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Preface
I had a scheme, which I still use today when someone is explaining something that
I’m trying to understand: I keep making up examples. For instance, the mathe-
maticians would come in with a terrific theorem, and they’re all excited. As they
are telling me the conditions of the theorem, I construct something which fits all
the conditions. You know, you have a set (one ball)—disjoint (two balls). Then
the balls turn colors, grow hairs, or whatever, in my head as they put more condi-
tions on. Finally, they state the theorem, which is some dumb thing about the ball
which isn’t true for my hairy green ball, so I say, “False!’’

—Richard Feynman,
Surely You’re Joking, Mr. Feynman!

When mathematics teachers at any level get together to talk about what they
do, two questions are almost sure to come up:

• What do we teach?

• How do we teach?

Questions about content and pedagogy are central to what we do. It is right
that these two questions are so important; thinking about them leads to
improved curricula and teaching methods. 

But there’s a third important question, one that occupies the careers of
many educational theorists, that is beginning to make its way into discus-
sions in teachers’ lounges and department meetings: 

• How do students learn?

In many ways this is a much more difficult question. It requires that we look
into the minds of our students and that we think about things from their per-
spectives. It is very hard for an adult, experienced in mathematics, to assume
the perspectives of a beginner. But many teachers, mathematicians, and edu-
cators are realizing that smart decisions about content and pedagogy require
that we understand much more about the ways our students learn mathe-
matics, how they come to develop mathematical habits of mind, and even
how they develop misunderstandings about our discipline.

This yearbook is about one aspect of how students learn mathematics.
More precisely, this book is about how students learn to build mathematical
representations of phenomena. This year marks the twenty-fifth anniversary
of this series of yearbooks, and it is appropriate that we take up this timely
theme.
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All of us have an intuitive idea of what it means to represent a situation;
we do it all the time when we teach or do mathematics. We represent num-
bers by points on a line or by rows of blocks. We use equations and geomet-
ric figures to represent each other. We talk about numerical, visual, tabular,
and algebraic representations. And we think about things using “private”
representations and mental images that are often difficult to describe.

But what do we mean, precisely, by “representation,” and what does it
mean to represent something? These turn out to be hard philosophical ques-
tions that get at the very nature of mathematical thinking.

I believe that as mathematics itself evolves, new methods and results shed
light on such questions—that mathematics is its own mirror on the very
thinking that creates it. And sure enough, there is a mathematical discipline
called representation theory. In representation theory, one attempts to
understand a mathematical structure by setting up a structure-preserving
map (or correspondence) between it and a better-understood structure.
There are two features of this mathematical use of the word representation
that mirror uses of “representation’’ in this book:

• The representation is the map. It is neither the source of the representa-
tion (the thing being represented) nor its target (the better-understood
object). When a child sets up a correspondence between numbers and
points on a line, the points are not the representation; the representation
lives in the setting up of the correspondence.

• Representations don’t just match things; they preserve structure. Entering
on a calculator an algebraic expression that stands for a physical interac-
tion is not, all by itself, a representation. If algebraic operations on the
expression correspond to transformations of the physical situation, then
we have a genuine representation. Representations are “packages’’ that
assign objects and their transformations to other objects and their trans-
formations.

The articles in this book present a wide array of perspectives about the
nature of representations, how students create them, and how they learn to
use them. The book is divided into four parts, each a collection of articles
that deal with a related circle of ideas.

The first part, “Roles for Representations,” sets the stage by providing a
discussion of two central dialectics in the educational theory of representa-
tions:

• Internal and external representations. External representations are the rep-
resentations we can easily communicate to other people; they are the
marks on the paper, the drawings, the geometry sketches, and the equa-
tions. Internal representations are the images we create in our minds for
mathematical objects and processes—these are much harder to describe.

PREFACE
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Gerald Goldin and Nina Shteingold discuss this distinction in their
opening article. They present an overview of the theoretical issues and
discuss an approach that integrates the research on internal and external
representations.

• “Invented” and “presented” representations. Fran Curcio first used these
words to describe these types of representations; she means the difference
between representations that students invent and those passed down
from teachers. We hear a great deal these days about student-invented
representations. These are often quite different from the classical repre-
sentations that have evolved in mathematics. The article by Constance
Kamii, Lynn Kirkland, and Barbara Lewis makes a strong argument for
the importance of allowing students to develop their own representa-
tions. However, centuries of evolution have produced standard mathe-
matical representations that have been used to solve extremely deep
problems. Mark Saul struggles in his article with the challenges of help-
ing high school students understand the “standard’’ representational sys-
tems—the symbols and operations —of algebra. And the article by Rina
Zazkis and Karen Gadowsky looks at the difficulties undergraduates have
exploiting the “hidden meaning’’ in representations built up from the
ordinary representations of arithmetic.

The second part, “Tools for Thinking,” discusses representations as devices
people use to help them gain insights into mathematical phenomena. Irene
Miura describes a fascinating connection between one’s natural language
and how one thinks about numbers and numeration. Michelle Stephan, Paul
Cobb, Keono Gravemeijer, and Beth Estes give an approach to the “invent or
present” tension that introduces standard measuring tools in response to
students’ needs. Carmel Diezmann and Lyn English look at the role of dia-
grams in doing mathematics and discuss strategies for helping students
become proficient at inventing and using diagrams. Marty Schnepp and
Ricardo Nemirovsky describe the tools they use to represent some subtle
ideas treated in AP calculus; one byproduct of their approach is that stu-
dents see the computational techniques of calculus as tools for solving prob-
lems about rate and accumulations. Mark and Maxine Bridger develop an
alternative to the rule of three for describing real-valued functions of a real
variable; their “mapping diagram” representation highlights some impor-
tant features of functions that are often hidden by tabular, symbolic, and
graphical representations. Daniel Scher and Paul Goldenberg take us on a
dynamic tour of the law of cosines, and they show how interactive geometry
environments can be used to represent, illustrate, and even discover this
important theorem. And Larry Lesser catalogs some beautiful representa-
tions that help make sense of a counterintuitive situation in statistics called
Simpson’s paradox.

PREFACE
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Part 3 is called “Symbols and Symbol Systems.” Mathematics is full of
symbols—symbols that stand for numbers, functions, geometric objects,
even other symbols. But the symbols of mathematics aren’t just aliases. They
are part of symbol systems that allow people to act on and transform the
symbols in meaningful ways. Susan Lamon describes her research into effec-
tive ways for children to represent, use, and calculate with rational numbers.
A great deal of research has gone on around the use of algebraic symbol sys-
tems to represent and transform algebraic functions. Wendy Coulombe and
Sarah Berenson describe their work with beginning algebra students in this
area. Alex Friedlander and Michal Tabach describe their work around multi-
ple representations, using algebraic symbolism as one of several mechanisms
for describing functions. Deborah Franzblau and Lisa Warner investigate
different symbol systems for describing recursively defined phenomena, con-
trasting, for example, subscript and functional notation. Finally, Regina
Kiczek, Carolyn Maher, and Robert Speiser tell the story of a student with
whom they worked over the course of several years and who developed some
creative ways for using the binary system of enumeration to solve a combi-
natorial problem.

The last part, “The Role of Context,” looks at the interplay between mod-
eling and representation. Kristine Reed Woleck offers an insightful look at
her young students’ work, showing how their representations of mathemati-
cal situations as pictures evolve into symbolic representations. Phyllis and
David Whitin describe their work using literature with children to elicit
mathematical thinking. Margaret Meyer picks up the story at the middle
school level and shows how pictures and icons can be incorporated into
symbol systems that closely approximate the classical system of algebra.
Michal Yerushalmy and Beba Shternberg describe their approaches to
strengthening what they call the “fragile link” between the visualization of
situations and the concept of function and to helping students develop skill
at using classical algebraic symbolism. And Josh Abrams takes us inside his
high school modeling course, describing the techniques he uses to teach
explicitly the skills of modeling and representation.

Assembling this collection of articles and helping authors revise their
drafts were the work of an expert Editorial Panel:

• Hyman Bass, University of Michigan

• Carolyn Kieran, Université du Québec à Montréal

• Arthur B. Powell, Rutgers, The State University of New Jersey—Newark

• Jesse Solomon, City on a Hill Public Charter School, Boston, Massachusetts

Frances Curcio, the general editor for the 1999–2001 yearbooks, helped us
through the entire process. Fran participated in the editorial deliberations,
helped us stay on task, furnished us with context and background, and dealt
with every detail at every level, all at once, all the time. Fran, the four pan-
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elists, and I quickly formed a team; we built on one another’s ideas, learned
from one another, and collaborated in ways that I’ll very much miss.

Several other people worked behind the scenes to make this book possible.
Helen Lebowitz and Sara Kennedy worked with me to communicate with
authors and to manage the substantial amount of correspondence involved
in producing this book. They provided exactly the help I needed with every-
thing from scheduling meetings to editing articles. Wayne Harvey offered
support, advice, and expert editing suggestions. Charles Clements and the
NCTM staff worked incredibly hard on this project, editing and advising
along the way and contributing to every aspect of the book. And my wife,
Micky, helped me manage the details (a task at which I’m notoriously inept),
listened to several hundred variations of my saying “It’s almost done,’’ and
(almost) never complained about the meetings and the late nights and the
piles of manuscripts on the floor of our study.

This book would not have been possible without the contributions of
everyone who submitted a manuscript. The hardest part of this job was
selecting the final manuscripts; given more pages, I would have liked to
include much more than what is here. As I read the drafts, I was struck at
how much knowledge, insight, creativity, and common sense are distributed
across our field. And all this expertise—mathematics, pedagogy, and episte-
mology—gets integrated, synthesized, and applied every day in thousands of
classrooms all over the country by classroom teachers—teachers who know
how to take the ideas in this book and turn them into classroom experiences
that make young people see the beauty and excitement in mathematics.

Albert A. Cuoco
2001 Yearbook Editor
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1
Systems of Representations

and the Development of
Mathematical Concepts

Gerald Goldin

Nina Shteingold

IDEAS about representation in the teaching and learning of mathematics have
evolved considerably in recent years, with contributions by both researchers
and practitioners. In this article, we offer an informal introduction to some
of the fundamental concepts. They pertain broadly to mathematics, the psy-
chology of mathematical learning and problem solving, children's mathe-
matical growth and development, the classroom teaching of mathematics,
and the rapidly changing technological environment in which mathematics
education is taking place (Goldin and lanvier 1998a, 1998b; Goldin and
Kaput 1996; janvier 1987). We shall also contrast these fundamental ideas
with other perspectives, especially those of behaviorism and constructivism,
in framing the important issues.

One of our aims is to understand better the blocks, or cognitive obstacles,
that students may have to acquiring certain mathematical concepts. We con-
sider examples drawn from selected task-based interviews with young chil-
dren, illustrating some of their early understandings of negative numbers.
Here specific obstacles may arise from, or be associated with, the particular
representations that students use. We describe some interesting and con-
trasting obstacles of this sort and explore how such impasses are overcome as
more efficient, powerful, or streamlined representations develop.

Let us remark immediately that a mathematical representation cannot be
understood in isolation. A specific formula or equation, a concrete arrange-
ment of base-ten blocks, or a particular graph in Cartesian coordinates
makes sense only as part of a wider system within which meanings and con-
ventions have been established. The representational systems important to

I



2 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

mathematics and its learning have structure, so that different representations
within a system are richly related to one another.

It is also important to distinguish external systems of representation from
the internal, psychological representational systems of individuals. Both
need our attention. External systems range from the conventional symbol
systems of mathematics (such as base-ten numeration, formal algebraic
notation, the real number line, or Cartesian coordinate representation) to
structured learning environments (for example, those involving concrete
manipulative materials or computer-based microworlds). Internal systems,
in contrast, include students' personal symbolization constructs and assign-
ments of meaning to mathematical notations, as well as their natural lan-
guage, their visual imagery and spatial representation, their problem-solving
strategies and heuristics, and (very important) their affect in relation to
mathematics.

The interaction between internal and external representation is fundamen-
tal to effective teaching and learning. Whatever meanings and interpreta-
tions the teacher may bring to an external representation, it is the nature of
the student's developing internal representation that must remain of prima-
ry interest. We highlight this interaction with some examples of young chil-
dren's acts of assigning mathematical meaning as they consider structured,
external task representations and construct their personal, internal represen-
tations of signed numbers.

Along the way, we note some important connections that may occur
among distinct representations or systems of representation. These include
uses of analogy, imagery, and metaphor (English 1997) as well as structural
similarities and differences across representational systems. Although
mathematics is an exceptionally precise discipline, there is inevitably some
ambiguity present in both external and internal representations, and this
ambiguity may also be a source of cognitive obstacles. Frequently it is the
contextual information that permits the resolution of such ambiguity when
it occurs.

An important motivation for our work on representation is the goal of
greatly increasing the proportion of schoolchildren who succeed at a high
mathematical level. Our perspective is that the vast majority of students are
not inherently limited in their ability to understand mathematical ideas-
including advanced concepts of algebra and geometry. This point of view has
a long and noble history, with such advocates as Maria Montessori (1972,
1997), Jerome Bruner (1960, 1964), Zoltan Dienes (1964, 1972), and Robert
Davis (1966, 1984). We think it is not a coincidence that these educators
shared a focus on introducing mathematical ideas to children through the
exploration of carefully structured task representations.

The universality of access to mathematical achievement is also explicit in
the goals expressed by the National Council of Teachers of Mathematics
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(2000) and in many current state curriculum standards. But relatively few
schools have found and implemented the techniques that will achieve break-
throughs for large numbers of children. Many people, from parents to
research mathematicians, remain skeptical that such visionary goals are pos-
sible and continue to see all but the most routine mathematics as the exclu-
sive province of students with innate talents. Without denying the existence
or importance of ability differences in mathematics, we suggest here that the
apparent limitations in some children's understandings are not intrinsic.
Rather, they are a result of internal systems of representation that are only
partially developed, leaving long-term cognitive obstacles and associated
affective obstacles.

Impasses of this sort persist as long as the representational tools for over-
coming them are absent. But the tools can be acquired when we focus explic-
itly on them in the learning process. This leads us to consider that the funda-
mental goals of mathematics education include representational goals: the
development of efficient (internal) systems of representation in students that
correspond coherently to, and interact well with, the (external) convention-
ally established systems of mathematics.

EXTERNAL SYSTEMS OF REPRESENTATION
A representation is typically a sign or a configuration of signs, characters,

or objects. The important thing is that it can stand for (symbolize, depict,
encode, or represent) something other than itself. For example, the numeral
5 can represent a particular set containing five objects, determined by count-
ing; or it can stand for something much more abstract-an equivalence class
of such sets. It can also represent a location or the outcome of a measure-
ment. A Cartesian graph is likewise a representation. It can depict a set of
data, for example, or it can represent a function or the solution set of an
algebraic equation. So we see that the thing represented can vary according
to the context or the use of the representation. The numeral and the Carte-
sian graph are examples of what we are calling external representations in
mathematics-students can produce them, and we can point to them in
classrooms and discuss their meanings.

Such representations do not stand alone. The numeral 5 belongs to the
conventional symbol system for arithmetic that begins with the individual
signs 0, 1, 2, 3, and so on, and includes the multidigit base-ten numerals, the
symbols for arithmetic operations and equality, the conventions for repre-
senting fractions, and so forth. The orthogonal pair of real-number lines and
the identification of a point in the plane with a pair of real numbers provides
a system of rules for creating Cartesian graphs that is extremely useful and
flexible. Indeed, the individual numeral, or the particular graph, is almost
meaningless apart from the system to which it belongs. Systems of external

3



4 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

representation are structured by the conventions that underlie them. Once a
system is established, patterns in it are no longer arbitrary; they are "there to
be discovered," though greater flexibility of interpretation is present than is
commonly realized.

One important aspect of representation is its two-way nature. The repre-
senting relation-depiction, encoding, or symbolization-often can go in
either direction. Thus, depending on the context, a graph (e.g., a circle of
radius 1 centered at the origin in the Cartesian plane) could provide a geo-
metrical representation of an equation in two variables (e.g., the equation
X2 + y' = 1). Alternatively, an equation relating x and y could provide an
algebraic symbolization of a Cartesian graph.

Much of the history of mathematics is about creating and refining repre-
sentational systems, and much of the teaching of mathematics is about stu-
dents learning to work with them and solve problems with them (Lesh, Lan-
dau, and Hamilton 1983). Some external systems of representation are
mainly notational and formal. These include our system of numeration; our
ways of writing and manipulating algebraic expressions and equations; our
conventions for denoting functions, derivatives, and integrals in calculus;
and computer languages such as Logo. Other external systems are designed
to exhibit relationships visually or spatially, such as number lines, graphs
based on Cartesian, polar, or other coordinate systems, box plots of data,
geometric diagrams, and computer-generated images of fractals. Words and
sentences, written or spoken, are also external representations. They can
denote and describe material objects, physical properties, actions and rela-
tions, or things that are far more abstract.

The traditional representational systems of mathematics that we have
mentioned are static in the sense that they provide rules or frameworks for
creating fixed external formulas, equations, graphs, or diagrams. But new
technologies, from graphing calculators to computer-based microworlds,
present a world of new, dynamic possibilities-external systems where repre-
sentations can be changed dramatically with the click of a mouse or the drag
of a cursor and linked automatically and continuously to one another
(Kaput 1989). Thus the student can watch a graph change as a parameter in
a symbolic expression represented by the graph is adjusted. The power of
this technology for teaching is only beginning to be tapped.

INTERNAL, PSYCHOLOGICAL REPRESENTATION
BY STUDENTS

External representational systems are useful, or limited in usefulness,
according to how individuals understand them. For instance, some students
manipulate mathematical expressions well, skillfully performing arithmetic
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and algebraic computations. But even a high level of ability to do this need
not imply an understanding of mathematical meanings, the recognition of
structures, or the ability to interpret the results. Rules in mathematics can be
learned and followed mechanically-and definitions can be memorized-
without very much conceptual development having taken place.

How, then, can we describe students' understandings of a mathematical
concept? Is the configuration -3, for instance, understood and interpreted in
the desired variety of ways? Perhaps it is seen merely as a mark or a minus
sign, followed by the numeral 3. One student may have formed some mean-
ingful, related concepts but failed to associate them with the symbolic nota-
tion. Another student may have little or no notion of negative numbers or
even see numbers less than zero as being impossible. To characterize the
complex cognitions that can occur, one needs a model or a framework. One
approach is to consider and try to describe the internal representations or, as
they are sometimes called, "mental representations" of the student (Kosslyn
1980; Palmer 1977).

Systems of internal cognitive representation can be of several different
kinds (Goldin 1987, 1998a). Verbal/syntactic representational systems
describe individuals' natural language capabilities-mathematical as well as
nonmathematical vocabulary and the use of grammar and syntax. Imagistic
systems of representation include visual and spatial cognitive configurations,
or "mental images." These contribute greatly to mathematical understanding
and insight. Imagistic systems also include kinesthetic encoding, related to
actual or imagined hand gestures and body movements, which are often
important to capturing the "feel" of the mathematics. Likewise auditory and
rhythmic internal constructs are essential, as children learn letters and
counting sequences, clap hands in rhythm, and so forth.

Formal notational representation also takes place internally, as students
mentally manipulate numerals, perform arithmetic operations, or visualize
the symbolic steps in solving an algebraic equation. Strategic and heuristic
processes for solving mathematical problems are represented as children
develop and mentally organize methods such as "trial and error, "establish-
ing subgoals," or "working backward." These representations, although high-
ly structured, can sometimes be quite unconscious-the child making effec-
tive use of a strategy may find it difficult to explain how he or she is
approaching the problem.

In addition, intertwined deeply with cognition, we have individuals' affec-
tive systems of representation. These include students' changing emotions,
attitudes, beliefs, and values about mathematics or about themselves in rela-
tion to mathematics. Affect can importantly enhance or impede mathemati-
cal understanding (DeBellis 1996; Goldin 2000; McLeod and Adams 1989).

We cannot, of course, observe anyone's internal representations directly.
Rather, we make inferences about students' internal representations on the
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basis of their interaction with, discourse about, or production of external
representations. Skilled teachers do this almost automatically, paying atten-
tion to their students' words, written work, use of manipulative materials, or
use of calculators and computers as they try to understand individual con-
ceptions and misconceptions. It is sometimes useful to think of the external
as representing the internal, as when a student draws a diagram or writes a
formula to describe what he or she is thinking. Simultaneously we can think
of the internal as representing the external, as when a student formulates a
"mental picture" of operations described in an arithmetic formula. This
shifting perspective is characteristic of the two-way nature of representation.

Internal representations do not simply encode or represent what is exter-
nal. In using them to characterize individuals' conceptual understandings,
we stress that internal representations can refer to each other in complex
ways. This is one of their most important psychological aspects. Thus an
individual's internal representation of -3 may include verbal phrases, such as
"the opposite of three" or "the negative of three"; complicated visual or spa-
tial images, such as a location three spaces to the left of zero on a number
line; kinesthetically encoded images or action sequences, like taking three
steps backward or turning around and taking three steps; various related for-
mal notational procedures, such as combining -3 with +3 to obtain 0; and
many other possibilities. Such configurations can, at various times, represent
each other, with words representing a visual image, an image representing a
formal procedure, and so on.

A mathematical concept is learned and can be applied to the extent that a
variety of appropriate internal representations have been developed, together
with functioning relationships among them. We infer the nature of the
developing representations, and their adequacy, in part from the individual's
interactions with the external, conventionally developed systems of represen-
tation of mathematics and in part from his or her interactions with non-
mathematical situations.

Different researchers have focused on different aspects of the role of repre-
sentation in mathematics learning and teaching. Some have emphasized repre-
sentation in particular mathematical domains, such as integers (Carraher
1990), functions (Even 1998), or geometry (Mesquita 1998). Others have stud-
ied the processes whereby children working in groups construct representations
(Davis and Maher 1997). A major, developing field of inquiry is the role of pic-
torial imagery, analogy, and metaphor in internal representation (English 1997;
Presmeg 1992, 1998), a study very much in the spirit of continuing George
Polya's ideas about mathematical problem solving (Polya 1954a, 1954b). Still
others have done work on embodying mathematical ideas through dynamic,
linked computer representations (Edwards 1998; Kaput 1989, 1992, 1993). in
this paper we have sought to provide a synthesis of these views and to include
additional references that can assist the interested reader (Goldin 1998b).
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A COMPARISON OF THE REPRESENTATIONAL
PERSPECTIVE WITH BEHAVIORIST AND

CONSTRUCTIVIST PERSPECTIVES
The representational perspective taken here may be contrasted with other

points of view. Two broad perspectives, quite different from each other, that
spurred research and greatly influenced classroom practice in the past few
decades came to be known as behaviorism and constructivism.

The psychological school of behaviorism, ascendant during the 1950s and
1960s, aimed to explain learning entirely through external, observable vari-
ables-structured stimulus situations, responses, and the reinforcement of
desired behaviors (Skinner 1953, 1974). Behaviorists sought to avoid infer-
ences about internal cognitive states. In school mathematics, behaviorists
tended to focus on students' acquisition of skills, rules, and algorithms, with
more complex systems of responses built up out of these. Classroom goals
were framed as "behavioral objectives" or "performance objectives;" which
are very compatible with the measurement of achievement through stan-
dardized tests (Sund and Picard 1972).

Behaviorism was challenged by ideas from developmental psychology and
cognitive science, within which we highlight the constructivist school that
gained adherents during the 1980s. Here, all knowledge was seen as con-
structed from the individual's subjective world of experience (von Glasers-
feld 1991). Constructivists thus placed great emphasis on the internal (as
opposed to the behaviorists' focus on the external). They tended to reject the
idea of "objectivity," even in mathematics, and relied on the coherence of
discourse among individuals for the viability of their interpretations. Social
constructivists placed special emphasis on the cultural and sociological
processes through which knowledge is formulated (Ernest 1991).

In a sense, these two distinct philosophies connect with the different
philosophies of teaching and public education, whose clash has evoked some
controversy in recent years. On the one hand are those who favor basic
mathematical skills, correct answers through correct reasoning, individual
drill and practice, more direct models of instruction, and measures of
achievement through objective tests. They tend to prefer the behaviorist
characterization of skills and see constructivism as far too subjectivist. On
the other hand are those who value children's making their own discoveries
in mathematics, open-ended questions that may have more than one answer,
different conceptualizations and interpretations by different children, less
use of teacher-centered models of instruction, group as well as individual
problem-solving activity, and alternative assessments. They tend to regard
constructivism as the preferred research base, seeing the behaviorist
approach as far too objectivist.

7
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The research on representation, as we have described it, bridges the gap. It
involves explicit focus on both the external and the internal, with the utmost
attention given to the interplay between them. Through interaction with
structured external representations in the learning environment, students'
internal representational systems develop. The students can then generate
new external representations. Conceptual understanding consists in the
power and flexibility of the internal representations, including the richness
of the relationships among different kinds of representation. Thus the
research on representation achieves a synthesis of the other two perspectives,
drawing on the best insights each offers without dismissing the contribu-
tions of the other.

This lends itself to a more inclusive educational philosophy-one that val-
ues skills and correct answers as well as complex problem solving and math-
ematical discovery, without seeing these as contradictory. The goal is high
achievement in mathematics, for the vast majority of students, through a
variety of different representational approaches.

RELATIONSHIPS AMONG REPRESENTATIONS
Next we comment on the important psychological roles of analogy (or

simile) and metaphor. These come into play when images are evoked to
develop, explain, or interpret mathematical constructs. Such processes
always involve more than one system of representation-as when one type of
construct is asserted as "being like," or as "being," another construct.

Returning to the example of negative numbers, a child may think that -3
is "like giving away three dollars" or "like owing three dollars," without quite
specifying how or why it is like that. One representation, the symbolic nota-
tion -3, is interpreted here in relation to another, the real-life imagery asso-
ciated with giving away or owing money. In a sense, to think of -3 as "being
a number" extends metaphorically the meaning of "number." Negative
quantities do not fit an earlier-developed cardinal meaning of "number" as
the outcome of counting the elements in a finite set. The label "number"
works here because many things that can be done with "numbers" can also
be done with "negative numbers." Nevertheless, mathematicians into the
eighteenth century were loath to accept negative numbers as "existing"; they
were considered to be merely a shorthand for ordinary numbers oriented in
an opposite direction.

Even to say that "zero is a number" or "a fraction is a number" can have
such a metaphorical aspect. Early mathematicians were suspicious of both
assertions. Indeed, the history of mathematics is replete with examples of
new constructs regarded at first as unreasonable, bizarre, or not really exist-
ing-and names like "irrational" and "imaginary" were given to such num-
bers. But as new and better representations were constructed for these sys-
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tems (e.g., the representation of imaginary numbers in the complex plane or
by 2 x 2 matrices, or the association of irrational real numbers with
Dedekind cuts of the rationals), the world of mathematics became more
comfortable with them.

The extension of meanings in these ways is often associated with represen-
tational systems eventually embedded in larger ones. Positive and negative
numbers, rational and irrational numbers, are all represented by the con-
struct of the real number line, which is in turn embedded in the complex
plane. The number line as an external system of representation allows us to
highlight easily the ordinal relationships among numbers. Lesser numbers
are to the left, greater numbers to the right, and the notion of one number
being "between" two others has an immediate spatial interpretation. The
cardinal notion of number as descriptive of a class of sets is no longer funda-
mental.

But negative whole numbers can also be represented cardinally. In such a
representation, based on "signed cardinality," the expression -n means a set
of n objects or counts tagged as being "less than zero.' A familiar classroom
representation based on signed cardinality is to allow black chips to stand for
positive units and red chips to stand for negatives. Reds and blacks can be
created, or introduced in pairs; or they can annihilate each other in pairs.
This (semiconcrete) system can also be used to represent operations with
signed numbers. Adding positive numbers is to put in black chips, adding
negative numbers puts in red chips, and so forth.

Effective mathematical thinking involves understanding the relationships
among different representations of "the same" concept as well as the struc-
tural similarities (and differences) among representational systems. That is,
the student must develop adequate internal representations for interacting
with various systems. This entails assigning appropriate meanings, perform-
ing appropriate mental operations in interaction with external, structured
systems, and being able to resolve the inevitable ambiguities when they
occur.

Thus we conjecture that a fully developed concept of signed number
involves internal representations both for number line and signed cardinality
interpretations, whereas partially developed concepts may function in one
system but not another. We provide an indirect confirmation of this conjec-
ture in the observations described below of situations where children are
able to manipulate signed numbers meaningfully in one representational
context and not in another.

COGNITIVE OBSTACLES
The notion of cognitive representation helps us understand some of the

blocks or obstacles that children may have to particular mathematical ideas.

9
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How do such blocks result from, or connect with, the particular representa-
tions the children are using? How can cognitive obstacles be overcome
through the increasing power of a representational system or through new
systems brought to bear on concepts that are already partially developed?

New, internal systems of representation are typically built up from preex-
isting systems. It is helpful to identify three main stages in their development
(Goldin and Kaput 1996):

1. First is an inventive-semiotic stage (Piaget 1969), during which new char-
acters or symbols are introduced. They are used to symbolize aspects of a previ-
ously developed representational system, which is the basis for their "meaning.,

2. In the second stage the earlier system is used as a kind of template for
the structure of the new system. Rules for the new symbol-configurations are
worked out, using the earlier system together with the meanings that have
been newly assigned.

3. Finally the new system becomes autonomous. It can be detached, in a
sense, from the template that helped to produce it and can acquire meanings
and interpretations different from, or more general than, those that were
first assigned.

The first of these stages is crucial psychologically because when the child
(or adult) first assigns meaning to a new representation, this meaning quick-
ly becomes the "real" meaning for the person. Here we see the power of ini-
tial imagery.

For example, early experiences with numbers may involve assigning the
new symbol (the number) to the result obtained from counting the objects
in a concrete set (i.e., reciting the natural numbers, as elements of the set are
touched or moved, until the last one is reached). The prior system is the
child's internal visual and kinesthetic imagery for representing objects; the
new system is the system of numeration. The result of counting becomes
what a number "really is" to the child.

One can now work out a lot of arithmetic, using the object-system above
as a template: base-ten numeration, arithmetic operations for whole num-
bers, and so on. This development corresponds to the second stage above.
The longer it goes on without alternative interpretations of "number" being
considered, the more counterintuitive other interpretations may later seem.

But there are important aspects of number that the object-system does not
support. Zero cannot be achieved by counting the elements of an empty set.
Negative numbers cannot be understood this way, nor do fractions qualify as
numbers. That is why the extension of the meaning of "number" to these
entities has a metaphorical aspect. This can be a serious obstacle to later
mathematical development. The system of numeration becomes
autonomous only to the extent that new meanings and interpretations are
offered beyond the original ones on which the system has been built.
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EXAMPLES: CHILDREN'S REPRESENTATIONS
OF NEGATIVE NUMBERS

We shall illustrate some aspects of the foregoing discussion with examples
of different representations of negative numbers.

Typically, signed numbers and their manipulation are seen as a topic
appropriate for the middle school grades, and in some curricula they are not
introduced until the level of prealgebra. This allows plenty of time for cogni-
tive obstacles not only to develop but to become well secured in the repre-
sentational structures of the children. Students learn early in school that
"you can't take away a larger number from a smaller number," and later they
must tear down and reconstruct their cognitions.

Davidson (1987), among others, criticized the usual sequence in which
children are introduced first to counting numbers, addition, and subtraction
with manipulatives, then to computation with written numerals, and finally
to negative integers. He suggests this leads to misconceptions at each stage
and argues that much earlier teaching of negative numbers with manipula-
tives is possible. Carraher (1990) conducted clinical interviews with adults
and with children in grades 4, 5, and 6, some of whom were receiving
instruction about signed numbers in school. The study demonstrated both
children's and adults' ability to add directed numbers without previous
instruction, with no significant difference related to school instruction. But
subjects experienced difficulties solving problems on paper. Carraher sug-
gests "the need to distinguish theoretically between the availability of a
semantic representation for negative numbers and the use of the mathemati-
cal representation through signs" (p. 229). Peled, Mukhopadhyay, and
Resnick (1989) have provided additional evidence that children construct
internal representations of negative numbers prior to formal school instruc-
tion. For additional discussion, empirical work on negative numbers, and
recommendations concerning their teaching, see Aze (1989), Hativa and
Cohen (1995), Hefendehl-Hebeker (1991), Hitchcock (1997), and Streefland
(1996).

How, then, might a young child of age seven assign initial meaning to the
notion of a number "less than zero"? To understand the structure of a
developing internal representational system, it is useful to try to observe
behaviors attendant on its construction, allowing us to infer that some parts
of the system are already being developed and some are not. Two of the pos-
sible kinds of meaning assigned for negative numbers are related to the two
types of external representations mentioned above: number line representa-
tion and signed cardinality representation. Thus we set out to interview
children in two different, structured external representational contexts. The
interviews took place during the initial phase of an exploratory study in
progress that included subsequent group activities with signed numbers.
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It is worth taking a moment to comment on the complexity of external
representations for signed numbers. We were focusing on the possible mean-
ing of -I as a position location one unit to the left of an arbitrary zero-point
or origin of the number line. (Of course, "to the left"' is simply the common
convention.) But this assignment of meaning is different from another possi-
ble meaning of -1, which is the operation of traveling, or the command to
travel, one unit to the left on the number line from any starting point. Usu-
ally the latter meaning is associated with "subtracting 1" or "adding -1," but
note that the I that is subtracted or the -I that is added does not have any
immediate connection to the meaning of-1 as a location. The different
meanings of -I that are possible here contribute to the skill that is needed in
using the number line effectively as a classroom teaching device.

In order to study students' internal representations of signed numbers, we
interviewed twelve students from a mixed first- and second-grade classroom
in a small suburban private school. The students were of mixed abilities, and
none of them had had previous schooling related to negative numbers.

One of the presented representational contexts was related most closely to
the number line, embodying ordinal relationships. We started with a paper
strip consisting of blank circular spaces that we called a "path." Additional
spaces could be attached to either end of the path. The strip was placed on
the table so that the left end was in front of the student, and the right end
(from the student's perspective) hung over the edge of the table (see fig. 1.1).

The student was given a set of cards marked with the numerals from 0 to 7
and additional blank cards. The student was first asked to use the cards to
name the spaces on the path. We expected most of the children to come up
with the sequence 1, 2, 3, ... , starting from the leftmost space. If another
labeling was offered, as often happened, we accepted the answer but asked

about other possibilities until
we had evoked a solution like

_________________ this one. This established a
convenient representational
basis for further questions.

At that point the (external)
representation (labeled by the
counting numbers) was
expanded, in an attempt to
include zero and negative

Fig. 1. 1. An ordinal representational context numbers. A blank space was
for the task-based interviews attached at the end of the

path to the left of the space
the child had labeled 1. The child was asked to name the new space without
changing the way the other spaces were named. If the child named this space
with the 0, he or she was asked then to name another new space, which was
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attached to the left of the one named 0. At each step, the child was asked to
explain why.

The second external representational context was related to signed cardi-
nality. We introduced a game with a spinner that could point either to a sad
(frowning) face or to a smiling face (see fig. 1.2). Someone who spun the
arrow so that it ended pointing at the smiling face would gain a point. Oth-
erwise, the player would lose a point. The player started with 2 points at the
beginning of the game (to avoid a negative score too early in the interview).

The student was asked to spin the arrow and
then tell how the score changed as a result. The
part of the interview that followed allowed
us to infer whether the student's internal
representation could include (or extend
to include) zero and negative numbers in
this context. The situation where the stu- *
dent started to lose points either hap-
pened by itself or was created by the inter-
viewer so that the child faced the situation
in which the score was 0 points and the arrow
pointed to the sad face.

Next, the student was asked to create a
method of keeping score. For this purpose the Fig. 1.2. A signed cardinality

use of chips (black and red) was suggested. representational context for the
Black and red chips were available at the table
during the "cardinal" portion of the interview.

Each child experienced the two representational contexts, six in the order
"ordinal then cardinal" and six in the opposite order, "cardinal then ordinal:'
There were five children (among the twelve interviewed in this group) whose
cognitive obstacles to "numbers less than zero" appeared firm in both repre-
sentational contexts. The other seven children evidenced some ability to use
the idea of negative numbers in at least one of the representational contexts.
We shall shortly look at examples drawn from three of these children. Among
other sets of interviewees, nineteen of thirty-four children drawn from two
second-grade classrooms in a public suburban school evidenced at least partial
familiarity with negative numbers, as did all ten students interviewed from a
multiage third- and fourth-grade private school classroom. These qualitative
observations suggest that many contemporary students begin to develop
informal internal representations of negative numbers rather earlier than is
widely believed. This allows opportunities for various misconceptions to form.

We observed a variety of behaviors, from which we have concluded that
development in either of the two representational contexts can occur inde-
pendently of the other. Our results for negative numbers are similar to those
of Piaget (1952) for the learning of natural numbers, who concluded that
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cardinal and ordinal concepts of number develop separately and are later
integrated. But other researchers have reached different conclusions for nat-
ural numbers. Brainerd (1976) reports that ordinal number concepts are
mastered earlier than cardinal concepts, with training for ordinal number
concepts significantly more successful.

Let us consider some of the interviews (the names of all the children are
changed).

Interview 1: Jeremy
Jeremy is a boy in the second grade, seven years and three months old at

the time of the interview. He is considered by his teachers to be an average
student, and he has not seemed to show particular interest in mathematics.

Jeremy rapidly named the spaces of the path 1, 2, 3, 4, ... He volunteered
that there was a way to name more spaces, if they were attached to the right
end of the path. VWhen asked to name an additional space attached to the left
end of the path, without renaming all the rest, he named it 0.

Interviewer: Suppose I put another space here, but I don't want you if
possible to move all the others. Could you name this space
somehow?

Jeremy: (without a pause) Negative one.
Interviewer: Negative one. Can you write this for me?

Jeremy: (lWrites "-I")
Interviewer: And why did you do it this way?

Jeremy: 'Cause it's the way I learned to do it.
Interviewer: Because it's the way you learned it?

Jeremy: Yeah.
Interviewer: Who taught you?

Jeremy: Ah ... No one in particular.

Later, Jeremy said that "negative two goes before negative one:' Thus he
seemed to demonstrate a stable, well-established representational assign-
ment of meaning to negative numbers in this (ordinal) context, using the
words himself spontaneously and writing the conventional symbols. In his
affect, he appeared to be confident and secure.

In the second part of the interview, Jeremy wanted to spin the arrow not
for himself, but for "Mister X." After Mister X had 1 point, Jeremy spun the
arrow for Mister X, and the arrow pointed to the sad face.

Jeremy: Now ... zero points.
Interviewer: Because he lost a point, OK?

Jeremy: OK. (Spins the arrow again, and itpoints to the sadface again.)
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Still zero points. (Slowly, in a low voice.) Or negative one point.
Interviewer: Zero or negative one?

Jeremy: Still zero.
Interviewer: Zero. Why zero?

Jeremy: Because, because it hits right, right here (points at the sad
face).

Interviewer: So he had zero points, then he hit the frowny face. How
many points does he have now?

Jeremy: Zero.
Interviewer: Still zero?

Jeremy: Still zero.
Interviewer: OK.

Jeremy: (Spins the arrow; the arrow points at the sadface again; Jere-
my takes a deep breath.) Still zero.

Interviewer: Why is it still zero?
Jeremy: Or negative one.

Interviewer: Which one is ...
Jeremy: Probably negative one ... or zero. You could see it either

way. I would say zero.
Interviewer: OK. OK. Why do you prefer zero?

Jeremy: Because most people say it like that.

We see an interesting contrast with the earlier, ordinal context, where Jere-
my was confident and seemed to have firmly established a representational
significance for negative numbers. Here he hesitated, considered the possi-
bility, but did not yet accept the idea (though it was his own idea) that a
score (a cardinal quantity) can be negative. He was not certain, but he pre-
ferred zero and thought that "most people say it like that." His affect was
serious and no longer confident, as evidenced by his hesitance and his deep
breath. Jeremy appears to have completed the first "assignment of meaning"
stage with respect to ordinal representation of negative numbers but to have
unstable assignments of meaning when the representation is not ordinal.
During the task he appeared to be partially building an internal, cardinal
representation for negative numbers.

Next, we consider an interview that is almost a mirror image of the one
with Jeremy.

Interview 2: James
James is a boy in the second grade, aged seven years, nine months. He is

considered by his teachers to be an average student. He likes mathematics.

15
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When asked to name the spaces, James named them in order from left to
right, starting with 1. After an additional space was attached at the left end of
the path (to the left of 1), James suggested naming it with 0, because "zero
goes before one." Then the following happened:

Interviewer: Suppose that I put another circle just in front of this one
(attaches a blank space in front of the one named with 0).

James: (Starts sliding the cards with the numbers one space to the
left)

Interviewer: Oh, no, no, wait, wait a little, James, you are too fast. I like
this way of naming them. And I would not like to rename all
the circles. Could we still have all these names here but
name this circle somehow?

James: Um, no. If we move them, we can put the 7 there (pointing
to the last visible space at the right, which presently has 6 in
it).

Interviewer: Yes, I understand. But if we are not going to move them,
and 7 will go here (places 7 to the empty space to the right of
the space labeled 6) and 8 will go here (points to the next
empty space on the child's right), is there any way to name
this shape without renaming anything else?

James: No. If you can't move them.
Interviewer: If I can't move, there is no way?

James: Yes.

Thus James showed no internal representation of negative numbers in the
ordinal context. But later something else occurred. (Recall that black and red
chips were available on the table during the entire cardinal part of the inter-
view.) Mister X, for whom James was spinning the arrow, had 0 points:

Interviewer: Let's spin again.
James: (Spins the arrow; the arrow points at the smiling face.) Now

... one. (James takes one red chip from the pile of red chips.)
He has one.

Interviewer: Oh, he is keeping track using chips?
James: Yes.

Interviewer: That makes sense. So if he gets one point, he takes a chip.
James: (spins the arrow; it points at the smiling face again. James

takes another red chip.) He gets another.
Interviewer: Now he has two chips.

James: Um-hum (spins the arrow, moves back one of his chips).
Interviewer: Losing chip, losing a point.
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James: Um-hum (spins the arrow, moves away another chip).

Interviewer: Losing another point.
James: (Spins again.) How can I lose a point if I don't have any?

Interviewer: How can you lose a point if you don't have any? So what's

James: Negative one?

Interviewer: Negative one?
James: Here's negative one. (James takes a black chip. He smiles.)

Interviewer: Oh, why did you take this?

James: Because it is not red. So it's negative one.

Interviewer: A-ha, so this is for normal points (points at red chip); this is
for ... (points at black chip).

James: Negative points.

Interviewer: OK.
James: (Spins.) Now I get ... zero. (First James trades the black chip

for the red one, but then he moves away the red one also.)

In James's interview, it seemed at first that he would show a cognitive
obstacle to negative numbers in interacting with the cardinal external repre-
sentation, as he had in interacting with the ordinal. "How can I lose a point
if I don't have any?" he asked. But then he spontaneously proposed using
negative numbers to mark a score less than zero. He also created a reasonable
way to keep score using chips of two different colors. The way James behaved
when he suggested using negative numbers-he looked amused, and acted
as if what he was doing was a joke-is indicative of rich affect and suggests
that this might even have been the first time James had used negative num-
bers in such a situation.

Interview 3: Alice
It is interesting to compare these responses with those of Alice, a girl in the

second grade, aged seven years and six months. Like James, Alice showed no
prior familiarity with negative numbers in the ordinal representation. She
appeared to alternate between being willing to use 0 as a label for more than
one space and asserting that "there is nothing there" (without a label). In the
cardinal representation, Alice also showed no familiarity with negative num-
bers, but she came up with an interesting suggestion after the game had been
played for a while.

Interviewer: Suppose I had zero points, and I spin and get a sad face.
Alice: We have nothing. And then, the next point we get, we would

not get it.
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Interviewer: Could you please repeat it?
Alice: And since we have one point to take away, the next point we

have, we don't get it.

Alice did not assign a label like -1 to the situation. Nevertheless, she
invented a rule that incorporates one important structural feature of signed
cardinality-the idea of offsetting the lost point with a subsequent gained
point. This indicates that even in the absence of any clear notational assign-
ment of meaning, some important conceptual development was taking place.

Comparison
Of course we cannot validly base an elaborate picture of individual stu-

dents' internal representations on short interview segments. Nevertheless,
some possible inferences can be offered for explicit discussion. Let us note
briefly the kinds of internal representations the children in these interviews
seem to use in interaction with the externally presented tasks as well as the
structures of these representations.

In interacting fluently with the ordinal task, Jeremy evidences an internal
spatial representation of signed numbers extending in both directions in an
ordered line, the numbers growing from left to right. His verbal descriptions
fit such a structure. He also has some formal notational representation of
negatives, writing "-1 " to represent the space to the left of zero that he called
"negative one." In contrast, James's internal spatial representation seems to
treat the counting numbers as arranged in a rigid order, with zero as the first
one. The structure permits these numbers to be moved as a whole group, but
each number has a fixed, unchangeable place. Negative numbers are not part
of this representation at all (a cognitive obstacle).

However, James spontaneously assigns symbolic meaning to the black
chips, as representing scores below zero, and uses this. He thus finds a strate-
gic solution to a problem that he represents meaningfully, creating (at least
tacitly) a structure that extends to negatives in the cardinal context. His
smile is evidence for his affect of satisfaction with this. Alice's internal repre-
sentation here is especially interesting in comparison with that of James. She
also spontaneously develops a partial representation for operations with
numbers that are effectively less than zero but without the act of symbolizing
such numbers with notations or chips. Rather, she describes verbally a rule
she has created for making future score adjustments. And the apparent
change in Jeremy's emotional state from confident to unsure suggests that
cardinal representation has a more problematic status for him. There is evi-
dence that his operational understanding of (positive) whole numbers is
represented verbally, formally, visually, and kinesthetically during the spin-
ner game, but these representations do not extend structurally to negatives.
Jeremy's first steps in assigning meaning here are just being taken.
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CONCLUSION
We teach mathematics most effectively when we understand the effects on

students' learning of external representations and structured mathematical
activities. To do this, we need to be able to discuss how students are repre-
senting concepts internally-their assignments of meaning, the structural
relationships that they develop, and how they connect different representa-
tions with one another. This article has surveyed and discussed a number of
these ideas. Further examples and discussions of the role of representation in
school mathematics will be found throughout this volume.

The research framework presented has allowed us a more detailed look at
the meanings that children in the early elementary grades can give to "num-
bers below zero" before they encounter them in school. There is evidence
that structurally different internal representations associated with negative
numbers can develop independently of one another, at least in the informal,
early stage of meaning. The ability to assign meaning and to use negative
numbers in an ordinal external representational context of activity neither
implies nor is implied by the presence of these abilities in a cardinal external
representational context.

More generally, we have presented evidence of young children's strong rep-
resentational capabilities. The negative number concept to which we have
devoted attention is just one example. Here the age at which effective inter-
nal representation becomes possible seems earlier than commonly assumed.
This suggests that a much earlier foundation for children's representational
ability in this regard could be considered in the school curriculum. We have
also seen the early-and perhaps unnecessary-development of cognitive
obstacles, which later will need to be overcome. Early attention to children's
representations of number, both positive and negative, making use of both
ordinal and cardinal external representational contexts, could remove these
obstacles before they become long-term impasses, generating strong and
positive affect as well.

In teaching every mathematical topic, we should see the development of
strong, flexible internal systems of representation in each student as the
essential goal. New technology is providing new external representational
systems that can help reach this goal. Ultimately, this awareness of represen-
tational goals is necessary to achieve the desired universality of access to a
high level of achievement in schools.

REFERENCES

Aze, Ian. "Negatives for Little Ones?" Mathematics in School 18 (1989): 16-17.

Brainerd, Charles J. "Analysis and Synthesis of Research on Children's Ordinal and
Cardinal Number Concepts." In Number and Measurement, edited by Richard A.



20 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

Lesh and David A. Bradbard, pp. 189-231. Columbus, Ohio: ERIC, 1976. (ERIC
Document Reproduction no. ED120 027)

Bruner, Jerome S. The Process of Education. Cambridge, Mass.: Harvard University
Press, 1960.

"The Course of Cognitive Growth? American Psychologistl9 (1964): 1-15.

Carraher, Terezinha Nunes. "Negative Numbers without the Minus Sign." In Pro-
ceedings of the 14th International Conferencefor the Psychology of Mathematics Edu-
cation, edited by George Booker, Paul Cobb, and Teresa N. de Mendicuti, Vol. 3,
pp. 223-30. Oaxtepex, Mexico: Program Committee of the 14th PME Conference,
1990.

Davidson, Philip M. "How Should Non-Positive Integers Be Introduced in Elemen-
tary Mathematics?" In Proceedings of the 11th International Conferencefor the Psy-
chology of Mathematics Education, edited by Jacques C. Bergeron, Nicolas Herscov-
ics, and Carolyn Kieran, Vol. 2, pp. 430-36. Montreal, Que.: Program Committee
of the 11 th PME Conference, 1987.

Davis, Robert B. "Discovery in the Teaching of Mathematics?' In Learning by Discov-
ery:A Critical Appraisal, edited by Lee S. Shulman and Evan R. Keislar, pp. 114-28.
Chicago: Rand McNally, 1966.

. LearningMathematics: The Cognitive Science Approach to Mathematics Edu-
cation. Norwood, N.J.: Ablex, 1984.

Davis, Robert B., and Carolyn A. Maher. "How Students Think: TheRole of Rep-
resentations." In Mathematical Reasoning: Analogies, Metaphors, and Images,
edited by Lyn English, pp. 93-115. Mahwah, N.J.: Lawrence Erlbaum Associ-
ates, 1997.

DeBellis, Valerie M. Interactions between Affect and Cognition duringMathematical
Problem Solving. Doctoral diss., Rutgers University. Ann Arbor, Mich.: University
Microfilms #96-30716, 1996.

Dienes, Zoltan P. Mathematics in the Primary SchooL London: Macmillan, 1964.

"Some Reflections on Learning Mathematics." In Learning and the Nature
of Mathematics, edited by William E. Lamon, pp. 49-67. Chicago: Science
Research Associates, 1972.

Edwards, Laurie. "Embodying Mathematics and Science: Microworlds as Represen-
tations." Journal of Mathematical Behavior 17, no. 1 (I 998): 53-78.

English, Lyn D. Mathematical Reasoning: Analogies, Metaphors, and Images. Mahwah,
N.J.: Lawrence Erlbaum Associates, 1997.

Ernest, Paul. The Philosophy of Mathematics Education. Basingstoke, Hampshire,
U.K.: Falmer Press, 1991.

Even, Ruhama. "Factors Involved in Linking Representations of Functions." Journal
of Mathematical Behavior 17, no. 1 (1998): 105-21.

Goldin, Gerald A. "Cognitive Representational Systems for Mathematical Problem
Solving." In Problems of Representation in the Teaching and Learning of Mathe-



REPRESENTATIONS AND THE DEVELOPMENT OF MATHEMATICAL CONCEPTS 21

matics, edited by Claude Janvier, pp. 125-245. Hillsdale, N.J.: Lawrence Erlbaum
Associates, 1987.

"Representational Systems, Learning, and Problem Solving in Mathe-
matics." Journal of Mathematical Behavior 17, no. 2 (1998a): 137-65.

"Retrospective: The PME Working Group on Representations:' Journal of
Mathematical Behavior 17, no. 2 (1998b): 283-301.

. "Affective Pathways and Representation in Mathematical Problem Solving.'
Mathematical Thinking and Learning 2, no. 3 (2000): 209-19.

Goldin, Gerald A., and Claude Janvier, eds. "Representations and the Psychology of
Mathematics Education, Part L." (Special Issue) Journal of Mathematical Behavior
17, no. I (1998a): 1-134.

-"Representations and the Psychology of Mathematics Education, Part IL"
(Special Issue) Journal of Mathematical Behavior 17, no. 2 (1998b): 135-301.

Goldin, Gerald A., and James J. Kaput. "A Joint Perspective on the Idea of Represen-
tation in Learning and Doing Mathematics?' In Theories of Mathematical Learning,
edited by Leslie P. Steffe, Pearla Nesher, Paul Cobb, Gerald A. Goldin, and Brian
Greer, pp. 397-430. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1996.

Hativa, Nira, and Dorit Cohen. "Self Learning of Negative Number Concepts by
Lower Division Elementary Students through Solving Computer-Provided
Numerical Problems?" Educational Studies in Mathematics 28 (1995): 401-31.

Hefendehl-Hebeker, Lisa. "Negative Numbers: Obstacles in Their Evolution from Intu-
itive to Intellectual Constructs?' For the Learning of Mathematics 11 (1991): 26-32.

Hitchcock, Gavin. "Teaching the Negatives, 1870-1970: A Medley of Models." For the
Learning of Mathematics 17 (1997): 17-25, 42.

Janvier, Claude, ed. Problems of Representation in the Teaching and Learning of
Mathematics. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1987.

Kaput, James J. "Linking Representations in the Symbol System of Algebra." In A
Research Agendafor the Teaching and Learning of Algebra, edited by Carolyn Kieran
and Sigrid Wagner, pp. 167-94. Reston, Va.: National Council of Teachers of
Mathematics; Hillsdale, N.J.: Lawrence Eribaum Associates, 1989.

-"Technology and Mathematics Education." In Handbook on Research in
Mathematics Teaching and Learning, edited by Douglas Grouws, pp. 515-5 6 . New
York: Macmillan, 1992.

"The Representational Roles of Technology in Connecting Mathematics
with Authentic Experience." In Didactics of Mathematics as a Scientific Discipline,
edited by Rolf Biehler, Roland W. Scholz, Rudolf Straesser, and Bernard Winkel-
mann. Dordrecht, Netherlands: Kluwer, 1993.

Kosslyn, Stephen M. Image and Mind. Cambridge, Mass.: Harvard University Press,
1980.

Lesh, Richard, Marsha Landau, and Eric Hamilton. "Conceptual Models in Applied
Mathematical Problem Solving Research." In Acquisition of Mathematics Concepts



22 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

and Processes, edited by Richard Lesh and Marsha Landau, pp. 263-343. New York:
Academic Press, 1983.

McLeod, Douglas B., and Verna M. Adams, eds. Affect and Mathematical Problem
Solving: A NewPerspective, New York: Springer-Verlag, 1989.

Mesquita, Ana Lobo. "On Conceptual Obstacles Linked with External Representa-
tion in Geometry?' Journal of Mathematical Behavior 17 (1998): 183-95.

Montessori, Maria. La scoperto del bambino. 6th ed. Milan, Italy: Garzanti, 1962.
(English translation: The Discovery of the Child. Translated by M. Joseph Costelloe.
New York: Ballantine Books, 1972.)

. Basic Ideas of Montessori's Educational Theory: Extractsfrom Maria Montes-
sori's Writing and Teaching. Oxford, England: Clio Press, 1997.

National Council of Teachers of Mathematics (NCTM). Principles and Standardsfor
School Mathematics. Reston, Va.: NCTM, 2000.

Palmer, S. E. "Fundamental Aspects of Cognitive Representation." In Cognition and
Categorization, edited by Eleanor Rosch and Barbara B. Lloyd. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1977.

Peled, Irit, Swapna Mukhopadhyay, and Lauren B. Resnick. "Formal and Informal
Sources of Mental Models for Negative Numbers." In Proceedings of the 13th Inter-
national Conferencefor the Psychology of Mathematics Education, edited by Gerard
Vergnaud, Janine Rogalski, and Michele Artigue, Vol. 3, pp. 106-10. Paris: G. R.
Didactique, Laboratoire de Psychologie du Developpement et de l'Education de
l'Enfant, 1989.

Piaget, Jean. The Child's Conception of Number. New York: Humanities Press, 1952.
. Science of Education and the Psychology of the Child. New York: Viking

Press, 1969.

Polya, George. Induction and Analogy in Mathematics. Princeton, N.J.: Princeton
University Press, 19 54a.

. Patterns of Plausible Inference. Princeton, N.J.: Princeton University Press,
1954b.

Presmeg, Norma. "Prototypes, Metaphors, Metonymies and Imaginative Rationality
in High School Mathematics?" In Educational Studies in Mathematics 23 (1992):
595-610.

"Metaphoric and Metonymic Signification in Mathematics." In Journal of
Mathematical Behavior 17 (1998): 25-32.

Skinner, B. F. Science and Human Behavior. New York: Free Press, 1953.
. About Behaviorism. New York: Alfred A. Knopf, 1974.

Streefland, Leen. "Negative Numbers: Reflections of a Learning Researcher?" journal
of Mathematical Behavior 15 (1996): 55-77.

Sund, Robert B., and Anthony J. Picard. Behavioral Objectives and Evaluational Mea-
sures: Science and Mathematics. Columbus, Ohio: Charles E. Merrill Publishing
Co., 1972.



REPRESENTATIONS AND THE DEVELOPMENT OP MATHEMATICAL CONCEPTS 23

von Glasersfeld, Ernst, ed. Radical Constructivism in Mathematics Education. Dor-
drecht, Netherlands: Kluwer, 1991.



2
Representation and Abstraction
in Young Children's Numerical

Reasoning

Constance Kamii

Lynn Kirkland

Barbara A. Lewis

ARITHMETIC instruction for young children usually begins with concrete
objects and progresses to the use of "semiconcrete" aids, such as pictures, and
finally to "abstract" symbols. The assumption is that these representations,
when properly introduced, convey the intended mathematical meanings to
children. Piaget's research shows, however, that children's understanding does
not depend on representations but on children's level of abstraction. To
explain why this is so, we begin by describing the distinction Piaget made
between representation and abstraction.

THE RELATIONSHIP BETWEEN REPRESENTATION
AND ABSTRACTION

Piaget (1951) distinguished between two kinds of tools we use in represen-
tation-symbols, such as pictures and tally marks, and signs, such as spoken
words and written numerals. He used the term symbol differently from com-
mon parlance.

In Piaget's theory, "symbols" bear a resemblance to the objects represented
and can be invented by each child. For example, children can draw eight
apples without any instruction. They can likewise use eight fingers, eight
counters, or eight tally marks as symbols without being shown how to do
this. (Eight tally marks resemble eight apples, but the numeral "8" does not.)
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Examples of "signs" are the spoken words apple and eight and the written
numeral "8 " Signs do not resemble the objects represented, and their source
is conventions, which are made by people. In other words, unlike pictures
and tally marks, signs cannot be invented by children. Signs are integral
parts of systems and require social transmission. Other examples of conven-
tional systems are mathematical signs (such as "+"), musical notations, and
the Morse code.

To clarify the relationship between representation and abstraction, it is
necessary to discuss the three kinds of knowledge Piaget (1971, 1951 ) distin-
guished according to their ultimate sources and the two types of abstraction
involved in the acquisition of each kind of knowledge.

Three Kinds of Knowledge
The three kinds of knowledge are physical, social (conventional), and logi-

co-mathematical knowledge. Physical knowledge is the knowledge of objects
in external reality. The color and weight of counters or any other object are
examples of physical knowledge. The fact that counters do not roll away like
marbles is also an example of physical knowledge. The ultimate source of
physical knowledge is thus partly in objects, and physical knowledge can be
acquired empirically through observation. (Our reason for saying "partly"
will be explained shortly.)

Social knowledge is the knowledge of conventions, which were created by
people. Examples of social knowledge are languages such as English and
Spanish and holidays such as the Fourth of July. The ultimate source of
social knowledge is thus partly in conventions. (Our reason for saying "part-
ly" will also be clarified shortly.)

Logico-mathematical knowledge consists of mental relationships, and the
ultimate source of these relationships is the human mind. For instance, when
our ancestors (as well as each one of us) saw two pebbles on the ground, they
could think about them as being different or similar. It is just as true to say that
the pebbles are different (because pebbles on the ground are seldom identical)
as it is to say that they are similar (because they share common characteris-
tics). The similarity and difference exist neither in one pebble nor in the other.

Another relationship an individual can create between the pebbles is two.
The pebbles can be observed empirically, but the number "two" cannot. The
ultimate source of logico-mathematical knowledge is each person's mind.

Piaget conceptualized two kinds of abstraction-empirical abstraction and
constructive abstraction. ("Constructive abstraction" is also known as
"reflective" or "reflecting" abstraction. The French term Piaget usually used
was abstraction reflechissante, which has been translated to "reflective" or
"reflecting" abstraction. He also occasionally used the term constructive
abstraction, which seems easier to understand.) This distinction helps to dif-
ferentiate external and internal sources of knowledge.
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Empirical and Constructive Abstraction
In empirical abstraction, we focus on certain properties of an object and

ignore the others. For example, when we abstract the color of an object
(physical knowledge), we simply ignore the other properties such as weight
and the material with which the object is made (plastic, for instance). These
properties are knowable empirically through our senses, and we choose only
the one(s) we want to abstract.

In contrast, constructive abstraction involves the making of mental relation-
ships between and among objects. Relationships such as "similar;' "differ-
ent," and "two" (logico-mathematical knowledge) are made by constructive
abstraction. Whereas properties of objects are abstracted from objects, rela-
tionships are abstracted from our mental actions (thinking) on objects.

Having made the theoretical distinction between empirical and construc-
tive abstraction, Piaget went on to say that in the psychological reality of the
child, one cannot take place without the other. For example, we could not
construct the relationship "different" if all the objects in the world were
identical. Similarly, the relationship "two" would be impossible to create if
children thought that objects behave like drops of water, which can combine
to become one drop.

Conversely, we could not construct physical knowledge, such as the knowl-
edge of "red;' if we did not have the category of "color" (as opposed to every
other property) and the category of "red" (as opposed to every other color).
A logico-mathematical framework (built by constructive abstraction) is nec-
essary for empirical abstraction because children could not "read" facts from
external reality if each fact were an isolated bit of knowledge unrelated to the
knowledge already built and organized. This is why we said earlier that the
source of physical knowledge is only partly in objects and that the source of
social knowledge is only partly in conventions.

Although constructive abstraction cannot take place independently of
empirical abstraction up to about age six, it later becomes possible for con-
structive abstraction to take place independently. For example, once the
child has constructed number, he or she becomes able to put these relation-
ships into relationships without empirical abstraction. By putting four
"twos" into relationships, for instance, children become able to deduce that
2 + 2 + 2 + 2 = (2 + 2) + (2 + 2), that 4 x 2 = 8, and that if4x= 8, xmustbe 2.

The Conservation-of-Number Task
The conservation-of-number task clarifies constructive abstraction. This

task is sketched briefly, and the reader can find further details in Kamii
(1982, 1985, 2000). Most four- and five-year-olds make a one-to-one corre-
spondence when asked to put out the same number of counters as the eight
that the interviewer has aligned. After two rows of eight counters have been
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made, the interviewer tells the child to "watch carefully what I'm going to
do." The interviewer then spreads out the counters in one row and pushes
together those in the other row.

The child is now asked the conservation questions: "Are there just as many
here (row A) as here (row B), or are there more here (row A) or more here
(row B)?" and "How do you know?" At age four and slightly beyond, most
children say that one row has more because it is longer.

Conservation is attained between five and six years of age by most middle-
class children, who say that there are just as many in row A as in row B.
When asked, "How do you know?" conservers give one of the following three
logical arguments:

* "You didn't add or take anything away" (the identity argument).
* "If we put the chips back to the way they were before, you'll see that the
number is the same" (the reversibility argument).

* "One row is longer, but there's more space between the chips" (the com-
pensation argument).

The conservation task is a test of children's logic. Counters are objects that
can be observed empirically (physical knowledge), but observation is not
enough for children to deduce logically that the quantity in the two rows
remains the same. Only when children can put the objects into numerical
relationships (by constructive abstraction) can they deduce with the force of
logical necessity that the two rows must have the same number.

The reader may be wondering why nonconservers do not try counting.
When children begin to count, we usually ask them if they can answer the
question without counting. When children's logic is well developed, conser-
vation becomes obvious, without any need to resort to an empirical proce-
dure like counting.

Note that the conservation task is given with concrete objects. The coun-
ters are empirically observable (physical knowledge), but number (logico-
mathematical knowledge) is not. In other words, number is constructed by
each child, through constructive abstraction, and is always abstract.

Young Children's Graphic Representation of Groups of
Objects

Sinclair, Siegrist, and Sinclair (1983) individually interviewed four-, five-,
and six-year-olds in a kindergarten and day-care center in Geneva, Switzer-
land, using up to eight identical objects, such as pencils and small rubber
balls. No formal, academic instruction was given at that time in public
kindergartens in Geneva.

Presenting the child with three small rubber balls, for example, as well as a
pencil and paper, the interviewer asked, "Could you put down what is on the
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table?" This request was carefully worded to avoid using terms such as "how
many" and "number" that would have suggested quantification.

After making several similar requests (with two balls, then five houses, for
example), the researchers asked the child, "Could you write 'three' (then
'four,' and so on)?" These requests were made to find out if the child could
write numerals when explicitly asked to do so in the absence of objects.

The following six types of notations were found (see fig. 2.1):

1. Global repre-
sentation of quantity
Examples of this type
are "/1/1" for three
balls and "/////" for
two balls. These chil-
dren can be said to
be representing the
vague quantitative
idea of "a bunch" or
"more than one'

2. Representation
of the object-kind.
Type 2 notations
show a focus on the
qualitative rather
than the quantitative
aspect of each set.
The examples in fig-
ure 2.1 are a "B" for
three balls and two
balls and the drawing of

Fig. 2.1

a house for five houses.
3. One-to-one correspondence with symbols ("symbols" in the Piagetian

sense). Some children invented symbols to represent the correct number,
and others used conventional letters such as "TIL" for three balls. This is the
first type in which precise numerical ideas made an appearance.

4. One-to-one correspondence with numerals. One of the examples for
three balls is "123,' and another example is "333. It can be said that the chil-
dren who wrote these numerals felt the need to represent each object or their
action of counting.

5. Cardinal value alone. We finally see "3" for three balls and "5" for five
houses (along with "invented" spelling in French for the spoken numerals
trois, deux, and cinq).

6. Cardinal value and object-kind. Examples of this type are `4 pencils"
and "5 houses." These representations show a simultaneous focus on the
quantitative and qualitative aspects of each set.

Types Three balls Two balls Five houses

1.

2. q8>,

3. f F 771 7

3a T.- /JTTI

3. A t: 7 417

4. IL ne~
4. 23 . 65555;

5. 3 tSi

6. 4L cd o'l dc'&. botI z-
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Type I was found mainly among the four-year-olds, and types 5 and 6
were found mostly among those older than five and a half. Types 3 and 4
(one-to-one correspondence) were most frequently found in the middle of
the age range, at about the time children become conservers. It must be
noted that there are no clear-cut levels in this development, since half of the
children used more than one type of representation.

A significant finding is that many children who used only types 1, 2, or 3
were perfectly able to write "3," "4," and so on, when explicitly asked, "Can
you write 'three,' (then 'four' and so on)?" The question that arises is "Why
did they not write the numerals they knew?"

Our answer to this question is that when children represent reality, they
represent their ideas about reality and not reality itself (Piaget 1977). When
they saw three balls, for example, some children thought about them as "a
bunch" and made a type 1 representation. Others thought "balls" and
made a type 2 representation. These four-year-olds thought about the
objects either from a vaguely quantitative or from a qualitative point of
view.

At age five, when children construct number (by constructive abstraction),
they tend to make type 3 and type 4 representations. These children think
about three objects with numerical precision but still think about each
object. Type 4 is especially informative because it shows that even when they
use their social knowledge of written numerals, children use them at their
respective levels of constructive abstraction. No one teaches children to write
"123" or "333" to represent three objects, but types 3 and 4 reveal children's
attention to each object rather than to the total quantity.

Type 5 representation was made mostly by the oldest children, reflecting
their thinking about the total quantity of objects. At this point, one numeral
seems best to them to represent a higher-order unit.

This study illustrates the relationship between abstraction and representa-
tion. When children are presented with three balls and their concept of
quantity is not yet precise, they represent their vague idea with type 1 sym-
bols. When their idea becomes more precise and numerical (through con-
structive abstaction), they make types 3-6 representations. Types 3-6 show
that children use conventional signs to represent their concepts of number at
their level of constructive abstraction. If they are still thinking about each
object in the set, or each counting-word they write "TIL," "123," or "333:'

First Graders' Use of Signs to Represent Addition
The discussion so far dealt with children's representation of groups of

objects. We now go on to their representation of an operation such as addi-
tion. One of us individually interviewed 204 first graders during the second
half of the school year in six public schools (two in Japan and four in the
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United States-in Chicago and in a small town and a suburb in Alabama).
The children had all been completing worksheets for months (since kinder-
garten in many cases) and could read, write, and define mathematical sym-
bols such as "+" and "-:'

The interviewer showed a doll to each child and said, "I'm going to turn
him around (turning the doll's back toward the child) so that he won't be
able to see what I'm going to do. I'm going to do something here (showing
about forty chips and a small, transparent, plastic container), and when I
have finished, I want you to write with numbers what I will have done, so
that the doll will be able to read your writing and know what happened."
The interviewer then dropped three chips simultaneously into the container
saying, "First, I am putting three in:' She went on to drop two more chips
into the container saying, "I am adding two:' The child was asked to "write
with numbers what I just did so the doll will be able to read your writing and
know what happened:'

Many children wrote "5." When this happened, the interviewer said, "Yes,
that's how many there are now. But I first put three in:' After emptying the
container, the interviewer dropped three chips into it and asked, "Could you
first write 'three' on your paper to say that I first put three in?" After the
child wrote "3," the interviewer demonstrated with chips again, saying, "I
am adding two," emphasizing the word adding.

The findings are summarized in table 2.1. It can be seen in this table that
the children made a wide variety of representations. All the first graders were
thoroughly familiar with equations, but only 68 percent, 18 percent, 22 per-
cent, and 62 percent of the four groups, respectively, wrote conventional
expressions such as "3 + 2 = 5" and "3 + 2.'

Many first graders wrote only two numerals in "3 + 2," "3 + 2 ... "3 2,"
or "3 5." A 3 and a 2, representing the two original wholes, were written by
18 percent (8 + 2 + 8), 24 percent (O + 0 + 24), 46 percent ( 11 + 0 + 35),
and 36 percent (14 + 5 + 17), respectively, of the four groups. A 3 and a 5,
representing the original whole and the whole at the end, were written by 6
percent, 29 percent, 11 percent, and 9 percent, respectively, of the four
groups.

An important point concerns the rarity of the use of the "=" sign in table
2.1. Also, many children wrote '3 2" without the "+" sign. Some children
wrote the "+" sign without writing the "=" sign, but no one wrote "=
without writing "+." The "=" sign appears later than the "+" sign because
the relationship among 3, 2, and 5 involves a hierarchical relationship,
which is very hard for young children to make. When we add two numbers,
we combine two wholes (3 and 2) to make a higher-order whole (5), in
which the previous wholes become parts. By contrast, the relationship "+"
between the two original wholes (3 + 2) does not involve a hierarchical
relationship.
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TABLE 2.1
Percents of First Graders in Four Locations Representing theAddition of 3 and 2*

United States Japan
Suburb Small town Chicago
n=62 n=49 n= 29 n=64

3+2=5 60 18 11 48
3+2 8 0 11 14
3+2= 2 0 0 5

32 or 2 8 24 35 17
3

35 or 5 6 29 11 9

Others 18 28 33 6

(The following examples of "Others" are from the United States, since the Japan-
ese sample had only 6% in this category.)

3+25 +32-5 3+5=5
3

325 +2=5 345
5 3 2 12345
23 3
5 5 5322

*When a chdd represented the addition vertically and conventionally, he or she was
asked to write "the same thing" horizontally.

Four-year-olds' reaction to the class-inclusion task (Inhelder and Piaget
1964) explains young children's difficulty in making hierarchical relation-
ships. In this task, the child is presented with six miniature dogs and two cats
of the same size, for example. He or she is first asked, "What do you see?" so
that the interviewer can use words from the child's vocabulary. The child is
then asked to show "all the animals," "all the dogs," and "all the cats" with
the words from his or her vocabulary (e.g., "doggy"). Only after ascertaining
the child's knowledge of these words does the adult ask the following class-
inclusion question: "Are there more dogs or more animals?"

Four-year-olds typically answer, "More dogs:' whereon the adult asks, "Than
what?" The four-year-old's answer is "Than cats " In other words, the question
the interviewer asks is "Are there more dogs or more animals?" but what young
children hear is "Are there more dogs or more cats?" Young children hear a ques-
tion that is different from the one the adult asks because once they mentally cut
the whole (animals) into two parts (dogs and cats), the only thing they can think
about is the two parts. For them at that moment, the whole does not exist any
more. They can think about the whole, but not when they are thinking about
the parts. To compare the whole with a part, the child has to perform two oppo-
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site mental actions at the same time-cut the whole into two parts and put the
parts back together into a whole. This is precisely what four-year-olds cannot do.

The question four-year-olds hear is an example of how people understand
spoken words. If we can make a part-whole relationship, we understand the
term animals in the way the interviewer used it. If, however, we can make
only a part-part relationship, the only "animals" we can think of besides the
dogs are the cats. Young children cannot see "the animals" that are in front of
their eyes when they cannot think about them.

By seven to eight years of age, most children's thought becomes flexible
enough to be reversible. Reversibility refers to the ability to mentally perform
two opposite actions simultaneously-in this instance, separating the whole
into two parts and reuniting the parts into a whole. In physical, material
action, it is impossible to do two opposite things simultaneously. In our
minds, however, this is possible when thought (constructive abstraction) has
become flexible enough to be reversible. Only when the parts can be reunit-
ed in the mind can a child "see" that there are more animals than dogs.

The infrequent use of the "=" sign and of three numerals (3, 2, and 5)
reported in table 2.1, as well as in Allardice (1977) and Kamii (1985), can
now be explained as a manifestation of young children's difficulty in making
hierarchical, part-whole relationships. Children cannot represent (external-
ize) a part-whole relationship that does not exist in their minds.

EDUCATIONAL IMPLICATIONS
Although we often say that a picture of a dog represents a dog, pictures by

themselves do not represent. We also often say that the spoken word eight or
the written "8" represents a number, but numerals never act by themselves.
Representation is what people do. Seven-year-olds at a high level of con-
structive abstraction represent high-level, logico-mathematical knowledge (a
hierarchical relationship) to themselves when they write "3 + 2 - 5," for
example. A child at a lower level of abstraction is likely to write "3 2" or
"3 5." (As stated earlier, "3 5" is a representation of a low level of abstraction
because the child explains that there were three chips [the whole at the
beginning] and then five [the whole at the end].)

The educational implication of this theory is that numerical reasoning is
fostered when educators focus their efforts on children's constructive
abstraction (children's thinking) rather than on representation. If the chil-
dren's level of abstraction is high, a high level of representation will follow.
Textbooks and workbooks overemphasize the writing of mathematical signs
(representation at a low level of abstraction) and underemphasize the chil-
dren's process of thinking.

Georgia DeClark, the first-grade teacher with whom one of us wrote
Young Children ReinventArithmetic (Kamii 1985), played mathematics
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games with her students every day instead of giving them worksheets. Wor-
ried about the effect of not giving worksheets to her students, she gave four
of them during the year just to find out what her students could do. She
found out each time that her students could quickly write correct answers
and that the only children who could not complete the worksheets were
those who could not play the games. In other words, children who knew
sums (constructive abstraction) could easily write them (representation).
Children think harder about numbers (constructive abstraction) while play-
ing games because, unlike worksheets, games are very important to them.

Based on the belief that children need these "semiconcrete" materials,
workbooks for young children are full of pictures. However, the pictures in
workbooks are totally unnecessary, and children who have never used a
workbook can draw their own pictures or use their fingers as symbols to
solve word problems.

In figure 2.2 are three examples of first graders' responses to the question
"How many feet are there in your house?" Figure 2.2a was drawn by a child
at a relatively low level of constructive abstraction and has elements of Sin-
clair and her colleague's types 2 and 3 representations. This child represented
not only her knowledge of number but also her physical knowledge of peo-
ple's arms and heads and her social knowledge of their names. Figure 2.2b
still includes much physical knowledge, but only the body parts relevant to
the question are represented. Figure 2.2c is a type 3 representation in which
the child's logico-mathematical knowledge predominates.
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68
(a) (b) (c)

Fig. 2.2

All the drawings in figure 2.2 were made in September, when no one in the
class used the numerals they knew as tools for numerical reasoning. By the
winter break, many children wrote numerals and drew tally marks as their
constructive abstraction became more elaborate. By May, as can be seen in a
videotape (Kamii and Clark 2000), those at an advanced level went on to use
only numerals to divide 62 by 5 and wrote "5 10 15 20 25 ... 60."
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Olivier, Murray, and Human (1991) stated that when paper, pencils, and
counters are available in classrooms, young children seldom use counters to
solve word problems. Rather, they prefer to make drawings like those in fig-
ure 2.2. Many teachers we work with in Japan and various parts of the Unit-
ed States have made the same observation and have reported the children's
preference for using their fingers and drawings. Counters have properties of
their own that interfere with children's representation of their ideas. Chil-
dren prefer to make their own drawings because they can think better with
the symbols they make by externalizing their own ideas.
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3
Algebra:

What Are We Teaching?

Mark Saul

WHAT are we teaching when we think that our students are learning alge-
bra? Algebra is certainly a representational system. But what does it repre-
sent? How can we give students access to the concepts represented by alge-
braic notation?

To explore answers to these questions, we will here borrow a methodology
from the medical profession. When a medical researcher wants to know how
a certain chemical or physiological process works, he or she often looks at
the pathological cases, finding a patient for whom the process works excep-
tionally well or extremely poorly. In just this way, we can learn much from
our least able students.

MEET BARRY
Barry graduated from high school this year. A lanky young man with

severe learning disabilities, he spent most of his time in school trying to hide
in the back of the class. For the first two weeks of our acquaintance, I didn't
know what his voice sounded like. The more quiet he kept, the less he had to
deal with the pain of learning.

Most of Barry's four years of high school mathematics was learned in a
special class that I taught. By the end of those years, we had become friends.
Barry shared with me his enthusiasm for basketball and his quite unexpected
sense of humor. He began to take some risks in his personal behavior,
although he still never asked questions and would not seek out my atten-
tion-even when I was the only other person in the room.

Given these personal and intellectual handicaps, we must consider Barry's
learning anything at all about mathematics a success. What has he learned?
He can perform the usual arithmetic operations on any two integers. This he
finished learning some time toward the end of his sophomore year. Teaching
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him how to subtract signed numbers was particularly difficult. He had no
internal representation for these symbols. We spent a long time creating one,
mostly by exploring numerous physical models. As always, Barry had to be
pried loose from clinging to a few memorized rules, which he would use in
specific situations.

Barry can reduce fractions to lowest terms, but he often doesn't realize that
the new fraction and the original represent the same real number. He has
trouble comparing two fractions for size unless he uses a calculator to con-
vert both fractions to decimals. By applying algorithms he has memorized,
he can perform the usual arithmetic operations on fractions. That is, Barry
has some internal representation of signed and rational numbers, but he has
not developed a full repertory of such representations, so he sometimes slips
into the manipulation of an external representation-a symbol to which he
has not attached meaning.

Still, Barry gained enough facility to pass his Regents Competency
Examination and earn a high school diploma. Part of Barry's problem is
that he was rewarded by passing such an examination, without under-
standing the mathematics behind it. The emphasis in some of his learning
has been on rote procedures, which serve him well in an examination con-
text.

WHAT BARRY DOES NOT KNOW
During his second year of high school, I started working with Barry on

algebra, a painful process for both of us. Indeed, neither of us knew what we
were talking about. Barry had to learn what algebra did, and I had to learn
what algebra meant.

Barry understood the notion of a variable: that it represents an element of
a replacement set. He could substitute numbers into a formula and (usually)
get the right answer. When he made errors, he understood and corrected
them.

Barry solved simple linear equations, with integer solutions, by trial and
error. That is, if I gave him the equation 2x + I = 7, he could estimate that
the number couldn't be too big, and try x = 2, x - 3, and so forth, until he
got the answer. Indeed, the better he became at this, the better he could
thwart my efforts to move him on to a more sophisticated understanding.
And I think he knew this.

Barry somehow avoided operating on equations the way most students of
algebra do. That is, I couldn"t get him to start with the equation 2x + I = 7,
subtract I from each side, then divide each side by 2 to get the answer.
Why not? This question tormented me almost as much as I tormented
Barry.
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MEET MERRY
Merry graduated from high school three years ago. She also has significant

problems learning but has gotten further than Barry. After two years in a self-
contained classroom, she was mainstreamed into a regular mathematics class,
two years behind her grade level. This was, for Merry, a major achievement.

Where Barry was taciturn, Merry was voluble. On her good days, she
would light up the classroom with her enthusiasm. On her bad days, every-
one had to attend to Merry's excited conversation, which became a signifi-
cant obstacle to learning for others.

Merry initially faced many of Barry's difficulties: a tendency to learn by
rote, a shallow grasp of operations on rational numbers, a method of solving
equations by trial and error, and a quick reach for the calculator before she
had decided what to do with it.

She learned to handle linear equations by "operating on both sides," when
they were posed in the form ax + b = c. (She had more difficulty if these were
in some other form.) She could solve quadratic equations by factoring (if the
coefficient of x2 was 1) or by using the formula (with some difficulty if the
radical had to be reduced or the fraction put in lowest terms). She had trou-
ble putting a quadratic equation in canonical form, and she had more trou-
ble adding algebraic fractions unless both denominators were the same sim-
ple monomial.

Merry was not fluent in the language of algebra. Although she could factor
3x + 3y, the factoriziation of 3x + 7x gave her pause, and 3x + 7x2 was diffi-
cult. For Merry, these were three different kinds of problems. Similarly, she
could add 1/3 + 4/7, but not l/x + 4/y.

Merry knew how to factor X2 _ y
2 . She learned to apply this knowledge to

factor a number like 2499 as 520_ 12. But when asked to factor 2ax2 - 18ay2

or 1 6x 2y2- 64a2 or (x + y)2 _ (x + 3)2, she would say that she hadn't learned
this yet and would stare at the problem uncomprehendingly.

What did Merry know that Barry did not know? What did Merry herself
not know? What did the symbols of algebra represent for each of these stu-
dents? I needed some time and a certain amount of help to figure this all out.

WHAT ALGEBRA Is NOT
Everyone seems to recognize algebra when they see it: it contains letters,

usually drawn from the end of the alphabet. It is obvious to us how this use
of the letters differs from their use in language. Letters stand for numbers,
they can be added and multiplied, their values can be changed at will, and so
on. Before we seek a framework for these intuitive ideas, let us look at what
algebra does not consist in. Algebra does not consist merely in the use of
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variables. For example, a second-grade teacher can ask his students 5 +
what? = 7, or 5 + El = 7. Most of his students will be able to answer. But are
they using algebra, in any sense? Not usually. They are more likely to be
thinking "5 + 1 = 6, 5 + 2 = 7, so 'box' equals 7."

It is important to note that Cl is indeed a variable. The second-grade stu-
dent knows that El can stand for any one of a set of numbers. Although she
might say that 2 "can be in the El" because it makes the number sentence
right, whereas 3 "cannot be in the [1" because it makes the sentence wrong,
she is still able to conceive of trying to put 3 in the El. She would never put
"elephant" in the El: the variable has a definite replacement set in her mind.

Algebra also does not consist in the study of functions. There are many
types of functions, and we sometimes use algebra to describe some of them.
But we also use geometry (graphs), other diagrams, or natural language. The
study of functions is an important application of algebra. The use of algebra-
ic expressions as notation for certain functions can make the algebra come
alive, just as the interpretation of "7" as "7 doughnuts" makes that concept
more vivid. But algebraic expressions can be used without describing func-
tions, and functions can be expressed without using algebra.

So algebra is not characterized by the use of variables or by the study of
functions. This helps explain Barry's difficulties. He had some understand-
ing of the concept of variable, but not of algebra. That is, he knew that 2x +
1 = 7 is true if x - 3 and false if x = 4. These are statements about numbers.
He could even say that as x increased, so did 2x + 1. This is a statement
about a function. But Barry's understanding of variables and functions did
not allow him to solve an equation algebraically. Indeed, he used his under-
standing of numbers and functions as substitutes for an understanding of
algebra.

THREE WAYS TO UNDERSTAND ALGEBRA
We can distinguish three levels of learning about algebra. The first level is

algebra as a generalization of arithmetic, the arithmeticae universalis. This
Latin phrase is that of none other than Sir Isaac Newton, who used it to
describe algebra in the elementary textbook that he began on the subject.
But perhaps the master should speak for himself (Whiteside 1972, p. 539):

Common arithmetic and algebra rest on the same computational foundations
and are directed to the same end. But whereas arithmetic treats questions in a
definite, particular way, algebra does so in an indefinite universal manner, with
the result that almost all pronouncements which are made in this style of compu-
tation-and its conclusions especially-may be called theorems. However, alge-
bra most excels, in contrast with arithmetic where questions are solved merely by
progressing from given quantities to those sought, in that for the most part it
regresses from the sought quantities, treated as given, to those given, as though
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they were the ones sought, so as at length and in any manner to attain some con-
clusion-that is, equation-from which it is permissible to derive the quantity
sought. In this fashion the most difficult problems are accomplished, ones whose
solution it would be useless to seek of arithmetic alone. Yet arithmetic is so
instrumental to algebra in all its operations that they seem jointly to constitute
but a unique, complete computing science, and for that reason I shall explain
both together

There are several components to Newton's observations. Perhaps the most
important one to the present discussion is Newton's view that algebraic

statements are generalized formations of particular arithmetic statements.
For example, in Newton's conception, the identity a2 - b' = (a + b)(a- b)
has just the meaning that it is true whenever numbers are substituted for a
and b.

Algebra considered as a generalization of arithmetic need not contain vari-

ables. For example, if we let b I in the identity above, we could write the
identity as "One less than the square of a number is equal to the product of
one more than the number and one less than the number" Indeed, Euclid's

algebraic propositions are stated thus-and proved geometrically. Although
it is a historical commonplace that Greek algebra did not get nearly as far as

Greek geometry, it is interesting to note how far Euclid did get with his
words and pictures.

Both Barry and Merry understand this aspect of algebra, although Barry in

particular has some trouble using what he knows. This is because he hasn't
taken the next step.

We can begin to talk about this next step if we view Newton's remark his-
torically. He and his contemporaries had just emerged from the late Renais-

sance, and the algebra they knew centered on some remarkable results con-
cerning the solution of polynomial equations. This approach to algebra
continued to be fruitful right through the next century or two, but it began
to undergo an interesting metamorphosis.

The challenge of finding an algebraic solution to the general quintic equa-
tion led to the study of formulas as objects in their own right. Slowly there
emerged, from the study of polynomial equations, the study of permuta-

tions, then the study of groups of permutations and of fields of numbers.
Later years witnessed still greater abstraction of these concepts. The more
modern study of algebra has its origins in the study of binary operations on

sets.
Today's algebra grew from several roots. One of these was a study of

objects other than numbers (symmetries, permutations, and so forth) for
which binary operations were defined and for which these operations deter-
mined a particular structure. Another was a shift away from the study of
particular solutions of equations and toward a study of whole systems of
objects (such as fields of numbers) in the context of which these particular
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solutions could be studied more naturally. This, in turn, led to investigations
comparing the properties of these new structures to those of ordinary (real)
numbers. Which were prime? Which had inverses? And so on. Today we
sometimes look at the "abstract" algebra of groups, rings, and fields as some-
how different from the elementary algebra of a ninth-grade textbook. But in
fact the former grew directly from the latter.

We might still say that the algebra that resulted is a "universal arithmetic,"
but the universality of the computations is something that Newton might not
have recognized. Saying that the operation of vector addition, or the dot prod-
uct of two vectors, is commutative might be seen as a generalization of the
notion of commutativity for addition or multiplication of real numbers, but
this generalization is far beyond what Newton describes in the passage above.

And yet there is a hint, in Newton's words, of this emphasis on operations
and structures. Newton notes that algebra proceeds "in reverse." This can be
construed to reflect the nature of algebraic operations, of inverses with
respect to a given operation, and so on. This second step in learning algebra
consists, essentially, in turning one's attention from the numbers of arith-
metic to the binary operations acting on these numbers. Algebra can be
thought of as the study of binary operations and their properties.

This is a big part of what Barry doesn't understand. He can substitute x = 3
in the expression 2x + I to get 7, but he cannot solve the equation 2x + 1 = 7
except by trial and error. He is too wrapped up in the numbers, over which
his command is weak, to focus his attention on the operations he is perform-
ing. He won't add -I to both sides of the equation, because he doesn't really
understand the relationship of-i to +I with respect to addition and cannot
see that this relationship is the same as that of 3/4 to -3/4 or that it bears sim-
ilarity to the (multiplicative inverse) relationship between 3/4 and 4/3.

Merry's breakthrough consists in the fact that she sees that the operations
she performs to solve 2x + I = 7 are the same as those she must perform to
solve 2/3x - 4 = 7/5. But Merry can only go so far in her study of binary
operations. This is because she has not taken the third step: the recognition
of algebraic form.

We can get an idea of what this step means from a helpful pedagogical
comment of a modern master, 1. M. Gelfand. Here are his words (from a
personal communication):

Years ago, we thought of arithmetic as dealing with numbers, and algebra as deal-
ing with letters. But we sometimes use letters as well as numbers in discussing
arithmetic.

A more modern view distinguishes algebra from arithmetic in another way. In
algebra we let letters represent other letters, and not just numbers. That is, a stu-
dent can learn the algebraic identity A2 - B2 - (A + B)(A - B) and think of it as
representing such statements as 2499 = 502 -1 = (50 + 1)(50 - 1) = 51 x 49. This
is an arithmetic statement. But if we let A = x6 and B = y7, the same identity can
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represent the statement X6 - y' = (X3 + y -)(x3 _Y). Or, we could write (cos x)2 -

(sin x) 2 = (cos x + sin x)(cos x - sin x). And so one algebraic identity spawns
many others.

In mathematical terms, we can say that arithmetic is largely the study of the
field of rational numbers. Algebra, however, begins with the study of the field of
rational functions.

Merry does not understand this notion that the symbols of algebra can
represent rational expressions. For her, each factoring problem involving the

difference of two squares is a new challenge. For us, who can manipulate
rational expressions easily, they are all alike.

Our traditional algebra texts are organized in just this way. Each page of

drill is a set of instances of a particular identity in the field of rational expres-
sions. When we use these drills with students, we are helping them to recog-
nize how they are all alike and helping them to build an internal representa-

tion of their similarity. This representation is the notion of algebraic form

and is a significant step in abstraction. So in one sense, Gelfand's remark,
unlike Newton's, is a pedagogical note couched in mathematical terms.

Getting students to work in the field of rational expressions is an important
pedagogical step in turning students' attention from the numbers of arithmetic

to operations in general. It is the step that I was not able to take with Merry.

INSTRUCTIONAL INTERVENTIONS
So now I defined for myself the problems I had to solve with Barry and

Merry. How could I go about trying to solve them? I had no simple answers,
but only suggestions and approximations.

For Barry, I tried using a "number story" technique as a transition to alge-
bra: there was this number x, and it got multiplied by 2. Then 1 got added,
and the result was 7. What was the original number?

Barry knew the answer quickly if I used small numbers. So I used the same

story to model the equation 2x + 1 = 247. I reasoned, with Barry, that if 1 got
added to twice the number, and the result was now 247, then twice the num-

ber, before I was added, must have been 246. Then, if the number was 246
after it had been doubled, it must have been 123 before it was doubled.

Barry followed this reasoning and could do a few more problems like this.

But he balked when the reasoning was expressed algebraically. He dutifully
wrote down the following:

2x + 1 = 247
-I -1
2x = 246
.2 ÷2

x =123
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This was just to please me. For the longest time, it had no meaning at all
for Barry. Tellingly, he did not usually "get" the story solution unless I asked
the questions first ("What must the number have been before we added 1?").
This situation improved with time, and Barry was eventually able to solve
simple linear equations with numbers for which he could not use trial and
error. An essential part of this process was played by the calculator. I would
give Barry an equation like 4.1567x - 3.2564 - 7.5342 and hold the calcula-
tor out of his reach. He had to tell me what he wanted to do with the calcula-
tor, after which I allowed him to use it. This seemed to help Barry turn his
attention to the operations he was performing and away from the numbers
to which the operations applied. Barry was taking step two.

Both Barry and Merry benefited from another technique involving simple
rational expressions. I asked them questions of the following form:

If 2x + 3y = 3 and if 6x + 3y = 5, how much does 8x + 6y equal?

I approached this set of exercises very concretely: If 2 pens and 3 pencils cost
$3, and 6 pens and 3 pencils cost $7, how much will 8 pens and 6 pencils
cost?

They quickly found that they could not use trial and error. The problem
did not call for the values of x and y. They could, conceivably, guess at the
correct values for x and y, but these were fractions and not readily guessed.
Just in case they could guess, I would give them problems like this:

If x+ 2y+ 3z= 10 and 2x+y= 12, whatis thevalue of x+y+ z?
The students learned to manipulate these expressions without evaluating
them, and so they began to think of algebraic expressions in their own right,
without evaluating them. They also learned, later, to solve simultaneous
equations algebraically and developed the idea of a linear combination of
vectors. That is, they could explain that if x + 2y + 3z = A and 2x + y = B,
then x + y + z = 113(A + B), sometimes using exactly the representation pre-
sented in this sentence.

Barry and Merry both learned from these techniques. Merry benefited
from one further technique, for which Barry was not yet ready.

This technique involved identifying the "role" of various expressions. That
is, after Merry factored 4X2 - 9y2 as (2x + 3y)(2x - 3y), I would remind her
of the identity A2 - B2 = (A + B) (A - B) and ask her how the two problems
were the same. Eventually, she was able to articulate that 2x "played the role
of" A and 3y "played the role of" B. This phrase became part of her vocabu-
lary, so that when she had trouble factoring or simplifying an expression, I
would ask her to compare it with a simpler expression and ask her for the
roles.

This last technique is one I find valuable for students at every level: the
comprehension of algebraic form is not a process that develops simply. For
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more advanced students learning to tame algebraic fractions, I tell them that
simplifying

x+ 1 + x- 2
x+ 4 x+ 3

is "the same as" simplifying 3/5 + 2/7. It seems to help, and students learn
from this how to decide for themselves which arithmetic pattern the prob-
lem follows. (This technique exploits the fact that both rational numbers
and rational expressions have the structure of a field.)

And on a higher level still, I use the "roles" idea with students doing alge-
braic proofs. For example, such students often have trouble seeing that (x +
y)(p + q) = (x + y)p + (x + y)q is an application of the distributive law. If we
state the latter as A (B + C) = AB + AC, asking "what plays the role of A," and
so forth, things often clear up. Indeed, if students cannot answer this ques-
tion, they cannot understand the proof they are reading (or even writing!).

CONCLUSION
In working with Barry and Merry, I tried to use their difficulties in learn-

ing mathematics to probe more deeply into the nature of the mathematics
they were learning. I then tried to use what I found out to help them sur-
mount their difficulties.

I have described what I learned from the process, but what did the stu-
dents learn? I have already seen Merry, in her mainstream class, get further
than I think she might have without my interventions. Barry didn't get as far,
but I've noticed that his understanding of arithmetic has advanced, and it
seems to me that it was pushed by his experience with algebra.

Neither Barry nor Merry may do any further academic work in mathe-
matics, and neither may even need much mathematics in their careers. It
seems likely to me, however, that their wrestling with the algebra as a repre-
sentation of generalizations in arithmetic and then as a study of operations,
and their using the abstraction of work with rational expressions, should all
contribute to their understanding of abstractions in general, and this under-
standing is a basic and valuable cognitive tool.
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Attending to Transparent

Features of Opaque
Representations of
Natural Numbers

Rina Zazkis

Karen Gadowsky

MUCH of the discussion on different representations in mathematics educa-
tion literature relates to qualitatively different representation systems, such
as pictures, manipulative models, spoken language, or written symbols. The
immediate associations with different representation systems bring to mind
graphs, correspondence diagrams and equations (when considering func-
tions), or written symbols and circle parts (when considering fractions). In
recent discussions, representations are linked to visualization and to com-
puter technology. Here we take a different focus. We discuss various repre-
sentations of numbers and the insights they provide.

FOCUSING ON REPRESENTATIONS OF NUMBERS
Our focus is on the same symbol system-the one of numbers-and dif-

ferent representations that can be formed within this system. We do not
address different numeration systems and, for the most part, stay within the
conventional decimal representation of numbers.

Many of the definitions of various sets of numbers refer to representations.
The judgment whether or not a number belongs to a given set is based on
whether or not it is possible to represent it in a given form. For example, a
rational number is a number that can be represented as a/b, where a is an
integer and b is a nonzero integer. An even number is a number that can be
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represented as 2k, where k is a whole number. A complex number is a num-

ber of the form a + bi, where a and b are real numbers and i ='Ei. A num-

ber is a "perfect square" if it can be represented as A2 for some natural num-

ber A. In this paper, we focus on whole numbers and the variety of ways in
which to represent them.

Consider, for example, the following list:

(a)2162, (b)363 , (c) 3x 15552, (d)5x7x31 x43 + 1, (e) 12x3000+ 12x888

It is not apparent that all these expressions represent the same number,

46 656. However, following Mason (1998), we say that each representation
shifts our attention to different properties of the number.

Lesh, Behr, and Post (1987) describe representational systems as either

transparent or opaque. A transparent representation has no more and no less

meaning than the represented idea(s) or structure(s). An opaque representa-

tion emphasizes some aspects of the ideas or structures and de-emphasizes

others. Opaque representations possess some properties beyond those of the

ideas and structures that are embedded in them, and they do not have some

properties that the underlying ideas or structures do have. In this sense, all

the representations of natural numbers, including the canonical decimal rep-

resentation, are opaque; however, each one has transparent features.

From representation (a) of 46 656, it is transparent that the number is a

perfect square; representation (b) shows that the number is a perfect cube;

from (c) we conclude that the number is a multiple of 3 and 15 552. Of

course, it is possible to derive that the number is a multiple of 3 from (a)

and (b) as well, but (a) and (b) do not give us a clue regarding 15 552. From

(d), we conclude that the number leaves a remainder of 1 in division by 5, 7,

31, and 43, a conclusion that is not apparent in representations (a), (b), and

(c). From representation (e), we see that the number is a multiple of 12 and,

acknowledging distributivity, that is it a multiple of 3 888.
Do students attend to these salient transparent features in different repre-

sentations? Our experience with middle school students as well as with pre-

service elementary school teachers suggests that often this is not so. In what

follows, we consider several examples that outline this experience. Students'

responses were solicited using clinical interviews and written question-

naires as part of the ongoing research project on learning elementary num-
ber theory.

Attending to Factors and Multiples
Consider the number M= 33 x 52 x 7. Is Mdivisible by 7?

Some students gave us the "hey, isn't it obvious?" look when presented with

a question like the one above. Others had to determine the value of M in
order to answer the question. These students performed the multiplication
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using calculators, divided the result by 7, and since the result showed a whole
number, they reached a positive conclusion. Students choosing this strategy
understood what is required for divisibility and some of the means to reach
an answer. However, they were not attending to the structure of the number
given in its representation, where 7 is explicitly listed as a factor

Students also found it difficult to determine divisibility by 7 when they
were faced with the representation of M that included a multitude of factors.
Some students could easily claim that the number 675 x 7 was divisible by 7,
but they could not draw a similar conclusion from the original representa-
tion of M. This has to do with students' seeing a factor as one of two num-
bers they multiply together. When 7 was listed as "one of many" and not
"one of two," some students simply failed to recognize it; others had to rep-
resent M as a product of two numbers, one of which was 7, in order to draw
the conclusion.

An interesting phenomenon related to the representation of M in prime-
factored form is not only acknowledging what is there but also noting what
is not there. It was much easier for students to conclude M's divisibility by 7
than to refute M's divisibility by 11. Consider two statements:

The number 7 is listed in prime factorization of M; therefore, Mis divis-
ible by 7.

The number 11 is not listed in prime factorization of M; therefore, M is
not divisible by 11.

Despite lexical similarity, reaching the second inference on the basis of a
number's representation appears to be more difficult for a learner. It involves
awareness of the uniqueness of prime decomposition entailed by the funda-
mental theorem of arithmetic.

Attending to the Structure of the Division Algorithm
Consider the number K= 6 x 147 + 1. What is the quotient and the
remainder in the division of K by 6?

Students had no difficulty in finding the quotient and the remainder;
however, the preferred approach to reach their conclusion was to calculate
the value of K to be 883 and then perform long division to determine the
quotient and the remainder.

It is transparent from the representation of number K that the quotient is
147 and the remainder is 1. In fact, this is promised by the division algo-
rithm: For integers a and b, b > 0, there exist unique integers q and r such
that a = bq + r, 0< r < b. In the division of a by b, the number q is the quo-
tient and r is the remainder. The middle school curriculum may not involve
a formal introduction of the division algorithm. However, recognizing that
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the number 6 x 147 leaves no remainder in division by 6 leads to the conclu-

sion that the next number in a sequence of natural numbers will give the

remainder of I in division by 6. We believe that this line of reasoning is not

out of reach for students familiar with what is required to perform computa-

tion. What is probably missing is the students' inclination to "think" before

turning to calculations.

Recognizing Perfect and Imperfect Squares
Is 712 a perfect square?

Naturally. It is represented as such.

Is 716 a perfect square?

Not so naturally. Some students calculated the value of 716, extracted the

square root, and reached their conclusion. Should we care about the process

as long as the answer is correct? Positively. A similar strategy will not help

when using a regular handheld calculator and querying whether 7160 is a

perfect square. In these examples, it would be desirable to change the repre-

sentation. A perfect square is embedded in representing the numbers men-

tioned above as (713)2 or (713°)2, respectively.

Were students familiar with computations with powers? Indeed. They had

no trouble performing these computations on request. However, in this

instance, many did not recognize the kind of computation required, nor did

they notice what specific property they could use to make their decision.

Is 19 x 31 a perfect square? As earlier, we're not interested in a yes or no

answer but in whether a decision can be reached "elegantly," without com-

putation. If this is a requirement, the argument has to do with representa-

tions. In a prime factorization of a perfect square, every prime appears an

even number of times. Combining this property of perfect squares with the

fact that 19 and 31 are primes immediately gives a negative answer. Making

the claim that a number is nota perfect square is more challenging, since this

line of reasoning involves an awareness of the uniqueness of prime factoriza-

tion.

Attending to Distributivity
Consider the number A = 15 x 5623 + 60. Can you represent it as a mul-

tiple of 15?

A majority of students calculated the value of the number A and divided it

by 15. A more elegant solution could represent 60 as 15 x 4 and apply dis-

tributivity:

15 x 5623 + 60= 15 x 5623 + 15 x 4 = 15 x (5623 +4)
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Although there is no formal definition of what is elegant, there seems to be
an agreement that involving extensive computation in places where it can be
avoided is "not elegant." Unfortunately, regression to computation seemed
to be a preferred strategy for most of our students. This could be avoided by
paying attention to the transparent features of different representations.

Representation as a Pitfall
In the examples above, we attempted to make a case for paying attention

to representations. In what follows, we show several examples in which
doing so may not be fruitful-examples in which properties of representa-
tions were overgeneralized, applied improperly, or confused with properties
of numbers.

Example 1

Consider a number represented in a base other than ten, 121five' Is it odd
or even?

Some students remained trapped in the base-ten system and claimed
that the number is odd, attending to its last digit. Last digits provide a
helpful hint for classifying numbers as odd or even when working in the
decimal representation. In this example, the salient feature of decimal rep-
resentation has been overgeneralized and applied in the domain in which it
does not hold. According to Kaput (1987), there is no significant attention
given in the curriculum to an "important distinction between those prop-
erties of numbers that are sensitive to the representation system versus
those properties that are relatively independent of the representation sys-
tem" (p.21).

Example 2

Consider 363. Is it a perfect square?

Some students claimed that it was not, because it was a "perfect cube." Is
there a contradiction? Obviously, in the students' minds it was one or the
other. The possibility that a cube of a perfect square is a perfect square did
not occur to them. It appears that in paying attention to the given represen-
tation, students did not consider the possibility of an alternative representa-
tion.

According to Harel and Kaput (1991), "notations can act as substitutes for
conceptual entities, supplanting the need for them" (p. 93). We believe that
examples I and 2 demonstrate this occurrence. In example 2, the notation
A2, for some whole number A, appeared as a substitute for a concept of the
perfect square. When a desired representation was not given explicitly, the
students didn't recognize the number as a perfect square.
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Example 3

Reconsider the previous sections on the division algorithm and distributivity.

What is the quotient and the remainder in division of K by 6, where K

6 x 147 + 1?

Can you represent A as a multiple of 15, where A = 15 x 5623 + 60?

We witnessed the following claims in the students' responses: "A is a multi-

ple of 15 because it is written so, as 15 times something"; "K is a multiple of

6, so there is no remainder'" These claims, though not representative of the

majority, are not single occurrences either. Students responding in this way

considered some components of representation, but not representation as a

whole, and demonstrated confusion between K and 6 x (147 + 1) or A and

15 x (5623 + 60).
A detailed analysis of the tasks discussed above and a synopsis of students'

responses to these tasks can be found in Zazkis and Campbell (1996a,

1996b), Campbell and Zazkis (1994), and Zazkis (1998).

TREATING REPRESENTATIONS OF NUMBERS
AS NUMBERS

When students are asked to discuss properties of numbers represented in

other than canonical decimal form, reluctance to manipulate these numbers

is a common reaction. There is a tendency to "find out what the number is;,

that is, what its canonical decimal representation is, before the properties of

the number can be mentioned. We suspect that what gets in the way of stu-

dents' attending to number properties that are transparent in specific num-

ber representations is that students do not treat different representations as

"numbers." The following vignette exemplifies the situation.

Recently we presented the symbols 57 x 1789 x 3 + 17 to a group of

middle school students and asked them: "Is this a number?" The ques-

tion presented a puzzle, possibly because of its triviality. "Yes, it is" was

not a common response. Students suggested that "it can be calculated

to be one" or "it equals to some number.: From these suggestions, we

conclude that 57 x 1789 x 3 + 17 itself was not considered to be a

number. If it is not a number, what is it? Suggestions included "it is an

exercise" and "it is several numbers together with operations.' A stu-

dent explained that "7 (seven) is a number, all the rest, like 3 + 4 or 8 -

I are just different ways you get this number in the answer!

We believe that the students' perception of numbers is a consequence of

their prior school practices, where more emphasis had been put on calcula-

tions rather than on attention to number structure. The students' desire to
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calculate the canonical decimal representation can be seen both as an indica-
tion of their notion of what a number is and as a means toward empirical
verifications. Returning to our first example, in order to discuss the divisibil-
ity of the number M, where M = 33 x 5x X 7, it is more convincing for many
students to find out a number's canonical representation and actually per-
form the division with the calculator, rather than to pay attention to its fac-
tors. Such a tendency has been described by researchers as an "empirical
proof scheme" (Harel and Sowder 1998).

We do not wish to emphasize the distinction between "numbers" and
"numerals" attempted by the "new math" advocates. However, our intent is
to help students appreciate different representations of numbers and the
information they provide and not to limit the concept of a "number" to its
canonical form of representation. In what follows we present several exam-
ples for classroom implementation that can combine to form a useful step in
achieving this goal.

SNAPSHOTS OF ACTIVITIES FOR CLASSROOM
IMPLEMENTATION

Educating learners to appreciate mathematical structure and pattern in
general and structure of numbers in particular is a goal of mathematics
instruction. The following activities may prove useful in considering number
structure and supplement more standard activities that involve finding
prime decomposition or performing operations with exponents.

Snapshot 1: Perfect Cubes and Perfect Squares
Represent each of the following numbers as a product of primes:

8 9 15 16 20 25 27 34 36 42 49 55 58 60 64 81 100 125 144
Suggest a way to classify prime factor representations from the exercise
above.

We expect that among the classifications suggested by students, it will be
noted that perfect squares have two identical groups of factors and perfect
cubes have three identical groups of factors. If the issue is not raised by
students spontaneously, the teacher could direct the students' attention to
repeated prime factors. Further, students could be engaged in the follow-
ing:

* Consider 362, 363, 364, 365, 366, 36'. Which representations are perfect
squares? Which are perfect cubes? Represent these numbers in such a
way that your claim is apparent.
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* Are there any perfect squares that are also perfect cubes? Explain your
theory using prime-factor representation. Can you "easily" find such
numbers? What would be your strategy?

* How could all perfect squares and perfect cubes between 100 and 1000 be
found without using a calculator and without engaging in extensive
paper-and-pencil calculations? Record your initial ideas in your journal.
Discuss your ideas with others and revise your initial strategy if necessary.

Once prime-factor representation is discussed and used as a strategy, many
students seem able to embark on this thinking pathway. For students who
cannot overcome their tendency to check all their inferences with a calcula-
tor, we suggest going beyond the calculator abilities:

* Consider 36200, 36300, 36400, 36500, 36600 36700.

Which representations are perfect squares? Which are perfect cubes?
Represent these numbers such that your claim is apparent.

* Consider 2'10, 3100 279 399

Are these numbers odd or even? Could they be perfect squares or perfect
cubes? Justify your responses.

Snapshot 2: Divisibility by 13
Consider the following numbers:

1350, 5013, 1000000000, 123456 x 13 + 3, 39 + 654321 x 13,
36 x 7654 + 3 x 4567, 2' x 35x 56, 24 x 13 X5

For which of these numbers is it possible to decide whether they are divis-
ible by 13 without performing calculations? Justify your decision. Make
up another five numbers in which their divisibility or indivisibility by 13
can be derived by attending to their representation. Trade these numbers
with a partner and check whether you agree about their divisibility.

Integrating activities similar to those above in the classroom fosters stu-
dents' attention to transparent features of different representations of num-
bers.

CONCLUSION
"Capitalizing on the strengths of a given representation is an important

component of understanding mathematical ideas" (Lesh, Behr, and Post
1987, p. 56). Helping students recognize patterns in different representations
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and situations in which paying attention to these patterns is appropriate is
our goal. We suggest that a discussion of the properties of numbers in which
we consider their noncanonical representations is a valuable pedagogical
activity. It proves to be especially stimulating when numbers presented to
students were beyond the computational abilities of a handheld calculator.
For many students, the inability to check their inference with a calculator
presented inconvenience and challenge.

Careful pedagogical choice of activities can help students identify trans-
parent features of different representations of numbers. Attending to these
features may help students achieve a better understanding of the multiplica-
tive structure of natural numbers and appreciate these representations as
"numbers" with the respect they deserve.
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5
The Influence of Language on
Mathematical Representations

Irene T. Miura

IN THE classroom, there are two general types of representations that affect
children’s understanding of, and solutions to, mathematics problems: (1)
instructional representations (e.g., definitions, examples, and models) that
are used by teachers to impart knowledge to students and (2) cognitive rep-
resentations that are constructed by the students themselves as they try to
make sense of a mathematical concept or attempt to find a solution to a
problem. The first representations are external to the student (i.e., shared
means of communication between the instructor and the learner), whereas
the second are internal to the student (and may be unshared with others).

Both types of representations are influenced by cultural factors, including
the characteristics of the language used in the mathematics domain. Some
languages may provide better support than others for particular instruction-
al representations, making the underlying concepts easier to understand.
Connections between the mathematical idea and the instructional represen-
tation or between the mathematical notation and the representation may be
easier to discern because of certain characteristics of the verbal language.
Cognitive representations may also be directly influenced by characteristics
of specific languages.

Mathematical activities are set in cultural contexts with their own tools for
thinking and learning, one important tool being the language of mathe-
matics (Kaput 1991; Rogoff 1990; Steffe, Cobb, and von Glasersfeld 1988).
Culturally developed tools or symbol systems restructure mental activities
without altering basic abilities such as memory or logical reasoning (Nunes
1992). Nunes (1997) describes this facilitation as mediated action; certain
tasks are made easier because of tools developed to perform the task, and
these tools differ by cultural group. These culturally developed tools may
also influence mathematical representations used in thinking about mathe-
matics concepts and in solving mathematical problems. An example is

http://www.nctm.org
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numeration systems (like the English-language base-ten system) that allow
humans to go beyond their natural memory capacities to count large num-
bers of objects.

How children think about numbers and other mathematical concepts is
influenced by the characteristics of mathematical terms peculiar to their own
language. Teachers’ choices of instructional representations are also affected
by language. Three examples of the influence of language characteristics on
mathematics understanding and performance are provided: (1) the number-
naming (counting) system, (2) terms for fractions, and (3) the use of
numeral classifiers.

THE INFLUENCE OF NUMBER-NAMING SYSTEMS
ON THE COGNITIVE REPRESENTATION OF NUMBER
The counting system in languages that are rooted in ancient Chinese

(among them, Chinese, Japanese, and Korean) are organized so that they are
congruent with the traditional base-ten numeration system. In this system,
the value of a given digit in a multidigit numeral depends on the face value
of the digit (0 through 9) and on its position in the numeral, with the value
of each position increasing by powers of 10 from right to left. The spoken
numerals in western languages (e.g., eleven, twelve, and twenty in English)
may lack the elements of tens and ones that are contained in them. Also, the
order of spoken and written numerals may not agree (e.g., fourteen for 14 in
English). In Chinese, Japanese, and Korean, 11 is read (and spoken) as ten-
one, 12 as ten-two, 14 as ten-four, and 20 as two-ten(s). Fifteen and 50,
which are phonologically similar in English, are differentiated; 15 is spoken
as ten-five and 50 as five-ten(s). Plurals are tacitly understood. Thus, the
spoken numeral corresponds exactly to the implied quantity represented in
symbolic form (table 5.1); the syntax and semantics are, as Cobb (1995) sug-
gests, reflexively related.

A task constructing numbers using base-ten blocks (unit blocks and tens
blocks, bars that have ten segments marked on them) was designed to
explore children’s cognitive representation of number (Miura 1987). Chil-
dren in the first half of first grade, with no prior experience or instruction in
using base-ten blocks, were shown a numeral on a card and asked to con-
struct the number using the blocks. French, Swedish, and U.S. first graders
showed an initial preference for representing the numeral using a one-to-
one collection (e.g., 42 unit blocks for the numeral 42). Chinese, Japanese,
and Korean first graders, however, represented the same numeral with a
canonical base-ten representation (4 tens blocks and 2 unit blocks). For five
numerals (11, 13, 28, 30, and 42), the Asian-language speakers used more
canonical base-ten representations than the non-Asian-language speakers,
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TABLE 5.1
Number Names in Four Languages

Number English Chinese Japanese Korean

1 one yi ichi il
2 two er ni ee
3 three san san sam
4 four si shi sah
5 five wu go oh
6 six liu roku yook
7 seven qi shichi chil
8 eight ba hachi pal
9 nine jiu kyu goo

10 ten shi juu shib
11 eleven shi-yi juu-ichi shib-il
12 twelve shi-er juu-ni shib-ee
13 thirteen shi-san juu-san shib-sam
14 fourteen shi-si juu-shi shib-sah
15 fifteen shi-wu juu-go shib-oh
16 sixteen shi-liu juu-roku shib-yook
17 seventeen shi-qi juu-shichi shib-chil
18 eighteen shi-ba juu-hachi shib-pal
19 nineteen shi-jiu juu-kyu shib-goo
20 twenty er-shi ni-juu ee-shib
21 twenty-one er-shi-yi ni-juu-ichi ee-shib-il
22 twenty-two er-shi-er ni-juu-ni ee-shib-ee
30 thirty san-shi san-juu sam-shib
40 forty si-shi shi-juu sah-shib
50 fifty wu-shi go-juu oh-shib
60 sixty liu-shi roku-juu yook-shib
70 seventy qi-shi shichi-juu chil-shib
80 eighty ba-shi hachi-juu pal-shib
90 ninety jiu-shi kyu-juu goo-shib

and, overall, the Asian-language speakers used fewer one-to-one collection
representations than the others (Miura et al. 1988; Miura et al. 1993). When
asked if they could show the number in a different way (using the blocks), the
Asian-language speakers were better able than non-Asian-language speakers
to make two different constructions for each number, suggesting better
understanding and greater flexibility in dealing with number quantities.

Effects on Place-Value Understanding
A test of children’s place-value understanding found a positive correlation

between the use of canonical constructions to represent numbers and the
understanding of place-value concepts (the meaning assigned to individual
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units in a multidigit numeral). On a set of five place-value tasks, Japanese
and Korean first graders showed significantly greater understanding of
place-value concepts than French, Swedish, and U.S. children (Miura et al.
1993). All the Japanese and Korean first graders completed at least one prob-
lem correctly; 42 percent of Japanese children and 54 percent of the Korean
first graders were able to solve all five problems correctly. By contrast, the
French, Swedish, and U.S. children in the study performed significantly less
well; 50 percent of the U.S. first graders could not solve any of the problems
correctly.

Effects on Counting Performance
In Miller and Stigler’s (1987) study of counting performance, Chinese-

speaking children showed the same pattern in the development of counting
skills as U.S. preschoolers did. However, the Chinese children made signifi-
cantly fewer errors in number naming than U.S. children did. The activity of
generating number labels poses little problem for Chinese children, and in
this aspect of counting, they surpass their U.S. counterparts. Because count-
ing in the early grades is also a tool for problem solving, it is a skill that can
directly affect mathematics performance. In addition, as children learn to
count and to make sense of the counting numbers, the regularity of the
Asian number-naming system cannot help but foster a deep understanding
of what the numbers mean.

In a study comparing six-year-old Taiwanese and English children’s under-
standing of additive composition and counting, Lines and Bryant (in Nunes
and Bryant 1996) reported that Chinese speakers showed a distinct advan-
tage over English speakers in counting and in combining units of different
sizes (in this instance 1, 5, and 10); this was particularly true for additive
composition involving decades. The authors concluded that the regularity
and transparency of the Chinese counting system appeared to facilitate chil-
dren’s learning significantly. This influence seems to result from the linguis-
tic cues provided by the number-naming system and from a general under-
standing of additive composition that is supported by the system.

Effects on Addition and Subtraction Performance
When counting in Japanese (also in Chinese and Korean), one counts from

1 to 10, and then the 1 to 9 is reinforced in the numerals 11 through 19. As a
result, mathematics tasks around tens are easier because the child deals with
1 to 9 only. In addition, children do not have to learn novel decade-number
names, a requirement that often hinders U.S. children’s counting.

In the specific area of two-digit addition and subtraction with regrouping
(borrowing and carrying) that is taught at the second-grade level in both
Japan and the United States, the Japanese number-naming system may have
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an important effect. In the addition algorithm, 59 + 8 = ?, the numbers in
the ones column total 17. English speakers must ask themselves if they can
regroup or trade to make a ten. If the answer is yes, this results in a
regrouped 1 ten and 7 ones. The 7 is written in the ones column, and the 1
(which represents 1 ten) is added to the 5 in the tens column. In Japanese,
the sum of the numbers in the ones column (17) is spoken as ten-seven.
Therefore, it is readily apparent that a ten has been formed, and 1 ten is car-
ried to the tens column, eliminating the intermediate assessment step and
keeping the meaning of the individual digits in the solution intact.

Consider the following subtraction problem, 67 – 59 = ?. There are at least
two possible solutions for this problem after determining that there are not
enough units in the ones column to solve the problem without regrouping.
First, 1 ten from the tens column can be traded or regrouped for 10 ones to
make the number in the ones column a 17. Then, the problem is solved by
subtracting 9 from 17 to equal 8. If the regrouped 17 is spoken as ten-seven, a
second solution becomes apparent: 9 can be subtracted from the 10, leaving a
remainder of 1, which is then added to the 7 to equal 8 in the ones column.

U.S. children are taught to solve the subtraction algorithm using the trad-
ing or regrouping solution (the terms vary by textbook publisher). The sec-
ond solution can be used easily by East Asian children because their number
language treats the teen numbers (11–19) as 10 + the single digit; thus, the
two numbers (10 and the single digit) can be dealt with separately in the
solution process. English-speaking children must learn the addition and
subtraction facts to 18, whereas Asian-language-speaking children do not
have to master combinations beyond 10.

An examination of textbooks shows that multidigit addition and subtrac-
tion with regrouping are introduced earlier in East Asian countries than in
the United States (Fuson, Stigler, and Bartsch 1988). The authors suggest that
less time may have to be spent on developing a foundation of place-value
understanding required to perform such mathematics because the base-ten
structure of the number-naming systems provides the necessary support.

The Influence of Fraction Names on the Understanding of
Geometric Part-Whole Representations

Language characteristics may also influence instructional representations
used by teachers to convey knowledge to their students. The concept of frac-
tions as parts of a region and their connection to representations using geo-
metric shapes may be easier to understand when spoken in East Asian lan-
guages. In these languages, the concept of fractional parts is embedded in the
mathematics terms used for fractions. For example, in Japanese, one-third is
spoken as san bun no ichi, which is literally translated as “of three parts, one.”
Thus, unlike the English word third, the Japanese term, san bun (three
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parts), directly supports the concept of the whole divided into three parts.
The term focuses on the number of parts in a whole and connects the frac-
tion symbol to a mathematical meaning of fractions. In teaching numerical
fractions, U.S. textbooks include drawings of geometric figures divided into
parts, with one or more of the parts distinguished from the rest by being
shaded. Along with the visual representation, the text may explain that this
fraction means

1 of the
—
3 equal parts.

Children enter school with an informal or intuitive understanding of ratio-
nal numbers (Hunting and Sharpley 1988; Kieren 1988; Mack 1992), and lan-
guage characteristics may play a role in the development of these early con-
ceptualizations. To determine if the Asian (in this instance, Korean)
vocabulary of fractions might influence the meaning children ascribe to
numerical fractions, and if this would result in these children being able to
associate numerical fractions with their corresponding pictorial representa-
tions prior to formal instruction, groups of first and second graders in Croat-
ia, Korea, and the United States participated in a study at three separate times:
the middle of grade 1, the end of grade 1, and the beginning of grade 2
(Miura et al. 1999). An examination of textbooks showed that the children
had not had formal instruction in fraction concepts prior to the testing. The
children were given seven written fractions (1/3, 2/3, 2/4, 3/4, 2/5, 3/5, and
4/5), with one repeated, for a total of eight items; each numerical fraction
was followed by four geometric figures (circles, squares, or rectangles) with
varying portions shaded. The fractions were read aloud by the teacher, and
the children were asked to draw a circle around the picture in the row that
showed the fraction.

There was a developmental difference in the children’s performance, with
Korean children better able at all levels to associate complex numerical frac-
tions with their pictorial representations. The difference was only marginally
significant at the middle of grade 1, but at the end of grade 1 and the begin-
ning of grade 2, the Korean children’s performance was significantly better
than that of the children in Croatia and the United States. The results suggest
that the Korean language may influence the meaning these children give to
numerical fractions and that this enables children to associate numerical
fractions to their corresponding pictorial representations prior to formal
instruction. The terms match symbolic representation (e.g., 1/3) to pictorial
representation (geometric region) and make connections among fraction
symbols, verbal terms, and informal knowledge. An examination of mathe-
matics textbooks in the three countries indicates that fraction concepts are
introduced earlier in Korea (in grade 2) than in Croatia or the United States.
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Whether this early understanding of fractions as parts of a region affects
subsequent knowledge of rational number concepts is an area that needs fur-
ther exploration.

THE INFLUENCE OF NUMERAL CLASSIFIERS IN
SOLVING ARITHMETIC WORD PROBLEMS

As students read or listen to arithmetic word problems, they must con-
struct cognitive representations of aspects of the problem in order to be able
to find the answer to the question posed. Numeral classifiers, a linguistic con-
vention used when enumerating (or counting) objects in Japanese and other
Asian languages, may influence this representational process. This linguistic
form (numeral classifier) is a special morpheme that indicates certain
semantic features of whatever is being counted (Sanches 1977). For example,
when counting five pencils in Japanese, one cannot use the cardinal number
alone. One must say, five (long, thin thing) pencil, or go-hon, where go is 5
and hon is the numeral classifier for long, thin objects. Which classifier is
used depends on the perceptual characteristics of the objects or on distinc-
tions between human and other animal forms (Naganuma and Mori 1962).
This is similar to the situation in English when counting a quantity of mater-
ial or mass (e.g., water, paper, or cattle). In English, it is necessary to say one
drop of water, two sheets of paper, or three head of cattle rather than one
water, two papers, and three cattles.

Numeral classifiers are a grammatical convention. The numeral classifier
serves as a sorting mechanism denoting cognitive categories (Denny 1986).
With respect to mathematics, the numeral classifier may add a coherence to
the items being enumerated; it may act to integrate the items into a set
rather than treating them as individual items. Numeral classifiers also may
serve as placeholders in that they are used anaphorically to denote referents
that have already been introduced in the text (Downing 1986).

The word problem in English

Joe has 6 marbles.

He has 2 more than Tom.

How many does Tom have?

would be translated into Japanese as

Joe has 6 (ko) marbles.

2 (ko) more than Tom.

How many (ko) does Tom have?
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In the Japanese-language version, the numeral classifier, ko, must be used for
counting marbles, which are in the category of small, round objects. The
problem is understood as “Joe has 6 (small, round objects) marbles. 2
(small, round objects) more than Tom. How many (small, round objects)
does Tom have?”

The experienced English-speaking problem solver has learned that the 2 in
the second sentence refers to marbles owned by Joe and their relationship to
the number of marbles owned by Tom. The problem solver must also under-
stand that the question posed refers to marbles and not to something else in
Tom’s possession. There is no confusion in the Japanese version. In Japanese,
nouns, but not the corresponding numeral classifiers, may be omitted from
numerical phrases once the referent has been established. Thus, the use of
the numeral classifier may make problems more concrete; numbers in isola-
tion (as in the phrase, “2 more than Tom”) are not an abstract quantity. The
numeral classifier acts as a concept signifier and may also serve to engage
children in a stronger cognitive representation of what the story problem is
asking (e.g., by removing the ambiguity from the final question).

SUMMARY
Culturally specific characteristics of mathematical languages serve to facil-

itate mathematics activities in a variety of ways. The Asian number-naming
system, which is regular and transparent, may help children to develop a
deep understanding of number concepts, including the understanding of
place-value concepts. The number-naming system also provides linguistic
support to facilitate abstract counting and addition and subtraction with
regrouping. Because the spoken multidigit numerals in these Asian lan-
guages reflect the base-ten numeration system, numbers (especially those
from 11 to 19, which are particularly difficult in non-Asian languages) are
readily generated and their component parts easily understood. Children,
when solving problems requiring regrouping, can deal with ten and the
additional units separately in their computations.

Specific mathematics terms, such as the spoken words for fractions, may
provide support for making connections between symbolic and pictorial
representations. Asian-language speakers exhibit an intuitive (or socially
acquired) knowledge of numerical fraction concepts prior to school instruc-
tion that suggests an understanding of fractions as parts of regions depicted
by geometric representations.

An additional linguistic characteristic of Asian languages and their possi-
ble influence on mathematics understanding and performance is the use of
numeral classifiers, which are perceptual or categorical in nature and are
used when enumerating objects. These numeral classifiers, as part of arith-
metic story problems, may diminish ambiguity by making the referent clear,
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add coherence to items and assign them to a set, and provide a stronger visu-
al representation of what a problem is asking.

These culturally determined characteristics of mathematical languages
may influence the choice, application, and effectiveness of instructional rep-
resentations used by teachers in the educational process. They may also
affect the cognitive representations constructed by students as they attempt
to understand mathematical concepts and engage in problem-solving activi-
ty and, by doing so, mediate the development of conceptual knowledge in
this domain.
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6
The Role of Tools in Supporting

Students’ Development of
Measuring Conceptions
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CLASSROOM teachers have been encouraged to use a variety of tools to aid stu-
dents’ mathematical learning. For instance, the NCTM Professional Standards
for Teaching Mathematics (1991) emphasizes that “teachers must value and
encourage the use of a variety of tools” (p. 52) in order to promote discourse
that focuses more on mathematical ideas than on observable calculations and
methods. This article describes the results of a classroom teaching experiment
in which a number of tools were designed to support first graders’ development
of increasingly sophisticated measuring conceptions, and the following two
main points will be discussed in detail.

First, for us, there has been an inherent tension between building on stu-
dents’ personally constructed mathematical tools and introducing adult-
designed devices. In this paper, we will describe our way of dealing with this
tension. We will illustrate that each of the tools used in the first-grade class-
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room teaching experiment was either created by the students with the skill-
ful guidance of the teacher or was introduced by the teacher as a natural
solution to a dilemma with which the students were grappling. Introducing
tools in each of these ways is our attempt at dealing with the tension between
students’ creativity and the adult designers’ intent.

A second point we will make is that each tool used in the experiment was
considered a part of a coherent sequence of instructional activities. Often, a
tool is designed as a stand-alone device to teach a mathematical concept.
Instead, our approach was to design a series of tools, each of which built on
the mathematical learning that students constructed as they reasoned with
previous tools. This paper is organized as follows. First, we describe the first-
grade classroom that is the subject of this paper. Second, we present examples
from the classroom to illustrate the two aspects of tool use discussed above.

THE CLASSROOM
The first-grade classroom that was the subject of this study was one of four

first-grade classrooms at a private school in Nashville, Tennessee. The class
consisted of sixteen children, seven girls and nine boys. The majority of the
students were from middle-class backgrounds. The classroom teaching
experiment took place over a four-month period from February to May
1996. Just prior to the teaching experiment, the teacher and the students had
been engaged in instruction on single-digit addition and subtraction.

The purpose of the classroom teaching experiment was to design and
improve two closely related instructional sequences. The first sequence was
designed to support the students’ development of increasingly sophisticated
measuring conceptions. This sequence was designed in such a way as to serve
as a basis for a second instructional sequence that supported the students’
thinking strategies for two-digit addition and subtraction. Our goal was that
the activity of measuring would not merely be a matter of iterating the units
on a ruler or some other measurement tool and verbalizing the number
obtained when the measurement is iterated for the last time. We wanted the
number that results from the last iteration to signify not simply the last itera-
tion itself but rather the result of the accumulation of the distances iterated
(cf. Thompson and Thompson [1996]). For example, if students were mea-
suring by pacing heel to toe, we hoped that the number words they said as
they paced would indicate the distance paced thus far rather than the single
pace that they made as they said a number word. 

Another goal was to help the students think about spatial distances flexi-
bly. For instance, our intent was that students would be able to interpret
their measuring activity as not only a space measuring 25 feet but also five
distances of 5 feet or two distances of 10 feet and a distance of 5 feet, as the
need arose.
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Because of space constraints, the examples that we present focus strictly on
the tools created and used during the measurement sequence. The examples
illustrate both the importance we place on sequencing tools so that they build
on the students’ prior knowledge and how the teacher in each example con-
tinually built on the students’ contributions as new tools were introduced.

CLASSROOM EPISODES

Example 1: The King’s Foot
The instructional activities used in the teaching experiment were typically

posed in the context of an ongoing narrative. The teacher engaged students
in a story in which the characters encountered various problems that the
students were asked to solve. She began the first narrative by describing that
a king wanted to measure items in his kingdom using only his foot. The
teacher asked the class how the king could use his foot to measure. The stu-
dents made several proposals, and the teacher capitalized on a student’s sug-
gestion to count each foot as he placed one in front of the other. The teacher
asked the students to pretend they were king and to find the length of differ-
ent items around the classroom. Although the teacher had pacing in mind as
a starting point for measuring prior to the whole-class discussion, she
engaged students in the narrative so that measuring would be experienced
by the students as a solution to a problem.

Initially, students measured the length of items, such as a rug, in two dif-
ferent ways. Some students placed one foot at the beginning of the rug and
counted “one” with the placement of their second foot (see fig. 6.1a). Other
students placed their foot at the beginning of the same rug and counted it as
“one” (see fig. 6.1b). As we talked with the teacher, we conjectured that stu-
dents who were counting their paces in the first manner (fig. 6.1a) were not
thinking about their paces as space-covering units. In other words, they did
not regard the first foot they had placed at the beginning of the rug as some-
thing that was covering part of the rug. For them, measuring was not about
covering the space defined by the carpet. Rather, the goal of measuring
seemed to be to count, in some manner, the number of paces it took to reach
the end of the carpet. However, it would be a mistake to claim that students
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who measured the rug in the second manner (fig. 6.1b) were thinking about
covering space with each pace.

The teacher capitalized on the students’ differing solutions by asking them
to compare and contrast these two methods of measuring during the subse-
quent whole-class discussion. In doing so, she hoped that measuring as “cov-
ering space” might become an explicit topic of conversation. The intent of
these whole-class discussions was not to make students count their paces in
“the right way.” Rather, the teacher believed that if the students participated
in a discussion about these two ways of counting their paces, they would
have an opportunity to reorganize their understanding about what it means
to measure.

Negotiating the meaning of measuring
The teacher began the subsequent whole-class discussion by asking two

students, whom she had observed counting their paces in the alternative
ways described above, to pace the length of the rug for the rest of the stu-
dents. In the excerpt below, both the method and purpose of pacing were
negotiated by the teacher and the students. The teacher asked Sandra and
Alice to show the class how each of them would measure the rug.

T: I was also really watching how a couple of you were measur-
ing. Who wants to show us how you’d start off measuring,
how you’d think about it?

Sandra: Well, I started right here [places the heel of her first foot at the
beginning of the rug] and went 1 [starts counting with the
placement of her second foot as in fig. 6.1a] 2, 3, 4, 5, 6, 7, 8.

T: Were people looking at how she did it? Did you see how she
started? Who thinks they started a different way? Or did
everybody start like Sandra did? Alice, did you start a differ-
ent way or the way she did it?

Alice: Well, when I started, I counted right here, [places the heel of
her first foot at the beginning of the rug and counts it as “one”
as in fig. 6.1b], 1, 2, 3.

T: Why is that different from what she did?

Alice: She put her foot right here [places it next to the rug] and
went 1 [counts “one” as she places her second foot], 2, 3, 4, 5.

T: How many people understand that Alice says that what she
did and what Sandra did were different? How many people
think they understand? Do you think you agree they’ve got
different ways?

In response to the teacher’s last questions, many students indicated that
they could not see a difference between the two methods. The problem in
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understanding, as well as communicating, the difference between the two
methods lies in the difficulty in distinguishing which paces were (were not)
being counted. When a student counted a pace as “one,” she must lift that
foot and place it ahead of her second foot to count it as “three.” As soon as
the “one” foot is lifted, the record of the first pace disappears. Therefore,
after the students had paced three or four paces, it was difficult for (1) the
student who was pacing to communicate what “one” referred to and (2)
other students to see what the demonstrator meant by the first pace.

The emergence of the first tool
In order to support a conceptual discussion of these two different meth-

ods, the teacher placed a piece of masking tape at the beginning and end of
each pace. Once a record of four or five paces was made, the students who
counted their paces Alice’s way began to argue that Sandra’s method of
counting would lead to a smaller result because she did not count the first
foot. In the excerpt below, Melanie differentiated between the two ways of
counting paces while other students justified their particular method.

Melanie: Sandra didn’t count this one [puts foot in first taped space],
she just put it down and then she started counting 1, 2. She
didn’t count this one, though [points to the space between the
first two pieces of tape].

T: So she would count 1, 2 [refers to the first three spaces, since
the first space is not being counted by Sandra]. How would
Alice count those [points to the first three taped spaces]?

Melanie: Alice counted them 1, 2, 3.

T: So for Alice there’s 1, 2, 3 there and for Sandra there’s 1, 2.

Melanie: Because Alice counted this one [points to the first taped space]
and Sandra didn’t, but if Sandra would have counted it, Alice
would have counted three and Sandra would have too. But
Sandra didn’t count this one so Sandra has one less than her.

T: What do you think about those two different ways, Sandra,
Alice, or anybody else? Does it matter? Or can we do it
either way? Hilary?

Hilary: You can do it Alice’s way or you can do it Sandra’s way.

T: And it won’t make any difference?

Hilary: Yeah, well, they’re different. But it won’t make any differ-
ence because they’re still measuring but just a different way
and they’re still using their feet. Sandra’s leaving the first
one out and starting with the second one, but Alice does the
second one and Sandra’s just calling it the first.

...
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Phil: She’s 15 [refers to the total number of feet Sandra counted
when she paced]. Alice went to the end of the carpet [he
means the beginning of the carpet]. Sandra started after the
carpet. Hers is lesser ’cause there’s lesser more carpet. Alice
started here and there’s more carpet. It’s the same way but
she’s ending up with a lesser number than everybody else.

Alex: She’s missing one right there. She’s missing this one right
here [points to the first taped space]. She’s going one but this
should be one [the first taped space] ’cause you’re missing a
foot so it would be shorter.

T: So he thinks that’s really important. What do other people
think?

Alex: Since you leave a spot, it’s gonna be a little bit less carpet.

This episode highlights the important role that the record created by using
the masking tape played in the discussion. Before the record was made, stu-
dents had difficulty distinguishing between the two methods of measuring
the length of the rug. However, once the record of paces was available, the
students could point to particular spaces that were or were not being count-
ed. In this way, the record supported a significant change in the discussion.

In the first episode we presented, the students were primarily concerned
with how paces were counted. Now, as students referred to the record of
paces, they began talking about the amount of space that was being mea-
sured. Phil and Alex both gave explanations in terms of an amount of carpet
(e.g., “shorter”) rather than the number of paces counted. As Alex noted in
the last line of the excerpt, “Since you leave a spot, it’s gonna be a little bit
less carpet.” Thus, the record of paces became a means of organizing space
for students. With the teacher’s guidance, the symbolic record facilitated dis-
cussions in which measuring as covering space was a topic of conversation.

Note that the students’ informal notions of counting paces was an appro-
priate starting point for the measurement sequence. The dilemma of the
king appeared to be a story that students could imagine very easily, and pac-
ing as an initial basis of measuring was a realistic solution to the king’s prob-
lems (see also Lubinski and Thiessen [1996]). The teacher built on the stu-
dents’ solutions and introduced the masking tape as a record of their pacing
activity. In doing so, the teacher introduced the first tool (record of pacing)
in a natural way as a solution to the problem the students were having in
communicating their methods of measuring. The record was consistent with
the students’ mathematical activity at that point and was readily accepted by
the students as a helpful way of describing their varying interpretations.

As the instructional activities involving pacing continued, whole-class dis-
cussions began to focus on how students counted their last few paces when
measuring an item. Significantly, the students did not extend their last foot
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beyond the endpoint of the item they were measuring. If a student was pac-
ing along the edge of the carpet, for instance, and her last pace extended past
the end of the rug, she typically did not place the last foot down but instead
estimated “14 and a little space.” Other students actually counted “14” and
turned their foot sideways (saying either “15” or “14 1/2”) so that it fit exact-
ly. This suggests that measuring was an activity that involved covering the
physical extension of an object exactly without any part of a foot extending
beyond the object (see Stephan [1998]). In the next example, as students
reasoned with a new tool, the interpretation of measuring as covering the
object exactly was explicitly challenged.

Example 2: Measuring with a Footstrip
Five days after the introduction of the king’s foot scenario, the teacher

explained that the king could not be everywhere at one time. Thus, the stu-
dents’ job was to think about ways that the king could use his foot to mea-
sure items in his kingdom without doing all the measuring himself. The
teacher explained that one of the king’s advisors had suggested that the king
trace his feet on paper. One student added that he should trace one of his
feet on the paper, and a second student maintained that he should trace two
of his feet. The teacher remarked that these were all good ideas and asked
pairs of students to create their own paper strips composed of five of the
king’s feet (students subsequently named this a footstrip). The teacher’s
intent in suggesting the footstrip was that students would iterate a collection
of units or paces rather than just single paces. The excerpt below illustrates
that students drew on their prior experience of pacing as they thought about
how the new tool, the footstrip, might be used.

T: The king says he wants five. “I want five in a row.” How
could you use something like this?

Melanie: It would work because he would put the paper in front of
itself.

Hilary: This would be faster. He’d have lots more feet, and if he had
lots more feet, he could just take a big step with all the feet
together and there were ten. It wouldn’t be just 10, 20. Each
one would be the same size and you could just add them all
together.

In this excerpt, Hilary anticipated that using the footstrip would be more
efficient; now she could take one “big step” of five, not five little steps. More
important, Hilary and others spoke of measuring now being faster, indicating
that they anticipated curtailing counting their individual paces (i.e., “it would
be faster to count by five paces rather than by one”). In this way, the students
came to use a new tool, the footstrip, as a more efficient measuring device.
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Although introduced by the teacher, the actual creation of the tool by the
students built on their imagery of pacing. However, the teacher did not
introduce the idea of the footstrip to facilitate a discussion, as she had done
in the instance of the first tool. Rather, students created the footstrip, with
the guidance of the teacher, as a solution to the problem offered by the king
in the ongoing narrative. Eventually, students discussed the idea that their
footstrips were different sizes, since some students had smaller feet than oth-
ers. Thus, when the need for a standard footstrip was suggested by the chil-
dren, the teacher gave each pair of students a standard footstrip.

Measuring with the footstrip—part 1
The subsequent instructional activities involved having students measure

the lengths of objects on the playground with their new footstrips. Many of
the students had difficulty measuring the length of an object when parts of
the last iteration of the footstrip extended beyond the endpoint of the object.
For example, in a whole-class setting, the teacher asked one pair of students
to measure the length of a cabinet that was situated along one of the walls in
the classroom (see fig. 6.2). After three iterations, the students found that
there was not enough room to place another full footstrip before they
reached the wall. Instead of sliding the end of the footstrip up the wall, the
two students placed the end against the wall so that it overlapped the third
placement of the footstrip. Then, they counted “16, 17, 18 1/4” backward
along the footstrip from the wall until they reached the endpoint of the third
placement. This indicates that measuring for them meant covering the space
between the two ends of the cabinet exactly (i.e., no part of the footstrip
could extend beyond the cabinet).

Since some students seemed to be confused by this solution method, the

teacher suggested that it might be easier for others to understand if one of
the students doing the measuring moved the footstrip so that the excess ran
up the wall. Several students rejected this suggestion. They argued that the
part of the footstrip that was placed up the wall would be measuring part of
the wall. The teacher asked other students to explain why they thought the
footstrip could be extended up the wall. The issue was resolved when one
student commented that he just pretended “in his mind” to cut the footstrip
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at the end of the cabinet and counted only the paces along the cabinet. The
students seemed to accept this and, in subsequent whole-class discussions,
imagined cutting the footstrip.

The explicit attention given to this issue can be attributed to the students’
use of the footstrip. When they measured by pacing, the students could sim-
ply remove their last foot if part of it extended beyond the end of the object
and refer to the extra space by pointing to it (e.g., 15 and a little bit of space).
However, when they used the footstrip, three or four extra paces might
extend past the endpoint rather than part of a single pace. Further, they
could not resolve the difficulty by turning the footstrip sideways to “fill up”
the space exactly as they had when they measured by pacing. Their use of the
footstrip, therefore, made explicit the issue of what to do when a unit (i.e., a
pace) did not fill up the length of an object exactly. This, in turn, led to the
idea of mentally cutting the footstrip along any point as the need to do so
arose.

As these examples illustrate, the teacher was successful in guiding the stu-
dents’ creation of a footstrip as a tool that built on their prior activity of pac-
ing. The intent was that students would measure by iterating a collection of
units, not single units. Instead of simply handing the students a ready-made
footstrip, the teacher continued the narrative of the king and prompted a
search for a more efficient measuring device. Through the process of creat-
ing and using footstrips, the students constructed more-sophisticated under-
standings of measuring. As we saw above, the fact that the footstrip was an
inseparable collection of five paces led the students to develop the idea that
space was something that could be partitioned by a unit or portions of a unit
rather than something to be covered exactly.

Measuring with the footstrip—part 2
A second issue emerged the same day that the students measured items

with their footstrips on the playground. After the students had measured an
item, say 25 feet, most were not able to mentally figure out how many foot-
strips long the item was. In other words, these students found it difficult to
coordinate units of different sizes. It had been our explicit goal at the outset
of the teaching experiment to enable students to eventually structure quanti-
ties in various ways (e.g., 5 units of 5 paces as well as 25 paces). Hence, dur-
ing a whole-class discussion the teacher asked the class how many footstrips
long a cabinet was (25 feet). In order to support structuring space into dif-
ferent-sized units, the teacher placed masking tape at the beginning and end
of each iteration of a footstrip (five altogether). The students then argued
that 25 feet was the same as 5 footstrips. They reasoned that whether they
measured it in feet or footstrips, the length was the same. The mathematical-
ly significant issue that arose in this conversation was the invariance of quan-
tities of length when the unit of measure changes. This was made possible by
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the footstrip and the masking tape record, for students were now able to rea-
son about the space covered by iterations of five paces rather than about sin-
gle paces.

Example 3: Iterating a Bar of Ten Cubes
Eleven days after the beginning of the measurement sequence, the teacher

in the classroom began a second narrative about a community of Smurfs
(blue cartoon creatures) that lived in mushroom houses. In this narrative,
the Smurfs encountered various situations in which they needed to measure
objects and did so by placing empty food cans end to end. The students
solved the problems the Smurfs encountered by using Unifix cubes as substi-
tutes for food cans. The reason the teacher introduced a new scenario was
that we hoped the students’ activity of measuring with the Unifix cubes
would serve as a basis for a more sophisticated measurement tool to be cre-
ated later. This new scenario built on the students’ prior use of their feet and
the footstrip. In the king’s foot scenario, the students measured with a physi-
cal extension of their bodies. In this new scenario, the students placed Unifix
cubes, an “external” unit, end to end to measure lengths of objects (see also
Stephan [1998] and Cobb et al. [in press]).

In the scenario the teacher developed, the Smurfs sometimes measured the
lengths or heights of particular objects by stacking their food cans. Initial
instructional activities included measuring the lengths of paper strips, some
of which signified the length of various animals in the Smurf village. Other
paper strips signified the length of the animals’ pens. The students were asked
to measure the pen and the length of the animals in order to find which ani-
mals fit in the pen. If an animal did not fit, students were asked to find how
much longer than the pen the animal was. Typically, students snapped several
cubes together to make a rod that they could extend along the full length of
the object. They then counted each cube to find the length of the object.

Creation of a new tool
As the narrative of the Smurfs continued, the teacher explained that the

Smurfs did not want to take an unlimited number of cans (cubes) with them
when they conducted their measurements. The students suggested several
alternatives, such as carrying rods of seven cans and placing the rods one
after another. Other students offered varying numbers of cans that the
Smurfs could carry, such as two, four, ten, and twenty. The teacher told stu-
dents that these suggestions were all reasonable but that the Smurfs had
decided to carry ten food cans with them. (The teacher purposely chose ten,
since counting by tens supports the development of strategies for addition
and subtraction.) The students named this bar of ten Unifix cubes a Smurf
bar.
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This example illustrates the teacher’s effort to build on the students’ con-
tributions as they tried to solve the dilemma of the Smurfs (that of reducing
the number of cans they carried for measuring). Clearly, the teacher wanted
the students eventually to measure with collections of ten cubes rather than
with single cubes. However, instead of telling them to do so directly, she
developed a problem that required the creation of a new measurement tool.
The teacher knew that a number of the students could count by tens; there-
fore, she was confident that she could allow a variety of students’ suggestions
and still have at least one student offer ten as a choice. Measuring with
Unifix cubes and the Smurf bar built on the students’ prior activity of mea-
suring by pacing and iterating a footstrip. The difference was that students
were counting single cubes (units outside of their bodies) and collections of
ten (rather than five).

Measuring with the Smurf bar
The initial instructional activities with the Smurf bar involved measuring

various items around the Smurf village (classroom). In whole-class discus-
sions, the teacher typically asked questions that focused on the results of
measuring with the Smurf bar. For example, if a student was finding the
length of a table by iterating a Smurf bar and counting “10, 20, 30, 33,” the
teacher might ask the student “Where is 33?” or “Can you show how long
something 33 cans is?” She posed these types of questions for two reasons.

First, she was trying to support the students’ interpretation of measuring
as an “accumulation of distance.” In other words, when the students had
completed a third iteration and uttered “30,” some students may have rea-
soned that “30” signified the space covered by the last iteration (10 cubes)
rather than the space spanned by all 30 cubes. It was therefore important
that this issue become an explicit topic of whole-class discussion.

Second, she was trying to encourage explanations that focused on the
meaning of measuring with the Smurf bar or food cans instead of simply
describing a method of measuring. Questions such as “Where’s the 33?”
served to focus discussions not only on how a student obtained 33 as the
measure but also on his or her interpretation of the result of measuring. As a
consequence of students participating in these types of discussions, “the
whole 33,” for instance, came to mean the space extending from the begin-
ning of the first cube to the end of the thirty-third cube. (See McClain et al.
[1999] for a more detailed account.) In our experience, an accumulation of
distance interpretation is a relatively sophisticated achievement for first
graders.

As mentioned earlier, the students’ use of the Smurf bar as a measurement
tool emerged naturally from their measuring with the footstrip. Thus, the
learning that had occurred previously as students used the footstrip was self-
evident as they measured with the Smurf bar. There was, for example, no
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discussion concerning “filling up” the length of an object exactly with the
Smurf bar. This issue had been discussed earlier, and students were able to
build on what they had learned in these conversations to talk about more-
sophisticated mathematical issues, such as measuring signifying an accumu-
lation of distance. Again, we can see that sequencing the tools in such a way
as to build on the students’ experience with previously used tools supports
the emergence of increasingly sophisticated mathematical conversations and,
thus, learning.

Example 4: Measuring with a Strip of 100 Cans
As the teacher continued the narrative of the Smurfs, the students mea-

sured various objects that the Smurfs used or needed in their village. One of
these activities involved asking students to measure and cut adding machine
tape into different lengths that signified pieces of wood to be used for rafts.
One pair of students, Nancy and Meagan, kept track of each iteration of the
Smurf bar by writing the numerals (10, 20, 30, …) on the adding machine
tape as the two students found the lengths they needed. Building on this
symbolizing activity, the teacher asked the class if they could use Nancy’s and
Meagan’s records to think of a way to measure without having to take any
food cans with them. Several students suggested that just as these students
had marked the adding machine tape, the Smurfs could measure a piece of
paper that was 10 cans long, using it instead of the Smurf bar. By posing the
questions this way, the teacher elicited ideas from the students so that they
contributed to the development of the new tool, a paper record of ten cans.
After further discussion, the students constructed strips of paper 10 cans
long, with each individual can marked (see fig. 6.3).

In a subsequent
whole-class discussion,
two students came to
the whiteboard at the
front of the classroom
and showed how they
would measure it with
their 10-strip. They counted the strip, saying “10, 20, …” each time, and
recorded the endpoint of each iteration with a marking pen. As the students
recorded each iteration, the teacher taped a 10-strip below their record of
measuring on the whiteboard. After she taped each 10-strip, she asked, for
instance, “Where is the 40?” This type of question further supported stu-
dents’ interpreting their result, 40, as an accumulation of all the distance up
to 40, not just the 40th space. In this way, the teacher was attempting to
guide the development of a measurement strip 100 cubes long that would be
introduced in the following class period (see fig. 6.4).
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It could be argued that the 100-strip was imposed on the students by the
more knowledgeable teacher. However, we argue that the teacher guided the
development of the measurement strip by taping the 10-strips end to end as
the students measured with one strip. She was attempting to ensure that the
measurement strip built on students’ imagery of counting Smurf bars
and10-strips. The teacher also focused the discourse on the meaning the
numerals had for students (e.g., “What does 40 mean?”). In this way, she was
attempting to support an understanding of the 100-strip as both the result of
iterating 10-strips and the result of accumulating distances.

The initial activities with the new measurement strip again involved mea-
suring various items around the classroom. These activities seemed routine
for most of the students in that they simply placed the measurement strip
next to the item being measured and read off the measure of its length. Most
students understood that a numeral on the strip indicated the distance from
the beginning of the strip up to the numeral (an accumulation of distance).
This sophisticated interpretation was made possible by the students’ partici-
pation in previous whole-class discussions where an accumulation-of-dis-
tance interpretation had been an explicit focus of the conversation.

In summary, it should be clear that the measurement strip and the other
tools the students used did not have any magical educational properties.
Rather, each tool used in the measurement sequence was introduced in such
a way as to build on the students’ prior measuring experiences. For example,
when the teacher taped 10-strips together, she supported the construction of
the measurement strip using the students’ prior experience of measuring
with the Smurf bar and 10-strips. The tools used in the classroom teaching
experiment were sequenced in such a way as to build on the measuring con-
ceptions students had already constructed. Rather than beginning with the
conventional ruler, the teacher built on the students’ experience of pacing
and counting single units and collections of units to support the eventual
construction of a ruler type of tool. As a consequence, the students’ reason-
ing when they used the ruler type of tool (i.e., the measurement strip) was
extremely sophisticated.

CONCLUSION
In this article we have emphasized two main points. First, the introduction

of tools should be sequenced to ensure that they continually build on stu-
dents’ prior experience with other tools. The measurement sequence was
designed so that students built on their prior knowledge to create new tools
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and understandings for new purposes. In this way, the students always had
prior experience to draw on when they used a new tool. Each tool was both a
product of, and a means of, supporting further learning.

The second point we have stressed is that the teacher was able to introduce
new tools that fit with her instructional agenda without stifling the students’
creativity. In most examples, we described how the teacher capitalized on the
students’ contributions as she introduced each new device. Further, we
noted that each tool was introduced as a solution to a problem. Frequently,
teachers present solution methods and tools before the students realize there
is a problem in the first place. If students do not know what the tool or a
method is a solution for, they have difficulty making sense of it. In our
teacher’s case, she developed each problem in the context of a story scenario
(e.g., the king does not want to measure everything himself, the Smurfs do
not want to carry a large volume of cans, etc.), and each tool was created and
used as the students addressed these problems. In our view, this aspect of
“problematizing” is crucial to the development of tools as effective means of
supporting students’ development of increasingly sophisticated mathemati-
cal reasoning.
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Promoting the Use of Diagrams

as Tools for Thinking

Carmel M. Diezmann

Lyn D. English

A DIAGRAM is a visual representation that displays information in a spatial
layout. In problem solving, a diagram can serve to "unpack" the structure of

a problem and lay the foundation for its solution. Hence, students are often

recommended to use diagrams in solving mathematical problems. For some

students, this recommendation is helpful, and they are able to use the dia-

gram as a tool in mathematical thinking and learning. However, for other

students, this suggestion is singularly unhelpful. Some students are unable or

perhaps unwilling to use diagrams on a problem-solving task. Students' lack

of knowledge about the utility of a diagram suggests that they need help to

use the diagram as an effective mathematical tool. This paper explores the

knowledge that students require to become diagram literate and identifies

some of the difficulties that students experience in their use of diagrams. As

we discuss here, it is essential that students know why a diagram can be use-

ful in problem solving, which diagram is appropriate for a given situation,
and how to use a diagram to solve a problem. The paper concludes with sug-

gestions for developing diagram literacy within the mathematics curriculum.

DIAGRAM LITERACY
The term diagram literacy refers to knowing about diagram use and being

able to use that knowledge appropriately. The ability to use diagrams effec-
tively is integral to mathematical thinking and learning (Nickerson 1994).

Diagram literacy is a component of visual literacy, which is "the ability to
understand [read] and use [write] and to think and learn in terms of images"

(Hortin 1994, p. 25). Visual literacy has long been recognized as a neglected
area in education (Balchin and Coleman 1965; Box and Cochenour 1994).
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In the following example, ten-year-old Kate demonstrates diagram literacy
(see fig. 7. 1). Notice how Kate displayed the rows of the well as a vertical
number line and then indicated the forward and backward movement of the
frog with a series of arrows. The spatial layout of the arrows enabled her to
keep track easily of the frog's movements over a number of days. Kate's dia-
gram thus provided her with a clear representation of the problem structure
and formed the basis of a successfil solution.

A frog was trying to jump out
of a well. Each time the frog Jo .
jumped, it went up four rows of
bricks, but because the bricks
were slippery it slipped back 6 \
one row. How many jumps will
the frog need to make if the
well is 12 rows high?

Fig. 7.1. Kate's diagram for the Frog task

In contrast, Kate's classmate, Helen, demonstrates a lack of diagram litera-
cy on a similar task. Ten-year-old Helen's diagram is structurally inadequate
because she has not incorporated a number line into her diagram and she
has not represented the movement of the koala. Instead, she has focused on
representing surface features, such as the branches of the tree (see fig. 7.2).
As a consequence, Helen had difficulty in reasoning from her diagram and
was unable to solve the problem.

A sleepy koala wants to
climb to the top of a gum
tree that is 10 meters high.
Each day the koala climbs Y r
up 5 meters, but each
night, while asleep slides 
back 4 meters. At this rate
how many days will it take
the koala to reach the top?

Fig. 7.2. Helen's diagram for the Koala task

Helen's difficulty in diagram use is typical of many of the students with whom
we have worked. Our observations are consistent with research that has high-

Helen: "He climbs up 5
meters to there (5-
meter mark) and that
took him one day and
that took him back
down to here Qust
below the 5-meter
mark) and he had to
climb up another 5
(meters) the next day
and he got about
here....



PROMOTING THE USE OF DIAGRAMS AS TOOLS FOR THINKING

lighted students' reluctance to use diagrams and their difficulties in doing so (e.g.,
Dufour-Janvier, Bednarz, and Belanger 1987; Shigematsu and Sowder 1994).

The initial step in generating an appropriate diagram is to identify which
diagram is suitable for a given situation. The appropriateness of a diagram
depends on how well it represents the structure of a problem. Although
there can be considerable variation in the surface features of diagrams, there
are basically four general-purpose diagrams that suit a range of problem sit-
uations. We now focus our discussion on those diagrams that are especially
useful in elementary problem solving.

GENERAL-PURPOSE DIAGRAMS
The four general-purpose diagrams that represent specific relationships

among data are networks, matrices, hierarchies, and part-whole diagrams
(Novick, Hurley, and Francis 1999). We describe them briefly here.

Networks consist of sets of nodes (points) with one or more lines emanat-
ing from each node that link the nodes together, such as a map of train sta-
tions. Simple networks with few nodes and links between the nodes are
sometimes referred to as line diagrams. Kate's diagram of the Frog task is an
example of a network for a simple problem, whereas the network that Helen
drew for the Birds task is a more complex representation (see fig. 7.3).
Helen's diagram incorporates two sets of relationships-namely, multiples of
5 and multiples of 3-which represent the repeated visits of the two birds.
Her diagram was particularly effective because of the accurate positioning of
the two sets of multiples on the number line. Note that Helen was able to
generate this particular network after instruction about diagram use, despite
being unable to produce an appropriate diagram for the simpler Koala task.

A robin comes to a bird
feeder every 5 days and
a sparrow comes by
every 3 days. Today, the
robin and sparrow both
came to the bird feeder.
How many days will it be i _
before the robin and - a l
sparrow both come again
on the same day?

Fig. 7.3. Helen's network diagram for the Birds task

Matrices use two dimensions to represent the relationships between two
sets of information. Matrices are particularly useful in problems that require
deductive thinking or combinatorial reasoning. A matrix is useful in deduc-

79



80 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

tive problems because the diagram helps the solver keep track of known
information and enables implicit information to become explicit. For exam-
ple, in the matrix drawn by Damien (fig. 7.4), he used the clues of "Sally and
Rick met when one of them won a swimming race" and "Sally is not a swim-
mer" to correctly deduce that Rick was a swimmer. This fact was explicated
on the matrix and represented with a check. However, Damien's reasoning
was not always sound, and he also reasoned incorrectly from the clues in this
problem. His difficulty is discussed shortly. In Damien's matrix, the people
are represented on the horizontal axis and the sports on the vertical axis.

Fig. 7.4. Damien's reasoning for the Sports task

In a combinatorial problem, the matrix provides a visual representation of
the number of combinations. For example, if children have a choice of two
types of drinks and three types of food at lunch, the six lunch combinations
can be seen easily on a matrix. Although some students can simply calculate
the number of combinations from the number of each item, other students
cannot; hence, the matrix provides an important visual referent for them.

Hierarchies comprise diverging or converging paths among a series of
points. Tree diagrams and family trees are some common examples of hier-

Four friends like different
sports. One likes tennis,
one likes swimming, one
likes running, and one likes
gym. Each person likes only
one sport. Use the clues to
help you find out which
sport each friend likes.

1. Sally and Rick met when
one of them won a swim-
ming race.

2. Tara and Greg met when
one of them was exercis-
ing at the gym.

3. Sally is not a swimmer or
a runner

4. Greg is a friend of the
gymnast's brother.

Damien: "Aw, because it says I know
that Sally's not a swimmer
and a runner so I thought
she was a gymnast so i
ticked that and crossed
them all out, and this one
says that Tara and Greg
met when one of them
was exercising at the gym
and I don't think it was her
and I'm getting confused"
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archies. Brian's simple diagram (see fig. 7.5) is an example of a converging
tree diagram, which he used to represent the structure of the given problem.
On the first row all the teams are represented. On the second row only the
winners of the first round are shown. On the final row the overall winner of
the competition appears.

Four teams competed in a

tition. Team A beat Team B
and Team C lost to Team
D. Who was the winner if
Team D lost the final
game?

Fig. 7.5. Brian's hierarchy for the Volleyball task

Part-whole diagrams represent the relationship between a part and a whole.
In contrast to matrices and hierarchies, part-whole diagrams do not have a
readily recognizable external form. Damien's diagram of the Park task is an
example of a part-whole diagram where the parts are the number of legs for
people and dogs and the whole is the total number of legs (see fig. 7.6).

The Park: Jane saw some
people walking their dogs
in the park. She counted
all the legs and found that
there were 48 legs alto- j. .1.
gether. How many people
and how many dogs were I .
in the park? Are there any
other solutions?

I' :1
1: 'J

Fig. 7.6. Damien's part-whole diagram for the Park task
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Students who are diagram literate are knowledgeable about each of these
diagram types. They know when to use these diagrams and how to reason
with them to reach a successful solution. We now consider some of the diffi-
culties that students experience in using these general-purpose diagrams.

STUDENTS' DIFFICULTIES IN DIAGRAM USE
Students' difficulties with diagram use present obstacles to their develop-

ment of diagram literacy. Diagrams do not automatically become useful
tools for students. Their effectiveness may be hampered by students' lack of
understanding of the concept of a diagram, their inability to generate ade-
quate diagrams, and their failure to reason appropriately with them (Diez-
mann 1999). We address each of these difficulties in turn.

The Concept of a Diagram
The terms diagram, picture, and drawing are sometimes used as synonyms.

However, there is an important difference between diagrams and pictures
and between diagrams and drawings. Diagrams are structural representa-
tions; surface details are unimportant. For example, in Damien's diagram the
people and dogs are simply represented by lines and dots (see fig. 7.6). In
contrast, pictures and drawings generally show surface details. Students who
are unsure of the meaning of the term diagram can be misled if teachers
liken diagrams to pictures or drawings. This can be seen in the following
interaction between a teacher and ten-year-old Frank:

Teacher: Could you draw a diagram or a picture?
Frank: What's a diagram?

Teacher: Diagrams are just like pictures. Could you draw a picture?
Frank: Um, yeh.

Teacher: Would that help?
Frank: Yeh, but it'd take ages because you'd have to draw a lot of

chickens and a lot of pigs.

Frank's final response suggests that he is thinking about the surface details.
We, as teachers, need to emphasize the representation of the problem struc-
ture and de-emphasize the representation of the surface features. A lack of
understanding of the concept of a diagram may explain why students often
represent the surface features of a problem rather than the structural features
(Dufour-Janvier, Bednarz, and Belanger 1987).

Generating a Diagram
In our work, we have observed that students have varying levels of success

in generating appropriate diagrams for a particular problem. Some students
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cannot even commence the process of diagram generation. For example,
although Jon had thought of drawing a diagram, his lack of understanding
of scale thwarted his attempts at doing so:

Teacher: Could you draw a picture or a diagram to show what was
happening?

Jon: I'll try, but...
Teacher: You're not sure about that?

Jon: No... I thought of drawing a 10-meter tree and then each
time going up 5 meters.

Teacher: Have a quick go and see if you can do that.
Jon: I don't have enough room to do a 10-meter tree (referring to

the length of his page).

Other students can generate diagrams but are not always able to represent
the problem structure adequately. Whereas Damien's part-whole diagram
(fig. 7.6) indicates a sophisticated representation of the problem, Candice's
and Gemma's diagrams for the same problem represent only part of the
problem structure (see fig. 7.7). Candice correctly represented one dog and
one person but did not represent the total number of legs, whereas Gemma
correctly depicted the total number of legs but her grouping of legs was
inappropriate.

Only the set is represented Only the total is represented correctly.
correctly

0 v

Candice Gemma

Fig. 7.7. Candice's and Gemma's partially correct diagrams

Reasoning with a Diagram
Students' difficulties in reasoning with a diagram are often related to the

inferences they derive about a given problem structure. We have observed dif-
ficulties occurring throughout the solution process, in particular during the
generation of a diagram and when the diagram is used to reach a solution.
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Inappropriate reasoning during the diagram generation process can be
seen in Lisa's work (see fig. 7.8). She initially drew the three body parts sepa-
rately. Lisa then measured the head, which she had drawn an arbitrary size,
and adjusted the body to suit the size of the head. Although Lisa displayed
an understanding of proportional reasoning in her adjustment of the body
parts, her reasoning about the size of the head was inappropriate because she
failed to consider the size relationship between the head and the overall
length of the dog. Thus, although Lisa used the diagram to derive informa-
tion, she seemed unaware that there were constraints involved in this
process.

The head of a dog is half Teacher: How did you know how large
as long as its body The tail to make the head of the dog?
of the dog is as long as its Lisa: I just drew the head of the
head and body combined. dog.
The length of the dog Teacher So you drew it any size and
including its tail is 48 cen- measured it?
timeters. How long is each
part of the dog? Lisa: Yes.

Teacher: And it was?
Lisa: Three centimeters.
Teacher: How long did you make the

body?
Lisa: Six centimeters.
Teacher And why was that?
Lisa: Because the head is half as

long as the dog's body

Fig. 7.8. Lisa's diagram for the Dog task

Difficulty in reasoning with a diagram to reach a solution is evident in
Damien's work (fig. 7.4). Although Damien generated an appropriate
matrix, his deductive reasoning was flawed because he did not consider all
possibilities. Damien's explanation suggests that he had not considered that
Sally might also be a tennis player.

We now offer suggestions for overcoming each of the difficulties that we
have identified.

SUGGESTIONS FOR
DEVELOPING DIAGRAM LITERACY

From our experiences in fostering students' diagram literacy (Diezmann
1999), we believe that specific content needs to be addressed if students are
to become confident and literate in diagram use. This content should



PROMOTING THE USE OF DIAGRAMS AS TOOLS FOR THINKING

include a focus on each of the following: (1) the concept of a diagram, (2)
diagram generation, and (3) reasoning with a diagram.

Understanding the Concept of a Diagram
Many students have limited or inappropriate understandings of a diagram.

Teachers can help students develop these understandings in the following ways:

* Providing opportunities for students to explicate their ideas about dia-
grams and responding to what they say or write. Students need to devel-
op the understanding that diagrams are representations of the structure
of problems and hence differ from pictures.

* Monitoring the development of students' knowledge and understanding
of diagrams over time in order to provide appropriate instruction. For
example, Ian initially held the limited view that "a diagram is looking
down at the location of things.' However, after instruction that intro-
duced a variety of types of diagrams, he was able to identify specific types
of diagrams and when they would be useful (see fig. 7.9).

IDj~<@le5 cr (orpl

Tbi5 Dqwo is eCA Ma, tri
Itck

elwt, Oi '"mvvtjr cite& frettOn~~~r boI A46ShWp AIl{/ ob
t LOrrz L

Thrs n[Mru.r i cccdfr&&a ptruioW
mnph~ C )0

Fig. 7.9. Ian's reflection about diagrams
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Generating Appropriate Diagrams
Generating a diagram is a crucial step in reasoning about a diagram (Bar-

wise and Etchemendy 1991). During the generation process, students are
afforded an opportunity to reflect on the adequacy of their diagram as a rep-
resentation of the given problem. Reflection as part of the diagram genera-
tion process can enhance students' understanding of the problem structure
(Nunokawa 1994). We observed such an improvement in Candice's under-
standing when she recognized the mismatch between the problem structure
and her diagram (see fig. 7.10). Her initial interpretation would have result-
ed in a koala climbing into the clouds.

Fig. 7. 10. A change in Candice's understanding of the problem structure

Teachers can support students in developing an understanding of the rela-
tionship between a problem and its representation by-

* explaining the links between the structure of a problem and its diagram-
matic representation;

* modeling the generation of a diagram and explaining how the various
components of the problem are represented;

Teacher What suddenly changed
your mind? What happened?

Candice: This thing made me change
my mind [pointing up and
down on the diagram].

Teacher: This thing? [pointing to a
diagram]

Candice: Yes.
Teacher: So what's the problem up

here-that's-what seemed
to change your mind when
you got up near the top of
the tree? [pointing to the top
of the tree]

Candice: Because if you were here
[6 m] and you went up 5 m
you'd be over the tree.

Teacher Into the clouds?
Candice: Yeh, [laughed], and then you

wouldn't be able to fall down.

I

I
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* encouraging students to discuss their diagrams with one another to high-
light the similarities and differences in various diagrams that may repre-
sent the same problem;

* focusing on each general-purpose diagram in turn, and presenting stu-
dents with sets of problems that can be represented with a particular dia-
gram-for example, students could be presented with a set of combina-
torial and deductive problems to highlight the utility of a matrix;

* providing opportunities for students to identify which of the general-
purpose diagrams is most appropriate for particular problems.

Reasoning with a Diagram
Of importance in reasoning with a diagram is the ability to make accurate

inferences. However, the type of inference that can be made varies from one
type of diagram to another. One of the impediments to students' reasoning
is that they fail to realize that a given diagram should yield consistent
answers. For example, Helen obtained three different answers from her dia-
gram (see fig. 7.2). Initially, Helen produced an answer of three days by trac-
ing the path taken by the koala on her drawn tree until the koala reached the
top of the tree. When Helen was asked to show how she had reached the
answer, she retraced her movements and gave another answer: " [It] would
be four days." Helen was then asked if she could use her diagram to check
her (second) answer Helen did not respond to the question but stated a fur-
ther answer: "I think it would be five [days]." During this interaction, Helen
gave no indication of surprise that each time she traced the path of the koala,
she reached a different answer. Helen obtained different answers because she
lacked precision in her movements on the diagram.

Helen's difficulty is not uncommon, and many students become geographi-
cally lost when they traverse a diagram during the solution of a problem. Teach-
ers can support students' reasoning with a diagram by the following means:

* Emphasizing the importance of precision in location and movement on a
diagram. For example, if Helen had marked off her tree in one-meter
sections, she would have been able to identify particular locations and
use these measures as a number line (see fig. 7.2).

* Encouraging students to use a suitable tracking strategy and to check
their work. Students can track their movement on a diagram with vari-
ous indicators, such as lines, arrows, dots, or numbers. For example, in
figure 7. 1, Kate kept track of an animal's movements by drawing an
arrow of a specific length and direction to depict each movement beside
her initial diagram. Tracking indicators should be positioned to the side
of a diagram rather than on top of it. Students who draw over the top of
their diagrams become confused when they attempt to check their work.
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CONCLUSIONS AND IMPLICATIONS
Representation is one of the ten Standards of the recent Principles and

Standardsfor School Mathematics (National Council of Teachers of Mathe-
matics [NCTM] 2000). In defining this Standard, the Council recommends
that students "select, apply, and translate among mathematical representa-
tions to ssolve problems" (p. 67). We have offered some suggestions for
attaining this Standard. At the same time, we have highlighted some of the
difficulties that students experience in using diagrams as an effective repre-
sentational tool.

Our work with students (Diezmann 1999; English 1997, 1998, 1999) sug-
gests that we can facilitate their development of diagram literacy through-

* actively promoting the use of diagrams by modeling and discussing their use;
* emphasizing similarities and differences between problem structures;
* providing explicit instruction in the use of general-purpose diagrams
and highlighting the correspondence between diagram types and prob-
lem structure;

* focusing on the diagrammatic representation of structural information
in a problem rather than on its surface features;

* encouraging students to use diagram generation as a means for improv-
ing their understanding of problem structure;

* monitoring and responding to students' difficulties in the development
of diagram literacy;

* ensuring that tasks are sufficiently challenging to warrant the use of a
diagram.

Literacy with diagrams is an essential component of students' mathemati-
cal development (NCTM 2000). Without proactive attention from teachers,
curriculum writers, and teacher educators, diagrams will remain adorn-
ments to problem texts rather than become effective tools for thinking.
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8
Constructing a Foundation for the
Fundamental Theorem of Calculus

Marty J. Schnepp

Ricardo Nemirovsky

This paper is an analysis of a classroom discussion that occurred in the third week
of a twelfth-grade Advanced Placement calculus course. It serves as an example of
an activity where technology and pedagogy elicit from students intuitive, yet
sophisticated, notions of the mathematics of change and variation. In this and
similar activities, intuitive conceptions of mathematics of change lead to con-
structive discourse from which students derive computational procedures, alge-
braic techniques, and graphical associations that extend prior mathematical expe-
rience and challenge personal theories.

DURING the last ten years, mathematics teachers at Holt High School in Holt,
Michigan, have been exploring a functions-based approach to curriculum
(Chazan et al. 1998). One of the authors is a teacher at Holt who has
explored new ways to teach calculus as part of a broader effort to investigate
alternatives to traditional approaches to the teaching of high school mathe-
matics. He joined the SimCalc project three years ago as a teacher-researcher
to investigate the following research question posed by Nemirovsky, Kaput,
and Roschelle (1998): How can technologies and learning environments

This research has been supported by the SimCalc project (NSF RED-9353507) and
by the National Center for the Investigation of Student Learning and Achievement at
the University of Wisconsin. This Center is supported under the Educational
Research and Development Centers Program, PR/Award Number (R30560007), as
administered by the Office of Educational Research and Improvement, or the U.S.
Department of Education. All opinions and analyses expressed herein are those of the
authors and do not necessarily represent the position or policies of the funding agen-
cies. We want to thank several colleagues who provided feedback and encourage-
ment: Dan Chazan, Al Cuoco, Tracy Noble, Beba Schternberg, Jesse Solomon, Michal
Yerushalmy, and an anonymous reviewer.
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change the ways students experience the mathematics of change by tapping
more deeply into students' cognitive, linguistic, and kinesthetic resources? To
provide a framework for how this teacher organized his course, we will elab-
orate on two aspects: (1) the pedagogical emergence of the fundamental the-
orem of calculus, and (2) the use of mathematical representations in calcu-
lus.

THE PEDAGOGICAL EMERGENCE OF THE
FUNDAMENTAL THEOREM OF CALCULUS

Traditionally, calculus courses first introduce the notion of derivative, or
rate of change, then integration, and finally the fundamental theorem of cal-
culus, which establishes the connections between the first two. Usually, stu-
dents are left with the formally proved statement about the inverse relation-
ship between differentiation and integration without a clear intuitive sense
of why such a relationship exists. Although students usually intuitively see
adding and subtracting as "undoing" one another, most calculus students do
not develop an equivalent sense of why integration "undoes" differentiation
and vice versa. If integration refers to a process of accumulating a quantity,
why would the rate at which it accumulates be its inverse? Or why would the
area under a curve reverse the slope of the tangent to the curve? We want to
build the core of calculus education, from day one to the final test, around
the development of this insight. Among other implications, this means that
instead of a sequence from derivatives to integrals to the fundamental theo-
rem of calculus, we want students to learn about derivatives in relation to
integration and vice versa:

* When students discuss integration, we want them to recognize (1) that
accumulation always occurs at a certain rate and (2) that this rate at any
given point is the value of the function being integrated.

* When students discuss differentiation, we want them to recognize (1)
that the rate of change is cumulative (e.g., velocity completely determines
how much more or less position is accumulated at a point) and (2) that
what has been accumulated up to a certain point is the value of the func-
tion being differentiated.

In colloquial language, the accumulation of speed or the speed of accu-
mulation both get us back to the quantity we started with, with the added
property that in the process we lose information about a constant value,
similar to how taking successive differences involves losing a constant. This
paper examines the approaches that the teacher has developed to interrelate
differentiation and integration in this fashion throughout his calculus
course.
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THE USE OF MATHEMATICAL REPRESENTATIONS
IN CALCULUS

We all experience the difference between directly recognizing someone and
inferring that a person must be so and so. They are not incompatible
moments. As a matter of fact, it is not unusual that on "reasoning" that a
person we are looking at "should" be, say, an old neighbor, suddenly we rec-
ognize the old neighbor; or, conversely, right after recognizing in a photo, for
example, an aunt when she was a child, we might surmise that the photo
must have been taken in a certain year or place. The same experiential dis-
tinction between recognition and inference can be made in regard to mathe-
matical representations. As we become fluent with mathematical notations,
we develop multiple and complex capacities to recognize, say, graphical
shapes, forms of equations, number sequences, and so forth, and these acts
of recognition become points of departure or arrival for inferences. Particu-
larly significant in the mathematical domain is a form of recognition that
Casey (1987) has called "recognizing-in.' Recognizing-in is seeing something
in something else. This is one example he reports (Casey 1987, p. 127):

When I was working on a summer job many years ago in my hometown, my
employer remarked to me one day that he recognized my father in me. When I
asked him how this was so, he said that I had "my father's walk"-his very gait,
his style of walking. His perceiving of my walking was imbued with remember-
ing; or rather, his perceiving me the way he did was his remembering.

His employer was not recognizing him as his father, because he was fully
aware that he was the son, not the father. But he saw his father in his walk, in
an aspect of the son. Recognizing-in merges perception and memory: per-
ceiving the entity in which one recognizes (e.g., the son) is also remembering
what is being recognized (e.g., his father).

A major component of this teacher's calculus course was the study of
motion, through which he tried to have his students come to recognize in
graphs and functions various patterns of motion. In this domain, and proba-
bly in the use of mathematical representations in general, the type of recog-
nizing-in that matters is one that merges perception and imagination. As
opposed to Casey's example, it is not unusual that what is being recognized in
a mathematical representation alludes to imagined events and entities that
might be even physically impossible. This does not mean that memories are
absent in mathematical recognizing-in, of course, but that these memories
are to a large extent recollections of intermingled imaginary and physical
worlds. We are currently examining an episode that took place in a calculus
class that we observed. The students were discussing the graph of velocity
versus time for an object whose graph of position versus time appears in fig-
ure 8. 1.
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Distance

Time
Fig. 8.1

The students discussed what to imagine and infer in order to recognize the
acceleration of the object in this position-versus-time graph. The issue was
the interpretation of the corner. Some of the arguments focused on whether
it is physically possible for an object to stop in no time. It was obvious to
them that they had never seen something stopping instantaneously, but
could that happen? Other arguments questioned the relevance of this line of
analysis on the basis that whether this graph represented something that was
physically possible or not had no bearing on the mathematical behavior that
it symbolized. There were also references to mathematical "tricks" that
would make the acceleration on the corner amenable to more standard treat-
ment. The discussion started from a direct recognizing in the graph of a sud-
den stop, which by itself was not problematic, but the question about accel-
eration launched the students into a complex territory in which it was
essential to discriminate what was pertinent to imagine and to recall. Ulti-
mately, what acceleration, if any, one is supposed to recognize in the corner
was left open to further analysis.

Recognizing-in is a complex process. In Casey's example, it meant that the
employer possessed a familiarity with Casey's father and an ability to dis-
criminate perceptually ways of walking. In our mathematical examples, it
involves a familiarity with physical and imaginary motion and an ability to
discriminate perceptually ways of symbolizing.

Of the three characteristics of this calculus course, one of the chief ones
derives from our pedagogical analysis of the fundamental theorem of calculus:

1. Differentiation and integration are introduced from a numerical per-
spective. They are then examined from the point of view of their mutual
relationship. Rather than studying one and then the other, students
encounter and then reencounter both at once (or in succession) in different
contexts, levels of analysis, and representations.

The other two characteristics are based on our views about the use of mathe-
matical representations in calculus:

2. Frequent classroom discussions focus on revising the meanings of
familiar words-speed, velocity, average, distance, and so on-and
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constructing mathematics related to their technical use. An ongoing aim is
to realize the complexity inherent in their meanings, which are often
obscured by being taken for granted (Ernest 1991). The ongoing enrichment
and clarification of everyday language is a process, not of "replacing" every-
day language with a technical one, but of agreeing on and refining uses and
interpretations of words and ways of talking or acting

3. Tools are used that allow students to investigate physical motion and
how it relates to student-constructed and formally defined functions and
algorithms as well as to imaginary types of motion.

To illustrate these three traits in action, we will analyze a classroom activi-
ty and the subsequent class discussion. We will elaborate on how these fea-
tures appear to facilitate a classroom discourse from which students derive
computational procedures, linked graphical representations, and algebraic
techniques. Other calculus educators are pursuing related approaches (Speis-
er and Walter 1996; Rosenthal 1992). Through this process, learners extend
prior mathematical experiences, challenge personal theories, and develop
sophisticated images of rate and accumulation. We will briefly describe the
technology and the curricular content that generated the background for the
selected classroom episode.

TOOLS: LINE BECOMES MOTION; MOTION
BECOMES LINE

A computer-based pedagogical environment has been developed at TERC
for the study of the mathematics of change. The tools consist of graphing
software and hardware that link a computer to external physical devices. The
software allows for two representational orientations, or vantage points,
from which users may study the relationships between physical motion and
motion graphs. These are referred to as "line becomes motion" (LBM) and
"motion becomes line" (MBL). With LBM, a user constructs a graph on a
computer, which in turn communicates with a motor that moves the
mechanical device according to the graphical specifications.

The devices discussed in this paper are a pair of miniature cars on parallel
linear tracks and a miniature stationary bike rider (see figs. 8.2 and 8.3). For
these LBM devices, a user can draw or symbolically define a position-time,
velocity-time, or acceleration-time graph on the computer. The software will
then move the external device according to the characteristics of the user's
graph. If the device is minicars, one or more cars will travel down the track
moving forward or backward, speeding up or slowing down, and so on, as dic-
tated by the graph. If the device is the minibiker, the rider's total number of
pedal rotations, pedaling rate, or change in pedaling rate can be dictated by
graphs.
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With MBL and common modeling
tasks, the motion is the object of study
and known mathematical tools are- _ used to construct a graphical or sym-
bolic representation of it. LBM shifts
the usual representational paradigm.
The user-created graphs drive the
motion, and thus the cars' or biker's
motion becomes a representation of

Fig. 8.2 the graphs, and the mathematical
Fig. 8.2 function becomes the object of study.

The impact of this shift on classroom conversations is subtle but signifi-
cant.

Two aspects of the learning process are distinctive in LBM. First, LBM
tends to reveal that the formal syntax of symbolic expressions has causal
effects (e.g., position and velocity graphs correspond to each other if they
generate the same motion). Second, device motion provides a tangible
means of testing students' conjectures, interpretations, and calculations.
Threatening aspects of classroom discourse diminish for many partici-
pants when an inanimate machine is validating or refuting students'
ideas. We find students more willing to share and discuss ideas and the
flawed or valid reasoning behind them when the machine is passing judg-
ment rather than the teacher. When an idea is incompatible with
observed motion, the student must reexamine his or her own thinking to
resolve the incongruity. Classroom activities using LBM lend themselves
readily to exploratory discussions in which students assume greater inde-
pendence of the teacher than they ordinarily do. We have found that
LBM allows us to encourage independent and group thinking and
enables us to take on the role of discussion facilitators rather than con-
jecture evaluators. The use
of LBM devices enables indi-
vidual students to take
increased advantage of their
experiential resources involv-
ing motion and thereby to
gain a deeper understanding
of calculus. We have docu-
mented how small-group
and whole-class conversa-
tions around core ideas in
calculus can be made more
productive by the use of
LBM devices. Fig. 8.3
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SELECTED CLASSROOM EPISODE
The calculus program from which the following classroom episode comes

has evolved over seven years from a traditional format. No textbook is used
for the first semester. The opening topic of the course is numerical integra-
tion. Students discuss situations for which they are given numerical data or
symbolic function rules describing the rate at which some quantity changes.
They are asked to determine how much of the changing quantity has accu-
mulated over various time intervals. Contexts using LBM and other situa-
tions ground all conversations in the early stages of the course.

Given the continuing tension in the U.S. mathematics community
between skills and conceptual understanding, it is relevant that although the
course's primary focus is on understanding the fundamental relationships
between rate and accumulation in contexts and exploring student construc-
tions rather than on covering the traditional list of symbolic techniques and
topics, the instruction has maintained a goal of preparing students for the
College Board's Advanced Placement (AP) exam. Therefore, most (but not
all) of the structures and symbolic techniques of a traditional calculus class
receive attention during the school year; in addition, students do perform
well on the AP test. Over the seven years, 158 students have taken the test,
with 125 (42 percent female and 58 percent male) earning scores of 3 or
higher, which carry recommendations for college credit. Of the 36 students
enrolled in the year when data were collected, 28 chose to take the AP test,
with 24 earning a score of 3 or higher (15 students earned a 3, 4 earned a 4,
and 5 earned a 5).

This classroom episode occurred in the first unit of the course. Students
had been in class for three weeks and were developing methods for numeri-
cal approximation. They were given information about the pedaling rate for
the LBM mechanical biker and were asked to estimate the total number of
pedal rotations made during a time interval. They found a natural transition
from previous work with constant rate problems in an approach by which
they chose one rate to represent intervals in which the rate actually varied.
Two of the methods students invented for choosing a rate for a given interval
involved averaging rate function values. One called for adding a selected
number of rate function outputs, dividing the sum by the number of values,
and then multiplying this "average rate" by the time duration in order to
estimate the total number of rotations. The other method was analogous to a
"trapezoidal approximation." Students subdivided the time interval into
subintervals. For each subinterval, they averaged the rate function's output
at the beginning and the end, then multiplied this "average rate" by the
subinterval's time in order to estimate the number of rotations that occurred
during the subinterval. Students then added all the subinterval estimates to
arrive at an overall estimate for the total number of rotations.
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One of the authors was a coteacher of the class. He observed that students
were using the term average rate in ways that held little significance beyond
the "average" process. In addition, they needed to make a distinction between
their use of "average rate" and the more common textbook use of that term,
which is reserved for the calculation

f (b) - f (a)

b -a

given a function f(x) on an interval a • x • b. He posed a problem designed
with the purpose of engaging students in conversations that would establish
underpinnings for the average value of a function, typically defined as

I bf (x)dix 

Thus, during the third week, the teacher gave students the problem shown in
figure 8.4.

Minicar Average Velocity

Consider the velocity function for the red minicar: v(t) = 0.1 (t- 11)2 - 2, 0 < t• 20,
where v(t) is the minicar's velocity in cm/sec and t is the time in seconds.

1 . Determine where the minicar is by the end of the 20-second time interval.
2. Determine a value to represent the average velocity" of the minicar.
3. Explain what this number means in relation to the minicar's trip.
4. Make an accurate table and graph showing ordered pairs (x, p(x)) where

p(x) is an approximation of the minicar's position at any time t = x Be sure to
indicate the method you used and the subinterval size, At, that you chose.

Fig. 8.4

Students were given the Minicar Average Velocity exercise as homework at
the end of a class period, two days before the session discussed here. The day
following the initial assignment, students used the LBM software and
watched a minicar moving according to the velocity function before working
the problem further in small groups. Near the end of that period, the class
reconvened to discuss answers to #2 in the problem. Solutions ranged from
1.4 to 2.7. (It may help the reader to know that the average velocity is 1.433
and the average speed is approximately 2.63.)

The ensuing discussion became mired in efforts of individual students to
convince others of the correct way to solve #2. The debate consumed the
remaining class time, without reaching a resolution. From the students' use
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of the terms speed and velocity, the teachers theorized that students were
quibbling over how to calculate "average velocity" when they had yet to
establish what the phrase meant. The terms speed and velocity had been
introduced two weeks earlier in a physics course that many students were
taking concurrently. However, their interpretations of these terms were not
carefully thought out and were often inconsistent. One of the teachers,
recalling an activity he had observed while visiting TERC, suggested a lesson
that he hoped would invigorate the conversation and elicit an awareness of
the dissonant conceptions of speed and velocity.

The teachers began the next lesson with two minicars at the front of the
room, positioned on parallel tracks on a two-tiered table so that students
were able to see both cars. Without referring to the previous activity or dis-
cussion, the teachers posed the question: "If the red car travels according to
v( t) = 0.1 (t - 11)2 - 2 and the blue car moves at a constant rate, how fast will
the blue one have to go in order to start and stop in the same place?" Stu-
dents worked collaboratively for about ten minutes and then were called
together. At first, the extent to which students associated this activity and the
previous problem was unclear. But as the conversation progressed, it became
evident that many students were drawing on previous calculations from the
Minicar Average Velocity problem.

From several suggestions, the class chose a value of 1.5 cm/sec. The red car
was set to run at a velocity determined by v(t) and the blue car was set with a
constant velocity of 1.5 cm/sec. The graphs shown in figure 8.5 were project-
ed on a television monitor. A time cursor moved over each graph as the

minicars made their trip. At
first, the test was inconclu-
sive because the cars' initial
positions were not the same.

Red A student went to the front
of the room and made sev-
eral attempts to keep a ruler
aligned with the rear axles
of the cars as they moved.
The student reasoned that if
the cars "moved the same,"
the angle of the ruler would
be the same at the beginning
and end of the run. The
truth of this proposition
proved too difficult to deter-
mine, so the discussion con-
tinued. Students revisited

Fig. 8.5 the terms displacement, posi-
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tion, and distance [traveled] while a student wrote definitions on the board:

"Position-where it is"; "Displacement-how far it is relative to where it
started"; "Distance-how far it moved all together (forward and backward):"
Eventually, another student suggested resetting the cars' initial positions to
zero with the LBM software. This was done, and the students saw that the

1.5cm/sec rate for the blue car made the cars stop in approximately the same
place.

One of the teachers asked, "So is this the idea that you guys were talking

about yesterday when you were talking about average velocity?" After several
affirmative responses, he asked, "So what's a good definition?" Another dis-
cussion of the meanings of speed and velocity began. A student suggested a
definition of average velocity, reading from a paper she had apparently writ-

ten earlier. Another student wrote the definition on the board. After several
word substitutions suggested by other students (rate for speed, object for
minicar, and displacement for distance), the final form of the student's defini-
tion of average velocity was as follows: "The rate that the object would have

had to had constant to achieve the same displacement in the same amount of
time:'

This formulation prompted the following exchange between two students
who began to question the sign of rate values:

Sam: I'm having trouble with this negative velocity stuff. See, for
this definition . ..if the car were to go like 5 cm/sec forward,
and 5 cm/sec back for the same amount of time and got

back to where it started, we would be saying that its average
velocity was zero....

The student went on to say that negative velocity signifies negative direction,
and he concluded that direction was not relevant to the average. Thus, he
thought that for his example the average velocity should be 5 cm/sec.

Sue: So are you basically trying to say that you'd want the average
velocity to equal out to the same distance in the end... .same
distance traveled? ... Because then you'd ignore the direction of
the velocity and make everything positive.... I did that. (Both
students, along with others in the class, had calculated values
between 2.4 and 2.6 for #2 on the Minicar Average Velocity
problem.)

Sam: That would make more sense to me.... I think what we have
here [in the definitioni is average speed... for the displacement.

One of the teachers asked another student, who had worked with Sam, to
come forward and draw on the board the graph that he had drawn on his paper
after "making everything positive." The student drew the graph shown in
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figure 8.6, saying, "I just
did absolute value.... It
would cover the same dis-
tance.... It wouldn't end
at the same spot in the
same time. It would
cover the same amount

\20 of distance'
20 X / ,° At this point, all the

students agreed that a
Fig. 8.6 rate between 2.4 and 2.6,

if maintained for 20 seconds, would cause the blue car to travel the same
total distance as the red car but not to end in the same place. Students fur-
ther agreed on the significance of two distinct concepts of constant rate: (1) a
constant rate that would give the same displacement (or change in position)
and (2) a constant rate that would give the same total distance. However,
more discussion of the distinction between speed and velocity followed. Stu-
dents considered which quantity cannot be negative. Eventually, one student
suggested a distinction between speed as "distance over time" and velocity as
"displacement over time." Another student argued the opposite. The first
student countered that the I v(t) I graph (shown in fig. 8.6) would result in an
increasing change in distance for the "reflected region," whereas the v( t)
graph (shown in fig. 8.5) would "accumulate a decrease" in the region where
v( t) had negative values. This was because the minicar moved backward dur-
ing that time period. A third student pointed out that a car's speedometer
cannot have negative values, so she believed that speed is always positive.
This quelled the debate, though it did not convince everyone. One of the
teachers redirected the class to the student's comment about accumulation.

He asked students to sketch "accumulation graphs" from the graphs of
v(t) on the computer and Iv(t)l on the board. Taking cues from earlier work,
the teacher drew rectangles under the graph on the board, as shown in figure
8.7, to represent intervals assumed to be of constant velocity. A student went
to the board and, with help from classmates, roughly sketched the graph
shown in figure 8.8. Other students contributed comments to clarify the

L~Fg 8. Fi. 8.8-'--

Fig. 8.7 Fig. 8.8
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effect of small increases near the intercepts of Iv(t)l. One volunteered that "if

you are going slow, you're not going to go as far. Since you started going

slower, you're not going as far.. so you're not going to have as much of an
increase in total distance."

A conversation involving additional students then turned to the relation-

ship between the areas of the rectangles shown in figure 8.7 and the changes

represented by the dots in the accumulation graph shown in figure 8.8. One

student explained how she thought about increase in the accumulation

graph: "I said that, um, isn't it like the area of the rectangle... .area under the

column actually,..." One of the teachers colored one rectangle.... in the

graph shown in figure 8.7 and asked how that particular object related to the

accumulation graph. The student replied, "You add, um, however much area

was added on... the difference between the third and fourth point. ..the y

amount between the third to the fourth point." The teacher then labeled Ay

on the accumulation graph represented in figure 8.8.
Students left class with an assignment to sketch an accumulation graph for

v(t). The following day, all four graphs, showing speed, total distance, veloc-

ity, and displacement, were discussed. All these subtle distinctions became

part of the consensus eventually reached on the canonical distinctions
between average speed and average velocity.

CONCLUSION
In elucidating how technologies and learning environments can alter the

ways in which students experience the mathematics of change, we focus on

the three aspects highlighted in the introduction. By using these aids to tap

into students' cognitive, linguistic, and kinesthetic resources, teachers can
achieve the following goals:

1. Introduce differentiation and accumulation simultaneously. The stu-

dent's comment that the negative velocity "accumulates a decrease" suggests

the analytic capacity to conceive accumulation and differentiation as two
inextricably linked operations; "accumulate a decrease" refers to both. The

description from another student of how "you're not going to have as much

of an increase in total distance" (for a small velocity) also merges both

aspects in a single description. Within the first month of a calculus course,
students are able to develop and analyze numerical methods for approximat-
ing accumulations (integrals), relate these to the area under a graph, and

begin to discuss the calculation of instantaneous rate. The relationships
between the rate and accumulation calculation processes become explicit,
setting the stage for a yearlong study of calculus.

2. Revise the meanings of familiar words.For example, a student's com-

ment on his "trouble with this negative velocity" led the class to articulate a
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consistent distinction between average velocity and speed, and another's
comment about the "reflected region" helped them to distinguish v(t)and
Iv(t)l. Through this classroom conversation, the students were not intro-
duced to technical terms from without but refined their fluent use of every-
day language to gain precision and logical consistency.

3. Investigate physical motion as a representation of mathematical func-
tions. Typically, a mathematical function serves as a model of some physical
phenomenon. LBM reverses the usual representational paradigm, creating
unusual opportunities for mathematics learning. For instance, the definition
of v(t) for the minicars left undefined their start positions. The question was
how to compare the two cars. Eventually, the students came to the conclu-
sion that one had to define the start position arbitrarily and independently.
This was a major insight in relation to the fundamental theorem of calculus:
The cars represent the velocity functions equally well, whatever their initial
positions are. This asymmetry between rate and accumulation became evi-
dent from the fact that the functional definitions left open countless possi-
bilities in the physical realm.
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9
Mapping Diagrams

Another View of Functions

Mark Bridger

Maxine Bridger

THE widespread use of the graphing calculator to "plot functions" can have
the unfortunate side effect of obscuring the function concept itself Identify-
ing a function with its graph replaces the dynamic idea of a rule, procedure,
or mapping with a static, automatically drawn picture. One way of prevent-
ing this is by introducing mapping diagrams as a simple, and supplementary,
way of visualizing functions.

SOME BACKGROUND
Most of us who study and use mathematics have developed more than one

way of thinking about a function. Leibniz originally used the term to refer to
the relation between ordinate y and abscissa x that one obtained by travers-
ing a curve (Calinger 1995, p. 387). This is still one of our main associations;
we say, almost automatically, "y is a function of x" when we mean that the
quantity y somehow depends on x. We also continue to associate this depen-
dency with the x- and y-coordinates on a graph. Leibniz's contemporary,
Johann Bernoulli, defined a function as an expression made from a variable
by combining it algebraically with various constants (Boyer 1989). This also
corresponds to a modern association: the function as formula. Thus, for
example, we speak of the "function" x2- 2x + 12.

In the middle of the eighteenth century, Euler introduced the notation
f(x) to express a function defined using the variable x; we still commonly
say, for example, "consider the function f (x) = X- - 2x + 12." At this point,
the process of abstraction began, and the namefof the function became sep-
arated from its value f(x). Most of us have seen or used some version of the
following definition:
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DEFINITION: A function f is a rule or procedure that associates with each (allow-
able) number x a well-defined number called f(x).

Beginning with Descartes and Fermat (Katz 1998), it became standard to
represent this functional association by plotting the ordered pairs (x, f (x)) of
the graph of f This technique, however, is pedagogically useful only in those
instances where the graph can actually be constructed and where the student
understands what he or she is seeing. Students quite commonly fail to make
the connection that the ordinate y of a point (x, y) on the graph is actually
the functional value f(x). In calculus courses, students often find the nota-
tion (x + Ax, f(x + Ax)) confusing because they have not yet constructed
this connection.

When we teach a course that uses functions that either involve many vari-
ables or take as values points or vectors in 3-space, students have a great deal
of difficulty grasping what the function actually is. For example, in "parame-
trizing" curves in 2- or 3-space, students are constantly looking for a graph
and are very uncomfortable with seeing the curve as the image of a function.

In addition to these problems, dependence on the graph inhibits the devel-
opment of the idea of function as mapping. Here the view is that a function
takes a set of points-say, a line or curve or surface-and moves, associates,
or maps it onto another set of points-say, another curve or surface-called
the image of the original set of points. This idea of mapping comes from the
venerable science of map projection, in which a portion of the globe is ren-
dered on a flat piece of paper.

For example, in stereographic projection (fig. 9. 1), the earth is viewed as a
transparent sphere. A "light" is placed at the North Pole, N, and a flat screen
at the South Pole, S. The rays of light project points P of the globe (with the
exception of the North Pole itself) onto points Q of the chart. The image of
this map is the entire plane; the equator, for example, gets mapped onto a
circle.

MAPPING DIAGRAMS N

To avoid some of the prob-
lems of graph dependency and
emphasize the association x /
f (x), we have introduced
mapping diagrams as a sup-
plementary topic. Construct-
ing a mapping diagram is easy.
Draw a vertical axis, called the
domain axis. To the right, Q
draw another vertical axis
called the range axis. For some Fig. 9.1. Stereographic projection.
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number (point) x, on the domain axis, locate the point f(x,) on the range
axis, and connect x, with f(x,) by a straight line. This is called the mapping
line for x,. Now construct the mapping line for another point xI, then anoth-
er for X3 , and so on. The collection of mapping lines you get is called a map-
ping diagram for the function f (See fig. 9.2.)

Drawing mapping diagrams by hand is not a difficult chore when there are
not too many mapping lines to be displayed. For more extensive diagrams,

J

Domain R

Fig. 9.2. Mapping diagram

I

Rar

there is public domain software
available to do the job-more
on this later.

f (xI) Cartesian graphing of func-
tions is particularly good for

f (x2 visualizing extrema, convexity,
and asymptotes and for deter-
mining regions of increase and
decrease. Mapping diagrams, as
mentioned above, are useful in

f(x3) promoting the function-as-
nge mapping concept. They excel in

determining where a function is
an expansion or contraction
and where and how a mapping

is a single or multiple covering of regions in its range, that is, whether it is
one-one or many-one. They also are particularly well suited for visualizing
compositions and inverses of functions.

In discussing these ideas, we will try to get away from the static notation
f(x) = (some formula) and make use of a more dynamic symbolism. For
example, instead of denoting a function in the standard way-say, f(x) =
3x - 2x + 7-we will write f: x 3X2 - 2x + 7 or simply x 3x2 - 2x + 7.

EXPANSIONS AND CONTRACTIONS
We begin by constructing mapping diagrams for the two functions x - 2x

and x - 1/2x. For these examples, it is important to use the same scales for
both domain and range. In figure 9.3, we have drawn examples of such dia-
grams; students can easily draw them by hand. Since the limits are -4 to 4
for both domain and range, some mapping lines for x - 2x are not drawn,
since they don't fit in. Note that the domain points are chosen in an equally
spaced way; here they are drawn 0.5 apart.

We might ask the students, "What do you notice about the spacing of the
points?" It should be eventually clear that equally spaced points in the
domain lead to equally spaced image points in the range. What about actual
spacing? The students soon conjecture that in the first function, the distance

x2

x2
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between image points is double the
distance between domain points. For
the second function, the distances are
halved.

Can this be proved? If your class is
ready for proofs, the following out-
line can be used (and, of course, gen-
eralized):

1. Distance is the absolute
value of difference.

2. If u and v are domain values,
their distance is D = I u - vl.

3. The images of u and v are 2u
and 2v.

4. Image distance = 12u- 2vl =
21u-vl =2D.

4

2

0

-2

-4

4

x - 2x

4

0

-4

A similar argument works for x -* __ 0
1/2 x. Stronger students can general-
ize to x - ax or even x - ax + b: any
linear function. The benefits of going -2
through this demonstration are that,
first of all, it is easy, and second, it -4
shows students that proofs occur out- X ,7 X

side of geometry! F. 9.3
Figure 9.4 shows what the situation g

looks like when the coefficient a is negative.
Note that although the domains and ranges are the same for these func-

tions, the mapping lines cross each other. This is because the functions in
this case are decreasing; points lower in the domain want to go up, points

4

2

0

-2

-4
x - -2x

4 4

0 0

-4 -4
x- -ix2

2

0

-2

Fig. 9.4
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higher in the domain want to go down, so their paths must cross. In the case
of linear functions of the form x - ax + b, the mapping lines must, in fact,
all cross at a single point, called the focal point. Because the functions shown
have negative slope, the focal point lies between the domain and range lines;
when the slope is positive, the focal point will lie either to the right or left of
these lines. The idea that focal points exist for linear functions is an interest-
ing exercise for strong classes; a proof is included in the appendix at the end
of the article. Proving the converse-namely, that a function whose mapping
diagram has a focal point must be linear-is a challenging student project.

Maps such as x - 2x, which move points further apart, are called expan-
sions. Maps like x -41/2x move points closer together and are called contrac-
tions. Here is a class question, open to discussion and experimentation:
When is x- ax (or x- ax + b) a contraction? (Answer: when lal < 1.)

Consider the example of the Fahrenheit-Celsius conversion. We know
that O° Celsius (C) corresponds to 320 Fahrenheit (F), and 100°C corre-
sponds to 212°F, since they represent, respectively, the freezing and boiling
points of water. (See fig. 9.5 for a mapping diagram of this correspon-
dence.)

Since 100 degrees get mapped onto 212
180 degrees, and we expect that equal
distances get mapped into equal dis-
tances, each degree Celsius is 180/100
= 9/5 degrees Fahrenheit. Thus: F=
9/5C+ (constant); since 0 32, the ioo
constant must be 32, so we get the
familiar formula shown in figure 9.5.

32

A NONLINEAR EXAMPLE ( F

We have been looking at linear F= 9 C + 32
functions, those of the form x - ax + Fig. 9.5
b. They have the same contraction-
expansion property everywhere. Now let's look at the squaring function: x
x2. With the aid of a calculator or even hand multiplication, students can
draw a simple mapping diagram for this function-say, with domain and
range equal to the interval [0,4]. (Here it maybe advantageous to hand out a
computer-generated mapping diagram, similar to the one in fig. 9.6, for
greater accuracy.)

The first thing that students notice is that equal distances do not go into
equal distances; the interval [0,1] maps to the interval [0,1], but the interval
[ 1,2] maps to [ 1,4]. Is this mapping at least always an expansion? Careful
examination shows that it is not! In fact, the interval [0,1/4] has length 1/4,
but its image is the interval [0,1/16], which is only one quarter as long.
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So here is an example of a function that is an expansion in some places, a
contraction in others. The natural questions are, Where is x x2 a contrac-
tion and where is it an expansion?
Many mathematics teachers and pro-
fessors, when asked this question, 4
immediately guess that x = I is the
cutoff, since the function is an expan- /
sion from I on out. But observe: 3
[3/4,7/8] - [9/16,49/64]. The first
interval has length 1/8, but the second 2 2
has length 13/64 > 8/64 = 1/8; so
squaring is not a contraction on 1 1
[3/4,7/8] c [0,1].

Let's now invoke the "rule of three": 0 0
analyze the problem graphically, x x2 o [0, 2]
numerically, and analytically. A calcu-
lator, spreadsheet, or computer alge- Fig. 9.6
bra system can produce table 9. 1, on
which the previous mapping diagram is based.

TABLE 9.1

x x2 Change in x2

0.0 0.00 _

0.1 0.01 0.01

0.2 0.04 0.03

0.3 0.09 0.05

0.4 0.16 0.07

0.5 0.25 0.09

0.6 0.36 0.11

0.7 0.49 0.13

0.8 0.64 0.15

0.9 0.81 0.17

1.0 1.00 0.19

x x2 Change in x2
1.1 1.21 0.21

1.2 1.44 0.23

1.3 1.69 0.25

1.4 1.96 0.27

1.5 2.25 0.29

1.6 2.56 0.31

1.7 2.89 0.33

1.8 3.24 0.35

1.9 3.61 0.37

2.0 4.00 0.39

We see from this table, where the gap between the x's is 0. 1, that the gap
between their squares is less for x < 0.5 and greater for x > 0.5. This suggests
that x = 0.5 is the cutoff between contraction and expansion for this func-
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tion. This is further confirmed by the table of values in table 9.2 (where x is
incremented by 0.01), which looks at what happens near 0.5.

TABLE 9.2

x x2 Change in x
0.46 0.2116 0.0091
0.47 0.2209 0.0093
0.48 0.2304 0.0095
0.49 0.2401 0.0097
0.50 0.2500 0.0099
0.51 0.2601 0.0101
0.52 0.2704 0.0103
0.53 0.2809 0.0105
0.54 0.2916 0.0107
0.55 0.3025 0.0109

Thus, the mapping diagram and
- numerical evidence have led us

to a guess about squaring numbers.
Before proceeding further with
an algebraic analysis, we have
to state exactly what this conjecture
is. First of all, it is about the dis-
tance between numbers, which
we can represent as I b - al. We want
to find out when the distance
between the squares of two num-
bers is less than the distance
between the numbers themselves,
so suppose x, and x, are the num-
bers and 12 2 - l

_~~~~ X2 -XlI < X2 - XlI-

Then we would have

x 2 _ X21=1X2x 2 x1 xi 11x 2 + XII< X2 - XII

Dividing by lx2 - x,l gives Ix2 + x,l < 1. This is new information, which was
not apparent from either the graphical or the numerical viewpoints. What
does it mean, then, for a function to be a contraction on an interval?

DEFINITION: f is a contraction on an interval I if If (x,) -f(x,)l < Ix, - x,l for all x, X
x, in L

Thus, squaring is a contraction on an interval if Ix, + x21 < 1 for all x,, x2 in
the interval, even for x, and x, arbitrarily close to each other. When x, and x2
are very close, our condition becomes Ix, + x2 - 12xl < 1, or 1x21 < 0.5. This
condition is both necessary and sufficient, and the following can be proved:

THEOREM: Squaring is a contraction exactly on the interval (-0.5, 0.5).

Since we've now opened up the bag of negative numbers, let's take a look at
the squaring function on negatives, in this case [-2, 0]. (See fig. 9.7.) What
are the new features here? Students will observe that mapping lines are now
intersecting each other. What causes this? Answer: On this interval, we are
dealing with a decreasing function, and we have already observed that for
decreasing functions, mapping lines must cross.

Now let's put together the two mapping diagrams we have drawn for the
squaring function. (See fig. 9.8.)
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We see from these diagrams and our
analysis that the squaring function
moves the numbers inside the interval
[-1/2, 1/2] closer together, whereas it
moves numbers outside this interval
farther apart.

2

0

-2

X -X on [-2,0]

Fig. 9.7

4

2

0

-2
-4

x - Mapping Diagram x - Graph

Fig. 9.8

SCALINGS AND COVERINGS
One of the features of the squaring function that the mapping diagram

shows more clearly than the graph is that the numbers in the interval [0, 4]
all get "hit" twice by the numbers in [-2, 2] (O is the image of only 0). This is
sometimes expressed by saying that squaring is a twofold covering of [0, 4].
This property of the function shows up in the mapping diagram no matter

4

2

0

2

0

-2
2
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what the scaling of the domain and
range axes is. Until now, in order to 39
investigate contractions and expan-
sions, we have taken the scales on
both axes to be the same. If we are
interested in properties of functions
that don't depend on relative sizes, 0
such as being many-one rather than
one-one, we can use whatever scales
on the axes that are most convenient
for our purposes. For example, fig-
ure 9.9 displays another view of the -3 0
squaring function. x2 [-3, 31 - [0, 0]

Let's look at a more complicated
function, this time a cubic: f(x) = Fig. 9.9
2x3 - 3x2 - 12x. As you can see from
the diagrams in figure 9.10,f: [-3, 4] - [-45, 32].

We observe that this function is one-to-one in some places and many-to-
one in others. Both the graph and the mapping diagram suggest that the
numbers 7 and -20 in the range get hit twice, whereas all the numbers in the
interval (-20, 7) get hit three times. y = -20 is the image of x = 2 and x =
-5/2, whereas y = 7 is the image of x = -I and x = 7/2. This is because the
equations f(x) = -20 and f(x) = 7 have double roots at 2 and -1, respective-
ly. Numbers outside [-20, 7] get hit only once. Having the students see these
facts from the graphs and then verify them numerically and algebraically is
what the "rule of three" was meant to encourage.

Of course, no discussion of many-one functions would be complete

4 32 32

3

2 77 7

1 -3 -1 2 4

1_ -20 -20

-2
_3 _ 45 -45

Fig. 9.10. Mapping diagram and graph for x . 2x3 - 3x' - 12x

ill
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without looking at trigonometric functions, which over a large domain are
very many to one.' Figure 9.11 shows the cosine on the interval [-2r, 27t].

-F I I 1

-2F --1 - -1 V

Fig. 9.11. Mapping diagram and graph for x - cos(x)

OTHER APPLICATIONS
Mapping diagrams are very useful in presenting inverse functions. For

example, consider the function x - 3x + 2/5 on the interval [-4, 4]. In the
mapping diagram below (see fig. 9.12), we see that the image of [-4, 4] con-
tains [-4, 4] but goes outside it as well.

We can ask our students, "What 4
(sub)interval of [-4, 4] gets mapped
exactly onto [-4, 4]?" This leads natu-
rally to asking which x gets mapped
into -4 and which into 4 and then to
the general question of "going back-
wards" in the mapping diagram, from
points in the range to points in the
domain. This, in turn, leads to the
mapping diagram for fr1, the inverse
of fi which is simply the mirror image 4\
of the diagram for f (See fig. 9.13.) x -3x + 2

Mapping diagrams are also emi-
nently suited for visualizing composi- Fig. 9.12
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tions of functions. As an example,
suppose f(x) = 3x + 2/5 and g(x) =
-1/2x + 3. These functions involve
stretchings and shiftings, and the
graphs of f, g, and g o f are not obvi-
ously related. Figure 9.14 shows the
juxtaposed mapping diagrams for the
composition g(f(x)).

Note that the first map is an expan-
sion by a factor of 3, and the second
map is a contraction by a factor of
1/2. This means that the first map
carries each unit into three units, and
each of these three units goes to 1/2 of
a unit by way of the second.The effect

4

-4

The Inverse: x - - 2

4

2

0

-2

-4

Fig. 9.13

of the composition is to send each
unit into 3(1/2) units. Thus, for linear maps, scaling factors multiply. Since
differentiable functions are locally linear, this helps explain the form of the
chain rule in calculus.

4

0

-4

4

0

-4

x - 3x + 25 followed by x - - 2 X + 3

Fig. 9.14

A CLASSROOM EXPERIENCE
Some algebra 2 students were having a difficult time describing the behav-

ior of functions of the form

f (x) = I

The graphs they saw on their calculators made no sense to them, so their
instructor suggested that they try mapping diagrams. They did one for the
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end behavior and one for the discontinuity. For the end behavior, they drew
the domain and range lines on the board, at first with both going from -10 to
10, and then drew some mapping
lines, staying away from x = 2. The stu- 10
dents realized they needed to redraw 8
the range line to see better what was 6
happening near 0, so they changed \
scales. It became clear to them very I
quickly thatf(x) -. 0 as lxl - + 2 0.5
(See fig. 9.15.) 0 0

Teachers are used to relating asymp- -2 -0.5
totes on graphs to the limiting behav- 4
ior of functions, but students don't -6
always see things the way experts do.
Here is an instance where mapping End behavior of x . -2

diagrams helped. Fi 9.15
The class drew a second mapping g

diagram to see what the behavior of the same function is like near x = 2. The
students began with I • x < 3 and range [-10, 10] and soon realized they
needed to look at points closer to 2. So they narrowed the domain to 1.5 < x
< 2.5 and drew mapping lines at points approaching x = 2 from both above
and below. It soon became clear that f(x) +00 as x - 2' and f(x) - as
x 2 2. (See fig. 9.16.)

This was the first time the class had used
mapping diagrams. There was no assigned

x = 2.01 homework on them, yet when the class took
/0 the next exam, on rational expressions,

/ x = 2.1 / 10 there was a mapping diagram question that
2.5 they all answered without any problem. It

seems to be an easy and natural concept for
them.

2 0

MORE ON DIAGRAMS, SoFr-
1.5 WARE, AND REFERENCES

x 1.9 The idea of mapping diagrams is not
-10 new. One of the earliest accounts is in

x= 1.99 Richmond (1963). Spivak (1967) uses a
, near "bad point" version of mapping diagrams in his won-

X-X-2 derful calculus book, and Brieske (1973,
1978) has a short description of them in

Fig. 9.16 his 1973 article and a discussion of their-
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relations to calculus in his later paper. Goldenberg (1992) and others also
discuss a form of mapping diagrams and their relation to the development
of the concept of function.

A more complete account can be found in Bridger (1996). This article

introduces some of the rather elegant theory surrounding mapping dia-
grams, including focal points, fixed points, and enveloping curves. It also
describes the Function Visualizer, a piece of public domain software by the
author, which draws both Cartesian graphs and mapping diagrams and uses

animation to show how functions distribute the images of their domain
points over their range. This software is available, for Macs and PCs, from
Mark Bridger's home page, www.math.neu.edu/-bridger/mathindex.html,
under "Mapping Diagrams Material.'

A number of teachers in the United States, including the authors, have
been experimenting with mapping diagrams and Visualizer software in the
classroom. Students welcome the ideas, since they are new, straightforward,
and make the concept of function easier to understand. The software has
also been tested in Israel with similar results. The authors are now in the
process of designing workbook materials for independent and classroom
use.
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APPENDIX
We sketch, using analytic geometry, the following proof that linear func-

tions have focal points. Set up a coordinate system with a horizontal t-axis
and a vertical s-axis. Represent the domain axis in the mapping diagram by
the line t = 0 and the range by the line t = 1. Then show that a mapping line
connects (0, x) with (I,f(x)), so its slope isf(x) - xand its s-intercept is x;
thus, its equation (as a line) is s = (f(x) - x) t + x. Now suppose f(x) = ax + b
and rewrite this equation first with x = x, and then with x = x2 . Solving these
two equations in the unknowns, s and t, we get the intersection point of the
mapping lines: P = (1/(1 - a), b/( - a)). Since P is independent ofx, and x2,
it lies on all mapping lines and, hence, is the focal point.
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A Multirepresentational Journey
through the Law of Cosines

Daniel Scher

E. Paul Goldenberg

THE standard law of cosines proof is a model of economy. With just the
Pythagorean theorem and a definition of cosine, five steps (fig. 10.1) yield
the result c2 = a2 + b- - 2ab cos(C).

1. Applying the Pythagorean theorem to A ABD: (b - x)2 + h' = cl
2. Applying the Pythagorean theorem to ACBD: x2 + h2 = a2, or h2 = a2 _ x2

3. Substituting for h2 in equation 1: (b - x)2 + (a2 _ X2) = C2

4. Simplifying 3 and reorganizing: c2 = a2 + b2 - 2bx
5. Rewriting x as a cos(C): c2 = a2 + b2 - 2ab cos(C)

(When the perpendicular does not meet AC, the proof still works with only
minor variations.)

Fig. 10.1. An algebraic proof of the law of cosines

This work was supported by the National Science Foundation grant RED-9453864
as part of the Epistemology of Dynamic Geometry Project at Education Development
Center, Inc. Thanks to David Dennis for introducing us to the geometric law of
cosines approach presented here.
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Likened to a walk, this derivation is less a leisurely stroll than a brisk
hike. In figure 10.1's proof, the final result seems to "pop out" without
advance warning. Is there a way of approaching the law of cosines that
builds more on our intuition? In the Pythagorean theorem, a2, b2, and c2

represent areas of squares. Is there a corresponding geometric interpreta-
tion of the 2ab cos(C) term? These questions remain unanswered in the
classic proof

To gain a better sense of the mathematical scenery, we propose to catch
our breath, slow down, and pursue some unexplored back roads leading to
the same destination. Our paths will correspond to two alternative represen-
tations of the law of cosines-numerical and geometric. By changing the
landscape of our proof, we will discover that our representations yield
intriguing insights-both mathematical and pedagogical-into the under-
pinnings of this theorem.

The methods below originate in our Connected Geometry curriculum
(Education Development Center 2000) and benefit from interactive geome-
try software such as the Geometer's Sketchpad (Jackiw 1995). You'll find
downloadable files containing the Sketchpad models described in this article
at www.addrcom/-dscher/cosines.html. The Web site also contains interac-
tive Java applets of these same experiments that can be explored online with
just your Web browser.

A NUMERICAL REPRESENTATION
In figure 10. 1, the symbol x represents DC. The segment could be

described by its length, 3 inches, but a single piece of numerical data typical-
ly tells little. Although no amount of measuring can ever substitute for a
proof, it is intriguing to ask what role numerical data can play when they are
available in vast quantities that can be easily manipulated and analyzed.

Interactive geometry software, with its measurement and calculation fea-
tures, provides this very functionality. The value of any geometric length or
calculation updates itself continuously as one drags and deforms a construc-
tion. By representing a malleable geometric model through its numerical
features, students can search for patterns, devise experiments to test conjec-
tures, and use their knowledge of algebra to make sense of collected data.

The following numerical approach to the law of cosines illustrates well this
mixture of experimentation and deduction.

The Construction
With interactive geometry software, draw an arbitrary triangle ADE, place

a moveable point B on AD , and construct BC parallel to DE (see fig.
10.2, the first downloadable sketch, or the prebuilt Java model online).
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As B slides along AD, BC
wfA moves with it, remaining par-

allel to DE. Thus AABC may
be viewed as a family of simi-

// lar triangles all similar to
B,¢ b LADE and sharing invariant

4"' \ angle measures. Of course,

D¢' a angles are not the only invari-
D \ ants worth noticing. Some

\ C experimentation and computa-

tion with the software leads to
the observation that whereas
the values of b/a, c/a, and c/b

E depend on the shape of AABC,
these ratios remain fixed for all

Fig. 10.2. Constructing similar triangles, with locations of B.

point B moveable Students skilled in looking
for numerical invariants will

know that arithmetic combinations of invariants are themselves invariant,

and they may propose "compounds" like alb + bla or c/a * c/b or even (utterly
implausibly, but correctly) 1/2 * (alb + bla - c/a. c/b).

In mathematical investigations, one often gains insights by examining spe-
cial cases. When Z C measures 900, the invariant value of a2 + b2 _ c' is zero:
this is the Pythagorean theorem. Students can check by adjusting their con-
struction so that mAC = 900 (see fig. 10.3). Sliding B along AD generates a
continuum of right
triangles ABC, in all of
which a2 + b2 - c2 has A
the expected invariant
value of zero (or near-
ly so, depending on
computer round-off Angle C= 90°
error). The teacher ac b C=2.76 cm
can now seed the /b = 4.44 cm
investigation with a c= 5.21 cm
new (very plausible, BC a2 + b2 - C2 = 0 CM2
but incorrect) conjec- a a
ture. When mAC •
90°, might a2 + IA _
again remain con- D E
stant, but at some
value k other than Fig.lo. 3. The Pythagorean theorem generates an

zero? invariant.
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Experimenting shows that it does not. Table 10.1 displays the situation when
mA C = 720. The table contains four sets of data-the values of a2, b2, c2

, and
the conjectured invariant a2 + b12 _ c- for four locations of B along AD. As the
size of AABC increases, so does the value of a2 b b2 _ C29 The conjecture fails,
but perhaps it can be salvaged.

TABLE 10.1
Data Setsfor Four Locations of Point B along AD

A Set 1 Set 2 Set 3 Set 4
a2 + b' - c

2 11.24 9.74 i 6.02 i 4.32

B b a2 18.32 15.86 9.81 7.04
a 1b2 18.08 15.65 9.68 6.94

D - \ g 52 25.15 ' 21.78 13.47 9.66

Angle C -72

In fact, a hint resides right in the statement of failure: as this increases, so
does that When two values increase and decrease in unison, it's possible that
their ratio or difference is constant. To calculate a ratio here, we need a way
to represent the size of AABC. For simplicity's sake, a suitable size measure
is ab/2, or just ab. (Of course

Area (AABC) = ' (),
2

but ab/2 is a simple approximation that continues our right-triangle analogy.
If the triangle had a right angle at C, its area would be exactly abl2.). Is

a2 + b2 _ C2

ab

constant? Experimentation indicates, and a little algebra proves, the follow-
ing:

a2 + b 2 _ C2 a b c
2 a b c c

= - -+ - - -- - - --
ab b a ab b a a b

The data in table 10.1 suggest other possible constant ratios, too. As
a2 + b2 _ c2 increases, so do the values of the square terms. Might ratios like
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a2 + b2 _ C2

2a

be invariant for similar triangles? Algebra again provides confirmation:
a 2-b' -c 2= (,I_C2

2 1 + - -
aa a

Following the same algebraic lead yields a total of six invariant ratios (see
table 10.2).

TABLE 10.2
Six Computations That Are Invariant When the Size of AABC Varies but its Shape

Remains Fixed

az + b2 _ C2 a2 + bl - c2 a2 + b' - c'

a2 b2
c2

a' + b' - c' a2 + 2 _ C
2 a2

+ b2 c2

ab ac bc

Modifying the Experiment
Although these six ratios grew naturally enough out of the dynamic experi-

ment, are any of them more "special" than the others? One way to check is to test

them under different conditions. How do they behave, for instance, with the sim-
ilarity restriction relaxed? Using the software or the online Java applet to compute

the six values in table 10.2, students can drag points D, A, and E around the

screen to vary the shape (angle measurements) of AABC Anywhere from two to

six pairs of students' eagle eyes can monitor the range of values assumed by the

six quantities. Table 10.3 shows several sets of the data, each for a different AABC

At first blush, it seems that when AABC changes shape, none of the six

computations remains invariant. Yet closer inspection of table 10.3 reveals

that one ratio is more "tame" than the others. Five of them vary between
seemingly arbitrary limiting values (some become infinite; others have finite
but unrecognizable limits). One of them,

a2 + b2 _ -2

ab

varies neatly between -2 and 2! Interestingly, this ratio already has a special
distinction, being a natural encoding of our original observation that the
value of a2

+ b2 _ C2 varies with the size of the triangle.
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This new experiment drew attention to one computation but was really
too broad. Whereas the first experiment restricted the shape of AABC let-
ting only the size vary, the second experiment permitted too much to vary.
Let's adopt a compromise. We will allow the shape of AABCto vary but keep
the measure of L C fixed. To test this setup, open the second downloadable
sketch or follow along online.

With this refined experiment, exactly one of the six computations
remains invariant:

a2 + bP - c'

ab
For the student who has no experience with trigonometric relationships,
this is already an interesting result: a function of t C that has a fixed
value-call it k-for all changes in the size or shape of AABC that keep
AC fixed but that varies between -2 and 2 with changes in AC. And
because this salvaged a conjecture based on the Pythagorean theorem, it
has created a new, generalized relation. The observation

a2 + bP _ C
2

ab
is easily rewritten as a2 + b2 = c + abk.

TABLE 10.3
Data Sets Generatedfor Six Different Configurations of AABC

Set I

a2 + b2 - c2
a2

= 1.60

a
2

+ b,2 - C2
1,2 = 2.51

a2 + b2 -C2
c2 = 38.77

a' + b2 _C
= 2.00

a-b

a2 + b2_ c2
= 7.86

a-c

a2 + b2 - C2
b-c = 9.86b *c

Set 2 Set 3 Set 4 Set 5 Set 6
16.78 ' 1.81 ' 0.19 '-65.15 ' -030
0.24 1 2.21 1 13.06 1 -0.06 - 13.43
0.30 194.35 0.23 : -0.06 -0.22
1.99 2.00 ' 1.58 : -1.98 ' -2.00
2.26 : 18.76 i 0.21 , -1.92 ' -0.26
0.27 1 20.71 , 1.74 , -0.06 -1.73



A MULTIREPRESENTATIONAL JOURNEY THROUGH THE LAW OF COSINES

For students who know some basic trigonometry, the result is even

more amazing. "Hmm," they might say, "what do we know that varies
between -2 and 2 and depends only on angle measurement and not side

lengths? Nothing. But if it varied from -1 to 1.... Aha! Multiply
a2 + b2 -c

ab

by one-half to obtain
a2 + b2 C2

2ab
This appears to behave something like the sine or cosine. Could it be
one of them?"

Yes. Take the law of cosines, c2 = a2 + b2 2ab cos(C), and solve for
cos(C). The result is

cos(C) = a2 + b - c
2ab

By the way, after all that excitement, it is sad to report that we have

failed ... sort of This is not a proof. The invariance of

a2 + b2 _ C2

2ab
is secure enough when a, b, and c vary in ways that preserve the ratios of any
two of them, but the looser restriction that only LC be fixed does not guar-

antee invariant ratios. In fact, what we have is a "derivation without proof."
The interaction between experimentation and solid mathematical or algebra-
ic reasoning generates a computation appearing to have many remarkable
and desirable properties. Because the computation also happens to fit a
known formula-the law of cosines-it sheds new light on it.

c

A GEOMETRIC a

REPRESENTATION
Our second approach provides a

concrete geometric representation for b
each term in the law of cosines expres-
sion (Dintzl 1931). We start with a
familiar friend: figure 10.4 shows a
square with side c subdivided into two b a

smaller squares and two congruent Fig. 10.4. A geometric inter-
rectangles. A look at their areas tells us pretation of c2

= (a + b)2 = a2

that c2 = (a + b)½ = a2 + 2ab + b. + 2ab + b2
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Imagine a flexible physical model of figure 10.4 in which the common ver-
tex of the two internal squares, a2 and b2, can be moved. Two restrictions
apply: the vertices of the parts remain connected as they are (with the appro-
priate ones remaining attached to the four vertices of the outside square),
and all three squares remain square (with the two internal squares rotating
and growing or shrinking). Figure 10.5 shows how the two rectangles squish
into parallelograms as their common vertex G moves. What geometric and
algebraic relations reside here?

Fig. 10.5. Generalizing the construction from figure 10.4

You can develop a sense for this model by building one with dynamic
geometry software. Figure 10.6 describes one such construction method.
You'll also find a complete working model by opening the third download-
able sketch or viewing the online Java applet.

With the construction complete, you can drag point C (keeping AC
obtuse) and observe how the model reacts. Certain relations appear to hold
regardless of C's location:

* Parallelograms BCGH and FDIG are congruent with sides of length a and b.
* Triangles ABC, BEH, DEI, and ADF are all congruent.

Proving these statements makes a nice exercise.
In figure 10.4, the two small squares and two rectangles fit snugly into the

larger square. Does a similar observation apply to this new model? Imagine
translating ADEIdown to AABC and AADF across to ABEHin figure 10.6.
Now the shaded regions-what began as two squares and two parallelo-
grams-fit perfectly into ADEB. Viewed differently, figure 10.7 shows a tes-
sellation in which copies of square ADEB are superimposed on a repeating
pattern of the two small squares and parallelograms. Since both tessellations
tile the plane, they cover the same area. So at least while AC remains obtuse,
Area(ADEB) = Area(GIEH) + Area(AFGC) + 2Area(BCGH) or equivalently,
c2 =a 2 + b2 + 2Area(BCGH).
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D

A c

(i)

E D

B

(ii)

F

A c B A c B

(iii) (iv)

i Draw an arbitrary triangle ABC with LC obtuse.
Construct a square with side AB that covers the triangle.

ii. Construct a square on side AC of the triangle.
Construct a parallelogram with sides CB and CG .

iii. Construct a square with side GH.
Construct a parallelogram with sides fG and G/

iv. Shade the interiors of the two squares and two parallelograms.

Fig.10. 6. Construction steps for building a model of figure 10.5

E

C

F.
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Notice the resemblance of the
statements above to the
Pythagorean theorem. For right
triangles, the area of a large
square is equal to the sum of
the areas of two smaller
squares. For obtuse triangles,
we need only add the areas of
two congruent parallelograms
to maintain the equality.

Students can now apply the
formula above concretely to
determine an unknown side of
an obtuse triangle. Figure 10.8
shows AABC with AC = 6 and
BC = 4. If the height of parallel-
ogram BCGH is 2, what is the
length of AD ? The area rela-
tionship above says

AB 2= 42 + 62 + 2(6. 2),

so AB= 

Without using any trigonom-
etry, students have just solved a
question using the law of
cosines! Puzzled? Look again at
the statement C2 = a2 + bj2 +
2Area(BCGH). It is certainly
close to the cosines formula,
but where is the cosine term?

Figure 10.9's labeling helps
solve the mystery. With AACB
labeled as 6, mLCBJ= 9 - 90.
The area of BCGH is BH * Cl,
but BH = CG = AC = b, and CJ
= a sin(9 - 90) = -a cos 6.
Thus,

Area(BCGH) = BH- CJ
- -ab cos f.

The formula c2 = a2 + b2 +
2Area(BCGH) now becomes the
familiar c2 = a2 + b2 - 2ab cos 0.

Fig. 10.7. A tessellation derived from the
construction in figure 10.6

F E

Fig. 10.8. What is the length of AB?

D E

FH

0 -90

Fig. 10.9. Relating the construction to the
law of cosines
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Generalizing the Dissection Picture
Throughout the dissection investigation, we've been careful to keep EC

obtuse. The picture becomes slightly more complicated when LC is acute
(fig. 10.10). In this instance,

Area(ADEB) = Area(GIEH) + Area(AFGC) - Area(BCGH) - Area(FDIG).

To verify the statement above, use a pencil to shade the squares GIEH and
AFGC (noting that some regions get shaded twice), and then subtract the
parallelogram regions
BCGH and FDIG. Trhe
remaining regions can be
made to fit within ADEB.
Working through the
algebra of the situation
again gives the law of
cosines formula.

Finally, in figure 10.11 I
where the measure of LC
equals 90 degrees, the two
parallelograms disappear. G
What is left is a geometric
dissection proof of the
Pythagorean theorem F H
(slide ADEI downward
and AADF to the right, to Fig. 10.10. The construction when AC is acute
fit into square ABED).

It is remarkable how
this geometric representa- I
tion links together several
mathematical results
through the fluid move-
ment of its parts. Drag-
ging point C causes angle
C to vary from 180
degrees, to an obtuse
angle, to 90 degrees, to an
acute angle. As it does so,
the geometric construc-
tion deforms in a contin-
uous manner, linking A
established results ((a +
b)' = a2 + 2ab + b2 and Fig. IO.11. Relating the construction to the
the Pythagorean theorem) Pythagorean theorem
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with new generalizations (the law of cosines), all in a seamless progression (see
fig. 10.12).

(a + b)2 = a2 + 2ab + b12 _ law of cosines (obtuse angles) -
Pythagorean theorem - law of cosines (acute angles)

Fig. 10.12. The progression of theorems illustrated as zC shrinks continuously
from 180 degrees to an acute angle.

CONCLUSION
As companions to the traditional algebraic law of cosines proof in figure

10.1, the numerical and geometric representations discussed above pro-
vide connections extending well beyond the Pythagorean theorem and
trigonometry. Reasoning about calculations, designing experiments,
searching for invariants, deforming an established result in a continuous
way, and analyzing dissections are just some of the mathematical topics
and ways of thinking made possible by the diverse representations.

Although our article focused on the law of cosines, this theorem was
certainly not unique in its adaptability to a multirepresentational
approach. We offer as a next step the challenge of reconceptualizing other
traditional proofs in ways that promote novel and diverse mathematical
thinking.
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Representations of Reversal
An Exploration of Simpson's Paradox

Lawrence Mark Lesser

WHEN updating its Standards documents, the National Council of Teachers
of Mathematics (NCTM) added a pre-K-12 Standard on representation,
urging that students be able to develop a repertoire of mathematical repre-
sentations that can be used purposefully and flexibly to model and interpret
physical, social, and mathematical phenomena (NCTM 2000). This article
aims to explore the potential of including multiple representations in one's
teaching repertoire through an accessible phenomenon for which full insight
is not obvious from using only the single most common representation. The
phenomenon chosen, Simpson's paradox, can be concisely defined as the
reversal of a comparison when data are grouped. In this particular example,
we will see that it is possible for women to be hired at a higher rate than men
within each of two departments but at a lower rate than men when the data
from both departments are pooled together.

THE RELEVANCE OF SIMPSON'S PARADOX
Simpson's paradox was first noted in 1951 by the British statistician E. H.

Simpson but was discussed as early as 1903 by the Scottish statistician
George Yule (Wagner 1983). Simpson's paradox can involve a comparison of
overall rates, ratios, percentages, proportions, probabilities, averages, or
measurements that are weighted averages of subgroup counterparts. Stu-
dents are likely vulnerable to this paradox if they have the related "averaging
the averages" misconception, in which they compute the ordinary average in
problems requiring the weighted average. In a weighted average, an overall
average is computed by weighting the individual averages by the sizes of their
corresponding individual groups. For example, if the average final exam

The author expresses appreciation to Ralph Cain, Lindsey Eck, the 2001 Yearbook
editorial panel, and his secondary school methods students.
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score in a 30-student class is 100 and the average final exam score in a 10-
student class is 60, the overall average for all 40 students is not the
"unweighted" mean (100 + 60)/2 = 80 but is obtained as a weighted mean:
((100)(30) + (60)(10))/40 = 90. When some courses are worth more credit
hours than others, a student's overall grade-point average is a weighted aver-
age as well. A geometrical interpretation of the weighted mean is described
byHoehn (1984) and will be discussed later.

Simpson's paradox was chosen for the investigation for several reasons:

1. It is simple enough to encounter (e.g., table 11.1) with mere fraction
arithmetic and yet complex enough to model with tools spanning a broad
range of high school mathematics content, generating many different repre-
sentations.

2. A paradox can motivate students (Movshovitz-Hadar and Hadass
1990; Wilensky 1995; Lesser 1998).

3. Its structure relates to common student misconceptions regarding
weighted means or even the addition of fractions. Noting that students are
taught (correctly) that the statements

alb > elf and cid > glh imply a/b + cid > elf + glh,

Mitchem (1989) suggests that students who (incorrectly) add fractions by
adding the numerators and adding the denominators would assume that
(a + c) / (b + d) always exceeds (e + g) / (f + h) and thus be vulnerable to the
paradox.

4. It provides many opportunities to explore "both the mathematical
and developmental advantages and disadvantages in making selections
among the various models" (NCTM 1991, p. 151).

5. It allows "a view of a real-world phenomenon ... through an analytic
structure imposed on it" (NCTM 2000, p. 70).

This phenomenon is not contrived: it has actually occurred in many nat-
ural situations, including university admission rates (male versus female),
fertility rates (rural versus urban), death rates (young versus old), death
penalty cases (black versus white), categories of federal tax rates, and various
baseball statistics (Bassett 1994; Bickel, Hammel, and O'Connell 1975;
Cohen 1986; Moore and McCabe 1993; Wagner 1982a). Simpson's paradox
underscores the pitfall of basing a conclusion on only a single average and
demonstrates a general need for intuition to be checked against mathemati-
cal arguments. Exploring Simpson's paradox may also stimulate greater
awareness of what one is averaging over, such as the phenomenon that a uni-
versity's mean class size averaged over students is never smaller than the
mean class size averaged over classes (Hemenway 1982; Movshovitz-Hadar
and Webb 1998).
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REPRESENTATIONS OF SIMPSON'S PARADOX
What are some ways to think about Simpson's paradox? This article pre-

sents many ways and invites the reader to grab pencil and paper and explore
them. The reader is also encouraged to reflect on the "relative strengths and
weaknesses of various representations for different purposes" (NCTM 2000,
p. 70). Which ones seem "new" or applicable to other mathematics content?

Numerical or Tabular Representations
This section begins with a numerical or tabular representation because it is

concrete and is the most common representation that textbooks use for Simp-
son's paradox. Table 11. 1 is a 2 x 2 x 2 table involving the three categorical vari-
ables gender (male or female), department (social sciences or physical sciences),
and employment application status (hired or denied). The numbers were cho-
sen for ease of computation and to draw attention to the role of where the larger
and smaller cell sizes were located. (Later in the article, table 11.2 offers a simi-
larly behaving data set that is more subtle in appearance.) It is routine to verify
that within each department, women are hired at a higher rate than men (since
30/80 = .375 > .25 = 5/20 and 15/20 = .75 > .625 = 50/80), yet are hired at a
lower rate than men for the overall situation: (30 + 15)/100 = .45 < .55 - (5 +
50)/100.

TABLE 11. I
Hiring Data (by Gender and Department)

Social Sciences Physical Science Overall
Male Female Male Female Male Female

Hired 5 30 50 15 55 45
Denied 15 50 30 5 45 55

Total applied 20 80 80 20 100 100

As Wagner (1982b) states, "Because this situation occurs at the level of a
purely descriptive data analysis, it can easily bewilder the statistically naive
observer" (p. 47). Indeed, many students have responded with the reaction
"I follow the arithmetic, but I still don't believe the result." The numerical
representation is undeniably effective in demonstrating that Simpson's para-
dox can happen but limited in offering insight into how it can happen.
Exploring additional representations can provide insight into the situation
that will help resolve this tension. We will keep the underlying numbers the
same, however, to keep the primary focus on the representation itself



132 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

The Circle Graph Representation
One alternative representation is the circle graph (Paik 1985) as shown in

figure 11.1. Each circle acts as a sort of scatterplot cluster of points represent-
ing one of the four gender-department combinations with the y-coordinate
of each center at the corresponding hiring rate (.25, .375, .625, or .75). The
"weighting" of each hiring rate is reflected in the area of each circle being pro-
portional to the size (20, 80, 80, or 20, respectively) of the applicant pool for
that particular gender-department combination. The top right circle and
lower left circle are small, each representing a group of 20 people-physical
sciences women or social sciences men, respectively. The larger circles repre-
sent groups of 80 people-physical sciences men and social sciences women.
Since 80 = 4(20), one of the large circles should have quadruple the area (and
double the radius) of a smaller circle in figure 11.1. (There is no significance
to the absolute length of any particular radius nor to whether the endpoints
of the line segment representing the "overall" situation lie inside the circles.)

The highest line segment in the interior of figure 11.1 connects the male and
female hiring rates for physical sciences, and the lowest line segment does this
for social sciences. Because
females are (arbitrarily) RATEG
placed to the right of males 1.0 
on the horizontal axis, the .9 

positive slopes of these line .8 _
segments reflect the fact that '7 -
females have a higher hiring 6 gender diference-physical sciences

rate than males within .5 _ g itn
either department. The _ gender n ral
middle line segment con- .2 g ener diffrelnce-social sciences
nects the male and female 1
hiring rates for the overall 0.I i
university, and we see that MALE FEMALE
now (from its negative Fig. 11.1. Circle graph representation adapted
slope) it is males who have from Paik (1985)
the higher hiring rate. The descriptions highest, lowest, and middle may not be
sufficient to distinguish the three line segments for other data sets, such as if
the departmental segments crossed each other (in such a situation, each
department would favor a different gender).

Although so far we have given an interpretation only to the sign of the
slope, we can also interpret its numerical value as the "female minus male"
difference in hiring rates if we choose to code the male and female markers
on the x-axis as 0 and 1, respectively. With such coding, each department
would have a segment with a slope of .125 while the (middle) segment repre-
senting all 200 applicants would have a slope of -. 1. Coding a qualitative
variable in such a "quantitative" manner is mathematically meaningful only
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when the qualitative variable is "dichotomous," which means having only
two possible values (i.e., male or female). In addition, by similarly coding the
dichotomous variable of hiring status (I = "hired"; 0 = "not hired"), stu-
dents who know how to calculate a correlation coefficient can verify that the
correlation between gender and hiring status within either department is
approximately .105 > 0, but for both departments combined is -.1 < 0,
which is a connection to statistics showing a further representation of rever-
sal. (The sign of a correlation coefficient is always the same as the sign of the
slope of the line of best fit for that same scatterplot.)

When we look at the four circles, most of the "weight" (160 of the 200 appli-
cants) is in the two large circles, whose positions determine a "negative sloping"
orientation. The placement of the two smaller circles has a slight effect on this
orientation, pulling the middle (overall) line segment somewhat counterclock-
wise (from the segment that would be determined by the centers of the two large
circles alone), somewhat toward the orientation of the top and bottom lines, but
not enough to attain a nonnegative slope. Students might try making circle graph
sketches that vary the sizes or positions (i.e., heights) of the circles to suggest how
all permutations (with replacement) of "positive slope," "negative slope;" or "zero
slope" could be possible for these three line segments for a new data set.

For example, if we change table 11. I so that 60 of the 80 male physical sci-
ences applicants and 20 of the 80 female social science applicants were hired,
each department would produce a segment with zero slope (meaning males
and females were hired at exactly equal rates within each department), but a
disparity would still appear in the aggregate. This demonstrates that differ-
ent "cell sizes" alone can cause the effect.

The Platform Scale
Representation

Perhaps the most concrete rep-
resentation besides the numerical
table is the platform scale (see fig.
11.2), as described by Falk and
Bar-Hillel (1980, p. 107):

Suppose a set of uniform blocks
arranged in stacks of varying
heights is located on a weight-
less platform, which is balanced
on a pivot located at the center
of gravity.... One can ... shift
the entire construction to the
right, while simultaneously
moving individual blocks to
other stacks on their left. If done
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Fig. 11.2. Platform scale representation
adapted from Falk and Bar-Hillel (1980)
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appropriately, the net result could then be a new center of gravity which is to the
left of the old one.

This helps students identify the weights and, we hope, recognize that weight-
ed averages depend on the weights as well as on the values being averaged.
The position of each stack represents an average, and the weight of the stack
is the weight for that average (in computing the overall weighted average of
averages). Students can certainly see with this representation that, for exam-
ple, the weighted average and unweighted average of two stacks will be the
same (i.e., have the same balance point) only if the sizes of the stacks are
equal. In other words, if x and y are the stack position values and m and n
are the stack weights, then setting (nx + my)/( n + m) equal to (x + y)/2 yields
x(n - m) = y(n - m), which forces m and n to equal each other forx xy

This representation builds naturally on intuition already provided by various
textbooks, such as Billstein, Libeskind, and Lott (1993): "We can think of the
mean as a balance point, where the total distance on one side of the mean (ful-
crum) is the same as the total distance on the other side" (p. 459). Freedman et al.
(1991) illustrate "histograms made out of wooden blocks attached to a stiff,
weightless board. The histograms balance when supported at the average" (p. 59).

This representation could be readily extended to more than two stacks
(departments, in this instance) and can be built with physical materials read-
ily available in a typical classroom (e.g., using a ruler or meterstick for the
platform). The platform scale representation may be limited, however, to
numerical examples in which the weighting numbers (20, 80, 80, and 20)
have a convenient greatest common divisor. Nevertheless, the intuition it
provides would, it is hoped, give students intuition that could transfer to sit-
uations that cannot be as neatly modeled in this particular representation.

The Trapezoidal
Representation

Tan (1986) provides a
trapezoidal representation
of Simpson's paradox (see
fig. 11.3) that is built only
on the observation (Hoehn
1984) that "[t]he length of
any line segment which is
parallel to the two bases and
has its endpoints on the
nonparallel sides of a trape-
zoid is the weighted mean
of the lengths of the two
bases" (p. 135). Specifically,
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Fig. 11. 3. Trapezoidal representation adapted
from Tan (1986)



REPRESENTATIONS OF REVERSAL: AN EXPLORATION OF SIMPSON'S PARADOX 135

each base is weighted by the proportion of the trapezoid's height traveled
toward that base to reach the weighted mean segment. For example, the
"female" trapezoid is determined by the points (0, 0), (0, .375), (1.0,0), and
(1.0, .75) and has bases of length .375 and .75, which have corresponding
weights .8 and .2, respectively. We may conjecture that when the weights are
each .5, the weighted average segment and the unweighted average segment
coincide (in what geometry students would call the median of the trapezoid).
This relationship can be verified algebraically by setting the usual formula for
the area of the overall trapezoid equal to the sum of the areas of the two small-
er trapezoids formed by the new segment, and then recognizing that we now
have exactly the same equation we encountered when discussing the weighted
and unweighted averages in the context of the platform scale representation.

Applying this to our university employment example, we find that each
gender would have a trapezoid in which the two vertical bases represent that
gender's hiring rates in the two departments. (This orientation is sideways
from the more common depiction of a trapezoid, and the reason for this
choice will soon be clear.) The trapezoids have one leg in common-the seg-
ment of the horizontal axis, which allows tracking the department "weights.'
The fact that females are hired at a higher rate than males in each depart-
ment is clear by noting the vertical heights of the endpoints of the top male
and female trapezoid legs (legs that happen to be parallel to each other but
that do not have to be in general). However, because the genders had differ-
ent proportions of applicants applying to the physical sciences department, it
turned out that the overall male hiring rate (the large dot formed by extend-
ing the male departmental application proportion out to the top leg of the
"male trapezoid") was higher (which is easier to see with the "sideways" ori-
entation) than the large dot representing the overall female hiring rate.

Furthermore, it is straightforward to see with this representation when
this reversal does and does not happen. For example, if the hiring rates for
the four gender-department combinations were unchanged but the propor-
tion of females who applied to the physical sciences became .8 (matching the
proportion for males), then the dot representing the overall female hiring
rate would slide along its line and clearly be higher than the dot representing
the overall male hiring rate. Actually, we can solve the linear inequality .75x
+ (.375)(1 - x) > .55 to see that greater than 7/15 would suffice. This
approach could also make it clear that when each gender has a 50-50 split of
applications between departments, a reversal cannot occur. Related applica-
tions of this representation are made by Witmer (1992).

On the positive side, this model can be constructed physically (with a clip
or bead sliding along a string strung between two vertical poles) or compu-
tationally (in interactive geometry software). These models would not be as
limited to the data being "nice" as was required by the platform scale model.
On the negative side, some students may be initially overwhelmed with the
number of features of the graph, especially its having three axes.
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The Unit Square Representation
Another type of geometric representation is adapted from the unit square

model of Bea and Scholz (1994), who originally used it to represent condi-
tional probabilities. Comparing shaded proportions of side-by-side rectangles
(of equal length within each square), figure 11.4 shows at a glance that in
each individual department the gender with the greater fraction hired is
women and yet overall it is men. To understand better the representation, let's
explain how the physical science unit square was constructed. Beginning with
a square, draw a vertical line segment that partitions the square into rectan-

Proportions of Physical Sciences Unit Square by gender and hiring status

Male Female Male Female
.625 7

hired L hired

denied denied

1 .8 .2

Proportions of Social Sciences Unit Square by gender and hiring status

Male Female Male Female
25E .375

hired hird

III ~~~~.75 .625____ ____ ____ denied denied

1 ~~~~.2 .8

Proportions of Overall Unit Square by gender and hiring status

Male Female Male Female
C5 1 S d n sd 1 _.45

hired hiredw.55~~~~.45 .55denied denied
.5 .5

Fig. 11.4. Unit square representation of table 11.1 data adapted from Bea and
Scholz (1994)
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gles whose areas (and shorter sides) are proportional to the respective num-
bers of men and women (i.e., the vertical line would be 80/(20 + 80) of the
distance from the left side to the right side). Now shade the fraction of each
rectangle that represents the fraction of the corresponding gender that was
hired (i.e., we shade 5/8 of the men's rectangle and 6/8 of the women's).
Because the rectangles have the same height and because shading is done in
the same direction, we see at a glance that the fraction of women hired was
greater because its shaded region extends further down. Students who focus
on the absolute amount of shaded area of each gender rather than the pro-
portion of each rectangle that is shaded are simply noticing that within physi-
cal sciences, males had a greater number hired than females, but the rate at
which men were hired is still less than the rate women were hired. This
potential confusion (which would not occur in the other two unit square dia-
grams) offers a good opportunity to distinguish between amounts and rates.

Other Representations
There is also a probability representation (e.g., Movshovitz-Hadar and

Webb 1998; Mitchem 1989) of this paradox that can be physically represent-
ed (and empirically simulated) in the classroom with four boxes and two
colors of balls. Basically, the distribution of objects in the boxes is chosen so
that the probabilities of drawing (with replacement) a certain color from box
A or from box C are less than the probabilities of drawing that color from
box B or from box D, respectively, but the inequality direction is reversed
when the probability for the combined contents of boxes A and C is com-
pared to the probability for the combined contents of B and D. Using the
data from table 11.1, this would mean box A (labeled "social science males")
would have 5 red chips and 15 green chips, box B ("social science females")
would have 30 red chips and 50 green chips, box C ("physical science
males") with 50 red chips and 30 green chips, and box D ("physical science
females") having 15 red chips and 5 green chips. The phenomenon of com-
bining data becomes very literal with this representation. Mitchem (1989)
uses smaller numbers and a picture to shed further light on the dynamic.

Lord (1990) offers a representation involving determinants. Ignoring row
or column totals in table 1 1.1, we can break the table into three 2 x 2 matri-
ces, each of the following form:

Fmales hired females hired 1
[males denied females denied]

Recall that the determinant of the 2 x 2 matrix

[a t
Lc d]
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is ad - bc. Students may find it interesting to verify and investigate the fact
that the determinant (55)(55) - (45)(45) = 1000 of the overall university
matrix has a different sign than the determinant (-200) of either of the matri-
ces representing an individual department. The reversal of determinant sign
is not a coincidence. Students can verify that the male hiring rate being higher
than the female hiring rate can be expressed as the inequality

a b
a+ c b+d

Algebraic transformations produce an equivalent inequality of ad - bc > 0,
which corresponds precisely to a positive determinant for a 2 x 2 matrix!
These manipulations also show that a determinant ad - bc equal to 0 corre-
sponds to the female hiring rate and male hiring rate being equal. Intuitively,
then, the sign of the determinant tells us which gender has it better, and the
larger the absolute value of the determinant, the greater the evidence of a sta-
tistical relationship or interaction between gender and employment status.

A more advanced representation uses vector geometry of the plane. Lord
(1990, p. 55) demonstrates that "the following at-first-sight-plausible state-
ment about complex numbers is, in fact, false: If arg(z2) > arg(zl) > 0 and
arg(z2') > arg(z,') > 0, then arg(z 2 + Z2') > arg(z1 + zl').' This translates into
a corresponding statement about slopes of vectors. Trying to make a diagram
(such as fig. 11.5) that shows a specific counterexample is an interesting
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Fig. 11.5. A complex numbers representation of table 11.1
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exercise. To facilitate the interpretation of our figure 11.5, let us agree that
the ordered pair (a, b) now represents (number applied, number hired), so

that slope corresponds to hiring rate. The physical science male vector goes
from the origin to (80, 50), whereas the physical science female vector goes

from the origin to (20, 15). The slope of the line segment or the angle rela-
tive to the horizontal axis made by the female vector is larger, thus showing
that in the physical sciences, females have a better hiring rate. Similarly, the
social science female vector has a slope larger than the corresponding male

vector. But the overall male vector has a larger slope than the overall female
vector.

AN EXPLORATION WITH PRESERVICE TEACHERS
In the fall 1998 semester at a midsized, state-supported university, a class

period of the secondary school mathematics methods course was devoted to

exploring how multiple representations of a particular phenomenon served
as tools for preservice secondary school teachers' thinking. Connections
between mathematics content and pedagogy (e.g., using multiple representa-
tions) were one of several ways the author reformed this course as part of the

National Science Foundation-funded Rocky Mountain Teacher Education
Collaborative (Lesser 1999). All preservice teachers enrolled in the class par-
ticipated, but the size of the class (seven) and time available for the explo-
ration yielded anecdotal observations rather than definitive inferences.

Although all the students had had upper division coursework in probabili-

ty and statistics, three of the seven initially answered that it was not possible
"women could be hired at a higher rate than men within each of the two
divisions, but still be hired at a lower rate than men for the university as a
whole." To make sure that all students realized that, yes, it was possible, they
were then shown table 11. I and asked to verify by themselves the hiring rates
for males and females within each department as well as for the overall uni-
versity.

During the period, they had time to be exposed to seven of the representa-
tions previously mentioned (each with a written explanation of "how to read
it" somewhat less detailed than is given in this article). Their comments
made it clear that they had never seen most of the representations before in a
textbook or class used to analyze any phenomenon, let alone Simpson's
paradox in particular. There was a strong tendency among the students to
say that although they might try the unit square or platform scale represen-
tations, they would most likely rely on the numerical representation in dis-
cussing the paradox with any future students. There are many possible
explanations for students' reliance on the tabular (numerical) representa-
tion, including (1) it was the first one they saw, (2) it is the one most familiar
to them from their mathematics classes, (3) it is the most concrete, (4) it is
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the one they could feel most confident teaching with, (5) it makes the most
clear demonstration that the paradox occurs, and (6) they lacked the time to
absorb others fully. The author believed the last explanation was certainly an
issue. In fact, the next time he taught a secondary school methods course, a
class period happened to be 2.5 times as long, and the students expressed a
consensus that some of the physical and geometric representations were
clearly superior to the table.

Biff, a preservice secondary school teacher in the author's methods course,
addressed the tradeoffs of using multiple representations in general. On the
one hand, he states: "[Multiple representations] can reach different kids with
different approaches, and reinforce the learning-each representation is in
fact teaching something new." The last part of this statement seems to sug-
gest the recognition that a new representation is not just passively delivering
the same piece of content but giving a new angle that may itself contain con-
tent (or even a transferable tool). Piez and Voxman (1997) believe that activ-
ities using multiple representations lead to more thorough understanding
"[b]ecause each representation emphasizes and suppresses various aspects of
a concept" (p. 164) and expect that "students will gain the flexibility neces-
sary to work with a wide range of problems using an appropriate representa-
tion. In our work with students with weak mathematical skills, we have seen
definite improvement" (p. 165).

However, Biff also expressed a pitfall: "Very time-consuming in the end.
More sophisticated solutions will leave the slower in the dust." Going
through all possible representations for each piece of content certainly would
make it hard to stay on pace with a packed curriculum, but knowing that
there may be far more than three representations possible makes it more
likely to access the most useful one for the situation.

ISSUES AND IDEAS FOR THE CLASSROOM
The specific numbers chosen could be tailored to the audience. For exam-

ple, there is more subtlety and "realistic appearance" in the data in table 11.2
(as opposed to table 11.1, whose entries are all multiples of 5 and included
"swapped numbers").

TABLE 11.2
Slightly Revised Set of HiringData (by Gender and Department)

Social Science Physical Science
Male Female Male Female

Hired 4 24 48 14
Denied 16 56 32 6
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Constructing a data set with smaller numbers may make Simpson's para-

dox accessible even to students in the upper elementary grades and could

even lend itself to being kinesthetically modeled by the typical number of

students in a classroom by having students stand in marked-off regions of

two 2 x 2 tables on the floor and then physically combine into a single 2 x 2

table. For example, a 19-student class could arrange themselves into two 2 x
2 tables as follows (1/3 < 3/8,3/5 < 2/3,but4/8 > 5/11):

1 3 3 2
2 5 2 1

If we admit the possibility of cells being 0, then Simpson's paradox can actu-
ally be physically modeled with as few as 9 students (0/1 < 1/4, 2/3 < 1/1, but
2/4 > 2/5):

0 1 2 1
1 3 1 0

The numerical representation is certainly the easiest way to introduce the
phenomenon and can be presented in a very accessible manner through a

structured sequence of questions (e.g., Smith 1996, p. 188) or as a story

problem (e.g., Movshovitz-Hadar and Webb 1998, p. 113). In general, the
way a particular representation is introduced may affect a student's ability to
use or apply flexibly that representation. For example, in a project by McFar-
lane et al. (1995, pp. 476-77),

children in the experimental classes were introduced to line graphs not as a Cartesian
plot, where the ability to correctly identify positions on a grid was the objective;
rather, they were introduced to graphs as a representation of the relationship between
two variables.... Their ability to read and interpret temperature/time graphs was
greatly enhanced as a result and it is particularly significant that their ability to sketch
temperature time curves to predict the behavior of a novel system also improved.

Robust examples such as Simpson's paradox that have the potential to
expand the repertoire of representations available may be especially valuable
in the early part of the year to get students (and teacher!) primed to look for
multiple ways of representing all future phenomena encountered, and to get

them shaken out of habits they may have to fixate on nothing but one fea-
ture of some familiar graphical representation (see Berenson, Friel, and
Bright 1993). More research in this area would be useful.

Some representations are certainly more suited toward technology repre-
sentations than others. The numbers in the tables (as well as commands for
the functions involved in any of the nonpictorial representations) could cer-

tainly be entered into a spreadsheet, for example, and the effect of changing
various numbers instantly apparent. Shaughnessy, Garfield, and Greer
(1996) list having a choice of dynamic representations for interpreting and
displaying a data set to be an important attribute of a technological environ-
ment to facilitate the learning of data handling.
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Simpson's paradox is rarely experienced by students in any of their cours-
es, and if it were, it would likely be in numerical form only. Even a popular
introductory college statistics textbook (Moore and McCabe 1993) that is
quite "Simpson's paradox-oriented" (by involving the paradox in the only
three-way table example in the text as well as in every three-way table exer-
cise following that section) does not offer a nonnumerical representation of
it. In a case study of a preservice secondary school teacher in a course inte-
grating content and pedagogy, Wilson (1994) found that being able to trans-
late between multiple representations was deeply related to conceptual
understanding, a finding that supports Heid (1988) and NCTM (2000).
Therefore, a deep understanding of how Simpson's paradox can occur seems
difficult without the aid of representations beyond only a numerical one.

Perhaps exposing students and even teachers to rich representations of
reversal representations will create a "reversal" of some of their attitudes,
such as the common perception that representations are limited to context-
free discussions of functions and are limited to a "rule of three" that they
have already seen before! And maybe it will also reverse a perception of rep-
resentations as some checklist of unrelated items to go through rather than
as a dynamic source of new insights, connections, and tools for thinking
whose roles should even further expand throughout the new century.

EXTENSIONS
As a follow-up assessment, students can be given the following data (table

11.3) and asked for a quick "gut" answer to the question "Is it possible that
overall mean female salary is less than overall mean male salary even though
mean female salaries are higher within each category?" This example may be
a more subtle manifestation of the paradox in that the largest cell sizes for
men and women are in the same category (i.e., support staff) this time,
unlike table 11. I (where 80 and 20 noticeably "swap roles" between depart-
ments). A "weighted average" computation shows the overall male and
female salaries here are approximately $41000 and $37000, respectively.

TABLE 11.3
Annual Salary Data

Men Women

Support staff 70 males 90 females
employees (their mean salary (their mean salary

is $20000) is $30000)
Executive-level 30 males 10 females

employees (their mean salary (their mean salary
is $90000) is $100000)
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Although Simpson's paradox may be new to students, they should be

reminded that they have certainly seen inequality reversals earlier in their

mathematical career, and they might now look for a representation that

yields insight into those examples beyond "rules to memorize." For example,

2 < 4 and yet 1/2 > 1/4. An elementary school class might represent this with

fair divisions of pizza, whereas a high school algebra class might consider the

decreasing property of (either half of) the graph of f(x) = l/x. Another "sim-

ple" example of reversal that students might look for a way to illuminate is
why -2 > -4, since 2 < 4.

For a final challenge, classes may look for a representation that indicates if

it is possible to have the "double Simpson's paradox" posed by Friedlander
and Wagon (1993, p. 268):

It is possible for there to be two batters, Veteran and Youngster, and two pitchers,
Righty and Lefty, such that Veteran's batting average against Righty is better than
Youngster's average against Righty, and Veteran's batting average against Lefty is
better than Youngster's average against Lefty, but yet Youngster's combined bat-
ting average against the two pitchers is better than Veteran's. ... [Ils it possible to
have the situation just described [which would indeed be a feasible "single" Simp-
son's paradox] and, at the same time, have it be the case that Righty is a better
pitcher than Lefty against either batter, but Lefty is a better pitcher than Righty
against both batters combined?

If we adapted this to the employment context we have been working with
throughout the article, the possibility of a "second" Simpson's paradox
added to our scenario would correspond to asking, "Is it also possible that
the social sciences department has a lower hiring rate than the physical sci-

ences department for either gender and yet the physical sciences department
has a lower hiring rate for both genders combined?"
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Presenting and Representing
From Fractions to Rational Numbers

Susan J. Lamon

TEACHERS and researchers have known for many years that traditional
instruction in fractions does not encourage meaningful performance from
most students. It has been repeatedly documented in state and national
assessments that students are learning little, if anything, about rational num-
bers. The current fraction curriculum consists of a specific set of procedures
or algorithms for computational purposes that provide some basis for
manipulating algebraic expressions but fails to help most children under-
stand that the rationals, despite their bipartite character, are numbers in
their own right.

This article discusses some of the persistent issues and problems sur-
rounding fraction instruction, but it goes beyond documenting shortcom-
ings to look at some promising alternatives to current practice. It examines
some results from a longitudinal study of five classes of children, each of
which began its study of fractions using an interpretation of the symbol a/b
that differed from the standard "part out of the whole," and none of which
was ever taught any computational algorithms. Finally, the article discusses
issues and imperatives for current practice based on that study. As the title
suggests, both presentational models (used by adults in instruction) and
representational models (produced by students in learning) play significant
roles in instruction and its outcomes.

To appreciate the broad base of meaning that is obscured when we are
operating with fraction symbols, consider the following problems (solutions
are at the end fo this article): 

1. Does the shaded area in figure 12.1a show 1 (3/8 pie),
3 (1/8 pies), or 1 1/2 (1/4 pies)? Does it matter? \ Y

2. You have 16 candies. You divide them into 4 groups,
select one group, and make it three times its size. What single (a)
operation would have accomplished the same result? Fig. 12.1.
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3. You have taken only one drink of juice, represented by the unshaded

area in figure 12.lb. How much of your day's supply, consisting of two bot-
tles of juice, do you have left?

4. If it takes 9 people 1 1/2 hours to do a job,
how long will it take 6 people to do it?

5. Without using common denominators,
name three fractions between 7/9 and 7/8.

6. Yesterday Alicia jogged 2 laps around the -- I

track in 5 minutes, and today she jogged 3 laps -----
around the track in 8 minutes. On her faster day, -----

assuming that she could maintain her pace, how -----
long would it have taken her to do S laps? -----

7. Here are the dimensions of some photos: (b)

(a) 9 cmx 10cm, (b) 10 cmx 12cm, (c) 6cmx 8

cm, (d) 5 cm x 6.5 cm, and (e) 8 cm x 9.6 cm. Fig. 12.1.

Which one of them might be an enlargement of

which other one?

Although these problems are not mathematically difficult for someone

who already has a robust understanding of rational numbers, they present

many nuances that make them psychologically difficult from a teaching and

learning perspective. Although we may have used fraction symbols to help us

answer some of the questions, our underlying interpretation of the symbols

was not always the part/whole interpretation: "a out of b equal parts of a

unit." In fact, these problems address only a small sample of the rich mean-

ings, relationships, and contexts that may be represented by a fraction sym-

bol. Yet, schools have produced many generations of people whose only

preparation for understanding the complex domain of rational numbers

consists of a brief introduction to the part/whole interpretation, followed by

years of lockstep practice in fraction computation. We are paying a high

price for our long neglect of this part of the mathematics curriculum. Over

the last ten years, 90 percent of the eighteen- and nineteen-year-old students

in my mathematics classes have been unable to answer 50 percent of those

questions. We can only conclude that they have not yet had enough experi-

ence to understand rational numbers. It is difficult to imagine that they will
gain that experience by taking courses that assume a knowledge of rational
numbers.

Ongoing research in university-level calculus classrooms (Pustejovsky

1999; Lamon forthcoming) suggests that students who begin university

mathematics with only a part/whole interpretation of a/b may have missed

their window of opportunity. Although poor algebra skills are most often

blamed for the lack of success in calculus, we are finding that having little or

no understanding of rational numbers accounts for most students' concep-
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tual difficulties when trying to understand the derivative. Throughout a one-
semester course, they show no understanding of derivatives and survive aca-
demically merely by learning patterns for calculating them. Students who
begin with multiple interpretations of the symbols continue to develop
meanings and connections that make their understanding more robust than
this.

Students who are more comfortable when performing operations than
they are when reasoning fail to make connections and are unable to transfer
information to new situations, even when the transfer represents only a
small leap. A dramatic example occurs in many trigonometry classes. When
an angle is measured in radians and students are asked to convert the mea-
surement to degrees, they usually need a rule and a calculator to get the job
done. Consider the task of converting 57t/6 radians to degrees. Figure 12.2
shows two calculations for the conversion.

5*1806 FENTER] 5 6)

(a) (b)

Fig. 12.2

Each of these is equivalent to finding 5/6 of 180, but calculation (b) is one
that can be readily performed-that is, 5(1/6 of 180). Viewing the fraction
5/6 as an operator, that is, the composition of a division and a multiplica-
tion, makes the conversion an easy mental task (5 * 30). Although the men-
tal operations and the calculator operations look similar, performing the
operations on the calculator does not lead students to discover the mental
conversion.

Similarly, it is surprising that students who divide a unit into fourths and
designate 3 of them, obtaining a value of 3/4, cannot make the leap to recog-
nize that when dividing 3 pizzas among 4 people, each will receive 3/4 of a
pizza. The following example illustrates this failure. A nineteen-year-old
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first-semester calculus student was asked to consider the situation represent-
ed in figure 12.3. Three pizzas were to be divided among 7 girls, and 1 pizza
was to be divided among 3 boys. The student was then asked, "Who gets
more pizza, a girl or a boy?"

She replied: "I'm taking basically 7 divided by 3. That would be like"-she
figured on her calculator-"2 point ... well, let's say 2 slices and maybe a

third. And I knew that 3 divided by 1 would be"-again she figured on her
calculator-"um, yeah,
oh, it would be 3. But
basically, the boys would
get 1/3 of the pizza. So the
girls would get less ?

This student, despite
her part/whole training, Fig. 12.3

showed no understanding
of partitioning and fractions as quotients. She divided the number of peo-
ple by the number of pizzas and interpreted her answers as the number of

slices. Her intuitive knowledge contradicted her calculated answer-she
knew that each boy would get 1/3 of a pizza-but she nevertheless went on

to compare 2 1/3 slices to 3 slices. Her leap to equating "more pizza" with

"more slices" is a strong indicator that she never understood part/whole

comparisons in the first place. Her approach is similar to comparing the

fractions 5/6 and 7/8 by observing that 7 > 5. It suggests a failure to distin-

guish the difference between the questions "How many?" and "How

much?"
In short, there is ample evidence to question the efficacy of fraction

instruction. Part/whole fractions as they are currently taught are not provid-

ing an adequate point of entry to the rational numbers, but mathematics

education research has been slower in suggesting an alternative than in diag-

nosing students' deficiencies.

WHAT Is EFFECTIVE FRACTION INSTRUCTION?
The ultimate goal of instruction is to help students to understand fractions

as numbers in their own right, and, as such, as objects that can be manipu-

lated with arithmetic. Achieving that goal is not an easy task. It builds incre-

mentally, over considerable time, as opposed to being an all-or-nothing

occurrence. An early step toward the goal is acquiring the ability to under-

stand relative comparisons and to abstract a single common notion across a

wide range of representations within a single subconstruct. In the

part/whole interpretation, this means that regardless of the representation

used for the fraction and regardless of the size, shape, color, arrangement,

orientation, and number of equivalent parts, the student can focus on the
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relative amount. For example, the number 1/4 describes the relative amount
represented in the various shaded regions in figure 12.4. But this notion of
equivalence is, by itself, very restricted. It depends only on the ability to
divide objects into n equal parts. Mathematically and psychologically, the
part/whole interpretation of fraction is not sufficient as a foundation for the
system of rational numbers.

00~~00 k
Fig. 12.4

The different interpretations of fractions that contribute to a robust
understanding of a rational number have been summarized by Kieren (1976,
1980). He proposed that there are five different but interconnected subcon-
structs: part/whole comparisons, measures, operators, quotients, and ratios
and rates. Each of these, in turn, has its own set of representations and oper-
ations, models that capture some-but not all-of the characteristics of the
field of rational numbers. Even within one mode of representation that cor-
responds to a single interpretation-for example, a pictorial mode-there
can be variation in the nuances of meaning, depending on whether discrete
or continuous objects are used or whether unitary or solitary or composite
objects are used, and so on. As the diagram in figure 12.5 suggests, basing
instruction on a single interpretation and selectively introducing only some
of its representations in instruction can leave the student with an inadequate
foundation to support her or his understanding of the field of rational num-
bers.

Like many constructs in mathematics, the rational numbers can be
understood only in a whole system of contexts, meanings, operations, and
representations. This understanding entails the conceptual coordination
of many mathematical ideas and results in flexible ways of thinking and
operating, one of the most important being proportional reasoning.
Vergnaud (1983, 1988) best captured the challenge and complexity of the
mathematics entailed in the formidable task of knowing rational numbers
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Fig. 12.5

when he described a conceptual field: a set of problems and situations for
which closely connected concepts, procedures, and representations are
necessary.

WHY Do WE TEACH PART/WHOLE FRACTIONS
THE WAY WE Do?

Fractions and ratios were once the tools of clerks and bookkeepers.
Ciphering was learned by meticulously copying the work of a master, and
it had disciplinary as well as practical value. The computation of frac-
tions assumed an important role in the elementary school mathematics
curriculum with the expansion of business and commerce during the
Industrial Revolution of the eighteenth and nineteenth centuries
(National Council of Teachers of Mathematics [NCTM] 1970). By the
early 1900s, psychology began to influence instruction, and it is easy to
imagine what a great instructional innovation it was when part/whole
relationships began to be used to introduce the vocabulary and symbol-
ism of fractions. Still, students were afforded only a brief encounter with
partitioning activities to build meaning because a time-efficient route to
the formal symbolic computation best served the needs of society at that
time.
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Most current mathematical agendas favor some balancing of computa-
tional skills with a richer understanding that results in higher-order thinking
and problem-solving skills. Nevertheless, instruction today is not very differ-
ent from that of the nineteenth century. Some new curricula, developed
within the last decade, afford students some access to meanings other than
the part/whole interpretation, but there is evidence that long-term interac-
tion with one or more of the subconstructs may be necessary. Studies done
by researchers from the Rational Number Project (e.g., Behr et al. 1984)
showed that even when students had received up to eighteen weeks of care-
fully planned, intensive instruction involving multiple interpretations of
fraction symbols, they showed "a substantial lack of understanding" and
could deal only with "questions that [did] not involve the application of
fraction knowledge to a new situation" (p. 337).

WHAT Do WE HAVE TO BUILD ON?
As children begin to study fractions, they encounter many points of dis-

continuity with the whole-number system and its operations that require
great cognitive leaps. (See Hiebert and Behr [ 1988] for a more complete dis-
cussion of these.) Nevertheless, children demonstrate some remarkable
strengths on which instruction might build.

Just as children attend carefully to the actions and relationships expressed
in addition and subtraction problems and then carefully model them with-
out prior instruction (Carpenter and Moser 1983), their earliest fraction
work demonstrates the same attention to problem structure. When asked to
draw pictures for each of the following situations, third-grade children drew
different representations for each:

1. Andy told his mom he would be home in three-quarters of an hour.

2. Mandy had 3 large cookies all the same size. One was chocolate chip,
one was oatmeal, and one was a sugar cookie. She cut each cookie into 4
equal parts and then ate I piece of each.

3. Three identical cupcakes are in a package. Marge cut the package into
4 equal parts without opening it. She gave you one of the parts.
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On an abstract level, the rational number 3/4 describes all these situations:
1(3/4 piece), 3 (1/4 pieces), and 1/4 of a 3-pack. Although these young stu-
dents did not have the language to refer to the resulting amounts, their
drawings and explanations made it clear that the situations were psychologi-
cally different. Students attended carefully to the meaning of each situation,
and all situations were not equally effective in attaining the target concept.
For example, they noted that Mandy's pieces in example 2 could not be
mushed together because they were from different kinds of cookies, but
when the problem was changed so that her cookies were all of the same
type, they recognized that she had eaten an amount equivalent to 3/4 of a
cookie.

These examples cover only a few of many different meanings that may be
represented by the rational number 3/4. It may be a comparer, as in "There
are only 3/4 as many men as women in the room." It may be a measurer, as
in "3/4 bottle of juice." It may be a transformer, as when it shrinks some-
thing to 3/4 of its size. Helping children to recognize the multiple personali-
ties of a rational number is a challenge, but their ability to detect nuances in
the problems that they are given and to build meaning when they have no
rules or algorithms are strengths that instruction might exploit.

Current instruction in fractions grossly underestimates what children can
do without our help. They have a tremendous capacity to create ingenious
solutions when they are challenged. For example, I recently visited a fifth-
grade class to do some problem solving with the students. I showed them
the pictures in figure 12.6 and told them that the first picture shows Jeb and
Sarah Smart when they were
younger, and the second
shows them as they look
now. I posed the following
question: "Who grew faster
between the first and second
pictures, Jeb or Sarah?"

After discussing the situa-
tion for about five minutes,
several groups came up with
clever solutions, but one was
memorable. Speaking for the The 12.

* 'b. . -.
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group, a student explained: "Well, they both grew taller, but Jeb grew taller.
Get it? He was shorter; then he grew taller. Well, actually, Sarah was shorter;
then she grew taller, too. But he grew TALLER." The student spoke loudly
and with emphasis. When he realized that his words were not conveying
what he meant, he showed some frustration. There was a long pause while
he thought. Finally, he began again: "Look. I can show you'" He took a ruler
and aligned it with the top of Sarah's head then (in the first picture) and the
top of her head now (in the second one). Then he did the same for Jeb's head
in the two pictures. "See," he said. "The ruler is more slanty for Jeb. That
proves he grew faster"

Asking children challenging questions often reveals their fledgling status
with more complex mathematical ideas, such as slope and rate of change,
and equipped with this information, the teacher or researcher can plan the
next step to push the student into new territory.

A LONGITUDINAL STUDY
Several compelling questions suggested priorities for a research agenda

that could eventually shape instruction and prepare students to understand
rational numbers:

1. What understanding might develop if a subconstruct other than
part/whole comparisons was used as the primary interpretation for instruc-
tion?

2. What sorts of instructional activities would support an understanding
of each of the rational-number subconstructs not commonly included in the
present curriculum?

3. How long does it take to develop a useful understanding of any single
subconstruct of rational number, and how will we know when it is achieved?
Because understanding is not all-or-none, at what point can we say that a
student understands?

4. Are the subconstructs equally good alternatives for learning concepts
and computation? Which will be robust enough to connect to other inter-
pretations without direct instruction?

5. Are there any developmental processes or mechanisms operating as
children build an understanding of rational numbers, or is there total incon-
gruity between their knowledge of rational numbers and their knowledge of
whole numbers?

A longitudinal study conducted by the author focused on children's devel-
opment of meanings and operations of rational numbers. For four years in
two urban schools in different parts of the country, five classes in grades 3
through 6 experimented with building students' understanding of rational
numbers on a different initial interpretation of the symbol a/b. One class
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began its study of fractions by interpreting a/b as a part/whole comparison
with unitizing. (Unitizing refers to the cognitive process of reconceptualizing
a quantity according to some unit of measure that is convenient for thinking
about, and operating on, the quantity. For example, the given unit in a frac-
tion problem may be 24 colas, but a student may think about that quantity
as 2(12-packs), 4(6-packs), 3(8-packs), or 1(24-pack).) The other classes
interpreted a/b first as a measure, or as a quotient, an operator, or rates and
ratios. A sixth class that received traditional fraction instruction served as a
control group. This study presented a unique opportunity to compare
unconventional approaches with traditional instruction and to document
the sequencing and growth of ideas, the breadth and depth of the under-
standing that developed, and the connections that children were able to
make with other subconstructs of the rational numbers.

Children were given the freedom and the encouragement to express their
thinking in whatever manner they chose. The two teachers who taught the
five classes facilitated learning through the kinds of activities they supported
and the problems they posed. The groups were not taught any rules or oper-
ations.

The teachers sometimes used whole-class instruction, and there were
occasional whole-group discussions of ideas arising from the activities.
However, on most days, the mathematical activity consisted of group prob-
lem solving, reporting, and then individually writing and revising solutions
for homework. The questions posed to the students were built on a content
analysis of the future uses of rational numbers and the nuances in under-
standing that were needed to pursue higher mathematics through beginning
calculus. A summary of the subconstructs, the kinds of activities that sup-
ported each of them, and some of the future connections to each is given in
table 12.1. More detail about instructional activities can be found in Lamon
(1999).

REPRESENTATIONS AND UNDERSTANDING
Because understanding is a moving target, it can always be better, stronger,

more connected, deeper, or broader than it is currently. As we ventured into
unknown territory at the start of this study, the teachers agreed with the
author that they would judge whether or not students understood some-
thing according to the nature of their representations. If children individual-
ly construct knowledge, then there should be something unique about their
representations and explanations; they should not look and sound exactly
like those presented in instruction. For instruction, adults choose certain
representations because they can see in them an embodiment of something
they already understand-the representations are media for what the
teacher already knows. It is easy for teachers to attribute magical powers to the
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TABLE 12.1
Alternatives to Part/Whole Fraction Instruction

Rational Number some Classroom Some Future
Interpretations of 3/4 Meaning Actiities Connections

3/4 means three parts out
of four equal parts of the
unit, with equivalent
fractions found by
thinkng of the parts in
terms of larger or smaller chunks

3 (whole pies) 12 (quarter pies)
4 (whole pies) = 16(quarter pies)

I (pair of pies)
2 (pair of pies)

3/4 gie3s a rule that tells
how to operate on a unit
(or on the resolt of a
previous operation);
multiply by 3 and divide
your result by 4 or divide
by 4 and multiply the
result by 3

3:4 means 3 parts of A
are compared to 4 parts
of B, where A and B are
of like measure or 3
units of A per 4 units of
B, where A and B are of
unlike measure

3/4 is the amount each
person receives when 4
people share a 3-unit of
something

314 means a disance of
3 (1/4-units) from 0 on
the number line or 3
(1/4 units) of a given
area

reasoning
generting equivalent
names for quantities

*stretching and
shrinking with
machines and copiers

'folding paper
'using area models for
multiplication and
division

reasoning
*using chips
making ratio tables

* analyzing graphs
doing ratio arithmetic

partitioning sets of
discrete and continuous
objects

'succe3sively panitioning
number lines, areas, and
volumes
reading meters and

gauges

representations, thinking that the activity, the manipulative, the picture, or the
words that have meaning for them will surely persuade students to adopt the
teachers' adult perspective. Any good teacher knows that it just doesn't work
that way! Students fit new ideas into their existing knowledge. When students
give back on a test exactly what the teacher has presented in class, it is not clear
at all that they have understood the material, and often the chances are good
that they have not learned it. When a student truly understands something, in
the sense of connecting or reconciling it with other information and experi-
ences, the student may very well represent the material in some unique way

Part/Whole
Comparison
with Unitizing
"3 parts out of 4
equal parts"

Operator
"3/4 of something"

Raetio and Rates
3 parts to 4 paors

"per" quantities
3 4

Quotient
'3 divided by 4"

Measure
"3 (1/4-units)"

rational number
propenies and
operations

algebra of
functions;
multiplication of
rational numbers

rationals as
equivalence classes
of ordered pairs;
operations and
Properties

rational numbers
as a quotient field

density of rational
numbers; rational
numbers as
arbitrary divisions
ofa unit; vector
operations
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that shows his or her comfort with the concepts and processes. The following
examples make clear this distinction between genuine and surface learning.

In the rational-numbers-as-measure class, the students engaged in many
activities in which they successively partitioned number lines, meters, and
gauges until they could answer problems such as the following:

Locate 17/24 on the number line shown in figure 12.7.
Figure 12.8 shows how one stu-

dent arrived at an answer Students _

were taught to use arrow notation to
keep track of the size of the subdivi- 0 3

sions after each time they parti- Fig. 12.7
tioned.

Students' use of arrow notation decreased over time; they gradually
stopped partitioning the number lines and meters and were able to visualize

0 toi El t i it 1t ltLj iftt!

o~ 3 td aL

Fig. 12.8

and reason about the fractions without drawing the number lines. Although
we felt that this process indicated progress in a positive direction, our criteri-
on for student understand- it

ing was original represen- a-' a
tations rather than those
that mimicked the ones
presented in instruction. Thc dA4 Ma

After a long time-some- -
times more than two and ag
half years-students began 
to show extraordinary
comfort and adaptability in l j> L

dealing with the questions
posed. One of the most -e 0
remarkable understandings to
these children developed 1 \

was a sense of the density of \ 9
the rational numbers. Fig-
ures 12.9 and 12.10 show Fig. 12.9
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two of the strategies the children produced to find fractions "between" two
given fractions. Figure 12.9 shows the work of a student at the end of grade 5.
The teacher asked him to find two fractions between 1/8 and 1/9. In explain-
ing his work, the student said: "The teacher didn't say if she wanted the frac-
tion equally spaced or not. If you don't care if all the fractions are equally
spaced or not, I could find lots of other fractions between 1/9 and 1/8. If I
pick something less than 1 1/8 and divide it into 9 equal parts, it will be
between those two fractions. Like I could pick 1 1/9, 1 1/10, 1 1/11, 1 1/12, or
as many as I want, ... divide 'em by 9 ... and they'll all be in there."

Figure 12.10 shows the work at midyear of a sixth grader who was asked to
find two fractions between 7/12 and 7/11. We considered both this example
and the previous one to be true
representations. The students had
gone well beyond the successive 7 / 1\
partitioning activities with which t / I \
instruction began. Their under- /
standing was individually con- 7 -7
structed and expressed. Their
knowledge of the relative sizes of
rational numbers was useful in
their problem solving, and many a
students had devised algorithms 54
for producing any number of frac- Lr S
tions that might be requested.

Children in the class that started I a_
with the ratio-and-rates interpre- d3-
tation of rational numbers began
by discussing what changed and Fig. 12.10
what didn't change (variance and
invariance) in situations involving two extraterrestrials who consumed given
numbers of food pellets during given numbers of days. A sample situation is
shown in figure 12.11.

As the numbers of food pellets varied, the children began to use poker
chips to help model the problems and answer the question "Who ate more,
Snake Woman or Slime Man?" They adopted the term cloning for making
exact copies. For example, they called

4949490000 a 3-clone of *------

because they look alike, they act alike, and you can use one in place of the
other. With the notion of equivalence well in place by the end of third grade,
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Ate in 3 days.

f ) Ate ffffffffffffff lin4 days

Fig. 12.11

these children developed sophisticated strategies for comparing rations and
rates during the fourth and fifth grades. For instance, consider Nancy's
response to the following problem:

Slime Man eats 5 food pellets in 7 days. Snake Women eats 3 food pellets in 4
days. Who is getting more food?

Nancy produced the following representation and explained what to do:

Nancy: Clone 5:7 and subtract clones of 3:4.

3(5:7) - 5(3:4)
15:21 - 15:20 = 0:1

No matter how many times you clone 5:7 and take 3:4 out of it, you
are always going to have more days than you have food. So 3:4 must
mean more food.

The evolution of the children's representations, including language and
chip formations, neither of which was presented by the teacher, suggested
that the operations they were performing resulted from their deep under-
standing of ratios.

SELECTED RESULTS
After four years, all five groups of students had developed a deeper under-

standing of rational number than the students in the control group had, as
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measured by the number of subconstructs that the students were using. The
numbers of proportional reasoners in the five classes far exceeded the num-
ber in the control group, and even in computation, achievement was greater
in all five groups than it was in the control group.

Using different interpretations of rational numbers, children acquired
meanings and processes in different sequences, to different depths of under-
standing, and at different rates. Even children who were taught the same ini-
tial interpretation of fractions showed different learning profiles. The time-
honored learning principle of transferability was robust. Children
transferred their knowledge not only to unfamiliar circumstances but also to
other interpretations that they had not been directly taught. By the end of
sixth grade, more than 50 percent of the children had demonstrated the abil-
ity to apply their knowledge to at least two of the rational-number subcon-
structs. Table 12.2 shows the numbers of students from each class who were
able to reason proportionally at the end of four years, the number from each
class who could pass a computation test at the 80 percent level, and the
number from each class who had demonstrated the ability to apply their
knowledge to as many as four of the rational-number subconstructs.

Children in all five groups learned to reason with fractions. They never
received rules or algorithms but expected to be given new challenges and to
engage in problem solving. This approach was routine in their mathematics

TABLE 12.2
Achievement of the Four-Year Participants from Each Class on Three Criteria

Numbers of Students Achieving Each Criterion

Number of Rational
Proportional Number Interpretations

Class Reasoning Computationa 1 2 3 4 5

Unitizingb 8 13 19 8 7 1 0
Measures' 8 12 17 11 9 3 0
Operatorsd 3 9 15 9 0 0 0
Quotientse 2 9 16 7 0 0 0
Ratio/Ratef 12 11 18 10 6 0 0
Controlg 1 6 11 2 0 0 0

' 80% accuracy or better.
bn = 19.
In = 17.
dn = 19.
n= 18.

fn= 18.
gn= 20.
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classes. Although they had never engaged in formal computation, some fifth
graders (approximately at midyear) were asked to explain how to solve the
problem I - 2/3. After more than two years of instruction, they were such
flexible thinkers that they produced a wide variety of solutions. Figure 12.12
shows three students' representations of their thinking.

(1) tJ 34A1

-S~ C-j S < 

(2) 1 3[.} 1 

(3) 2 a, 5

Fig. 12.12

After four years, students' reasoning and problem solving in the five spe-
cial classes were extraordinary. Their abilities called into question the con-
clusion from former, now classic, research studies that the type of numbers
used affects the solution of fraction or ratio comparison tasks. For example,
consider the following comparison task:

Are the fractions 3/5 and 7/11 equivalent?

Adults may use a common denominator or check cross products to see
that 3/5 < 7/11. When elementary school students in the beginning stages of
fraction instruction are asked this question, most conclude that the fractions
are not equivalent because there is no natural number by which 3 can be
multiplied to get 7 and 5 can be multiplied to get 11. They will, in fact, arrive
at the same conclusion for the same reason when asked to compare 4/6 and
6/9. Older children who have learned how to reduce or to find common
denominators do a little better. However, middle school students generally
perform very poorly on this type of comparison. (For example, see Karplus,
Pulos, and Stage 1983). Either children do not know how to proceed, or they
resort to incorrect additive strategies. Researchers have concluded that the
lack of integral multiples between and within the given ratios greatly con-
tributes to their difficulty. Middle school students generally find it easier to
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compare fractions or ratios such as 3/12 and 5/24, 6/8 and 12/15, or 3/9 and
6/15.

When our children were given all the tasks used in the study by Karplus,
Pulos, and Stage, they made no more errors on comparison tasks without
integral multiples than they made on tasks involving integral relationships.
Figure 12.13 shows two responses to the question "Are 3/5 and 7/11 equiva-
lent?"-a comparison that is supposedly one of the most difficult types.

(1) _4 

7Z 2 a } n l& (

.A.

(2) 3 (3 cl3 33

(X CD (3 e))S XTh:, -

Fig. 12.13

Our results suggest that the kind of instruction children receive may have
more impact on their ability to compare these fractions than the kind of
numbers involved. The children in the study by Karplus, Pulos, and Stage
were in sixth and eighth grades and presumably had had traditional,
part/whole instruction. When rules and procedures are not learned with
meaning, students forget them or do not always realize when to use them.
However, when children are accustomed to thinking and reasoning without
rules, which numbers they are given makes little difference.
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IMPLICATIONS
It is likely that current part/whole fraction instruction could be improved

merely by allowing children the time and opportunity to build understand-
ing without directly presented rules and algorithms. In our study, it took a
long time to build meaning, and during the first two to two and a half years,
our students could not compete in fraction computation with children who
had been using the traditional algorthms. However, in the long run, all five
classes of students surpassed the rote learners, and their representations
showed that they were performing meaningful operations. Of course, this
delayed gratification has many implications for teacher accountability, state

and national assessment, and many other aspects of schools and schooling.
Nevertheless, there is a case to be made for considering more dramatic

changes in fraction instruction. It is apparent that when the goal of instruc-
tion is to provide as broad and as deep a foundation as possible for meanings
and operations with rational numbers, not all the subconstructs of rational
numbers are equally good starting points. Part/whole instruction as it is cur-
rently delivered was the least valuable road into the system of rational num-
bers. The part/whole interpretation with unitizing and the measure interpre-
tation were particularly strong. Both rely heavily on the principles of
measurement-the inverse relationship between the size of the unit with
which one is measuring and the number of times one can measure it, out of

a given quantity, and the successive partitioning of that unit of measure into
finer and finer subunits until one can name the amount in a given quantity.
The need for increasingly accurate measurement has been a driving mecha-
nism in the history of mathematics and science, and it appears to be a strong
binding force in children's mathematical development. The unitizing and
measure interpretations and their corresponding representations show
exceptional promise for helping children make the transition from whole
numbers to rational numbers because these interpretations build on and
extend principles of measurement with which the children have been famil-
iar since early childhood.

It is not yet clear how the five interpretations can or should be integrated in

instruction. It seems clear that a cursory look at each of them is unlikely to be
of any real value in light of the long time it took students to grow comfort-
able with the single interpretation with which they began fraction instruc-
tion. It is also not clear whether computation should be developed in parallel
to meaning. For the children in this study, meaning preceded and suggested
appropriate operations. For example, the arithmetic that developed in the
ratio-and-rates class said that (3:4) + (2:5) = (5:9) and that 3(3:5) = 9:15,
whereas in other classes,

3 (3) * 9 and 2 + 5 #
t5 15 4 5 9
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It is not yet known to what extent introducing rules for operations might inter-
fere with the development of meaning, or what might be gained by doing so.

Although there are still many researchable issues, we have a much better
notion than we had twenty years ago of what it means to teach fractions for
meaning. We also have a much better understanding of the role that present-
ing and representing fractions in instruction plays in enabling or disabling
the development of rational-number understanding.
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Solutions to problems 1-7

1. Yes, it matters. The picture shows 3 (1/8 pies). Children cognitively

differentiate the three quantities named here. At the abstract symbolic level,
the quantities are indistinguishable, but in instruction, where contexts
should be used to build an understanding of fractions, saying that these are

the same contradicts children's intuitive understanding.

2. Dividing by 4 and then multiplying the result by 3 is the same as mul-
tiplying by 3/4.

3. The 1/5 bottle that you drank is 1/10 of your juice supply, so 9/10
remains.

4. If the number of people is 2/3 the original number, the time is 3/2 the

original time because the number of people working and the time it takes to

do a job are inversely related. It will take 6 people 2 1/4 hours to do the job.

5. A number of strategies are possible here. See some of the student
strategies in this article.

6. Yesterday, Alicia jogged 2/5 of a lap per minute, and today she jogged
3/8 of a lap per minute. At yesterday's rate, it would take her 12 1/2 minutes
to do 5 laps.

7. Ratios of corresponding sides show that (b) is an enlargement of (e).
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Representations of
Patterns and Functions

Tools for Learning

Wendy N. Coulombe

Sarah B. Berenson

IN DOING mathematics, we use various representations of problems and ideas
to communicate our thinking to ourselves and to others. Indeed, it can be said
that in many ways, representation is the language of mathematics. If we think
of representation not only as an image (e.g., graph, table, diagram) but as a
process of the illumination of ideas, we can see its usefulness in the learning of
mathematics. Specifically, interpretation and translation of representations are
tools that can extend students' algebraic thinking by helping students to con-
struct their mental images of patterns and functions (Moschkovich, Schoen-
feld, and Arcavi 1993).

Students of traditional algebra begin their formal study of functions by trans-
lating symbolic representations to tabular and then to graphical representations.
A missing piece in this traditional approach is the students' interpretation of the
algebraic symbols or other representations from a familiar context. Figure 13.1
illustrates two approaches to teaching equations with two variables. In most tra-
ditional approaches, a symbolic representation is given to the students, who then
must translate this representation to a tabular and then to a graphical represen-
tation. In a problem-based approach (Janvier 1987), students are asked to inter-
pret a commonplace scenario, such as that of saving money or dieting. The ini-
tial representation may draw from a variety of well-known representations. For
example, a distance/time graph of two cars can be an initial representation. Stu-
dents then interpret and translate the distance/time graph to write a description
that compares the speeds of the two cars. A problem-based approach provides
students opportunities for graphical construction and interpretation, data gen-
eration, pattern finding, and other interpretive processes (see Janvier [ 1987]).

166
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Traditiona Approach Problem-Based Approach"

Move From To Translation Move From To Interpretive Process
Process

Symbols (y = 2x) Table Compute values Graph Words Graphical
interpretation

Table Graph Plot points Table Words verbal pattern
description

Words Graph Qualitative graphical
construction

Graph Table Data generation

Table Symbols Pattern finding

'Additional possibilities exist for probklm-based lessons
Fig. 13.1. A comparison of two approaches used to improve students' understand-

ing of functions (adapted from Janvier 1987)

Once given the opportunity to interpret familiar events mathematically,
the representations take on a deeper meaning to students. The process of

interpretation allows them to connect important mathematical ideas such as
covariation and rate of change to the representations. Without interpreta-
tions, students' use of conventional mathematical representations may

become an exercise in manipulating formulas to build tables and plot points
on a graph.

The National Council of Teachers of Mathematics (NCTM) suggests that
high school students should be able to model many different contexts using

a variety of representations (NCTM 2000). This suggestion assumes that stu-
dents can interpret different phenomena from the physical and social world
and represent the relevant relationships. Inherent in the notion of interpre-
tation is the idea that students can communicate their interpretations to oth-

ers. According to NCTM (2000), communication is fundamental to all
learning and is inseparable from representation. For this particular discus-
sion, we will consider students' oral and written language both as a tool for

communication and as a form of mathematical representation.

LEARNING FROM PIECEWISE-DEFINED FUNCTIONS
The learning of piecewise-defined functions is an interesting example of

how the interpretation and translation of various representations can
improve students' understanding. Piecewise-defined functions occur natu-
rally and frequently within a wide range of physical and social environments
in our world. In a piecewise-defined function, the domain is separated into
two or more pieces, and a different functional relation is defined for each
piece, as shown (symbolically) in figure 13.2.

The symbolic expression of piecewise-defined functions is troublesome even
to students in precalculus and calculus courses. However, research suggests
(Coulombe 1997) that first-year algebra students have intuitive notions about
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context-based piecewise-defined
functions. The interpretation of
graphical, tabular, and verbal repre-
sentations of piecewise-defined
functions can provide students with
rich experiences to broaden their
conceptualizations of patterns and
functions.

Fig. 13.2. An example of a symbolic
expression of a piecewise-defined function

The Weight-Loss Problem
For example, first-year algebra students were asked to generate appropri-

ate data values based on their interpretation of the qualitative graph in figure
13.3. In translating from a qualitative graph to a numerical (quantitative)
table, the students interpreted the covariation of the independent and
dependent variables and the various rates of change that were represented in
the graph. The function involved was a linear piecewise-defined function,
which appeared to be divided into three equal pieces. The first "third" could
be seen to be constant, the second "third" was a negatively sloped line seg-
ment, and the final "third" was also constant. On the basis of the informa-
tion provided in the table, one could assume that Kelly's weight remained
stable at 133 during the first "third" of the time, and then after a loss of 3
pounds, remained stable at 130 during the last "third" of the time.

FDay 2 | 3 |n 4 |5Si | 6 7 8 9 10 |11 | 12
|| Kelly's weight |133 | | | | | | | | | | |130||

Fig. 13.3. A data generation problem about weight loss

The graph shown represents
Kelly's weight (in pounds)
over a period of twelve days.
Complete the table below to
show how Kelly 's weight
changed over time.

Kelly's

weight

Time
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In the table shown in figure 13.4, Mac represented Kelly's weight remaining
stable over a period of time at 133, then decreasing at a constant rate over two
days, and then remaining stable at 130. In Anna's and Alex's tables, however,
Kelly's weight does not decrease monotonically-they both show Kelly's
weight remaining constant at 132 and 131 for more than one day. In addition,
Alex underestimated the length of time that Kelly's weight remained constant
at 130. Alternative responses such as Lynn's included table values that did not
represent the constant portions of the graph, did not decrease at a constant
rate, or were outside of the range of weights provided (130-133).

1ay 1-2 -3 4 5 6 7 8 9 10 1 12

133 133 133 133 133 132 131 130 130 130 130 130

Anna 133 133 133 133 132 132 131 131 130 130 130 130

Alex 133 133 133 132.5 132 132 131.5 131 131 130.5 130 130

Lyn 133 132 131.4 131.3 131.2 131.1 130.5 130.4 130.3 130.2 130.1 130

Fig. 13.4. Student responses to the weight loss problem

The Iced-Tea Problem
The problem in figure 13.5 gives students an opportunity to interpret,

compare, and contrast three positive rates of change. Students can explain
that at first, the tea was very sweet because Lily added four tablespoons of
sugar for every two quarts of tea. Then the tea was less sweet because she

Lily needed to make iced tea for her Black pekoe tea Sugar
soccer team in a 12-quart jug. She (quarts) (tablespoons)
added black pekoe tea and sugar in the
amounts shown in the table. Describe 0 0

the sweetness of the iced tea at various 2 4

points in her mixing. 8

6 10

8 12

10 15

12 IS

Fig. 13.5. A verbal pattern description problem about mixing iced tea

added only two tablespoons for every two quarts of tea. Then she must have
decided that three tablespoons for every two quarts was just right. For exam-
ple, we might expect a student/teacher dialog similar to the following:
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Student: The tea is more sweet in the beginning because she used
four tablespoons in two quarts instead of two tablespoons in
two quarts.

Teacher: So that means it's sweeter because ...
Student: Because four tablespoons in two quarts compared to two

tablespoons in two quarts is sweeter.
Teacher: And why is it sweeter?
Student: Because it's different amounts of sugar and the same

amount of tea. Tea is on a constant interval.

The Allowance Problem
The problem in figure 13.6 asks students to model three rates of savings

growth over time. The graphs in figure 13.7 provide three responses to this
problem that are typical of algebra students. Corey's graph illustrates the
amount of money rising steadily, remaining constant, and then rising steadi-
ly again, although more quickly than it had in the beginning. Luke repre-
sents the amount of money rising first at a fairly constant rate and then later
at a more rapid rate, but he omits the effect of the lack of allowance received
in the spring. The points plotted in Elisabeth's graph depict the amount of
money changing as a series of isolated events, even when there is no fluctua-
tion in the amount of savings during the spring.

Fig. 13.6. A qualitative graphical construction problem about saving money

In the winter, Sam's parents decide to give him a weekly allowance in exchangefor some
chores around the house. Sam always puts all of his allowance in his piggy bank. In the
spring, Sam gets lazy and stops doing his chores, so he does not receive his allowance
anymore. In the summer, Sam wises up and does his own choresplus his sister's chores.
Hisparents then give him a larger weekly allowance. Sketch a graph that shows how the
amount of money in Sam's piggy bank changes over time,

Money in
bank

(dollars)

Time
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Fig. 13.7. Typical algebra students' responses to the allowance problem

SUMMARY AND IMPLICATIONS FOR TEACHING
In this article, we presented three examples of translation processes that

require meaningful, contextual interpretation of representations in a prob-

lem-based approach. Providing students with experiences in graphical inter-

pretation, verbal pattern description, qualitative graphical construction, and

data generation fosters students' understanding of essential mathematical

concepts such as covariation and rate of change. Indeed, the representations
become an intellectual tool for students' understanding.

Students' abilities to interpret representations of linear functions vary
according to the nature of the given patterns of covariation (Coulombe
1997). Specifically, positively sloped relations, where both variables are

increasing appear to be the easiest for students to interpret. Somewhat more
difficult are negatively sloped relations, where the independent variable is

increasing but the dependent variable is decreasing. Finally, students seem to
have the most difficulty when one variable is increasing and the other vari-

able is neither increasing nor decreasing. Interpretations of representations

of these stable situations may serve as tools for students to use to build their
mental images of constant patterns and functions.

Graphs and tables can be effective tools for investigating linear (and non-

linear) patterns in a variety of contexts. For example, the weight-loss prob-
lem discussed in this article allowed students to explore three linear patterns

through graphical interpretation and data generation. The weight-loss prob-
lem can be extended with alternative representations such as words and sym-

bols. Students might be asked to generate a verbal rule for each "third" of the
graph and then to translate each of those rules into symbols.

Describing the relationship between the independent variable and the depen-
dent variable is an important building block in developing students' under-

standing of rate of change. Consider that in rate-of-change problems, time is

usually the independent variable (x) and the variable that is changing over time
is the dependent variable (y). Initially, students can use verbal communication

to describe the rates. For example, "as the years increase, the population increas-

Corey Luke Elisabeth
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es," or "as the years increase, the capacity of the landfill decreases." Teachers can
ask students to describe these relationships on a graph without a scale. In the
first relationship, the slope is positive; the second relationship has a negative
slope. Then the students can generate data tables that reflect the relationships
between the variables. Finally, students can relate their ideas of change to num-
bers and symbols. For example, if we let p represent the population increase (the
dependent variable) and x represent the number of years (the independent vari-
able), then the relationship might be written as p = 25 000x + 350 000.

Another classroom strategy is to ask students to consider the context of
rate-of-change problems. Just as elementary school teachers ask students to
write story problems for the multiplication and division of whole numbers,
algebra teachers can assess their students' understanding of algebraic repre-
sentations by asking them to write word problems from tables or graphs.
The independent variable for these representations is time, and students are
asked to define a dependent variable that changes over time in a manner
defined by the representation. For example, given a graph of y = 2x, where x
represents time, students are asked the following:

Write a problem scenario for this positively sloped graph where time is the indepen-
dent variable. What kind of scale could you put on this graph to fit your problem?

Fluency with multiple representations of mathematical relationships plays a
significant role in the successful development of algebraic thinking. Interpreta-
tion and translation can also be useful tools for teachers' ongoing assessment
of how students are conceptualizing patterns and functions. Additionally, rep-
resentations can serve as useful guides for instructional planning by helping
teachers to see more clearly what students understand and which mathemati-
cal ideas are still developing. As teachers listen carefully to students' ideas, they
can help students connect their personal representations to more conventional
ones such as numerical tables, Cartesian graphs, and algebraic symbols.
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Promoting Multiple

Representations in Algebra

Alex Friedlander

Michal Tabach

MANY teachers and researchers know that the presentation of algebra almost
exclusively as the study of expressions and equations can pose serious obsta-
cles in the process of effective and meaningful learning (Kieran 1992). As a
result, mathematics educators recommend that students use various repre-
sentations from the very beginning of learning algebra (National Council of
Teachers of Mathematics [NCTM] 2000).

The use of verbal, numerical, graphical, and algebraic representations has
the potential of making the process of learning algebra meaningful and
effective. In order that this potential be realized in practice, we must be
aware of both the advantages and disadvantages of each representation:

*The verbal representation is usually used in posing a problem and is need-
ed in the final interpretation of the results obtained in the solution
process. The verbal presentation of a problem creates a natural environ-
ment for understanding its context and for communicating its solution.
Verbal reasoning can also be a tool for solving problems and can facilitate
the presentation and application of general patterns. It emphasizes the
connection between mathematics and other domains of academic and
everyday life. But the use of verbal language can also be ambiguous and
elicit irrelevant or misleading associations; it is less universal, and its
dependence on personal style can be an obstacle in mathematical com-
munication.

* The numerical representation is familiar to students at the beginning alge-
bra stage. Numerical approaches offer a convenient and effective bridge
to algebra and frequently precede any other representation. The use of
numbers is important in acquiring a first understanding of a problem
and in investigating particular cases. However, its lack of generality can

173
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be a disadvantage. A numerical approach may not be very effective in
providing a general picture; as a result, some important aspects or solu-
tions of a problem may be missed. Thus, its potential as a tool for solving
problems may be sometimes quite limited.

*The graphical representation is effective in providing a clear picture of a real
valued function of a real variable. Graphs are intuitive and particularly
appealing to students who like a visual approach. But graphical representa-
tion may lack the required accuracy, is influenced by external factors (such as
scaling), and frequently presents only a section of the problem's domain or
range. Its utility as a mathematical tool varies according to the task at hand.

*The algebraic representation is concise, general, and effective in the pre-
sentation of patterns and mathematical models. The manipulation of
algebraic objects is sometimes the only method of justifying or proving
general statements. However, an exclusive use of algebraic symbols (at
any stage of learning) may blur or obstruct the mathematical meaning or
nature of the represented objects and cause difficulties in some students'
interpretation of their results.

The importance of working with various representations is a result of
these and other advantages and disadvantages of each representation and of
the need to cater to students' individual styles of thinking. Thus, both cur-
riculum developers and teachers should be aware of the need to work in an
environment of multiple representations-that is, an environment that
allows the representation of a problem and its solution in several ways (usu-
ally some or all of the four representations mentioned above). Although
each representation has its disadvantages, their combined use can cancel
out the disadvantages and prove to be an effective tool (Kaput 1992). Simi-
larly, the Representation Standard for grades 6-8 in the new Principles and
Standards for School Mathematics relates to the solution of algebraic prob-
lems in general and of situations based on linear functions in particular by
addressing the following recommendation (NCTM 2000, p.281):

Students will be better able to solve a range of algebra problems if they can move
easily from one type of representation to another. In the middle grades, students
often begin with tables of numerical data to examine a pattern underlying a linear
function, but they should also learn to represent those data in the form of a graph
or equation when they wish to characterize the generalized linear relationship.
Students should also become flexible in recognizing equivalent forms of linear
equations and expressions. This flexibility can emerge as students gain experience
with multiple ways of representing a contextualized problem.

More specifically, Ainsworth, Bibby, and Wood (1998) mention three ways
that multiple representations may promote learning: (a) it is highly probable
that different representations express different aspects more clearly and that,
hence, the information gained from combining representations will be greater
than what can be gained from a single representation; (b) multiple representa-
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tions constrain each other, so that the space of permissible operators becomes
smaller; (c) when required to relate multiple representations to each other, the
learner has to engage in activities that promote understanding.

With algebra learning, the use of computers contributes considerably to
the promotion of multiple representations (Heid 1995). As students work
with spreadsheets and graph plotters, algebraic expressions become a natural
requirement and provide an effective means for obtaining a numerical and
graphical representation of the relevant data. In a learning environment that
lacks computers, drawing graphs or producing extended lists of numbers
tends to be tedious and unrewarding.

In the process of solving a problem, isolating representations can be diffi-
cult. Thus in most situations, any approach is accompanied by verbal expla-
nations or by numerical computations. In this article we restrict ourselves to
the use of representations as mathematical tools (and less as means of com-
munication) in the context of beginning algebra. The use of a sequence or a
table to answer a question will be an example of a numerical approach,
whereas the use of verbal reasoning (possibly including some computations
and numbers) will be considered a verbal approach. The use of graphs or
algebraic expressions is easier to define and detect.

We cannot expect the ability to work with a variety of representations to
develop spontaneously. Therefore, when students are learning algebra in
either a technologically based or a conventional environment, their aware-
ness of and ability to use various representations must be promoted actively
and systematically. We describe some ways in which tasks can be designed to
promote the use of multiple representations. The following section presents,
as an example, an activity taken from a beginning algebra course for sev-
enth-grade students and discusses its potential to achieve this goal. We also
report some findings about students' use of representations in an assessment
task given at the end of one week of work on the activity.

DESIGNING TASKS
In our attempts to promote student thinking and actions in a variety of rep-

resentations, we found some effective types of tasks and questions. Our analy-
sis of the structure of an activity called Savings illustrates the claim that tasks
can be designed to encourage the simultaneous use of several representations.

Describing the Problem Situation
Questions, tasks, or even more complex activities are usually presented in one

representation, and they may, or may not, require the solver to make a transition
to another representation. For example, students may decide to solve a verbally
posed problem graphically or algebraically. (In some classrooms, the use of verbal
reasoning to solve an algebra problem has not yet received full legitimization.)



176 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

We found that presenting various parts of a problem situation in different
representations encourages flexibility in students' choice of representations in
their solution path and increases their awareness of their solution style. The
presentation of a problem in several representations gives legitimization to
their use in the solution process. Moreover, to understand and solve such a
problem, most students perform frequent transitions between representations
and perceive them as a natural need rather than as an arbitrary requirement.
Posing a problem in several representations is particularly suitable for situa-
tions that require the parallel investigation of several methods, quantities, and
so on. Figure 14.1 presents the Savings problem situation. In this activity, stu-
dents investigate the weekly changes in the savings of four children, where the
savings of each child is presented in a different representation.

The savings of Dina, Yonni, Moshon, and Danny changed during
the last year, as described below. The numbers indicate amounts of
money (in dollars) at the end of each week
Dina: The table shows how much money Dina had saved at the
end of each week. The table continues in the same way for the rest
of the year.

|Week l1 l2 l3 l4 l5 l6 l7 l8 l9 ........................ 
Amount 7 14 l 21 28 35 l 42 l 49 56 63 ...

Yonni: Yonni kept his savings at $300 throughout the year
Moshon: The graph describes Moshon's savings at the end of
each of the first 20 weeks. The graph continues in the same way for
the rest of the year.
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Danny: Danny's savings can be described by the expression
300 - 5x, where xstands for the number of weeks.

Fig. 14.1. Savings-problem situation
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Posing Investigative Questions
The presentation of the problem situation is followed by a variety of questions

aimed at leading students through their investigations. These questions are
posed for a variety of reasons. The following categories of tasks are examples of
ways to design activities that relate to our agenda of multiple representations. We
illustrate each category by a sample of questions from the Savings activity.

Getting acquainted with the initial representation
The first questions require students to analyze each component in its original

presentation and make some extrapolations or draw some conclusions. At this
stage many students avoid any transitions from one representation to another.
In our example, we posed questions about the savings of each child. First, we
asked for the amount of money at the end of a week that was specifically includ-
ed in the data. We then asked students to extrapolate to a week not represented.
Finally, we asked for the week corresponding to a given amount of money.

Explicit requests for transitions between representations
At the next stage, we require students to work in a specific representation.

The following two activities illustrate this stage.

* Describe in words how the savings of each child changes
through the year.

* Given the graphs of the savings of all four children throughout
the year, identify each graph and find the meaning and the
value of each intersection point.

Exploratory questions
Finally, we ask students more complex and open-ended questions. At this

stage, we expect them to choose their own method of representation and
solution path. In our activity, we asked the students to compare the savings
of the four children.

* Add another child to your comparison.

* Compare the savings of two out of the four children.

Use words like "the savings increase (or decrease),'
'the savings increase or decrease at a rate of ...:
"who has a larger (or smaller) amount at the

beginning (or end)," and
"larger (or smaller) by ... X double ... , equal.'

Use tables, graphs, expressions, and explanations.
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Posing Reflective Questions
Reflection has several important aspects. It helps students become aware

of the possiblity of using various representations, exposes them to the
advantages and disadvantages of these possibilities, and acquaints them with
various ways of presenting the solution to a problem. Reflective questions
allow students to distance themselves from actions undertaken previously
and hence lead them to evaluate their own and others' actions. Moreover,
the ability to reflect on the solution of a problem increases considerably the
solver's mathematical power (Hershkowitz and Schwarz 1999). As with mul-
tiple representations, we cannot rely exclusively on a spontaneous develop-
ment of the ability to reflect. The following types of tasks are examples of
ways to design activities that make reflection an integral part of the solution
process.

Description of work
The requirement to describe one's work is attached to many questions.

This "habit" is more than routine, and its importance is beyond the need to
document the solution. It allows students to reevaluate their solution strate-
gies and eventually to consider other possibilities. Sometimes we make the
task more specific by attaching to the text of a problem a blank page called
Work Area, with the words Tables, Graphs, Expressions, and Descriptions on
various parts of the page. In this example, the use of any particular represen-
tation is recommended, but optional. At other times, we directly ask stu-
dents to mention the representation they used on each occasion.

Commenting on others' work
Presenting the work of one or several (fictional) students reduces the bur-

den of getting involved in the actual process of solving a problem and allows
students to relate to, and reflect on, particular aspects of the solution. Here is
an example:

Ran wanted to find how much Dina had saved by the end of the
15th week. Vered suggested continuing the table a little more.

Week 11 12 13 14 15
Amount 77 j 84 | 91 1 98 105

She looked at the table and found that the amount is $105. Motty
claimed that he had another way. Since Dina had no savings at the
beginning of the year and her savings increased by 7 each week,
she would have 7 times the number of weeks-that is, 7* 15 = 105.
Do you think that both methods are correct? Which method do you
prefer?
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Asking students to design their own questions
Another possible way to raise awareness of the potential of various repre-

sentations is to give a problem situation in one or multiple representations
(possibly collected from students' previous work) and ask students to design
(and solve) a question that in their view can be answered by using the given
representation. In our activity, for example, we can pose this task and
enclose the tables, graphs, expressions, or verbal descriptions of the savings
of all four children.

Asking for reflection on mathematical concepts
journal items are particularly appropriate for asking students to reflect on

possible ways to answer the posed questions and to describe their solution.
Thus, toward the end of our activity, we require students to construct a con-
cept map on ways to represent data and solutions. They were also encour-
aged to discuss the advantages and disadvantages of using a particular repre-
sentation.

Allowing time for reflection
The solution of complex problems over a longer period of time (in our sit-

uation, five lessons spread through one week) creates, of itself, further
opportunities for spontaneous or induced reflection.

In the next section, we consider the use of various representations in the
solution of a task by two classes of beginning algebra students, who worked
on Savings and other similar activities.

ASSESSING STUDENTS' USE
OF REPRESENTATIONS

After a week of investigating the Savings activity (including one lesson
of work with Excel), the teachers of two seventh-grade beginning algebra
classes gave an assessment task related to the same context. The task was
given about two months after the beginning of the course to seventy stu-
dents who worked in pairs and without computers. Although the assess-
ment of the students' work had a wider scope, we present here only some
findings that relate to their use of representations. At the initial stage of
the task, the savings of two children during a year were described in a
table and a graph. Then, the students were required to answer a
sequence of questions and were specifically instructed, both orally and
in writing, to show their work and to mention the representation they
used in each answer. Figure 14.2 presents the first seven (of ten) ques-
tions in this task.
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The table and the graph below describe the savings of Danny and
Moshon during the year.

Savings Savings
Week # Danny's Moshon's Week # Danny's Moshon's

0 300 30 26 170 160
.1 295 35 27 165 165

2 290 40 28 160 170
3 285 45 29 155 175
4 280 50 30 150 180
5 275 55 31 145 185
6 270 60 32 140 190
7 265 65 33 135 195
6 260 70 34 130 200
9 255 75 35 125 205

10 250 80 36 120 210
11 245 85 37 115 215
12 240 90 38 110 220
13 235 95 39 105 225
14 230 100 40 100 230
15 225 105 41 95 235
16 220 110 42 90 240
17 215 115 43 85 245
18 210 120 44 80 250
19 205 125 45 75 255
20 200 130 46 70 260
21 195 135 47 65 265
22 190 140 48 60 270
23 185 145 49 55 275
24 180 150 50 50 280
25 175 155 51 45 285

52 40 290

350
300
250

i 200

100

50

0 13 = 39 52

Werk s

Fig. 14.2. Savings-assessment task data
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Fig. 14.2 (cont.) The first seven questions

The teachers mentioned algebraic expressions at the beginning of the task
as one of the four possible representations but did not actually give any. Our
impression from the students' classroom work indicated that at this stage of
the course, they preferred numerical or verbal solutions and made a more
limited use of graphs, and even less use of algebraic expressions. We wanted,
however, to have a more detailed picture of students' preferences and flexi-
bility in their choice of representations. According to our (expert) view, dif-
ferent questions in the task favor different representations. Thus, the first
two questions clearly favor the use of the given table of numbers, whereas to
find the largest difference between their savings (question 4), the use of
graphs is more advantageous. In our opinion, the other questions could be
answered with a reasonable investment of effort by choosing from several
possible representations.

As expected, the use of the table of numbers was dominant. However, each
question attracted various representations. To find the savings after half a
year (question 1), the majority of students made direct use of the given table,
as in the following solution:

Describe the work that you do to answer the questions below.
Please describe in detail all your (right or wrong) attempts, and the
representations (table/expressions/graph/words) that you use to
answer each question.
Important Remark:
The solution process is more important than the final result.
A detailed description of your work will improve your assessment.
The questions:

1. How much had Moshon saved after half a year? And how
much did Danny have at the same time?

2. After how many weeks did each of the two children have
$21 0?

3. When was the difference between their savings $60? In
whose favor was the difference?

4 Find the week with the largest difference between their sav-
ings.

5. Find the week when their savings were equal.
6. Find the week when the savings of one were double that of

the other. In whose favor?
7. Danny and Moshon decided to pool their savings in order to

buy a $400 walkie-talkie. Find the week in which they can
realize their intention.
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Using the table to answer question I seems natural and simple. The fol-
lowing two examples show, however, that the approaches to the solution
were quite varied. Some pairs of students preferred the algebraic expressions
(first example) or graphs (second example).

Question 7 related to the possibility of Danny's and Moshon's reaching a
common sum of $400 and attracted many verbal solutions, like the not com-
pletely correct reasoning in the following example.

An analysis of the students' answers to all seven questions showed that stu-
dents were remarkably flexible in their use of representations. Only five pairs
of students were consistently numerical. All the others used two, three, or
four representations (31, 37, and 12 percent, respectively). Sometimes, a pair
used more than one representation to answer a question. Such transfers
between representations usually occurred when work with the initially cho-
sen representation seemed too difficult or unrewarding. The following two

* We looked at Danny and Moshon's table and found the savings
for the 26th week because 52 * 2 = 26.

52 - weeks in a year
2 - divided by 2 for half a year

Moshon's savings in the 26th week are $160 and Danny's savings
are $170.

* After half a year, Moshon had $160. During the first week,
Moshon had $30, and each week he added $5. Therefore we
made the expression 30 + 5x. x is the number of weeks and in
order to compute [the amount after] half a year, the expression
will be 30 + 5 -26 and in order to calculate on a calculator we
need [to keep] the order of operation. Thus, we found 5 *26 =
130 and added 30 = 160.

* We marked the midpoint of the horizontal axis and drew a line
upwards (until our line intersects Danny's and Moshon's points).
From Danny's and Moshon's points we drew a horizontal line to
the vertical axis. We discovered that Danny had $175 by the
middle of the year and Moshon had only $150.

* Danny and Moshon will never get the walkie-talkie because
when Danny will have $300 (his largest amount) Moshon will
have only $30 and when Moshon will have $290 (his largest
amount) Danny will have only $40 and therefore the largest
amount that they can reach is $330.
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answers to question 3 (finding cases when the difference between the savings
is $60) illustrate this situation.

We compared the expressions: Moshon 30 + 5x and Danny
300 - 5x and then ... ah ... then we switched to an unsystemat-
ic and silly search of each number in the table (the results: the
21 st, and the 33rd week).

In this example, the pair of students attempted to answer the question
algebraically, but a lack of knowledge about how to use this tool forced them
to switch to the numerical approach, in spite of their awareness of its disad-
vantages. In the next example, another pair makes a transition from a
numerical to a graphical representation. The students make the transition to
graphs when their initial attempt provides an incomplete answer.

On the 21st week Danny had $60 more than Moshon. On the
33rd week Moshon had $60 more than Danny did. We looked
for a difference of less than $100 and when we found them, we
looked in Moshon's column [to find) when do we have to add or
subtract $60 to get Danny's amount in the same week. We
found in Danny's column $195 and in the same week we found
there in Moshon's column $135. Then we saw in the graph that
the same case happens, only that [the amount of] Moshon is
larger by $60 than Danny's amount.

Table 14.1 presents the distribution of the students' choice of representa-
tions on each of the first seven questions. Besides the obvious dominance of
the numerical representation, it should be noted that some questions
attracted a relatively large proportion of other representations. Thus, about
20 percent of the answers to question 5 (finding when the savings are equal)
were based on graphs, and more than half of the answers to question 7 (find-
ing when the total savings exceed $400) were either verbal or algebraic.

CONCLUSION
Many mathematics educators recommend using multiple representations

in algebra. We have tried to illustrate some concrete ways of enhancing stu-
dents' awareness of these advantages and their ability to use them in their
routine work. The design of the Savings activity helped us illustrate our
belief that the promotion of multiple representations depends in the first
place on the presentation of a problem situation and on the nature of the
questions asked. These should suggest, legitimize, recommend, and some
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TABLE 14.1
Choice of Representation as a Percent of Total Responses?for Each Question and the
Assessment Task as a Whole

Question Numerical Verbal Graphical Algebraic Unidentifiable

1 68 0 5 16 1 1

2 74 3 5 13 5

3 71 10 7 7 5

4 51 14 19 0 16

5 61 5 24 0 10

6 59 13 13 2 13

7 25 41 8 13 13

Total 60 13 12 7 8

*The total number of students was 70 (35 pairs). However, if two representations
were used in a pair's answer to a question, each representation was counted separate-
ly in the corresponding column.

times even require more than one representation. To internalize the princi-
ple of multiple representations, student reflection on these actions is also
needed and should be promoted by the task design.

The Savings activity and its follow-up task were conducted as regular class-
room activities and were not planned and carried out as research. However,
the analysis of students' responses supports our claim that suitable problem
posing and questioning-and systematic encouragement of students' experi-
mentation with various representations-can increase the awareness of, and
the ability to use, various representations in the solution of a problem.

The predominant use of the numerical representation was expected. We
relate this preference to the students' early stage in their learning of algebra
and to the fact that in many situations the nature of a task makes the use of a
numerical approach mathematically sound.

The good news, however, is that if students are given an appropriate learn-
ing environment, they will be able and willing to employ a wide variety of
solution tools and paths. In our analysis of students' work, we found that the
choice of a representation can be the result of the task's nature, personal
preference, the problem solver's thinking style, or attempts to overcome dif-
ficulties encountered during the use of another representation. Frequently,
the choice of representation is influenced by a combination of several fac-
tors. To answer a question, students may choose a representation on the
basis of their analysis of the problem and personal preference, and they may
switch to another representation at a later stage as a result of difficulties in
the solution process.
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From Fibonacci
Numbers to Fractals
Recursive Patterns and

Subscript Notation

Deborah S. Franzblau

Lisa B. Warner

WHEN one of us taught the college course Mathematics for Liberal Arts, sev-
eral students were in a panic after the first class: "We enjoyed the game we
played tonight-but we're not going to do any algebra, are we?" "You just
did!" replied the instructor. The students had just played a number game in
which they had to formulate a winning strategy. "That was algebra?" one
student asked incredulously. Algebraic thinking did not frighten these stu-
dents-but some other aspect of algebra did.

On the second evening, the class tried an activity used by the instructor to
teach algebra to middle school students: What's My Rule? Using the follow-
ing table, students had to describe a rule relating the input N and the answer
A, then try to give a formula for the rule.

N A

4 17

1 2

7 50

2 5
9 82

This work is supported in part by the NSF NY Collaborative for Excellence in
Teacher Preparation under grant # DUE 945 3606. All opinions expressed are those of
the authors and not necessarily those of the Collaborative.
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A few students had trouble describing a rule: "I'm coming up with the
answers, but I can't explain what I did in my head," one lamented. But the
majority seemed to agree with the student who said, "I'm really good at
explaining the function in words, but I get confused with formulas-can't I
just stop with the words?"

Later in the course, the students were introduced to fractals and Sier-
pinski's triangle; the first three stages of the construction are shown in fig-
ure 15.1. After a discussion, we looked at related numerical sequences,
such as the number of triangles shaded at each stage, shown in the follow-
ing chart:

Stage O I 2 3 4 ... N
IShaded triangles 1 3 9 27 4? . | H

A AAAA
stage 0 stage 1 stage 2 stage 3

Fig. 15.1. Construction of the Sierpinski triangle, stages 0-3.

The students quickly saw that each new term can be found by multiply-
ing the preceding term by 3. One student explained why: Each stage con-
tains three smaller copies of the preceding stage. When it came to writing
down a formula, however, many of the students became increasingly frus-
trated.

This story illustrates a central theme in this article: Students can recognize
and continue patterns readily-what gives them trouble is recording their
thinking with symbols.

Both the sequence of stages of Sierpinski's triangle and the list of the num-
bers of shaded triangles (1, 3, 9, 27, ... ) are examples of recursive patterns,
sequences in which each object can be generated systematically from the pre-
ceding objects. Recursive patterns are often easy to understand but difficult
to record.

SEQUENCE NOTATION: RECURSIVE AND
EXPLICIT FORMULAS

There are two standard mathematical representations for sequences, sub-
script notation and functional notation. The first three terms of the
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sequence (1, 3, 9, 27, ... ) can be represented in subscript notation as t1 = 1,
t2 = 3, t3 = 9 and in functional notation as t(l) = 1, t(2) = 3, t(3) = 9. In
each example, t, or t(n) is the term of sequence t in position n, or, more
abstractly, the value of function t evaluated at n. The choice of the index
set {n} is a matter of taste or convenience; for example, the first three terms
can also be written as to = 1, t1 = 3, t2 = 9.

A recursive formula for a sequence, called a recurrence relation or a differ-
ence equation, is a formula in which each term in the sequence is a function
of one or more previous terms. A recursive formula for the sequence (1, 3, 9,
27, ... ) is tn = 3tn , (in subscript notation) or t(n) = 3t(n - 1) (in functional
notation). To represent a sequence uniquely, we also need an appropriate set
of initial values; in this example, only one initial value is needed: t1 = 1. The
recurrence is then valid for n Ž 2. The labeling of terms is a matter of choice;
for example, an equivalent recursive formula is t, = 3tn.

The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ... ) is a famous recursive num-
ber pattern, in which each term is the sum of the two previous terms. A
recursive formula is F, = F,n + F,- 2. Given initial values F1 = 1, F2 = 1, the
recurrence is valid for n Ž 3.

In an explicitformula, each term is obtained directly from the independent
variable(s). For example, (1, 3, 9, 27, ... ) has the simple explicit formula t. =
3` (n Ž 1). Explicit formulas for the Fibonacci sequence are more compli-
cated (see Epp [1995, p. 460]).

What Is the Value of Sequence Notation?
When I use "the previous result" and arrows on the board, all is fine, but that nota-
tion breaks down quickly. (Charles H., middle school teacher)

If introduced after conceptual understanding is established, then the subscript nota-
tion can be very useful, both as a meansfor implementing the recursive algorithm
and as a way to unify different topics. (Hart 1998, p. 266)

The recent Principles and Standardsfor School Mathematics (National
Council of Teachers of Mathematics [NCTM] 2000) recommends in the
Algebra Standard (pp. 296) that students learn to use standards sequence
notation during grades 9-12 for recursive as well as explicit relationships.
For students who later study discrete mathematics, calculus, or computer
science, understanding both subscript and functional notation is essential,
for example, to work with summations of functions. Also, subscript notation
can be used to focus on the values of the terms, whereas functional notation
can be used to focus on the method for generating terms. Both notations are
useful for computation. Spreadsheets and some calculators use a system
equivalent to subscript notation. Computer programming languages often
use functional notation.
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Many teachers start with simplified variables such as ANSWER and PRE-
VIOUS, or NEXT and NOW (Hart 1998, p. 262).Such notation works well
for arithmetic and geometric sequences, but standard sequence notation is
more appropriate for the Fibonacci sequence (1, 1, 2, 3, 5, 8, ... ) and is in
general more flexible. For the triangular numbers (1, 3, 6, 10, 15, 21, ...) it is
necessary to introduce another variable: ANSWER = PREVIOUS + STAGE.
Sequence notation can reveal the relationships between variables: letting T,
be the nth triangular number, T, = Tn, + n. Moreover, standard notation
connects recursive and explicit formulas. For example, an explicit formula
for the triangular numbers can be written as T, = n(n + 1)/2.

DECIDING TO TEACH SUBSCRIPT NOTATION
In the past, we tried to avoid sequence notation when possible, agreeing, for

example, with Hart (1998, p. 265) that "formal subscript notation is powerful
but dangerous. If subscripts are introduced too soon, students may get bogged
down in the technical formalism and miss the basic idea of recursion." Instead
we relied on tables, words, or simplified notation, as in Maletsky (1997) or
Billstein, Libeskind, and Lott (1997, ch. 1-2). We were dissatisfied with these
approaches, however, and concerned that we were shortchanging our students.

Our discussions motivated us to teach students in the Mathematics for
Liberal Arts class to use subscript notation. Although the students had diffi-
culties at first, after substantial time for practice and discussion, they were
able to use the notation successfully and were gratified by their success.
Emboldened by this experience, and knowing the difficulties that more
advanced students in calculus or discrete mathematics have with sequence
notation, we wondered whether students would benefit from exposure to the
notation much earlier in the curriculum. We decided to introduce subscript
notation in three seventh-grade mathematics classes: two standard heteroge-
neous classes and an honors class. We looked carefully at students' written
work and interviewed selected students. We hoped to better understand stu-
dents' thinking and improve our methods for teaching the notation.

Subscript Notation versus Functional Notation
Our decision to focus on subscript notation grew out of a discussion in a

class for preservice elementary school teachers. The students, who had seen
parentheses only in the context of multiplication, explained that they inter-
pret an expression like f(5) = 10 asfx 5 = 10. Even worse, they have an
almost irresistable urge to solve for f to obtain f = 2.

Also, most middle school students in our district are just learning to use
parentheses in multiplication. We believe that introducing a very different
use of parentheses at the same time would confuse students unnecessarily.
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INTRODUCING STUDENTS TO SUBSCRIPT NOTATION
In the standard seventh-grade classes, we wrote the terms (1, 2, 4, 8, ... ),

then asked students to look for a pattern, write a description in words, and
try to give a formula. No instructions were given on how to create the for-
mula. We interviewed students on audiotape as they worked and then col-
lected their written work. As expected, most students had little trouble rec-
ognizing and continuing the pattern. And, in each class, at least two-thirds
of the students gave a reasonable written description of their procedure:

You have to multiply every number by 2 to get your answer.
The way you see your pattern is you double your numbers.
My strategy was that I just doubled the numbers as I went down the chart.
You have to double the number to get the next number until you are done.

The students already had experience with variables and formulas from
playing What's My Rule? and from other classroom activities. About a third
of the students gave variants of the formulas Nx 2 = A, or N + N = A, where
A meant "the answer" and N meant "the answer before:'

As students presented their formulas, using their own notation, they gave
descriptions like "you take the answer and multiply by 2." The question
"Which answer do you mean?" generated such responses as "the answer
before" or "the answer you need" as well as "the previous answer'" One stu-
dent, Mike, pointed out that the numbers were powers of 2 (2°, 21, 22, ... ).
Jessica suggested 2N as a formula to record this pattern. The students then
had two formulas for the same sequence, in which N had a different mean-
ing in each. This result presented a good context in which to introduce sub-
script notation:

Now I'm going to show you a more sophisticated way to record your thinking.
Let's use n to represent the stage number and Fsub n to represent the answer.

One teacher wrote the following on a transparency:

n = Stage Number
Fn = Answer

Stage: n o 1 I 2 |
Answer: F. 1 2 4 8

Fo F, F2 F3 #

The teacher then said, "I'm also going to use F sub n minus I to mean the
previous answer" and added a line to the transparency:

F,,, = Previous Answer
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Students were then asked a series of questions to help them understand
the notation:

"If n is the stage number, how can we represent the previous stage number?"
"What symbols should we use for the answer before the previous answer?"
"If we are looking at Stage 9, what would F sub n be?"
(In Stage 9) "What would Fsub n minus 1 be?"
"If the answer, F sub n, is 32, what can we call 16?"

After the students seemed comfortable with the new symbols, they wrote
a journal entry on notation for sequences and recursive formulas. In each
of the seventh-grade (nonhonors) classes, about a fifth of the students gave
a correct formula by using subscript notation: either F, - + F, - = F, or
F-, x 2 = F&.

Many of the college students, as well as the seventh graders, at first
thought that F,-, meant "take the answer and subtract 1," or F, - 1, rather
than "the previous answer:' Students had to discuss the difference between
the two interpretations several times to clarify the meaning.

Some students at first resisted using both F and n. Angela wrote both

F F F
n-I n-I n

and Fx 2 = F. Johanna wrote F+ F= Fand (F-I) x 2 = F They must have
felt like the college student who asked, "Why do you need all of that just to
mean previous answer? Why don't you just have one F?! "

Probing Further into Student Understanding
The seventh-grade honors class first saw subscript notation earlier that

term when studying the Fibonacci numbers (1, 1, 2, 3, 5, 8, ... ). (This is the
source of the letter F in the formulas above.) Later, as part of a geometry les-
son, students generated the following table relating the numbers of vertices,
edges, and faces of n-sided prisms.

n = number of sides 3 4 5 6
Number of vertices 6 8 10 12
Number of edges 9 12 15 8
Number of faces 5 6 7 8

After reviewing subscript notation and formulas, students wrote journal
entries discussing both recursive and explicit formulas for the patterns they
found. Most students gave correct formulas, for example, 3n = e as an
explicit formula for the number of edges e and F, - + 3 = F, as a recursive
formula with F, representing the number of edges.

191



192 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

The students' consistent use of F, as a variable name in recursive formulas
reflects the teacher's decision to postpone the introduction of new variable
names to allow students to focus on one new visual element at a time. After
seeing the formulas in class, many students started using F, in explicit for-
mulas as well, writing 3 n = Fn instead of 3 n = e, for example.

Also, virtually all the students wrote the answer to the right of the = sign,
using = to mean "gives" or "produces;' as discussed in Kieran (1992, p. 393).
The correct grammar is "F, = F, + 3'" where = means "is defined to be?'

Even after students had agreed on the correct way to write subscript nota-
tion, several continued to write the notation incorrectly. Michael wrote an
ambiguous Fn - I + 2 = Fn for the number of vertices. Gina and Kristy
wrote Fn , + 3 = Fn for the number of edges; Rachel wrote FnJ' + 3 = F,.
We thought at first that the reason was visual inexperience or sloppiness.
Some students were interviewed to find out more. Michael's responses
seemed to confirm the sloppiness theory.

Interviewer: Suppose I give you F, = 14 and I want F sub n plus one
[ writing F, , l]

Michael: That would be the answer after, Fof n plus one would be
sixteen [writing F, + I = 16].

Interviewer: Do you see any difference between the way I'm writing F
of n plus one and the way you're writing it? [ Question
echoes Michael's use of the functional language "Fof n."'

Michael: [Correcting his written expression to F, l = 16.] If you
had a bigger n-a regular-sized n-that would mean
"Fn," but when you have the little n, that means "F of n."

However, interviews with Gina and Kristy (who were counting edges
rather than vertices) showed that there was conceptual confusion behind
some of the subscript position errors.

Interviewer: [Writing F, = 18] Does this mean something to you?
Gina: Yes, it means the answer is eighteen.

Interviewer: If I write this [Fn,+ ] what does that mean?
Gina: The answer after it ... no, the answer plus one, eighteen

plus one is nineteen.
Interviewer: Which one does it mean, the answer afterward or the

answer plus one?
Gina and Kristy: The answer plus one.

Interviewer What if I write this [F, I]?
Gina: That would be the answer before.

Interviewer What if I write [F,-2 ]?
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Gina: That would be twelve, since Fn is eighteen. [ Correctly
seeing that F,2 = (Fn - 3) - 3 ]

It seemed strange that Gina and Kristy were able to generalize to moving
backward in the sequence, but not to moving forward. Samantha also
thought Fn I meant "the answer plus one," even though she wrote her for-
mula correctly as Fn - + 3 = Fn.

We began to suspect that the students did not completely understand the
logic of the notation; that is, they did not see n as an independent variable.
To check this, we gave students the triangular number problem, based on the
pattern shown in figure 15.2.

1 2 3 4 5

Fig. 15.2. Triangular arrays

Students helped create the following table and were again asked to
describe a pattern and give a formula for the pattern.

Number of rows 1 2 3 4
Triangular number 1 3 | 6 10 ...

The results confirmed our suspicions: Only four of the thirty-four stu-
dents wrote their formula as F, , + n = Fn; more than half the students
wrote formulas of the form F, - + S = Fn, using S to represent the stage
number (number of rows) and not seeing that S - n.

Samantha wrote F,1 + N = Fn. We thought incorrectly that she was not
case-sensitive:

Interviewer: Is this (capital) Nthe same as the little n?

Samantha: Well, not really because Fof n is the answer but Nis just
representing a number that you're not sure of.

Interviewer: I see two different Ns here, a big N and a little n. What
does this little n represent?

Samantha: The little n is part of F of n and F of n means "the
answer" ... The little n doesn't mean anything separate-
ly-it's just part of F of n.

Gina also became confused when asked what the little n represented: "It's a
variable ... I mean without this it's not like ... you wouldn't know ... but it's
not that specific."
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Putting together Samantha's and Gina's responses with an earlier state-
ment of Gina's finally cleared up the mystery. When asked what her formula
(Fn , + 3 = Fn) meant, Gina said: "The previous answer plus three equals F
of n. F of n is the answer; F of n minus one is the answer before; minus one
means before it."

This was the source of the confusion: students were viewing F, as a single
symbol for "the answer"; they interpreted F(n I) as (Fn.),, seeing the -1 as
code for "back up one from the answer." With this interpretation, an error
such as writing FnR' is very natural. It is surprising, however, that the same
student would not interpret the + I in F, t I as "move forward one from the
answer"; it may arise from having experience only with formulas using Fn,
F -1, and Fn- 2

PERSPECTIVES FROM RESEARCH
ON SCHOOL ALGEBRA

Research on the teaching and learning of algebra, as described in the sur-
vey by Kieran (1992), can shed light on our observations.

The Concept of a Variable
A full understanding of subscript notation such as F, requires seeing that F

by itself represents the sequence and that n is an independent variable that
can take on whole-number values (0, 1, 2, 3, ... ). One must recognize that
expressions such as n - 3 or n + 1 are dependent variables representing
sequence positions and that Fk is a dependent variable representing the kth
term of F. Even a brief look at the historical development of the concept of a
variable, as outlined in Kieran (1992, p. 391), makes clear that substantial
time is needed to reach the necessary level of sophistication. Kieran's outline
describes a progression of levels of understanding:

* Level 0: using ordinary language to solve problems involving unknowns
* Level 1: using letters as specific unknown numbers
* Level 2: using letters as generalized numbers-(independent) variables

that can take on a set of values
* Level 3: using letters as both independent and dependent variables

Moreover, Kieran notes, letters were used to represent unknown values only
after Diophantus (c. A.D. 250) and were not used to represent variables
before the Renaissance in the 1500s. An explicit distinction between depen-
dent and independent variables required yet another two hundred years.

Most of the students we worked with seemed comfortable with variables at
Level I or Level 2, in the context of input-output rules, but it is not surpris-
ing that they did not see n as a variable in its own right in an expression like
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F, - + 3 = Fn, since such understanding is at Level 3. The recursive formulas
themselves, however, may be useful later as a context for teaching the con-
cept of independent and dependent variables.

Procedural versus Structural Understanding
The central learning model developed in Kieran's survey, based primarily

on the work of Sfard, is what Kieran calls the "procedural-structural cycle"
(1992, pp. 392-93). In this model, learning any new mathematical concept
requires an initial understanding in terms of processes or procedures
involving familiar mathematical objects, followed by a period of assimila-
tion, and eventually culminating in a new understanding or perspective in
terms of a single structure or new mathematical object. A similar model
appears as part of a theoretical framework used by the Research in Under-
graduate Mathematics Education Community, derived from the work of
Piaget and Garcia (Asiala et al. 1996). In mathematics, both perspectives
are necessary.

For example, when students encountered the sequence (1, 2, 4, 8, 16,
.), they first found a procedure to generate the sequence; either 1 x 2 = 2,

2x2=4,2x4=8, ... ,or I + I =2,2+24,4+4m=8....Afewstudents
saw (procedurally) that 4 = 2 x 2 = 22, 8 = 2 x 2 x 2 = 23, 16 = 24.. . then
realized that I = 20 and 2 = 2'. Over time, as they meet the same sequence
in different contexts, without any calculation, students should recognize it
as a geometric sequence with ratio 2, or as the sequence of powers of 2.

In the procedural-structural model of learning, learning new notation can
be seen as part of the phase of assimilation needed to learn a new concept.
However, our experience suggests that the notation itself is a new mathemat-
ical idea, which requires its own separate learning cycle.

Also, from this perspective, it is natural for students to interpret F, to
mean "the answer you want" and F,-, as "back up one to the previous
answer" because this corresponds exactly to the recursive procedure they
used to compute the terms of the sequence. If students are thinking procedu-
rally, it makes sense that they interpret an expression like b. = 2" as "to get
the answer you want, keep multiplying 2 by itself until you are done" rather
than "to find the term in position n, raise 2 to the nth power" Seeing n as a
variable requires a more structural perspective.

TEACHING SEQUENCE NOTATION:
RECOMMENDATIONS

Although our findings are preliminary, our observations have helped us
clarify some important issues in teaching subscript notation. In this section,
we formulate recommendations on the basis of our current understanding.
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Calculation Provides Motivation for Learning Notation
Students find recursive patterns both accessible and compelling, whether

presented as puzzles or in the context of solving another problem, such as
counting shaded regions in the Sierpinski triangle. On their own, even
young students often find a way to generate a sequence recursively. For
example, when a fourth-grade class was introduced to Fibonacci's classic
rabbit problem, "eventually, one of the girls in the class realized that ... 'You
can get the new number by adding the last two numbers together"'(Kowal-
czyk 1997, p. 28).

Learning sequence notation, however, requires significant time and effort,
and students need to believe that it is worthwhile. The seventh-grade stu-
dents seemed to find the problem of recording ideas in a formula interesting
in its own right, probably because the teacher put a high value on the
process and communicated this belief to the students. She also communicat-
ed the value of accuracy and clarity, asking, for example, "If a visitor walked
into class right now, would she or he be able to use your formula?"

Problems involving calculation, such as finding the thirtieth term of (1, 2,
4, 8, ... ) or determining when the Sierpinski triangle has more than 500
shaded triangles, provide strong motivation for learning sequence notation,
even when the notation is not essential. The college liberal-arts students
began to see the value of subscript notation after trying the following version
of a classic problem (Phillips et al. 1991, p. 15):

Miracle Mike makes $1 million per year. A rookie makes only $1 the first year, $2
the second, $4 the third, $8 the fourth, and so on. In year 25, who has earned
more money in total?

When students shared and discussed their strategies, it quickly became
clear that those who had been able to write down correct formulas,
whether explicit or recursive, found it easier to calculate the answer and
were less likely to make errors than those who could give verbal descrip-
tions only.

Build Understanding of Variables First
Basic understanding of recursive patterns can be checked by asking stu-

dents to generate the next few terms of a given pattern and to compute spe-
cific terms. The key to student readiness to use sequence notation seems to
be the ability to use variables to represent a range of numbers and to create
formulas to describe functional rules. Playing games like What's My Rule?
and writing both explanations and formulas for rules seem to be effective for
teaching these concepts.

Students who are not ready to use subscript notation often simply ignore
it at first. Over time, as they see other students using the notation and start
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to make sense out of it, they start to use it. One useful feature of the notation
is that partial use is still mathematically correct. For example, Fn I + S = Fn
is a valid formula for the triangular numbers, even if a student does not see

that S = n. Students can move to a higher level of sophistication when they
are ready but still write down a correct formula.

Writing in English Is Valuable
We thought that students who initially created a correct formula without

instruction, such as n x 2 = a for the doubling sequence, would be the first

to use subscript notation correctly. To our surprise, this did not occur
among either the seventh graders or the college students. Many simply con-

tinued to use their original formulas and ignored the new notation. Howev-
er, almost all the students who did use subscript notation right away had
first given a good description of the pattern in words.

This observation suggests that an important first step in learning sequence
notation is writing descriptions of both explicit and recursive rules in natur-
al language. An explicit connection between writing descriptions and writing
formulas is confirmed in MacGregor (1990).

Jump Right In with Standard Notation
Students who can successfully write down a formula using simpler vari-

ables may feel satisfied that they have solved the problem, whereas those
who are unable to create a formula believe that subscript notation gives
them a needed tool. Our observations also suggest that using simplified
variables, such as ANSWER and PREVIOUS or NEXT and NOW, may

actually be a barrier to making a transition to standard notation, even
though this approach is often recommended (see, for example, NCTM
[2000, p. 285]).

Overall, we were satisfied with a direct approach to introducing subscript
notation. On the basis of our experience, however, we have started to revise
the script. First, we want to show that subscripts can be used in explicit as
well as recursive formulas: "If F, = 3', what is F8?" Second, we want to clarify
the role of the subscript: "If the stage number n is 7, what is the previous
stage number?"

Seeing that many symbols can be used is necessary for building a structur-
al understanding of the notation. When students seem comfortable with
subscripts, we want them to know that they can choose their own variable
names: "I don't have to use the letters F and n. Many people used s as the
stage number, so we could let A sub s (As) be the answer. What would the
previous stage number be? What would the previous answer be? And how

would you write the recursive formula? What if we used k as the stage num-
ber and T for the answer?"
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However, a question that we find difficult to resolve is how long to use one
set of variable names after introducing the notation. Holding on to one set of
names allows students to build confidence but misleads them to think that
there is only one way to represent a recursive formula. Introducing new names
quickly may help students develop flexibility, but it leads to significant initial
confusion. We do not know which approach is preferable in the long run.

To avoid confusion with the use of parentheses for multiplication, as dis-
cussed above, we taught subscript notation only. If we had students who
were already comfortable with functional notation, or who needed it to write
computer programs, we would have started with that notation instead. The
relative difficulty of learning the two notations and the effect of the order in
which they are introduced are important research questions, but they are
beyond the scope of our work.

Model Correct Usage but Don't Dwell on Mistakes
Errors in writing subscript notation often arise from logical though incor-

rect interpretations and not from an inability to distinguish case or position.
Other errors, such as misuse of the equal sign or parentheses, seem to arise
from students' limited experience or the difficulty of using a familiar symbol
in a radically new way.

Full understanding of sequence notation is likely to take several years.
Thus, our strategy is to approach errors gradually. The teacher should model
the correct use of notation, such as the placement of subscripts and the equal
sign, but need not discuss these issues at first.

Time and Patience Are Essential
Students need plenty of time to assimilate this complex notation and to

work out their misconceptions. For example, most students need to relearn
several times that F, l means "the previous answer" rather than "the answer
minus 1." Peer presentations and class discussion are helpful for correcting
errors.

Teachers need to reassure students that although the notation may seem
complicated or confusing at first, after practice it becomes more natural and
easier to use. Moreover, they should expect students to reach different levels
of sophistication depending on their initial cognitive level or background.

Analogies can help reduce student anxiety. For example, a teacher could
suggest that students imagine an infinite street where Fn is the number that
lives in the house with address n. Or, that they could think of F as an infinite
cash-register tape and Fn as the total for customer n. However, in light of the
procedural-structural learning model, such analogies are unlikely to help
students understand the notation, since they arise from a structural rather
than a procedural perspective.
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CONCLUSION
Interesting recursive patterns arise naturally in the study of numbers, alge-

bra, probability, and geometry. Such patterns fascinate students and spark
creative thinking, so they are quickly becoming staples of the curriculum, as
recommended in both the original and the new NCTM Standards docu-
ments (1989, 2000). For more background on recursive sequences, and dis-
crete mathematics in general, see Kenney (1991), Kenney and Bezuszka
(1993), Hart (1998), and Rosenstein, Franzblau, and Roberts (1997).

Before the experiments we have described, we, like many teachers, believed
that standard sequence notation is too confusing for students before late
high school or college, and we avoided using it. However, it is now clear to us
that mastering either subscript or functional notation is a long-term process.
It seems essential to introduce it in the curriculum well before students need
it in calculus, computer science, probability, or discrete mathematics.

Our experience suggests that middle school is not too early to introduce
sequence notation, provided that students already have experience with pat-
terns, verbal descriptions, variables, and formulas. As long as students are
already interested in recursive patterns and in devising formulas, the nota-
tion, though complex, allows students to express their own thinking in a
powerful way.
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Tracing the Origins and
Extensions of Michael's

Representation

Regina D. Kiczek

Carolyn A. Maher

Robert Speiser

MICHAEL is a high school student who made perceptive use of a binary
number representation to relate two different problems, revealing their simi-
larity of structure. His coding scheme, initially developed to solve a counting
problem, eventually enabled him to make deep connections among other
problem situations. Michael's work reflects a long-term process in which he
and a group of peers explored important combinatorial questions, not by
working with single isolated episodes or topic chunks, but rather by revisit-
ing important tasks across a period of years.

In the episodes that follow, which we present as part of a longitudinal
study of students' development of mathematical ideas, Michael and his
group engaged in a series of combinatorics and probability investigations.
The representation that Michael developed to solve one problem and to jus-
tify his results became a tool for keeping track of all possibilities in other
problem situations. The group members continued to use their own differ-
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ent representations to list possibilities; still, they were able to explain
Michael's representation and relied on it to check their own ideas. As time
went on, Michael was able to use his representation to understand and
explain the addition rule of Pascal's triangle. We begin the story with
Michael's written explanation, given in the unedited e-mail that was sent to
one of the researchers (fig. 16.1).

In this e-mail message, Michael indicated that he had been thinking about
a question posed some time before. Approximately three months earlier, in a
task-based interview, Michael had reviewed how he used binary numbers to
represent the eight different pizzas that can be made when three toppings are
available. Referring to the sequential list of binary numbers he had written,
Michael explained that 000 was the code for a plain cheese pizza with no
toppings and Ill was the code for a pizza with "everything on it." When the
teacher-researcher inquired about the distribution of those pizzas, Michael
brought up Pascal's triangle.

Teacher-researcher: Can you give me the distribution of those kinds of
toppings-how many with none, how many with
one, how many with two, and how many with
three? Can you tell me what that looks like?

Michael: Yeah, I could. I could tell you what ... [pause]. Have
you ever heard of-oh, you probably have-that
triangle?

Teacher-researcher: Pascal's?
Michael: Yeah. That has a lot to do with it.

As Michael wrote the first several rows of the triangle, he stated that the
entries corresponded to the number of pizzas in each category. He showed,
for example, that the entries 1, 3, 3, 1 in row 3 of Pascal's triangle gave the
occurrence of each type of pizza when selecting from three toppings, indicat-
ing in his list the three codes for pizzas with one topping and the three codes
for those with two toppings. He then extended this explanation to pizzas
that could be made when selecting from four toppings, pointing out the
groups of pizzas on his list that corresponded to the entries 1, 4, 6, 4, 1 in the
next row of the triangle.

Michael knew the addition rule for Pascal's triangle; indeed, he used it to
generate the first few rows. The question posed by the teacher-researcher,
prompting Michael's e-mail response, was how the metaphor of counting
pizzas connected to the addition rule. During the remainder of the inter-
view, Michael provided specific examples to illustrate how the addition of
another topping would affect both his representations and the entries in a
particular row. He agreed to put his ideas down on paper and send them to
us.



Hi this is Mike. Here are my thoughts on the question that you
gave me a while ago. When I was asked to come up with a solution
to the pizza problem (a long time ago) I used the binary numbers
to give an answer.

M=mushoom
P=peppers
S=sausage
p=pepperoni

1=topping is present
O=topping is not present
O=number expressed by the binary "oode"

4-topping pizza
MPS
O a O O - no toppings (0)
O C 0 1 - pepperoni (1)
O O 1 0 - sausage (2)
O O 1 1 - sausage and pepperoni (3)
O 1 0 0 - peppers (4)
O 1 0 1 - peppers and pepperoni (5)
O 1 10 - peppers and sausage (6)
O 1 11 - peppers, sausage, and pepperoni (7)
1 0 0 0 - mushrooms (8)
1 0 0 1 - mushrooms and pepperoni (9)
1 0 1 0 - mushrooms and sausage (10)
1 0 1 1 - mushrooms, sausage, and pepperoni (11)
1 1 0 0 - mushrooms and peppers (12)
1 1 0 1 - mushrooms, peppers, and pepperoni (13)
1 1 1 0 - mushrooms, peppers, and sausage (14)
1 1 11 - mushrooms, peppers, sausage, and pepperoni (15)

There is a relation ship between that and Pascal's Triangle
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

You see, in the pizza example above there were

1 pizza without toppings
4 with one topping
6 with two toppings
4 with three toppings
1 with all four

How come these numbers look so familiar???
Look at the fifth row of Pascal's Trianglel

Fig. 16.1. Michael's e-mail message



If you added another topping to the list like anchovies, you
would have:

1 with 0 toppings
5 with 1 toppings
10 with 2 toppings
10 with 3 toppings
5 with 4 toppings
1 with 5 toppings

Why?
Here's why.

The way you make the triangle is by taking the numbers from
the row up ahead and adding every two together. (think of hav-
ing zeros on each side of the "triangle")

1 3 3 1 -> 0+1, 1+3, 3+3, 3+1, 1+0
1 4 6 4 1

In the 1 3 3 1 sequence the first position represents the bina-
ry numbers with all zeros (no topping pizza)
but when you add another topping, it could either have it or
not:

0000
/

000< or

0001

So now this 1 pizza combination turned into two. So do all the
other combinations. When you add a topping you put a one on
the end of it if not you put another zero onto it.

This explains why the Pascal's triangle works:
I

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

The underlined I represents a pizza with no toppings with a
choice of 2. The 2 represents 2 pizzas with 1

Fig. 16.1 (cont.)
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Fig. 16.1 (cont.)

BACKGROUND
The students named in this article are part of a larger group that has

thoughtfully and collaboratively investigated meaningful mathematical
problems since grade 1. They have been invited to make conjectures and
develop theories about their ideas. In the course of explaining solutions, they
have justified their reasoning. We have had opportunities to reexamine stu-
dents' original representations in the light of new discussions, as they revisit-
ed ideas in pursuing the same tasks or extensions of those tasks. We were
particularly interested in examining how their ways of working, as shown,
for example, by the representations they used and the way they used them,
might change with time. We also wondered what connections they might
make between earlier ideas and new problems.

In this article, we focus on the mathematical ideas of five students, Ankur,
Brian, Jeff, Michael, and Romina, who have a long history of doing mathe-
matics together. In elementary school, they were usually in the same mathe-
matics class, if not the same group. They were observed within the classroom
setting; at times, small-group follow-up interviews were also conducted. The
high school mathematics sessions we describe took place after school, mainly

topping with a choice of 2 toppings and the 3 represents 3 piz-
zas with one topping with a choice of 3.

Why do we add?

We add because of the fact that every combination will get
another place (a 1 and a 0) therefore it doubles the amount of
combinations. The reasons why we add numbers that are next
to each other is simply because the underlined 1 will become
into two new pizzas after another topping choice is added. One
of those will be the same (no toppings) and the other will have
one topping. The same will happen for the 2. The two will
become 4. 2 the same (one topping) and two with two top-
pings. Now you have three one topping pizzas 1 comes from
the I in the "upper level" of the triangle, and two come from 2
in the "upper level".

That is why ya add 'em...

e-mail me soon with your response.

M I K E
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on Friday afternoons. Tasks that they originally explored in the fourth and
fifth grades initiated a series of related investigations involving combina-
torics in the tenth and eleventh grades. Two problems initially posed by the
research team in elementary school provided foundations for the explo-
rations in the tenth and eleventh grades: The Pizza Problem and Building
Towers. (The original pizza problem presented in grade 5 was the Pizza
Problem with Halves: "A standard 'plain' pizza contains cheese. Toppings can
be added to either half or the whole pie. How many choices are there if you
can choose from two different toppings? List all possibilities. Convince us
that you have accounted for all possibilities and that there could be no
more." Students were then invited to consider this problem when selecting
from four toppings.)

The Pizza Problem: A pizza shop offers a basic cheese pizza with tomato
sauce. A customer can then select from the following toppings: peppers,
sausage, mushrooms, and pepperoni. How many choices for pizza does
a customer have? List all the possible choices. Find a way to convince
one another that you have accounted for all possibilities.
Building Towers: Build all possible towers four (or five, or three, or n)
cubes tall when two colors of Unifix cubes are available. Provide a con-
vincing argument that all possible arrangements have been found.

At this point, the reader might want to pause a moment and review the
mathematics that these tasks invite learners to consider. A pizza with four
possible toppings, or a tower four blocks high (with two colors available), is
determined by a combination of four things taken a certain number of times.
For example, towers in two colors (say, red and blue) where exactly three of
the four cubes are blue represent combinations of four objects taken three at
a time, as do pizzas with exactly three toppings chosen from among four
possible toppings. Both of these tasks challenge students not only to enu-
merate all possible combinations but also to justify their enumerations. The
demand for justification, rather than simply for an "answer," sets the stage
for building suitable representations through which lines of reasoning can be
proposed and then explored, argued, and modified.

Archived videotape data, along with copies of students' work, gave us evi-
dence of the students' mathematical ideas as fifth graders. At that time, they
were part of a group of twelve classmates engaged in this problem investiga-
tion. Using a variety of strategies and representations, including a partial tree
diagram, lists, and an organization that systematically controlled for vari-
ables, they were able to find all sixteen pizzas. Michael drew circles to repre-
sent the various pizzas, labeling each with its toppings. The students created
codes using letters or abbreviations to represent the four toppings (e.g., pep
for pepperoni, m for mushrooms), and they also decided to code for a pizza
with no toppings (denoted, in different situations, either by pl for plain or by
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c for cheese). They distinguished between "whole" pizzas (plain or with one
topping) and "mixed" pizzas (with two or more toppings). The original rep-
resentations displayed by the students in grade 5 employed notation that
enabled them to keep track of their ideas and to account for all possibilities
to reach a solution.

Nearly five years later, the representations first displayed by Romina, Jeff,
Brian, and Ankur were similar to those they had used in the fifth grade. They
worked collaboratively, talking aloud about combinations of toppings and
patterns that they were observing as they considered the cases of two, three,
four, and five (modifying the original problem) available toppings. They ini-
tially built individual lists, using codes of letters to represent the different
toppings, not unlike the codes they used in grade 5; however, they soon
switched their notation to the numerals 1 through 5 so that they could more
easily compare their lists.

MICHAEL'S REPRESENTATION
Michael, however, spent at least fifteen minutes quietly developing his own

solution, a symbolic representation based on a binary coding scheme. He
joined the discussion when the other four students announced their solu-
tion. Michael disagreed with their assertion that if five toppings were avail-
able, thirty different pizzas could be made with at least one topping, plus one
plain (or cheese) pizza, for a total of thirty-one.

Michael: I think it's thirty-two, with that cheese [a plain
cheese pizza]. And without the cheese, it would be
thirty-one. I'll tell you why.

Ankur: Mike, tell us the one we're missing then.

Michael responded by explaining what the zeros and ones meant in his rep-
resentation and how they are used to write familiar numbers in base two.

Michael: Okay, here's what I think. You know like a binary
system we learned a while ago? Like with the ones
and zeros-binary, right? The ones would mean a
topping; zero means no topping. So if you had a
four-topping pizza, you have four different places-
in the binary system, you'd have-the first one
would be just one. The second one would be that
[writes 10]; that's the second number up. You
remember what that was? This was like two, and
this was three [ writes 11] .

Jeff recalled where they had seen this before.
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Jeff. I know exactly what you're talking about. It's the
thing we looked at in [eighth grade]; it was with
computers.

Michael continued to relate his coding scheme to the pizza problem.

Michael: Well, you get, I think-I have a thing in my head. It
works out in my head. You've got four toppings.
This is like four places of the binary system. It all
equals up to fifteen. That's the answer for four top-
pings.

When Romina requested clarification, Jeff was able to respond.

Romina: So is the one-is that your topping?
Jeff Yeah. Each one is a topping. The zeros are no top-

pings. The ones are toppings.

Michael then summarized, with acknowledgment from Brian.

Michael: So you go from this number [indicates 0001], which
is in the binary system, it's one, to this number
[indicates 1111], which is fifteen, and that's how
many toppings you have. There's fifteen different
combinations of ones and zeros if you have four
different places.

Brian: Wow!

Michael: I don't know how to explain it, but it works out.
That's in my head-these weird things going on in
my head. And if you have an extra topping, you just
add an extra place and that would be sixteen, that
would be thirty-one.

At this point, Michael's representation allowed him to account for all piz-
zas having at least one topping. Although the students later realized a code of
all zeros represented a plain cheese pizza, this was treated as a separate case
initially.

Jeff. And then you add the cheese?
Michael: Plus the cheese would be thirty-two.

With the assistance of other students, Michael presented his binary coding
scheme to the teacher-researcher, saying, "This is the way I interpret it into
the pizza problem:'

Teacher-researcher: What's the difference between 1-0-0-0 and 0-1-0-0?
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Jeff Well, that would be the difference between an
onion pizza and a pepperoni pizza.

Michael had written his codes in a vertical list. Jeff suggested labeling each
column with the name of a topping. Michael agreed, noting that a 1 in a col-
umn indicated that that pizza had that particular topping. The students were
then asked to consider the cases of ten toppings and, finally, n toppings.
After much discussion, they concluded that the number of possibilities for n
toppings must be 2".

The teacher-researcher then asked the students whether this problem
reminded them of anything else that they had done before.

Brian: Everything we do always is like the tower prob-
lem.... Instead of building a tower, you're building
a pizza.

Remembering their earlier explorations of block towers, begun in grades 3
and 4, the students discussed how towers might relate to pizzas.

Ankur: With the towers, you have like red on top and yel-
low on the bottom and then yellow on top and red
on the bottom ... but with the pizzas you can't have
peppers and pepperoni and then pepperoni and
peppers. Understand that?

Teacher-researcher: So you're saying it's not like it?

Michael: It's similar.

Ankur: It's similar, but it's not exactly alike.

They compared the enumeration of pizzas with three available toppings to
that of three-high block towers with two colors. This time, Romina, Ankur,
Jeff, and Brian worked together to list the towers, using a code of "Y" for yel-
low and "R" for red, while Michael worked alone.

Jeff How many you got over there, Mike?
Michael: I don't know. I'm just writing my binary again

Icause it might work for this!

Several minutes later, the students agreed that there would be eight towers
of height three when they could select from two different colors, just as there
were eight different pizzas when three toppings were available. They also
noted sixteen towers of height four, again selecting from two colors, just as
there were sixteen pizzas when four toppings were available. Intrigued but
tired after working for more than two hours, they decided to adjourn.

One week later, all five students worked together to construct an argument
that the pizza and towers problems are alike, using Michael's binary notation
to construct a mapping between pizzas and towers.
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Michael: Two colors? All right, that, that's easy, 'cause you
can still use the binary ... say I made "zero" blue
and "one" red, and it's the same thing-you can
have any number of combinations.

Presenting at the board, Michael drew a chart with column headings
"mush" and "peppers" and listed his binary representations for the four pos-
sible pizzas when two toppings are available. He then modified his chart,
replacing "mush" with "2" and "peppers" with "1." The column headings
then indicated the two positions that a block can occupy in a two-high
tower, rather than pizza toppings.

Michael: You understand, if you have a tower with two col-
ors, that would be the same as the pizza problem.

The students explained that the number of solutions for both problems,
counting n-high towers or n-topping pizzas, is 2n, where the symbol n repre-
sents either the number of pizza toppings or the height of the towers. The
number 2 denotes, accordingly, either the presence or the absence of a given
pizza topping or the number of colors (two in this example) available for
each position in a tower of given height.

A full year later, in the task-based interview, we invited Michael to
explain once again his binary representation with respect to towers three-
high and pizzas with three toppings. We were interested in how he saw
these problems now and how his binary approach might connect to further
contexts.

Michael: Between the 000 and the 111, there's every possibil-
ity you could-you give me one, it's in there-with
three. So, that's what I like about the binary system,
that everything's in there. So you take [writes 000 to
111 ]-and each one is a number.

Michael was able to easily count the total number of possibilities for a situ-
ation because he saw these representations as numbers, always writing his
lists sequentially, for example, from 0000 to 1111, often saying the base-ten
equivalents out loud as he wrote. For an individual representation, such as
101, the meaning of each 1 and 0 depended on the context, such as a pres-
ence or an absence of a particular topping on a pizza or the location of a
cube of a certain color in a tower.

In the concluding paragraphs of his e-mail, Michael explained why Pascal's
triangle represents the pizza problem by demonstrating in a particular case
that the addition rule that determines the entries of Pascal's triangle must
also hold for pizzas. In this written exposition, he illustrated the general
process informally, moving from pizzas with four toppings to pizzas with
five. In a subsequent after-school session, however, when invited to explain
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his ideas to the group, Michael gave an argument for passing from pizzas

with n toppings to pizzas with n + I toppings (Kiczek 2000). Whether pre-
sented informally or formally, Michael's argument is conceptual because it
treats the numbers that appear, both in Pascal's triangle and in the pizza
problem, as the results of underlying structures that he demonstrates are
mathematically equivalent.

In the group discussion prior to Michael's interview and subsequent e-

mail, the binary code was already linked explicitly to towers. Hence we
may also read the interview and the e-mail as demonstrating, more gener-

ally, that block towers of different heights are also modeled by Pascal's tri-
angle.

CONCLUSIONS
The towers and pizza tasks became metaphors for thinking about impor-

tant mathematical ideas. Michael's representation enabled him to list all pos-

sibilities, first for pizzas and then for a special case of towers. On the basis of
this systematic organization, Michael built arguments, first informally for
special cases and later in greater generality. Michael worked alone before he
shared his coding scheme with others. When he did share it, despite apolo-
gies ("I don't know how to explain it, but it works"), Michael showed quite
clearly how he used the code to solve the given problem. Although the other
students acknowledged its usefulness in later problem situations, the code
continued to be called Michael's "binary thing."

Michael's representation resurfaced later, as a means of keeping track of
different sequences of possibilities, given two choices at each stage, such as
on/off, red/blue, heads/tails, and win/loss. Further, Michael and his peers
were able to extend and modify the coding scheme substantially in order to
solve problems such as counting towers when three colors are available
(Muter 1999) and to model certain sample spaces for probability problems
(Kiczek 2000).

Detailed study of the videotapes of the sessions described here reveals stu-
dents who are accustomed to thinking about mathematics and to communi-
cating ideas. They work comfortably with one another and are able to bring
multiple perspectives to problem explorations, with very little intervention
by a teacher. Throughout the investigations, they cycled through a complex,
many-sided process of discussion and reflection, often "folding back" (Pirie
and Kieren 1992) to earlier ideas. Through their individual and group analy-
ses, they presented, discussed, and modified a variety of strategies and obser-
vations. Further, providing justification for their conclusions each step of the
way helped the students become more confident about their findings. Years
of shared mathematical problem-solving experiences nourished rich discus-
sions, in which the students reconsidered and reshaped their earlier ideas,
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built new images and representations, and then tackled further problems,
sometimes of their own design. Their mathematical power emerged in an
environment that invited students to confront and reconsider prior images,
interpretations, and hypotheses. Our work strongly suggests that appropriate
investigations, extended and revisited over long periods of time, can help
students build strong foundations for important thinking in which represen-
tations, images, and proofs seem to emerge together, in a single process.

We have reported the work of five students who together made some deep
connections among important mathematical ideas. For these students, the
properties of combinations grew from very concrete images, such as towers
and pizzas. Once these properties emerged in Pascal's triangle, they linked
those images into a larger framework that connected quite readily to ideas in
algebra and probability. As such, the prior images anchored abstractions
(Maher and Speiser 1997) that were built as students folded back to recon-
sider and revise earlier images while linking them to new ones that served
different functions. Michael's representation, triggered by the need to find
and justify a particular solution, served as a tool for him and others to con-
nect mathematical situations that he and his classmates explored for a num-
ber of years.

Our work is rooted in the belief that students can build lasting mathemati-
cal images and understandings when they are presented with carefully
designed tasks that invite them to investigate rich problem situations (Davis
and Maher 1997; Maher and Speiser 1997). The investigation of particular
tasks that elicit the construction of combinatorial and probabilistic ideas
forms one important strand in the longitudinal study. Combinatorial inves-
tigations have been found useful for studying the growth of mathematical
thinking (Maher, Muter, and Kiczek in press; Maher and Martino 1992,
1996; Speiser 1997). Such explorations invite students to build ideas and
strategies that they can then test in new situations, which leads to cycles of
conjectural extension, reconsideration, and reformulation.

IMPLICATIONS
The students worked in a community where ideas were shared, discussed,

and revisited, often over long periods of time. They were invited to reconsid-
er earlier problems in contexts that offered opportunities for rethinking and
for further building. This study indicates that when certain conditions are in
place, students can and do construct convincing arguments to support their
findings. The search for justification triggers the construction of new images
and representations, which, in turn, serve as anchors for further connections
and abstractions. The development of mathematical reasoning cannot be the
objective of a single activity but rather emerges in the course of long-term
processes.
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The tasks we have described are parts of specific strands of mathematical
investigations that have been under development in the course of research
for more than a decade. To build important mathematical understandings
through long-term investigation, the tasks and situations that learners

explore must be rich enough to encourage the learners to develop personal
heuristics, techniques, and strategies and then share them with their peers,
in conversation, classroom presentations, and writing. As teachers, we
respond in ways that help the learners widen their repertoire, extend their

thinking, and revisit earlier ideas. The act of writing promotes reflection,
editing, and reorganization. Revisiting gives students the opportunity to
reconsider other ideas, which are often worthwhile alternatives. Inventing a
personal solution is insufficient; it is also necessary to contemplate other
ways of thinking.

As a practical matter, most classroom teachers do not have the opportuni-
ty to work closely with the same students over the course of several years.
However, it is possible for teachers within a school to collaboratively develop

particular tasks and activities that students may explore and revisit at vari-
ous grade levels, thereby offering experiences that will foster the develop-
ment of mathematical understanding. The example of Michael's representa-
tion challenges us all to reflect on our current practice and to consider what
might be possible in mathematics classrooms when suitable conditions are
in place.
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Listen to Their Pictures

An Investigation of Children's
Mathematical Drawings

Kristine Reed Woleck

REPRESENTATIONS are not static products; rather, they capture the process of
constructing a mathematical concept or relationship. Representations allow
mathematicians to record, reflect on, and later recall their process and think-

ing. They become tools to turn to as mathematicians articulate, clarify, justi-
fy, and communicate their reasoning to others. These representations may
take a variety of forms, from diagrams and models to graphs and symbolic
expressions. Despite this broad view of representation, virtually no research
has focused on one tool of mathematical representation and communication
that is particularly significant to the youngest mathematicians-the mathe-
matical tool of drawing.

Drawing can be a window into the mind of a child. From a developmental
perspective, drawing is a form of graphic symbolism that develops prior to
writing (Dyson 1983). Vygotsky (1978) also refers to drawing as a "prelimi-
nary stage" in the child's development of written language. Drawing emerges
as a powerful medium for discovering and expressing meaning; for the
young child, drawing brings ideas to the surface. Add to this the notion that

drawing itself involves the creation and manipulation of symbols, an essen-
tial component of logico-mathematical development, and the significance of
children's pictures becomes all the more evident. Yet, in the realm of early
childhood mathematical representation and communication, the child's
drawing of pictures as a "tool" for understanding mathematics and as a "lan-
guage" for sharing mathematical work has received little attention.

In my own first-grade, public school classroom in southwestern Connecti-
cut, I undertook an action-research study to contribute to this limited body
of research. I investigated the question, How do first graders make use of
pictures as they represent and communicate their mathematical understand-
ings? In the pages that follow, I use children's drawings and classroom anec-
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dotes to describe and document this investigation. After a peek into the
classroom context that set the foundation for the study, I discuss the chil-
dren's functional and dramatic uses of drawing. I then show how the draw-
ing process fostered the development of abstraction and symbol use for this
group of first graders. Before closing, I let us hear the talk that surrounded
the children's pictures; this talk can be the most compelling and valuable
aspect of mathematical drawings for both student and teacher. When we
open our eyes to the drawings of children, we open our ears to the richness
of their mathematical voices.

SETTING THE STAGE
I began my research by setting the stage for the children's mathematical

representations through meaningful mathematical experiences, investiga-
tions, and problem-solving situations. If children are to represent, record,
and communicate mathematics, then they must have rich mathematical
experiences to explore, ponder, and share. The young mathematicians of
Room IR (as we called our classroom) were given time to explore manipula-
tives and solve open-ended problems that encouraged flexibility of thought
and a sharing of diverse strategies and solutions.

We also set the stage in the classroom by talking about mathematics.
Drawing and all other sign systems are built on a foundation of verbal
speech (Vygotsky 1978); oral language precedes and is a bridge to graphic
representation (Dyson 1983). Thus, we talked about the different strategies
that members of the classroom used to solve a particular problem. We talked
about the mathematics happening around us, in the books we read and in
the routines of our daily life. We talked about the mathematics happening in
photos and pictures found in newspapers and children's literature. These
discussions of the mathematics embedded in pictures and illustrations
explicitly validated drawing as a form of representation and communication
used by mathematicians. With this stage set, Room IR mathematicians cer-
tainly had plenty to represent, record, and share.

PICTURES WITH A PURPOSE
It became evident early on in my research that pictures could be used by

children in distinctly different ways to support mathematical learning and
communication. At times in the classroom, pictures were used in a function-
al manner to support problem-solving efforts. Some of the first graders used
their pictures as if they were manipulatives to be organized and counted to
solve a problem. Like concrete manipulatives, these pictorial representations
served as placeholders for thoughts, which allowed the children to carry out
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and record the intermediate steps of a task without being overwhelmed by
the rest of the problem (NCTM 2000).

This functional use of pictures was evident in Dominique's work to solve
"My Father's Wheel Problem" (fig. 17.1). In this open-ended problem, chil-
dren brainstormed the various means of transportation that three children
could take to school and then determined the total number of wheels used.
When solving the problem, Dominique drew the three children and the
wheels of the roller skates that he had chosen as their means of transporta-
tion. The wheel drawings became a mathematical tool, used like Unifix
cubes or other counters; Dominique counted the wheels on his paper one by
one to arrive at his solution of 14. When sharing and "proving" his work to
others in the group, he pointed to each wheel he had drawn as he counted by
ones. In this way, pictures can serve as a tool-a scaffold erected by and for
the learner-to support problem-solving efforts and the development of

Fig. 17.1. Dominque's drawing for "My Father's Wheel Problem"
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mathematical concepts. The pictures can serve as representations for the
purpose of learning and doing mathematics (NCTM 2000, p. 67).

At other times, however, pictures can serve not as a functional representa-
tion, but rather as a "dramatic" representation to accompany mathematical
thinking and to communicate the essence of the mathematical work. Ryan
produced such a dramatic picture in mathematics as he recorded his solu-
tion strategy for the problem, How many cups will we need for the Author's
Breakfast? (fig. 17.2). To solve the problem by using the numerical data
about the guests collected earlier that day in the classroom, Ryan pointed
with a ruler to the relevant numbers on the classroom number line and
counted on. His picture captured the physical drama of this work; it showed
him pointing to the number line with the ruler. After drawing this dramatic
representation, Ryan was able to organize his thoughts and articulate his

> h ~~Author 's
Dreakdfst Math

2L children
l.J tetihers

£, 9uests 5 

How many cups will
we need in all? 36_

(Sbov4 'putr \'JtLae. 5

UOWn4Aya dThis prolAem?
4 ib Fu M+ 5 +, =C h:e M Ute noMh

SSa to?,6Cnh g,I Ite 1VS*t roler 4o d oint
to tde lil hvfs FSoh iM i-U h& ek

"I started at 22. Then I counted 34 more and I
got to 56 cups. I used the ruler to point to the
numbers on the numbers."

Fig. 17.2. Ryan's solution to the "Author's Breakfast" problem
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strategy orally and in written words: "I started at 22. Then I counted 34

more and I got to 56 cups. I used the ruler to point to the numbers on the

number line:' Instead of serving as a functional problem-solving tool or as a

"pictorial manipulative," Ryan's picture was a tool to support his mathemati-

cal communication-another purpose of pictures in mathematics. His dra-

matic representation demonstrates how a picture can serve as a prewriting
tool that enables a young mathematician to reflect on and recall a mathe-
matical process in order to communicate it to others.

ARTIST MEETS MATHEMATICIAN
As I observed the children attempting to represent their problem-solving

efforts and mathematical thinking in the classroom, I witnessed how the

children's use of pictures can be a forerunner to their use of symbols in

mathematics. The symbols that children use in mathematics may not look

conventional, but they are purposeful, are intentional, and carry meaning
(Mills, O'Keefe, and Whitin 1996). In this way, as children invent and use

their own symbols in their mathematical representations, they experience

the sense-making quality that should underlie the use of all symbols in
mathematics.

For William and Whitney, the "Witches' Transportation" problem
prompted a meaningful transition from pictures to symbols. The problem

(Exemplars, 1995-1996) presented the children with a complex situation to

resolve:

Twenty witches must travel on 8 brooms to a convention in California.
They will have to "broom pool." No broom may carry more than 4
witches. No broom may carry fewer than 2 witches.

How can they do it?

William immediately began drawing broomsticks that held witches with

full bodies, faces, and hats. He became visibly frustrated, however, when he

found that given the complex constraints of the problem, he repeatedly need-

ed to revise his solution by erasing some witches and drawing more witches

on other brooms. William then made a cognitive leap from pictures to sym-

bols by drawing lines to represent the witches on each broom (fig. 17.3). He

stated that he did not need to see the witches' bodies and hats and that it was

"taking too much time" for him to draw them with such detail. Likewise,

some of Whitney's first witches were drawn in full detail (two with facial fea-

tures), but then she drew others with only a straight line (fig. 17.4). Whitney

noted this drawing shift in her written words: "Then I made lines. It was a lot
easier" Both of these children demonstrated a significant piece of cognitive

development here; they came to separate a symbol from what it signified
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(Piaget 1969). They became less bound to realism in their pictures of the
witches and brooms and instead created their own symbols for these objects.
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The work of William and Whitney documents a move from elaborate
drawings to more symbolic representations. As these children moved from
picture to symbol use, they engaged in abstraction. Abstraction in mathe-
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"I only needed 8 broomsticks. Then I made
lines. It was a lot easier. I took 2 witches
and put 2 on I broomstick."

Fig. 17.4. Whitney's solution to the "Witches' Transportation" problem
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matics entails using symbolization to strip away unnecessary features so that
the symbols can be manipulated with greater ease (NCTM 2000, p. 69).
William and Whitney stripped away the unnecessary details of faces, hats,
and the like to leave the more symbolic, abstract lines that they could draw,
erase, and cross out readily as revisions were needed. These children uncov-
ered for themselves the important distinction between artistic drawing and
drawing that serves as a mathematical tool.

SPEAKING OF PICTURES
As rich as these first-grade pictures and drawings may themselves appear,

it was the talk surrounding the pictures that truly brought to life the mathe-
matics embedded within each representation. "Self talk" could often be
heard as children talked themselves through their process of drawing. For
some, it was as if they were "living" the drama of their drawing, and it was a
drama that could reveal much about a child's number sense to a teacher with
an open ear. The following anecdote of Tim's drawing process and self-talk
offers one example:

After a whole-group reading of Mitsumasa Anno's Anno's Counting
Book (1977), Tim chose to draw a page to illustrate the number seven
(fig. 17.5). After several minutes of work, Tim pointed with a finger to
eight purposeful marks on his paper and announced to himself, "Oh,

II

It

Fig. 17.5. Tim's illustration for the number 7, with revisions
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one too much." He then crossed out the 7 at the corner of his paper
and wrote the numeral 8 in its place. He began naming various marks
on his paper (depicting a spaceship on a mission), "OK, so two engi-
neers, five army generals, this guy's the pilot.... I need to change to 9. 1
need another pilot." With this, Tim crossed out the 8, wrote the
numeral 9, and drew another mark, presumably representing his sec-
ond pilot.

Tim's drawing is at an early stage from a developmental perspective. His
work is affected by significant fine-motor issues. Thus, for teachers of chil-
dren such as Tim, giving attention to the process of drawing is crucial. The
teacher's open ear to the self-talk that guides the child's drawing is especially
necessary in recognizing the mathematical thinking that the drawing process
evokes for the child but that may not be readily apparent in the visual repre-
sentation on the paper.

Talk also occurred among peers as they created mathematical drawings:

Kevin had drawn seven gifts as part of a problem-solving effort and was
attempting to confirm that seven was an odd number (fig. 17.6). He
pointed to each gift and spoke the pattern, "Even, odd, even, odd ... "

Fig. 176. Kevin's pattern of odds and evens
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beginning with "even" at the first gift. When he ended with "even" on
the seventh gift, he paused with a look of confusion and turned to Parke
(sitting next to him) for assistance. Parke looked at Kevin's drawings
and counted pairs, linking two gifts each time with his fingers; he
announced confidently, "It's odd 'cause there's a leftover." But Kevin
was not yet satisfied and wanted to know why his "even, odd" pattern
did not work. At that moment, Ryan, who had looked up during Parke's
counting and overheard the conversation, said, "Hey, you can't start
,even, odd.' One is odd!" Kevin smiled and said, "Oh, right! It's odd,
even, odd, even!" He counted his pictures again, this time with his new
pattern, and proudly announced that seven was an odd number.

Such peer conversations were informal and spontaneous, but through talk-
ing together as they drew, these first graders came to question, debate,
defend, clarify, and refine their mathematical understandings.

Often, these conversations among peers emerged during whole-group dis-
cussions of their drawings. During these discussions, children shared their
work, while I posed careful questions, when appropriate, to foster mathe-
matical thinking and communication:

David brought to the whole-group circle his illustration of the num-
ber 7. It included a set of seven flowers growing on the ground and
an airplane decorated with seven stars. He attempted to count the
seven stars by twos. He stopped at 6, puzzled by the remaining one.
Again, he counted by twos, this time stopping at 8 with a look of
confusion. I asked the group, "What's happening here? David is
counting by twos and keeps getting to 6 and 8. Why can't he get to
7?" An animated discussion erupted as various mathematicians in
Room IR went to David's picture to explain their thoughts on this
matter. Ella attempted to articulate the notion of skip-counting as
she pointed to the set of items in David's picture, "because when you
count by twos you skip 7, like you skip I and say 2." Jay interjected,
"And skip 3, 5, 7." Julie continued, "You count 2, 4, 6. Just count one
more then! 7!"

David's picture thus served as the stimulus for some constructive mathe-
matical talk that also gave me valuable insights and assessment data about
the children's thinking. I could then use this information to shape my
teaching.

These classroom examples show clearly not only that a picture alone may
indicate something of a child's mathematical understanding and communi-
cation, but also that the richness of the child's thinking is lost if the picture is
considered out of context or is alienated from the "who" of the mathemati-
cian. Pictures are not simply static end products to be collected and exam-
ined; they are dynamic tools to support the child's mathematical thinking
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and communication with others in the classroom community. It is the lan-
guage the child attaches to these pictures that gives teachers insights into the
child's understanding and thinking. It is the talk that these pictures stimulate
that prompts young mathematicians to revisit, challenge, and clarify their
ideas. The pictures serve as springboards for the talking of mathematics,
which in turn brings about still more learning and doing of mathematics for
the young child.

DRAWING IT ALL TOGETHER
Conscious of the focus of my research, I attempted at times to structure

mathematical tasks, problems, or questions in a manner that I believed
would prompt or encourage the use of pictures as a tool of representation
and communication. Interestingly, though, I found over time that it was
more valuable to simply examine the use of pictures in the full context of the
children's ongoing, daily work in the classroom. Rather than attempt to iso-
late or emphasize drawing artificially, I came more and more during the fall
to note how pictures naturally functioned with the words, numbers, and
other mark-making activity of the children's mathematical work. I found
that children move among these many tools in an integrated, fluid process to
represent and communicate mathematics. It is as if children themselves
come to make use of drawings in situations that render them necessary; it is
as if these young mathematicians often have an intuitive sense of the lan-
guage their pictures can "speak" in mathematics. Samples of Jessica's work
(fig. 17.7) and Kevin's work (fig. 17.8) illustrate this integrated and fluid use
of pictures. For the young child, pictures do not function alone, but rather
"make their mark" in conjunction with words, numbers, and other tools of
mathematical representation and communication.

This research thus comes full circle; it has specifically examined the pictor-
ial work of the young child through the lens of mathematics, but it has also
pulled back to place these pictures in their broader context with other modes
of mathematical representation and communication. The wealth of insights
gained from the examination of these pictures points to the need to explicit-
ly validate the use of pictures in the early childhood classroom. These pic-
tures should not be treated as static, extraneous, or second-rate pieces of
mathematics work. They should be extolled as valuable tools for the learning
and doing of mathematics and should be employed as springboards for the
sharing and talking of mathematics. Pictures can then prove to be essential
to both student learning and teacher assessment, as so many of the class-
room examples here have shown.

At the same time, drawing must be permitted to function in the total con-
text of a child's mathematical work. Mathematics is a living language, one
that gains its power from the integration of oral, pictorial, and written
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How can I make my calculator count by lOs?

Fig. 17.7. Jessica's work

modes. Each form of representation and communication has its own
strengths. A picture may best serve one purpose; words or symbolic expres-
sions may best serve another. Children need opportunities to grow fluent in
the integration of all these forms of symbolism, representation, and commu-
nication. Only then can the voices of young mathematicians truly be heard.
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Fig. 17.8. Kevin's work
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Using Literature to Invite
Mathematical Representations

Phyllis Whitin

David Whitin

ENCOURAGING children to generate their own visual representations of
mathematical patterns and relationships has many benefits (Atkinson 1992;
Folkson 1996; Groves and Stacey 1998; Whitin 1997). Creating such visual
counterparts is an act of sense-making that challenges children to organize
and display significant mathematical features of an experience. When given
the opportunity to display mathematical ideas in their own way, children
display remarkable insight and inventiveness. One context that supports
these student-generated representations is the realm of children's literature.
Stories give mathematics authentic contexts and offer the potential for dis-
cussion, exploration, and extension (Whitin and Wilde 1992, 1995). In fact,
open-ended conversations about stories set the stage for children to create
representations that are diverse in nature. This article describes one such
experience with a class of kindergarten children who used a counting story
to investigate mathematical patterns.

READING AND TALKING ABOUT THE STORY
In the spring we involved the children in several experiences with skip-

counting. We used stories and rhymes to highlight counting by twos: "One,
Two, Buckle My Shoe," One, Two, One Pair! (McMillan 1991), Who Took the
Cookiesfrom the Cookie Jar? (Williams 1995), and How Many Feet in the Bed?
(Hamm 1991). We invited children to create their own visual representations
in response to the mathematical pattern in this last book. The story invites
readers (and listeners) to count the feet of five family members as they tum-
ble in and out of bed on a Sunday morning. Dad, alone in bed, begins the
count with "two," and he is joined successively by his daughter, son, baby,

228
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and wife. However, a series of incidents, such as the ringing of the phone and
the overflowing of the bathtub, force family members to leave the bed one by
one-or two by two, if you're counting feet!

An interesting conversation occurred during the reading of the story. Since
picture books themselves are visual representations, children's oral responses
reflect their observations of this visual display, their understanding of basic
story structures, and, in this instance, their knowledge of the mathematical
pattern represented. This conversation was also important because it was
one of the factors that influenced the representations that the children later
created.

As we read aloud about the first two people in the bed, the children
chimed in: "I see four feet," "We have two feet," and "It's going by two:' We
then encouraged the children to predict what would happen as more family
members joined the group. When the number of feet equaled ten, we held
up the book and said, "Look, the story is only half over. What do you sup-
pose is going to happen in the next part?" This question asked the children
to draw on their knowledge of how stories work-and mathematical pattern
is one way that stories are put together. Jordan responded, "It's going to go
backwards: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1." Brittaney added, "It went Dad, then
daughter, little boy, baby, and Mom. Mom is going to be gone first." She
built on Jordan's idea of a descending order and added the specific sequence
of family members. When we asked her to "say some more about this idea;"
she added, "They'll be taking turns, taking turns going first:' Her remarks
underscored the symmetry of the comings and goings in this story. She high-
lighted the literary structure of the story in a mathematical way

After several other children offered predictions, Savannah returned to Jor-
dan's numerical idea. She suggested, pausing between numbers, "It would go
9 ... 7 ... 5 ... 3 ... I"We asked her, "How did you know it would count this
way?" She reasoned, " 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. It won't be the same"-that
is, as counting by ones, as Jordan had proposed. "Jordan said, '10, 9, 8.'1
know that's not right because it goes by 2s5: Thus, Savannah challenged the
ideas of another classmate but in a respectful way. This is part of the culture
of her mathematical community: to question ideas and to use logic and rea-
son as the currency for conversation (Hiebert et al. 1998).

This portion of the conversation highlighted some important aspects of
the teacher's role. The teacher should not pass judgment on the students'
predictions but invite them to share their thinking. What teachers choose not
to say is just as important as what they choose to say. We did our best to
encourage these multiple predictions, knowing that the story would give evi-
dence for or against them as the reading continued. It was not necessary to
correct the students' predictions. In fact, as we began to read the rest of the
story, Savannah revised her thinking entirely on her own. When we read that
eight feet were left in the bed, she said aloud, "That will be 9, 10," specifying
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the two numbers now gone. As the story progressed, she said, "8 and 7" to
show that six feet remained. Then she predicted the rest of the pattern: "Next
will be 5, 6," and "Now there are 3, 4. Then there will be 2." The unfolding
story supported her in this revision of her number pattern.

This conversation illustrates the particular classroom culture that pro-
duced the visual representations described in the next part of the article.
This culture supported predicting, searching for patterns, and making per-
sonal connections. It also fostered certain dispositions about learning. Stu-
dents discovered the importance of taking risks, revising one's thinking, and
extending and challenging one another's ideas. These values and dispositions
are the unwritten rules and hidden customs of classroom life that set the
parameters for learning possibilities. They restrict or expand the ideas that
children are willing to consider. Consequently, we cannot separate visual
representations from the talk that surrounds them or the larger cultural con-
text in which they are conceived. The exploratory nature of this conversation
supported the diversity of the students' visual responses, and the depth and
range of their resulting mathematical ideas.

CREATING VISUALS IN RESPONSE TO THE STORY
In order for the children to make sense of the counting-by-twos pattern

for themselves, we wanted each of them to create his or her own visual
response to the story. We suspected that the pictures in the book, the story
line, the children's personal experiences, and our conversation would all
influence their drawing and writing. After reading the story aloud, we asked
the children to name other body parts that came in twos. They named eyes,
ears, arms, hands, and legs. We then invited groups of three, four, and five
children to stand, and we counted the different sets of two. This acting out of
the story served as a personal connection to the visual and numerical infor-
mation in the book. One of us then moved to the easel and said, "In a few
minutes everyone will get a piece of paper to write and draw about the twos
pattern. I'll do mine first. I think I'll make mine about four of my children's
cousins. He proceeded to draw the four children, writing their names below
their pictures. "How many eyes do these cousins have?" he asked.

Several children chorused, "eight," but we were intrigued by Savannah's
response. Instead of counting by twos, she said, "Four plus four." At first we
thought that she had grouped the four children in sets of two, but when we
asked her to explain her response, she pointed to one eye on each child and
counted: "One, two, three, four." Then she went through the drawings again,
counting the other eyes, "Five, six, seven, eight:' Later we saw her interest in
this "twice around" relationship reflected in her own drawing.

With the children's help, we then wrote a story using the pattern of twos
represented on the easel. "I have four cousins;' our story began. "They have
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8 eyes. 2 + 2 + 2 + 2 = 8." To emphasize the pattern, we wrote 2, 4, 6, 8,
putting one numeral under each cousin.

Next we invited the children to create their own story of twos using draw-
ing, writing, and numbers. We purposely gave the children blank paper for
their work. If we had specified one area for drawing figures, another for
recording numbers, and a third for writing, their products probably would
have looked very much the same. We thought that a diversity of responses
would help us assess the children's thinking, and we wanted to provide the
children with an opportunity to make sense of the numerical sequence in
their own way. Although many children used portions of our demonstration
at the easel, they also created unique forms of representation as they wrote
and drew.

Trey focused on a different aspect of the problem (fig. 18.1). After writing
out 2, 4, 6, 8, 10, he carefully circled each numeral. When we asked him to
tell us about the circles, he replied, "I made circles so the numbers won't get
mixed up"' His response showed that he was considering the audience for his
mathematical text. He was concerned that if he did not clarify his meaning
by separating the numbers in the sequence, his intentions might be misinter-
preted by others. Although he did not know the mathematical convention of
using commas to separate numerals, he did have a clear understanding of its
purpose. Just as children will invent their own ways to add punctuation in
writing (Harste, Woodward, and Burkel984), Trey was inventing a conven-
tion to help him communicate mathematical ideas.

Kinley's picture highlighted another mathematical aspect of the story (fig.
18.2). She decided to keep track of both the number of eyes (6) and the
number of people (I + 1 + 1 = 3). When children are given open-ended
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Fig. 18.1
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Fig. 18.2

opportunities, they will pick up on information that is interesting to them,
creating new possibilities by extension. In retrospect, we wish we had capi-
talized on Kinley's response to explore the following pattern:

1 person 2 eyes
2 people 4 eyes
3 people 6 eyes
4 people 8 eyes

Inviting Kinley and her classmates to consider the numerical relationship in
this new form might have led to some exciting discoveries.

Other children responded to the experience's open-ended nature in differ-
ent ways. Some added other kinds of numerical information. Amanda
noted, "My cousin is 8," and Michael wrote, "My mom has II cousins,"
although he chose to draw members of his immediate family for the twos
sequence. Tyler and Rachael extended their stories by supplying feelings of
affection in statements like "You are my bestest friends" and "My babysitters
are nice to me." Their work demonstrates that mathematical thinking oper-
ates in the context of real-life experiences.

Two of the children's visual representations corresponded directly with the
conversation during the read-aloud session. Savannah drew five of her
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cousins (fig. 18.3) and placed the total number (10) on the top of her paper
along with information about the eyes and the people. We asked her to say
more about her work. She counted one eye on each person, and then
returned to the first figure and began counting second eyes by ones again to
reach 10. Her visual representation reflected the strategy that she had used
during the acting-out portion of the lesson. Savannah had shown an under-
standing of skip-counting forward and backward during the story reading,
but now she was apparently interested in showing the numerical relationship
in a different way. In order to capitalize on this interest, we asked, "How
could you use numbers to show how you counted?" Savannah returned to
her drawing and placed one numeral (1, 2, 3, 4, 5) by each figure, and then
she continued with the second half of the numerals (6, 7, 8, 9, 10). Just as
with Kinley, we subsequently wished that we had pursued Savannah's idea. If
we had displayed her work in chart form, as shown here, Savannah and her
classmates may have found additional interesting relationships.

1 2 3 4
6 7 8 9

5
10

Nevertheless, we believe that Savannah
"twice around" strategy in writ-
ten form.

Brittaney also connected the
class discussion to her visual
representation. At the halfway
point in the story that we read
aloud, she had predicted that the
family members would leave the
bed and that the numbers would
then go backwards. Now she
drew a family of four and creat-
ed her own story (fig. 18.4).
Using invented spellings, she
wrote beside the first family
member, "If you pot whan [put
one] more it will be 4 [eyes]."
She repeated this process for
each additional family member,
increasing the number by two
each time, until the point in her
story at which one family mem-
ber and then another goes to the
grocery store. She then drew
lines and arrows to show each

benefited from reconstructing the
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family member going away. Thus, she created her own visual symbols to
capture this aspect of the story. When she showed her work to us, we asked,
"How could you use numbers to show how the people left?" Brittaney
thought and then wrote the numbers I through 8 arranged as shown here:

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

By placing the numbers in two distinct rows, she created an additional
visual pattern to consider. "What do you notice now?" we then asked her.
"They go forwards and backwards," she answered. We remarked that the
numbers switch places-for example, 1 appears at the far left on the top row
and on the bottom right of the second row, and so on. We believe that the
story, the illustrations, and the class discussion piqued Brittaney's interest in
skip-counting. Creating her own visual representation and narrative afford-
ed Brittaney the opportunity to reconstruct the counting-backward pattern
for herself. Like Trey, Brittaney also invented symbols (arrows and lines) to
show a mathematical idea (decreasing sequence). Once she had her ideas
recorded in visual form on paper, she was able to extend her thinking by
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talking with us. Visual representations, then, serve as placeholders for mean-
ing as learners generate new ideas.

We were intrigued by both Brittaney's and Savannah's visual efforts. Both
girls had participated actively in the discussion of the book, and both had
created visual representations that were quite different from our demonstra-
tion. We began to wonder about the relationships among talking, drawing,
and understanding. We now suspect that the more richly diverse the talk, the
more richly diverse the representations will be, and we believe that those
representations (and subsequent talk) will lead to enriched thinking. It is
important for children to entertain a wide range of observations and ideas.
Each child can then take the features of an experience that are most salient to
him or her and reconstruct them through drawing and writing. We now
wish that we had made a conscious effort to involve additional children
actively in the conversation, and in further work with children we intend to
pursue this hypothesis that richer talk leads to richer representations, which
in turn lead to richer understanding.

As a postscript, we note that the children's fascination with counting by
twos did not end here. We helped the children extend this initial experience
in several ways over the next few weeks. One day, we led the children in a
finger play called "Ten Little Candles on a Birthday Cake." The children held
up both hands, showing all ten fingers. While reciting the rhyme, they suc-
cessively "blew out" two "candles" at a time, represented by one finger on
one hand and its counterpart on the other, reducing the candles from 10 to
8, to 6, to 4, to 2, and finally to none. Although the children had recited the
rhyme periodically since the beginning of the year, no one had yet com-
mented on the numerical progression. On the line, "And then there were
six," Savannah's face lit up. "It's twos again!" she exclaimed.

On another occasion, the class constructed a Unifix-cube graph about
favorite characters from Who Took the Cookies from the Cookie Jar?
(Williams 1995), the centerpiece of another read-aloud session. The book
features a rhyming story about a snake who eats cookies in pairs. Kinley
used stacks of two cubes to count to ten. She opened up another mathemat-
ical opportunity by commenting that adding another cube would make the
total an odd number. Another child, Kayla, returned to the book, and this
time she noticed that the snake had two round humps in his body at the
beginning of the story. She reasoned that the snake must have eaten two
cookies before the story began, and therefore he had eaten twelve by the end
of the story. What caused Kayla to make this new observation? We do not
know for sure. However, we would argue that the cumulative experiences of
looking at and discussing the visual patterns in stories and then creating
one's own visual representations encourages readers to look more closely at
the visual representations of other stories. Thus, in these ensuing weeks, the
children represented twos using Unifix cubes, a finger play, and other pieces
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of literature. They recognized connections across stories, made distinctions
between odd and even numbers, and interpreted a familiar story in a new
way.

CONCLUSION
We believe that student-generated representations enrich mathematical

understanding. Stories can often serve as catalysts for these representa-
tions. When children are given choice in how they represent their under-
standing, they create a diversity of representations. The children in our
classroom had the opportunity to transform the ideas communicated by a
story into their own personal representations. Transforming an idea
involves rethinking, re-creating, and reconstructing it in a new form. Fig-
ure 18.5 represents the potential of stories and conversations to generate
insightful representa-
tions and new under-
standings. We have seen,
for instance, how Trey
invented his own sym-
bolic representation by
using circles to separate new perspectives and extensions

his numbers. Children
develop additional appre- * student-generated representations
ciation for traditional
mathematical symbols
when they first have the * exploratory talk probing a story
opportunity to create
some themselves. The
principle of commutativ-
ity loomed when some
children added five sets i pnorexperiences

of two to equal ten eyes,
and Savannah added two Fig. 18.5
sets of five (by going
around twice) to get the same result. Kinley highlighted the numerical pat-
tern of the number of people in relation to the number of eyes. Brittaney
described another pattern by recording the reverse order of the characters in
her story. Although we regret that we did not pursue some of these patterns
with the rest of the class, the evident power of student-generated representa-
tions challenges us to capitalize on this potential in the future. Reflective
teachers are constantly reviewing an unending series of cherished moments,
missed opportunities, and promising plans for the future.
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Representation in Realistic
Mathematics Education

Margaret R. Meyer

THIS article will explore a theory of mathematics learning and instruction
and show how representation in middle school algebra might develop in an
instructional sequence based on this theory. This theory, which is called
Realistic Mathematics Education (RME), has evolved over the past thirty
years of developmental research. RME represents a significant departure
from traditional ideas about learning and teaching mathematics that can
best be seen by examples that illustrate its principles.

PRINCIPLES OF REALISTIC
MATHEMATICS EDUCATION

RME is based on five related principles of learning and instruction. The
formulation of these principles here represents a synthesis of statements that
appear in several sources (de Lange 1987, 1992; Treffers 1991). The five prin-
ciples may be stated as follows:

1. Learning mathematics is a constructive activity, in contrast to one in
which the student absorbs knowledge that has been presented or transmit-
ted. Such construction becomes possible when the starting point of instruc-
tional sequences is experientially real to students, allowing them to engage
immediately in mathematical activity that is personally meaningful.

2. The learning of a concept or skill is accomplished over a long period
of time and moves through different levels of abstraction. The initial, infor-
mal mathematical activity should constitute a concrete basis from which stu-
dents can abstract and construct increasingly sophisticated mathematical
concepts. Students bridge the gaps between concrete and increasingly
abstract levels through their creation and use of models, drawings, diagrams,
tables, or symbolic notations.
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3. Students' learning of mathematics and progress through levels of
understanding are promoted through reflection on their own thoughts and
those of others. Students must have the opportunity at critical points to
reflect on what they have learned and to anticipate where the instructional
sequence is heading.

4. Learning takes place not in isolation but rather in sociocultural con-
texts. Consequently, interaction should be an essential component of
instruction. Instructional activities should encourage students to reflect, to
explain and justify solutions, to understand other students' solutions, to
agree and disagree with one another, and to question alternatives.

5. Mathematical understanding is structured and interconnected. Real
phenomena, in which mathematical structures and concepts manifest them-
selves, usually contain mathematics from multiple disciplinary strands. As a
result, learning strands should be intertwined rather than independent.

AN INSTRUCTIONAL SEQUENCE BASED ON RME
Perhaps the most obvious difference between an instructional sequence

based on RME and a more traditional sequence is their starting points. In
explaining algebraic representation, most traditional algebra texts start with
abstract expressions involving variables and rapidly move to formal equa-
tions and their manipulation. After attaining some degree of facility in
manipulating equations, the student of algebra is invited to apply these skills
to context-based problems.

Materials based on RME, however, reverse the progression. Instead of
starting in the abstract realm and moving toward the concrete application,
the mathematics starts in contexts (principle I) and gradually progresses to
formal symbolism (principle 2). This shift allows students to engage in
meaningful, preformal algebraic activity in earlier grades than they tradi-
tionally have. Through a structured instructional sequence, students explore
and rediscover significant mathematics that anticipates the more formal rep-
resentations found in traditional algebra.

The remainder of this article will explore the variety of representations
that emerge from two algebra units in the middle school curriculum Mathe-
matics in Context, which is based on the principles of RME. "Comparing
Quantities" (Kindt et al. 1998) is a unit for grade 6, and "Get the Most Out
of It" (Roodhardt et al. 1998) is for grade 8. The following representations of
linear relationships will be examined: pictures, invented symbols, combina-
tion charts, tables, and algebraic symbols. The focus of the discussion will be
on the progressive formalization of students' representations and their rela-
tionship to standard algebraic notations.

239



240 THE ROLES OF REPRESENTATION IN SCHOOL MATHEMATICS

PICTURES
Figure 19.1 shows a problem that "Comparing Quantities" represents in

pictures. Although the balanced scales imply an equality of measure that
could be represented in equations, this is purposely not done. Since the
authors include this problem on page 2 of the unit, they clearly do not
expect students to use any formal algebraic procedures to solve it. Instead,
they anticipate that students will approach the problem in whatever way they
understand. Solutions reveal a variety of representations that preview more
formal representations and strategies that will come later in the instructional
sequence.

Bananas 2. How many bananas are needed to make the third scale
balance? Explain your reasoning.

0 2001 Encyclopaedia Britann ca, Inc.

Fig. 19.1

Some students solve
this problem using pic-
tures, as illustrated in fig-
ure 19.2. Other students
use words in equations, in
the manner shown in fig-
ure 19.3.

ol, =t

so, W = g)

Fig. 19.2
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10 bananas = 2 pineapples, so

5 bananas = 1 pineapple
1 pineapple = 2 bananas + 1 apple

5 bananas = 2 bananas + 1 apple, so

3 bananas = 1 apple

Fig. 19.3

This informal process is very close to a formal solution involving variables
and equations. Other students assign an arbitrary weight to the pile of

bananas-for example, they might say, "Suppose the bananas weigh 10
pounds," and reason from there, using words.

Figure 19.4 shows a
problem that is stated
only through pictures.
This problem can be
solved using a number
of different equivalent
representations, but
for some students the
most obvious strategy
involves the pictures. -

They notice that if r
they cover up (or take 4 _ -
away) a cap and an a ̂ srno

umbrella from each
row, then the differ- ta
ence in price ($4.00)
is the difference bet- 0 2001 En~cIopaedia Brtannica, lnc

ween the cap and the Fig. 19.4

umbrella.
Other students see the two rows of pictures as forming a series that can be

continued by producing a third row containing all caps. Figure 19.5 shows
the result.

When asked to describe what they have done, the students give explana-
tions such as the following: "When one of the umbrellas in the first row is

replaced with a cap, the total goes down by $4.00. So I replaced the
umbrella in the second row with a cap and now I have 3 caps totaling

$72.00. Now I can find the cost of one cap by dividing." In a similar man-

ner, they might start from the lower row in figure 19.4 and produce a new
row above the upper one, containing three umbrellas for a total price of

$84.00.
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Fig. 19.5

INVENTED SYMBOLS THAT
RESEMBLE VARIABLES

When working with the pictures, some students represent a cap with the
letter C and an umbrella with the letter U. This is a shorthand notation that
emerges quite naturally. It takes too much effort to draw an umbrella, so
they use a U instead. They might even write 3 U to represent UUU, but it
means three umbrellas-not three times the price of one umbrella, as it
would if Uwere being used as a variable. Students even use this invented
notation to create "equations" that are in the same form as they would be
with variables. Using this notation, they translate the picture "sentences"
into the statements shown below.

2U+ IC= 80
1U+ 2C=76

This invented notation leads students toward using Umore abstractly,
implicitly representing the cost of an umbrella. The invented notation often
leads them to perform operations on the equations that mirror standard
operations on equations. For example, students might add the two equations
to get

3U+ 3Cr 156.
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This operation is supported by the context, and the result is meaningful. It is
also reasonable within the context to divide this equation by 3 to get

IU+ 1C= 52.

Then, by taking just a few more steps, students can find the cost of one cap.
These preformal representations of variables and operations on equations
emerge from the context and are prompted by the pictures and a desire to be
economical with words, pictures, and symbols. It probably does not occur to
the student that these symbols might have power beyond the context. The
symbols simply provide a faster way to represent the situation than pictures
or words do.

COMBINATION CHARTS
The unit "Comparing Quantities" introduces the use of combination

charts as a representational strategy that is quite useful for solving this type
of problem. A combination chart would represent the problem of the caps
and umbrellas, as shown in figure 19.6.

In general, a combination chart shows totals for all combinations of two
values. In this problem, the values are the costs for caps and umbrellas. By
exploring many combination charts representing different contexts, students
learn that each chart contains many patterns in the numbers. They discover
that they can use these patterns to solve problems that they can express as
two numbers in a combination chart. For example, students soon see that
each combination chart has consistent diagonal patterns. By studying the
chart shown in figure 19.6, for example, they learn that when they move
down and to the right, the number
decreases by 4. They can exploit this Costs of Combinations
pattern to find other numbers on (in dollars)
the diagonal and finally to arrive at
the cost of three caps when they 5
reach the edge of the chart. Such X_

playing with patterns can be done
without any reference to caps and E 3
umbrellas. However, in the context,
the diagonal pattern of moving down 2 80
and to the right decreases the number ° 1E 1 ~ 76
by 4 is analogous to reducing the
number of umbrellas by one while 0
increasing the number of caps by 0 1 2 3 4 5
one and lowering the total cost by Number of Caps
$4. Also, finding the number on the
edge of the chart where it shows a Fig. 19.6
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combination of three caps and no umbrellas is analogous to drawing a new
picture equation that shows three caps equal to $72.00. By the same token, a
picture equation showing that three umbrellas is equal to $84.00 is analo-
gous to moving up and to the left on the chart, with an increase of $4, to
find the combination for three umbrellas and no caps. Figure 19.7 shows the
two approaches.

Costs of Combinations
(in dollars)

-A/

80

1 176 _ I

0 1 2 3 4
Number of Caps

S
44 K E

ft 4% 44
Fig. 19.7

TABLES
"Comparing Quantities" introduces another representational strategy for

solving problems of this type. This strategy uses what the unit calls "note-
book" notation, since it is introduced in the context of writing down infor-
mation in a notebook. A waiter is taking orders and tallying costs in a restau-
rant. Figure 19.8 presents the problem, using both pictures and notation.

Some students solve the problem using the pictorial representations, where-
as other students don't see them as containing useful information. The totals
for orders 4 and 5 in the notebook can be found by the simple division of pre-
vious orders (I and 3). Total prices for orders 6 and 7 are somewhat more dif-
ficult to determine but quickly become apparent when students recognize each
of them as the sum of two earlier orders (order 4 + order 5 = order 6, and

5

4

3

2

0
I

I
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Mario's Restaurant
Mario nins a Mexican
restaurant, and he is very
busy. He moves from one
table to another. writing
down all the orders.
Below you see how he
writes the orders on his
order pad.

Illusr,aions and teat of this snd preceding figurs. in this
article are reprinted with permission from the Mathematics
in Context program o 2001 Encyc opaedia Britannica, Inc.

Fig. 19.8

order 3 + order 4 = order 7). Teachers may see the first three orders, for which
prices are given, as a 3 x 3 matrix and may recognize that the missing totals for
the other orders can be found by using the results of elementary row opera-
tions (dividing by a scalar, adding rows, etc.). Students are unaware of this
matrix format. They see the rows and columns on Mario's pad simply as a
shorthand way of writing the information of the problem.
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Classroom interaction (principle 4) reveals that students do in fact see the
difference between this problem and the one involving the caps and umbrel-
las. They recognize that there are three prices to find here instead of just two.
Students often ask if a combination chart could be used to represent the
combinations of information about tacos, drinks, and salads. Some even try
to imagine a three-dimensional equivalent to the combination chart but
quickly realize that such a thing would be impractical, even if it were theo-
retically possible. This reflection on the instructional sequence illustrates
principle 3 of RME.

EQUATIONS
The instructional sequence described above concludes with a section in

which variables and equations are introduced more formally by relating
them to combination charts and the notebook notation. The equations are
always related to a familiar context that supports their meaning, and as a
result, equations are seen as just one more way to represent information. The
fact that equations can be explored for their own sake, apart from context, is
something that comes in later study. At this point in grade 6, a preformal use
of equations with understanding is the goal of instruction.

The expanded notion of equation as a representation is seen in the follow-
ing problem from the grade 8 unit "Get the Most Out of It":

Eighth-grade students from Wingra Middle School are going on a
camping trip. There will be 96 people going, including the students and
teachers. All the luggage, gear, and supplies are already packed into 64
equal-sized boxes. Now the organizers want to rent the right number of
vehicles to take everyone to the campsite. They can choose between two
different types of vehicles from a car rental agency:

Minivan: seats 6 people Van: seats 8 people
Cargo space: 5 boxes Cargo space: 4 boxes

A formal algebraic approach would focus on the simultaneous solution of
the two equations that describe the situation: 6M + 8 V= 96 and 5M + 4V=
64. However, in the preformal approach adopted by RME, students use the
representations they have learned so far and clues from the context.

Questions follow that encourage students to explore different combina-
tions of vans and minivans and the resulting numbers of people and pack-
ages that can be transported, with the idea of eventually finding the smallest
number of minivans and vans that are needed. These explorations are all
performed by examining the meanings supplied by the context. For example,
the unit suggests that if students consider just the people, they will see that 4
minivans can be exchanged evenly for 3 vans. "Why does this work?" the
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unit asks the students, and then it directs them as follows: "List all the possi-
ble combinations of minivans and vans that carry exactly 96 people." This
effort might result in a table such as that shown in figure 19.9. Similar ques-
tions related to an even exchange between minivans and vans for the boxes
and all possible combinations
will lead students to the solution Minivans Vans
that 8 minivans and 6 vans 16 0
make up the smallest number of 12 3
vans and minivans needed to 8 6
carry 96 people and 64 boxes. 4 9

The next strategy that stu- 0 12
dents encounter is a graphical
one. Using the table in figure Fig. 19.9
19.9 and the one resulting from
the students' examination of the combinations of minivans and vans needed
to carry exactly 64 boxes, students produce the graphical representation of
the problem shown in figure 19.10. A specific question directs students to
discover that in the context of the problem, most of the points on either line
are not solutions, because you can rent only whole vehicles.

I

z

0

Number of Minivans
2= cargo; o= passengers

Fig. 19.10

Students can also solve the van
and minivan problem using combi-
nation charts. The chart in figure
19.1la is designed to show the
number of people carried by vari-
ous combinations of minivans and
vans. The number 96 is written in
the appropriate cells because the
problem requires that exactly that
many people be transported. The
chart in figure 19.1 lb is designed to

aO show the number of boxes carried
by various combinations of mini-
vans and vans. Here, the number
64 is written in, because the prob-
lem requires that that many boxes

be transported. The similarity between the combination charts and the graph-
ical solution is of course no accident. The representations reflect the same rela-
tionships between minivans and vans in the numbers of boxes and people that
they can carry. In figure 19.10, the even exchange between minivans and vans
is reflected by the slopes of the two lines. The line that represents people
reflects the exchange of four minivans for three vans by the slope of -3/4 for
the graph of 6M + 8 V = 96. In the combination chart, the combinations total-
ing 96 are 3 down and 4 to the right of each other (or 3 up and 4 to the left).

v
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Fig. 19.11

The final strategy presented in the context of this problem involves the fol-
lowing two equations:

6M+ 8V= 96
5M+ 4V= 64

The numbers and letters are clearly attached to the context, and students
can express their meaning. For example, in the equation 6M+ 8V= 96,

6 stands for six people in each minivan.
M stands for the number of minivans.
8 stands for the number of people in each van.
V stands for the number of vans.
96 stands for the total number of people who must be carried.

The mathematical structure of this set of equations is identical to that of the
set of equations for the caps-and-umbrellas problem. The linear equations
for both problems represent the context. However, an interesting thing hap-
pens when students apply one of the strategies that the sixth-grade unit used
for solving that earlier problem, as shown:

(5M+-4V=64)x2 IOM+ 8V = 128

6M+ 8V= 96 6M+8Vz= 96

4M= 32

M= 8

I3

I.
q

I

£

S
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Substituting the value for Min the second equation results in V= 6, a value
that students can check against the previous solutions. Some students may
object that the equation I OM + 8 V = 128 that resulted from doubling the
first equation appears to have changed meaning within the context. They
may point out that the minivan can still hold only 5 boxes-not 10-and
that the van can still hold only 4 boxes-not 8-as suggested by the new
equation. A subtle rewriting can restore their concrete understanding of
meaning in the context. When the equation is written 5(2M) + 4(2V) = 128,
these students should see that it is the number of vehicles that has been dou-
bled-not the number of boxes that the vehicles can hold. Now, the opera-
tion on the equation appears reasonable, both from a mathematical point of
view and in the context. Most students at this level would never notice any
problem with the doubled equation. They are not bound by the context, and
they accomplish a transition to the abstract without confusion.

THE FIVE PRINCIPLES REVISITED
We have explored a variety of representations that emerge from a sequence

of linear problems that are based on concrete situations, in keeping with the
tenets of RME. The first principle of RME was manifest in the way in which
the contexts stimulated these representations. These concrete contexts
allowed students to engage in meaningful mathematical activity from which
their understanding could grow. The second principle of RME was embod-
ied in the progressive levels of abstraction reflected by the pictures, charts,
tables, and equations presented in the units and in students' solutions to
problems. Teachers should note that even after students have encountered
formal equations, it is not unusual for them to operate with preformal mod-
els. It is always preferable for a student to use a less formal strategy with
understanding than a more formal one without understanding. The third
and fourth principles are most evident in classroom interactions, and as a
result, they are difficult to illustrate here. It is clear, however, that reflection
and interaction can enhance students' understanding and appreciation of
many of the representations shown in this article. Finally, the fifth principle
is illustrated by the connections between the two units.

The reader might wonder about the learning outcomes of the instructional
sequence described here. At a minimum, the instructional sequence appears
to allow students to engage in significant mathematics with understanding at
earlier grade levels than more traditional programs do. It would also seem
reasonable to conjecture that students gain from this sequence a deeper
understanding than students ordinarily achieve of the connections among
representations, in whatever form, and the context they reflect. A related
outcome is also possible-that is, that students can model contexts with
symbols, which they in turn can use to solve problems related to those con-
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texts. This expectation that mathematics is about "making sense" is often
suspended or forgotten when students move to abstract representations too
quickly and without the grounding provided by realistic contexts. Another
possible outcome of the instruction is an understanding that situations pre-
sented in problems can often be represented in different ways and that the
different representations suggest different strategies for solutions. These
learning outcomes are currently only conjectures, if not high hopes. Never-
theless, they are plausible, significant, and worthy of investigation.
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Charting a Visual Course to the

Concept of Function

Michal Yerushalmy

Beba Shternberg

MODELING, which is the representing of authentic situations, has been inte-
grated into many recent approaches to teaching. Modeling can be considered
a form of mathematical challenge that supports the emergence of represen-
tations of functions. Although mathematical representations of situations
have always been a part of the mathematics curriculum, graphing technolo-
gy (such as that suggested by the National Council of Teachers of Mathe-
matics (NCTM) Standards for algebra and technology [Heid 1995]) allows
for forms of modeling that differ substantially from pretechnology environ-
ments. Research suggests that mature solvers of word problems use represen-
tations of functions (by which we mean real-valued functions of a real vari-
able) as modeling tools. This use, however, has never been the intent of
traditional work with word problems in algebra (Hall 1989). In traditional
curricula, students were presented with "word problems"-verbal descrip-
tions of situations that were carefully crafted to contain all the information
necessary for the students to make a list of data "given" and "to be found"
before they could solve the problem. So, solving problems that are connected
to situations was an "application" activity, where students applied a specific,
known formula or method of symbolic calculation.

There is evidence that algebra students for whom the concept of function
is central are able to identify the important properties of a situation, as dis-
played in any representation, and are better equipped than other algebra stu-
dents to solve traditional algebraic word problems (Hershkowitz and Schwarz
1999; Heid 1996). One explanation for this is that the use of multiple-repre-
sentation technology increases students' opportunities to operate with math-

The writing of this article was supported by a grant from MISES: the Study of Edu-
cational Systems, Milken Institute, Jerusalem.
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ematical representations of situations and to analyze them in a connected
fashion.

However, writing expressions and equations is still considered to be a
complicated task for algebra beginners (MacGregor and Stacey 1999).
Although graphs are central to representing situations in algebra that can be
modeled as functions and although links among alternative representations
often provide new insights that support reasoning processes, the visual rep-
resentation nevertheless has emerged as a weaker source for experimentation
than symbolic representations. This is perhaps because graphing technology
preserves the symbolic representation as the major channel into the mathe-
matical model. Thus, students typically experiment with representations
only when they are already somewhat knowledgeable about the symbolic
language of algebra. In figure 20.1, we suggest that in many current curricu-
lum sequences, the links between phenomena and mathematical representa-
tions of functions are introduced only after students have been taught to
think of functions as interpretations of algebraic expressions.

|Symbolic L INumerical
|Representation | Representation. tX XX 

Fig. 20.1. Symbolic representations for functions as input for graphing technology

Current work with technology, however, supports another type of experi-
mentation with situations and representations. Microcomputer-based labo-
ratories (MBLs) allow students to represent an ongoing situation using
devices that gather data from it and present the data graphically. These tech-
nologies eliminate algebraic symbols as the sole channel into mathematical
representation and motivate students to experiment with the situation-to
analyze and reflect on it-even when it is too complicated for them to
approach symbolically. The visual analysis elicited by work with MBL tools is
different from visual analyses that arise from work with conventional repre-
sentations of algebraic symbols or traditional numerical tables. This differ-
ence may be attributable to the continuous nature of the MBL graphing,
which calls attention to the geometric properties of the graph and to the
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ways it relates to the qualities of the situation (Nemirovsky 1994). But how
does this visual approach to functions support students' symbolic under-
standing? One answer is that it shows them important connections by mov-
ing back and forth between measurements and machine-made symbolic
expressions. Measurements can be presented by MBL tools in numerical
tables (spreadsheets or spreadsheet-like tables), and data-fitting tools can
then construct symbolic expressions that match the graphs and the numeri-
cal data.

We conjecture that although this sequence provides a technological solu-
tion that supports a complete, multiply-linked representation system, the
links established among the representations are too weak to allow beginners
to build a conceptual understanding of the mathematical symbols. Although
using the MBL technology supports visual investigations of functions and
graphs and in later stages of the learning may support even solid connec-
tions between symbolic expressions and phenomena, additional efforts
should be made to explore how to introduce symbols in a way that would
allow students to benefit from visual experimentation with situations (see
fig. 20.2).

Graphs with ????ymbolic RepresentationtsSr 5r MSL ~Representation _ife

\Graphical tX
Representation

Fig. 20.2. Modeling situations before using symbolic representations for functions

The symbolic representation of functions in algebra is the focus of many
educational discussions (Arcavi 1994), which typically focus on the difficulty
of predicting changes that result in the graph of a function from algebraic
transformations of the expression that defines it. We have therefore sought
ways of supporting students in developing a mathematical understanding of
all representations, including symbolic ones, by making the connections
between expressions and graphs as transparent as possible.

In our work, we follow Nesher (1989), who suggests that any systematic
learning of a new concept should be done within an environment that is
intentionally designed to support a series of transitions, from working
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with familiar objects, to carrying out mathematical processes using repre-
sentations of these objects, to encapsulation (constructing a cognitive
mathematical object) of the process, to a new object that then can be
manipulated. We have tried to design learning environments that would
bridge the formal language of mathematics and the informal experiences
of students, and we have tried to give students opportunities to use their
creative resources to construct the concept of function. In this paper, we
will outline the essential parts of a curriculum sequence, which is designed
to support the construction of the concept of function as the foundation
for algebra.

Using episodes from our work with seventh graders in the Visual
Mathematics curriculum (1993-96), we will describe three major learn-
ing phases that students go through before learning algebra. The first
phase involves them in building a graphic representation of a situation. It
begins with students drawing trajectories of an object in motion and then
focuses on the transition from drawing mathematical graphs to analyzing
them as representations of functions. In episode 1 below, which exempli-
fies the first phase, the goal is for students to describe an authentic situa-
tion (the motion of a thrown ball) by sketching it on a plane. Students
study the graphs of the process as it changes over time, and they develop
narratives to connect the actions of the situation with the features of the
graphs.

The second phase is intended to support the students' transition from a
graphical representation of a specific situation to a system of iconic repre-
sentations of functions. It supports the encapsulation of the process by pro-
viding a set of visual constraints in the form of icons that limit verbal
descriptions to those strong enough to describe any well-behaved function's
graph and the associated process that such functions describe. In episode 2,
we glance at a problem that focuses on an analysis of rates-a topic tradi-
tionally addressed in calculus as an application of taking derivatives. Using
this problem-which for most problem solvers would be too complex to be
described symbolically-we demonstrate the potential of visual objects to
become productive tools that support modeling and a meaningful resource
for approaching formal operations with functions.

The third phase leads to another transition-from the iconic representa-
tions of the second phase to the symbolic representation of functions.
Episode 3, which illustrates this phase, shows a construction by students of
symbolic representations. The students created this construction by manipu-
lating the graphic representation and then exploiting the connections
between its rate of change and its accumulation.

By describing the three phases of the designed sequence, we hope to
demonstrate a curricular route that can support prealgebra students as they
develop the mathematical idea of function in all its representations.
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PHASE 1, EPISODE 1: FROM AUTHENTIC SITUATION
TO VISUAL REPRESENTATION

Phase I focuses on the transition from drawing a situation to analyzing
mathematical graphs as representations of functions. Episode 1 illustrates
the first phase, in which students build a graphical representation of a situa-
tion.

Alon, Erez, Maya, and Hila were trying to represent the following situa-
tion:
"Hava loves to play with the ball. She throws it to the ground. The ball
hits the ground and then it hits the wall.'

Drawing freehand with the mouse, they used a component of the Func-
tion Sketcher software (Yerushalmy and Shternberg 1993) to plot the path of
the ball on a Cartesian system. The software recorded the position coordi-
nates and provided (simultaneously or on request) graphs of the parameters
of the motion over time (e.g., x-coordinate, y-coordinate, the accumulated
length of the path, the distance from a given point). Presumably because the
drawing was dynamic and the appearance of various graphs simultaneous,
the students did not fall into the common trap of confusing drawings and
graphs. On the contrary, they were faced with the challenge of explaining the
differences between the drawing and the graphs, an activity that led them to
elaborate on the meaning of the graphic representation. As the students
drew the ball's path on the basis of their personal experience, they were dis-
cussing their view of the motion of the ball at the same time that they were
receiving graphs of the path's x- and y-coordinates over time (see fig. 20.3).

Alon and Hila looked first at the y(t) graph. Probably because the graph
resembled the path and because the vertical coordinate matched the height of
the ball, they had no trouble matching parts of the graph with parts of the
phenomenon (see their comments on the y(t) graphs). The x(t) graph, how-
ever, is less geometrically intuitive, and when they turned to analyze it, Alon
ventured, "Oh, that's hard to understand. Indeed, it did take some time for
the group to come up with a correct interpretation of the x(t) graph. Howev-
er, the ultimate goal was not to have the students interpret the graph but
rather to have it serve as a trigger, moving them easily between graphs as rep-
resentations of functions and graphs as representations of situations.

Soon afterward, Hila challenged the group with additional questions about
the graph of the x-coordinate in time, which continued to puzzle her. She
gradually began to analyze the role of the person behind the behavior unfold-
ing in a temporal process. As the group traced the ball's path using the
mouse, Hila perceived that she controlled the coordinates x and y; both
depended only on her drawing decisions. But when she turned to the graphs,
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Narratives The path of the ball The y6coordinate's The x-coordinate's
plotted on xy-plane changes in time changes in time

We are drawing
the movement as Y values X values
of Hava's ball. 
Now we go up.
Here is Hava's \ _ r
ball. It touches f Time Tme
the floor,

I think that here it is
Hava's ball. She threw
it to the ground.

then hits the wall,
Y Yvalues X va ues

_ Isa~a~mmn Time lime

So, here it hits the wall, Here somewhere it
stayed on the wall.

goes back down,
Y Y va ues X values

__Tim Time Time

goes back to the ground, It hits the wall and
stayed here for a while,
just stayed,

and comes back
to Hava.

- -iI ~ ~

- ,

Y values

i //\ I
Time

and then goes back
to Hava.

X values

Time

and then bounced back
to Hava.

Fig. 20.3

the variable time-which was recorded but did not appear in her drawing-
now appeared as an independent variable-a variable that seemed to change
independently of her actions. She put it this way: "For instance, time. It pass-
es. We can't stop it. Or, for example, our growth. We can't stop it. These are
things that don't depend on us.... In a coordinate system, time is ... time is a
name of an axis. If your x-axis is the time axis, the time just passes by itself."

II
I
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Different interpretations of Hila's remarks could be relevant here: Does
Hila mean that if time is an independent variable, it should have a causal
relationship to the dependent variable x? Is Hila accustomed to situations
where the value of the independent variable is "rhythmical" and discrete
(e.g., "He went 5 km in each hour.") rather than continuous?

We were and are interested in Alon's answer, particularly the way in which
he formulated it. Alon used the x(t) graph to highlight and resolve the differ-
ences between two views of independence in the meaning of independent
variable. In one view, x is an independent variable because it is unrestricted-
that is, it is not determined from the outset or by a predetermined rule. In
the second view, time is an independent variable because it changes without
our control. Alon justified the first view by moving the mouse freely among
values of x to show that the "hand controlled" quantity is still dependent in
time. He then invented an action to show the second, "uncontrolled," view
of independence. He fixed the mouse at a point and created a constant graph
of x over time (see fig. 20.4).

Narrative The XY-graph The graph of the
X-coordinate In time

I'm taking it back and vle
th.n it !oe,don t o Y ale

the negative part. I'm
taking it forward and
then it goes up to the
positive part. And if I
don't move it, time
will continue to pass.

But look here. I will

I xl

Ilet time pass. Why X values
doesn't the X-coord- _
inate increase? It
continues. It is dep-
endent, and it will Time

always continue by
itself.

Fig. 20.4

Alon's language became more general, describing three typical processes
rather than a specific motion: x goes up (when he moves right), goes down
(when he moves left), or remains constant. His shifts between the action and
the graphs seemed to take a different direction from the ones the students
were making at the beginning of their work. Rather than merely watching
graphs as they resulted from his drawing, Alon planned the action that
would produce a specific graph. (For example, to create the constant graph,

L== I
11 � I 1-
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he drew a steady point.) Thus, for Alon and his classmates, graphs typically
became motion. The students also explored ideas, such as dependency and
constancy, that are regarded as central to the understanding of a function
(see Hazzan and Goldenberg [ 1997] for similar ideas that were raised while
advanced college students were experimenting with interactive geometry).
All this suggested that the students had developed a solid base for making
the transition to the more advanced ideas of the next phase of our prealgebra
curriculum.

PHASE 2: FROM GRAPHING TO ICONIC
VISUAL REPRESENTATION

We designed our second phase to support the encapsulation into objects of
the process of graphing. We accomplished this goal by providing a limited
set of graphical icons, which imposed visual constraints on the student, and
a limited verbal list of function properties (see fig. 20.5). There were synony-
mous relationships among the iconic and verbal elements of this linguistic
representation. Even though statements articulated in one lexicon could be
restated in the other, the two distinct sets allowed for different degrees of
precision. For example, describing a function in a region as "increasing" and
"curved," or even more accurately as "increasing" at an "increasing rate of
change," is far less limiting than the display of a particular increasing and
curved function is.

Embedding the two lexicons in a software environment makes it possible

Quantity increasing Decreasing Constant

Rate of chang\e Increasing

Increasing

Decreasing

Constant

Fig. 20.5. Two lexicons to represent the visual properties of functions
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for students to express themselves in either sort of lexical element while the
software displays equivalent synonymous statements in the other lexicon.
Students become familiar with this limited sign set as they use it to represent
situations. They sketch graphs for given situations by adjusting the seven
icons and creating narratives using the three verbs. Figure 20.6 shows a typi-
cal representation. The limited lexicon allows the terms constant, increasing,
and decreasing to be illustrated by more than one icon.

To allow for a finer classification within a verbal description of a particular
behavior, the software permits students to introduce "stairs," discrete com-
panions to a continuous graph (fig. 20.7). By adjusting the stair feature, stu-

At time t=O water begins
to flow through a hose
into an empty tank for
2 minutes.

At that point the tap is
closed for a little while.

After a while a pump
starts up and pumps
water out of the tank.

Draw a graph of the
volume of water in the
tank against the time.

Fig. 20.6. A story text, a list of constraints, and two possible graphs

- -I
Inc asinag Constant I ecreasing

I Curved Stright | Curved

volume of water

lL,/' -~~~~~im
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dents can create many different
variations of graphs that satisfy the Y: Ascending
same set of constraints. Ascending change ofY in X

Students eventually adopt the
different components of the lexical
system (icons, verbs, and stairs) as
manipulable objects that support
them in solving problems that are
too complicated for them to
describe symbolically. Episode 2
illustrates typical work with these
iconic objects and terms. o gu 20g7a Star compamon of contmu-

Episode 2
In earlier work, we had interviewed thirty-four advanced calculus students

in the eleventh and twelfth grades. The students were attempting to solve the
following problem from a qualitative calculus unit (Taylor 1992):

A cook has a large portion of meat at room temperature that should be cooked as
quickly as possible. He has at his disposal a conventional oven and a microwave.
In the microwave oven meat temperature increases at a constant rate, and in the
conventional oven it increases at a changing rate. Using the results of an earlier
cooking trial, the cook knows that although meat temperature in the convention-
al oven is always higher than in the microwave, cooking time for this piece of
meat would be 2 hours in either one of the ovens. Could cooking time be less
than 2 hours using some combination of these two ovens?

The students had taken algebra, precalculus, and calculus courses. However,
none of their courses had focused on modeling or authentic situations. Most
of the interviewees tried to represent the situation symbolically but failed,
since the problem did not include any specific data. In general, our intervie-
wees had very little success with the problem.

For a comparison, we suggested this problem to our seventh graders. Two
students, Erez and Ilanit, volunteered to work with us on the problem out-
side the class. They had already represented situations using icons and stairs,
but they had never before worked on a problem as subtle as this. Unlike
most of the calculus students, they approached the problem by exploring
iconic sketches that would match its conditions.

From the beginning, they decided to use graphs not only to examine the
dependence of one variable on another but also to describe and compare
rates:

Erez: Good, we do have some facts that we can use to describe the
graph we need. The first fact we know is that the microwave
raises the temperature at a constant rate.
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Ilanit: And the conventional oven
heats at a nonconstant
rate.

Erez: Fine, so the first thing we
know is that if it is con-
stant, then it is straight. ,

The students analyzed the relevant data,
distinguished between quantity and its rate
of change, and inferred that one of the
graphs had to be straight. They continued by discussing the rest of the data:

flanit: We don't have the exact data, but we can conjecture ...
[that] the process took two hours.

Erez: The graph continues....

Ilanit: No, the process ends, but mathematically, the graph contin-
ues. R

Erez: So at the end of the two
hours, we'll cut it. Let's say
that here we will mark the
final point. [ Draws a dotted
vertical line to mark the
duration of the processes,
and erases the rest of the
straight increasing line.]

What remained to be determined was the shape of the nonlinear graph,
and they had at their disposal exactly two types of graphs to represent
processes that increase at a changing rate. The students were ready to draw
the second curve after another round of checking:

Ilanit: Yes, something else that we should pay attention to is that
along the way the oven will have higher temperatures than
the micro.... We should
ensure that there will be
different temperatures ...
no matter how it is going
to increase.... Well, it has
to be concave down. j

Erez: This line ... to describe
the givens in the problem, <, ,X

it has to be concave down!
Why? Because if it were concave up, it would go below the
microwave values.
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Once they agreed on the shapes of the graphs, all the given information
was fully represented, and Erez and ilanit moved to solve the problem. Even-
tually, Erez made a breakthrough, discovering that the stair tool could help
them solve the problem:

Erez: At this point, they reach the same point.... The convention-
al oven leads all the way over the microwave, [and] in a spe-
cific position, they ... I got it ... stairs!

Using the stair analysis, they shifted back and forth between the graph to
the phenomenon as they completed the solution of the problem:

Erez: So it will go this way: it
starts this way, and then it
[the stair height] gets I
smaller and smaller, and -
here [draws a vertical line]
... up to here, it will be the 
conventional oven, and
from here, we'll get taller
stairs ... here, it starts to
be weaker.... 

Ilanit: I think it weakens after an
hour sharp!

Their last effort was to combine the two graphs into a single graph that
would model the whole process and demonstrate the reduced cooking time.
By estimating the height of the stairs on the nonlinear graph and comparing
them to the stairs of constant height, they determined the point where the
cook should move the meat from one oven to another. Working with the
information they had learned, they ultimately drew a single continuous
graph to represent the solution:

llanit: Let's say it's an hour here
and two hours here.... It
will look curved in the first
part and straight in the
second. I'll sketch it.... An
hour here, curved, and _ _ I
then straight. 1

Ilanit and Erez solved the problem using a limited set of graphical terms that
functioned as objects for describing processes. The visual objects (iconic
graphs and stairs) represented the reality of the processes but were manipulat-
ed mathematically
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The seventh graders, unlike the calculus students in our earlier sample,
immediately resorted to a graphical representation of the situation as a basic
tool for describing and analyzing it. Focusing on rate as the key for explain-
ing the behavior of a phenomenon, the students were confident about taking
a nonspecific, graphical approach to a solution.

In our view, they had progressed a great distance from drawing situations
that were graphed by the computer, through encapsulating processes, to
visually representing them using an iconic language, to using the full expres-
sive potential of the language by employing the stair representation. Next we
worked to expand students' skills in using the visual system of objects and
manipulating those objects, as the students became increasingly fluent in the
use of symbolic representations of situations.

PHASE 3: VISUAL REPRESENTATION OF
RATE OF CHANGE

In this last phase of our prealgebra curriculum, students see how the com-
ponents of their graphical representations can lead to the construction of
formal symbolic representations for functions. We begin by experimenting
with symbolic notations for constant-rate processes. In part, this process
reflects the traditional algebra curriculum at this stage, but we have also dis-
covered that our students are already using the stair representation to com-
pute the value of a function for any integer input. Students often use it for a
function f to compute f( n) by summing the heights of the "risers" on the
stairs that bring one to a height f(n). In essence, they were accumulating the
sum of the first differences. If the risers all have the same height a, the
repeated addition becomes multiplication, and students arrive at the formu-
la f(n) = an, which they interpolate to produce a linear function defined on
the real numbers given by the same formula (see fig. 20.8).

_ aa

a the accumulated quantity = + a ++ 

Fig. 20.8. Students' stair sketch and its expression to a line

Episode 3
We presented a problem that is an old favorite:

A king was defeated in a chess game on the 80th day of the competition by a poor
stranger. As promised, the stranger got the prize - coins of gold, consisting of one
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coin for the first day, two for the second, three for the third, and so on, with each
day's coins amounting to one more coin than the previous day's. How many coins
did the stranger receive?

Because of their experience, our students did not see the problem as present-
ing an arithmetic series (as it usually is treated in the textbooks), but rather,
they inferred that the quantity of coins was increasing at an increasing rate,
and they sketched an appropriate graph using stairs. Connecting the graph
and the stairs to the numerical patterns of rate of change, they agreed on the
meaning of the width of each stair (a single day) and the height of each stair
(the appropriate number of coins). They then looked for methods to find
the sum of coins accumulated in 80 days.

Anat drew a representation of her group's work on this problem and
explained her and her colleagues' method to her classmates. While she was
talking, she began trying to use the strategy demonstrated in figure 20.8, and
she drew an alternative set of stairs of equal heights and wrote a numerical
expression for the amount of coins. Following Anat's presentation, the class
tried to generalize the strategy and find an expression to describe the nonlin-
ear phenomenon. With the help of their teacher, the group replaced the 80
days with a variable and created a step-by-step translation of the stairs repre-
sentation into symbols. Anat's explanations and the generalizations appear
in figure 20.9.

The approach that Anat's group used was similar to that illustrated in fig-
ure 20.8 for the linear process. The students matched the value of each stair's
height and the drawing of the stairs to draw a curve increasing at an increas-
ing rate. However, turning this process
into a symbolic expression was not as
easy as it was in the linear example.
These seventh graders had not yet
worked with sums of sequences, but
some of them were able to manipulate
the stairs in a way that turned this prob-
lem into an equivalent linear problem.

Thus, the phenomenon in the story
invoked an iconic graphic representa-
tion using stairs. By accumulating stair
height and then replacing the stairs with
a "constant rate" staircase in which the stair height was the average of all the
increasing heights, students built a model that allowed them to find the
value f(t) for any number t of stairs. On the basis of Anat's description, a
conventional algebraic notation

(I + t) .
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was constructed. (The students were fortunate to be working with an even
number of stairs. They would have had to modify their method slightly if the
chess game had gone on for, say, 83 days.) As in their work with linear func-
tions, the students discovered an opportunity to build a symbolic represen-
tation of function, based on its graphical representation. We acknowledge
that such constructions are limited to processes defined on discrete domains.
However, we conjecture that symbolic constructions that are associated with
visual properties and are based on typical types of rate of change (such as
linear, quadratic, and exponential) constitute an important stage in the for-
mation of the concept of function. This conjecture is grounded in our expe-
rience, as well as on evidence from work with calculus students (Gravemeijer
and Doorman 1999) and an analysis of the development of algebraic repre-
sentations (Dennis and Confrey 1996).

Anat's narrative and graphs

Imagine a "stairs" graph that represents this
story. To find the value of the height at some
point, we can compose all the
heights of the stairs that "lift
us" to the point. Let's say BO
that the height of thefirst
stair is I and every next stair
is bigger by I from the previ-
ous. ft means that we have to
add:
I + 2 + 3 + 4 ... till the last one (for example,
till 80).

Now we add the height of
the first stair with the 1+2+9
height of the last one, the
height of the second stair
with that of the one
before the end. We get Al
equal sums. It means that
we could replace our
"staircase" by another
one.
The new staircase has equal stairs [stairs of equal
height], and their number is twice less than
[one-half] the number of stairs in 'our" stair-
case. The new staircase liJts us
to the same height in the end. (2+80) 80
We know how to compute 2
[the sum of] its stairs' heights.

Later generalizations to symbols
The height of the first stair is 1.

Every next stair is bigger by I from
the previous one.

The number of stairs is t, which
means that the last stair height is also
t, and the sum of all heights is

I1+2 +3 +... +t= ?

The sum of all heights is

I 1+2 +3 +... +t=
(I + t) + (2 + (t- 1)) + (3 + (t- 2))+

Every sum in parentheses is I + t,
and there are t/2 number of paren-
theses. The sum is

(I + t) t.
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VISUAL REPRESENTATIONS AS A MEANS TO FORM
CONCEPTUAL UNDERSTANDING OF FUNCTION

In this article, we have tried to explore the power and delicacy of a curricu-
lum that encourages students to construct the concept of function as the foun-
dation for learning algebra. We have tried to demonstrate a new role for the
visual representation of function-as a model for building symbolic represen-
tation-with support from appropriate technologies that help bridge represen-
tations. In our work, we attempted to design a learning environment that
would offer learners a coherent presentation of the concept of function-one
focused on processes that encourage experimentation with mathematical
objects related to representations of functions. To accomplish this goal, we
chose rate of change as the primary characteristic of processes, and we chose
the visual representation as the leading representation. We used a variety of
technological tools to help students experience, abstract, and construct new
variants of the representation of functions. Although the modeling of situations
was the major activity, the environment was also designed to support experi-
mentation with representations that do not necessarily emerge from modeling.

Analyzing the contribution of MBL technology to the construction of
representations of function, we argued (as summarized in fig. 20.2) that
although the links between a situation and its visual representation (and in
a later stage, the link from symbols to situations) can be formed conceptu-
ally, other links (mainly from the graphs to the symbols) are quite fragile.
Once students became proficient with visual representations, we hoped to
design ways for them to use these representations as a basis for the con-
struction of other representations. Figure 20.9 schematically describes the

Fig. 20.9. Models of situations gradually linked to symbolic representations of
functions
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prealgebra curricular sequence whose major phases were described in this
article.

When embedded in a prealgebra curriculum, the ideas presented in this

article give a new dimension to problems used in context. They suggest ways
to construct a symbolic representation of a function that models a situation
by gradually linking the computer-made, continuous graph to the formal
representation of the function. We believe that this type of learning then
forms a strong foundation for algebra. We have found this approach very

rewarding as we have struggled with the complexities involved in making the
concept of function a central feature of the algebra curriculum.
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Teaching Mathematical
Modeling and the Skills

of Representation

Joshua Paul Abrams

IN A vital democracy, a primary goal of schooling should be the develop-
ment of thoughtful, informed, and active citizens. Mathematics is an indis-

pensable tool for reaching this goal. With mathematics, we can ask and
answer important social, scientific, and political questions and analyze the

claims that policymakers advance. This process of using mathematics to

study questions from outside our discipline is called mathematical model-

ing. The methods and skills that we use to model a setting or situation pro-
vide us with a simplified representation, or model, of it that uses structures
such as graphs, equations, or algorithms. The model, in turn, helps us gener-

ate new information about our original topic. During these interdisciplinary
inquiries, mathematics is neither the motivation for our work nor the result.

Instead, mathematics serves as an intellectual lens through which nonmathe-
matical questions can be examined. When we teach our students to use

mathematics in this way, we are providing them with an education that will

serve them throughout their lives, to the benefit of society as a whole.
Many challenging and exciting skills used in the development of models of

applied settings have been ignored by traditional school mathematics. These
neglected skills include the abilities to analyze units, make choices among

alternative forms of representation, and recognize common structures.
These skills will receive proper attention only when we move away from a

conception of school mathematics as self-contained and separate from other

disciplines and move toward curricula that teach mathematics as a tool both
for solving important problems from other disciplines and for making beau-
tiful abstract discoveries.

269
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A MODELING CURRICULUM
The habits and technical skills involved in creating representations of

everyday phenomena must be explicitly taught. Students master them best in
the context of an understanding of the modeling process. The process of
modeling is best learned when students pose and explore their own ques-
tions about their world.

It is important to distinguish between open-ended modeling and applica-
tion-oriented curricula. The latter use models and their contexts to motivate
students to learn specific mathematics topics. They do not teach students
how to model for themselves. By contrast, the open-ended modeling activities
presented in this article help students practice the skills involved in creating
mathematical representations. These activities are taken from a full-year
modeling curriculum that has been taught in several high schools in Massa-
chusetts. A portion of the curriculum, including handouts for students and
software, is available at www.meaningfulmath.org. The course design and dis-
cussions are guided by the following essential questions:

* What is a mathematical model?
* What are some approaches to creating and modifying models of realistic
situations? What are some of the different ways of representing a realistic
situation? What are the benefits of each of these representations or math-
ematical tools?

* What knowledge can be derived from these models? How do we gauge
the reliability of this information? In what ways can there be more than
one right model or answer?

The course is carefully structured so that students identify questions that
are important to them and learn ways of using mathematics to further their
understanding of those questions. The culminating assessment of the course
is based on a month-long, small-group project for which students pose their
own questions and develop an original model. Sample questions that stu-
dents have explored include the following:

* How does dirt affect the melting of snow mounds?
* What harvesting guidelines can protect a lobster population in the face of
uncontrollable natural variations in the environment?

* How can delegates to the United Nations be seated to reduce tensions?
* How should a town structure its penalties for speeding tickets to generate
the greatest revenue?

* What arrangement of ceiling lights provides the most even illumination
for a room?
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As these questions suggest, the goals of modeling endeavors vary. Modelers

seek to gain understanding, predict outcomes, make decisions, and develop

designs. The group examining the melting of snow mounds was inspired by

the ever-dirtier mounds piling up during a snowy winter. The students sim-
ply wanted to understand what they were observing. They knew that the

process of identifying variables, creating representations, working with the

resulting abstractions to generate new information, and determining the sig-

nificance of that information to the original question would help them

toward that end. The group considering the plight of the lobsters worried

that harvesting allowances might leave fewer than the minimum number of

lobsters needed to replenish the stock. Group members developed a model

for predicting changes in the lobster population over time. Using the model,

they discovered that high harvesting limits would result in a complete col-

lapse of the lobster population if a decreased birthrate or other perturbation

reduced the stocks below the minimum level. The groups focusing on seat-

ing at the United Nations and speeding penalties both sought strategies that

would optimize particular variables. The group examining illumination in

the room was interested in a design that would improve the work environ-
ment of their windowless basement classroom.

THE MODELING CYCLE
Modeling is a cyclical process. Figure 21.1 details the steps, or stages, of the

cycle, which many authors present in simplified schematics (see, for exam-

ple, Clatworthy [ 1989]). The first stage, the creation of the mathematical
representation, usually puts students on unfamiliar ground. Creating a

model forces the modeler to think deeply about the setting. Translating an

imprecise, complex, multivariate situation into a simpler, more clearly

defined mathematical structure such as a function or a system of rules for a

simulation yields several benefits. Modelers initially identify a list of vari-

ables. As they do so, they discover what they really know about their prob-
lem and what information they need to determine through library research

or experimentation. In choosing a particular type of representation, they

must think about the connections between and among variables, decide

which relationships and structures are most important to capture mathe-
matically, and pick the mathematical realm that offers the best possibilities
for expressing all these features.

just as a scale model, such as a model boat, represents a larger, more com-
plicated object of the same type, capturing some of its aspects (appearance,

proportions) while simplifying or neglecting others (size, materials, func-
tion), so too a mathematical model represents a situation by retaining

aspects that are essential for study and putting aside details of lesser impor-
tance. Because of this simplification and because mathematical objects, such
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The Real World
A nonmathematical setting

Start with a
setting of
interest.

¾
Pos" a question

Identify relevant variables,
simplify the list of variables, and
refine the question. Determine
the form of the answer. (Will the
results be a design, a plan of
action, a set of numbers, etc.?)

i.i t Compare the new
1 information with what is

r.0 known and test it for
< reasonableness.

Dve new knowledge
Understand the setting more
fully through predictions,
measurements, relationships
between variables, strategies,
etc.

_~~~~~

The Mathematical World
An abstract representation

Representation

Which realms of mathc
matics are the most
promising avenues for
answering the questior
What mathematical
objects best capture th
relationships between
the variables?

Create a model
Make the model more realistic

h- each trip around the cycle
through the inclusion of add-
itional variables. Test the

on model's behavior using both
typical and extreme examples,

ae

c5

< Translation
Interpret the mathematical
results according to their
meaning in the original
setting.

Solve equations, graph
relationships, extrapolate
trends, carry out simulations,
optimize values, and
transform the initial model.

Determine mathematical
products

Derive new symbolic, numeric,
or graphic results from the
model

Fig. 21.1. The mathematical modeling cycle

as equations, have understood properties and behaviors, studying a mathe-
matical model of a real-world situation can provide students with insights
that are hidden from them during a nonmathematical study of the same sit-
uation.

Modelers must begin as simply as possible when they set out to create a
manageable first model. For example, the group studying seating at the
United Nations wanted delegates seated next to representatives from
"friendly" nations. Rather than seat the delegates in a rectangular grid sim-
ilar to that used by the U.N. General Assembly, the students seated their
model delegates in a circle. This change simplified the setting through the
introduction of symmetry. Every delegate now had exactly two neighbor-
ing delegates. The rectangular arrangement gave delegates seated in the
interior of the grid four neighbors; those seated at the edge, three; and
those seated at a corner, two. In addition, the change in shape led the
group to consider their delegates as the vertices of a regular polygon. They
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then represented "enemy" relationships with line segments between the

vertices and were able to apply their prior knowledge about polygons to
the model. For example, because they wanted the sides of their polygon,
which represented adjacent delegates, to be free of line segments represent-
ing enemy relationships, they could see that the number of such relation-
ships among n delegates had to be no more than the number of diagonals

in an n-gon or n(n - 3) + 2. Determining the number of permissible
enemy relationships would have been much less straightforward for dele-
gates arranged in a rectangular grid.

Once a first model is fully understood, additional variables can be incor-
porated into an increasingly complex rendering of it. This habit of initially
excluding seemingly important aspects of a problem is counter to most stu-

dents' instincts. The necessity of creating a preliminary representation,
which does not fully solve a problem, needs to be illustrated, emphasized,
and practiced repeatedly.

TEACHING THE MODELING CYCLE
The full-year modeling curriculum introduces the modeling cycle through

an activity that requires only simple arithmetic yet allows students to prac-
tice the three main skills used in developing representations: identifying
variables, simplifying, and choosing mathematical abstractions that capture
concrete ideas. This activity provides a scaffolding for each of the individual
modeling skills as they are learned throughout the course.

The activity involves a model that represents competing political parties
(Hotelling 1929; Pollak 1980). The model demonstrates how different laws

or voter behaviors may affect the changing political positions that parties
adopt over time as they maneuver for advantage. The model is a simulation.
A simulation requires the formulation of rules that describe the behaviors of
the entities being studied. Once the simulation is carried out, the modeler
can observe the consequences when those rules interact with one another.

The students are seated around tables in pairs. The teacher hands out a
sheet with the simulation board and instructions (fig. 21.2) as well as a few
small markers and a diagram of the modeling cycle shown in figure 21.1.
After discussing the steps of the cycle, the teacher explains the political party
model. The voters in this model are positioned along a spectrum from left to
right (representing perspectives from liberal to conservative), and the parties
also occupy positions along this political spectrum. Because we are in the
United States, students start with two party markers. They place their mark-
ers down on two random spots. A marker at position 3 represents a party
taking a moderately "left" position between the extremes. Students "run" the
simulation according to the rules and see what happens over time. Figure
21.3 shows a sample simulation.
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Fig. 21.2. The political parties handout

This simulation begins with
marker A at position 1 and
marker B at position 3 of a Vote: 1.5 for A 3 5 for B
five circle board. It is B's
turn. B currently receives 3.5
votes (white circles indicate a
vote for B, dark gray for A,
and split votes are light gray).
B considers the vote totals

for a move to the left, for Vote: I for A, 4 for B Vote 2 for A, 3 for B
staying put, and for a move to
the right. The move to the B 3 4 5 * ® ® f G ®
left (framed) is most
advantageous.\ 

It is A' s turn next, and A\ 
considers staying put or \> \oe . o ,25for B
moving to the right (which
produces five split votes). A
moves right.
On B's next turn, B chooses

to move right to pick up an I
extra half vote. On A's next V.,, 4r A. loB LVot 2 for A, 3 for Bturn (not shown), both ®*fl*X n n *
markers will end up in a
stable configuration, sifting at
position 3 and sharing the 5
votes equally.

Fig. 21.3. The political parties simulation

TESTING REPRESENTATIONS
Soon after beginning the simulation, groups encounter the problems pre-

sented by adjacent and overlapping markers. For example, if marker A were

1,2 3,4378 11
Simulation Rules

The Voters (circles on the The Parties (markers)
number line) . Part es take turns moving, and they
1. Each circle represents one voter, can move one step to the left, one
2. Voters vote for the party nearest to to the right, or stay still.

them, If more than one party is 2. They w 11 choose from the three
nearest a voter, then the voter will options according to which option
split her vote (e.g., a three-way t e provides them with the greatest
y elds a third of a vote for each number of votes. A party wi move
party). only if its share of the vote is

increased.
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at position 8 and marker B were at position 9, then A would receive 8 votes
and B would receive 3 (from the voters at positions 9, 10, and 11, which were
closer to it). If it were B's turn, then a move to position 8 would garner a
total of 5 1/2 votes, since each marker would be equally close to all voters

and all eleven votes would be split. A student's question, "Two markers can't
be on the same number, can they?" immediately takes students into the thick
of modeling decisions. First, they have to determine what an overlap of par-
ties or its prohibition would mean in the real political setting. The teacher
encourages students to choose whether they will allow such an overlap in the
model or not, asking them to justify their decision on the basis of its fidelity
to the real setting. Very different conclusions emerge from the two options.
For example, if students prohibit the overlap because they believe that two
parties would never have common platforms, then one marker can pin
another one in an unfavorable position. The class gradually discovers that
every aspect of their model should represent some aspect of the real-world
situation.

Once the simulations have reached a stable configuration, the teacher
seeks comments and observations. Students point out that when the parties
are allowed to overlap, the markers freeze on the central circle. Students then
interpret this mathematical result. At this point, they are engaging in the
activity labeled "translation" in figure 21.1. They speculate that the positions
of political parties will ultimately converge on a middle ground. When they
compare this prediction from the model with what they know about politi-
cal reality, they are participating in the activity identified as "analysis" in fig-
ure 21.1. The students engage in an animated exchange that reveals their
varying beliefs about whether or not American political parties exhibit this
convergence. Noting that the two parties in the model leave the simulated
voters with no real choices, the teacher poses a follow-up question: "How
many parties are needed to provide voters with distinct choices?" The class
then explores the dynamics of multiparty systems by adding more markers
to the simulation, and the students discover that at least four parties are
required before the rush to centrist positions is reduced and voters have
meaningful choices. The class compares these findings to the current impact
of third parties in the United States. The students also discuss how the laws
and constitutions of different countries influence the number of viable par-
ties.

IDENTIFYING VARIABLES
During class discussions, students who contest the model's conclusions

often begin to criticize its simplicity. Acknowledging that the lesson has pre-
sented a very simple model of a very rich phenomenon, the teacher asks the
students to identify variables that the model originally ignored-that is, to
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examine differences between the model and reality. They see, for example,
that real candidates' positions on many different issues give candidates com-
plex political profiles. As students consider recent elections, they note that
the model rests on many assumptions, including the following:

* Everyone votes, and voters are evenly distributed along the spectrum.
* People vote for a political position or a party platform and not for a spe-

cific candidate.
* Parties are always willing to change their views.
* A party's candidates and issues can be represented by one position on a

single spectrum. A "pro-choice" fiscal conservative and a "pro-life" New
Dealer would be difficult to position along the model's simple linear
political map.

* There is no historical record, so having power does not secure future
advantage.

Generating this list gives students practice in identifying variables-a skill
that they need to initiate the modeling cycle. The list, which usually runs to
twenty items or more, illustrates the necessity of starting with simple mod-
els. Students recognize the confusion that would result from trying to com-
bine all their variables on a first attempt. Incremental improvements and
subsequent analyses are more revealing and practical. To improve the model,
students pick a variable that they would like to add to it and figure out how
to incorporate this new variable into the current representation of the set-
ting. For example, the student who offered the last item in the list of
assumptions above suggested using a bigger marker for an incumbent party,
identified as the one receiving the most votes on the previous turn, and
awarding it a circle's entire vote in the instances that would previously have
produced a split vote. This change in the model represented the advantage
held by a party in power.

CREATING NEW REPRESENTATIONS
Representing missing variables effectively in the model requires students

to practice looking for structures that both the nonmathematical setting and
the mathematical entities have in common. For example, in the real world,
incumbent parties win additional votes because of the benefits (greater visi-
bility, patronage, control of redistricting) belonging to incumbency; analo-
gously, in the model, a larger marker would now win extra votes according
to the rule suggested by the student. The result of incumbency in both sys-
tems-real and modeled-was that weaker parties could not win by taking
positions identical to those of their opponents. This process of developing an
isomorphism, a mapping between two ideas with matching structures and
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parallel behaviors but often separate origins, is rarely experienced by high
school students.

Modeling provides a context for teaching about isomorphism, which is an
important feature of both applied and pure mathematical thinking. Students
do not always attend to the most relevant features of a variable when creat-
ing representations. They need to ask themselves what characteristics are
actually being captured by their proposals. For example, using a larger mark-
er for incumbents proved helpful because the marker's size served as a
reminder of its status, but the size itself did not affect the rules of the simula-
tion. The marker could just as easily have been a different color, and the sim-
ulations would still have provided an isomorphic representation of incum-
bency. In contrast, a different student proposed representing an incumbent
party with a dollar bill, which would cover two circles at a time, while coins
would stand for the other parties. Although this proposal also contains a sat-
isfying iconography, it is mathematically distinct from the first. The student's
playful idea not only helps keep track of which party won the previous turn
but also changes the geometry and the behavior of the simulation.

EVALUATING REPRESENTATIONS
Students invent mathematical representations for many of the new vari-

ables that the class identified. For each proposed change, they need to con-
sider whether to alter the simulation's physical design or one of its rules, or
both. They then try out the simulation with their changes and consider the
meaning of the new behaviors that they observe.

Students' attempts to incorporate multiple political issues are particularly
interesting. The students are quite intent on eliminating the assumption that
"a party's candidates and issues can be represented by one position on a sin-
gle spectrum." Some students suggest adding links between different voters,
creating a network rather than a line. Others propose a grid of two or more
dimensions in which each axis would represent an issue or a set of issues.
Figure 21.4 Shows both proposals as well as questions that they raise. How
do students choose between these alternative representations? They do so by
paying attention to the consequences and coherence of each possibility. Both
of these new configurations move beyond the geometric boundaries of a lin-
ear political spectrum. However, the first tangled network does not yield a
clear mapping to the real situation. The new connections complicate the
ordering of parties' positions, but students do not come up with an interpre-
tation of this change that shows how it represents combinations of views on
multiple political issues.

By contrast, the two-dimensional grid succeeds in representing every pos-
sible pairing of views, but students still need to make sense of how voters
would make their choices (how distances between voters' and parties' posi-
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Fig. 21.4. Students' proposals for a nonlinear representation of political beliefs

tions would be measured). Should there be diagonals in the grid model? An
informal discussion of metrics leads the students to compare beeline
(Euclidean) and gridline (taxicab) distances. They wonder whether the met-
ric is a crucial modeling choice influencing modeled party behavior. These
considerations illustrate the rich questions about pure mathematics that can
arise naturally from the complex issues and new directions suggested by
modeling problems. Ultimately, students decide that the grid provides a con-
sistent and improved representation for the model. Only through testing and
by insisting that each part of a representation be interpreted (mapped onto a
characteristic of the original problem) are they sure that they have made a
good decision.

Students can also gauge the value of a model by looking at the predictions
they can make from it. Do the mathematical results of the model translate
into outcomes that are known to be true but that were not intentionafly built
into the representation? If so, then modelers should have an increased will-
ingness to trust other newly discovered implications of the model that
appear to have some degree of plausibility. For example, students who
believe that real parties move toward the political center in the way that the
simulated parties did are more comfortable accepting other interpretations
drawn from the model.

LEARNING FROM THE MODELS
Students propose a variety of strategies for modifying the political parties

model to represent less-than-universal voter participation. They suggest (1)
randomly selecting voters to participate at each turn, (2) weighting the cir-
cles to reflect research on voter participation according to political beliefs,
and (3) counting only those voters within a set distance from each party.
(For example, voters at positions 10 and 11 might abstain from voting if the
nearest party were at position 6.) By implementing each of these three pro-
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(1 Xt + OOOOVOV'A ~ idifferent set of political

f~j issues. But how far is a
voter (0) from a party (1)

What would each new that is one position off in
connection represent? o r two directions? Is the voter
How would distances be two steps away or, using the
computed? For example, * more familiar Euclidean
how far is position 1 from metric, X steps?
position 5? Social -

ILbaral Conservative,
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posals, students learn that some representations are more informative even
when they may not appear to be the most realistic of the choices. The third
suggestion has proved to be a particularly revealing option. If voters will only
support parties within three units of their own position, then the markers
that represent the two parties typically end up at positions 4 and 8. Thus,
voters who consistently withhold votes from those parties that stray too far
from a voter bloc can pull parties away from the center and assure distinct
political choices. The mathematical model suggests that in a two-party sys-
tem, voter behavior can achieve an advantage that having a greater number
of parties offers in other democratic models.

In a few class periods, students are able to work through several cycles of
critiquing and refining a model as they generate more realistic results. All
students are able to create representations appropriate to their own mathe-
matical sophistication. An exciting aspect of this unit is the students' sur-
prise that mathematics can be used both to describe and to offer new under-
standings about political and philosophical issues such as voter behavior and
the design of democracies.

REPRESENTING Fuzzy CONCEPTS
Although modelers seek representations that clearly capture the meaning

of a situation, they frequently confront intangible concepts that are chal-
lenges to express mathematically. Optimization is the most common goal in
many students' modeling investigations. However, students often find it dif-
ficult to quantify the variable they want to optimize. For example, the stu-
dent group studying speeding penalties wanted to maximize revenue, or the
total amount of money raised, from tickets. That variable was easily
described. In contrast, the group studying seating at the United Nations
wanted to minimize tension. At the outset, it was not at all clear to the
group how to capture the overall tense-ness attributable to a given seating
arrangement. Tension proved to be a fuzzy concept that required a clear
mathematical definition. Similarly, the even-ness of a room's lighting was
challenging because providing even illumination called on the group to
reduce variability over a continuous set-all the points in the plane of the
floor. The students were familiar only with averages of finite lists of num-
bers.

The public frequently encounters mathematical measures of ill-defined
concepts. Consumer Reports rates products' overall quality by combining
many unrelated variables (such as the cost, quietness, and cooling ability of
an air conditioner). U.S. News and World Report (Morse and Flanigan 2000)
ranks colleges according to many quantifiable variables, some of which are
of questionable merit. Recently, a mathematician was hired by New York
City to create a function for measuring the social and mental well-being of
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the populace (Scott 1997). This type of "ranking" function is a necessary
tool in modeling, and creating one provides a perfect means for students to
practice many of the skills involved in representation and modeling. These
include skills in posing problems, creating definitions, identifying variables,
simplifying, making choices among representations, and justifying decisions.

Before each student creates his or her own ranking function as a long-term
project, the class develops one together. One class considered several possible
topics and ultimately decided to rank teachers. The variables that the stu-
dents identified were a teacher's creativity, knowledge of the discipline, fair-
ness, inclination to assign "busy work," experience, sense of humor, level of
what they called the "monotony factor," hygiene, ability to give help, legibili-
ty of handwriting, number of court appearances, ability to challenge stu-
dents, open-mindedness, opinionatedness, and sixty-two other factors! The
class then tried to simplify their problem by grouping the variables by type
(e.g., height, blood pressure, and gray hair were all combined in a physical
variable) and rating them by importance. This second task forced them to
clarify the matter of perspective-whose perspective should the ranking
function take? Were they looking at the teacher from the point of view of a
student sitting in the class or a principal hiring a new teacher?

The class spent a great deal of time evaluating the importance of a
teacher's being to some degree opinionated (OP) or open-minded (OM).
One student proposed the function Rank,(OM, OP) - OM x OP, with each
variable being a subjectively determined whole number from 0 to 10. After
investigating this representation of teacher quality, a classmate objected to
the rule, noting that a very open-minded and not at all opinionated
teacher would receive a score of: Rank,( 10, 0) = 0. This student suggested
Rank2 (OM, OP) = OM+ OPinstead. The first student replied that she pre-
ferred Rank, because she thought open-mindedness without any opinionat-
edness whatsoever would make for a weak and uninteresting discussion
leader. She wanted high scores only when both characteristics were high. At
this point, the students observed with surprise and genuine appreciation the
correspondence between addition and the logical or and the analogous rela-
tionship between multiplication and the logical and.

During these conversations, the class came to recognize the different
expectations and priorities that they brought to an evaluation of teachers.
Some students sought an emotionally safe environment; others were more
concerned with intellectual challenge. It was clear from the reactions of
many that they had tacitly assumed that they held a common set of values.
The process of mathematically defining a function forced them to articulate
their differing views. As in the example of the geometric modifications of the
political parties model, students arrived at an effective representation by
generating multiple possibilities and studying the consequences of each in
relation to their goals for the behavior of the model.
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The class examined test cases (sample normal and extreme teachers) and
studied the domain and range of the Rank, function. After one student point-
ed out that Rank (4, 0) should not equal Rank,(9, 0), the class chose to modi-
fy the domain to exclude 0. Ultimately, the students decided that although
both opinionatedness and open-mindedness were useful qualities for teach-
ers to have to some degree, too much of either would become problematic.
Figure 21.5 shows a student's sketch of the graph of the function that she
wanted to use to filter
both variables. She wanted
both high and low scores
to be penalized. The class -
then proposed different °
functions that would serve >X
this purpose, and after o C
narrowing their choices to 1 /0
two, they settled on Filter ,
(OP) -IOP - 5.51 + 5.5 <
rather than Filter(OP) = - I

-1/5 OP(OP - 10). They Original OP or OM score
chose to use absolute value
instead of a parabola or Fig. 21.5. A filter for teacher variables
sine wave because its linear
behavior preserved the spacing of their original subjective ratings. This deci-
sion illustrates how context can prompt students to think deeply about the
consequences of the properties of familiar functions. The final ranking func-
tion was then

Rank(OM, OP) = (-IOM- SS|1 +5.5)(-IOP- 5.5I + 5.5)

with an output ranging from I to 25.
The process of building a ranking function parallels that of creating a

whole model. Each new variable should be added iteratively, and each new
stage should be tested fully. Each time the class was faced with a choice, they
moved on only after a convincing reason had been given for choosing a par-
ticular representation. Of the original seventy-six variables, only a few were
explicitly addressed by the final ranking function. They saw that after a cer-
tain point, the gain from adding new variables was offset by a loss in under-
standing that results from excessive complexity of the model. There is little
doubt that a different group of students would have focused on a different
set of variables. Thus, the modeling process combines attention to the inter-
nal logic and appropriateness of various mathematical structures with the
subjective values and interests of the modeler.

In the preceding example, students' interest was quite high because of the
freedom they had to choose a topic that was challenging, immediately rele-
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vant, and appealingly whimsical. The students used many basic mathemati-
cal skills involving the application and analysis of functions, but only as they
themselves recognized the need for those skills. They were becoming increas-
ingly self-directed as mathematical thinkers, and the teacher was able to
assess how well each student was transferring his or her earlier learning.

CONCLUSION
How many of the habits identified in the lessons discussed here are mathe-

matics skills? All of them are if as teachers we see our job as helping students
make mathematics a vibrant part of their intellectual life. Representation is
the first step in using mathematics to answer realistic questions. Teachers
need to identify all the skills of representation and to provide their classes
with a variety of contexts in which to apply them creatively
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