial
conditions:

75
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#28 : xn+1 =
xn

Cxn−1 + xn−2
, n = 0, 1, . . .

#44 : xn+1 =
α + xn

xn−2
, n = 0, 1, . . .

#56 : xn+1 =
βxn + xn−1

xn−2
, n = 0, 1, . . .

#70 : xn+1 =
α + xn

Cxn−1 + xn−2
, n = 0, 1, . . .

#120 : xn+1 =
α + βxn + xn−1

xn−2
, n = 0, 1, . . . .

The existence of unbounded solutions is obvious in each of the following 14
special cases of Eq.(3.0.1), which are linear but nontrivial:

#5, #9, #13, #41, #45, #49, #53,
#57, #61, #117, #121, #125, #129, #137,

and in each of the following five special cases, which can be transformed to
linear equations:

#8, #10, #12, #14, #15.

See Appendix A.

The proof of the existence of unbounded solutions in the special cases #51,
#59, and #123 is quite lengthy and, to economize in space, we refer the reader
to the original source [47] for #51 and [150] for #59 and #123.

In the remaining six sections of this chapter we will establish the existence
of unbounded solutions in 63 additional special cases of Eq.(3.0.1).

In Section 3.1 we will establish the existence of unbounded solutions of the
equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + xn
, n = 0, 1, . . . (3.0.2)

with
γ, α + β + δ + A ∈ (0,∞). (3.0.3)

This confirms the existence of unbounded solution in 15 additional special
cases of Eq.(3.0.1).
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In Section 3.2 we will establish the existence of unbounded solutions of the
equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + xn−2
, n = 0, 1, . . . (3.0.4)

with

γ, α + β + δ + A ∈ (0,∞) and δ = A = 0 only if β = 0. (3.0.5)

This confirms the existence of unbounded solution in 13 additional special
cases of Eq.(3.0.1).

In Section 3.3 we will establish the existence of unbounded solutions of the
equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + xn−2
, n = 0, 1, . . . (3.0.6)

with
γ,B ∈ (0,∞). (3.0.7)

This confirms the existence of unbounded solution in 16 additional special
cases of Eq.(3.0.1).

In Section 3.4 we will establish the existence of unbounded solutions of the
equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + xn−1
, n = 0, 1, . . . (3.0.8)

with
δ,B ∈ (0,∞). (3.0.9)

This confirms the existence of unbounded solution in 14 additional special
cases of Eq.(3.0.1).

In Section 3.5 we will establish the existence of unbounded solutions of the
equation

xn+1 =
xn−2

A + Bxn + Cxn−1
, n = 0, 1, . . . (3.0.10)

with
B + C ∈ (0,∞). (3.0.11)

This confirms the existence of unbounded solution in four additional special
cases of Eq.(3.0.1).

Finally in Section 3.6 we will establish the existence of unbounded solutions
of the special case

#50 : xn+1 =
α + xn−2

xn
, n = 0, 1, . . . .
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3.1 Unbounded Solutions of xn+1 =
α + βxn + γxn−1 + δxn−2

A + xn

The first theorem in this section confirms the existence of unbounded solutions
in 15 additional special cases of Eq.(3.0.1), namely:

#29, #46, #54, #62, #71, #83, #95, #118,
#126, #130, #138, #165, #177, #183, #195.

See Appendix A.

We will assume that (3.0.3) holds and we will establish that there exist
solutions of Eq.(3.0.2) that are unbounded in some range of its parameters
and for some initial conditions. Actually, we exhibit a huge set of initial
conditions through which the subsequences of even and odd terms of the
solutions converge, one of them to ∞ and the other to

βγ + δA

γ − δ
.

Furthermore, our proof here extends and unifies all previously known results
on the existence of unbounded solutions for all special cases of Eq.(3.0.2).
More precisely, we establish the following result.

Theorem 3.1.1 Assume that (3.0.3) holds and

γ > β + δ + A.

Let k be any number such that

0 < k < γ − β − δ −A.

Then every solution of Eq.(3.0.2) with initial conditions x−2, x−1, x0 such
that

x−2, x0 ∈ (0, γ −A) and x−1 >
α + γ(γ −A)

k

is unbounded and, more precisely,

lim
n→∞

x2n+1 = ∞ and lim
n→∞

x2n =
βγ + δA

γ − δ
.
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PROOF Observe that

x1−x−1 =
α + βx0 + γx−1 + δx−2

A + x0
−x−1 =

α + βx0 + (γ −A− x0)x−1 + δx−2

A + x0

and so
x1 > x−1.

Also,

x2 − (β + δ + k) ≤ α + βx1 + γx0 + δx−1

x1
− (β + δ + k)

=
α + γx0 + δ (x−1 − x1)− kx1

x1

<
α + γ(γ −A)− α− γ(γ −A)

x1
= 0.

Therefore,
x2 < β + δ + k

and, furthermore,

x3 =
α + βx2 + γx1 + δx0

A + x2
>

γ

β + δ + A + k
x1.

It follows by induction that for n ≥ 0,

x2n < β + δ + k

and
x2n+1 >

γ

β + δ + A + k
x2n−1

and so, in particular,
lim

n→∞
x2n+1 = ∞. (3.1.1)

Let S and I denote the following limits:

S = lim sup
n→∞

x2n and I = lim inf
n→∞

x2n

Note that from Eq.(3.0.2),

x2n+1 =
α + βx2n + γx2n−1 + δx2n−2

A + x2n
> γ

x2n−1

A + x2n

and so for n ≥ 0,
x2n−1

x2n+1
<

A + x2n

γ
.

Let ε > 0 be given. Then, clearly, in view of (3.1.1), there exists N ≥ 0 such
that

α + βx2n+1 + γx2n

A + x2n+1
< β + ε, for n ≥ N.
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By using the preceding two inequalities, it follows from Eq.(3.0.2) that for
n ≥ N ,

x2n+2 =
α + βx2n+1 + γx2n + δx2n−1

A + x2n+1

< (β + ε) +
δ

γ
(A + x2n)

=
(

β +
δA

γ
+ ε

)
+

δ

γ
x2n.

By using Theorem 1.4.1 and by taking limit superiors we find

S ≤ βγ + δA + γε

γ − δ

and so, clearly,

S ≤ βγ + δA

γ − δ
.

When
β = A = 0,

we see that S = 0, that is, limn→∞ x2n = 0 and the proof is complete. Next
assume that

β + A > 0.

Clearly, there exists a sequence of indices {ni} and a number L0 ∈ [I, S] such
that

lim
i→∞

x2ni+2 = I and lim
i→∞

x2ni = L0.

From Eq.(3.0.2) we have

x2n+1

x2n−1
=

α

A + x2n
· 1
x2n−1

+
βx2n

A + x2n
· 1
x2n−1

+
γ

A + x2n
+

δx2n−2

A + x2n
· 1
x2n−1

and

x2n+2

x2n
=

α

A + x2n+1
· 1
x2n

+
βx2n+1

A + x2n+1
· 1
x2n

+
γ

A + x2n+1
+

δx2n−1

A + x2n+1
· 1
x2n

.

By replacing n by ni in the above two identities and then by taking limits as
i →∞, we find

lim
i→∞

(
x2ni+1

x2ni−1

)
=

γ

A + L0

and
I

L0
=

β

L0
+

δ

L0
· A + L0

γ
.
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Therefore,

I = β +
δ

γ
(A + L0) ≤ L0 (3.1.2)

and so

L0 ≥ βγ + δA

γ − δ
≥ S.

Hence,

L0 =
βγ + δA

γ − δ
= S (3.1.3)

and so, from (3.1.2) and (3.1.3),

I = β +
δ

γ
(A + L0) =

βγ + δA

γ − δ
.

The proof is complete.

The following generalization of Theorem 3.1.1 establishes the existence of
unbounded solutions in the following 39 special cases of Eq.(3.0.1):

#29, #31, #33, #46, #48, #54, #62
#64, #71, #73, #75, #83, #87, #95
#97, #99, #110, #118, #126, #128, #130
#138, #146, #154, #162, #165, #169, #177
#179, #181, #183, #187, #195, #197, #199
#202, #210, #214, #222

and in the following 44 special cases of fourth-order rational difference equa-
tions:

#280-287, #344-351, #400-403, #408-415, #464-479.

See Appendices A and B.

Theorem 3.1.2 Assume that

β1 > 0 and
m∑

j=0

B2j > 0

and that either
B0 > 0 (3.1.4)

or
β2s > 0 ⇒ B2s > 0, for all s ≤ m. (3.1.5)
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Then the rational equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑m

i=0 B2ixn−2i
, n = 0, 1, . . . (3.1.6)

has unbounded solutions in some range of the parameters and for some initial
conditions.

PROOF Assume that k = 2t is an even number. The proof when k is odd
is similar and will be omitted. Set

S = {s ≤ m : β2s > 0}.
We will establish that there exist unbounded solutions in the range of pa-

rameters where

β1 > A + U
m∑

j=0

B2j

with

U =
β0

B0
+

∑t
i=1 β2i

B0

when (3.1.4) holds and

U =
maxi∈S β2i

minj∈S B2j
+

∑t
i=m+1 β2i

B2s
, for some s ∈ S,

when (3.1.5) holds and provided that S 6= ∅. Note that when t ≤ m,

m∑

i=t+1

β2i = 0

and so in this case
U =

β0

B0
or U =

maxi∈S β2i

minj∈S B2j
.

When S = ∅, we set
U = 0.

Choose a positive number ε such that

β1 > A + (U + ε)
m∑

j=0

B2j (3.1.7)

and let {xn} be any solution with the initial conditions chosen as follows:

x−1 > x−3 > · · · > x1−2q >
α +

∑t
i=1 β2i−1x2−2i

εB0
, (3.1.8)
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when (3.1.4) holds, and

x−1 > x−3 > · · · > x1−2q >
α +

∑t
i=1 β2i−1x2−2i

εB2s
, (3.1.9)

when (3.1.5) holds, and

x−q, x−q+2, . . . , x0 < U + ε, (3.1.10)

where
q = max(2m, 2t).

We claim that {xn} is an unbounded solution of Eq.(3.1.6). To this end,
we first establish that for all n ≥ 0,

x2n+1 >
α +

∑m
i=0 β2ixn−2i

A +
∑m

j=0 B2j
+ x2n−1 (3.1.11)

and
x2n+2 < U + ε. (3.1.12)

Indeed,

x1 =
α +

∑k
i=0 βix−i

A +
∑m

i=0 B2ix−2i
≥ α +

∑m
i=0 β2ix−2i

A +
∑m

j=0 B2jx−2j
+

β1

A + (U + ε)
∑m

j=0 B2j
x−1

and, in view of (3.1.7),

x1 >
α +

∑m
i=0 β2ix−2i

A +
∑m

j=0 B2j
+ x−1.

Also, when (3.1.4) holds,

x2 =
β0x1

A +
∑m

j=0 B2jx1−2j
+

∑t
i=1 β2ix1−2i

A +
∑m

j=0 B2jx1−2j
+

α +
∑t

i=1 β2i−1x2−2i

A +
∑m

j=0 B2jx1−2j
.

In view of (3.1.8),

x2 ≤ β0

B0
+

∑t
i=1 β2i · x1

B0x1
+ ε = U + ε

and the proofs of (3.1.11) and (3.1.12) follow by induction. When (3.1.5)
holds and S 6= ∅ for all i ∈ {m + 1, . . . , t} and for all j ∈ {0, . . . , m}, we have

1− 2j ≥ 1− 2i and x1−2j ≥ x1−2i.

Therefore, there exists s ∈ S such that

x1−2s ≥ x1−2i.
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In view of (3.1.9)
α +

∑t
i=1 β2i−1x2−2i

A +
∑m

j=0 B2jx1−2j
< ε

and so

x2 =
∑t

i=0 β2ix1−2i

A +
∑m

j=0 B2jx1−2j
+

α +
∑t

i=1 β2i−1x2−2i

A +
∑m

j=0 B2jx1−2j

<
maxi∈S β2i

minj∈S B2j
+

∑t
i=m+1 β2i · x1−2s

B2sx1−2s
+ ε = U + ε.

When (3.1.5) holds and S = ∅, in view of (3.1.9),

x2 =
α +

∑t
i=1 β2i−1x2−2i

A +
∑m

j=0 B2jx1−2j
< ε = U + ε

and the proofs of (3.1.11) and (3.1.12) follow by induction. Next assume that

lim
n→∞

x2n+1 = L1 < ∞.

Clearly, there exist nonnegative numbers

L−2t, . . . , L0 ≤ U + ε

such that

L1(A +
m∑

j=0

B2jL−2j) = α +
t∑

i=0

β2iL−2i + L1

t∑

i=1

β2i−1.

Hence,

L1(A + (U + ε)
m∑

j=0

B2j) > α +
t∑

i=0

β2iL−2i + L1(A + (U + ε)
m∑

j=0

B2j),

which is a contradiction. The proof is complete.

Open Problem 3.1.1 Assume that

γ > β + δ + A

and let k be a number such that

0 < k < γ − β − δ −A.

Let x̄ denote the positive equilibrium point. Determine the character of solu-
tions of Eq.(3.0.2) with

x−2, x0 ∈ [γ −A, x̄] and x−1 ∈
[
x̄,

α + γ (γ −A)
k

]
.



Existence of Unbounded Solutions 85

3.2 Unbounded Solutions of xn+1 =
α + βxn + γxn−1 + δxn−2

A + xn−2

In this section we will confirm the existence of unbounded solutions in 13
additional special cases of Eq.(3.0.1), namely:

#31, #48, #64, #73, #85, #97, #128,
#132, #140, #167, #179, #185, #197.

See Appendix A.

We will assume that (3.0.5) holds, and we will establish that there exist
solutions of Eq.(3.0.4) that are unbounded in some range of its parameters
and for some initial conditions. Actually, we exhibit a huge set of initial
conditions through which the subsequences of even and odd terms of the
solutions converge, one of them to ∞ and the other to

δ −A +
√

(δ −A)2 + 4βγ

2
.

More precisely, we establish the following result.

Theorem 3.2.1 Assume that (3.0.5) holds and that

γ > β + δ + A.

Then Eq.(3.0.4) has unbounded solutions. In fact there exist initial conditions
x−2, x−1, x0 such that

lim
n→∞

x2n+1 = ∞ and lim
n→∞

x2n+2 =
δ −A +

√
(δ −A)2 + 4βγ

2
. (3.2.1)

PROOF We consider the following cases:

Case 1:
A > 0.

Let {xn} be a solution of Eq.(3.0.4) with initial conditions x−2, x−1, x0 sat-
isfying

ε + (β + δ + ε)γ −A(γ −A)
γ −A

< x−2, x0 < γ −A, (3.2.2)

x−1 > max{α + (γ −A)2

ε
,
(β + δ + ε)[α + (β + δ)(γ −A)]

ε
} (3.2.3)
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where

0 < ε < min{ (γ(γ − β − δ −A)
γ + 1

,
A(γ − β − δ −A)

γ + 2
}. (3.2.4)

We claim that

x2n+1 >
α + βx2n + δx2n−2

A + x2n−2
+ x2n−1, n = 0, 1, . . . (3.2.5)

and

ε + (β + δ + ε)γ −A(γ −A)
γ −A

< x2n+2 < γ −A, n = 0, 1, . . . . (3.2.6)

In view of (3.2.2),

x1 =
α + βx0 + δx−2

A + x−2
+

γx−1

A + x−2
>

α + βx0 + δx−2

A + x−2
+ x−1 > x−1. (3.2.7)

We claim
(β + δ + ε)x1 < (γ −A)x−1. (3.2.8)

Indeed, in view of (3.2.2),

(β + δ + ε)x1 − (γ −A)x−1

=
α(β + δ + ε) + β(β + δ + ε)x0

A + x−2

+γ(β + δ + ε)x−1 + δ(β + δ + ε)x−2 − (A + x−2)(γ −A)x−1

A + x−2

<
α(β + δ + ε) + (β + δ)(β + δ + ε)(γ −A)− εx−1

A + x−2
.

In view of (3.2.3)

α(β + δ + ε) + (β + δ)(β + δ + ε)(γ −A)− εx−1

A + x−2
< 0.

In addition, in view of (3.2.3), (3.2.7), and (3.2.8),

x2 − γ + A =
α + βx1 + γx0 + δx−1 −A(γ −A)− (γ −A)x−1

A + x−1

<
α + (γ −A)2 − εx1

A + x−1
< 0.

Furthermore, in view of (3.2.2), (3.2.3), and (3.2.4),

x2 − ε + (β + δ + ε)γ −A(γ −A)
γ −A
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=
α(γ −A) + β(γ −A)x1 + γ(γ −A)x0

(A + x−1)(γ −A)

+δ(γ −A)x−1 −A[ε + (β + δ + ε)γ −A(γ −A)]
(A + x−1)(γ −A)

−[ε + (β + δ + ε)γ −A(γ −A)]x−1

(A + x−1)(γ −A)

>
[A(γ − β − δ −A)− ε(1 + γ)] x−1 − [ε + (β + δ + ε)γ −A(γ −A)]

(A + x−1)(γ −A)

>
εx−1 − [ε + (β + δ + ε)γ −A(γ −A)]

(A + x−1)(γ −A)

>
(γ −A)2 − [ε + (β + δ + ε)γ −A(γ −A)]

(A + x−1)(γ −A)
> 0.

The proofs of (3.2.5) and (3.2.6) follow inductively.

Let
I = lim inf

n→∞
x2n, S = lim sup

n→∞
x2n, and L = lim

n→∞
x2n+1.

In view of (3.2.5) and (3.2.6),

0 ≤ I, S ≤ γ −A, 0 < γ −A < L ≤ ∞. (3.2.9)

At this point we will show that

L = ∞. (3.2.10)

We consider the following cases:

Subcase 1:
α + β + δ > 0 and I > 0.

From this and in combination with (3.2.5) and (3.2.6) it follows that

x2n+1 >
α + (β + δ)I

γ
+ x2n−1, n = 0, 1, . . . .

Hence,
L = lim

n→∞
x2n+1 = ∞.

The proof of (3.2.10) is complete in this case.

Subcase 2:
α + β + δ > 0 and I = 0.
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Suppose for the sake of contradiction that

L < ∞.

There exists a sequence of indices {ni} such that

lim
i→∞

x2ni+2 = 0.

Furthermore, from Eq.(3.0.4) we have

x2n+2 ≥ α + βx2n+1 + δx2n−1

A + x2n−1
, n = 0, 1, . . . .

By replacing n by ni in the above identity and then by taking limits, as i →∞,
we find

0 ≥ α + (β + δ)L
A + L

,

which implies that
L = 0.

This contradicts (3.2.9). The proof of (3.2.10) is complete in this case.

Subcase 3:
α = β = δ = 0.

Suppose for the sake of contradiction that

L < ∞.

By taking limits in Eq.(3.0.4), as n →∞, and in view of (3.2.9) we have

γ −A < L = lim
n→∞

x2n+1 = lim
n→∞

x2n+2 = γ −A,

which is a contradiction. The proof of (3.2.10) is complete.

Next we will establish (3.2.1) in this case (A > 0). Let e > 0. There exists
N = N(e) such that for all n ≥ N

γ

A + x2n−2
<

x2n+1

x2n−1
< e +

γ

A + x2n−2
,

δ − e <
α + γx2n + δx2n−1

A + x2n−1
< δ + e.

Then for n ≥ N

δ − e +
βγ

A + x2n−2
< x2n+2 < δ + e + βe +

βγ

A + x2n−2
n = 0, 1, . . . (3.2.11)
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and in view of (3.2.11) we find

S ≤ δ + e + βe +
βγ

A + I
(3.2.12)

and
I ≥ δ − e +

βγ

A + S
. (3.2.13)

Letting e → 0, in (3.2.12) and (3.2.13), we get

Aδ + δS −AI ≤ SI − βγ ≤ Aδ + δI −AS

from which it follows that

(δ + A)S ≤ (δ + A)I,

which implies
I = S.

Hence, by taking limits in (3.0.4), as n →∞, the proof of (3.2.1) follows. The
proof is complete in this case.

Case 2:
A = 0 and δ > 0.

In this case the change of variables

yn = xn − δ

reduces Eq.(3.0.4) into the equation

yn+1 =
α + βδ + γδ + βyn + γyn−1

δ + yn−2
, n = 0, 1, . . . . (3.2.14)

Since δ > 0 we may apply the results of Case 1 to Eq.(3.2.14) and so the
result follows. The proof is complete in this case.

Case 3:
A = δ = 0.

In this case, in view of (3.0.5), it follows that

β = 0

and so Eq.(3.0.4) becomes

xn+1 =
α + γxn−1

xn−2
, n = 0, 1, . . . . (3.2.15)

We choose initial conditions x−2, x−1, x0 such that

0 < x−2, x0 < γ, x−1 >
α + γ2

γ
.
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From this it follows that

x1 >
α

γ
+ x−1 and x2 < γ

and by induction

x2n+1 >
α

γ
+ x2n−1 and x2n+2 < γ, n = 0, 1, . . . .

Therefore,
lim

n→∞
x2n+1 = ∞.

Moreover, from Eq.(3.2.15) we have

x2n+2 =
α

x2n−1
+

γx2n

x2n−1
, n = 0, 1, . . . . (3.2.16)

By taking limits in (3.2.16), as n →∞, it follows that

lim
n→∞

x2n+2 = 0.

The proof is complete.

3.3 Unbounded Solutions of xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + xn−2

In this section we will confirm the existence of unbounded solutions in 16
additional special cases of Eq.(3.0.1), namely:

#33, #75, #87, #99, #110, #146, #154, #162
#169, #181, #187, #199, #202, #210, #214, #222.

See Appendix A.

We will assume that (3.0.7) holds and we will establish that there exist
solutions of Eq.(3.0.6) that are unbounded in some range of its parameters
and for some initial conditions.

More precisely, we establish the following result.

Theorem 3.3.1 Assume that (3.0.7) holds and that

γ > β + δ + A.

Then Eq.(3.0.6) has unbounded solutions.
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PROOF We will consider two cases.

Case 1:
β > δB.

Let {xn} be a solution of Eq.(3.0.6) with initial conditions satisfying

β + δ

B + 1
< x−2, x0 <

γ −A

B + 1
and

α(B + 1)−A(β + δ + k) + γ(γ −A) + β L
M

kB
< x−1,

(3.3.1)

where

0 < k = γ − β −A− δ, L = max{α, β, δ}, and M = min{A,B, 1} .

We will show that for n ≥ 0,

x2n+1 >
α + βx2n + δx2n−2

A + Bx2n + x2n−2
+ x2n−1 and x2n ∈ (

β + δ

B + 1
,
γ −A

B + 1
). (3.3.2)

We have
α + βxn + δxn−2

A + Bxn + xn−2
<

L

M
, n = 0, 1, . . . .

Also,

x1 =
α + βx0 + δx−2

A + Bx0 + x−2
+

γ

A + Bx0 + x−2
x−1,

from which it follows that

x1 >
α + βx0 + δx−2

A + Bx0 + x−2
+ x−1

and
x1 <

α + βx0 + δx−2

A + Bx0 + x−2
+

β + k

β
x−1.

Also,

x2 − γ −A

B + 1
=

α + βx1 + γx0 + δx−1

A + Bx1 + x−1
− β + δ + k

B + 1

=
α(B + 1)−A(β + δ + k) + γ(B + 1)x0 + (βx1 − (β + k)x−1) + Bδ(x−1 − x1)−Bkx1

(B + 1)(A + Bx1 + x−1)

<
α(B + 1)−A(β + δ + k) + γ(γ −A) + β α+βx0+δx−2

A+Bx0+x−2
−Bkx1

(B + 1)(A + Bx1 + x−1)

<
α(B + 1)−A(β + δ + k) + γ(γ −A) + β L

M −Bkx1

(B + 1)(A + Bx1 + x−1)
< 0.

Furthermore,

x2 − β + δ

B + 1
=

α + βx1 + γx0 + δx−1

A + Bx1 + x−1
− β + δ

B + 1
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=
α(B + 1)−A(β + δ) + γ(B + 1)x0 + (β − δB)(x1 − x−1)

(B + 1)(A + Bx1 + x−1)

>
α(B + 1)−A(β + δ) + γ(β + 1) + (β − δB)(x1 − x−1)

(B + 1)(A + Bx1 + x−1)
> 0.

The proof of (3.3.2) follows by induction.

Let
I = lim inf

n→∞
x2n+2 and L = lim

n→∞
x2n+1.

We will show that
L = ∞. (3.3.3)

We consider the following two subcases:

Subcase 1:
β + δ > 0 or α > 0.

Then from (3.3.2) we have

x2n+1 >
α + (β + δ)(I − ε)

A + β + δ
+ x2n−1, n = 0, 1, . . . ,

where ε is a positive number. From this it follows that

L = lim
n→∞

x2n+1 = ∞.

The proof of (3.3.3) is complete in this case.

Subcase 2:
α = β = δ = 0.

In this case Eq.(3.0.6) becomes

xn+1 =
γxn−1

A + Bxn + xn−2
, n = 0, 1, . . . .

In particular we have

x2n+2 =
γx2n

A + Bx2n+1 + x2n−1
, n = 0, 1, . . . .

By taking limits in the last equation as n →∞ we find

lim
n→∞

x2n+2 = 0.

We choose a positive number m and a positive integer N such that

0 < m <
γ −A

A + B + 1
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and
x2n < m, n = N, N + 1, . . . .

Hence,

x2n+1 =
γx2n−1

A + Bx2n + x2n−2
>

γx2n−1

A + (B + 1)m
> (1+m)x2n−1, n = N, N+1, . . . .

From this it follows that

L = lim
n→∞

x2n+1 = ∞.

The proof of (3.3.3) is complete.

Case 2:
δB ≥ β.

Let {xn} be a solution of Eq.(3.0.6) with initial conditions such that,

0 < x−2, x0 <
γ −A

B + 1
,

α(B + 1)−A(β + δ + k) + γ(γ −A)
k(B + 1)

< x−1, (3.3.4)

where 0 < k = γ − β −A− δ.

We will show that for n ≥ 0,

x2n+1 >
α + βx2n + δx2n−2

A + Bx2n + x2n−2
+ x2n−1 and x2n+2 <

γ −A

B + 1
. (3.3.5)

Indeed,

x1 =
α + βx0 + x−2

A + Bx0 + x−2
+

γ

A + Bx0 + x−2
x−1,

from which it follows that

x1 >
α + βx0 + δx−2

A + Bx0 + x−2
+ x−1.

Let s = δB − β ≥ 0. Then

x2 − γ −A

B + 1
=

α + βx1 + γx0 + δx−1

A + Bx1 + x−1
− β + δ + k

B + 1

=
α(B + 1)−A(β + δ + k) + γ(B + 1)x0 − s(x1 − x−1)− k(1 + B)x−1

(B + 1)(A + Bx1 + x−1)

<
α(B + 1)−A(β + δ + k) + γ(γ −A)− k(1 + B)x−1

(B + 1)(A + Bx1 + x−1)
< 0.

The proof of (3.3.5) follows inductively.
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Let
I1 = lim inf

n→∞
x2n+2 and L1 = lim

n→∞
x2n+1.

In view of (3.3.5) it follows that

L1 > 0. (3.3.6)

We will show that
L1 = ∞. (3.3.7)

We consider the following three subcases:

Subcase 1:
α + β + δ > 0 and I1 > 0.

Then from (3.3.5) we have

x2n+1 >
α + (β + δ)(I − ε)

γ
+ x2n−1, n = 0, 1, . . . ,

where ε is a positive number. From this it follows that

L1 = lim
n→∞

x2n+1 = ∞.

The proof of (3.3.7) is complete in this case.

Subcase 2:
α + β + δ > 0 and I1 = 0.

Suppose for the sake of contradiction that

L1 < ∞.

We choose a subsequence {x2ni+2} of {x2n+2} such that

lim
i→∞

x2ni+2 = 0.

Furthermore, from Eq.(3.0.6) we obtain

x2n+2 ≥ α + βx2n+1 + δx2n−1

A + Bx2n+1 + x2n−1
, n = 0, 1, . . . .

By replacing n by ni in the preceding identity and then by taking limits, as
i →∞, we find

0 ≥ α + (β + δ)L
A + (B + 1)L

,

which implies that
L1 = 0.
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This contradicts (3.3.6). The proof of (3.3.7) is complete in this case.

Subcase 3:
α = β = δ = 0 .

In this case Eq.(3.0.6) becomes

xn+1 =
γxn−1

A + Bxn + xn−2
, n = 0, 1, . . . .

In particular, we have

x2n+2 =
γx2n

A + Bx2n+1 + x2n−1
, n = 0, 1, . . . .

By taking limits in the last equation as n →∞ we find

lim
n→∞

x2n+2 = 0.

We now choose positive numbers m and N such that

0 < m <
γ −A

A + B + 1

and
x2n < m, for n = N, N + 1, . . . .

Hence,

x2n+1 =
γx2n−1

A + Bx2n + x2n−2
>

γx2n−1

A + (B + 1)m
> (1+m)x2n−1, n = N, N+1, . . . .

From this it follows that

L1 = lim
n→∞

x2n+1 = ∞.

The proof is complete.

3.4 Unbounded Solutions of xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1

In this section we will confirm the existence of unbounded solutions in 14
additional special cases of Eq.(3.0.1), namely:

#80, #92, #98, #149, #157, #161, #174
#180, #186, #198, #205, #209, #213, #221.
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See Appendix A.

In this section we will assume that

δ > A + γB +
β

B
. (3.4.1)

and establish that there exist solutions of Eq.(3.0.8) that are unbounded.

More precisely, we establish the following result:

Theorem 3.4.1 Assume that (3.0.9) and (3.4.1) hold. Then Eq.(3.0.8) has
unbounded solutions.

PROOF Choose positive numbers m and ε such that

m ∈
(

0, δ −A− γB − β

B

)
and ε ∈

(
0,

m

1 + B

)
.

Set

K =
1
ε

[
α + β

(
ε +

β

B

)
+ δ (ε + γ)

]

and

L =
1

εB

[
α + γ (ε + γ) + δ

(
ε +

β

B

)]
.

Let {xn} be a solution of Eq.(3.0.8) with initial conditions chosen as follows:

x−2 > max{K, L}, x−1 ∈
(

0, ε +
β

B

)
, and x0 ∈ (0, ε + γ) .

Then we claim that

lim
n→∞

x3n+1 = ∞, lim
n→∞

x3n+2 =
β

B
, and lim

n→∞
x3n+3 = γ.

Indeed,

x1 =
α + βx0 + γx−1 + δx−2

A + Bx0 + x−1
>

α + βx0 + γx−1

A + γB + β
B + ε(1 + B)

+
δx−2

A + γB + β
B + ε(1 + B)

>
α + βx0 + γx−1

δ
+

δ

A + γB + β
B + m

x−2,

x2 =
α + βx1 + γx0 + δx−1

A + Bx1 + x0
<

α + γ(ε + γ) + δ
(
ε + β

B

)
+ βx1

Bx1

<
α + γ(ε + γ) + δ

(
ε + β

B

)
+ βL

BL
= ε +

β

B
,
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and

x3 =
α + βx2 + γx1 + δx0

A + Bx2 + x1
<

α + β
(
ε + β

B

)
+ δ(ε + γ) + γx1

x1

<
α + β

(
ε + β

B

)
+ δ(ε + γ) + γK

K
= ε + γ.

It follows by induction that for n ≥ 0,

x3n+1 >
α + βx3n + γx3n−1

δ
+

δ

A + γB + β
B + m

x3n−2,

x3n−2 < ε +
β

B
,

and
x3n+3 < ε + γ.

Therefore,
lim

n→∞
x3n+1 = ∞,

x3n+2 =
α

x3n+1
+ β + γ x3n

x3n+1
+ δ x3n−1

x3n+1

A
x3n+1

+ B + x3n

x3n+1

→ β

B
as n →∞,

and

x3n+3 =
α

x3n+1
+ β x3n+2

x3n+1
+ γ + δ x3n

x3n+1

A
x3n+1

+ B x3n+2
x3n+1

+ 1
→ γ as n →∞

and the proof is complete.

Theorem 3.4.1 extends in a natural way to the (k+1)st-order rational equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k−1

i=0 Bixn−i

, n = 0, 1, . . . (3.4.2)

with
βk, B0, B1, . . . , Bk−1 ∈ (0,∞). (3.4.3)

This result establishes the existence of unbounded solutions in the following
32 special cases of Eq.(3.4.2), with k = 4:

#424− 431, #440− 447, #488− 495, #504− 511 .

See Appendix B.
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Theorem 3.4.2 Assume that (3.4.3) holds and that

βk > A +
k−1∑

i=0

(Bi · βk−1−i

Bk−1−i
).

Then Eq.(3.4.2) has unbounded solutions.

PROOF Let ε > 0 be chosen such that

βk > A +
k−1∑

i=0

Bi(
βk−1−i

Bk−1−i
+ ε). (3.4.4)

Let {xn} be any solution of Eq.(3.4.2) with initial conditions satisfying the
following conditions:

x−k >
α +

∑k
i=1 βi(

βk−i

Bk−i
+ ε)

εB0
, (3.4.5)

x−k >
β0A + β0

∑k−1
i=1 Bi(

βk−i

Bk−i
+ ε)

εB2
0

, (3.4.6)

· · ·

x−k >
α +

∑k−2
i=0 βi(

βk−2−i

Bk−2−i
+ ε) + βk( βk−1

Bk−1
+ ε)

εBk−1
, (3.4.7)

x−k >
Aβk−1 + βk−1

∑k−2
i=0 Bi(

βk−i−2
Bk−i−2

+ ε)

εB2
k−1

, (3.4.8)

β0

B0
− ε < x−k+1 <

β0

B0
+ ε (3.4.9)

and
· · ·

βk−1

Bk−1
− ε < x0 <

βk−1

Bk−1
+ ε. (3.4.10)

Then we claim that
x(k+1)n+1 →∞ (3.4.11)

and

x(k+1)n+i →
βi−2

Bi−2
, i = 2, 3, · · · , k + 1. (3.4.12)
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To this end we first show that for all n ≥ 0

x(k+1)n+1 >
α +

∑k−1
i=0 βi(

βk−1−i

Bk−1−i
− ε)

A +
∑k−1

i=0 Bi(
βk−1−i

Bk−1−i
+ ε)

+
βk

A +
∑k−1

i=0 Bi(
βk−1−i

Bk−1−i
+ ε)

·x(k+1)(n−1)+1

(3.4.13)
and

βi−2

Bi−2
− ε < x(k+1)n+i <

βi−2

Bi−2
+ ε, i = 1, 2, · · · k + 1. (3.4.14)

Indeed,

x1 =
α +

∑k
i=0 βix−i

A +
∑k−1

i=0 Bix−i

>
α +

∑k−1
i=0 βi(

βk−1−i

Bk−1−i
− ε)

A +
∑k−1

i=0 Bi(
βk−1−i

Bk−1−i
+ ε)

+
βk

A +
∑k−1

i=0 Bi(
βk−1−i

Bk−1−i
+ ε)

· x−k > x−k.

From the last inequality and (3.4.5), (3.4.6), (3.4.7), and (3.4.8), we have

β0

B0
− ε < x2 <

β0

B0
+ ε

and
· · ·

βk−1

Bk−1
− ε < xk+1 <

βk+1

Bk+1
+ ε

and so (3.4.13) and (3.4.14) follow by induction. Clearly, (3.4.12) follows from
(3.4.14). Also, (3.4.11) follows from (3.4.13) as long as

α +
k−1∑

i=0

βi
βk−1−i

Bk−1−i
> 0.

On the other hand, when

α +
k−1∑

i=0

βi
βk−1−i

Bk−1−i
= 0

if
x(k+1)n+1 → U ∈ (0,∞),

then
U =

βkU

A +
∑k−1

i=0 Bi
βk−1−i

Bk−1−i

,

which contradicts (3.4.4). The proof is complete.



100 Dynamics of Third-Order Rational Difference Equations

3.5 Unbounded Solutions of xn+1 =
xn−2

A + Bxn + Cxn−1

Theorem 3.5.1 Assume that

A,B, C ∈ [0,∞) and A + B, A + C, B + C > 0.

Then the rational equation

xn+1 =
xn−2

A + Bxn + Cxn−1
, n = 0, 1, ...

has unbounded solutions.

PROOF For the proof see Theorem 4.4.1 in Section 4.4.

3.6 Unbounded Solutions in the Special Case #50

Theorem 3.6.1 Assume that

0 < α < 1.

Then the rational equation

xn+1 =
α + xn−2

xn
, n = 0, 1, . . . (3.6.1)

has unbounded solutions.

Note that the following identities hold:

xn+4 − xn−1 =
αxn+3 − (α− 1)xn+1 − xn−2

xn+3
, n = 0, 1, . . . . (3.6.2)

xn+6 − xn+1 =
αxn+4 − (α− 1)xn+1 − xn−1

α + xn+2
, n = 0, 1, . . . . (3.6.3)

Lemma 3.6.1 Assume that 0 < α < 1 and let {xn}∞n=−2 be any solution of
Eq.(3.6.1) for which there exists N ≥ 3 such that

xN ≥ xn, for n ≥ −2. (3.6.4)

Then
xn = x̄, for n ≥ −2.
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PROOF From (3.6.4) with n = N + 5, (3.6.3) implies that

αxN+3 + (1− α)xN ≤ xN−2. (3.6.5)

Furthermore, in view of (3.6.4), we have xN ≥ xN+3 and so (3.6.5) implies
that

xN+3 ≤ xN−2. (3.6.6)

In view of (3.6.2), we have

xN+3 − xN−2 =
xN+2 − xN−3

xN+2
+

(α− 1)(xN+2 − xN )
xN+2

. (3.6.7)

From (3.6.4), we have xN ≥ xN+2. Therefore, in view of (3.6.6), (3.6.7)
implies that

xN+2 ≤ xN−3. (3.6.8)

In addition, from (3.6.4), we have

xN ≥ xN−5, (3.6.9)

and so
xN+3 =

α + xN

xN+2
≥ α + xN−5

xN−3
= xN−2. (3.6.10)

From (3.6.6) and (3.6.10), we have xN+3 = xN−2, and so (3.6.4) and (3.6.5)
imply that

xN = xN−2.

In addition,

αxN+3 + (1− α)xN = αxN+3 + (1− α)xN−2 = xN−2,

from which it follows with the use of (3.6.3) that xN+5 = xN . It is also true
that

αxN + (1− α)xN−2 = xN ≥ xN−5, (3.6.11)

from which it follows with the use of (3.6.2) that xN+1 ≥ xN−4. Using
Eq.(3.6.1) we get

xN+4 =
α + xN+1

xN+3
≥ α + xN−4

xN−2
= xN−1. (3.6.12)

In view of (3.6.2) we have

xN+4 − xN−1 =
xN+3 − xN−2

xN+3
+

(α− 1)(xN+3 − xN+1)
xN+3

. (3.6.13)

Since xN+3 = xN−2, (3.6.12) and (3.6.13) imply that

xN+3 ≤ xN+1. (3.6.14)
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From Eq.(3.6.1) with the use of (3.6.14) we get

xN ≤ xN−1,

from which it follows, with the use of (3.6.4), that

xN = xN−1.

Therefore, xN+3 = xN = xN−1 = xN−2. Using Eq.(3.6.1) we have

xn = x̄, for n ≥ −2.

The proof is complete.

Theorem 3.6.2 Assume 0 < α < 1. Then every solution of Eq.(3.6.1) is
either unbounded or converges to the equilibrium of Eq.(3.6.1).

PROOF Let {xn}∞n=−2 be a solution of Eq.(3.6.1) bounded from above
and from below. Set

S = lim sup
n→∞

xn and I = lim inf
n→∞

xn.

There exists subsequences {xni+k}∞i=1, k = −2,−1, . . ., such that

lim
i→∞

xni+4 = l4 = S ≥ lim
i→∞

xni+k = lk. (3.6.15)

In addition the sequence {lk}∞k=−2 satisfies Eq.(3.6.1). In view of (3.6.15) and
Lemma 3.6.1, we have

lk = x̄, for k ≥ −2,

and so
S = x̄.

In addition, there exist subsequences: {xnj+k}∞i=1, k = −3,−2, . . ., of the
solution {xn}∞n=−2 so that

lim
i→∞

xnj = I0 = I ≤ Ik = lim
i→∞

xnj+k ≤ x̄.

In addition, {Ik}∞k=−3 is a solution of Eq.(3.6.1) and so

I0 =
α + I−3

I−1
≥ α + I0

x̄
,

which implies

x̄ ≥ α + I0

I0
≥ x̄.

Hence, I0 = x̄. The proof is complete.
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Lemma 3.6.2 Assume that 0 < α < 1 and let {xn}∞n=−2 be a nontrivial
oscillatory solution of Eq.(3.6.1) bounded from above and from below. Then
there exists −2 ≤ N ≤ 2 such that

xN = sup{xn}∞n=−2. (3.6.16)

PROOF If N ≥ 3, in view of Lemma 3.6.1 we get a contradiction. On
the other hand assume that

S = sup{xn}∞n=−2

and
S > xn, for n ≥ −2.

Since {xn}∞n=−2 oscillates about x̄, we have S > x̄. Furthermore, there exists
a subsequence {xni}∞i=1 of {xn}∞n=−2 so that

lim
i→∞

xni = S > x̄,

which, in view of Theorem 3.6.2, is a contradiction.

The proof of Theorem 3.6.1:

PROOF Assume that 0 < α < 1 and let {xn}∞n=−2 be any nontrivial
oscillatory solution of Eq.(3.6.1) such that

supxn 6= xi, for i ∈ {−2,−1, 0, 1, 2}. (3.6.17)

We will show that {xn}∞n=−2 is an unbounded solution of Eq.(3.6.1). Assume
for the sake of contradiction that the solution {xn}∞n=−2 is bounded from
above and below. This contradicts Lemma 3.6.2 and completes the proof.





4

Periodic Trichotomies

4.0 Introduction

In this chapter we present all known periodic trichotomies of the third-order
rational difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (4.0.1)

with nonnegative parameters α, β, γ, δ, A,B, C, D and with arbitrary nonneg-
ative initial conditions x−2, x−1, x0, such that the denominator is always pos-
itive.

In Section 4.1 we present necessary and sufficient conditions for the exis-
tence of prime period-two solutions of Eq.(4.0.1). See also Section 5.9.

In Section 4.2 we present the period-two trichotomies known for the rational
equations

xn+1 =
α + βxn + γxn−1

A + xn
, n = 0, 1, . . . , (4.0.2)

xn+1 =
α + γxn−1 + δxn−2

A + xn−2
, n = 0, 1, . . . , (4.0.3)

and
xn+1 =

α + γxn−1

A + Bxn + xn−2
, n = 0, 1, . . . . (4.0.4)

Note that in addition to these three nonlinear period-two trichotomies, Eq.(4.0.1)
contains a trivial period-two trichotomy for the linear equation

xn+1 =
γ

A
xn−1, n = 0, 1, . . . .

In Section 4.3 we present a unified version of the three known nonlinear period-
two trichotomies of Eq.(4.0.1).

In Section 4.4 we present the period-three trichotomy known for the rational
equation

xn+1 =
xn−2

A + Bxn + Cxn−1
, n = 0, 1, . . . . (4.0.5)

105
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In Section 4.5 we present the period-four trichotomy for the rational equa-
tion

xn+1 =
α + βxn + xn−2

xn−1
, n = 0, 1, . . . . (4.0.6)

In Section 4.6 we present the period-five trichotomy for the rational equation

xn+1 =
α + xn−2

xn
, n = 0, 1, . . . . (4.0.7)

In Section 4.7 we present the period-six trichotomy that has been conjec-
tured for the rational equation

xn+1 =
α + xn

Cxn−1 + xn−2
, n = 0, 1, . . . . (4.0.8)

We offer the following conjecture for Eq.(4.0.1):

Conjecture 4.0.1 No other periodic trichotomies are possible for any non-
linear special case of Eq.(4.0.1) without restricting the region of parameters
of the special case.

Open Problem 4.0.1 For the (k + 1)st-order rational difference equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . .

find all possible nonlinear periodic trichotomies that are not reduced to one of
the seven known nonlinear trichotomies of Eq.(4.0.1).

4.1 Existence of Prime Period-Two Solutions

In this section we present necessary and sufficient conditions for the existence
of prime period-two solutions of the rational equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (4.1.1)

with nonnegative parameters α, β, γ, δ, A, B, C, D, and with arbitrary non-
negative initial conditions x−2, x−1, x0 such that the denominator is always
positive.

Let
. . . , φ, ψ, φ, ψ, . . . (4.1.2)



Periodic Trichotomies 107

be a prime period-two solution of Eq.(4.1.1). Then

φ =
α + βψ + γφ + δψ

A + Bψ + Cφ + Dψ
and ψ =

α + βφ + γψ + δφ

A + Bφ + Cψ + Dφ

and so
Aφ + (B + D)φψ + Cφ2 = α + (β + δ)ψ + γφ

and
Aψ + (B + D)φψ + Cψ2 = α + (β + δ)φ + γψ.

By subtracting the above two inequalities and then by dividing the result by
φ− ψ we obtain that

C(φ + ψ) = γ − β − δ −A (4.1.3)

is a necessary condition for Eq.(4.1.1) to have a prime period-two solution.
It is easy to see now that when

C = 0,

the condition

γ = β + δ + A

is necessary and sufficient for Eq.(4.1.1) to have a prime period-two solution.
Actually, in this case, when B + D > 0, there is a “hyperbola” of prime
period-two solutions of Eq.(4.1.1) of the form (4.1.2) given by

(B + D)φψ = α + (β + δ)(φ + ψ)

with
φ, ψ ∈ [0,∞) and φ 6= ψ.

This observation is the key point behind the three known nonlinear period-two
trichotomies of Eq.(4.1.1) with C = 0. Note that when

B = C = D = 0,

for a prime period-two solution to exist, it is necessary that

α = β = δ = 0.

In this case the equation reduces to the linear equation

xn+1 =
γ

A
xn−1, n = 0, 1, . . . ,

which is the only linear period-two trichotomy contained in Eq.(4.0.1).
On the other hand, when

C > 0,
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it follows from (4.1.3) that

γ > β + δ + A,

and, in particular, γ > 0 is a necessary condition for Eq.(4.1.1) to have a
prime period-two solution. With the parameters C and γ positive, Eq.(4.1.1)
can be written in the normalized form

xn+1 =
α + βxn + xn−1 + δxn−2

A + Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . . (4.1.4)

When

α = β = δ = 0,

Eq.(4.1.4) is reduced to the equation

xn+1 =
xn−1

A + Bxn + xn−1 + Dxn−2
, n = 0, 1, (4.1.5)

which is investigated in Section 5.135. The following statements are easily
established for Eq.(4.1.5):

1. Eq.(4.1.5) has a unique prime period-two solution if and only if

0 < A < 1 and B+D = 0 or 0 ≤ A < 1 and 0 < B+D 6= 1. (4.1.6)

2. Eq.(4.1.5) has infinitely many prime period-two solutions if and only if

0 ≤ A < 1 and B + D = 1. (4.1.7)

3. Assume that (4.1.6) holds. Then the unique prime period-two solution
of Eq.(4.1.5) is

. . . , 0, 1−A, 0, 1−A, . . . . (4.1.8)

(a) When 0 < A < 1 and B + D = 0, the unique prime period-two
solution (4.1.8) of Eq.(4.1.5) is unstable.

(b) When
0 ≤ A < 1 and B + D > 1,

the period-two solution (4.1.8) of Eq.(4.1.5) is locally asymptoti-
cally stable and is unstable when

0 < B + D < 1.

4. Assume that (4.1.7) holds. Then the prime period-two solutions of
Eq.(4.1.5) are given by (4.1.2) with

φ + ψ = 1−A, φ, ψ ∈ [0,∞), and φ 6= 1−A

2
.
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On the other hand, one can see that when

C > 0 and α + β + δ > 0,

Eq.(4.1.1) has a prime period-two solution (4.1.2) if and only if

β + δ + A < 1

and

4α < (1− β − δ −A)[(B + D)(1− β − δ −A)− (1 + 3β + 3δ −A)].

Furthermore, when the above inequalities do hold, then Eq.(4.1.1) has the
unique prime period-two solution (4.1.2) and the values φ and ψ are the two
positive and distinct roots of the quadratic equation

t2 − (1− β − δ −A)t +
α + (β + δ)(1− β − δ −A)

B + D − 1
= 0. (4.1.9)

Open Problem 4.1.1 From the discussion in this section one can see that
the only special cases of Eq.(4.0.1) with a unique prime period-two solution
are the following 49 equations:

#30, # 32, #34, #74, #76, #86, #88
#98, #100, #109, #111, #112, #135, #145
#147, #148, #153, #155, #156, #161, #163
#164, #168, #170, #180, #182, #186, #188
#190, #192, #194, #198, #200, #201, #203
#204, #209, #211, #212, #213, #215, #216
#217, #219, #220, #221, #223, #224, #225.

For the local asymptotic stability of the following 12 special cases:

#30, #32, #34, #74, #76, #86,
#100, #109, #111, #112, #135, #145,

see [119], [140], and [175].
Determine the local asymptotic stability of the prime period-two solution of

each of the remaining 37 equations.

Open Problem 4.1.2 For the (k + 1)st-order rational difference equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . .

determine all special cases with a unique prime period-two solution and in each
case determine the local asymptotic stability of the prime period-two solution.
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4.2 Period-Two Trichotomies of Eq.(4.0.1)

In this section we present the statements of the three known nonlinear period-
two trichotomies of third-order rational equations and present the proof of
the first period-two trichotomy in a spirit that can be easily generalized to
the other two period-two trichotomies. In the next section we unify the three
trichotomies into a single statement and present the proof of the unified result.

The following nonlinear, period-two trichotomy result for Eq.(4.0.2)
was first observed and established in [16] for the special case #54. See also
[108], [112], [175].

Theorem 4.2.1 [175] The following period-two trichotomy result is true for
Eq.(4.0.2).
(a) Assume that

γ < β + A.

Then every solution of Eq.(4.0.2) has a finite limit.

(b) Assume that
γ = β + A.

Then every solution of Eq.(4.0.2) converges to a (not necessarily prime) period-
two solution of Eq.(4.0.2).

(c) Assume that
γ > β + A.

Then Eq.(4.0.2) has unbounded solutions for some initial conditions.

Before we present the proof of Theorem 4.2.1 we make some observations
and establish a lemma. Our aim is to present the proof in a spirit useful
for extensions and generalizations to other known trichotomies for rational
equations. We define the function

f(u, v) =
α + βu + γv

A + u

and observe that for γ > 0, f(u, v) is strictly increasing in v. Also

∂f

∂u
= γ ·

βA−α
γ − v

(A + u)2

and so the monotonic character of f(u, v) in the variable u depends on whether
the solutions are bounded from below or from above by βA−α

γ .
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Also note that when
βA− α ≤ 0,

f(u, v) is strictly decreasing in u and strictly increasing in v and Theorem
1.6.6 applies.

The following lemma determines the monotonic character of the function
f(u, v) on the γ-line.

Lemma 4.2.1 The following statements are true eventually for every positive
solution {xn} of Eq.(4.0.2) and for n sufficiently large:

(i) γ > A ⇒ xn > βA−α
γ .

(ii) 0 < γ < A and βA− α > 0 ⇒ xn ≤ βA−α
γ .

PROOF (i) Otherwise, there exists an N , as large as we please, such that

xN+1 ≤ βA− α

γ
.

That is,
α + βxN + γxN−1

A + xN
≤ βA− α

γ
,

which implies

α +
(

β − βA− α

γ

)
xN + γxN−1 ≤ A

(
βA− α

γ

)

and so

xN−1 ≤ A

γ
·
(

βA− α

γ

)
.

This, by a similar argument, implies that

xN−3 ≤
(

A

γ

)2

·
(

βA− α

γ

)
,

which eventually leads to a contradiction.
(ii) Otherwise, there exists an N , as large as we please, such that

xN+1 >
βA− α

γ
.

That is,
α + βxN + γxN−1

A + xN
>

βA− α

γ
,
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which implies

α +
(

β − βA− α

γ

)
xN + γxN−1 > A

(
βA− α

γ

)
. (4.2.1)

But from Eq.(4.0.2),

xn+1 ≤ α + βxn

A + xn
+

γ

A
xn−1 ≤ max(α, β)

min(A, 1)
+

γ

A
xn−1.

Therefore, by the comparison principle, there exists U > 0 such that

xn ≤ U, for all n ≥ 0.

Then from (4.2.1) we see that

xN−1 >
A

γ
·M0 − K

γ
,

where

M0 =
βA− α

γ
and K = max

(
α, α + β − βA− α

γ

)
.

Set
Mn+1 =

A

γ
·Mn − K

γ
, n = 0, 1, . . . . (4.2.2)

Then, clearly,

xN−3 >
A

γ
·M1 − K

γ

which eventually leads to a contradiction because {xn} is bounded and the
solution of Eq.(4.2.2) with initial condition M0 is unbounded.

We are now ready to present the proof of Theorem 4.2.1.

PROOF The result is clearly true when γ = 0 and so in the sequel we
assume that γ > 0. The proof of part (a) will be divided into four cases.
Please note that the proof of part (b) of the Theorem is included in Case 1:

Case 1:
A < γ ≤ β + A (4.2.3)

or
γ ≤ A and βA− α ≤ 0. (4.2.4)

It follows from our discussion preceding Lemma 4.2.1 and from Lemma 4.2.1
that, in this case, the function f(u, v) is strictly decreasing in u and strictly
increasing in v. The proof will be complete in this case if we also show that
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every solution of the equation is also bounded. To this end we first claim that
every solution {xn} is eventually bounded from below by γ −A. That is,

xn > γ −A, eventually. (4.2.5)

This is clearly true when (4.2.4) holds. Now assume that (4.2.3) holds and
suppose for the sake of contradiction that there exists N , as large as we please,
such that

xN+1 ≤ γ −A.

Then
α + βxN + γxN−1

A + xN
≤ γ −A,

which implies

α + (β + A− γ)xN + γxN−1+ ≤ A (γ −A)

and so
xN−1 ≤ A

γ
(γ −A) .

Similarly, we find that

xN−3 ≤
(

A

γ

)2

(γ −A) ,

which eventually leads to a contradiction.
Hence, (4.2.5) is true and so there exist N sufficiently large and positive

numbers L and U such that

γ −A < L ≤ xN−1, xN ≤ U =
α + βL

L− (γ −A)
.

Now one can see that

L ≤ α + βU + γL

A + U
≤ xN+1 =

α + βxN + γxN−1

A + xN
≤ α + βL + γU

A + L
= U

and by induction
xn ∈ [L,U ] , for all n ≥ N.

Case 2:
γ = A, α > 0, and βA− α > 0. (4.2.6)

To establish the result in this case, it suffices to show that every solution is
bounded and that the function f(xn, xn−1) is strictly decreasing in xn. To
this end, we first claim that, eventually,

xn >
βA− α

γ
,
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which will imply that f(xn, xn−1) decreases in xn. Suppose for the sake of
contradiction that there exists N , as large as we please, such that

xN+1 ≤ βγ − α

γ
.

Then, clearly,
α + βxN + γxN−1

γ + xN
≤ βγ − α

γ
,

which implies that
α +

α

γ
xN + γxN−1 ≤ βγ − α

and so

min(xN , xN−1) <

(
γ2

γ2 + α

)
·
(

βγ − α

γ

)
.

Similarly,

min(xN−1, xN−2, xN−3) <

(
γ2

γ2 + α

)2 (
βγ − α

γ

)
,

which eventually leads to a contradiction.
Finally, note that in this case,

xn+1 ≤ α + βxn

γ + xn
+

γ

γ +
(

βγ−α
γ

) · xn−1

and so {xn} is bounded. The proof is complete in this case.

Case 3:
γ = A, α = 0, and βA− α > 0. (4.2.7)

Here Eq.(4.0.2) reduces to

xn+1 =
βxn + γxn−1

γ + xn
, n = 0, 1, . . . . (4.2.8)

Note that for n ≥ 0,

xn+1 − β =
γ

γ + xn
(xn−1 − β)

and
xn+1 − xn−1 =

xn

γ + xn
(β − xn−1) .

Hence,
xn−1 ≤ xn < β or β < xn−1 ≤ xn,

from which it follows that
lim

n→∞
xn = β.
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The proof is complete in this case.

Case 4:
γ < A and βA− α > 0. (4.2.9)

In this case

xn+1 ≤ α + βxn

A + xn
+

γ

A
· xn−1 ≤ max(α, β)

min(A, 1)
+

γ

A
· xn−1

and so the solution is bounded. Also, by Lemma 4.2.1(ii) the function f(xn, xn−1)
is strictly increasing in xn and xn−1 and the result follows by Theorem 1.6.7.

Now we present the proof of part (c) on the existence of unbounded
solutions when

γ > β + A.

To this end, let k be a number such that

0 < k < γ − β −A.

Then we claim that every solution of Eq.(4.0.2) with initial conditions x−1,
x0 such that

x0 ∈ (0, γ −A) and x−1 >
α + γ(γ −A)

k

is unbounded and, more precisely,

lim
n→∞

x2n+1 = ∞ and lim
n→∞

x2n = β.

Observe that

x1 − x−1 =
α + βx0 + γx−1

A + x0
− x−1 =

α + βx0 + (γ −A− x0) x−1

A + x0

and so
x1 > x−1.

Also,

x2 − (β + k) ≤ α + βx1 + γx0

x1
− (β + k)

=
α + γx0 − kx1

x1
<

α + γ(γ −A)− α− γ(γ −A)
x1

= 0.

Therefore,
x2 < β + k.

Furthermore,

x3 =
α + βx2 + γx1

A + x2
>

γ

β + A + k
x1.
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It follows by induction that for n ≥ 1,

x2n < β + k

and
x2n+1 >

γ

β + A + k
x2n−1

and so, in particular,
lim

n→∞
x2n+1 = ∞. (4.2.10)

We also know from Lemma 4.2.1 that the function

f(xn, xn−1) =
α + βxn + γxn−1

A + xn

is strictly increasing in xn−1 and strictly decreasing in xn and so by Theorem
1.6.6 the limit of the subsequence {x2n} exists and is a finite number. It now
follows that

x2n+2 =
α + βx2n+1 + γx2n

A + x2n+1

=
α+γx2n

x2n+1
+ β

A
x2n+1

+ 1
→ β as n →∞.

The proof is complete.

Theorem 4.2.1 states that Eq.(4.0.2) has unbounded solutions when

γ > β + A. (4.2.11)

Clearly, when (4.2.11) holds, by the stable manifold theorem, the equation
has also bounded solutions because the equilibrium of the equation is a saddle
point. We will now show that when (4.2.11) holds, every positive and bounded
solution of Eq.(4.0.2) converges to the positive equilibrium.

Theorem 4.2.2 Assume that

γ > β + A.

Then every positive and bounded solution of Eq.(4.0.2) converges to the posi-
tive equilibrium

x̄ =
β + γ −A +

√
(β + γ −A)2 + 4α

2
.
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PROOF Let {xn} be a positive and bounded solution of Eq.(4.0.2). We
claim that, eventually,

xn >
βA− α

γ
. (4.2.12)

Otherwise, for some N sufficiently large,

xN+1 =
α + βxN + γxN−1

A + xN
≤ βA− α

γ
,

which implies that

xN−1 <
A

γ

βA− α

γ
,

which implies

xN−3 < (
A

γ
)2

βA− α

γ
,

. . .

which eventually leads to a contradiction. Therefore, (4.2.12) is true and so
the function

F (u, v) =
α + βu + γv

A + u

decreases in u and increases in v. Now by Theorem 1.6.6 it follows that the
subsequences of the even and the odd terms converge to finite limits. Set

LE = lim
n→∞

x2n and LO = lim
n→∞

x2n+1.

By taking limits in Eq.(4.0.2) we find

LE =
α + βLO + γLE

A + LO
and LO =

α + βLE + γLO

A + LE
.

Hence,
ALE + LOLE = α + βLO + γLE

ALO + LELO = α + βLE + γLO

and by subtracting we find

(γ − β −A)(LO − LE) = 0.

In view of our assumption this is true if and only if

LO = LE .

It remains to show that
LE = LO > 0.

Otherwise,
LE = LO = 0,
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that is
x2n ↘ 0 and x2n+1 ↘ 0.

However, this is impossible because, for n sufficiently large,

0 ≥ x2n+1 − x2n−1 =
α + βx2n + (γ −A− x2n)x2n−1

A + x2n
> 0

and so the proof is complete.

The following period-two trichotomy result for Eq.(4.0.3) was established
in [70]. For the proof see Theorem 4.3.1.

Theorem 4.2.3 Assume that

γ + δ + A > 0.

Then Eq.(4.0.3) has the following period-two trichotomy:
(a) Assume that

γ < δ + A.

Then every solution of Eq.(4.0.3) has a finite limit.

(b) Assume that
γ = δ + A.

Then every solution of Eq.(4.0.3) converges to a (not necessarily prime) period-
two solution of Eq.(4.0.3).

(c) Assume that
γ > δ + A.

Then Eq.(4.0.3) has unbounded solutions for some initial conditions.

The trichotomy results for Eqs.(4.0.2) and (4.0.3) were unified and extended
in the higher order equation

xn+1 =
α + γxn−(2l+1) + δxn−2m

A + xn−2m
, n = 0, 1, . . . (4.2.13)

with nonnegative parameters and with arbitrary nonnegative initial condi-
tions. See [129].

Let p be defined as follows:

p =





2m + 1, if γ = δ = A = 0
l + 1, if α = δ = 0 and A > 0
gcd(l + 1, 2m + 1), otherwise.
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Then the following trichotomy result is true for Eq.(4.2.13). A detailed proof
is given in [124] and so it will be omitted here.

Theorem 4.2.4

1. Assume that
γ < δ + A.

Then every solution of Eq.(4.2.13) converges to a finite limit.

2. Assume that
γ = δ + A.

Then every solution of Eq.(4.2.13) converges to a (not necessarily prime)
period-2p solution.

3. Assume that
γ > δ + A.

Then Eq.(4.2.13) has unbounded solutions for some initial conditions.

Finally the following period-two trichotomy result was established in [72].
For the proof see Theorem 4.3.1.

Theorem 4.2.5 Assume that

γ + A + B > 0.

Then Eq.(4.0.4) has the following period-two trichotomy:
(a) Assume that

γ < A.

Then every solution of Eq.(4.0.4) has a finite limit.

(b) Assume that
γ = A.

Then every solution of Eq.(4.0.4) converges to a (not necessarily prime) period-
two solution of Eq.(4.0.4).

(c) Assume that
γ > A.

Then Eq.(4.0.4) has unbounded solutions for some initial conditions.

Conjecture 4.2.1 Show that the only possible nonlinear period-two trichotomies
that Eq.(4.0.1) may have are those three presented in this section.
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4.3 Period-Two Trichotomy of xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

Consider the third-order rational difference equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2
, n = 0, 1, . . . (4.3.1)

with nonnegative parameters α, β, γ, δ, A, B, D and with arbitrary non-
negative initial conditions x−2, x−1, x0 such that the denominator is always
positive.

The following result unifies Theorems 4.2.1, 4.2.2, and 4.2.3.

Theorem 4.3.1 Assume that

β +γ +δ +A+B > 0, β(δ +D) = δ(β +B) = 0, and B +D > 0. (4.3.2)

Then Eq.(4.3.1) has the following period-two trichotomy:
(a) Assume that

γ < β + δ + A.

Then every solution of Eq.(4.3.1) has a finite limit.

(b) Assume that
γ = β + δ + A.

Then every solution of Eq.(4.3.1) converges to a (not necessarily prime) period-
two solution of Eq.(4.3.1).

(c) Assume that
γ > β + δ + A.

Then Eq.(4.3.1) has unbounded solutions for some initial conditions.

PROOF We will give the proofs of statements (a) and (b). For the proof
of statement (c), see the proofs of Theorems 3.1.1, 3.2.1, and 3.3.1. The result
is clearly true when γ = 0 and so we assume that γ > 0. We divide the proof
into four cases as follows:

Case 1:
A < γ ≤ β + δ + A (4.3.3)

or
γ ≤ A, βA−Bα ≤ 0, and δA−Dα ≤ 0. (4.3.4)
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In this case we will show that the function

f(xn, xn−1, xn−2) =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

is eventually either strictly decreasing in xn, or strictly decreasing in xn−2,
or strictly decreasing in both arguments xn and xn−1. Note that the above
function is strictly decreasing in xn if and only if

Bγxn−1 > βA−Bα (4.3.5)

and also strictly decreasing in xn−2 if and only if

Dγxn−1 > δA−Dα. (4.3.6)

This is obvious when (4.3.4) holds and so it remains to show that (4.3.3)
implies (4.3.5) or (4.3.6). Suppose for the sake of contradiction that for some
N , sufficiently large,

BγxN+1 =
Bγα + BγβxN + Bγ2xN−1 + BγδxN−2

A + BxN + DxN−2
≤ βA−Bα

and

DγxN+1 =
Dγα + DγβxN + Dγ2xN−1 + DγδxN−2

A + BxN + DxN−2
≤ δA−Dα.

Then, clearly,

Bγα+(Bβ(γ−A)+B2α)xN+Bγ2xN−1+(Bδ(γ−A)+BDα)xN−2 ≤ A(βA−Bα)

and

Dγα+(δB(γ−A)+DBα)xN+Dγ2xN−1+(Dδ(γ−A)+D2α)xN−2 ≤ A(δA−Dα),

from which it follows that either

BγxN−1 <
A

γ
· (βA−Bα)

or
DγxN−1 <

A

γ
· (δA−Dα).

Similarly, it follows that either

BγxN−3 < (
A

γ
)2 · (βA−Bα)

or
DγxN−3 < (

A

γ
)2 · (δA−Dα),
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which eventually leads to a contradiction.

Next we will prove that there exist positive numbers L and U such that the
solution {xn} lies eventually in the interval [L,U ]. First we prove that the
solution is eventually bounded from below by the positive constant γ−A

B+D . This
is obvious when (4.3.4) holds. Now assume that (4.3.3) holds and suppose for
the sake of contradiction that there exists N large enough such that

xN+1 =
α + βxN + γxN−1 + δxN−2

A + BxN + DxN−2
≤ γ −A

B + D
.

Then, clearly,

α+
βB + βD −B(γ −A)

B + D
xN+γxN−1+

δB + δD −D(γ −A)
B + D

xN−2 ≤ A· γ −A

B + D
.

Also,

α + B · β + δ + A− γ

B + D
xN + γxN−1 + D · β + δ + A− γ

B + D
xN−2 ≤ A · γ −A

B + D
,

from which it follows that

xN−1 ≤ A

γ
· γ −A

B + D
.

Similarly,

xN−3 ≤ (
A

γ
)2 · γ −A

B + D

which eventually leads to a contradiction. Hence there exist N sufficiently
large and positive numbers L,U with

L >
γ −A

B + D
and U =

α + (β + δ)L
(B + D)L− (γ −A)

such that
xN−2, xN−1, xN ∈ [L,U ].

Then

L ≤ α + (β + δ)U + γL

A + (B + D)U
≤ xN+1 =

α + βxN + γxN−1 + δxN−2

A + BxN + DxN−2

≤ α + (β + δ)L + γU

A + (B + D)L
= U

and the result follows by induction. When

A < γ < β + δ + A,
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or
γ < A, βA−Bα ≤ 0, and δA−Dα ≤ 0,

or
γ = A, βA−Bα ≤ 0, δA−Dα ≤ 0, and β + δ > 0,

the function

f(xn, xn−1, xn−2) =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

satisfies the hypotheses of Theorem 1.6.7 and so every solution of Eq.(4.3.1)
converges to a finite limit in this case.

When
γ = β + δ + A,

the function

f(xn, xn−1, xn−2) =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

satisfies the hypotheses of Theorem 1.6.9, or the hypotheses of Theorem 1.6.10,
or the hypotheses of Theorem 1.6.6, and so every solution converges to a (not
necessarily prime) period-two solution in this case.

Case 2:
γ < A and βA−Bα > 0 (4.3.7)

or
γ < A and δA−Dα > 0. (4.3.8)

In this case

xn+1 ≤ α + βxn + δxn−2

A + Bxn + Dxn−2
+

γ

A
· xn−1 ≤ max(α, β, δ)

min(A,B, D)
+

γ

A
· xn−1

and, by applying Theorem 1.4.1, we see that the solution is bounded from
above.

We will give the proof in the case when (4.3.7) holds. The proof when
(4.3.8) holds is similar and will be omitted. First note that

βA−Bα > 0 ⇒ δ = D = 0

and so the function

f(xn, xn−1, xn−2) =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2
=

α + βxn + γxn−1

A + Bxn

strictly increases in all variables. It suffices to show that, eventually,

xn ≤ βA−Bα

Bγ
.
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Suppose for the sake of contradiction that there exists N sufficiently large
such that

xN+1 =
α + βxN + γxN−1

A + BxN
>

βA−Bα

Bγ
= M0.

Then, clearly,

α + (β − βA−Bα

γ
)xN + γxN−1 > A · βA−Bα

Bγ
.

Note that

α + (β − βA−Bα

γ
)xN < max(α, α + (β − βA−Bα

γ
)U) = K

where U is an upper bound for the solution {xn}. Then

xN−1 >
A

γ
· βA−Bα

Bγ
− K

γ
=

A

γ
·M0 − K

γ
= M1.

Similarly,

xN−3 >
A

γ
·M1 − K

γ
= M2,

which eventually leads to a contradiction. Hence, the function

f(xn, xn−1, xn−2) =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

satisfies the hypotheses of Theorem 1.6.7 and so every solution converges to
a finite limit in this case.

Case 3:
γ = A, α > 0, and βA−Bα > 0 (4.3.9)

or
γ = A, α > 0, and δA−Dα > 0. (4.3.10)

We will give the proof when (4.3.9) holds. The proof when (4.3.10) holds is
similar and will be omitted. First note that

βA−Bα > 0 ⇒ δ = D = 0.

Hence, the function

f(xn, xn−1, xn−2) =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2
=

α + βxn + γxn−1

γ + Bxn

increases in xn−1. We will show in this case that the solution {xn} is bounded
from above and from below by positive constants and that f is eventually
decreasing in xn.
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First we will show that the solution is eventually bounded from below by
the positive constant βA−Bα

Bγ . Suppose for the sake of contradiction that there
exists N sufficiently large such that

xN+1 =
α + βxN + γxN−1

γ + BxN
≤ βA−Bα

Bγ
.

Then, clearly,

α +
Bα

γ
xN + γxN ≤ βA−Bα

Bγ
,

from which it follows that

min(xN , xN−1) <
γ2

γ2 + Bα
· βA−Bα

Bγ
.

Similarly,

min(xN−1, xN−2, xN−3, xN−4) < (
γ2

γ2 + Bα
)2 · βA−Bα

Bγ
,

which eventually leads to a contradiction. Hence, the function f increases in
xn−1 and decreases in xn. Also in this case,

xn+1 ≤ α + βxn

γ + Bxn
+

γ

γ + B · βA−Bα
Bγ

·xn−1 ≤ max(α, β)
min(γ, B)

+
γ

γ + B · βA−Bα
Bγ

·xn−1

and by applying Theorem 1.4.1, we see that the solution is bounded from
above and so the function f(xn, xn−1, xn−2) satisfies the hypotheses of The-
orem 1.6.7. Hence, every solution converges to a finite limit in this case.

Case 4:
γ = A, α = 0, and βA−Bα > 0 (4.3.11)

or
γ = A, α = 0, and δA−Dα > 0. (4.3.12)

We will give the proof in the case when (4.3.11) holds. The proof when (4.3.12)
holds is similar and will be omitted. Note that

βA−Bα > 0 ⇒ δ = D = 0.

In this case Eq.(4.3.1) takes the normalized form

xn+1 =
βxn + γxn−1

γ + xn
. (4.3.13)

Let {xn} be a positive solution of Eq.(4.3.13). Clearly, for all n ≥ 0

xn+1 − β =
γ(xn−1 − β)

γ + xn
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and

xn+1 − xn−1 =
xn(β − xn−1)

γ + xn
,

from which it follows that

x2n → x and x2n+1 → y.

Then, clearly,

y =
βx + γy

γ + x
and x =

βy + γx

γ + y
,

from which it follows that
x = y = β.

The proof is complete.

What is it that makes Eq.(4.3.1) possess a period-two trichotomy?

Could the period-two trichotomy of Eq.(4.3.1) be predicted from
the linearized equation of Eq.(4.3.1) and its dominant characteristic
root?

Open Problem 4.3.1 Assume that (4.3.2) holds and that

γ = β + δ + A.

Determine the set of all initial conditions x−2, x−1, x0 such that the solution
{xn} of Eq.(4.3.1) converges to an equilibrium point of Eq.(4.3.1).

Open Problem 4.3.2 Assume that (4.3.2) holds and that

γ = β + δ + A.

Let
. . . , φ, ψ, . . . (4.3.14)

be a prime period-two solution of Eq.(4.3.1). Determine the set of all initial
conditions x−2, x−1, x0 such that the solution {xn} of Eq.(4.3.1) converges
to the prime period-two solution (4.3.14).

Open Problem 4.3.3 Assume that (4.3.2) holds and that

γ = β + δ + A.

Let x−2, x−1, x0 be given. Determine the period-two solution (4.3.14) to
which the solution {xn} of Eq.(4.3.1) converges.
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Open Problem 4.3.4 Assume that (4.3.2) holds and that

γ > β + δ + A.

Show that every positive and bounded solution of Eq.(4.3.1) converges to the
positive equilibrium.

4.4 Period-Three Trichotomy of xn+1 =
δxn−2

A + Bxn + Cxn−1

The only nonlinear period-three trichotomy result known for Eq.(4.0.1) is the
following:

Theorem 4.4.1 Assume that

A,B, C ∈ [0,∞) and B + C > 0.

Then the solutions of the equation

xn+1 =
xn−2

A + Bxn + Cxn−1
, n = 0, 1, . . . (4.4.1)

have the following period-three trichotomy behavior.
(a) When

A > 1,

every solution of Eq.(4.4.1) converges to zero.
(b) When

A = 1,

every solution of Eq.(4.4.1) converges to a period-three solution of the form

. . . , 0, 0, φ, 0, 0, φ, . . .

with φ ≥ 0.
(c) When

0 ≤ A < 1,

Eq.(4.4.1) has unbounded solutions for some initial conditions.

PROOF (a) The proof is a consequence of the inequality,

xn+1 ≤ 1
A

xn−2, for n ≥ 0



128 Dynamics of Third-Order Rational Difference Equations

and the fact that Eq.(4.4.1) has no prime period-three solutions when A > 1.
(b) The proof is a consequence of the inequality

xn+1 ≤ xn−2, for n ≥ 0

and the fact that Eq.(4.4.1) has prime period-three solutions

. . . , φ, ψ, ω, . . .

if and only if A = 1, φ > 0, and ψ = ω = 0.
(c) When A ∈ (0, 1), an unbounded solution of Eq.(4.4.1) is

0, 0, 1, 0, 0,
1
A

, 0, 0,
1

A2
, . . . .

When A = 0, B > 0, and C > 0, Eq.(4.4.1) can be written in the normalized
form

xn+1 =
xn−2

Bxn + xn−1
, n = 0, 1, . . . . (4.4.2)

The solution of Eq.(4.4.2) with

x−2 = 0, x−1 = x > 0, and x0 = y > 0

is explicitly given by (see [60])

x3n+1 = 0
x3n+2 = (Bx)Fn

ByFn+1

x3n+3 = yFn+2

(Bx)Fn+1

}
for n = 0, 1, . . . ,

with the exponents Fn being the Fibonacci numbers with F0 = F1 = 1, and
for certain values of x and y is unbounded.

Finally, when A = B = 0 or A = C = 0, Eq.(4.4.1) reduces to

xn+1 =
xn−2

xn
or xn+1 =

xn−2

xn−1
, n = 0, 1, . . . .

Both equations are reducible to linear third-order difference equations, that
have a lot of unbounded solutions. The proof is complete.

The following extension of Theorem 4.4.1 was presented in [146] for the
rational equation

xn+1 =
xn−k

A +
∑k−1

i=0 Bixn−i

, n = 0, 1, ... (4.4.3)

with nonnegative parameters and with arbitrary nonnegative initial conditions
such that the denominator is always positive.
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Theorem 4.4.2 Assume k ≥ 2. Then the following period-three trichotomy
result holds for Eq.(4.4.3):

(a) When
A > 1,

every solution of Eq.(4.4.3) converges to zero.

(b) When
A = 1,

every solution of Eq.(4.4.1) converges to a period-(k+1) solution of the
form

. . . , 0, 0, . . . , φ, 0, 0, . . . , φ, . . . ,

with φ ≥ 0.

(c) When
0 ≤ A < 1,

Eq.(4.4.3) has unbounded solutions.

PROOF The proof is similar to the proof of Theorem 4.4.1 and is omitted.

What is it that makes Eq.(4.4.3) possess a period-three trichotomy?

Could the period-three trichotomy of Eq.(4.4.3) be predicted from
the linearized equation of Eq.(4.4.3) and its dominant characteristic
root?

4.5 Period-Four Trichotomy of xn+1 =
α + βxn + δxn−2

Cxn−1

The only period-four trichotomy result known for Eq.(4.0.1) is the following
conjecture. See [59] and [150].

Conjecture 4.5.1 Assume that

α, β ∈ [0,∞).

Then the following period-four trichotomy result is true for the rational equa-
tion

xn+1 =
α + βxn + xn−2

xn−1
, n = 0, 1, . . . . (4.5.1)



130 Dynamics of Third-Order Rational Difference Equations

(a) Every solution of Eq.(4.5.1) converges to its positive equilibrium if and
only if

β > 1.

(b) Every solution of Eq.(4.5.1) converges to a (not necessarily prime) period-
four solution of Eq.(4.5.1) if and only if

β = 1.

(c) Eq.(4.5.1) has unbounded solutions if and only if

β < 1.

Part (a) of this conjecture has not been confirmed yet. Part (b) was confirmed
in [59] and is based on the identity:

xn+3 − xn−1 =
1

xn+2
(xn+2 − xn−2), n = 0, 1, . . . .

Another proof of part (b) and a generalization of it is given in the following
theorem. See [222].

Theorem 4.5.1 Assume that

α ∈ [0,∞) and k ∈ {1, 2, . . .}.

Then every solution of the equation

xn+1 =
α + xn + xn−k

xn−k+1
, n = 0, 1, . . .

converges to a periodic solution of period 2k.

PROOF The proof is a consequence of the identity

xn+1 − xn−2k+1 =
xn − xn−2k

xn−k+1
, for n ≥ 0.

Finally, part (c) of this conjecture was confirmed in [150].

What is it that makes Eq.(4.5.1) possess a period-four trichotomy?

Could the period-four trichotomy of Eq.(4.5.1) be predicted from
the linearized equation of Eq.(4.5.1) and its dominant characteristic
root?
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4.6 Period-Five Trichotomy of xn+1 =
α + δxn−2

Bxn

The only period-five trichotomy result known for Eq.(4.0.1) is the following.
See [54], [59], and [151].

Theorem 4.6.1 Assume α ≥ 0. Then the following statements are true for
the difference equation

xn+1 =
α + xn−2

xn
, n = 0, 1, . . . . (4.6.1)

(a) Assume that

α > 1.

Then every solution of the Eq.(4.6.1) converges to its positive equilib-
rium point.

(b) Assume that

α = 1.

Then every solution of Eq.(4.6.1) converges to a (not necessarily prime)
period-five solution of Eq.(4.6.1).

(c) Assume that

α < 1.

Then Eq.(4.6.1) has unbounded solutions.

Part (a) was established in [151]. See also [54]. Part (b) of the trichotomy
was established in [59]. The proof is based on the identity

xn+4 − xn−1 =
1

xn+3
(xn+3 − xn−2), n = 0, 1, . . . .

For the complete proof of part (c) see Theorem 3.6.1 in Section 3.6.

What is it that makes Eq.(4.6.1) possess a period-five trichotomy?

Could the period-five trichotomy of Eq.(4.6.1) be predicted from
the linearized equation of Eq.(4.6.1) and its dominant characteristic
root?
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4.7 Period-Six Trichotomy of xn+1 =
α + βxn

Cxn−1 + xn−2

The only period-six trichotomy result known for Eq.(4.0.1) is the following.
See [59].

Conjecture 4.7.1 Assume that

α, C ∈ [0,∞).

Then the following period-six trichotomy result is true for the rational equation

xn+1 =
α + xn

Cxn−1 + xn−2
, n = 0, 1, . . . . (4.7.1)

(a) Every solution of Eq.(4.7.1) converges to its positive equilibrium if and
only if

αC2 > 1.

(b) Every solution of Eq.(4.7.1) converges to a (not necessarily prime) period-
six solution of Eq.(4.7.1) if and only if

αC2 = 1.

(c) Eq.(4.7.1) has unbounded solutions if and only if

αC2 < 1.

No part of this trichotomy has been confirmed yet.

What is it that makes Eq.(4.7.1) possess a period-six trichotomy?

Could the period-six trichotomy of Eq.(4.7.1) be predicted from
the linearized equation of Eq.(4.7.1) and its dominant characteristic
root?
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Known Results for Each
of the 225 Special Cases

5.0 Introduction

This chapter is the heart of this book. In this chapter we present the known
results on each of the 225 special cases of the third-order rational difference
equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.0.1)

with nonnegative parameters α, β, γ, δ, A,B, C, D and with arbitrary nonneg-
ative initial conditions x−2, x−1, x0, such that the denominator is always pos-
itive.

In several special cases we also present some new results and pose some
open problems and conjectures on the character of their solutions.

Whenever we can, we extend the results to the general (k + 1)st-order
rational difference equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . . . (5.0.2)

The ultimate goal for the reader is to generalize each case in this chapter
to the most general functional equation

xn+1 = f(xn, . . . , xn−k), n = 0, 1, . . . .

A few of the 225 special cases we present in this chapter are trivial, linear,
or reducible to linear. We only include them here for the sake of completeness
and continuity of presentation.

Most nontrivial cases are written in normalized form by using a change of
variables of the form xn = λyn. This allows for two of the parameters in the
equation to be assumed to be equal to 1. Of course in some equations there
is some restriction, concerning which pair of parameters we assume equal to
1. For example, in Section 5.26 we cannot assume that both B and C can be
taken equal to one.

133
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5.1 Equation #1 : xn+1 =
α

A

The equation in this special case is trivial.

5.2 Equation #2 : xn+1 =
α

Bxn

In this special case every nontrivial solution of the equation is periodic with
period two.

It is interesting to note that periodicity may destroy the boundedness of
solutions of the equation

xn+1 =
α

xn
, n = 0, 1, . . . (5.2.1)

as the following example shows.

Example 5.2.1 (see [62] Let

αn =

{
α0, if n = 2k

α1, if n = 2k + 1
, k = 0, 1, . . .

with α0, α1 ∈ (0,∞). Then every solution of the equation,

xn+1 =
αn

xn
, n = 0, 1, . . . (5.2.2)

is unbounded if and only if
α0 6= α1.

Indeed, one can see, by induction, that every solution of Eq.(5.2.2) is, for
n ≥ 0, given by

x2n+2 = (
α1

α0
)n+1 · x0

and
x2n+3 = (

α0

α1
)n+1 · α0

x0
.

That is, in Eq.(5.2.1) periodicity may destroy the boundedness of its
solutions.
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Do you see a pattern in the periodic character of the equations

xn+1 =
1
xn

, n = 0, 1, . . .

xn+1 =
1

xnxn−1
, n = 0, 1, . . .

. . .

xn+1 =
1

xn · · ·xn−k
, n = 0, 1, . . . ?

Do you see a pattern in the periodic convergence character of the equations

xn+1 =
1
xn

+
1

xn−2
, n = 0, 1, . . .

xn+1 =
1

xnxn−1
+

1
xn−3xn−4

, n = 0, 1, . . .

. . .

xn+1 =
1∏k

i=0 xn−i

+
1

∏2(k+1)
j=k+2 xn−j

, n = 0, 1, . . . ?

What is going on? See [4], [32], [91], and [94].

Open Problem 5.2.1 Let k be a nonnegative integer and let {αn} be a non-
negative periodic sequence with prime period p ≥ 2. Obtain necessary and
sufficient conditions on p and

α0, . . . , αp−1

such that every positive solution of the equation

xn+1 =
αn∏k

i=0 xn−i

+
1

∏2(k+1)
j=k+2 xn−j

, n = 0, 1, . . . (5.2.3)

converges to a periodic solution with period (k + 2).

Open Problem 5.2.2 Let k be a nonnegative integer and let {αn} be a con-
vergent sequence with

lim
n→∞

αn = α > 0.

Investigate the global character of solutions of Eq.(5.2.3).
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5.3 Equation #3 : xn+1 =
α

Cxn−1

In this special case every nontrivial solution of the equation is periodic with
period four. Clearly, periodicity may destroy the boundedness of solutions of
the equation in the title. See [62].

5.4 Equation #4 : xn+1 =
α

Dxn−2

In this special case every nontrivial solution of the equation is periodic with
period six. Clearly, periodicity may destroy the boundedness of solutions of
the equation in the title. See [62].

5.5 Equation #5 : xn+1 =
β

A
xn

The equation in this special case is linear.

5.6 Equation #6 : xn+1 =
β

B

The equation in this special case is trivial.
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5.7 Equation #7 : xn+1 =
βxn

Cxn−1

The equation in this special case can be written in the normalized form

xn+1 =
xn

xn−1
, n = 0, 1, . . .

with arbitrary positive initial conditions. Every nontrivial solution of this
equation is periodic with period six. If

x−1 = φ and x0 = ψ,

the solution of the equation is the six-cycle:

φ, ψ,
ψ

φ
,
1
φ

,
1
ψ

,
φ

ψ
, . . . .

What is it that makes every solution of a difference equation peri-
odic with the same period?

Open Problem 5.7.1 Assume f ∈ C1([0,∞), [0,∞)) and let k be a given
integer greater than one. Find necessary and sufficient conditions on f and k
so that every positive solution of the difference equation

xn+1 =
f(xn)
xn−1

, n = 0, 1, . . .

is periodic with period k.

For some work on this problem, see [1], [11], and [204].
It is interesting to note that periodicity may destroy the boundedness of

solutions of the equation

xn+1 =
βxn

xn−1
, n = 0, 1, . . . (5.7.1)

as the following example shows.

Example 5.7.1 (see [62]) Let

βn =

{
1, if n = 6k + i with i ∈ {0, 1, 2, 3, 4}
β, if n = 6k + 5

, k = 0, 1, . . .
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with β > 0. Then every solution of the equation

xn+1 =
βnxn

xn−1
, n = 0, 1, . . . (5.7.2)

with initial conditions
x−1 = x0 = 1 (5.7.3)

is unbounded, if and only if
β 6= 1.

Indeed, one can see, by induction, that the solution of the IVP (5.7.2) and
(5.7.3), for n ≥ 0, is given by

x6n+5 = 1
x6n+6 = βn+1

x6n+7 = βn+1

x6n+8 = 1

x6n+9 =
1

βn+1

x6n+10 =
1

βn+1
.

Therefore, in Eq.(5.7.1), periodicity may destroy the boundedness of
its solutions. For some results on the asymptotic behavior of the nonau-
tonomous Eq.(5.7.2), see [10].

Open Problem 5.7.2 Let {βn} be a positive periodic sequence with prime
period p ≥ 2. Obtain necessary and sufficient conditions on p and

β0, . . . , βp−1

such that every solution of Eq.(5.7.2) is bounded.

Remark 5.7.1 It is interesting to note that every solution of the equation

xn+1 =
βxn

xn−1
· · · xn−2k

xn−(2k+1)
, n = 0, 1, . . .

is periodic with period (6 + 4k). The case k = 0 is Eq.(5.7.1).
Extend and generalize the open problem 5.7.2 using this equation.

5.8 Equation #8 : xn+1 =
βxn

Dxn−2

The change of variables, xn = eyn , transforms Eq.(#8) to a linear equation.
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5.9 Equation #9 : xn+1 =
γ

A
xn−1

The equation in this special case is linear. This equation has a period-two
trichotomy depending on whether

γ < A, γ = A, or γ > A.

See Chapter 4 for the three nonlinear period-two trichotomies of Eq.(4.0.1).
This equation has infinitely many prime period-two solutions if and only if

γ = A

and no prime period-two solutions otherwise.
The only other second-order rational difference equations with infinitely

many prime period-two solutions are, in normalized form, given by

xn+1 =
α + βxn + γxn−1

A + xn
, n = 0, 1, . . .

and
xn+1 =

xn−1

A + xn + xn−1
, n = 0, 1, . . . .

See Chapter 4 and Eq.(#109) in Section 5.109.
On the other hand, the only second-order rational difference equations with

a “unique” prime period-two solution

. . . , φ, ψ, . . .

are, in normalized form, given by

xn+1 =
α + βxn + xn−1

A + Bxn + xn−1
, n = 0, 1, . . .

with

α+β > 0, β+A < 1, B > 1, and 4α < (1−β−A)[B(1−β−A)−(1+3β−A)]

and
xn+1 =

xn−1

A + Bxn + xn−1
, n = 0, 1, . . .

with
A ∈ [0, 1), B 6= 1, and A + B > 0.



140 Dynamics of Third-Order Rational Difference Equations

Open Problem 5.9.1 (a) Determine all special cases of Eq.(5.0.2) with in-
finitely many prime period-two solutions and investigate their global behavior.

(b) Determine all special cases of Eq.(5.0.2) with a “unique” prime period-
two solution and investigate the local asymptotic stability of the period-two
solution.

5.10 Equation #10 : xn+1 =
γxn−1

Bxn

The change of variables, xn = eyn , transforms Eq.(#10) to a linear equation.

5.11 Equation #11 : xn+1 =
γ

C

The equation in this special case is trivial.

5.12 Equation #12 : xn+1 =
γxn−1

Dxn−2

The change of variables, xn = eyn , transforms Eq.(#12) to a linear equation.

5.13 Equation #13 : xn+1 =
δ

A
xn−2

The equation in this special case is linear.
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5.14 Equation #14 : xn+1 =
δxn−2

Bxn

The change of variables, xn = eyn , transforms Eq.(#14) to a linear equation.

5.15 Equation #15 : xn+1 =
δxn−2

Cxn−1

The change of variables, xn = eyn , transforms Eq.(#15) to a linear equation.

5.16 Equation #16 : xn+1 =
δ

D

The equation in this special case is trivial.

5.17 Equation #17 : xn+1 =
α

A + Bxn

The following 11 special cases of Eq.(5.0.1)

#17, #18, #19, #20, #21, #22,
#101, #102, #103, #104, #133

are special cases of the more general (k + 1)st-order difference equation

xn+1 =
1

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . . (5.17.1)
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with nonnegative parameters and with arbitrary nonnegative initial conditions
x−k, . . . , x0 such that the denominator is always positive.

Equation (5.17.1) was investigated in [91], [101], [103], [124], [157], and
[208]. The following result establishes that when

A > 0,

the equilibrium of Eq.(5.17.1) is globally asymptotically stable.

Theorem 5.17.1 Assume that

A > 0.

Then the equilibrium x̄ of Eq.(5.17.1) is globally asymptotically stable.

PROOF The characteristic equation of the linearized equation of Eq.(5.17.1)
about its equilibrium x̄ is

λk+1 +
x̄

A + x̄
∑k

i=0 Bi

·
k∑

i=0

Bk−iλ
i = 0. (5.17.2)

It is now a consequence of Theorem 1.2.5 that all roots of Eq.(5.17.2) lie inside
the unit disk and so x̄ is locally asymptotically stable. It remains to show
that x̄ is a global attractor, that is, every solution of Eq.(5.17.1) converges to
x̄. To this end, first note that for n ≥ 1,

xn ≤ 1
A

and so also
xn ≥ 1

A + 1
A

∑k
i=0 Bi

.

Hence, every solution of Eq.(5.17.1) is bounded from above and from below
by positive numbers. Clearly, the function

f(z0, . . . , zk) =
1

A +
∑k

i=0 Bizi

satisfies the Hypotheses of Theorem 1.6.7 (a′) from which the result follows.
The proof is complete.

The next result establishes the character of solutions of Eq.(5.17.1) when

A = 0.

In this case it is convenient to rewrite Eq.(5.17.1) in the form

xn =
1∑k

i=1 Bixn−li

, n = 0, 1, . . . , (5.17.3)



Known Results for Each of the 225 Special Cases 143

where
Bi > 0, for i = 1, . . . , k

and
li ∈ {1, 2, . . . }.

It is an amazing fact that the character of solutions of Eq.(5.17.3) does not
depend on the size of the coefficients B1, . . . , Bk but only on the parity of the
delays l1, . . . , lk as the following theorem shows.

Theorem 5.17.2 Let d1 and d2 be the greatest common divisors of the two
sets of positive integers:

{l1, l2, . . . , lk}
and

{li + lj : i, j ∈ {1, . . . , k}},
respectively. Then the following statements are true:

(a) The equilibrium x̄ of Eq.(5.17.3) is globally asymptotically stable if and
only if

d1 = d2.

(b) When
d1 6= d2,

every solution of Eq.(5.17.3) converges to a (not necessarily prime)
period-(2 · d1) solution.

PROOF The proof is a consequence of Theorem 1.6.1. For the details see
[124] or [101] and [103].

Open Problem 5.17.1 (see [62]) Let {Bn} be a periodic sequence of non-
negative real numbers with prime period k ≥ 2 and let l be a positive integer.
Obtain necessary and sufficient conditions on k, l, and B0, . . . , Bk−1 such
that every positive solution of the difference equation

xn+1 =
1

Bnxn + xn−l
, n = 0, 1, . . .

is bounded. Extend and generalize.

Open Problem 5.17.2 Let {Bn} be a convergent sequence of positive real
numbers and let l be a positive integer. Investigate the character of solutions
of the difference equation

xn+1 =
1

Bnxn + xn−l
, n = 0, 1, . . . .

Extend and generalize.
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5.18 Equation #18 : xn+1 =
α

A + Cxn−1

It is a consequence of Theorem 5.17.1 that the equilibrium of this equation is
globally asymptotically stable.

5.19 Equation #19 : xn+1 =
α

A + Dxn−2

It is a consequence of Theorem 5.17.1 that the equilibrium of this equation is
globally asymptotically stable.

5.20 Equation #20 : xn+1 =
α

Bxn + Cxn−1

It is a consequence of Theorem 5.17.2 that the equilibrium of this equation is
globally asymptotically stable.

Open Problem 5.20.1 Let {Bn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Obtain necessary and sufficient conditions
on k and B0, . . . , Bk−1 such that every positive solution of the difference
equation

xn+1 =
1

Bnxn + xn−1
, n = 0, 1, . . .

is bounded. Extend and generalize.

Open Problem 5.20.2 Let {Bn} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

xn+1 =
1

Bnxn + xn−1
, n = 0, 1, . . . .

Extend and generalize.
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Open Problem 5.20.3 Assume that B is a given real number. Determine
the “good” set G of the equation

xn+1 =
1

Bxn + xn−1
, (5.20.1)

that is, the set of initial conditions

x−1, x0 ∈ <
such that the equation (5.20.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.20.1) for all initial conditions in the “good”
set G.

5.21 Equation #21 : xn+1 =
α

Bxn + Dxn−2

This equation was investigated in [91] and is a special case of a more general
equation investigated in Section 5.17. It follows from Theorem 5.17.2 that
every solution of this equation converges to a period-two solution.

Open Problem 5.21.1 Assume that

B > 0

and that
. . . , φ, ψ, φ, ψ, . . . (5.21.1)

is a given prime period-two solution of the equation

xn+1 =
1

Bxn + xn−2
, n = 0, 1, . . . . (5.21.2)

Determine, explicitly in terms of B, φ, and ψ, the set of all nonnegative
initial conditions x−2, x−1, x0 such that the solution {xn}∞n=−2 converges to
(5.21.1).

Open Problem 5.21.2 Assume that

B > 0

and that x−2, x−1, and x0 are given positive numbers. Determine, explicitly
in terms of B, x−2, x−1, and x0, the values φ and ψ of the period-two solution
(5.21.1) to which the solution {xn}∞n=−2 of Eq.(5.21.2) converges.
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Open Problem 5.21.3 Let k and l be given nonnegative integers. Deter-
mine the set of all initial conditions for which the solutions of the equation

xn+1 =
1

xn−k
+

1
xn−l

, n = 0, 1, . . .

converge to
√

2.

Conjecture 5.21.1 Show that the solution of the IVP

xn+1 =
1

xn−2 + xn
,

x−2 = x−1 = x0 = 1

converges to a prime period-two solution of the form (5.21.1).

Open Problem 5.21.4 Assume that B is a given real number. Determine
the “good” set G of the equation

xn+1 =
1

Bxn + xn−2
, n = 0, 1, . . . , (5.21.3)

that is, the set of all initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.21.3) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.21.3) for all initial conditions in the “good”
set G.

5.22 Equation #22 : xn+1 =
α

Cxn−1 + Dxn−2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.2 that the equilibrium of the
equation is globally asymptotically stable.

Open Problem 5.22.1 Let {Cn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Obtain necessary and sufficient conditions
on k and C0, . . . , Ck−1 such that every positive solution of the difference
equation

xn+1 =
1

Cnxn−1 + xn−2
, n = 0, 1, . . .

is bounded. Extend and generalize.
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Open Problem 5.22.2 Let {Cn} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

xn+1 =
1

Cnxn−1 + xn−2
, n = 0, 1, . . . .

Extend and generalize.

Open Problem 5.22.3 Assume that C is a given real number. Determine
the “good” set G of the equation

xn+1 =
1

Cxn−1 + xn−2
, (5.22.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.22.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.22.1) for all initial conditions in the “good”
set G.

5.23 Equation #23 : xn+1 =
βxn

A + Bxn

This equation or, more precisely, the difference equation

xn+1 =
rKxn

K + (r − 1)xn
, n = 0, 1, . . . (5.23.1)

arises in application to population dynamics and it is known as the Bev-
erton -Holt equation. See [83]. The parameter K is positive and is called
the “carrying capacity” of the population and the parameter r is greater
than 1 and is called the “inherent growth rate” of the population. As we
will see in this section all solutions of Eq.(5.23.1), with x0 > 0, approach the
positive equilibrium K as n →∞. Actually, this equation is a special case of
the so-called Riccati difference equation

xn+1 =
α + βxn

A + Bxn
, n = 0, 1, . . . .

For the character of solutions of the Riccati equation with real parameters
and real initial conditions see Section 5.65. The equation in the title can be
written in the normalized form

xn+1 =
xn

A + xn
, n = 0, 1, . . . (5.23.2)
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with A > 0 and x0 ≥ 0. Clearly,

xn+1 ≤ 1
A

xn, for n ≥ 0

and so when
A ≥ 1,

every solution of Eq.(5.23.2) converges monotonically to the zero equilibrium
of the equation.

On the other hand, when
A < 1,

we claim that every positive solution converges to the positive equilibrium

x̄ = 1−A.

This result follows from Remark 5.65.1 (on the general Riccati equation) and
the observation that if

lim
n→∞

xn = 0,

then, eventually,

xn+1 =
xn

A + xn
≥ xn

A + 1−A
= xn,

which is a contradiction.
Another way to establish the character of solutions of Eq.(5.23.2) is to use

a stairstep diagram or the following simple result.

Theorem 5.23.1 Let I be a set of real numbers and let

F : I → I

be an increasing function. Then every solution of the difference equation

xn+1 = F (xn), n = 0, 1, . . .

is increasing if and only if
x1 ≥ x0

and is decreasing if and only if

x1 ≤ x0.

PROOF The proof is a simple consequence of the monotonicity of the
function F .
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We now present two general global asymptotic stability results that apply
to several special cases of the (k + 1)st-order rational difference equation

xn+1 =
α +

∑k
i=0 βixn−i

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . . (5.23.3)

with A > 0, the remaining parameters nonnegative, with

k∑

i=0

βi and
k∑

i=0

Bi ∈ (0,∞),

and with arbitrary nonnegative initial conditions such that the denominator
is always positive. For some general results on Eq.(5.23.3), see also [157].

The characteristic equation of the linearized equation of Eq.(5.23.3) about
an equilibrium point x̄ is

λk+1 +
1

A + x̄ ·∑k
i=0 Bi

k∑

i=0

(Bix̄− βi)λk−i = 0. (5.23.4)

Zero is an equilibrium point of Eq.(5.23.3) if and only if

α = 0 and A > 0. (5.23.5)

As we will see later, when (5.23.5) holds, the zero equilibrium of Eq.(5.23.3)
is globally asymptotically stable when

A >
k∑

i=0

βi (5.23.6)

and unstable when

A <
k∑

i=0

βi.

Eq.(5.23.3) has a positive equilibrium point if and only if

either
α > 0 (5.23.7)

or

α = 0 and A <
k∑

i=0

βi. (5.23.8)

When (5.23.7) holds, the equation has the unique equilibrium point

x̄ =
β −A +

√
(β −A)2 + 4αB

2B
, (5.23.9)
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where for simplicity we use the notation,

β =
k∑

i=0

βi and B =
k∑

i=0

Bi.

When (5.23.8) holds, Eq.(5.23.3) has the unique positive equilibrium point

x̄ =
β −A

B
.

Note that

1
A + Bx̄

k∑

i=0

|Bix̄− βi| ≤ 1
A + Bx̄

· (Bx̄ + β). (5.23.10)

Therefore, by Theorem 1.2.5 and (5.23.10), the equilibrium of Eq.(5.23.3) is
locally asymptotically stable when (5.23.6) holds.

Note that the condition (5.23.6) is at best a sufficient condition for the
positive equilibrium of Eq.(5.23.3) to be locally asymptotically stable. In
every special case of Eq.(5.23.3) we should strive to determine the
“entire” region of the local asymptotic stability of the positive equi-
librium, when such equilibrium exists.

Open Problem 5.23.1 Assume that

k ≥ 4.

Obtain the region of the local asymptotic stability of the positive equilibrium
of Eq.(5.23.3) (when a positive equilibrium exists) explicitly, in terms of the
parameters of the equation.

For the values of k ∈ {1, 2, 3}, 1.2.3, and 1.2.4 in
Chapter 1. The open problem 5.23.1 is asking for easily verifiable conditions
in the spirit of Theorems 1.2.2, 1.2.3, and 1.2.4.

Theorem 5.23.2 Assume that

β =
k∑

i=0

βi < A.

Then the following statements are true:

(i) If
α = 0,

the zero equilibrium of Eq.(5.23.3) is globally asymptotically stable.

see Theorems 1.2.2,
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(ii) If
α > 0,

the positive equilibrium of Eq.(5.23.3) is globally asymptotically stable.

PROOF As we saw in the discussion preceding the Theorem, the equilib-
rium is locally asymptotically stable when α ≥ 0. Furthermore, we have

xn+1 ≤ α

A
+

1
A

k∑

i=0

βixn−i,

which, together with Theorem 1.4.1, implies that the solution converges to
zero in case (i) and also that the solution is bounded from above in case (ii).
Now in case (ii) let

S = lim sup
n→∞

xn and I = lim inf
n→∞

xn.

Then, clearly,

S ≤ α + βS

A + BI
and I ≥ α + βI

A + BS
,

from which it follows that

α + (β −A)I ≤ BSI ≤ α + (β −A)S.

Hence,
S = I

and the proof is complete.

In the very special case when

A =
k∑

i=0

βi > 0 and α > 0,

the global character of solutions of Eq.(5.23.3) is completely described by the
following result in [224]. In this case it is preferable to write the difference
equation in the form

xn =
α +

∑k
r=1 βrxn−ir

A +
∑m

t=1 Bjxn−jt

, n = 1, 2, . . . . (5.23.11)

Also, by making a change of variables, if necessary, we may and do assume that
the greatest common divisor of all “delays” in the numerator and denominator
is 1, that is,

gcd{i1, . . . , ik, j1, . . . , jm} = 1.
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Theorem 5.23.3 Assume that

α, β1, . . . , βk, B1, . . . , Bm ∈ (0,∞) and A =
k∑

i=1

βi.

Then when the “delays” in the numerator

i1, . . . , ik are all even

and the “delays” in the denominator

j1, . . . , jm are all odd,

every solution of Eq.(5.23.11) converges to a period-two solution. In every
other case of delays, every solution of Eq.(5.23.11) has a finite limit.

PROOF The proof is a straightforward application of Theorem 1.6.11
(a′) and (b′) and the fact that all solutions of Eq.(5.23.11) are bounded from
above and from below by positive constants.

Theorem 5.23.4 Assume that

α = 0 and β =
k∑

i=0

βi = A. (5.23.12)

and that one of the following three conditions is satisfied:

(a)
βiBi > 0 for some i ∈ {0, . . . , k}. (5.23.13)

(b)

β0 > 0. (5.23.14)

(c)
B0 > 0 and Eq.(5.23.3) has no period-two solutions. (5.23.15)

Then the zero equilibrium of Eq.(5.23.3) is globally asymptotically stable.

PROOF Observe that

xn+1 ≤ max
0≤i≤k

xn−i.

From this it follows that the zero equilibrium is locally stable and also that
every solution of the equation is bounded.

Let {xn}∞n=−k be a positive solution of Eq.(5.23.3). It remains to show
that when (5.23.12) holds and one of the three conditions (5.23.13), (5.23.14),
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or (5.23.15) is satisfied, then the zero equilibrium of Eq.(5.23.3) is a global
attractor of all solutions. Set

S = lim sup
n→∞

xn and I = lim inf
n→∞

xn.

Then
S ≤ βS

β + BI
and I ≥ βI

β + BS
,

from which it follows that
SI = 0 .

Now, clearly, there exists a sequence of indices {ni} and positive numbers
{L−r}k

r=0 such that
S = lim

i→∞
xni+1

and
L−r = lim

i→∞
xni−r, for r = 0, . . . , k.

Then from Eq.(5.23.3) we find

S =
∑k

i=0 βiL−i

A +
∑k

i=0 BiL−i

. (5.23.16)

When (5.23.13) is satisfied, it follows from (5.23.16) that

L−i = S = I

for the i that (5.23.13) is satisfied. Otherwise,

L−i < S or L−i > I

for the i that (5.23.13) is satisfied and so

SI < 0,

which is a contradiction.
When (5.23.14) is satisfied, it follows from (5.23.16) that

L−i = S for all i = 0, . . . , k

and
L−i = I for all i ∈ {0, . . . , k}, for which Bi > 0.

Otherwise, there exists i0 ∈ {0, . . . , k} such that

L−i0 < S or L−i0 > I

and so
SI < 0,
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which is a contradiction.
When (5.23.15) is satisfied, it follows from (5.23.16) that for all m ≥ 0

L−2m = I and L1−2m = S.

Otherwise, there exists m0 ≥ 0 such that

L−2m0 > I or L1−2m < S

and so
SI < 0,

which is a contradiction. Hence,

. . . , I, S, I, S, . . .

is a period-two solution of Eq.(5.23.3), which is a contradiction. The proof is
complete.

Remark 5.23.1 When

α = 0, β = A, and B > 0,

the zero equilibrium is not always globally asymptotically stable. When
the equation has periodic solutions, it is not. When k = 2, the cases
where only the zero equilibrium exists and the equation has periodic so-
lutions are the following:

#29, #35, #36, #109, #110, #113.

In the special cases #29, #109, and #110 every solution of the equa-
tion converges to a (not necessarily prime) period-two solution, and in
cases #35, #36, and #113 every solution converges to a (not necessar-
ily prime) period-three solution. Furthermore, the zero equilibrium in
all these special cases is only stable but not asymptotically stable.

Open Problem 5.23.2 Assume that

α = 0 and A =
k∑

i=0

βi > 0.

Obtain necessary and sufficient conditions in terms of k, the delays in the
equation, and β0, B0, . . . , βk, Bk so that the zero equilibrium of Eq.(5.23.3)
is globally asymptotically stable.
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Conjecture 5.23.1 Assume that

α = 0 and A =
k∑

i=0

βi > 0

and that Eq.(5.23.3) has no periodic solutions with prime period p ≥ 2. Show
that the zero equilibrium of Eq.(5.23.3) is globally asymptotically stable.

5.24 Equation #24 : xn+1 =
βxn

A + Cxn−1

This equation, called Pielou’s equation, was investigated in [186]. See also
[154] and [157]. The more general equation

Nt+1 =
aNt

1 + bNt−k
,

where k is a nonnegative integer was proposed by Pielou in her books ([209,
p. 22] and [210, p. 79]) as a discrete analogue of the delay logistic equation

N ′(t) = rN(t)[1− N(t− τ)
P

].

Eq.(#24) can be written in the normalized form

xn+1 =
βxn

1 + xn−1
, n = 0, 1, . . . (5.24.1)

with positive parameter β and with arbitrary nonegative initial conditions
x−1, x0.

Zero is always an equilibrium point of Eq.(5.24.1). The characteristic equa-
tion of the linearized equation of Eq.(5.24.1) about the zero equilibrium is

λ2 − βλ = 0. (5.24.2)

By Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.24.1)
is globally asymptotically stable when

β ≤ 1. (5.24.3)
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From (5.24.2) and Theorem 1.2.2 it follows that the zero equilibrium is un-
stable when

β > 1. (5.24.4)

Furthermore, when (5.24.4) holds, Eq.(5.24.1) has also the unique positive
equilibrium point

x̄ = β − 1.

The characteristic equation of the linearized equation of Eq.(5.24.1) about the
positive equilibrium, x̄ = β − 1, is

λ2 − λ +
β − 1

β
= 0.

From this and Theorem 1.2.2 it follows that x̄ = β−1 is locally asymptotically
stable when (5.24.4) holds.

In [186] it was shown that when (5.24.4) holds, every positive solution of
Eq.(5.24.1) converges to the positive equilibrium, x̄ = β − 1.

5.24.1 The Autonomous Pielou’s Equation

The main result in this section is the following new proof for the Pielou’s equa-
tion 5.24.1, which in the next section will be adapted to the nonautonomous
case.

Theorem 5.24.1 Assume that

β > 1.

Then every positive solution of Eq.(5.24.1) converges to the positive equilib-
rium

x̄ = β − 1.

PROOF Let {xn} be a positive solution of Eq.(5.24.1). Then for n ≥ 1,

xn+1 =
βxn−1

1 + xn−1
· β

1 + xn−2
(5.24.5)

and so the solution is bounded from above by β2. Next, we claim that the
solution is also bounded from below by a positive constant. Otherwise, there
exists a sequence of indices {ni} such that

xni+1 → 0, and xni+1 < xj for all j < ni + 1. (5.24.6)
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Then from (5.24.1), the subsequences {xni} and {xni−1} converge to zero.
Hence, eventually,

xni−1 < β − 1,

which implies that, eventually,

xni+1 =
βxni

1 + xni−1
>

βxni

1 + (β − 1)
= xni .

This contradicts (5.24.6) and establishes our claim that the solution is bounded
from below by a positive constant.

Set
S = lim sup

n→∞
xn and I = lim inf

n→∞
xn.

Then it follows from (5.24.5) that

S ≤ βS

1 + S

β

1 + I
and I ≥ βI

1 + I

β

1 + S

which imply that
(1 + S)(1 + I) = β2. (5.24.7)

Clearly, there exists a sequence of indices {ni} and positive numbers {L−t}2t=0

such that
xni+1 → S

and for t ∈ {0, 1, 2}
xni−t → L−t.

Thus, from (5.24.5) and (5.24.7) we see that

S =
β2L−1

(1 + L−1)(1 + L−2)
=

(1 + S)(1 + I)
(1 + L−1)(1 + L−2)

· L−1 ≤ S

and so
L−1 = S and L−2 = I.

Furthermore, from (5.24.1) and (5.24.7),

L0 =
βL−1

1 + L−2
=

βS

1 + I
=

S(1 + S)
β

≤ S

and so S = β − 1 = I and the proof is complete.
In addition to the proof given above, observe that the function

f(z2, z3) =
β2z2

(1 + z2)(1 + z3)

satisfies the Hypotheses of Theorem 1.6.9. Hence, every solution of Eq.(5.24.5)
and consequently, every solution of Eq.(5.24.1) both converge to a (not nec-
essarily prime) period-two solution. From this and the fact that Eq.(5.24.1)
has no prime period-two solutions the result follows. The proof is complete.
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5.24.2 Periodically Forced Pielou’s Equation

In this section we investigate the global character of solutions of the periodi-
cally forced Pielou’s equation

xn+1 =
βnxn

1 + xn−1
, n = 0, 1, . . . (5.24.8)

and prove that when the sequence {βn} is periodic with prime period k, with
positive values, and

k−1∏

i=0

βi > 1, (5.24.9)

every positive solution converges to a periodic solution with prime period k.
Difference equations with periodic coefficients have been studied by several

authors especially in connection with mathematical models in biology. See
[62], [183], [75], [82], [83], [99], [100], [153], and [157].

In Section 5.24.1 we presented a new, simple, and elegant proof that, when
(5.24.4) holds, every positive solution of Eq.(5.24.1) converges to the positive
equilibrium (β − 1). It is an amazing fact that the idea of our proof also
extends to the periodically forced Eq.(5.24.8). This enables us in this section
to establish that when the coefficient {βn} is periodic with period k, with
positive values, that is:

βn =





β0, if n = kj

β1, if n = kj + 1
. . .

βk−1, if n = kj + k − 1

, j = 0, 1, . . .

with
βi ∈ (0,∞), i = 0, . . . , k − 1,

and when (5.24.9) holds, every positive solution of Eq.(5.24.8) converges to a
periodic solution with period k.

The special case where the sequence {βn} is periodic with period two was
recently investigated in [183]. The method of that proof is different from our
proof and does not seem to extend to higher periods.

The following theorem extends to the periodic case the result of the au-
tonomous case when

k−1∏

i=0

βi ≤ 1. (5.24.10)

Its proof is simple and will be omitted.

Theorem 5.24.2 Assume that (5.24.10) holds. Then every nonnegative so-
lution of Eq.(5.24.8) converges to zero.
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It is easy to see that, as in the autonomous case, every positive solution of
the periodically forced equation (5.24.8) is bounded from above and, further-
more, when (5.24.9) holds, every positive solution is also bounded from below
by a positive constant.

Our goal now is to show that, when {βn} is a positive periodic sequence with
prime period k and (5.24.9) holds, then every positive solution of Eq.(5.24.8)
converges to a periodic solution with prime period k. To this end, let {yn} be
an arbitrary, but fixed for the remaining part of this section, positive solution
of Eq.(5.24.8).

For a fixed k ∈ {1, 2, . . . } and for every integer i, we define the sequences
{Si}, {Ii} as follows:

Si = lim sup
n→∞

ykn+i and Ii = lim inf
n→∞

ykn+i.

Clearly, for all integer values of j,

Sj+k = Sj and Ij+k = Ij .

To make the proof very clear, we will first give the details for k = 2. The
key idea now is to establish the following identities, which extend the Identity
(5.24.7) of the autonomous case:

(1 + S1)(1 + I0) = (1 + S0)(1 + I1) = β0β1. (5.24.11)

Lemma 5.24.1 (5.24.11) holds.

PROOF Clearly, for n ≥ 1,

y2n+1 =
β0β1y2n−1

(1 + y2n−1)(1 + y2n−2)
,

from which it follows that

(1 + S1)(1 + I0) ≤ β0β1 ≤ (1 + I1)(1 + S0).

Also, from

y2n+2 =
β1β0y2n

(1 + y2n)(1 + y2n−1)

we obtain
(1 + S0)(1 + I1) ≤ β1β0 ≤ (1 + I0)(1 + S1),

from which (5.24.11) follows.

Theorem 5.24.3 Assume that {βn} is a positive periodic sequence with prime
period two and that (5.24.9) holds. Then {yn} converges to a prime period-two
solution.
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PROOF Clearly, there exist two sequences of indices, {ni} and {nj}, and
positive numbers, {U−t}3t=0 and {L−t}3t=0, such that

S1 = lim
i→∞

y2ni+1 and I1 = lim
j→∞

y2nj+1

and for each t ∈ {0, 1, 2, 3},

U−t = lim
i→∞

y2ni−t and L−t = lim
j→∞

y2nj−t.

Then,

S1 =
β0β1U−1

(1 + U−1)(1 + U−2)

from which it follows that

U−1 = S1 and U−2 = I0

because otherwise
S1 <

β0β1S1

(1 + S1)(1 + I0)
,

which contradicts (5.24.11). Similarly,

U−3 = S1.

Also,

U0 =
β1S1

1 + I0
=

β0β1I0

(1 + I0)(1 + S1)
= I0

and so
β1S1 = I0(1 + I0).

Similarly,
β1I1 = S0(1 + S0).

Therefore,
I0 = S0 and I1 = S1.

Hence, the two subsequences {y2n} and {y2n+1} converge to finite limits. Set

l0 = lim
n→∞

y2n and l1 = lim
n→∞

y2n+1.

By taking limits in Eq.(5.24.8) we obtain

l1 =
β0l0

1 + l1
and l0 =

β1l1
1 + l0

and so, clearly, {yn} converges to the prime period-two solution of Eq.(5.24.8)

. . . , l0, l1, . . . .
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The proof is complete.

We now turn to the case where the period k is an arbitrary even number
equal to 2p. The key idea here is to observe that the following identities,
which extend the Identities in (5.24.11), hold for the solution {yn}:

p−1∏

i=0

(1 + S2i)(1 + I2i+1) =
p−1∏

i=0

(1 + I2i)(1 + S2i+1) =
2p−1∏

i=0

βi. (5.24.12)

Theorem 5.24.4 Assume that {βn} is a positive periodic sequence with prime
period k = 2p and that (5.24.9) holds. Then {yn} converges to a prime period-
2p solution.

PROOF Clearly, there exist 2p sequences of indices,

{n1,i}, {n3,i}, . . . , {n2p−1,i}

and
{n1,j}, {n3,j}, . . . , {n2p−1,j},

and 2p sequences of positive numbers,

{U1,−t}∞t=0, {U3,−t}∞t=−2, . . . , {U2p−1,−t}∞t=2−2p,

{L1,−t}∞t=0, {L3,−t}∞t=−2, . . . , {L2p−1,−t}∞t=2−2p,

such that for r ∈ {1, . . . , 2p− 1} and tr ∈ {1− r, . . . }

Sr = lim
i→∞

y(2p)·nr,i+r, Ir = lim
i→∞

y(2p)·nr,j+r,

Ur,−tr = lim
i→∞

y(2p)·nr,i−tr
, and Lr,−t = lim

j→∞
y(2p)·nr,j−tr

.

Then
S1 =

β0β2p−1U1,−1

(1 + U1,−1)(1 + U1,−2)

S3 =
β2β1U3,1

(1 + U3,1)(1 + U3,0)
. . .

S2p−1 =
β2p−2β2p−3U2p−1,2p−3

(1 + U2p−1,2p−3)(1 + U2p−1,2p−4)
,

from which it follows that

U1,−1 = S2p−1, U1,−2 = I2p−2

U3,1 = S1, U3,0 = I0
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. . .

U2p−1,2p−3 = S2p−3, U2p−1,2p−4 = I2p−4

because otherwise

p−1∏

i=0

(1 + S2i−1)(1 + I2i) <

2p−1∏

i=0

βi,

which contradicts (5.24.12). Similarly,

U1,−3 = S2p−3, U1,−4 = I2p−4

U3,−1 = S2p−1, U3,−2 = I2p−2

. . .

U2p−1,2p−5 = S2p−5, U2p−1,2p−6 = I2p−6

and, inductively,

U1,−(2j−1) = S1,2p−(2j−1) and U1,−(2j) = S2p−(2j) j = 1, 2, . . . .

One can see, by iterating Eq.(5.24.8), that

S1 =
β0β2p−1 · · ·β2U1,−(2p−2)∏2p−1

i=1 (1 + U1,−i)
,

from which it follows that

β1S1 =
∏2p−1

i=0 βiI2∏p−1
i=0 (1 + S2i+1)

∏p−1
i=1 (1 + I2i)

and so
β1S1 = I2(1 + I0).

Similarly,
β1I1 = S2(1 + S0)

and so
S0 = I0, S1 = I1, and S2 = I2

and, inductively,
Si = Ii, i = 0, 1, . . . , 2p− 1.

Hence, the 2p subsequences {y(2p)·n+i} for i ∈ {0, . . . , 2p − 1} converge to
finite limits. Set

li = lim
n→∞

y(2p)·n+i, for each i ∈ {0, . . . , 2p− 1}.
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By taking limits in Eq.(5.24.8) we obtain

li =
βi−1li−1

1 + li−2
, for each i ∈ {0, . . . , 2p− 1}

and so, clearly, {yn} converges to the prime period-2p solution

. . . , l0, . . . , l2p−1, . . . .

The proof is complete.

We now turn to the odd case k = 2p + 1. The key idea of the proof now is
to establish the following identities:

Si =
βi−1βi−2Si−2

(1 + Si−2)(1 + Ii−3)
and Ii =

βi−1βi−2Ii−2

(1 + Ii−2)(1 + Si−3)
, (5.24.13)

which are satisfied by the sequences {Si} and {Ii}.

Lemma 5.24.2 (5.24.13) holds.

PROOF We have

y(2p+1)·n+1 =
β0β2py(2p+1)·n−1

(1 + y(2p+1)·n−1)(1 + y(2p+1)·n−2)
,

from which it follows that

S1 ≤ β0β2p−1S2p

(1 + S2p)(1 + I2p−1)
and I1 ≥ β0β2pI2p

(1 + I2p)(1 + S2p−1)

or, equivalently,

S1

I1
· 1 + S2p

1 + I2p
≤ β0β2pS2p

I1(1 + I2p)(1 + I2p−1)
≤ S2p

I2p
· 1 + S2p−1

1 + I2p−1
. (5.24.14)

Similarly, we get

S2

I2
· 1 + S0

1 + I0
≤ β1β0S0

I2(1 + I0)(1 + I2p)
≤ S0

I0
· 1 + S2p

1 + I2p
(5.24.15)

. . .

S0

I0
· 1 + S2p−1

1 + I2p−1
≤ β2pβ2p−1S2p−1

I0(1 + I2p−1)(1 + I2p−2)
≤ S2p−1

I2p−1
· 1 + S2p−2

1 + I2p−2
. (5.24.16)

To complete the proof of (5.24.13), we need to establish that all the above
inequalities reduce to equalities. To this end, it follows from (5.24.14) and
(5.24.15) that

S1

I1
· S2

I2
· 1 + S0

1 + I0
≤ S2p

I2p
· S0

I0
· 1 + S2p−1

1 + I2p−1
. (5.24.17)
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Similarly,
S2

I2
· S3

I3
· 1 + S1

1 + I1
≤ S0

I0
· S1

I1
· 1 + S2p

1 + I2p
. (5.24.18)

. . .

S0

I0
· S1

I1
· 1 + S2p

1 + I2p
≤ S2p−1

I2p−1
· S2p

I2p
· 1 + S2p−2

1 + I2p−2
. (5.24.19)

Hence,

S0

I0
· S1

I1
· 1 + S2p

1 + I2p
≤ S2p−1

I2p−1
· S2p

I2p
· 1 + S2p−2

1 + I2p−2
≤ S2p−3

I2p−3
· S2p−2

I2p−2
· 1 + S2p−4

1 + I2p−4

≤ . . . ≤ S1

I1
· S2

I2
· 1 + S0

1 + I0
≤ S2p

I2p
· S0

I0
· 1 + S2p−1

1 + I2p−1

≤ S2p−2

I2p−2
· S2p−1

I2p−1
· 1 + S2p−3

1 + I2p−3

≤ · · · ≤ S2

I2
· S3

I3
· 1 + S1

1 + I1
≤ S0

I0
· S1

I1
· 1 + S2p

1 + I2p
,

from which it follows that

S0

I0
· 1 + S2p−1

1 + I2p−1
=

β2pβ2p−1S2p−1

I0(1 + I2p−1)(1 + I2p−2)
=

S2p−1

I2p−1
· 1 + S2p−2

1 + I2p−2

and so we establish equality in (5.24.16). The remaining cases are established
in a similar fashion.

Theorem 5.24.5 Assume that {βn} is a positive periodic sequence of prime
period k = (2p + 1) and that (5.24.9) holds. Then {yn} converges to a prime
period-(2p + 1) solution.

PROOF Clearly, there exist subsequences {y(2p+1)·ni+1} and {y(2p+1)·ni−t}∞t=0,
and positive numbers {U−t}∞t=0 such that

S1 = lim
i→∞

y(2p+1)·ni+1 and U−t = lim
i→∞

y(2p+1)·ni−t, for t ∈ {0, 1, . . .}.

Hence,

S1 =
β0β2pU−1

(1 + U−1)(1 + U−2)
,

from which it follows that

U−1 = S2p and U−2 = I2p−1

because otherwise
S1 <

β0β2pS2p

(1 + S2p)(1 + I2p−1)
,
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which contradicts (5.24.13). Similarly,

U−3 = S2p−2 and U−4 = I2p−3.

Also,

U0 =
β2pβ2p−1U−2

(1 + U−2)(1 + U−3)
=

β2pβ2p−1I2p−1

(1 + I2p−1)(1 + S2p−2)
= I0.

Hence,

S1 =
β0I0

1 + S2p

or, equivalently,
β0I0 = S1(1 + S2p).

Similarly,
β0S0 = I1(1 + I2p)

and so
I0 = S0, I1 = S1, and I2p = S2p.

Inductively, it follows that

Ii = Si, i = 2, 3, . . . , 2p− 1.

Hence, the 2p + 1 subsequences {y(2p+1)·n+i} for i ∈ {0, . . . , 2p} converge to
finite limits. Set

li = lim
n→∞

y(2p+1)·n+i, for each i ∈ {0, . . . , 2p}.

By taking limits in Eq.(5.24.8) we obtain

li =
βi−1li−1

1 + li−2
for each i ∈ {0, . . . , 2p}.

and so, clearly, {yn} converges to the prime period-(2p + 1) solution

. . . , l0, . . . , l2p, . . . .

The proof is complete.

Open Problem 5.24.1 Assume that {βn} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of the equation

xn+1 =
βnxn

1 + xn−1
, n = 0, 1, . . . .
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Open Problem 5.24.2 Assume that β is a given real number. Determine
the “good” set G of the equation

xn+1 =
βxn

1 + xn−1
, (5.24.20)

that is, the set of initial conditions

x−1, x0 ∈ <
such that the equation (5.24.20) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.24.20) for all initial conditions in the “good”
set G.

5.25 Equation #25 : xn+1 =
βxn

A + Dxn−2

This equation was investigated in [155] and [157]. See also Theorem 2.3.3,
where we established that every solution of the equation in this special case
is bounded. Eq.(#25) can be written in the normalized form

xn+1 =
βxn

1 + xn−2
, n = 0, 1, . . . (5.25.1)

with positive parameter β and with arbitrary nonnegative initial conditions
x−2, x−1, x0.

Zero is always an equilibrium point of Eq.(5.25.1). From Theorems 5.23.2
and 5.23.4 it follows that the zero equilibrium of Eq.(5.25.1) is globally asymp-
totically stable when

β ≤ 1 (5.25.2)

and unstable when
β > 1 . (5.25.3)

Furthermore, when Eq.(5.25.3) holds, Eq.(5.25.1) has also the unique positive
equilibrium point

x̄ = β − 1.

The characteristic equation of the linearized equation of Eq.(5.25.1) about the
positive equilibrium, x̄ = β − 1, is

λ3 − λ2 +
β − 1

β
= 0.
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From this and Theorem 1.2.3 it follows that x̄ = β−1 is locally asymptotically
stable when

1 < β <
3 +

√
5

2
(5.25.4)

and unstable when

β >
3 +

√
5

2
.

When

β =
3 +

√
5

2
,

x̄ is a nonhyperbolic equilibrium. In fact, in this case the three roots of the
corresponding characteristic equation are:

λ1 =
1−√5

2
, λ2 =

1 +
√

5− i
√

10− 2
√

5
4

, and λ3 =
1 +

√
5 + i

√
10− 2

√
5

4
.

Conjecture 5.25.1 Assume that (5.25.4) holds. Show that every positive
solution of Eq.(5.25.1) converges to the positive equilibrium, x̄ = β − 1.

Conjecture 5.25.2 Assume that

β >
3 +

√
5

2
.

Show that Eq.(5.25.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Open Problem 5.25.1 Assume that {βn} is a periodic sequence of positive
real numbers with prime period k ≥ 2. Investigate the global character of
solutions of the equation

xn+1 =
βnxn

1 + xn−2
, n = 0, 1, . . . . (5.25.5)

Open Problem 5.25.2 Assume that {βn} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of Eq.(5.25.5).

Open Problem 5.25.3 Assume that β is a given real number. Determine
the “good” set G of the equation

xn+1 =
βxn

1 + xn−2
, (5.25.6)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.25.6) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.25.6) for all initial conditions in the “good”
set G.
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5.26 Equation #26 : xn+1 =
βxn

Bxn + Cxn−1

Eq.(#26) can be written in the normalized form

xn+1 =
xn

Bxn + xn−1
, n = 0, 1, . . . (5.26.1)

with positive parameter B and with arbitrary positive initial conditions x−1,
x0.

Eq.(5.26.1) has the unique equilibrium point

x̄ =
1

B + 1
.

The characteristic equation of the linearized equation of Eq.(5.26.1) about the
equilibrium x̄ is

λ2 − 1
B + 1

λ +
1

B + 1
= 0.

It follows by Theorem 1.2.2 that x̄ is locally asymptotically stable, as long as
B > 0.

The change of variables

xn =
1

B + yn
,

transforms Eq.(5.26.1) into the difference equation

yn+1 =
B + yn

B + yn−1
, n = 0, 1, . . . . (5.26.2)

This equation, which is a special case of #66, was investigated in [158]. See
also [157, p. 73] where it is shown that the equilibrium ȳ = 1 of Eq.(5.26.2)
is globally asymptotically stable.

Here we give a new proof based on Theorem 1.6.7 that every solution of
Eq.(5.26.2) converges to a finite limit.

Theorem 5.26.1 Every solution of Eq.(5.26.2) converges to a finite limit.

PROOF Let {yn} be a solution of Eq.(5.26.2). We will show that {yn} is
bounded from above and from below by positive constants. Clearly, for n ≥ 1,

yn+1 =
B + yn

B + yn−1
=

B

B + yn−1
+

1
B + yn−2

≤ 1 +
1
B

, (5.26.3)
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from which it follows that {yn} is bounded from above. In view of (5.26.3),
we find that, for n ≥ 3,

yn+1 ≥ B

B + 1 + 1
B

+
1

B + 1 + 1
B

and so {yn} is also bounded from below.

We rewrite (5.26.2) in the following form:

B + yn+1 = B +
B

B + yn−1
+

1
B + yn−2

, n = 1, 2, . . . . (5.26.4)

The change of variables

wn =
1

B + yn

transforms Eq.(5.26.4) into the difference equation

wn+1 =
1

B + Bwn−1 + wn−2
, n = 1, 2, . . . .

Clearly, the function

f(z2, z3) =
1

B + Bz2 + z3
(5.26.5)

satisfies the Hypotheses of Theorem 1.6.7(a′) from which the result follows.
The proof is complete.

Note that the conclusion of Theorem 5.26.1 also follows by employing Theorem
5.17.1 to (5.26.5).

Open Problem 5.26.1 Let {αn} be a periodic sequence with nonnegative
values with period k. Investigate the global character of solutions of the equa-
tion

xn+1 =
αn + xn

αn + xn−1
, n = 0, 1, . . . . (5.26.6)

Open Problem 5.26.2 Assume that {αn} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of Eq.(5.26.6).

Open Problem 5.26.3 Let α be a real number. Investigate the “good” set
G of the equation

xn+1 =
α + xn

α + xn−1
, (5.26.7)

with real initial conditions. That is, find all x−1, x0 ∈ < such that the equation
(5.26.7) is well defined for all n ≥ 0. Investigate the character of solutions of
Eq.(5.26.7) for all x−1, x0 ∈ G.
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5.27 Equation #27 : xn+1 =
βxn

Bxn + Dxn−2

Eq.(#27) can be written in the normalized form

xn+1 =
xn

Bxn + xn−2
, n = 0, 1, . . . (5.27.1)

with positive parameter B and with arbitrary positive initial conditions x−2,
x−1, x0. The change of variables

xn =
1

B + yn

transforms Eq.(5.27.1) into the difference equation

yn+1 =
B + yn

B + yn−2
, n = 0, 1, . . . . (5.27.2)

By Theorem 2.3.3 it follows that every solution of Eq.(5.27.2) is bounded from
above and clearly is also bounded from below by positive constants.

Eq.(5.27.2) has the unique equilibrium

ȳ = 1.

The characteristic equation of the linearized equation of Eq.(5.27.2) about the
equilibrium ȳ is

λ3 − 1
B + 1

λ2 +
1

B + 1
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium ȳ of Eq.(5.27.2)
is locally asymptotically stable when

B > −1 +
√

2 (5.27.3)

and unstable when
B < −1 +

√
2.

Here we present a new proof about the global stability of the equilibrium ȳ
of Eq.(5.27.2) when

B ≥ 1.

Theorem 5.27.1 Assume that

B ≥ 1.

Then the equilibrium ȳ of Eq.(5.27.2) is globally asymptotically stable.
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PROOF Clearly, the equilibrium ȳ of Eq.(5.27.2) is locally asymptotically
stable. It suffices to show that the equilibrium of Eq.(5.27.2) is a global
attractor of all solutions. When

B > 1,

the function
f(z1, z3) =

B + z1

B + z3

satisfies the Hypotheses of Theorem 1.6.7 from which the result follows.

Also, when
B = 1,

the function
f(z1, z3) =

1 + z1

1 + z3

satisfies the Hypotheses of Theorem 1.6.8 from which the result follows.

Open Problem 5.27.1 Let {αn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Investigate the global character of solutions
of the equation

xn+1 =
αn + xn

αn + xn−2
, n = 0, 1, . . . . (5.27.4)

Open Problem 5.27.2 Assume that {αn} is a convergent sequence of posi-
tive real numbers. Investigate the global character of solutions of Eq.(5.27.4).

Open Problem 5.27.3 Let α be a real number. Investigate the “good” set
G of the equation

xn+1 =
α + xn

α + xn−2
, (5.27.5)

with real initial conditions. That is, find all x−2, x−1, x0 ∈ < such that the
equation (5.27.5) is well defined for all n ≥ 0. Investigate the character of
solutions of Eq.(5.27.5) for all x−2, x−1, x0 ∈ G.

Conjecture 5.27.1 Assume that

−1 +
√

2 < B < 1.

Show that the equilibrium ȳ of Eq.(5.27.2) is globally asymptotically stable.

Conjecture 5.27.2 Assume that

B < −1 +
√

2.

Show that Eq.(5.27.2) has solutions that do not converge to the equilibrium
point ȳ or to a periodic solution.
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5.28 Equation #28 : xn+1 =
βxn

Cxn−1 + Dxn−2

Eq.(#28) can be written in the normalized form

xn+1 =
xn

Cxn−1 + xn−2
, n = 0, 1, . . . (5.28.1)

with positive parameter C and with arbitrary positive initial conditions x−2, x−1, x0.

The only equilibrium of Eq.(5.28.1) is

x̄ =
1

C + 1
.

The characteristic equation of the linearized equation of Eq.(5.28.1) about the
equilibrium x̄ is

λ3 − λ2 +
C

C + 1
λ +

1
C + 1

= 0.

From this and Theorem 1.2.3 it follows that the positive equilibrium x̄ is
unstable for all positive values of the parameter C.

Conjecture 5.28.1 Show that for all positive values of the parameter C,
Eq.(5.28.1) possesses unbounded solutions.

Conjecture 5.28.2 Show that every bounded solution of Eq.(5.28.1) con-
verges to the equilibrium x̄.

Open Problem 5.28.1 Investigate the behavior of bounded solutions of Eq.(5.28.1).

Open Problem 5.28.2 Let {Cn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Investigate the global character of solutions
of

xn+1 =
xn

Cnxn−1 + xn−2
, n = 0, 1, . . . .

Open Problem 5.28.3 Assume that C is a given real number. Determine
the “good” set G of the equation

xn+1 =
xn

Cxn−1 + xn−2
, (5.28.2)
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that is, the set of initial conditions

x−2, x−1, x0 ∈ <

such that the equation (5.28.2) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.28.2) for all initial conditions in the “good”
set G.

5.29 Equation #29 : xn+1 =
γxn−1

A + Bxn

Eq.(#29) can be written in the normalized form

xn+1 =
xn−1

A + xn
, n = 0, 1, . . . (5.29.1)

with positive parameter A and with arbitrary nonnegative initial conditions
x−1, x0.

Eq.(5.29.1) possesses a period-two trichotomy depending on whether

A > 1, A = 1, or A < 1.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.

The existence of solutions of Eq.(5.29.1) that converge to zero when

A = 1

and other similar results have been established, among other places, in [133],
[143], [146], [148], [149], [226], [227], and [233].

When
A < 1,

it follows from Theorem 4.2.2 that every positive and bounded solution of
Eq.(5.29.1) converges to the positive equilibrium, x̄ = 1−A.

The following amazing result gives a set of initial conditions through which
the solutions of Eq.(5.29.1), when A = 1, converge to a prime period-two
solution.

Theorem 5.29.1 Let {xn}∞n=−1 be a solution of

xn+1 =
xn−1

1 + xn
, n = 0, 1, . . . (5.29.2)
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such that for some N ≥ 0,
xN ≥ xN−1.

Then

x2n+N−1 ↓ 0 and x2n+N → to a positive limit.

PROOF Note that if
xN = xN−1

then

xN+2 =
xN

1 + xN+1
=

xN

1 + xN−1
1+xN

=
xN (1 + xN )

1 + 2xN

and
xN+1 =

xN−1

1 + xN
=

xN

1 + xN
,

from which it follows that
xN+2 > xN+1.

So without loss of generality we may assume that

xN > xN−1.

Now observe that for any n sufficiently large,

xN − xN+2 = xN − xN

1 + xN+1
=

xNxN+1

1 + xN+1

=
xN−1 − xN+1

xN+1 + 1
<

xN−1 − xN+1

x2n+N+1 + 1
.

Similarly,

xN+2 − xN+4 =
xN+1 − xN+3

xN+3 + 1
<

xN+1 − xN+3

x2n+N+1 + 1
. . .

xN+2n − xN+2n+2 =
xN+2n−1 − xN+2n+1

xN+2n+1 + 1

and by summing up we find:

xN − x2n+N+2 <
xN−1 − x2n+N+1

x2n+N+1 + 1

and so
x2n+N+2 > xN +

x2n+N+1 − xN−1

x2n+N+1 + 1
. (5.29.3)

Also,

xN+1 − xN+3 =
xN − xN+2

xN+2 + 1
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xN+3 − xN+5 =
xN+2 − xN+4

xN+4 + 1
>

xN+2 − xN+4

xN+2 + 1
· · ·

x2n+N+1 − x2n+N+3 =
x2n+N − x2n+N+2

x2n+N+2 + 1
>

x2n+N − x2n+N+2

xN+2 + 1

and by summing up we find:

xN+1 − x2n+N+3 >
xN − x2n+N+2

xN+2 + 1

and so
x2n+N+3 < xN+1 +

x2n+N+2 − xN

xN+2 + 1
. (5.29.4)

Now we claim that
1 + xN+2 <

xN

xN+1
.

This follows easily after we express all terms in terms of xN and xN−1 and
use the assumption that xN > xN−1.

Now assume for the sake of contradiction that

x2n+N+1 → x ∈ (0,∞).

Then, clearly,
x2n+N+2 ↓ 0.

and (5.29.4) yields:

0 < x ≤ xN+1 − xN

xN+2 + 1
< 0,

which is a contradiction. Hence,

x2n+N+1 ↓ 0

and so from (5.29.3) we see that

lim
n→∞

x2n+N+2 ≥ xN − xN−1 > 0.

The proof is complete.

The following amazing result is a corollary of Theorem 5.29.1.

Corollary 5.29.1 A positive solution {xn}∞n=−1 of Eq.(5.29.2) converges to
zero if and only if

xn−1 > xn, for all n ≥ 0.
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Open Problem 5.29.1 Obtain “easily verifiable” conditions which deter-
mine the set of all positive initial conditions for which the solutions of Eq.(5.29.1)
do exactly one of the following:

(i) converge to a prime period-two solution, when A = 1

(ii) converge to the positive equilibrium x̄, when A < 1

(ii) are unbounded, when A < 1

5.30 Equation #30 : xn+1 =
γxn−1

A + Cxn−1

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5.31 Equation #31 : xn+1 =
γxn−1

A + Dxn−2

This equation was investigated in [17] and [70]. Eq.(#31) possesses a period-
two trichotomy depending on whether

γ < A, γ = A, or γ > A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Open Problem 5.31.1 Assume that A is a given real number. Determine
the “good” set G of the equation

xn+1 =
xn−1

A + xn−2
, (5.31.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.31.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.31.1) for all initial conditions in the “good”
set G.
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Conjecture 5.31.1 Assume that

A < 1.

Show that every positive and bounded solution of the equation

xn+1 =
xn−1

A + xn−2
, n = 0, 1, . . .

converges to 1−A.

5.32 Equation #32 : xn+1 =
γxn−1

Bxn + Cxn−1

Eq.(#32) can be written in the normalized form

xn+1 =
xn−1

Bxn + xn−1
, n = 0, 1, . . . (5.32.1)

with positive parameter B and with arbitrary nonnegative initial conditions
x−1, x0 such that the denominator is always positive.

From Theorem 1.6.6 it follows that for all positive values of B,
every solution of Eq.(5.32.1) converges to a (not necessarily prime)
period-two solution.

The only equilibrium of Eq.(5.32.1) is

x̄ =
1

B + 1
.

In addition, Eq.(5.32.1) has period-two solutions. When

B 6= 1,

Eq.(5.32.1) has the unique prime period-two solution

. . . , 0, 1, 0, 1, . . . (5.32.2)

and when
B = 1

Eq.(5.32.1) has infinitely many prime period-two solutions of the form

. . . , x, 1− x, x, 1− x, . . .
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with
x ∈ [0, 1] and x 6= 1

2
.

When
B < 1,

every positive solution of Eq.(5.32.1) converges to the positive equilibrium x̄.
This is because the change of variables, xn = 1

yn
, transforms Eq.(5.32.1) to

the equation

yn+1 =
yn + Byn−1

yn
, n = 0, 1, . . . ,

for which we know from Theorem 4.2.1 that every positive solution converges
to the positive equilibrium.

When
B = 1,

every positive solution of Eq.(5.32.1) converges to a (not necessarily prime)
period-two solution. This is because the change of variables, xn = 1

yn
, trans-

forms Eq.(5.32.1) to the equation

yn+1 =
yn + yn−1

yn
, n = 0, 1, . . . ,

for which we know from Theorem 4.2.1 that every positive solution converges
to a (not necessarily prime) period-two solution.

If a solution {xn} of Eq.(5.32.1) is not positive, then for all n ≥ 1, we have

x2n = 0 and x2n−1 = 1 or x2n = 1 and x2n−1 = 0

and so it is eventually equal with the period-two solution (5.32.2).

Open Problem 5.32.1 Let {Bn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Determine the global character of solutions
of the difference equation

xn+1 =
xn−1

Bnxn + xn−1
, n = 0, 1, . . . .

Extend and generalize.

Open Problem 5.32.2 Let {Bn} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

xn+1 =
xn−1

Bnxn + xn−1
, n = 0, 1, . . . .

Extend and generalize.
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Open Problem 5.32.3 Assume that B is a given real number. Determine
the “good” set G of the equation

xn+1 =
xn−1

Bxn + xn−1
, (5.32.3)

that is, the set of all initial conditions

x−1, x0 ∈ <
such that the equation (5.32.3) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.32.3) for all initial conditions in the “good”
set G.

5.33 Equation #33 : xn+1 =
γxn−1

Bxn + Dxn−2

Eq.(#33) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.3.1.

Conjecture 5.33.1 Show that every bounded solution of the rational equation

xn+1 =
γxn−1

xn + xn−2
, n = 0, 1, . . .

converges to γ
2 .

Open Problem 5.33.1 Determine the set of all initial conditions x−2, x−1,
x0 so that every bounded solution of the rational equation

xn+1 =
γxn−1

xn + xn−2
, n = 0, 1, . . .

converges to γ
2 . Extend and generalize.

5.34 Equation #34 : xn+1 =
γxn−1

Cxn−1 + Dxn−2

Eq.(#34) can be written in the normalized form

xn+1 =
xn−1

xn−1 + Dxn−2
, n = 0, 1, . . . (5.34.1)
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with positive parameter D and with arbitrary nonnegative initial conditions
x−2, x−1, x0 such that the denominator is always positive.

The only equilibrium of Eq.(5.34.1) is

x̄ =
1

D + 1
.

In addition, Eq.(5.34.1) has period-two solutions. When

D 6= 1,

Eq.(5.34.1) has the unique prime period-two solution

. . . , 0, 1, 0, 1, . . . (5.34.2)

and when
D = 1,

Eq.(5.34.1) has infinitely many prime period-two solutions of the form

. . . , x, 1− x, x, 1− x, . . .

with
x ∈ [0, 1] and x 6= 1

2
.

When
D < 1,

every positive solution of Eq.(5.34.1) converges to the positive equilibrium x̄.
This is because the change of variables, xn = 1

yn
, transforms Eq.(5.34.1) to

the equation

yn+1 =
yn−2 + Dyn−1

yn−2
, n = 0, 1, . . . ,

for which we know from Theorem 4.3.1 that every positive solution converges
to the positive equilibrium.

When
D = 1,

every positive solution of Eq.(5.34.1) converges to a (not necessarily prime)
period-two solution. This is because the change of variables, xn = 1

yn
, trans-

forms Eq.(5.34.1) to the equation

yn+1 =
yn−2 + yn−1

yn−2
, n = 0, 1, . . . ,

for which we know from Theorem 4.3.1 that every positive solution converges
to a (not necessarily prime) period-two solution.
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If a solution {xn} of Eq.(5.34.1) is not positive, then for all n ≥ 1, we have

x2n = 0 and x2n−1 = 1 or x2n = 1 and x2n−1 = 0

and so it is eventually equal with the period-two solution (5.34.2).

Conjecture 5.34.1 Assume that

D > 1.

Show that every positive solution of Eq.(5.34.1) converges to a (not necessarily
prime) period-two solution.

Open Problem 5.34.1 Let {Dn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Determine the global character of solutions
of the difference equation

xn+1 =
xn−1

xn−1 + Dnxn−2
, n = 0, 1, . . . .

Extend and generalize.

Open Problem 5.34.2 Let {Dn} be a convergent sequence of positive real
numbers. Investigate the character of solutions of the difference equation

xn+1 =
xn−1

xn−1 + Dnxn−2
, n = 0, 1, . . . .

Extend and generalize.

Open Problem 5.34.3 Assume that D is a given real number. Determine
the “good” set G of the equation

xn+1 =
xn−1

xn−1 + Dxn−2
, (5.34.3)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <

such that the equation (5.34.3) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.34.3) for all initial conditions in the “good”
set G.
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5.35 Equation #35 : xn+1 =
δxn−2

A + Bxn

Eq.(#35) possesses a period-three trichotomy depending on whether

δ < A, δ = A, or δ > A.

This result is a special case of a more general period-three trichotomy result
presented in Theorem 4.4.1.

Open Problem 5.35.1 (a) Determine all positive initial conditions x−2,
x−1, and x0 through which the solutions of the equation

xn+1 =
xn−2

A + xn
, n = 0, 1, . . . (5.35.1)

converge to zero.

(b) Determine all positive initial conditions x−2, x−1, and x0 through which
the solutions of Eq.(5.35.1) converge to the prime period-three solution

. . . , 0, 0, 1, 0, 0, 1, . . . .

(c) Determine the limit of solutions of Eq.(5.35.1) with initial conditions

x−2 = x−1 = x0 = 1.

An unbounded solution of Eq.(5.35.1) when A < 1 is

0, 0, 1, 0, 0,
1
A

, 0, 0,
1

A2
, . . . .

Conjecture 5.35.1 Assume A < 1. Show that Eq.(5.35.1) has positive un-
bounded solutions and that every positive and bounded solution converges to
1−A.

5.36 Equation #36 : xn+1 =
δxn−2

A + Cxn−1

Eq.(#36) possesses a period-three trichotomy depending on whether

δ < A, δ = A, or δ > A.
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This result is a special case of a more general period-three trichotomy result
presented in Theorem 4.4.1.

Open Problem 5.36.1 Assume that A < 1. Determine the set of all initial
conditions x−2, x−1, x0 so that every positive and bounded solution of the
rational equation

xn+1 =
xn−2

A + xn−1
, n = 0, 1, . . .

converges to 1−A. Extend and generalize.

5.37 Equation #37 : xn+1 =
δxn−2

A + Dxn−2

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5.38 Equation #38 : xn+1 =
δxn−2

Bxn + Cxn−1

Eq.(#38) has unbounded solutions. This equation is part of a period-three
trichotomy presented in Theorem 4.4.1.

Open Problem 5.38.1 Assume that B is a given real number. Determine
the “good” set G of the equation

xn+1 =
xn−2

Bxn + xn−1
, (5.38.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <

such that the equation (5.38.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.38.1) for all initial conditions in the “good”
set G.
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5.39 Equation #39 : xn+1 =
δxn−2

Bxn + Dxn−2

This equation was investigated in [60]. Eq.(#39) can be written in the nor-
malized form

xn+1 =
xn−2

Bxn + xn−2
n = 0, 1, . . . (5.39.1)

with positive parameter B and with arbitrary nonnegative initial conditions
x−2, x−1, x0 such that the denominator is always positive.

The only equilibrium of Eq.(5.39.1) is

x̄ =
1

B + 1
.

The characteristic equation of the linearized equation of Eq.(5.39.1) about the
equilibrium x̄ is

λ3 +
B

B + 1
λ2 − B

B + 1
= 0.

From this and Theorem 1.2.3 it follows that the positive equilibrium x̄ of
Eq.(5.39.1) is locally asymptotically stable when

B < 1 +
√

2 (5.39.2)

and unstable when
B > 1 +

√
2.

When
B = 1 +

√
2,

x̄ is a nonhyperbolic equilibrium. In fact, the eigenvalues of the corresponding
characteristic equation are:

λ1 =
√

2
2

, λ2 = −
√

2
2

+ i

√
2

2
, and λ3 = −

√
2

2
− i

√
2

2
.

Note that λ2 and λ3 are eighth roots of unity .

In addition, Eq.(5.39.1) has period-three solutions. When

B < 1,

Eq.(5.39.1) has the unique prime period-three solution

. . . , 0, 1, 1−B, 0, 1, 1−B, . . . . (5.39.3)
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In Theorem 5.136.1 we will establish that when

B < 1,

every positive solution of Eq.(5.39.1) converges to its equilibrium point x̄. See
also [60].

When
B = 1,

every positive solution of Eq.(5.39.1) converges to its equilibrium point x̄.
This is because the change of variables, xn = 1

yn
, transforms Eq.(5.39.1) to

the equation
yn+1 = 1 +

yn−2

yn
, n = 0, 1, . . . ,

for which we know from Theorem 5.58.2 that every positive solution converges
to the positive equilibrium.

If a solution of Eq.(5.39.1) is not positive it must be of the form

x3n−2 = 0 and x3n−1, x3n > 0, n = 0, 1, . . . , (5.39.4)

or
x3n−1 = 0 and x3n−2, x3n > 0, n = 0, 1, . . . , (5.39.5)

or
x3n = 0 and x3n−2, x3n−1 > 0, n = 0, 1, . . . . (5.39.6)

Assume that (5.39.4) holds. Then, for n ≥ 1,

x3n−1 =
x3n−4

Bx3n−2 + x3n−4
= 1

and
x3n =

x3n−3

Bx3n−1 + x3n−3
=

x3n−3

B + x3n−3
.

Hence, for B < 1 and n ≥ 1,

x3n−2 = 0, x3n−1 = 1, and x3n → 1−B

and, for B ≥ 1 and n ≥ 1,

x3n−2 = 0, x3n−1 = 1, and x3n → 0.

When (5.39.5) or (5.39.6) holds, the results are similar.

Remark 5.39.1 Note that, when B ≥ 1, every nonpositive solution of Eq.(5.39.1)
converges to the three-cycle

. . . , 0, 1, 0, 0, 1, 0 . . . ,

which is not a solution of Eq.(5.39.1).
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Conjecture 5.39.1 Assume that (5.39.2) holds. Show that every positive
solution of Eq.(5.39.1) converges to its equilibrium point x̄.

Conjecture 5.39.2 Assume that

B > 123.

Show that every positive solution of Eq.(5.39.1) converges to a periodic solu-
tion of period 19.

Conjecture 5.39.3 Show that Eq.(5.39.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

5.40 Equation #40 : xn+1 =
δxn−2

Cxn−1 + Dxn−2

This equation was investigated in [60]. Eq.(#40) can be written in the nor-
malized form

xn+1 =
xn−2

Cxn−1 + xn−2
n = 0, 1, . . . (5.40.1)

with positive parameter C and with arbitrary nonnegative initial conditions
x−2, x−1, x0 such that the denominator is always positive.

The only equilibrium of Eq.(5.40.1) is

x̄ =
1

C + 1
.

The characteristic equation of the linearized equation of Eq.(5.40.1) about the
equilibrium x̄ is

λ3 +
C

C + 1
λ− C

C + 1
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.40.1)
is locally asymptotically stable when

C <
1 +

√
5

2
(5.40.2)

and unstable when

C >
1 +

√
5

2
.
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When

C =
1 +

√
5

2
,

x̄ is a nonhyperbolic equilibrium. In fact, the eigenvalues of the corresponding
characteristic equation are:

λ1 =
−1 +

√
5

2
, λ2 =

1−√5− i
√

10 + 2
√

5
4

, and λ3 =
1−√5 + i

√
10 + 2

√
5

4
.

In addition, Eq.(5.40.1) has period-three solutions. When

C < 1,

Eq.(5.40.1) has the unique prime period-three solution

. . . , 0, 1− C, 1, 0, 1− C, 1, . . . . (5.40.3)

In Theorem 5.136.1 we will establish that when

C < 1,

every positive solution of Eq.(5.40.1) converges to its equilibrium point x̄. See
also [60].

When
C = 1

every positive solution of Eq.(5.40.1) converges to its equilibrium point x̄.
This is because the change of variables, xn = 1

yn
, transforms Eq.(5.40.1) to

the equation
yn+1 = 1 +

yn−2

yn−1
, n = 0, 1, . . . ,

for which we know from Theorem 5.63.2 that every positive solution converges
to the positive equilibrium.

If a solution of Eq.(5.40.1) is not positive it must be of the form

x3n−2 = 0 and x3n−1, x3n > 0, n = 0, 1, . . . , (5.40.4)

or
x3n−1 = 0 and x3n−2, x3n > 0, n = 0, 1, . . . , (5.40.5)

or
x3n = 0 and x3n−2, x3n−1 > 0, n = 0, 1, . . . . (5.40.6)

Assume that (5.40.6) holds. Then, for n ≥ 0,

x3n+2 =
x3n−1

Cx3n + x3n−1
= 1
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and
x3n+4 =

x3n+1

Cx3n+2 + x3n+1
=

x3n+1

C + x3n+1
.

Hence, for C < 1 and n ≥ 0,

x3n+2 = 1, x3n+3 = 0, and x3n+4 → 1− C

and, for C ≥ 1 and n ≥ 0,

x3n+2 = 1, x3n+3 = 0, and x3n+4 → 0.

When (5.40.4) or (5.40.5) holds, the results are similar.

Remark 5.40.1 Note that, when C ≥ 1, every nonpositive solution of Eq.(5.40.1)
converges to the three-cycle

. . . , 1, 0, 0, 1, 0, 0 . . . ,

which is not a solution of Eq.(5.40.1).

Conjecture 5.40.1 Assume that (5.40.2) holds. Show that every positive
solution of Eq.(5.40.1) converges to its equilibrium point x̄.

Conjecture 5.40.2 Assume that

C > 8.

Show that every positive solution of Eq.(5.40.1) converges to a periodic solu-
tion of period 13.

Conjecture 5.40.3 Show that Eq.(5.40.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

5.41 Equation #41 : xn+1 =
α + βxn

A

The equation in this special case is linear.
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5.42 Equation #42 : xn+1 =
α + βxn

Bxn

This is a Riccati equation. By Remark 5.65.1 every solution of this equation
converges to its equilibrium point. For the character of solutions of Riccati
equations with real parameters and real initial conditions see Section 5.65.

Open Problem 5.42.1 Let β be a given complex number. Determine the
“good” set G of the equation

xn+1 = β +
1
xn

, (5.42.1)

that is, the set of initial conditions x0 in the complex plane such that Eq.(5.42.1)
is well defined for all n ≥ 0. Determine the character of solutions of Eq.(5.42.1)
for all initial conditions x0 ∈ G. Extend and generalize.

5.43 Equation #43 : xn+1 =
α + βxn

Cxn−1

This is the well-known Lyness’s equation, which has been investigated by
many authors. See [20], [21], [22], [116], [124], [157], [158], [174], [189], [193],
[198], [199], [215], [216], and [237].

Eq.(#43) can be written in the normalized form

xn+1 =
α + xn

xn−1
, n = 0, 1, ... (5.43.1)

with positive parameter α and with arbitrary positive initial conditions x−1,
x0.

The only equilibrium of Eq.(5.43.1) is

x̄ =
1 +

√
1 + 4α

2
.

The linearized equation of Eq.(5.43.1) about x̄ is

yn+1 − 2
1 +

√
1 + 4α

yn + yn−1 = 0, n = 0, 1, . . .
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with characteristic equation

λ2 − 2
1 +

√
1 + 4α

λ + 1 = 0 .

The characteristic roots are

λ1 =
1 + i

√
1 + 4α + 2

√
1 + 4α

1 +
√

1 + 4α
and λ2 =

1− i
√

1 + 4α + 2
√

1 + 4α

1 +
√

1 + 4α
.

For every α > 0, it holds
|λ1| = |λ2| = 1

and so x̄ is a nonhyperbolic equilibrium point.

In the special case where
α = 1,

the characteristic roots of the corresponding characteristic equation are fifth
roots of unity. In this special case Eq.(5.43.1) becomes

xn+1 =
1 + xn

xn−1
, n = 0, 1, . . . . (5.43.2)

Eq.(5.43.2) was discovered by Lyness in 1942 while working on a Number
Theory problem. It is a fascinating fact that every solution of Eq.(5.43.2)
is periodic with period five. In fact the solution of Eq.(5.43.2) with initial
conditions x−1, x0 is the five-cycle

x−1, x0,
1 + x0

x−1
,
1 + x−1 + x0

x0x−1
,
1 + x−1

x0
, x−1, x0, . . . .

Eq.(5.43.1) possesses the invariant

In = (α + xn−1 + xn)(1 +
1

xn−1
)(1 +

1
xn

) = (α + x−1 + x0)(1 +
1

x−1
)(1 +

1
x0

).

From this it follows that every solution of Eq.(5.43.1) is bounded from above
and from below by positive constants.

In [116] it was shown that no nontrivial solution of Eq.(5.43.1) has a limit.

Furthermore, in [193] it was shown using KAM theory that the positive
equilibrium x̄ of Eq.(5.43.1) is stable but not asymptotically stable. The
same result was also established in [174] by using a Lyapunov function.
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Conjecture 5.43.1 Assume that

α 6= 1.

Show that Eq.(5.43.1) has solutions that do not converge to a periodic solution
of prime period p ≥ 2.

It is interesting to note that periodicity may destroy the boundedness of
solutions of Lyness’s equation as the following example shows.

Example 5.43.1 (see [62]) Let

αn =

{
1, if n = 5k + i with i ∈ {0, 1, 2, 3}
α, if n = 5k + 4

, k = 0, 1, . . .

with α ∈ (0,∞). Then the solution of the difference equation

xn+1 =
αn + xn

xn−1
, n = 0, 1, . . . (5.43.3)

with initial conditions
x−1 = x0 = 1 (5.43.4)

is unbounded, if and only
α 6= 1.

Indeed, one can see, by induction, that the solution of the IVP (5.43.3) and
(5.43.4), for n ≥ 0, is given by

x5n+1 = (
α + 1

2
)n + 1

x5n+2 = 2 · ( 2
α + 1

)n + 1

x5n+3 = 2 · ( 2
α + 1

)n

x5n+4 = 1

x5n+5 = (
α + 1

2
)n+1.

Thus, in Eq.(5.43.1), periodicity may destroy the boundedness of its
solutions.

Open Problem 5.43.1 Assume that {αn} is a nonnegative periodic sequence
with prime period p ≥ 2.

(a) Obtain necessary and sufficient conditions on p such that every positive
solution of Eq.(5.43.3) is bounded.

(b) Obtain conditions on p and α0, . . . , αp−1 such that Eq.(5.43.3) has un-
bounded solutions in some region of the parameters and for some initial
conditions.
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Open Problem 5.43.2 Assume that {αn} is a positive periodic sequence
with prime period two. Determine the global asymptotic character and the
periodic nature of solutions of Eq.(5.43.3). Extend and generalize.

5.44 Equation #44 : xn+1 =
α + βxn

Dxn−2

Eq.(#44) can be written in normalized form

xn+1 =
α + xn

xn−2
, n = 0, 1, . . . (5.44.1)

with positive parameter α and with arbitrary positive initial conditions x−2,
x−1, x0.

The only equilibrium of Eq.(5.44.1) is

x̄ =
1 +

√
1 + 4α

2
.

The linearized equation of Eq.(5.44.1) about x̄ is

yn+1 − 2
1 +

√
1 + 4α

yn + yn−2 = 0, n = 0, 1, . . .

with characteristic equation

λ3 − 2
1 +

√
1 + 4α

λ2 + 1 = 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ is unstable.

Open Problem 5.44.1 (i) Prove that for all positive values of the param-
eter α, Eq.(5.44.1) possesses unbounded solutions.

(ii) Investigate the global behavior of bounded solutions of Eq.(5.44.1).

5.45 Equation #45 : xn+1 =
α + γxn−1

A

The equation in this special case is linear.
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5.46 Equation #46 : xn+1 =
α + γxn−1

Bxn

Eq.(#46) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.2.1. See also Section 3.1. Eq.(#46) can
be written in the normalized form

xn+1 =
α + xn−1

xn
, n = 0, 1, . . . (5.46.1)

with positive parameter α and with arbitrary positive initial conditions x−1,
x0. By Theorem 4.3.1 this equation has unbounded solutions and by Theorem
4.2.2 every bounded solution converges to the equilibrium. Also, Theorem
1.6.6 applies and describes the monotonic character of solutions of Eq.(5.46.1).

Open Problem 5.46.1 Obtain easily “verifiable” conditions that determine
the set of all positive initial conditions for which the solutions of Eq.(5.46.1)
do exactly one of the following:

(i) converge to the equilibrium

(ii) are unbounded

Open Problem 5.46.2 Let k ∈ (0, 1) . Then by Theorem 3.1.1 every solu-
tion of Eq.(5.46.1) with

x0 ∈ (0, 1) and x−1 >
α + 1

k

is such that
lim

n→∞
x2n+1 = ∞ and lim

n→∞
x2n = 0.

Investigate the global character of solutions of Eq.(5.46.1) with x0 ∈ [1, x̄] and
x−1 ∈

[
x̄, α+1

k

]
where x̄ denotes the equilibrium of Eq.(5.46.1).

Open Problem 5.46.3 Could the global character of solutions of Eq.(5.46.1)
be predicted from the characteristic roots of the linearized equation

λ2 + λ− 1
x̄

= 0

about the positive equilibrium x̄? Extend and generalize.



194 Dynamics of Third-Order Rational Difference Equations

Open Problem 5.46.4 Assume that α is a given real number. Determine
the “good” set G of the equation

xn+1 =
α + xn−1

xn
, (5.46.2)

that is, the set of initial conditions

x−1, x0 ∈ <

such that the equation (5.46.2) is well-defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.46.2) for all initial conditions in the “good”
set G.

5.47 Equation #47 : xn+1 =
α + γxn−1

Cxn−1

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5.48 Equation #48 : xn+1 =
α + γxn−1

Dxn−2

Eq.(#48) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.3.1.

Conjecture 5.48.1 Show that every bounded solution of Eq.(#48) converges
to the equilibrium.

Open Problem 5.48.1 Assume that α is a given real number. Determine
the “good” set G of the equation

xn+1 =
α + xn−1

xn−2
, (5.48.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
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such that the equation (5.48.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.48.1) for all initial conditions in the “good”
set G.

5.49 Equation #49 : xn+1 =
α + δxn−2

A

The equation in this special case is linear.

5.50 Equation #50 : xn+1 =
α + δxn−2

Bxn

This equation was investigated in [54], [59], and [151]. Eq.(#50) can be writ-
ten in the normalized form

xn+1 =
α + xn−2

xn
, n = 0, 1, . . . (5.50.1)

with positive parameter α and with arbitrary positive initial conditions, x−2,
x−1, x0.

Eq.(5.50.1) possesses a period-five trichotomy. For details see Section 4.6.

Open Problem 5.50.1 Let {xn} be the solution of the equation

xn+1 =
1 + xn−2

xn
, n = 0, 1, . . . (5.50.2)

with initial conditions
x−2 = x−1 = x0 = 1.

Determine the period-five solution of Eq.(5.50.2) to which {xn} converges.

Open Problem 5.50.2 Let {φn}∞n=−2 be a given five-cycle of Eq.(5.50.2).
Determine the set of all initial conditions x−2, x−1, x0 such that the solution
{xn}∞n=−2 of Eq.(5.50.2) converges to {φn}∞n=−2.

Open Problem 5.50.3 Determine the set of all initial conditions x−2, x−1,
x0 for which the solutions of Eq.(5.50.1), with α < 1, are bounded.
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5.51 Equation #51 : xn+1 =
α + δxn−2

Cxn−1

Eq.(#51) can be written in the normalized form

xn+1 =
α + xn−2

xn−1
, n = 0, 1, . . . (5.51.1)

with positive parameter α and with arbitrary positive initial conditions, x−2,
x−1, x0. It was shown in [47] that Eq.(5.51.1) has unbounded solutions.

Open Problem 5.51.1 Determine the set of all initial conditions x−2, x−1,
x0 for which the solutions of Eq.(5.51.1) are bounded.

Conjecture 5.51.1 Show that the solution of the equation

xn+1 =
1 + xn−2

xn−1
, n = 0, 1, . . .

with
x−2 = x−1 = x0 = 1

is unbounded.

5.52 Equation #52 : xn+1 =
α + δxn−2

Dxn−2

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

Open Problem 5.52.1 Assume that α is a given real number. Determine
the “good” set G of the equation

xn+1 =
α + xn−2

xn−2
, (5.52.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.52.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.52.1) for all initial conditions in the “good”
set G.
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5.53 Equation #53 : xn+1 =
βxn + γxn−1

A

The equation in this special case is linear.

5.54 Equation #54 : xn+1 =
βxn + γxn−1

Bxn

This equation can be written in the normalized form

xn+1 = β +
xn−1

xn
, n = 0, 1, . . . (5.54.1)

with positive parameter β and with arbitrary positive initial conditions x−1,
x0.

Eq.(5.54.1) was investigated in [16] where it was shown that it possesses a
period-two trichotomy depending on whether

β < 1, β = 1, or β > 1.

This was the very first period-two trichotomy result discovered for
rational equations.

This result is a special case of a period-two trichotomy result presented in
Theorem 4.2.1.

When
β < 1,

it follows from Theorem 4.2.2 that every bounded solution of Eq.(5.54.1) con-
verges to the equilibrium, x̄ = β + 1.

For some work on the forbidden set of Eq.(5.54.1), see [53] and [55].

Open Problem 5.54.1 Assume that β ∈ (0, 1) and let k ∈ (0, 1− β). Then
by Theorem 3.1.1 every solution of Eq.(5.54.1) with

x0 ∈ (0, 1) and x−1 >
1
k

is such that
lim

n→∞
x2n+1 = ∞ and lim

n→∞
x2n = β.

Investigate the global character of solutions of Eq.(5.54.1) with

x0 ∈ [1, 1 + β] and x−1 ∈
[
1 + β,

1
k

]
.
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5.55 Equation #55 : xn+1 =
βxn + γxn−1

Cxn−1

Eq.(#55) can be written in the normalized form

xn+1 = γ +
xn

xn−1
, n = 0, 1, . . . (5.55.1)

with positive parameter γ and with positive initial conditions x−1, x0.
The change of variables

xn = yn + γ,

transforms Eq.(5.55.1) into the difference equation

yn+1 =
γ + yn

γ + yn−1
, n = 0, 1, . . . . (5.55.2)

This equation, which is a special case of #66, was investigated in [158]. In
Theorem 5.26.1 we established that the equilibrium of Eq.(5.55.2), ȳ = 1, is
globally asymptotically stable. For another proof of the global asymptotic
stability of the equilibrium of Eq.(5.55.2), see [157, p. 73].

Open Problem 5.55.1 Assume that γ is a given real number. Determine
the “good” set G of the equation

xn+1 = γ +
xn

xn−1
, (5.55.3)

that is, the set of initial conditions

x−1, x0 ∈ <
such that the equation (5.55.3) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.55.3) for all initial conditions in the “good”
set G. Extend and generalize.

5.56 Equation #56 : xn+1 =
βxn + γxn−1

Dxn−2

This equation is a special case of a more general equation that will be inves-
tigated in Section 5.120.

Conjecture 5.56.1 Show that Eq.(#56) has bounded solutions that do not
converge to the equilibrium point or to a periodic solution.
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Open Problem 5.56.1 Determine the “good” set G of the equation

xn+1 =
xn + xn−1

xn−2
, (5.56.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <

such that the equation (5.56.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.56.1) for all initial conditions in the “good”
set G. Extend and generalize.

Open Problem 5.56.2 Let {βn} be a nonnegative periodic sequence with
prime period k ≥ 2. Determine the global character of solutions of the differ-
ence equation

xn+1 =
βnxn + xn−1

xn−2
, n = 0, 1, . . . .

Extend and generalize.

5.57 Equation #57 : xn+1 =
βxn + δxn−2

A

The equation in this special case is linear.

5.58 Equation #58 : xn+1 =
βxn + δxn−2

Bxn

This equation was investigated in [49] and [87]. See also Section 2.4 where we
established that every solution of the equation is bounded. This equation can
be written in the normalized form

xn+1 = β +
xn−2

xn
, n = 0, 1, . . . (5.58.1)

with positive parameter β and with arbitrary positive initial conditions x−2,
x−1, x0.
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The only equilibrium of Eq.(5.58.1) is

x̄ = β + 1.

The characteristic equation of the linearized equation of Eq.(5.58.1) about the
equilibrium x̄ is

λ3 +
1

β + 1
λ2 − 1

β + 1
= 0. (5.58.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.58.2)
is locally asymptotically stable when

β > −1 +
√

2 (5.58.3)

and unstable when
β < −1 +

√
2. (5.58.4)

When
β = −1 +

√
2,

two of the characteristic roots of Eq.(5.58.2) are eighth roots of unity and the
third root lies within the interval (0, 1).

For equation (5.58.1) and for any equation of the form

xn+1 = f(xn, xn−2), n = 0, 1, . . . (5.58.5)

with a unique equilibrium point x̄ and with the function f(u, v) decreasing in
the first argument u and increasing in the second argument v, the following
result holds.

Lemma 5.58.1 Assume Eq.(5.58.5) has a unique equilibrium point x̄ and
that f(u, v) decreases in u and increases in v. Then for any solution {xn}∞n=−2

of Eq.(5.58.5) one of the following three statements is true:

(i) xn ≥ x̄, for n ≥ −2.

(ii) xn < x̄, for n ≥ −2.

(iii) There exists an N ≥ −2 such that

either
xn ≥ x̄, for −2 ≤ n ≤ N

or
xn < x̄, for −2 ≤ n ≤ N

and for n > N the solution is strictly oscillatory about x̄ with semi-
cycles of length one or two. Furthermore, after the first semicycle, every
semicycle of length two is followed by a semicycle of length one.
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PROOF Assume that neither (i) nor (ii) holds. Then there exists some
N ≥ −2 such that
either

xn ≥ x̄, for − 2 ≤ n ≤ N and xN+1 < x̄ (5.58.6)

or
xn < x̄, for − 2 ≤ n ≤ N and xN+1 ≥ x̄. (5.58.7)

We will assume that (5.58.6) holds. The case where (5.58.7) holds is similar
and will be omitted. Now it suffices to show that if

xN+2 < x̄,

then
xN+3 > x̄.

Indeed, this is true because

xN+3 = f(xN+2, xN ) > f(x̄, x̄) = x̄. (5.58.8)

To show that a semicycle of length two is followed by a semicycle of length
one, assume that for some N ≥ 0,

xN ≥ x̄, xN+1 < x̄ and xN+2 < x̄.

The other case is similar and will be omitted. Then by (5.58.6),

xN+3 > x̄

and
xN+4 = f(xN+3, xN+1) < f(x̄, x̄) = x̄

and the proof is complete.

The following additional properties can be established for the solutions of
Eq.(5.58.1). See [87].

Lemma 5.58.2 (a) No solution of Eq.(5.58.1) has semicycles that are all
eventually of length one.

(b) After the second semicycle, the maximum term in a positive semi-cycle
of length two is always less than or equal to the last term in the previous
positive semi-cycle.

(c) After the second semicycle, the minimum term in a negative semi-cycle
of length two is always greater than or equal to the last term in the
previous negative semicycle.



202 Dynamics of Third-Order Rational Difference Equations

PROOF Assume without loss of generality that there exists some N ≥ 0
such that

x2n−1 < β + 1 ≤ x2n, for n ≥ N.

Then
x2n+2 = β +

x2n−1

x2n+1
≥ β + 1

and so
x2n−1 ≥ x2n+1 ≥ β.

Therefore, the subsequence of the odd terms decreases to a positive limit.
Also,

x2n+3 = β +
x2n

x2n+2
< β + 1

and so
β + 1 ≤ x2n < x2n+2. (5.58.9)

Therefore, the subsequence of the even terms is strictly increasing and

x2n+2 = β +
x2n−1

x2n+1
→ β + 1,

which contradicts (5.58.9).
(b) Assume that for some N ≥ 0,

xN ≥ β + 1 and xN+1 ≥ β + 1.

Then, clearly,
xN−1 < β + 1 < xN−2

because a semicycle of length two must be preceded by a semicycle of length
one. Also,

β + 1 ≤ xN+1 = β +
xN−2

xN

and so
xN ≤ xN−2.

Furthermore,
xN+1 = β +

xN−2

xN
< β +

xN−2

β + 1
≤ xN−2

and the proof is complete.
(c) The proof is similar to the proof in (b) and will be omitted.

The following theorem establishes the existence of nonoscillatory solutions
of Eq.(5.58.1). See [226].

Theorem 5.58.1 Eq.(5.58.1) has infinitely many nonoscillatory solutions,
which decrease to the equilibrium, x̄ = β + 1.
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PROOF For all n ≥ 0, we define

An = {(x−2, x−1, x0) ∈ (β,∞)3 : β + 1 ≤ xn+1 ≤ xn ≤ xn−1 ≤ xn−2}

We claim that for all n ≥ 0

∅ 6= An+1 ⊆ An.

It suffices to show that

xn+1 ≤ xn ≤ xn−1 ≤ xn−2

when
xn+2 ≤ xn+1 ≤ xn ≤ xn−1.

Indeed,
xn−1 = (xn+2 − β)xn+1 ≤ (xn+1 − β)xn = xn−2.

Also,
An 6= ∅

because, for all n ≥ 0,

(β + 1, β + 1, β + 1) ∈ An.

Set
F (x, y, z) = (y, z, β +

x

z
)

with x, y, z ∈ [β + 1,∞). Clearly, the function F is continuous and one to
one. We claim that

An = F (An+1).

Let (y−2, y−1, y0) ∈ F (An+1). Then

(y−2, y−1, y0) = F (x−2, x−1, x0) = (x−1, x0, x1)

and

F (n)(y−2, y−1, y0) = (yn−2, yn−1, yn) = F (n+1)(x−2, x−1, x0) = (xn−1, xn, xn+1)

and
F (n+1)(y−2, y−1, y0) = (yn−1, yn, yn+1)

= F (n+2)(x−2, x−1, x0) = (xn, xn+1, xn+2) .

Hence,
β + 1 ≤ yn+1 ≤ yn ≤ yn−1 ≤ yn−2,

which implies that (y−2, y−1, y0) ∈ An.
On the other hand, assume that (x−2, x−1, x0) ∈ An. Set

y−2 = (x0 − β)x−1, y−1 = x−2, and y0 = x−1.
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Then

(x−2, x−1, x0) = (y−1, y0, β +
y−2

y0
) = F (y−2, y−1, y0) = (y−1, y0, y1).

Then

(yn−1, yn, yn+1) = F (n+1)(y−2, y−1, y0) = F (n)(x−2, x−1, x0) = (xn−2, xn−1, xn)

and

(yn, yn+1, yn+2) = F (n+2)(y−2, y−1, y0) = F (n+1)(x−2, x−1, x0) = (xn−1, xn, xn+1) .

Hence,
β + 1 ≤ yn+2 ≤ yn+1 ≤ yn ≤ yn−1 .

From this it follows that (y−2, y−1, y0) ∈ An+1. Also (x−2, x−1, x0) = F (y−2, y−1, y0) ∈
F (An+1). The proof of our claim is complete. Since F is invertible it also
holds

An+1 = F−1(An), for all n ≥ 0.

Set

Ω =
∞⋂

n=0

An.

Then

Ω =
∞⋂

n=0

F (−n)(A0).

Note that A0 is a nonempty, closed, connected, and unbounded subset of
R3. Also, A1 is a nonempty and closed subset of R3 and since F−1(A0) = A1,
it follows that A1 is connected and unbounded. Inductively, it follows that
each one of the F (−n)(A0) = An’s is a nonempty, closed, connected, and
unbounded subset of R3. Furthermore, the family {An}∞n=0 satisfies the finite
intersection property because

n⋂

k=0

Ak = An 6= ∅.

Then, clearly, Ω is a nonempty, closed, connected, and unbounded subset of
R3. By choosing the initial conditions x−2, x−1, x0 in Ω, the solution {xn}
that is generated satisfies for all n ≥ 0,

β + 1 ≤ xn+1 ≤ xn

and so converges to β + 1. The proof is complete.

Next we would like to show that when

β > 1,
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and {xn}∞n=−2 is a solution of Eq.(5.58.1), there exists an interval [L,U ], with
0 < L < U , which contains the entire solution {xn} except possibly the first
three terms x−2, x−1, x0. We want to exhibit the details of how the interval
[L,U ] is found. Clearly,

xn > β, for n ≥ 1.

Now choose positive numbers L and U such that

x1, x2, x3 ∈ [L,U ].

We also want,
L ≤ x4 ≤ U.

Note that
β +

L

U
≤ x4 = β +

x1

x3
≤ β +

U

L
.

We need to choose L,U such that

L ≤ β +
L

U
and β +

U

L
≤ U.

Is it possible? The answer is yes. Just choose

L = β +
L

U
and L ∈ (β, β + 1).

Indeed, in this case

U =
L

L− β

and
L = β +

L

U
≤ x4 ≤ β +

U

L
= β +

1
L− β

≤ L

L− β
.

By using induction it follows that the interval [L,U ] contains the entire solu-
tion {xn} except possibly the fisrt three terms x−2, x−1, x0. By employing
Theorem 1.6.5 and the earlier local stability result of the equilibrium x̄, one
can easily see that when

β > 1,

the equilibrium, x̄ = β + 1, of Eq.(5.58.1) is globally asymptotically stable.
See [87].

We can extend this global stability result to β = 1 as the following theorem
shows.

Theorem 5.58.2 Assume that

β ≥ 1.

Then the equilibrium, x̄ = β + 1, of Eq.(5.58.1) is globally asymptotically
stable.
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PROOF The function

f(z1, z3) = β +
z3

z1

satisfies the Hypotheses of Theorem 1.6.7, when β > 1, and the Hypotheses
of Theorem 1.6.8, when β = 1, and so the result follows.

Conjecture 5.58.1 Assume that

−1 +
√

2 < β < 1.

Show that every solution of Eq.(5.58.1) converges to the equilibrium x̄.

Conjecture 5.58.2 Show that Eq.(5.58.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

Conjecture 5.58.3 Assume that

β <
1

123
.

Show that every solution of Eq.(5.58.1) converges to a (not necessarily prime)
periodic solution of period 19.

Conjecture 5.58.4 Assume that β > 0 and that m is a positive integer.
Show that every solution of the equation

xn+1 = β +
xn−2m

xn
, n = 0, 1, . . . (5.58.10)

is bounded.

Open Problem 5.58.1 Assume that β > 0 and that m and l are nonnegative
integers. Investigate the global stability of solution of the equation

xn+1 = β +
xn−2m

xn−2l
, n = 0, 1, . . . .

Open Problem 5.58.2 Assume that {βn} is a positive periodic sequence
with prime period k ≥ 2. Investigate the character of solutions of the dif-
ference equation

xn+1 = βn +
xn−2

xn
, n = 0, 1, . . . .

Open Problem 5.58.3 Assume that β is a real number.

(a) Determine the set G of all initial conditions (x−2, x−1, x0) ∈ <3 such
that

xn+1 = β +
xn−2

xn

is well defined for all n ≥ 0.

(b) Determine the character of solutions of the equation (5.58.1) for all
(x−2, x−1, x0) ∈ G.
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5.59 Equation #59 : xn+1 =
βxn + δxn−2

Cxn−1

This equation is part of a more general equation for which we conjecture that
has a period-four trichotomy. See Section 5.123.

Open Problem 5.59.1 Assume that β is a given real number. Determine
the “good” set G of the equation

xn+1 =
βxn + xn−2

xn−1
, (5.59.1)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.59.1) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.59.1) for all initial conditions in the “good”
set G.

Conjecture 5.59.1 Assume that

β > 1.

Show that every solution of Eq.(5.59.1) converges to the equilibrium.

Conjecture 5.59.2 Assume that

β < 1.

Show that every bounded solution of Eq.(5.59.1) converges to the equilibrium.

5.60 Equation #60 : xn+1 =
βxn + δxn−2

Dxn−2

Eq.(#60) can be written in the normalized form

xn+1 = δ +
xn

xn−2
, n = 0, 1, . . . (5.60.1)

with positive parameter δ and with positive initial conditions x−2, x−1, x0.
The change of variables

xn = yn + δ
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transforms Eq.(5.60.1) into the difference equation

yn+1 =
δ + yn

δ + yn−2
, n = 0, 1, . . . . (5.60.2)

For this equation, which is a special case of #67, see Section 5.67.

Open Problem 5.60.1 Assume that δ is a given real number. Determine
the “good” set G of the equation

xn+1 = δ +
xn

xn−2
, (5.60.3)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.60.3) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.60.3) for all initial conditions in the “good”
set G. Extend and generalize.

Conjecture 5.60.1 Assume that

δ > −1 +
√

2.

Show that every solution of Eq.(5.60.1) has a finite limit.

Conjecture 5.60.2 Assume that

δ < −1 +
√

2.

Show that Eq.(5.60.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

Open Problem 5.60.2 Let {δn} be a periodic sequence of nonnegative real
numbers with prime period k ≥ 2. Determine the global character of solutions
of the difference equation

xn+1 = δn +
xn

xn−2
, n = 0, 1, . . . .

Extend and generalize.

5.61 Equation #61 : xn+1 =
γxn−1 + δxn−2

A

The equation in this special case is linear.
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5.62 Equation #62 : xn+1 =
γxn−1 + δxn−2

Bxn

This equation was investigated in [76]. See also [67]. Eq.(#62) can be written
in the normalized form

xn+1 =
γxn−1 + xn−2

xn
, n = 0, 1, . . . (5.62.1)

with positive parameter γ and with arbitrary positive initial conditions x−2,
x−1, x0.

It follows from the work in [76] (see also Theorem 3.1.1), that when

γ > 1,

Eq.(5.62.1) possesses unbounded solutions. It was also shown in [76] that
when

γ = 1,

the subsequences
{x2n}∞n=0 and {x2n+1}∞n=−1

of every solution are eventually monotonic and one of them may be un-
bounded.

The only equilibrium of Eq.(5.62.1) is

x̄ = γ + 1.

The characteristic equation of the linearized equation of Eq.(5.62.1) about the
equilibrium x̄ is

λ3 + λ2 − γ

γ + 1
λ− 1

γ + 1
= 0. (5.62.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.62.1)
is locally asymptotically stable when

√
3− 1
2

< γ < 1 (5.62.3)

and unstable when

γ <

√
3− 1
2

.

When

γ =
√

3− 1
2

,

one solution of Eq.(5.62.2) lies within the interval (−1, 0) and the other two
solutions are 12th roots of unity.
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Conjecture 5.62.1 Assume that

γ > 1.

Show that every bounded solution of Eq.(5.62.1) converges to the equilibrium
x̄.

Open Problem 5.62.1 Assume that

γ > 1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) converge to the equilibrium x̄.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) are unbounded.

Open Problem 5.62.2 Assume that

γ = 1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) converge to the equilibrium x̄.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) converge to a prime period-two solution.

(c) Determine the set of all initial conditions through which the solutions of
Eq.(5.62.1) are unbounded.

Conjecture 5.62.2 Assume that (5.62.3) holds. Show that the equilibrium
x̄ of Eq.(5.62.1) is globally asymptotically stable.

Conjecture 5.62.3 Assume that

γ <

√
3− 1
2

.

Show that Eq.(5.62.1) has bounded solutions that do not converge to the equi-
librium point x̄ or to a periodic solution.

5.63 Equation #63 : xn+1 =
γxn−1 + δxn−2

Cxn−1

This equation was investigated in [49]. See also Section 2.6 where we estab-
lished that every solution of the equation is bounded. This equation can be
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written in the normalized form

xn+1 = γ +
xn−2

xn−1
, n = 0, 1, ... (5.63.1)

with positive parameter γ and with arbitrary positive initial conditions x−2,
x−1, x0.

The only equilibrium of Eq.(5.63.1) is

x̄ = γ + 1 .

The characteristic equation of the linearized equation of Eq.(5.63.1) about the
equilibrium x̄ is

λ3 +
1

γ + 1
λ− 1

γ + 1
= 0. (5.63.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ is locally asymp-
totically stable when

γ >
−1 +

√
5

2
(5.63.3)

and unstable when

γ <
−1 +

√
5

2
. (5.63.4)

For equation (5.63.1) and for any equation of the form

xn+1 = f(xn−1, xn−2), n = 0, 1, . . . (5.63.5)

with a unique equilibrium point x̄ and with the function f(u, v) decreasing in
the first argument u and increasing in the second argument v, the following
result holds.

Lemma 5.63.1 Assume Eq.(5.63.5) has a unique equilibrium point x̄ and
that f(u, v) decreases in u and increases in v. Then for any solution {xn}∞n=−2

of Eq.(5.63.5) one of the following three statements is true:

(i) xn ≥ x̄, for n ≥ −2.

(ii) xn < x̄, for n ≥ −2.

(iii) There exists an N ≥ −2 such that

either
xn ≥ x̄, for −2 ≤ n ≤ N

or
xn < x̄, for −2 ≤ n ≤ N

and where for n > N , the solution is strictly oscillatory about x̄ with
semicycles of length one or two. Furthermore, no solution of Eq.(5.63.5)
has semicycles that are all eventually of length one.
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PROOF Assume that neither (i) nor (ii) holds. Then there exists some
N ≥ −2 such that
either

xn ≥ x̄, for − 2 ≤ n ≤ N and xN+1 < x̄ (5.63.6)

or
xn < x̄, for − 2 ≤ n ≤ N and xN+1 ≥ x̄. (5.63.7)

We will assume that (5.63.6) holds. The case where (5.63.7) holds is similar
and will be omitted. Now it suffices to show that if

xN+2 < x̄,

then
xN+3 > x̄.

Indeed, this is true because

xN+3 = f(xN+1, xN ) > f(x̄, x̄) = x̄. (5.63.8)

To show that no solution of Eq.(5.63.5) has semicycles that are all eventually
of length one, assume that for some N ≥ 0,

xN > x̄, xN+1 < x̄ and xN+2 > x̄.

The other case is similar and will be omitted. Then

xN+3 = f(xN+1, xN ) > f(x̄, x̄) = x̄

and the proof is complete.

The following additional properties can be established for the solutions of
Eq.(5.63.1).

Lemma 5.63.2 (a) When the maximum in a positive semicycle of length
two is in the first term, then the negative semicycle that follows has
length one, and when the maximum in a positive semicycle of length
two is in the second term, then the negative semicycle that follows has
length two.

(b) When the minimum in a negative semicycle of length two is in the first
term, then the positive semicycle that follows has length one, and when
the minimum in a negative semicycle of length two is in the second term,
then the positive semicycle that follows has length two.

PROOF (a) Assume that for some N ≥ 0,

xN−2 ≥ xN−1 ≥ γ + 1.
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The other case is similar and will be omitted. Clearly,

xN < γ + 1

because a semicycle can have at most two terms. Also

xN+1 = γ +
xN−2

xN−1
≥ γ + 1.

and the proof is complete.
(b) The proof is similar to the proof in (a) and will be omitted.

The following theorem establishes the existence of nonoscillatory solutions
of Eq.(5.63.1).

Theorem 5.63.1 Eq.(5.63.1) has infinitely many nonoscillatory solutions
that decrease to equilibrium x̄ = γ + 1.

PROOF For all n ≥ 0, we define

An = {(x−2, x−1, x0) ∈ <3 : γ + 1 ≤ xn+1 ≤ xn ≤ xn−1 ≤ xn−2}.

We claim that for all n ≥ 0

∅ 6= An+1 ⊆ An.

It suffices to show that

xn+1 ≤ xn ≤ xn−1 ≤ xn−2

when
xn+2 ≤ xn+1 ≤ xn ≤ xn−1.

Indeed,
xn−1 = (xn+2 − γ)xn ≤ (xn+1 − γ)xn−1 = xn−2.

Also,
An 6= ∅

because, for all n ≥ 0,

(γ + 1, γ + 1, γ + 1) ∈ An.

Set
F (x, y, z) = (y, z, γ +

x

y
)

with x, y, z ∈ [γ +1,∞). Clearly, the function F is continuous and one to one.
We claim that

An = F (An+1).
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Let (y−2, y−1, y0) ∈ F (An+1). Then

(y−2, y−1, y0) = F (x−2, x−1, x0) = (x−1, x0, x1),

and

F (n)(y−2, y−1, y0) = (yn−2, yn−1, yn) = F (n+1)(x−2, x−1, x0) = (xn−1, xn, xn+1),

and

F (n+1)(y−2, y−1, y0) = (yn−1, yn, yn+1) = F (n+2)(x−2, x−1, x0) = (xn, xn+1, xn+2).

Hence,
γ + 1 ≤ yn+1 ≤ yn ≤ yn−1 ≤ yn−2,

which implies that (y−2, y−1, y0) ∈ An.
On the other hand, assume that (x−2, x−1, x0) ∈ An. Set

y−2 = (x0 − γ)x−2, y−1 = x−2, and y0 = x−1.

Then

(x−2, x−1, x0) = (y−1, y0, γ +
y−2

y−1
) = F (y−2, y−1, y0) = (y−1, y0, y1),

and

(yn−1, yn, yn+1) = F (n+1)(y−2, y−1, y0) = F (n)(x−2, x−1, x0) = (xn−2, xn−1, xn),

and

(yn, yn+1, yn+2) = F (n+2)(y−2, y−1, y0) = F (n+1)(x−2, x−1, x0) = (xn−1, xn, xn+1).

Hence,
γ + 1 ≤ yn+2 ≤ yn+1 ≤ yn ≤ yn−1.

From this it follows that (y−2, y−1, y0) ∈ An+1. Also

(x−2, x−1, x0) = F (y−2, y−1, y0) ∈ F (An+1).

The proof of our claim is complete. Since F is invertible it also holds

An+1 = F−1(An), for all n ≥ 0.

Set

Ω =
∞⋂

n=0

An.

Then

Ω =
∞⋂

n=0

F (−n)(A0).
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Note that A0 is a nonempty, closed, connected, and unbounded subset of R3.
Also, A1 is a nonempty and closed subset of R3 and since F−1(A0) = A1,
it follows that A1 is connected and unbounded. Inductively, it follows that
each one of the F (−n)(A0) = An’s is a non-empty, closed, connected, and
unbounded subset of R3. Furthermore, the family {An}∞n=0 satisfies the finite
intersection property because

n⋂

k=0

Ak = An 6= ∅.

Then, clearly, Ω is a non-empty, closed, connected, and unbounded subset of
R3. By choosing the initial conditions x−2, x−1, x0 in Ω, the solution {xn}
that is generated satisfies for all n ≥ 0,

γ + 1 ≤ xn+1 ≤ xn

and so converges to γ + 1. The proof is complete.

Next we would like to show that when

γ > 1

and {xn}∞n=−2, is a solution of Eq.(5.63.1) there exists an interval [L,U ], with
0 < L < U , which contains the entire solution {xn} except possibly the first
three terms x−2, x−1, x0. We want to show the details of how the interval
[L,U ] is found. Clearly,

xn > γ, for n ≥ 1.

Now choose positive numbers L and U such that

x1, x2, x3 ∈ [L,U ] .

We also want
L ≤ x4 ≤ U.

Note that

γ +
L

U
≤ x4 = γ +

x1

x2
≤ γ +

U

L
.

We need to choose L,U such that

L ≤ γ +
L

U
and γ +

U

L
≤ U.

Is it possible? The answer is yes. Just choose

L = γ +
L

U
and L ∈ (γ, γ + 1).
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Indeed, in this case

U =
L

L− γ

and
L = γ +

L

U
≤ x4 ≤ γ +

U

L
= γ +

1
L− γ

≤ L

L− γ
.

By using induction it follows that the interval [L,U ] contains the entire solu-
tion {xn} except possibly the fisrt three terms x−2, x−1, x0. By employing
Theorem 1.6.5 and the earlier local stability result of the equilibrium x̄, one
can easily see that when

γ > 1,

the equilibrium, x̄ = γ + 1, of Eq.(5.63.1) is globally asymptotically stable.
We can extend this global stability result to γ = 1 as the following theorem

shows.

Theorem 5.63.2 Assume that

γ ≥ 1.

Then the equilibrium, x̄ = γ + 1, of Eq.(5.63.1) is globally asymptotically
stable.

PROOF The function

f(z2, z3) = γ +
z3

z2

satisfies the Hypotheses of Theorem 1.6.7, when γ > 1, and the Hypotheses
of Theorem 1.6.8, when γ = 1, and so the result follows.

Conjecture 5.63.1 Assume that

−1 +
√

5
2

< γ < 1.

Show that every solution of Eq.(5.63.1) converges to the equilibrium x̄.

Conjecture 5.63.2 Assume that

γ <
1
8
.

Show that every solution of Eq.(5.63.1) converges to a (not necessarily prime)
periodic solution of period 13.
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Conjecture 5.63.3 Show that Eq.(5.63.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

Conjecture 5.63.4 Assume that γ > 0 and that m is a positive integer.
Show that every solution of the equation

xn+1 = γ +
xn−2m

xn−1
, n = 0, 1, . . . (5.63.9)

is bounded.

Open Problem 5.63.1 Assume that γ > 0 and that m and l are nonnegative
integers. Investigate the global stability of solutions of the equation

xn+1 = γ +
xn−2m

xn−2l−1
, n = 0, 1, . . . .

Open Problem 5.63.2 Assume that {γn} is a positive periodic sequence
with prime period k ≥ 2. Investigate the character of solutions of the dif-
ference equation

xn+1 = γn +
xn−2

xn−1
, n = 0, 1, . . . .

Open Problem 5.63.3 Assume that γ is a real number.

(a) Determine the set G of all initial conditions (x−2, x−1, x0) ∈ <3 such
that the equation

xn+1 = γ +
xn−2

xn−1

is well defined for all n ≥ 0.

(b) Determine the character of solutions of the equation (5.63.1) for all
(x−2, x−1, x0) ∈ G.

5.64 Equation #64 : xn+1 =
γxn−1 + δxn−2

Dxn−2

Eq.(#64) possesses a period-two trichotomy depending on whether

γ < δ, γ = δ, γ > δ.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.
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Open Problem 5.64.1 Assume that δ is a real number.

(a) Determine the “good” set G of all initial conditions (x−2, x−1, x0) ∈ <3

such that the equation
xn+1 = δ +

xn−1

xn−2
(5.64.1)

is well defined for all n ≥ 0.

(b) Determine the character of solutions of the equation (5.64.1) for all
(x−2, x−1, x0) ∈ G.

Open Problem 5.64.2 Assume that δ ∈ (0, 1) and let k ∈ (0, 1− δ). Inves-
tigate the global character of solutions of

xn+1 = δ +
xn−1

xn−2
, n = 0, 1, . . . (5.64.2)

with

x−2, x0 ∈ [1, 1 + δ] and x−1 ∈
[
1 + δ,

1
k

]
.

Conjecture 5.64.1 Assume that

δ < 1.

Show that every bounded solution of Eq.(5.64.2) converges to the equilibrium.

5.65 Equation #65 : xn+1 =
α + βxn

A + Bxn

The equation in the title is the well-known Riccati difference equation.
It is one of the very few nonlinear difference equations that can be solved
explicitly. See any book on difference equations about it, for example, [12],
[95], [147], or [175].

In this section we will present the character of solutions of the equation

xn+1 =
α + βxn

A + Bxn
, n = 0, 1, . . . (5.65.1)

not only for the positive values of the parameters and for nonnegative initial
conditions, as we do in every other section, but also for any real values of the
parameters α, β, A, B and for any real initial condition x0. We wish we could
do this for every equation in this book. Unfortunately, it is a problem of great
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difficulty to determine the set of initial conditions for which a solution of the
equation is well defined for all n ≥ 0. For Eq.(5.65.1) this was done in [126].

To avoid degeneracies we will assume that

B 6= 0 and αB − βA 6= 0 .

The following result for equation (5.65.1) has a straightforward proof.

Theorem 5.65.1 Every solution of Eq.(5.65.1) is periodic with period two if
and only if

β + A = 0 . (5.65.2)

When (5.65.2) holds, Eq.(5.65.1) becomes

xn+1 =
α−Axn

A + Bxn
, n = 0, 1, . . . (5.65.3)

and every solution of Eq.(5.65.3) with

xn 6= −A

B

is the two-cycle

x0,
α−Ax0

A + Bx0
, x0,

α−Ax0

A + Bx0
, . . . .

In the remaining part of this section we will assume, without further men-
tion, that

B 6= 0, αB − βA 6= 0, and β + A 6= 0 .

Then the change of variables

xn =
β + A

B
· wn − A

B
, n = 0, 1, . . . (5.65.4)

transforms Eq.(5.65.1) to the equation

wn+1 = 1− R

wn
, n = 0, 1, . . . , (5.65.5)

where
R =

βA− αB

(β + A)2
. (5.65.6)

It is an amazing fact that when Eq.(5.65.1) has no period-two solutions, the
change of variables (5.65.4) reduces it to Eq.(5.65.5), which depends on a
single parameter. The parameter R, which is called the Riccati number, of
Eq.(5.65.1) is the nonzero number given by (5.65.6).

Now the change of variables

wn =
yn+1

yn
, n = 0, 1, . . . (5.65.7)



220 Dynamics of Third-Order Rational Difference Equations

with

y0 = 1 and y1 = w0 (5.65.8)

transforms Eq.(5.65.5) to the second-order linear difference equation

yn+2 − yn+1 + Ryn = 0, n = 0, 1, . . . . (5.65.9)

Eq.(5.65.9) can be solved explicitly, in terms of the characteristic roots

λ1 =
1 +

√
1− 4R

2
and λ2 =

1−√1− 4R

2
. (5.65.10)

Then by using (5.65.7) we obtain the solution of Eq.(5.65.5) provided that w0

is chosen in such a way that

yn 6= 0 for all n = 0, 1, . . . .

The set of points w0 for which yn = 0 for some value of n is called the
forbidden set F of Eq.(5.65.5).

There are very few rational equations for which we know something about
the forbidden set of the equation. See, for example, [53] and [55].

In view of (5.65.10), the character of solutions of Eq.(5.65.5) and its forbid-
den set F depend on whether

R <
1
4
, R =

1
4
, or R >

1
4
.

The character of solutions of Eq.(5.65.1) and its forbidden set F are easily
inferred by means of the change of variables (5.65.4).

Case 1: R < 1
4 . Then the general solution of Eq.(5.65.9) is

yn = c1λ
n
1 + c2λ

n
2 , n = 0, 1, . . .

and in view of the initial conditions (5.65.8)

c1 =
w1 − λ1

λ1 − λ2
and c2 =

λ1 − w0

λ1 − λ2
.

Thus, the forbidden set of Eq.(5.65.5) is the set of w0 such that

yn =
w1 − λ1

λ1 − λ2
· λn

1 +
λ1 − w0

λ1 − λ2
· λn

2 = 0, for n = 1, 2, . . .

that is, the set

F = {λn
1λ2 − λ1λ

n
2

λ1 − λ2
: n = 1, 2, . . .}.

When
w0 /∈ F,
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wn =
(w1 − λ2)λn+1

1 − (w0 − λ1)λn+1
2

(w1 − λ2)λn
1 − (w0 − λ1)λn

2

, n = 0, 1, . . . .

Hence,
wn = λ2 if w0 = λ2

and
lim

n→∞
wn = λ1 if w0 6= λ2.

Case 2: R = 1
4 . Then the general solution of Eq.(5.65.9) is

yn = c1(
1
2
)n + c2n(

1
2
)n, n = 0, 1, . . .

and in view of (5.65.8)

c1 = 1 and c2 = 2w0 − 1.

Thus, the forbidden set of Eq.(5.65.5) is the set of w0 such that

yn = (
1
2
)n + (2w0 − 1)n(

1
2
)n = 0, for n = 1, 2, . . .

that is
F = {n− 1

2n
: n = 1, 2, . . .}.

When
w0 /∈ F,

wn =
1 + (2w0 − 1)(n + 1)

2 + 2(2w0 − 1)n
, n = 0, 1, . . . .

Hence, in this case

lim
n→∞

wn =
1
2
.

Case 3: R > 1
4 . Here the characteristic roots of Eq.(5.65.10) are complex

conjugate. Choose φ ∈ (0, π
2 ) such that

cosφ =
1

2
√

R
and sin φ =

√
4R− 1
2
√

R
.

Then
yn = R

n
2 [c1 cos(nφ) + c2 sin(nφ)], n = 0, 1, . . .

and by using (5.65.8) we find

c1 = 1 and c2 =
2w0 − 1√
4R− 1

.
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Note the forbidden set in this case is the set of all initial conditions w0 such
that

cos(nφ) +
2w0 − 1√
4R− 1

· sin(nφ) = 0 for n = 1, 2, . . .

that is, the set of points

F = {1−√4R− 1 cot(nφ)
2

: n = 1, 2, . . . }.

When
w0 /∈ F,

wn =
√

R ·
√

4R− 1 cos(n + 1)φ + (2w0 − 1) sin(n + 1)φ√
4R− 1 cos(nφ) + (2w0 − 1) sin(nφ)

, n = 0, 1, . . . .

We can rewrite this solution in a way that is easier to investigate the long-term
behavior. Set

r =
√

(4R− 1) + (2w0 − 1)2

and let θ ∈ (−π
2 , π

2 ) be such that

cos θ =
√

4R− 1
r

and sin θ =
2w0 − 1

r
.

Then

wn =
√

R · cos(nφ + φ− θ)
sin(nφ− θ)

=
√

R · cos(nφ− θ) cos φ− sin(nφ− θ) sin φ

cos(nφ− θ)

=
√

R · [cos φ− sinφ tan(nφ− θ)]

=
1
2
−
√

4R− 1
2

· tan(nφ− θ).

From this it follows that if φ is a rational multiple of π, that is,

φ =
q

p
· π ∈ (0,

π

2
)

where q and p are positive constants, then every solution of Eq.(5.65.5) with

w0 6=
1−√4R− 1 cot(n q

pπ)

2
for n = 1, 2, . . . , p− 1

is periodic with period p.
When φ is not a rational multiple of π, then no solution of Eq.(5.65.5)

is periodic and for any w0 /∈ F , the set of limit points of the solution of
Eq.(5.65.5) is dense in the real line. See [45].
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Remark 5.65.1 When the parameters α, β, A, and B of a Riccati equation
are nonnegative, the Riccati number of the equation is less than or equal to
1
4 and so every solution of a Riccati equation with nonnegative parameters
converges to an equilibrium of the equation.

Who introduced the name of this equation? What is the rela-
tionship of this equation to the Riccati differential equation?

Open Problem 5.65.1 Assume that

{αn}, {βn}, {An}, {Bn}
are periodic sequences of real numbers. Determine the forbidden set F of
the Riccati equation

xn+1 =
αn + βnxn

An + Bnxn
, n = 0, 1, . . . (5.65.11)

and the character of solutions of Eq.(5.65.11) with x0 /∈ F .

The above problem with period-two sequences was investigated in [120].

5.66 Equation #66 : xn+1 =
α + βxn

A + Cxn−1

The most substantial work on this equation was presented in [158]. See also
[157] and [175]. Eq.(#66) can be written in the normalized form

xn+1 =
α + xn

A + xn−1
, n = 0, 1, . . . (5.66.1)

with positive parameters α,A and with arbitrary nonnegative initial condi-
tions x−1, x0.

Eq.(5.66.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.66.1) about the
equilibrium x̄ is

λ2 − 1
A + x̄

λ +
x̄

A + x̄
= 0.

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.66.1)
is locally asymptotically stable for all positive values of the parameters.

The following conjecture, known for more than 15 years (see [157], [175]
and [189]) has not been confirmed yet.
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Conjecture 5.66.1 Assume that

α, A ∈ (0,∞).

Show that every positive solution of Eq.(5.66.1) has a finite limit.

In other words, the equilibrium x̄ of Eq.(5.66.1) is globally asymptotically
stable. To the best of our knowledge, any claims in the literature made prior
to July 2007 that this conjecture has been confirmed are not correct.

For
α < A,

the Conjecture is true and the proof is a straightforward consequence of The-
orem 1.6.3.

For
A ≥ 1,

the conjecture is true and the proof follows by Theorems 5.23.2 and 5.23.3.
Finally, for

α = A

the conjecture is true and the proof follows from Theorem 5.26.1.
There are several publications in the literature where the Conjecture has

also been confirmed is some subregions of parameters with

α > A and A < 1. (5.66.2)

See [104], [157], [175], and the references cited therein. What is needed at
this time is to confirm the conjecture in the “entire” region (5.66.2). This will
confirm Conjecture 5.66.1. In this direction we offer the following conjecture
which is more than what is needed to confirm Conjecture 5.66.1 in the entire
region (5.66.2).

Conjecture 5.66.2 Assume that the following conditions hold:

(i) f ∈ C[(0,∞)× (0,∞), (0,∞)].

(ii) f(x, y) is decreasing in x and strictly decreasing in y.

(iii) xf(x, x) is strictly decreasing in x.

(iv) The equation
xn+1 = xnf(xn, xn−1), n = 0, 1, . . . (5.66.3)

has a unique positive equilibrium x̄, which is locally asymptotically stable.

Then x̄ is a global attractor of all positive solutions of Eq.(5.66.3).

The following special case of Conjecture 5.66.2 would also confirm Conjecture
5.66.1.
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Conjecture 5.66.3 Confirm Conjecture 5.66.2 in the special case of the ra-
tional difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . .

with nonnegative parameters and nonnegative initial conditions, that is, for
the function

f(x, y) =
1
x
· α + βx + γy

A + Bx + Cy

under the assumptions of Conjecture 5.66.2.

5.67 Equation #67 : xn+1 =
α + βxn

A + Dxn−2

Eq.(#67) can be written in the normalized form

xn+1 =
α + xn

A + xn−2
, n = 0, 1, . . . (5.67.1)

with positive parameters α,A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

Eq.(5.67.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.67.1) about the
equilibrium x̄ is

λ3 − 1
A + x̄

λ2 +
x̄

A + x̄
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.67.1)
is locally asymptotically stable when either

A ≥ 1
2

(5.67.2)

or
1
3

< A <
1
2

and α <
A2(−A2 + 3A− 1)

(2A− 1)2
(5.67.3)

and unstable when

1
3

< A <
1
2

and α >
A2(−A2 + 3A− 1)

(2A− 1)2
(5.67.4)
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or
0 < A <

1
3
. (5.67.5)

By Theorems 5.23.2 and 5.23.3 it follows that the equilibrium x̄ of Eq.(5.67.1)
is globally asymptotically stable when

A ≥ 1.

Conjecture 5.67.1 Assume that either

1
2
≤ A < 1

or that (5.67.3) holds. Show that the equilibrium x̄ of Eq.(5.67.1) is globally
asymptotically stable.

Conjecture 5.67.2 Show that Eq.(5.67.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

5.68 Equation #68 : xn+1 =
α + βxn

Bxn + Cxn−1

This equation was investigated in [175]. See also Theorem 2.1.1 where we
established that every solution of the equation is bounded. Eq.(#68) can be
written in the normalized form

xn+1 =
α + xn

Bxn + xn−1
, n = 0, 1, . . . (5.68.1)

with positive parameters α, B and with arbitrary positive initial conditions
x−1, x0.

The only equilibrium of Eq.(5.68.1) is

x̄ =
1 +

√
1 + 4α(B + 1)
2(B + 1)

.

The characteristic equation of the linearized equation of Eq.(5.68.1) about the
equilibrium x̄ is

λ2 +
Bx̄− 1

x̄(1 + B)
λ +

1
1 + B

= 0. (5.68.2)

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.68.1)
is locally asymptotically stable for all positive values of the parameters.
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When
α ≥ 1−B

4B2
,

as we will see in Theorem 5.141.1, every solution of Eq.(5.68.1) converges to
the equilibrium x̄. For another proof of that result see [175].

Conjecture 5.68.1 Show that for all positive values of the parameters the
equilibrium x̄ of Eq.(5.68.1) is globally asymptotically stable.

5.69 Equation #69 : xn+1 =
α + βxn

Bxn + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#69) can be written in the normalized form

xn+1 =
α + xn

xn + Dxn−2
, n = 0, 1, . . . (5.69.1)

with positive parameters α, D and with arbitrary positive initial conditions
x−2, x−1, x0.

The only equilibrium of Eq.(5.69.1) is

x̄ =
1 +

√
1 + 4α(D + 1)
2(D + 1)

.

The characteristic equation of the linearized equation of Eq.(5.69.1) about the
equilibrium x̄ is

λ3 +
x̄− 1

x̄(1 + D)
λ2 +

D

1 + D
= 0. (5.69.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.69.1)
is locally asymptotically stable when

0 < D ≤ 1 +
√

2 (5.69.3)

or

D > 1 +
√

2 and α >
D(D2 − 2D − 1)

(3D + 1)2
(5.69.4)

and unstable when

D > 1 +
√

2 and α <
D(D2 − 2D − 1)

(3D + 1)2
.
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When
α ≥ D − 1

4
,

as we will see in Theorem 5.141.2, every solution of Eq.(5.69.1) converges to
the equilibrium x̄.

Conjecture 5.69.1 Assume that

D > 1 and
D(D2 − 2D − 1)

(3D + 1)2
< α <

D − 1
4

.

Show that the equilibrium x̄ of Eq.(5.69.1) is globally asymptotically stable.

Conjecture 5.69.2 Assume that

D > 1 and α <
D(D2 − 2D − 1)

(3D + 1)2
.

Show that Eq.(5.69.1) has solutions that do not converge to the equilibrium
point x̄ or to a periodic solution.

5.70 Equation #70 : xn+1 =
α + βxn

Cxn−1 + Dxn−2

This is an equation of paramount importance that has not been investigated
yet. Eq.(#70) can be written in the normalized form

xn+1 =
α + xn

Cxn−1 + xn−2
, n = 0, 1, . . . (5.70.1)

with positive parameters α, C and with arbitrary positive initial conditions
x−2, x−1, x0.

In Section 4.7 we conjectured that Eq.(5.70.1) possesses a period-six tri-
chotomy depending on whether

αC2 > 1, αC2 = 1, or αC2 < 1 .

The characteristic equation of the linearized equation of Eq.(5.70.1) about its
unique equilibrium point x̄,

x̄ =
1 +

√
1 + 4α(C + 1)
2(C + 1)

,
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is
λ2 − 1

(C + 1)x̄
λ2 +

C

C + 1
λ +

1
C + 1

= 0. (5.70.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.70.1)
is locally asymptotically stable when

αC2 > 1

and unstable when
αC2 < 1.

When
αC2 = 1,

the three characteristic roots of Eq.(5.70.2) are

λ1 =
−1

C + 1
, λ2 =

1− i
√

3
2

, and λ3 =
1 + i

√
3

2
.

Please note that the dominant characteristic roots are sixth roots of unity. Is
this typical of periodic convergence?

Conjecture 5.70.1 Show that the solution of the equation

xn+1 =
1 + xn

xn−1 + xn−2
, n = 0, 1, . . . (5.70.3)

with initial conditions
x−2 = x−1 = x0 = 2

converges to a prime period-six solution of Eq.(5.70.3).

5.71 Equation #71 : xn+1 =
α + γxn−1

A + Bxn

This equation was investigated in [108]. Eq.(#71) possesses a period-two
trichotomy depending on whether

γ < A, γ = A, or γ > A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.

When
γ > A,

it follows from Theorem 4.2.2 that every bounded solution of Eq.(#71) con-
verges to the equilibrium.
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Open Problem 5.71.1 Can the character of solutions of the rational equa-
tion

xn+1 =
α + γxn−1

A + xn
, n = 0, 1, . . .

be predicted from the characteristic roots of the linearized equation about the
equilibrium point? Extend and generalize.

5.72 Equation #72 : xn+1 =
α + γxn−1

A + Cxn−1

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.

5.73 Equation #73 : xn+1 =
α + γxn−1

A + Dxn−2

This equation was investigated in [17] and [70]. Eq.(#73) possesses a period-
two trichotomy depending on whether

γ < A, γ = A, or γ > A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Conjecture 5.73.1 Assume that

γ > A.

Show that every bounded solution of Eq.(#73) converges to the equilibrium.

Open Problem 5.73.1 Can the character of solutions of the rational equa-
tion

xn+1 =
α + γxn−1

A + xn−2
, n = 0, 1, . . .

be predicted from the characteristic roots of the linearized equation about the
equilibrium point? Extend and generalize.
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5.74 Equation #74 : xn+1 =
α + γxn−1

Bxn + Cxn−1

This equation was investigated in [162]. See also [175]. Eq.(#74) can be
written in the normalized form

xn+1 =
α + xn−1

Bxn + xn−1
, n = 0, 1, . . . (5.74.1)

with positive parameters α, B and with arbitrary positive initial conditions
x−1, x0.

The only equilibrium of Eq.(5.74.1) is

x̄ =
1 +

√
1 + 4α(B + 1)
2(B + 1)

.

The characteristic equation of the linearized equation of Eq.(5.74.1) about the
equilibrium x̄ is

λ2 +
B

1 + B
λ +

x̄− 1
(B + 1)x̄

= 0. (5.74.2)

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.74.1)
is locally asymptotically stable when

α >
B − 1

4
(5.74.3)

and unstable when

α <
B − 1

4
. (5.74.4)

When (5.74.4) holds, and only then, Eq.(5.74.1) has the unique period-two
solution

. . . ,
1−

√
1− 4α

B−1

2
,
1 +

√
1− 4α

B−1

2
, . . . , (5.74.5)

which is locally asymptotically stable. See [175].

When

α ≥ B − 1
4

,

as we will see in Theorem 5.141.2, every solution of Eq.(5.74.1) converges to
the equilibrium x̄. For another proof of that result see [162] and [175].

When (5.74.4) holds as we will see in Theorem 5.145.1 every solution of
Eq.(5.74.1) converges to a (not necessarily prime) period-two solution.
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Open Problem 5.74.1 Assume that (5.74.4) holds. Determine the set of all
initial conditions x−1, x0 for which every solution of Eq.(5.74.1) converges to
the prime period-two solution (5.74.5).

Open Problem 5.74.2 Assume that (5.74.4) holds. Determine the set of all
initial conditions x−1, x0 for which every solution of Eq.(5.74.1) converges to
the equilibrium x̄.

5.75 Equation #75 : xn+1 =
α + γxn−1

Bxn + Dxn−2

Eq.(#75) has unbounded solutions. This equation is part of a period-two
trichotomy presented in Theorem 4.3.1.

Conjecture 5.75.1 Show that every bounded solution of Eq.(#75) converges
to the equilibrium of the equation.

Open Problem 5.75.1 Determine the set of all initial conditions of Eq.(#75)
through which the solutions are unbounded.

5.76 Equation #76 : xn+1 =
α + γxn−1

Cxn−1 + Dxn−2

This equation was investigated in [102] where the special cases #74 and #76
were extended and unified. See also Theorem 2.1.1 where we established that
every solution of this equation is bounded. Eq.(#76) can be written in the
normalized form

xn+1 =
α + xn−1

xn−1 + Dxn−2
, n = 0, 1, ... (5.76.1)

with positive parameters α, D and with arbitrary positive initial conditions
x−2, x−1, x0.

The only equilibrium of Eq.(5.76.1) is

x̄ =
1 +

√
1 + 4α(D + 1)
2(D + 1)

.
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The characteristic equation of the linearized equation of Eq.(5.76.1) about the
equilibrium x̄ is

λ3 +
x̄− 1

x̄(1 + D)
λ +

D

1 + D
= 0. (5.76.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.76.1)
is locally asymptotically stable when

D < 1 + 4α (5.76.3)

and unstable when
D > 1 + 4α. (5.76.4)

When (5.76.4) holds, Eq.(5.76.1) possesses the unique prime period-two
solution

. . . ,
1−

√
1− 4α

D−1

2
,
1 +

√
1− 4α

D−1

2
, . . . ,

which was shown in [102] to be locally asymptotically stable.

When
D ≤ 1 + 4α,

as we will see in Theorem 5.141.2, every solution of Eq.(5.76.1) converges to
the equilibrium x̄. For another proof of that result see [102].

Conjecture 5.76.1 Assume that (5.76.4) holds. Show that every solution of
Eq.(5.76.1) converges to a (not necessarily prime) period-two solution.

5.77 Equation #77 : xn+1 =
α + δxn−2

A + Bxn

This equation was investigated in [49]. See also Theorem 2.5.1 where we
established that every solution of the equation is bounded. Eq.(#77) can be
written in the normalized form

xn+1 =
α + xn−2

A + xn
, n = 0, 1, . . . (5.77.1)

with positive parameters α,A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

The only equilibrium of Eq.(5.77.1) is

x̄ =
1−A +

√
(1−A)2 + 4α

2
.
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The characteristic equation of the linearized equation of Eq.(5.77.1) about the
equilibrium x̄ is

λ3 +
x̄

x̄ + A
λ2 − 1

x̄ + A
= 0. (5.77.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.77.1)
is locally asymptotically stable when

A ≥ 1 (5.77.3)

or

A < 1 and α >
2−A +

√
5A2 − 4A3

2
(5.77.4)

and unstable when

A < 1 and α <
2−A +

√
5A2 − 4A3

2
.

By Theorems (5.23.2) and (5.23.3) it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.77.1) is globally asymptotically stable.

Conjecture 5.77.1 Show that every solution of Eq.(5.77.1) converges to the
positive equilibrium x̄ when

A < 1 and α >
2−A +

√
5A2 − 4A3

2
.

Conjecture 5.77.2 Assume that

A < 1 and α <
2−A +

√
5A2 − 4A3

2
.

Show that Eq.(5.77.1) has solutions that do not converge to the equilibrium
point x̄ or to a periodic solution.

5.78 Equation #78 : xn+1 =
α + δxn−2

A + Cxn−1

This equation was investigated in [49]. See also Theorem 2.7.1 where we
established that every solution of the equation is bounded. This equation can
be written in the normalized form

xn+1 =
α + xn−2

A + xn−1
, n = 0, 1, . . . (5.78.1)
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with positive parameters α, A and with arbitrary nonnegative initial condi-
tions, x−2, x−1, x0.

The only equilibrium of Eq.(5.78.1) is

x̄ =
1−A +

√
(1−A)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.78.1) about the
equilibrium x̄ is

λ3 +
x̄

x̄ + A
λ− 1

x̄ + A
= 0. (5.78.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ is locally asymp-
totically stable when

A ≥ 1 (5.78.3)
or

A < 1 and α >
(A− 1)2(A + 1)

A2
(5.78.4)

and unstable when

A < 1 and α <
(A− 1)2(A + 1)

A2
.

By Theorems (5.23.2) and (5.23.3) it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.78.1) is globally asymptotically stable.

Conjecture 5.78.1 Show that every solution of Eq.(5.78.1) converges to the
positive equilibrium x̄ when

A < 1 and α >
(A− 1)2(A + 1)

A2
.

Conjecture 5.78.2 Assume that

A < 1 and α <
(A− 1)2(A + 1)

A2
.

Show that Eq.(5.78.1) has solutions that do not converge to the equilibrium
point x̄ or to a periodic solution.

5.79 Equation #79 : xn+1 =
α + δxn−2

A + Dxn−2

This is a Riccati-type equation. For the character of solutions of Riccati
equations see Section 5.65.
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5.80 Equation #80 : xn+1 =
α + δxn−2

Bxn + Cxn−1

Eq.(#80) can be written in the normalized form

xn+1 =
α + xn−2

Bxn + xn−1
, n = 0, 1, . . . (5.80.1)

with positive parameters α, B and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions for all positive values of the parameters α and B.

Eq.(5.80.1) has the unique equilibrium

x̄ =
1 +

√
1 + 4α(B + 1)
2(B + 1)

.

The characteristic equation of the linearized equation of Eq.(5.80.1) about the
equilibrium x̄ is

λ3 +
B

B + 1
λ2 +

1
B + 1

λ− 1
(B + 1)x̄

= 0 . (5.80.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.80.1)
is locally asymptotically stable when

αB > 1 (5.80.3)

and unstable when
αB < 1. (5.80.4)

For the equilibrium x̄ of Eq.(5.80.1),

Local Asymptotic Stabilty; Global Asymptotic Stabilty.

More specifically, when the condition (5.80.3) is satisfied, the equilibrium x̄
of Eq.(5.80.1) is locally asymptotically stable but not globally asymptotically
stable. The reason is that for all positive values of the parameters α, B there
exist initial conditions x−2, x−1, x0 for which the solution of Eq.(5.80.1) is
unbounded. See Theorem 3.4.1.

In addition to unbounded solutions, what other type’s of solutions
exist? Can there exist any periodic solutions? Can there exist any
bounded solutions that are not periodic and do not converge to the
equilibrium x̄ or to a periodic solution?
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It is interesting to note that when

B = 1,

unbounded solutions of Eq.(5.80.1) co-exist with periodic solutions. For ex-
ample, when

α 6= 1,

the sequence
. . . , 1, 1, α, . . .

is a prime period-three solution of the equation

xn+1 =
α + xn−2

xn + xn−1
, n = 0, 1, . . . .

Open Problem 5.80.1 Determine all possible periodic solutions of Eq.(5.80.1).

Conjecture 5.80.1 Assume that (5.80.3) holds. Show that every bounded
solution of Eq.(5.80.1) converges either to the equilibrium x̄ or to a periodic
solution.

When (5.80.4) holds, numerical investigations indicate the existence of so-
lutions of Eq.(5.80.1), which are bounded, not periodic, do not converge to
the equilibrium x̄, and do not converge to a periodic solution. For this type
of solution we pose the following conjecture.

Conjecture 5.80.2 Assume that (5.80.4) holds. Show that Eq.(5.80.1) has
bounded solutions that do not converge to the equilibrium point x̄ or to a
periodic solution.

5.81 Equation #81 : xn+1 =
α + δxn−2

Bxn + Dxn−2

This equation was investigated in [90]. See also Section 2.1 where we estab-
lished that every solution of the equation is bounded. This equation can be
written in the normalized form

xn+1 =
α + xn−2

Bxn + xn−2
, n = 0, 1, . . . (5.81.1)

with positive parameters α,B and with arbitrary positive initial conditions,
x−2, x−1, x0.
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The only equilibrium of Eq.(5.81.1) is

x̄ =
1 +

√
1 + 4α(B + 1)
2(B + 1)

.

The characteristic equation of the linearized equation of Eq.(5.81.1) about the
equilibrium x̄ is

λ3 +
B

B + 1
λ2 +

x̄− 1
(B + 1)x̄

= 0. (5.81.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.81.2)
is locally asymptotically stable when

B ≤ 1 +
√

2 (5.81.3)

or

B > 1 +
√

2 and α >
2 + 6B + 2B2 + B3 − (1 + 2B)

√
4 + 8B + 5B2

B2(9 + 6B + B2)
(5.81.4)

and unstable when

B > 1 +
√

2 and α <
2 + 6B + 2B2 + B3 − (1 + 2B)

√
4 + 8B + 5B2

B2(9 + 6B + B2)
.

(5.81.5)
In the next theorem we establish that when α > B (resp. α < B), every
solution of Eq.(5.81.1) eventually enters the invariant interval [1, α

B ] (resp.
[ α
B , 1]). See [90].

Theorem 5.81.1 Assume that

α 6= B.

Then the following statements are true:

(a) The interval [min( α
B , 1),max( α

B , 1)] is invariant for every solution {xn}
of Eq.(5.81.1).

(b) Every solution {xn} eventually enters the invariant interval [min( α
B , 1), max( α

B , 1)].

PROOF We will give the proof when α > B. The proof when α < B is
similar and will be omitted.
(a) Let {xn} be a solution of Eq.(5.81.1) with initial conditions x−2, x−1, x0

such that
x−2,, x−1, x0 ∈ [1,

α

B
] .

Then

1 =
α + α

B

B α
B + α

B

≤ x1 =
α + x−2

Bx0 + x−2
≤ α + 1

B · 1 + 1
<

α

B
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and by induction it follows that for all n ≥ 1,

1 ≤ xn ≤ α

B
.

(b) Let {xn} be a solution of Eq.(5.81.1). Observe that the following hold for
n ≥ 1 and α > B:

xn+1 − 1 =
α−Bxn

Bxn + xn−2
, (5.81.6)

and

xn+1 − 1 = B · αB(xn−1 − 1) + (α−B)xn−3

(Bxn + xn−2)(Bxn−1 + xn−3)

>
αB2

(Bxn + xn−2)(Bxn−1 + xn−3)
· (xn−1 − 1), (5.81.7)

and

xn+1 − α

B
=

αB Bxn−1−α
Bxn−1+xn−3

+ (B − α)xn−2

Bxn + xn−2

<
αB2

(Bxn + xn−2)(Bxn−1 + xn−3)
· (xn−1 − α

B
), (5.81.8)

and

xn+1 − xn−1 = −Bxn−3(xn−1 − α
B ) + (xn−1 − 1)(xn−3xn−2 + Bxn−1xn−2)

B(α + xn−3) + xn−2(Bxn−1 + xn−3)
.

(5.81.9)
Suppose that for some N sufficiently large

xN >
α

B
or xN < 1. (5.81.10)

We will prove that the solution {xn} eventually enters the invariant interval
[1, α

B ] when xN > α
B . The proof when xN < 1 is similar and will be omitted.

From (5.81.6), we see that
xN+1 < 1. (5.81.11)

Also,

xN+2 =
α + xN−1

BxN+1 + xN−1
>

α + xN−1

B · 1 + xN−1
> 1

and so from (5.81.7), we obtain for all k ≥ 1,

xN+2k > 1. (5.81.12)

Furthermore, we claim that for some k ≥ 1,

xN+2k <
α

B
. (5.81.13)
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Suppose for the sake of contradiction that for all k ≥ 1,

xN+2k ≥ α

B
.

From (5.81.6) we obtain that for k ≥ 1,

xN+2k+1 ≤ 1 <
α

B
≤ xN+2k.

From this and (5.81.9) it follows

xN+2k+3 ≤ xN+2k+1 ≤ 1 <
α

B
≤ xN+2k ≤ xN+2k+2, k = 1, 2, . . .

and so the two subsequences {xN+2k}∞k=1 and {xN+2k+1}∞k=1 both converge
to finite limits. Let

lim
k→∞

xN+2k = y, lim
k→∞

xN+2k+1 = x.

Clearly,
0 ≤ x ≤ 1 <

α

B
≤ y. (5.81.14)

By taking limits on both sides of

xN+2k+3 =
α + xN+2k

BxN+2k+2 + xN+2k

as k →∞ we find

x =
α + y

(B + 1)y
and y =

α + x

(B + 1)x
,

from which it follows that x = y. This contradicts (5.81.14) and proves
(5.81.13). Assume without loss of generality that (5.81.13) holds for k = 1.
From this and (5.81.12) we have that

1 < xN+2 <
α

B
.

From this, in view of (5.81.7) and (5.81.8), we obtain that for all k ≥ 1,

1 < xN+2k <
α

B
. (5.81.15)

From (5.81.6) and (5.81.15), we find that for all k ≥ 1,

1 < xN+2k+1 <
α

B
. (5.81.16)

The proof is complete.

In the next theorem we prove that the equilibrium x̄ of Eq.(5.81.1) is glob-
ally asymptotically stable in some region of the parameters. For another proof
see [90].
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Theorem 5.81.2 Assume that

B ≤ 4α + 1. (5.81.17)

Then the equilibrium x̄ of Eq.(5.81.1) is globally asymptotically stable.

PROOF Note that

B − 1
4

>
2 + 6B + 2B2 + B3 − (1 + 2B)

√
4 + 8B + 5B2

B2(9 + 6B + B2)
.

From this and in view of (5.81.17), (5.81.3), and (5.81.4), it follows that the
equilibrium x̄ of Eq.(5.81.1) is locally asymptotically stable. It suffices to
show that the equilibrium is a global attractor of all solutions of Eq.(5.81.1).
Let {xn} be a solution of Eq.(5.81.1). When

α 6= B,

by employing, Theorem 1.6.5 and in view of Theorem 5.81.1, the result follows.

On the other hand, assume

α = B.

From (5.81.9), we obtain that for all n ≥ 1,

(xn+1 − xn−1)(xn−1 − 1) ≤ 0.

From this it follows that for all n ≥ 0,

1 ≤ x2n+1 ≤ x2n−1 or x2n−1 ≤ x2n+1 ≤ 1

and

1 ≤ x2n ≤ x2n−2 or x2n−2 ≤ x2n ≤ 1.

Hence, the subsequences of the even and odd terms both converge to finite lim-
its. From this and the fact that Eq.(5.81.1) has no prime period-two solutions
the result follows. The proof is complete.

Conjecture 5.81.1 Assume that (5.81.3) or (5.81.4) holds. Show that every
solution of Eq.(5.81.1) converges to the equilibrium x̄.

Conjecture 5.81.2 Show that Eq.(5.81.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.
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5.82 Equation #82 : xn+1 =
α + δxn−2

Cxn−1 + Dxn−2

For some work on this equation see [125]. Eq.(#82) can be written in the
normalized form

xn+1 =
α + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (5.82.1)

with positive parameters α, C and with arbitrary positive initial conditions
x−2, x−1, x0.

Eq.(5.82.1) has the unique equilibrium

x̄ =
1 +

√
1 + 4α(1 + C)
2(1 + C)

.

The characteristic equation of the linearized equation about the equilibrium
x̄ is

λ3 +
C

C + 1
λ +

x̄− 1
(1 + C)x̄

= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.82.1)
is locally asymptotically stable when

C ≤ 1 +
√

5
2

(5.82.2)

or

C >
1 +

√
5

2
and α >

2 + 4C + C2 −√4 + 16C + 21C2 + 9C3

C2
(5.82.3)

and unstable when

C >
1 +

√
5

2
and α <

2 + 4C + C2 −√4 + 16C + 21C2 + 9C3

C2
.

The following theorem is a new result about the global attractivity of the
equilibrium x̄ of Eq.(5.82.1).

The following identities, which will be useful in the proof of the theorem
that follows, hold for all n ≥ 0:

xn+1 − 1 =
α− Cxn−2

Cxn−1 + xn−2
(5.82.4)

and

xn+1 − xn−3 =
(α− Cxn−3)xn−4 + xn−2(xn−4 + Cxn−3)(1− xn−3)

C(α + xn−4) + xn−2(Cxn−3 + xn−4)
.

(5.82.5)
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Theorem 5.82.1 Assume that

C ≤ 1 + 4α. (5.82.6)

Then the equilibrium x̄ of Eq.(5.82.1) is globally asymptotically stable.

PROOF Note that

C − 1
4

>
2 + 4C + C2 −√4 + 16C + 21C2 + 9C3

C2
.

From this and in view of (5.82.2), (5.82.3), and (5.82.6), the equilibrium x̄
of Eq.(5.82.1) is locally asymptotically stable. It suffices to show that the
equilibrium is a global attractor of all solutions of Eq.(5.82.1). We consider
the following two cases:

Case 1:
α < C

and

Case 2:
α ≥ C.

We will give the proof in Case 1. The proof in Case 2 is similar and will be
omitted. First we will establish that the interval [ α

C , 1] is invariant. Let {xn}
be a solution of Eq.(5.82.1) with initial conditions x−2, x−1, x0 such that

x−2, x−1, x0 ∈ [
α

C
, 1] .

Then
α

C
<

α + α
C

C + α
C

< x1 =
α + x−2

Cx−1 + x−2
<

α + 1
C α

C + 1
= 1

and by induction the result follows.

Next we will show that for j ∈ {0, 1, 2, 3},

{x4n+j} eventually enters the invariant interval [
α

C
, 1] . (5.82.7)

We will show that the subsequence {x4n+1} eventually enters the invariant
interval [ α

C , 1]. The proof that the other three subsequences eventually enter
the invariant interval [ α

C , 1] is similar and will be omitted. Suppose for the
sake of contradiction that there exists N sufficiently large such that

x4N+1 <
α

C
or x4N+1 > 1.
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We will give the proof in the case when x4N+1 < α
C . The proof in the other

case is similar and will be omitted. Then

x4N+3 =
α + x4N

Cx4N+1 + x4N
>

α + x4N

C α
C + x4N

= 1

and from this it follows that

x4N+5 =
α + x4N+2

Cx4N+3 + x4N+2
<

α + x4N+2

C · 1 + x4N+2
< 1. (5.82.8)

To this end we claim that for some k ≥ 1,

x4N+1+4k >
α

C
. (5.82.9)

Otherwise, for all k ≥ 0,
x4N+1+4k ≤ α

C
.

From (5.82.5) it follows that the subsequence {x4n+1} increases. By taking
limits in (5.82.5) we get a contradiction.

Assume without loss of generality that (5.82.9) holds for k = 1. From this
and from (5.82.8), we see that

α

C
< x4N+5 < 1.

From (5.82.4), we obtain that

x4N+7 < 1.

In addition,
x4N+7 >

α

C

because otherwise

x4N+7 =
α + x4N+4

Cx4N+5 + x4N+4
≤ α

C
,

implying that
x4N+5 > 1,

which is a contradiction. Similarly, we obtain

α

C
< x4N+9 < 1

and by induction, we find that for all k ≥ 1,

α

C
< x4N+1+4k < 1,
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which proves (5.82.7).
The function

f(z2, z3) =
α + z3

Cz2 + z3

clearly is strictly decreasing in z2 and eventually strictly increasing in z3. By
employing Theorem 1.6.5 the result follows.

Conjecture 5.82.1 Assume that (5.82.2) or (5.82.3) holds. Show that every
solution of Eq.(5.82.1) converges to the equilibrium x̄.

Conjecture 5.82.2 Show that Eq.(5.82.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

5.83 Equation #83 : xn+1 =
βxn + γxn−1

A + Bxn

This equation was investigated in [179]. See also [175]. Eq.(#83) possesses a
period-two trichotomy depending on whether

γ < β + A, γ = β + A, or γ > β + A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.

When
γ > β + A,

it follows from Theorem 4.2.2 that every positive and bounded solution of
Eq.(#83) converges to the positive equilibrium, x̄ = β+γ−A

B .
Zero is always an equilibrium of the equation

xn+1 =
βxn + γxn−1

A + xn
, n = 0, 1, . . . (5.83.1)

and when
β + γ > A,

Eq.(5.83.1) has, in addition to zero, the unique positive equilibrium

x̄ = β + γ −A.

By Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.84.1)
is globally asymptotically stable when

β + γ ≤ A.
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When
A− β < γ < A + β,

the positive equilibrium x̄ is locally asymptotically stable and by the period-
two trichotomy Theorem 4.2.1 it is a global attractor of all positive solutions.

Open Problem 5.83.1 Obtain “easily verifiable” conditions which deter-
mine the set of all positive initial conditions for which the solutions of Eq.(5.83.1)
do exactly one of the following:

(i) converge to a prime period-two solution, when γ = β + A

(ii) converge to the positive equilibrium, when γ ≥ β + A

(iii) are unbounded, when γ > β + A.

5.84 Equation #84 : xn+1 =
βxn + γxn−1

A + Cxn−1

This equation was investigated in [180]. See also [175]. See also Theorem
2.1.1 where we established that every solution of the equation is bounded.
Eq.(#84) can be written in the normalized form

xn+1 =
βxn + xn−1

A + xn−1
, n = 0, 1, . . . (5.84.1)

with positive parameters β, A and with arbitrary nonnegative initial condi-
tions x−1, x0.

Zero is always an equilibrium point of Eq.(5.84.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.84.1) is globally asymptot-
ically stable when

A ≥ β + 1 (5.84.2)

and unstable when
A < β + 1. (5.84.3)

Furthermore, when Eq.(5.84.3) holds, Eq.(5.84.1) has also the unique positive
equilibrium point

x̄ = β + 1−A.

The characteristic equation of the linearized equation of Eq.(5.84.1) about the
positive equilibrium x̄ is

λ2 − β

β + 1
λ +

β −A

β + 1
= 0. (5.84.4)
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From this and Theorem 1.2.2 it follows that the positive equilibrium x̄ of
Eq.(5.84.1) is locally asymptotically stable for all positive values of the pa-
rameters, as long as A < β + 1.

In the next theorem we prove that the positive equilibrium x̄ of Eq.(5.84.1)
is a global attractor of all positive solutions provided that β + 1 > A. For
another proof of this result see [175].

Theorem 5.84.1 Assume that (5.84.3) holds. Then the positive equilibrium
x̄ of Eq.(5.84.1) is a global attractor of all positive solutions.

PROOF Let {xn} be a positive solution of Eq.(5.84.1). From Theorem
2.1.1 we know that {xn} is bounded from above by a positive constant. We
claim that {xn} is also bounded from below by a positive constant. Otherwise,
there exists a sequence of indices {ni} such that

xni+1 → 0, and xni+1 < xj for all j < ni + 1. (5.84.5)

Then from (5.84.1), the subsequences {xni} and {xni−1} converge to zero.
Hence, eventually,

xni , xni−1 < β + 1−A,

which implies that eventually,

xni+1 =
βxni + xni−1

A + xni−1
>

(β + 1)min(xni , xni−1)
A + (β + 1−A)

= min(xni , xni−1).

This contradicts (5.84.5) and establishes our claim that the solution is bounded
from below by a positive constant. We divide the proof into the following three
cases.

Case 1:
A− 1 < β < A.

We claim that the solution {xn} is eventually bounded from above by the
positive constant A

β . Otherwise, for some N sufficiently large

xN+1 =
βxN + xN−1

A + xN−1
≥ A

β
,

from which it follows that

xN > (
A

β
)2.

Similarly, we find that

xN−1 > (
A

β
)3,
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which eventually leads to a contradiction and proves our claim that the solu-
tion {xn} is eventually bounded from above by the positive constant A

β . The
function

f(xn, xn−1) =
βxn + xn−1

A + xn−1

is eventually strictly increasing in xn and xn−1. The result follows by Theorem
1.6.7.

Case 2:
β > A.

We claim that the solution {xn} is eventually bounded from below by the
positive constant A

β . Otherwise, for some N sufficiently large

xN+1 =
βxN + xN−1

A + xN−1
≤ A

β
,

from which it follows that
xN < (

A

β
)2.

Similarly, we find that

xN−1 < (
A

β
)3,

which eventually leads to a contradiction and proves our claim that the so-
lution {xn} is eventually bounded from below by the positive constant A

β .
Hence, for n sufficiently large,

xn+1 − 1 =
βxn −A

A + xn−1

and so the solution {xn} is eventually bounded from below by 1. Using the
change of variables

yn =
xn − 1

β
,

Eq.(5.84.1) reduces to the equation

yn+1 =
β−A
β2 + yn

A+1
β + yn−1

, n = 0, 1, . . . .

The proof in this case is a straightforward consequence of Theorem 1.6.3.

Case 3:
β = A.

For all n ≥ 0,

xn+1 − 1 = β · xn − 1
β + xn−1
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and
xn+1 − xn = −xn−1 · xn − 1

β + xn−1
.

From this it follows that for n ≥ 0,

xn ≤ xn+1 ≤ 1 or 1 ≤ xn+1 ≤ xn,

from which the result follows. The proof is complete.

Open Problem 5.84.1 Let {βn} and {An} be periodic sequences of nonneg-
ative real numbers with prime period k ≥ 2. Determine the global character
of solutions of the difference equation

xn+1 =
βnxn + xn−1

An + xn−1
, n = 0, 1, . . . .

Extend and generalize.

Open Problem 5.84.2 Let {βn} and {An} be convergent sequences of pos-
itive real numbers. Investigate the character of solutions of the difference
equation

xn+1 =
βnxn + xn−1

An + xn−1
, n = 0, 1, . . . .

Extend and generalize.

Open Problem 5.84.3 Assume that β and A are given real numbers. De-
termine the “good” set G of the equation

xn+1 =
βxn + xn−1

A + xn−1
, (5.84.6)

that is, the set of initial conditions

x−2, x−1, x0 ∈ <
such that the equation (5.84.6) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.84.6) for all initial conditions in the “good”
set G.

5.85 Equation #85 : xn+1 =
βxn + γxn−1

A + Dxn−2

Eq.(#85) can be written in the normalized form

xn+1 =
xn + γxn−1

A + xn−2
, n = 0, 1, . . . (5.85.1)
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with positive parameters γ,A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

The boundedness character of this equation was established in Theorem
3.2.1 where it was shown that when

γ > A + 1,

the equation has unbounded solutions. See also [49].

Zero is always an equilibrium point of Eq.(5.85.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.85.1) is globally asymptot-
ically stable when

A ≥ γ + 1 (5.85.2)

and unstable when
A < γ + 1. (5.85.3)

Furthermore, when Eq.(5.85.3) holds, Eq.(5.85.1) has also the unique positive
equilibrium point

x̄ = γ + 1−A.

The characteristic equation of the linearized equation of Eq.(5.85.1) about the
positive equilibrium x̄ is

λ3 − 1
γ + 1

λ2 − γ

γ + 1
λ +

γ + 1−A

γ + 1
= 0. (5.85.4)

From this and Theorem 1.2.3 it follows that the positive equilibrium x̄ of
Eq.(5.85.1) is locally asymptotically stable when

√
2A2 − 3A + 1−A < γ < A + 1 (5.85.5)

and unstable when
γ <

√
2A2 − 3A + 1−A.

Conjecture 5.85.1 Show that every positive solution of Eq.(5.85.1) con-
verges to the positive equilibrium x̄ when

√
2A2 − 3A + 1−A < γ < A + 1.

Conjecture 5.85.2 Assume that

γ > A + 1.

Show that every positive and bounded solution of Eq.(5.85.1) converges to the
positive equilibrium x̄.
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Conjecture 5.85.3 Assume that

γ = A + 1.

Show that every solution of Eq.(5.85.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.85.4 Assume that

γ <
√

2A2 − 3A + 1−A.

Show that Eq.(5.85.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

5.86 Equation #86 : xn+1 =
βxn + γxn−1

Bxn + Cxn−1

This equation was investigated in [175], [181], [184], and [205]. Eq.(#86) can
be written in the normalized form

xn+1 =
βxn + xn−1

Bxn + xn−1
, n = 0, 1, . . . (5.86.1)

with positive parameters β, B and with arbitrary positive initial conditions
x−1, x0. We also assume that β 6= B because otherwise the equation eventu-
ally becomes trivial.

The only equilibrium of Eq.(5.86.1) is

x̄ =
β + 1
B + 1

.

The characteristic equation of the linearized equation of Eq.(5.86.1) about the
equilibrium x̄ is

λ2 − β −B

(β + 1)(B + 1)
λ +

β −B

(β + 1)(B + 1)
= 0.

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.86.1)
is locally asymptotically stable when

β > B (5.86.2)

or
β < B and B < 3β + βB + 1 (5.86.3)
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and unstable when

β < B and B > 3β + βB + 1. (5.86.4)

When (5.86.4) holds, and only then, Eq.(5.86.1) possesses the unique prime
period-two solution

. . . ,
1− β −

√
(1− β)2 − 4β(1−β)

B−1

2
,
1− β +

√
(1− β)2 − 4β(1−β)

B−1

2
, . . . ,

(5.86.5)
which is locally asymptotically stable. For the proof of this, see [175].

In the next theorem we present the global character of solutions of Eq.(5.86.1).
See [181], [184], and [205].

Theorem 5.86.1 The following statements are true:
(a) The equilibrium x̄ of Eq.(5.86.1) is globally asymptotically stable when
(5.86.2) or (5.86.3) holds.

(b) Every solution of Eq.(5.86.1) converges to the equilibrium x̄ of Eq.(5.86.1)
when

β < B and B = 3β + βB + 1. (5.86.6)

(c) Every solution of Eq.(5.86.1) converges to a (not necessarily prime) period-
two solution when (5.86.4) holds.

PROOF Let {xn} be a solution of Eq.(5.86.1) and assume that (5.86.2)
holds. For all n ≥ 0,

1 < xn+1 =
βxn + xn−1

Bxn + xn−1
=

β

B
· βBxn + Bxn−1

βBxn + βxn−1
<

β

B
,

which implies that the interval [1, β
B ] is invariant for the solution {xn}. Fur-

thermore, the solution {xn} satisfies the following equation:

xn+1 =
β · βxn−1+xn−2

Bxn−1+xn−2
+ xn−1

B · βxn−1+xn−2
Bxn−1+xn−2

+ xn−1

= F (xn−1, xn−2) =
β2xn−1 + Bx2

n−1 + βxn−2 + xn−1xn−2

βBxn−1 + Bx2
n−1 + Bxn−2 + xn−1xn−2

. (5.86.7)

Clearly,

F ∈ C([1,
β

B
]2, [1,

β

B
]),

and

Fxn−1 =
(B − β)βBx2

n−1 + 2βB(B − β)xn−1xn−2 + (B − β)x2
n−2

(βBxn−1 + Bx2
n−1 + Bxn−2 + xn−1xn−2)2

< 0,
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and

Fxn−2 =
−x2

n−1(B − β)2

(βBxn−1 + Bx2
n−1 + Bxn−2 + xn−1xn−2)2

< 0,

and for each m,M ∈ [1, β
B ], the system

M =
β2m + Bm2 + βm + m2

βBm + Bm2 + Bm + m2
and m =

β2M + BM2 + βM + M2

βBM + BM2 + BM + M2

has the unique solution (m,M) = (x̄, x̄). By employing Theorem 1.6.5 the
result follows.

On the other hand, assume that

β < B.

Clearly, the function
βxn + xn−1

Bxn + xn−1

is strictly decreasing in xn and strictly increasing in xn−1. By employing
Theorem 1.6.6, we find that the solution {xn} converges to a (not necessarily
prime) period-two solution. Due to the fact that Eq.(5.86.1) possesses a prime
period-two solution only when (5.86.4) holds, (a), (b), and (c) follow. The
proof is complete.

Open Problem 5.86.1 Assume that β and B are given real numbers. De-
termine the “good” set of the equation

xn+1 =
βxn + xn−1

Bxn + xn−1
, (5.86.8)

that is, the set of initial conditions

x−1, x0 ∈ <
such that the equation (5.86.8) is well defined for all n ≥ 0. Determine the
character of solutions of Eq.(5.86.8) for all initial conditions in the “good”
set G.

5.87 Equation #87 : xn+1 =
βxn + γxn−1

Bxn + Dxn−2

Eq.(#87) can be written in the normalized form

xn+1 =
xn + γxn−1

xn + Dxn−2
, n = 0, 1, . . . (5.87.1)



254 Dynamics of Third-Order Rational Difference Equations

with positive parameters γ,D and with arbitrary positive initial conditions
x−2, x−1, x0.

For some work on this equation see [49]. See also Section 3.3 where we
established that when

γ > 1,

the equation has unbounded solutions.
Eq.(5.87.1) has the unique equilibrium point

x̄ =
γ + 1
D + 1

.

The characteristic equation of the linearized equation of Eq.(5.87.1) about the
equilibrium x̄ is

λ3 +
γ −D

(γ + 1)(D + 1)
λ2 − γ

γ + 1
λ +

D

D + 1
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.87.1)
is locally asymptotically stable when

D2 − 2D − 1
D2 + 5D + 2

< γ < 1 (5.87.2)

and unstable when

γ <
D2 − 2D − 1
D2 + 5D + 2

or γ > 1.

When
γ = 1,

Eq.(5.87.1) has infinitely many prime period-two solutions of the form

. . . , x,
x

(D + 1)x− 1
, x,

x

(D + 1)x− 1
, . . .

with
x ∈ (

1
D + 1

,∞) and x 6= 2
D + 1

.

Conjecture 5.87.1 Assume that (5.87.2) holds. Show that every solution of
Eq.(5.87.1) converges to the equilibrium x̄.

Conjecture 5.87.2 Assume that

γ = 1.

Show that every solution of Eq.(5.87.1) converges to a (not necessarily prime)
period-two solution.
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Conjecture 5.87.3 Assume that

γ <
D2 − 2D − 1
D2 + 5D + 2

.

Show that Eq.(5.87.1) has bounded solutions that do not converge to the equi-
librium point x̄ or to a periodic solution.

Open Problem 5.87.1 Assume that

γ > 1.

(i) Determine the set of all initial conditions through which solutions of Eq.(5.87.1)
are unbounded.

(ii) Determine the set of all initial conditions through which solutions of
Eq.(5.87.1) converge to the equilibrium x̄.

Conjecture 5.87.4 Assume that

γ > 1.

Show that every bounded solution of Eq.(5.87.1) converges to the equilibrium
x̄.

5.88 Equation #88 : xn+1 =
βxn + γxn−1

Cxn−1 + Dxn−2

This equation was investigated in [14]. See also Theorem 2.8.1 where we have
shown that every solution of Eq.(5.88.1) is bounded. Eq.(#88) can be written
in the normalized form

xn+1 =
βxn + xn−1

xn−1 + Dxn−2
, n = 0, 1, . . . (5.88.1)

with positive parameters β,D and with arbitrary positive initial conditions
x−2, x−1, x0.

The only equilibrium of Eq.(5.88.1) is

x̄ =
β + 1
D + 1

.

The characteristic equation of the linearized equation of Eq.(5.88.1) about the
equilibrium x̄ is
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λ3 − β

β + 1
λ2 +

β −D

(β + 1)(D + 1)
λ +

D

D + 1
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.88.1)
is locally asymptotically stable when

D ≤ 1 or D > 1 and
D − 1
D + 3

< β <
D2 + 3D + 1

D2
(5.88.2)

and unstable when

D > 1 and β <
D − 1
D + 3

or β >
D2 + 3D + 1

D2
.

Conjecture 5.88.1 When (5.88.2) holds, every solution of Eq.(5.88.1) con-
verges to the equilibrium x̄.

Conjecture 5.88.2 Assume that

D > 1 and β >
D2 + 3D + 1

D2
.

Show that Eq.(5.88.1) has solutions that do not converge to the equilibrium
point x̄ or to a periodic solution.

Open Problem 5.88.1 Investigate the global character of solutions of Eq.(5.88.1)
when

β =
D − 1
D + 3

> 0.

When

D > 1 and β <
D − 1
D + 3

, (5.88.3)

Eq.(5.88.1) possesses a unique period-two solution of the form

. . . , x, y, x, y, . . . ,

where x, y are the two positive solutions of the equation

(D − 1)t2 + (β − 1)(D − 1)t + β(1− β) = 0.

Conjecture 5.88.3 Show that when (5.88.3) holds the unique prime period-
two solution of Eq.(5.88.1) is locally asymptotically stable.
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5.89 Equation #89 : xn+1 =
βxn + δxn−2

A + Bxn

This equation was investigated in [49]. See also Section 2.5 where we es-
tablished that every solution of the equation is bounded. Eq.(#89) can be
written in the normalized form

xn+1 =
βxn + δxn−2

1 + xn
, n = 0, 1, . . . (5.89.1)

with positive parameters β, δ and with arbitrary nonnegative initial conditions
x−2, x−1, x0.

Zero is always an equilibrium point of Eq.(5.89.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.89.1) is globally asymptot-
ically stable when

β + δ ≤ 1 (5.89.2)

and unstable when
β + δ > 1. (5.89.3)

Furthermore, when Eq.(5.89.3) holds, Eq.(5.89.1) has also the unique positive
equilibrium point

x̄ = β + δ − 1.

The characteristic equation of the linearized equation of Eq.(5.89.1) about the
positive equilibrium, x̄ = β + δ − 1, is

λ3 +
δ − 1
β + δ

λ2 − δ

β + δ
= 0.

From this and Theorem 1.2.3 it follows that x̄ = β + δ − 1 is locally asymp-
totically stable when

β >
√

2δ2 − δ − δ (5.89.4)

and unstable when
β <

√
2δ2 − δ − δ.

When
β =

√
2δ2 − δ − δ,

one of the characteristic roots is real within the interval (0, 1) and the other
two characteristic roots are complex conjugates with magnitude equal to one.

In Section 2.5 we proved that every solution of Eq.(5.89.1) is bounded from
above. Here we will also show that when (5.89.3) holds, every positive solution
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of Eq.(5.89.1) is also bounded from below by a positive constant. Assume
for the sake of contradiction that there exists a positive solution {xn} of
Eq.(5.89.1), which contains a subsequence {xni+1} such that

xni+1 → 0 and xni+1 < xj , j < ni + 1. (5.89.5)

Clearly,
xni → 0 and xni−2 → 0.

Hence, there exists i0 such that

xni0
< β + δ − 1.

Then

xni0+1 =
βxni0

+ δxni0−2

1 + xni0

> (β + δ)
min(xni0

, xni0−2)
β + δ

= min(xni0
, xni0−2).

This contradicts (5.89.5) and the proof is complete.

The next three theorems are new results about the global attractivity of
the positive equilibrium x̄ of Eq.(5.89.1).

Theorem 5.89.1 Assume that

δ = 1.

Then every positive solution of Eq.(5.89.1) converges to β.

PROOF For all n ≥ 0,

xn+1 − β =
xn−2 − β

1 + xn

and
xn+1 − xn−2 = xn · β − xn−2

1 + xn
.

From this it follows that, for all n ≥ 0,

β ≤ x3n+1 ≤ x3n−2

or
x3n−2 ≤ x3n+1 ≤ β

and so the sequence {x3n+1} converges to a finite limit. Similarly, it follows
that the sequences {x3n+2} and {x3n+3} converge to finite limits. Due to the
fact that when δ = 1, Eq.(5.89.1) has no prime period-three solutions, the
result follows. The proof is complete.
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Theorem 5.89.2 Assume that

β > 1− δ > 0.

Then every positive solution of Eq.(5.89.1) converges to the positive equilib-
rium x̄ = β + δ − 1.

PROOF We claim that eventually

xn < β <
1
δ
· β. (5.89.6)

Assume for the sake of contradiction that for some N > 0

xN+1 =
βxN + δxN−2

1 + xN
≥ β.

From this it follows that
xN−2 ≥ 1

δ
· β

and, similarly,

xN−5 ≥ (
1
δ
)2β.

Inductively, we find

xN+1−3k > (
1
δ
)kβ,

which is a contradiction and proves (5.89.6). Clearly, the function

f(xn, xn−2) =
βxn + δxn−2

1 + xn

is strictly increasing in xn and xn−2. By employing Theorem 1.6.7 the result
follows. The proof is complete.

Theorem 5.89.3 Assume that

β ≥ δ − 1 > 0.

Then every positive solution of Eq.(5.89.1) converges to the positive equilib-
rium x̄ = β + δ − 1.

PROOF We claim that eventually

xn > β >
1
δ
· β. (5.89.7)
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Assume for the sake of contradiction that for some N > 0

xN+1 =
βxN + δxN−2

1 + xN
≤ β.

From this it follows that

xN−2 ≤ 1
δ
· β

and, similarly,

xN−5 ≤ (
1
δ
)2 · β.

Inductively, we find

xN+1−3k ≤ (
1
δ
)k · β,

which is a contradiction and proves (5.89.7). Clearly, the function

f(xn, xn−2) =
βxn + δxn−2

1 + xn

is strictly decreasing in xn and strictly increasing in xn−2. When

β > δ − 1 > 0

by employing Theorem 1.6.7 the result follows. When

β = δ − 1 > 0,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.

Conjecture 5.89.1 Assume that

√
2δ2 − δ − δ < β < δ − 1.

Show that every positive solution {xn} of Eq.(5.89.1) converges to the positive
equilibrium x̄ = β + δ − 1.

Conjecture 5.89.2 Assume that

β <
√

2δ2 − δ − δ.

Show that Eq.(5.89.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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5.90 Equation #90 : xn+1 =
βxn + δxn−2

A + Cxn−1

This equation was investigated in [49] . See also Section 2.7 where we es-
tablished that every solution of the equation is bounded. Eq.(#90) can be
written in the normalized form

xn+1 =
βxn + δxn−2

1 + xn−1
, n = 0, 1, . . . (5.90.1)

with positive parameters β, δ and with arbitrary nonnegative initial conditions
x−2, x−1, x0.

Zero is always an equilibrium point of Eq.(5.90.1). By Theorems 5.23.2 and
5.23.4, the zero equilibrium of Eq.(5.90.1) is globally asymptotically stable
when

β + δ ≤ 1 (5.90.2)

and unstable when
β + δ > 1. (5.90.3)

Furthermore, when Eq.(5.90.3) holds, Eq.(5.90.1) has also the unique positive
equilibrium point

x̄ = β + δ − 1.

The characteristic equation of the linearized equation of Eq.(5.90.1) about the
positive equilibrium, x̄ = β + δ − 1, is

λ3 − β

β + δ
λ2 +

β + δ − 1
β + δ

λ− δ

β + δ
= 0.

From this and Theorem 1.2.3 it follows that x̄ = β + δ − 1 is locally asymp-
totically stable when

β >
δ2 − δ

δ + 1
(5.90.4)

and unstable when

β <
δ2 − δ

δ + 1
.

Conjecture 5.90.1 Assume that

β >
δ2 − δ

δ + 1

Show that every positive solution {xn} of Eq.(5.90.1) converges to the positive
equilibrium x̄ = β + δ − 1.
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Conjecture 5.90.2 Assume that

β <
δ2 − δ

δ + 1
.

Show that Eq.(5.90.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

5.91 Equation #91 : xn+1 =
βxn + δxn−2

A + Dxn−2

The boundedness character of this equation was investigated in [49]. See also
Theorem 2.3.3 where we established that every solution of the equation is
bounded. Eq.(#91) can be written in the normalized form

xn+1 =
βxn + xn−2

A + xn−2
, n = 0, 1, . . . (5.91.1)

with positive parameters β, A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

Zero is always an equilibrium of Eq.(5.91.1). By Theorems 5.23.2 and 5.23.4
it follows that when

A ≥ β + 1

the zero equilibrium of Eq.(5.91.1) is globally asymptotically stable.
When

A < β + 1,

Eq.(5.91.1) has the positive equilibrium

x̄ = β + 1−A.

The characteristic equation of the linearized equation of Eq.(5.91.1) about the
positive equilibrium, x̄ = β + 1−A, is

λ3 − β

β + 1
λ2 +

β −A

β + 1
= 0.

From this and Theorem 1.2.3 it follows that x̄ = β + 1− A is locally asymp-
totically stable when

β ≤ 1 +
√

2 and A < β + 1 (5.91.2)

or when

β > 1 +
√

2 and
3β −

√
5β2 + 8β + 4

2
< A < β + 1 (5.91.3)
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and unstable when

β > 1 +
√

2 and A <
3β −

√
5β2 + 8β + 4

2
.

The next theorem is a new result about the global attractivity of the positive
equilibrium of Eq.(5.91.1).

Theorem 5.91.1 Assume that

β − 1 ≤ A < β + 1.

Then every positive solution of Eq.(5.91.1) converges to the positive equilib-
rium x̄.

PROOF Let {xn} be a positive solution of Eq.(5.91.1). We consider the
following three cases:

Case 1:
β − 1 ≤ A < β.

We claim that, eventually,

xn >
A

β
.

Otherwise, there exists N sufficiently large such that

xN+1 =
βxN + xN−2

A + xN−2
≤ A

β
.

From this it follows that
xN < (

A

β
)2

and, similarly,

xN−1 < (
A

β
)3,

which eventually leads to a contradiction. Clearly, the function

f(xn, xn−2) =
βxn + xn−2

A + xn−2

is strictly increasing in xn and eventually strictly decreasing in xn−2. When

β − 1 < A < β,

by employing Theorem 1.6.7 the result follows. When

A = β − 1,
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the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.

Case 2:
β < A < β + 1.

We claim that, eventually,

xn <
A

β
.

Otherwise, there exists N sufficiently large such that

xN+1 =
βxN + xN−2

A + xN−2
≥ A

β
.

From this it follows that
xN > (

A

β
)2

and, similarly,

xN−1 > (
A

β
)3,

which eventually leads to a contradiction. Clearly, the function

f(xn, xn−2) =
βxn + xn−2

A + xn−2

is strictly increasing in xn and eventually strictly increasing in xn−2. By
employing Theorem 1.6.7 the result follows.

Case 3:
β = A.

For all n ≥ 0,

xn+1 − 1 = β · xn − 1
β + xn−2

and xn+1 − xn = xn−2 · 1− xn

β + xn−2
.

Then, clearly, for all n ≥ 0,

1 ≤ xn+1 ≤ xn or xn ≤ xn+1,≤ 1

from which the result follows. The proof is complete.

From Theorem 5.91.1 and in view of (5.91.2) and (5.91.3) it follows that when

A− 1 < β ≤ 1,

the positive equilibrium x̄ of Eq.(5.91.1) and with positive initial conditions
is globally asymptotically stable.
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Conjecture 5.91.1 Assume that β ∈ (1,∞) and that

3β −
√

5β2 + 8β + 4
2

< A < β − 1.

Show that every positive solution of Eq.(5.91.1) converges to the positive equi-
librium x̄.

Conjecture 5.91.2 Assume that

A <
3β −

√
5β2 + 8β + 4

2
.

Show that Eq.(5.91.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

5.92 Equation #92 : xn+1 =
βxn + δxn−2

Bxn + Cxn−1

Eq.(#92) can be written in the normalized form

xn+1 =
xn + δxn−2

xn + Cxn−1
, n = 0, 1, . . . (5.92.1)

with positive parameters δ, C and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the Eq.(5.92.1) has
unbounded solutions when

δ > C.

From this and Theorem 5.221.1 it follows that every solution of Eq.(5.92.1) is
bounded if and only if

δ ≤ C.

Eq.(5.92.1) has the unique equilibrium

x̄ =
1 + δ

1 + C
.

The characteristic equation of the linearized equation of Eq.(5.92.1) about the
equilibrium x̄ is

λ3 +
δ − C

(1 + δ)(1 + C)
λ2 +

C

1 + C
λ− δ

1 + δ
= 0. (5.92.2)
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From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.92.1)
is locally asymptotically stable when

δ <
C + 2 +

√
C2 + 8C + 8

2(1 + C)
(5.92.3)

and unstable when

δ >
C + 2 +

√
C2 + 8C + 8

2(1 + C)
. (5.92.4)

It is interesting to note that for the equilibrium x̄ of Eq.(5.92.1),

Local Asymptotic Stabilty; Global Attractivity.

Indeed, for all positive values of C for which

C <
C + 2 +

√
C2 + 8C + 8

2(1 + C)

and for all values of δ such that

C < δ <
C + 2 +

√
C2 + 8C + 8

2(1 + C)
,

the equilibrium x̄ of Eq.(5.92.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such
initial conditions the equilibrium of the equation is not a global attractor.

Conjecture 5.92.1 Assume that

δ ≤ C.

Show that for the equilibrium x̄ of Eq.(5.92.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.92.1 Assume that

δ > C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.92.1) converge to the equilibrium x̄.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.92.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.92.1).

Conjecture 5.92.2 Assume that (5.92.4) holds. Show that Eq.(5.92.1) has
bounded solutions that do not converge to the equilibrium point x̄ or to a
periodic solution.
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5.93 Equation #93 : xn+1 =
βxn + δxn−2

Bxn + Dxn−2

Eq.(#93) can be written in the normalized form

xn+1 =
βxn + xn−2

Bxn + xn−2
, n = 0, 1, . . . (5.93.1)

with positive parameters β, B and with arbitrary positive initial conditions
x−2, x−1, x0. For some work on this equation see [141].

The only equilibrium of Eq.(5.93.1) is

x̄ =
β + 1
B + 1

.

The characteristic equation of the linearized equation of Eq.(5.93.1) about the
equilibrium x̄ is

λ3 − β −B

(β + 1)(B + 1)
λ2 +

β −B

(β + 1)(B + 1)
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.93.1)
is locally asymptotically stable when

−1 +
√

2 ≤ B ≤ 1 +
√

2, (5.93.2)

or

B < −1 +
√

2 and β <
B
√

2 + B + 1√
2−B − 1

, (5.93.3)

or

B > 1 +
√

2 and β >
B
√

2−B − 1√
2 + B + 1

(5.93.4)

and unstable when

B < −1 +
√

2 and β >
B
√

2 + B + 1√
2−B − 1

(5.93.5)

or

B > 1 +
√

2 and β <
B
√

2−B − 1√
2 + B + 1

. (5.93.6)

The next theorem is a new result about the global stability of the equilib-
rium x̄ of Eq.(5.93.1).
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Theorem 5.93.1 Assume that

1 ≤ β < B, or β < B ≤ 1, or
B − 1
B + 3

≤ β < 1 < B (5.93.7)

or

B < β ≤ 1, or 1 ≤ B < β, or B < 1 <
3B + 1
1−B

≤ β. (5.93.8)

Then the equilibrium x̄ of Eq.(5.93.1) is globally asymptotically stable.

PROOF When (5.93.7) or (5.93.8) holds, in view of (5.93.2), (5.93.3), and
(5.93.4) the equilibrium x̄ of Eq.(5.93.1) is locally asymptotically stable. It
suffices to show that the equilibrium x̄ is a global attractor of all solutions of
Eq.(5.93.1).

Let {xn} be a solution of Eq.(5.93.1). For all n ≥ 0,

min(
β

B
, 1) < xn+1 =

βxn + xn−2

Bxn + xn−2
< max(

β

B
, 1)

and so the interval [min( β
B , 1), max( β

B , 1)] is invariant for the solution {xn}.
When (5.93.7) holds, the function

f(xn, xn−2) =
βxn + xn−2

Bxn + xn−2

is strictly decreasing in xn and strictly increasing in xn−2, and for each m,M ∈
[ β
B , 1], the system

M =
βm + M

Bm + M
and m =

βM + m

BM + m

has the unique solution (m,M) = (x̄, x̄). By employing Theorem 1.6.4 the
result follows.

When (5.93.8) holds, the function

f(xn, xn−2) =
βxn + xn−2

Bxn + xn−2

is strictly increasing in xn and strictly decreasing in xn−2, and for each m,M ∈
[1, β

B ], the system

M =
βM + m

BM + m
and m =

βm + M

Bm + M

has the unique solution (m,M) = (x̄, x̄). By employing Theorem 1.6.4 the
result follows. The proof is complete.
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Conjecture 5.93.1 Show that for the equilibrium x̄ of Eq.(5.93.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Conjecture 5.93.2 Show that Eq.(5.93.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

5.94 Equation #94 : xn+1 =
βxn + δxn−2

Cxn−1 + Dxn−2

Eq.(#94) can be written in the normalized form

xn+1 =
βxn + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (5.94.1)

with positive parameters β,C and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of this equation was investigated in [152] where
they established that every solution is bounded from above and from below
by positive constants. See also Theorem 2.9.1 in Section 2.9.

Eq.(5.94.1) has the unique equilibrium point

x̄ =
β + 1
C + 1

.

The characteristic equation of the linearized equation of Eq.(5.94.1) about the
equilibrium, x̄ = β+1

C+1 , is

λ3 − β

β + 1
λ2 +

C

C + 1
λ +

β − C

(β + 1)(C + 1)
= 0.

From this and Theorem 1.2.3 it follows that x̄ = β+1
C+1 is locally asymptotically

stable when

β < 1 and C <
1 + 5β + (1 + β)

√
5 + 4β

2(1− β)
, (5.94.2)

or
1 ≤ β ≤ 1 +

√
2, (5.94.3)

or

β > 1 +
√

2 and C >
1 + 5β − (1 + β)

√
5 + 4β

2(1− β)
(5.94.4)

and unstable when

β < 1 and C >
1 + 5β + (1 + β)

√
5 + 4β

2(1− β)
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or

β > 1 +
√

2 and C <
1 + 5β − (1 + β)

√
5 + 4β

2(1− β)
.

Conjecture 5.94.1 Assume that (5.94.2), (5.94.3), or (5.94.4) holds. Show
that every solution of Eq.(5.94.1) converges to the equilibrium x̄.

Conjecture 5.94.2 Show that Eq.(5.94.1) has solutions that do not converge
to the equilibrium point x̄ or to a periodic solution.

5.95 Equation #95 : xn+1 =
γxn−1 + δxn−2

A + Bxn

Eq.(#95) can be written in the normalized form

xn+1 =
γxn−1 + xn−2

A + xn
, n = 0, 1, . . . (5.95.1)

with positive parameters γ, A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

The boundedness character of this equation was established in Theorem
3.1.1 where it was shown that when

γ > A + 1,

the equation has unbounded solutions. The periodic character of this equation
will be investigated in Theorem 5.195.2 where it will be shown that when

γ = A + 1,

every solution of the equation converges to a (not necessarily prime) period-
two solution.

Zero is always an equilibrium point of Eq.(5.95.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.95.1) is globally asymptot-
ically stable when

A ≥ γ + 1 (5.95.2)

and unstable when
A < γ + 1. (5.95.3)

Furthermore, when Eq.(5.95.3) holds, Eq.(5.95.1) has also the unique positive
equilibrium point

x̄ = γ + 1−A.
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The characteristic equation of the linearized equation of Eq.(5.95.1) about the
positive equilibrium x̄ is

λ3 +
γ + 1−A

γ + 1
λ2 − γ

γ + 1
λ− 1

γ + 1
= 0. (5.95.4)

From this and Theorem 1.2.3 it follows that the positive equilibrium x̄ of
Eq.(5.95.1) is locally asymptotically stable when

√
3− 2A− 1

2
< γ < A + 1 (5.95.5)

and unstable when

γ <

√
3− 2A− 1

2
.

Open Problem 5.95.1 Assume that

γ > A + 1.

(a) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) converge to the positive equilibrium x̄.

(b) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) are unbounded.

Open Problem 5.95.2 Assume that

γ = A + 1.

(a) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) converge to the positive equilibrium x̄.

(b) Determine the set of all positive initial conditions through which the solu-
tions of Eq.(5.95.1) converge to a prime period-two solution.

Conjecture 5.95.1 Assume that (5.95.5) holds. Show that every positive
solution of Eq.(5.95.1) converges to the positive equilibrium x̄.

Conjecture 5.95.2 Assume that

γ <

√
3− 2A− 1

2
.

Show that Eq.(5.95.1) has bounded solutions that do not converge to an equi-
librium point x̄ or to a periodic solution.

Conjecture 5.95.3 Assume that

γ > 1 + A.

Show that every positive and bounded solution of Eq.(5.95.1) converges to the
positive equilibrium x̄.
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5.96 Equation #96 : xn+1 =
γxn−1 + δxn−2

A + Cxn−1

This equation was investigated in [49]. See also Section 2.7 where we es-
tablished that every solution of the equation is bounded. Eq.(#96) can be
written in the normalized form

xn+1 =
γxn−1 + xn−2

A + xn−1
, n = 0, 1, . . . (5.96.1)

with positive parameters γ,A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

Zero is always an equilibrium point of Eq.(5.96.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.96.1) is globally asymptot-
ically stable when

A ≥ γ + 1 (5.96.2)

and unstable when
A < γ + 1. (5.96.3)

Furthermore, when Eq.(5.96.3) holds, Eq.(5.96.1) has also the unique positive
equilibrium point

x̄ = γ + 1−A.

The characteristic equation of the linearized equation of Eq.(5.96.1) about the
positive equilibrium, x̄ = γ + 1−A, is

λ3 +
1−A

γ + 1
λ− 1

γ + 1
= 0.

From this and Theorem 1.2.3 it follows that x̄ = γ + 1− A is locally asymp-
totically stable when

A >
1− γ − γ2

γ + 1
(5.96.4)

and unstable when

A <
1− γ − γ2

γ + 1
.

In Section 2.7 we proved that every solution of Eq.(5.96.1) is bounded from
above. Here we will also show that when (5.96.3) holds, every positive solution
of Eq.(5.96.1) is also bounded from below by a positive constant. Assume
for the sake of contradiction that there exists a positive solution {xn} of
Eq.(5.96.1), which contains a subsequence {xni+1} such that

xni+1 → 0 and xni+1 < xj , j < ni + 1. (5.96.5)
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Clearly,
xni → 0 and xni−2 → 0.

Hence, there exists i0 such that

xni0
< γ + 1−A.

Then

xni0+1 =
γxni0−1 + xni0−2

A + xni0−1

> (γ+1)
min(xni0−1 , xni0−2)

γ + 1
= min(xni0−1 , xni0−2).

This contradicts (5.96.5) and the proof is complete.

The next three theorems are new results about the global attractivity of
the positive equilibrium x̄ of Eq.(5.96.1).

Theorem 5.96.1 Assume that

A = 1.

Then every positive solution of Eq.(5.96.1) converges to γ.

PROOF Let {xn} be a positive solution of Eq.(5.96.1). For all n ≥ 0,

xn+1 − γ =
xn−2 − γ

1 + xn−1

and
xn+1 − xn−2 = xn−1 · xn−2 − γ

1 + xn−1
.

From this it follows that, for all n ≥ 0,

γ ≤ x3n+1 ≤ x3n−2 or x3n−2 ≤ x3n+1 ≤ γ,

and so the sequence {x3n+1} converges to a finite limit. Similarly, it follows
that the sequences {x3n+2} and {x3n+3} converge to finite limits. Due to the
fact that Eq.(5.96.1) has no prime period-three solutions, the result follows.
The proof is complete.

Theorem 5.96.2 Assume that

γ > A− 1 > 0.

Then every positive solution of Eq.(5.96.1) converges to the positive equilib-
rium x̄ = γ + 1−A.
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PROOF We claim that, eventually,

xn < γ. (5.96.6)

Otherwise, there exists N sufficiently large such that

xN+1 =
γxN−1 + xN−2

A + xN−1
≥ γ.

From this it follows that
xN−2 ≥ A · γ

and, similarly,
xN−5 ≥ A2γ.

Inductively, we find
xN+1−3k ≥ Akγ,

which is a contradiction so our claim is established. Clearly, the function

f(xn−1, xn−2) =
γxn−1 + xn−2

A + xn−1

is strictly increasing in xn−1 and xn−2. By employing Theorem 1.6.7 the
result follows. The proof is complete.

Theorem 5.96.3 Assume that

γ ≥ 1−A > 0.

Then every positive solution of Eq.(5.96.1) converges to the positive equilib-
rium x̄ = γ + 1−A.

PROOF We claim that, eventually,

xn > γ. (5.96.7)

Otherwise, there exists N sufficiently large such that

xN+1 =
γxN−1 + xN−2

A + xN−1
≤ γ.

From this it follows that
xN−2 ≤ A · γ

and, similarly,
xN−5 ≤ A2 · γ.

Inductively, we find
xN+1−3k ≤ Ak · γ,
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which is a contradiction and proves (5.96.7). Clearly, the function

f(xn−1, xn−2) =
γxn−1 + xn−2

A + xn−1

is strictly decreasing in xn−1 and strictly increasing in xn−2. When

γ > 1−A > 0,

by employing Theorem 1.6.7, the result follows. When

γ = 1−A > 0,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.

Conjecture 5.96.1 Assume that

1− γ − γ2

γ + 1
< A < 1.

Show that every positive solution of Eq.(5.96.1) converges to the positive equi-
librium x̄ = β + δ − 1.

Conjecture 5.96.2 Assume that

A <
1− γ − γ2

γ + 1
.

Show that Eq.(5.96.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

5.97 Equation #97 : xn+1 =
γxn−1 + δxn−2

A + Dxn−2

This equation was investigated in [67] and [122]. Eq.(#97) possesses a period-
two trichotomy depending on whether

γ < δ + A, γ = δ + A, or γ > δ + A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.



276 Dynamics of Third-Order Rational Difference Equations

Open Problem 5.97.1 Assume

γ = δ + A.

Determine the set of all positive initial conditions for which every positive
solution of the equation

xn+1 =
γxn−1 + δxn−2

A + xn−2
, n = 0, 1, . . . (5.97.1)

converges to the positive equilibrium 2δ.

Open Problem 5.97.2 Assume

γ > δ + A.

Determine the set of all positive initial conditions for which every positive
solution of Eq.(5.97.1) converges to the positive equilibrium.

Conjecture 5.97.1 Assume

γ > δ + A.

Show that every positive and bounded solution of Eq.(5.97.1) converges to the
positive equilibrium.

5.98 Equation #98 : xn+1 =
γxn−1 + δxn−2

Bxn + Cxn−1

Eq.(#98) can be written in the normalized form

xn+1 =
xn−1 + δxn−2

Bxn + xn−1
, n = 0, 1, ... (5.98.1)

with positive parameters δ,B and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of Eq.(5.98.1) was investigated in [69]. See also
Theorem 3.4.1 where we established the existence of unbounded solutions of
Eq.(5.98.1) when

δ > B.

From this and Theorem 5.221.1 it follows that every solution of Eq.(5.98.1)
is bounded if and only if

δ ≤ B.
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Eq.(5.98.1) has the unique equilibrium

x̄ =
δ + 1
B + 1

.

The characteristic equation of the linearized equation of Eq.(5.98.1) about the
equilibrium, x̄ = δ+1

B+1 , is

λ3 +
B

B + 1
λ2 +

δ −B

(δ + 1)(B + 1)
λ− δ

δ + 1
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ = δ+1
B+1 is locally

asymptotically stable when

B − 1
B + 3

< δ <
1 + 2B +

√
5 + 16B + 12B2

2(B + 1)
(5.98.2)

and unstable when

δ <
B − 1
B + 3

or δ >
1 + 2B +

√
5 + 16B + 12B2

2(B + 1)
. (5.98.3)

When

δ =
1 + 2B +

√
5 + 16B + 12B2

2(B + 1)
,

two characteristic roots are complex conjugate with magnitude equal to one
and the third characteristic root lies in the interval (0, 1). In particular, when

B = δ = 1 +
√

2,

two of the characteristic roots are eighth roots of unity and the third charac-
teristic root lies in the interval (0, 1).

It is interesting to note that for the equilibrium x̄ of Eq.(5.98.1),

Local Asymptotic Stabilty; Global Asymptotic Stabilty.

Indeed, for all positive values of B for which

B <
1 + 2B +

√
5 + 16B + 12B2

2(B + 1)
,

and for all values of δ such that

B < δ <
1 + 2B +

√
5 + 16B + 12B2

2(B + 1)
,

the equilibrium x̄ of Eq.(5.98.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such
initial conditions the equilibrium of the equation is not a global attractor.
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When
δ =

B − 1
B + 3

,

two of the characteristic roots lie in the interval (0, 1) and the other root is
equal to −1.

The sequence
. . . , φ, ψ, φ, ψ, . . . , (5.98.4)

where φ and ψ are the two positive roots of the equation

(B − 1)t2 + (B − 1)(δ − 1)t + δ(1− δ) = 0

is a unique prime period-two solution of Eq.(5.98.1) if and only if

δ <
B − 1
B + 3

. (5.98.5)

Conjecture 5.98.1 Assume that

0 <
B − 1
B + 3

< δ ≤ B

or
δ ≤ B ≤ 1.

Show that for the equilibrium x̄ of Eq.(5.98.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Conjecture 5.98.2 Assume that (5.98.5) is satisfied. Show that the unique
prime period-two solution (5.98.4) of Eq.(5.98.1) is locally asymptotically sta-
ble.

Conjecture 5.98.3 Assume that (5.98.5) is satisfied. Show that every solu-
tion of Eq.(5.98.1) converges to a (not necessarily prime) period-two solution.

Conjecture 5.98.4 Assume that

δ =
B − 1
B + 3

> 0.

Show that every solution of Eq.(5.98.1) converges to the equilibrium x̄.

Open Problem 5.98.1 Assume that

δ > B.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.98.1) converge to the equilibrium x̄.
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(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.98.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.98.1).

Conjecture 5.98.5 Assume that

δ >
1 + 2B +

√
5 + 16B + 12B2

2(B + 1)
.

Show that Eq.(5.98.1) has bounded solutions that do not converge to the equi-
librium point x̄ or to a periodic solution.

5.99 Equation #99 : xn+1 =
γxn−1 + δxn−2

Bxn + Dxn−2

For some work on this equation see [56]. Eq.(#99) can be written in the
normalized form

xn+1 =
γxn−1 + xn−2

Bxn + xn−2
, n = 0, 1, . . . (5.99.1)

with positive parameters γ, B and with arbitrary positive initial conditions
x−2, x−1, x0.

By Theorem 3.3.1 it follows that Eq.(5.99.1) has unbounded solutions when

γ > 1.

Eq.(5.99.1) has the unique equilibrium point

x̄ =
γ + 1
B + 1

.

The characteristic equation of the linearized equation of Eq.(5.99.1) about the
equilibrium, x̄ = γ+1

B+1 , is

λ3 +
B

B + 1
λ2 − γ

γ + 1
λ +

γ −B

(γ + 1)(B + 1)
= 0.

From this and Theorem 1.2.3 it follows that x̄ = γ+1
B+1 is locally asymptotically

stable when
0 < B ≤

√
2 + 1 and 0 < γ < 1 (5.99.2)

or

B >
√

2 + 1 and
(1 + B)

√
12B2 + 16B + 5− 2B2 − 9B − 3

2(2B2 + 5B + 1)
< γ < 1.

(5.99.3)
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When

B = 1 +
√

2 and γ =
(1 + B)

√
12B2 + 16B + 5− 2B2 − 9B − 3

2(2B2 + 5B + 1)
,

one of the characteristic roots is real within the interval (0, 1) and the other
two characteristic roots are eighth roots of unity. When

B = 1 +
√

2 and γ = 1,

two of the characteristic roots are real within the interval (−1, 1) and the
other root is equal to −1.

Open Problem 5.99.1 Determine whether the difference equation

xn+1 =
xn−1 + xn−2

xn + xn−2
, n = 0, 1, . . .

has any unbounded solutions.

Conjecture 5.99.1 Assume that

B ≤ 1 +
√

2.

Then the following results hold:

(a) When
0 < γ < 1,

every solution of Eq.(5.99.1) converges to its equilibrium point x̄.

(b) When
γ = 1,

every bounded solution of Eq.(5.99.1) converges to a (not necessarily
prime) period-two solution.

Conjecture 5.99.2 Assume that (5.99.2) or (5.99.3) holds. Show that every
solution of Eq.(5.99.1) converges to its equilibrium point x̄.

Conjecture 5.99.3 Assume that

γ = 1.

Show that every bounded solution of Eq.(5.99.1) converges to a (not necessarily
prime) period-two solution.

Conjecture 5.99.4 Show that Eq.(5.99.1) has bounded solutions that do not
converge to the equilibrium point x̄ or to a periodic solution.

Conjecture 5.99.5 Assume that

γ > 1.

Show that every bounded solution of Eq.(5.99.1) converges to the positive equi-
librium.
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5.100 Equation #100 : xn+1 =
γxn−1 + δxn−2

Cxn−1 + Dxn−2

This equation was investigated in [140]. See also [141]. Eq.(#100) can be
written in the normalized form

xn+1 =
γxn−1 + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (5.100.1)

with positive parameters γ and C and with arbitrary positive initial conditions
x−2, x−1, x0.

Eq.(5.100.1) has the unique equilibrium point

x̄ =
γ + 1
C + 1

.

The characteristic equation of the linearized equation about the equilibrium,
x̄ = γ+1

C+1 , is

λ3 +
C − γ

(γ + 1)(C + 1)
λ +

γ − C

(γ + 1)(C + 1)
= 0.

From this and Theorem 1.2.3 it follows that x̄ = γ+1
C+1 is locally asymptotically

stable when

C < 1 and γ <
3C + 1
1− C

, (5.100.2)

or

1 ≤ C ≤ 1 +
√

5
2

, (5.100.3)

or

C >
1 +

√
5

2
and γ >

√
5− 1
2

· C −
√

5+1
2

C +
√

5+3
2

(5.100.4)

and unstable when

C < 1 and γ >
3C + 1
1− C

(5.100.5)

or

C >
1 +

√
5

2
and γ <

√
5− 1
2

· C −
√

5+1
2

C +
√

5+3
2

. (5.100.6)

When

γ =
3C + 1
1− C

,

two of the characteristic roots are complex conjugate with magnitude less
than one and the other characteristic root is equal to −1.
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When (5.100.5) holds, and only then, the sequence

. . . , φ, ψ, φ, ψ, . . .

is a unique prime period-two solution of Eq.(5.100.1), where φ and ψ are the
two positive roots of the quadratic equation

C(C − 1)w2 + (γ − 1)(1− C)w + 1− γ = 0.

In this case none of the characteristic roots is equal to −1, while in the case
where

γ =
3C + 1
1− C

one of the characteristic roots is equal to −1 but the equation does not have
prime period-two solutions. For some stability results and the local stability
of the unique prime period-two solution of Eq.(5.100.1), see [140] and [141].

Conjecture 5.100.1 Assume that

C < 1 and γ ≤ 3C + 1
1− C

,

or

1 ≤ C ≤ 1 +
√

5
2

,

or

C >
1 +

√
5

2
and γ ≥

√
5− 1
2

· C −
√

5+1
2

C +
√

5+3
2

.

Show that every solution of Eq.(5.100.1) converges to its equilibrium point x̄.

Conjecture 5.100.2 Assume that

C < 1 and γ >
3C + 1
1− C

.

Show that every solution of Eq.(5.100.1) converges to a (not necessarily prime)
period-two solution.

Open Problem 5.100.1 Show that Eq.(5.100.1) has solutions that do not
converge to the equilibrium point x̄ or to a periodic solution.

5.101 Equation #101 : xn+1 =
α

A + Bxn + Cxn−1

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.
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Open Problem 5.101.1 Investigate the global character of solutions of the
equation

xn+1 =
1

An + Bnxn + xn−1
, n = 0, 1, . . . (5.101.1)

with periodic coefficients {An} and {Bn}.

Open Problem 5.101.2 Investigate the global character of solutions of Eq.(5.101.1)
with convergent coefficients {An} and {Bn}.

5.102 Equation #102 : xn+1 =
α

A + Bxn + Dxn−2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

Open Problem 5.102.1 Investigate the global character of solutions of the
equation

xn+1 =
1

An + Bnxn + xn−2
, n = 0, 1, . . . (5.102.1)

with periodic coefficients {An} and {Bn}.

Open Problem 5.102.2 Investigate the global character of solutions of Eq.(5.102.1)
with convergent coefficients {An} and {Bn}.

5.103 Equation #103 : xn+1 =
α

A + Cxn−1 + Dxn−2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

Open Problem 5.103.1 Investigate the global character of solutions of the
equation

xn+1 =
1

An + Cnxn−1 + xn−2
, n = 0, 1, . . . (5.103.1)

with periodic coefficients {An} and {Cn}.
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Open Problem 5.103.2 Investigate the global character of solutions of Eq.(5.103.1)
with convergent coefficients {An} and {Cn}.

5.104 Equation #104 : xn+1 =
α

Bxn + Cxn−1 + Dxn−2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.2 that the equilibrium of this
equation is globally asymptotically stable.

Open Problem 5.104.1 Investigate the global character of solutions of the
equation

xn+1 =
1

Bnxn + Cnxn−1 + xn−2
, n = 0, 1, . . . (5.104.1)

with periodic coefficients {Bn} and {Cn}.

Open Problem 5.104.2 Investigate the global character of solutions of Eq.(5.104.1)
with convergent coefficients {Bn} and {Cn}.

5.105 Equation #105 : xn+1 =
βxn

A + Bxn + Cxn−1

Eq.(#105) can be written in the normalized form

xn+1 =
βxn

1 + Bxn + xn−1
, n = 0, 1, . . . (5.105.1)

with positive parameters β, B and with arbitrary nonnegative initial condi-
tions x−1, x0. Zero is always an equilibrium point of Eq.(5.105.1). By Theo-
rems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.105.1) is
globally asymptotically stable when

β ≤ 1 (5.105.2)

and unstable when
β > 1. (5.105.3)
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Furthermore when (5.105.3) holds, Eq.(5.105.1) has also the unique positive
equilibrium point

x̄ =
β − 1
B + 1

.

The characteristic equation of the linearized equation of Eq.(5.105.1) about
the positive equilibrium, x̄ = β−1

B+1 , is

λ2 − β + B

β(B + 1)
λ +

β − 1
β(B + 1)

= 0.

From this and Theorem 1.2.2 it follows that, x̄ = β−1
B+1 , is locally asymptoti-

cally stable when
β > 1

and unstable when
β < 1.

It is a straightforward consequence of Theorem 1.6.3 that when

β > 1,

every positive solution of Eq.(5.105.1) converges to the positive equilibrium
x̄.

Open Problem 5.105.1 Investigate the global character of solutions of the
equation

xn+1 =
βnxn

1 + Bnxn + xn−1
, n = 0, 1, . . . (5.105.4)

with periodic coefficients {βn} and {Bn}.

Open Problem 5.105.2 Investigate the global character of solutions of Eq.(5.105.4)
with convergent coefficients {βn} and {Bn}.

5.106 Equation #106 : xn+1 =
βxn

A + Bxn + Dxn−2

Eq.(#106) can be written in the normalized form

xn+1 =
βxn

1 + Bxn + xn−2
, n = 0, 1, . . . (5.106.1)

with positive parameters β, B and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.
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Zero is always an equilibrium point of Eq.(5.106.1). By Theorems 5.23.2 and
5.23.4 it follows that the zero equilibrium of Eq.(5.106.1) is globally asymp-
totically stable when

β ≤ 1 (5.106.2)

and unstable when
β > 1. (5.106.3)

When (5.106.3) holds, Eq.(5.106.1) has also the unique positive equilibrium
point

x̄ =
β − 1
B + 1

.

The characteristic equation of the linearized equation of Eq.(5.106.1) about
the positive equilibrium x̄ is

λ3 − β + B

β(B + 1)
λ2 +

β − 1
β(B + 1)

= 0.

From this and Theorem 1.2.3 it follows that x̄ is locally asymptotically stable
when

B ≥
√

2− 1 and β > 1 (5.106.4)

or

B <
√

2− 1 and 1 < β <
3−B +

√
5 + 6B − 3B2 − 4B3

2(1− 2B −B2)
(5.106.5)

and unstable when

B <
√

2− 1 and β >
3−B +

√
5 + 6B − 3B2 − 4B3

2(1− 2B −B2)
. (5.106.6)

The following theorem about the global behavior of solutions of Eq.(5.106.1)
was established in [157].

Theorem 5.106.1 [157] Assume that

0 < B < 1 and 1 < β ≤ 2.

Then every positive solution of Eq.(5.106.1) converges to its positive equilib-
rium point x̄.

The following theorem is a new result about the global character of solutions
of Eq.(5.106.1).
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Theorem 5.106.2 Assume that

β > 1 and B ≥ 1.

Then every positive solution of Eq.(5.106.1) converges to its positive equilib-
rium point x̄.

PROOF Let {xn} be a positive solution of Eq.(5.106.1). Then, clearly,

xn+1 =
βxn

1 + Bxn + xn−2
<

β

B
, for n ≥ 1. (5.106.7)

Next, we claim that the solution {xn} is also bounded from below by a positive
constant. Otherwise, there exists a sequence of indices {ni} such that

xni+1 → 0

and
xni+1 < xj , for all j < ni + 1. (5.106.8)

Then, clearly, from (5.106.1),
xni → 0

and also
xni−2 → 0.

Hence, eventually,

xni , xni−2 <
β − 1
B + 1

which implies that, eventually,

xni+1 =
βxni

1 + Bxni + xni−2
>

βxni

1 + (β − 1)
= xni .

This contradicts (5.106.8) and establishes our claim that the solution {xn} is
also bounded from below. Clearly, the function

f(xn, xn−2) =
βxn

1 + Bxn + xn−2

is strictly increasing in xn and strictly decreasing in xn−2. When

β > 1 and B > 1,

the result follows by employing Theorem 1.6.7. When

β > 1 and B = 1,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.
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Conjecture 5.106.1 Assume that (5.106.4) or (5.106.5) holds. Show that
every positive solution of Eq.(5.106.1) converges to the positive equilibrium x̄.

Conjecture 5.106.2 Show that Eq.(5.106.1) has solutions which do not con-
verge to an equilibrium point or to a periodic solution.

Open Problem 5.106.1 Investigate the global character of the equation

xn+1 =
βnxn

1 + Bnxn + xn−2
, n = 0, 1, . . . (5.106.9)

with periodic coefficients {βn} and {Bn}.

Open Problem 5.106.2 Investigate the global character of solutions of Eq.(5.106.9)
with convergent coefficients {βn} and {Bn}.

Eq.(#106) is a special case of the more general (k + 1)st-order rational
difference equation

xn+1 =
xn

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . . , (5.106.10)

with nonnegative parameters and with arbitrary nonnegative initial conditions
x−k, . . . , x0 such that the denominator is always positive. For some work
on this equation see [157]. For k = 0 this is a special case of the Riccati
difference equation, which in mathematical biology is also known as the
Holt-Beverton model. For k = 1 and B0 = 0, this is Pielou’s equation,
which is the discrete analog of the delay logistic equation

N ′(t) = rN(t)[1− N(t− τ)
P

], t ≥ 0. (5.106.11)

Actually in her books [196,197], Pielou proposed the equation

xn+1 =
αxn

1 + xn−k
, n = 0, 1, . . . (5.106.12)

as the discrete analogue of the delay logistic equation (5.106.11). One arrives
at Eq.(5.106.11) from the logistic differential equation

N ′(t) = rN(t)[1− N(t)
P

], t ≥ 0 (5.106.13)

by assuming that there is a delay τ in the response of the growth rate per in-
dividual to density changes. Pielou arrived at her model (5.106.12) as follows:
The solution of Eq.(5.106.13) is

N(t) =
P

1 + ( P
N0−1 )e−rt
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and Pielou observed that N(t) satisfies the first-order difference equation

N(t + 1) =
αN(t)

1 + βN(t)
(5.106.14)

with
α = er > 1 and β =

er − 1
P

> 0.

Now from (5.106.14), Pielou arrived at her model (5.106.12) by assuming, as
in the continuous case, that there should be a delay k in the response of the
growth rate per individual to density changes.

When
A = 0 or A ≥ 1,

Eq.(5.106.10) has a unique equilibrium point. When

A = 0,

the unique equilibrium is

x̄ =
1∑k

i=0 Bi

and when
A ≥ 1,

zero is the only equilibrium. When

0 < A < 1,

Eq.(5.106.10) has two equilibrium points, namely, the zero equilibrium and
the positive equilibrium

x̄ =
1−A∑k
i=0 Bi

.

The characteristic equation of the linearized equation about the zero equi-
librium point, that exists, provided that A > 0, is

λk+1 − 1
A

λk = 0. (5.106.15)

The characteristic equation of the linearized equation about the positive
equilibrium point which exists provided that 0 ≤ A < 1, is

λk+1 − AB0 +
∑k

i=1 Bi∑k
i=0 Bi

λk +
1−A∑k
i=0 Bi

k∑

i=1

Biλ
k−i = 0. (5.106.16)

From (5.106.15) it follows that the zero equilibrium point is locally asymptot-
ically stable when

A > 1
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and unstable when
0 < A < 1.

Furthermore, it follows from Eq.(5.106.10) that

xn+1 ≤ 1
A

xn, for n ≥ 0

and so when
A ≥ 1,

the zero equilibrium point of Eq.(5.106.10) is globally asymptotically stable.
By using Theorems 1.2.2, 1.2.3, and 1.2.4 we can determine the region of

local asymptotic stability of the positive equilibrium of Eq.(5.106.10) for the
values of

k ∈ {1, 2, 3}.
Unfortunately, we do not know the local asymptotic stability of Eq.(5.106.10)
for

k ≥ 4.

Open Problem 5.106.3 Determine the region of parameters of Eq.(5.106.16)
where all roots of the equation lie inside the unit disk.

Theorem 5.106.3 Assume that

0 ≤ A < 1 and
k∑

i=1

Bi ≤ B0.

Then every positive solution of Eq.(5.106.10) converges to its positive equilib-
rium point.

PROOF Let {xn}∞n=−k be any positive solution of Eq.(5.106.10). Then

xn+1 ≤ xn

A + B0xn
, for n ≥ 1

and by using (the comparison result) Theorem 1.4.1, we find

lim sup
n→∞

xn+1 ≤ 1−A

B0
.

Let ε > 0 and assume without loss of generality that, for n ≥ 0,

xn <
1−A + ε

B0
.

We claim that
lim inf
n→∞

xn > 0. (5.106.17)
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Assume for the sake of contradiction that (5.106.17) is not true. Then there
exists a sequence of indices {nj} such that

lim
j→∞

xnj+1 = 0 and xnj+1 < xt, for t < nj + 1. (5.106.18)

At this point we will give two different proofs of (5.106.17). The reason we
present the two different proofs is that the first proof is valid only when

0 ≤ A < 1 and
k∑

i=1

Bi < B0

but it extends our theorem to a more general equation. (See Theorem 5.106.4).
The second proof is valid when

0 ≤ A < 1 and
k∑

i=1

Bi ≤ B0

as needed, but we cannot use it to prove Theorem 5.106.4.

First Proof: Clearly,
lim

j→∞
xnj = 0

and
k∑

i=1

Bi
1−A + ε

B0
+ B0xnj >

k∑

i=1

Bixnj−i + B0xnj > 1−A,

from which it follows that

B0xnj > (1−A)
B0 −

∑k
i=1 Bi

B1
− ε

∑k
i=1 Bi

B0

and

B0 lim inf
j→∞

xnj ≥ (1−A)
B0 −

∑k
i=1 Bi

B0
> 0

and this contradiction establishes (5.106.17).

Second Proof: Clearly,

xnj
, . . . , xnj−k → 0.

Hence, eventually,

xnj
, . . . , xnj−k <

1−A∑k
i=0 Bi

,

which implies that, eventually,

xnj+1 =
xnj

A +
∑k

i=0 Bixnj−i

>
xnj

A +
∑k

i=0 Bi
1−A∑k
i=0 Bi

= xni .
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This contradicts (5.106.18) and establishes (5.106.17).
Clearly, the function

f(xn, . . . , xn−k) =
xn

A +
∑k

i=0 Bixn−i

is strictly increasing in xn and strictly decreasing in all other arguments.
When

0 ≤ A < 1 and
k∑

i=1

Bi < B0,

the result follows by employing Theorem 1.6.7. When

0 ≤ A < 1 and
k∑

i=1

Bi = B0,

the Hypotheses of Theorem 1.6.8 are satisfied from which the result follows.
The proof is complete.

One can easily see that Theorem 5.106.3 has the following straightforward
generalization.

Theorem 5.106.4 Assume that for some l ∈ {1, 2, . . . , k}

0 ≤ A < 1 and
k∑

i=0,i 6=l

Bi < Bl.

Then every positive solution of the equation

xn+1 =
xn−l

A + Blxn−l +
∑k

i=0,i6=l Bixn−i

, n = 0, 1, . . .

converges to its positive equilibrium point

x̄ =
1−A∑k
i=0 Bi

.

5.107 Equation #107 : xn+1 =
βxn

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#107) can be written in the normalized form

xn+1 =
βxn

1 + Cxn−1 + xn−2
, n = 0, 1, . . . (5.107.1)
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with positive parameters β, C and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0. Zero is always an equilibrium point of Eq.(5.107.1). By
Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.107.1)
is globally asymptotically stable when

β ≤ 1 (5.107.2)

and unstable when
β > 1. (5.107.3)

When (5.107.3) holds, Eq.(5.107.1) has also the unique positive equilibrium
point

x̄ =
β − 1
C + 1

.

The characteristic equation of the linearized equation of Eq.(5.107.1) about
the positive equilibrium, x̄ = β−1

C+1 , is

λ3 − λ2 +
C(β − 1)
β(C + 1)

λ +
β − 1

β(C + 1)
= 0.

From this and Theorem 1.2.3 it follows that x̄ = β−1
C+1 is locally asymptotically

stable when

1 < β ≤ 3 +
√

5
2

(5.107.4)

or

β >
3 +

√
5

2
and C >

−β + (β − 1)
√

β

β
(5.107.5)

and unstable when

β >
3 +

√
5

2
and C <

−β + (β − 1)
√

β

β
. (5.107.6)

When

β =
3 +

√
5

2
and C =

−β + (β − 1)
√

β

β
,

two of the characteristic roots are 10th roots of unity and the third one is
inside the interval (−1, 0).

The following theorem about the global stability of solutions of Eq.(5.107.1)
was established in [157].

Theorem 5.107.1 [157] Assume that

1 < β ≤ 2.

Then every positive solution of Eq.(5.107.1) converges to its positive equilib-
rium point x̄.
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Conjecture 5.107.1 Assume that (5.107.4) or (5.107.5) holds. Show that
every positive solution of Eq.(5.107.1) converges to its positive equilibrium
point x̄.

Conjecture 5.107.2 Assume that

β >
3 +

√
5

2
and C <

−β + (β − 1)
√

β

β
.

Show that Eq.(5.107.1) has solutions that do not converge to an equilibrium
or to a periodic solution.

Open Problem 5.107.1 Investigate the global character of solutions of the
equation

xn+1 =
βnxn

1 + Cnxn−1 + xn−2
, n = 0, 1, . . . (5.107.7)

with periodic coefficients {βn} and {Cn} .

Open Problem 5.107.2 Investigate the global character of solutions of Eq.(5.107.7)
with convergent coefficients {βn} and {Cn}.

5.108 Equation #108 : xn+1 =
βxn

Bxn + Cxn−1 + Dxn−2

Eq.(#108) can be written in the normalized form

xn+1 =
xn

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.108.1)

with positive parameters C,D and with arbitrary positive initial conditions
x−2, x−1, x0.

Eq.(5.108.1) has the unique equilibrium point

x̄ =
1

C + D + 1
.

The characteristic equation of the linearized equation of Eq.(5.108.1) about
the equilibrium, x̄ = 1

C+D+1 , is

λ3 − C + D

1 + C + D
λ2 +

C

1 + C + D
λ +

D

1 + C + D
= 0.

From this and Theorem 1.2.3 it follows that x̄ = 1
1+C+D is locally asymptot-

ically stable when
C > D2 − 2D − 1 (5.108.2)
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and unstable when
C < D2 − 2D − 1. (5.108.3)

It is noteworthy that when

D = 1 +
√

2 and C = 0,

two of the characteristic roots are eighth roots of unity and the other root is
inside the interval (−1, 0).

The following theorem, which is a new result about the global character of
solutions of Eq.(5.108.1), is an immediate application of Theorem 5.106.3.

Theorem 5.108.1 Assume that

C + D ≤ 1.

Then every solution of Eq.(5.108.1) converges to its equilibrium point x̄.

Conjecture 5.108.1 Assume that (5.108.2) holds. Show that every solution
of Eq.(5.108.1) converges to its equilibrium point.

Conjecture 5.108.2 Assume that

C < D2 − 2D − 1.

Show that Eq.(5.108.1) has solutions that do not converge to the equilibrium
point x̄ or to a periodic solution.

Open Problem 5.108.1 Investigate the global character of solutions of Eq.(5.108.1)
with periodic coefficients.

5.109 Equation #109 : xn+1 =
γxn−1

A + Bxn + Cxn−1

For some work on this equation see [175]. Here we present a detailed account
on the character of its solutions and confirm Conjectures 7.5.1 and 7.5.2 in
[175]. Actually Conjecture 7.5.1 was confirmed by Hristo Voulov in his talk at
the annual AMS meeting in Santiago in 2002 by using Theorem 1.6.4. Here
we present a very simple and direct proof based on Theorem 1.6.6.

Eq.(#109) can be written in the normalized form

xn+1 =
xn−1

A + Bxn + xn−1
, n = 0, 1, . . . . (5.109.1)
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We will allow the parameter A to be nonnegative so that Eq.(5.109.1) also
includes the special case #32. The parameter B is assumed positive; other-
wise, this is a Riccati-type difference equation. The initial conditions x−1, x0

of Eq.(5.109.1) are arbitrary nonnegative real numbers such that the denom-
inator is always positive.

When
A = 0 or A ≥ 1,

Eq.(5.109.1) has a unique equilibrium point.
When

A = 0,

the unique equilibrium of Eq.(5.109.1) is

x̄ =
1

1 + B

and when
A ≥ 1,

zero is the only equilibrium.
When

0 < A < 1,

Eq.(5.109.1) has two equilibrium points, namely, the zero equilibrium and the
unique positive equilibrium point

x̄ =
1−A

1 + B
.

The characteristic equation of the linearized equation of Eq.(5.109.1) about
the zero equilibrium point, which exists as long as A > 0, is

λ2 − 1
A

= 0. (5.109.2)

The characteristic equation of the linearized equation of Eq.(5.109.1) about
the positive equilibrium x̄ = 1−A

1+B , which exists as long as 0 ≤ A < 1, is

λ2 +
B(1−A)

1 + B
λ− A + B

1 + B
= 0. (5.109.3)

From (5.109.2) and Theorem 1.2.2 it follows that the zero equilibrium is locally
asymptotically stable when

A > 1

and unstable when
0 < A < 1.
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Also, it follows from Theorem 1.2.2 that the positive equilibrium x̄ = 1−A
1+B is

locally asymptotically stable when

0 ≤ A < 1 and B < 1

and unstable when
0 ≤ A < 1 and B > 1.

In addition to its equilibrium points, Eq.(5.109.1) has period-two solutions.
If

. . . , φ, ψ, φ, ψ, . . .

is a prime period-two solution of Eq.(5.109.1) then, clearly,

φ =
φ

A + Bψ + φ
and ψ =

ψ

A + Bφ + ψ
.

It follows that prime period-two solutions exist if and only if

0 ≤ A < 1.

Furthermore, when
B 6= 1,

the only prime period-two solution of Eq.(5.109.1) is

. . . , 0, 1−A, 0, 1−A, . . . (5.109.4)

and when
B = 1,

all prime period-two solutions are

. . . , φ, ψ, φ, ψ, . . .

with
φ + ψ = 1−A

φ 6= ψ and φ, ψ ∈ [0, 1−A].

To investigate the local asymptotic stability of the unique period-two solution
(5.109.4) when B 6= 1, we set

un = xn−1 and vn = xn.

Then
un+1 = vn and vn+1 =

un

A + Bvn + un
.

That is, Eq.(5.109.1) is equivalent to the map

T (u, v) =
(

v,
u

A + Bv + u

)
.
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Then

T 2 (u, v) = T

(
v,

u

A + Bv + u

)
= (f(u, v), g(u, v))

with
f(u, v) =

u

A + Bv + u

and
g(u, v) =

v

A + Bf(u, v)v + v
.

Observe that the period-two solution (5.109.4) is a fixed point of the second
iterate T 2 of the map T . The Jacobian determinant of T 2 at the period-two
solution of (5.109.4) is

JT 2

( 0

1−A

)
=

∣∣∣∣∣∣∣

1
A+B(1−A) 0

−B(1−A)
A+B(1−A) A

∣∣∣∣∣∣∣
.

It follows that both eigenvalues of T 2 are inside the unit disk, and so the
period-two solution (5.109.4) is locally asymptotically stable when

0 ≤ A < 1 and B > 1

and unstable when
0 ≤ A < 1 and B < 1.

Next we establish the following result, which confirms Conjectures 7.5.1 and
7.5.2 in [175].

Theorem 5.109.1 (a) Assume that

A ≥ 1.

Then the zero equilibrium of Eq.(5.109.1) is globally asymptotically sta-
ble.

(b) Assume
0 ≤ A < 1.

Then every solution of Eq.(5.109.1) converges to a (not necessarily prime)
period-two solution.

(c) Assume
0 ≤ A < 1 and B < 1.

Then every positive solution of Eq.(5.109.1) converges to its positive
equilibrium point x̄. Actually, if we only allow positive initial conditions,
the positive equilibrium is globally asymptotically stable.
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PROOF (a) This is a consequence of the inequality

xn+1 ≤ 1
A

xn−1

and the fact that there are no period-two solutions when A ≥ 1.

(b) This is a consequence of Theorem 1.6.6 and the fact that every solution
of Eq.(5.109.1) is bounded.

(c) Let {xn}∞n=−1 be a positive solution of Eq.(5.109.1). Then in this case
(as Voulov pointed out) Theorem 1.6.4 applies, from which the result follows.
The result also follows from Theorem 5.106.4. We will also present a third
proof based on the “simple” Theorem 1.6.6. By this result and the fact that
every solution of Eq.(5.109.1) is bounded from above, it follows that the sub-
sequences {x2n} and {x2n+1} of the solution converge monotonically to finite
limits LE and LO. From Eq.(5.109.1)

x2n+2 =
x2n

A + Bx2n+1 + x2n
, n = 0, 1, . . . (5.109.5)

and
x2n+1 =

x2n−1

A + Bx2n + x2n−1
, n = 0, 1, . . . . (5.109.6)

Note that if both limits LE and LO are positive, then by taking limits in
(5.109.5) and (5.109.6), as n →∞, and by simplifying we find

BLO + LE = 1−A
LO + BLE = 1−A.

Hence,

LO = LE =
1−A

1 + B
,

which is exactly what we want to establish. To complete the proof it suffices
to show that none of the limits LE or LO could be zero. Assume for the sake
of contradiction that

LO = 0.

Then either LE = 0 or LE > 0. In particular, when

LE > 0

from (5.109.5) we see that
LE = 1−A.

Let ε > 0 be such that

εB < (1−A)(1−B).
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Then for n sufficiently large

x2n < LE + ε ≤ 1−A + ε

and
x2n+1 =

x2n−1

A + Bx2n + x2n−1
≥ x2n−1

A + B(1−A + ε) + x2n−1
.

Therefore, by (the comparison result) Theorem 1.4.1,

x2n+1 ≥ y2n+1,

where

y2n+1 =
y2n−1

A + B(1−A + ε) + y2n−1
, n = 1, 2, . . . (5.109.7)

with
y1 > 0.

But (5.109.7) is a Riccati equation with positive initial condition and so the
limn→∞ y2n+1 is the positive equilibrium of Eq.(5.109.7), which is

ȳ = (1−A)(1−B)−Bε.

Then
0 = lim

n→∞
x2n+1 ≥ ȳ > 0

and this contradiction completes the proof of the theorem.

Open Problem 5.109.1 Investigate the global character of solutions of Eq.(5.109.1)
with periodic coefficients.

Eq.(#109) is a special case of the more general (k + 1)st-order rational
difference equation

xn+1 =
xn−1

A +
∑k

i=0 Bixn−i

, n = 0, 1, . . . (5.109.8)

with nonnegative parameters and with arbitrary nonnegative initial conditions
x−k, . . . , x0 such that the denominator is always positive.

When
A = 0 or A ≥ 1,

Eq.(5.109.8) has a unique equilibrium point.
When

A = 0,

the unique equilibrium is

x̄ =
1∑k

i=0 Bi
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and when
A ≥ 1,

zero is the only equilibrium. When

0 < A < 1,

Eq.(5.109.8) has two equilibrium points, namely, the zero equilibrium and the
unique positive equilibrium point

x̄ =
1−A∑k
i=0 Bi

.

The characteristic equation of the linearized equation of Eq.(5.109.8) about
the zero equilibrium point, which exists provided that A > 0, is

λk+1 − 1
A

λk−1 = 0. (5.109.9)

The characteristic equation of the linearized equation of Eq.(5.109.8) about
the positive equilibrium x̄ = 1−A∑k

i=0 Bi
, which exists provided that 0 ≤ A < 1,

is

λk+1 +
B0(1−A)∑k

i=0 Bi

λk − AB1 +
∑k

i=0,i 6=1 Bi∑k
i=0 Bi

λk−1 +
(1−A)∑k

i=0 Bi

k∑

i=2

Biλ
k−i = 0.

(5.109.10)
From (5.109.9) it follows that the zero equilibrium is locally asymptotically
stable when

A > 1

and unstable when
0 < A < 1.

In addition to its equilibrium points, Eq.(5.109.8) has period-two solutions.
If

. . . , φ, ψ, φ, ψ, . . .

is a period-two solution of Eq.(5.109.8) then, clearly,

φ =
φ

A +
∑S

i=0 B2i+1φ +
∑T

i=0 B2iψ
and ψ =

ψ

A +
∑S

i=0 B2i+1ψ +
∑T

i=0 B2iφ
,

where

T =
k

2
and S =

k − 2
2

, if k is even

and

S = T =
k − 1

2
, if k is odd.
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It follows that prime period-two solutions exist if and only if

0 ≤ A < 1.

Furthermore, when
T∑

i=0

B2i 6=
S∑

i=0

B2i+1,

. . . , 0,
1−A∑k
i=0 B2i

, 0,
1−A∑k
i=0 B2i

, . . . (5.109.11)

is the only period-two solution of Eq.(5.109.8) and when
T∑

i=0

B2i =
S∑

i=0

B2i+1,

all prime period-two solutions are

. . . , φ, ψ, φ, ψ, . . .

with
φ + ψ =

1−A∑k
i=0 B2i

φ 6= ψ and φ, ψ ∈
[
0,

1−A∑k
i=0 B2i

]
.

We are now ready to establish the following global asymptotic stability
result.

Theorem 5.109.2 (a) Assume that

A ≥ 1.

Then the zero equilibrium of Eq.(5.109.8) is globally asymptotically sta-
ble.

(b) Assume

0 ≤ A < 1 and
k∑

i=0,i6=1

Bi < B1.

Then every positive solution of Eq.(5.109.8) converges to its positive
equilibrium point.

PROOF (a) This is a consequence of the inequality

xn+1 ≤ 1
A

xn−1

and the fact that there are no period-two solutions when A ≥ 1.
(b) The result follows from Theorem 5.106.4.
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5.110 Equation #110 : xn+1 =
γxn−1

A + Bxn + Dxn−2

Eq.(#110) possesses a period-two trichotomy depending on whether

γ < A, γ = A, or γ > A.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Open Problem 5.110.1 Investigate the global character of solutions of Eq.(#110)
with periodic coefficients.

Open Problem 5.110.2 Investigate the global character of solutions of the
equation

xn+1 =
γnxn−1

An + Bnxn + xn−2
, n = 0, 1, . . .

with convergent coefficients {γn}, {An}, and {Bn}. Extend and generalize.

Conjecture 5.110.1 Assume that

γ > A.

Show that every positive and bounded solution of Eq.(#110) converges to the
positive equilibrium.

5.111 Equation #111 : xn+1 =
γxn−1

A + Cxn−1 + Dxn−2

Eq.(#111) can be written in the normalized form

xn+1 =
xn−1

A + xn−1 + Dxn−2
, n = 0, 1, . . . . (5.111.1)

We will allow the parameter A to be nonnegative so that Eq.(5.111.1) will
also include the special case #34. The parameter D is positive and the initial
conditions x−2, x−1, x0 are arbitrary nonnegative real numbers such that the
denominator is always positive. When

0 ≤ A < 1 and D < 1,
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this equation is also a special case of a more general equation whose positive
equilibrium is a global attractor of all positive solutions of the equation. See
Theorem 5.106.4.

As in the special case of Eq.(#109), when

A = 0 or A ≥ 1,

Eq.(5.111.1) has a unique equilibrium point.
When

A = 0,

the unique equilibrium is

x̄ =
1

1 + D

and when
A ≥ 1,

zero is the only equilibrium. When

0 < A < 1,

Eq.(5.111.1) has two equilibrium points, namely, the zero equilibrium and the
unique positive equilibrium point

x̄ =
1−A

1 + D
.

The characteristic equation of the linearized equation of Eq.(5.111.1) about
the zero equilibrium point, which exists as long as A > 0, is

λ3 − 1
A

λ = 0. (5.111.2)

The characteristic equation of the linearized equation of Eq.(5.111.1) about
the positive equilibrium x̄ = 1−A

D+1 , which exists as long as 0 ≤ A < 1, is

λ3 − D + A

1 + D
λ +

D(1−A)
1 + D

= 0. (5.111.3)

From (5.111.2) and Theorem 1.2.3 it follows that the zero equilibrium is locally
asymptotically stable when

A > 1

and unstable when
0 < A < 1.

Also, it follows from Theorem 1.2.3 that the positive equilibrium x̄ = 1−A
1+D is

locally asymptotically stable when

0 ≤ A < 1 and D < 1
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and unstable when
0 ≤ A < 1 and D > 1.

In addition to its equilibrium points, Eq.(5.111.1) has period-two solutions.
If

. . . , φ, ψ, φ, ψ, . . .

is a period-two solution of Eq.(5.111.1) then, clearly,

φ =
φ

A + φ + Dψ
and ψ =

ψ

A + ψ + Dφ
.

It follows that prime period-two solutions exist if and only if

0 ≤ A < 1.

Furthermore, when
D 6= 1

the only prime period-two solution of Eq.(5.111.1) is

. . . , 0, 1−A, 0, 1−A, . . . (5.111.4)

and one can see that it is LAS when D > 1.
On the other hand, when

D = 1,

all prime period-two solutions are

. . . , φ, ψ, φ, ψ, . . .

with
φ + ψ = 1−A

φ 6= ψ and φ, ψ ∈ [0, 1−A].

We are now ready to present the following global asymptotic stability result.

Theorem 5.111.1 (a) Assume that

A ≥ 1.

Then the zero equilibrium of Eq.(5.111.1) is globally asymptotically sta-
ble.

(b) Assume
0 ≤ A < 1 and D < 1.

Then every positive solution of Eq.(5.111.1) converges to its positive
equilibrium point. Actually, if we only allow positive initial conditions,
the positive equilibrium is globally asymptotically stable.
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PROOF (a) This is a consequence of the inequality

xn+1 ≤ 1
A

xn−1

and the fact that there are no period-two solutions when A ≥ 1.
(b) The proof follows from Theorem 5.106.4.

Conjecture 5.111.1 Assume that

A < 1 and D ≥ 1.

Show that every solution {xn} of Eq.(5.111.1) converges to a (not necessarily
prime) period-two solution.

Open Problem 5.111.1 Investigate the global character of solutions of
Eq.(5.111.1) with periodic coefficients.

Open Problem 5.111.2 Investigate the global character of solutions of the
equation

xn+1 =
γnxn−1

An + Cnxn−1 + xn−2
, n = 0, 1, . . .

with convergent coefficients {γn}, {An}, and {Cn}. Extend and generalize.

5.112 Equation #112 : xn+1 =
γxn−1

Bxn + Cxn−1 + Dxn−2

Eq.(#112) can be written in the normalized form

xn+1 =
xn−1

Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . (5.112.1)

with positive parameters B, D and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0 such that the denominator is always positive.

Eq.(5.112.1) has the unique equilibrium point

x̄ =
1

B + D + 1
.

The characteristic equation of the linearized equation of Eq.(5.112.1) about
the equilibrium, x̄ = 1

B+D+1 , is

λ3 +
B

B + D + 1
λ2 − B + D

B + D + 1
λ +

D

B + D + 1
= 0. (5.112.2)
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From this and Theorem 1.2.3 it follows that the equilibrium x̄ = 1
B+D+1 is

locally asymptotically stable when

B + D < 1

and unstable when
B + D > 1.

In addition to its equilibrium point, the sequence

. . . , φ, 1− φ, φ, 1− φ, . . .

is a period-two solution of Eq.(5.112.1) for all positive values of the parameters
B and D with

φ ∈ [0, 1] .

Furthermore, when
B + D 6= 1,

the only prime period-two solution of Eq.(5.112.1) is

. . . , 0, 1, 0, 1, . . . (5.112.3)

and one can see that it is LAS when B + D > 1.
We are now ready to establish the following result.

Theorem 5.112.1 Assume that

B + D < 1.

Then every solution of Eq.(5.112.1) converges to its equilibrium point x̄.

PROOF The proof follows from Theorem 5.106.4.

Conjecture 5.112.1 Assume that

B + D ≥ 1.

Show that every solution of Eq.(5.112.1) converges to a (not necessarily prime)
period-two solution.

Open Problem 5.112.1 Investigate the global character of solutions of
Eq.(5.112.1) with periodic coefficients.

Open Problem 5.112.2 Investigate the global character of solutions of the
equation

xn+1 =
γnxn−1

Bnxn + Cnxn−1 + xn−2
, n = 0, 1, . . .

with convergent coefficients {γn}, {Bn}, and {Cn}. Extend and generalize.
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5.113 Equation #113 : xn+1 =
δxn−2

A + Bxn + Cxn−1

This equation was investigated in [60] and [146]. See also Section 4.4 where we
established that this equation possesses a period-three trichotomy depending
on whether

δ < A, δ = A, or δ > A.

Open Problem 5.113.1 Determine the set of all initial conditions

x−2, x−1, x0 ∈ (0,∞)

for which the solutions of the equation

xn+1 =
2xn−2

1 + xn + xn−1
, n = 0, 1, . . . (5.113.1)

are bounded.

5.114 Equation #114 : xn+1 =
δxn−2

A + Bxn + Dxn−2

For the global character of solutions of Eq.(#114) see Section 5.136.

Open Problem 5.114.1 Determine the set of all initial conditions

x−2, x−1, x0 ∈ (0,∞)

such that the solutions of the equation

xn+1 =
xn−2

1 + xn + xn−2
, n = 0, 1, . . . (5.114.1)

converge to zero.

Conjecture 5.114.1 Show that for the positive equilibrium x̄ of Eq.(#114)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.114.2 Show that Eq.(5.114.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.
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5.115 Equation #115 : xn+1 =
δxn−2

A + Cxn−1 + Dxn−2

For the global character of solutions of Eq.(#115) see Section 5.136.

Open Problem 5.115.1 Determine the set of all initial conditions

x−2, x−1, x0 ∈ (0,∞)

for which the solutions of the equation

xn+1 =
xn−2

1 + xn−1 + xn−2
, n = 0, 1, . . . (5.115.1)

converge to zero.

Conjecture 5.115.1 Show that for the positive equilibrium x̄ of Eq.(#115)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.115.2 Show that Eq.(5.115.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.

5.116 Equation #116 : xn+1 =
δxn−2

Bxn + Cxn−1 + Dxn−2

For the global character of solutions of Eq.(#116) see Section 5.136.

Open Problem 5.116.1 Determine the set of all initial conditions

x−2, x−1, x0 ∈ (0,∞)

for which the solutions of the equation

xn+1 =
xn−2

xn + xn−1 + xn−2
, n = 0, 1, . . . (5.116.1)

converge to 1
3 .

Conjecture 5.116.1 Show that for the equilibrium x̄ of Eq.(#114),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.116.2 Show that Eq.(5.116.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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5.117 Equation #117 : xn+1 =
α + βxn + γxn−1

A
The equation in this special case is linear.

5.118 Equation #118 : xn+1 =
α + βxn + γxn−1

Bxn

Eq.(#118) possesses a period-two trichotomy depending on whether

γ < β, γ = β, or γ > β.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.2.1.

When
γ > β,

it follows from Theorem 4.2.2 that every bounded solution of Eq.(#118) con-
verges to the equilibrium.

Open Problem 5.118.1 Investigate the global character of solutions of Eq.(#118)
with periodic coefficients.

Open Problem 5.118.2 Investigate the global character of solutions of the
equation

xn+1 =
αn + βnxn + γnxn−1

xn
, n = 0, 1, . . .

with convergent coefficients {αn}, {βn}, and {γn}. Extend and generalize.

5.119 Equation #119 : xn+1 =
α + βxn + γxn−1

Cxn−1

The change of variables, xn = yn + γ
C , transforms Eq.(#119) to Eq.(#66).

Conjecture 5.119.1 Show that every solution of the equation

xn+1 =
α + βxn + xn−1

xn−1
, n = 0, 1, . . . (5.119.1)

has a finite limit.
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5.120 Equation #120 : xn+1 =
α + βxn + γxn−1

Dxn−2

For some work on this equation see [157]. In this section we allow the param-
eter α to be nonnegative and so the results presented here are also true for
the special case #56. Eq.(#120) can be written in the normalized form,

xn+1 =
α + βxn + xn−1

xn−2
, n = 0, 1, . . . (5.120.1)

with positive parameter β and with arbitrary positive initial conditions x−2,
x−1, x0.

Eq.(5.120.1) has the unique equilibrium

x̄ =
β + 1 +

√
(β + 1)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.120.1) about
the equilibrium x̄ is

λ3 − β

x̄
λ2 − 1

x̄
λ + 1 = 0. (5.120.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.120.1)
is unstable when

β 6= 1.

When
β = 1,

that is, for the equation

xn+1 =
α + xn + xn−1

xn−2
, n = 0, 1, . . . , (5.120.3)

the equilibrium x̄ is nonhyperbolic, with one characteristic root equal to -1
and the other two complex conjugates given by:

2 +
√

1 + α± i
√

4
√

1 + α + 3(1 + α)

2(1 +
√

1 + α)

both with magnitude equal to one. Eq.(5.120.3), which is called Todd’s
equation, possesses the following invariant (see [122], [157], or [175]):

(α + xn−2 + xn−1 + xn)(1 +
1

xn−2
)(1 +

1
xn−1

)(1 +
1
xn

) = constant. (5.120.4)
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Todd’s equation can be extended to the more general (k + 1)st-order rational
equation

xn+1 =
α + xn + · · ·+ xn−(k−1)

xn−k
, n = 0, 1, . . . , (5.120.5)

which possesses the invariant

(α + xn−k + · · ·+ xn)(1 +
1

xn−k
) · · · (1 +

1
xn

) = constant. (5.120.6)

From this it follows that every solution of Eq.(5.120.5) is bounded from above
and below by positive constants when

α > 0.

When α = 0 it also follows from (5.120.6) that the solution is bounded from
above. We now claim that the solution is also bounded from below. Otherwise,
there exists a solution {xn} of Eq.(5.120.5) such that

xni+1 → 0 and xni+1 < xj for j < ni + 1.

Then, clearly,
xni → 0

. . .

and
xni−k → 0.

Also, from

xni+1 =
xni + · · ·+ xni−(k−1)

xni−k
< xni

it follows that
xni(1− xni−k) + · · ·+ xni−(k−1) < 0,

which is a contradiction.
In the special case of Eq.(5.120.3) where

α = β = 1,

that is, for the equation

xn+1 =
1 + xn + xn−1

xn−2
, n = 0, 1, . . . , (5.120.7)

the three characteristic roots are eighth roots of unity. In this case one can
also see that every solution of Eq.(5.120.7) is periodic with period eight. See
[122], [157], or [175].

Conjecture 5.120.1 Assume that

α 6= 1 or β 6= 1.

Show that Eq.(5.120.1) has bounded solutions that do not converge to the
equilibrium point x̄ or to a periodic solution.
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5.121 Equation #121 : xn+1 =
α + βxn + δxn−2

A

The equation in this special case is linear.

5.122 Equation #122 : xn+1 =
α + βxn + δxn−2

Bxn

The change of variables, xn = yn + β
B , transforms Eq.(#122) to Eq.(#77).

See Section 5.77.

Conjecture 5.122.1 Show that for the equilibrium x̄ of Eq.(#122),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.122.2 Show that Eq.(#122) has solutions that do not converge
to the equilibrium point or to a periodic solution.

5.123 Equation #123 : xn+1 =
α + βxn + δxn−2

Cxn−1

In this section we allow the parameter α to be nonnegative and so this equation
also includes the special case #59.

We have conjectured in Section 4.5 that Eq.(#123) possesses a period-four
trichotomy depending on whether

δ < β, δ = β, or δ > β.

See [59] and [150]. The only part of this conjecture that has not been estab-
lished yet is when δ > β.

Conjecture 5.123.1 Assume that

α ≥ 0 and β > 1.
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Show that the equilibrium of the equation

xn+1 =
α + βxn + xn−2

xn−1
, n = 0, 1, . . .

is globally asymptotically stable.

5.124 Equation #124 : xn+1 =
α + βxn + δxn−2

Dxn−2

The change of variables, xn = yn + δ
D , transforms Eq.(#124) to Eq.(#67).

See Section 5.67.

Conjecture 5.124.1 Show that for the equilibrium x̄ of Eq.(#124),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.124.2 Show that Eq.(#124) has solutions which do not con-
verge to the equilibrium point or to a periodic solution.

5.125 Equation #125 : xn+1 =
α + γxn−1 + δxn−2

A

The equation in this special case is linear.

5.126 Equation #126 : xn+1 =
α + γxn−1 + δxn−2

Bxn

This equation was investigated in [46]. Eq.(#126) can be written in the
normalized form

xn+1 =
α + γxn−1 + xn−2

xn
, n = 0, 1, . . . (5.126.1)

with positive parameters α, γ and with arbitrary positive initial conditions
x−2, x−1, x0.
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It follows from Theorem 3.1.1 that when

γ > 1,

Eq.(5.126.1) possesses unbounded solutions. It was also shown in [46], that
when

α = γ = 1 (5.126.2)

and by choosing initial conditions x−2, x−1, and x0 such that

x0 ≤ x−2 ≤ 1 and x−1 ∈ (0,∞),

then
lim

n→∞
x2n ∈ [0, 1] and lim

n→∞
x2n+1 = ∞.

Furthermore, it follows from the work in [46] that when (5.126.2) holds, every
bounded solution of Eq.(5.126.1) converges to a (not necessarily prime) period-
two solution. This result is also true for

γ = 1 and α > 0.

The proof is an immediate consequence of the following identity:

xn+2 − xn =
1

xn+1
(xn − xn−2) , n = 0, 1, . . . .

It was shown by R. Nigmatulin (personal communication with G. Ladas) that
when

γ > 1,

every unbounded solution {xn}∞n=−2 of Eq.(5.126.1) is such that the subse-
quences of the even and odd terms converge one of them to zero and the other
to ∞.

It was also shown (by R. Nigmatulin) that when

α = γ = 1,

and by choosing initial conditions x−2, x−1, and x0 such that

x−2 = x−1 = x0 = 1,

then
x2n = 1 and x2n+1 = 2n + 1 →∞.

The only equilibrium of Eq.(5.126.1) is

x̄ =
γ + 1 +

√
(γ + 1)2 + 4α

2
.



316 Dynamics of Third-Order Rational Difference Equations

The characteristic equation of the linearized equation of Eq.(5.126.1) about
the equilibrium x̄ is

λ3 + λ2 − γ

x̄
λ− 1

x̄
= 0. (5.126.3)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.126.1)
is locally asymptotically stable when

α ≥ 1 and γ < 1 (5.126.4)

or

α < 1 and (1− α) · −1 +
√

3 + 2α

2(α + 1)
< γ < 1 (5.126.5)

and unstable when

α < 1 and γ < (1− α) · −1 +
√

3 + 2α

2(α + 1)
.

Conjecture 5.126.1 Assume that (5.126.4) or (5.126.5) holds. Show that
the equilibrium of (5.126.1) is globally asymptotically stable.

Open Problem 5.126.1 Show that Eq.(5.126.1) has bounded solutions that
do not converge to the equilibrium point x̄ or to a periodic solution.

Conjecture 5.126.2 Assume that

γ > 1.

Show that every bounded solution of Eq.(5.126.1) converges to the equilibrium
x̄.

Open Problem 5.126.2 Assume that

γ > 1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) converge to the equilibrium x̄.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) are unbounded.

Open Problem 5.126.3 Assume that

γ = 1.

(a) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) converge to the equilibrium x̄.

(b) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) converge to a prime period-two solution.

(c) Determine the set of all initial conditions through which the solutions of
Eq.(5.126.1) are unbounded.
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5.127 Equation #127 : xn+1 =
α + γxn−1 + δxn−2

Cxn−1

The change of variables, xn = yn + γ
C , transforms Eq.(#127) to Eq.(#78).

See Section 5.78.

Conjecture 5.127.1 Show that for the equilibrium x̄ of Eq.(#127),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.127.2 Show that Eq.(#127) has solutions that do not converge
to the equilibrium point or to a periodic solution.

5.128 Equation #128 : xn+1 =
α + γxn−1 + δxn−2

Dxn−2

Eq.(#128) possesses a period-two trichotomy depending on whether

γ < δ, γ = δ, or γ > δ.

This result is a special case of a more general period-two trichotomy result
presented in Theorem 4.3.1.

Conjecture 5.128.1 Assume that

γ > δ.

Show that every bounded solution of Eq.(#128) converges to the equilibrium.

Open Problem 5.128.1 Investigate the global character of solutions of Eq.(#128)
with periodic coefficients.

5.129 Equation #129 : xn+1 =
βxn + γxn−1 + δxn−2

A

The equation in this special case is linear.
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5.130 Equation #130 : xn+1 =
βxn + γxn−1 + δxn−2

Bxn

The change of variables, xn = yn + β
B , transforms Eq.(#130) to Eq.(#95).

See Section 5.95.

Conjecture 5.130.1 Assume that

γ > β + δ.

Show that every bounded solution of Eq.(#130) converges to the equilibrium.

Conjecture 5.130.2 Assume that

γ < β + δ.

Show that for the equilibrium x̄ of Eq.(#130),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.130.3 Assume that

γ = β + δ.

Show that every solution of Eq.(#130) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.130.4 Assume that

γ < β + δ.

Show that Eq.(#130) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.

5.131 Equation #131 : xn+1 =
βxn + γxn−1 + δxn−2

Cxn−1

The change of variables, xn = yn + γ
C , transforms Eq.(#131) to Eq.(#172).

See Section 5.172.

Conjecture 5.131.1 Show that for the equilibrium x̄ of Eq.(#131),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.131.2 Show that Eq.(#131) has solutions that do not converge
to the equilibrium point or to a periodic solution.
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5.132 Equation #132 : xn+1 =
βxn + γxn−1 + δxn−2

Dxn−2

Eq.(#132) can be written in the normalized form

xn+1 =
βxn + γxn−1 + xn−2

xn−2
, n = 0, 1, . . . (5.132.1)

with positive parameters β, γ and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of this equation was investigated in [49]. See
also Theorem 3.2.1 where we established that the equation has unbounded
solutions when

γ > β + 1.

Conjecture 5.132.1 Assume that

γ > β + 1.

Show that every bounded solution of Eq.(5.132.1) converges to the equilibrium.

Conjecture 5.132.2 Assume that

γ < β + 1.

Show that for the equilibrium x̄ of Eq.(5.132.1),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.132.3 Assume that

γ = β + 1.

Show that every solution of Eq.(5.132.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.132.4 Assume that

γ < β + 1.

Show that Eq.(5.132.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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5.133 Equation #133 : xn+1 =
α

A + Bxn + Cxn−1 + Dxn−2

This equation is a special case of a more general equation investigated in
Section 5.17. It follows from Theorem 5.17.1 that the equilibrium of this
equation is globally asymptotically stable.

5.134 Equation #134 : xn+1 =
βxn

A + Bxn + Cxn−1 + Dxn−2

This equation is a special case of a more general equation that we investigated
in Section 5.106.

Conjecture 5.134.1 Show that for the positive equilibrium x̄ of Eq.(#134)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.134.2 Show that Eq.(#134) has solutions that do not converge
to an equilibrium point or to a periodic solution.

5.135 Equation #135 : xn+1 =
γxn−1

A + Bxn + Cxn−1 + Dxn−2

This equation is a special case of a more general equation that we investigated
in Section 5.109.

Conjecture 5.135.1 Show that for the positive equilibrium x̄ of Eq.(#135)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.135.2 Show that Eq.(#135) has solutions that do not converge
to an equilibrium point or to a periodic solution.
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5.136 Equation #136 : xn+1 =
δxn−2

A + Bxn + Cxn−1 + Dxn−2

This equation was investigated in [60]. The equation

xn+1 =
xn−2

A + Bxn + Cxn−1 + xn−2
, n = 0, 1, . . . (5.136.1)

with nonnegative parameters A, B, C such that

A + B + C > 0

and with arbitrary nonnegative initial conditions x−2, x−1, x0 such that
the denominator is always positive contains the special case #37, which is
a Riccati-type equation and the following six cases:

#39, #40, #114, #115, #116, #136.

When A ≥ 1, zero is the only equilibrium point of Eq.(5.136.1) and, clearly,
zero in this case is globally asymptotically stable.

When A ∈ (0, 1), Eq.(5.136.1) has two equilibrium points, namely, the zero
equilibrium point, which is unstable, and the positive equilibrium point

x̄ =
1−A

B + C + 1
.

When A = 0, x̄ = 1
B+C+1 is the only equilibrium of Eq.(5.136.1). The positive

equilibrium point x̄ of Eq.(5.136.1) is locally asymptotically stable when

A ∈ [0, 1), B <
2−A +

√
A2 + 8

2
and C <

1− 2B +
√

5 + 4A + 4B(1−A)
2

.

(5.136.2)

Conjecture 5.136.1 Assume that (5.136.2) holds. Show that the positive
equilibrium of Eq.(5.136.1) is a global attractor of all positive solutions.

Conjecture 5.136.2 Show that Eq.(5.136.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.

The following global result was established in [60].

Theorem 5.136.1 Assume that

A,B + C ∈ [0, 1).

Then every positive solution of Eq.(5.136.1) converges to the positive equilib-
rium x̄.
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PROOF The proof follows from Theorem 5.106.4.

By using the identity

a3 + b3 + c3 − 3abc =
1
2

(a + b + c)
[
(a− b)2 + (b− c)2 + (c− a)2

]

one can show that Eq.(5.136.1) has positive prime period-three solutions if
and only if

0 ≤ A < 1 and B = C = 1. (5.136.3)

All other possible prime period-three solutions of Eq.(5.136.1) are of the form

. . . , 0, 0, φ, 0, 0, φ, . . . (5.136.4)

with φ ∈ (0,∞) or of the form

. . . , 0, φ, ψ, 0, φ, ψ, . . . (5.136.5)

with φ, ψ ∈ (0,∞).

One can see that Eq.(5.136.1) has prime period-three solutions of the form
(5.136.4) if and only if

A ∈ (0, 1) or A = 0 and B,C ∈ (0,∞). (5.136.6)

Furthermore, when (5.136.6) holds, Eq.(5.136.1) has a unique prime period-
three solution of the form (5.136.4) with φ = 1−A.

Also, Eq.(5.136.1) has prime period-three solutions of the form (5.136.5) if
and only if

0 ≤ A < 1 and B = C = 1, (5.136.7)

or
0 ≤ A < 1 and B, C ∈ (1,∞), (5.136.8)

or
0 ≤ A < 1 and B,C ∈ [0, 1). (5.136.9)

Furthermore, when (5.136.7) holds, the values of φ, ψ in (5.136.5) are all
positive numbers φ and ψ such that

φ + ψ = 1−A

and Eq.(5.136.1) has infinitely many period-three solutions.
When (5.136.8) or (5.136.9) holds, the values of φ, ψ in (5.136.5) are

φ =
(1−A)(1− C)

1−BC
and ψ =

(1−A)(1−B)
1−BC

. (5.136.10)
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and Eq.(5.136.1) has a unique prime period-three solution in this case.
When (5.136.3) holds, the positive prime period-three solutions of Eq.(5.136.1)

. . . , φ, ψ, ω, . . . (5.136.11)

are given by
φ + ψ + ω = 1−A

with

φ, ψ, ω ∈ (0, 1) and (φ, ψ, ω) 6=
(

1−A

3
,
1−A

3
,
1−A

3

)
.

In view of the above we see that when A ∈ [0, 1), all prime period-three
solutions of the equation

xn+1 =
xn−2

A + xn + xn−1 + xn−2
, n = 0, 1, . . . (5.136.12)

are of the form (5.136.11), where φ, ψ, ω are all solutions of the equation

φ + ψ + ω = 1−A

with

φ, ψ, ω ∈ [0, 1] and (φ, ψ, ω) 6=
(

1−A

3
,
1−A

3
,
1−A

3

)
.

The following result shows that when

0 ≤ A < 1,

every solution of Eq.(5.136.12) converges to a (not necessarily prime) period-
three solution.

Theorem 5.136.2 Assume that A ∈ [0, 1). Then every solution of Eq.(5.136.12)
converges to a (not necessarily prime) period-three solution.

PROOF Note that

xn+1−xn−2 =
xn−2

A + xn + xn−1 + xn−2
(1−A− xn − xn−1 − xn−2) , n = 0, 1, . . . .

Set
Jn = 1−A− xn − xn−1 − xn−2.

Then for n ≥ 0,

Jn+1 = 1−A−xn−xn−1− xn−2

A + xn + xn−1 + xn−2
=

A + xn + xn−1

A + xn + xn−1 + xn−2
Jn.

Hence, the signum of Jn is constant, from which the result follows because
every solution of Eq.(5.136.12) is bounded.
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Open Problem 5.136.1 Determine the set of all positive initial conditions
through which the solutions of Eq.(5.136.12) converge to a prime period-three
solution.

Open Problem 5.136.2 Assume that (5.136.6) is satisfied. Determine the
global character of Eq.(5.136.1), and in particular, determine the basin of
attraction of the period-three solution

. . . , 0, 0, 1−A, . . . .

Open Problem 5.136.3 Assume that (5.136.8) or (5.136.9) is satisfied. De-
termine, in each case, the global character of solutions of Eq.(5.136.1), and
in particular, determine the basin of attraction of each of the period-three
solutions

. . . , 0, 0, 1−A, . . .

. . . ,
(1−A)(1− C)

1−BC
,
(1−A)(1−B)

1−BC
, 0, . . . .

It is not difficult to see that when (5.136.6) holds, the basin of attraction of
the period-three solution

. . . , 0, 0, 1−A, . . .

includes all solutions of Eq.(5.136.1) with two of the three initial conditions
x−2, x−1, x0 equal to zero and the third positive.

When (5.136.8) or (5.136.9) holds, every solution of Eq.(5.136.1) with one
of the three initial conditions x−2, x−1, x0 equal to zero and the other two
positive converges to a period-three solution.

Conjecture 5.136.3 Assume that

0 ≤ A < 1 and B, C ∈ (1,∞).

Then every positive solution of Eq.(5.136.1) converges to a period-three solu-
tion of Eq.(5.136.1).

Open Problem 5.136.4 Investigate the behavior of solutions of Eq.(#136)
when

either B 6= 1 or C 6= 1.

Open Problem 5.136.5 Assume that k is a positive integer and A,B0, . . . , Bk ∈
[0,∞). Determine the global stability of the periodic solutions of the difference
equation

xn+1 =
xn−k

A + B0xn + . . . + Bkxn−k
, n = 0, 1, . . . .

Conjecture 5.136.4 Show that Eq.(5.136.1) has solutions that do not con-
verge to an equilibrium point or to a periodic solution.
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5.137 Equation #137 : xn+1 =
α + βxn + γxn−1 + δxn−2

A
The equation in this special case is linear.

5.138 Equation #138 : xn+1 =
α + βxn + γxn−1 + δxn−2

Bxn

This equation is a special case of a more general equation that we investigate
in Section 5.195.

Conjecture 5.138.1 Assume that

γ > β + δ.

Show that every bounded solution of Eq.(#138) converges to the equilibrium.

Conjecture 5.138.2 Assume that

γ < β + δ.

Show that for the equilibrium x̄ of Eq.(#138),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.138.3 Assume that

γ < β + δ.

Show that Eq.(#138) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.

5.139 Equation #139 : xn+1 =
α + βxn + γxn−1 + δxn−2

Cxn−1

The change of variables, xn = yn + γ
C , transforms Eq.(#139) to Eq.(#172).

See Section 5.172.
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Conjecture 5.139.1 Show that for the equilibrium x̄ of Eq.(#139),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.139.2 Show that Eq.(#139) has solutions that do not converge
to the equilibrium point or to a periodic solution.

5.140 Equation #140 : xn+1 =
α + βxn + γxn−1 + δxn−2

Dxn−2

The change of variables, xn = yn + δ
D , transforms Eq.(#140) to Eq.(#167).

See Section 5.167.

Conjecture 5.140.1 Assume that

γ > β + δ.

Show that every bounded solution of Eq.(#140) converges to the equilibrium.

Conjecture 5.140.2 Assume that

γ < β + δ.

Show that for the equilibrium x̄ of Eq.(#140),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.140.3 Assume that

γ = β + δ.

Show that every solution of Eq.(#140) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.140.4 Assume that

γ < β + δ.

Show that Eq.(#140) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.
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5.141 Equation #141 : xn+1 =
α + βxn

A + Bxn + Cxn−1

This equation was investigated in [176]. See also [175]. Eq.(#141) can be
written in the normalized form

xn+1 =
α + xn

A + Bxn + xn−1
, n = 0, 1, . . . (5.141.1)

with positive parameters α and B and with arbitrary nonnegative initial con-
ditions x−1, x0. Throughout this section we allow the parameter A to be
nonnegative so that we also include the special case #68.

Eq.(5.141.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(1 + B)
2(B + 1)

.

The characteristic equation of the linearized equation of Eq.(5.141.1) about
the equilibrium x̄ is

λ2 +
Bx̄− 1

A + (1 + B)x̄
λ +

x̄

A + (1 + B)x̄
= 0.

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.141.1)
is locally asymptotically stable for all the values of the parameters α, A, B.

From Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.141.1) is globally asymptotically stable. In this
section we will show that in a subregion of

0 ≤ A < 1

every solution of Eq.(5.141.1) converges to the equilibrium x̄.

The following identity will be useful in the sequel.

xn+1 − xn−3 =
(αA−A2xn−3 −Ax2

n−3) + xn(A + xn−3)(1−Bxn−3)
(A + Bxn)(A + Bxn−2 + xn−3) + α + xn−2

+
xn−2(αB − (AB + 1)xn−3) + xnxn−2B(1−Bxn−3)

(A + Bxn)(A + Bxn−2 + xn−3) + α + xn−2
. (5.141.2)
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Clearly,

xn−3 ≥ 1
B

and α <
A

B
+

1
B2

implies that
αA−A2xn−3 −Ax2

n−3 ≤ 0,

and
(A + xn−3)(1−Bxn−3) ≤ 0,

and
αB − (AB + 1)xn−3 < 0.

Also,

xn−3 ≤ 1
B

and α >
A

B
+

1
B2

implies that
αA−A2xn−3 −Ax2

n−3 ≥ 0,

and
(A + xn−3)(1−Bxn−3) ≥ 0,

and
αB − (AB + 1)xn−3 > 0.

Set
f(xn, xn−1) =

α + xn

A + Bxn + xn−1
.

Theorem 5.141.1 Let {xn} be any solution of Eq.(5.141.1). Then the fol-
lowing statements are true:
(i) When

0 ≤ A < 1 and
(1−B)(1−A)2

4B2
≤ α <

A

B
+

1
B2

(5.141.3)

then the solution {xn} eventually enters the interval
[
αB −A, 1

B

]
and the

function f(xn, xn−1) is eventually strictly increasing in xn and strictly de-
creasing in xn−1. Furthermore, the solution {xn} converges to the equilibrium
x̄.
(ii) When

0 ≤ A < 1 and α >
A

B
+

1
B2

, (5.141.4)

the solution {xn} eventually enters the interval [ 1
B , αB −A] and the function

f(xn, xn−1) is eventually strictly decreasing in xn and xn−1. Furthermore,
the solution {xn} converges to the equilibrium x̄.
(iii) When

0 ≤ A < 1 and α =
A

B
+

1
B2

, (5.141.5)

then the solution {xn} converges to the equilibrium x̄.
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PROOF Let {xn} be a solution of Eq.(5.141.1) with nonnegative initial
conditions. We claim that

[
min(αB −A,

1
B

),max(αB −A,
1
B

)
]

is an attracting interval for the solution {xn} of Eq.(5.141.1).
We will prove that when (5.141.3) or (5.141.4) holds, all four subsequences

of the solution {xn}, of the form {x4n+j}3j=0, lie eventually within the interval

[
min(αB −A,

1
B

), max(αB −A,
1
B

)
]

.

We will give the proof when (5.141.3) holds. The proof when (5.141.4) holds
is similar and will be omitted. Furthermore, we will give the proof for the
subsequence {x4n+1}. The proof for all the other subsequences is similar and
will be omitted.

Suppose for the sake of contradiction that there exists N sufficiently large
such that

x4N+1 < αB −A or x4N+1 >
1
B

.

We will give the proof in the case where x4N+1 < αB − A. The proof in the
other case is similar and will be omitted. Then from

x4N+1 < αB −A

it follows that

x4N+3 =
α + x4N+2

A + Bx4N+2 + x4N+1
>

α + x4N+2

A + Bx4N+2 + αB −A
=

1
B

> αB −A.

From this it follows that

x4N+5 =
α + x4N+4

A + Bx4N+4 + x4N+3
<

α + x4N+4

A + Bx4N+4 + αB −A
=

1
B

. (5.141.6)

We claim that for some k ≥ 1,

x4N+4k+1 ≥ αB −A. (5.141.7)

Otherwise, for all k ≥ 1,

x4N+4k+1 < αB −A.

Then, clearly, for all k ≥ 1,

x4N+4k+3 =
α + x4N+4k+2

A + Bx4N+4k+2 + x4N+4k+1
>

α + x4N+4k+2

A + Bx4N+4k+2 + αB −A
=

1
B

.
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From (5.141.2) it follows that the subsequence {x4N+4k+1} decreases. By
taking limits in (5.141.2) we get a contradiction that proves (5.141.7). Assume
without loss of generality that (5.141.7) holds for k = 1. From this and
(5.141.6) we see that

αB −A < x4N+5 <
1
B

.

Then

x4N+7 =
α + x4N+6

A + Bx4N+6 + x4N+6
<

α + x4N+6

A + Bx4N+6 + αB −A
<

1
B

and

x4N+7 =
α + x4N+6

A + Bx4N+6 + x4N+5
>

α + x4N+6

A + Bx4N+6 + 1
B

>
α

A + 1
B

> αB −A

and the result follows by induction.
When (5.141.3) holds, and due to the fact that the solution {xn} eventually

enters the interval [αB −A, 1
B ], we see that the function

f(xn, xn−1) =
α + xn

A + Bxn + xn−1

is eventually strictly increasing in xn and strictly decreasing in xn−1. Fur-
thermore, for each m, M ∈ [αB −A, 1

B ], in view of (5.141.3), the system

M =
α + M

A + BM + m
and m =

α + m

A + Bm + M

has the unique solution (m, M) = (x̄, x̄). Hence, the result follows by Theorem
1.6.5.

When (5.141.4) holds, and due to the fact that the solution {xn} eventually
enters the interval [ 1

B , αB −A], we see that the function

f(xn, xn−1) =
α + xn

A + Bxn + xn−1

is strictly decreasing in xn and eventually strictly decreasing in xn−1. Fur-
thermore, for each m, M ∈ [ 1

B , αB −A], the system

M =
α + m

A + (B + 1)m
and m =

α + M

A + (B + 1)M

has the unique solution (m, M) = (x̄, x̄). Hence, the result follows by Theorem
1.6.5.

Finally, assume that (5.141.5) holds. Then, clearly, for all n ≥ 0,

xn+1 − 1
B

=
1
B
·

1
B − xn−1

A + Bxn + xn−1
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from which it follows that each one of the four subsequences {x4n+j}, j ∈
{0, 1, 2, 3} is either above 1

B , or below 1
B , or identically equal to 1

B . In view
of (5.141.2) all four subsequences converge monotonically to finite limits. In
addition, from (5.141.2) we see that for all n ≥ 3,

xn+1 = xn−3 if and only if xn−3 =
1
B

.

Hence, all four subsequences converge to 1
B . The proof is complete.

The following theorem extends the result of Theorem 5.141.1 to the more
general rational equation

xn+1 =
α + xn−m

A + Mxn−m + Lxn−l
, n = 0, 1, . . . (5.141.8)

with l,m ∈ {0, 1, . . .}, with positive parameters α, M , L, and with arbitrary
nonnegative initial conditions.

The proof, as in the case of Theorem 5.141.1, is based on the identity:

xn+1 − xn−2l−1

=
(αA−A2xn−2l−1 −ALx2

n−2l−1) + xn−m(A + Lxn−2l−1)(1−Mxn−2l−1)
(A + Mxn−m)(A + Mxn−l−m−1 + Lxn−2l−1) + Lα + Lxn−l−m−1

+
xn−l−m−1(αM − (AM + L)xn−2l−1) + xn−mxn−l−m−1M(1−Mxn−2l−1)

(A + Mxn−m)(A + Mxn−l−m−1 + Lxn−2l−1) + Lα + Lxn−l−m−1
.

(5.141.9)

Theorem 5.141.2 Let {xn} be any solution of Eq.(5.141.8). Then the fol-
lowing statements are true:
(i) When

0 ≤ A < 1 and
(L−M)(1−A)2

4M2
≤ α <

A

M
+

L

M2
, (5.141.10)

the solution {xn} eventually enters the interval
[

αM−A
L , 1

M

]
and the function

f(xn−m, xn−l) is eventually strictly increasing in xn−m and strictly decreasing
in xn−l. Furthermore, the solution {xn} converges to the equilibrium.
(ii) When

0 ≤ A < 1 and α >
A

M
+

L

M2
, (5.141.11)

the solution {xn} eventually enters the interval
[

1
M , αM−A

L

]
and the function

f(xn−m, xn−l) is eventually strictly decreasing in xn−m and xn−l. Further-
more, the solution {xn} converges to the equilibrium.
(iii) When

0 ≤ A < 1 and α =
A

M
+

L

M2
, (5.141.12)

the solution {xn} converges to the equilibrium.
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PROOF The proof is similar to the proof of Theorem 5.141.1 and will be
omitted.

Conjecture 5.141.1 Assume that

α, A,B ∈ (0,∞).

Show that every solution of Eq.(5.141.1) has a finite limit.

In other words, the equilibrium x̄ of Eq.(5.141.1) is globally asymptotically
stable. To the best of our knowledge any claims in the literature, made prior
to July 2007, that the conjecture has been confirmed are not correct. For
some partial results see [175] and [176].

5.142 Equation #142 : xn+1 =
α + βxn

A + Bxn + Dxn−2

Eq.(#142) can be written in the normalized form

xn+1 =
α + xn

A + xn + Dxn−2
, n = 0, 1, . . . (5.142.1)

with positive parameters α and D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0. Throughout this section we will allow the parameter A
to be nonnegative so that we also include the special case #69.

Eq.(5.142.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(1 + D)
2(1 + D)

.

The characteristic equation of the linearized equation of Eq.(5.142.1) about
the equilibrium x̄ is

λ3 +
x̄− 1

A + (1 + D)x̄
λ2 +

Dx̄

A + (1 + D)x̄
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.142.1)
is locally asymptotically stable when

A ≥ 1, (5.142.2)

or

0 ≤ A < 1 and D <
4A(A + 1)
(2A− 1)2

, (5.142.3)



Known Results for Each of the 225 Special Cases 333

or

0 ≤ A < 1, D ≥ 4A(A + 1)
(2A− 1)2

, and α > α∗ (5.142.4)

and unstable when

0 ≤ A < 1, D ≥ 4A(A + 1)
(2A− 1)2

, and α < α∗,

where

α∗ =
2A−D + 5AD − 4A2D − 2D2 + D3 − 4AD3 + 4A2D3

2(9D2 + 6D + 1)

−(1 + A + 2D + AD −D2 + 2AD2)
√

D
√

4A2D − 4AD + D − 4A2 − 4A

2(9D2 + 6D + 1)
.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium of Eq.(5.142.1) is globally asymptotically stable.
From Theorem 5.141.2 it follows that when

0 ≤ A < 1 and
(D − 1)(1−A)2

4
≤ α, (5.142.5)

every solution of Eq.(5.142.1) converges to the equilibrium x̄.

Conjecture 5.142.1 Assume that

α∗ < α <
(D − 1)(1−A)2

4
.

Show that every solution of Eq.(5.142.1) converges to the equilibrium x̄.

Conjecture 5.142.2 Show that Eq.(5.142.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.143 Equation #143 : xn+1 =
α + βxn

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#143) can be written in the normalized form

xn+1 =
α + xn

A + Cxn−1 + xn−2
, n = 0, 1, . . . (5.143.1)
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with positive parameters α,A, C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

Eq.(5.143.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(1 + C)
2(1 + C)

.

The characteristic equation of the linearized equation of Eq.(5.143.1) about
the equilibrium x̄ is

λ3 +
−1

A + (1 + C)x̄
λ2 +

Cx̄

A + (C + 1)x̄
λ +

x̄

A + (1 + C)x̄
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.143.1)
is locally asymptotically stable when

(A2 + A + 2α)C2 + 2(A2 + α)C + 3A− 1 + 2AC

+[(A(C + 1)2 + A− 1]
√

(1−A)2 + 4α(C + 1) > 0 (5.143.2)

and unstable when

(A2 + A + 2α)C2 + 2(A2 + α)C + 3A− 1 + 2AC

+[(A(C + 1)2 + A− 1]
√

(1−A)2 + 4α(C + 1) < 0

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.143.1) is globally asymptotically stable.

Conjecture 5.143.1 Assume that (5.143.2) holds. Show that the equilibrium
x̄ of Eq.(5.143.1) is globally asymptotically stable.

Conjecture 5.143.2 Show that Eq.(5.143.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.144 Equation #144 : xn+1 =
α + βxn

Bxn + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#144) can be written in the normalized form

xn+1 =
α + xn

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.144.1)
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with positive parameters α, C, D and with arbitrary positive initial conditions
x−2, x−1, x0.

Eq.(5.144.1) has the unique equilibrium

x̄ =
1 +

√
1 + 4α(1 + C + D)
2(1 + C + D)

.

The characteristic equation of the linearized equation of Eq.(5.144.1) about
the equilibrium x̄ is

λ3 +
x̄− 1

(1 + C + D)x̄
λ2 +

C

1 + C + D
λ +

D

1 + C + D
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.144.1)
is locally asymptotically stable when

D < 1, C <
−1−D +

√−3D2 + 6D + 1
2

, (5.144.2)

and

α >
D(C + C2 + 2CD + 2D2)

(C + C2 −D + CD + D2)2
. (5.144.3)

Conjecture 5.144.1 Assume that (5.144.2) and (5.144.3) hold. Show that
every solution of Eq.(5.144.1) converges to the equilibrium x̄.

Conjecture 5.144.2 Show that Eq.(5.144.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.145 Equation #145 : xn+1 =
α + γxn−1

A + Bxn + Cxn−1

This equation was investigated in [175]. Eq.(#145) can be written in the
normalized form

xn+1 =
α + xn−1

A + Bxn + xn−1
, n = 0, 1, . . . (5.145.1)

with positive parameters α and B and with arbitrary nonnegative initial con-
ditions x−1, x0. Throughout this section we allow the parameter A to be
nonnegative so that we also include the special case #74.

Eq.(5.145.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(1 + B)
2(1 + B)

.
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The characteristic equation of the linearized equation of Eq.(5.145.1) about
the equilibrium x̄ is

λ2 +
Bx̄

A + (1 + B)x̄
λ +

x̄− 1
A + (1 + B)x̄

= 0.

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.145.1)
is locally asymptotically stable when

x̄ >
1−A

2
,

which is equivalent to
A ≥ 1, (5.145.2)

or
0 ≤ A < 1 and B ≤ 1, (5.145.3)

or

0 ≤ A < 1, B > 1, and α >
(B − 1)(1−A)2

4
(5.145.4)

and unstable when

0 ≤ A < 1, B > 1, and α <
(B − 1)(1−A)2

4
. (5.145.5)

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.145.1) is globally asymptotically stable.

By Theorem 5.141.2 it follows that when

0 ≤ A < 1 and α ≥ (B − 1)(1−A)2

4
, (5.145.6)

every solution of Eq.(5.145.1) converges to the equilibrium x̄.
When (5.145.5) holds, Eq.(5.145.1) has the unique prime period-two solu-

tion

. . . ,
1−A−

√
(1−A)2 − 4α

B−1

2
,
1−A +

√
(1−A)2 − 4α

B−1

2
, . . . , (5.145.7)

which is locally asymptotically stable. See [175].
The following theorem is a new result about the global behavior of solutions

of Eq.(5.145.1) when (5.145.5) holds.

Theorem 5.145.1 Assume that (5.145.5) holds. Then every solution of Eq.(5.145.1)
converges to a (not necessarily prime) period-two solution.



Known Results for Each of the 225 Special Cases 337

PROOF Let {xn} be a solution of Eq.(5.145.1). Due to the fact that

(B − 1)(1−A)2

4
< B + A,

it follows from (5.145.5) that

α < B + A.

From this and Theorem 5.141.2 (i) it follows that the function

f(xn, xn−1) =
α + xn−1

A + Bxn + xn−1

increases in xn−1 and decreases in xn. By Theorem 1.6.6 it follows that the
subsequences of the even and odd terms are eventually monotonic and because
the solution is bounded these subsequences converge to finite limits. The proof
is complete.

Open Problem 5.145.1 Assume that (5.145.5) holds.
(i) Determine the set of all initial conditions x−1, x0 for which every solution
of Eq.(5.145.1) converges to the equilibrium x̄.

(ii) Determine the set of all initial conditions x−1, x0 for which every solution
of Eq.(5.145.1) converges to (5.145.7).

5.146 Equation #146 : xn+1 =
α + γxn−1

A + Bxn + Dxn−2

This equation was investigated in [72]. When

γ + A + B > 0,

Eq.(#146) possesses a period-two trichotomy depending on whether

γ < A, γ = A, or γ > A.

The precise result that allows for the parameters α, A, and B to be nonneg-
ative was presented in Theorem 4.3.1.

What is it that makes Eq.(#146) possess a period-two trichotomy?

Could the period-two trichotomy of Eq.(#146) be predicted from
the linearized equation of Eq.(#146) and its dominant characteristic
root?
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Open Problem 5.146.1 Investigate the global character of solutions of the
equation

xn+1 =
αn + γnxn−1

1 + Bnxn + xn−2
, n = 0, 1, . . . (5.146.1)

with periodic coefficients {αn}, {γn}, and {Bn}.

Open Problem 5.146.2 Investigate the global character of solutions of Eq.(5.146.1)
with convergent coefficients {αn}, {γn}, and {Bn}.

Conjecture 5.146.1 Assume that

γ > A.

Show that every bounded solution of Eq.(#146) converges to the equilibrium.

5.147 Equation #147 : xn+1 =
α + γxn−1

A + Cxn−1 + Dxn−2

Eq.(#147) can be written in the normalized form

xn+1 =
α + xn−1

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.147.1)

with positive parameters α and D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0. Throughout this section we allow the parameter A to
be nonnegative so that we also include the special case #76.

Eq.(5.147.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(D + 1)
2(D + 1)

.

The characteristic equation of the linearized equation of Eq.(5.147.1) about
the equilibrium x̄ is

λ3 +
x̄− 1

A + (D + 1)x̄
λ +

Dx̄

A + (D + 1)x̄
= 0. (5.147.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.147.1)
is locally asymptotically stable when

A ≥ 1, or 0 ≤ A < 1 and D < 1 +
4α

(1−A)2
(5.147.3)
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and unstable when

0 ≤ A < 1 and D > 1 +
4α

(1−A)2
. (5.147.4)

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.147.1) is globally asymptotically stable.

From Theorem 5.141.2 it follows that when

0 ≤ A < 1 and D ≤ 1 +
4α

(1−A)2
, (5.147.5)

every solution of Eq.(5.147.1) converges to the equilibrium x̄.
When (5.147.4) holds, Eq.(5.147.1) has the unique period-two solution

. . . ,
1−A−

√
(1−A)2 − 4α

D−1

2
,
1−A +

√
(1−A)2 − 4α

D−1

2
, . . . . (5.147.6)

Conjecture 5.147.1 Show that the period-two cycle (5.147.6) is locally asymp-
totically stable.

Conjecture 5.147.2 Assume that (5.147.4) holds. Show that every solution
of Eq.(5.147.1) converges to a (not necessarily prime) period-two solution.

Open Problem 5.147.1 Assume that (5.147.4) holds.
(i) Determine the set of all initial conditions x−2, x−1, x0 for which every
solution of Eq.(5.147.1) converges to the equilibrium x̄.

(ii) Determine the set of all initial conditions x−2, x−1, x0 for which every
solution of Eq.(5.147.1) converges to (5.147.6).

5.148 Equation #148 : xn+1 =
α + γxn−1

Bxn + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#148) can be written in the normalized form

xn+1 =
α + xn−1

Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . (5.148.1)
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with positive parameters α, B, D and with arbitrary positive initial conditions
x−2, x−1, x0.

Eq.(5.148.1) has the unique equilibrium

x̄ =
1 +

√
1 + 4α(1 + B + D)
2(1 + B + D)

.

The characteristic equation of the linearized equation of Eq.(5.148.1) about
the equilibrium x̄ is

λ3 +
B

1 + B + D
λ2 +

x̄− 1
(1 + B + D)x̄

λ +
D

1 + B + D
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ is locally asymp-
totically stable when

α >
B + D − 1

4
, D > 1, and B ≥ D2 + D + 1

D − 1
,

or when
D ≤ 1

and

B + D − 1
4

< α <
(3B + 1)D2 + (4B2 + 5B + 1)D + B3 + 2B2 + 6

(D2 + D(1−B) + B + 1)2
.

When

α <
B + D − 1

4
, (5.148.2)

and only then, Eq.(5.148.1) has a unique prime period-two solution of the
form

. . . , x, y, x, y, . . . ,

where x, y are the positive solutions of the quadratic equation

t2 − t +
α

B + D − 1
= 0.

Conjecture 5.148.1 Assume that (5.148.2) holds. Show that the unique
prime period-two solution of Eq.(5.148.1) is locally asymptotically stable.

Conjecture 5.148.2 Show that every solution of Eq.(5.148.1) converges to
a (not necessarily prime) period-two solution.
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5.149 Equation #149 : xn+1 =
α + δxn−2

A + Bxn + Cxn−1

Eq.(#149) can be written in the normalized form

xn+1 =
α + xn−2

A + Bxn + xn−1
, n = 0, 1, . . . (5.149.1)

with positive parameters α, A,B and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

A < 1. (5.149.2)

Actually, as we will see later, (5.149.2) is a necessary and sufficient condition
for Eq.(5.149.1) to have unbounded solutions.

Eq.(5.149.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(B + 1)
2(B + 1)

.

The characteristic equation of the linearized equation of Eq.(5.149.1) about
the equilibrium x̄ is

λ3 +
Bx̄

A + (B + 1)x̄
λ2 +

x̄

A + (B + 1)x̄
λ− 1

A + (B + 1)x̄
= 0. (5.149.3)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.149.1)
is locally asymptotically stable when

A ≥ 1,

or

0 < A < 1 and α ≥ (1−A)2(1 + A)
A2

, (5.149.4)

or

0 < A < 1, and 0 < α <
(1−A)2(1 + A)

A2
, and B >

2−A−A
√

5 + 4α− 4A

2α
(5.149.5)

and unstable when

0 < A < 1, 0 < α <
(1−A)2(1 + A)

A2
, and B <

2−A−A
√

5 + 4α− 4A

2α
.

(5.149.6)
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By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium x̄ of Eq.(5.149.1) is globally asymptotically stable.

For the equilibrium x̄ of Eq.(5.149.1),

Local Asymptotic Stabilty; Global Asymptotic Stabilty.

More specifically, when the condition (5.149.5) is satisfied, the equilibrium of
Eq.(5.149.1) is locally asymptotically stable but not globally asymptotically
stable. The reason is that when the condition (5.149.5) is satisfied, there
exist initial conditions x−2, x−1, x0 for which the solution of Eq.(5.149.1) is
unbounded. See Theorem 3.4.1.

In addition to unbounded solutions, what other type’s of solutions
exist? Can there exist any periodic solutions? Can there exist any
bounded solutions that are not periodic and do not converge to the
equilibrium point x̄ or to a periodic solution?

Note that when
0 ≤ A < 1 and B = 1,

unbounded solutions of Eq.(5.149.1) coexist with periodic solutions. For ex-
ample, when

A 6= 1−√α,

the sequence

. . . , 1−A, 1−A,
α

1−A
, . . .

is a prime period-three solution of the equation

xn+1 =
α + xn−2

A + xn + xn−1
, n = 0, 1, . . . .

Conjecture 5.149.1 Show that Eq.(5.149.1) has bounded solutions that do
not converge to the equilibrium point x̄ or to a periodic solution.

Open Problem 5.149.1 Investigate the global character of solutions of the
equation

xn+1 =
αn + xn−2

An + Bnxn + xn−1
, n = 0, 1, . . . (5.149.7)

with periodic coefficients {αn}, {An}, and {Bn}.

Open Problem 5.149.2 Investigate the global character of solutions of Eq.(5.149.7)
with convergent coefficients {αn}, {An}, and {Bn}.
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5.150 Equation #150 : xn+1 =
α + δxn−2

A + Bxn + Dxn−2

Eq.(#150) can be written in the normalized form

xn+1 =
α + xn−2

A + Bxn + xn−2
, n = 0, 1, . . . (5.150.1)

with positive parameters α, A,B and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

Eq.(5.150.1) has the unique equilibrium

x̄ =
1−A +

√
(1−A)2 + 4α(1 + B)
2(1 + B)

.

The characteristic equation of the linearized equation of Eq.(5.150.1) about
the equilibrium x̄ is

λ3 +
Bx̄

A + (1 + B)x̄
λ2 +

x̄− 1
A + (1 + B)x̄

= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.150.1)
is locally asymptotically stable when

A ≥ 1, (5.150.2)

or
0 < A < 1 and 0 < B ≤ 1, (5.150.3)

or

0 < A < 1, B > 1, and α >
s−√s2 − 4t

2B2(B + 3)2
, (5.150.4)

where

s = 4(1 + A)(A + 3B + 1)−B2(AB − 2B + 4A2 − 9A− 4)

and
t = B2(B + 3)2(A− 1)2(A + 1)(B2 + AB − 2B −A− 1)

and unstable when

0 < A < 1, B > 1 and α <
s−√s2 − 4t

2B2(B + 3)2
. (5.150.5)

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,
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the equilibrium x̄ of Eq.(5.150.1) is globally asymptotically stable.

From Theorem 5.141.2 it follows that when

0 < A < 1 and α ≥ (B − 1)(1−A)2

4
, (5.150.6)

every solution of Eq.(5.150.1) converges to the equilibrium x̄.

Open Problem 5.150.1 Assume that

0 < A < 1, B > 1, and
s−√s2 − 4t

2B2(B + 3)2
< α <

(B − 1)(1−A)2

4
.

Show that every solution of Eq.(5.150.1) converges to the equilibrium x̄.

Conjecture 5.150.1 Show that Eq.(5.150.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.151 Equation #151 : xn+1 =
α + δxn−2

A + Cxn−1 + Dxn−2

Eq.(#151) can be written in the normalized form

xn+1 =
α + xn−2

A + Cxn−1 + xn−2
, n = 0, 1, . . . (5.151.1)

with positive parameters α,A, C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium of Eq.(5.151.1) is globally asymptotically stable.

Also, when

0 < A < 1 and α ≥ (C − 1)(1−A)2

4
, (5.151.2)

by Theorem 5.141.2, every solution of Eq.(5.151.1) converges to the equilib-
rium x̄.

Conjecture 5.151.1 Show that for the equilibrium x̄ of Eq.(5.151.1),

Local Asymptotic Stability⇒ Global Asymptotic Stability.
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Conjecture 5.151.2 Assume that

0 < A < 1 and α <
(C − 1)(1−A)2

4
.

Show that Eq.(5.151.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.152 Equation #152 : xn+1 =
α + δxn−2

Bxn + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#152) can be written in the normalized form

xn+1 =
α + xn−2

Bxn + Cxn−1 + xn−2
, n = 0, 1, . . . (5.152.1)

with positive parameters α, B, C and with arbitrary positive initial conditions
x−2, x−1, x0.

Conjecture 5.152.1 Show that for the equilibrium x̄ of Eq.(5.152.1),

Local Asymptotic Stability⇒ Global Asymptotic Stability.

Conjecture 5.152.2 Show that Eq.(5.152.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

5.153 Equation #153 : xn+1 =
βxn + γxn−1

A + Bxn + Cxn−1

Eq.(#153) can be written in the normalized form

xn+1 =
βxn + xn−1

A + Bxn + xn−1
, n = 0, 1, . . . (5.153.1)

with positive parameters β,A, B and with arbitrary nonnegative initial con-
ditions x−1, x0.

Zero is always an equilibrium of Eq.(5.153.1). By Theorems 5.23.2 and
5.23.4 it follows that when

A ≥ β + 1,
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the zero equilibrium of Eq.(5.153.1) is globally asymptotically stable. When

A < β + 1, (5.153.2)

the zero equilibrium is unstable.
When (5.153.2) holds, Eq.(5.153.1) has the unique positive equilibrium

point

x̄ =
1 + β −A

1 + B
.

The characteristic equation of the linearized equation of Eq.(5.153.1) about
the positive equilibrium x̄ is

λ2 +
B −AB − β

(β + 1)(B + 1)
λ +

β −A−B

(1 + B)(β + 1)
= 0.

From this and Theorem 1.2.2 it follows that the positive equilibrium x̄ of
Eq.(5.153.1), which exists provided that (5.153.2) is satisfied, is locally asymp-
totically stable when

β >
(B − 1)(1−A)

B + 3
(5.153.3)

and unstable when

β <
(B − 1)(1−A)

B + 3
. (5.153.4)

When (5.153.2) and (5.153.3) both hold, it has been recently established (see
[135]) that every positive solution of Eq.(5.153.1) converges to the positive
equilibrium.

When (5.153.4) holds, and only then, Eq.(5.153.1) has the unique prime
period-two solution

. . . ,
1− β −A−

√
(1− β −A)2 − 4β(1−β−A)

B−1

2
,

1− β −A +
√

(1− β −A)2 − 4β(1−β−A)
B−1

2
, . . . . (5.153.5)

Conjecture 5.153.1 Show that the period-two cycle (5.153.5) is locally asymp-
totically stable.

Conjecture 5.153.2 Assume that (5.153.2) and (5.153.4) holds. Show that
every solution of Eq.(5.153.1) converges to a (not necessarily prime) period-
two solution.
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5.154 Equation #154 : xn+1 =
βxn + γxn−1

A + Bxn + Dxn−2

The boundedness character of this equation was investigated in [49]. Eq.(#154)
can be written in the normalized form

xn+1 =
xn + γxn−1

A + xn + Dxn−2
, n = 0, 1, . . . (5.154.1)

with positive parameters γ,A, D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorem 3.3.1 it follows that Eq.(5.154.1) has unbounded solutions when

γ > 1 + A.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + γ,

the zero equilibrium of Eq.(5.154.1) is globally asymptotically stable.
When

A < 1 + γ,

Eq.(5.154.1) has the unique positive equilibrium point

x̄ =
1 + γ −A

1 + D
.

Conjecture 5.154.1 Assume that

γ > 1 + A.

Show that every positive and bounded solution of Eq.(5.154.1) converges to
the positive equilibrium x̄.

Conjecture 5.154.2 Assume that

A− 1 < γ < 1 + A.

Show that for the positive equilibrium x̄ of Eq.(5.154.1) and with positive
initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.154.3 Assume that

γ = 1 + A.

Show that every solution of Eq.(5.154.1) converges to a (not necessarily prime)
period-two solution.
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Conjecture 5.154.4 Assume that

A− 1 < γ < 1 + A.

Show that Eq.(5.154.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

5.155 Equation #155 : xn+1 =
βxn + γxn−1

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#155) can be written in the normalized form

xn+1 =
βxn + xn−1

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.155.1)

with positive parameters β, A,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + β,

the zero equilibrium of Eq.(5.155.1) is globally asymptotically stable.
When

A < 1 + β,

Eq.(5.155.1) has the unique positive equilibrium point

x̄ =
1 + β −A

1 + D
.

Conjecture 5.155.1 Show that for the positive equilibrium x̄ of Eq.(#155)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.155.2 Assume that

A < 1 + β.

Show that Eq.(5.155.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.155.3 It follows from the work in Section 4.2 that Eq.(5.155.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.155.1) is locally asymptotically stable.
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5.156 Equation #156 : xn+1 =
βxn + γxn−1

Bxn + Cxn−1 + Dxn−2

Eq.(#156) can be written in the normalized form

xn+1 =
xn + γxn−1

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.156.1)

with positive parameters γ, C, D and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.156.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.156.1).

Conjecture 5.156.1 Show that for the equilibrium x̄ of Eq.(5.156.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.156.2 It follows from the work in Section 4.2 that Eq.(5.156.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.156.1) is locally asymptotically stable.

Conjecture 5.156.3 Show that Eq.(5.156.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

5.157 Equation #157 : xn+1 =
βxn + δxn−2

A + Bxn + Cxn−1

Eq.(#157) can be written in the normalized form

xn+1 =
βxn + xn−2

A + Bxn + xn−1
(5.157.1)

with positive parameters β, B and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0. We will assume that the parameter A is nonnegative so
that this section also includes the study of the special case #92.

The boundedness character of this equation was investigated in [69]. See
also Theorem 3.4.1 where we established that the equation has unbounded
solutions when

β < B(1−A). (5.157.2)
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By Theorem 5.221.1 it follows that every solution of Eq.(5.157.1) is bounded
if and only if

β ≥ B(1−A).

Eq.(5.157.1) has one or two equilibrium points. When

β + 1 ≤ A,

zero is the unique equilibrium of Eq.(5.157.1).
When

A = 0,

Eq.(5.157.1) has the unique positive equilibrium

x̄ =
β + 1
B + 1

.

When
β + 1 > A and A > 0,

Eq.(5.157.1) has two equilibrium points, namely, the zero equilibrium and the
positive equilibrium x̄.

It follows from Theorems 5.23.2 and 5.23.4 that the zero equilibrium is
globally asymptotically stable when

A ≥ β + 1.

The characteristic equation of the linearized equation of Eq.(5.157.1) about
the positive equilibrium x̄ is

λ3 +
Bx̄− β

A + (B + 1)x̄
λ2 +

x̄

A + (B + 1)x̄
λ− 1

A + (B + 1)x̄
= 0. (5.157.3)

From this and Theorem 1.2.3 it follows that the positive equilibrium x̄ of
Eq.(5.157.1), which exists as long as A < β + 1, is locally asymptotically
stable when

1 ≤ A < β + 1 (5.157.4)

or

0 < A < 1 and β >
−1−A− 2B +

√
(1 + A)2 + 4B(2 + (2−A)B)

2B
= β∗.

(5.157.5)
For the positive equilibrium x̄ of Eq.(5.157.1),

Local Asymptotic Stability 6⇒ Global Attractivity.

Indeed, for all values of β, A, and B for which

1 > A ≥ 0, 1 > B ≥
√

5− 1
2

or
1
2
≤ B ≤

√
5− 1
2

and 1 > A >
B2 + B − 1

B2 −B
(5.157.6)
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we have
β∗ < β < B(1−A)

and so the positive equilibrium of Eq.(5.157.1) is locally asymptotically sta-
ble and, in the same region, by Theorem 3.4.1, the equation has unbounded
solutions. Hence, the positive equilibrium of the equation cannot be a global
attractor in the entire region of its local asymptotic stability.

Open Problem 5.157.1 Assume that (5.157.6) holds.
(a) Determine the set of all positive initial conditions x−2, x−1, x0 through
which the solutions of Eq.(5.157.1) converge to the positive equilibrium point
x̄.

(b) Determine the set of all positive initial conditions x−2, x−1, x0 through
which the solutions of Eq.(5.157.1) are unbounded.

When

1
2

< B <

√
5− 1
2

and A <
B2 + B − 1

B2 −B
or 0 < B <

1
2

and 0 ≤ A < 1,

(5.157.7)
it follows that

β∗ > β > B(1−A).

In this case numerical investigations indicate chaotic behavior of solutions of
Eq.(5.157.1).

Conjecture 5.157.1 Show that Eq.(5.157.1) has bounded solutions that do
not converge to an equilibrium point or to a periodic solution.

Lemma 5.157.1 Assume that A = 1. Let {xn} be a solution of Eq.(5.157.1)
for which there exists N > 0 such that

0 < xN−1, xN−2, xN <
β

B
. (5.157.8)

Then

xN+1 <
β

B
.

PROOF In view of Eq.(5.157.1), we get

xN+1 =
βxN + xN−2

1 + BxN + xN−1
<

β
B (β + 1)

1 + β
=

β

B
.

The proof is complete.
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Lemma 5.157.2 Assume that A = 1. Let {xn} be a solution of Eq.(5.157.1)
such that

xN+1 ≥ β

B
. (5.157.9)

Then
xN−1 <

β

B
. (5.157.10)

PROOF Suppose for the sake of contradiction that

xN−1 ≥ β

B
.

Then in view of Eq.(5.157.1), we get

xN−2 ≥ β

B
(1 +

β

B
) and xN−4 ≥ β

B
,

which implies that

xN−5 ≥ β

B
(1 +

β

B
)2 and xN−7 ≥ β

B
.

Inductively, we get

xN−3k−2 >
β

B
(1 +

β

B
)k+1, k = 0, 1, . . . ,

which is a contradiction and the proof is complete.

Theorem 5.157.1 Assume that A ≥ 1. Let {xn} be a solution of Eq.(5.157.1).
Then there exists N > 0 such that for all n ≥ N ,

xn <
β

B
. (5.157.11)

PROOF We will consider two cases. First assume that

A = 1.

In view of Lemma 5.157.1 it suffices to show that there exists N > 0 such
that (5.157.8) holds. For the sake of contradiction and in view of (5.157.9)
and (5.157.10) assume that there exists N > 0 such that for all n ≥ 0

0 < x3n+N , x3n+N+1 <
β

B
< x3n+N−1.

From Eq.(5.157.1) we get

x3n+N+2 =
βx3n+N+1 + x3n+N−1

1 + Bx3n+N+1 + x3n+N
< x3(n−1)+N+2
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and so the subsequence {x3n+N+2} converges. Set

S = lim sup
n→∞

xn.

Then, clearly,

S = lim
n→∞

x3n+N+2 ≥ β

B
.

In addition, there exists a sequence of indices {ni} and positive numbers
{lt}4t=0,t 6=2 such that

lt = lim
i→∞

x3ni+N+t.

Then, clearly,

l3 =
βS + l0

1 + BS + l1
> 0 and l4 =

βl3 + l1
1 + Bl3 + l2

> 0

and
S = l5 =

βl4 + S

1 + Bl4 + l3
=

βl4
Bl4 + l3

<
β

B
,

which is a contradiction and the proof of (5.157.11) is complete when A = 1.

When
A > 1,

assume for the sake of contradiction that there exists N sufficiently large such
that

xN+1 =
βxN + xN−2

A + BxN + xN−1
>

β

B
, (5.157.12)

from which it follows that

xN−2 =
βxN−3 + xN−5

A + BxN−3 + xN−4
>

β

B
A

and
xN−5 > A2 β

B
.

Inductively, we have that

xN−3k−2 > Ak+1 β

B
, k = 0, 1, . . . ,

which is a contradiction and so the proof of (5.157.11) is complete.

Lemma 5.157.3 Assume that 1 ≤ A < β+1. Let {xn} be a positive solution
of Eq.(5.157.1). Then

S = lim sup
n→∞

xn > 0. (5.157.13)
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PROOF Assume for the sake of contradiction that S = 0. Choose two
positive numbers ε and m such that

0 < m =
A + (B + 1)ε

β + 1
< 1. (5.157.14)

There exists N sufficiently large such that

xN+1 =
βxN + xN−2

A + BxN + xN−1
< ε,

which implies
min{xN−2, xN} < εm

and
min{xN−5, xN−3, xN−1} < εm2

and eventually leads to a contradiction. The proof is complete.

Theorem 5.157.2 Assume that

1 ≤ B < ∞ and 1 ≤ A < β + 1. (5.157.15)

Then every positive solution of Eq.(5.157.1) converges to the positive equilib-
rium x̄ of Eq.(5.157.1).

PROOF From Theorem 5.157.1 we know that the solution {xn} of Eq.(5.157.1)
is bounded from above by the positive constant β

B . Let

S = lim sup
n→∞

xn < ∞

and
I = lim inf

n→∞
xn ≥ 0.

Then, clearly,

S ≤ (β + 1)S
A + BS

and due to the fact that S > 0,

S ≤ β + 1−A

B
.

Assume for the sake of contradiction that S = β+1−A
B . There exists a sequence

of indices {ni} and positive numbers {lt}3t=0 such that

S = lim
i→∞

xni+1 and li = lim
i→∞

xni−t.
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Then
S =

βl0 + l−2

A + Bl0 + l−1
,

which implies l0 = l−2 = S and l−1 = 0. From

l0 = S =
βl−1 + l−3

A + Bl−1 + l−2
=

l−3

A + S
≤ S

A + S

it follows that
S ≤ 1−A ≤ 0,

which is a contradiction and so

S <
β + 1−A

B
. (5.157.16)

There exist ε > 0, m > 0, and N > 0 with

0 < m < min{xN−2, xN−1, xN},

S + ε < min{β + 1−A

B
, β + 1−A−Bm}, for B ≥ 1,

and
xn < S + ε < β + 1−A−Bm, for n ≥ N − 2.

Then, clearly,

xN+1 =
βxN + xN−2

A + BxN + xN−1
>

(β + 1)m
A + Bm + β + 1−A−Bm

= m

and, inductively, we obtain

xn > m, for n ≥ N − 2

from which it follows that I > 0. Then, clearly,

S ≤ (β + 1)S
A + BS + I

and I ≥ (β + 1)I
A + BI + S

from which it follows

BS + I ≤ β + 1−A ≤ BI + S

and
(B − 1)(S − I) ≤ 0.

We divide the proof into the following two cases:
Case 1:

B > 1.

In this case I = S.
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Case 2:
B = 1.

Clearly,

S =
βl0 + l−2

A + l0 + l−1
≤ (β + 1)S

A + S + I

and so
S ≤ β + 1−A− I.

Assume for the sake of contradiction that

S = β + 1−A− I and S > I.

Then, clearly,
l0 = l−2 = S and l−1 = I.

In addition,

l0 = S =
βl−1 + l−3

A + l−1 + l−2
<

(β + 1)S
A + S + I

from which it follows that

S < β + 1−A− I,

a contradiction, and so

S < β + 1−A− I or S = I.

Assume that S < β + 1−A− I. There exists a sequence of indices {ni} and
positive numbers {mt}3t=0 such that

I = lim
j→∞

xnj+1 and mt = lim
j→∞

xnj−t.

Then, clearly,

I =
βm0 + m−2

A + m0 + m−1
≥ (β + 1)I

A + I + S

and so S ≥ β + 1−A− I which is a contradiction. Hence, S = I. The proof
is complete.

Conjecture 5.157.2 Assume that

1 ≤ A < β + 1 and 0 < B < 1.

Show that every positive solution of Eq.(5.157.1) converges to the positive
equilibrium of Eq.(5.157.1).

Theorem 5.157.3 Assume that

β > B(1−A), 1 ≥ A ≥ 0, and B ≥ 1. (5.157.17)

Then (1−A, β
B ) is an invariant interval for all positive solutions of Eq.(5.157.1).



Known Results for Each of the 225 Special Cases 357

PROOF Assume that {xn} is a solution of Eq.(5.157.1) with initial con-
ditions x−2, x−1, x0 such that

1−A < x−2, x−1, x0 <
β

B
.

Then

x1 − β

B
=

Bx−2 −Aβ − βx−1

B(A + Bx0 + x−1)
<

β(1−A− x−1)
B(A + Bx0 + x−1)

< 0.

In addition,

x1−(1−A) =
βx0 + x−2

A + Bx0 + x−1
−(1−A) =

[β − (1−A)B]x0 + x−2 − (1−A)(A + x−1)
A + Bx0 + x−1

>
(1−A)[β − (1−A)B + 1−A− β

B ]
A + Bx0 + x−1

=
(1−A)(B − 1)[β − (1−A)B]

A + Bx0 + x−1
> 0.

Inductively, the result follows. The proof is complete.

Theorem 5.157.4 Assume that

β > B(1−A), 1 ≥ A ≥ 0, and B ≥ 1. (5.157.18)

Then every solution of Eq.(5.157.1) with initial conditions in the invariant
interval (1−A, β

B ) converges to the positive equilibrium x̄ of Eq.(5.157.1).

PROOF We will divide the proof into the following two cases:
Case 1:

B = 1.

Let
S = lim sup

n→∞
xn and I = lim inf

n→∞
xn.

Then in view of Eq.(5.157.1) we get

S ≤ (β + 1)S
A + S + I

,

which implies that
S ≤ β + 1−A− I.

Assume for the sake of contradiction that

S = β + 1−A− I and S > I.

There exists a sequence of indices {ni} and positive numbers {lt}3t=0 such that

S = lim
i→∞

xni+1 and lt = lim
i→∞

xni−t.
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Then
S =

βl0 + l−2

A + l0 + l−1

from which it follows that

l0 = l−2 = S and l−1 = I.

From

l0 = S =
βl−1 + l−3

A + l−1 + l−2

βI + l−3

A + I + S
<

(β + 1)S
1 + S + I

we obtain
S < β + 1−A− I,

a contradiction, and so

S < β + 1−A or S = I.

Assume for the sake of contradiction that

S < β + 1−A.

There exists a sequence of indices {ni} and positive numbers {mt}3t=0 such
that

I = lim
j→∞

xnj+1 and mt = lim
j→∞

xnj−t.

Then, clearly,

I =
βm0 + m−2

A + m0 + m−1
≥ (β + 1)I

A + I + S

and so
S ≥ β + 1−A− I,

which is a contradiction. Hence, S = I.
Case 2:

B > 1.

In this case the result follows from Theorem 1.6.5 applied in the invariant
interval (1 − A, β

B ). The only Hypothesis of Theorem 1.6.5 that needs to be
verified is whether the system

{
M = (β+1)M

A+BM+m

m = (β+1)m
A+Bm+M

has a unique solution. This is clear because B > 1. The proof is complete.

Open Problem 5.157.2 Assume that (5.157.18) holds. Show that every
positive solution of Eq.(5.157.1) converges to the positive equilibrium point
x̄.
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When B = 1, using an appropriate change of variables Eq.(#157) becomes

xn+1 =
xn + δxn−2

A + xn + xn−1
, n = 0, 1, . . . (5.157.19)

with positive parameters δ > 0, A ≥ 0, and with arbitrary nonnegative initial
conditions x−2 ,x−1, x0 such that the denominator is always positive.

Theorem 5.157.5 Eq.(5.157.19) possesses a unique prime period-three so-
lution of the form

. . . , p, q, r, p, q, r, . . .

if and only if
δ > A + 1.

Furthermore, p, q, r are the three positive solutions of the cubic equation

−Lx3+2(L2+L+1)x2−(L3+3L2+3L+2)x+L(L2+L+1) = 0, (5.157.20)

where L = δ − A − 1. In fact, if p is one of the solutions of (5.157.20), the
other two solutions are

q = δ −A− 1
1 + p + A− δ

, r = δ −A− p + A− δ + 1
p + A− δ

. (5.157.21)

PROOF Let
x−2 = p, x−1 = q, x0 = r

where p, q, r are not all equal. Then the triple p, q, r is a prime period-three
solution of Eq.(5.157.19) if and only if they satisfy the system of equations

r + δp = Ap + rp + qp
p + δq = Aq + qp + qr
q + δr = Ar + qr + rp

(5.157.22)

and A + p + q, A + p + r > 0, A + q + r > 0. Using the change of variables

P = p− δ + A, Q = q − δ + A, R = r − δ + A

we have
R− P = R(P −Q)
R−Q = Q(P −R)
P −Q = P (Q−R).

(5.157.23)

In view of (5.157.23), we find

Q = − 1
1 + P

, R = −P + 1
P
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Substituting P = p− δ + A, Q = q − δ + A and R = r − δ + A, we see that

q = δ −A− 1
1 + p + A− δ

, r = δ −A− p + A− δ + 1
p + A− δ

.

Finally, in view of (5.157.22), we get

f(p)
(p + A− δ)(p + A− δ + 1)

=
−Lp3 + 2(L2 + L + 1)p2 − (L3 + 3L2 + 3L + 2)p + L(L2 + L + 1)

(p + A− δ)(p + A− δ + 1)
= 0.

It holds that (p+A−δ)(p+A−δ+1) = 0 if and only if p = q = r. Therefore,
f(p) = 0. Similarly, f(q) = f(r) = 0. Also, Eq.(5.157.20) has three distinct
positive solutions if and only if

δ > A + 1.

The proof is complete.

5.158 Equation #158 : xn+1 =
βxn + δxn−2

A + Bxn + Dxn−2

Eq.(#158) can be written in the normalized form

xn+1 =
xn + δxn−2

A + xn + Dxn−2
, n = 0, 1, . . . (5.158.1)

with positive parameters δ,A,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + δ,

the zero equilibrium of Eq.(5.158.1) is globally asymptotically stable.
When

A < 1 + δ,

Eq.(5.158.1) has the unique positive equilibrium point

x̄ =
1 + δ −A

1 + D
.
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Conjecture 5.158.1 Show that for the positive equilibrium x̄ of Eq.(5.158.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.158.2 Assume that

A < 1 + δ.

Show that Eq.(5.158.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

5.159 Equation #159 : xn+1 =
βxn + δxn−2

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#159) can be written in the normalized form

xn+1 =
βxn + xn−2

A + Cxn−1 + xn−2
, n = 0, 1, . . . (5.159.1)

with positive parameters β, A,C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + β,

the zero equilibrium of Eq.(5.159.1) is globally asymptotically stable.
When

A < 1 + β,

Eq.(5.159.1) has the unique positive equilibrium point

x̄ =
1 + β −A

1 + C
.

Conjecture 5.159.1 Show that for the positive equilibrium x̄ of Eq.(5.159.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.159.2 Assume that

A < 1 + β.

Show that Eq.(5.159.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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5.160 Equation #160 : xn+1 =
βxn + δxn−2

Bxn + Cxn−1 + Dxn−2

Eq.(#160) can be written in the normalized form

xn+1 =
βxn + xn−2

Bxn + Cxn−1 + xn−2
, n = 0, 1, . . . (5.160.1)

with positive parameters δ, C, D and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.160.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.160.1).

Conjecture 5.160.1 Show that for the equilibrium x̄ of Eq.(5.160.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.160.2 Show that Eq.(5.160.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

5.161 Equation #161 : xn+1 =
γxn−1 + δxn−2

A + Bxn + Cxn−1

Eq.(#161) can be written in the normalized form

xn+1 =
xn−1 + δxn−2

A + Bxn + xn−1
, n = 0, 1, . . . (5.161.1)

with positive parameters δ,A, B and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

δ > A + B.

By Theorem 5.221.1 it follows that every solution of Eq.(5.161.1) is bounded
if

δ ≤ A + B.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ δ + 1,
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the zero equilibrium of Eq.(5.161.1) is globally asymptotically stable.
When

A < δ + 1,

Eq.(5.161.1) has the unique positive equilibrium point

x̄ =
1 + δ −A

1 + B
.

The characteristic equation of the linearized equation of Eq.(5.161.1) about
the positive equilibrium x̄ is

λ3 +
B(δ + 1−A)
(B + 1)(δ + 1)

λ2 +
δ −A−B

(δ + 1)(B + 1)
λ− δ

δ + 1
= 0.

From this and Theorem 1.2.3 it follows that the positive equilibrium x̄ of
Eq.(5.161.1) is locally asymptotically stable when

(B − 1)(1−A)
B + 3

< δ

<
1 + A + 2B + AB +

√
(2B + AB + A + 1)2 + 4(B + 1)(1 + A + 2B)

2(B + 1)
.

It is now easy to see that for the positive equilibrium x̄ of Eq.(5.161.1),

Local Asymptotic Stabilty ; Global Attractivity.

Indeed, for all positive values of A,B for which

A+B <
1 + A + 2B + AB +

√
(2B + AB + A + 1)2 + 4(B + 1)(1 + A + 2B)

2(B + 1)

and for all values of δ such that

A + B < δ

<
1 + A + 2B + AB +

√
(2B + AB + A + 1)2 + 4(B + 1)(1 + A + 2B)

2(B + 1)
,

the positive equilibrium x̄ of Eq.(5.161.1) is locally asymptotically stable and,
in the same region, by Theorem 3.4.1, the equation has unbounded solutions.
Hence, the positive equilibrium of the equation cannot be a global attractor
in the entire region of its local asymptotic stability.

Conjecture 5.161.1 Assume that

A− 1 < δ ≤ A + B.

Show that for the positive equilibrium x̄ of Eq.(5.161.1) and with positive
initial conditions,

Local Asymptotic Stabilty =⇒ Global Attractivity.
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Conjecture 5.161.2 It follows from the work in Section 4.2 that Eq.(5.161.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.161.1) is locally asymptotically stable.

Conjecture 5.161.3 Show that Eq.(5.161.1) has bounded solutions that do
not converge to an equilibrium point or to a periodic solution.

5.162 Equation #162 : xn+1 =
γxn−1 + δxn−2

A + Bxn + Dxn−2

Eq.(#162) can be written in the normalized form

xn+1 =
γxn−1 + xn−2

A + Bxn + xn−2
, n = 0, 1, . . . (5.162.1)

with positive parameters γ, A, B and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + γ,

the zero equilibrium of Eq.(5.162.1) is globally asymptotically stable.
When

A < 1 + γ,

Eq.(5.162.1) has the unique positive equilibrium point

x̄ =
1 + γ −A

1 + B
.

Conjecture 5.162.1 Assume that

γ > 1 + A.

Show that every positive and bounded solution of Eq.(5.162.1) converges to
the positive equilibrium.

Conjecture 5.162.2 Assume that

γ < 1 + A.

Show that for the positive equilibrium x̄ of Eq.(5.162.1) and with positive
initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.
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Conjecture 5.162.3 Assume that

γ = 1 + A.

Show that every bounded solution of Eq.(5.162.1) converges to a (not neces-
sarily prime) period-two solution.

Conjecture 5.162.4 Assume that

A− 1 < γ < 1 + A.

Show that Eq.(5.162.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

5.163 Equation #163 : xn+1 =
γxn−1 + δxn−2

A + Cxn−1 + Dxn−2

Eq.(#163) can be written in the normalized form

xn+1 =
xn−1 + δxn−2

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.163.1)

with positive parameters δ,A,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + δ,

the zero equilibrium of Eq.(5.163.1) is globally asymptotically stable.
When

A < 1 + δ,

Eq.(5.163.1) has the unique positive equilibrium point

x̄ =
1 + δ −A

1 + D
.

Conjecture 5.163.1 Show that for the positive equilibrium x̄ of Eq.(5.163.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.163.2 Assume that

A < 1 + δ.

Show that Eq.(5.163.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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Conjecture 5.163.3 It follows from the work in Section 4.2 that Eq.(5.163.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.163.1) is locally asymptotically stable.

5.164 Equation #164 : xn+1 =
γxn−1 + δxn−2

Bxn + Cxn−1 + Dxn−2

Eq.(#164) can be written in the normalized form

xn+1 =
xn−1 + δxn−2

Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . (5.164.1)

with positive parameters δ,B,D and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.164.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.164.1).

Conjecture 5.164.1 Show that for the equilibrium x̄ of Eq.(5.164.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.164.2 Show that Eq.(5.164.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.164.3 It follows from the work in Section 4.2 that Eq.(5.164.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.164.1) is locally asymptotically stable.

5.165 Equation #165 : xn+1 =
α + βxn + γxn−1

A + Bxn

This equation was investigated in [16], [108], [112], and [179]. Eq.(#165)
possesses a period-two trichotomy depending on whether

γ < β + A, γ = β + A, or γ > β + A.

The precise result that allows the parameters α, β, and A to be nonnegative
was presented in Theorem 4.2.1.
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When
γ > β + A,

it follows from Theorem 4.2.2 that every positive and bounded solution of
Eq.(#165) converges to the positive equilibrium.

Open Problem 5.165.1 Investigate the global character of solutions of Eq.(#165)
with periodic coefficients.

5.166 Equation #166 : xn+1 =
α + βxn + γxn−1

A + Cxn−1

This equation was investigated in [175]. Eq.(#166) can be written in the
normalized form

xn+1 =
α + βxn + xn−1

A + xn−1
, n = 0, 1, . . . (5.166.1)

with positive parameters α, β, A and with arbitrary nonnegative initial con-
ditions x−1, x0.

Eq.(5.166.1) has the unique equilibrium

x̄ =
β + 1−A +

√
(β + 1−A)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.166.1) about
the equilibrium x̄ is

λ2 − β

A + x̄
λ +

x̄− 1
x̄

= 0.

From this and Theorem 1.2.2 it follows that the equilibrium x̄ of Eq.(5.166.1)
is locally asymptotically stable for all values of the parameters.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ β + 1,

the equilibrium x̄ of Eq.(5.166.1) is globally asymptotically stable.
The following theorem about the global attractivity of the equilibrium x̄

Eq.(5.166.1) is a new result. See also [175].

Theorem 5.166.1 Assume that

α ≤ A + β(2A + 1) + 2(A + 1)2. (5.166.2)

Then the equilibrium of Eq.(5.166.1) is globally asymptotically stable.
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PROOF It suffices to show that the equilibrium x̄ of Eq.(5.166.1) is a
global attractor of all solutions. Let {xn} be a solution of Eq.(5.166.1). We
divide the proof into the following four cases:

Case 1:
A ≤ α ≤ A + β(2A + 1) + 2(A + 1)2.

By using the change of variables xn = βyn + 1, Eq.(5.166.1) takes the form

yn+1 =
α+β−A

β2 + yn

A+1
β + yn−1

, n = 0, 1, . . . . (5.166.3)

The equation in this case is a special case of Eq.(#66). For the proof in this
case see [157], Theorem 3.4.1(f), p. 73.

The following identity will be useful in the sequel:

xn+1 − 1 = β ·
xn − A−α

β

A + xn−1
, n = 0, 1, . . . . (5.166.4)

Case 2:
α < A < β + α.

Clearly, from (5.166.4), we obtain that either

xn ≤ 1, for all n ≥ 0 (5.166.5)

or, eventually,

xn > 1 >
A− α

β
. (5.166.6)

When (5.166.5) holds, from (5.166.4), we see that, for all n ≥ 1,

xn <
A− α

β
.

Clearly, the function

f(xn, xn−1) =
α + βxn + xn−1

A + xn−1

is strictly increasing in xn and xn−1. By employing Theorem 1.6.7 the result
follows.

When (5.166.6) holds, by using the change of variables, xn = βyn + 1,
Eq.(5.166.1) reduces to Eq.(5.166.3), which is included in Eq.(#66). For the
proof in this case see [157], Corollary 3.4.1(e), p. 73.

Case 3:
A > β + α.
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Clearly, from (5.166.4), we obtain that either

xn > 1, for all n ≥ 0 (5.166.7)

or, eventually,

xn ≤ 1 <
A− α

β
. (5.166.8)

When (5.166.7) holds, from (5.166.4), we see that, for all n ≥ 1,

xn >
A− α

β
.

Clearly, the function

f(xn, xn−1) =
α + βxn + xn−1

A + xn−1

is strictly increasing in xn and strictly decreasing in xn−1. By employing
Theorem 1.6.7 the result follows.

When (5.166.8) holds, clearly the function

f(xn, xn−1) =
α + βxn + xn−1

A + xn−1

is strictly increasing in xn and xn−1. By employing Theorem 1.6.7 the result
follows.

Case 4:
α < A = β + α.

Observe that, for all n ≥ 0,

xn+1 − xn =
(α + xn−1)(1− xn)

α + β + xn−1
.

From this and from (5.166.4), we obtain that, for all n ≥ 0,

xn ≤ xn+1 ≤ 1 or 1 ≤ xn+1 ≤ xn,

from which the result follows. The proof is complete.

Open Problem 5.166.1 Assume that

α > A + β(2A + 1) + 2(A + 1)2.

Show that the equilibrium x̄ of Eq.(5.166.1) is globally asymptotically stable.
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5.167 Equation #167 : xn+1 =
α + βxn + γxn−1

A + Dxn−2

Eq.(#167) can be written in the normalized form

xn+1 =
α + xn + γxn−1

A + xn−2
, n = 0, 1, . . . (5.167.1)

with positive parameters α, γ, A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ γ + 1,

the equilibrium of Eq.(5.167.1) is globally asymptotically stable.

Conjecture 5.167.1 Assume that

γ > 1 + A.

Show that every bounded solution of Eq.(5.167.1) converges to the equilibrium.

Conjecture 5.167.2 Assume that

γ = 1 + A.

Show that every solution of Eq.(5.167.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.167.3 Assume that

γ < 1 + A.

Show that for the equilibrium x̄ of Eq.(5.167.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.167.4 Assume that

A− 1 < γ < 1 + A.

Show that Eq.(5.167.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.



Known Results for Each of the 225 Special Cases 371

5.168 Equation #168 : xn+1 =
α + βxn + γxn−1

Bxn + Cxn−1

Eq.(#168) can be written in the normalized form

xn+1 =
α + xn + γxn−1

xn + Cxn−1
, n = 0, 1, . . . (5.168.1)

with positive parameters α, γ, C and with arbitrary positive initial conditions
x−1, x0.

Open Problem 5.168.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.168.1).

Conjecture 5.168.1 Show that for the equilibrium x̄ of Eq.(5.168.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.168.2 It follows from the work in Section 4.2 that Eq.(5.168.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.168.1) is locally asymptotically stable.

Conjecture 5.168.3 Show that every solution of Eq.(5.168.1) converges to
a (not necessarily prime) period-two solution.

5.169 Equation #169 : xn+1 =
α + βxn + γxn−1

Bxn + Dxn−2

Eq.(#169) can be written in the normalized form

xn+1 =
α + xn + γxn−1

xn + Dxn−2
, n = 0, 1, . . . (5.169.1)

with positive parameters α, γ,D and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1.
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Conjecture 5.169.1 Assume that

γ > 1.

Show that every bounded solution of Eq.(5.169.1) converges to the equilibrium.

Conjecture 5.169.2 Assume that

γ < 1.

Show that for the equilibrium x̄ of Eq.(5.169.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.169.3 Assume that

γ = 1.

Show that every solution of Eq.(5.169.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.169.4 Assume that

γ < 1.

Show that Eq.(5.169.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.170 Equation #170 : xn+1 =
α + βxn + γxn−1

Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.8.1 where we established that every solution of the
equation is bounded. Eq.(#170) can be written in the normalized form

xn+1 =
α + βxn + xn−1

xn−1 + Dxn−2
, n = 0, 1, . . . (5.170.1)

with positive parameters α, β, D and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.170.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.170.1).
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Conjecture 5.170.1 Show that for the equilibrium x̄ of Eq.(5.170.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.170.2 Show that Eq.(5.170.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.170.3 It follows from the work in Section 4.2 that Eq.(5.170.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.170.1) is locally asymptotically stable.

5.171 Equation #171 : xn+1 =
α + βxn + δxn−2

A + Bxn

The boundedness character of this equation was investigated in [49]. See also
Theorem 2.5.1 where we established that every solution of the equation is
bounded. Eq.(#171) can be written in the normalized form

xn+1 =
α + βxn + xn−2

A + xn
, n = 0, 1, . . . (5.171.1)

with positive parameters α, β,A and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The only equilibrium of Eq.(5.171.1) is

x̄ =
β + 1−A +

√
(β + 1−A)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.171.1) about
the equilibrium x̄ is

λ3 +
x̄− β

A + x̄
λ2 − 1

A + x̄
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.171.1)
is locally asymptotically stable when

β ≥ 1−A, (5.171.2)

or √
2−A− 1 ≤ β < 1−A, (5.171.3)

or

β <
√

2−A− 1 and α >
2 + 2βA− 3β −A− (A + 1)

√
5− 4(A + β)

2
(5.171.4)
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and unstable when

β <
√

2−A− 1 and α ≤ 2 + 2βA− 3β −A− (A + 1)
√

5− 4(A + β)
2

.

Theorem 5.171.1 Assume that

β + 1 ≤ A.

Then every solution of Eq.(5.171.1) converges to the equilibrium x̄.

PROOF Let

S = lim sup
n→∞

xn and I = lim inf
n→∞

xn.

We divide the proof into the following two cases:

Case 1:
β + 1 < A.

Then, clearly,

S ≤ α + (β + 1)S
A + I

and

I ≥ α + (β + 1)I
A + S

.

From these two inequalities it follows that

α + (β + 1−A)I ≤ SI ≤ α + (β + 1−A)S.

From this it follows that S = I.

Case 2:
β + 1 = A.

Then

S ≤ α + (β + 1)S
β + 1 + I

and

I ≥ α + (β + 1)I
β + 1 + S

.

From these two inequalities it follows that

α ≤ SI ≤ α

and so
SI = α.



Known Results for Each of the 225 Special Cases 375

Let {xni+1}, {xni}, {xni−2}, be three subsequences of the solution {xn} such
that

lim
i→∞

xni+1 = S

and
lim

i→∞
xni = l0, lim

i→∞
xni−2 = l−2.

Then
S =

α + βl0 + l−2

β + 1 + l0
.

We will show that
l0 = S = I.

Suppose for the sake of contradiction

l0 6= S or l0 6= I.

Then, clearly,

S <
α + (β + 1)S

β + 1 + I
.

From this it follows that
SI < α,

which is a contradiction. The proof is complete.

Theorem 5.171.2 Assume that

β ≥ 1−A > 0.

Then every solution of Eq.(5.171.1) converges to the equilibrium x̄.

PROOF We will make use of the fact we proved in Lemma 2.5.1 of Section
2.5 that every solution of Eq.(5.171.1) is bounded from below by β.

Let
S = lim sup

n→∞
xn and I = lim inf

n→∞
xn.

We divide the proof into the following two cases:

Case 1:
β > 1−A.

Then, clearly,

S ≤ α + βI + S

A + I

and
I ≥ α + βS + I

A + S
.
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From these two inequalities it follows that

α + βS + (1−A)I ≤ SI ≤ α + βI + (1−A)S.

From this it follows that

(β + 1−A)(S − I) ≤ 0

and so S = I.

Case 2:
β = 1−A > 0.

Then

S ≤ α + βI + S

1− β + I

and

I ≥ α + βS + I

1− β + S
.

From these two inequalities it follows that

α + βI + βS ≤ SI ≤ α + βS + βI.

It also holds that
I > β,

otherwise,
α + β2 + βS = βS,

which is not true. Hence,

S =
α + βI

I − β
and I =

α + βS

S − β
.

There exists a sequence of indices {ni} and positive numbers {lt+1}1t=−4 such
that

lim
i→∞

xni+1−t = lt+1

with
l1 = S.

Then

l1 =
α + βl0 + l−2

1− β + l0
.

From this it follows that

l0 = I and l−2 = S
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because otherwise
S <

α + βI

I − β
,

which is a contradiction. Similarly,

l−1 = S and l−3 = I

and
l−2 = I and l−4 = S.

Hence,
I = l−2 = S.

The proof is complete.

Conjecture 5.171.1 Assume that (5.171.2) or (5.171.3) or (5.171.4) holds.
Show that every solution of Eq.(5.171.1) converges to the equilibrium x̄.

Conjecture 5.171.2 Show that Eq.(5.171.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.172 Equation #172 : xn+1 =
α + βxn + δxn−2

A + Cxn−1

The boundedness character of this equation was investigated in [49]. See also
Theorem 2.7.1 where we established that every solution of the equation is
bounded. Eq.(#172) can be written in the normalized form

xn+1 =
α + βxn + δxn−2

1 + xn−1
, n = 0, 1, . . . (5.172.1)

with positive parameters α, β, δ and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

Eq.(5.172.1) has the unique equilibrium

x̄ =
β + δ − 1 +

√
(β + δ − 1)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.172.1) about
the equilibrium x̄ is

λ3 − β

1 + x̄
λ2 +

x̄

1 + x̄
λ− δ

1 + x̄
= 0.
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From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.172.1)
is locally asymptotically stable when

β ≥ δ − 1 (5.172.2)

or
β < δ − 1 and α > (1 + βδ − δ2)(β + δ + βδ − δ2) (5.172.3)

and unstable when

β < δ − 1 and α < (1 + βδ − δ2)(β + δ + βδ − δ2).

Theorem 5.172.1 Assume that

0 < β ≤ 1− δ.

Then every solution of Eq.(5.172.1) converges to the equilibrium x̄.

PROOF Let

S = lim sup
n→∞

xn and I = lim sup
n→∞

xn.

Clearly,

S ≤ α + (β + δ)S
1 + I

and

I ≤ α + (β + δ)I
1 + S

.

Combining the two inequalities, we find that

α + (β + δ − 1)I ≤ SI ≤ α + (β + δ − 1)S. (5.172.4)

We divide the proof into the following two cases:

Case 1:
0 < β < 1− δ.

From (5.172.4) it follows that
S = I.

Case 2:
0 < β = 1− δ.

From (5.172.4) it follows that
S =

α

I
.
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There exists a sequence of indices {ni} and positive numbers {l−t}2t=0 such
that

lim
i→∞

xni+1 = S and l−t = lim
i→∞

xni−t.

Then

S =
α + βl0 + (1− β)l−2

1 + l−1
.

From this it follows that
l0 = l−2 = S

and
l−1 = I

otherwise,
S 6= α

I
,

which is a contradiction. Similarly,

l−1 = l−3 = S

and
l−2 = I.

Hence, S = I. The proof is complete.

Conjecture 5.172.1 Assume that (5.172.2) or (5.172.3) holds. Show that
every solution of Eq.(5.172.1) converges to the equilibrium x̄.

Conjecture 5.172.2 Show that Eq.(5.172.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.173 Equation #173 : xn+1 =
α + βxn + δxn−2

A + Dxn−2

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.3.3 where we established that every solution of the
equation is bounded. Eq.(#173) can be written in the normalized form

xn+1 =
α + βxn + xn−2

A + xn−2
, n = 0, 1, . . . (5.173.1)

with positive parameters α, β,A and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.
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By Theorems 5.23.2 and 5.23.4 it follows that when

β + 1 ≤ A,

the equilibrium of Eq.(5.173.1) is globally asymptotically stable.

Conjecture 5.173.1 Show that for the equilibrium x̄ of Eq.(5.173.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.173.2 Assume that

β + 1 > A.

Show that Eq.(5.173.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.174 Equation #174 : xn+1 =
α + βxn + δxn−2

Bxn + Cxn−1

Eq.(#174) can be written in the normalized form

xn+1 =
α + xn + δxn−2

xn + Cxn−1
, n = 0, 1, . . . (5.174.1)

with positive parameters α, δ, C and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorems 3.4.1 where we established that Eq.(5.174.1) has
unbounded solutions when

δ > C.

From Theorem 5.221.1 it follows that every solution of Eq.(5.174.1) is bounded
when

δ < C.

Eq.(5.174.1) has the unique equilibrium

x̄ =
1 + δ +

√
(δ + 1)2 + 4α(1 + C)
2(1 + C)

.

The characteristic equation of the linearized equation of Eq.(5.174.1) about
the equilibrium x̄ is

λ3 +
x̄− 1

(1 + C)x̄
λ2 +

C

1 + C
λ− δ

(1 + C)x̄
= 0. (5.174.2)
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From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.174.1)
is locally asymptotically stable when

0 < δ ≤ C + 2 +
√

C2 + 8C + 8
2(1 + C)

(5.174.3)

or

δ >
C + 2 +

√
C2 + 8C + 8

2(1 + C)
(5.174.4)

and

α >
−3δ − 2Cδ + 2δ2 + 2Cδ2 −

√
δ
√−4− 4C + 5δ + 4Cδ

2(C + 1)
(5.174.5)

and unstable when

δ >
C + 2 +

√
C2 + 8C + 8

2(1 + C)
(5.174.6)

and

α <
−3δ − 2Cδ + 2δ2 + 2Cδ2 −

√
δ
√−4− 4C + 5δ + 4Cδ

2(C + 1)
. (5.174.7)

It is interesting to note that for the equilibrium x̄ of Eq.(5.174.1),

Local Asymptotic Stabilty; Global Asymptotic Stabilty.

Indeed, for all positive values of C for which

C <
C + 2 +

√
C2 + 8C + 8

2(1 + C)

and for all values of δ such that

C < δ <
C + 2 +

√
C2 + 8C + 8

2(1 + C)
,

the equilibrium x̄ of Eq.(5.174.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such initial
conditions the equilibrium x̄ of the equation is not a global attractor.

Conjecture 5.174.1 Assume that

δ ≤ C.

Show that for the equilibrium x̄ of Eq.(5.174.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.



382 Dynamics of Third-Order Rational Difference Equations

Open Problem 5.174.1 Assume that

δ > C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.174.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.174.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.174.1).

Conjecture 5.174.2 Show that Eq.(5.174.1) has bounded solutions that do
not converge to the equilibrium point x̄ or to a periodic solution.

5.175 Equation #175 : xn+1 =
α + βxn + δxn−2

Bxn + Dxn−2

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#175) can be written in the normalized form

xn+1 =
α + βxn + xn−2

Bxn + xn−2
, n = 0, 1, . . . (5.175.1)

with positive parameters α, β,B and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.175.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.175.1).

Conjecture 5.175.1 Show that for the equilibrium x̄ of Eq.(5.175.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.175.2 Show that Eq.(5.175.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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5.176 Equation #176 : xn+1 =
α + βxn + δxn−2

Cxn−1 + Dxn−2

Eq.(#176) can be written in the normalized form

xn+1 =
α + βxn + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (5.176.1)

with positive parameters α, β, C and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of this equation was investigated in [152] where
it was established that every solution is bounded from above and from below
by positive constants. See also Theorem 2.9.1 in Section 2.9.

Open Problem 5.176.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.176.1).

Conjecture 5.176.1 Show that for the equilibrium x̄ of Eq.(5.176.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.176.2 Show that Eq.(5.176.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

5.177 Equation #177 : xn+1 =
α + γxn−1 + δxn−2

A + Bxn

This equation is a special case of a more general equation that is investigated
in Section 5.195.

Conjecture 5.177.1 Assume that

γ > δ + A.

Show that every bounded solution of Eq.(#177) converges to the equilibrium.

Conjecture 5.177.2 Assume that

γ = δ + A.

Show that every solution of Eq.(#177) converges to a (not necessarily prime)
period-two solution.
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Conjecture 5.177.3 Assume that

γ < δ + A.

Show that for the equilibrium x̄ of Eq.(#177),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.177.4 Assume that

γ < δ + A.

Show that Eq.(#177) has bounded solutions that do not converge to the equi-
librium point or to a periodic solution.

5.178 Equation #178 : xn+1 =
α + γxn−1 + δxn−2

A + Cxn−1

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.7.1 where we established that every solution of the
equation is bounded. Eq.(#178) can be written in the normalized form

xn+1 =
α + γxn−1 + δxn−2

1 + xn−1
, n = 0, 1, . . . (5.178.1)

with positive parameters α, γ, δ and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

Eq.(5.178.1) has the unique equilibrium point

x̄ =
γ + δ − 1 +

√
(γ + δ − 1)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.178.1) about
the equilibrium x̄ is

λ3 +
x̄− γ

1 + x̄
λ− δ

1 + x̄
= 0.

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.178.1)
is locally asymptotically stable when

γ ≥ δ − 1 (5.178.2)

or

γ < δ − 1 and α >
(1 + γ − δ2)(γ + γ2 + δ + γδ − δ2)

(1 + γ)2
(5.178.3)
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and unstable when

γ < δ − 1 and α <
(1 + γ − δ2)(γ + γ2 + δ + γδ − δ2)

(1 + γ)2
.

By Theorems 5.23.2 and 5.23.4 it follows that when

γ + δ ≤ 1,

the equilibrium of Eq.(5.178.1) is globally asymptotically stable. This global
stability condition is improved by the next theorem. Also, the next two the-
orems, which we present here for the first time, establish the global stability
of the equilibrium x̄ of Eq.(5.178.1) when (5.178.2) holds.

Theorem 5.178.1 Assume that

δ ≤ 1.

Then every solution of Eq.(5.178.1) converges to the equilibrium x̄.

PROOF Let

S = lim sup
n→∞

xn and I = lim inf
n→∞

xn.

We divide the proof into the following two cases:

Case 1:
δ < 1.

We will show that, eventually,

xn < γ <
1
δ
· γ. (5.178.4)

Assume for the sake of contradiction that there exists N such that

xN+1 =
α + γxN−1 + δxN−2

1 + xN−1
> γ.

From this it follows that
xN−2 >

1
δ
· γ > γ

and, similarly,

xN−5 > (
1
δ
)2 · γ > γ.

Inductively, we find that

xN+1−3k > (
1
δ
)k,
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which is a contradiction and so (5.178.4) holds. With the use of (5.178.4), we
find that the function

f(xn−1, xn−2) =
α + γxn−1 + δxn−2

1 + xn−1

is strictly increasing in xn−1 and xn−2. Then, clearly,

S ≤ α + (γ + δ)S
1 + S

and I ≥ α + (γ + δ)I
1 + I

,

from which it follows that
S ≤ x̄ ≤ I.

Case 2:
δ = 1.

Observe that

xn+1 − xn−1 =
α + (γ − xn−2)xn−1

1 + xn−1

and
xn+1 − γ =

α + xn−2 − γ

1 + xn−1
.

Therefore, either
xn > γ,

eventually, in which case from

S ≤ α + γI + S

1 + I
and I ≥ α + γS + I

1 + S

it follows that
S = I,

or there exists a subsequence, of the form {x3n} or {x3n+1} or {x3n+2}, which
is less that γ and increasing. Assume without loss of generality that

x3n < x3n+3 < γ.

From this it follows that {x3n} converges to a positive finite limit l0:

x3n → l0 ∈ (0,∞).

From
x3n+3 =

α + γx3n+1 + x3n

1 + x3n+1

it follows that
x3n+1 → l1 ∈ (0,∞).
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Similarly,
x3n+2 → l2 ∈ (0,∞).

When δ = 1, Eq.(5.178.1) does not have prime period-three solutions and so

l0 = l1 = l2 = x̄.

The proof is complete.

Theorem 5.178.2 Assume that

γ ≥ δ − 1 > 0.

Then every solution of Eq.(5.178.1) converges to the equilibrium x̄.

PROOF We will make use of the fact we proved, in Lemma 2.7.1 of Section
2.7, that every solution of Eq.(5.178.1) is bounded from below by γ.

Let
S = lim sup

n→∞
xn, I = lim inf

n→∞
xn.

Then, clearly,

S ≤ α + γI + δS

1 + I

and
I ≥ α + γS + δI

1 + S
.

From these two inequalities it follows that

α + γS + (δ − 1)I ≤ SI ≤ α + γI + (δ − 1)S.

We divide the proof in the following two cases:

Case 1:
γ > δ − 1.

In this case, clearly,
(γ + 1− δ)(S − I) ≤ 0

and so S = I.

Case 2:
γ = δ − 1 > 0.

In this case
SI = α + γS + γI
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There exists a sequence of indices {ni} and positive numbers {l−t}5t=0 such
that

S = lim
i→∞

xni+1 and l−t = lim
i→∞

xni−t

From

l1 =
α + γl−1 + (γ + 1)l−2

1 + l−1

we have
l−1 = I and l−2 = S.

Similarly,
l−3 = S and l−4 = I

and
l−4 = S and l−5 = I.

Therefore,
S = I = l−4.

The proof is complete.

Conjecture 5.178.1 Assume that (5.178.3) holds. Show that every solution
of Eq.(5.178.1) converges to the equilibrium x̄.

Conjecture 5.178.2 Show that Eq.(5.178.1) has solutions that do not con-
verge to the equilibrium point x̄ or to a periodic solution.

5.179 Equation #179 : xn+1 =
α + γxn−1 + δxn−2

A + Dxn−2

This equation was investigated in [17], [70], [128], and [206]. Eq.(#179) pos-
sesses a period-two trichotomy depending on whether

γ < δ + A, γ = δ + A, or γ > δ + A.

The precise result that allows the parameters α, δ, and A to be nonnegative
was presented in Theorem 4.3.1.

Conjecture 5.179.1 Assume that

γ > δ + A.

Show that every bounded solution of Eq.(#179) converges to the equilibrium.

Open Problem 5.179.1 Investigate the global character of solutions of
Eq.(#179) with periodic coefficients.
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5.180 Equation #180 : xn+1 =
α + γxn−1 + δxn−2

Bxn + Cxn−1

Eq.(#180) can be written in the normalized form

xn+1 =
α + xn−1 + δxn−2

Bxn + xn−1
, n = 0, 1, . . . (5.180.1)

with positive parameters α, δ,B and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that Eq.(5.180.1) has
unbounded solutions when

δ > B.

From Theorem 5.221.1 it follows that every solution of Eq.(5.180.1) is bounded
if

δ < B.

Eq.(5.180.1) has the unique equilibrium

x̄ =
1 + δ +

√
(δ + 1)2 + 4α(1 + B)
2(1 + B)

.

The characteristic equation of the linearized equation of Eq.(5.180.1) about
the equilibrium x̄ is

λ3 +
B

1 + B
λ2 +

x̄− 1
(1 + B)x̄

λ− δ

(1 + B)x̄
= 0 . (5.180.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.180.1)
is locally asymptotically stable when

0 < δ ≤ 1 + 2B +
√

5 + 16B + 12B2

2(1 + B)
(5.180.3)

or

δ >
1 + 2B +

√
5 + 16B + 12B2

2(1 + B)
(5.180.4)

and

α >
1 + 3B + 2B2 −Bδ − 2B2δ + 2Bδ2 + 2B2δ2

2(B2 + B3)

−(1 + 2B)
√

1 + 2B + B2 − 2Bδ − 2B2δ + 4Bδ2 + 5B2δ2

2(B2 + B3)
(5.180.5)

and unstable when
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δ >
1 + 2B +

√
5 + 16B + 12B2

2(1 + B)
(5.180.6)

and

α <
1 + 3B + 2B2 −Bδ − 2B2δ + 2Bδ2 + 2B2δ2

2(B2 + B3)

−(1 + 2B)
√

1 + 2B + B2 − 2Bδ − 2B2δ + 4Bδ2 + 5B2δ2

2(B2 + B3)
. (5.180.7)

It is interesting to note that for the equilibrium x̄ of Eq.(5.180.1),

Local Asymptotic Stabilty; Global Asymptotic Stabilty.

Indeed, for all positive values of B for which

B <
1 + 2B +

√
5 + 16B + 12B2

2(1 + B)

and for all values of δ such that

B < δ <
1 + 2B +

√
5 + 16B + 12B2

2(1 + B)
,

the equilibrium x̄ of Eq.(5.180.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such initial
conditions the equilibrium x̄ of the equation is not a global attractor.

Conjecture 5.180.1 Assume that

δ ≤ B.

Show that for the equilibrium x̄ of Eq.(5.180.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.180.1 Assume that

δ > B.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.180.1) converge to the equilibrium x̄.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.180.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.180.1).
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Conjecture 5.180.2 Show that Eq.(5.180.1) has bounded solutions that do
not converge to the equilibrium point x̄ or to a periodic solution.

Conjecture 5.180.3 It follows from the work in Section 4.2 that Eq.(5.180.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.180.1) is locally asymptotically stable.

5.181 Equation #181 : xn+1 =
α + γxn−1 + δxn−2

Bxn + Dxn−2

This equation can be written in the normalized form

xn+1 =
α + γxn−1 + xn−2

Bxn + xn−2
, n = 0, 1, . . . (5.181.1)

with positive parameters α, γ, B and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1.

Conjecture 5.181.1 Assume that

γ > 1.

Show that every bounded solution of Eq.(5.181.1) converges to the equilibrium.

Conjecture 5.181.2 Assume that

γ = 1.

Show that every bounded solution of Eq.(5.181.1) converges to a (not neces-
sarily prime) period-two solution.

Conjecture 5.181.3 Assume that

γ < 1.

Show that for the equilibrium x̄ of Eq.(5.181.1),

Local Asymptotic Stability⇒ Global Attractivity.
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Conjecture 5.181.4 Assume that

γ < 1.

Show that Eq.(5.181.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.182 Equation #182 : xn+1 =
α + γxn−1 + δxn−2

Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of the
equation is bounded. Eq.(#182) can be written in the normalized form

xn+1 =
α + γxn−1 + xn−2

Cxn−1 + xn−2
, n = 0, 1, . . . (5.182.1)

with positive parameters α, γ, C and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.182.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.182.1).

Conjecture 5.182.1 Show that for the equilibrium x̄ of Eq.(5.182.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.182.2 Show that Eq.(5.182.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.182.3 It follows from the work in Section 4.2 that Eq.(5.182.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.182.1) is locally asymptotically stable.

5.183 Equation #183 : xn+1 =
βxn + γxn−1 + δxn−2

A + Bxn

This equation is a special case of a more general equation that is investigated
in Section 5.195.
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Conjecture 5.183.1 Assume that

γ > β + δ + A.

Show that every positive and bounded solution of Eq.(#183) converges to the
positive equilibrium.

Conjecture 5.183.2 Assume that

γ < β + δ + A.

Show that for the positive equilibrium x̄ of Eq.(#183) and with positive initial
conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.183.3 Assume that

γ < β + δ + A.

Show that Eq.(#183) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

5.184 Equation #184 : xn+1 =
βxn + γxn−1 + δxn−2

A + Cxn−1

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.7.1 where we established that every solution of the
equation is bounded. Eq.(#184) can be written in the normalized form

xn+1 =
βxn + xn−1 + δxn−2

A + xn−1
, n = 0, 1, . . . (5.184.1)

with positive parameters β, δ,A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ β + δ + 1,

the zero equilibrium of Eq.(5.184.1) is globally asymptotically stable.
When

A < β + δ + 1,

Eq.(5.184.1) has the unique positive equilibrium point

x̄ = β + δ + 1−A.
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Conjecture 5.184.1 Assume that

A < β + δ + 1.

Show that Eq.(5.184.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.184.2 Show that for the positive equilibrium x̄ of Eq.(5.184.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

5.185 Equation #185 : xn+1 =
βxn + γxn−1 + δxn−2

A + Dxn−2

Eq.(#185) can be written in the normalized form

xn+1 =
βxn + γxn−1 + xn−2

A + xn−2
, n = 0, 1, . . . (5.185.1)

with positive parameters β, γ, A and with arbitrary nonnegative initial condi-
tions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.2.1 where we established that the equation has
unbounded solutions when

γ > β + 1 + A.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ β + γ + 1,

the zero equilibrium of Eq.(5.185.1) is globally asymptotically stable.
When

A < β + γ + 1,

Eq.(5.185.1) has the unique positive equilibrium point

x̄ = β + γ + 1−A.

Conjecture 5.185.1 Assume that

γ > β + 1 + A.

Show that every bounded and positive solution of Eq.(5.185.1) converges to
the positive equilibrium x̄.
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Conjecture 5.185.2 Show that for the positive equilibrium x̄ of Eq.(5.185.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.185.3 Assume that

γ = β + 1 + A.

Show that every solution of Eq.(5.185.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.185.4 Assume that

A− β − 1 < γ < β + 1 + A.

Show that Eq.(5.185.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

5.186 Equation #186 : xn+1 =
βxn + γxn−1 + δxn−2

Bxn + Cxn−1

Eq.(#186) can be written in the normalized form

xn+1 =
xn + γxn−1 + δxn−2

xn + Cxn−1
, n = 0, 1, . . . (5.186.1)

with positive parameters γ, δ, C and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that Eq.(5.186.1) has
unbounded solutions when

δ >
γ

C
+ C.

By Theorem 5.221.1 it follows that every solution of Eq.(5.186.1) is bounded
when

δ <
γ

C
+ C.

Eq.(5.186.1) has the unique equilibrium

x̄ =
1 + γ + δ

1 + C
.
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The characteristic equation of the linearized equation of Eq.(5.186.1) about
the equilibrium x̄ is

λ3 +
γ + δ − C

(1 + γ + δ)(1 + C)
λ2 +

C + Cδ − γ

(1 + C)(1 + γ + δ)
λ− δ

1 + γ + δ
= 0. (5.186.2)

From this and Theorem 1.2.3 it follows that the equilibrium x̄ of Eq.(5.186.1)
is locally asymptotically stable when

δ <
2 + 2γ + C + γC

2(1 + C)

+
√

8 + 20γ + 12γ2 + C2 + 8C + 24γC + 16γ2C + 6γC2 + 5γ2C2

2(1 + C)
(5.186.3)

and unstable when
δ >

2 + 2γ + C + γC

2(1 + C)

+
√

8 + 20γ + 12γ2 + C2 + 8C + 24γC + 16γ2C + 6γC2 + 5γ2C2

2(1 + C)
.

(5.186.4)
It is interesting to note that for the equilibrium x̄ of Eq.(5.186.1),

Local Asymptotic Stabilty; Global Asymptotic Stabilty.

Indeed, for all positive values of γ,C for which

γ + C <
2 + 2γ + C + γC

2(1 + C)

+
√

8 + 20γ + 12γ2 + C2 + 8C + 24γC + 16γ2C + 6γC2 + 5γ2C2

2(1 + C)

and for all values of δ such that

γ + C < δ <
2 + 2γ + C + γC

2(1 + C)

+
√

8 + 20γ + 12γ2 + C2 + 8C + 24γC + 16γ2C + 6γC2 + 5γ2C2

2(1 + C)
,

the equilibrium x̄ of Eq.(5.186.1) is locally asymptotically stable and at the
same time the equation has unbounded solutions. In particular, for such initial
conditions the equilibrium of the equation is not a global attractor.
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Conjecture 5.186.1 Assume that

δ ≤ γ

C
+ C.

Show that for the equilibrium x̄ of Eq.(5.186.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.186.1 Assume that

δ >
γ

C
+ C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.186.1) converge to the equilibrium x̄.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.186.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.186.1).

Conjecture 5.186.2 Show that Eq.(5.186.1) has bounded solutions that do
not converge to the equilibrium point x̄ or to a periodic solution.

Conjecture 5.186.3 It follows from the work in Section 4.2 that Eq.(5.186.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.186.1) is locally asymptotically stable.

5.187 Equation #187 : xn+1 =
βxn + γxn−1 + δxn−2

Bxn + Dxn−2

Eq.(#187) can be written in the normalized form

xn+1 =
xn + γxn−1 + δxn−2

xn + Dxn−2
, n = 0, 1, . . . (5.187.1)

with positive parameters γ, δ,D and with arbitrary positive initial conditions
x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1 + δ.

Open Problem 5.187.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.187.1).
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Conjecture 5.187.1 Assume that

γ > 1 + δ.

Show that every bounded solution of Eq.(5.187.1) converges to the equilibrium.

Conjecture 5.187.2 Assume that

γ < 1 + δ.

Show that for the equilibrium x̄ of Eq.(5.187.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.187.3 Assume that

γ = 1 + δ.

Show that every solution of Eq.(5.187.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.187.4 Assume that

γ < 1 + δ.

Show that Eq.(5.187.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.188 Equation #188 : xn+1 =
βxn + γxn−1 + δxn−2

Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.2 where we established that every solution of this
equation is bounded. Eq.(#188) can be written in the normalized form

xn+1 =
βxn + xn−1 + δxn−2

xn−1 + Dxn−2
, n = 0, 1, . . . (5.188.1)

with positive parameters β, δ,D and with arbitrary positive initial conditions
x−2, x−1, x0.

Open Problem 5.188.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.188.1).
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Conjecture 5.188.1 Show that for the equilibrium x̄ of Eq.(5.188.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.188.2 Show that Eq.(5.188.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.188.3 It follows from the work in Section 4.2 that Eq.(5.188.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.188.1) is locally asymptotically stable.

5.189 Equation #189 : xn+1 =
α + βxn

A + Bxn + Cxn−1 + Dxn−2

Eq.(#189) can be written in the normalized form

xn+1 =
α + xn

A + xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.189.1)

with positive parameters α,A, C, D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium of Eq.(5.189.1) is globally asymptotically stable.

Conjecture 5.189.1 Show that for the equilibrium x̄ of Eq.(5.189.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Conjecture 5.189.2 Assume that

A < 1.

Show that Eq.(5.189.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.
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5.190 Equation #190 : xn+1 =
α + γxn−1

A + Bxn + Cxn−1 + Dxn−2

Eq.(#190) can be written in the normalized form

xn+1 =
α + xn−1

A + Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . (5.190.1)

with positive parameters α,A, B, D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium of Eq.(5.190.1) is globally asymptotically stable.

Conjecture 5.190.1 Show that for the equilibrium x̄ of Eq.(5.190.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.190.2 It follows from the work in Section 4.2 that Eq.(5.190.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.190.1) is locally asymptotically stable.

Conjecture 5.190.3 Assume that

A < 1.

Show that Eq.(5.190.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.191 Equation #191 : xn+1 =
α + δxn−2

A + Bxn + Cxn−1 + Dxn−2

Eq.(#191) can be written in the normalized form

xn+1 =
α + xn−2

A + Bxn + Cxn−1 + xn−2
, n = 0, 1, . . . (5.191.1)

with positive parameters α,A, B, C and with arbitrary nonnegative initial
conditions x−2, x−1, x0.
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By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1,

the equilibrium of Eq.(5.191.1) is globally asymptotically stable.

Conjecture 5.191.1 Show that for the equilibrium x̄ of Eq.(5.191.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.191.2 Assume that

A < 1.

Show that Eq.(5.191.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.192 Equation #192 : xn+1 =
βxn + γxn−1

A + Bxn + Cxn−1 + Dxn−2

Eq.(#192) can be written in the normalized form

xn+1 =
xn + γxn−1

A + xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.192.1)

with positive parameters γ,A, C, D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ γ + 1,

the zero equilibrium of Eq.(5.192.1) is globally asymptotically stable.
When

A < γ + 1,

Eq.(5.192.1) has the unique positive equilibrium point

x̄ =
1 + γ −A

1 + C + D
.

Conjecture 5.192.1 Show that for the positive equilibrium x̄ of Eq.(5.192.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.
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Conjecture 5.192.2 Assume that

A < γ + 1.

Show that Eq.(5.192.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.192.3 It follows from the work in Section 4.2 that Eq.(5.192.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.192.1) is locally asymptotically stable.

5.193 Equation #193 : xn+1 =
βxn + δxn−2

A + Bxn + Cxn−1 + Dxn−2

Eq.(#193) can be written in the normalized form

xn+1 =
xn + δxn−2

A + xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.193.1)

with positive parameters δ,A,C, D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ δ + 1,

the zero equilibrium of Eq.(5.193.1) is globally asymptotically stable.
When

A < δ + 1,

Eq.(5.193.1) has the unique positive equilibrium point

x̄ =
1 + δ −A

1 + C + D
.

Conjecture 5.193.1 Show that for the positive equilibrium x̄ of Eq.(5.193.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.193.2 Assume that

A < δ + 1.

Show that Eq.(5.193.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.
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5.194 Equation #194 : xn+1 =
γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2

Eq.(#194) can be written in the normalized form

xn+1 =
xn−1 + δxn−2

A + Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . (5.194.1)

with positive parameters δ,A,B,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ δ + 1,

the zero equilibrium of Eq.(5.194.1) is globally asymptotically stable.
When

A < δ + 1,

Eq.(5.194.1) has the unique positive equilibrium point

x̄ =
1 + δ −A

1 + B + D
.

Conjecture 5.194.1 Show that for the positive equilibrium x̄ of Eq.(5.194.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.194.2 Assume that

A < δ + 1.

Show that Eq.(5.194.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

Conjecture 5.194.3 It follows from the work in Section 4.2 that Eq.(5.194.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.194.1) is locally asymptotically stable.

5.195 Equation #195 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn

In this section we allow the parameters α, β, γ, δ, A to be nonnegative and so
the results we present here are also true in several special cases of Eq.(5.0.1).
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Eq.(#195) can be written in the normalized form

xn+1 =
α + βxn + γxn−1 + δxn−2

A + xn
, n = 0, 1, . . . (5.195.1)

with nonnegative parameters α, β, γ, δ, A and with arbitrary nonnegative ini-
tial conditions x−2, x−1, x0.

The boundedness character of this equation was investigated in [67]. See
also Theorem 3.1.1 where we established that the equation has unbounded
solutions when

γ > β + δ + A.

Eq.(5.195.1) has one or two equilibrium points, namely, the zero equilibrium
and/or the positive equilibrium

x̄ =
β + γ + δ −A +

√
(β + γ + δ −A)2 + 4α

2
.

The characteristic equation of the linearized equation of Eq.(5.195.1) about
the zero equilibrium, as long as it exists, is

λ3 − β

A
λ2 − γ

A
λ− δ

A
= 0. (5.195.2)

The characteristic equation of the linearized equation of Eq.(5.195.1) about
the positive equilibrium x̄, as long as it exists, is

λ3 +
x̄− β

A + x̄
λ2 − γ

A + x̄
λ− δ

A + x̄
= 0. (5.195.3)

By Theorems 5.23.2 and 5.23.4 it follows that the zero equilibrium of Eq.(5.195.1)
is globally asymptotically stable when

α = 0 and β + γ + δ ≤ A.

When
α = 0 and β + γ + δ > A,

Eq.(5.195.1) has the unique positive equilibrium

x̄ = β + γ + δ −A.

The following theorem about the global stability of the positive equilibrium
of Eq.(5.195.1) was established in [68].

Theorem 5.195.1 Assume that

δ = A and 0 ≤ γ ≤ β.
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Then the positive equilibrium

x̄ = β + γ

of the equation

xn+1 =
βxn + γxn−1 + Axn−2

A + xn
, n = 0, 1, . . . (5.195.4)

is globally asymptotically stable.

PROOF From Eq.(5.195.3) and Theorem 1.2.3 the local stability of the
positive equilibrium of Eq.(5.195.4) follows. It remains to show that x̄ is a
global attractor of all positive solutions of Eq.(5.195.4).

When
γ = 0,

the proof follows from Theorem 5.89.1.
Assume that

0 < γ ≤ β

and let {xn} be a solution of Eq.(5.195.4). We claim that, eventually,

xn > β.

Suppose for the sake of contradiction that there exists N , sufficiently large,
such that

xN+1 =
βxN + γxN−1 + AxN−2

A + xN
≤ β.

Then, clearly,

min{xN−1, xN−2} ≤ βA

γ + A
.

Similarly,

min{xN−3, xN−4, xN−5} ≤ βA2

(γ + A)2
.

Sufficient repetition of this argument leads to a contradiction and proves our
claim that, eventually,

xn > β.

From this it follows that for some N > 0, sufficiently large, there exists a
positive number

L ∈ (β, β + γ)

such that
L < xN−2, xN−1, xN < U =

γL

L− β
.

We claim that
xn ∈ [L, U ], for n ≥ N − 2.
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Indeed,

L =
βU + (γ + A)L

A + U
< xN+1 =

βxN + γxN−1 + xN−2

1 + xN
<

βL + (γ + A)U
A + L

= U

and the proof follows by induction. Set

S = lim sup
n→∞

xn+1 and I = lim inf
n→∞

xn+1.

Then, clearly,

S ≤ βI + (γ + A)S
A + I

and I ≤ βS + (γ + A)I
A + S

.

From this it follows that

βS + γI ≤ SI ≤ βI + γS. (5.195.5)

We divide the proof into the following two cases:

Case 1:
0 < γ < β.

By Eq.(5.195.5) we find that

(γ − β)(S − I) ≤ 0.

Hence, S = I.

Case 2:
0 < γ = β.

By (5.195.5) it follows that

S =
βI

I − β
.

There exists a sequence of indices {ni} and positive numbers {L−t}2t=0 such
that

S = lim
i→∞

xni+1 and L−t = lim
i→∞

xni−t.

By taking limits in Eq.(5.195.4) we find that

S =
βL0 + γL−1 + AL−2

A + L0
.

From this it follows that

L0 = I and L−1 = L−2 = S,

otherwise,

S <
βI

I − β
,
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which is a contradiction. Similarly,

L−1 = S and L−2 = L−3 = I.

Hence,
I = L−1 = S.

The proof is complete.

Conjecture 5.195.1 Show that the special case of Eq.(5.195.1) given by

xn+1 =
βxn + γxn−1 + xn−2

1 + xn
, n = 0, 1, . . . (5.195.6)

with β, γ ∈ (0,∞) has a period-two trichotomy character. More precisely,
show that the following three statements are true:

(a) Every solution of Eq.(5.195.6) has a finite limit if and only if

γ < β + 2.

(b) Every solution of Eq.(5.195.6) converges to a (not necessarily prime)
period-two solution if and only if

γ = β + 2.

(c) Eq.(5.195.6) has unbounded solutions if and only if

γ > β + 2.

By Theorems 5.23.2 and 5.23.3 it follows that when

α > 0 and β + γ + δ ≤ A,

the positive equilibrium of Eq.(5.195.1) is globally asymptotically stable.

Conjecture 5.195.2 Show that for the positive equilibrium x̄ of Eq.(5.195.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.195.3 Assume that

α > 0 and A− β − δ < γ < β + δ + A.

Show that Eq.(5.195.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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For the remainder of this section we assume that

γ = β + δ + A

and
β + A > 0. (5.195.7)

In [67] it was established that every solution of Eq.(5.195.1) converges to a
(not necessarily prime) period-two solution. The restriction (5.195.7) cannot
be relaxed in this period-two convergence result. In fact, when β = A = 0 the
resulting equation

xn+1 =
α + γxn−1 + δxn−2

xn
, n = 0, 1, . . . (5.195.8)

with
α ≥ 0 and δ > 0

has unbounded solutions. See [46] and [76]. In particular, every solution of
Eq.(5.195.8) with

x−2 = x0 ≤ δ

is such that
x2n = x0, for n ≥ 0

and

x2n+1 =
δ

x0
x2n−1 +

(
δ +

α

x0

)
→∞, as n →∞.

Theorem 5.195.2 Assume that

γ = β + δ + A and β + A > 0.

Then every solution of Eq.(5.195.1) converges to a (not necessarily prime)
period-two solution.

The proof of Theorem 5.195.2 is very long and in order to simplify it we first
establish several lemmas describing the character of solutions of Eq.(5.195.1).
We begin by stating several identities that follow from Eq.(5.195.1) and will
be used throughout this section. They are all valid for n ≥ 0.

x2n+1 =
α + βx2n + (β + δ + A) x2n−1 + δx2n−2

A + x2n
(5.195.9)

=
α

A + x2n
+ β

x2n

A + x2n
+ (β + δ + A)

x2n−1

A + x2n
+ δ

x2n−2

A + x2n
.

x2n+2 =
α + βx2n+1 + (β + δ + A) x2n + δx2n−1

A + x2n+1
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=
α

A + x2n+1
+ β

x2n+1

A + x2n+1
+ (β + δ + A)

x2n

A + x2n+1
+ δ

x2n−1

A + x2n+1
.

xn+2 − xn =
β + A

A + xn+1
(xn+1 − xn−1) +

δ

A + xn+1
(xn − xn−2) . (5.195.10)

x2n+2 − x2n =
β + A

A + x2n+1
(x2n+1 − x2n−1) +

δ

A + x2n+1
(x2n − x2n−2) .

(5.195.11)

x2n+3 − x2n+1 =
β + A

A + x2n+2
(x2n+2 − x2n) +

δ

A + x2n+2
(x2n+1 − x2n−1) .

(5.195.12)

x2n+1 − x2n−1 =
α + βx2n + (β + δ − x2n) x2n−1 + δx2n−2

A + x2n
. (5.195.13)

x2n+2 − x2n =
α + βx2n+1 + (β + δ − x2n+1)x2n + δx2n−1

A + x2n+1
. (5.195.14)

x2n+1

x2n−1
=

α

A + x2n
· 1
x2n−1

+β
x2n

A + x2n
· 1
x2n−1

+
β + δ + A

A + x2n
+δ

x2n−2

A + x2n
· 1
x2n−1

.

(5.195.15)

x2n+2

x2n
=

α

A + x2n+1
· 1
x2n

+β
x2n+1

A + x2n+1
· 1
x2n

+
β + δ + A

A + x2n+1
+δ

x2n−1

A + x2n+1
· 1
x2n

.

(5.195.16)
Among the above equations, the identity described by (5.195.10) is at the
heart of the period-two convergence of solutions of Eq.(5.195.1). Its proof is
a consequence of Eq.(5.195.1) as follows. Note that

xn+1xn = α + βxn + (β + δ + A)xn−1 + δxn−2 −Axn+1

and so,

xn+2 − xn =
α + βxn+1 + (β + δ + A) xn + δxn−1

A + xn+1
− xn

=
α + βxn+1 + (β + δ)xn + δxn−1 − α− βxn − (β + δ + A)xn−1 − δxn−2 + Axn+1

A + xn+1

=
(β + A) xn+1 − (β + A) xn−1 + δ (xn − xn−2)

A + xn+1

=
β + A

A + xn+1
(xn+1 − xn−1) +

δ

A + xn+1
(xn − xn−2) .

From (5.195.10), and more precisely from its equivalent versions (5.195.11)
and (5.195.12), it is now clear that the following result is true about the
subsequences of the even terms {x2n}∞n=−1 and the odd terms {x2n+1}∞n=−1

of every solution {xn}∞n=−2 of Eq.(5.195.1).
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Lemma 5.195.1 The two subsequences {x2n} and {x2n+1} of every solution
of Eq.(5.195.1) are either both eventually monotonically increasing, or they
are both eventually monotonically decreasing, or one of them is monotonically
increasing and the other is monotonically decreasing.

In the sequel we will denote the limits of the subsequences of the even and
odd terms of a solution of Eq.(5.195.1) by L0 and L1, respectively. That is,

L0 = lim
n→∞

x2n and L1 = lim
n→∞

x2n+1.

Each of these limits may only have one of the following three values:

0, ∞, or a positive real number.

Now let us look for all period-two solutions

. . . , φ, ψ, . . .

of Eq.(5.195.1). From Eq.(5.195.1) we have

φ =
α + βψ + (β + δ + A)φ + δψ

A + ψ

and so
φψ = α + (β + δ) (φ + ψ) ,

which implies that

φ [ψ − (β + δ)] = α + (β + δ)ψ

and
ψ [φ− (β + δ)] = α + (β + δ)φ.

When φ 6= ψ we have a prime period-two solution, while when φ = ψ we see
that φ is the equilibrium x of Eq.(5.195.1). Note also that in all cases

x, φ, ψ, ∈ (β + δ,∞) ,

provided that α+β +δ > 0. For the sake of completeness and unification, our
proof here of the period-two convergence of Eq.(5.195.1) includes all previous
special cases of Eq.(5.195.1). When

α = β = δ = 0, (5.195.17)

Eq.(5.195.1) reduces to

xn+1 =
Axn−1

A + xn
, for n = 0, 1, . . . (5.195.18)



Known Results for Each of the 225 Special Cases 411

with A > 0, from which it is clear that

xn+1 ≤ xn−1.

Therefore, in this case, every solution of Eq.(5.195.18) converges to a (not
necessarily prime) period-two solution of the form

. . . , φ, 0, . . . (5.195.19)

with φ ≥ 0. This completes the proof of the Theorem when (5.195.17) holds.
When δ = 0, that is, for the equation

xn+1 =
α + βxn + (β + A) xn−1

A + xn
, n = 0, 1, . . . (5.195.20)

it follows from (5.195.10) that

xn+2 − xn =
β + A

A + xn+1
(xn+1 − xn−1) , for n ≥ 0. (5.195.21)

From (5.195.21) we see that for every solution of Eq.(5.195.20) exactly one of
the following statements is true for all n ≥ 0:

xn+1 < xn−1

xn+1 = xn−1

xn+1 > xn−1.

Clearly, all bounded solutions of Eq.(5.195.20) converge to a period-two solu-
tion. As in [175, p. 40], assume for the sake of contradiction that there is an
unbounded solution, that is, a solution such that:

lim
n→∞

x2n = ∞

while {x2n+1} is increasing. The case where

lim
n→∞

x2n+1 = ∞

and {x2n} is increasing is similar and will be omitted. Choose N ≥ 0 such
that

β + A

A + x2N+1
· β + A

A + x2N
< 1.

Define
ρ =

β + A

A + x2N+1
· β + A

A + x2N
and σ = (x2N − x2N−2) .

Then
β + A

A + x2n+1
· β + A

A + x2n
< ρ, for n > N.
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Hence, from (5.195.21) we find that

x2N+2 − x2N =
β + A

A + x2N+1
(x2N+1 − x2N−1)

=
β + A

A + x2N+1
· β + A

A + x2N
(x2N − x2N−2) = σρ

and
x2N+4 − x2N+2 =

β + A

A + x2N+3
(x2N+3 − x2N+1)

=
β + A

A + x2N+3
· β + A

A + x2N+2
(x2N+2 − x2N ) < σρ2.

It follows by induction that for µ = 1, 2, . . .

x2N+2(µ+1) − x2N+2µ < σρµ+1

and so by summing up

x2N+2(µ+1) < x2N+2 +
σρ2

1− ρ
, for µ = 1, 2, . . . .

This contradicts the assumption that the subsequence of the even terms con-
verges to ∞, and completes the proof of the Theorem when δ = 0. Therefore,
in the sequel we will assume that

δ > 0.

Returning to the period-two solutions of Eq.(5.195.1) the following result is
now clear.

Lemma 5.195.2 All prime period-two solutions

. . . , φ, ψ, . . .

of Eq.(5.195.1) are given by

φ =
(β + δ)ψ + α

ψ − (β + δ)

with
φ 6= ψ and φ, ψ ∈ (β + δ,∞) .

Clearly, when both L0 and L1 are positive numbers, the sequence

. . . , L0, L1, . . .

is a period-two solution of Eq.(5.195.1) and as we showed before

L0L1 = α + (β + δ) (L1 + L2) .
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In particular,
L0, L1 ∈ (β + δ,∞) .

When L0 = L1, then the solution converges to the equilibrium x of Eq.(5.195.1)
and when L0 6= L1 the solution converges to a prime period-two solution of
Eq.(5.195.1). Note that Eq.(5.195.1) has a huge set of prime period-two solu-
tions, as described by Lemma 5.195.2.

The following Lemma shows that neither L0 nor L1 can be zero.

Lemma 5.195.3 Neither of the subsequences {x2n} and {x2n+1} may con-
verge to zero.

PROOF Assume for the sake of contradiction that

L0 = 0.

The case where L1 = 0 is similar and will be omitted. Now note that when
L0 = 0, A must be positive. Otherwise, A = 0, β > 0, and so clearly
xn+2 ≥ β > 0.

There are three possibilities for L1: L1 may be zero, ∞, or a positive
number. We will show that each of them leads to a contradiction.

If L1 = 0, then both subsequences are eventually decreasing to zero and
(5.195.13), with n sufficiently large, implies that

0 ≥ α + βx2n + (β + δ − x2n) x2n−1 + δx2n−2

A + x2n
> 0,

which is impossible.
If L1 ∈ (0,∞), by taking limits in (5.195.9) we see that

L1 =
α + (β + δ + A)L1

A
> L1,

which is also impossible.
Finally, if L1 = ∞, by taking limits in (5.195.15) we find

lim
n→∞

(
x2n+1

x2n−1

)
=

β + δ + A

A

and from (5.195.16) we obtain

1 ≥
(

x2n+2

x2n

)
≥ δ

1
A

x2n−1
+

(
x2n+1
x2n−1

) · 1
x2n

which leads to a contradiction, as n →∞. The proof is complete.

It follows from Lemma 5.195.3 that L0 and L1 are positive numbers or ∞.
The next results establish that neither L0 nor L1 may be below

β + δ.



414 Dynamics of Third-Order Rational Difference Equations

Lemma 5.195.4
L0, L1 ∈ [β + δ,∞] .

PROOF Assume for the sake of contradiction that

L0 < β + δ.

The proof when L1 ≤ β + δ is similar and will be omitted. There are two
possibilities for L1: L1 may be positive or L1 = ∞. We will show that each
of them leads to a contradiction.

If L1 ∈ (0,∞) then
. . . , L0, L1, . . .

is a period-two solution of Eq.(5.195.1) and so, by Lemma 5.195.2, L0 > β+δ,
which is a contradiction. On the other hand, if L1 = ∞, then from (5.195.15)

lim
n→∞

(
x2n+1

x2n−1

)
=

β + δ + A

A + L0

and so from (5.195.16),

1 = lim
n→∞

(
x2n+2

x2n

)
=

β

L0
+ δ

1
0 + β+δ+A

A+L0

· 1
L0

,

that is,
L0 = β + δ,

which is also a contradiction.

Lemma 5.195.5 (i) If L0 ∈ (0,∞) and L1 = ∞, then L0 = β + δ.

(ii) If L0 = ∞ and L1 ∈ (0,∞), then L1 = β + δ.

PROOF We will prove (i). The proof of (ii) is similar and will be omitted.
From (5.195.15) we obtain

lim
n→∞

(
x2n+1

x2n−1

)
=

β + δ + A

A + L0

and so from (5.195.16),

1 =
β

L0
+

δ

L0
· A + L0

β + δ + A
.

Hence,
L0 = β + δ

and the proof is complete.
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Lemma 5.195.6 It is not possible that both L0 and L1 are equal to ∞.

PROOF Otherwise, from (5.195.15)

1 ≤ lim
n→∞

(
x2n+1

x2n−1

)
= 0,

which is impossible.

Lemma 5.195.7 Every solution of Eq.(5.195.1) is eventually bounded from
below by (β + δ).

PROOF Assume for the sake of contradiction that there exists a solution
of Eq.(5.195.1) not bounded from below by (β + δ). Then in view of the
previous lemmas the only thing that the solution can do is that one of the
subsequences {x2n} and {x2n+1} eventually increases to (β + δ) while the
other eventually increases to ∞. We will assume that

lim
n→∞

x2n = β + δ and lim
n→∞

x2n+1 = ∞

with both subsequences being eventually increasing. The case where the even
and odd subsequences are interchanged is similar and will be omitted.

Let ε ∈ (0, β + δ) be given and sufficiently small, and let N ≥ 0 be such
that

β + δ − ε < x2n < β + δ, for n ≥ N.

Then for any N0 ≥ N and sufficiently large we have

x2N0+2 < β + δ,

which implies that

x2N0+2 =
α + βx2N0+1 + (β + δ + A)x2N0 + δx2N0−1

A + x2N0+1
< β + δ. (5.195.22)

Define

R0 =
(β + δ + A) (β + δ − ε) + α− (β + δ) A

δ
.

Then (5.195.22) implies that

α + βx2N0+1 + (β + δ + A)x2N0 + δx2N0−1 < (β + δ) A + (β + δ)x2N0+1

and so

x2N0+1 > x2N0−1 +
β + δ + A

δ
x2N0 +

α− (β + δ) A

δ

> x2N0−1 +
(β + δ + A)

δ
(β + δ − ε) +

α− (β + δ)A

δ
.
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Hence,
x2N0+1 > x2N0−1 + R0

and by using Eq.(5.195.1),

α + βx2N0 + (β + δ + A) x2N0−1 + δx2N0−2

A + x2N0

> x2N0−1 + R0.

Therefore,

α+βx2N0+(β + δ + A)x2N0−1+δx2N0−2 > Ax2N0−1+x2N0x2N0−1+R0 (A + x2N0)

and so

(β + δ − x2N0) x2N0−1 > R0 (A + x2N0)− α− βx2N0 − δx2N0−2,

that is,

x2N0−1 >
R0 (A + x2N0)− α− βx2N0 − δx2N0−2

β + δ − x2N0

.

Hence,

(β + δ) x2N0−1 − x2N0x2N0−1 > R0 (A + x2N0)− α− βx2N0 − δx2N0−2

or, equivalently,

(β + δ)x2N0−1 − α− βx2N0−1 − (β + δ + A) x2N0−2 − δx2N0−3 + Ax2N0

> R0 (A + x2N0)− α− βx2N0 − δx2N0−2.

Thus,

x2N0−1 > x2N0−3 +
R0

δ
(A + x2N0) +

1
δ

(β + A) (x2N0−2 − x2N0)

> x2N0−3 +
R0

δ
(A + β + δ − ε)− 1

δ
(β + A) (β + δ)

and so from Eq.(5.195.1) we see that

α + βx2N0−2 + (β + δ + A)x2N0−3 + δx2N0−4

A + x2N0−2

> x2N0−3 +
R0

δ
(A + β + δ − ε)− (β + A) (β + δ)

δ
.

Therefore,

x2N0−3 >
R1 (A + x2N0−2)− α− βx2N0−2 − δx2N0−4

β + δ − x2N0−2
,
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where

R1 =
β + δ + A− ε

δ
R0 − (β + A) (β + δ)

δ
.

It follows by induction that for k ≥ 0,

x2N0−(2k+1) >
Rk (A + x2N0−2k)− α− βx2N0−2k − δx2N0−2(k+1)

β + δ − x2N0−2k

with

Rk+1 =
β + δ + A− ε

δ
Rk − (β + A) (β + δ)

δ
.

Clearly, for N0 and k sufficiently large, this leads to a contradiction and the
proof of the lemma is complete.

We are now ready to present the proof of Theorem 5.195.2.

PROOF
Clearly, every bounded solution of Eq.((5.195.1) converges to a (not nec-

essarily prime) period-two solution. So assume for the sake of contradiction
that Eq.(5.195.1) has an unbounded solution. We will assume that

lim
n→∞

x2n+1 = ∞ and lim
n→∞

x2n = β + δ,

with the subsequence of even terms of the solution being eventually decreasing
and the subsequence of odd terms being eventually increasing. The case where
the behavior of the even and odd subsequences is reversed is similar and will
be omitted.

Then from (5.195.10) we obtain

x2n+3 − x2n+1 <
δ

A + x2n+2
(x2n+1 − x2n−1)

<
δ

β + δ + A
(x2n+1 − x2n−1) , for n ≥ 0.

Therefore,

x2n+1 − x2n−1 <
δ

(β + δ + A)n (x1 − x−1)

and by summing up we find

x2n+1 − x1 <
δ

β + A
.

This contradicts the hypothesis that

lim
n→∞

x2n+1 = ∞

and completes the proof of the theorem.
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Conjecture 5.195.4 Assume that

γ > β + δ + A.

Show that every positive and bounded solution of Eq.(5.195.1) converges to
the positive equilibrium.

5.196 Equation #196 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Cxn−1

The boundedness character of solutions of this equation was investigated in
[49]. See also Theorem 2.7.1 where we established that every solution of the
equation is bounded. Eq.(#196) can be written in the normalized form

xn+1 =
α + βxn + γxn−1 + xn−2

A + xn−1
, n = 0, 1, . . . (5.196.1)

with positive parameters α, β, γ, A and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

β + γ + 1 ≤ A,

the equilibrium of Eq.(5.196.1) is globally asymptotically stable.

Conjecture 5.196.1 Show that for the equilibrium x̄ of Eq.(5.196.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.196.2 Assume that

β + γ + 1 > A.

Show that Eq.(5.196.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.
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5.197 Equation #197 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Dxn−2

Eq.(#197) can be written in the normalized form

xn+1 =
α + βxn + γxn−1 + xn−2

A + xn−2
, n = 0, 1, . . . (5.197.1)

with positive parameters α, β, γ, A and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.2.1 where we established that the equation has
unbounded solutions when

γ > β + 1 + A.

By Theorems 5.23.2 and 5.23.3 it follows that when

β + γ + 1 ≤ A,

the equilibrium of Eq.(5.197.1) is globally asymptotically stable.

Conjecture 5.197.1 Assume that

γ > β + 1 + A.

Show that every bounded solution of Eq.(5.197.1) converges to the equilibrium.

Conjecture 5.197.2 Assume that

γ < β + 1 + A.

Show that for the equilibrium x̄ of Eq.(5.197.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.197.3 Assume that

γ = β + 1 + A.

Show that every solution of Eq.(5.197.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.197.4 Assume that

A− β − 1 < γ < β + 1 + A.

Show that Eq.(5.197.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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5.198 Equation #198 : xn+1 =
α + βxn + γxn−1 + δxn−2

Bxn + Cxn−1

Eq.(#198) can be written in the normalized form

xn+1 =
α + xn + γxn−1 + δxn−2

xn + Cxn−1
, n = 0, 1, . . . (5.198.1)

with positive parameters α, γ, δ, C and with arbitrary positive initial condi-
tions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

δ > C +
γ

C
.

By Theorem 5.221.1 it follows that every solution of Eq.(#198) is bounded if

δ < C +
γ

C
.

Conjecture 5.198.1 Assume that

0 < δ ≤ C +
γ

C
.

Show that for the equilibrium of Eq.(5.198.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.198.1 Assume that

δ > C +
γ

C
.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.198.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.198.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.198.1).

Conjecture 5.198.2 It follows from the work in Section 4.2 that Eq.(5.198.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.198.1) is locally asymptotically stable.

Conjecture 5.198.3 Show that Eq.(5.198.1) has bounded solutions that do
not converge to the equilibrium point or to a periodic solution.
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5.199 Equation #199 : xn+1 =
α + βxn + γxn−1 + δxn−2

Bxn + Dxn−2

Eq.(#199) can be written in the normalized form

xn+1 =
α + xn + γxn−1 + δxn−2

xn + Dxn−2
, n = 0, 1, . . . (5.199.1)

with positive parameters α, γ, δ,D and with arbitrary positive initial condi-
tions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1 + δ.

Open Problem 5.199.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.199.1).

Conjecture 5.199.1 Assume that

γ > 1 + δ.

Show that every bounded solution of Eq.(5.199.1) converges to the equilibrium.

Conjecture 5.199.2 Assume that

γ < 1 + δ.

Show that for the equilibrium x̄ of Eq.(5.199.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.199.3 Assume that

γ = 1 + δ.

Show that every solution of Eq.(5.199.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.199.4 Assume that

γ < 1 + δ.

Show that Eq.(5.199.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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5.200 Equation #200 : xn+1 =
α + βxn + γxn−1 + δxn−2

Cxn−1 + Dxn−2

The boundedness character of this equation was investigated in [69]. See also
Theorem 2.3.2 where we established that every solution of this equation is
bounded. Eq.(#200) can be written in the normalized form

xn+1 =
α + βxn + xn−1 + δxn−2

xn−1 + Dxn−2
, n = 0, 1, . . . (5.200.1)

with positive parameters α, β, δ,D and with arbitrary positive initial condi-
tions x−2, x−1, x0.

Open Problem 5.200.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.200.1).

Conjecture 5.200.1 Show that for the equilibrium x̄ of Eq.(5.200.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.200.2 Show that Eq.(5.200.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

Conjecture 5.200.3 It follows from the work in Section 4.2 that Eq.(5.200.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.200.1) is locally asymptotically stable.

5.201 Equation #201 : xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1

Eq.(#201) can be written in the normalized form

xn+1 =
α + βxn + xn−1

A + Bxn + xn−1
, n = 0, 1, . . . (5.201.1)

with positive parameters α, γ, A,C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

Conjecture 5.201.1 Show that for the equilibrium x̄ of Eq.(5.201.1),

Local Asymptotic Stabilty ⇒ Global Attractivity.
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Conjecture 5.201.2 It follows from the work in Section 4.2 that Eq.(5.201.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.201.1) is locally asymptotically stable.

For the remainder of this section we allow the parameters of the equation in
the title to be nonnegative and the initial conditions to be arbitrary nonnega-
tive real numbers such that the denominator is always positive. We summarize
some of the highlights of the 49 special cases contained in the second-order
rational difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . . (5.201.2)

Of the 49 special cases of Eq.(5.201.2), three cases are trivial:

#1, #6, and #11,

six are linear:

#5, #9, #41, #45, #53, and #117,

four cases are reducible to linear:

#2, #3, #7, and #10,

four are Riccati equations:

#17, #23, #42, and #65,

and four special cases are reducible to Riccati equations:

#18, #30, #47, and #72.

Therefore there remain only 28 special cases of second-order rational equations
to be investigated. The character of solutions of these equations is summarized
in the Table. As we see in the Table, in seven special cases it is known that
every solution converges to an equilibrium:

#20, #24, #26, #55, #84, #101, and #105.

In seven special cases there is a period-two trichotomy:

#29, #46, #54, #71, #83, #118, and #165.

In five special cases, every solution is bounded and in each case there exist
infinitely many prime period-two solutions, or there exists a unique prime
period-two solution. In all of these five cases it is known that every solution
converges to a (not necessarily prime) period-two solution:

#32, #74, #86, #109, and #145.
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One of the 28 cases is the well-known Lyness’s Equation: #43.
In five special cases we conjecture that every solution converges to the

equilibrium:
#66, #68, #119, #141, and #166.

In three special cases we conjecture that the equilibrium is locally asymp-
totically stable in some region of the parameters and in the complement of the
closure of this region there exists a unique prime period-two solution. These
equations are:

#153, #168, and #201.

For each of these three equations we conjecture that the prime period-two
solution is locally asymptotically stable and that every solution converges to
a (not necessarily prime) period-two solution.
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Summary of the Behavior of the 28 Nontrivial Second-Order
Rational Difference Equations

#20 : xn+1 = α
Bxn+xn−1

ESCx̄

#24 : xn+1 = βxn

1+xn−1
ESC

Pielou’s Equation

#26 : xn+1 = xn

Bxn+xn−1
ESCx̄

#29 : xn+1 = xn−1
A+xn

P2-Tricho

#32 : xn+1 = xn−1
Bxn+xn−1

ESCP2

#43 : xn+1 = α+xn

xn−1

Lyness’s Equation

#46 : xn+1 = α+xn−1
xn

Part of a
P2-Tricho

#54 : xn+1 = β + xn−1
xn

First
P2-Tricho

#55 : xn+1 = γ + xn

xn−1
ESCx̄

#66 : xn+1 = α+xn

A+xn−1
Conjecture:
ESCx̄

#68 : xn+1 = α+xn

xn+Cxn−1
Conjecture:
ESCx̄



426 Dynamics of Third-Order Rational Difference Equations

#71 : xn+1 = α+xn−1
A+xn

P2-Tricho

#74 : xn+1 = α+xn−1
Bxn+xn−1

ESCP2

#83 : xn+1 = xn+γxn−1
A+xn

P2-Tricho

#84 : xn+1 = βxn+xn−1
A+xn−1

ESC

#86 : xn+1 = βxn+xn−1
Bxn+xn−1

ESCP2

#101 : xn+1 = 1
A+Bxn+xn−1

ESCx̄

#105 : xn+1 = βxn

1+Bxn+xn−1
ESC

#109 : xn+1 = xn−1
A+Bxn+xn−1

ESCP2

#118 : xn+1 = α+βxn+γxn−1
xn

P2-Tricho

#119 : xn+1 = α+βxn+γxn−1
xn−1

Conjecture:
ESCx̄

#141 : xn+1 = α+xn

A+Bxn+xn−1
Conjecture:
ESCx̄

#145 : xn+1 = α+xn−1
A+Bxn+xn−1

ESCP2

#153 : xn+1 = βxn+xn−1
A+Bxn+xn−1

Conjecture:
ESCP2
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#165 : xn+1 = α+βxn+xn−1
A+xn

P2-Tricho

#166 : xn+1 = α+xn+γxn−1
A+xn−1

Conjecture:
ESCx̄

#168 : xn+1 = α+xn+γxn−1
Bxn+xn−1

Conjecture:
ESCP2

#201 : xn+1 = α+βxn+xn−1
A+Bxn+xn−1

Conjecture:
ESCP2

Conjecture 5.201.3 Assume that

γ,A, B ∈ [0,∞) and α, A + B, γ + A ∈ (0,∞).

Show that the positive equilibrium of each of the following two equations,

xn+1 =
α + xn

A + Bxn + xn−1
, n = 0, 1, . . .

and
xn+1 =

α + xn + γxn−1

A + xn−1
, n = 0, 1, . . . ,

is globally asymptotically stable.

The two equations in Conjecture 5.201.3 include the five special cases:

#66, #68, #119, #141, and #166.

We believe that any claims in the literature, made prior to the
submission date of this manuscript, that the conjecture has been
confirmed for any of these five special cases are not correct.

Conjecture 5.201.4 Assume that

α,A ∈ [0,∞) and α + A, β, B ∈ (0,∞).

(i) Show that the unique two-cycle of the difference equation

xn+1 =
α + βxn + xn−1

A + Bxn + xn−1
, n = 0, 1 . . . , (5.201.3)
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which exists when
β + A < 1

and
4α < (1− β −A) [B(1− β −A)− (1 + 3β −A)] ,

is locally asymptotically stable.

(ii) Show that when
β + A ≥ 1

or
4α ≥ (1− β −A) [B(1− β −A)− (1 + 3β −A)] ,

the equilibrium of Eq.(5.201.3) is locally stable and a global attractor of every
positive solution.

(iii) Show that every solution of Eq.(5.201.3) converges to a (not necessarily
prime) period-two solution.

The equation in Conjecture 5.201.4 includes the three special cases:

#153, #168, and #201.

5.202 Equation #202 : xn+1 =
α + βxn + γxn−1

A + Bxn + Dxn−2

Eq.(#202) can be written in the normalized form

xn+1 =
α + xn + γxn−1

A + xn + Dxn−2
, n = 0, 1, . . . (5.202.1)

with positive parameters α, γ, A,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1 + A.

By Theorems 5.23.2 and 5.23.3 it follows that when

γ + 1 ≤ A,

the equilibrium of Eq.(5.202.1) is globally asymptotically stable.
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Conjecture 5.202.1 Assume that

γ > 1 + A.

Show that every bounded solution of Eq.(5.202.1) converges to the equilibrium.

Conjecture 5.202.2 Assume that

γ < 1 + A.

Show that for the equilibrium x̄ of Eq.(5.202.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.202.3 Assume that

γ = 1 + A.

Show that every solution of Eq.(5.202.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.202.4 Assume that

A− 1 < γ < 1 + A.

Show that Eq.(5.202.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.203 Equation #203 : xn+1 =
α + βxn + γxn−1

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#203) can be written in the normalized form

xn+1 =
α + βxn + xn−1

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.203.1)

with positive parameters α, β, A,D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

β + 1 ≤ A

the equilibrium of Eq.(5.203.1) is globally asymptotically stable.
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Conjecture 5.203.1 It follows from the work in Section 4.2 that Eq.(5.203.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.203.1) is locally asymptotically stable.

Conjecture 5.203.2 Show that for the equilibrium x̄ of Eq.(5.203.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.203.3 Assume that

β + 1 > A.

Show that Eq.(5.203.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.204 Equation #204 : xn+1 =
α + βxn + γxn−1

Bxn + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of this
equation is bounded. Eq.(#204) can be written in the normalized form

xn+1 =
α + xn + γxn−1

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.204.1)

with positive parameters α, γ, C, D and with arbitrary positive initial condi-
tions x−2, x−1, x0.

Open Problem 5.204.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.204.1).

Conjecture 5.204.1 Show that for the equilibrium x̄ of Eq.(5.204.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.204.2 It follows from the work in Section 4.2 that Eq.(5.204.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.204.1) is locally asymptotically stable.

Conjecture 5.204.3 Show that Eq.(5.204.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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5.205 Equation #205 : xn+1 =
α + βxn + δxn−2

A + Bxn + Cxn−1

Eq.(#205) can be written in the normalized form

xn+1 =
α + xn + δxn−2

A + xn + Cxn−1
, n = 0, 1, . . . (5.205.1)

with positive parameters α, δ,A, C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

δ > A + C.

By Theorem 5.221.1 it follows that every solution of Eq.(5.205.1) is bounded
when

δ < A + C.

By Theorems 5.23.2 and 5.23.3 it follows that when

δ + 1 ≤ A,

the equilibrium of Eq.(5.205.1) is globally asymptotically stable.

Conjecture 5.205.1 Assume that

δ ≤ A + C.

Show that for the equilibrium x̄ of Eq.(5.205.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.205.1 Assume that

δ > A + C.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.205.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.205.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.205.1).

Conjecture 5.205.2 Assume that

δ + 1 > A.

Show that Eq.(5.205.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.
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5.206 Equation #206 : xn+1 =
α + βxn + δxn−2

A + Bxn + Dxn−2

Eq.(#206) can be written in the normalized form

xn+1 =
α + xn + δxn−2

A + xn + Dxn−2
, n = 0, 1, . . . (5.206.1)

with positive parameters α, δ,A, D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

δ + 1 ≤ A,

the equilibrium of Eq.(5.206.1) is globally asymptotically stable.

Conjecture 5.206.1 Show that for the equilibrium x̄ of Eq.(5.206.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.206.2 Assume that

δ + 1 > A.

Show that Eq.(5.206.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.207 Equation #207 : xn+1 =
α + βxn + δxn−2

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#207) can be written in the normalized form

xn+1 =
α + βxn + xn−2

A + Cxn−1 + xn−2
, n = 0, 1, . . . (5.207.1)

with positive parameters α, β, A,C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.
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By Theorems 5.23.2 and 5.23.3 it follows that when

β + 1 ≤ A

the equilibrium of Eq.(5.207.1) is globally asymptotically stable.

Conjecture 5.207.1 Show that for the equilibrium x̄ of Eq.(5.207.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.207.2 Assume that

β + 1 > A.

Show that Eq.(5.207.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.208 Equation #208 : xn+1 =
α + βxn + δxn−2

Bxn + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of this
equation is bounded. Eq.(#208) can be written in the normalized form

xn+1 =
α + xn + δxn−2

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.208.1)

with positive parameters α, δ, C,D and with arbitrary positive initial condi-
tions x−2, x−1, x0.

Open Problem 5.208.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.208.1).

Conjecture 5.208.1 Show that for the equilibrium x̄ of Eq.(5.208.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.208.2 Show that Eq.(5.208.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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5.209 Equation #209 : xn+1 =
α + γxn−1 + δxn−2

A + Bxn + Cxn−1

Eq.(#209) can be written in the normalized form

xn+1 =
α + xn−1 + δxn−2

A + Bxn + xn−1
, n = 0, 1, . . . (5.209.1)

with positive parameters α, δ,A,B and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

δ > A + B.

By Theorem 5.221.1 it follows that every solution of Eq.(5.209.1) is bounded
when

δ < A + B.

By Theorems 5.23.2 and 5.23.3 it follows that when

δ + 1 ≤ A,

the equilibrium of Eq.(5.209.1) is globally asymptotically stable.

Conjecture 5.209.1 Assume that

δ ≤ A + B.

Show that for the equilibrium x̄ of Eq.(5.209.1),

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.209.1 Assume that

δ > A + B.

(i) Determine the set of all initial conditions for which the solutions of
Eq.(5.209.1) converge to the equilibrium.

(ii) Determine the set of all initial conditions for which the solutions of
Eq.(5.209.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.209.1).
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Conjecture 5.209.2 It follows from the work in Section 4.2 that Eq.(5.209.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.209.1) is locally asymptotically stable.

Conjecture 5.209.3 Assume that

δ + 1 > A.

Show that Eq.(5.209.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.210 Equation #210 : xn+1 =
α + γxn−1 + δxn−2

A + Bxn + Dxn−2

Eq.(#210) can be written in the normalized form

xn+1 =
α + γxn−1 + xn−2

A + Bxn + xn−2
, n = 0, 1, . . . (5.210.1)

with positive parameters α, γ, A, B and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1 + A.

By Theorems 5.23.2 and 5.23.3 it follows that when

γ + 1 ≤ A,

the equilibrium of Eq.(5.210.1) is globally asymptotically stable.

Conjecture 5.210.1 Assume that

γ > 1 + A.

Show that every bounded solution of Eq.(5.210.1) converges to the equilibrium.

Conjecture 5.210.2 Assume that

γ < 1 + A.

Show that for the equilibrium x̄ of Eq.(5.210.1),

Local Asymptotic Stability⇒ Global Attractivity.
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Conjecture 5.210.3 Assume that

γ = 1 + A.

Show that every solution of Eq.(5.210.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.210.4 Assume that

A− 1 < γ < 1 + A.

Show that Eq.(5.210.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.211 Equation #211 : xn+1 =
α + γxn−1 + δxn−2

A + Cxn−1 + Dxn−2

Eq.(#211) can be written in the normalized form

xn+1 =
α + xn−1 + δxn−2

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.211.1)

with positive parameters α, δ,A, D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

δ + 1 ≤ A,

the equilibrium of Eq.(5.211.1) is globally asymptotically stable.

Conjecture 5.211.1 It follows from the work in Section 4.2 that Eq.(5.211.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.211.1) is locally asymptotically stable.

Conjecture 5.211.2 Show that for the equilibrium x̄ of Eq.(5.211.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.211.3 Assume that

δ + 1 > A.

Show that Eq.(5.211.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.
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5.212 Equation #212 : xn+1 =
α + γxn−1 + δxn−2

Bxn + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.1.1 where we established that every solution of this
equation is bounded. Eq.(#212) can be written in the normalized form

xn+1 =
α + xn−1 + δxn−2

Bxn + xn−1 + Dxn−2
, n = 0, 1, . . . (5.212.1)

with positive parameters α, δ,B,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0 such that the denominator is always positive.

Open Problem 5.212.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.212.1).

Conjecture 5.212.1 Show that for the equilibrium x̄ of Eq.(5.212.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.212.2 It follows from the work in Section 4.2 that Eq.(5.212.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.212.1) is locally asymptotically stable.

Conjecture 5.212.3 Show that Eq.(5.212.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.

5.213 Equation #213 : xn+1 =
βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1

Eq.(#213) can be written in the normalized form

xn+1 =
xn + γxn−1 + δxn−2

A + xn + Cxn−1
, n = 0, 1, . . . (5.213.1)

with positive parameters γ, δ, A, C and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

δ > A + C +
γ

C
.
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By Theorem 5.221.1 it follows that every solution of Eq.(5.213.1) is bounded
when

δ < A + C +
γ

C
.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1 + γ + δ,

the zero equilibrium of Eq.(5.213.1) is globally asymptotically stable.
When

A < 1 + γ + δ,

Eq.(5.213.1) has the unique positive equilibrium point

x̄ =
1 + γ + δ −A

1 + C
.

Conjecture 5.213.1 Assume that

0 < δ ≤ A + C +
γ

C
.

Show that for the positive equilibrium x̄ of Eq.(5.213.1) and with positive
initial conditions,

Local Asymptotic Stabilty =⇒ Global Attractivity.

Open Problem 5.213.1 Assume that

δ > A + C +
γ

C
.

(i) Determine the set of all positive initial conditions for which the solutions
of Eq.(5.213.1) converge to the positive equilibrium x̄.

(ii) Determine the set of all positive initial conditions for which the solutions
of Eq.(5.213.1) are unbounded.

(iii) Determine all possible periodic solutions of Eq.(5.213.1).

Conjecture 5.213.2 It follows from the work in Section 4.2 that Eq.(5.213.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.213.1) is locally asymptotically stable.

Conjecture 5.213.3 Show that Eq.(5.213.1) has bounded solutions that do
not converge to an equilibrium point or to a periodic solution.
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5.214 Equation #214 : xn+1 =
βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

Eq.(#214) can be written in the normalized form

xn+1 =
xn + γxn−1 + δxn−2

A + xn + Dxn−2
, n = 0, 1, . . . (5.214.1)

with positive parameters γ, δ, A, D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1 + δ + A.

By Theorems 5.23.2 and 5.23.3 it follows that when

A ≥ 1 + γ + δ,

the zero equilibrium of Eq.(5.214.1) is globally asymptotically stable.
When

A < 1 + γ + δ,

Eq.(5.214.1) has the unique positive equilibrium point

x̄ =
1 + γ + δ −A

1 + D
.

Conjecture 5.214.1 Assume that

γ > 1 + δ + A.

Show that every positive and bounded solution of Eq.(5.214.1) converges to
the positive equilibrium x̄.

Conjecture 5.214.2 Assume that

γ < 1 + δ + A.

Show that for the positive equilibrium x̄ of Eq.(5.214.1) and with positive
initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.
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Conjecture 5.214.3 Assume that

γ = 1 + δ + A.

Show that every solution of Eq.(5.214.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.214.4 Assume that

A− 1− δ < γ < 1 + δ + A.

Show that Eq.(5.214.1) has bounded solutions that do not converge to an equi-
librium point or to a periodic solution.

5.215 Equation #215 : xn+1 =
βxn + γxn−1 + δxn−2

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of this
equation is bounded. Eq.(#215) can be written in the normalized form

xn+1 =
βxn + xn−1 + δxn−2

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.215.1)

with positive parameters β,δ,A,D and with arbitrary nonnegative initial con-
ditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + β + δ,

the zero equilibrium of Eq.(5.215.1) is globally asymptotically stable.
When

A < 1 + β + δ,

Eq.(5.215.1) has the unique positive equilibrium point

x̄ =
1 + β + δ −A

1 + D
.

Conjecture 5.215.1 It follows from the work in Section 4.2 that Eq.(5.215.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.215.1) is locally asymptotically stable.
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Conjecture 5.215.2 Show that for the positive equilibrium x̄ of Eq.(5.215.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.215.3 Assume that

A < 1 + β + δ.

Show that Eq.(5.215.1) has solutions that do not converge to an equilibrium
point or to a periodic solution.

5.216 Equation #216 : xn+1 =
βxn + γxn−1 + δxn−2

Bxn + Cxn−1 + Dxn−2

Eq.(#216) can be written in the normalized form

xn+1 =
xn + γxn−1 + δxn−2

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.216.1)

with positive parameters γ, δ, C,D and with arbitrary positive initial condi-
tions x−2, x−1, x0.

Open Problem 5.216.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.216.1).

Conjecture 5.216.1 Show that for the equilibrium x̄ of Eq.(5.216.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.216.2 It follows from the work in Section 4.2 that Eq.(5.216.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.216.1) is locally asymptotically stable.

Conjecture 5.216.3 Show that Eq.(5.216.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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5.217 Equation #217 : xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1 + Dxn−2

Eq.(#217) can be written in the normalized form

xn+1 =
α + xn + γxn−1

A + xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.217.1)

with positive parameters α, γ, A, C, D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

γ + 1 ≤ A,

the equilibrium of Eq.(5.217.1)is globally asymptotically stable.

Conjecture 5.217.1 It follows from the work in Section 4.2 that Eq.(5.217.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.217.1) is locally asymptotically stable.

Conjecture 5.217.2 Show that for the equilibrium x̄ of Eq.(5.217.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.217.3 Assume that

γ + 1 > A.

Show that Eq.(5.217.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.218 Equation #218 : xn+1 =
α + βxn + δxn−2

A + Bxn + Cxn−1 + Dxn−2

Eq.(#218) can be written in the normalized form

xn+1 =
α + xn + δxn−2

A + xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.218.1)
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with positive parameters α, δ,A, C,D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

δ + 1 ≤ A,

the equilibrium of Eq.(5.218.1) is globally asymptotically stable.

Conjecture 5.218.1 Show that for the equilibrium x̄ of Eq.(5.218.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.218.2 Assume that

δ + 1 > A.

Show that Eq.(5.218.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.219 Equation #219 : xn+1 =
α + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2

Eq.(#219) can be written in the normalized form

xn+1 =
α + γxn−1 + xn−2

A + Bxn + Cxn−1 + xn−2
, n = 0, 1, . . . (5.219.1)

with positive parameters α, γ,A, B, C and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

γ + 1 ≤ A,

the equilibrium of Eq.(5.219.1) is globally asymptotically stable.

Conjecture 5.219.1 It follows from the work in Section 4.2 that Eq.(5.219.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.219.1) is locally asymptotically stable.

Conjecture 5.219.2 Show that for the equilibrium x̄ of Eq.(5.219.1),

Local Asymptotic Stability⇒ Global Attractivity.
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Conjecture 5.219.3 Assume that

γ + 1 > A.

Show that Eq.(5.219.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.220 Equation #220 : xn+1 =
βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2

Eq.(#220) can be written in the normalized form

xn+1 =
xn + γxn−1 + δxn−2

A + xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.220.1)

with positive parameters γ, δ, A, C,D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.4 it follows that when

A ≥ 1 + γ + δ,

the zero equilibrium of Eq.(5.220.1) is globally asymptotically stable.
When

A < 1 + γ + δ,

Eq.(5.220.1) has the unique positive equilibrium point

x̄ =
1 + γ + δ −A

1 + C + D
.

Conjecture 5.220.1 It follows from the work in Section 4.2 that Eq.(5.220.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.220.1) is locally asymptotically stable.

Conjecture 5.220.2 Show that for the positive equilibrium x̄ of Eq.(5.220.1)
and with positive initial conditions,

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.220.3 Assume that

A < 1 + γ + δ.

Show that Eq.(5.220.1) has solutions that do not converge to an equilibrium
point x̄ or to a periodic solution.
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5.221 Equation #221 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1

In this section we investigate the global behavior of solutions of the equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1
, n = 0, 1, . . . (5.221.1)

with nonnegative parameters α, β, γ, A, with positive parameters δ,B, C, and
with arbitrary nonnegative initial conditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [69]. See also Theorem 3.4.1 where we established that the equation has
unbounded solutions when

δ > A + B
γ

C
+ C

β

B
.

By Theorems 5.23.2 and 5.23.3 it follows that when

β + γ + δ ≤ A, (5.221.2)

the equilibrium of Eq.(5.221.1) is globally asymptotically stable.
The following theorem is a new result about the boundedness of solutions

of Eq.(5.221.1).

Theorem 5.221.1 Every solution of Eq.(5.221.1) is bounded if

(i)

δ < A + B
γ

C
+ C

β

B
, (5.221.3)

or

(ii)

δ = A + B
γ

C
+ C

β

B
, and α = βγ = 0, (5.221.4)

or

(iii)
δ = A, β = γ = 0, and α > 0 . (5.221.5)

PROOF Assume for the sake of contradiction that Eq.(5.221.1) has an
unbounded solution {xn}. Then there exists a subsequence {xni} such that

xni+1 →∞ (5.221.6)



446 Dynamics of Third-Order Rational Difference Equations

and, for every i,
xni+1 > xj , for all j < ni + 1. (5.221.7)

From
xni+1 =

α + βxni + γxni−1 + δxni−2

A + Bxni + Cxni−1

it follows that
xni−2 →∞ (5.221.8)

and the sequences
{xni}, {xni−1} are bounded.

Similarly, it follows that

{xni−3}, {xni−4} are bounded.

Clearly,

xni =
α + βxni−1 + γxni−2 + δxni−3

A + Bxni−1 + Cxni−2
→ γ

C

and
xni−1 =

α + βxni−2 + γxni−3 + δxni−4

A + Bxni−2 + Cxni−3
→ β

B
.

(i) Let ε be a positive number such that

(B + C)ε < −δ + A + B
γ

C
+ C

β

B
.

From (5.221.7) and (5.221.8) it follows that, eventually,

xni >
γ

C
− ε and xni−1 >

β

B
− ε.

Therefore, eventually,
xni+1 < xni−2,

which contradicts (5.221.7) and completes the proof of (i).
(ii) Assume that either

α = β = 0 and γ > 0 (5.221.9)

or
α = γ = 0 and β > 0. (5.221.10)

We will give the proof when (5.221.9) holds. The proof when (5.221.10) holds
is similar and will be omitted.

In this case we have that, eventually,

xni >
γ

C
.
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In view of (5.221.7), we have

xni+1 > xni−2

and so
xni−2 <

γxni−1

A + Bxni + Cxni−1 −A−B γ
C

<
γ

C
,

which is a contradiction.
(iii) When

α > 0 and β = γ = 0,

the equation reduces to the special case #149 for which we established in
Section 5.149 that, when A ≥ δ, every solution converges to the equilibrium
and so is bounded.

The following theorem is a new result about the global attractivity of the
equilibrium of Eq.(5.221.1).

Theorem 5.221.2 Assume that

β

B
=

γ

C
. (5.221.11)

Then the equilibrium x̄ of Eq.(5.221.1) is a global attractor of all solutions of
Eq.(5.221.1) if and only if

δ ≤ A + B
γ

C
+ C

β

B
. (5.221.12)

PROOF Eq.(5.221.1) can be written in the normalized form

xn+1 =
α + Bxn + xn−1 + δxn−2

A + Bxn + xn−1
, n = 0, 1, . . . . (5.221.13)

It suffices to show that the equilibrium of Eq.(5.221.13) is a global attractor
of all solutions when

δ ≤ A + B + 1.

We divide the proof into the following three cases:

Case 1:
δ > A− α.

We claim that there exists N , sufficiently large, such that

xn > 1, for n ≥ N.

Otherwise, for some N ≥ 0,

xN+1 =
α + BxN + xN−1 + δxN−2

A + BxN + xN−1
≤ 1.
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This implies that

xN−2 <
A− α

δ
< 1

and, similarly,

xN−5 < (
A− α

δ
)2,

which eventually leads to a contradiction. Hence, our claim is true and by
using the change of variables

yn = xn − 1

Eq.(5.221.13) becomes

yn+1 =
α−A + δ + δyn−2

A + B + 1 + Byn + yn−1
.

Now the result follows from our work in Section 5.149 where we established
that every solution of the equation above converges to the equilibrium when
A + B + 1 ≥ δ.

Case 2:

δ = A− α.

Observe that

xn+1 − 1 =
(A− α)(xn−2 − 1)
A + Bxn + xn−1

and so
|xn+1 − 1| ≤ A− α

A
|xn−2 − 1, |

from which the result follows.
Case 3:

δ < A− α.

Here we claim that there exists N , sufficiently large, such that

xn ≤ A− α

δ
, for n ≥ N.

Suppose for the sake of contradiction that for some N ≥ 0,

xN+1 =
α + BxN + xN−1 + δxN−2

A + BxN + xN−1
>

A− α

δ
.

From this it follows that

xN−2 >
A

δ
· A− α

δ
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and, similarly,

xN−5 > (
A

δ
)2 · A− α

δ
,

which eventually leads to a contradiction. Therefore, our claim is true. Set

S = lim sup
n→∞

xn and I = lim inf
n→∞

xn.

Then, clearly,

S ≤ α + (B + δ + 1)S
A + (B + 1)S

and I ≥ α + (B + δ + 1)I
A + (B + 1)I

from which it follows that,
S = I = x̄

and the proof is complete.

Conjecture 5.221.1 It follows from the work in Section 4.2 that Eq.(5.221.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.221.1) is locally asymptotically stable.

Conjecture 5.221.2 Show that for the equilibrium x̄ of Eq.(5.221.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.221.3 Show that Eq.(5.221.1) has bounded solutions that do
not converge to the equilibrium point x̄ or to a periodic solution.

5.222 Equation #222 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Dxn−2

Eq.(#222) can be written in the normalized form

xn+1 =
α + xn + γxn−1 + δxn−2

A + xn + Dxn−2
, n = 0, 1, . . . (5.222.1)

with positive parameters α, γ, δ, A, D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

The boundedness character of solutions of this equation was investigated
in [49]. See also Theorem 3.3.1 where we established that the equation has
unbounded solutions when

γ > 1 + δ + A.
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By Theorems 5.23.2 and 5.23.3 it follows that when

γ + δ + 1 ≤ A,

the equilibrium of Eq.(5.222.1) is globally asymptotically stable.

Conjecture 5.222.1 Assume that

γ > 1 + δ + A.

Show that every bounded solution of Eq.(5.222.1) converges to the equilibrium.

Conjecture 5.222.2 Assume that

γ < 1 + δ + A.

Show that for the equilibrium x̄ of Eq.(5.222.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.222.3 Assume that

γ = 1 + δ + A.

Show that every solution of Eq.(5.222.1) converges to a (not necessarily prime)
period-two solution.

Conjecture 5.222.4 Assume that

A− δ − 1 < γ < 1 + δ + A.

Show that Eq.(5.222.1) has bounded solutions that do not converge to the
equilibrium point or to a periodic solution.

5.223 Equation #223 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Cxn−1 + Dxn−2

The boundedness character of solutions of this equation was investigated in
[69]. See also Theorem 2.3.1 where we established that every solution of the
equation is bounded. Eq.(#223) can be written in the normalized form

xn+1 =
α + βxn + xn−1 + δxn−2

A + xn−1 + Dxn−2
, n = 0, 1, . . . (5.223.1)
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with positive parameters α, β, δ, A, D and with arbitrary nonnegative initial
conditions x−2, x−1, x0.

By Theorems 5.23.2 and 5.23.3 it follows that when

β + δ + 1 ≤ A,

the equilibrium of Eq.(5.223.1) is globally asymptotically stable.

Conjecture 5.223.1 It follows from the work in Section 4.2 that Eq.(5.223.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.223.1) is locally asymptotically stable.

Conjecture 5.223.2 Show that for the equilibrium x̄ of Eq.(5.223.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.223.3 Assume that

β + δ + 1 > A.

Show that Eq.(5.223.1) has solutions that do not converge to the equilibrium
point or to a periodic solution.

5.224 Equation #224 : xn+1 =
α + βxn + γxn−1 + δxn−2

Bxn + Cxn−1 + Dxn−2

Eq.(#224) can be written in the normalized form

xn+1 =
α + xn + γxn−1 + δxn−2

xn + Cxn−1 + Dxn−2
, n = 0, 1, . . . (5.224.1)

with positive parameters α, γ, δ, C,D and with arbitrary positive initial con-
ditions x−2, x−1, x0.

Open Problem 5.224.1 Investigate the periodic nature of solutions and the
global stability of the equilibrium of Eq.(5.224.1).

Conjecture 5.224.1 It follows from the work in Section 4.2 that Eq.(5.224.1)
has a unique prime period-two solution. Show that this period-two solution of
Eq.(5.224.1) is locally asymptotically stable.

Conjecture 5.224.2 Show that for the equilibrium x̄ of Eq.(5.224.1),

Local Asymptotic Stability⇒ Global Attractivity.

Conjecture 5.224.3 Show that Eq.(5.224.1) has solutions that do not con-
verge to the equilibrium point or to a periodic solution.
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5.225 Equation #225 : xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2

The equation

xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2
, n = 0, 1, . . . . (5.225.1)

and all its 225 special cases were the subject of investigation in this book. For
related work see Sections 4.2 and 5.23. Throughout this section we allow the
parameters of Eq.(5.225.1) to be nonnegative and the initial conditions to be
arbitrary nonnegative real numbers such that the denominator is always pos-
itive. We summarize some of the highlights of the 225 special cases contained
in Eq.(5.225.1).

Of the 225 special cases of Eq.(5.225.1), 39 special cases are trivial, lin-
ear, reducible to linear, Riccati equations, or reducible to Riccati equations.
Another 28 special cases were the subject of investigation in the Kulenovic
and Ladas book [175], which deals with the second-order rational difference
equation

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . . (5.225.2)

See the Table in Section 5.201.
Therefore, there remain

225− (39 + 28) = 158

special cases each of which is nonlinear third-order difference equation crying
to be investigated. See Appendix A at the end of the book, which presents at
a glance the boundedness character of each special case and gives some useful
references and some highlights on the character of their solutions.

Concerning the boundedness character of solutions of the 225 special cases
of Eq.(5.225.1), we have made the following remarkable conjecture. See [69].

Conjecture 5.225.1 Show that in 135 special cases of Eq.(5.225.1), every
solution of the equation is bounded and that in the remaining 90 special cases,
the equation has unbounded solutions in some range of the parameters and for
some initial conditions.

As this book goes to print, we are proud to say that there remain only five
special cases, out of a total number of 225, whose boundedness has not been
established yet. In 135 special cases of Eq.(5.225.1) we have shown that every
solution of the equation is bounded and in 85 cases we have shown that the



Known Results for Each of the 225 Special Cases 453

equation has unbounded solutions in some range of the parameters and for
some initial conditions.

For five special cases we have conjectured that they have unbounded solu-
tions in some range of their parameters and for some initial conditions but we
are not yet able to confirm it. They are the following:

#28, #44, #56, #70, #120.

See Conjecture 3.0.1.
It is interesting to note that the very first rational equation shown to have

unbounded solutions is

#54 : xn+1 = β +
xn−1

xn
, n = 0, 1, . . . .

See [16]. As you can see from Appendix B we have made substantial progress
in determining the boundedness character of a large number of rational dif-
ference equations. See also the results in Chapters 2 and 3. The following
conjecture shows the importance of boundedness of solutions in rational
difference equations.

Conjecture 5.225.2 In each of the 135 special cases of Eq.(5.225.1), where
every solution of the equation is bounded and with positive initial conditions,
show that for the positive equilibrium

Local Asymptotic Stability⇒ Global Asymptotic Stability.

The very first rational equation discovered for which

Local Asymptotic Stability 6⇒ Global Asymptotic Stability

is
#157 : xn+1 =

βxn + δxn−2

A + Bxn + Cxn−1
, n = 0, 1, . . . .

See [48]. Actually, this surprising property is true only in the following 14
special cases of third-order rational difference equations:

#80, #92, #98, #149, #157, #161, #174,
#180, #186, #198, #205, #209, #213, #221.

Open Problem 5.225.1 Determine all special cases in the rational differ-
ence equation

xn =
α +

∑k
i=1 βixn−i

A +
∑k

i=1 Bixn−i

, n = 0, 1, . . . (5.225.3)

with k ≥ 4, where

Local Asymptotic Stability 6⇒ Global Asymptotic Stability.
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For the general rational equation (5.225.3) we offer the following powerful
conjecture that, roughly speaking, states that

Local Asymptotic Stability and Boundedness ⇒ Global Attracticity.

Conjecture 5.225.3 In a region S of the parameters of Eq.(5.225.3), assume
that every positive solution of the equation is bounded and that Eq.(5.225.3)
has an equilibrium point x̄ that is Locally Asymptotically Stable. Then x̄
is a Global Attractor of all positive solutions of Eq.(5.225.3).

How do we establish that every solution of a rational difference
equation is bounded?

How do we establish that a rational equation has unbounded so-
lutions in some range of its parameters and for some initial condi-
tions?

Theorems 2.1.1 and 2.3.4 from Chapter 2 provide the answer to the first
question in a lot of special cases of Eq.(5.225.3). But how about the remain-
ing cases? Is there a recognizable pattern that predicts the boundedness
character of a rational difference equation?

The following Table presents at a glance the number of special cases con-
tained in Eq.(5.225.3) for each value of the order k of the equation, the number
of cases where ESB, the number of cases where ∃US, and the number of cases
established by Theorem 2.1.1 and Theorem 2.3.4.

Total Established Established
Order Cases ESB ∃US by Thm 2.1.1 by Thm 2.3.4
k = 1 9 7 2 7 0
k = 2 49 35 14 27 6
k = 3 225 135 90 91 22
k = 4 961 542 419 291 126

k (2k+1 − 1)2 ? ? 4 · 3k − 2 · 2k − 1 ?

Open Problem 5.225.2 Determine the numbers in the blocks above where
the three question marks appear in the Table.

Conjecture 5.225.4 The numbers under the columns ESB and ∃US in the
above Table are still conjectures for the values of k ∈ {3, 4}. Confirm these
conjectures.

See [14], [49], [66], and [69].



Known Results for Each of the 225 Special Cases 455

In contrast to second-order rational difference equations, a large number
of third-order rational equations exhibit chaotic behavior in some range
of the parameters. In this range, there is sensitive dependence on initial
conditions, and there exist dense orbits. They are the following 124 special
cases:

#25, #27, #39− 40, #56, #58,
#60, #62− 63, #67, #69, #77− 78,
#80− 82, #85, #87− 96, #98− 100, #106− 108,
#114− 116, #120, #122, #124, #126− 127,
#130− 132, #134− 136, #138− 140, #142− 144, #149− 152,
#154− 164, #167, #169− 178, #180− 200, #202− 225.

See Appendix A.

Among the 158 special cases mentioned before, there remain only 34 special
cases of third-order rational equations without chaos, and they are as follows:

In five third-order special cases of Eq.(5.225.1), ESCx̄:

#22, #102, #103, #104, #133.

In one third-order special case ESCP2:

#21.

In 16 third-order special cases we have shown that there is a Pk-Tricho:

#31, #33, #35, #36, #38, #48,
#50, #64, #73, #75, #97, #110,
#113, #128, #146, #179.

In six third-order special cases we have conjectured that we have a Pk-Tricho:

#28, #44, #51, #59, #70, #123.

Finally, in six third-order special cases we conjecture that ESCP2:

#34, #76, #111, #112, #147, #148.

The character of solutions of these 34 special cases is summarized in the
Table at the end of the section.

As we saw in Section 4.2, Eq.(5.225.1) contains 49 special cases, each of
which has a unique prime period-two solution in some range of the parameters.
In one of these special cases,

#30 : xn+1 =
xn−1

A + xn−1
, n = 0, 1, . . . ,
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the unique prime period-two solution of the equation

. . . , 0, 1−A, . . . ,

which exists when
A ∈ (0, 1),

is not locally asymptotically stable.
For the remaining 48 special cases we offer the following conjecture:

Conjecture 5.225.5 Show that the unique prime period-two solution of Eq.(5.225.1),
which exists, if and only if,

β + δ + A < 1

and

4α < (1− β − δ −A) [(B + D)(1− β − δ −A)− (1 + 3β + 3δ −A)] ,

is locally asymptotically stable provided that

α + β + δ + B + D > 0.

See also Open Problems 4.1.1 and 4.1.2.
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Summary of the Behavior of Nontrivial Third-Order
Rational Equations without Chaotic Behavior

#21 : xn+1 = α
Bxn+Dxn−2

ESCP2

#22 : xn+1 = α
Cxn−1+xn−2

ESCx̄

#28 : xn+1 = xn

Cxn−1+xn−2
Part of a
P6-Tricho
Conjecture

#31 : xn+1 = xn−1
A+xn−2

P2-Tricho

#33 : xn+1 = xn−1
Bxn+xn−2

P2-Tricho

#34 : xn+1 = xn−1
Cxn−1+Dxn−2

Conjecture:
ESCP2

#35 : xn+1 = xn−2
A+xn

P3-Tricho

#36 : xn+1 = xn−2
A+xn−1

P3-Tricho

#38 : xn+1 = xn−2
Bxn+xn−1

P3-Tricho

#44 : xn+1 = α+xn

xn−2
Part of a
P6-Tricho
Conjecture

#48 : xn+1 = α+xn−1
xn−2

Part of a
P2-Tricho

#50 : xn+1 = α+xn−2
xn

P5-Tricho
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#51 : xn+1 = α+xn−2
xn−1

Part of a
P4-Tricho
Conjecture

#59 : xn+1 = βxn+xn−2
xn−1

Conjecture:
P4-Tricho

#64 : xn+1 = δ + xn−1
xn−2

P2-Tricho

#70 : xn+1 = α+xn

Cxn−1+xn−2
Conjecture:
P6-Tricho

#73 : xn+1 = α+xn−1
A+xn−2

P2-Tricho

#75 : xn+1 = α+xn−1
Bxn+xn−2

Part of a
P2-Tricho

#76 : xn+1 = α+xn−1
xn−1+Dxn−2

Conjecture:
ESCP2

#97 : xn+1 = γxn−1+xn−2
A+xn−2

P2-Tricho

#102 : xn+1 = 1
A+Bxn+xn−2

ESCx̄

#103 : xn+1 = 1
A+Cxn−1+xn−2

ESCx̄

#104 : xn+1 = 1
xn+Cxn−1+Dxn−2

ESCx̄

#110 : xn+1 = xn−1
A+Bxn+xn−2

P2-Tricho

#111 : xn+1 = xn−1
A+xn−1+Dxn−2

Conjecture:
ESCP2
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#112 : xn+1 = xn−1
Bxn+xn−1+Dxn−2

Conjecture:
ESCP2

#113 : xn+1 = xn−2
A+Bxn+xn−1

P3-Tricho

#123 : xn+1 = α+βxn+xn−2
xn−1

Conjecture:
P4-Tricho

#128 : xn+1 = α+γxn−1+xn−2
xn−2

P2-Tricho

#133 : xn+1 = 1
A+Bxn+Cxn−1+xn−2

ESCx̄

#146 : xn+1 = α+xn−1
A+Bxn+xn−2

P2-Tricho

#147 : xn+1 = α+xn−1
A+xn−1+Dxn−2

Conjecture:
ESCP2

#148 : xn+1 = α+xn−1
Bxn+xn−1+Dxn−2

Conjecture:
ESCP2

#179 : xn+1 = α+γxn−1+xn−2
A+xn−2

P2-Tricho





Appendix A

Table on the Global Character of the 225 Special Cases

of xn+1 =
α + βxn + γxn−1 + δxn−2

A + Bxn + Cxn−1 + Dxn−2

A boldfaced B indicates that every solution of the equation in this special
case is bounded and a boldfaced U indicates that the equation in this special
case has unbounded solutions in some range of its parameters and for some
initial conditions.

A boldfaced B* next to an equation indicates that we only conjecture that
every solution of the equation is bounded and a boldfaced U* indicates that
we only conjecture that the equation has unbounded solutions in some range
of its parameters and for some initial conditions. Next to each case, we have
also provided some relevant references and results on its global character.

In addition to B, B∗, U, and U∗ we will also use the following abbreviations:

iff stands for “if and only if.”

ESB stands for “every solution of the equation is bounded.”

∃US stands for “there exist unbounded solutions.”

LAS stands for “locally asymptotically stable” or “local asymptotic
stability.”

GAS stands for “globally asymptotically stable” or ”global asymp-
totic stability.”

GA stands for “global attractivity” or “global attractor.”
In this book by the abbreviation GA we mean that every positive

solution of the equation has a finite limit.

ESCx̄ stands for “every solution of the equation converges to the
unique equilibrium point of the equation.”
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ESC stands for “every solution of the equation converges to the
zero equilibrium or to the positive equilibrium of the equation.”

EPSCx̄ stands for “every positive solution of the equation con-
verges to the positive equilibrium point of the equation.”

EBSCx̄ stands for “every positive and bounded solution of the
equation converges to the positive equilibrium point of the equa-
tion.”

∃! P2-solution stands for “the equation has a unique prime period-
two cycle.”

ESPk stands for “every solution of the equation is periodic with
(not necessarily prime) period k.”

ESCPk stands for “every solution of the equation converges to a
(not necessarily prime) period-k solution.”

EBSCPk stands for “every bounded solution of the equation con-
verges to a (not necessarily prime) period-k solution.”

Has Pk-Tricho stands for “the equation has period-k trichotomy.”
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1 xn+1 = α B Thm 2.1.1.
This equation is trivial.

2 xn+1 = α
xn

B Thm 2.1.1.
ESP2.
Periodicity destroys boundedness.

3 xn+1 = α
xn−1

B Thm 2.1.1.
ESP4.
Periodicity destroys boundedness.

4 xn+1 = α
xn−2

B Thm 2.1.1.
ESP6.
Periodicity destroys boundedness.

5 xn+1 = βxn U This is a linear equation.

6 xn+1 = β B Thm 2.1.1.
This equation is trivial.

7 xn+1 = xn

xn−1
B Thm 2.2.1.

ESP6.
Periodicity destroys boundedness.

8 xn+1 = xn

xn−2
U Reducible to linear equation.

9 xn+1 = γxn−1 U This is the only linear equation with P2-Tricho.

10 xn+1 = xn−1
xn

U Reducible to linear equation and part of a P2-Tricho.
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11 xn+1 = γ B Thm 2.1.1.
This equation is trivial.

12 xn+1 = xn−1
xn−2

U Reducible to linear equation and part of a P2-Tricho.

13 xn+1 = δxn−2 U This is the only linear equation with P3-Tricho.

14 xn+1 = xn−2
xn

U Reducible to linear equation and part of a P5-Tricho.
See #50.

15 xn+1 = xn−2
xn−1

U Reducible to linear equation.

16 xn+1 = δ B Thm 2.1.1.
This equation is trivial.

17 xn+1 = 1
A+xn

B Thm 2.1.1.
This is a Riccati equation ; ESCx̄.

18 xn+1 = 1
A+xn−1

B Thm 2.1.1.
This is a Riccati-type equation ; ESCx̄.

19 xn+1 = 1
A+xn−2

B Thm 2.1.1.
This is a Riccati-type equation ; ESCx̄.

20 xn+1 = 1
Bxn+xn−1

B Thm 2.1.1.
ESCx̄ by Thm 5.17.2.
Periodicity destroys boundedness.
See [208], [103], and [175, p. 55].
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21 xn+1 = 1
Bxn+xn−2

B Thm 2.1.1.
ESCP2 by Thm 5.17.2.
See [91] and [103].

22 xn+1 = 1
Cxn−1+xn−2

B Thm 2.1.1.
ESCx̄ by Thm 5.17.2.
See [103] and [208].

23 xn+1 = βxn

1+xn
B Thm 2.1.1.

This is the Beverton-Holt Equation ; ESC.
See [83].

24 xn+1 = βxn

1+xn−1
B Thm 2.2.1 or Thm 2.3.4.

Pielou’s Equation ; ESC.
See [63], [157], [175], [182], and [186].

25 xn+1 = βxn

1+xn−2
B Thm 2.3.3 or Thm 2.3.4.

Conjecture: 1 < β < 3+
√

5
2 ⇒ EPSCx̄.

Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [157].

26 xn+1 = xn

Bxn+xn−1
B Thm 2.1.1.

ESCx̄.
See [175, p. 58].

27 xn+1 = xn

Bxn+xn−2
B Thm 2.1.1.

Conjecture: −1 +
√

2 < B < 1 ⇒ ESCx̄.
Conjecture: There exist solutions that
do not converge to an equilibrium
or to a periodic solution.
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28 xn+1 = xn

Cxn−1+xn−2
U* This equation has not

been investigated yet.
This equation is part of
a P6-Tricho Conjecture ; See #70.

29 xn+1 = xn−1
A+xn

U Thm 3.1.1.
Has P2-Tricho.
When A = 1, a positive solution
converges to zero iff
xn−1 > xn, for all n ≥ 0.
See [110], [112], [133], [143], [146],
[148], [149], [175], [226], [227], and [233].

30 xn+1 = xn−1
A+xn−1

B Thm 2.1.1.
This is a Riccati-type equation.
∃! P2-solution and it is not LAS ; ESCP2.

31 xn+1 = xn−1
A+xn−2

U Thm 3.2.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when A < 1.
See [17] and [70].

32 xn+1 = xn−1
Bxn+xn−1

B Thm 2.1.1.
∃! P2-solution when B 6= 1
and it is LAS when B > 1.
There exist infinitely many period-two
solutions when B = 1.
ESCP2 by Theorem 1.6.6.
See [175, p. 60].

33 xn+1 = xn−1
Bxn+xn−2

U Thm 3.3.1.
This equation is part of
a P2-Tricho ; See #146.
Conjecture: EBSCx̄.
See [72].
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34 xn+1 = xn−1
xn−1+Dxn−2

B Thm 2.1.1.
∃! P2-solution when D 6= 1 and
it is LAS when D > 1.
There exist infinitely many period-two
solutions when D = 1.
Conjecture: ESCP2.

35 xn+1 = xn−2
A+xn

U Thm 3.5.1.
Has P3-Tricho.
Conjecture: EBSCx̄ when A < 1.
See [60] and [146].

36 xn+1 = xn−2
A+xn−1

U Thm 3.5.1.
Has P3-Tricho.
Conjecture: EBSCx̄ when A < 1.
See [60] and [146].

37 xn+1 = xn−2
A+xn−2

B Thm 2.1.1.
This is a Riccati-type equation.
ESCP3.

38 xn+1 = xn−2
Bxn+xn−1

U Thm 3.5.1.
Part of a P3-Tricho.
See [60] and [146].

39 xn+1 = xn−2
Bxn+xn−2

B Thm 2.1.1.
∃! P3-solution when B < 1.
Conjecture: B < 1 +

√
2 ⇒ EPSCx̄.

Conjecture: ESCP19 when B > 123.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [60].
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40 xn+1 = xn−2
Cxn−1+xn−2

B Thm 2.1.1.
∃! P3-solution when C < 1.
Conjecture: C < 1+

√
5

2 ⇒ EPSCx̄.
Conjecture: ESCP13 when C > 8.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [60].

41 xn+1 = α + βxn U This is a linear equation.

42 xn+1 = β + α
xn

B Thm 2.1.1.
This is a Riccati Equation ; ESCx̄.

43 xn+1 = α+xn

xn−1
B Thm 2.2.1.

Lyness’s Equation.
No nontrivial solution has a limit.
It possesses the invariant:
(α + xn + xn−1)(1 + 1

xn
)(1 + 1

xn−1
) = const.,

for all n ≥ 0.
Periodicity destroys boundedness.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [20], [21], [22], [62], [116], [124], [157],
[158], [174], [175, p. 70], [189], [193], [198],
[199], [215], [216], [193], and [237].

44 xn+1 = α+xn

xn−2
U* This equation has not been

investigated yet.
This equation is part of
a P6-Tricho Conjecture ; See #70.

45 xn+1 = α + γxn−1 U This equation is linear.
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46 xn+1 = α+xn−1
xn

U Thm 3.1.1.
This equation is part of
a P2-Tricho ; See #165.
See [110] and [175].

47 xn+1 = γ + α
xn−1

B Thm 2.1.1.
This is a Riccati-type equation ; ESCx̄.

48 xn+1 = α+xn−1
xn−2

U Thm 3.2.1.
This equation is part of
a P2-Tricho ; See #146.
Conjecture: EBSCx̄.
See [72].

49 xn+1 = α + δxn−2 U This equation is linear.

50 xn+1 = α+xn−2
xn

U Thm 3.6.1.
Has P5-Tricho.
See [54], [59], and [151].

51 xn+1 = α+xn−2
xn−1

U This equation is part of
a P4-Tricho Conjecture.
See [47].

52 xn+1 = δ + α
xn−2

B Thm 2.1.1.
This is a Riccati-type equation ; ESCx̄.

53 xn+1 = βxn + γxn−1 U This is a linear equation.
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54 xn+1 = β + xn−1
xn

U Thm 3.1.1 ; Has P2-Tricho.
The very first P2-Tricho.
EBSCx̄ when β < 1 by Theorem 4.2.2.
See [16] and [175, p. 70].

55 xn+1 = γ + xn

xn−1
B Thm 2.2.1 or Thm 2.3.4.

ESCx̄.
See [175, p. 70].

56 xn+1 = βxn+xn−1
xn−2

U* This equation has not been
investigated yet for β 6= 1.
For β = 1, ESB.
For β = 1, it possesses the invariant:
(xn + xn−1)(1 + 1

xn
)(1 + 1

xn−1
) = const.,

for all n ≥ 0.
Conjecture: ∃US iff β 6= 1.
Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or
to a periodic solution.

57 xn+1 = βxn + δxn−2 U This is a linear equation.

58 xn+1 = β + xn−2
xn

B Thm 2.4.1.
Conjecture: −1 +

√
2 < β < 1 ⇒ ESCx̄.

Conjecture: ESCP19 when β < 1
123 .

Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
Periodicity destroys boundedness.
See [49], [65], and [87].

59 xn+1 = βxn+xn−2
xn−1

U ESCP4 when β = 1 ; ∃US when β < 1.
Conjecture: Has P4-Tricho.
Conjecture: EBSCx̄ when β < 1.
See [59], [150], and [222].
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60 xn+1 = δ + xn

xn−2
B Thm 2.3.3 or Thm 2.3.4.

Conjecture: δ > −1 +
√

2 ⇒ ESCx̄.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [69].

61 xn+1 = γxn−1 + δxn−2 U This equation is linear.

62 xn+1 = γxn−1+xn−2
xn

U Thm 3.1.1.
∃US when γ ≥ 1.
Conjecture: −1+

√
3

2 < γ < 1 ⇒ ESCx̄.
Conjecture: EBSCx̄ when γ > 1.
EBSCP2 when γ = 1.
Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or
to a periodic solution.
See [67] and [76].

63 xn+1 = γ + xn−2
xn−1

B Thm 2.6.1.

Conjecture: −1+
√

5
2 < γ < 1 ⇒ ESCx̄.

Conjecture: ESCP13 when γ < 1
8 .

Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [49] and [65].

64 xn+1 = δ + xn−1
xn−2

U Thm 3.2.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when δ < 1.
See [70].
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65 xn+1 = α+xn

A+xn
B Thm 2.1.1.

This is the Riccati Equation with
Riccati number: βA−αB

(β+A)2 ≤ 1
4 .

ESCx̄ ; See [45], [120], [124],
[126], and [175, p. 17].

66 xn+1 = α+xn

A+xn−1
B Thm 2.2.1 or Thm 2.3.4.

Conjecture: ESCx̄.
Any claims prior to July 2007
that this conjecture
has been confirmed are not correct.
See [104], [157], [158], and [175].

67 xn+1 = α+xn

A+xn−2
B Thm 2.3.3 or Thm 2.3.4.

Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to an equilibrium
or to a periodic solution.
See [157].

68 xn+1 = α+xn

Bxn+xn−1
B Thm 2.1.1.

Conjecture: ESCx̄.
Any claims prior to July 2007
that this conjecture
has been confirmed are not correct.
See [175, p. 82].

69 xn+1 = α+xn

xn+Dxn−2
B Thm 2.1.1.

Conjecture: For the equilibrium x̄
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
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70 xn+1 = α+xn

Cxn−1+xn−2
U* Conjecture: Has P6-Tricho.

This equation has not
been investigated yet.
See [59].

71 xn+1 = α+xn−1
A+xn

U Thm 3.1.1.
Has P2-Tricho.
EBSCx̄ when A < 1 by Thm 4.2.2.
See [110] or [175, p. 89].

72 xn+1 = α+xn−1
A+xn−1

B Thm 2.1.1.
This is a Riccati-type equation ; ESCx̄.

73 xn+1 = α+xn−1
A+xn−2

U Thm 3.2.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when A < 1.
See [17] and [72].

74 xn+1 = α+xn−1
Bxn+xn−1

B Thm 2.1.1.
∃! P2-solution when B > 1 + 4α
and it is LAS.
ESCP2.
See [15], [102], and [175, p. 92].

75 xn+1 = α+xn−1
Bxn+xn−2

U Thm 3.3.1.
This equation is part of
a P2-Tricho ; See #146.
Conjecture: EBSCx̄.
See [72].
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76 xn+1 = α+xn−1
xn−1+Dxn−2

B Thm 2.1.1.
For the equilibrium x̄,
D ≤ 1 + 4α ⇒ GAS.
∃! P2-solution when D > 1 + 4α
and it is LAS.
Conjecture: ESCP2.
See [102], which extends
and unifies #74 and #76.

77 xn+1 = α+xn−2
A+xn

B Thm 2.5.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
Periodicity destroys boundedness.
See [49] and [65].

78 xn+1 = α+xn−2
A+xn−1

B Thm 2.7.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
Periodicity destroys boundedness.
See [49] and [65].

79 xn+1 = α+xn−2
A+xn−2

B Thm 2.1.1.
This is a Riccati-type equation ; ESCx̄.

80 xn+1 = α+xn−2
Bxn+xn−1

U Thm 3.4.1.
∃US for all positive values
of the parameters.
For the equilibrium x̄,
LAS 6⇒ GA.
Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or
to a periodic solution.
See [61] and [69].
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81 xn+1 = α+xn−2
Bxn+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [90].

82 xn+1 = α+xn−2
Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [125].

83 xn+1 = xn+γxn−1
A+xn

U Thm 3.1.1.
EBSCx̄ when γ > 1 + A
by Thm 4.2.2.
Has P2-Tricho.
See [175] and [179].

84 xn+1 = βxn+xn−1
A+xn−1

B Thm 2.2.1 or Thm 2.3.4.
ESC.
See [175, p. 109] and [180].

85 xn+1 = xn+γxn−1
A+xn−2

U Thm 3.2.1.
Conjecture: EBSCx̄ when γ > 1 + A.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA
when γ < 1 + A.
Conjecture: ESCP2 when γ = 1 + A.
Conjecture: There exist bounded
solutions that do not converge
to an equilibrium or
to a periodic solution.
See [49] and [69].
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86 xn+1 = βxn+xn−1
Bxn+xn−1

B Thm 2.1.1.
∃! P2-solution and it is LAS.
ESCP2.
See [15], [175, p. 113], [183], and [205].

87 xn+1 = xn+γxn−1
xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄ when γ > 1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA when γ < 1.
Conjecture: ESCP2 when γ = 1.
Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or
to a periodic solution.

88 xn+1 = βxn+xn−1
xn−1+Dxn−2

B Thm 2.8.1.
∃! P2-solution
and we conjecture that it is LAS.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.
See [49] and [119].

89 xn+1 = βxn+δxn−2
1+xn

B Thm 2.5.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to an equilibrium
or to a periodic solution.

90 xn+1 = βxn+δxn−2
1+xn−1

B Thm 2.7.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to an equilibrium
or to a periodic solution.
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91 xn+1 = βxn+xn−2
A+xn−2

B Thm 2.3.3 or Thm 2.3.4.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to an equilibrium
or to a periodic solution.
See [69].

92 xn+1 = xn+δxn−2
xn+Cxn−1

U Thm 3.4.1.
For the equilibrium x̄, LAS 6⇒ GA.
ESB iff δ ≤ C.
Conjecture: For the equilibrium x̄
in the region where ESB, LAS ⇒ GA.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium or
to a periodic solution.
See [61] and [69].

93 xn+1 = βxn+xn−2
Bxn+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to the equilibrium
or to a periodic solution.

94 xn+1 = βxn+xn−2
Cxn−1+xn−2

B Thm 2.9.1
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions that
do not converge to an equilibrium
or to a periodic solution.
See [152].
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95 xn+1 = γxn−1+xn−2
A+xn

U Thm 3.1.1.
Conjecture: EBSCx̄ when γ > 1 + A.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GAS
when γ < 1 + A.
ESCP2 when γ = 1 + A.
Conjecture: There exist bounded
solutions that do not converge
to an equilibrium or
to a periodic solution.
See [67].

96 xn+1 = γxn−1+xn−2
A+xn−1

B Thm 2.7.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [49].

97 xn+1 = γxn−1+xn−2
A+xn−2

U Thm 3.2.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when γ > 1 + A.
See [70] and [128].

98 xn+1 = xn−1+δxn−2
Bxn+xn−1

U Thm 3.4.1.
For the equilibrium x̄, LAS 6⇒ GA.
ESB iff δ ≤ B.
Conjecture: For the equilibrium x̄
in the region where ESB, LAS ⇒ GA.
∃! P2-solution and we conjecture
that it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [61].
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99 xn+1 = γxn−1+xn−2
Bxn+xn−2

U Thm 3.3.1.
Conjecture: EBSCx̄ when γ > 1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA when γ < 1.
Conjecture: EBSCP2 when γ = 1.
Conjecture: There exist bounded
solutions that do not converge
to the equilibrium or
to a periodic solution.
See [56].

100 xn+1 = γxn−1+xn−2
Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
∃! P2-solution and it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [140] and [141].

101 xn+1 = 1
A+Bxn+xn−1

B Thm 2.1.1.
ESCx̄.
See [175, p. 71] and [208].

102 xn+1 = 1
A+Bxn+xn−2

B Thm 2.1.1.
ESCx̄.
See [208].

103 xn+1 = 1
A+Cxn−1+xn−2

B Thm 2.1.1.
ESCx̄.
See [208].

104 xn+1 = 1
Bxn+Cxn−1+xn−2

B Thm 2.1.1.
ESCx̄.
See [103] and [208].
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105 xn+1 = βxn

1+Bxn+xn−1
B Thm 2.1.1.

ESC by Thms 5.23.2, 5.23.4,
and 1.6.3.

106 xn+1 = βxn

1+Bxn+xn−2
B Thm 2.1.1.

Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.

107 xn+1 = βxn

1+Cxn−1+xn−2
B Thm 2.3.1 or Thm 2.3.4.

Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [157].

108 xn+1 = xn

xn+Cxn−1+Dxn−2
B Thm 2.1.1.

Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

109 xn+1 = xn−1
A+Bxn+xn−1

B Thm 2.1.1.
∃! P2-solution
when 0 ≤ A < 1 and B 6= 1
and it is LAS
when 0 ≤ A < 1 and B > 1.
There exist infinitely many
period-two solutions when
0 ≤ A < 1 and B = 1.
ESCP2 by Thm 1.6.6.
See [61] and [175, p. 133].
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110 xn+1 = xn−1
A+Bxn+xn−2

U Thm 3.3.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when A < 1.
See [72].

111 xn+1 = xn−1
A+xn−1+Dxn−2

B Thm 2.1.1.
∃! P2-solution
when 0 ≤ A < 1 and D 6= 1
and it is LAS
when 0 ≤ A < 1 and D > 1.
There exist infinitely many
period-two solutions
when 0 ≤ A < 1 and D = 1.
Conjecture: ESCP2.

112 xn+1 = xn−1
Bxn+xn−1+Dxn−2

B Thm 2.1.1.
∃! P2-solution when B + D 6= 1
and it is LAS when B + D > 1.
Conjecture: ESCP2.

113 xn+1 = xn−2
A+Bxn+xn−1

U Thm 3.5.1.
Has P3-Tricho.
See [60] and [146].

114 xn+1 = xn−2
A+Bxn+xn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.
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115 xn+1 = xn−2
A+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.

116 xn+1 = xn−2
Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

117 xn+1 = 1 + βxn + γxn−1 U This is a linear equation.

118 xn+1 = α+xn+γxn−1
xn

U Thm 3.1.1.
Has P2-Tricho.
See [175, p. 137].

119 xn+1 = α+βxn+xn−1
xn−1

B Thm 2.2.1 or Thm 2.3.4.
Conjecture: ESCx̄.
Can be transformed to #66 with α > A,
which remains a conjecture.
See [175, p. 137].
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120 xn+1 = α+βxn+xn−1
xn−2

U* ESP8 when α = β = 1.
Todd’s Equation.
Conjecture: ∃US
iff β 6= 1.
When β = 1, it possesses
the invariant:
(α +

∑2
i=0 xn−i)

∏2
j=0(1 + 1

xn−j
)

=const., for all n ≥ 0.
Conjecture: There exist
solutions that do not
converge to the equilibrium or
to a periodic solution.

121 xn+1 = 1 + βxn + δxn−2 U This equation is linear.

122 xn+1 = α+xn+δxn−2
xn

B Thm 2.5.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium or
to a periodic solution.

123 xn+1 = α+βxn+xn−2
xn−1

U Conjecture: Has P4-Tricho.
Conjecture: ESCx̄ when β > 1.
See [59], [150], and [222].

124 xn+1 = α+βxn+xn−2
xn−2

B Thm 2.3.3 or Thm 2.3.4.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium or
to a periodic solution.
See [69].
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125 xn+1 = 1 + γxn−1 + δxn−2 U This equation is linear.

126 xn+1 = α+γxn−1+xn−2
xn

U Thm 3.1.1.
∃US when γ ≥ 1.
Conjecture: EBSCx̄ when γ > 1.
EBSCP2 when γ = 1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium or
to a periodic solution.
See [46] and [67].

127 xn+1 = α+xn−1+δxn−2
xn−1

B Thm 2.7.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium or
to a periodic solution.
See [49].

128 xn+1 = α+γxn−1+xn−2
xn−2

U Thm 3.2.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when γ > 1.
See [70].

129 xn+1 = βxn + γxn−1 + δxn−2 U This equation is linear.
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130 xn+1 = xn+γxn−1+δxn−2
xn

U Thm 3.1.1.
Conjecture: EBSCx̄ when
γ > 1 + δ.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + δ.
Conjecture: ESCP2 when
γ = 1 + δ.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [67].

131 xn+1 = βxn+xn−1+δxn−2
xn−1

B Thm 2.7.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist solutions
which do not converge
to the equilibrium or
to a periodic solution.
See [49].

132 xn+1 = βxn+γxn−1+xn−2
xn−2

U Thm 3.2.1.
Conjecture: EBSCx̄ when
γ > 1 + β.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + β.
Conjecture: ESCP2

when γ = 1 + β.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium
or to a periodic solution.
See [49].

133 xn+1 = 1
A+Bxn+Cxn−1+xn−2

B Thm 2.1.1.
ESCx̄.
See [208].
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134 xn+1 = xn

A+Bxn+Cxn−1+xn−2
B Thm 2.1.1.

Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

135 xn+1 = xn−1
A+Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
∃! P2-solution
and it is LAS.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

136 xn+1 = xn−2
A+Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

137 xn+1 = 1 + βxn + γxn−1 + δxn−2 U This equation is linear.

138 xn+1 = α+xn+γxn−1+δxn−2
xn

U Thm 3.1.1.
Conjecture: EBSCx̄
when γ > 1 + δ.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + δ.
ESCP2 when γ = 1 + δ.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium
or to a periodic solution.
See [67].
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139 xn+1 = α+βxn+xn−1+δxn−2
xn−1

B Thm 2.7.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [49].

140 xn+1 = α+βxn+γxn−1+xn−2
xn−2

U Thm 3.2.1.
Conjecture: EBSCx̄ when γ > 1 + β.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA
when γ < 1 + β.
Conjecture: ESCP2 when γ = 1 + β.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium
or to a periodic solution.
See [49].

141 xn+1 = α+xn

A+Bxn+xn−1
B Thm 2.1.1.

Conjecture: ESCx̄.
Any claims prior to July 2007
that this conjecture
has been confirmed
are not correct.
See [15] and [175, p. 141].

142 xn+1 = α+xn

A+xn+Dxn−2
B Thm 2.1.1.

Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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143 xn+1 = α+xn

A+Cxn−1+xn−2
B Thm 2.3.1 or Thm 2.3.4.

Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].

144 xn+1 = α+xn

xn+Cxn−1+Dxn−2
B Thm 2.1.1.

Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

145 xn+1 = α+xn−1
A+Bxn+xn−1

B Thm 2.1.1.
∃! P2-solution
and it is LAS.
ESCP2.
See [15] and [175, p. 149].

146 xn+1 = α+xn−1
A+Bxn+xn−2

U Thm 3.3.1.
Has P2-Tricho.
Conjecture: EBSCx̄ when A < 1.
See [49] and [72].

147 xn+1 = α+xn−1
A+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: ∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: ESCP2.
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148 xn+1 = α+xn−1
Bxn+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: ∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: ESCP2.

149 xn+1 = α+xn−2
A+Bxn+xn−1

U Thm 3.4.1.
ESB iff A ≥ 1.
For the
equilibrium x̄,
LAS 6⇒ GA.
ESCx̄ iff A ≥ 1.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [61] and [69].

150 xn+1 = α+xn−2
A+Bxn+xn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

151 xn+1 = α+xn−2
A+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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152 xn+1 = α+xn−2
Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

153 xn+1 = βxn+xn−1
A+Bxn+xn−1

B Thm 2.1.1.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: ESCP2.
See [175, p. 158].

154 xn+1 = xn+γxn−1
A+xn+Dxn−2

U Thm 3.3.1.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA
when A− 1 < γ < 1 + A.
Conjecture: EBSCx̄
when γ > 1 + A.
Conjecture: ESCP2

when γ = 1 + A.
Conjecture: There exist
bounded solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [49].

155 xn+1 = βxn+xn−1
A+xn−1+Dxn−2

B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [69].
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156 xn+1 = xn+γxn−1
xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

157 xn+1 = βxn+xn−2
A+Bxn+xn−1

U Thm 3.4.1.
For the
positive equilibrium x̄,
LAS 6⇒ GA.
ESB iff A + β

B ≥ 1.
Conjecture: For the
positive equilibrium x̄
in the region where ESB,
LAS ⇒ GA.
Conjecture: There exist
bounded solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [48] and [61].

158 xn+1 = xn+δxn−2
A+xn+Dxn−2

B Thm 2.1.1.
Conjecture: For the
positive equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
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159 xn+1 = βxn+xn−2
A+Cxn−1+xn−2

B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the
positive equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [69].

160 xn+1 = βxn+xn−2
Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

161 xn+1 = xn−1+δxn−2
A+Bxn+xn−1

U Thm 3.4.1.
For the
positive equilibrium x̄, LAS 6⇒ GA.
ESB iff δ ≤ A + B.
Conjecture: For the
positive equilibrium x̄
in the region where ESB,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
bounded solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [61] and [69].
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162 xn+1 = γxn−1+xn−2
A+Bxn+xn−2

U Thm 3.3.1.
Conjecture: EBSCx̄ when γ > 1 + A.
Conjecture: For the
positive equilibrium x̄,
LAS ⇒ GA
when γ < 1 + A.
Conjecture: EBSCP2 when γ = 1 + A.
Conjecture: There exist
bounded solutions
that do not converge
to an equilibrium or
to a periodic solution.

163 xn+1 = xn−1+δxn−2
A+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the
positive equilibrium x̄,
LAS ⇒ GA.
∃! P2-solution and
we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

164 xn+1 = xn−1+δxn−2
Bxn+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
∃! P2-solution and
we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

165 xn+1 = α+xn+γxn−1
A+xn

U Thm 3.1.1.
Has P2-Tricho.
EBSCx̄ when γ > 1 + A
by Theorem 4.2.2.
See [112] and [175, p. 167].



494 Dynamics of Third-Order Rational Difference Equations

166 xn+1 = α+βxn+xn−1
A+xn−1

B Thm 2.2.1 or Thm 2.3.4.
Conjecture: ESCx̄.
See [69], [134], and [175, p. 172].

167 xn+1 = α+βxn+xn−1
A+xn−2

U Thm 3.2.1.
Conjecture: EBSCx̄ when β + A < 1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA
when β + A > 1.
Conjecture: ESCP2 when β + A = 1.
Conjecture: There exist
bounded solutions that
do not converge
to the equilibrium or
to a periodic solution.

168 xn+1 = α+xn+γxn−1
xn+Cxn−1

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: ESCP2.
See [175, p. 175].

169 xn+1 = α+xn+γxn−1
xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄ when γ > 1.
Conjecture: For the
equilibrium x̄,
LAS ⇒ GA
when γ < 1.
Conjecture: ESCP2 when γ = 1.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium
or to a periodic solution.
See [49] and [70].
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170 xn+1 = α+βxn+xn−1
xn−1+Dxn−2

B Thm 2.8.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [49].

171 xn+1 = α+βxn+xn−2
A+xn

B Thm 2.5.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

172 xn+1 = α+βxn+δxn−2
1+xn−1

B Thm 2.7.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

173 xn+1 = α+βxn+xn−2
A+xn−2

B Thm 2.3.3 or Thm 2.3.4.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].
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174 xn+1 = α+xn+δxn−2
xn+Cxn−1

U Thm 3.4.1.
For the
equilibrium x̄, LAS 6⇒GA.
Conjecture: ESB iff δ ≤ C.
Conjecture: For the
equilibrium x̄
in the region where ESB,
LAS ⇒ GA.
Conjecture: There exist
bounded solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].

175 xn+1 = α+βxn+xn−2
Bxn+xn−2

B Thm 2.1.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

176 xn+1 = α+βxn+xn−2
Cxn−1+xn−2

B Thm 2.9.1
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [152].
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177 xn+1 = α+γxn−1+xn−2
A+xn

U Thm 3.1.1.
Conjecture: EBSCx̄ when γ > 1 + A.
Conjecture: For the
equilibrium x̄,
LAS ⇒ GA
when γ < 1 + A.
Conjecture: ESCP2

when γ = 1 + A.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [67].

178 xn+1 = α+γxn−1+δxn−2
1+xn−1

B Thm 2.7.1.
Conjecture: For the
equilibrium x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

179 xn+1 = α+γxn−1+xn−2
A+xn−2

U Thm 3.2.1.
Has P2-Tricho.
Conjecture: EBSCx̄
when γ > 1 + A.
See [70].



498 Dynamics of Third-Order Rational Difference Equations

180 xn+1 = α+xn−1+δxn−2
Bxn+xn−1

U Thm 3.4.1.
Conjecture: ESB iff δ ≤ B.
For the equilibrium
x̄, LAS 6⇒ GA.
Conjecture: For the equilibrium
x̄ in the region where ESB,
LAS ⇒ GA.
∃! P2 solution
and we conjecture that
it is LAS.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [61] and [69].

181 xn+1 = α+γxn−1+xn−2
Bxn+xn−2

U Thm 3.3.1.
Conjecture: EBSCx̄
when γ > 1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1.
Conjecture: EBSCP2 when γ = 1.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [49].

182 xn+1 = α+γxn−1+xn−2
Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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183 xn+1 = xn+γxn−1+δxn−2
A+xn

U Thm 3.1.1.
Conjecture: EBSCx̄
when γ > 1 + δ + A.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA
when γ < 1 + δ + A.
ESCP2 when γ = 1 + δ + A.
Conjecture: There exist
bounded solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [67].

184 xn+1 = βxn+xn−1+δxn−2
A+xn−1

B Thm 2.7.1.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

185 xn+1 = βxn+γxn−1+xn−2
A+xn−2

U Thm 3.2.1.
Conjecture: EBSCx̄
when γ > 1 + β + A.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA
when γ < 1 + β + A.
Conjecture: ESCP2

when γ = 1 + β + A.
Conjecture: There exist
bounded solutions
that do not converge
to an equilibrium or
to a periodic solution.
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186 xn+1 = xn+γxn−1+δxn−2
xn+Cxn−1

U Thm 3.4.1.
For the equilibrium
x̄, LAS 6⇒ GA.
Conjecture: ESB iff
δ ≤ γ

C + C.
Conjecture: For the
equilibrium x̄
in the region where ESB,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [69].

187 xn+1 = xn+γxn−1+δxn−2
xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄
when γ > 1 + δ.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + δ.
Conjecture: ESCP2

when γ = 1 + δ.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [49].
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188 xn+1 = βxn+xn−1+δxn−2
xn−1+Dxn−2

B Thm 2.3.2 or Thm 2.3.4.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].

189 xn+1 = α+xn

A+xn+Cxn−1+Dxn−2
B Thm 2.1.1.

Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

190 xn+1 = α+xn−1
A+Bxn+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

191 xn+1 = α+xn−2
A+Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
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192 xn+1 = xn+γxn−1
A+xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

193 xn+1 = xn+δxn−2
A+xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.

194 xn+1 = xn−1+δxn−2
A+Bxn+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to an equilibrium
or to a periodic solution.
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195 xn+1 = α+βxn+γxn−1+δxn−2
A+xn

U Thm 3.1.1.
ESCP2 when γ = β + δ + A.
Conjecture: EBSCx̄
when γ > β + δ + A.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < β + δ + A.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [67].

196 xn+1 = α+βxn+γxn−1+xn−2
A+xn−1

B Thm 2.7.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.

197 xn+1 = α+βxn+γxn−1+xn−2
A+xn−2

U Thm 3.2.1.
Conjecture: EBSCx̄
when γ > 1 + β + A.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + β + A.
Conjecture: ESCP2

when γ = 1 + β + A.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
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198 xn+1 = α+xn+γxn−1+δxn−2
xn+Cxn−1

U Thm 3.4.1.
Conjecture: ESB
iff δ ≤ C + γ

C .
Conjecture: For the equilibrium
x̄, LAS 6⇒ GA.
However in the region where ESB,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [69].

199 xn+1 = α+xn+γxn−1+δxn−2
xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄
when γ > 1 + δ.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + δ.
Conjecture: ESCP2

when γ = 1 + δ.
Conjecture: There exist
bounded solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [49].

200 xn+1 = α+βxn+xn−1+δxn−2
xn−1+Dxn−2

B Thm 2.3.2.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2 solution
and we conjecture that
it is LAS.
Conjecture: There exist
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].
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201 xn+1 = α+βxn+xn−1
A+Bxn+xn−1

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2 solution iff
β + A < 1 and
4α
< (1− β −A) [B(1− β −A)− (1 + 3β −A)]
and we conjecture that
it is LAS.
Conjecture: x̄ is GAS
when either
β + A ≥ 1
or
4α
≥ (1− β −A) [B(1− β −A)− (1 + 3β −A)].
Conjecture: ESCP2.

202 xn+1 = α+xn+γxn−1
A+xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄ when γ > 1 + A.
Conjecture: For the equilibrium x̄,
LAS ⇒ GA when γ < 1 + A.
Conjecture: ESCP2

when γ = 1 + A.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [69].

203 xn+1 = α+βxn+xn−1
A+xn−1+Dxn−2

B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [69].
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204 xn+1 = α+xn+γxn−1
xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

205 xn+1 = α+xn+δxn−2
A+xn+Cxn−1

U Thm 3.4.1.
Conjecture: ESB iff δ ≤ A + C.
Conjecture: For the equilibrium
x̄, LAS 6⇒ GA.
However in the region where ESB,
LAS ⇒ GA.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [49].

206 xn+1 = α+xn+δxn−2
A+xn+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

207 xn+1 = α+βxn+xn−2
A+Cxn−1+xn−2

B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [69].
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208 xn+1 = α+xn+δxn−2
xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

209 xn+1 = α+xn−1+δxn−2
A+Bxn+xn−1

U Thm 3.4.1.
Conjecture: ESB iff
δ ≤ A + B.
Conjecture: For the equilibrium
x̄, LAS 6⇒ GA.
However in the region where ESB,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [49].

210 xn+1 = α+γxn−1+xn−2
A+Bxn+xn−2

U Thm 3.3.1.
Conjecture: EBSCx̄ when γ > 1 + A.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + A.
Conjecture: ESCP2 when γ = 1 + A.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [49].
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211 xn+1 = α+xn−1+δxn−2
A+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

212 xn+1 = α+xn−1+δxn−2
Bxn+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

213 xn+1 = xn+γxn−1+δxn−2
A+xn+Cxn−1

U Thm 3.4.1.
Conjecture: ESB iff
δ ≤ A + γ

C + C.
Conjecture: For the positive
equilibrium x̄,
LAS 6⇒ GA.
However in the region where ESB,
LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist bounded
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [69].



Appendix A 509

214 xn+1 = xn+γxn−1+δxn−2
A+xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄
when γ > 1 + δ + A.
Conjecture: For the positive
equilibrium x̄,
LAS ⇒ GA
when γ < 1 + δ + A.
Conjecture: ESCP2

when γ = 1 + δ + A.
Conjecture: There exist bounded
solutions that do not
converge to an equilibrium
or to a periodic solution.
See [49].

215 xn+1 = βxn+xn−1+δxn−2
A+xn−1+Dxn−2

B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.
See [69].

216 xn+1 = xn+γxn−1+δxn−2
xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
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217 xn+1 = α+xn+γxn−1
A+xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

218 xn+1 = α+xn+δxn−2
A+xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

219 xn+1 = α+γxn−1+xn−2
A+Bxn+Cxn−1+xn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

220 xn+1 = xn+γxn−1+δxn−2
A+xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the positive
equilibrium x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to an equilibrium or
to a periodic solution.
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221 xn+1 = α+βxn+γxn−1+δxn−2
A+Bxn+Cxn−1

U Thm 3.4.1.
Conjecture: ESB iff
δ ≤ A + B γ

C + C β
B .

Conjecture: For the equilibrium
x̄, LAS 6⇒ GA.
However in the region where ESB,
LAS ⇒ GA.
∃! P2 solution
and we conjecture that
it is LAS.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.
See [61] and [69].

222 xn+1 = α+xn+γxn−1+δxn−2
A+xn+Dxn−2

U Thm 3.3.1.
Conjecture: EBSCx̄
when γ > 1 + δ + A.
ESB iff γ ≤ 1 + δ + A.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA
when γ < 1 + δ + A.
Conjecture: ESCP2

when γ = 1 + δ + A.
Conjecture: There exist bounded
solutions that do not
converge to the equilibrium
or to a periodic solution.

223 xn+1 = α+βxn+xn−1+δxn−2
A+xn−1+Dxn−2

B Thm 2.3.1 or Thm 2.3.4.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
See [69].
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224 xn+1 = α+xn+γxn−1+δxn−2
xn+Cxn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2-solution
and we conjecture that
it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.

225 xn+1 = α+βxn+xn−1+δxn−2
A+Bxn+xn−1+Dxn−2

B Thm 2.1.1.
Conjecture: For the equilibrium
x̄, LAS ⇒ GA.
∃! P2 solution iff
β + δ + A < 1 and
4α < (B + D)(1− β − δ −A)2
−(1− β − δ −A)(1 + 3β + 3δ −A)
and we conjecture that it is LAS.
Conjecture: There exist solutions
that do not converge
to the equilibrium or
to a periodic solution.
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Table of the Boundedness Character of the 736 Special
Cases of Order Four of

xn+1 =
α + βxn + γxn−1 + δxn−2 + εxn−3

A + Bxn + Cxn−1 + Dxn−2 + Exn−3

, n = 0, 1, . . . .

The above equation contains (25−1)×(25−1) = 961 special cases, of which 225
are of order less than or equal to three (see Appendix A) and the remaining
736 are of order four and they are presented in this appendix.

For the definition of the number assigned to a special case see Section 2.3.

A boldfaced B indicates that every solution of the equation in this special
case is bounded and a boldfaced U indicates that the equation in this special
case has unbounded solutions in some range of its parameters and for some
initial conditions.

A boldfaced B* next to an equation indicates that we only conjecture that
every solution of the equation is bounded and a boldfaced U* indicates that
we only conjecture that the equation has unbounded solutions in some range
of its parameters and for some initial conditions.

513
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258 xn+1 = εxn−3
A U Linear

259 xn+1 = α+εxn−3
A U Linear

262 xn+1 = βxn+εxn−3
A U Linear

263 xn+1 = α+βxn+εxn−3
A U Linear

264 xn+1 = εxn−3
Bxn

U Reducible to linear
265 xn+1 = α+εxn−3

Bxn
U Thm 4.2.4

266 xn+1 = εxn−3
A+Bxn

U Thm 4.2.4
267 xn+1 = α+εxn−3

A+Bxn
U Thm 4.2.4

268 xn+1 = βxn+εxn−3
Bxn

U Thm 4.2.4
269 xn+1 = α+βxn+εxn−3

Bxn
U Thm 4.2.4

270 xn+1 = βxn+εxn−3
A+Bxn

U Thm 4.2.4
271 xn+1 = α+βxn+εxn−3

A+Bxn
U Thm 4.2.4

274 xn+1 = γxn−1+εxn−3
A U Linear

275 xn+1 = α+γxn−1+εxn−3
A U Linear

278 xn+1 = βxn+γxn−1+εxn−3
A U Linear

279 xn+1 = α+βxn+γxn−1+εxn−3
A U Linear

280 xn+1 = γxn−1+εxn−3
Bxn

U Thm 3.1.2. See also [58].
281 xn+1 = α+γxn−1+εxn−3

Bxn
U Thm 3.1.2. See also [58].

282 xn+1 = γxn−1+εxn−3
A+Bxn

U Thm 3.1.2. See also [58].
283 xn+1 = α+γxn−1+εxn−3

A+Bxn
U Thm 3.1.2. See also [58].

284 xn+1 = βxn+γxn−1+εxn−3
Bxn

U Thm 3.1.2. See also [58].
285 xn+1 = α+βxn+γxn−1+εxn−3

Bxn
U Thm 3.1.2. See also [58].

286 xn+1 = βxn+γxn−1+εxn−3
A+Bxn

U Thm 3.1.2. See also [58].
287 xn+1 = α+βxn+γxn−1+εxn−3

A+Bxn
U Thm 3.1.2. See also [58].

288 xn+1 = εxn−3
Cxn−1

U Reducible to linear
289 xn+1 = α+εxn−3

Cxn−1
U Reducible to case #46

290 xn+1 = εxn−3
A+Cxn−1

U Reducible to case #29
291 xn+1 = α+εxn−3

A+Cxn−1
U Reducible to case #71

292 xn+1 = βxn+εxn−3
Cxn−1

U*

293 xn+1 = α+βxn+εxn−3
Cxn−1

U*

294 xn+1 = βxn+εxn−3
A+Cxn−1

U*

295 xn+1 = α+βxn+εxn−3
A+Cxn−1

U*
296 xn+1 = εxn−3

Bxn+Cxn−1
U*

297 xn+1 = α+εxn−3
Bxn+Cxn−1

U*
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298 xn+1 = εxn−3
A+Bxn+Cxn−1

U Thm 4.4.2
299 xn+1 = α+εxn−3

A+Bxn+Cxn−1
B See [14]

300 xn+1 = βxn+εxn−3
Bxn+Cxn−1

U See [65]
301 xn+1 = α+βxn+εxn−3

Bxn+Cxn−1
U See [65]

302 xn+1 = βxn+εxn−3
A+Bxn+Cxn−1

U See [65]
303 xn+1 = α+βxn+εxn−3

A+Bxn+Cxn−1
U See [65]

304 xn+1 = γxn−1+εxn−3
Cxn−1

U Reducible to case #54
305 xn+1 = α+γxn−1+εxn−3

Cxn−1
U Reducible to case #118

306 xn+1 = γxn−1+εxn−3
A+Cxn−1

U Reducible to case #83
307 xn+1 = α+γxn−1+εxn−3

A+Cxn−1
U Reducible to case #165

308 xn+1 = βxn+γxn−1+εxn−3
Cxn−1

U*

309 xn+1 = α+βxn+γxn−1+εxn−3
Cxn−1

U*

310 xn+1 = βxn+γxn−1+εxn−3
A+Cxn−1

U*

311 xn+1 = α+βxn+γxn−1+εxn−3
A+Cxn−1

U*
312 xn+1 = γxn−1+εxn−3

Bxn+Cxn−1
U See [65]

313 xn+1 = α+γxn−1+εxn−3
Bxn+Cxn−1

U See [65]
314 xn+1 = γxn−1+εxn−3

A+Bxn+Cxn−1
U See [65]

315 xn+1 = α+γxn−1+εxn−3
A+Bxn+Cxn−1

U See [65]
316 xn+1 = βxn+γxn−1+εxn−3

Bxn+Cxn−1
U See [65]

317 xn+1 = α+βxn+γxn−1+εxn−3
Bxn+Cxn−1

U See [65]
318 xn+1 = βxn+γxn−1+εxn−3

A+Bxn+Cxn−1
U See [65]

319 xn+1 = α+βxn+γxn−1+εxn−3
A+Bxn+Cxn−1

U See [65]
322 xn+1 = δxn−2+εxn−3

A U Linear
323 xn+1 = α+δxn−2+εxn−3

A U Linear
326 xn+1 = βxn+δxn−2+εxn−3

A U Linear
327 xn+1 = α+βxn+δxn−2+εxn−3

A U Linear
328 xn+1 = δxn−2+εxn−3

Bxn
U*

329 xn+1 = α+δxn−2+εxn−3
Bxn

U*
330 xn+1 = δxn−2+εxn−3

A+Bxn
U*

331 xn+1 = α+δxn−2+εxn−3
A+Bxn

U*
332 xn+1 = βxn+δxn−2+εxn−3

Bxn
U*

333 xn+1 = α+βxn+δxn−2+εxn−3
Bxn

U*
334 xn+1 = βxn+δxn−2+εxn−3

A+Bxn
U*

335 xn+1 = α+βxn+δxn−2+εxn−3
A+Bxn

U*
338 xn+1 = γxn−1+δxn−2+εxn−3

A U Linear
339 xn+1 = α+γxn−1+δxn−2+εxn−3

A U Linear
342 xn+1 = βxn+γxn−1+δxn−2+εxn−3

A U Linear
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343 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A U Linear

344 xn+1 = γxn−1+δxn−2+εxn−3
Bxn

U Thm 3.1.2
345 xn+1 = α+γxn−1+δxn−2+εxn−3

Bxn
U Thm 3.1.2

346 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn

U Thm 3.1.2
347 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Bxn
U Thm 3.1.2

348 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn

U Thm 3.1.2
349 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Bxn
U Thm 3.1.2

350 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn

U Thm 3.1.2
351 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Bxn
U Thm 3.1.2

352 xn+1 = δxn−2+εxn−3
Cxn−1

U*

353 xn+1 = α+δxn−2+εxn−3
Cxn−1

U*

354 xn+1 = δxn−2+εxn−3
A+Cxn−1

U*

355 xn+1 = α+δxn−2+εxn−3
A+Cxn−1

U*

356 xn+1 = βxn+δxn−2+εxn−3
Cxn−1

U*

357 xn+1 = α+βxn+δxn−2+εxn−3
Cxn−1

U*

358 xn+1 = βxn+δxn−2+εxn−3
A+Cxn−1

U*

359 xn+1 = α+βxn+δxn−2+εxn−3
A+Cxn−1

U*

360 xn+1 = δxn−2+εxn−3
Bxn+Cxn−1

U See [65]
361 xn+1 = α+δxn−2+εxn−3

Bxn+Cxn−1
U See [65]

362 xn+1 = δxn−2+εxn−3
A+Bxn+Cxn−1

U See [65]
363 xn+1 = α+δxn−2+εxn−3

A+Bxn+Cxn−1
U See [65]

364 xn+1 = βxn+δxn−2+εxn−3
Bxn+Cxn−1

U See [65]
365 xn+1 = α+βxn+δxn−2+εxn−3

Bxn+Cxn−1
U See [65]

366 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Cxn−1

U See [65]
367 xn+1 = α+βxn+δxn−2+εxn−3

A+Bxn+Cxn−1
U See [65]

368 xn+1 = γxn−1+δxn−2+εxn−3
Cxn−1

U*

369 xn+1 = α+γxn−1+δxn−2+εxn−3
Cxn−1

U*

370 xn+1 = γxn−1+δxn−2+εxn−3
A+Cxn−1

U*

371 xn+1 = α+γxn−1+δxn−2+εxn−3
A+Cxn−1

U*

372 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Cxn−1

U*

373 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
Cxn−1

U*

374 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1

U*

375 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1

U*

376 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Cxn−1

U See [65]
377 xn+1 = α+γxn−1+δxn−2+εxn−3

Bxn+Cxn−1
U See [65]

378 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1

U See [65]
379 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Bxn+Cxn−1
U See [65]

380 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Cxn−1

U See [65]
381 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Bxn+Cxn−1
U See [65]
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382 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1

U See [65]
383 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Bxn+Cxn−1
U See [65]

384 xn+1 = εxn−3
Dxn−2

U Reducible to linear
385 xn+1 = α+εxn−3

Dxn−2
U Thm 4.2.4

386 xn+1 = εxn−3
A+Dxn−2

U Thm 4.2.4
387 xn+1 = α+εxn−3

A+Dxn−2
U Thm 4.2.4

388 xn+1 = βxn+εxn−3
Dxn−2

U See [65]
389 xn+1 = α+βxn+εxn−3

Dxn−2
U See [65]

390 xn+1 = βxn+εxn−3
A+Dxn−2

U See [65]
391 xn+1 = α+βxn+εxn−3

A+Dxn−2
U See [65]

392 xn+1 = εxn−3
Bxn+Dxn−2

U Thm 3.1.2. See also [236].
393 xn+1 = α+εxn−3

Bxn+Dxn−2
U Thm 3.1.2. See also [236].

394 xn+1 = εxn−3
A+Bxn+Dxn−2

U Thm 3.1.2. See also [236].
395 xn+1 = α+εxn−3

A+Bxn+Dxn−2
U Thm 3.1.2. See also [236].

396 xn+1 = βxn+εxn−3
Bxn+Dxn−2

U See [65]
397 xn+1 = α+βxn+εxn−3

Bxn+Dxn−2
U See [65]

398 xn+1 = βxn+εxn−3
A+Bxn+Dxn−2

U See [65]
399 xn+1 = α+βxn+εxn−3

A+Bxn+Dxn−2
U See [65]

400 xn+1 = γxn−1+εxn−3
Dxn−2

U Thm 3.1.2
401 xn+1 = α+γxn−1+εxn−3

Dxn−2
U Thm 3.1.2

402 xn+1 = γxn−1+εxn−3
A+Dxn−2

U Thm 3.1.2
403 xn+1 = α+γxn−1+εxn−3

A+Dxn−2
U Thm 3.1.2

404 xn+1 = βxn+γxn−1+εxn−3
Dxn−2

U*

405 xn+1 = α+βxn+γxn−1+εxn−3
Dxn−2

U*

406 xn+1 = βxn+γxn−1+εxn−3
A+Dxn−2

U*

407 xn+1 = α+βxn+γxn−1+εxn−3
A+Dxn−2

U*
408 xn+1 = γxn−1+εxn−3

Bxn+Dxn−2
U Thm 3.1.2. See also [58].

409 xn+1 = α+γxn−1+εxn−3
Bxn+Dxn−2

U Thm 3.1.2. See also [58].
410 xn+1 = γxn−1+εxn−3

A+Bxn+Dxn−2
U Thm 3.1.2. See also [58].

411 xn+1 = α+γxn−1+εxn−3
A+Bxn+Dxn−2

U Thm 3.1.2. See also [58].
412 xn+1 = βxn+γxn−1+εxn−3

Bxn+Dxn−2
U Thm 3.1.2. See also [58].

413 xn+1 = α+βxn+γxn−1+εxn−3
Bxn+Dxn−2

U Thm 3.1.2. See also [58].
414 xn+1 = βxn+γxn−1+εxn−3

A+Bxn+Dxn−2
U Thm 3.1.2. See also [58].

415 xn+1 = α+βxn+γxn−1+εxn−3
A+Bxn+Dxn−2

U Thm 3.1.2. See also [58].
416 xn+1 = εxn−3

Cxn−1+Dxn−2
U Thm 4.4.2

417 xn+1 = α+εxn−3
Cxn−1+Dxn−2

U*
418 xn+1 = εxn−3

A+Cxn−1+Dxn−2
U Thm 4.4.2

419 xn+1 = α+εxn−3
A+Cxn−1+Dxn−2

B*

420 xn+1 = βxn+εxn−3
Cxn−1+Dxn−2

U*
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421 xn+1 = α+βxn+εxn−3
Cxn−1+Dxn−2

U*

422 xn+1 = βxn+εxn−3
A+Cxn−1+Dxn−2

B*

423 xn+1 = α+βxn+εxn−3
A+Cxn−1+Dxn−2

B*
424 xn+1 = εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

425 xn+1 = α+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
426 xn+1 = εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

427 xn+1 = α+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
428 xn+1 = βxn+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

429 xn+1 = α+βxn+εxn−2
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
430 xn+1 = βxn+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

431 xn+1 = α+βxn+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
432 xn+1 = γxn−1+εxn−3

Cxn−1+Dxn−2
U See [65]

433 xn+1 = α+γxn−1+εxn−3
Cxn−1+Dxn−2

U See [65]
434 xn+1 = γxn−1+εxn−3

A+Cxn−1+Dxn−2
U See [65]

435 xn+1 = α+γxn−1+δxn−3
A+Cxn−1+Dxn−2

U See [65]
436 xn+1 = βxn+γxn−1+εxn−3

Cxn−1+Dxn−2
B*

437 xn+1 = α+βxn+γxn−1+εxn−3
Cxn−1+Dxn−2

B*

438 xn+1 = βxn+γxn−1+εxn−3
A+Cxn−1+Dxn−2

B*

439 xn+1 = α+βxn+γxn−1+εxn−3
A+Cxn−1+Dxn−2

B*
440 xn+1 = γxn−1+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

441 xn+1 = α+γxn−1+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
442 xn+1 = γxn−1+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

443 xn+1 = α+γxn−1+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
444 xn+1 = βxn+γxn−1+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

445 xn+1 = α+βxn+γxn−1+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
446 xn+1 = βxn+γxn−1+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

447 xn+1 = α+βxn+γxn−1+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
448 xn+1 = δxn−2+εxn−3

Dxn−2
U Thm 4.2.4

449 xn+1 = α+δxn−2+εxn−3
Dxn−2

U Thm 4.2.4
450 xn+1 = δxn−2+εxn−3

A+Dxn−2
U Thm 4.2.4

451 xn+1 = α+δxn−2+εxn−3
A+Dxn−2

U Thm 4.2.4
452 xn+1 = βxn+δxn−2+εxn−3

Dxn−2
U See [65]

453 xn+1 = α+βxn+δxn−2+εxn−3
Dxn−2

U See [65]
454 xn+1 = βxn+δxn−2+εxn−3

A+Dxn−2
U See [65]

455 xn+1 = α+βxn+δxn−2+εxn−3
A+Dxn−2

U See [65]
456 xn+1 = δxn−2+εxn−3

Bxn+Dxn−2
U See [65]

457 xn+1 = α+δxn−2+εxn−3
Bxn+Dxn−2

U See [65]
458 xn+1 = δxn−2+εxn−3

A+Bxn+Dxn−2
U See [65]

459 xn+1 = α+δxn−2+εxn−3
A+Bxn+Dxn−2

U See [65]
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460 xn+1 = βxn+δxn−2+εxn−3
Bxn+Dxn−2

U See [65]
461 xn+1 = α+βxn+δxn−2+εxn−3

Bxn+Dxn−2
U See [65]

462 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Dxn−2

U See [65]
463 xn+1 = α+βxn+δxn−2+εxn−3

A+Bxn+Dxn−2
U See [65]

464 xn+1 = γxn−1+δxn−2+εxn−3
Dxn−2

U Thm 3.1.2
465 xn+1 = α+γxn−1+δxn−2+εxn−3

Dxn−2
U Thm 3.1.2

466 xn+1 = γxn−1+δxn−2+εxn−3
A+Dxn−2

U Thm 3.1.2
467 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Dxn−2
U Thm 3.1.2

468 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Dxn−2

U Thm 3.1.2
469 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Dxn−2
U Thm 3.1.2

470 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Dxn−2

U Thm 3.1.2
471 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Dxn−2
U Thm 3.1.2

472 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Dxn−2

U Thm 3.1.2. See also [58].
473 xn+1 = α+γxn−1+δxn−2+εxn−3

Bxn+Dxn−2
U Thm 3.1.2. See also [58].

474 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Dxn−2

U Thm 3.1.2. See also [58].
475 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Bxn+Dxn−2
U Thm 3.1.2. See also [58].

476 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Dxn−2

U Thm 3.1.2. See also [58].
477 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Bxn+Dxn−2
U Thm 3.1.2. See also [58].

478 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Dxn−2

U Thm 3.1.2. See also [58].
479 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Bxn+Dxn−2
U Thm 3.1.2. See also [58].

480 xn+1 = δxn−2+εxn−3
Cxn−1+Dxn−2

U See [65]
481 xn+1 = α+δxn−2+εxn−3

Cxn−1+Dxn−2
U See [65]

482 xn+1 = δxn−2+εxn−3
A+Cxn−1+Dxn−2

U See [65]
483 xn+1 = α+δxn−2+εxn−3

A+Cxn−1+Dxn−2
U See [65]

484 xn+1 = βxn+δxn−2+εxn−3
Cxn−1+Dxn−2

B*

485 xn+1 = α+βxn+δxn−2+εxn−3
Cxn−1+Dxn−2

B*

486 xn+1 = βxn+δxn−2+εxn−3
A+Cxn−1+Dxn−2

B*

487 xn+1 = α+βxn+δxn−2+εxn−3
A+Cxn−1+Dxn−2

B*

488 xn+1 = δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
489 xn+1 = α+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

490 xn+1 = δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
491 xn+1 = α+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

492 xn+1 = βxn+δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
493 xn+1 = α+βxn+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

494 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
495 xn+1 = α+βxn+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

496 xn+1 = γxn−1+δxn−2+εxn−3
Cxn−1+Dxn−2

U See [65]
497 xn+1 = α+γxn−1+δxn−2+εxn−3

Cxn−1+Dxn−2
U See [65]
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498 xn+1 = γxn−1+δxn−2+εxn−3
A+Cxn−1+Dxn−2

U See [65]
499 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Cxn−1+Dxn−2
U See [65]

500 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Cxn−1+Dxn−2

B*

501 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
Cxn−1+Dxn−2

B*

502 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1+Dxn−2

B*

503 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1+Dxn−2

B*

504 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
505 xn+1 = α+γxn−1+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

506 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
507 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

508 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
509 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

510 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2

U Thm 3.4.2
511 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2
U Thm 3.4.2

513 xn+1 = α
Exn−3

B Thm 2.1.1
515 xn+1 = α

A+Exn−3
B Thm 2.1.1

516 xn+1 = βxn

Exn−3
U Reducible to linear

517 xn+1 = α+βxn

Exn−3
U*

518 xn+1 = βxn

A+Exn−3
B Thm 2.3.4

519 xn+1 = α+βxn

A+Exn−3
B Thm 2.3.4

521 xn+1 = α
Bxn+Exn−3

B Thm 2.1.1
523 xn+1 = α

A+Bxn+Exn−3
B Thm 2.1.1

524 xn+1 = βxn

Bxn+Exn−3
B Thm 2.1.1

525 xn+1 = α+βxn

Bxn+Exn−3
B Thm 2.1.1

526 xn+1 = βxn

A+Bxn+Exn−3
B Thm 2.1.1

527 xn+1 = α+βxn

A+Bxn+Exn−3
B Thm 2.1.1

528 xn+1 = γxn−1
Exn−3

B Reducible to # 7
529 xn+1 = α+γxn−1

Exn−3
B Reducible to # 43

530 xn+1 = γxn−1
A+Exn−3

B Thm 2.3.4 or reducible to #24
531 xn+1 = α+γxn−1

A+Exn−3
B Thm 2.3.4 or reducible to # 66

532 xn+1 = βxn+γxn−1
Exn−3

U*

533 xn+1 = α+βxn+γxn−1
Exn−3

U*

534 xn+1 = βxn+γxn−1
A+Exn−3

B Thm 2.3.4
535 xn+1 = α+βxn+γxn−1

A+Exn−3
B Thm 2.3.4

536 xn+1 = γxn−1
Bxn+Exn−3

B*
537 xn+1 = α+γxn−1

Bxn+Exn−3
U*

538 xn+1 = γxn−1
A+Bxn+Exn−3

B Thm 2.3.4
539 xn+1 = α+γxn−1

A+Bxn+Exn−3
B Thm 2.3.4

540 xn+1 = βxn+γxn−1
Bxn+Exn−3

B*
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541 xn+1 = α+βxn+γxn−1
Bxn+Exn−3

B*

542 xn+1 = βxn+γxn−1
A+Bxn+Exn−3

B Thm 2.3.4
543 xn+1 = α+βxn+γxn−1

A+Bxn+Exn−3
B Thm 2.3.4

545 xn+1 = α
Cxn−1+Exn−3

B Thm 2.1.1
547 xn+1 = α

A+Cxn−1+Exn−3
B Thm 2.1.1

548 xn+1 = βxn

Cxn−1+Exn−3
U*

549 xn+1 = α+βxn

Cxn−1+Exn−3
U*

550 xn+1 = βxn

A+Cxn−1+Exn−3
B Thm 2.3.4

551 xn+1 = α+βxn

A+Cxn−1+Exn−3
B Thm 2.3.4

553 xn+1 = α
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
555 xn+1 = α

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

556 xn+1 = βxn

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

557 xn+1 = α+βxn

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

558 xn+1 = βxn

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

559 xn+1 = α+βxn

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

560 xn+1 = γxn−1
Cxn−1+Exn−3

B Thm 2.1.1
561 xn+1 = α+γxn−1

Cxn−1+Exn−3
B Thm 2.1.1

562 xn+1 = γxn−1
A+Cxn−1+Exn−3

B Thm 2.1.1
563 xn+1 = α+γxn−1

A+Cxn−1+Exn−3
B Thm 2.1.1

564 xn+1 = βxn+γxn−1
Cxn−1+Exn−3

U*

565 xn+1 = α+βxn+γxn−1
Cxn−1+Exn−3

B*

566 xn+1 = βxn+γxn−1
A+Cxn−1+Exn−3

B Thm 2.3.4
567 xn+1 = α+βxn+γxn−1

A+Cxn−1+Exn−3
B Thm 2.3.4

568 xn+1 = γxn−1
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
569 xn+1 = α+γxn−1

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

570 xn+1 = γxn−1
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
571 xn+1 = α+γxn−1

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

572 xn+1 = βxn+γxn−1
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
573 xn+1 = α+βxn+γxn−1

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

574 xn+1 = βxn+γxn−1
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
575 xn+1 = α+βxn+γxn−1

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

576 xn+1 = δxn−2
Exn−3

U Reducible to linear
577 xn+1 = α+δxn−2

Exn−3
U*

578 xn+1 = δxn−2
A+Exn−3

U*

579 xn+1 = α+δxn−2
A+Exn−3

B See [14]
580 xn+1 = βxn+δxn−2

Exn−3
U*

581 xn+1 = α+βxn+δxn−2
Exn−3

U*

582 xn+1 = βxn+δxn−2
A+Exn−3

B*

583 xn+1 = α+βxn+δxn−2
A+Exn−3

B*
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584 xn+1 = δxn−2
Bxn+Exn−3

U*

585 xn+1 = α+δxn−2
Bxn+Exn−3

U*

586 xn+1 = δxn−2
A+Bxn+Exn−3

U*

587 xn+1 = α+δxn−2
A+Bxn+Exn−3

B*

588 xn+1 = βxn+δxn−2
Bxn+Exn−3

B*

589 xn+1 = α+βxn+δxn−2
Bxn+Exn−3

B*

590 xn+1 = βxn+δxn−2
A+Bxn+Exn−3

B*

591 xn+1 = α+βxn+δxn−2
A+Bxn+Exn−3

B*

592 xn+1 = γxn−1+δxn−2
Exn−3

U*

593 xn+1 = α+γxn−1+δxn−2
Exn−3

U*

594 xn+1 = γxn−1+δxn−2
A+Exn−3

U*

595 xn+1 = α+γxn−1+δxn−2
A+Exn−3

U*

596 xn+1 = βxn+γxn−1+δxn−2
Exn−3

U*

597 xn+1 = α+βxn+γxn−1+δxn−2
Exn−3

U*

598 xn+1 = βxn+γxn−1+δxn−2
A+Exn−3

U*

599 xn+1 = α+βxn+γxn−1+δxn−2
A+Exn−3

U*

600 xn+1 = γxn−1+δxn−2
Bxn+Exn−3

U*

601 xn+1 = α+γxn−1+δxn−2
Bxn+Exn−3

U*

602 xn+1 = γxn−1+δxn−2
A+Bxn+Exn−3

B*

603 xn+1 = α+γxn−1+δxn−2
A+Bxn+Exn−3

B*

604 xn+1 = βxn+γxn−1+δxn−2
Bxn+Exn−3

B*

605 xn+1 = α+βxn+γxn−1+δxn−2
Bxn+Exn−3

B*

606 xn+1 = βxn+γxn−1+δxn−2
A+Bxn+Exn−3

B*

607 xn+1 = α+βxn+γxn−1+δxn−2
A+Bxn+Exn−3

B*

608 xn+1 = δxn−2
Cxn−1+Exn−3

U*

609 xn+1 = α+δxn−2
Cxn−1+Exn−3

U*

610 xn+1 = δxn−2
A+Cxn−1+Exn−3

U*

611 xn+1 = α+δxn−2
A+Cxn−1+Exn−3

U*

612 xn+1 = βxn+δxn−2
Cxn−1+Exn−3

U*

613 xn+1 = α+βxn+δxn−2
Cxn−1+Exn−3

U*

614 xn+1 = βxn+δxn−2
A+Cxn−1+Exn−3

U*

615 xn+1 = α+βxn+δxn−2
A+Cxn−1+Exn−3

U*

616 xn+1 = δxn−2
Bxn+Cxn−1+Exn−3

U*

617 xn+1 = α+δxn−2
Bxn+Cxn−1+Exn−3

U*

618 xn+1 = δxn−2
A+Bxn+Cxn−1+Exn−3

U*

619 xn+1 = α+δxn−2
A+Bxn+Cxn−1+Exn−3

U*

620 xn+1 = βxn+δxn−2
Bxn+Cxn−1+Exn−3

U*

621 xn+1 = α+βxn+δxn−2
Bxn+Cxn−1+Exn−3

U*
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622 xn+1 = βxn+δxn−2
A+Bxn+Cxn−1+Exn−3

U*

623 xn+1 = α+βxn+δxn−2
A+Bxn+Cxn−1+Exn−3

U*

624 xn+1 = γxn−1+δxn−2
Cxn−1+Exn−3

U*

625 xn+1 = α+γxn−1+δxn−2
Cxn−1+Exn−3

U*

626 xn+1 = γxn−1+δxn−2
A+Cxn−1+Exn−3

U*

627 xn+1 = α+γxn−1+δxn−2
A+Cxn−1+Exn−3

U*

628 xn+1 = βxn+γxn−1+δxn−2
Cxn−1+Exn−3

U*

629 xn+1 = α+βxn+γxn−1+δxn−2
Cxn−1+Exn−3

U*

630 xn+1 = βxn+γxn−1+δxn−2
A+Cxn−1+Exn−3

U*

631 xn+1 = α+βxn+γxn−1+δxn−2
A+Cxn−1+Exn−3

U*

632 xn+1 = γxn−1+δxn−2
Bxn+Cxn−1+Exn−3

U*

633 xn+1 = α+γxn−1+δxn−2
Bxn+Cxn−1+Exn−3

U*

634 xn+1 = γxn−1+δxn−2
A+Bxn+Cxn−1+Exn−3

U*

635 xn+1 = α+γxn−1+δxn−2
A+Bxn+Cxn−1+Exn−3

U*

636 xn+1 = βxn+γxn−1+δxn−2
Bxn+Cxn−1+Exn−3

U*

637 xn+1 = α+βxn+γxn−1+δxn−2
Bxn+Cxn−1+Exn−3

U*

638 xn+1 = βxn+γxn−1+δxn−2
A+Bxn+Cxn−1+Exn−3

U*

639 xn+1 = α+βxn+γxn−1+δxn−2
A+Bxn+Cxn−1+Exn−3

U*
641 xn+1 = α

Dxn−2+Exn−3
B Thm 2.1.1

643 xn+1 = α
A+Dxn−2+Exn−3

B Thm 2.1.1
644 xn+1 = βxn

Dxn−2+Exn−3
U*

645 xn+1 = α+βxn

Dxn−2+Exn−3
U*

646 xn+1 = βxn

A+Dxn−2+Exn−3
B Thm 2.3.4

647 xn+1 = α+βxn

A+Dxn−2+Exn−3
B Thm 2.3.4

649 xn+1 = α
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
651 xn+1 = α

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

652 xn+1 = βxn

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

653 xn+1 = α+βxn

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

654 xn+1 = βxn

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

655 xn+1 = α+βxn

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

656 xn+1 = γxn−1
Dxn−2+Exn−3

B*
657 xn+1 = α+γxn−1

Dxn−2+Exn−3
B*

658 xn+1 = γxn−1
A+Dxn−2+Exn−3

B Thm 2.3.4
659 xn+1 = α+γxn−1

A+Dxn−2+Exn−3
B Thm 2.3.4

660 xn+1 = βxn+γxn−1
Dxn−2+Exn−3

U*

661 xn+1 = α+βxn+γxn−1
Dxn−2+Exn−3

U*

662 xn+1 = βxn+γxn−1
A+Dxn−2+Exn−3

B Thm 2.3.4
663 xn+1 = α+βxn+γxn−1

A+Dxn−2+Exn−3
B Thm 2.3.4

664 xn+1 = γxn−1
Bxn+Dxn−2+Exn−3

B*
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665 xn+1 = α+γxn−1
Bxn+Dxn−2+Exn−3

B*
666 xn+1 = γxn−1

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

667 xn+1 = α+γxn−1
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
668 xn+1 = βxn+γxn−1

Bxn+Dxn−2+Exn−3
B*

669 xn+1 = α+βxn+γxn−1
Bxn+Dxn−2+Exn−3

B*

670 xn+1 = βxn+γxn−1
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
671 xn+1 = α+βxn+γxn−1

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

673 xn+1 = α
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
675 xn+1 = α

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

676 xn+1 = βxn

Cxn−1+Dxn−2+Exn−3
U*

677 xn+1 = α+βxn

Cxn−1+Dxn−2+Exn−3
U*

678 xn+1 = βxn

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

679 xn+1 = α+βxn

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

681 xn+1 = α
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
683 xn+1 = α

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

684 xn+1 = βxn

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

685 xn+1 = α+βxn

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

686 xn+1 = βxn

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

687 xn+1 = α+βxn

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

688 xn+1 = γxn−1
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
689 xn+1 = α+γxn−1

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

690 xn+1 = γxn−1
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
691 xn+1 = α+γxn−1

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

692 xn+1 = βxn+γxn−1
Cxn−1+Dxn−2+Exn−3

U*

693 xn+1 = α+βxn+γxn−1
Cxn−1+Dxn−2+Exn−3

B*

694 xn+1 = βxn+γxn−1
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
695 xn+1 = α+βxn+γxn−1

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

696 xn+1 = γxn−1
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
697 xn+1 = α+γxn−1

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

698 xn+1 = γxn−1
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
699 xn+1 = α+γxn−1

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

700 xn+1 = βxn+γxn−1
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
701 xn+1 = α+βxn+γxn−1

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

702 xn+1 = βxn+γxn−1
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
703 xn+1 = α+βxn+γxn−1

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

704 xn+1 = δxn−2
Dxn−2+Exn−3

B Thm 2.1.1
705 xn+1 = α+δxn−2

Dxn−2+Exn−3
B Thm 2.1.1

706 xn+1 = δxn−2
A+Dxn−2+Exn−3

B Thm 2.1.1
707 xn+1 = α+δxn−2

A+Dxn−2+Exn−3
B Thm 2.1.1

708 xn+1 = βxn+δxn−2
Dxn−2+Exn−3

B*
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709 xn+1 = α+βxn+δxn−2
Dxn−2+Exn−3

B*

710 xn+1 = βxn+δxn−2
A+Dxn−2+Exn−3

B Thm 2.3.4
711 xn+1 = α+βxn+δxn−2

A+Dxn−2+Exn−3
B Thm 2.3.4

712 xn+1 = δxn−2
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
713 xn+1 = α+δxn−2

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

714 xn+1 = δxn−2
A+Bxn+Dxn−2+Exn−3

B Thm 2.1.1
715 xn+1 = α+δxn−2

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

716 xn+1 = βxn+δxn−2
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
717 xn+1 = α+βxn+δxn−2

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

718 xn+1 = βxn+δxn−2
A+Bxn+Dxn−2+Exn−3

B Thm 2.1.1
719 xn+1 = α+βxn+δxn−2

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

720 xn+1 = γxn−1+δxn−2
Dxn−2+Exn−3

B*

721 xn+1 = α+γxn−1+δxn−2
Dxn−2+Exn−3

B*

722 xn+1 = γxn−1+δxn−2
A+Dxn−2+Exn−3

B Thm 2.3.4
723 xn+1 = α+γxn−1+δxn−2

A+Dxn−2+Exn−3
B Thm 2.3.4

724 xn+1 = βxn+γxn−1+δxn−2
Dxn−2+Exn−3

B*

725 xn+1 = α+βxn+γxn−1+δxn−2
Dxn−2+Exn−3

B*

726 xn+1 = βxn+γxn−1+δxn−2
A+Dxn−2+Exn−3

B Thm 2.3.4
727 xn+1 = α+βxn+γxn−1+δxn−2

A+Dxn−2+Exn−3
B Thm 2.3.4

728 xn+1 = γxn−1+δxn−2
Bxn+Dxn−2+Exn−3

B*

729 xn+1 = α+γxn−1+δxn−2
Bxn+Dxn−2+Exn−3

B*

730 xn+1 = γxn−1+δxn−2
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
731 xn+1 = α+γxn−1+δxn−2

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

732 xn+1 = βxn+γxn−1+δxn−2
Bxn+Dxn−2+Exn−3

B*

733 xn+1 = α+βxn+γxn−1+δxn−2
Bxn+Dxn−2+Exn−3

B*

734 xn+1 = βxn+γxn−1+δxn−2
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
735 xn+1 = α+βxn+γxn−1+δxn−2

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

736 xn+1 = δxn−2
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
737 xn+1 = α+δxn−2

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

738 xn+1 = δxn−2
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
739 xn+1 = α+δxn−2

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

740 xn+1 = βxn+δxn−2
Cxn−1+Dxn−2+Exn−3

B*

741 xn+1 = α+βxn+δxn−2
Cxn−1+Dxn−2+Exn−3

B*

742 xn+1 = βxn+δxn−2
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
743 xn+1 = α+βxn+δxn−2

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

744 xn+1 = δxn−2
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
745 xn+1 = α+δxn−2

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

746 xn+1 = δxn−2
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
747 xn+1 = α+δxn−2

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1
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748 xn+1 = βxn+δxn−2
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
749 xn+1 = α+βxn+δxn−2

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

750 xn+1 = βxn+δxn−2
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
751 xn+1 = α+βxn+δxn−2

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

752 xn+1 = γxn−1+δxn−2
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
753 xn+1 = α+γxn−1+δxn−2

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

754 xn+1 = γxn−1+δxn−2
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
755 xn+1 = α+γxn−1+δxn−2

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

756 xn+1 = βxn+γxn−1+δxn−2
Cxn−1+Dxn−2+Exn−3

B*

757 xn+1 = α+βxn+γxn−1+δxn−2
Cxn−1+Dxn−2+Exn−3

B*

758 xn+1 = βxn+γxn−1+δxn−2
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
759 xn+1 = α+βxn+γxn−1+δxn−2

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

760 xn+1 = γxn−1+δxn−2
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
761 xn+1 = α+γxn−1+δxn−2

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

762 xn+1 = γxn−1+δxn−2
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
763 xn+1 = α+γxn−1+δxn−2

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

764 xn+1 = βxn+γxn−1+δxn−2
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
765 xn+1 = α+βxn+γxn−1+δxn−2

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

766 xn+1 = βxn+γxn−1+δxn−2
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
767 xn+1 = α+βxn+γxn−1+δxn−2

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

768 xn+1 = εxn−3
Exn−3

B Thm 2.1.1
769 xn+1 = α+εxn−3

Exn−3
B Thm 2.1.1

770 xn+1 = εxn−3
A+Exn−3

B Thm 2.1.1
771 xn+1 = α+εxn−3

A+Exn−3
B Thm 2.1.1

772 xn+1 = βxn+εxn−3
Exn−3

B Thm 2.3.4
773 xn+1 = α+βxn+εxn−3

Exn−3
B Thm 2.3.4

774 xn+1 = βxn+εxn−3
A+Exn−3

B Thm 2.3.4
775 xn+1 = α+βxn+εxn−3

A+Exn−3
B Thm 2.3.4

776 xn+1 = εxn−3
Bxn+Exn−3

B Thm 2.1.1
777 xn+1 = α+εxn−3

Bxn+Exn−3
B Thm 2.1.1

778 xn+1 = εxn−3
A+Bxn+Exn−3

B Thm 2.1.1
779 xn+1 = α+εxn−3

A+Bxn+Exn−3
B Thm 2.1.1

780 xn+1 = βxn+εxn−3
Bxn+Exn−3

B Thm 2.1.1
781 xn+1 = α+βxn+εxn−3

Bxn+Exn−3
B Thm 2.1.1

782 xn+1 = βxn+εxn−3
A+Bxn+Exn−3

B Thm 2.1.1
783 xn+1 = α+βxn+εxn−3

A+Bxn+Exn−3
B Thm 2.1.1

784 xn+1 = γxn−1+εxn−3
Exn−3

B Thm 2.3.4 or reducible to #55
785 xn+1 = α+γxn−1+εxn−3

Exn−3
B Thm 2.3.4 or reducible to #119

786 xn+1 = γxn−1+εxn−3
A+Exn−3

B Thm 2.3.4 or reducible to # 84
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787 xn+1 = α+γxn−1+εxn−3
A+Exn−3

B Thm 2.3.4 or reducible to # 166
788 xn+1 = βxn+γxn−1+εxn−3

Exn−3
B Thm 2.3.4

789 xn+1 = α+βxn+γxn−1+εxn−3
Exn−3

B Thm 2.3.4
790 xn+1 = βxn+γxn−1+εxn−3

A+Exn−3
B Thm 2.3.4

791 xn+1 = α+βxn+γxn−1+εxn−3
A+Exn−3

B Thm 2.3.4
792 xn+1 = γxn−1+εxn−3

Bxn+Exn−3
B*

793 xn+1 = α+γxn−1+εxn−3
Bxn+Exn−3

B*
794 xn+1 = γxn−1+εxn−3

A+Bxn+Exn−3
B Thm 2.3.4

795 xn+1 = α+γxn−1+εxn−3
A+Bxn+Exn−3

B Thm 2.3.4
796 xn+1 = βxn+γxn−1+εxn−3

Bxn+Exn−3
B Thm 2.3.4

797 xn+1 = α+βxn+γxn−1+εxn−3
Bxn+Exn−3

B Thm 2.3.4
798 xn+1 = βxn+γxn−1+εxn−3

A+Bxn+Exn−3
B Thm 2.3.4

799 xn+1 = α+βxn+γxn−1+εxn−3
A+Bxn+Exn−3

B Thm 2.3.4
800 xn+1 = εxn−3

Cxn−1+Exn−3
B Thm 2.1.1

801 xn+1 = α+εxn−3
Cxn−1+Exn−3

B Thm 2.1.1
802 xn+1 = εxn−3

A+Cxn−1+Exn−3
B Thm 2.1.1

803 xn+1 = α+εxn−3
A+Cxn−1+Exn−3

B Thm 2.1.1
804 xn+1 = βxn+εxn−3

Cxn−1+Exn−3
B*

805 xn+1 = α+βxn+εxn−3
Cxn−1+Exn−3

B*

806 xn+1 = βxn+εxn−3
A+Cxn−1+Exn−3

B Thm 2.3.4
807 xn+1 = α+βxn+εxn−3

A+Cxn−1+Exn−3
B Thm 2.3.4

808 xn+1 = εxn−3
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
809 xn+1 = α+εxn−3

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

810 xn+1 = εxn−3
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
811 xn+1 = α+εxn−3

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

812 xn+1 = βxn+εxn−3
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
813 xn+1 = α+βxn+εxn−3

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

814 xn+1 = βxn+εxn−3
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
815 xn+1 = α+βxn+εxn−3

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

816 xn+1 = γxn−1+εxn−3
Cxn−1+Exn−3

B Thm 2.1.1
817 xn+1 = α+γxn−1+εxn−3

Cxn−1+Exn−3
B Thm 2.1.1

818 xn+1 = γxn−1+εxn−3
A+Cxn−1+Exn−3

B Thm 2.1.1
819 xn+1 = α+γxn−1+εxn−3

A+Cxn−1+Exn−3
B Thm 2.1.1

820 xn+1 = βxn+γxn−1+εxn−3
Cxn−1+Exn−3

B Thm 2.3.4
821 xn+1 = α+βxn+γxn−1+εxn−3

Cxn−1+Exn−3
B Thm 2.3.4

822 xn+1 = βxn+γxn−1+εxn−3
A+Cxn−1+Exn−3

B Thm 2.3.4
823 xn+1 = α+βxn+γxn−1+εxn−3

A+Cxn−1+Exn−3
B Thm 2.3.4

824 xn+1 = γxn−1+εxn−3
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
825 xn+1 = α+γxn−1+εxn−3

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

826 xn+1 = γxn−1+εxn−3
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
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827 xn+1 = α+γxn−1+εxn−3
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
828 xn+1 = βxn+γxn−1+εxn−3

Bxn+Cxn−1+Exn−3
B Thm 2.1.1

829 xn+1 = α+βxn+γxn−1+εxn−3
Bxn+Cxn−1+Exn−3

B Thm 2.1.1
830 xn+1 = βxn+γxn−1+εxn−3

A+Bxn+Cxn−1+Exn−3
B Thm 2.1.1

831 xn+1 = α+βxn+γxn−1+εxn−3
A+Bxn+Cxn−1+Exn−3

B Thm 2.1.1
832 xn+1 = δxn−2+εxn−3

Exn−3
B See [14]

833 xn+1 = α+δxn−2+εxn−3
Exn−3

B See [14]
834 xn+1 = δxn−2+εxn−3

A+Exn−3
B See [14] and [50]

835 xn+1 = α+δxn−2+εxn−3
A+Exn−3

B See [14]
836 xn+1 = βxn+δxn−2+εxn−3

Exn−3
B*

837 xn+1 = α+βxn+δxn−2+εxn−3
Exn−3

B*

838 xn+1 = βxn+δxn−2+εxn−3
A+Exn−3

B*

839 xn+1 = α+βxn+δxn−2+εxn−3
A+Exn−3

B*

840 xn+1 = δxn−2+εxn−3
Bxn+Exn−3

B*

841 xn+1 = α+δxn−2+εxn−3
Bxn+Exn−3

B*

842 xn+1 = δxn−2+εxn−3
A+Bxn+Exn−3

B*

843 xn+1 = α+δxn−2+εxn−3
A+Bxn+Exn−3

B*

844 xn+1 = βxn+δxn−2+εxn−3
Bxn+Exn−3

B*

845 xn+1 = α+βxn+δxn−2+εxn−3
Bxn+Exn−3

B*

846 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Exn−3

B*

847 xn+1 = α+βxn+δxn−2+εxn−3
A+Bxn+Exn−3

B*

848 xn+1 = γxn−1+δxn−2+εxn−3
Exn−3

U*

849 xn+1 = α+γxn−1+δxn−2+εxn−3
Exn−3

U*

850 xn+1 = γxn−1+δxn−2+εxn−3
A+Exn−3

U*

851 xn+1 = α+γxn−1+δxn−2+εxn−3
A+Exn−3

U*

852 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Exn−3

U*

853 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
Exn−3

U*

854 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Exn−3

U*

855 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A+Exn−3

U*

856 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Exn−3

B*

857 xn+1 = α+γxn−1+δxn−2+εxn−3
Bxn+Exn−3

B*

858 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Exn−3

B*

859 xn+1 = α+γxn−1+δxn−2+εxn−3
A+Bxn+Exn−3

B*

860 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Exn−3

B*

861 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
Bxn+Exn−3

B*

862 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Exn−3

B*

863 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Exn−3

B*

864 xn+1 = δxn−2+εxn−3
Cxn−1+Exn−3

U*
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865 xn+1 = α+δxn−2+εxn−3
Cxn−1+Exn−3

U*

866 xn+1 = δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

867 xn+1 = α+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

868 xn+1 = βxn+δxn−2+εxn−3
Cxn−1+Exn−3

U*

869 xn+1 = α+βxn+δxn−2+εxn−3
Cxn−1+Exn−3

U*

870 xn+1 = βxn+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

871 xn+1 = α+βxn+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

872 xn+1 = δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

873 xn+1 = α+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

874 xn+1 = δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

875 xn+1 = α+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

876 xn+1 = βxn+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

877 xn+1 = α+βxn+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

878 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

879 xn+1 = α+βxn+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

880 xn+1 = γxn−1+δxn−2+εxn−3
Cxn−1+Exn−3

U*

881 xn+1 = α+γxn−1+δxn−2+εxn−3
Cxn−1+Exn−3

U*

882 xn+1 = γxn−1+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

883 xn+1 = α+γxn−1+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

884 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Cxn−1+Exn−3

U*

885 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
Cxn−1+Exn−3

U*

886 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

887 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1+Exn−3

U*

888 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

889 xn+1 = α+γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

890 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

891 xn+1 = α+γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

892 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

893 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Exn−3

U*

894 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*

895 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Exn−3

U*
896 xn+1 = εxn−3

Dxn−2+Exn−3
B Thm 2.1.1

897 xn+1 = α+εxn−3
Dxn−2+Exn−3

B Thm 2.1.1
898 xn+1 = εxn−3

A+Dxn−2+Exn−3
B Thm 2.1.1

899 xn+1 = α+εxn−3
A+Dxn−2+Exn−3

B Thm 2.1.1
900 xn+1 = βxn+εxn−3

Dxn−2+Exn−3
B*

901 xn+1 = α+βxn+εxn−3
Dxn−2+Exn−3

B*

902 xn+1 = βxn+εxn−3
A+Dxn−2+Exn−3

B Thm 2.3.4
903 xn+1 = α+βxn+εxn−3

A+Dxn−2+Exn−3
B Thm 2.3.4



530 Dynamics of Third-Order Rational Difference Equations

904 xn+1 = εxn−3
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
905 xn+1 = α+εxn−3

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

906 xn+1 = εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.1.1
907 xn+1 = α+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

908 xn+1 = βxn+εxn−3
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
909 xn+1 = α+βxn+εxn−3

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

910 xn+1 = βxn+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.1.1
911 xn+1 = α+βxn+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

912 xn+1 = γxn−1+εxn−3
Dxn−2+Exn−3

B*
913 xn+1 = α+γxn−1+εxn−3

Dxn−2+Exn−3
B*

914 xn+1 = γxn−1+εxn−3
A+Dxn−2+Exn−3

B Thm 2.3.4
915 xn+1 = α+γxn−1+εxn−3

A+Dxn−2+Exn−3
B Thm 2.3.4

916 xn+1 = βxn+γxn−1+εxn−3
Dxn−2+Exn−3

B*

917 xn+1 = α+βxn+γxn−1+εxn−3
Dxn−2+Exn−3

B*

918 xn+1 = βxn+γxn−1+εxn−3
A+Dxn−2+Exn−3

B Thm 2.3.4
919 xn+1 = α+βxn+γxn−1+εxn−3

A+Dxn−2+Exn−3
B Thm 2.3.4

920 xn+1 = γxn−1+εxn−3
Bxn+Dxn−2+Exn−3

B*
921 xn+1 = α+γxn−1+εxn−3

Bxn+Dxn−2+Exn−3
B*

922 xn+1 = γxn−1+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
923 xn+1 = α+γxn−1+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

924 xn+1 = βxn+γxn−1+εxn−3
Bxn+Dxn−2+Exn−3

B*

925 xn+1 = α+βxn+γxn−1+εxn−3
Bxn+Dxn−2+Exn−3

B*

926 xn+1 = βxn+γxn−1+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
927 xn+1 = α+βxn+γxn−1+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

928 xn+1 = εxn−3
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
929 xn+1 = α+εxn−3

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

930 xn+1 = εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
931 xn+1 = α+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

932 xn+1 = βxn+εxn−3
Cxn−1+Dxn−2+Exn−3

B*

933 xn+1 = α+βxn+εxn−3
Cxn−1+Dxn−2+Exn−3

B*

934 xn+1 = βxn+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
935 xn+1 = α+βxn+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

936 xn+1 = εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
937 xn+1 = α+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

938 xn+1 = εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
939 xn+1 = α+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

940 xn+1 = βxn+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
941 xn+1 = α+βxn+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

942 xn+1 = βxn+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
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943 xn+1 = α+βxn+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
944 xn+1 = γxn−1+εxn−3

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

945 xn+1 = α+γxn−1+εxn−3
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
946 xn+1 = γxn−1+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

947 xn+1 = α+γxn−1+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
948 xn+1 = βxn+γxn−1+εxn−3

Cxn−1+Dxn−2+Exn−3
B*

949 xn+1 = α+βxn+γxn−1+εxn−3
Cxn−1+Dxn−2+Exn−3

B*

950 xn+1 = βxn+γxn−1+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
951 xn+1 = α+βxn+γxn−1+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

952 xn+1 = γxn−1+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
953 xn+1 = α+γxn−1+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

954 xn+1 = γxn−1+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
955 xn+1 = α+γxn−1+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

956 xn+1 = βxn+γxn−1+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
957 xn+1 = α+βxn+γxn−1+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

958 xn+1 = βxn+γxn−1+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
959 xn+1 = α+βxn+γxn−1+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

960 xn+1 = δxn−2+εxn−3
Dxn−2+Exn−3

B Thm 2.1.1
961 xn+1 = α+δxn−2+εxn−3

Dxn−2+Exn−3
B Thm 2.1.1

962 xn+1 = δxn−2+εxn−3
A+Dxn−2+Exn−3

B Thm 2.1.1
963 xn+1 = α+δxn−2+εxn−3

A+Dxn−2+Exn−3
B Thm 2.1.1

964 xn+1 = βxn+δxn−2+εxn−3
Dxn−2+Exn−3

B Thm 2.3.4
965 xn+1 = α+βxn+δxn−2+εxn−3

Dxn−2+Exn−3
B Thm 2.3.4

966 xn+1 = βxn+δxn−2+εxn−3
A+Dxn−2+Exn−3

B Thm 2.3.4
967 xn+1 = α+βxn+δxn−2+εxn−3

A+Dxn−2+Exn−3
B Thm 2.3.4

968 xn+1 = δxn−2+εxn−3
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
969 xn+1 = α+δxn−2+εxn−3

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

970 xn+1 = δxn−2+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.1.1
971 xn+1 = α+δxn−2+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

972 xn+1 = βxn+δxn−2+εxn−3
Bxn+Dxn−2+Exn−3

B Thm 2.1.1
973 xn+1 = α+βxn+δxn−2+εxn−3

Bxn+Dxn−2+Exn−3
B Thm 2.1.1

974 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.1.1
975 xn+1 = α+βxn+δxn−2+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.1.1

976 xn+1 = γxn−1+δxn−2+εxn−3
Dxn−2+Exn−3

B Thm 2.3.4
977 xn+1 = α+γxn−1+δxn−2+εxn−3

Dxn−2+Exn−3
B Thm 2.3.4

978 xn+1 = γxn−1+δxn−2+εxn−3
A+Dxn−2+Exn−3

B Thm 2.3.4
979 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Dxn−2+Exn−3
B Thm 2.3.4

980 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Dxn−2+Exn−3

B Thm 2.3.4
981 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Dxn−2+Exn−3
B Thm 2.3.4
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982 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Dxn−2+Exn−3

B Thm 2.3.4
983 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Dxn−2+Exn−3
B Thm 2.3.4

984 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Dxn−2+Exn−3

B*

985 xn+1 = α+γxn−1+δxn−2+εxn−3
Bxn+Dxn−2+Exn−3

B*

986 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
987 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

988 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Dxn−2+Exn−3

B Thm 2.3.4
989 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Bxn+Dxn−2+Exn−3
B Thm 2.3.4

990 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Dxn−2+Exn−3

B Thm 2.3.4
991 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Bxn+Dxn−2+Exn−3
B Thm 2.3.4

992 xn+1 = δxn−2+εxn−3
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
993 xn+1 = α+δxn−2+εxn−3

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

994 xn+1 = δxn−2+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
995 xn+1 = α+δxn−2+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

996 xn+1 = βxn+δxn−2+εxn−3
Cxn−1+Dxn−2+Exn−3

B*

997 xn+1 = α+βxn+δxn−2+εxn−3
Cxn−1+Dxn−2+Exn−3

B*

998 xn+1 = βxn+δxn−2+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
999 xn+1 = α+βxn+δxn−2+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

1000 xn+1 = δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1001 xn+1 = α+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1002 xn+1 = δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1003 xn+1 = α+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1004 xn+1 = βxn+δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1005 xn+1 = α+βxn+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1006 xn+1 = βxn+δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1007 xn+1 = α+βxn+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1008 xn+1 = γxn−1+δxn−2+εxn−3
Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1009 xn+1 = α+γxn−1+δxn−2+εxn−3

Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1010 xn+1 = γxn−1+δxn−2+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1011 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1012 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
1013 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

1014 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Cxn−1+Dxn−2+Exn−3

B Thm 2.3.4
1015 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Cxn−1+Dxn−2+Exn−3
B Thm 2.3.4

1016 xn+1 = γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1017 xn+1 = α+γxn−1+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1018 xn+1 = γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1019 xn+1 = α+γxn−1+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1
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1020 xn+1 = βxn+γxn−1+δxn−2+εxn−3
Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1021 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1

1022 xn+1 = βxn+γxn−1+δxn−2+εxn−3
A+Bxn+Cxn−1+Dxn−2+Exn−3

B Thm 2.1.1
1023 xn+1 = α+βxn+γxn−1+δxn−2+εxn−3

A+Bxn+Cxn−1+Dxn−2+Exn−3
B Thm 2.1.1
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[142] S. Kalabucić, M.R.S. Kulenović, and C.B. Overdeep, On the dynamics
of xn+1 = pn +

xn−l

xn
, J. Difference Equ. Appl., 9(2003), 1053-1056.

[143] S. Kalikow, P.M. Knopf, Y.S. Huang, and G. Nyerges, Convergence
properties in the nonhyperbolic case xn+1 =

xn−l

1 + f(xn)
, J. Math. Anal.

Appl., 326(2007), 456467.

[144] G. Karakostas, Asymptotic 2-periodic difference equations with diago-
nally self-invertible responses, J. Difference Equ. Appl., 6(2000), 329-
335.

[145] G. Karakostas, Convergence of a difference equation via the full limiting
sequences method, Differential Equ. Dynamical Syst., 1(1993), 289-294

[146] G.L. Karakostas and S. Stevic, On the recursive sequence
xn+1 = B +

xn−k

a0xn + ... + ak−1xn−k+1 + γ
, J. Difference Equ. Appl.,

10(2004), 809-815.

[147] W.G. Kelley and A.C. Peterson, Difference Equations, Academic Press,
New York, 1991.

[148] C.M. Kent, Convergence of solutions in a nonhyperbolic case, Proceed-
ings of the Third World Congress of Nonlinear Analysts, July 19-16,
2000, Catania, Sicily, Italy, Elsevier Science Ltd., 47(2001), 4651-4665.



546 Bibliography

[149] C.M. Kent, Convergence of solutions in a nonhyperbolic case with
positive equilibrium, Proceedings of the Sixth International Conference
on Difference Equations and Applications: New Progress in Difference
Equations, August 2001, Augburg, Germany, Edited by B. Aulbach, S.
Elaydi, and G. Ladas, Chapman & Hall/CRC (2004), 485-492.

[150] P.M. Knopf, Boundededness properties of the difference equation

xn+1 =
α + βxn + δxn−2

xn−1
, J. Difference Equ. Appl., (2007)

[151] P.M. Knopf and Y.S. Huang, On the period-five trichotomy of the ra-

tional equation xn+1 =
p + xn−2

xn
, J. Difference Equ. Appl., (2007)

[152] P.M. Knopf and Y.S. Huang, On the boundedness and local stability of

xn+1 =
α + βxn + xn−2

Cxn−1 + xn−2
, J. Difference Equ. Appl., (2007)

[153] V.L. Kocic, A note on the nonautonomous Beverton-Holt model, J.
Difference Equ. Appl., (to appear).

[154] V.L. Kocic and G. Ladas, Attractivity in a second-order nonlinear dif-
ference equation, J. Math. Anal. Appl., 180(1993), 144-150.

[155] V.L. Kocic and G. Ladas, Permanence and global attractivity in non-
linear difference equations, Proceedings of the First World Congresss of
Nonlinear Analysis (Tampa, Florida, Auigust 19-26, 1992, Walter de
Gruyter, Berlin, New York, 1996.

[156] V.L. Kocic and G. Ladas, Global attractivity in a nonlinear second-
order difference equations, Commun. Pure Apll. Math., XLVIII, 1115-
1122.

[157] V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference
Equations of Higher Order with Applications, Kluwer Academic Pub-
lishers, Dordrecht, 1993.

[158] V.L. Kocic, G. Ladas, and I.W. Rodrigues, On rational recursive se-
quences, J. Math. Anal. Appl., 173(1993), 127-157.

[159] V.L. Kocic, G. Ladas, E. Thomas, and G. Tzanetopoulos, On the sta-
bility of Lyness’ equation, Dynamics of Continuous, Discrete Impulsive
Syst., 1(1995), 245-254.

[160] V.L. Kocic, D. Stutson, and G. Arora, Global behavior of solutions of
a nonautonomous delay logistic difference equation J. Difference Equ.
Appl., 10(2004), 1267-1279.

[161] R. Kon, A note on attenuant cycles of population models with periodic
carrying capacity, J. Difference Equ. Appl., 10(2004), 791-793.



Bibliography 547

[162] W.A. Kosmala, M.R.S. Kulenović, G. Ladas, and C.T. Teixeira, On
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[174] M.R.S. Kulenović, Invariants and related Liapunov functions for differ-
ence equations, Appl. Math. Lett., 13(2000), 1-8.
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