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CHAPTER

1
Introduction

According to user surveys, the Linux operating system is rated as the best operating
system available. It is considered to be more reliable than its main competitors. Its
functionality is claimed to be better, and according to many experts, new releases
of Linux implement innovative ideas faster than its competitors. In other words, it
is argued that Linux development creates complex new technology better and faster
than the biggest firms in the software industry.

Yet, Linux also seems to break many conventional assumptions that underlie
research on innovation and technological change. Linux is developed by an informal
self-organizing social community. There is no well-defined market or hierarchy
associated with it. Most of Linux development occurs without economic transac-
tions. Instead of getting paid for their efforts, the developers often spend a lot of
money and effort to be able to contribute to the advancement of the development
project.

The open source development model, which underlies Linux, has attracted
increasing attention in recent years. Today, Linux is considered to be a serious
threat to Microsoft’s market dominance in operating systems. More generally, open
source development projects have in recent years had a major impact in software
and internet-based industries. For example, almost  per cent of Internet con-
nected Web servers were open source Apache servers in October . As can 
be seen from Fig. ., the second most popular Microsoft servers were about one
third as popular with  per cent. Although Microsoft has gained market share with
its Internet Information Server, at the end of  about  per cent of active 
web sites were running Apache. The most common operating system in the web
server machines was Linux. Some open source projects, such as Sendmail, Perl,
and Emacs, have achieved large user bases, making it difficult for commercial
enterprises to enter the market.

Linux has been developed in the open source mode to a large extent because the
Internet itself was to a large extent developed in this same mode. The collaborative

 http://www.uk.linux.org/LxReport.html.
 Source: Netcraft, http://www.netcraft.com/survey/. For a discussion on server market shares,

see Netcraft and Peeling and Satchell (Peeling and Satchell, ).

http://www.netcraft.com/survey/


and participatory development model gained visibility in the mid-s, when the
early users of time-shared computers realized that collaboration often produced
unexpected benefits. The predecessor of the modern Internet, ARPANET, was cre-
ated in this mode, and many critical contributions, such as Internet email, Usenet
news, and the World Wide Web emerged as a result of open collaboration. The
Internet Engineering Task Force, which defines standards for the Internet, has also
used an open source approach since its formation in  (Bradner, ).

Several commercial software firms have recently tried to adopt aspects of the
open source model. For example, Netscape announced in  that it would dis-
tribute the source code of Netscape Communicator with open source licence. IBM
decided to use the open source Apache server as the core of its Web server offers.
Red Hat, SuSE, Caldera, and other new economy firms, in turn, make their business
on packaging Linux distributions and by producing added value for Linux users.
Sun Microsystems has used a version of the open source model to support devel-
opment of its Java and Jini platforms. After launching an attack on Linux in ,
Microsoft declared that it will have its own Shared Source Philosophy, which was
aimed at making open source development possible without losing intellectual
property rights. In all these cases, business firms are experimenting with ways to
benefit from innovation that occurs in the open source communities. Instead of 
traditional economic competition, such initiatives rely on symbiotic relationships,
and on the willingness of developer communities to collaborate.

In much of the innovation literature, innovation is defined as something that has
economic impact. Linux and other open source initiatives show that this definition 
is problematic and possibly misleading in important practical cases. For example,
during its history, most Linux development has occurred independently of direct eco-
nomic concerns. It would be tempting to argue that Linux development is different
from ‘economic activity’ and something that, strictly speaking, should not be called
innovation. Indeed, in its early history Linux development was not in any obvious
way associated with changes in production functions, market competition, or appro-
priation of economic investment and surplus. Yet, obviously Linux developers collect-
ively produce new technology. If economy is about collective production, this is it.

 INTRODUCTION
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Linux, therefore, is an interesting test case for economic theories of innovation and
technology development. For example, the history of Linux allows one to question 
to what extent existing economic models of innovation and technological develop-
ment capture phenomena that underlie collective production of new technologies.

In very practical terms, Linux is an economically important phenomenon.
Indirectly, the success of many new businesses, venture capitalists, investment funds,
and individual investors critically depends on the productive activities of the Linux
community. Today, many corporations, governments, public sector organizations,
and individual developers are starting to deploy Linux to cut costs, promote inter-
operability, and avoid lock-in to proprietary systems. Yet, when we consider the
entire history of Linux, the economic impact seems to appear almost as an after-
thought and as a side effect of a long period of technology creation. Linux, therefore,
provides an interesting history of globally networked innovation, illustrating the
substance that underlies the discussions on the ‘new economy’. If the ‘new economy’
is about global Internet-enabled and software-driven production, this is it.

More generally, the history of Internet-related innovations enables us to discuss
those social and cognitive phenomena that underlie technological change. By
studying such innovations, we can open some black boxes of innovation theory,
including such widely used concepts as learning, capability, utility, and consump-
tion. By observing the development of the Internet, we can describe the microstruc-
ture of innovation, and transcend the boundary between invention and innovation.

Although such studies have obvious consequences for innovation research in
general, Internet-related innovations are, however, also special. On the Internet the
products of innovative activity are externalized as technological artefacts and docu-
ments that can be studied relatively easily. Never before has innovation and its
results been recorded in such historical detail. On the net we live in dog years, but
our memory is that of an elephant. There exists sufficient documentation so that we
can—at least tentatively—describe some key principles that underlie the develop-
ment of Internet related innovations. For a researcher on technological change, this
is an exciting opportunity.

Internet related innovations are obviously important as the Internet has become
a key technology in many areas of our everyday life. Below I will argue, however,
that these innovations reveal important aspects of all innovative activity. Indeed,
my key message is that the traditional models of innovation are often misleading,
and that they will become increasingly misleading in the future. In practice, we
have to move beyond abstract descriptions and ask what makes novelty meaning-
ful. This leads to social and cognitive theories of innovation.

From a practical point of view, Internet related innovations also provide test 
cases for analysing product development models and proposals for organizing 
for innovation. For example, the extensive use of modern communication and 
collaboration technologies in Linux development highlights some aspects of tech-
nology development that were not easy to see in earlier studies on innovation.
Although I will not explicitly discuss organizational or policy implications below, 
I believe that the following chapters highlight several points which have such 
implications.

INTRODUCTION 



Linux, open source projects, and Internet-related innovations may have develop-
mental histories where collaboration and networking are more visible than in some
earlier innovations. The open source model, however, obviously goes beyond soft-
ware programming projects. As many commentators have observed, the process of
science itself is very much based on peer-review, incremental development, non-
economic motives, and geographically distributed collaboration. Indeed, tradi-
tional models of innovation often assumed that basic research generates ideas and
technologies that are appropriated by entrepreneurs who turn them into products
and money. The history of Linux and Internet-related innovations enables us to see
how the boundaries between basic and applied research are being transformed.
Indeed, I will argue below that the distinction between basic and applied research
needs to be reconsidered.

From the very beginning, the Internet has been used to distribute work and its
results. Division of labour is the foundation of all societies; the Internet, however,
makes it possible in qualitatively new ways. A study on Internet-related innova-
tions, therefore, has implications when we try to understand the ongoing social
transformation towards the network society. To give just one example: when NASA
ran its Clickworkers pilot where volunteer Internet users could mark craters on 
pictures of Mars, between December  and June  people marked over 
. million craters. Although each volunteer only marked a few craters, collectively
their results were indistinguishable from those of a well-trained expert. This exam-
ple is interesting as it shows that trivial individual effort may lead to a high-quality
collective outcome. In a very concise form it shows one way by which a new balance
may emerge in the network society between increasing specialization and network-
enabled participatory decision-making. Internet-related innovations, therefore,
have relevance both when we try to understand how new technologies are devel-
oped but also when we try to understand how technological development and
social change could be linked in the future.

History is always constructed from the perspective and for the purposes of the
present. A useful history, however, provides opportunities for more than one inter-
pretation. Historical description, therefore, has to be rich enough in detail and it
has to give room for multiple voices. Yet, a balance has to be found between details
and conciseness. Reality is always richer than any of its descriptions. I have tried to
solve this problem by combining relatively general conceptual arguments with out-
lines of specific innovation histories and more detailed in-depth case studies. Some
chapters make rather controversial theoretical claims without extensive empirical
support for these claims. Subsequent chapters, hopefully, fill in some of the details.

The next chapter introduces some main concepts and assumptions that underlie
the present work. In effect, it tries to set the reader in a position where the subse-
quent discussion can make sense. It points out that innovation is fundamentally
about social change, and that innovations emerge and become articulated when
they are taken into meaningful use in social practice. It argues that meaningful

 INTRODUCTION

 http://clickworkers.arc.nasa.gov/documents/crater-marking.pdf: ‘Clickworkers results: crater
marking activity’,  July .



use—as well as the meaning of technology itself—is grounded on social groups 
that can be called practice-related communities. As a result, innovation and tech-
nological change can be studied as phenomena that occur within an ecology of
such communities. Construction of technology requires construction of meaning,
and new technology is much more than improved functionality. Instead of the
‘upstream’ of the traditional linear model of innovation, we have to focus on the
‘downstream’ where social communication and change occurs. All innovation is
social innovation. Innovation does not happen ‘out there’ in the world of objects,
but in society and in minds. More particularly, it happens in the minds of the users,
which are intrinsically integrated with the activities of the users. Those cultural and
material resources that are available for the users, therefore, become key resources
in the innovation process.

The third chapter is a quick first take on making these concepts more concrete. It
illustrates the nature of innovation by outlining the history of the World Wide Web.
It asks who invented the Web, what were the resources used in its invention, and
what actually was invented in the process. Many of the details of this history are
well known. Many accounts of the history of the World Wide Web, however, also
show that some details of the story are often missed. These details become import-
ant when we try to understand innovations such as the World Wide Web.

The fourth chapter moves from recent history back in time, describing the early
phases of the evolution of the Internet. More exactly, the focus is on that point 
of time when computer networking was only an idea. The chapter introduces the
historical data that will be used in subsequent chapters. Although there now exists
excellent histories of the Internet, such as those written by Abbate () and
Naughton (), it is necessary to provide enough historical detail to make the 
origins of the Internet understandable. In the process, I will also make some notes
that hopefully complement existing histories in interesting ways. The chapter
describes how electronic communication systems evolved and laid conceptual and
material foundations for computer networks. It also introduces leading actors who
played key roles in the early phases of computer networking.

The fifth chapter summarizes the early history of the Internet and describes the
various technological frames that generated the basic innovations of computer net-
working. In other words, it puts history in the context of technology and innovation
studies. It also discusses resource mobility in the early phases of the Internet devel-
opment. One main claim in the book is that innovation occurs when social practice
changes. The mobility of resources, therefore, is a key factor in enabling and con-
straining innovation.

The sixth chapter returns to the topic of communities. It discusses several 
alternative theoretical traditions that have described the social basis of meaning,
knowing, and knowledge creation. It starts by introducing the concept of thought
community that was originally introduced by Ludwik Fleck () in the s.
Fleck’s historical study described many of those social processes that underlie 
the emergence of new scientific knowledge and new technologies. The chapter 
further discusses Bakhtin’s speech genres, cultural-historical activity theory, social
learning in communities of practice, and the concept of ba. Ikujiro Nonaka and his
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colleagues have argued that innovation and knowledge creation occur in know-
ledge creation spaces, or bas. The chapter discusses the nature of bas, and links this
concept back to its origins in the epistemological theory of Kitaro Nishida and the
Kyoto School. The sixth chapter, therefore, introduces a set of alternative theoretical
views that can be used to understand the cognitive and social basis of innovation.

One of the main arguments below will be that innovation can properly be under-
stood only by studying the social basis of innovation. The heroic individual innova-
tor is not a good model when we try to understand the evolution and development
of technology. If knowledge and the meaning of technology is grounded in com-
munities that reproduce existing social practice, as this book argues, it may seem,
however, that innovation is a contradiction in terms. How is it possible that new
social practices emerge when communities more or less by definition reproduce
their current practices? How do we break technological frames and how are new
technological frames created? Chapter  argues that there are two distinctive ways
that new communities and new technological practices can emerge. One is based
on increasing specialization, and the other on combination of existing resources. In
other words, there exist two qualitatively different dynamics of innovation, and
their analysis requires two different theoretical approaches. As a result of these two
different modes of socio-technical evolution, the concept of ba can therefore be
redefined. The chapter links the concept of ba to the sociocultural basis of know-
ledge, and proposes a new interpretation of Nonaka’s knowledge creation model.

Using these theoretical concepts, Chapter  then returns to the history of the
Internet. It briefly discusses email as an example of combinatorial innovation, 
and describes the evolution of the social structure that provided the basis for the
creation of ARPANET and the Internet. It shows, for example, that both resource
combination and evolution of specialization have played important roles in the
development of social structure of Internet-related innovation communities. 
The current Internet community is in many ways rooted to the Network Working
Group, which started in  as an informal group of computer students. Internet,
itself, however, would not have been possible without a combination of resources
that came from outside this nucleus or the Internet culture.

Chapter  picks up one aspect of this history, which is an interesting topic for
both innovation studies and policy. This is the question of retrospection and attri-
bution of authorship. If innovations are to an important part created by their users
and the meaning of innovation is reconstructed from the present position, how
should we read historical accounts that describe evolution of technology? And to
whom should the credit go? Did Al Gore really invent the Internet? Or was he just
doing what Rembrandt did: signing off works that, strictly speaking, were produced
by others, but which could not have existed without him? Should Linus Torvalds get
a patent on Linux? What, indeed, does intellectual property mean when technology
development uses resources that are networked, cumulative, often unintended,
and when adaptation of new technological opportunities depends on institutional
change and competence development in the downstream? Should we reconsider
the author, or is the confusion created by a wrong conceptualization of the products
themselves? By analysing newspaper articles that have discussed the Internet 
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during the last fifteen years, we show how the common understanding of ‘the
Internet’ has evolved. As Chapter  shows, the heroes of innovation are mental
reconstructions, but so is the technology itself.

Chapter , finally, returns to the case of Linux. It describes both social and tech-
nological evolution of Linux and its development community. For example, it shows
how technological architecture and social structure co-evolve as technical prob-
lems are solved in the social domain and social problems are solved in the tech-
nical domain. By analysing in detail the evolution of the structure of Linux source
code over a period of years, it shows how social control and coordination become
embedded in a technological artefact. It also shows how social interaction can be
‘translated’ into resources by ‘black-boxing’ some of the underlying complexity
behind technological interfaces. The chapter argues that one reason why the open
source development model has been successful is that the social translation mech-
anisms it uses allow several communities to interface simultaneously to a common
technological artefact. Moreover, the open source model guarantees that when soft-
ware fails, it fails gracefully, at least in the social sense. In open source, black boxes
have transparent and penetrable walls. The chapter also discusses the bug removal
process in Linux and highlights some trade-offs that are needed to make distributed
innovation and technology development effective.

The last chapter puts the open source model of technology development in a
broader perspective, and discusses the cultural and value system that underlies
open source. Indeed, it argues that a study on socio-cognitive basis of innovation
leads to a new approach in economic theory, where the concept of value has to
accommodate the idea that in innovation processes new meaning is created and
new domains of social practice are generated. Such ‘expansive’ theory of econom-
ics may lead to new insights when we formulate and study technology and innova-
tion policy. The chapter also points out that the networked mode of production 
that underlies open source may lead to new dynamics in socio-economic develop-
ment as the social institutions that usually provide stability in socio-economic sys-
tems are constantly renegotiated in the network mode of development. The chap-
ter also discusses the differences and similarities between the open source model
and the Silicon Valley innovation system. The chapter finally points out some areas
for further study, and ends with some concluding remarks.
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CHAPTER

2
Innovation as Multifocal 
Development of Social Practice

Popular accounts and histories on innovation often focus on inventors and inven-
tions. The creative genius of an inventor is commonly viewed as a force that produces
new technologies and reveals hidden laws of nature. Such popular accounts, there-
fore, tell us, for example, how James Watt invented the steam engine, how Thomas 
Edison developed electric lighting, and how Tim Berners-Lee created the World 
Wide Web.

Research on innovation has conceptually refined this model by separating innova-
tion from invention. Invention has generally been understood as it was described in
the popular accounts, as a process of creative insight and heroic efforts in problem
solving. Innovation, in contrast, has been defined as a process that refines inven-
tions and translates them into usable products.

This traditional view led to a linear model of innovation. According to this model,
innovations are first invented and then developed, packaged, marketed, and,
finally, taken into use. Following Schumpeter (), Usher (), and others, many
authors defined the process of innovation as sequential phases of idea generation,
invention, research and development, application, and diffusion. Many product
development and innovation management models have been based on this linear
model. Similarly, many theoretical models have been developed to describe and
predict the adoption and diffusion of new products generated in this process.

Since the s it has often been noted that the linear model is too simplified (e.g.
Kelly, Kranzberg et al., ; Kline and Rosenberg, ; Padmore, Schuetze, and
Gibson, ). In practice, innovations emerge in a complex iterative process where
communication, learning, and social interaction play important roles. Allen (;
Allen and Cohen, ) and others observed that communication and flow of
knowledge is critical in the innovation process. Rogers (), in turn, noted that
communication among users is necessary for the diffusion of innovations. Von
Hippel (; ) emphasized that users often play an important role in the
process of innovation by modifying and improving products. Cohen and Levinthal
(; ) argued that adoption of new innovations requires learning and devel-
opment of competences by the potential adopters, whereas Nonaka (),
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Dougherty (), and others (Brown and Eisenhardt, ) noted that internaliza-
tion of customer and market knowledge is critical for successful product creation.

Today product development processes are often iterative and technologies are
refined while products are designed. Product development requires multidiscipli-
nary integration and creation of knowledge. Kodama () argued that the conven-
tional product development ‘pipeline’ is increasingly being replaced by dynamic
‘demand articulation’ where product concepts are created for non-existent virtual
markets. In demand articulation, potential user needs are integrated into a product
concept, and the emerging product concept, in turn, is decomposed into develop-
ment agendas for its individual component technologies. Many product developers
now use ‘focus groups’, study ‘lead users’ (Griffin, ; Cooper and Kleinschmidt,
; Urban and Von Hippel, ), use active exploration and experimentation
(Lynn, Morone, and Paulson, ; Thomke, Von Hippel, and Franke, ), and cre-
ate alliance networks to improve new product designs (Doz and Hamel, ).

Although innovation research has made impressive progress, it still often relies
on a basic assumption that also directed the traditional view. The conventional view
assumed that the product of the invention process has well-defined characteristics.
For example, the patent system was designed on the assumption that the function-
ality of each invention could be described in detail, so that its novelty could be
unambiguously decided. It was also assumed that invention had a well-defined
author—the inventor—and a well-defined moment of birth.

In the conventional view both the inventor and the invention were unproblem-
atic and easy to define. The moment of invention created simultaneously both the
inventor and the invention. Although it was well understood that the primary
insight often required development before an invention was articulated as a work-
ing prototype and could be produced, the exact details of the process of invention
were often considered to be irrelevant.

Economists opened the black box of technology when they realized that innova-
tion is a driver for economic growth. At the same time, however, invention was put
in its own opaque box, veiled under impenetrable layers of creativity and insight. As
a result, technological development was conceptualized as consisting of two qual-
itatively different phases: invention and its subsequent development into a product.

Science and technology studies, however, provide ample historical evidence that
this fundamental assumption is not valid in general. New technologies do not come
into the world ready-made. Instead, they are actively interpreted and appropriated 
by existing actors, in the context of their existing practices. A single technological
artefact can have multiple uses, and new uses may be invented for old artefacts.
Often a product is used in unanticipated ways, and perhaps no one uses it the way
its designers expected it to be used.

Where, then, can we find the author of an innovation? When, exactly, is a new 
innovation born?

 When patent systems were increasingly deployed in the th century, these assumptions were,
however, often contested, cf. Machlup and Penrose ().



One way to see the limits of the conventional view is simply to turn it around.
Instead of a heroic inventor we can focus on a heroic user. The traditional view
assumed that invention happens when a new concrete artefact or mental insight 
is created. The alternative view starts from a different assumption. Innovation 
happens when social practice changes. If new technology is not used by anyone, it
may be a promising idea but, strictly speaking, it is not technology. Similarly, if new
knowledge has no impact on anyone’s way of doing things—in other words, if it
doesn’t make any difference—it is not knowledge. Only when the way things are
done changes, an innovation emerges. Therefore we can say that invention occurs
only when social practice changes.

This view is a useful starting point and it is compatible with historical evidence.
It allows us to rethink some common assumptions that have become so central in
the traditional view that they have become quite invisible. Careful historical study
of innovations also shows that there has always been a great abundance of ideas
and visions, only a few of which ever change everyday life and social practice.

Let us, then, at least for a while, assume that this user-centered model is useful
and provides new insights on the process of innovation. If we give up the idea of
technological innovations as something fixed, we can note that technologies and
technical products have ‘interpretative flexibility’, to use a term proposed by Bijker
(). Different user groups and stakeholders impute different meanings to a given
technological artefact. A given technological artefact can play several different 
roles in different social practices. Instead of being a well-defined ‘objective’ artefact,
with characteristics that could be described without reference to social practice, the
artefact in question has many, and possibly incompatible, articulations. These
‘meaningful products’ may develop independently of each other, and one techno-
logical artefact can embed several meaningful products simultaneously.

If we adopt this user- and practice-centered model of innovation, it is easy to see
that innovation has many agents and that the process of innovation is distributed
in time, space, and across groups that use technology for different purposes. The
traditional model of innovation focused on a very special case of innovation. This
was the case where the user was well-defined, predictable, and whose needs could
be taken for granted. As will become clear below, it never accurately described how
innovation happens.

. PUTTING THE USER IN FOCUS

By defining innovation as something that generates and facilitates change in social
practice, we put the user in a central place in the process of innovation. In a very
fundamental sense, it is the user who invents the product.

For example, for many decades after the telephone was invented, it was marketed
mainly for business use in the US. When the telephone was not used for business
transactions, it was often understood as a broadcast medium. Telephone entre-
preneurs tried to use the telephone to broadcast news, concerts, church services,
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weather reports, and stores’ sales announcements. The telephone was also expected
to be used for voting campaigns, long-distance Christian Science healing, and to
broadcast lullabies to put babies to sleep (Fischer, : ). Interactive social use of
telephone was neglected for a long time by the inventors and the industry. Social con-
versations and ‘visiting’ over the telephone were not uses that telephone was sup-
posed to serve, and industry sometimes resisted such use. As Claude Fischer notes:

The story of how and why the telephone industry discovered sociability provides a few lessons
in the nature of technological diffusion. It suggests that the promoters of a technology do not
necessarily know or decide its final uses; that they seek problems or needs for which their
technology is the answer, but that consumers themselves develop new uses and ultimately
decide which will predominate. The story suggests that in promoting a technology, vendors
are constrained not only by its technical and economic attributes but also by an interpretation
of its uses that is shaped by its and their histories, a cultural constraint that can persist over
many years. (Fischer, : )

The telephone plays a very different role in the different communication cultures of
Japan, China, the US, Spain, Finland, or Bangladesh. In a very fundamental and
practical sense, the telephone is a very different thing in these different cultures.
Moreover, although a technological artefact may remain similar in shape and func-
tionality, it is constantly created by its users. To give a very simple and concrete
example, much of the revenue and most of the profits of telecom operators in
Europe originate today from SMS text messages. When this technology was defined
as a part of the GSM standard, no one imagined the various ways the users of this
technology would appropriate it.

Innovation, therefore, is not generated only by scientists or engineers, and often
they are not critical sources of innovation. In many cases, we can take the availabil-
ity of science and engineering for granted. In many ways, the modern world is full of
ideas and new technologies are rarely, strictly speaking, new. The traditional model
of a heroic inventor is therefore losing some of its obviousness and descriptive value.
The emergence of new innovations depends to a large extent on resources that are
available for the potential users, as well as on constraints that limit change in their
current practices. Therefore, to understand innovation, we need to understand tech-
nologies in use. How, indeed, does technology become part of social practice?

. USE AS MEANINGFUL PRACTICE

The traditional model of technological innovation was based on the idea that the
inventor and the invention are unproblematic. According to this view, a typical
invention is a well-defined artefact with well-defined characteristics. Consequently,
new uses are new ways of using this given artefact. In this view, the telephone, for
example, remains the same even when new ways are found to use the phone.

 SMS was mainly intended to be used to notify phone users that they had voice messages 
waiting.



Use of technology, however, is not something that we can understand as a spe-
cific use of a given technology. To talk about something as technology means that
we already assume some uses. The concept of technology doesn’t exist without an
implicit model of use. Technological objects are not something that we can discover
from nature: they exist as material artefacts that embed uses. Technological arte-
facts are artefacts full of meaning. If this meaning is taken away, we are not left with
the ‘objective’ object without subjective interpretations: instead, we are left with a
pile of undifferentiated matter.

This is sometimes difficult to realize. We rarely meet technological objects with-
out some interpretation of their meaning. Even when we have no clue what the
object is supposed to do, we still normally assume that someone knows. Most 
current technologies come ‘packaged’ with standard ways of using the technology,
and in everyday conversation we take these standard uses for granted.

For example, it is quite difficult for us to talk about a telephone without inter-
preting it as enabler of common everyday practices in which the telephone plays a
central role. When it is used as a hammer or a weight in a fishing net, for example,
we may find this amusing or exceptional. Such exceptional uses, however, imply
that there is a normal way of using the phone, and a corresponding standard inter-
pretation of the meaning of the thing. In some circumstances a telephone may be a
perfect hammer; most of the time, however, we are not supposed to use it as such.
The reasons are complex and fundamentally social: for example, a telephone may
have economically more efficient uses in a given culture. There may be cheaper
hammers lying around. A telephone embeds a complex system of economic and
social relationships and if we break the phone by hitting a nail with it, these rela-
tionships may break as well.

Technology enters our life as a way to conduct meaningful social practice.
Therefore technology does not exist in a ‘pure objective form’ outside the context of
social practice. Technology always exists as technology-in-use, and it is, in general,
impossible to find a stable core use which would well define the nature of a tech-
nological artefact. There is no hard core of technology that would provide a fixed
foundation for different variations of use; instead, there are multiple ways a given
technology can be appropriated by different actors, and different ways these actors
can integrate technological products in their everyday life.

Technology-in-use refers to meaningful use of technology. Meaningful use, in
turn, is rooted in social practice. In social life, completely idiosyncratic and unique
events make no sense, and they appear as random noise in the social sphere of
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 Material artefacts, of course, have some uses that are more ‘natural’ than others. According to
Gibson (), the world presents itself to us as ‘affordances’. For example, a ladder affords ascent or
descent, and a chair affords sitting. We, therefore, see ladders and chairs as such, instead of seeing
meaningless objects, which only after information processing become infused with meaning
(Tuomi, : ). More generally, affordances characterize the possible uses of things. For example,
it is difficult to push with a rope. A rope affords pulling. But, although material objects afford some
things and do not afford others, their meaning is not fixed by a specific given use. In some circum-
stances it is even possible to push with a rope. If the pushing, however, becomes common enough,
we find a new name for ropes that are used for pushing.



interaction. Social practice therefore grounds collective meaning. Meaningful use of
technology, consequently, is always inherently social and related to social practices.

The traditional view on innovation was based on the idea that innovation is well
represented by the material object that embeds the invention. A prototypical 
innovation, therefore, was something like a steam engine or a light bulb. The user-
centric view on innovation leads to a very different prototypical innovation. Instead
of material it focuses on mental. In the user-centric view, a prototypical innovation
is more like a word or a concept. A word acquires its meaning through the ways it is
used in communication. The same word can be used in many ways and it can play
different roles in different types of conversations.

Innovation is, therefore, as much about creating new meanings as it is about 
creating novel material artefacts. Or—more exactly—it is more about creating
meanings than it is about creating artefacts. A steam engine remains a pile of metal
without someone making sense of it in the context of ongoing social practice.

Artefacts enter social practice as meaningful objects and we have no way of talking
about material objects except as meaningful objects. Whereas the traditional view
saw technological innovation as something that generated functional objects, the
user-centric view sees these ‘objects’ as carriers of social practice and as artefacts
that embed theories of meaningful use.

Such theories of meaningful use are open for reinterpretation and for new appli-
cations. Even though a designer of a new product may have a theory of use, there is
no guarantee that this theory works in practice. Moreover, a given technical artefact
can be understood through different theoretical and conceptual frameworks. These
frameworks can evolve in various directions, long after the design of the artefact 
is frozen.

One relevant actor in all this, of course, is the producer of a technological prod-
uct. In the traditional industrial mode of production, the producer was a manu-
facturer. The product naturally played an important role in the manufacturer’s 
practices and often was the focus of activity. But even in the most prototypical
examples of mass production, such as Ford’s Model-T, the producer had only a 
limited control of the ways the product was integrated into the everyday life prac-
tices of car users. The meaning of a car was not invented by Henry Ford and his
engineers. Instead, it was created by the users. In a very important sense the users
produced the car, and without their active production, Model-T would have
remained a working prototype. So, while the practices of the manufacturer are
important when we try to understand the emergence of an innovation, they do not
determine the evolution of the innovation. The ‘essence’ of a specific technological
artefact cannot be found only by asking what its manufacturer believes the artefact
to be. Technical specifications of a telephone, for example, tell very little about the
uses for which telephones are put in different cultures and contexts.
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 Of course, already the idea of ‘pile of metal’ itself assumes that there are practices where metals
are differentiated from formless matter and non-metals. A ‘steam engine’ becomes a steam engine
in relation to uses where it is different from just a pile of metal.
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. PRODUCTION AS AN END

One way to view the role of manufacturer is to see it as one user of a technological
product among others. The manufacturer tries to make money with the product.
Although many users may also try to make money with the technology—for exam-
ple, by cutting costs in their production—the manufacturer has a special intent
because this is essentially the only motive for the manufacturer. Whereas for the
manufacturer the technological product is an end in itself, for the other users it is a
means of getting something done.

This manufacturer’s perspective generates the modern economic view of the
world and, on the other hand, only makes sense within it. As innovation research
often focuses on the economic aspects of innovation, it is important to understand
the character and limitations of this economic view.

The economic view of the world is a very special view. Indeed, it is a special case
of the utilitarian view that underlies also the modern concept of technology. In the
utilitarian view, the meaning of objects is their use value. In a consistent utilitarian
world, there are no ends but only means.

Such a world without ends risks becoming a world without meaning. As a reac-
tion to the emerging modern utilitarian views, Kant argued that to make values,
ethics, and politics possible we have to break the infinite regression of means in the
utilitarian system. In Kant’s philosophy, the world is an instrument for our interests
and needs but we have to regard human beings as special cases, and treat them as
ends in themselves, never only as means for other ends.

Classical economic theory solved the problem of infinite regression of means in
another, ingenious, way. It assumed that meaning is fully reflected in prices. Instead
of grounding value to something outside the economic system, value became one
aspect of the system itself. The infinite chain of means–ends relations was con-
nected by profit, which became the end of all means.

As a result, the means–ends system of the economic view of the world is a closed
system. Use value is conceptually and without a residue linked to exchange value.
Structurally, the economic world parallels the Newtonian closed universe, where
novelty is a contradiction in terms. Scientifically, it all looked very nice, two cen-
turies ago.

The economic view is important in the modern world and many actors operate
under its conceptual and practical constraints. For economic actors, the economic
system is a perpetuum mobile, where quality can only appear in terms of quantity

 For example, Craig Mundie (), Senior Vice President of Microsoft, argued in May  that
the software industry needs intellectual property rights because that is the only way profits can be
reinvested in research and development, and that it is only by such reinvestment that successful
technology corporations are able to grow and continue to provide societal benefits. Mundie, there-
fore, adopts the later Schumpeterian () model, where corporate R&D units become central in the
production of new knowledge and innovation. According to Schumpeter himself, this leads to the
growth of the size of firms. Schumpeter, however, also noted that the underlying logic eventually
leads to the collapse of capitalism.
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and where economic growth is the mother of all ends. It is, however, also important
to understand the particular limitations of this view. Perhaps the most fundamen-
tal assumption that is built into the structure of economic explanations is that the
meaning of products and production can be understood without reference to the
social and material reality. In a conceptually coherent and completely closed self-
referential system of means–ends, there can be no loose ends. As the economic view
implies in this sense a perfect utilitarian world, it is conceptually blind to anything
that does not operate within a utilitarian logic. ‘Values’ therefore remain inherently
external to the economic world and make no sense within this world. The meaning
of economic life is profit. All other meanings are unlinked from the system, irrele-
vant for it, and fundamentally meaningless.

It is always possible to introduce new theoretical concepts that expand any closed
theoretical system so that any particular phenomenon can be explained within the
system. The economic concepts of utility and preference, indeed, try to do some-
thing like this, and link the economic system back to the world. The reasonableness
of such extensions, however, is also an empirical question. At some point we may
end up with a complex Ptolemaic system and may ask whether new conceptual
starting points could make our explanations more powerful and compact.

Turning back to Kant, for example, we might ask whether there are non-utilitarian
ends. More fundamentally, we can rethink what makes products and production
meaningful. Such a quest for ‘meaningfulness’ of technology, products, and innova-
tion may at first look remote from the concerns of entrepreneurs, managers, and
modern policymakers. There are, however, many ways to make profit. In the future
good business may require understanding how meaning is produced.

. INVESTMENT AND INVENTION OF MEANING

It is useful to illustrate these concepts by looking for innovations that are all around
us, yet rarely discussed in innovation literature. During the last two decades, the
active role of users has been one central theme in research on fashion. Fashion is an
interesting reference point to studies on innovation as fashion is novelty without
technological function. In other words, whereas we often assume that new techno-
logy is adopted because it in some sense ‘works better’ than existing technology,
fashion has no obvious link between novelty and function.

Fashion is innovation without progress but also obviously social, and full of
meaning. According to Grant McCracken (), the meaning of material goods has
three loci, and there are several different ways meaning can be transferred from one
locus to another. The original location of meaning is the ‘culturally constituted

 The inherent destruction of meaning in the utilitarian world was discussed already by Nietzsche.
Arendt () has provided an insightful account of the conceptual structure and history of the
modern economic world-view in her classic work, The Human Condition, originally published
in .
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world’:

This world has been constituted by culture in two ways. Culture is the ‘lens’ through which all
phenomena are seen. It determines how these phenomena will be apprehended and assimil-
ated. Second, culture is the ‘blueprint’ of human activity. It determines the co-ordinates of
social action and productive activity, specifying the behaviors and objects that issue from
both. As a lens, culture determines how the world is seen. As a blueprint, it determines 
how the world will be fashioned by human effort. In short, culture constitutes the world by 
supplying it with meaning. (McCracken, : –)

According to McCracken, this meaning can be characterized in terms of two con-
cepts: cultural categories and cultural principles. Cultural categories represent the
basic distinctions with which a culture divides up the phenomenal world. These
categories include categories of time, such as years, centuries, leisure time and
work time, and sacred and profane time; and categories of space, flora, fauna, social
classes, status, gender, age, and occupation, for example. Cultural principles, in
turn, provide the principles that allow us to evaluate, rank, construe, distinguish,
and interrelate phenomena in the world. Together, these categories and principles
create a system of distinctions that organizes the world. Culture, therefore, consti-
tutes a world by investing it with its own particular meanings.

It is thus that each culture establishes its own special vision of the world and thus that it 
renders the understandings and rules appropriate to one cultural context preposterously
inappropriate in the next. Culture makes itself a privileged set of terms within which virtually
nothing appears alien or unintelligible to the individual and outside of which there is no order,
no system, no safe assumption, no ready comprehension. (McCracken, : )

Cultural categories cannot be seen as such in the world. Instead, they remain invis-
ible, at the same time providing a structure of distinctions that is continuously
reproduced in social life. According to McCracken, consumer goods have an import-
ant role in materializing and substantiating these categories. Through goods the
meanings that organize the world are made visible.

Cultural categories can be embedded in artefacts through the systems of advert-
ising and fashion. Advertising brings a consumer good and a representation of the
culturally constituted world together, so that the known properties of the world can
become resident in the unknown properties of the consumer good (McCracken,
: ). Similarly, the fashion system invests and divests of meaning in goods.

McCracken noted that the fashion world works in three distinct ways in transfer-
ring meaning to goods. One is related to advertising. The fashion system takes new
styles and associates them with existing cultural categories. The fashion system,
however, can also invent new cultural meanings:

This invention is undertaken by ‘opinion leaders’ who help shape and refine existing cultural
meaning, encouraging the reform of cultural categories and principles. These are ‘distant’

 Research on categorization has, of course, been a key theme in cognitive science. Gardner ()
and Lakoff () provide good introductions to the history of categorization research. More socio-
logical studies on categorization and its consequences include Bowker and Star (), and Foucault
(e.g. ).



INNOVATION AND SOCIAL PRACTICE 

opinion leaders: individuals who by virtue of birth, beauty, celebrity, or accomplishment, are
held in high esteem. (McCracken, : )

The third way the fashion system works is when it reforms cultural categories and
values that define cultural principles. The groups that are responsible for radical
reform of cultural categories usually exist at the margin of society. These groups
may adopt cultural categories and principles that differ fundamentally from the
traditional ones. For example, hippies and punks redefined the categories of age
and status, and gays redefined the category of gender. At the same time these
groups became ‘meaning suppliers’ for the mainstream culture.

In the fashion system, journalists, social observers, and market analysts act as
gatekeepers, filtering aesthetic, social, and cultural innovations, judging some as
important and some as trivial. ‘It is their responsibility to observe, as best as they
can, the whirling mass of innovation and decide what is fad and what is fashion,
what is ephemeral and what will endure’ (McCracken, : ). After making their
selections, they engage in a process of dissemination with which they make their
choices known. These cultural innovations are then invested in products by design-
ers who create fashion products for mass consumption.

By consuming the products, the meaning can transfer to the consumer.
McCracken proposed that there are four ways this transfer can occur. First, there
exist various possession rituals. Consumers may clean, discuss, compare, reflect,
show off, and, for example, photograph their new possessions. While all these activ-
ities have an overt functionality, they also enable the consumer to claim the pos-
session as his or her own. In addition to such possession rituals, there exist also
exchange rituals, where a consumer chooses, purchases, and presents goods as
gifts. The gift giver, for example, may choose a gift because it possesses meaningful
properties that the giver would like to see transferred to the gift-taker.

A third type of meaning transfer ritual is grooming. Some meaning is in its nature
perishable and has to be constantly recreated. The purpose of grooming is to ‘take
the special pains necessary to insure that special and perishable properties resident
in certain clothes, certain hair styles, certain looks, are, as it were, “coaxed” out 
of their resident goods and made to live, however briefly and precariously, in the
individual consumer’ (McCracken, : ). The object of grooming can also be 
the good itself. For example, cars, computer games, and tamagotchi may become
supercharged with meaning when they are groomed. This meaning, in turn, can 
be transferred to the person who grooms the car, game, or tamagotch, redefining
the person as a proud owner of the consumer item in question.

When meaning becomes invested in a material artefact it may become part of the
personality of the possessor. Divestment rituals may therefore be needed to separ-
ate the object from its consumer. For example, when someone buys an object that
has previously been part of the personality of someone else, divestment rituals may
erase the meaning associated with the previous owner. According to McCracken, the
cleaning and redecorating of a newly purchased home may be seen as such an effort.

McCracken noted that in North American culture, cultural categories and principles
are exceptionally indeterminate. People can define and choose their ‘age’, ‘gender’,
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‘social class’, and other category memberships in ways that are often strictly specified
and policed in other cultures (McCracken, : ). Indeed, much time and energy
goes to managing such memberships in a culture where they are not given.

In a modern world, cultural diversity supplies huge amounts of potential mean-
ings for everyday use. The resulting instability of cultural categories creates a para-
doxical situation. Individuals have to consume mass produced goods to differentiate
themselves. This is not only an economic decision, or an attempt to minimize the
cost of constructing one’s identity. For differentiation to make sense, it has to 
be based on commonly known cultural distinctions. Mass consumption, in other
words, requires mass media. Cultural contingency leads therefore to a situation
where cultural categories tend to be highly visible. Such a world looks open to innova-
tion and individual expression, but it also constrains novelty and expression. To
rephrase Henry Ford in the age of electronic highways: you can select any age, as
long as it looks young.

As Thompson and Haytko () noted, current fashion is also often seen as a
common ‘generalized other’ against which differences can be made. For example,
in the interviews conducted by Thomson and Haytko, some students actively tried
to avoid becoming ‘a statistic’ and dressing just ‘like the others’. The perceived indi-
viduating and transformative power of clothing, however, is ultimately contingent
upon a belief that others will notice and care about one’s appearance.

Thompson and Haytko argued that clothing often has a metonymic role.
Metonymy, used in its normal linguistic context, means that a part, association or a
property stands for a whole, for example, as in the phrase ‘Wall Street focuses on tech-
nology stocks’, in ‘Paris wears yellow this spring’, or ‘he drank the whole bottle’.
Clothing and material objects have a similar metonymic function when they situate an
individual as a member of a particular social sphere. A tie, jewellery, baggy jeans, a yar-
mulke, or a turban all may stand for a whole lifestyle and a complex system of values.

Simple reproduction of cultural categories provided by the fashion-system is,
however, an antithesis for a fashion-conscious consumer. Instead, the highly pro-
moted ‘brands’ and ‘looks’ are used in developing one’s own ‘style’. The culturally
available resources are combined and adapted to create something new. Indeed, in
the world of US university students, the capability to create coherent ensembles
from a range of brands and styles is taken to signify a number of positive meanings
such as creativity, organization, competence, and conscientiousness (Thompson
and Haytko, ).

The contingent nature of fashion means that the only way its different expres-
sions can acquire meaning is through active discourse where these meanings are
negotiated. There is no such thing as a personal fashion, as clothing derives its 
symbolic capital from cultural categories and principles. But neither can fashion be

 In practice, the system of fashion works well because it secures its own foundation. Fashion
requires that we construct our identities ‘under the objectifying gaze’ of imagined others. As a con-
sequence, the attitude that underlies fashion guarantees that we don’t need to know what others
really think. Although identity is fundamentally social, the fashion system enables identity con-
struction that is based on mediated representations of others. For the same reason, it is also possi-
ble to dress fashionably ‘just for oneself’ even when there are no others present.



universal. Distinctions become invisible if everyone wears a similar dress.
Similarity, therefore, defines an interpretative community, which in turn defines
what it considers to be similar and where it finds differences.

The culturally constituted world, as described by McCracken, is therefore not a
homogeneous world. Although generic cultural categories provide the backdrop
against which distinctions can be projected, individuals negotiate and recreate 
the meanings of these distinctions as members of interpretative communities.
Sometimes the community may limit the way new interpretations can be invented.
For example, a similar uniform or gown may signal that some cultural categories are
excluded from the ongoing discourse.

A closer look at the ways fashion is ‘consumed’ therefore reveals that goods are
actively produced by the consumers. Fashion items are used in a discourse which
defines and comments cultural categories. Pure fashion lacks functionality and
therefore its use is purely communicative. The consumer is never a passive sink of
goods or an end point of a production chain. Instead, products that are consumed
are used in the production of the user. Only if we assume that these uses of the ‘con-
sumer’ are irrele-vant or uninteresting, can we forget the processes by which the
‘consumer’ makes a product meaningful.

In industrial products fashion is often regarded as irrelevant and the fashion
industry usually regards functionality as irrelevant. In both cases, the adoption of
new products, however, is based on the users’ capability to make sense of the prod-
uct and to integrate it into ongoing practice. This practice, in turn, defines a com-
munity that sustains and reproduces the practice in question. Research on fashion
highlights the point that the resources needed to create new social practices and
categories are socially distributed and produced, and that, for example, commun-
ication, advertisement, and the reputation of opinion leaders play an important 
role in their change.

In effect, we therefore redefine the producer. The traditional view on innovation
assumed that a producer is either an inventor or an entrepreneur who produces a
new innovative product and develops a market for it. A user-centric view on innova-
tion, in contrast, sees the traditional inventor and the entrepreneurial innovator 
as users among other users. They have specific roles, competences, and motives 
but in that regard they do not fundamentally differ from other actors that collec-
tively co-produce innovations as meaningful products. Innovations are produced
through interaction between the different users, and innovation therefore cannot
be localized within a single business firm or in the head of a single inventor. As 
the following chapters show, this has important implications for the evolution of
technologies, as well as the ways innovative activity can be organized.

. COMMUNITY AS THE LOCUS OF PRACTICE

The locus of innovation is a group of people who reproduce a specific social 
practice. Social practice does not exist in a vacuum, and it is not something that an

INNOVATION AND SOCIAL PRACTICE 
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individual can invent on her own. There are no more private social practices than
there are private words. Language and practice are both inherently social. A new
word can be created by an individual but it becomes a meaningful word only if it is
taken into use in language. Similarly, innovations become innovations only when
they start to play a role in meaningful social practice.

Social practice consists of reproduced forms of action. Technological artefacts
often play an important role in the formation of social practice as they externalize
aspects of practice and transform parts of it from the mental sphere to the concrete
material world. Practices, therefore, exist as complex networks of tools, concepts,
and expectations.

When we talk about a given social practice, we therefore assume that there is a
recurrent form of activity that has some stability. Social practice structures and
organizes social life, and provides a foundation for collective meaning processing.
This foundation is not fixed but it provides a practical basis for interpreting the
world. As practices comprise complex heterogeneous networks of artefacts, con-
cepts, and ongoing social activity, reconfiguration and evolution of practice has
many constraints.

Meaning is not something that can be grounded on individual decisions or cog-
nitions about the world. But neither it is something that can be derived from some
abstract structure of society. Instead, meaning is grounded on specific commun-
ities that produce and reproduce meaning and their unique ways of knowing the
world. Meaning has its origins in collaborative practical activity and the community
that reproduces specific meanings is the community that reproduces the related
practices. The foundation and carrier of social meaning can therefore be called a
community of practice.

There exist different proposals on how we should conceptualize such commun-
ities of practice. Some authors have focused on communities of identity and inter-
pretation, others on communities of production, competence development, or
communication and knowledge creation. These proposals are discussed in more
detail in subsequent chapters. At this point, we may simply note that a community
creates specific potential uses of technology. The ‘user’ of technology, therefore, is
not an individual person but a member of a community with a practice that uses
the technology in question. The individual user is engaged in the practices of the
community and makes sense of technology in the context of these practices. When
innovation changes these practices, new ways of doing things create new inter-
pretations of the world. If innovation is technological, technology becomes integrated
in social practice in new ways, and acquires new meaning.

As a user of a given technological product, an individual is a carrier of social prac-
tice. In other words, the user is conceptually more accurately described not as a
person but as a practice.

This is an abstract conceptual point, but it is also a very important one. 
Innovation studies often adopt an individualistic and object-centric view. This 
subject–object dichotomy is deeply ingrained in our language and conceptual 
systems. When we try to describe alternatives for it, our concepts easily start to 
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look imprecise and not well defined. This is because concepts make sense only 
as parts of larger conceptual systems. Therefore it is impossible just to define a 
concept such as a ‘user’ in a new way, without simultaneously changing the rela-
tionships between many other concepts.

For the purposes of the current work, it is not necessary to deal in any great detail
with these conceptual issues. Instead of defining concepts we can describe con-
crete examples and historical cases of innovation. By illustrating the processes 
of innovation we can provide material that allows us to redefine the way we use
existing concepts. It is, however, important to note that to the extent that the 
meaning of technology cannot be grounded on interpretations of individual actors,
models of innovation cannot be based on individual users.

The strong theoretical claim that underlies the present work is that technology
exists as technology-in-use, in a context of a specific practice. If we abstract away
this social practice, we end up with an individual user or aggregate groups of simi-
lar users. At the same time, however, we also abstract away technology itself. The
conceptual starting point for innovation studies, therefore, has to be at the level of
social practice.

. INTERPRETATIVE FLEXIBILITY AND ECOLOGY OF 
SOCIAL PRACTICES

The user-centric view on innovation means that the various stocks of meaning
available to the different users provide the basis from which the innovation is arti-
culated. Innovation, therefore, is not created just by using the resources available
for the producer. In this sense, the innovation process is distributed among a num-
ber of stakeholders. Innovations are generated in the interaction between the 
various users and the artefact that embeds the innovation in a concrete form.

There are many ways of using a given technological product and there are several
communities of practice that have their idiosyncratic views on the meaning of 
the product. The traditional view on innovation often noted only two of these: the
producer and the consumer. In practice, there are many different ‘consumers’ who
‘consume’ the product in their own productive practices. If we follow a given arte-
fact and register all the different communities where it is used, we therefore may

 As Shapin () noted in his overview on the sociology of scientific knowledge, any discussion
on the alternatives to the object-centric conceptualization of the world has to rely on object-centric
concepts if it wants to be intelligible.

 When we talk about the user as a social practice, we therefore implicitly switch to a new view of
the world where many concepts acquire new meaning. This is, more generally, the key characteris-
tic of radical innovations. Radical innovation requires that we change some of the central concepts
and practices in a given community and reorganize the system of activities and meanings in a 
discontinuous way.
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find many such communities. In each community, the meaning of the artefact is 
different. Only rarely is there just a single community of users.

For example, word-processing software is an object of development and manu-
facturing for people who work in the firm that makes the product. Within the firm
there may be many different communities that deal with the product in different
ways. For example, product developers may see it as software code, marketing 
people may see it as a solution to customer problems, and the finance department
may see it as a source of costs and revenue. For store managers it is an object that
needs to be shelved and sold. For technical support people it is a collection of doc-
umented and non-documented features and bugs. For others, a word-processor
can be a tool to write poems, business letters, and technical documents. What a
word processor is depends on how you use it. How you use it depends on what prac-
tices you are engaged in. A word processor, therefore, can be many different things
in different contexts of use.

In a sense, these different uses may look trivial. A single product obviously has
different functions for its manufacturer and customer, for example. The point here,
however, is more radical. Strictly speaking, there is no ‘single product’. Such a thing
simply doesn’t exist. This becomes important when we try to understand the evolu-
tion and life cycles of technical innovations.

Although software products may seem exceptionally generic and multipurpose
products, they are not fundamentally different from any other technological 
products. Wheels, forks, cars, light bulbs, telephones, computers, email, and voice
recognition systems are all multipurpose products and have multiple communities
of practice using them. Some technological products are, of course, difficult to
adapt to different uses. For example, a nuclear power plant may produce heat and
electricity, and there may be constraints on the ways the plant can be used for alter-
native purposes. It may, for instance, be difficult to turn a nuclear plant into a play-
ground for children. But although there are limits to the ways a given technological
product can be used—and many practices exist where the product is not used—in
general there are many user communities and many interpretations of the product.

A given technological product evolves in the context of these different interpreta-
tions. Different stakeholders make different claims concerning the product. Some
stakeholders may dominate this process and make some interpretations socially
more legitimate and visible than others. Some uses and user communities may
become dominant, others may become peripheral, and some users may remain
marginal. In the course of evolution of a given technological product the centrality
of different communities may change and latent uses, for example, may become
dominant. Although the ‘product’ itself may remain similar in design, its meaning
may change.

An innovative product, therefore, is about co-development of practices and a
meaningful product that plays a role in those practices. Sometimes innovation 
can occur simply when the meaning of an existing technological artefact is reinter-
preted and appropriated in a social practice where the artefact was not previ-
ously used. Innovation does not necessarily require change in the design of the
product.
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The development of a given technological product is therefore a continuous
process. The evolution of its functional characteristics reflects a process of social
differentiation and negotiation of interests. When the design of the artefact changes,
some of the tensions in the underlying social processes become concretely embed-
ded in the product. At the same time, the artefact may ‘freeze’ some of this under-
lying social structure. Some technological designs provide ample opportunities for
continuous innovation whereas some designs effectively implement a fixed view 
on the use of technology, thus limiting the opportunities for innovation.

We should therefore understand innovation as a multifocal process of develop-
ment where an ecology of communities develops new uses for existing technologi-
cal artefacts, at the same time changing both characteristics of these technologies
and their own practices. Some of these communities have, of course, a more promin-
ent position in this process than others. Indeed, the traditional model assumed that
the only relevant communities are the producer community and the primary user
community. In many industrial products this assumption was a reasonable one. An
iron plough, for example, may have its most relevant use in agriculture, and many
of its uses are relatively easy to predict. Many modern products, however, have flex-
ible uses and many user communities. The drivers for innovation cannot easily be
found by looking at a single group of users or by searching the source of invention
from the deep well-springs of individual creation. Innovation is a social phenom-
enon. It is generated in complex interactions between several communities, each
with their own stocks of knowledge and meaning. Technological designs and social
practices co-evolve. Therefore all innovation is fundamentally social innovation.

. SOCIAL DRIVERS OF INNOVATION

As was noted above, in the multifocal and practice-centered innovation model,
innovation occurs when social practice changes. Drivers for innovation can there-
fore often be found by looking for tensions and contradictions in existing social
practice. Social practices form a complex network of interlinked practices and this
network is continuously evolving. Technology addresses a need when it releases or
reduces some of the tensions generated in this process.

 The problem of flexibility, of course, is becoming an increasingly important challenge as prod-
uct life cycles decrease. Research on product development models has traditionally focused on
process flexibility and product flexibility (Adler, ). Process flexibility means that manufacturing
capability can be easily reorganized and product flexibility refers to the ability to create product 
variations. More recently, researchers have studied ways the product creation process itself can be
made more flexible (e.g. McKee, ; Mullins and Sutherland, ; Bhattacharya, Krishnan, and
Mahajan, ; Verganti, ). Bhattacharya et al., for example, discuss the problem of creating
product definitions in highly dynamic environments where customers cannot easily articulate their
needs and where these needs may rapidly change. New product development models, however, do
not consider interpretative flexibility, or user meaning creation and innovation.



Entrepreneurs develop new technological products with the explicit purpose of
addressing needs. An entrepreneur interprets the meaning of technology from the
point of view of a potential user and designs a product that addresses the user’s
need. When the product addresses a need that articulates an important tension in
the underlying network of practices, the product can be quickly adopted.

The entrepreneur may also address latent needs that have not yet been articu-
lated as well-defined needs. In this case the entrepreneur invents both the need and
the product that addresses the need. This is the process that Kodama () called
demand articulation.

Of course, there are limits within which needs can be invented. It is difficult 
or impossible to articulate needs that have no basis in the current social life. A 
successful entrepreneur is in this sense like a popular poet who puts in words what
everyone was thinking but no one had said before. If a new product gives a compact
and coherent expression to something that was not expressed before, the product
can become an important element in the construction of social life.

Often such innovations, however, fail. The entrepreneur is rarely able to see all
the constraints that underlie the forms of current practices and how they limit the
ways practice can change. In other words, the entrepreneur may have a wrong
model of the potential use. This happens easily because potential uses are poten-
tial: there is no simple way to observe such potential uses in their actual form.
Although they can sometimes be ‘simulated’ and ‘tested’ they cannot be observed
in their ecological context. As a result, the entrepreneur has limited possibilities to
improve the imagined models of use.

Historical analysis of important innovations shows, however, that even when the
entrepreneur has a wrong model of use, innovations often succeed. The entrepreneur
produces a product for purposes that look relevant and important. Frequently, how-
ever, the product is used for different purposes, and these unintended uses may
become key drivers in the evolution of the product. Sometimes the producer makes 
a good guess on how the users will understand the product, but often the guess goes
wrong. Often the producer neglects some potential user communities entirely, and
these forgotten communities may become main users of the product. Fundamentally,
however, it is the users who either succeed or fail in making the product meaningful.

Entrepreneurial activity thus both addresses existing needs by reducing tensions
in the system of social practices and creates possibilities for new forms of practice.
In the latter case, we often talk about a ‘solution looking for a problem’. In such
cases, the entrepreneur may have a model of use that doesn’t resonate with any
potential user group. Many of the proposed early uses for telephone, television, and
computer, for example, tried to articulate needs that didn’t exist. People really were
not that interested in listening to concerts using a telephone or maintaining recipes
in computers—especially when they would have filled a kitchen.

In such cases, the locus of innovation moves away from the producer. Tech-
nological products become more like Rorschach ink-blots, and it is up to the users
to figure out what they mean. The telephone can be appropriated for social conver-
sations, television can become a medium for advertising, and the computer may
become a communication machine. Technology creates interpretative flexibility

 INNOVATION AND SOCIAL PRACTICE
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and makes new forms of practice possible. Technology itself can therefore promote
change. It can destabilize existing forms of practice and create contingency where
it did not exist before. Technology is, as it were, thrown to the world for someone to
pick it up and figure out what to do with it.

More often, however, technology is thrown to the world for specific expected uses.
Also then it can be picked up and used in practices where it was not designed to be
used. As will be shown below, this is quite a common event. In many ways the future
of a given technological product is decided not by its designers but by the dynamics
of an ecology of user communities where unexpected uses often become critical uses.

One way of seeing the dynamics of technological evolution is to view it as an 
integral element in a changing ecology of interacting social practices and commu-
nities that produce and reproduce these practices. Innovation often has its source
in the needs generated when a network of practices produces tensions and searches 
for ways to reduce these tensions. One could call this the ‘tectonic model’ of inno-
vative development. When social practices collide, technology is used to enable the
formation of new shapes in the landscape of social practice.

. INDIVIDUAL EXPLORATION

In addition to fundamentally social drivers of innovation there is also another source
of innovation. In his well-known works on flow and creativity, Csikszentmihalyi
(; ) argued that a generic feature of the human psyche is that humans feel
happy when they successfully perform at the edge of their capabilities. At the indi-
vidual level, humans have a tendency to do things that they find challenging, but
which are within reasonable distance from their current level of competences. To feel
happy, people are willing to take risks and perform at the limits of their competences.
As a result, these competences develop and the domain of competence expands.

One interpretation of this observation is that humans are psychologically wired
for extending behaviour beyond its current forms. People play with the limits and
try to find ways to do things that were impossible before. Innovation, therefore, is
not necessarily generated only by tensions in social systems; instead, it also has an
independent counterpart in individual playfulness and the joy of exceeding the
given limits of the possible. Indeed, individual creativity often drives change in
social practices and also creates tensions in the process.

In practice, play, creativity, needs, and opportunities are closely linked. Existing
designs are often improved because it is possible and fun, and because the
improved practice and design provide happiness and aesthetic satisfaction (Pacey,
). Improvement, therefore, cannot always be reduced to better functionality.
Sometimes an improved product just feels good. The product can be meaningful

 The aesthetic dimension of innovation is particularly evident in art. The earliest use of the term
‘invention’ in music dates back to . In  Antonio Vivaldi used the term in a somewhat
Schumpeterian way, titling his opus  ‘The Contest Between Harmony and Invention’. The most 
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by articulating something which cannot be formulated as sentences or functional
descriptions. An improved product, for example, can embed a view of the world
which shows that the world is richer or different than we expected. The product can
be ‘true’ and embed insights that make us happy. A true product fits easily with our
life. When we see such a product, we may laugh or smile, or feel at home with it.
Sometimes, however, the best we can say about it is: ‘this is it’.

Although individual meaning is fundamentally grounded on social meanings,
which we learn through our involvement with culture and its social practices, indi-
vidual creativity can also produce new interpretations of the world and its artefacts.
Individuals can, for example, apply concepts in new contexts. Indeed, Schön ()
argued that such ‘displacement of concepts’ is a key source of innovation. If 
existing results of individual creativity are appropriated in social life, creativity can
transform into innovation and become social. At the same time, the generated 
new practices become the new basis for socially shared meanings that provide the
foundation for further evolution of technologies, practices, and systems of social
meaning processing.

When there exists an obvious meaningful use for a technology, we can talk about
demand pull as a driver of technology development. When the need has to be articu-
lated and invented by the user community, we often talk about technology push.
But often innovation is also driven by playful tinkering with the limits of possibility,
in a process where new possibilities and new spaces for social practice are created.

Sometimes, in other words, we do it just for fun.

. SPACES OF NOVELTY

For sure, innovators and revolutionaries don’t always have fun. Social practice, by
definition, is recurrent and continuously reproduced. The heroic model of innova-
tion is based on historical reality: innovators often become excommunicated,
beheaded, or bankrupt. Social practice is inherently conservative. How, then, is
change possible in social practice? If knowledge and meaning have their roots in

famous inventions, however, are J. S. Bach’s two-part inventions that explicitly aim at teaching the
student how music can be invented by thematic transformations. Bach’s inventions are especially
interesting as they show how familiarity, novelty, and aesthetic satisfaction can be integrated using
relatively simple processes of innovation.

 Indeed, Csikszentmihalyi and Rochberg-Halton () observed that everyday objects often
become carriers of meanings that may have little to do with their functionality. Although the socio-
cultural origin of meaning for functional artefacts is in productive social practice, their meaning 
cannot be reduced to productive social practice.

 All artefacts play multiple roles in social life, for example, by being used in production at the
same time when they are used in the reproduction of social practices. Such an artefact makes sense
in an ontology that always remains only partially articulated and which we are never able to com-
pletely describe (Polanyi and Prosch, ). In this ontology, the functionality of things is only one of
many relationships between the entities in the world, and therefore only one component of their
meaning.



existing social practices and technology is used in these practices, how is it ever
possible to create new knowledge and new technologies? In a world filled with
social practices, where can we find space for something new?

The obvious answer is that, although new knowledge and innovation emerge
from the basis of existing knowledge and system of meanings, they do not emerge
as social practices. Novelty starts small. If it leads to innovation, it expands from its
origin and becomes institutionalized. This process of expansion and institutional-
ization is a key component in the emergence of a new innovation.

Innovation, however, is possible only because members of user communities 
can break the institutionalized forms of practice. As noted above, practice exists
because it is regularly reproduced. The fidelity of this reproduction, however, is not
perfect and there is variation in practice. More importantly, some rules can be
extended, reinterpreted, or broken. Although society structures everyday practice,
individual actors always deploy these structures for their own purposes. In this
sense the teenager who browses the mall to find and express his or her individual
fashion statement is right. Creativity can also be expressed by mixing and matching
the different brands that hang on the racks.

Michel de Certeau () argued that in modern society life is very much about
improvising around existing forms of practice, and appropriating them for indi-
vidual needs and idiosyncratic situations at hand. Although everyone necessarily
has to live according to someone else’s rules in modern society, the daily practice
relies on tactics that divert existing resources for unintended uses. Everyday life is
improvisation in the context of the current situation. Practical mastery is reflected
in this capacity to appropriate given structures for one’s own purposes:

People have to make do with what they have. In these combatants’ stratagems, there is a 
certain art of placing one’s blows, a pleasure in getting around the rules of a constraining
space . . . Scapin and Figaro are only literary echoes of this art. Like the skill of a driver in the
streets of Rome or Naples, there is a skill that has its connoisseurs and its esthetics exercised
in any labyrinth of powers, a skill ceaselessly recreating opacities and ambiguities—spaces of
darkness and trickery—in the universe of technocratic transparency, a skill that disappears
into them and reappears again, taking no responsibility for the administration of the totality.
(de Certeau, : )

The individual actor, therefore, lives according to the constraints and resources pro-
vided by the social world around her, and manages her way in everyday situations
as well as she can. Common forms of social practice are therefore not produced by
replicating and reproducing them in any high fidelity; they emerge as a collective
normal form of practice and as a standard against which exceptions can exist. 
The members of a community do not form a single collective mind. Instead, they
have their idiosyncratic situations and history as the basis for their current action.
Although social practice is in many ways institutionalized in technology, norms,
and shared meaning, in many ways social order is an imaginary order. It is not
always easy to think or act differently, but it is always possible.

Innovative use of given constraints and resources reflects the conflict between the
necessities of practice and the dominant representations of appropriate practice.

INNOVATION AND SOCIAL PRACTICE 
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According to de Certeau, in modern society there is little free space for individual
producers. We are confined in systems of production where the only remaining task
for us is to become consumers. Our creativity can be expressed only through the
different ways we consume the products of the modern society. At the same time,
however, we can create a space for our everyday practice within this system. An
example of this can be found in what in France is called la perruque, ‘the wig’:

La perruque is the worker’s own work disguised as work for his employer. It differs from 
pilfering in that nothing of material value is stolen. It differs from absenteeism in that the
worker is officially on the job. La perruque may be as simple a matter as a secretary’s writing 
a love letter on ‘company time’ or as complex as a cabinetmaker’s ‘borrowing’ a lathe to make
a piece of furniture for his living room. Under different names in different countries this phe-
nomenon is becoming more and more general, even if managers penalize it or ‘turn a blind eye’
on it in order not to know about it. Accused of stealing or turning material to his own ends and
using the machines for his own profit, the worker who indulges in la perruque actually diverts
time (not goods, since he uses only scraps) from the factory for work that is free, creative, and
precisely not directed toward profit. In the very place where the machine he must serve reigns
supreme, he cunningly takes pleasure in finding a way to create gratuitous products whose sole
purpose is to signify his own capabilities through his work and to confirm his solidarity with
other workers or his family through spending his time this way. (de Certeau, : –)

La perruque, therefore, is appropriation of existing resources for purposes for which
they were not intended to be used. It creates new meaning for existing resources,
thus opening possibilities for new social practice. The possibility of doing this may
be tightly controlled, which leaves little room for improvisation, or there may be
intentional slack in the system. A ‘perfectly efficient’ organization has full account-
ability and predictability and no slack, and therefore no space for new interpreta-
tions or practices. This is why strategic allocation of slack may sometimes be the
most profitable investment in organizations that try to facilitate innovation (Tuomi,
: –).

Organizational and social structures therefore often constrain the everyday prac-
tice of individuals. Individuals, however, also intelligently appropriate these con-
straints as resources, and manage their everyday life by building meaningful worlds
out of the materials provided in the social system. According to de Certeau, indi-
viduals competently steer their life in the labyrinth of social constraints and trick
existing powers to help overcome problems in everyday life.

The actual order of things is precisely what ‘popular’ tactics turn to their own ends, without any
illusion that it will change any time soon. Though elsewhere it is exploited by a dominant power
or simply denied by an ideological discourse, here order is tricked by an art. Into the institution
to be served are thus insinuated styles of social exchange, technical invention, and moral resist-
ance, that is, an economy of the ‘gift’ (generosities for which one expects a return), an esthetics
of ‘tricks’ (artists’ operations) and an ethics of tenacity (countless ways of refusing to accord the
established order the status of a law, a meaning, or a fatality). (de Certeau, : )

De Certeau maintains that modern society is increasingly dominated by economy
and economic powers. Yet, an alternative economy of gifts survives in the margins
and interstices of this dominant system. This alternative economy, therefore,
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becomes an important space where new knowledge and practice can emerge.
Indeed, as Linux and other open source projects have shown, new social spaces for
creativity and collaboration can also form around information highways, not only
in Rome or Naples. According to de Certeau, the constraints of modern society penet-
rate all social life but, partly because of this global influence of the constraints, the
alternative economy also becomes increasingly global and prominent:

It is even developing, although held to be illegitimate, within modern market economy.
Because of this, the politics of the ‘gift’ also becomes a diversionary tactic. In the same way, the
loss that was voluntary in a gift economy is transformed into a transgression in a profit eco-
nomy: it appears as an excess (a waste), a challenge (a rejection of profit), or a crime (an attack
on property). (de Certeau, : )

According to de Certeau, scientific research is still characterized by this economy of
gifts. Working with its machines and using scraps, scientists can divert organiza-
tional resources, create products that signify an art and solidarities, and play the
game of free exchange. Work can, then, be creative and not just production for the
ends defined by others.

In these ways we can subvert the law that, in the scientific factory, puts work at the service of
the machine and, by a similar logic, progressively destroys the requirement of creation and the
‘obligation to give.’ I know of investigators experienced in this art of diversion, which is a
return of the ethical, of pleasure and of invention within the scientific institution. Realizing no
profit (profit is produced by work done for the factory), and often at a loss, they take some-
thing from the order of knowledge in order to inscribe ‘artistic achievements’ on it and to carve
on it the graffiti of their debts of honor. (de Certeau, : )

At the level of individual everyday practice, innovation is therefore often material-
ized through improvisation and creative use of existing resources. The space of
innovation exists in the periphery and on the margin, in under-specified, undeter-
mined and unused spaces. Innovation can, however, also exist in interstices of 
current practices. At the level of social practice, innovation can occur when the 
relationships between social practices are reorganized. For example, tools that are
produced for specific uses can be adopted for new uses. The linkages within an
ecology of communities of practice can be recombined in new ways. Innovation
can therefore have its source in the dynamic recombination of production and con-
sumption relationships also at a level which cannot be reduced to the individual
level of analysis. The space of recombination of social practice is qualitatively 
different from the space where la perruque and individual improvisation exist.
Whereas individuals improvise within the constraints of social practice, communi-
ties can intentionally put practices into new contexts.

. DYNAMICS OF NETWORKED INNOVATION SPACES

In the ecology of communities, innovation can often be detected as reorganization
of relationships between different communities. For example, Bakelite producers
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can suddenly start to talk with car manufacturers (Bijker, ). Such reorganization
can also be seen, for example, in the recent development of the travel industry,
where traditional travel agents in many cases have been replaced by Internet 
services that enable travellers to directly reserve tickets, hotel rooms, and rental
cars. This is a prototypical case of ‘disintermediation’ where some communities of
practice simply become unlinked in the ecology of communities.

As was noted above, practices comprise artefacts and reproduced activity.
Practices rely on an infrastructure of humans, communication, tools, materials, 
and products. A community of practice can therefore interface with other commun-
ities and its practices through various representations of practice. Sometimes 
practice is represented by a person who stands for the community. Communities 
may, however, also be represented by artefacts that they produce. In other words, 
a product can become a resource that stands for the capabilities of the community
that creates it. In the evolution of a network of practices, services therefore can
become products. Indeed, there is no fundamental distinction between them.

A simplified schematic example of evolution of a network of innovation is shown
in Fig. .. The figure shows some main linkages around a computer operating sys-
tem development community as they existed in the s and at the end of the s.

At the end of the s, computer operating system programmers lived in a world
where their professional practice was relatively well defined. The programmer
wrote code using a text editor and used either a compiler or an assembler to gener-
ate binary code for the target computer. At the end of the s, the environment
had become more complex. The ‘computer’ itself had become transformed. It 
had become an increasingly complex network of components, each with their 
own development communities. One of the underlying technologies, the Internet,
had become a major use of the computer, and programmers tried to manage the
increasing complexity of new and continuously changing components using
Internet newsgroups.

As sociologists have often argued, the development of modern society creates
increasingly complex interrelationships (e.g. Simmel, ; Halbwachs, ;
Berman, ; Giddens, ). Part of this complexity, however, is contained by 
creating interfaces that hide some of this complexity. Actor-network theorists, 
for example, argued that complexity needs to be ‘black-boxed’ and ‘translated’ for
practical action to proceed (Callon, ; Latour, ; Law and Hassard, ). We
can talk about the ‘postal service’ or ‘the British government’ without knowing in
detail what processes, people, and technologies these black boxes actually contain
(Law, ). For most purposes, the postal service can be represented by a person
behind the counter and some simple artefacts, such as an envelope and a stamp.
Similarly, we can talk about ‘a computer’ without knowing exactly what its 
components are or how they have been connected. More generally, society, and 
social meaning itself, can be viewed as an order which simplifies this complexity
(Luhmann, ; ).

At each point of time, a society consists of a complex interlinked set of social
practices, some of which are represented as technological resources. Practices
evolve continuously, and generate tensions in the process. As was noted above, this



is an important driver for innovation. Technologies and their improvements may
emerge as expressions and articulations of ways that these tensions can be released
and reduced. However, in addition to such continuous evolution and articulation,
social practices—and resources they generate—can also be recombined. When 
the ecology of communities becomes sufficiently complex, opportunities for such
recombinatorial innovation increase. This process is similar to la perruque,
although it occurs at the level of an ecology of social practices. Recombinatorial
innovation, therefore, relies on appropriation of unintended resources.

INNOVATION AND SOCIAL PRACTICE 
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Fig. .. Changing production–consumption linkages

 The term recombinant growth has been used in economics to describe growth that is produced
by combining technologies in novel ways (cf. Varian, ). These models originate from theoretical
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The dynamics of recombinatorial innovation depend on many factors. One
important factor is the mobility of resources. When there is only little mobility, 
a community is fixed in its network of relationships. For example, a producer of
technology may produce tools only for a given community of users and consume
raw materials produced by a well-defined set of suppliers. In such a case the com-
munity may find itself stuck with its current relationships.

Mobility, therefore, defines how easy it is to reorganize the motives and meanings
in a given community so that they can be linked with new practices. Mobility of
resources often reflects characteristics of technology. When technology is architec-
turally rigid and inflexible, it may be difficult to appropriate it for novel purposes.

Mobility can, however, also depend on the system of values and meanings within
the community. For example, members of a community define their identities 
in relation to the community (Lave and Wenger, ) and those socialization
processes that reproduce the community often limit the mobility of a community
(Engeström, ).

The community can also be uninterested in change. In some communities novelty
is not valued. Sometimes the whole ecology may share values that make change 
difficult. Mokyr (), for example, argued that one important reason for the very
different technological trajectories of European and Chinese cultures was that after
the thirteenth century China was in many ways a homogeneous Confucian system.
The power structure in China made it possible to get rid of disturbing change, 
and—in contrast to Europe—there were no independent small duchies or city-states
where deviants and people with new ideas could flee (Mokyr, : ).

Even when the community would want to reorganize its relations within the 
web of interdependences, it may find that the web is sticky. Recombination at the 
network level is about relational change. It does not happen only in one focal com-
munity. Indeed, one may argue that usually communities have a very limited capa-
bility to make non-local innovations, and that innovation typically emerges either at
the level of individual creativity within a community of practice, or as a result of inter-
community tensions that force reorganization of inter-community relationships.
The following chapters, however, show that communities can create interfaces that
facilitate recombinatorial innovation also at the network level.

biology and models of evolution. In contrast to most current discussions on recombinatorial growth,
I use the term in the context where ‘the components of a technology’ cannot be taken apart in any
objective sense. Recombination is always linked to change in social practices. The unit of analysis is
therefore not a decomposed artefact, but a complex system of humans and artefacts. In this sense,
the usage is actually quite close to the original biological analogies that inspired the theory of recom-
binatorial growth. Eigen and Schuster (), for example, proposed a model of hypercycles to
describe evolution as increasing complexity of linkages between subsystems. I have discussed the
hypercycle model in detail in Tuomi ().

 This problem is implicitly addressed by product development models that try to build flexibil-
ity into the development process. As was noted before, on a more fundamental level the question,
however, is not only about keeping development options open as long as possible but about 
producing technical designs and architectures that explicitly assume interpretative flexibility and
unintended uses.
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Recombination is difficult because it is relational, but advances in information
and communication technologies also make it more possible than it was before.
This is one reason why the ‘downstream’ is becoming increasingly important in
innovative change. Downstream innovation implies that an existing technological
opportunity is taken into a novel use. As this process requires change only in the
practices of the downstream community, innovation can be local and there is no
need to synchronize change across communities.

It is important to note that radical innovation can occur gradually, without 
revolution. Internet email is an example here. It emerged as a result of a low-profile
skunk-work project, was taken to many illegitimate uses by the developer commun-
ities of the Internet, and eventually redefined the Internet itself. Throughout this
process, the basic technology of email has remained quite stable. Only relatively
late, actors such as Microsoft or AOL have emerged as important players in the
development of email. Eventually, of course, the reorganized relationships may
have considerable impact on the identity of the members of a specific email-
using community and its practices, as well as in the direction of evolution of the
community.

Another important factor in the dynamics of combinatorial innovation is trans-
parency. Community resources are usually represented to the ‘outside world’
through translation mechanisms such as products and persons who stand as prox-
ies for the community. These translation mechanisms link existing communities,
and therefore they reveal the inner structure of the black boxes in a way that is
appropriate for the given interrelationship. To create new linkages, black boxes often
have to be opened and new ways to create resources have to be defined. If there is

 The process is therefore essentially the same as underlies biological evolution of functional
organs. Many scientists, since Darwin, have been puzzled by the fact that complicated systems such
as the human eye can emerge in the process of evolution. The answer to this puzzle is that the eye
does not emerge as an eye. After photosensitive cells emerge they are appropriated for new uses by
the animal in question, thus creating a new developmental path where ‘vision’ becomes relevant.
When vision has become relevant, the diverse possibilities of seeing can develop in parallel and very
different biological architectures can develop for seeing. The traditional Darwinistic models of 
evolution miss this point, and consequently evolutionary descriptions of technological change tend
to assume that variation and selection processes are the key to technological development (e.g.
Ziman, ). The ‘blind’ Darwinistic variation tries to get rid of determinism through randomness,
and sees the generation of ‘useless’ and potentially ‘failing’ variations at the core of evolution. A more
interesting possibility is to view evolution as a ‘creative’ process where new domains of being emerge
with the capability to operate in new ways. This, of course, was exactly what Bergson () argued
at the beginning of the last century. Variation, in this view, is not generated by more or less useful
versions of a given characteristic; instead, existing capabilities are appropriated for qualitatively new
uses. Although selection plays a role in evolution, the Darwinian model misses this creative domain
of evolution. In technology development this creative domain is essential.

Bergson also noted that it is difficult to describe how functional organs emerge as evolution is 
a continuous process. It is difficult to explain the emergence of the eye, for example, because at 
the point of time when something becomes an eye there doesn’t exist any function of seeing 
(cf. Maturana and Varela, ). All our explanations of the eye, therefore, tend to be retrospective
projections into a world where vision didn’t exist as we now know it. A similar retrospective projec-
tion often underlies theories of innovation, as will be shown in a later chapter.
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no way to penetrate the complexity that is hidden behind the existing translation
mechanisms it is difficult to invent new ways to combine resources. Transparency
therefore defines how easy it is for outsiders to see whether such new linkages could
make sense for the community. It also helps the outsiders to create their own trans-
lation processes in ways that are easy to link with other communities.

A third important factor in mobility is the capability to create mechanisms that
hide complexity and translate communities into resources. Creation of a techno-
logical product is itself an important way of doing this. For example, computer
users do not need to integrate their activities with the complex processes that
design, develop, and manufacture computers and their components; instead, they
can simply buy a box that embeds the various competences that are needed to
make computer programs operational. Effective ways to hide complexity facilitate
mobility and recombination of resources. Market economy, in general, is such 
a mechanism. Other similar generic mechanisms include standardization of tech-
nical interfaces, production of standard components, and, for example, standard
formats for information exchange.

As the following chapters show, one common way to create transparency is
through individuals who are simultaneously members of several communities.
Information technology, however, has also created new ways to increase trans-
parency. The open source development model, for example, explicitly utilizes these
new opportunities to create new technology. Indeed, the open source model relies
on mechanisms that effectively support recombinatorial innovation.

In modern society mobility of resources has become a central value. Producers
and consumers form networks that are in constant transition (Berman, ; Harvey,
; Castells, ). Information technology, in turn, has increased mobility of
resources and competences. Moreover, information technology is exceptional
because it can simultaneously both create transparency and hide complexity, and
dynamically change the visibility of relationships in an ecology of communities. 
At the level of ecology of communities of practice, the speed of recombination 
has therefore increased. The space of recombination has become an increasingly
dominant space for innovation.

The viability of this space, of course, depends on someone creating new know-
ledge and competences in the first place. For example, today Silicon Valley has
become a portal to the global innovation system, specializing in the rapid recombi-
nation of resources and technologies. The viability of this space, as a social space, is
an open question. As the following chapters show, many of the innovations that
underlie entrepreneurial and innovative activities in Silicon Valley were created
a long time ago, often far from Silicon Valley. In this sense, Silicon Valley may be a
niche player in the innovation game. Innovation does not depend only on the cre-
ativity of individuals, their capability to solve existing problems, or recombination.
It also depends on time and place for improvisation and play, as well as the existence
of slack.

In the following chapters, these concepts are made more concrete by studying how
important technological innovations have been generated. I will introduce several
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historical examples of new technologies and use them as empirical cases 
to study innovation processes, elaborating and clarifying the above discussed con-
cepts in the process. The focus in the following chapters will be on innovations that
relate to the Internet. Although this is a relatively narrow focus, it also helps us 
to understand some innovation processes that are central in the ‘new economy’.
Furthermore, this focus also highlights the ways innovation processes are changing
as information and communication technologies become widely used to support
and facilitate innovation. I will start with a brief description of one of the most 
influential and visible innovations of the last decades: the invention of the World
Wide Web.

Today, it seems clear that the World Wide Web became one of the most important
technological developments around the end of the millennium. It is therefore use-
ful to revisit the history of the World Wide Web and try to understand who were the
actors that made the World Wide Web happen; and why, indeed, it became such 
an important part of our life.



CHAPTER

3
Inventing the Web

According to most accounts, the World Wide Web was created when Tim Berners-Lee
programmed its first version at CERN, November . For example, in the foreword
for Berners-Lee’s own history of the World Wide Web, Michael Dertouzos writes:

Amid the barrage of information about the World Wide Web, one story stands out—that of the
creation and ongoing evolution of this incredible new thing that is surging to encompass the
world and become an important and permanent part of our history. This story is unique
because it is written by Tim Berners-Lee, who created the Web and is now steering it along
exciting future directions. No one else can claim that. And no one else can write this—the true
story of the Web. (Dertouzos, in Berners-Lee and Fischetti, : p. ix)

As Dertouzos notes, the World Wide Web has become an important part of our life.
But how, exactly, did this happen? When was the Web invented? Do we really find a
heroic innovator, as Dertouzos implies, when we study the records of the informa-
tion age? How are such major innovations produced?

According to Berners-Lee, he first had the idea of creating a computer system that
could link pieces of information when he came home from high school and found
his father working on a speech. His father was member of a team that had pro-
grammed the world’s first commercial stored-program computer, the Manchester
University ‘Mark I’, in the early s. While preparing the speech, his father was
reading books on the brain, looking for clues about how to make a computer intu-
itive and able to complete connections as the brain did. Berners-Lee discussed the
idea with his father, and ‘the idea stayed with me that computers could become
much more powerful if they could be programmed to link otherwise unconnected
information’ (Berners-Lee and Fischetti, : ).

According to Berners-Lee, the idea stayed in his mind during his studies at
Queen’s College at Oxford University and remained in the background until ,
when he took a brief software consulting job at CERN. During this visit to CERN,
Berners-Lee wrote a program to help him remember the connections among the
various people, computers, and projects at the lab. He called the program Enquire,
short for Enquire Within Upon Everything, ‘a musty old book of Victorian advice’
published in . Berners-Lee’s parents had the book on their bookshelf. It served
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information on practical matters such as how to remove clothing stains and tips on
investing money.

Enquire was developed to solve a practical problem. CERN is a large international
research institution, with thousands of people in its phone book. Most of them are
scientists who come to CERN for short periods of time to do their research and
develop systems for experiments. According to Berners-Lee:

The big challenge for contract programmers was to try to understand the systems, both
human and computer, that ran this fantastic playground. Much of the crucial information
existed only in people’s heads. We learned the most in conversations at coffee at tables stra-
tegically placed at the intersection of two corridors. I would be introduced to people plucked
out of the flow of unknown faces, and I would have to remember who they were and which
piece of equipment or software they had designed. (Berners-Lee and Fischetti, : )

In his spare time, Berners-Lee tinkered with Enquire. Once the system was working,
he started to use it to keep track of who had written which program, which program
ran on which machine, and who was part of which project. In Enquire, information
was stored as a ‘node’ in a linked network. Each page of information was a node. 
A new node was created by creating a link from an existing node. The links would
show up as a numbered list at the bottom of each page, and the only way of finding
information was by browsing the links, starting from the start page. The links
between pages that were stored within a single file worked both ways, so that it was
possible to navigate from any node to its associated nodes. It was, however, also
possible to navigate across different files. Such ‘external links’ were one-way links.
According to Berners-Lee (: ), this design tried to avoid problems with main-
taining links when many people used the system and created their own pages. If all
links would have been two-way links, anyone could have added associations to an
existing page, thus potentially creating a large set of changing links that needed to
be maintained by the system.

Berners-Lee left CERN after six months and went to work for a friend who had
started a business. He wrote programs that made it possible to use dot-matrix printers
to print graphics and use the printer as a typesetting machine. In the process, Berners-
Lee and his colleagues wrote a ‘markup language’ which controlled the way a 
document was printed.

In  Berners-Lee decided to apply for a fellowship at CERN. He moved to
CERN in September , to work with the ‘data acquisition and control’ group,
which was responsible for capturing and processing the results of experiments at
CERN. As a departure gift from his previous job, he got a portable Compaq personal
computer.

While at CERN Berners-Lee rewrote Enquire so that it would work both on his
portable Compaq and the minicomputer he was using at CERN. According to
Berners-Lee, it was clear to him that CERN would need something like Enquire:

In addition to keeping track of relationships between all the people, experiments, and
machines, I wanted to access different kinds of information, such as a researcher’s technical
papers, the manuals for different software modules, minutes of meetings, hastily scribbled
notes, and so on. Furthermore, I found myself answering the same questions asked frequently



of me by different people. It would be so much easier if everyone could just read my database.
(Berners-Lee and Fischetti, : )

Although Enquire provided a way to link documents, the system had the problem
that different computers used different operating systems. Berners-Lee, however,
had just programmed a general ‘remote procedure call’ (RPC) program for CERN.
RPC programs enable programs running on one machine to call programs on
another machine even when the computers use different operating systems.
Berners-Lee hoped that he could somehow combine Enquire’s external links with
interconnection schemes he had developed for RPC (Berners-Lee and Fischetti,
: ).

The basic concept in Enquire was to build a network of linked documents. 
The user could move from one document to another linked document simply by
‘following the link’. At the time Berners-Lee was developing his Enquire, this con-
cept was well known. Indeed, the idea had been widely discussed since , when
Vannevar Bush had published an influential article that described a machine that
could be used to store and retrieve documents using such links (Bush, ). In the
s, it became known as ‘hypertext’. The term was coined by Ted Nelson in his
presentation at the Association of Computer Machinery Conference in . During
the next decades Nelson actively promoted the idea that hypertext could become 
a new interactive medium where documents and digital content could be stored in
a distributed global ‘docuverse’.

The first working hypertext system was developed at Brown University in  by
a team led by Adries van Dam (Naughton, : ; Conklin, ). A major break-
through in hypertext occurred in August  when Apple launched its HyperCard
program. HyperCard had graphical ‘cards’ where the user could put ‘hot spots’.
These hot spots linked cards to each other. When the user clicked a hot spot with a
mouse, the system displayed the linked card. A collection of linked cards was called
a ‘stack’. The stack had a ‘home’ card that provided the base node from which the
user could start traversing the stack. Although at first HyperCard was designed to
enable the user simply to jump from one card to another using hot spots, early on
hot spots were made more general. A language called HyperTalk was designed to
enable the user to define what happened when a hot spot was clicked (Naughton,
: –).

. THE FIRST WORLDWIDEWEB PROPOSAL

In  Berners-Lee was reading about hypertext, and learned about Ted Nelson’s
ideas of generating a global network of documents (Berners-Lee and Fischetti, 
: ). At the end of the year he discussed the idea of a CERN hypertext system
with his boss Mike Sendall. Sendall suggested that Berners-Lee should write a proj-
ect proposal. During the next months Berners-Lee wrote a paper that described his
idea and tried to persuade CERN management to develop a distributed hypertext
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system. The paper was entitled ‘Information Management: A Proposal’ (Berners-
Lee, ).

The proposal focused on the problem of losing information at CERN. CERN is a
large project organization, where research teams come together for various periods
of time. The research done at CERN generates very large amounts of data and docu-
ments. According to the proposal, the high turnover of people creates a problem:

When two years is a typical length of stay, information is constantly being lost. The introduc-
tion of the new people demands a fair amount of their time and that of others before they have
any idea of what goes on. The technical details of past projects are sometimes lost forever, or
only recovered after a detective investigation in an emergency. Often, the information has
been recorded, it just cannot be found. (Berners-Lee, )

Although CERN was in many ways a special environment, Berners-Lee also pre-
dicted that ‘CERN is a model in miniature of the rest of world in a few years time’.
He noted that in ten years’ time there would be many commercial solutions for the
information management problems but argued that there was also a need to do
something to help to alleviate the current problems.

The basic idea in Berners-Lee’s proposal was to build a system where new docu-
ments could be flexibly added. To enable different types of information to be stored
and retrieved, it was important that the method of storage did not restrict the types
of information that were to be stored. Whereas hierarchical document management
systems and keyword-based retrieval assumed a pre-defined categorization of 
documents, Berners-Lee proposed that the system should simply consist of linked
documents. A practical requirement at CERN was that the system should enable
remote access across networks with computers that used different operating sys-
tems. The system was also to be non-centralized so that new documents could be
added without central control or coordination. In addition, the system was to sup-
port retrieval of data in existing systems so that it would be useful early on and that
a critical mass of users could be recruited to put useful content on the system. The
users should also be able to create their own private links and annotations to and
from public documents. It should also be possible to create ‘live’ links that would
retrieve data dynamically when a hot spot was clicked.

In his proposal, Berners-Lee also noted that such a network would provide inter-
esting opportunities for automatic analysis. It could be possible, for example, to
detect software stored in the system which had no documentation, or organiza-
tional divisions that had no people. By analysing the topology of the network one
might also be able to make conclusions concerning the ways an organization or a
team should be managed.

The system was supposed to be a simple one, without much in the way of bells
and whistles. According to Berners-Lee, storage of ASCII text and displays with 
 lines of  character lines would be sufficient in the short term. In  many
users at CERN had character-based terminals, and Berners-Lee argued that graph-
ical user interfaces were not important for the time being. Although Berners-Lee
noted that earlier hypertext systems had tackled the problems of copyright and data
security, he maintained that at CERN these were of secondary importance. To the



extent that access control was needed, the users could simply rely on access control
provided by the file system of the underlying operating system.

In his proposal Berners-Lee noted that many document management systems
used a centralized database, and that there were few systems that took Ted Nelson’s
idea of a distributed document network seriously. Partly this was because work 
in hypertext and hypermedia was focused on publishing hypermedia information,
for example, using optical discs. According to Berners-Lee, Digital’s ‘Compound
Document Architecture’ was an interesting attempt to develop a distributed 
document architecture, and according to rumours Digital was going to extend it 
for hypermedia use. An important incentive to develop hypermedia systems was
provided by the US Department of Defense, which had started to require that its
contractors provided documentation in the SGML markup format.

Already from this brief description, it is easy to see some key characteristics of the
process that led to the World Wide Web. In his proposals, Berners-Lee emphasizes
the point that it is impossible to predict how the users will use the system. Instead
of proposing a system that would address all the difficult requirements of a full 
document management system—for example, information security and document
version control—the plan consists of a simple platform that facilitates sharing of
information across existing systems. In the process he also relies on existing ideas
and previous work, for example, the SGML standard for text markup and the
Internet remote procedure mechanisms. Although Berners-Lee believes that the
system would become a tool for document management, the design actually leaves
out almost all document management functionality. Much of this functionality 
is expected to come from the proper use of the system. Instead of coding sophist-
icated security mechanisms in software, for example, Berners-Lee assumes that
common sense tells the users what kind of documents they can put into the 
system—and even when this is not true this is not a major problem as the institu-
tional role of CERN in any case requires open communication.

The World Wide Web is a radical innovation when viewed through the traditional
document management perspective. In many ways its underlying assumptions do
not make sense. For an information systems manager, the system is a disturbing
thing. For example, it cannot be managed in conventional ways. Although the sys-
tem naturally enters the domain of responsibility of information system manage-
ment, it has no well-defined points of control. From an information system
designer’s point of view, on the other hand, the system is also radical. It off-loads
much of the functionality to the users. It tilts the balance between machines and
humans, and shows that information systems cannot be understood simply as
technical systems. At the same time, it shifts the balance of power. The World Wide
Web is a radical innovation as it requires revolution in organizations and their 
document management traditions. Perhaps because of this, the World Wide Web
takes off first outside organizations and as unofficial skunk-work projects within
organizations. Here a new technology opens new domains of freedom. As a result,
innovative users rush to construct their own worlds and make their own marks in
this novel space of anarchy.

 INVENTING THE WEB



. STATE OF THE ART: KMS

Traditionally, innovation is supposed to be something novel and it should improve
on existing technology. Was the World Wide Web, in this sense, an innovation?

Berners-Lee’s first proposal lists a number of references, mentions that there
exists a newsgroup that discusses topics on hypertext, and notes that there have
been conferences on hypertext where the state of the art has been represented. The
proposal explicitly refers to a book chapter written by Ted Nelson in , and to
four articles in a special issue of the Communications of the ACM, published in July
. This special issue contained papers from the Hypertext ‘ conference, held at
University of North Carolina in November . This was the first major conference
devoted to hypertext (Smith and Weiss, ).

In their introduction to the Communications of ACM special issue, the guest 
editors define hypertext as a form of electronic document. More precisely:

. . . hypertext is an approach to information management in which data is stored in a network
of nodes connected by links. Nodes can contain text, graphics, audio, video, as well as source
code or other forms of data. The nodes, and in some systems the network itself, are meant to
be viewed through an interactive browser and manipulated through a structure editor. While
the term, hypertext, was coined by Ted Nelson during the ’s, the concept can be traced
back to Vannevar Bush’s description of ‘the memex’. (Smith and Weiss, : )

Several different systems that implemented the hypertext concept were described
in the conference and reported in the special issue. These included InterMedia,
developed at Brown University, where Adries van Dam had built the first hypertext
editing system in ; NoteCards, an ambitious and sophisticated system that had
been developed at Xerox PARC; Symbolics Document Examiner, which provided
graphical online access to hypertext user documentation for the users of Symbolics
Lisp-machines; Neptune, a hypertext system for computer-assisted software engi-
neering; and WE, a hypertext authoring system developed at the University of North
Carolina that produced both paper and electronic documents and which modelled
human cognitive processes.

One of the systems described in the special issue, and referenced by Berners-Lee
in his CERN proposal, was KMS, short for ‘Knowledge Management System’. It was
a distributed hypermedia system that was based on an earlier system, ZOG, devel-
oped at Carnegie-Mellon University, starting in  (Akscyn, McCracken, and
Yoder, ). KMS stored its documents in a distributed database, and represented
documents as frames:

The heart of KMS is its conceptual data model. A KMS database consists of screen-sized 
WYSIWYG workspaces called frames which contain text, graphics and image items. Individual
items can be linked to other frames or used to invoke programs. The database can be dis-
tributed across an indefinite number of file servers and be as large as available disk space 
permits. The KMS user interface employs a form of direct manipulation designed to exploit 
a three-button mouse. A combined browser/editor is used to traverse the database and
manipulate its contents. Over 90 percent of the user’s command interaction is direct—a single
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point-and-click designates both object and operation. Running on Sun and Apollo work-
stations, KMS accesses and displays frames in less than half a second, on average. (Akscyn,
McCracken, and Yoder, : )

The central metaphor in KMS was that the database is a ‘universe of connected
spaces through which users rapidly travel, like pilots navigating spacecraft in the
real universe’ (Akscyn, McCracken, and Yoder, : ). By pointing and clicking
an item, the user could move to the frame linked to the item. The user could also
directly manipulate the content of the frame at any time. New linked frames could
be created by pointing to an unlinked item and clicking the left mouse button.
Clicking an item could also invoke a program, for example, to automatically print a
paper-version of a specific part of the network.

The article by Akscyn, McCracken and Yoder discusses several design challenges
for distributed hypertext systems. One question was what kind of nodes the system
should support. Some systems, such as NoteCards and HyperCard managed the
links as integral parts of the node document, whereas other systems, such Inter-
Media, had a separate database for links. KMS used the first approach. It also relied
on a spatial metaphor, using frames as ‘spaces’ where content and links could 
be placed. A node, therefore, could exist even when it had no content. In contrast 
to some other systems, such as NoteCards that had different node types, KMS 
had only a single type of node, the frame. Different types of content—for example
images and text—could be embedded within a frame but all nodes were of the 
same type.

KMS used individual text items as links, and displayed a small circle before them
to notify the user that the item was a link. Links were separated from the main con-
tent in a frame. Whereas other hypertext systems usually embedded links directly
into the main content, as the World Wide Web does, KMS authors argued that by
separating links and content it was, for example, easier to use descriptive names 
for the links. This made it also easier to arrange links so that a coherent paper 
document could be printed by automatically processing the linked frames.

Whereas some hypertext systems supported ‘typed’ links—for example, to note
that a linked document was a ‘counterargument’—KMS supported only two types of
links. Links could be either tree links, which connected higher level frames to lower
level frames in a hierarchy, for example chapters of a book to sections, and sections
to paragraphs; or links could be annotation links that simply associated two frames.
In contrast to NoteCards and HyperCard, KMS links were one-way links. This was an
important design choice. Instead of storing in a frame information about frames
that linked to it, KMS simply supported a backtrack command. With the backtrack
command the user could always return to the previous frame, even when two-way
links didn’t exist. The research by the KMS authors showed that backtracking was
often used several hundred times per hour. KMS could retrieve the previous frame
on average in . seconds. The authors also considered several other design issues,
including the necessity of providing graphical views of the underlying document
network, ways to avoid ‘getting lost in hyperspace’, search mechanisms, joint
authoring, access control, and support for communication and group annotation.



One technically and architecturally challenging problem in joint authoring sys-
tems is how several people can access and edit shared documents without simulta-
neously making incompatible changes in the same document. Indeed, this is one of
the key reasons why document management systems are difficult to implement
without some form of centralized control. Usually this problem has been solved 
by ‘locking’ those documents which someone is currently editing. When other users 
try to edit a document that is currently being edited by someone else in a typical
document or database management system, they cannot do it. Management of 
such locks, however, means that the system has to maintain information about the 
status of each document. The problem of locking documents, therefore, normally
leads to a centrally coordinated system architecture. As the content in KMS was
divided into relatively short frames, and the assumption was that there were
much more frames than users, the KMS architecture was based on the idea that the
probability of two persons trying to edit the same frame simultaneously was low.
Therefore the system did not have to ‘lock’ frames to prevent interference between
users. In those rare cases where collisions occurred, the users could handle them
manually. The KMS authors also noted that if the risk of collisions was high, the
users could use informal coordination to reduce the problem, for example, by plac-
ing text on a frame that warned other users that the frame was being edited (Akscyn,
McCracken, and Yoder, : –).

. ARCHITECTURE OF THE WORLDWIDEWEB

Implementation of a generic vision, such as a distributed platform for linking docu-
ments, requires solving a set of specific design problems. Visions, however, are
rarely implemented in their original form in real life. During the implementation
process, visions change. The priority and importance of technical problems there-
fore depends also on the actual order of project implementation. When the order 
of implementations tasks is changed, this can have drastic implications for the 
success of the project at hand. Depending on the path taken, the end result also
may look quite different.

Although Berners-Lee and the KMS development group, for example, shared very
similar overall goals, KMS had a much stronger focus on collaborative use of the sys-
tem and the problems of content creation. Berners-Lee, in contrast, saw the primary
problem as a problem of accessing existing data. As data existed in many different
formats and on many different machines in CERN, the primary problem was about
translating this data into formats which different terminals and workstations could
display, and to provide unified access to stored data. As all the different systems
managed their data and access rights in different ways, the only realistic assumption
was that Berners-Lee’s system would only deal with information that was freely avail-
able. Therefore the problems of security and privacy were not issues for Berners-Lee.

Similarly, the problems related to authoring and joint editing were not issues at
the first phase of Berners-Lee’s proposed project. Berners-Lee had a pressing need
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to prove that the system he proposed would be useful, and the easiest way to do this
was to provide access to existing content. The system facilitated combination of
existing information resources by translating them so that the users could do some-
thing with these resources. This, of course, depended to a large extent on the fact
that there already existed such information sources.

When we compare Berners-Lee’s proposal and KMS, the main difference in the
architectures is that KMS was based on a shared database, whereas Berners-Lee’s
proposal relied on an architecture where a heterogeneous collection of databases
and files could be used as document storages. Although the KMS database was not
centrally managed, didn’t require a central locking system to prevent conflicting
edits, was physically distributed across many computers, and could be accessed
anywhere from the network, the system still used a master file that contained infor-
mation on the location of frames in the system. KMS therefore, for example, allowed
its users to manage versions of documents by ‘freezing’ and storing a specific state
of the system. KMS also explicitly supported access control for each frame, so that
the ‘owner’ of a frame could decide whether the frame was editable or visible to
other users. Although KMS avoided the technical challenge of locking documents to
prevent collisions in editing, it effectively reintroduced locking to manage access
control. The locking mechanism, however, relied on the access control mechanism
of the underlying distributed file management system. This required that all 
documents were stored within a single file system.

In his original proposal, Berners-Lee doesn’t tell how he would solve problems
related to locking or version management. Indeed, he did not mention these prob-
lems at all. He did, however, assume that access control would probably not be 
a problem at CERN. Instead of building access control to the proposed system, the
users could simply rely on the existing access control of the file system they were
using. A new proposal, written in November  by Berners-Lee and his colleague
Robert Cailliau, explicitly noted that the project would not aim to use any sophist-
icated authorization systems. As long as a document was shared only within the
users of a specific file system—for example, users of a specific computer network at
CERN—the file system access control mechanism could be used to limit access to
the document:

Data will be either readable by the world (literally), or will be readable only on one file system,
in which case the file system’s protection system will be used for privacy. All network traffic
will be public. (Berners-Lee and Cailliau, )

Berners-Lee’s concept was based on the assumption that the architecture should
clearly separate browsers, which supported navigation, and servers that stored con-
tent. One central idea was that there could be many different kinds of servers. For
the KMS developers this probably would have been an unnatural idea. KMS was 
a commercial system, developed and sold by Knowledge Systems, Inc., a US firm
that was set up in  to commercialize the ZOG hypertext system developed 
at Carnegie-Mellon University. ZOG and KMS were used for applications such as
computer-assisted management of aircraft carriers and nuclear power plants. In
Berners-Lee’s vision, different servers could be combined without anyone being
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able to control the evolution of the system. The lack of control meant that it would
have been difficult to sell Berners-Lee’s system, or provide well-defined services 
for it.

In essence, the WorldWideWeb was to be a translator that served different types
of content, such as program documentation, help files, telephone directories, and
newsgroup postings, to the user in a unified from. The way information was to be
displayed was negotiated by the server program and the browser program when the
user accessed the information. Whereas KMS was based on the assumption that 
the system was to support the creation and management of hypertext documents,
the WorldWideWeb was largely based on the assumption that it would be useful to
provide unified access to many different information sources. Although Berners-
Lee clearly intended the system to eventually become a system where users could
create their own documents and where reading and editing would be supported by
the same browser (Berners-Lee and Fischetti, : –), the project proposals
promised to add editing capabilities later, after access to existing documents had
been solved.

Although Berners-Lee’s original vision was to create a system where users could
develop their own content, the existence of content at CERN made it possible to
organize the implementation plan so that the first phase would simply start by 
providing access to existing content. This meant that the first version of the system
could be implemented by building a browser and some gateway programs that
translated existing data into a format that the browser could display. Berners-Lee,
therefore, was able to avoid almost all difficult technical problems that earlier 
systems and their developers were trying to solve.

Indeed, many of these technical problems are still unsolved in the World Wide
Web. Instead of solving them, the users have found ways around them. The simple
architecture of the World Wide Web has made it possible to develop many comple-
mentary systems that alleviate the most acute problems. For example, search
engines and security fire walls are being widely used today.

. MOBILIZING RESOURCES

If experts had evaluated Berners-Lee’s proposals at the end of , it is quite 
probable that they would have judged them as technically inadequate and lacking
novelty. For example, the WorldWideWeb development project most probably
would not have got funding from European research initiatives or from the US
National Science Foundation. Existing commercial systems had long provided
more advanced hypertext functionality and the WorldWideWeb simply wasn’t a very
good document management system. For CERN, however, Berners-Lee’s proposal
was not about creating novel technology. The proposed system was a solution to a
perceived problem of accessing information in different systems. Technical sophist-
ication or novel ideas were not interesting as such. Indeed Berners-Lee emphasized
that the project was to be a very pragmatic implementation project where existing



products, such as KMS, were to be used when possible. But when Berners-Lee 
distributed his proposal at CERN, at the end of March , there was no response:

I gave it to people at a central committee that oversaw the coordination of computers at
CERN. But there was no forum from which I could command a response. Nothing happened.
(Berners-Lee and Fischetti, : )

During  Berners-Lee read more about hypertext and got increasingly interested
in the Internet. He had first learned about Internet technology when he programmed
the RPC, and the Internet TCP/IP protocols seemed to provide a way to connect the
different machines used at CERN into a unified network. According to Berners-Lee,
at that time the Internet was relatively little known in CERN. It was, however, rapidly
becoming available for many operating systems used there.

As Berners-Lee didn’t receive any response to his original proposal, he reformat-
ted it and distributed it again at CERN, in May . Again the proposal was 
shelved (Berners-Lee and Fischetti, : ). At the same time, however, Berners-
Lee was discussing with his boss about the possibility of buying a NeXT personal
computer, which had a lot of intriguing features and which supported effective
development of graphical user interfaces and object-oriented programs. Berners-
Lee was able to convince his boss that this new machine would be a good platform
for learning about object-oriented systems. Berners-Lee’s hypertext program there-
fore became an experiment in using the NeXT operating system and its NeXTStep
programming tools.

The NeXT computer was the most sophisticated personal computer available 
in . It was created by a team of designers led by Steve Jobs, the founder of Apple
Computers, who had launched NeXT Inc. after leaving Apple. The architecture 
of NeXT was designed to support rapid object-oriented software development and
it had strong support for developing graphical user interfaces and hypertext pro-
grams. Using the NeXT as a development platform, Berners-Lee started to write the
code for his system in October .

My first objective was to write the Web client—the program that would allow the creation,
browsing, and editing of hypertext pages. It would look basically like a word processor, and the
tools on the NeXT system, called NeXTStep, were ideal for the task. I could create an applica-
tion, menus, and windows easily, just dragging and dropping them into place with a mouse.
The meat of it was creating the actual hypertext window. Here I had some coding to do, but 
I had a starting place, and soon had a fully functional word processor complete with multiple
fonts, paragraph and character formatting, even a spellchecker! No delay of gratification here.
Already I could see what the system would look like. (Berners-Lee and Fischetti, : )

 INVENTING THE WEB

 The  project proposal written by Berners-Lee and Cailliau required funding to purchase
licences for KMS and Owl’s Guide hypertext system, which was the first widely used hypertext devel-
opment environment, introduced in .

 According the Berners-Lee, he didn’t make any changes to the content of his original proposal,
which he first distributed in March . The available May  version, however, discussed a con-
ference held in January . The proposal also mentions that the project would provide an excellent
opportunity to experiment with object-oriented programming techniques. It seems, therefore, that
at least some modifications were done in the content of the proposal after it was first distributed.



To create hypertext links, Berners-Lee had to find a way to differentiate links from
normal text. He studied the implementation of the NeXTStep text editor and found
out that its developers had left some free bits for experimentation. Berners-Lee
used this free memory space to store a pointer to the address of the node that was
linked to the specific piece of text:

With this, hypertext was easy. I was then able to rapidly write the code for the Hypertext Transfer
Protocol (HTTP), the language computers would use to communicate over the Internet, and the
Universal Resource Identifier (URI), the scheme for document addresses. (Berners-Lee and
Fischetti, : –)

Berners-Lee had his first browser ready mid-November, and he called it WorldWide-
Web. By December the browser was working with the Hypertext Markup Language
(HTML). Berners-Lee also wrote the first server program for his NeXT, and pro-
grammed the browser so that it could also access files using the Internet file trans-
fer protocol (FTP) and display articles in Internet newsgroups. As Berners-Lee
recalls: ‘In one fell swoop, a huge amount of the information that was already on the
Internet was available on the Web’ (Berners-Lee and Fischetti, : ). When his
colleague Robert Cailliau bought another NeXT machine, Berners-Lee and Cailliau
were able to access their HTML documents across the Internet. The system was
working by Christmas Day .

Although Berners-Lee and Cailliau now had a working prototype of the
WorldWideWeb, which they could demonstrate, they still had difficulties in con-
vincing people at CERN that the system could be useful. To keep the informal 
project going, Berners-Lee had to find some way that users would see the potential
of the system. One problem was that the system used the NeXT computer, which
limited the spread of the system as other CERN computers were incompatible 
with NeXT. Berners-Lee therefore considered the possibility of reprogramming
WorldWideWeb on a standard PC. This, however, would have required a lot of work
and there was no guarantee that it could ever have been successfully done, given
the limited resources available. Another way to increase the usefulness of the
WorldWideWeb would have been to promote its use outside CERN. This was a prob-
lem as CERN was paying the salaries for Berners-Lee and Cailliau and it was not
obvious why CERN should fund systems for the rest of the world. A third possibility
was to use the WorldWideWeb to solve some actual problems at CERN. Although
Berners-Lee himself saw the WorldWideWeb as a solution to a generic problem, to
justify his work at CERN he had to find legitimate reasons for developing the system
and using resources:

My head reminded me, however, that to attract resources I also needed a good, visible reason
to be doing this at CERN. I was not employed by CERN to create the Web. At any moment some
higher-up could have questioned how I was spending my time, and while it was unusual to
stop people at CERN from following their own ideas, my informal project could have been
ended. However, it was too soon to try to sell the Web as the ultimate documentation system
that would allow all of CERN’s documents . . . to be linked and accessible, especially given the
history of so many failed documentation systems. Small but quantifiable steps seemed to be
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in order. Our first target, humble beginning that it was, would be the CERN telephone book.
(Berners-Lee and Fischetti, : )

The World Wide Web, therefore, entered CERN as an application that could be used
to find CERN telephone numbers. Its designers, however, had a broader vision: if
the end users could create links to their own content as well as content created by
others, the different user groups could gain access not only to existing information
but they would create a world of linked content that could become increasingly
useful as more people started to use the system.

One critical technological challenge in creating such a system was to implement a
mechanism that would make it possible to find the location of documents wherever
they existed in the network. The KMS system used a master file to store informa-
tion on the location of frames. Berners-Lee, however, made a different choice,
which drastically reduced the complexity of his system. This, indeed, was perhaps
the key innovation in the World Wide Web. He simply relied on the Internet host
name resolution system. It provided a unified way to access computers using the
Internet domain name system, thus using the existing Internet to avoid the need 
of a master file. The Internet domain name system was introduced in  and it
provided a way to access computers on the Internet using defined names, such 
as info.cern.ch. Thus existing procedures and computer programs for managing
names in the global Internet were appropriated to solve a key challenge of the World
Wide Web.

The World Wide Web, therefore, became possible for three reasons. There was
content on the Internet and in the CERN information systems. The Internet tech-
nology had become available for many different operating systems, also outside the
US Defense Department funded research sites, and advanced to the point where it
provided standard services, which could be used to connect distributed computer
systems without much programming. The NeXT computer had a rapid develop-
ment environment with hypertext functionality. The World Wide Web didn’t have to
be novel to change the world. Existing technology and old ideas worked well
because the world already had changed.

. THE VISION OF XANADU

It is interesting to compare the World Wide Web to a very similar system that has
been in development since the s—a system that still waits for its breakthrough.
This is Ted Nelson’s Xanadu. In  Nelson started to work on a global publication
system which would allow anyone to publish digital content on a computer system,
and which would facilitate reuse of already existing content (Nelson, a: ). The
basic idea in Nelson’s system was hypertext, a term that he coined in . In the
envisioned hypertext system, authors could link existing content to their own
works. Nelson’s goal was to produce a medium that would liberate individuals to
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become participants in the collective process of creating new interactive media. As
Nelson himself describes:

Personally, I wanted a system for massively parallel creative work and study; more grandly, 
I sought to design the rightful literature and art canvas of the future, creating a technical, legal
and commercial basis for a worldwide populist and participatory electronic literature of freely
weaving screen transmedia—republishable and quotable without restriction—to the better-
ment of human understanding and freedom of expression and access. What better dream at
23? And still a good idea. (Nelson, a: )

A key concept in Nelson’s system was that there were two different kinds of links: 
a node could link to another associated node, or it could include the content of 
that other node as a part of itself. An author could reuse content created by others
by including it into her own work. Nelson planned to implement a copyright sys-
tem that would automatically distribute royalties to the original authors whenever
someone reused their material. Using a computer system even very small royalties
could be accumulated. The system was to manage content integrity, versions, copy-
right, and royalty micro-payments.

When someone wanted to use a citation from someone else’s work, she could
simply put a link to the quoted work and the system would include it when it was
browsed. Depending on the size of the quote, royalties would automatically be 
distributed to the author of the quote. Instead of copying the content, the quoted
content was referenced using a universal resource name. The Xanadu system would
then use this resource name to check where the actual quoted content could 
most easily be located. Nelson later coined the term transclusion to describe this
mechanism for dynamically retrieving pieces of content (Nelson, a). The sys-
tem of intellectual property rights that made transclusion possible Nelson called
transcopyright (Nelson, b).

Nelson’s Xanadu was an ambitious vision and he developed it for thirty-seven
years before actually showing any software that implemented his ideas (Ditlea,
). It was based on a grand vision which required that the system would be
implemented as a complete system. As many of the concepts in the system’s design
required functionality that was not available in current operating systems, Nelson
and his colleagues had to develop the system from scratch. Just before Xanadu was
supposed to be released in , Nelson decided that it needed a complete rewrite.

Xanadu developers have argued that Berners-Lee’s WorldWideWeb has many fun-
damental limitations (Pam, 2000). For instance, WWW links use a universal resource
locator (URL) that specifies the server machine which manages the referenced 
document. This means that there is no way to access the document if the server 
is down. Xanadu used a concept where each document had a unique name, but
where documents could be stored in different machines, so that when a network
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connection was broken or a server was down, the document could be retrieved
from another location. Similarly, whereas much of the Xanadu architecture was
based on solving the problem of fair reuse, the WWW didn’t have any way to facil-
itate intellectual property management or compensation for reuse. For example,
as the links in the WWW were one-way links, there was no easy way for authors to
know where documents and content were used. In contrast, Xanadu managed links
in a way that made them visible both in source nodes and nodes where they were
transcluded. The author, therefore, could easily monitor her author rights, as it 
was easy to know in what contexts content was reused. From the point of view of
Xanadu developers, Berners-Lee’s WorldWideWeb simply ignored the key chal-
lenges of building a world wide web of digital content.

. SOURCES OF SUCCESS

In many ways the World Wide Web, therefore, was successful because its developers
were able to rely on existing tools, technologies, and ideas. When the WorldWide-
Web was distributed on the Internet in , people outside CERN became able 
to use it as a platform for further development. In that process many new tech-
nologies were developed that addressed some of the concerns of the Xanadu vision-
aries. For example, the difficulty of finding documents that referenced a given node
was alleviated by developing search engines, and intellectual property was man-
aged by creating payment systems and secure Web servers.

Theoretically these solutions have often been inferior to the design envisioned 
by the developers of Xanadu and other sophisticated hypertext systems. At the 
same time the limitations of these solutions have provided many opportunities for
improvement. Many innovators and entrepreneurs have swarmed in to solve acute
problems generated in this process. At the same time large numbers of people have
had to learn about the World Wide Web, its limitations, and what it one day could do.

More generally, as soon as a technological idea becomes a concrete technological
artefact, its users can appropriate it in their own practices, and make it part of their
own dreams. Although Xanadu tried to implement many radical ideas, and inspired
the development of many successful commercial systems, so far it has not been
implemented in a form where its visions could have been tested. The World Wide Web, 
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 Samuelson and Glushko () compared Xanadu’s intellectual property rights with existing
copyright systems, noting that the Xanadu model was probably the most well-developed alternative
to existing intellectual property systems. They also argued that the model had problems with its
assumptions about user behaviour. Whereas Nelson had maintained that Xanadu operated accord-
ing to existing copyright systems, Samuelson and Glushko noted that it is also different in many 
fundamental respects. They also noted that there was no ‘fair use’ in the Xanadu system as all use
was supposed to be subject to royalties. Nelson, however, has argued that the motivation for the
transcopyright system is to guarantee that reuse is possible (Nelson, b). The traditional ‘fair use’
doctrine means that some use is free from royalties, whereas Nelson’s concept of micro-payments
implies that the cost can be small.



in contrast, emerged as a simple technological system, as a platform that could 
easily be appropriated for many different purposes. In this process, many early
beliefs about the nature of this technology changed and many improvements were
created. Abstract visions became redefined and the meaning of technology became
concrete. After , the World Wide Web was what it was used for.

Since the early works of Kondratieff and Schumpeter, economists have had an
ongoing debate about the links between economic growth and innovation. Several
authors have argued, for example, that there exist long waves in economic activity
and that innovative activity intensifies when these long waves lead to a profound
crisis in the economic system (cf. Freeman, Clark, and Soete, ; Perez, ;
Mandel, ; Freeman, ). In this view, innovative activity clusters in periods
where earlier technological paradigms become exhausted, and when people start to
look for new ways out of the crisis. As the history of the World Wide Web shows, such
cyclical theories miss an important point. The emergence of the World Wide Web
creates a new space of innovation. This new space, in turn, creates new opportun-
ities for exploration and makes innovative expansion possible. Instead of any obvi-
ous exhaustion of the capabilities of the dominant technological paradigm, there is
a sudden opening up of a new land of riches. But many key contributions in this
process come from outside the economic realm. Instead of gold, the primary driver
is value and meaning.

When was the World Wide Web, then, invented? Was it invented when Nelson
designed his Xanadu in the s? Or was it, perhaps, invented when the file trans-
fer protocol was taken into use in ARPANET, the predecessor of the Internet, in ?
Or was it invented when Berners-Lee wrote his Enquire-program?

And who should we credit as the author of the World Wide Web? Was the real
author Steve Jobs, who provided the NeXT machine that made WWW possible? Was
it Tim Berners-Lee’s father, who had the idea of programming computers so that
they could make associations like the brain does? Or should the credit go to the
Internet community, which created computer communication protocols that made
it possible to move data between machines, independent of their operating sys-
tems, and which developed and maintained the domain name system that made
universal resource identification possible?

The World Wide Web is essentially a combinatorial innovation, and therefore 
it is difficult to clearly define its author, or its date of birth. Here Nelson’s vision
becomes relevant again. The World Wide Web was created by ‘transcluding’ several
existing resources and by organizing them in a new way. Many Internet-related
innovations have a similar dynamic, as the following chapters show.

The traditional patent system, for example, is based on a different model of
authorship. Therefore transcopyright and its improvements provide theoretically
interesting alternative models for managing intellectual property rights in the new
economy.

Richard Nelson has called such technologies ‘cumulative systems technologies’.
He argued that in such technologies strong patent protection ‘may deter as many
inventors as it encourages, and also adds inefficiency to the whole cumulative
invention process’ (Nelson, : ). Nelson’s comment was a response to a new
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intellectual property schema proposed by Samuelson et al. (Samuelson, Davis,
Kapor, and Reichman, ; Davis, Samuelson, Kapor, and Reichman, ). Nelson
agreed with Samuelson and her co-authors on the need to rethink intellectual 
property in software-related innovations. As the following chapters show, the prob-
lems noted by these authors are not necessarily limited to software, especially as
software has become an important component in almost all technology.

Indeed, it is possible to argue that most of those innovations that underlie the so-
called ‘new economy’ are based on recombination of resources. These resources,
however, are not simply existing resources, as some economists tend to view them.
Innovative recombination is not just about reshuffling existing pieces into new
arrangements; instead, resources are created when the capabilities of the underly-
ing networks of actors are taken into new uses. Recombination, therefore, is not a
zero-sum game. Innovation is not only about reallocating resources, but also about
changing the rules of existing games, and about creating new games where no one
played before.

The World Wide Web itself is an example of this. In many ways, the World Wide
Web continued to be invented after its first version was running on Berners-Lee’s
and Cailliau’s desks. It avoided a quick death by transforming itself into an elec-
tronic telephone directory, and then became a platform for global information
sharing. In  the World Wide Web became Mosaic, and transformed itself in a
couple of years into a dream of venture capitalists and Internet entrepreneurs 
(Reid, ). In the process ‘World Wide Web’ became ubiquitous. For example,
instead of writing about the World Wide Web, newspapers simply started to post
http-addresses in their articles, and started to call the World Wide Web ‘the Web’.
Simultaneously, the Web became a stock-market phenomenon and entered 
policy discussions. This can be seen, for example, from Fig. .. The figure shows the
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number of articles in the Washington Post that mention the Internet, World Wide
Web, or Web without explicitly mentioning World Wide Web.

As the history of the World Wide Web shows, the heroic innovation model misses
many important parts of the story. It looks almost as if the anti-heroic model is
right: if Berners-Lee had not invented the Web, someone else would have. Yet, when
we try to understand how important new technologies emerge, it does not really
matter who is the person that introduces a new innovation. A more interesting view
is opened when we simultaneously contest both the heroic model and its tradi-
tional alternative. This requires that we rethink the concept of agency in technolog-
ical change. To do this, we have to study in sufficient detail the various actors and
events that interlink in the process of technological change. In the next chapter we
focus on the actors and events that produced the Internet.
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CHAPTER

4
The Making of the Internet

In the previous chapter we saw that when the World Wide Web emerged, many of its
key ideas were well known and had been implemented several times before. The
breakthrough of the World Wide Web became possible to a large extent because the
Internet, networked computers, modems, and digital content had become widely
available. Whereas it took thirty-seven years for Ted Nelson to demonstrate his ideas
of networked docuverse, Tim Berners-Lee programmed the first World Wide Web in
about the same number of days. This was possible because his NeXT computer was
intended to support hypertext applications and internet connectivity.

The key innovation in the World Wide Web, however, was in its underlying
assumption: Berners-Lee knew that it would be impossible to predict how the users
would use the system. In an industrial context, he might have had difficulties in
convincing decision-makers that it is a great idea to build a system with unknown
uses. In CERN’s research context, it was somewhat easier to argue that the system
was promising. Berners-Lee, for example, got his NeXT computer to study the pos-
sibilities of object-oriented computing. The legitimation for his unofficial project
was based on the fact that it promised to help manage CERN’s phone book.

Strictly speaking, even this key innovation in the World Wide Web, however, was
not new. The developers of the NeXT personal computer were so convinced that
graphical direct manipulation interfaces and hypertext were important that they
programmed the required functionality into the operating system. The operating
system developers didn’t know how, exactly, this functionality would be used. They
simply believed that someone might find it useful.

The Internet itself was developed in very much the same fashion. There have
been many visions of the appropriate uses of the Internet during its history. Often
these visions have been shown to be illusions. The Internet is today a system that
binds together millions of users, all possible and impossible varieties of content,
thousands of discussion groups, organizations and their business processes, and
technology. This is possible because the underlying technical system is essentially a
medium of communication.

In the course of its evolution, the Internet has overcome many perceived limits.
People have improved it. Often these improvements have led to new opportunities
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that no one was able to predict, and which eventually made the Internet more than
anyone dreamed of. The system didn’t emerge overnight, and its history is replete
with interesting examples of successes and failures of innovation. The Internet is a
complex system of interlinked technologies that complement each other, providing
a rapidly evolving platform that can adapt to new ways of doing things. A study on 
the evolution of the Internet therefore provides interesting and important insights
on the nature of innovation. If we want to understand innovation, it is useful to dig
deeper into the history of the Internet, to find out what its developers actually
believed they were doing, and how the Internet eventually became what it is.

The key idea that makes the Internet possible is the digital packet-switched 
network. The idea itself was a modification of message switching that became
important when telegraph traffic started to increase in the s. Many of the impor-
tant characteristics, benefits, and problems of the modern Internet can be found in
the development of telegraphy. The key resources that made the global Internet pos-
sible were, however, created in the development of three competing technologies:
telegraphy, telephony, and telex. To better see what is new in the Internet, it is useful
to see what is not new.

In this chapter, I will show how the infrastructure was built that made the Internet
possible. I will also describe the different goals, technical frameworks, and visions
that produced the packet-switching technology. The focus in this chapter is on a
very special phase of the history of Internet: the time when it was created, but when
it did not yet exist as a technical system or artefact. In other words, I will describe a
phase of development when the meaning of the Internet was defined by its devel-
opers, and when it had no users.

. LAYING THE INFRASTRUCTURE

The Internet did not emerge from a vacuum. Many of the design choices that
became important in the evolution of the Internet had their roots in much earlier
systems. Indeed, some of the key concepts that underlie the Internet originate from
the very first electronic communication and messaging systems.

When telegraph networks started to cover a large number of cities in the s
in the US, main telegraph offices became nodes that connected large numbers of
telegraph lines in a single building. As the connections between telegraph offices
become increasingly complex, the main offices evolved into sophisticated message
switching centres. Messages coming from and going to nearby offices were handled
on one floor of the building, and long-distance connections were operated from
another floor. Pneumatic tubes were used to move messages within the office and
between close-by offices. When messages arrived through the wire or the pneu-
matic tube, they were sorted on a table and forwarded using the building’s own tube
system. In  the main office in London housed  telegraph instruments 
on three floors, linked by sixty-eight internal pneumatic tubes. The main office in



New York complemented its pneumatic tube system by ‘check-girls’ who delivered
messages within its vast operating rooms (Standage, ).

When message traffic increased, it became increasingly attractive to solve the
bottlenecks of telegraphy. One bottleneck was particularly obvious. Telegraphy
required skilled operators who had learned Morse code. To address the problem,
Charles Wheatstone developed the ABC telegraph, which he patented in . It
became known as the ‘communicator’. The ABC telegraph was used for point-to-
point communication in thousands of homes and offices. A similar system was
developed by David Hughes, a professor of music in Kentucky. His system had a
piano-like keyboard with black and white keys, each key representing a letter. The
Hughes machine used a rotating disk of letters and a paper tape where letters were
punched.

Both Wheatstone and Hughes telegraphs made it possible to send telegrams
without an intervening skilled operator but their use was severely limited by the
incompatibility of different systems. There was no way to connect them to the
expanding network of Morse telegraphy.

To increase the efficiency on Morse telegraph, Wheatstone also developed an
automatic sender that read Morse code from pre-punched paper tapes. This sys-
tem, combined with existing Morse printers that recorded dots and dashes on
paper tape, was able to send messages up to ten times faster than the best human
operators. The Wheatstone Automatic was widely compared with the Jacquard
loom that automatically wove cloth into patterns that were recorded on punched
cards. Indeed, the Wheatstone Automatic was called ‘the electric Jacquard’. The 
system made it possible for relatively unskilled workers to punch the tapes, and 
efficiently use the busiest lines also to send long messages, such as news reports.
The Wheatstone Automatic was patented in , and widely deployed after 

(Standage, : –).
Another obvious problem with telegraphy was that to connect to offices there had

to be a wire between them. When traffic increased, a new line had to be installed.
Furthermore, when one of the stations was using the line, if the other end wanted
to send using that line, it had to wait until the line was free.

The first attempts to develop a system which could use one wire for simultane-
ously sending and receiving messages were already made by the early s. It took,
however, two decades before electrical theory had created sufficient understanding
of the physics of telegraphy to make two-way telegraphy possible. The first two-way
system was built and patented in  by Joseph B. Stearns in Boston. To double the
capacity of their lines, telegraph companies simply had to add the new duplex
equipment to both ends of the line. The duplex was soon followed by the quadru-
plex, invented by Edison in . In the same year, Jean Maurice Emile Baudot,
working for the French telegraph administration, devised a telegraph that could use
a single line to carry up to twelve lines’ worth of traffic. The operators of the Baudot
system used a five-key piano keyboard, and the messages were transmitted in five-
bit binary form (Standage, : –).

As the theoretical understanding of telegraphy increased and it became clear
that one line could carry more than one message at a time, several inventors tried

 THE MAKING OF THE INTERNET
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to pack even more messages into a single line. One promising approach was the
‘harmonic’ telegraph. If a human being is put into a room with several Morse
receivers, each tuned to a different pitch, it is easy for the human ear to single out
one of the receivers, and regard the other sounds as noise. The idea of the harmonic
telegraph was to use a series of reeds that vibrated at different frequencies.
Messages were to be sent by stopping and starting the vibration of the reeds at the
sending end, combining the electric signals generated by the reeds, sending this
combined signal along the line, and again separating the ‘sounds’ at the receiver.

One of the inventors working with the harmonic telegraph was Alexander
Graham Bell. On  June  he was testing his equipment, and one of the reeds got
stuck. His assistant, Thomas Watson, plucked the reed forcefully to free it, and Bell,
who was listening at the other end of the wire, heard a complex sound that clearly
resembled the twang of the reed. Bell realized that the system had the potential to
transmit much more complex sounds than the inventors of harmonic telegraphy
had assumed. At the beginning of  Bell learned that Elisha Gray, who had
already produced a working harmonic telegraph, was also devising a system that
could transmit sound. Bell quickly filed a patent on  February , and he was
granted a patent on  March. The next week he made a breakthrough, transmitting
speech for the first time over electric wire.

. NETWORKING THE WORLD

During the nineteenth century electronic communication infrastructure was
mainly based on telegraphy. Although the telephone quickly gained popularity, it
remained a tool for short-distance communication until the beginning of the twen-
tieth century. Long distances inevitably led to the fading of the signal. Under the
best conditions, low-capacity lines could connect points that were  miles away.
At the turn of the century, the application of theoretical models of transmission of
electronic signals, based on Maxwell’s equations, made it possible to design
telecommunication lines that could transmit speech up to two thousand miles. The
introduction of vacuum tube amplifiers in  was the next major breakthrough,
and the first transcontinental line was opened in  between New York and San
Francisco. Direct service from New York to Los Angeles opened in . Before that,
an average of  calls per day were routed via San Francisco. In January  the New
York Times reported that ‘it is estimated that these circuits . . . will be used for an
average of seventy-two conversations a day during the early Spring, which is the
busy season for telephone calls between New York and Los Angeles’ (quoted in
Hugill, : ).

A major improvement in transmission occurred when twisted pairs of wire were
replaced by coaxial cable. Coaxial cable was developed at the Bell Laboratories, in
part to service the high-definition television systems being forecast all over the
electrical world by the early s. Using vacuum tube amplifiers and oscillators,
speech was converted to a modulated signal, and several such modulated signals



could be carried over the same line. The first coaxial cables were able to carry over
 voice signals. At the end of , in the US the coaxial long-distance system
extended from the East Coast all the way to Cisco, Texas. In  this L system was
replaced by the L system that had transcontinental capacity of , voice circuits,
or  voice circuits and one NTSC television signal (Hugill, : ).

As Hugill () notes, for a long time the telephone was very much an American
phenomenon. With few exceptions, telephony was developed by Bell’s employees.
To a large extent, this was the result of long geographic distances in the USA, but
also its antimonopolistic policies that made it impossible for Bell to compete with
telegraphy or postal services.

In Europe, telegraphy, telephony, and conventional mail were usually governed
by a single state monopoly. In Britain, private telegraph companies were taken into
public control and absorbed by the Post Office in  (Standage, : ).

The telegraph also very early on became a tool for business in America. In
Europe, the telegraph was more often used as a method of social and personal 
communication. Telegrams were used in Europe as an alternative to conventional
letters. They remained the predominant form of rapid long-distance communica-
tion in European cities up to the s and s (Hugill, : ). In some cases,
telegrams actually were never translated into Morse code. For example, in  Paris
announced a pricing system which made it possible to send cheap telegrams using
the city’s pneumatic tube system. Pre-paid telegram forms could be deposited into
special mail boxes, handed over a telegraph counter in post offices, or put into
boxes mounted on the backs of trams. At the end station of the tram the box was
unloaded, and taken to a post office where the messages were distributed using the
pneumatic tubes. The pre-paid forms became popular means for sending messages
within the city, and were known as ‘petits bleux’ (Standage, : ).

Although European countries had national telephone networks, they had consid-
erable difficulties in building international networks. Partly this was because there
were no effective ways to coordinate international collaboration, and partly because
telephone was much less used, and more expensive than in the US. Although an
international committee, Comité Consultatif International des Communications
Téléphoniques à Grande Distance (CCI), was set up in  to agree on technical
standards for international telephony, European post offices had no great interest 
in developing technologies for long-distance telephony. International calling 
was expensive and impractical. For example, the average delay in setting up a call
between Paris and Berlin was still over an hour in . In contrast, AT&T claimed
that its average delay for long-distance calls was . minutes in that same year. 
Also the cost of a -minute call was about four times more in France than it was in
the US (Hugill, : ).

The US development was aggressively led by Bell Laboratories, which became 
a clear leader in communication technologies. Transcontinental lines required
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 CCI later became CCITT, also known as Consultative Committee on International Telegraphy
and Telephony. CCITT changed its name to ITU-T in . It is now the telecommunications stan-
dardization sector of the International Telecommunications Union.



sophisticated technologies, and as Bell was unable to develop its business by 
moving to telegraphy and conventional mail, its way ahead was through expanding
its long-distance business. Early on Bell was also forced to separate its equipment
manufacturing from its telephony service business. This meant that its telephone
manufacturing arm, Western Electric, could become a major supplier of telephony
equipment to national telephone networks around the world. Western Electric set
up its first factory outside the US in Antwerp in , and by  it controlled much
of the world’s telephone manufacturing business (Hugill, : ).

Centralization of telegraph services had some advantages. In Great Britain, for
example, telegraph users could register a ‘nickname’ for their telegraphic address.
Telegraphic addresses were assigned on a first-come, first-served basis, and a list of
nicknames were published as a book. Over , telegraphic addresses had been
registered by , which generated a considerable income for the Post Office, since
an annual charge was payable for each one (Standage, : ).

To a modern user of the Internet, it may be a rather astonishing fact that the first
transatlantic telephone cable started to operate as recently as . This was almost
a century later than the first telegraph line was connected across the Atlantic in
. The first transatlantic cable, TAT-, was built together by the American Bell and
the British Post Office. It used one cable in each direction and provided  simultan-
eous channels. During the s transatlantic capacity increased steadily, and the
first transpacific coaxial cable was taken into use in . Only in the s, however,
did intercontinental telephony become common. One important reason was the
rapid reduction in costs. This can be seen in Fig. ., which shows the investment
costs of transatlantic telephone circuits divided by the minutes used. As the figure
shows, the cost of transatlantic cable was more than one US dollar per minute until
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, after which it dropped rapidly. Whereas the estimated annual investment cost
for one single transatlantic circuit in  was over , US dollars, in  it
dropped to , dollars, dropped further to under , dollars in the s, and
to under , dollars in the mid-s (FCC, : table ).

Truly global communication networks emerged only after , when the first
fibre optic transatlantic cable was deployed (Hugill, : , ). The relatively
recent development of international telephony can be seen in Fig. ., which shows
the number of transatlantic telephone circuits in use from  to . The rapid
expansion of international communication capability is evident in the fact that
there were only about  circuits available at the end of  between North
America and Europe. In , in a single year, over , circuits were added.

This early history of communication networks already highlights some interesting
points. Many innovations that we associate with the digital age, such as punched
paper tapes, five-bit character codes, network congestion, and international stand-
ardization efforts, emerged a long time ago. On the other hand, some of the tech-
nological possibilities remained expensive, inconvenient, and rare for decades. As
Fig. . shows, technological development is required to make technological oppor-
tunities real. Although transatlantic networks had existed since the s, for over a
century they remained out of reach to most people, and unavailable for many
potential uses.

. COMPETING TECHNOLOGIES

As the telephone became widely available for national and international use, and
the costs of making a call dropped, the use of telegraphy decreased. The telegraph
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was partly replaced by telex machines. Telex allowed businesses to send short mes-
sages to each other, without requiring skilled operators. Telex users could type their
messages on a typewriter keyboard on paper tape, call the receiving telex machine,
and send the recorded message from the tape. The receiving telex machine printed
the message on paper, functioning effectively as a remote-controlled electric 
typewriter.

These three technologies were used in parallel for several decades. Teletype was
first tested using Chicago & Alton Railroad telegraph lines, in . After many
improvements and slow growth in business, the head of the Associated Press
became convinced in  that teletype could be used to replace messenger boys
who distributed news to New York newspapers. Within a year, all of the newspapers
in New York City and nearby towns, as well as in Philadelphia, were receiving their
press matter simultaneously from a transmitting set controlled by a single operator
in the Associated Press office in New York City (Krum, ). The success of telex,
therefore, was made possible by a novel use in a news service. Technological
improvements, changing labour costs, and expansion in the production capability,
however, also played prominent roles in the process. Howard Krum, one of the key
innovators of telex, described the importance of learning by doing in his Morkrum
company:

From the start good results were obtained, but as operation continued the inventors realized
more and more that the operating requirements for commercial telegraph service were terri-
bly exacting. The percentage of accuracy required was much higher than with any other form
of mechanisms; it must work twenty-four hours a day; it must operate on good telegraph wires
and on telegraph lines whose quality was impaired by rain and other adverse conditions . . .
However, as in the case of the earlier installation, the inventors profited by their experience
and went steadily along perfecting their apparatus, making changes here and there to improve
its accuracy and to make it sturdier and simpler . . . the growth of the business was very slow.
Telegraph companies and the railroads seemed loath to adopt the new system . . . However,
the telegraph business continued to grow and good Morse operators became harder to secure,
wages increased, and above all, the Morkrum system steadily improved . . . Due to increased
business, Morkrum Company were able to enlarge their plant facilities, to engage expert assist-
ants and to steadily improve their product. (Krum, )

According to Krum, already over  per cent of commercial telegrams were handled
by printing telegraphs when he wrote his short history of the Morkrum company
around . Morkrum later changed its name to the Teletype Corporation. Teletype
had a similar position to that of Bell in the telephone industry: it held many key
patents to telex technology (Nelson, ).

In  the revenue from international telephone calls exceeded for the first time
the revenue from international telegraph in the US. Although the use of telex
increased steadily until , already in  telephone became a bigger source of
international revenue than telegraph and telex together. The revenues from inter-
national services in the US are shown in Fig. .. In  telephony generated over
 per cent of revenues from international services in the US. Telex revenues were
. per cent and telegraph was more or less gone.
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Although telegraphy, telex, telephone, fax, and computer networks are alternative
solutions to many communication needs, they are not equal. The ‘entry barriers’ of
each of these technologies are different. Telegraphy required wire and batteries, and
with these resources it opened the way for both telex and telephony. Telex con-
nected organizations across the world and became a technology that enabled
global financial flows. Telephony, in turn, provided the infrastructure for computer
networks. Historically, each of these technologies has generated resources and
behavioural change that prepared the world for the diffusion of more automated
and more complex new technologies. This is one variation in the theme of path
dependency. In the process of development, resources are accumulated and the
direction of future change is partly determined by the characteristics and afford-
ances of the accumulated resources.

When the development of the Internet is discussed, it is therefore important to
remember that a major increase in global communications occurred only in the
mid-s. Until the s, even global corporations had quite independent regional
subsidiaries. Although many multinational corporations existed before real-time
communication was possible in practice, centrally managed multinational orga-
nizations emerged only in the s when both jet airliners and communication
networks could be used to keep company headquarters well informed about events
around the globe (Hugill, : ). Ubiquitous global communication networks,
however, were available only at the end of the s.

The rapid expansion in global communications can be seen in Fig. .. Until the
s, the percentage of revenues from international communications in the US
was about  per cent, without much growth since the first transatlantic cable. In
 the revenue increased to  per cent, in  it doubled to  per cent, and in 

it once again doubled to . per cent (FCC, : table ). The minutes used for
international calls increased fivefold between  and  in the US.

It has often been noted that the world was in many ways tightly connected
already by the end of the nineteenth century. International trade was widely spread
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before the First World War, scholars studied in foreign countries, and telegraph car-
ried news from distant places with almost no delay. Qualitatively, globalization,
however, changed during the last two decades of the twentieth century. It became a
ubiquitous and unavoidable part of life in industrialized countries.

It is, however, also important to note that globalization was not in any simple way
‘produced’ by technological advances. Instead, global connections became ubiquit-
ous as people and organizations appropriated their emerging potential for their
own needs and purposes. Technological advances made it possible to reduce the
cost of communication radically over several decades, and many uses that would
have been impossible without these radically lower costs were invented in the
process. The Internet itself is an example here.

Technological development and increasing communication thus feed each other,
creating an economy of positive returns. The impact of this growth also propagates
back to old methods of communication, as can be seen from Fig. ., which shows
the number of pieces of mail handled by the US Postal Service between  and
. The total number of pieces of mail almost doubled between these years, from
 billion to  billion. International mail switched from surface mail to airmail.
Figure . shows only mail handled by the US Postal Service. It therefore under-
counts the increase in international mail in the US, which is visible in the rapid
growth of private mail services, such as Federal Express and DHL.

It has often been noted that the Internet was a ‘research network’ until the begin-
ning of the s. The history of communication networks shows that the funda-
mental reason for this was not the lack of new computer applications, such as email
or the World Wide Web. Global communication infrastructure was being installed
during several decades, without strong direct influence from computer networks,
and after the mid-s this infrastructure started to make cheap international
communications possible. Internet remained a ‘research network’ to a large extent
because global networks didn’t really exist before the end of the s. As will be
shown in detail below, the Internet was in many ways an impractical, speculative,
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and geographically limited system when it emerged. Its benefits were often unex-
pected by its designers, and its underlying concepts were at many critical points
evaluated by competent technologists who often remained sceptical about the
practicality of the Internet. It is therefore quite a surprise that the Internet in just a
few years became such a prominent aspect of everyday life.

It is an interesting characteristic of important new technologies that when they
emerge, they are both new and old. When we retrospectively describe their emer-
gence, they are new. They created a new world which, by definition, is something
that didn’t yet exist. At the same time, new technologies are almost always concep-
tually old. When they are actually taken into use, this is because there exist clear
benefits for their use. Such easily perceivable benefits exist only if there are social
practices that can readily apply and appropriate the new technology. This paradox
means that important radical innovations are almost always invented ‘after the
fact’, as unintended consequences of trying to solve a specific problem and finding
unexpected opportunities to redefine problems and solutions. They are first intro-
duced as solutions to specific problems, with clear understanding of their benefits,
and in this process their meaning is changed and new benefits are discovered. In
this way, the incremental innovations and improvements of the Morkrum
Corporation radically changed the world of news reporting. At the same time, the
meaning of printing telegraphs became redefined, and a new teletype industry
emerged.

As will be seen below, it is exactly this process of reinvention and reinterpretation
that made the Internet possible. But whereas new versions of telex remained 
similar to the original concept of the remote typewriter as long as telex was in use,
the Internet has transformed itself several times during the few decades of its exist-
ence. This raises several interesting questions. Is the fundamental and ubiquitous
impact of the Internet possible because it allows a new mode of technological
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development? Was the Internet the first important example of the dynamics of glob-
ally distributed innovation processes? Or does the flexibility of the Internet result
from the fact that its most stable elements are not technical artefacts but standards
and protocols? To answer these questions, we have to find out how the Internet
itself was created.

. MESSAGE-PACKETS AND RESILIENT NETWORKS:
INNOVATION AT RAND

By the beginning of the s it was generally understood that computers and com-
munication technology were important for the future. The Cold War was turning
into a technological competition between the Soviet Union and the US, and the
risks of nuclear war were frequently publicly discussed. The launching of Sputnik in
 was a shock in the US, highlighting the possibility that the US could be left
behind in technological competition. As a result, President Eisenhower appointed
James A. Killian, President of MIT, as a presidential assistant for science. A new
agency was set up in  under the Department of Defense to oversee the devel-
opment of the various US space programs. The new agency, the Advanced Research
Projects Agency, ARPA, soon had its goal redefined, partly because the National
Aeronautics and Space Administration (NASA) was established later in that year
(Naughton, : ). The new goal was to prevent major technical surprises like
Sputnik, and to coordinate and fund high-risk research and development projects
that had a potentially high pay-off. Within a few years ARPA became a key driver in
US computer technology (Norberg, ).

In the s, advanced computer and communications networks were seen as a
way to build systems that could provide early warning of nuclear attacks. Many
early projects were extremely ambitious and failed to produce their intended
results. In the process, however, many skills and ideas were developed that later on
become important for the evolution of the Internet. The Whirlwind project, which
started in , developed many of the concepts of interactive computing, and its
follow-up, the SAGE, was designed to coordinate radar stations and direct fighters
to defend the US from an expected wave of Soviet nuclear bombers.

The RAND Corporation was one of the places where the interests of national
security and technology met. It was founded in  by the Air Force as Project
RAND (derived from ‘Research and Development’), under special contract to the
Douglas Aircraft Company. Its goal was to provide scientific help to US military
planners and to connect the military with research institutions and industry. In 

it was reorganized as a non-profit think-tank that focused on theoretical modelling
of systems and strategies, and its name was changed to the RAND Corporation
(RAND, ). Many strategic doctrines that underpinned the American stance
during the Cold War originated at RAND (Naughton, : , Abbate, : ).

According to Naughton (: ), RAND was a surprisingly enlightened place
that supported creative work. Partly this was made possible by the way it was
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funded. The Air Force awarded the RAND Corporation a grant once a year, leaving
considerable freedom for the RAND managers to decide how to use the funds. Every
week, RAND management circulated the letters that had been received from the Air
Force and other federal agencies requesting help on various projects. If someone in
RAND was interested, he or she could sign up for the project. If no one volunteered,
RAND would send a form letter thanking the agency for its request but saying
regretfully that the subject had been judged ‘inappropriate’ for RAND.

RAND, however, also conducted a number of major projects that were of acute
interest to its sponsors. These ‘support projects’ were regarded as critical in pre-
serving the goodwill of the Air Force, and legitimized the continuation of funding
for RAND. According to Naughton:

It was a remarkably open, relaxed and productive regime which treated researchers like
responsible adults—and, not surprisingly, elicited highly responsible and committed work
from them. (Naughton, : –)

In  Paul Baran, then a -year-old engineer, joined RAND. Baran’s background
was in communications and remote measuring systems, but he was hired by the
computer department. Soon after Baran entered RAND, he started to work with the
problem of designing communications systems that could survive nuclear attack.
As communication networks were becoming increasingly important both for early
warning systems and maintaining the threat of retaliatory attack, the vulnerability
of communications was becoming a major problem. Baran was specifically inter-
ested in developing a system that could guarantee that the president of the USA
could launch retaliatory nuclear missiles even after most of the US communica-
tion systems were destroyed. This, according to Baran, would reduce the risk of
nuclear war.

While working at the Hughes Aircraft Company in , Baran had written a pro-
posal for a communication network that could deliver short messages even when
the network was partly destroyed. The idea was to ‘flood’ the network by sending 
a message through all available links as synchronized pulses. At each connecting
node, the node examined all incoming messages, selected the one that came
through the shortest route, sent it to all its neighbours, and threw away all cor-
rupted or suspicious messages (Baran, : V). Although this made reliable mes-
saging possible, the system had a very limited capacity, and required that all nodes
operated in synchrony.

The problem of survivability was close to the main interests of RAND. Frank
Collbohm, President of RAND, had proposed in  that the extensive network of
US AM radio stations could be used to relay voice messages from one station to
another, and other RAND projects had studied distributed communication net-
works (Baran, : V). Baran’s first proposal at RAND was based on showing that
with some digital logic in the radio stations, it would be possible to get a simple
message through the network in almost all circumstances. The idea was that every
station tried to send the message until it started to receive copies of the message.
The overlapping nature of the US broadcasting system would allow the message to
diffuse rapidly through the surviving stations in the network. When the idea was
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presented to the US military, they were ‘distinctly underwhelmed’ (Naughton, :
). The feedback from the military was that they needed much higher bandwidth.

Baran went back to his drawing board, ‘determined to give them so damn much
communication capacity they won’t know what in hell to do with it all’ (quoted in
Naughton, : ). He came up with two basic ideas. First, to guarantee that the
network could operate even when many of its nodes were destroyed, the architec-
ture of the network had to be distributed. There could be no single node that could
be critical for the network, as the destruction of that specific node would destroy
the net. Another key idea was that, to implement such a net, communications had
to be digital. If the route that the signal took over the network could not be pre-
dicted, the only way to avoid the attenuation and distortion of the message was to
convert it to a sequence of bits and transmit the signal in digital form. When the
message was in digital form, additional bits could be added to it to make it possible
to regenerate the message in every node it passed, thus making certain that the
message was received in its original form. This meant that, instead of using AM
radio stations as nodes, the nodes had to be digital computers.

Baran described the basic idea of distributed network in the following way:

The underlying concept of distributed networks is as old as man. Any interconnected grid of
paths or roads may be considered as being a distributed network. When one drives to work
over a distributed (or grid) road system and encounters a potential delay, it is possible to turn
off, bypassing the traffic jam or obstruction. Thus, the actual route taken depends not only
upon a predetermined route, but also upon the happenstance of encountering necessary
detours which take us off the preferred shortest path. In spite of this uncertainty, and regard-
less of the number of detours, we almost always manage to get to work. On some mornings
when we have a little extra time, we may chance to try a route that we have never taken before.
If we find that this new route is quicker because of less traffic than our old route, we will prob-
ably take this newer route in the future. By this process, we learn in a relatively short time the
quickest route between home and work. We may say that we have used a ‘heuristic’ process to
learn a ‘best’ path in a network. (Baran, : V)

To route messages over the network, Baran proposed in  a store-and-forward
switching mechanism. He called this ‘hot-potato routing’. The idea was that each
node would try to get rid of its incoming messages as quickly as possible. The ‘pota-
toes’ were standard-sized digital packets with a header that contained the destina-
tion address of the packet. The nodes used the header to choose where to send the
packet next.

In essence, this was the same store-and-forward mechanism that was used in
telegraphy and conventional mail. The digitalization of messages, however, made a
radical new idea possible. The message could be split into smaller blocks that could
be sent separately, and reassembled by the receiver. The use of these ‘message-
blocks’, as Baran called them, meant that the routing of messages could be done
with simple machines and it became feasible to build networks with hundreds of
nodes. Earlier proposals for message switching systems were based on the use of
large computers. As the nodes were not able to know how much processing and
storage incoming messages would require, they had to be ready to handle all pos-
sible situations. Baran’s idea was that fixed-sized packets could be quickly moved
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on to the next node without much processing, so that the node computer didn’t need
expensive memory or complicated programs. As Baran developed this idea, he real-
ized that standardized message blocks also made it possible that several users could
use the same connections at the same time, and share the capacity of the line effi-
ciently according to their needs. When there was little traffic on the line, someone
could use most of the capacity, and when the traffic was heavier, the capacity was
shared with the users without anyone being completely shut off from the network.
Moreover, it was possible to build networks that connected links with different trans-
mission capacity, as the switching station could send message blocks to the lines at
the speed supported by the receiving line.

.. Sources of Innovation

In , when Baran wrote a series of reports detailing his concepts, he also
described the historical roots of the idea of distributed networks. He noted that 
‘The work of at least six separate disciplines is germane’, but observed that ‘these
separate disciplines reside in different communities of interest’ (Baran, : V).
According to Baran, relevant work on distributed networks had been done by those
concerned with ‘artificial intelligence’, those concerned with communications
within organisms and organizations, mathematicians working with optimization of
flow in networks, mathematicians using dynamic programming to optimize incom-
pletely understood and changing systems, those connected with civilian telephone
switching, and, finally, military systems planners, especially those dissatisfied with
existing network techniques. Baran noted that his report was written mainly from
the viewpoint of the last group.

When Baran came up with these ideas, computers existed, but computer net-
works were rare. The idea of connecting several users to a single computer, which
later become known as ‘time-sharing’, was widely discussed (Lee, ). In teleph-
ony, digitalization was just emerging. The first digital transmission system T, was
taken into commercial use in  (Hugill, : ). The benefits of digital commu-
nications were well known since Claude Shannon had published his work on informa-
tion theory in  and . Large computer systems had been built for national
defence since the late s. But, although many of the components of the digital
computer networks were discussed, they were more ideas than everyday reality.
Large computer systems, for example, were large in a very concrete sense: the com-
puters in the Air Force’s SAGE system weighted  tons each and had , vac-
uum tubes (Naughton, : ). In its early phases, Baran’s design, therefore, relied
on the availability of technology which didn’t yet exist. Moreover, his ideas com-
bined concepts that had been developed in different communities of interest,
which used different languages, and didn’t really know about each other’s work.

When Baran discussed potential problems in implementing his network in ,
he noted that the system was based on relatively cheap components that were rap-
idly becoming cheaper. According to Baran, the key challenge, however, was not
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technical:

We have discussed a new large communication system, one markedly different from the pres-
ent in both concept and in equipment, and one which will mean a merging of two different
technologies: computers and communications. People with competence in both these fields
are not numerous. Our concern is whether we will have enough well-trained people capable
of understanding both the communications and digital computer techniques to make this
venture a success. Here may lie the real question of feasibility. Our present-day components
are fully adequate. The difficult problems lie in hooking them together. (Baran, : XI,
Postcript)

Baran’s project was informed by the work of earlier researchers who had been try-
ing to develop survivable and distributed communication networks. He was, how-
ever, also able to come up with his ideas for a very practical reason. He was assigned
as a RAND representative to a high-level committee that was set up by the Pentagon
to choose a communications system for handling Department of Defense records.
The committee met every other week in Washington, so Baran was obliged to share
his time between RAND offices in Santa Monica, California, and Washington, DC.
As a member of the evaluation committee, he had the opportunity to ask dumb
questions. As Baran himself noted: ‘Dumb questions are only allowed without giv-
ing offense if you are a child of a member of a distinguished evaluation committee’
(quoted in Naughton, : ). Baran was especially interested in understanding
why the computers used in the message-switching system were so expensive and
why they required large rooms. The answer, he discovered, was that the computers
maintained detailed records of all their traffic they handled. He further concluded
that ‘the real reason every communications center office was built with that bur-
densome capacity was to be able to prove that lost traffic was someone else’s
fault’ (quoted in Naughton, : ). Based on this observation, Baran used his
extensive travel time to come up with an alternative design. RAND’s travel policy
supported this in an indirect way:

In those days RAND allowed its staff to travel first class if the trip was over two hours. This gave
me the equivalent of one day per week to work in a comfortable setting. Almost all my writing
was done either in airport waiting rooms or in airplanes. (Baran ; quoted in Naughton,
: )

The first complete design for the network was ready by . It was based on
microwave links and , switching nodes, each about a shoe box in size. The dis-
tance between the nodes was kept short, about twenty miles, to keep radio transmit-
ters and receivers simple. The system was designed to carry encrypted messages.
Each node in the system could handle  secure telephone subscribers, together with
 subscribers using computers and other digital devices (Naughton, : ).

The results of Baran’s work were published in . Following RAND’s standard
practices, Baran presented his work to various outside experts for comment while he
was developing his ideas, and eleven volumes of reports that described Baran’s work
in detail were widely distributed. The first volume was also published in the March
 issue of IEEE Transactions on Communications Systems, and an abstract of that
paper was published in IEEE Spectrum, with an estimated circulation of ,

THE MAKING OF THE INTERNET 



(Abbate, : ). As Naughton observes, at first, the open distribution of such 
military-related work is rather surprising:

In retrospect, the freedom to publish secrets of this order seems astonishing. Just think: here
were the results of advanced research on one of the most sensitive areas in US nuclear strat-
egy—and they were placed in public domain. The US, in other words, just gave them away!
They weren’t even patented. (Naughton, : )

According to Baran, this openness made sense, however. The doctrine of retaliatory
nuclear attack was based on balance of fear. Baran explained:

Not only would the US be safer with a survivable command and control system, the US would
be even safer if the USSR also had a survivable command and control system as well! 
There was never any desire for classification of this work. (Baran, ; quoted in Naughton,
: )

Although it may seem today that Baran’s design had obvious advantages, proposals
to go ahead with implementation were not successful. Baran was especially sur-
prised to find that his strongest critics came from among senior technical experts at
AT&T. One of the reasons why AT&T had difficulties in accepting Baran’s ideas was
that they implied that analogue telephony could not be developed into a reliable
system. As all military telephone traffic went through AT&T lines, reputation for
reliability was important. Furthermore, it seemed difficult to integrate this radical
new system with existing networks.

Baran was, however, able to argue that further research and development would
probably find ways to incrementally integrate the proposed network with existing
systems. The Air Force staff accepted Baran’s proposal enthusiastically. According 
to their normal procedures, an independent evaluation project was set up. The
evaluation was very positive and recommended that the project should proceed.
This never happened. As Naughton explains:

The reason was that it ran into the bureaucratic equivalent of a brick wall. Since , succes-
sive US administrations had been trying to bring about the unification of the three branches
of the armed services. Because of inter-service rivalries, it proved to be slow work. But in 

President Kennedy had installed as his Secretary of Defense a guy called Robert Macnamara,

a steely managerialist who had previously run the Ford Motor Corporation . . . By the time
Baran’s project reached the Pentagon, Macnamara’s attempts at rationalization had produced
a new organization called the Defense Communications Agency. This had been given overall
responsibility for all long-distance communications for the three armed services. In the man-
ner of these things, it was constituted on a modified Noah’s Ark principle—a few of everything.
It was headed, for example, by an Air Force general, and Army general and an admiral. More
significantly, it was run mainly by ex-AT&T people who had zero or near-zero exposure to the
new technology. ‘If you were to talk (to them) about digital operation,’ mused Baran, ‘they
would probably think it had something to do with using your fingers to press buttons.’ . . . The
problem as Baran saw it was that, if his RAND project were to go ahead, these boobies would
be charged with building it. (Naughton, : )
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Baran discussed the issue with a friend who worked in the office of the Assistant
Secretary of Defense and who was a key person in communications funding deci-
sions. As a result of this discussion, Baran decided not to proceed with the project.

Paul Baran has often been described as ‘the father of the Internet’. The current
Internet implements many of the ideas that he developed in the early s. When
other researchers started to develop their ideas for distributed computer networks,
Baran’s work was quickly rediscovered. Yet, the Internet was not an obvious thing in
. As Baran himself noted, the system was difficult to explain and comprehend,
a small network didn’t really make sense, the required hardware did not exist, and
people easily compared the proposed system with the existing telephone network,
which for all practical purposes seemed to be working well, at least when no one
had destroyed it (Baran, : XI). Very few people had ever seen a computer. In the
early s every fifth household in the US didn’t have access to a telephone, and in
many states almost every second household was without a phone (US Census
Bureau, ). As Abbate notes:

Many computer professionals have seen packet switching as having obvious technical advan-
tages over alternative methods for transmitting data, and they have tended to treat its wide-
spread adoption as a natural result of these advantages. In fact, however, the success of packet
switching was not a sure thing, and for many years there was no consensus on what its defin-
ing characteristics were, what advantages it offered, or how it should be implemented—in part
because computer scientists evaluated it in ideological as well as technical terms. Before
packet switching could achieve legitimacy in the eyes of data communications practitioners,
its proponents had to prove that it would work by building demonstration networks. The wide
disparity in the outcomes of these early experiments with packet switching demonstrates that
the concept could be realized in very different ways, and that, far from being a straightforward
matter of a superior technology’s winning out, the ‘success’ of packet switching depended
greatly on how it was implemented. (Abbate, : –)

. TIME-SHARING AND NETWORK SOCIETY: WORK AT NPL

Baran’s work was very much based on his ability to evaluate existing proposals for
message-switching and to learn that they were based on assumptions that were not
relevant for solving the fundamental problem at hand. He also made the assump-
tion that although suitable technology didn’t exist for the network nodes, it could be
developed relatively easily from available components. Baran had access to com-
petent experts in the area of communication networks, he had a vision of the basic
architectural requirements, and RAND gave him time to develop his ideas for sev-
eral years. The resulting series of reports is, indeed, a careful, insightful, and clearly
written study on the benefits of distributed digital networks. Yet, Baran’s proposals
were not implemented. In many ways he was a prime example of the traditional
heroic innovator. He was trying to develop new technology as an individual inno-
vator. His failure actually to implement the system may result from the nature of 
the technology he designed. Distributed communication networks, after all, are
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distributed networks. Networks are difficult to set up locally, and Baran also had to
convince many existing communities that they should change their practices.

While Baran was trying to find someone to implement his plans, another attempt
to develop digital computer networks was launched in the UK. It had quite differ-
ent goals from Baran’s network, but it was based on strikingly similar technical
ideas.

In  Harold Wilson had made technology one of the key issues in UK politics,
calling on labour and management to join in revitalizing British industry (Abbate,
: ). When Labour came to power in the  election, Wilson quickly started to
implement several projects that tried to promote new high-tech industries and to
stop the perceived ‘brain drain’ of world-class scientists. Wilson believed that the
British computer industry would be destroyed by competition from the United
States unless the government intervened urgently. As a result, funding for computer
research and commercialization of new technologies increased substantially.

The basic concept of digital packet networks was invented independently of
Baran’s work in  by Donald Davies, a British scientist working in the National
Physical Laboratory. The NPL had become one of the places that tried to close the
‘technology gap’ between the United Kingdom and the United States.

Donald Davies had joined NPL in . He worked with the early British computer
initiative ACE, which was to be the answer to the American challenge on computer
technology, and did some work including a classified communications project
which involved sending data securely over telex links from a weapons-testing range
to a processing centre (Naughton, : –). Davies also developed a computer
program to simulate road traffic (The Times, ). When the Labour administra-
tion launched its Advanced Computer Technology project, Davies was nominated
to head it in . As a result, Davies had a good understanding of the developments
in computer technology. In May  Davies went on an extended visit to the USA.
The ‘ostensible excuse was to attend the International Federation for Information
Processing (IFIP) Congress in California, but because there was always pressure in
the NPL to justify the expenditure of a transatlantic trip, Davies set up a number of
visits to various research centres’ (Naughton, : ). He went to Dartmouth,
New Hampshire, where a new computer language BASIC was being developed, and
visited MIT and RAND, to learn about interactive time-sharing computing. After the
trip, he organized a three-day seminar on time-sharing, which was followed by an
open one-day meeting organized by the British Computer Society.

Time-sharing was becoming a hot topic in computing as it allowed several users
to connect to a single computer using terminals, and use the machine simultane-
ously. In a time-shared system, the processor time was split among independent
users, who each had control of the machine for short periods of time (cf. Lee, ).
The speed of the processor made it possible to switch from one user to another so
fast that in effect everyone thought they had the complete machine in their own
use. This allowed cost-effective real-time access to large computers and made many
new interactive uses of computers possible (Fano, ).

At the same time, it was possible to imagine that some of the terminals could 
be remote terminals. If data communication could be possible through public 
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telephone networks, expensive computers could be used from distant locations.
Indeed, in the mid-s, research centres used time-sharing regularly and busi-
nesses began to offer commercial time-sharing services to customers who would
rent or buy a terminal, connect to the service using a modem, and pay for the ser-
vice at a hourly rate (Abbate, : ).

Telephone systems, however, were not well suited for computer communica-
tions. They operated on the principle that a circuit had to be connected between the
callers. In the s this was still often done by human operators. But even the auto-
matic direct dialling systems assumed that a circuit had to be reserved for every call.
Telephone networks were fundamentally different from telegraph networks in this
sense. Whereas the latter operated in ‘store-and-forward’ mode where a message
jumped from one node to another, without requiring continuous connection
between the end points, telephony was based on opening a connection between
the endpoints and keeping the connection reserved until the call ended. This con-
cept was not well suited for computer communications. Computers needed to send
bits over the line only infrequently, when the user pressed a key on the keyboard, or
when the computer sent characters back to the user. Moreover, the time that was
needed to set up a connection was very slow. Therefore it was also impossible to
expect that a terminal and the computer could open the line only when they
needed it.

A few days after he had organized the seminar on time-sharing systems, Davies
came up with an idea that would solve this problem. If messages were split into
small blocks, a store-and-forward network could be a great way to connect inter-
active computer users to a central processor (Davies, ). Davies estimated the
number of messages that a large city would generate, and noted that if the nodes
were to forward the messages fast enough they could easily handle a million users
(Davies, ).

In November Davies wrote two notes on his ideas and sent them to a number of
people ‘who in their replies showed some interest’ (Davies, ). A month later
Davies wrote a more detailed proposal, entitled ‘Proposal for the Development of a
National Communication Service for On-Line Data Processing’ (Davies, ). He
envisioned the network as offering many different services for businesses and
recreational users. The list of potential uses clearly shows the different goals of
Davies’s concepts and Baran’s concern with survivable communications. According
to Davies (), the services provided by the network included:

● numerical computation at various levels of generality
● editing and typesetting of text
● design services and problem oriented languages
● availability of goods for sale
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● ordering of goods
● invoicing, delivery notes, etc.
● booking of transport
● banking, establishing credit
● remote access to national records, e.g. MPNI, tax, police, medical, on a secure

basis
● betting.

Davies saw that the connection of users to computer services was of primary
importance, but he also noted that the network could be used for people-to-people
communication, and could replace telex. Davies pointed out that the system could
also be used for machine-to-machine communication, for example, for road traffic
control, monitoring and controlling of utility services, pipelines and automatic
meteorology stations, burglar alarms and other security devices, as well as for con-
trolling of telephone switching. To test the concepts, he proposed that a pilot net-
work should be set up in central London. Davies circulated this proposal widely
among banks and the UK Post Office, who had the monopoly on communications
networks. According to Davies (), ‘the reaction was generally appreciative but
not enthusiastic’.

In March  Davies gave a public lecture at the NPL on ‘The Future Digital
Communication Network’. Over  people attended the lecture of whom eighteen
were from the UK Post Office. After the lecture he was approached by a man from
the Ministry of Defence, who told him that some remarkably similar research 
had been done in the US by Paul Baran (Davies, ; Abbate, : ; Naughton,
: ).

To distinguish the messages, as they were seen by the user, and the blocks of data
that traversed the network, Davies decided to call the latter ‘packets’. Each packet
consisted of the data it carried and a header that contained information on the
packet’s source and destination. The header also contained a check digit that could
be used to make sure that the packet arrived without errors, and a sequence num-
ber that allowed the receiver to assemble the incoming packets back to their ori-
ginal sequence and retrieve the message that was sent. The maximum size of a
packet was  bytes.

In the summer of  Davies wrote a twenty-five-page ‘Proposal for a Digital
Communication Network’. The proposal described a design of his packet-switched
network, and estimated costs of building such a network. Davies’s plan also
included ‘interface computers’ through which remote users could connect to the
network. Although Davies designed some redundancy to his network, his main con-
cern was not in building a network that remained operational after a nuclear strike;
instead, his main concern was to provide interactive access to large numbers of
users, who could not otherwise access expensive computers. Packet switching was
for Davies a way to share communication lines effectively, in a similar way to that in
which time-sharing efficiently divided the resources of the central processor.
Davies also saw commercial potential in packet-switching technology, and believed
that it could directly contribute to Harold Wilson’s plan to revitalize the British
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economy (Abbate, : ). Indeed, already in his first proposal six months earlier,
Davies had noted that it was important to start the development work early to influ-
ence the emerging international standards, and that ‘it is very important not to find
ourselves forced to buy computers and software for these systems from USA. We
could, by starting early enough, develop export markets’ (Davies, ).

The network that Davies proposed was national in scope, but the problem was
that national networks were a monopoly controlled by the General Post Office. Its
managers had little interest in building a nationwide data communications infra-
structure. This was quite understandable: there were not many users or uses for
such a network anyway. According to Davies, the Post Office reaction to his March
 lecture was surprisingly tolerant. People in the Ministry of Technology were
also interested. The proposal, however, ‘was never considered seriously as a practi-
cal possibility’ (Davies, ). Later, Davies noted the basic problem with the GPO:

I had been in contact with them enough to know they were a pretty large, monolithic organi-
zation, in which to get anything done you have to convince a lot of departments. The fact that
my ideas had had any impression on them at all was to me rather amazing, and I didn’t expect
them to put a lot of effort into it quickly. (Davies, ; quoted in Abbate, : )

As Davies felt that it was difficult to convince the managers of the GPO, he decided
to propose a small-scale system that could demonstrate the concepts in real life.
During the spring of  he had been discussing this possibility with his colleague
Derek Barber. The benefit of this approach was that an internal NPL project could
be started without many formalities. As Davies noted: ‘In those days we had a cer-
tain amount of flexibility in our research programme enabling us to begin such a
project without undue formality’ (Davies, ). In July  he proposed that NPL
should build its own network that could connect its computers and show the con-
cepts of packet networks in actual use. The network, named ‘Mark I’, would serve as
a demonstration of packet switching, advance the state of knowledge in the field,
and support the operational computing needs of the NPL’s scientific and adminis-
trative personnel (Abbate, : ). In August, Davies was promoted to head NPL’s
computing division (at that time known as the ‘autonomics division’), which gave
him resources to proceed with the plan. The project started in . The develop-
ment team was headed by Derek Barber. Roger Scantlebury was the technical leader,
Keith Bartlett was responsible for the hardware development, and Peter Wilkinson
was in charge of software development. By early  the team had a plan to link 
ten computers, ten high-speed peripheral devices, fifty slow peripherals and graph
plotters, six computer terminals and forty teletype terminals. By July  Davies had
detailed enough plans so that he could request funds from the Lab’s Steering
Committee to start building the system (Naughton, : ).

The architecture of the Mark I network became fundamentally limited due to
budgetary limitations. The original plan was to build a demonstration network with
three computer nodes, but limited funds meant that Davies had to start with only
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one node computer. Davies didn’t think this would be a major limitation, however,
as a multi-node network could be simulated by a computer program, and its rout-
ing problems could be studied without actually building a multi-node network. The
original idea was to support connections over a wide area; in practice, however, the
architecture of the network became what is today known as a local area network.

Politics and funding played a considerable role in the development of Mark I. The
English computer manufacturer Plessey had designed a minicomputer specifically
for data communications, and the NPL team decided to plan their network using it
as the node computer. The British Ministry of Technology was, however, actively
trying to rationalize the British computer industry to improve its competitiveness.
The Ministry promoted the idea that computer manufacturers should limit the
number of different computer models to gain scale benefits in manufacturing. As a
result, Plessey abruptly withdrew the computer that the NPL team was planning to
use, and the NPL team had to start from scratch. As Abbate notes:

Bowing to this policy, the Plessey Corporation canceled its plan to produce the minicomputer
that the NPL team had chosen for its network interface. This delayed the NPL project and
forced the NPL designers to make up for the lost functionality of the Plessey computer by
increasing the complexity of other parts of the system. (Abbate, : )

The limited funding and high cost of computer equipment meant that the NPL
team could proceed only slowly. The project started in , the first network inter-
face minicomputer was installed in , and the local network at NPL began opera-
tion in . The software was subsequently rewritten, and the full use of the
improved Mark II network started in . The Mark II remained in active service in
NPL until .

The work at NPL did, however, have considerable influence on the development
of computer networks. Already in December  Davies was invited to a Con-
sultative Committee for International Telephony and Telegraphy (CCITT) meeting
in Geneva, where data communication was discussed by a group of telecommu-
nications experts. Fred Warden, from IBM, gave a long lecture on the future of data
communication from the industry point of view. The representative of the UK Post
Office, who was chairing the meeting and who knew about Davies’s proposals,
asked him during a break to give a short presentation on the principles of packet
switching. ‘I was thus able to introduce packet switching to CCITT’, Davies com-
mented later. ‘At that meeting a resolution was passed for the establishment of a
Joint Study Group on New Data Networks in the – Session of CCITT’ (Davies,
). Subsequently, the members of the NPL group played an important role when
the packet switched data networks were standardized by European and inter-
national telecommunications authorities. The development was, however, slowed
down due to the varying interests of the different parties. For example, early on
Germany tried to promote data networks that were based on an extension of their
telex system. The German proposal was based on a new kind of switch that Siemens
had developed (Davies, ).

Eventually, the CCITT work led to the X. standard for data communications.
This standard was developed in a hurry when there started to be increasing fears in

 THE MAKING OF THE INTERNET



 that IBM could gain monopoly in data communications using its proprietary
standards. In part, the tight schedule for CCITT resulted from the fact that its stand-
ards had to voted by the entire CCITT membership, which met only every four
years, in the CCITT’s plenary (Abbate, : ). The X. was accepted as a CCITT
recommendation in . X. networks were widely deployed by the national PTTs,
and they were the main competitors for the current Internet networks until the
mid-s.

The Wilson government’s interest in computing technology also meant that there
was increasing oversight and intervention. As Abbate notes:

The politics of the day and the culture of some British institutions hampered Davies’s ability
to implement his ideas and fulfill his aim of keeping the United Kingdom ahead of the United
States in computer networking. In the late s the NPL had been oriented toward pure
research, but under the Wilson government there was a marked increase in government over-
sight and intervention. (Abbate, : )

Abbate goes on to quote a NPL scientist:

‘Schemes for improving the service given to the nation were constantly being hawked from
above … Open-ended research was severely cut back and in its place all research projects had
to have a ‘customer,’ who had to be persuaded of the viability and value of each project and
agree to make available the funds to carry it out . . . Meetings required regular preparations of
cases by Laboratory scientists in time which could ill be spared from practical work’. (quoted
in Abbate : )

Political interests played an important role in the development of UK networks
throughout the s. In  Larry Roberts, head of the US ARPANET project, pro-
posed that ARPANET and the NPL network should be connected. According to Peter
Kirstein, ‘the timing could not have been worse from the British perspective’.

The problem was that the British government had just applied to join the European
Community; this made Europe good and the United States bad from a governmental policy
standpoint. NPL was under the Department of Technology, and Davies was quite unable to
take up Robert’s offer. He had to concentrate on European initiatives like the European
Information Networks. (Kirstein, : )

As Kirstein, from the University College of London (UCL), had been interested in
the US Arpanet project already since its beginning, it was decided that UCL would
become the first ARPANET node outside the US.

. INTERACTIVE COMPUTING: AUGMENTING THE 
HUMAN MIND

Donald Davies died on  May . A few days later The Times published an obitu-
ary. It noted:

After working with Alan Turing, the scientific genius who first conceptualized computer 
programming, Donald Davies went on to make one of the crucial breakthroughs that made
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possible modern computer communications. He pioneered packet-switching, which enables
the exchange of information between computers, without which the Internet could not 
function. (The Times, )

Most histories of the Internet, however, argue that the Internet originated in ARPA,
and that its origin can be traced back to J. C. R. Licklider. In  Licklider published
an article on ‘Man–Computer Symbiosis’, which outlined his vision on computing
(Licklider, ). His article introduced several themes that subsequently played an
important role in the development of the Internet.

In the s, early users of computers saw them mainly as fast programmable cal-
culators. By the mid-s, computer researchers were becoming increasingly
interested in automated decision-making. Instead of solving differential equations,
computer scientists were increasingly using computers to uncover the secrets of the
human mind. When the first conference on artificial intelligence (AI) was organized
in Dartmouth in , AI had become almost equivalent to ‘computer research’.
Many prominent researchers were excited about the challenges and possibilities of
programming computers to process symbols and thoughts, instead of numbers
(McCorduck, ).

When Licklider published his paper on man–computer symbiosis, he highlighted
the possibility of a third way. AI researchers were focusing on the automation of
thought. Licklider, however, argued that, at least for the time being, a more promis-
ing possibility was to develop computers as tools that could help their users to
think. Licklider had conducted an informal time-and-motion study in , using
himself as the subject, to better understand what mental work actually consisted
of. He found out that there was very little ‘thinking’ in technical research and engi-
neering work. Most of the time went to finding information, plotting of graphs,
instructing an assistant to plot graphs, and getting into a position to think:

Throughout the period I examined, in short, my ‘thinking’ time was devoted mainly to activit-
ies that were essentially clerical or mechanical: searching, calculating, plotting, transforming,
determining the logical or dynamic consequences of a set of assumptions or hypotheses,
preparing the way for a decision or an insight. Moreover, my choices of what to attempt and
what not to attempt were determined to an embarrassingly great extent by considerations of
clerical feasibility, not intellectual capability. (Licklider, )

Licklider argued that humans and computers had different characteristics and that
therefore they could effectively complement each other. A computer could be used
as an aid in formulating problems interactively with the user, and to support think-
ing in ‘real time’. This, however, required development of new computer languages,
user interfaces, and new ways to store information in the computer memory.
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 This was probably inspired by a similar study done earlier by Wiener, cf. Naughton, : .
 This idea, in itself, was not an exceptionally radical one. The idea of man–machine symbiosis

was quite popular in the early 1960s. There was a lot of interest in, and funding for bionics, which
involved the interplay between biology and technology. For example, in the s Ross Ashby had
proposed ‘intelligence amplifiers’. The only form of bionics that remained popular after the s
was the AI based on symbol processing (Rosen, : –). The current interest in augmentation
systems picks up many themes that were popular in the s and s.



Licklider argued that pen-based input and desk-surface display were necessary and
that limited speech recognition was becoming possible in the next few years. He
also proposed that computer output could be projected on a wall when a team of
people needed to work on a task together. As computers were much faster than
humans, and as it was inconceivable that expensive computers could be used by
only a single user, time-sharing was necessary. Licklider suggested that maybe in
ten or fifteen years, there could be ‘thinking centers’ that could incorporate the
functions of libraries together with the electronic storage and retrieval systems that
he proposed:

The picture readily enlarges itself into a network of such centers, connected to one another by
wide-band communication lines and to individual users by leased-wire services. In such a 
system, the speed of the computers would be balanced, and the cost of the gigantic memo-
ries and the sophisticated programs would be divided by the number of the users.
(Licklider, )

Licklider continued working with these ideas, and developed later a vision of com-
puting which he called the ‘Inter-Galactic Network’. When Licklider became the
head of ARPA’s Command and Control division in , he quickly started to spon-
sor a number of projects that developed time-sharing computers and interactive
computing. These led naturally to research on computer networks.

Licklider’s vision was to a large extent based on his first-hand experience with
computers and interactive computing, and in his background in human sciences.
He had earned undergraduate degrees from Washington University in physics,
mathematics, and psychology, and in  he received a Ph.D. in psychology from
the University of Rochester. During the Second World War he was a research associ-
ate and research fellow in the Psycho-Acoustic Laboratory at Harvard University,
working on defence projects. After the war he stayed at Harvard until , when he
joined the Psychology Department at MIT as an associate professor.

During his Harvard years, Licklider also joined a discussion group that was
organized by Norbert Wiener. Wiener had been a member of a similar group of
researchers in the s, led by neurophysiologist Arturo Rosenbleuth, where math-
ematical models of biological systems were actively discussed. During the war,
Wiener had worked with the problem of automatic control of guns for air defence,
and he realized that the human neuro-motoric system had many similarities with
automatic targeting systems. He summarized these ideas in his book on
Cybernetics, which was published in . It quickly became one of the most influ-
ential books in the latter half of the twentieth century. In the s cybernetics and
systems theory were discussed with great enthusiasm in the US, Europe, and the
Soviet Union. These ideas played an important role in both setting up the RAND
and, for example, in the design of the US SAGE air defence system. Wiener set up his
own circle to discuss the issues related to cybernetics and modelling of biological
systems in  (Naughton, : –).
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Licklider was greatly impressed with cybernetic ideas and when he joined MIT, he
got access to the most advanced computer systems available at that time. A year
after he left Harvard for MIT, MIT set up the Lincoln Laboratory as a facility that
specialized in air defence research. Licklider became the head of the laboratory’s
human engineering group. During this time he learned to program TX-, one of the
first computers that used transistors, and learned about the $ billion, , man-
year SAGE project. SAGE was the first major system of interactive and networked
computing. Its scope is reflected in the fact that its phone bill was millions of dol-
lars a month (Naughton, : ).

In  Licklider became a vice-president of Bolt, Beranek and Newman (BBN).
BBN, which later become a key contractor in the ARPANET project, was at that time
a company engaged in studies of acoustics, psychoacoustics, human—machine
systems, and information systems. Licklider’s paper on Man–Computer Symbiosis
was partly based on the work performed by a small research team that he had
organized and managed at BBN (Taylor, ). During the s, Licklider also con-
sulted local laboratories and companies, served on the Air Force Scientific Advisory
Board, and consulted directly with the Department of Defense (Norberg, : ).

In  ARPA was looking for a manager to head a new program on behavioural
science, and to manage the time-sharing activities in the System Development
Corporation in California. The director of ARPA, Jack Ruina, found two candidates.
After some discussions, Licklider was asked to join ARPA to head the Command and
Control Division and to set up a new division for behavioural sciences. By skilfully
using his somewhat ambiguous job description, Licklider focused on interactive
computing. As Naughton notes:

Lick arrived at the Agency on  October  and hit the ground running. He had two over-
riding convictions. The first was that time-sharing was the key computing technology; the
second was that the best way to make progress in research was to find the smartest computer
scientists in the country and fund them to do whatever they wanted. (Naughton, : )

Licklider’s research program soon changed its name to Information Processing
Techniques Office (IPTO), and became the biggest sponsor of computer research in
the US. Although it was one of the smaller programs within ARPA, its annual budget
was greater than the total amount of money allocated to computer research by all
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Rosenblueth, Oskar Morgenstern, Gregory Bateson, and others. An early seminar at the Institute for
Advanced Study at Princeton in  brought together mathematicians, physiologists, and mecha-
nical and electrical engineers. It was a great success, and a series of ten seminars was arranged by
the Josiah Macy Foundation. This led to development of cybernetics, general systems theory, and
systems dynamics (cf. de Rosnay, ).

 Jay W. Forrester, who later founded Industrial Dynamics and developed influential system
dynamics models for the Club of Rome, was the head of the Lincoln Laboratory, and headed the
development of the SAGE (Semiautomatic Ground Environment) system from  (Astrahan and
Jacobs, ; de Rosnay, ). The first SAGE computers used vacuum tubes. Lincoln Laboratory also
developed a series of transistorized computers. The first of these, the experimental TX-, started 
to operate in , under the supervision of Kenneth H. Olsen. Olsen later founded the Digital
Equipment Corporation, commercializing ideas that originated in the TX computer architecture
(Ceruzzi, : ).



government-supported agencies. The funding from IPTO also launched the first
computer science Ph.D. programs in the US, in UC Berkeley, CMU, MIT, and
Stanford (Taylor, ).

.. Memex and the oNLine System

A few months after joining ARPA, Licklider was able to arrange funding for Douglas
Engelbart, who was developing interactive computing at Stanford Research
Institute (SRI). Engelbart and Licklider shared the basic vision of computers as tools
to augment human thinking. It is impossible to understand the evolution of the
Internet without knowing Engelbart’s contributions. But, as always, visionaries do
not emerge from a vacuum. Engelbart was greatly influenced by an article that he
read in . This was Vannevar Bush’s article where he described a vision of the
‘memex’ system.

Bush’s article was published in the Atlantic Monthly in July  and it became
influential partly because it was written by the ‘de facto science advisor’ of President
Roosevelt (NSF, : –). The article was widely quoted, and a condensed version
of the essay was published in Life, September . Bush had written the first full
draft of the article already in  (Naughton, : –).

Bush’s memex was based on his conviction that the human mind operates through
association, and that existing methods of information processing had become inad-
equate with the increasing amounts of information. Bush had joined the Electrical
Engineering Department at MIT in  and stayed there for twenty-five years, even-
tually becoming Vice-President of MIT. During this time he developed an analogue
computer, the Differential Analyzer, and optical and photo-composition devices
which rapidly selected items from banks of microfilm. Bush left MIT in  to
become President of the Carnegie Institution and during the war he was recruited by
President Eisenhower to run the scientific defence efforts (Naughton, : ).

In his Atlantic Monthly article, Bush argued that information retrieval should be
supported by mechanized machines:

Professionally our methods of transmitting and reviewing the results of research are genera-
tions old and by now are totally inadequate for their purpose . . . The difficulty seems to be,
not so much that we publish unduly in view of the extent and variety of present day interests,
but rather that publication has been extended far beyond our present ability to make real use
of the record. The summation of human experience is being expanded at a prodigious rate,
and the means we use for threading through the consequent maze to the momentarily impor-
tant item is the same as was used in the days of square-rigged ships. (Bush, )

To overcome the problem of retrieving relevant information, Bush proposed a
machine that used a microfilm recording system, a keyboard, and a set of buttons
and levers. The machine was built into a desk, on top of which there were slanted
translucent screens that could be used to project the content of microfilms. Such 
a ‘memex’ was to be a device ‘in which an individual stores all his books, records,
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and communications, and which is mechanized so that it may be consulted with
exceeding speed and flexibility. It is an enlarged intimate supplement to his mem-
ory’ (Bush, ).

A key to memex was that each microfilm document had a space where the user
could record links between the various documents. Recording such associations,
the user was able to build ‘traces’ of documents, and move rapidly along the traces,
creating new ones while doing this. Bush estimated that using an improved micro-
film system, the memex could have a very large storage, allowing the user to store
, pages of material a day for hundreds of years.

Bush envisioned a hypertext system that closely resembles Berners-Lee’s original
vision of the World Wide Web:

The owner of the memex, let us say, is interested in the origin and properties of the bow and
arrow. Specifically he is studying why the short Turkish bow was apparently superior to the
English long bow in the skirmishes of the Crusades. He has dozens of possibly pertinent books
and articles in his memex.

First he runs through an encyclopedia, finds an interesting but sketchy article, leaves it pro-
jected. Next, in a history, he finds another pertinent item, and ties the two together. Thus he
goes, building a trail of many items. Occasionally he inserts a comment of his own, either link-
ing it into the main trail or joining it by a side trail to a particular item. When it becomes evid-
ent that the elastic properties of available materials had a great deal to do with the bow, he
branches off on a side trail which takes him through textbooks on elasticity and tables of phys-
ical constants. He inserts a page of longhand analysis of his own. Thus he builds a trail of his
interest through the maze of materials available to him. (Bush, )

Douglas Engelbart read the condensed article of ‘As We May Think’ while he was
serving in the US Navy in the Philippines, and it inspired him to pursue a career
developing better communication and knowledge tools (Barnes, : ; Naughton,
: ). In the Navy Engelbart served as an electronics technician, taking care of
radios, sound navigation ranging equipment (later known as sonar), teletype trans-
mission, and radio detecting and ranging equipment (radar). After reading Bush’s
article and returning from the Navy, Engelbart went back to school to finish his
degree in electrical engineering. He graduated in , took an engineering job at
the Ames Research Laboratory in Mountain View, California, and after a few years
got engaged and married. The Monday after his wedding, Engelbart realized that he
had achieved all of his life goals—got an education, a steady job, and was married.
Now, at the age of , he began to think about a new goal for his life (Barnes, :
). He later described his decision-making process as follows:

I dismissed money as a goal fairly early in the decision process. The way I grew up, if you had
enough money to get by, that was okay; I never knew anybody who was rich. But by , it
looked to me like the world was changing so fast, and our problems were getting so much big-
ger, that I decided to look for a goal in life that would have the most payoff to mankind.
(Engelbart, quoted in Barnes, : )

Engelbart’s experience with radar led him to think of interactive computing as a 
way to implement Bush’s memex. Although Engelbart had never worked with 
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a computer, he had read about them in books. He understood that if computers
could show information on punched cards and paper, they could also write and
draw on display.

I had an image of sitting in front of a display and working with a computer interactively. I had
been a radio and radar technician during World War II, so I knew that any signals that came
out of a machine could drive any kind of hardware—they could drive whatever you wanted on
a display. But I really didn’t know how a computer worked. Still, I thought, ‘Boy! That’s just
great!’ The images of the different symbologies that you could employ, and other people 
sitting at workstations connected to the same complex, and working in a close, collaborative
way. (Engelbart, quoted in Barnes, : )

It took several years before Engelbart was able to implement his vision. First he quit
his job and went to the Graduate School of Electrical Engineering at the University
of California at Berkeley. At that time, digital computers were just emerging, and his
visions of interactive computing didn’t get much support. Engelbart decided to
change the focus of his research, and earned his Ph.D. in , along with half a
dozen patents for bistable gaseous digital devices. After leaving the university,
Engelbart accepted a job at the Stanford Research Institute (SRI). During his first
two years at SRI Engelbart worked with magnetic computer components, funda-
mental digital device phenomena, and miniaturization scaling potential. In the
process, he earned a dozen patents, and in  he had gained enough of a reputa-
tion to begin to pursue his own research interests. With support from SRI and a
grant from the US Air Force Office of Scientific Research, he started to work on a
paper that described his ideas on interactive computing (Barnes, : ).

Barnes describes Engelbart’s difficulties in setting up research in a new area:

At first, he tried to find an established discipline as a basis for the framework of his design. But
people in other disciplines, such as documentation and artificial intelligence, were not inter-
ested in his ideas. Finally, he discovered a RAND Corp. report written by J. L. Kennedy and 
G. H. Putt titled ‘Administration of Research in a Research Corporation’. The thesis of the
report argued that when a researcher starts an inter- or new-discipline project, the researcher
would encounter difficulties when approaching individuals in established disciplines. Each
discipline has its own unique conceptual framework that new members of the profession
begin to learn during the first year of professional school. If a conceptual framework did not
exist for a new-discipline research project, then an appropriate framework must be created.
After reading this report, Engelbart started developing his own unique conceptual framework
for designing interactive systems. (Barnes, : )

In  Engelbart finished his paper. It was titled ‘A Conceptual Framework for the
Augmentation of Man’s Intellect’. A condensed version was published the next year
as a chapter in a book, ‘Vistas in Information Handling’ (Engelbart, ).

Engelbart argued that human cultures had developed systems of spoken and
written language, tools and organizing methods which their members needed to
solve complex problems in their everyday life. Many of these were learned during
individual development, and were specific for each culture. According to Engelbart,
those tools and methods that humans used in their problem-solving processes
could be characterized as ‘augmentation means’. These augmentation means
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could, in turn, be categorized in four basic classes. Artefacts were physical objects
designed to provide for human comfort, the manipulation of things or materials,
and the manipulation of symbols. Language was the way people classified the pic-
ture of their world, and provided the symbols that were attached to concepts and
used in consciously manipulating the concepts, i.e. in thinking. Methodology com-
prised the methods, procedures, and strategies with which an individual organized
goal-centered problem-solving activity. Training consisted of the conditioning
needed for the individual to bring his or her skills to the point where they were
operationally effective for using the three augmentation means (Engelbart, ).

In this context, computers could be seen as one among many existing augmenta-
tion means. Computers, however, provided qualitatively new opportunities to 
combine humans and thinking tools. According to Engelbart, computer processes
could be developed to match human processes and this would result in a new
fourth stage in the development of human intellectual capabilities. The first stage,
according to Engelbart, was concept manipulation, the mental capability to use
conceptual abstractions of a particular situation and to ‘think’. The second stage
appeared when these concepts were represented in the human mind as abstract
symbols, and these symbols became the objects of thinking. The third stage
emerged when humans learned to externalize these symbols, and operate with
these externalized symbols, for example, by using graphical representations. The
tools used for external representation, however, were mainly based on current ways
of manipulating concepts and the present ways of thinking. Engelbart also noted
that the tools used in thinking influence the way we think. For example, the lan-
guage we use constrains the ways we see the world. As a result of these considera-
tions, Engelbart was convinced that new ways to manipulate symbols could lead to
new ways to think. To do this, computer processing and human thinking, however,
needed to be linked by interactive computing.

Licklider arranged funding for Engelbart in early , and requested that his
project be connected to the SDC time-sharing project in Santa Monica, California.
Later that year, an online link was set up between SRI’s minicomputer in Palo Alto
and Santa Monica. Although the funding from ARPA was enough to start the pro-
ject, Engelbart was still looking for more funding to get the implementation work
going. Robert Taylor, who was working at NASA headquarters, had met with
Engelbart a couple of months earlier, read his report, and gone out to seek funding
for Engelbart. His search proved successful and with ARPA and NASA funding
Engelbart was able to start to build a working model of his system (Barnes, : ).

Engelbart set up the Augmentation Research Center (ARC) at SRI. The primary
goal of the Center was to invent technologies that would support individual know-
ledge workers, and the secondary, collaboration within groups of knowledge work-
ers. Engelbart’s team developed a system called NLS (oNLine System), which
included features such as email, computer conferencing, graphical user interfaces
with multiple windows, hypertext, expanding and collapsing document outlines,
videoconferencing, and a mouse. The system was demonstrated in the ACM/
IEEE-CS Fall Joint Computer Conference in San Francisco in December .
The demonstration used a twenty-foot video screen, two microwave links between
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the conference location in San Francisco and SRI, thirty miles away, video cameras,
and real-time links between the SRI computer running NLS and Engelbart’s console
on the stage. By comparing these techniques with the prevailing technologies, it is
easy to understand that the demonstration created a lot of excitement. The com-
puter industry, however, was not interested in funding Engelbart’s work, as his con-
cepts were considered to be impractical. As Barnes notes:

Impressive as Engelbart’s demonstration was, the commercial computer establishment did
not think his vision of interactive computing was practical. They did not think it was realistic,
because the demonstration represented a paradigm shift from batch processing punched
cards to direct interaction. Despite the lack of support from the computer establishment, the
NLS project continued to develop at ARC with funding from ARPA. (Barnes, : )

. TIME-SHARING AND ON-LINE COMMUNITIES

The vision of interactive computing was closely related to the idea of time-sharing.
In practice, interactive use of computers meant that each user needed to use the
machine as if it were completely controlled by the user. As computers were
extremely expensive, the only way to give users the illusion of having their own
computers was to use an operating system that could switch between different
users so fast that everyone believed they were connected to the computer all the
time. Time-sharing was necessary to efficiently use the expensive computing
power, and it was even more necessary when the use was interactive.

In  MIT had started a project to develop a time-sharing system, CTSS. CTSS
was an experimental system that could connect four users (Corbató, Merwin-
Dagget, and Daley, ). Its follower, Project MAC, became the most influential
time-sharing project in the s (Lee, Fano, et al., ). In  Licklider and
Robert Fano, from MIT, travelled together from a computer conference. During the
train journey Licklider convinced Fano that MIT’s timesharing activities could be
expanded and transformed into a study on interactive computing. Over the next
weeks Fano prepared a proposal for an ARPA-funded project. According to the 
proposal:

Computer technology has been progressing by leaps and bounds over the last decade . . . On
the other hand, the development of techniques for exploiting computers in non-numerical
information processing, and as aids in research and in human problem solving and decision
making, has been relatively lagging. Specifically, computer systems . . . have not yet been
developed that are easily and economically accessible, and that are truly flexible and respon-
sive to individual needs, particularly the need for quick, direct response.

An ‘on-line’ mode of operation in which the individual scientist, problem solver, or decision
maker is tightly coupled with a computer system of very large memory and speed appears
attractive. It appears even more attractive as we envision the evolution of such a system to
provide ready communication with others through machine information retrieval, including
the development and use of open data files and public subroutines. On the other hand, in
order for any such system to be economically feasible, the machine’s memory and processing

THE MAKING OF THE INTERNET 



capacity must be shared simultaneously and independently by many on-line users in such a
way as to insure its continuous, efficient exploitation. General-purpose, independent, on-line
use of computers by a large number of people has not yet been achieved, but is appears fea-
sible on the basis of recent experiments with time-sharing of large machines. (Fano, )

The MAC system became available in the autumn of . After several months of
experience, its status was described in a progress report (David and Fano, ). The
report noted that the system is in use  hours a day, seven days a week. The total
number of user-hours was approximately  times the number of computer hours
used. The system was usually fully loaded during the day, with  on-line users, and
it was very seldom idle, even in the early morning hours. According to Fano and
David, enthusiasm, however, mixed with a great deal of frustration:

The system was very quickly accepted as a daily working tool, particularly by computer
specialists. This quick acceptance, however, was accompanied by the kind of impatience with
failures and shortcomings that is characteristic of customers of a public utility. The capacity of
the system is limited, and therefore users are often unable to login because the system is
already fully loaded. Furthermore, the system may not be in operation because of equipment
or programming failures, just at the time that one was planning to use it. In other words, 
the system is far from being as reliable and dependable as a utility should. (David and 
Fano, ).

As many of the users of the MAC were computer scientists, they often developed
their own solutions to common problems. The users could share files and programs
that they had developed for their own needs. Soon such sharing became so com-
mon that programmers started to design their programs with the explicit goal 
of making them easy for others to use. This was a radical departure from the 
traditional way of programming. Earlier programs had been solutions to unique
programming problems. Robert Fano discussed this surprising development in a
conference paper a couple of years later:

Some of the most interesting, yet imponderable results of current experimentation with time-
sharing systems concern their interaction with the community of users. There is little doubt
that this interaction is strong, but its character and the underlying reasons are still poorly
understood.

The most striking evidence is the growing extent to which system users build upon each
other’s work. Specifically, as mentioned before, more than half of the current system com-
mands in the Compatible Time-Sharing System at MIT were developed by system users rather
than by the system programmers responsible for the development and maintenance of the
system. Furthermore, as also mentioned before, the mechanism for linking to programs
owned by other people is very widely used. This is surprising since the tradition in the com-
puter field is that programs developed by one person are seldom used by anybody else . . . The
opposite phenomenon seems to be occurring with time-sharing systems. It is so easy to
exchange programs that many people do indeed invest the additional effort required to make
their work usable by others. (Fano, )

Fano further argued that a time-sharing system can quickly become a major com-
munity resource, and that its evolution and growth depend on the inherent cap-
abilities of the system as well as on the interests and goals of the members of the
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community. A system without a display, for example, could discourage develop-
ment of graphical applications, or the difficulty of several people to interact with
the same application could discourage some educational uses. Moreover, Fano
noted that after a system starts to develop in a particular direction, work in those
directions is preferred and accelerates the development in this direction. As a result,
‘the inherent characteristics of a time-sharing system may well have long-lasting
effects on the character, composition, and intellectual life of a community’.

. IPTO: TRANSLATING IDEAS INTO MONEY AND
TECHNOLOGY

Interactive computing, somewhat unintentionally, changed the way computers
were used and programmed. Time-sharing systems opened a new space for collab-
orative development of technology. In this new domain the benefits of program-
ming were multiplied and an economy of positive returns emerged. Someone,
however, had to make the first investment. Institutionally, it was ARPA. Today it may
be fair to say that ARPA’s Information Processing Techniques Office, IPTO, is histor-
ically one of the most successful technology policy initiatives. One of the great mys-
teries in the history of the Internet is this: how is it possible that one government
office played such an important role in transforming the world?

By , when Licklider left ARPA and its Information Processing Techniques
Office, the themes of interactive computing and on-line use of time-sharing sys-
tems were strongly ingrained in the projects funded by IPTO. When Licklider was
preparing to leave IPTO, he suggested that a young computer superstar, Ivan
Sutherland, should be nominated to head IPTO. Licklider had met Sutherland for
the first time during a conference on interactive graphics, sponsored by IPTO.
During the conference, Sutherland asked ‘the kind of question that indicated that
this unknown young fellow might have something interesting to say to this high-
powered assemblage’ (Norberg, : ). Licklider reorganized the next day’s pro-
gram to include a presentation from Sutherland, and the presentation was a great
success. When Sutherland became the director of IPTO he was  years old.
Although Licklider was unsure whether such a young person could measure up to
the job, the head of ARPA, Robert Sproull, argued that there should be no problem
if Sutherland really was as bright as he was said to be (Norberg, : ).

Sutherland attended Carnegie Mellon University and Caltech before receiving his
Ph.D. in electrical engineering from MIT in . In MIT he worked with Claude
Shannon, Wesley Clark, and Marvin Minsky. While working at Lincoln Laboratories,
Sutherland developed the first interactive graphics system, Sketchpad.

One of Licklider’s principles for funding projects had been that good research
results require committed and competent researchers. Sutherland adopted the
same approach:

. . . the caliber of people that you want to do research at that level are people who have 
ideas that you can either back or not, but they are quite difficult to influence. In the research



business, the researchers themselves, I think, know what is important. What they will work on
is what they think is interesting and important . . . Good research comes from the researchers
themselves rather than from outside. (Sutherland, ; quoted in Norberg, : )

Licklider’s emphasis on interactive computing continued when Robert Taylor left
NASA to join IPTO in . Taylor and Licklider had met when Taylor was invited to
be the NASA representative in an informal committee organized by Licklider. The
committee brought together government program officers from the different agen-
cies that supported computer-related research. Taylor had done work with
acoustics, as a systems design engineer, and with human-machine systems
research, and he had been greatly impressed by Vannevar Bush’s article on memex,
as well as Licklider’s ideas on human–machine symbiosis (Norberg, : ;
Naughton, : –).

When Taylor arrived at IPTO he served eighteen months as a deputy director,
sharing work with Sutherland. When Sutherland left and Taylor became the direc-
tor, he started to develop a program on computer networking. Already in ,
Taylor had funded an experiment to test the possibility of using long-distance tele-
phone lines to carry bits. One node was at Lincoln Laboratory, on the East Coast,
and the other at SDC, in Santa Monica, California. As both places were funded by
IPTO, it was easy for Taylor to convince people at both ends that an experiment
would be useful. The results showed that cross-continental connections could work
in principle, but that noise in telephone lines made it difficult to build practical sys-
tems (Naughton, : –).

After becoming the director of IPTO, Taylor was struck by the fact that he had sep-
arate terminals to all three laboratories where IPTO supported time-sharing pro-
jects. One console was used to connect to the MIT system, another to SDC at Santa
Monica, and a third one to University of California at Berkeley:

Three different terminals. I had them because I could go up to any one of them and log in and
then be connected to the community of people in each one of these three places … Once you
saw that there were these three different terminals to these three different places the obvious
question that would come to anyone’s mind: why don’t we just have a network such that we
have one terminal and we can go anywhere we want. (Taylor, quoted in Naughton, : )

As the IPTO-funded researchers were asking for increasing amounts of computer
power for their projects, it was clear that networking could save a lot of money. With
a network that could connect all research sites, the machines could be shared by
the researchers. If a common computer network could be developed, the different,
and incompatible, machines could be made available for all IPTO-funded research 
projects.

In February  Taylor went to the office of ARPA’s director, Charles Herzfeld, and
told him about his idea. Later Taylor recalled:

And he liked it right away and after about twenty minutes he took a million dollars out of
someone else’s budget (I don’t know whose to this day) and put it in my budget and said,
‘Great. Get started!’ (Quoted in Naughton, : )
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.. The Arpanet

Taylor needed a program manager for his network project, and he had an obvious
candidate, Lawrence Roberts. Roberts had been working at MIT’s Computer Center
while a student. When Lincoln Laboratory’s TX-O computer, one of the first transist-
orized computers in the world, was moved to MIT’s Computer Center, Roberts
started to write programs for it. Soon he worked as a staff associate at Lincoln
Laboratory, working with its TX- computer. Roberts wrote parts of its operating sys-
tem and compilers for various programming languages. He also did a Master’s degree
on data compression and a Ph.D. on computer perception of three-dimensional
solids. At some point in time, he wrote a handwriting-recognition program based on
neural networks (Norberg, : ; Naughton, : ).

As a result of his programming activities, Roberts had become one of the best
experts in the TX- time-sharing system. When Wesley Clark and Bill Fabian, who
had been responsible for the machine, left Lincoln Laboratory after a dispute about
whether they were allowed to bring a cat on to the premises, Roberts found himself
in charge of the project (Naughton, : ).

The actual details of Roberts’s early interest in computer networks are somewhat
unclear. He has said that he first started to be interested in the idea of connecting
computers in , when he was invited to join a conference on the future of com-
puting. The conference was held in Homestead, Virginia, and hosted by the Air
Force. Many of the ARPA-funded computer researchers were there, and the incom-
patibility of computers and programs was a topic that came up frequently.
According to Roberts:

So, what I concluded was that we had to do something about communications, and that really,
the idea of the galactic network that Lick talked about, probably more than anybody, was
something that we had to start seriously thinking about. So in a way networking grew out of
Lick’s talking about that, although Lick himself could not make anything happen because it
was too early when he talked about it. But he did convince me it was important. (Roberts,
quoted in Naughton, : )

The ARPANET project, in itself, was something that IPTO had not done before. 
The usual mode of funding in ARPA was to give contracts for research, and not to
manage the projects. Taylor, however, wanted to link the different IPTO-funded
computer sites, and it was natural that this kind of IPTO-wide project should be
coordinated and managed by IPTO. This meant that IPTO was not only deciding 
how much money to give to its contractors, but it actually had to manage the 

 Naughton notes that Roberts’s work on neural networks was ‘way ahead of its time’. Naughton
probably refers to the boom in neural networks that started in the late s. In the early s neu-
ral networks were, however, quite well known. The first neural network models were developed by
Nicolas Rahsevky, in the early s, and they became popular after Rashevsky’s student Walter Pitts
developed a model of logical neural networks in , together with Warren McCulloch. Several
computer-based neural network models were developed in the 1950s, and they became a hot topic
in , after Frank Rosenblatt published his book on perceptrons. The different models are
described, for example, in Olmstedt ().



development project. Taylor, therefore, needed a project manager who could make
this happen. After trying to hire Roberts for several months, he finally asked help
from the Director of ARPA, who called the Director of Lincoln Laboratory. Soon after
the phone call Roberts accepted the invitation to come to IPTO to head the network
project (Naughton, : –).

Roberts joined ARPA in late . His first plan for the network was based on con-
necting time-sharing computers at the research sites using dial-up telephone lines.
The computers would act as the nodes of the network, transmitting and switching
messages from one machine to another. Roberts presented his ideas at a meeting
for the principal investigators of the IPTO-funded sites, in April . The site rep-
resentatives, however, were not excited about the possibility of building a network.
One reason was that if the time-sharing computers were to act as network nodes,
each node had to run programs that made this possible. It was not obvious why
such extra work and use of expensive computer resources would be useful, espe-
cially from the point of view of principal investigators who already had computers
available. Another problem was that the IPTO plan assumed a complex network of
connections between the computers.

The latter problem was solved by Wesley Clark, the principal investigator from
Washington University in St Louis. Based on the discussions at the meeting, he real-
ized that the complexity of the networking problem could be reduced by introduc-
ing separate interface computers. If every computer had to be able to communicate
with every other computer in the network, which were all different, the switching
program in hosts would become very complex. If, however, a separate interface
machine could be built, a simple network could be designed. New hosts could be
connected to the interface machines in a well-defined way, without changing pro-
gram code in other hosts. This, in practice, meant that the hard work of designing
and building the network could be done independently, without much resources
from the IPTO-funded laboratories. The managers of the time-sharing host
machines simply had to program their machines so that they could talk with the
standardized interface processors.

Wesley Clark proposed his idea to Roberts immediately after the conference.
Roberts and Taylor accepted it. The interface computer acquired the name
Interface Message Processor (IMP) in a report which Roberts wrote and distributed
among the Principal Investigators.

This idea of building a separate network connected to host computers through
the IMPs was a critical factor in the successful implementation of ARPANET. It
enabled IPTO to contract the design and implementation of the network as an inde-
pendent task, without requiring active collaboration among all host sites. By chang-
ing the architecture of the planned system, IPTO was able to set up and fund a new
developer community and limit the change in the potential user communities.

In November  Roberts organized a meeting with the IPTO research contrac-
tors to discuss the design of the network. This network working group consisted of
people from the University of California Santa Barbara, SRI, the University of Utah,
and the University of California Los Angeles. Paul Baran was recruited to advise the
group. The group’s objective was to give criteria and procedures for testing the
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acceptability of the network and its configuration. Over the next seven months the
group circulated a series of working notes and draft specifications. Roberts also
awarded a four-month research contract to SRI in December  for a study on the
design of the network. In June  Roberts submitted the plan his group had
worked out to ARPA director Herzfeld, and the next month he received an initial
development budget of $. million for the project. IPTO issued a request for pro-
posals based on the group’s specifications in August  (O Neill, : ; Abbate,
: ).

The request for proposals was sent to potential contractors. The first responses
came from IBM and the Control Data Corporation, both of whom declined to bid
on the ground that the network could never be cost effective (Naughton, : ).

The successful bidder was BBN. It had the best proposal partly because it started
writing it several months earlier than other bidders. Several key persons at BBN had
been working with Roberts at MIT and Lincoln Laboratory and were aware of 
his networking interests. Robert Kahn, who came to BBN from MIT’s Research
Laboratory of Electronics where Roberts did his Ph.D., had written a letter to
Roberts in early  suggesting that computer networking could be of interest 
to IPTO (Norberg, : ). Roberts invited Kahn to a meeting in Washington to 
discuss the network ideas. Kahn recalled later:

I found out at that point that Roberts was actually interested in creating this net. Having been
a mathematician or theoretician, it really had not occurred to me at that point that I might
ever get involved in something that could become real! (Quoted in Norberg : )

According to Naughton, based on this knowledge of IPTO’s plans, BBN decided to
invest $, on preliminary design work in the hope that it would land them the
contract:

It turned out to be a terrific bet. By the time the ARPA Request for Proposals eventually arrived
in August, BBN was already up to speed on the subject. In thirty frantic days, Heart, Kahn and
their colleagues produced a -page bid which was by far the most detailed proposal sub-
mitted to the Agency. It was, in effect, a blueprint for the Net. The award of the contract was a
foregone conclusion. All that remained was to build the thing. (Naughton, : )

Without such a lead time, it might have been more probable that the contract would
have been given to a large defence contractor. Indeed, Naughton (: ) notes
that the ‘general expectation was the contract would go to Raytheon, a major
Boston defense contractor, and if ARPA had been a conventional Pentagon agency
it probably would have gone that way’. The normal procedure in ARPA was to make
contracts directly without competitive bidding. Competitive bidding, combined
with the preparatory work at BBN and its tight links with the IPTO design work,
made it relatively easy for BBN to get the contract, even though at that time it was a
relatively small consulting company whose earlier reputation was mainly in
acoustics research. BBN also had close ties to the Honeywell Corporation, whose 
H- minicomputer was a strong candidate for the IMP hardware, and BBN 
and Honeywell had already decided that they would collaborate in the event 
that BBN’s bid was accepted (Abbate, : ). The close personal links between
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BBN researchers and Roberts also meant that Roberts had a good understanding of
the skills available at BBN, as well as the interests of BBN researchers.

The contract was awarded in December , and the work started in January
. According to the contract the first IMP was to be delivered to Leonard
Kleinrock’s laboratory at UCLA in September, and the next nodes at Santa Barbara,
Palo Alto, Utah, by the end of the year. BBN kept to the schedule.

When the first four nodes were connected, Roberts planned to extend the net-
work to fifteen computer sites funded by IPTO, and then to additional ARPA
research sites, and possibly to military sites. Roberts contracted a newly formed
Network Analysis Corporation (NAC) to help with planning. NAC was headed by
Howard Frank. Frank was known to Kleinrock through their common lecturing at
UC Berkeley, and they shared interests in modelling networks. Frank had been
doing work with optimizing the layout of oil pipelines, and had formed NAC to pro-
vide services for businesses that wanted to build complex systems. Kleinrock, in
turn, had introduced Frank to Roberts (Abbate, : ).

As the network started to expand, it also became increasingly important to man-
age the day-to-day operations of the network. According to the BBN contract, BBN
was responsible for keeping the IMP network running. The BBN team soon found
out that the operation of the network was a major effort in itself. When BBN’s own
node became connected to the network in , IPTO funded BBN to set up the
Network Control Center (NCC) to manage the operation of the network (Abbate,
: –; O Neill, : ).

The growing network also meant that there was an increasing need to share 
information about developments in the project. For this purpose IPTO awarded a
contract to SRI to set up the Network Information Center (NIC). SRI was selected
partly because Engelbart’s group was located there, developing systems for infor-
mation sharing.



CHAPTER

5
Analysis of the Early Phase of 
Internet Development

When the year  turned to a new decade, there were four computer nodes in a
network that later became known as the Internet. Just three months earlier the first
two nodes of the ARPANET connected for the first time. Could anyone, at that time,
have known whether this network would still exist at the end of the new decade? Or
would it just remain one of the unfulfilled dreams of computer networking?

As the previous chapter showed, there were four loci of concentrated innovation,
which provided the platform for growth. The first of these was formed around the
idea of interactive computing and the augmentation of human intellect. Its origin
was in a theoretical view of humans as information processors and self-regulating
cybernetic systems, combined with new technologies of radar displays, storages that
could record massive amounts of documents, and time-sharing digital computers.
Vannevar Bush gave this movement legitimacy and inspiration, J. C. R. Licklider
funded it, and Douglas Engelbart gave it a material form. The vision was to build
machines that could help individuals and communities to think and make decisions
in an increasingly complex world.

The second locus of innovation was located at RAND. Paul Baran and his col-
leagues did not want to increase human intelligence. They had a more modest goal
of trying to avoid big mistakes that could happen if military command and control
were destroyed. Whereas Bush, Licklider, and Engelbart were interested in thinking,
Baran’s keyword was communication.

The third locus of innovation was at the National Physical Laboratory in the UK.
Donald Davies was envisioning a network that could be used for business and
pleasure. He believed that time-sharing computers would make ordinary citizens
computer users, and that in the process new services and industries would be 
created.

The fourth locus was the ARPANET project. Its underlying vision was Licklider’s
Galactic Computer Network and a belief in augmenting human capabilities with
computers. The ARPANET vision also benefited from experiences in time-sharing
computing, which indicated that programmers could form collaborative commun-
ities when a computer was used to share information and programs. Its key 



rationale, however, was the belief that networking time-shared computers could
lead to great savings in resource use.

With the benefit of hindsight these four loci of innovation could be character-
ized in the following way. Engelbart’s system was a tool for knowledge workers.
Baran developed distributed communication. Davies’s system was infrastruc-
ture for network society. ARPANET was trying to develop a system for distributed 
computation.

5.1 TECHNOLOGICAL FRAMES

To understand innovation in computer networking, it is useful to make a short digres-
sion to the history of plastics. Based on his studies of the history of technology,
including plastics, Bijker argued that the evolution of technology can be described as
the evolution of technological frames. A technological frame, according to Bijker
(; ), is not something that is located in an individual’s mind, institutions, or
technological systems. Instead, technological frames apply to the interaction of vari-
ous actors. A given technological frame is linked to a technology and the way its
developers understand it. But the locus of technology development is not simply in
the developer community: it is also linked to user communities and their practices.

According to Bijker, technological frames include current theories, goals, problem-
solving strategies, key problems, tacit knowledge, design methods, testing proced-
ures, exemplary artifacts, and practices of use (Bijker, : ; : –). A given
frame brings with it a system of practitioners and practices that provide the context
where a new technology is interpreted and applied. Bijker, for example, showed that
much of the early work in plastics in the nineteenth century occurred in the frames
of the dye chemistry and by entrepreneurs who were looking for substitutes for
ivory. The success of Leo Baekeland in developing an industry around Bakelite
depended critically on his ability to work between separate technological frames, in
effect redefining what plastics were about. Furthermore, his success also depended
on his skill in recruiting key members of the competing frames into his own new
frame, and on his skill in rapidly expanding and redefining it by linking it with such
newly emerging industries as automobile and radio manufacturing.

Bijker argued that Baekeland’s success was possible because people can have 
different degrees of inclusion in technological frames. Technology is interpreted in
different ways through different frames, and those who are at the centre of a frame
are relatively tightly bound by a network of practices, theories, goals, and interpreta-
tions. Although Baekeland had a relatively low inclusion in the technological frame
of plastics, he had a high inclusion in the frame of electrochemical engineering.
When his early attempts to solve problems of plastic-making failed, he switched 
to a problem-solving strategy that was used in the electrochemical frame. Many
other inventors were trying to solve the problems of plastic manufacturing. They
were, however, looking for the solution from within the existing frame of plastic
technology, and failed.

 THE EARLY PHASE OF INTERNET DEVELOPMENT



As we saw above, computer networking had several underlying technological
frames, which had become relatively stable around the mid-s. At that point,
computer networks were imaginary. They did not exist as material artefacts or 
systems. The ‘product’ was mental and its users were its developers.

Packet-switching networks were first implemented at the end of the s, and
the first internetworks were designed a couple of years later. By looking backwards
from that point in time, we can ask: how did we get there? Where do we find the loci
of innovation that made the history of the Internet? Even a simplified picture looks
quite complex, as can be seen from Fig. ..

As we are used to the linear model of innovation, Fig. . is easily read as a model
of causal links. Indeed, it is interesting to see how difficult it is to find a pictorial 
representation that locates events in time and does not suggest causality. When we
position events in time, it becomes almost impossible to do it in a way that does not
imply that ‘events follow one another’ and that one event ‘leads to another’. Fig. .,
therefore, looks ‘wrong’. It suggests that, for example, Paul Baran’s work at RAND
‘led’ to the emergence of the Internet. The correct interpretation, of course, is that
in the evolution of the Internet, Baran’s work and the resources it created were ret-
rospectively appropriated at several points of time, including the early phase of the
ARPANET design. The linear model is deeply ingrained into our way of thinking—
and even the way we draw pictures—and therefore it looks natural.

The different loci of innovation, and the resources they created, however, did not
determine the unfolding of events. Instead, they facilitated development. If Baran’s
work had not been available, all evidence indicates that other resources could 
have been used. For example, Davies’s work at NPL would have provided the basic
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Fig. .. Some key loci of innovation in the evolution of the Internet, –

 As Eliade () pointed out, modern Western culture organizes its event historically. This 
historicity implies causality and progress.



concepts for packet-switching, independent of the work at RAND. Moreover, the
different innovation loci depicted did not facilitate only the evolution of the
Internet. Although they produced resources that were important in shaping 
the evolution of the Internet, these same resources were also appropriated for many
other uses. For example, Engelbart’s NLS system was used to manage ARPANET
development documentation but it also was appropriated for distributed collabora-
tion and hypermedia systems, and, for example, as a prototype for graphical direct-
manipulation user interfaces.

To simplify this picture, and to summarize the discussion of the early history of
the Internet, we can define four technological frames that played key roles in the
development of ARPANET. The Internet emerged from ARPANET by adding to these
frames the idea that several networks could be connected to form a network of net-
works. The motivation for this, however, in many ways originated from the original
ARPANET frames.

I shall label these four frames as ‘augmentation systems’, ‘on-line communities’,
‘communication networks’, and ‘electronic services’.

.. The Augmentation Systems Frame

Historically, the oldest frame is the augmentation systems frame. Its key idea was
that human capabilities could be enhanced by tools, and that such tools could also
support mental work. This frame was conceptually developed in a series of Macy
Foundation conferences, and by visionary scientists, in the s and s. As was
noted before, its key assumptions were recorded in Vannevar Bush’s article ‘As
We May Think’, published in , Norbert Wiener’s Cybernetics, published in ,
in J. C. R. Licklider’s ‘Man-Computer Symbiosis’, published in , and in Douglas
Engelbart’s ‘A Conceptual Framework for the Augmentation of Man’s Intellect’,
published in . In  its locus of activity was in SRI’s Augmentation Research
Center, and its reference implementation was the NLS system. This frame is depicted
in Table ..

The augmentation systems frame was a combinatorial frame. A previous practice
that most closely implemented its ideas was the SAGE air-defence system, which
connected time-sharing computers, radars, telephone and radio links, and humans
into an early-warning system. Radar was also an important predecessor, as it
showed how graphical displays could be used for interactive and cognitive use of
technology. In the early phase of the development of this frame, microfilm techno-
logy was an important reference technology, as it showed how large amounts of
documents could be stored effectively, possibly in a form that could be mechani-
cally manipulated.
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 In the US, the origins of this frame could also be found in the cognitive theories of pragmatists,
including James, Dewey, and Mead.



.. The On-line Communities Frame

The second frame was the on-line communities frame. It grew out of the motive to
efficiently utilize expensive computer resources. It therefore became possible only
after computers existed and were regularly used. Early on, it was noted that when
several users were connected to the same computer, the users formed a community
where work and its results could be shared. Although it was at first expected that the
key benefit of building time-sharing operating systems and on-line terminals was
more efficient use of computers, it soon appeared that such a community of users
became more than the sum of its computer resources and individual members. The
on-line communities frame is depicted in Table ..

Several observations can be made about Table .. First, this frame did not have
any clear theoretical tradition. Instead of a well-developed theory, it was based on
a common-sense economic conception that effective use of an expensive and crit-
ical resource would be useful. The belief in synergy was at least partially based on
the experiences of the system designers: the use of the system ‘surprised’ them, and
therefore was ‘more’ than what was originally intended and designed. For example,
as was pointed out above, much of the operating system programs for the early
time-sharing systems were developed by their users, independent of the plans of
the system mangers. This potential for positive surprises was formulated as the idea
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Table .. The Augmentation Frame, 

Frame attributes Frame content

Theory Cybernetics
Techniques Interactive modelling, interactive graphics, information storage

and retrieval
Use Information and knowledge management, decision support,

collaboration support
Thought leaders Vannevar Bush, Ross Ashby, Jay Forrester, Oliver Selfridge,

Douglas Engelbart, J. C. R. Licklider
Sub-frames Microfilm, radar, neural information processing, SAGE
Locus of activity,  SRI Augmentation Research Center

Table .. The on-line communities frame, 

Frame attributes Frame content

Theory —
Techniques Time-sharing operating systems, on-line terminals, file sharing,

email within a single time-sharing computer
Use Effective use of large and expensive computers, ‘synergy’
Thought leaders J. C. R. Licklider, Douglas Engelbart, Fernando Corbató, Robert

Fano, Robert Taylor
Sub-frames SAGE, Augmentation systems
Locus of activity,  MIT, SRI, ARPA/IPTO



that by putting large enough number of users together, synergistic benefits would
probably be materialized.

Although the point of origin for the on-line community frame was in the time-
shared operating system development community, it also had close links to the aug-
mentation systems frame. Indeed, the first real on-line community system was built
by Engelbart’s team at SRI’s Augmentation Research Center. One could view the aug-
mentation systems framework as linked and partially embedded into the on-line
community frame. The on-line community frame, in effect, had two sides: the ‘hard’
side focused on distributed computing and efficient use of technology; the ‘soft’ side
focused on human collaboration and effective use of skills, knowledge, and work.
This linking occurred to an important extent through ARPA’s Information Processing
Technologies Office (IPTO), which was both funding equipment purchases and
development, but also looking for innovative uses of new technology.

As was noted before, IPTO was formed by J. C. R. Licklider after he joined ARPA 
in . Licklider effectively implemented his vision of interactive computing 
by funding both Engelbart’s work on augmentation systems, and most of the
research on time-sharing systems in the US. In effect, Licklider ‘modularized’ his
vision of interactive computing and outsourced its modules to people who were
interested in implementing parts of it. Licklider, therefore, emerges as one of the
main ‘authors’ of modern computing and the Internet. His impact was increased and
made possible by the fact that several of the subsequent directors of the IPTO were
socialized to Licklider’s vision. IPTO therefore continued to have a major influence
on the development of this vision for over a decade (O’Neill, ; Norberg, ).

Licklider, himself, combined several technological frames in his personal vision.
He was involved with the cybernetics tradition, psychology of perception, math-
ematical modelling of acoustic phenomena, and also had experience in computer
programming. The interest in the time-sharing use of computers was to a large
extent generated by the perceived need for interactive computer graphics pro-
gramming, and this, in turn, was seen as a way to implement the augmentation sys-
tems frame. A more technology-oriented time-sharing frame, however, formed
early on around the developers and users of time-sharing operating systems. There
were several members in this community who did not explicitly subscribe to the
augmentation systems frame. Much of the work around the MIT’s MAC project, for
example, was focused on developing systems that tried to automate cognitive
processes, instead of supporting them.

The time-sharing frame, in turn, expanded early on to the on-line communities
frame. The use of time-sharing systems showed that the practice was not only about
technology, but also about human users. In a sense, there was a spin-off from the
augmentation frame to a time-sharing frame, which then rapidly expanded to the
on-line community frame.

.. The Communication Networks Frame

The third technological frame was about communication networks. It originated in
military command and control practice, with the goal of developing communication
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systems that could survive nuclear attacks. It was also developed in parallel with the
information theory framework. The first line developed architectures and designs
for reliable digital computer-based communication networks, and the latter
focused on mathematical modelling of information flow in digital networks. These
two lines of development were relatively independent until around .

The communication networks frame can be viewed as a combinatory frame,
although important parts of it were spin-offs from existing traditions. Paul Baran,
working for RAND, developed packet-switching computer networks as a solution 
to a problem that was easy to understand and much discussed at the beginning 
of the s. Baran was designing a communication system that could work even
after a nuclear attack destroyed much of the communication network (Baran, :
vols. I, XI). Baran’s problem, however, is a clear example of a presumptive anomaly
(Constant, ). Such a presumptive anomaly emerges when theory predicts that a
technological system may fail under future conditions. At the time he was develop-
ing his system, communication networks worked fine. There were no atom bombs
falling from the sky. Baran was unable to stabilize his frame, as many telecommu-
nication experts rejected the assumptions that were at the core of Baran’s design.
Baran’s work was picked up later, when it was rediscovered by the NPL researchers
in the U.K. who were trying to implement computer networks. Soon after that, in
, Baran’s frame was embedded in the on-line community frame. Similarly, 
theoretical modeling work that had been done at MIT was embedded in the on-
line community frame, which at that time became the core frame for ARPANET 
developers.

.. Electronic Services Frame

The fourth frame is the electronic services frame. It emerged in a few months, in
–, when Paul Davies, working at the National Physical Laboratory in the UK,
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Table .. The communication networks frame, 1965

Frame attributes Frame content

Theory Queue theory, traffic modelling, information theory
Techniques Digitalization, message switching, radio technology
Use Reliable communication
Thought leaders Paul Baran, Leonard Kleinrock
Sub-frames Telephony, telegraphy, telemetry
Locus of activity,  RAND, MIT

 Indeed, Bijker’s () analysis of presumptive anomalies would indicate that technological
frames are difficult to stabilize around the threat of nuclear bombs. It is interesting to note that for
some reason this non-existent nuclear war has often successfully been used to form communities of
technological practice. Unrealized opportunities and unrealized threats seem to lead to different
types of presumptive anomalies, especially in the case of the threat of war, which probably in many
ways is built into social structures, value systems, power relations, and linguistic metaphors.



realized that time-sharing computing could provide a platform for a new economy
and society. Davies first started from the problem of developing a network that
could be used to connect remote users to a time-sharing computer, but he quickly
noted that such a network could enable many novel services. In Davies’s vision,
computer networks could be used as an infrastructure that would provide services
for large populations of big cities, regions, for the whole country, and which could
eventually develop into a global network. To implement this vision, Davies
designed a digital packet-switching network that was in many ways similar to the
one developed by Paul Baran at RAND.

An interesting characteristic of the electronic services frame was that it was
linked to the frame of technology policy. Davies was interested in developing the
UK computer industry in the new promising area of computer networking. His
frame therefore naturally evolved into social and economic directions, and the
technical design was only a way to implement the frame in practice. Due to the fact
that the communication networks were the monopoly of the General Post Office in
the UK, Davies ended up in a similar situation to Baran. A new economy and net-
work society were presumptive anomalies from the point of view of Post Office
managers. Indeed, we could call Davies’s vision a presumptive opportunity. As the
system envisioned by Davies did not provide a solution to any obvious existing
problem, it was difficult to mobilize resources for its implementation. Davies there-
fore early on redefined his goals, and eventually implemented a system that closely
resembles modern local area networks. In other words, Davies started from the
electronic services frame but eventually found himself in the on-line community
frame.

The interactions between the early frames were complex, and the complexity of
these linkages increased rapidly after . The electronic services frame did not
stabilize in the s. It was picked up a couple of decades later, largely because
technological infrastructure and practice made it relevant again. The commun-
ications network frame became embedded both in the ARPANET community and, 
in the s, in the telecommunications community. The on-line community frame
became a central frame for the developers of ARPANET and other research-oriented
computer networks, such as Merit, Cyclades, and, later USENET, FIDONET, and
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Table .. The electronic services frame, 

Frame attributes Frame content

Theory —
Techniques Time-sharing operating systems, remote terminals,

digitalization, message-switching
Use Electronic access to services and entertainment
Thought leaders Paul Davies
Sub-frames Telephony, telegraphy, telemetry, time-sharing systems,

technology policy
Locus of activity,  National Physical Laboratory, UK



BITNET. In the early s the Internet and World Wide Web integrated some
aspects of all these frames, and provided a new platform that accelerated the pace
of development further.

. RESOURCE MOBILITY IN THE EARLY PHASES OF 
INTERNET HISTORY

For an innovator, needs, opportunities, and problems mutually construct each
other, and provide the context where the innovator’s activity makes sense. The
problems that have to be worked on follow naturally from the way opportunities
and needs align. For Baran, building the net meant finding ways to route the traffic
so that it could get from one point to another securely, even under the most severe
conditions. For Engelbart the net meant collaboration among knowledge workers,
and the problem of developing tools for the various tasks that this work required.
For Davies the problem was simply to get the system and its services working so
that it could be rolled out to the rest of the nation and across the globe. For ARPA
the problem was to get the ARPANET and its Interface Message Processors imple-
mented, and to get the host computers to communicate with each other.

The context of innovation helps us understand why innovation is happening, and
what makes its actors move. To actually make innovation happen, resources are also
needed, however. Raw materials, tools, and work need to be organized to give a
shape to the emerging technology that embeds the innovation.

It is useful to divide resources into two different kinds. Some resources are ‘sticky’.
Their accumulation often takes a long time, and they are not easy to reconfigure.
Other resources, in contrast, are ‘mobile’. They can easily be moved to where they
are needed.

Human competence is often surprisingly sticky. It is relatively easy to move people
from one place to another, but competences don’t move so easily. Competence 
is very much linked to a configuration of tools, layouts of buildings, information 
networks, organizational decision-making systems, reputation, trust, social net-
works, and the way we have learned to construct the world as a set of problems and
share it with our colleagues. In other words, competence is often grounded in com-
munities of practice that produce and reproduce competences.

The foundation of competences, therefore, evolves according to the dynamic of
social learning. Competence is also often appropriated outside the community
where it is embedded. Combinatorial capabilities can be built at the interstices of
existing communities. A member of a community can stand for the competences of
the community, and competences can be configured in temporary groups.

When we take the underlying communities for granted, it may seem that human
competence is highly mobile and that we can easily form temporary groups with
any required sets of competences. Mobility of resources, however, often occurs in 
a context where much of the underlying social interaction has become invisible and
institutionalized.
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One important form of institutionalization is what we could call social and tech-
nical infrastructure. When we accumulate infrastructure for competences, human
skill becomes increasingly mobile. For example, if two research laboratories have
similar operating procedures, and use similar tools and conceptualization of the
world, a researcher can move relatively easily from one laboratory to another with-
out becoming incompetent. By institutionalizing and standardizing some aspects
of competence, we can move some components of competence more easily. Tech-
nology, itself, can be understood as a way to sediment aspects of competent human
activity into material artefacts.

From this perspective we can ask what resources were used in the different loci of
innovation discussed above, and what competences were moved into new configu-
rations to overcome perceived problems.

In the case of RAND, it seems that not much moved. Baran’s distributed message
block networks emerged to a large extent from his own initiative. Baran used his
earlier experiences in telemetry and translated his interests so that they fitted with
the legitimate goals of RAND. He learned about the opportunity to build survivable
networks from earlier store-and-forward networks, and used slack resources and
time at airports to sketch a solution to the problem he perceived. But, although
Baran didn’t move a lot of resources, his work made sense only as a part in a much
larger picture. In this picture many pieces moved. Imaginary transcontinental 
missiles fired across the sky, satellites were shot toward stationary orbits, and some-
where machines loaded nuclear bombs into heavy airplanes and submarines.
Without moving much, Baran moved to the centre of this picture.

In the case of Engelbart, resources started to move at the beginning of the s.
The infrastructure was provided by SRI, and on top of this infrastructure Engelbart
and his team started to build new technology. The funding came from government
sources, mainly from ARPA. The system that Engelbart’s Augmentation Research
Center produced was interesting in itself, and attracted resources, including com-
petent people, for over a decade. Engelbart borrowed and adapted technologies
that had been developed for other purposes, making technology do something its
original developers didn’t intend it to do. Using any criteria for innovativeness,
Engelbart’s team was extremely innovative. Old technology was modified and
adapted to new uses, missing technologies were designed, implemented, and com-
bined with existing systems, and the basic purpose of the system under develop-
ment was continuously redefined. The problem which Engelbart attacked was so
generic that almost anything could be part of the solution. Every improvement was
an improvement, and all available resources moved in a continuous recombination
and reconfiguration. This, however, was possible only because the environment for
this innovative activity was stable. SRI provided physical and organizational infra-
structure, and IPTO moved money so that the project stayed alive.

The NPL provided similar infrastructure for Davies’s team in the UK. His own
position as the superintendent of the computer division gave Davies both legit-
imacy and opportunity to reallocate resources to get the project started. This bene-
ficial position, however, was also probably the reason why the NPL network never
extended outside its place of origin. Davies was able to move resources, but only
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those resources that were under his own control. The NPL team had many years of
experience and competence. The main problem was to put together those pieces of
technology that were to provide the services for the network. Due to budget con-
straints, the resources were limited and development was slow. Within the limits,
the NPL team could, however, make progress and feel that the problem was being
addressed. At the same time it became very difficult to move the results out of NPL.
In effect, the NPL resources became detached from those resource allocation mech-
anisms that would have been required to make Davies’s original vision reality in the
outside world. To make that happen, a new locus of innovation should have
emerged outside the NPL, moving the ideas and results of NPL work to wider use.

In a sense, this was exactly what happened. The ideas developed at NPL had a
clear impact both on the early phases of ARPANET and on the design of its Interface
Message Processors. NPL also played an important role in the development of
European computer networks and made major contributions in creating packet-
switching telecommunications infrastructure.

The ARPANET project, however, became a locus of innovation where technical
visions were combined with a unique pool of resources. IPTO had already funded
host computers that were in use in what were to be the ARPANET sites. The comput-
ers were expensive and heavy, and became core artefacts around which new compe-
tences and communities could form. After this infrastructure was built, IPTO was
able to move competent people in these sites to think about the problems of the net-
work. In this process the problems became understood from a collective and inter-
organizational perspective. As a result, the network was constituted as a network of
sites, users, and uses from the beginning. IPTO used its funds and knowledge of
available research competences to outsource pieces of the complete puzzle. This
effective division of labour made fast progress possible, at the same time building a
social network that became the channel for the diffusion of the emerging technology.

The ARPANET program differed from the other network projects in that it had
much more money and resources available than the other projects. It did, however,
have another crucial difference as well. The ARPANET program very early on
evolved into a network of innovation loci. It relied on a distributed innovation
process, loosely connected by sharing technological artefacts, documents, and
overlapping communities. This distributed architecture became one of its key char-
acteristics already before the first nodes were connected to the net, and it became
even more pronounced as new nodes started to be connected. Indeed this multi-
focal process of innovation seems to be the key to the success of ARPANET and the
Internet.

At the beginning of the s, there was, however, no guarantee that ARPANET
would became a successful project. A successful implementation of a technical sys-
tem rarely means that the system will be taken into use. Moreover, ARPANET was in
many ways an unsuccessful system in . Although it did move digital packets
from one computer to another with some reliability, there was not much that the
network could do. From the point of view of research sites, it was probably more a
problem than a solution. If ARPANET had been switched off, not many people
would have protested. In fact, very few people would have noticed.
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The multifocal innovation process became possible because ARPANET was fun-
damentally a collective project. Although it was strongly led by Larry Roberts at
IPTO, Roberts never became the key innovator in the process. Instead, the program
developed new ways of working that quickly became the key factors in the survival
of this network project. Indeed ARPANET implemented a distributed survivable
innovation network. In this sense it exceeded Paul Baran’s original dream. It did not
only develop into a robust technical platform that was able to relay messages;
instead, it became a distributed socio-technical system where meaning was both
created and shared. In other words, it became both a platform and the object of
innovation.

This new mode of innovation started to acquire a definite form in the early s.
One of the most fundamental loci of innovation formed around an informal group
of people. This group became known as the Network Working Group. During the
years, it evolved into a community that coordinated the evolution of the Internet,
and which provided most of the expertise that made the evolution of the network
possible. In many ways, the early experimentation with the processes of the
Network Working Group defined a culture of continuous innovation, which enabled
the Internet to change its nature several times during the next three decades. I will
discuss the characteristics of this group below, and show how it led to a new inno-
vation model.

First, however, it is useful to make another visit to theory and study in more detail
the different proposals on conceptualizing the loci of innovation. What, exactly, are
these ‘communities’ and ‘loci of innovation’, which seem to acquire such a prom-
inent role in the multifocal model of innovation? Several different theoretical tradi-
tions become relevant here. The next chapter introduces these theoretical traditions.
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CHAPTER

6
Socio-Cognitive Spaces of Innovation 
and Meaning Creation

Innovation has traditionally been understood as something that originates in the
acts of an inventor. As has been noted several times in the previous chapters, this
rather innocent-looking assumption leads to the linear model of innovation. More
refined versions of this model include feedback mechanisms and improve the basic
linear model. During the last couple of decades, it has, however, become increas-
ingly well understood that innovation needs to be studied as a social phenomenon,
and that innovations are articulated in a social process. The ‘locus of innovation’,
therefore, is something more than an individual inventor. Innovation does not hap-
pen ‘inside the head’ of an inventor; instead, innovations emerge in a field of social
interaction.

This chapter explores several different proposals that have tried to characterize
such ‘fields’ and ‘spaces’ of innovation. Nonaka and Konno () proposed that the
locus of innovation could be described as ‘ba’, a Japanese concept that can be trans-
lated as ‘space’. Constant () and Brown and Duguid () argued that the locus
of innovation should be viewed as a community of practice. Based on cultural-
historical activity theory, Engeström (; ), in turn, argued that the locus of
innovation can be found in activity systems. Other proposals have included, for
example, techno-economic paradigms and trajectories (Nelson and Winter, ;
Freeman, Clark, and Soete, ; Perez, ; Dosi, ; Dosi, Freeman et al., ),
technological communities (Van de Ven, ), communities of creation (Sawhney
and Prandelli, ), networks (Powell, Koput, and Smith-Doerr, ), techno-
economic networks and actor-networks (Callon, ), epistemic cultures (Knorr
Cetina, ), design spaces (Stankiewicz, ), regions (Saxenian, ), and social
practice (de Certeau, ). These proposals are complementary, but they all imply
that innovation cannot be understood simply as an individual or organizational
phenomenon.

In this chapter I will focus on socio-cognitive spaces of innovation and meaning
creation. These ‘spaces’ are the interpersonal fields where new knowledge is gener-
ated and articulated as new designs and technological artefacts. I will introduce
several different conceptualizations of innovation spaces, focusing on the concepts



of thought community (Fleck, ), chronotope (Bakhtin, ), practice-related
communities (Constant, ; Lave and Wenger, ; Wenger, ; Brown and
Duguid, ; Brown and Duguid, ; Schön, ), activity systems (Engeström,
; Leontev, ), and the concept of ba (Nonaka and Konno, ; Nonaka,
Toyama, and Konno, ).

A sufficiently detailed understanding of the nature of innovation spaces is neces-
sary if we want to discuss social processes that generate new social practices and
innovations. The difficulty in such a discussion is that innovation spaces are not
conceptually trivial. Social interaction is complex, reflexive, and highly dynamic.
The easiest way to approach the question of defining the nature of innovation
spaces, therefore, is to highlight them from different angles, in the process outlin-
ing their shape. Although such a description cannot be complete, and does not give
a fully integrated picture of the phenomenon, it allows us to point out some import-
ant aspects of innovation processes.

One key characteristic of innovation spaces is that they are embedded in social
life. In recent knowledge-creation literature, the social foundations of knowing have
been discussed extensively. This discussion has to a large extent centered around
the concept of community. The concept of community is useful as it naturally leads
to the analysis of interpersonal dimensions of knowing, and links knowledge cre-
ation with the theory of communication and social learning. The concept of com-
munity, however, has its problems. It is loaded with meanings that may become
misleading when we discuss innovation. The concept looks familiar and clear, but
its use leads us to the very foundations of social and epistemological theory.

For example, Brown and Duguid introduce the concepts of community of practice
and network of practice to discuss innovation in organizations (Brown and Duguid,
; Brown and Duguid, : –). They argue that communities of practice are
tight-knit groups formed by people working together on the same or similar tasks.
According to Brown and Duguid, these should be distinguished from networks of
practice that consist of people working on similar practices, but where the mem-
bers of the network do not necessarily know each other.

In Brown and Duguid’s terminology, networks of practice are loosely knit ‘special
interest groups’. Their members do not interact with one another directly to any
significant degree, don’t take action, and produce little knowledge. Brown and
Duguid maintain that the concept of community of practice focuses on subsections
of these networks of practice. Brown and Duguid note that communities of practice
are usually face-to-face communities that continually negotiate with, commun-
icate with, and coordinate with each other directly in the course of work. Moreover,
they maintain that the members of communities of practice usually know each
other and work together directly. In this process the community develops its own
language, thought style, and judgement.

For Brown and Duguid, an important difference between a community of prac-
tice and a network of practice is that the former is a locus of action. The examples
provided by Brown and Duguid, however, consist of different types of loci for 
collective action. Their first example is a small product development team consist-
ing of less than half a dozen people (Brown and Duguid, : ). Indeed, their
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example is the BBN team that developed the network switching computer for
ARPANET.

This group consisted of experts in software design, hardware design, and com-
munication networks. It was a team that combined different expertises in a tempor-
ary group that had the goal of creating a common technological artifact. Brown and
Duguid, however, also associate the concept of communities of practice to com-
munities studied by Lave and Wenger (). Lave and Wenger were interested in
social learning processes, and their focus was anthropological and ethnographic.
Their examples included communities such as Alcoholics Anonymous groups,
Yucatan midwives, Vai tailors, and meat cutters. Whereas the composition of the
ARPANET development team was obviously based on division of labour, such divi-
sion of labour or specialization of knowledge is more difficult to find in an AA group,
for example.

The essential characteristic of Lave and Wenger’s communities was that they
shared the same stock of knowledge, although to different degrees. This shared
knowledge was grounded in their shared practice. One could call such commun-
ities ‘homogeneous’ communities (Tuomi, : –). The differences in their
memberships are differences in the centrality of their members. The members of
such communities construct their identities based on the membership and social-
ize to the world-view of the community, but there is no clear coordination of work,
or collective production. In this sense, the networks of communities, as defined by
Brown and Duguid, seem to be very similar to Lave and Wenger’s communities of
practice.

This ambiguity in terminology is partly caused by an alternating focus between
two perspectives: learning and exploitation of knowledge. When the focus is on
social learning of an existing practice, community of practice is exemplified by the
groups discussed by Lave and Wenger. When the focus is on active co-production,
the locus of activity is often found in a subsection of networks of practice, for 
example, in teams that bring together complementary resources.

More generally, the existing literature seems to have four different concerns. 
Lave and Wenger were clearly focusing on communities of identity and competence
development. Brown and Duguid, in turn, use the term community of practice to
describe communities of production, in a way that closely resembles Constant’s
description of communities of practitioners (Constant, ; ; ). The
Bakhtinian concept of genre, which is described in more detail below, in turn,
defines a community of shared meaning, which according to Bakhtin is closely
linked to social practice (Bakhtin, ; Morson and Emerson, ). Furthermore,
several consulting companies have used the concept of community of practice to
refer to a group of people who exploit a specific technology or disciplinary know-
ledge in their business practice. Such communities might be called communities of
appropriation.

All these views are important, and impossible to separate in actual social life. To
characterize, and hopefully clarify, the nature of communities and innovation
spaces we may, however, start from earlier descriptions that have elaborated the
above themes. I will first introduce Fleck’s work on thought collectives. It is an
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insightful description of those socio-cognitive processes that underlie the emer-
gence of new knowledge, technology, and practice.

. THOUGHT COLLECTIVES

As a result of his studies on immunology, bacteriology, and experimental medicine,
Ludwik Fleck came up with ideas that closely connect development of knowledge
with development of practice, social structure, and technology. In  Fleck wrote
a historical study on the emergence of syphilis, as a well-defined disease, and
argued that scientific knowledge is bound to ‘thought collectives’.

According to Fleck, cognition cannot be construed only as a dual relationship
between the knowing subject and the object to be known. The existing fund of
knowledge provides the basis for the emergence of all new knowledge. What is
already known influences the way the world is interpreted. Fleck noted:

Cognition is therefore not an individual process of any theoretical ‘particular consciousness’.
Rather it is the result of a social activity, since the existing stock of knowledge exceeds the
range available to any one individual. (Fleck, : )

Fleck’s studies showed how syphilis emerged as a well-defined disease entity, from
a relatively undifferentiated mass of symptoms. During this process, which started
at the end of the fifteenth century, the nomenclature and differentiation of what we
now know as syphilis went through many changes. The conceptualization of
syphilis as a disease, various diagnostic practices and tools, scientific descriptions
of its nature, and the community of medical practitioners co-evolved during the
centuries. Finally, syphilis became associated with the Wasserman reaction.

In the first documented descriptions of carnal scourge, astrology played an
important role, as well as ethical arguments that the condition was a punishment
for sinful lust. When it was noted that mercury can cure some forms of carnal
scourge, syphilis became the specific type of carnal scourge that can be cured by
mercury. The therapeutic power of mercury, as well as its diagnostic power, how-
ever, remained unsatisfactory until the end of the nineteenth century. The idea of
carnal scourge meant that the indications of syphilis included what we today know
as other venereal diseases, including gonorrhoea, soft chancre, and their complica-
tions. It was therefore argued that sometimes mercury did cure the carnal scourge,
while sometimes it just made things worse.

As late as , Dr Josef Hermann, who was for many years the head of the depart-
ment of syphilis at the Imperial and Royal Hospital of Wieden in Vienna, argued that
syphilis does not exist. Hermann maintained that many serious symptoms that
were normally considered to be indications of syphilis were ‘exclusively produced
either by the mercury treatment itself or by other bad concoctions’ (quoted in Fleck,
: ). This rejection of syphilis as a specific disease was to a large extent a
response to the very diffuse nature of the symptoms. For a long time there was
hardly any disease or symptom that was not attributed to syphilis (: ). Given
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the existing tools and practices for diagnosis, it was almost as easy to argue that
syphilis is everywhere as it was to argue that it was nowhere.

Since the first discussions on syphilis, syphilitic blood was offered as a cause of
the disease, first as a bad mixture of humors, then as foul blood, as excessively hot
and thick blood, and finally as blood befouled by an infection. Eventually, this idea
of syphilis as something that can be defined as a change in blood resulted in using
the Wasserman reaction as a method to separate syphilis from other conditions.
The Wasserman reaction quickly became a topic of much experimentation and 
academic discourse and created the discipline of serology. In this process, the com-
plex and theoretically not well-known procedures of the Wasserman test became
standardized through new concepts, tools, and practices, and social institutions
emerged that became the legitimate guardians of these standards and practices.

Fleck noted that the history of syphilis and the Wasserman reaction shows that
many different views compete in the evolution of ideas and practices. Scientific
facts make sense only within a specific style of thought. There are several styles of
thought, and each of these is socially grounded:

If we define ‘thought collective’ as a community of persons mutually exchanging ideas or
maintaining intellectual interaction, we will find by implication that it also provides the spe-
cial ‘carrier’ for the historical development of any field of thought, as well as for the given stock
of knowledge and level of culture. (Fleck, : )

Fleck argued that, although a thought collective consists of individuals, it is not 
simply an aggregate of them. Instead, the ‘individual within the collective is never,
or hardly ever, conscious of the prevailing thought style, which almost always exerts
an absolutely compulsive force upon his thinking and with which it is not possible
to be at variance’ (: ). According to Fleck, knowledge is created out of social
stocks of knowledge:

Cognition is the most socially-conditioned activity of man, and knowledge is the paramount
social creation. The very structure of language presents a compelling philosophy charac-
teristic of that community, and even a single word can represent a complex theory. (Fleck,
: )

Fleck, therefore, asked ‘To whom do these philosophies and theories belong?’ His
answer was that thoughts pass from one individual to another, each time a little
transformed. ‘Strictly speaking, the receiver never understands the thought exactly
in the way that the transmitter intended it to be understood’.
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After a series of such encounters, practically nothing is left of the original content. Whose
thought is it that continues to circulate? It is one that obviously belongs not to any single indi-
vidual but the collective. Whether an individual construes it as truth or error, understands it
correctly or not, a set of findings meanders throughout the community, becoming polished,
transformed, reinforced, or attenuated, while influencing other findings, concept formation,
opinions, and habits of thought. After making several rounds within the community, a finding
often returns considerably changed to its originator, who reconsiders it himself in quite a dif-
ferent light . . . The history of the Wasserman reaction will afford us the opportunity to describe
such meandering in the particular case of completely ‘empirical’ finding. (Fleck, : –)

Fleck argued that each thought collective has its associated practices. For every
trade, every religious community, and every field of knowledge, there is a corres-
ponding period of apprenticeship, during which a purely authoritarian suggestion
of ideas takes place. In this process, novices gradually become experts. According to
Fleck, every didactic introduction is therefore literally a ‘leading into’.

The initiation into any thought style, which also includes the introduction to science, is epi-
stemologically analogous to the initiations we know from ethnology and the history of civi-
lization. Their effect is not merely formal. The Holy Ghost as it were descends upon the novice,
who will now be able to see what has hitherto been invisible to him. Such is the result of the
assimilation of a thought style. (Fleck, : )

As a result of this process, thought communities easily accept those new ideas that
fit with its thought style. Incompatible ideas, in turn, are ignored and rejected as 
trifling and meaningless.

According to Fleck, the general structure of a thought collective consists of 
a small esoteric circle and a larger exoteric circle, ‘each consisting of members
belonging to the thought collective and forming around any work of mind, such as
dogma of faith, a scientific idea, or an artistic musing’ (: ). Furthermore:

A thought collective consists of many such intersecting circles. Any individual may belong to
several exoteric circles but probably only to a few, if any, esoteric circles. There is a graduated
hierarchy of initiates, and many threads connecting the various grades as well as the various
circles. (Fleck, : )

Fleck also argued that in order to maintain their stability, thought collectives have
to reproduce the concepts and facts that are central to their thought style, as well as
their social structure. The new knowledge and practice that is created in the
thought collective is applied in the context of a larger social system. Therefore there
is also a constant need to negotiate the interactions between the esoteric and exo-
teric circle, which applies the products of the esoteric circle in social life. In this
process, the esoteric circle of the community has continuously to legitimize and
reproduce itself as the ‘elite’ of the thought community. Similarly, the thought 
community has continuously to negotiate and legitimize its position in the system
of division of labour. If it succeeds in this, its knowledge and practices become 
institutionalized and its truths appear increasingly certain.
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Fleck argued that intercollective communication of ideas always results in a shift
in their meaning. Whereas communication within a thought collective tends to fil-
ter out the novelty of ideas, and fit them with the existing way of thinking, when
other communities appropriate ideas they always acquire new meaning. Words, for
example, constitute a special medium of intercollective communication. But their
meaning is always coloured by the thought style of the community that uses them.
When words are used in a different community their meaning therefore changes.
For example, the words ‘force’ and ‘energy’ mean different things to physicists,
philologists, and sportsmen. In this process, the meaning of words may acquire
some new colouration, change radically, or become completely destroyed. (:
–).

Fleck maintained that the force of thought communities easily overpowers any
rationality or logical construction of individual thinking. A single individual can
therefore—without much difficulty—be a member of several communities, and
hold several ‘logically incompatible’ views of the world. This is not a problem for an
individual as these contradictory views do not usually reach the stage of a psycho-
logical contradiction. The different realms of different thought communities are
more or less independent. An individual usually participates in thought commun-
ities that are not closely related to each other. If thought styles are very different,
their isolation can be preserved even in one and the same person. But if they are
closely related, such isolation is difficult:

The conflict between closely allied thought styles makes their coexistence within the indi-
vidual impossible and sentences the person involved either to lack of productivity or to the
creation of a special style on the borderline of a field. This incompatibility between allied
thought styles within an individual has nothing to do with the delineation of the problems
toward which such thinking is directed. Very different thought styles are used for one and the
same problem more often than are very closely related ones. (Fleck, : –)
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. SPEECH GENRE AND CHRONOTOPE

Whereas Fleck focused on the emergence of scientific facts and knowledge, Mikhail
Bakhtin’s interest was in those social and interpretative processes that make 
language and literature possible. During the s Mikhail Bakhtin wrote several
important essays that developed the theory of linguistic genres. In his writings he
introduced concepts that are complementary to Fleck’s.

According to Bakhtin (), communication and knowledge cannot be under-
stood without the concept of genre. Each meaningful utterance and thought uses
the resources of a specific genre that defines a specific view on reality. Each genre,
in turn, reflects a specific social practice, and carries with it a long history of trans-
generationally accumulated experiences and events.

Bakhtin maintained that a competent individual has a large repertory of genres
that can be flexibly utilized according to the situation. Everyday speech with family
members, workplace conversations, discourses within academic disciplines, offi-
cial letters, and poetic texts all require different genres. Without understanding the
genre in use, meaning cannot be understood, and dialogue is impossible.

Bakhtin and his colleagues argued that the Russian formalists had it fundament-
ally wrong when they believed that the meaning of a text can be understood by 
synthesizing it from its constituent components. Also the semiotic view, which
assumed that the users of language ‘encode’ meanings in words, was wrong.
Instead, the meaning of words depends on the way they are used in a genre, and
through the roles the words play within the associated social practice. Each word
carries with it a ‘halo’ of meaning that reflects the way the world is seen from within
a specific genre. Without this tacit halo of meaning, words are empty. Bakhtin main-
tained that genres are produced in a long historical process, tightly bound with 
evolution of specific social practices, and therefore the analysis of literature and
language needs to be based on the analysis of genres.

Knowing, therefore, is about understanding the meaning within a specific genre
and understanding what is true from the perspective of other genres. Knowledge is
deeply rooted in culturally developed social practices and their trans-generational
history.

As each genre has its own eye on the world and its own knowledge, dialogue
across genres becomes a creative force. Bakhtin argued that the greatness of cre-
ative authors, such as Shakespeare and Dostoevsky, was in their ability to use the
hidden potential of genres, and mobilize cultural resources that provide rich poten-
tial for interpretation. A great author does not only have a ‘story to tell’. Instead,
according to Bakhtin, creative authors have two different intents: they want to tell 
a story, but they also want to tell a story that does not remain confined within 
the limits of a specific story. Great authors compose a story with rich and open
interpretation. They are able to do this because the genres themselves are open and
constantly evolving, as reflections of the underlying social practices and history.

By intuitively relying on the cultural resources of a genre, a creative author can
transcend his or her individual limits. According to Morson and Emerson (), an
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important objective of Bakhtin’s work was to show that creativity is real, ongoing,
and immanent in the process of daily living:

Thus, he sought to describe creativity without resorting to inspiration from the muse, intima-
tions of the transcendental, or eruptions from the unconscious. Those models are usually
used to explain the fact, noted at least since Plato, that poets seem to know more than they
‘know’—to place more meaning in their works than they themselves could ever adduce.
Without resorting to the irrational or mystical, Bakhtin’s theory of genre accounts for this ‘sur-
plus’ knowledge. Bakhtin is careful neither to explain away that surplus knowledge nor to call
it inexplicable. Rather, it is the understandable consequence of prosaic creativity at work
across cultures and through ages of great time. (Morson and Emerson, : –)

According to Bakhtin, genres evolve, interact, and become mixed. In this process
new ways to understand the world and new social practices emerge. If we want to
grasp the variety of ways in which the relation of people to their world may be
understood, we need to examine the many concrete and detailed possibilities that
literary genres have worked out (Morson and Emerson, : ). Bakhtin calls
these concrete possibilities, which define the ‘form-shaping ideology’ of a genre, a
chronotope. Each mode of thought is associated with its own genre and has its own
chronotope. According to Bakhtin, actions are always performed in a specific con-
text and chronotopes differ according to the way they interpret context and the
relation of actions and events to it.

We will give the name chronotope (literally, ‘time space’) to the intrinsic connectedness of
temporal and spatial relationships that are artistically expressed in literature. This term is used
in mathematics, and was introduced as part of the theory of relativity (Einstein). (quoted in
Morson and Emerson, : )

Morson and Emerson note that the comparison between the Einsteinian time-
space and Bakhtin’s chronotope is important for several reasons. First, it implies
that time and space are intrinsically interconnected, and events in a narrative 
cannot be understood without simultaneously understanding their place in time
and space. Second, there is no ‘objective’ chronotope that would underlie and
ground the specific chronotopes of different genres. Indeed, Bakhtin argued that
Dostoevsky’s creation of the polyphonic novel constituted a Copernican revolution:
instead of using a single genre around which thought could revolve, Dostoevsky’s
polyphony generated a new space of interacting genres. This Copernican revolu-
tion, therefore, was bound to extend beyond its original limits and area of applica-
tion. As Morson and Emerson note:

Indeed, all new genres, if they are based on profound enough forms of artistic thinking, have
this potential for wide application, as do great philosophical or scientific theories. A new genre
enriches our repertoire of visions of the world and may prove useful at distant times for
unforeseeable applications, much as the non-Euclidian geometry of Lobachevsky and others
found an unexpected application in relativistic models of the universe. (Morson and
Emerson, : )

Different aspects of the world also have their own rhythms and time-scales. For
example, biological time-scales are different from astronomical time-scales.
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Different social activities have their different chronotopes. The rhythms and spatial
organization of ‘the assembly line, agricultural labour, sexual intercourse, and par-
lour conversations differ markedly’ (Morson and Emerson, : ). Chronotopes,
then, become the ground for activity. They are not represented in the world.
Instead, they are the ground which makes representability of events and social
practice possible in the first place.

. COMMUNITIES OF PRACTICE

For Fleck, a scientific fact was an expression of an underlying network of social
interactions, technologies, and meanings. Bakhtin, in turn, emphasized the variety
of the different systems of meaning, and their roots in history and social practice.
Thought styles and speech genres are both products of social production and repro-
duction that cannot be reduced to the acts of individual actors or to society-wide
processes. Instead, the level of analysis is between the individual level and the level
of society. In other words, the foundation of meaning creation can be found from a
‘community’. As the meanings of this community relate to its reality, and its reality
relates to its practices, such a community can be characterized as a community of
practice.

Edward Constant presented an ideal model of a community of practice in his
study on the history of the turbojet (Constant, ). He later developed this con-
cept, arguing that community of practice is the locus of technological knowledge
(Constant, ; ). According to Constant, members of a community of practice
can be both individuals and organizations. In most cases, the membership is not
defined by any existing technical discipline. For example, turbojet design utilizes
precepts and people from aerodynamics, mechanical engineering, combustion
engineering, metallurgy, and so forth:

What distinguishes a turbojet practitioner is adherence to the tradition, not disciplinary train-
ing . . . Turbojets are designed by a collection of engineers and other specialists, who together
constitute an identifiable community of practitioners . . . The normal practice of such commun-
ities, however they are defined, is the extension and articulation, or incremental development,
of the received tradition. (Constant, : –)

Although the normal pattern of development in such a community of practice is
incremental, sometimes the community may face persistent failure, which may pro-
voke a search for radical new solutions. Sometimes it is also possible that new the-
oretical insights may imply that a current system will fail under future conditions,
and that a radically different new system may work better. As we noted before,
Constant called such situations presumptive anomalies. For example, in the s
aerodynamic theory suggested that with sufficient thrust a well-streamlined aircraft
should be able to approach the speed of sound. Theory also showed that conven-
tional propellers could not operate at such speeds. Theory, however, also indicated
that gas turbines could provide the required thrust. The presumptive anomaly,
therefore, led to the turbojet revolution.
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Constant argued that communities of technological practice embody higher-
level traditions of testability. These traditions of testability define the norms, cri-
teria, and generic approaches which are followed during incremental change in a
community. For example, engineering communities normally adhere to generally
accepted criteria on how to measure the success of a design. When change is rad-
ical, the standards of testability, as well as the criteria for success may, however,
change. For example, the turbojet revolution required entirely new testing tech-
niques and testing facilities. It also required redefinition of the way engine output is
measured. Whereas aircraft engines had earlier been measured by their shaft horse-
power, turbojets were measured by their thrust. According to Constant:

Traditions of technological testability, then, linked both to lower-level traditions of technolo-
gical practice and to a higher-level normative engineering culture, are the major way that
communities of practitioners reify the meaning of their tradition of practice for themselves
and explain and justify that tradition to outsiders. (Constant, : –)

Constant argued that complex technological systems can be hierarchically decom-
posed into subsystems, and that this implies multiple traditions of practice and
multiple communities of practitioners. A technical change that is incremental
development of the complex system may therefore be radical when it is perceived
at a level of a subsystem. According to Constant, each subsystem can be seen as 
the purview of a distinct community. There can be overlap between communities 
at the different levels of the hierarchy, as well as between the various communities
at the same hierarchical level.

Constant’s discussion on communities of practice emphasized the link between
technological architecture and community structure. The division of labour that
was required to effectively create a complex technological system created a system
of interdependent communities. Moreover, there was a duality between the system
and communities related to it: social structure and technological structure reflected
each other, and change in either of them required adjustment in the other.

. SOCIAL LEARNING IN COMMUNITIES OF PRACTICE

Much of the recent literature in knowledge management has emphasized the
importance of social learning in understanding how knowledge is created and
located in social systems. For many authors, a central idea has been Vygotsky’s
model of social learning, and his concept of a zone of proximal development 
(e.g. Engeström, ; ; Spender, ; ; Brown, Collins, and Duguid, ;
Wenger, ; Nardi, Whittaker, and Schwartz, ; Tuomi, ). The basic idea in
Vygotsky’s theories was that knowledge is produced in a socio-historical process,
and that it is tightly linked to social practice (Cole, ; ; Wertsch, ; ;
van der Veer and Valsiner, ; Kozulin, ; Daniels, ).

Vygotsky argued that three different lines of development interact in cultural-
historical evolution. In addition to the evolution of species, culture accumulates

INNOVATION AND MEANING CREATION 



concepts and practices, which are, in turn, appropriated by an individual during his
or her individual development (Luria and Vygotsky, ). Vygotsky therefore distin-
guished evolution of phenotype, culture, and individual ontogenic development.
Ontogenic development, however, is not independent of social interaction and cul-
ture. According to Vygotsky, important social stocks of knowledge, such as language,
are learned in a process where members of the society support the enculturation of
a developing child. The zone of proximal development was defined by Vygotsky as
that range of possible action and thinking in which an individual could perform with
support from his environment (Vygotsky, : –; van der Veer and Valsiner, :
; Rogoff, ; Tuomi, : ). By moving in this zone, the developing individ-
ual can expand his or her competences, finally becoming a fully competent adult.

Jean Lave and Etienne Wenger applied this Vygotskian concept of the zone of
proximal development in a cultural-anthropological context (Lave and Wenger,
). They argued that the locus of expertise is in a community of practice, and
novices become members of the community through gradual social learning. This,
however, requires that they get legitimate access to the community in question.
Lave and Wenger introduced the concept of legitimate peripheral participation to
describe the starting point of such social learning. Furthermore, they argued that
knowledge is bound with the practices and tools used in the community. Lave and
Wenger therefore focused on learning as a process that socializes individuals as
members of traditions of practice.

Yrjö Engeström () relied on the Vygotskian cultural-historical tradition and 
its ideas on social learning, but his focus was on the question of how communities
create new practices. Based on A. N. Leont’ev’s () theoretical model of the 
structure of social activity and Vygotskian ideas that provided the foundation for
Leont’ev’s activity theory, Engeström developed a model of activity systems. In
Engeström’s model, activity is defined as symbol- or tool-mediated object-oriented
activity, embedded in a community that operates under a given division of labour
and rules that regulate it. Based on his model, Engeström further formulated a
model of expansive learning, as a form of change that creates new forms of activity.
According to Engeström, new forms of activity are generated by contradictions 
in and between existing systems of activity. For example, when one activity system
produces tools that are used in another activity system, change in one of these 
systems may trigger learning processes in the other.

In other words, in Engeström’s theory an activity system consists of tool-medi-
ated activity that occurs in the context of a division of labour, community of practi-
tioners, and institutions that regulate exchanges. The locus of innovation is, there-
fore, a complete activity system. Learning of new practices occurs in a cycle where
contradictions are detected and interpreted, and possible solutions are generated,
tested, and finally integrated into current practice.

The actual process of learning in Engeström’s model (Engeström, ; )
resembles Dewey’s () cycle of experimental learning and Schön’s () reflec-
tive practice. As the basis of Engeström’s model is in cultural-historical activity
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 I have compared these learning models in Tuomi (: –).



theory, his model, however, is fundamentally about social learning. In this model,
the sources of new innovative practice are inherently social.

. THE CONCEPT OF ba

Nonaka (; Nonaka and Takeuchi, ) proposed an influential model of organ-
izational knowledge creation based on a distinction between tacit and explicit know-
ledge. According to Nonaka, knowledge is created in a process where tacit knowledge
is socially shared and converted into explicit knowledge, and explicit knowledge is
combined with existing explicit knowledge and converted back into tacit form where
it guides action. Nonaka called these different modes of knowledge conversion
‘socialization’, ‘externalization’, ‘combination’, and ‘internalization’, and the resulting
knowledge creation model the SECI-model.

In the SECI-model, knowledge ‘spirals’ from the individual level to the level 
of teams, organizations, and beyond the organization. New knowledge is cross-
levelled and converted in this process. Cross-levelling, however, is not simply a 
unidirectional flow of knowledge from individual innovators to society; instead,
there is constant interaction between the different levels of analysis. Individuals are
members of organizations and teams, and knowledge creation occurs simultan-
eously at the individual and social level. Knowledge emerges in social interaction.

By making the distinction between tacit and explicit knowledge, Nonaka was able
to represent the SECI-model in a compact way. This basic SECI-model is shown in
Fig. 6.2.

Based on the SECI-model of knowledge creation, Nonaka and Konno developed
a model of knowledge creation spaces. They proposed that each quadrant in the
SECI-model has an associated ‘space’ of knowledge creation. Using the Japanese
concept ba that roughly translates as ‘space’ they proposed that there were four 
different types of bas.
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Ba is a sophisticated concept and cannot simply be understood as physical loca-
tion or space. According to Nonaka and Konno (), ba can be thought of as a
shared space for emerging relationships. This shared space provides a platform for
advancing individual and collective knowledge. Ba is a context that harbours mean-
ing, and which acts as a medium where individual knowing transcends its limits,
thus enabling the creation of new knowledge. Nonaka and Konno argued that if
knowledge is separated from its ba, it becomes information, which can then be
communicated independently from ba.

According to Nonaka and Konno, tacit-to-tacit conversion occurs in originating
ba, tacit-to-explicit conversion in interacting ba, explicit-to-explicit in cyber ba, and
explicit-to-tacit in exercising ba. The originating ba is the space of social interaction
where new knowledge emerges. In the interacting ba individuals’ mental models
and skills are converted into common terms and concepts. The interacting ba,
which Nonaka and his colleagues later called ‘dialoguing ba’ (Nonaka, Toyama, and
Konno, ), is more consciously constructed than the originating ba, and often
organized as cross-functional teams and task forces. The third ba, ‘cyber ba’ or ‘sys-
temizing ba’, represents the combinatory phase in knowledge creation. This ba
combines existing explicit knowledge and information. According to Nonaka and
his colleagues, a systemizing ba offers a context for combination of existing explicit
knowledge, and technologies such as email and information systems can be used to
support such combination processes. Whereas originating ba and dialoguing ba
are defined primarily by face-to-face social interaction, systemizing ba can rely on
knowledge artefacts, such as documents, email messages, databases, and computer-
mediated collaboration.

The fourth type of ba, exercising ba, is the context of internalization. In this ba,
‘individuals embody explicit knowledge that is communicated through virtual
media, such as written manuals or simulation programs’. According to Nonaka 
et al., in contrast to dialoguing ba where the limits of current knowledge are tran-
scended by thought, in the exercising ba these limits are transcended through
action (Nonaka, Toyama, and Konno, ).

According to Nonaka and his colleagues, ba exists on many ontological levels.
Individuals form the ba of teams, which in turn form the ba of organization. The
market environment, in turn, forms the ba for the organization. Innovation man-
agement, and strategic management of the firm, therefore, becomes a problem of
leading and organizing bas and their interactions (Nonaka, Toyama, and Nagata,
).

To properly understand the concept of ba, it is important to note its central role
in the Japanese thinking. The Japanese philosophical tradition of the Kyoto School
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 ‘Transcending the limits’ should here be read in the phenomenological sense of ‘transcendence’:
accessing the world beyond what is currently included in the world of meaning, and therefore acces-
sible to a conscious cognition.

 This is a problematic claim, as I have argued in more detail in Tuomi (). Also the SECI-
model itself is problematic, for example, as the different knowledge conversion modes and levels of
analysis are not easy to separate conceptually or in practice (cf. Tuomi, : –).



developed the concept of ba to discuss the fundamental problems of meaning 
creation and the nature of objects and knowing subjects. Kitaro Nishida (–),
the founder of the Kyoto School, studied Western philosophers in great detail, and
integrated insights from Western phenomenological thinkers to insights of thinkers
in the Buddhist tradition. In his different works, Nishida approached the problems
of meaning creation through William James, Henri Bergson, and Edmund Husserl,
among others, often providing penetrating analyses of these thinkers.

A central concept in Nishida’s later philosophical thinking was basho. The 
concept of basho had its roots in the idea of topos, which Plato discussed in his
Timaeus, in Aristotle’s notion of hypokeimenon, and in Lask’s field theory. The mod-
ern physical concept of field of force also played an important role (Van Bragt, :
pp. xxx–xxxi). In the context of Nishida, basho is most often translated as ‘locus’ or
‘topos’. Nishida’s student Nishitani used the term ba as a philosophically central
concept to describe the field of meaning creation. The use of the field concepts
enabled the Kyoto School philosophers to overcome the conventional Western 
subject- and object-centric notions of knowledge and knowing.

Although ba can be translated as ‘space’, it is important to note that the concept
of ba is based on an epistemology and ontology that resulted from a critical ana-
lysis of empiristic and objectivistic theories of knowledge. Nishida tried to develop 
a logic that could describe the mutual construction of subjects and objects. This 
led him to reject the Aristotelian logic of assertions and the Hegelian logic of con-
tradictions. Instead of the Hegelian dialectic logic, where thesis and antithesis 
produce synthesis, Nishida argued that we need a logic of ‘contradictory identity’
that enables us to describe phenomena that may look paradoxical in the context of
Aristotelian logic. For example, the world produces us as living subjects of the world
and therefore we are part of the world. As conscious and acting subjects, we, how-
ever, also constitute the objects of the world as meaningful phenomena of the
world. In other words, we are ‘expressions’ of a world, which, in turn, is expressed in
our interaction with it. In Nishida’s terms, when we interact with the world our con-
sciousness creates the world as the object of our action, but at the same time we are
created as actors in that world. In a very concise, but somewhat cryptic way, Nishida
summarizes this by saying that we think and act by becoming things (b: ). The
fundamental starting point of most Western philosophies was the independence of
subjects and objects, and the logic of ‘is’ or ‘is-not’, and therefore Nishida argued
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 Although his works are not widely known among Western philosophers, Nishida is one of the
most sophisticated philosophers of the phenomenological tradition. His writings have been trans-
lated into English in Nishida (; a; b; ). Nishida’s epistemology has some similarity
with the process philosophy of Alfred North Whitehead and the existential phenomenology of
Emmanuel Levinas. See also Nishitani (), Carter (), Takeuchi (), Axtell (), and Nishida
().

 In this the fields of ba and basho are similar to modern quantum field theory, where objects
become manifestations of underlying fields. Quantum phenomena cannot be understood through
the analysis of these objects themselves; instead, such understanding requires analysis of the fields
that express themselves in objects under suitable boundary conditions. And, as Einstein showed,
‘objects’, in turn define the spatio-temporal structure where they exist. Basho, therefore, is also 
similar to Bakhtin’s chronotope.



that we need a new foundation for philosophical thinking. Therefore, the correct
starting point for a theory of knowing is a logic that doesn’t separate the knower 
and the known, but which sees them as mutually constructed. In a somewhat sim-
plified way, one could say that the ba is the ‘space’ where this mutual construction
transpires.

The ‘field’ of knowledge creation, therefore, cannot be reduced to a physical
space or location in any straightforward way. Perhaps it could be best conceptual-
ized as a dynamic ‘space of mutual construction’. The space and its objects are
actively created in the human mind in interaction with a world that gradually
becomes a world of meaningful objects, in the process of individual and cultural
development. Ba, therefore, exists on a level where meaning emerges, and it is a
more fundamental construct than ‘space’ and its ‘objects’. In Polanyi’s (; )
terminology, ba, therefore, includes the ‘tacit dimension’ of knowing. This view, of
course, is in stark contrast with most conceptualizations that underlie the discus-
sions of information processing, knowledge sharing, and decision-making in
organizations. In most Western epistemologies, the basic assumption is that true
knowledge has to be independent of the knower, and that knowledge emerges when
the objects and phenomena of the world reveal their true nature.

The way Nonaka and his colleagues (Nonaka and Konno, ; Nonaka, Toyama,
and Konno, ; von Krogh, Ichijo, and Nonaka, ) used the concept of ba has
its roots in the Kyoto School and in Polanyi’s analysis of meaning fields. According
to Polanyi, knowledge emerges from a field of meaning as this field becomes articu-
lated as explicit knowledge. In the context of the Kyoto School, as well as in Polanyi’s
writings, explicit knowledge exists as a dimension of the field of meaning, and can-
not be separated from it. Although many readers of Nonaka and Takeuchi ()
have concluded that the SECI-model of knowledge creation is based on two differ-
ent ‘stocks of knowledge’, this interpretation is therefore incompatible with a more
exegetic reading of the underlying epistemic concepts.
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 It is therefore not a great surprise that it also leads to non-conventional views on the nature of
organizations and their meaning processing. It also leads to computer designs that radically differ
from conventional information-processing systems. Shimizu has used the concept of ba to develop
his holonic computer, which aims at meaning processing, instead of information processing
(Shimizu and Yamaguchi, ; Heinämaa and Tuomi, : –). Nonaka regards Shimizu as a
thought leader behind the modern concept of ba.

 This error has been made, for example, by Brown and Duguid (), as well as myself (Tuomi,
; ), as we have argued that Nonaka’s SECI-model doesn’t take into account the fact that tacit
and explicit components cannot be separated. Brown and Duguid make the point that the SECI-
model is problematic as Polanyi’s distinction between tacit and explicit knowledge requires that they
are inseparable, but often the clear separation between tacit and explicit components of knowledge
is understood to be the main contribution of the SECI-model. Many popular introductions, as well
as many academic authors, assume that tacit and explicit knowledge are two different ‘stocks’ of
knowledge, which can be independently stored and processed (cf. Tuomi, ). Nonaka’s use of
tacit–explicit distinction is somewhat ambiguous and it is not clear how closely he follows the think-
ing of the Kyoto School. It is not clear whether, for example, the idea of ‘detaching knowledge from
its underlying ba and thus turning it into information’ would make sense for Kyoto philosophers. To
say so in the context of the Kyoto School would require a sophisticated concept of information,
which probably is not close to what most contemporary readers make of it.



As Bakhtin noted, concepts and words make sense only in the context of a genre
and chronotope. For Bakhtin, creativity is located in interpretation but also in the
creative use of cultural resources.

Nishida’s basho has many similarities with Bakhtin’s chronotope. Both describe
the topos that underlies a meaningful world. For Nishida, however, basho underlies
the meaning of the world in a fundamentally existentialist sense. Outside the space
of basho there is nothing that has meaning. The universe of basho is closed, expand-
ing, but without boundary. The solipsism of this universe is broken in a radical way
when Nishida proposes a new paradoxical logic, arguing that our conventional logic
implies a unique and misleading concept of reality where subjects and objects are
separate. To understand the way we exist in the world, we therefore have to switch
to a new genre built around a new logic of mutual construction.

A detailed analysis of these rather profound epistemological and ontological ideas
might reveal important theoretical questions that perhaps lead to new insights con-
cerning the nature of bas. But based on the discussion above we can already ask one
such question. This is the question how social learning and knowledge-creation
processes interact in bas. In the next chapter I’ll propose that bas comprise two
qualitatively different layers of knowledge articulation, and that there exist also two
different innovation dynamics that make it necessary to separate the four types of
ba proposed by Nonaka and his colleagues into two qualitatively different classes.
These distinctive types of knowledge-creation spaces became visible when we 
discuss the ways in which the social infrastructure of knowing evolves.
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 As Nishida’s philosophy is based on analysing our way of being in the world, it has been cate-
gorized in the Western world as a philosophy of religion. The reason is partly that Nishida’s thinking
is related to the Buddhist tradition, and partly that he wrote extensively about what could be called
the ethical consequences of his existentialist phenomenology. In this sense, Nishida comes quite
close to Bergson (), Buber () and Levinas (). Of course, any philosopher who proposes
a radically different foundation for epistemology, ontology, and logic easily looks like a ‘philosopher
of religion’ to those philosophers who practise philosophy in another genre.



CHAPTER

7
Breaking through a Technological Frame

As we have seen above, there are many different and complementary ways to 
conceptualize practice-related communities and their knowledge-production
processes. Although we now have a relatively rich theoretical understanding of the
nature of communities of practice, we still have an interesting problem to solve: if
new technology creates new social practice, innovation means that communities
change. How does this happen, and what, exactly, do we mean by such change?
Does the community of practice concept apply only to isolated traditional tribes
and conservative communities that carefully protect their knowledge and practices,
or can we use the concept also in the context of innovation?

To answer these questions it is necessary to discuss two different developmental
dynamics that generate change in communities. Here it is useful to start by describ-
ing in more detail Bijker’s concept of technological frames.

According to Bijker, a technological frame is composed of the concepts and 
techniques employed by a community in its problem solving:

Problem solving should be read as a broad concept, encompassing within it the recognition of
what counts as a problem as well as the strategies available for solving the problems and the
requirements a solution has to meet. This makes a technological frame into a combination of
current theories, tacit knowledge, engineering practice (such as design methods and criteria),
specialized testing procedures, goals, and handling and using practice. (Bijker, : )

In the history of plastics, Adolf Bayer is often portrayed as the first researcher to pro-
duce a synthetic resin. According to these histories, after Bayer produced the syn-
thetic resin, researchers directed their efforts toward rendering it in an industrial
process. Eventually Leo Baekeland succeeded in this, and the synthetic plastic
industry was born.

Bijker, however, noted that for Bayer the resin he produced was something com-
pletely different than it was for Baekeland. Bayer was looking for a synthetic dye,
and the phenol-formaldehyde resin his experiments produced was an annoying 
by-product that had to be thrown away. Similarly, when scientists learned to syn-
thesize cheap formaldehyde in , the rapidly dropping costs of resins did not
lead to the emergence of synthetic plastics. Although researchers studied formalde-
hyde reactions they did it to find raw material for the synthetic dye industry. 
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Their experiments failed, as formaldehyde reactions often generated resins that
spoiled the experiment. For example, an industrial chemist Werner Kleeberg tried
to analyse the produced resins, but after failing in this, focused on reactions that did
not produce them (Bijker, : ). Bijker notes:

If we now apply the concept of a technological frame to the discussion of Bayer and Kleeberg,
it becomes clear why they did not try to modify the phenol-formaldehyde condensation prod-
uct into a usable plastic. First, they had other goals: the production of new synthetic dyes. But
these goals can be changed, especially when large profits are on the horizon. So there is more
to it than this. The idea of making plastic by chemical synthesis simply did not and indeed
could not occur to them. Chemical theory at that time could not cope with such a substance.
Neither could chemical practice: Their daily laboratory practice included all kinds of chem-
ical analysis and synthesis, but the application of pressure and molding techniques were of
another world. The technical frame of synthetic plastics was not yet in existence. (Bijker,
: –)

Where did such a frame, then, come from? According to Bijker, Baekeland started
his work in the frame that had its origins in Celluloid production. Celluloid was
developed to replace ivory in billiard balls, using nitrocellulose plastics as a starting
point. The first synthetic plastic was developed by Parkes in , first to address the
perceived imminent scarcity of the supplies of India rubber and gutta percha, and
then to substitute ivory. Parkes and his Parkesine did not succeed in business terms,
but several attempts were made to correct the early failures. John Wesley Hyatt first
tried to make ivory-like substance from nitrocellulose in the late s, but quickly
noted that the semi-liquid nitrocellulose could not be used as the drying process
inevitably caused shrinking. After some experimentation, he found a way to use
camphor, heat, and pressure to produce Celluloid.

Celluloid was a successful product and its use become stabilized among several
communities of users. It did, however, also have important problems. For some
uses its flammability was a problem, and the high cost of camphor made it expens-
ive. Researchers therefore tried to invent a substitute for it. No successful sub-
stitutes were found.

Only when Baekeland rejected the approaches used by the plastics researchers,
Bakelite was born. When he failed to find a suitable production process, he
switched to techniques used in electrochemical engineering. After carefully study-
ing the chemical reactions of phenol-formaldehyde condensation, Baekeland
learned that it had three different stages. Furthermore, he also learned how to stop
the process before it moved to the next stage. As a result, Baekeland was able to
develop a thermosetting plastic that could be moulded and used to produce a
strong synthetic material. At the same time this new material produced a new
understanding of what plastics are and for what purposes they could be used.

Bakelite was rapidly taken into use by several industries, and a community of
Bakelite practitioners was formed. The technological frame of Bakelite emerged in
this interaction between users and producers.

A technological frame is built up when interaction ‘around’ an artefact starts and continues.
Thus the artefact Parkesine did not give rise to a specific technological frame because the



interactions ‘around’ it came to an end before really taking off. The opposite happened to
Celluloid: Its stabilization was accompanied by the establishment of, for example, a social
group of ‘Celluloid chemists’. The continuing interactions of these chemists gave rise to and
were structured by a new technological frame. (Bijker, : )

But although a technological frame structures interactions of members of a social
group, it never completely determines them. This is because the members have 
different degrees of inclusion in the frame, and because actors are generally mem-
bers of several technological frames. The inclusion itself has a multidimensional
character: technological frames consist of goals, problem-solving strategies, experi-
mental skills, and theoretical training, and therefore frames are multifaceted.
Although, for example, Baekeland’s goals were congruent with the Celluloid pro-
ducers’ technological frame in that Baekeland tried to produce plastic articles, his
goals were also different as he was trying to produce industrial applications, instead
of consumer goods (Bijker, : ).

Baekeland first assumed that he could issue licences for plastic manufacturers.
Soon he realized, however, that he could not do it. The concepts, practices, and
skills that were needed for Bakelite production did not exist within the Celluloid
framework:

I found, to my astonishment, that people who were proficient in the manipulation of rubber,
celluloid or other plastics were the least disposed to master the new method which I tried to
teach them or to appreciate their advantages. This was principally due to the fact that these
methods and the properties of the new material were so different in their very essence from
any of the older processes in which these people had become skilled. This rather unexpected
drawback is so true that even to-day the most successful users of bakelite are just those who
were not engaged in plastics before . . . (Baekeland, ; quoted in Bijker, : –)

The early community of Bakelite practitioners consisted of the employees of the
Bakelite Corporation. Competing plastic producers tried to void Baekeland’s patents,
but after they failed they rapidly learned to understand plastics according to the new
frame. Baekeland was also able to enroll engineers from the new electronics indus-
try into his technological frame. Through the electronics industry Bakelite moved to
the automobile industry, which was looking for a strong oil-resistant material that
could be used as an insulator. This stabilized the community of Bakelite produc-
tion, and by the end of the s several new groups enrolled to the frame as users
(Bijker, : –).

Using his analysis of the evolution of technological frames, Bijker argued that
innovation, in general, occurs in three stages or settings. First there is no commun-
ity whose technological frame would be dominant. For example, when the bicycle
emerged around , its potential was understood in very different ways by differ-
ent social groups, and no single group was able to define what a ‘bicycle’ is. In the
second stage, a single social group becomes dominant and the innovation is inter-
preted using its technological frame. For example, for a considerable time, plastics
were understood in the context of the Celluloid frame. In the third stage, new 
social groups start to use their distinctive technological frames to interpret the
innovation.

 BREAKING THROUGH A TECHNOLOGICAL FRAME
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According to Bijker, in the first stage there is not much constraint in the ways an
innovation is interpreted. Therefore, many radically different variants emerge. For
example, around , when safety was seen as the major problem for bicycles,
many different constructions were produced. In the American Star bicycle a small
steering wheel was positioned ahead of the high wheel; Lawson’s Bicyclette had a
chain drive on the smaller rear wheel; and, in general, all aspects of the design were
subject to variation, leading for example to three- and four-wheel ‘bicycles’ (Bijker,
: –; : –).

Bijker argued that in this state one important way to stabilize a technological
frame is to enrol existing groups into the new frame. One way to do this is to 
redefine the technology as a solution to a problem for the group that is to be enrolled.
For example, when air tyres were first introduced for bicycles they were offered as
solutions to the problem of vibration. As this failed, they were offered as solutions to
a speed problem. As this problem was important to racing cyclists, this user group
was enrolled, and air tyres were taken seriously.

According to Bijker, when one technological frame is dominant, it is possible that
technology has a functional failure. Functional failure is a source of innovation
especially for people who are in the core of the community. Functional failure may
occur when an existing technology is used under new and more demanding condi-
tions. Bijker argued that functional failure usually leads to incremental innovation,
as problems are addressed within the existing technological frame. When Celluloid
producers realized that flammability was a problem in many uses of the technology,
they made efforts to find a solvent that could be used to produce a less flammable
‘Celluloid’.

Actors who do not have high inclusion in a technological frame have less diffi-
culty in using problem-solving strategies that are not part of the frame. Whereas
high-inclusion members of the community tend to be sensitive to functional fail-
ures, low-inclusion members tend to see presumptive anomalies. In other words,
low-inclusion members can see the technology being used under radically new
conditions, and therefore also imagine situations where a currently working tech-
nology would fail. As was noted above, such a presumptive anomaly was seen, for

 It has often been noted that the early phases of development of a new technology create a large
variety of product designs. Utterback and Abernathy (; Utterback, ) argued that a ‘dominant
design’ emerges when key aspects of the new technology become standards for the product. Bijker’s
analysis turns this view around by looking at the stabilization of a technological frame. Instead of a
dominant design, as a list of product features, we therefore have a dominant technological frame
which connects the product to the various practices where the product makes sense. This interpre-
tation also makes it understandable why high-tech competition seems to be inter-industry compe-
tition and why dominant designs don’t seem to stabilize in high-tech (Kodama, : ). We sim-
ply tend to define as ‘high-tech’ products that are essentially combinatorial.

 Petroski (; ) showed that this is a common occurrence in the evolution of technical
designs. He studied the evolution of designs for such everyday objects as forks, zippers, paperclips,
and pencils, and argued that ‘form follows failure’. For example, when the fork became used for put-
ting food in the mouth in th- and th-century. Europe, the traditional forms of fork failed. The fork
changed from a ‘tool-for-holding-meat-while-cutting’ into a ‘tool-for-eating-without-touching-the-
food’. Both its design and meaning changed accordingly.



example, by aerodynamic researchers who realized that propeller engines could not
work at speeds that were close to the speed of sound. Bijker maintained that espe-
cially young, recently trained engineers are in a position to recognize such pre-
sumptive anomalies, as they are trained within a technological frame, but have low
enough inclusion to question the basic assumptions of the frame (Bijker, : ).

According to Bijker, a third stage of innovation occurs, and a new innovative set-
ting emerges, when several competing technological frames exist. For example, at
the end of the nineteenth century, electric power networks were built based both on
alternating current and direct current. Often both systems were used in the same
town. According to Bijker:

The selection process in a situation like this is quite hectic, more so than in the first situation,
in which there is no dominant technological frame and when less vested interests are at stake.
Arguments, criteria, and considerations that are valid in one technological frame will not carry
much weight in other frames. In such circumstances it seems that criteria that are external to
both technological frames will play an important role in the selection process. This makes
rhetoric a fitting selection mechanism in this third situation. (Bijker, : )

For example, Thomas Hughes () documented such a rhetorical move in the
‘battle of currents’. A dog was publicly electrocuted by subjecting it to various volt-
ages of alternating and direct current. The objective was to persuade the audience
that alternating current was relatively safe.

Bijker noted that these three different situations can be found by studying the his-
tory of technology, but that they are not always easy to separate. Indeed, although
Bijker’s description of the role of technological frames is useful and insightful, it
does not seem to explain why the three different stages can sometimes easily be
detected, and sometimes not.

Part of this problem is due to retrospection. For example, studies on discontinu-
ous and disruptive technological change have described technological evolution 
as a process that is simultaneously continuous and discontinuous (Tushman 
and Anderson, ; Anderson and Tushman, ; Henderson and Clark, ;
Rosenbloom and Christensen, ). For example, computer hard disk drive tech-
nology has undergone several changes where new uses have become dominant
(Christensen, ). At each transition, leading producers have lost their leading
position and new entrants have become main players in the industry. Yet, we can
describe such disruptive change only because it is framed in a context of an ‘indus-
try’ where each new generation of technology is seen as a next step in the continu-
ous evolution of ‘disk drive technology’. In retrospection, it would also be easy to
argue that Bakelite generated a disruptive change in the plastics industry. As Bijker
noted, however, the uses and interpretation of plastics changed as a result of the
emergence of a new Bakelite practice.

As this example shows, discontinuity is not associated with characteristics of
technology as much as it is associated with our interpretations. It may take some
time to draw a picture that can be seen either as a rabbit or a duck, but we may
change our interpretation of the picture in a fraction of a second. Although nature
itself may not make discontinuous jumps, our interpretations of reality may do so.
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The famous rabbit-duck, however, is a rather typical laboratory animal. It exists
because a picture of a rabbit is not a rabbit. To see something as a rabbit means that
this something acts like a rabbit and makes similar differences to our life as a rab-
bit does. In most cases we see rabbits as rabbits and ducks as ducks because we see
them in ecological environments where they make sense (Gibson, ). Disruptive
technological change, therefore, reflects change in social practices. When new 
practices become dominant, the old framework doesn’t work anymore.

Where, then, does this change come from? To understand this, we have to distin-
guish two different processes that generate new technological frames. These two 
different processes lead to two different modes of innovation. The first has its source
in functional differentiation, specialization, and division of labour in social systems.
The second becomes possible when functional differentiation has created enough
complexity in the system of social practices so that recombination becomes possible.

. TWO EVOLUTIONARY PATHS OF COMMUNITIES

As was noted earlier, when the various authors discuss communities and practice,
the emphasis varies from social learning to collaborative production and genera-
tion of new forms of practice and knowledge. These different aspects of community
life cannot easily be separated. An important distinction can, however, be made
between homogeneous communities, where members essentially share the same
interpretation of the world, for example, a community of Yucatan midwives, insur-
ance claims processors, or Linux operating system developers, and heterogeneous
communities where members speak different languages and have different tacit
stocks of knowledge. A typical heterogeneous community can be formed around
laboratory practice, for example, around an operating room in a hospital, or around
a technological artefact, such as a jet engine or a new communication computer.

Another important distinction can be made based on the stability of these com-
munities. Some communities are ephemeral, others are stable, and some become
institutionalized. In heterogeneous ephemeral communities the members don’t
have much time to learn each other’s language, whereas in institutionalized het-
erogeneous communities new homogeneous communities can emerge on top of
the existing social structure. Together these two dimensions of heterogeneity and
stability to a large extent determine how knowledge can be created and exploited in
such communities (Tuomi, : –).

Why, then, are some communities homogeneous whereas others are heterogen-
eous? How are these communities generated? I shall explore these questions below.
My argument will be that two different developmental dynamics lead to these dif-
ferent types of communities. At the same time, these two different developmental
paths lead to two different ways these communities create innovations and new
knowledge. One innovation dynamic is generated by an increasing division of
labour and functional differentiation in social systems, and another by the combi-
nation of resources generated by existing communities.
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. DEVELOPMENT OF SPECIALIZATION, DIVISION OF
LABOUR, AND NEW TECHNOLOGICAL FRAMES

As was noted above, social learning reproduces communities of practice and leads
to incremental change in their stocks of knowledge. Communities can, however,
also spin off new communities as a result of their developing division of labour. The
evolution of communities can therefore produce an ecology of communities of
practice, each with their social stocks of knowledge.

This theoretical insight was at the core of Marx’s epistemology and sociological
theory. Marx argued that society and the human mind have to be studied in the
context of developing human practice. Indeed, Marx maintained that the human
mind itself has been produced in a process where social practice has become 
differentiated. For Marx, collaborative and goal-oriented production was a specific
characteristic of the human species, which made humans different from animals.
This collaborative production he called labour. The emergence of labour required
the emergence of collective coordination, communication, and meaning. There-
fore, labour and the human mind had their source in the same process of division
of labour.

Durkheim () maintained that it may be an exaggeration to say that human
psychic life starts only when societies emerge. He argued, however, that as long as
the society consists of only few members or is not geographically concentrated,
even the most developed forms of psychic life remain communal. In traditional
societies, society equals community. In Durkheim’s terms, traditional societies are
based on ‘mechanical solidarity’, which has its roots in communally shared values
and life practices. Mechanical solidarity, in other words, is based on similarities.
The evolving division of labour, however, creates a new form of society where the
different groups of the society become interdependent on each other’s work. As a
consequence, modern society is characterized by ‘organic solidarity’. Durkheim
argued that the actual forms of division of labour can only be understood when 
the value systems of the different collaborating groups are taken into account.
Without some overlap between the collective consciousnesses of different groups
and cultures, true division of labour could not be possible.

For Marx, the main characteristic of modern industrial society was that it was a
capitalistic society. The most important social difference was to be found between
those who owned the means of production and those who didn’t. As a consequence,
in Marx’s thinking the important aspect of collective consciousness was class con-
sciousness. The future was therefore built on changing the worker’s mind.
Underlying this view, however, was the conviction that the human mind is consti-
tuted through praxis, which is inherently social and has its roots in division of
labour. The founders of cultural-historical activity theory, including Vygotsky, Luria,
and Leont’ev, were well aware of this insight. Cultural-historical activity theory
connected this idea with theoretical models of learning, activity, knowledge cre-
ation, semiotics, and technology use. This led to extensive theoretical and experi-
mental work on the social basis of human cognition (cf. Wertsch, ; ; ;



van der Veer and Valsiner, ; Kozulin, ; Wertsch, del Río, and Alvarez, ;
Engeström, Miettinen, and Punamäki, ).

Leont’ev () illustrated the evolution of activity by analysing the development
of fundamental human activities, such as hunting. In early phases of cultural develop-
ment, hunting can be the simple catching of game. The object of this activity is the
prey, and the motive of activity is hunger. Early on, the evolving division of labour,
however, changes the picture. A group of hunters splits into two groups: one that
beats the bushes to frighten the game, and another that waits silently for the fright-
ened game to come close enough so that it can be killed. The action of noise 
makers and game killers is meaningful only in the context of the activity of hunting.
The meaning of human activity, therefore, is inherently connected to the social 
division of labour (Leont’ev, ; Axel, ).

Leont’ev proposed a three-level model of human activity. Activity itself occurs as
meaningful social productive practice. It has an object, such as food, that can also
be understood as its motive. Activity, in turn, is realized through action. We can
observe activity only in actions and their sequences. The meaning of action can
only be understood in the context of activity, and the same action can be used 
in realizing different activities. For example, we can beat bushes for many different
reasons. Therefore we cannot infer activity from actions. They exist in different
worlds that cannot be reduced to each other.

The third level in Leont’ev’s model is the level of operations. Actions are imple-
mented on this level. The way actions are made concrete depends on the concrete
situation at hand. For example, hunting may be realized through hiding behind a
tree until the game is close enough, but the way the hunter does this depends on
the trees and tools used for killing the animal.

According to Leont’ev, these three fundamentally independent levels of activity
are in constant movement. For example, the noise makers can develop better tools
to make a louder noise, and eventually noise-making can become an end in itself.
Part of the group of hunters can specialize in drumming, which can evolve into
activity with the object of making music. Similarly, a group of people can specialize
in making arrows and spears, thus forming a new community of tool-making 
specialists.

The activity theoretic view implies that one way new communities of practice are
created is through increasing specialization and division of labour. An existing
community can split into new communities. In this process, the structure of activ-
ity and its associated motive structure evolves. Knowledge, in turn, becomes
increasingly specialized, new languages emerge, and meaningful interpretations of
the world become increasingly varied.

This sociocultural and developmental view assumes that division of labour is part
of the natural evolution in cultural development. In this process, beneficial forms of
division of labour may become institutionalized through the emergence of specialized
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 Some activity theorists argue that it is important to keep the concepts of object and motive 
separate. I would argue that one of the strongest points in Leont’ev’s activity theory is that it implies
that object and motive are actually the same thing. Objects exist as articulations of our motives.



communities of practice. These communities, however, always emerge in the con-
text of existing practice. They therefore have shared ‘ancestors’ which provide the
genetically original foundation for the emerging communities.

An individual inventor may play an important role in this process. New forms of
practice can be experimented with and new concepts can be generated to interpret
reality in a new way. This experimentation and creation of meaning, however,
always occurs using cultural resources that have been produced in history. As
Vygotsky put it:

Every inventor, even a genius, is always the outgrowth of his time and environment. His cre-
ativity stems from those needs that were created before him, and rests upon those possibil-
ities that, again, exist outside of him . . . No invention or scientific discovery appears before the
material and psychological conditions are created that are necessary for its emergence.
Creativity is a historically continuous process in which every next form is determined by its
preceding ones. (Vygotsky, ; quoted in van der Veer and Valsiner, : p. xi)

Vygotsky also argued that the development of new knowledge occurs through social
practice. We don’t, for example, first get the idea of hunting and then invent the
practice of hunting. Instead, we first hunt, and only after being engaged in the prac-
tice of hunting, can we try to construct hunting as a mental phenomenon. Similarly,
only when division of labour emerges, can we start to build our identities, lan-
guages, and specialized knowledge around the new practice. When we do this, we
rely on existing cultural resources and conceptions.

Bijker’s discussion on the emergence of Bakelite, therefore, contrasts in an inter-
esting way with the cultural-historical theory of activity. It shows that new techno-
logical practices and their associated technological frames do not necessarily
emerge only through division of labour and increasing specialization. In the early
history of Bakelite, there is no obvious increase in functional differentiation in the
social system, or related change in the existing social division of labour. Indeed, it
seems that Bakelite is not in any obvious sense determined by its ‘preceding forms’.
The invention of Bakelite creates material and psychological conditions that are
necessary, not for its emergence, but for its existence. As it emerges, new forms of
practice, new language and interpretations, and a new conception of synthetic
plastics are created. Vygotsky describes a fundamental aspect of innovation and
creativity, but the mode of innovation that underlies the emergence of Bakelite
relies on a different dynamic. This mode is based on recombining resources pro-
duced by existing communities.

. COMBINATORIAL INNOVATION IN AN ECOLOGY OF
COMMUNITIES

In the historical description of Bakelite, the locus of innovation is not within a sta-
bilized community of practice. As Bijker notes, the community of Bakelite practice
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was created only after Baekeland successfully recruited members from several 
different practices into this new technological frame. Indeed, as Bijker documents,
the innovators within the existing plastics community had great difficulty in under-
standing Baekeland’s invention as something that related to plastics.

Bakelite practice was born, instead, by combining existing practices in a new way.
Baekeland put together some goals from the plastics technological frame, methods
from electrochemical engineering, user communities from electronics and auto-
mobile industries; heated them under pressure, and moulded a new industry out of
these raw materials.

The Bakelite community of practice, therefore, has a developmentally different
origin and dynamic from those communities that emerge through division of labour.
Whereas division of labour has its roots in specialization, Baekeland effectively cre-
ated a new domain for knowledge and practice. As he recruited enough members to
this new domain, the domain stabilized and its members became specialists in
Bakelite knowledge. The end result is a new community of practice and a new social
stock of knowledge that it produces and reproduces. Although in this sense it is sim-
ilar to those communities that emerge through division of labour, it has develop-
mentally different roots.

The locus of Bakelite innovation cannot be found by studying a specific commun-
ity. Instead, we have to describe it on the level of an ecology of communities. Such
innovation has a combinatorial dynamic. Whereas the evolving division of labour
creates new communities as spin-offs from existing practice, combinatorial innova-
tion mixes ingredients from existing communities of practice, and creates a novel
domain where a new practice can stabilize.

In the formation of the Bakelite community, four qualitatively different stages 
can be distinguished. First, someone has to combine existing resources. This agent
of innovation we might call the ‘combiner’. The combiner operates in a socially
peripheral and unstructured domain, appropriating resources for unintended uses.
This ba of combinatorial invention exists ‘in-between’ the domains occupied by
stabilized forms of practice. As an innovator, the combiner creates an initial form of
a new technological opportunity, for example, Bakelite. As a user, the combiner
appropriates resources provided by existing communities.

In the second stage, an innovation becomes articulated in relation to social prac-
tices. Unintended uses become intended uses. Often the combiner actively tries to
promote the innovation for specific uses and recruit user communities. The com-
biner may or may not be successful in this as the articulation of technology funda-
mentally depends on the actual user community. There may also be several user
communities and the innovation may have several different uses. In the articulation
process a network of interests is built around the innovation and the innovation
itself becomes defined in relation to this network.

In the third stage, the innovation becomes stabilized and its use may become
institutionalized. When the uses are stable enough, a producer community can sta-
bilize. The producer community, therefore, becomes one of the ‘users’ of the tech-
nology in question, and ‘the technology’ can itself stabilize as a concrete artefact
that has existence independent of any specific community.



When technology becomes ‘institutionalized’ as an interdependence between two
or more communities, these communities become symbiotic. In the fourth stage,
the innovation couples two or more communities, each of which develops accord-
ing to its own internal dynamics, but also constrained by its interdependencies.

In the first stage, the combiner is the cognitive centre of the innovation process.
However, as he or she operates using a network of human and material collabora-
tors, the effort of the combiner-inventor is mainly about mobilizing these accumu-
lated cognitive and material resources. The combiner is an author in the same sense
as a conductor of an orchestra, who uses existing notes and available players to
compose a product that can be appropriated and appreciated by the audience.

The product itself, however, is actively created by the audience. For some it may
be just noise, and for others just what they wanted and needed. In contrast to
music, which is essentially ephemeral as temporal performance, technological
products, however, are concrete artefacts. This is of key importance. As soon as a
material artefact is generated, it can acquire a life of its own in the field of social
interaction. If a concert performance is materialized, for example, by recording it,
the audience may get the recording when they leave the concert and keep reproduc-
ing the experience without the orchestra. They can listen to a record, for example, 
to study Bach’s theory of invention, or use it to create a suitable atmosphere for 
a dinner, or for an elevator ride. The recording itself becomes a resource, which the
user can appropriate to generate music. At the same time, the control of use shifts
to the user and new resources become available that can be applied to make sense
of the artefact and combine it in novel ways.

Often a user community does not only use a given technological product, but it
consumes them. This continuous flow of interaction binds the communities
together. When communities become interdependent, their evolution therefore
becomes co-evolution. In the theory of autopoietic systems (Maturana and Varela,
) such evolution is called structural drift. The communities become structurally
coupled. The artefact that couples the communities does not need to be defined or
problematized any more in any explicit way; instead, it becomes a transparent and
routine part of community life. In other words, it becomes a constraint and a
resource. In the stable state, the different communities mutually participate in each
other’s reproduction, and as long as this mutual reproduction goes on, the innova-
tive artefact is stabilized as a nexus of interaction. In a sense, it loses its innovative-
ness and becomes part of the metabolism of the practice. This is schematically
depicted in Fig. ., using Bakelite as an example.

Human societies, however, are different from symbiotic biological systems. In an
ecology of communities, structural drift is not the whole story: in a human society
resources can be intentionally allocated. For example, Bakelite can be sold to those
who pay most for it. Communities can compete about resources. The social ecology
of communities and practices, therefore, is complemented by an economy that
links and unlinks communities and their resources. A resource allocation economy,
therefore, leads to ‘creative destruction’, as Schumpeter () suggested. The linus
themselves, however, are irreducibly social.
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In a paradoxical way, combinatorial innovation can create true novelty out of old
components. In contrast, spin-offs from existing practice always occur from within
a given frame. Division of labour and its associated specialization makes the social
system more efficient. Evolving division of labour, however, can also create novelty
as the emerging practices can drive change in the system of motives and meanings.

There exists therefore a complex social negotiation process where different objects
and activities are constructed, institutionalized, changed, and turned into resources.
After Bakelite becomes stabilized, it can rapidly be appropriated for purposes of effi-
cient division of labour. Similarly, the Bakelite community itself can become a
resource, for example, when it may be enrolled for manufacturing new plastics. The
developmental history does not, therefore, determine the role a community will play
in the ecology of communities of practice after it becomes stabilized.

The novelty of Bakelite has it source in the fact that its invention used by-products
from several practices, which were not trying to produce Bakelite. In a very funda-
mental sense combinatory innovation is a product of unintended resources. It
serendipitously appropriates practices and knowledge generated in other commun-
ities and turns them into resources for its own purposes. At the same time—based
on its own interests and perspective—it interprets what these resources actually are.
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Fig. .. Bakelite as a structural coupler between communities

 This combinatorial character of innovation has often been noted (e.g. Teece, Pisano, and Shuen,
; Kogut and Zander, ; Nahapiet and Ghoshal, ; Hamel, ). The actual link between
combination and generation of novelty, however, has rarely been explicitly discussed (an important
exception being Schon, ). In organization theory and knowledge management literature it is
often assumed that by putting together old things something new emerges. Epistemologists have
always had difficulties with this idea, as logical combinations of existing knowledge, strictly speak-
ing, cannot produce true novelty. Indeed, novelty does not emerge from deterministic combination
of existing resources: it can, however, emerge from creative combination of existing resources. 
As was noted before, this can be observed, for example, by studying J. S. Bach’s Inventions.



If combinatory innovation is successful, a new community of practice may
emerge. In this sense, the end result of the development may be similar to the result
of increasing division of labour. An important difference between these two gener-
ative modes of community formation is, however, that whereas it is quite simple to
intentionally organize division of labour, for example, as divisions and product
development teams, it is more difficult to organize for combinatorial innovation.
Combinatorial innovation cannot easily be generated by allocating tasks within a
given system of activity. In other words, whereas spin-offs from existing commun-
ities already have a social basis, combinatorial innovation does not have a social
base, or it is located outside the local ecology of communities. Radical innovation,
when it occurs through evolution of social practice, may appear like a revolution of
the masses. When it is ignited by novel combinations of old ingredients, it may,
however, sound like barbarians at the gate.

. LAYERED ba AND COMBINATORIAL INNOVATION

We have now described different conceptualizations of knowledge creation in
social systems where resource combination and division of labour generate com-
munities, practices, and related social stocks of knowledge. Now we can refine our
concepts of innovation spaces.

If we interpret the concept of ba in the Kyoto School sense of the term, ba is a field
of meaning creation where innovative artefacts and their uses become mutually con-
structed. In such a space, socialization, externalization, articulation, and internaliza-
tion are difficult to separate. Social learning occurs through interaction, observation,
dialogue, and internalization. Externalization occurs, similarly, through interaction,
observation, dialogue, and articulation. Dialogue itself can be understood as an
interactive process where new meaning is articulated, and where the articulated
meaning becomes available for individual and collaborative action. Indeed, the 
concept of ba most naturally seems to apply to a micro-level analysis of meaning 
creation.

A meso-level description, on the level of social practice, shows that existing tech-
nological frames evolve and resources are combined. A macro-level description, in
turn, puts communities into an ecology where existing communities of practice are
enrolled as members of evolving and emerging frames, where different systems of
activity produce resources that are used in other activities, and where some of these
activity systems are embedded in organizations and business firms.

In a sense, the four different types of bas proposed by Nonaka and his colleagues,
therefore, collapse into two. The systematization ba is a place where existing
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 This is one of the reasons why network relations between organizations become prominent in
combinatorial innovation.

 At that level we therefore have the ecological view on innovation in the sense discussed by Kelly,
Kranzberg et al. ().



resources are combined. The socialization/dialoguing/internalization ba is the
place where novel resources are created.

In other words, in the ba that systemizes knowledge, the focus is on exploitation
of knowledge that exists outside the focal knowledge creation space. In the other
bas the focus is on creating new knowledge within the focal knowledge creation
space through learning, articulation, and externalization.

When the ba relies on resources that are embedded in the community that pro-
vides the foundation for the ba, we can talk about an evolutionary ba. When the ba
relies on resources that are not embedded in the focal community, we can talk
about combinatory ba. Even in such a combinatory ba, resources are produced in
systems of activity that have their basis in communities of practice. These resources
are always produced in a context of practice, and they are always consumed in a
context of practice. The contexts, however, are different.

Although the concept of ba and the concept of community of practice have some-
times been viewed as incompatible (e.g. Nonaka, Toyama, and Konno, : ),
they can also be seen as complementary descriptions of the basis of knowledge cre-
ation. Ba, in the Kyoto School interpretation, is a field of meaning creation, which
operates in a cognitive phenomenological domain. Although Nishida’s existential
phenomenology posited an individual as the focus of his analysis, the individual
has to learn and use socially produced cultural resources, such as language and
knowledge, to become a cognitive being. Individuals are always social. Community
of practice, on the other hand, operates at the level of recurrent collective activity. 
It defines an interpretation of the world as a socialized thought style, as a specific
way it uses tools, language, and knowledge, and as a producer of specific material
and immaterial artefacts.

The ongoing meaning processing that occurs within communities of practice can
therefore be described using the Kyoto School version of the concept of ba. The
process of ba sustains a specific reality as a meaningful world. When new know-
ledge and forms of practice are generated in this ba, they have to be, however, insti-
tutionalized and sedimented into the community thought style and routines.
Meaning creation, therefore, is based on a relatively slowly changing community
layer, which provides the conventions and concepts that are needed to produce
new concepts and conventions. These two layers can be represented as in Fig. ..
In a simplified way, we could say that the slowly changing layer of meaning creation
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 This learning / exploitation distinction, of course, breaks down when we analyse it more care-
fully. The resources that we exploit have their origin in socialization and learning that has occurred
in those communities where we have been members. Indeed, as actor-network theorists (e.g. Law,
; Latour, ) have argued, an individual is in an important sense a sum of those social networks
and tools that he or she can turn into resources in social interaction (cf. Nardi, Whittaker, and
Schwartz, ). Therefore, all dialogue that produces new knowledge relies on heterogeneity of
resources and interpretations that are put into interaction by the different parties in the dialogue. 
As Bakhtin noted, such dialogue often produces more than it contains.

 Therefore combination cannot be understood simply as combination of decontextualized 
information. Indeed, this is impossible simply because information does not exist without a context
(Tuomi, ).



can be associated with community practices, whereas the rapidly changing and
dynamic layer can be associated with communication and sense-making.

The two different levels of analysis, an interaction ba and a practice-related com-
munity, emerge when we focus on two qualitatively different domains of knowledge
creation. When we describe collective production of new technologies and arte-
facts, the community and the change in its structure of activities and practices
become focal. When we describe production of new meaning, the interactions
within the ba of meaning creation become focal. In the former case, material 
artefacts and new technologies are created; in the latter case technological frames,
concepts, and systems of meaning evolve.

In Fig. . the lower right quadrant is purposefully missing. In Nonaka’s model,
this quadrant was associated with the combinatory mode of knowledge creation. 
As we saw above, a systematization ba, however, has a qualitatively different social
layer from the originating/dialoguing/exercising ba. Innovations can originate in 
a systematization ba, as was seen in the history of Bakelite. These innovations, 
however, are combinatorial innovations. Their origin is in the interstices of several
different communities that have been turned into resources. A schematic descrip-
tion of the structure of the systematization ba could look, for example, as in Fig. ..

Innovations, therefore, also have two qualitatively different paths of diffusion.
New knowledge can cross the boundary between ongoing interaction and institu-
tionalized social practice, and sediment in the institutions of the focal community.
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Fig. .. A layered ba

 Nonaka’s original definition of the lower right quadrant in his SECI-model was based on the 
idea that explicit knowledge can be combined with explicit knowledge to produce new knowledge.
The distinction between explicit and tacit knowledge, however, is problematic as explicit knowledge
always requires a background context of tacit knowledge, as was noted before. Instead of explicit
knowledge we should probably speak of knowledge resources. In the terms of actor-network theory,
explicit knowledge in the ‘combination’ quadrant is knowledge that has been ‘translated’. The con-
cept of resource implies a process of ‘black-boxing’ which hides much of the complexity of the tacit
meaning associated with the knowledge resource. This also means that there are two qualitatively
different types of ‘explicit’ knowledge that are converted in Nonaka’s SECI-model. Articulation pro-
duces ‘externalized’ knowledge, whereas combination uses knowledge artefacts that have been
translated into resources.



Innovations, however, can also diffuse by inducing change in external commun-
ities. Such induction across communities is often mediated by artefacts. We could
simply call the former vertical diffusion and the latter horizontal diffusion.

Humans are reflective beings, and all material objects have a dual existence as
concrete artefacts and as meaningful objects. But, although interpretations and
artefacts are closely linked, they also have different dynamics of change. Most
importantly, material artefacts, such as new technological products, are always
more than what we intend them to be. Therefore, technological artefacts have the
capability of surprising us. This, indeed, may be the fundamental reason why in
social systems new knowledge is created not only through increasing division of
labour, but also by combining products of knowledge in novel and unexpected
ways. Sometimes useful combinations result from simple tinkering. Perhaps the
fact that some people find it amusing and interesting to break things apart and put
them together again shows that humans are genetically innovative beings. Indeed,
by looking at the recombination mechanisms in living cells it is easy to see that
nature has known the combinatory dynamic of innovation already long before
social division of labour became important. The history of the Internet is rich with
examples of such tinkering and recombination, and it can be argued that the
Internet itself has made the combinatory mode of innovation an increasingly
important part of our modern world. It is therefore useful to revisit the history of 
the Internet to see how combination and evolving specialization interact in the
development of technology.
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CHAPTER

8
Combination and Specialization in the
Evolution of the Internet

The different technological frames that provided the basis for ARPANET first became
combined when ARPANET was developed and implemented in . ARPANET, as 
a technological artefact, crystallized ideas that originated from several communities
of practice. Its designers often took earlier practices for granted, thus carrying 
them into technological designs they were creating. For example, it was generally
assumed that remote access to time-shared mainframe computers was going to be
the main use of the ARPANET. At the same time, the produced artefact created sev-
eral new communities. At the beginning of the s, ARPANET acted as a focal point
that collected several lines of development, concentrated these in time, and rapidly
changed itself into a platform on top of which many new innovations were built.
Whereas ARPANET in  was an object of innovative activity, in the following years
it was turned again and again into a resource for creating other innovations.

The evolution of ARPANET in the s has too many important stages to be 
covered in detail. I therefore briefly discuss only two developments here. The first is
the emergence of email, and the second is the evolution of one central locus of
innovation, the Network Working Group.

. EMAIL AS A COMBINATORIAL INNOVATION

Electronic mail has been the main driver for the diffusion of computer networks
since the beginning of computer networking (Naughton, : –; Abbate, :
–). Electronic mail emerged originally in the context of time-sharing computers,
in the early s. These early email systems allowed users of time-shared com-
puters to send messages to other users of the same computer. In  Ray Tomlinson
combined an intra-machine email program with his experimental network file copy
program, and created a system that could deliver email between two different com-
puters. When the ARPANET project developed a standard for file-transfer, it was soon
realized that Tomlinson’s program could be used to send email over the ARPANET.
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Tomlinson worked for Bolt, Beranek and Newman, the firm that was contracted
by ARPA to develop hardware for ARPANET. He had programmed an experimental
program to share files between computers and earlier programmed an email pro-
gram that worked within a single machine. File transfer became a problem and
opportunity as the ARPANET developers at BBN connected computers to test 
the design of ARPANET. There was no explicit project to develop email; instead,
Tomlinson used BBN’s resources to test whether such an inter-computer email 
system could be possible.

In  it was estimated that  per cent of all network traffic in ARPANET was
email. This came as a surprise to many sponsors of the ARPANET. Although email
was considered as one possible use of computer networks already in the early
phases of the ARPANET project, it was not expected to be important. For example,
Larry Roberts did not include electronic mail in the original blueprint for ARPANET.
In  he noted that the ability to send messages between users was not an import-
ant motivation for a network of scientific computers (Abbate, : ). As Abbate
notes:

In the process of using the network, the ARPANET community developed a new conception of
what networking meant. Since the original view of the network planners was that ‘resources’
meant massive, expensive pieces of hardware or huge databases, they did not anticipate that
people would turn out to be the network’s most valued resources. Network users challenged
the initial assumptions, voting with their packets by sending a huge volume of electronic mail
but making relatively little use of remote hardware and software. Through grassroots innova-
tion and thousands of individual choices, the old idea of resource sharing that had propelled
the ARPANET project forward was gradually replaced by the idea of the network as a means
for bringing people together. (Abbate, : )

Whereas the original goal of the system was to effectively use expensive computer
resources, in practice ARPANET was mainly used to send messages across the 
network. During the s this created continuous tensions between the users of
ARPANET and its funders. However, although email was often seen as an illegiti-
mate use of computer resources, it was also seen as a way to expand the use of the 
network, and therefore accepted.

Tomlinson’s email diffused rapidly because it didn’t require fundamental change
in existing practice. It parsed together existing technologies and provided a new
way to accomplish existing actions. Within the ARPANET community, its appropri-
ation required little individual learning and little change in social practice.

In that sense, email was not a major innovation. However, although its appropri-
ation was easy, after it was taken into use it also opened new possibilities. The rapid
expansion of email use, therefore, can to a large extent be attributed to the fact that
it was introduced as a tool for an old and well-known practice; yet, it also had 
the capability to transform this practice into multiple new forms. As a result, the
take-off for email was fast, and it kept expanding far beyond its original scope. After
email was in wide use, new systems and practices, such as mailing lists, news-
groups, and collaboration systems could be introduced. But if email had been
introduced as a mailing list system, for example, it is quite conceivable that it would
never have taken off.



Email was an explosive innovation. It ignited easily and generated increasing
amounts of energy as new users invented new uses for it. This rapid diffusion of
email, however, did not result from a simple creation of a ‘critical mass’ or ‘network
effects’. Instead, there were two quite different mechanisms at work. Simple ‘dif-
fusion’ occurred as existing practices substituted electronic media for previous
technologies. The new technological opportunity of email was simply taken into
use. As soon as this happened, however, a new expansive dynamic set in and email
started to acquire new meanings.

In Bakhtin’s terms, Tomlinson utilized the existing genres of computer messaging
and file transfer, at the same time creating the infrastructure for new genres. In
activity theoretic terms, email was introduced at the lowest level of the activity hier-
archy. It entered the system of activity at the level of operations, as a tool for exist-
ing actions. At the same time, it made many new combinations of actions effective,
thus reorganizing the system of activity and its motive structure. In this process,
many communities of practice were created.

Networked email was a relatively simple incremental modification of existing
technology. Its results, however, were radical. It transformed the way people under-
stood computer networking in general, and ARPANET in particular. Its very rapid
diffusion indicates that it addressed a very generic need, without much limiting the
way it was used. In this sense, we could say that it added a new medium on top of 
a medium that was itself just emerging: the ARPANET. Packet-switching networks
and email mutually constructed each other.

At the same time, the conditions for social interaction changed; first, on a laboratory
scale and then, more broadly. Email converted the ARPANET into a system of com-
puter-mediated communication. As a result, new communities of practice started to
emerge, which extensively used this new medium. Computer networks became the
infrastructure for social processes and virtual communities became possible. Today,
for example, there are over , Usenet newsgroups on the Internet. Internet com-
munities now range from discursive communities that produce and reproduce iden-
tities to technology development communities, which generate new technological
artefacts. The Linux development model is in many ways a typical technology devel-
opment community on the Internet and I will analyse it in detail in a later chapter.

Implementation of new combinations often occurs very rapidly in software tech-
nology. Software is qualitatively different from other technologies as code is both rep-
resentation and implementation. Whereas in other technologies a description is never
the artefact that is described, in software functionality and its description are embed-
ded into the same piece of code. This makes software uniquely mobile. The funda-
mental reason for the mobility of software is not—as is often assumed—that software
code can be transmitted in a digital form. In other areas of technology, knowledge has
a large tacit component, as for example Collins (; ) has shown. The mobility of
software, and the possibility of appropriating it for unintended uses, depends on the
fact that there is no distinction between semantics and syntax in software.
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 There are, of course, large amounts contextual knowledge that is needed to make sense of software
or to use it (cf. Tuomi, ).
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It is also rather remarkable that due to the combinatorial technical nature of
email, it had no well-defined developer community. Software can be written so 
that its recombination and reuse is easy. It is often possible for a single individual to
realize new combinations independent of any specific stabilized community of
practice. In other words, software quickly creates virtual worlds but can also make
them real. In the history of email, the developer community was made redundant
by fixing and standardizing the basic functionality.

Without a stable developer community, the stability of the emerging technolo-
gical frame to a large extent depends on practices of use. As we now know, the intro-
duction of email rapidly led to new uses and practices, which in turn generated
new complementary innovations, such as email readers, email gateways, email list
servers, news servers, and domain name standards. In contrast to many historical
regimes of innovation, the locus of software-based innovation is therefore often
located in communities of use.

A particularly important community, of course, is the community that maintains
and operates those services that are required to keep email moving. These people
are often called system operators. Although they don’t necessarily develop the basic
functionality of email, and indeed sometimes hate the idea that someone would
like to do it, their practice includes the removing of bottlenecks in email traffic, the
development of configuration scripts, and the debugging of problems in email
delivery. The operator community is inherently conservative as its members are
usually paid to maintain things as they are. The locus of innovation in email, there-
fore, is distributed across downstream communities.

Email is an exceptional combinatorial innovation. Tomlinson was able to patch it
together without enrolling any community or without creating a new community
from scratch. He had personally developed both single computer email and net-
worked file transfer programs and he only had to convince himself to build a work-
ing email system. The cultural and cognitive gap between the two pieces of software
was minimal. Not much learning and no social learning was needed to make the
program components work together.

Furthermore, the early ARPANET community easily played the dual role of 
using and managing the email system. Its use was trivial as it extended the exist-
ing practice of sending conventional mail. The user community had no 
difficulties in managing and operating the system as the users were specialists in
computer networking. In effect, the different communities that generated
resources, combined them, and used and maintained the resulting system 
collapsed into one.

This is not always the case. Napster, for example, relies on file transfer and the
Internet domain name system, making it similar to email (Shirky, ). As playing
music is an existing and generic activity, the use of Napster could spread easily.
Music listeners and Napster developers, however, do not necessarily belong to 
the same communities of practice. Moreover, the resources used in Napster are
produced by communities that don’t have much overlap with computer software
developers. To invent Napster, one also has to invent new revenue models for the
recording industry. Otherwise, the lawyers come knocking at the door.



. ARPANET ECOLOGY AND THE EVOLUTION OF THE
NETWORK WORKING GROUP

In the history of the Internet, a critical role was played by the Network Working
Group (NWG). It was formed early in the ARPANET project to discuss potential uses
of the network, and to create specifications for programs that interacted through
the network. It was to a large extent a self-organized group of graduate students.
The group had no visible authority or decision-making power. Yet it successfully
developed the host-to-host program that became the core software for ARPANET.
During subsequent years the NWG evolved into an ecology of communities that
created most of the ARPANET and Internet technology and applications. In the 
history of the NWG, we can in very concrete terms see how communities emerge,
disappear, and transform themselves.

An embryonic form of the Network Working Group can be found in a group of
Principal Investigators of ARPA/IPTO-funded research sites. When IPTO was plan-
ning to launch the ARPANET project, it used the Principal Investigators’ meeting in
April of  to get feedback on the idea of building a computer network. The idea
of computer networking was not greeted with great enthusiasm as some Principal
Investigators saw the network as an alternative to buying them more computers
(Abbate, : ). Yet, several important contributions were made in the confer-
ence and as a result of it. At the meeting it was decided that there had to be agree-
ment on conventions for transmitting characters and binary blocks, transmission
error checking, retransmission, and computer and user identification. Frank
Westervelt was chosen to write a proposal on these topics and a communication
group was formed to study the related questions (Hauben and Hauben, : ch ).

One of the Principal Investigators, Wesley Clark of Washington University at 
St Louis, proposed an architecture that separated the core communication network
from the mainframe computers that used the network. Instead of directly connect-
ing mainframes—also known as the ‘hosts’—to each other, each host was connected
to an ‘Interface Message Processor’, or IMP. The IMPs, in turn, were connected to
each other. This ‘layered’ architecture meant that each different mainframe had to
be able to communicate only with an IMP—a program on a relatively cheap mini-
computer—and not with all the different mainframes connected to the network.
This greatly reduced the complexity of the network programming, and made it 
possible to develop the core network independently from the mainframe host
applications that used the network.

These basic ideas were discussed and presented at the ACM symposium on 
– October  (Naughton, : –). In the same symposium Roger Scantlebury
from the NPL described the packet-switching network being developed in the UK.
After the session, a number of attendees gathered to discuss network design, and
Scantlebury and his colleagues advocated packet-switching as a way to implement
the network planned by ARPA (Abbate, : ; Hafner and Lyon, : ). These
ideas were further discussed at a meeting organized by ARPA in October. Elmer
Shapiro of SRI was given the task of writing a report on ARPANET architecture, and

 COMBINATION AND SPECIALIZATION



Larry Roberts and Barry Wessler of ARPA wrote the specification for the IMPs based
on Shapiro’s work. This specification was discussed in the Principal Investigator
meeting in June , and a program plan for ‘Resource Sharing Computer Networks’
was submitted to the ARPA Director on  June . Based on the accepted program
plan, a competitive Request for Quotation was mailed to  potential IMP devel-
opers. ARPA received twelve proposals, narrowed them to four, and granted the 
contract finally to BBN (Hauben and Hauben, : ch. ).

The IMPs were necessary to build the communication network that mainframes
were to use for their network applications. The applications, however, had to be
defined. In  it was unclear what those applications would be. Elmer Shapiro was
therefore asked to organize a group that would define applications that the network
would support. This group, which became known as the Network Working Group,
originally consisted of representatives of the first ARPANET sites. The completion
report of the ARPANET project later noted that at the beginning it was not clear
what the group was supposed to do:

To provide the hosts with a little impetus to work on the host-to-host problems, ARPA
assigned Elmer Shapiro of SRI ‘to make something happen’, a typically vague ARPA assign-
ment. Shapiro called a meeting in the summer of  which was attended by programmers
from several of the first hosts to be connected to the network. Individuals who were present
have said that it was clear from the meeting at the time, no one had even any clear notions of
what the fundamental host-to-host issues might be. (ARPANET Completion report draft III,
quoted in Hauben and Hauben, : ch. )

The meeting was chaired by Elmer Shapiro and other attendees included Jeff
Ruflinson of SRI, Ron Stoughton from UCSB, Steve Carr from University of Utah,
and Steve Crocker from UCLA. Shapiro opened the meeting with a list of questions
on how the IMPs and hosts would be connected, what hosts would say to each
other, and what applications would be supported.

No one had any answers, but the prospects seemed exciting. We found ourselves imagining all
kinds of possibilities—interactive graphics, cooperating processes, automatic data base query,
electronic mail—but no one knew where to begin. We weren’t sure whether there was really
room to think hard about these problems; surely someone from the east would be along 
by and by to bring the word. But we did come to one conclusion: We ought to meet again. 
Over the next several months, we managed to parlay that idea into a series of exchange meet-
ings at each of our sites, thereby setting the most important precedent in protocol design.
(Crocker, )

According to Crocker, the first few meetings were quite tenuous. The group was
informal without official charter:

Most of us were graduate students and we expected that a professional crew would show up
eventually to take over the problems we were dealing with. Without clear definition of what
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 The SRI report was issued in Dec.  as ‘A Study of Computer Network Design Parameters’.
 These are the attendees as recalled by Steve Crocker. He did, however, note that records of this

meeting are lost and there might have been other attendees (Crocker, ).
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the host-IMP interface would look like, or even what functions the IMP would provide, we
focused on exotic ideas. (Crocker, )

The initial group met a handful of times in the summer and autumn of  and
winter of , discussing mainly conceptual ideas. One of these was a language
that could be used to download small interpretative programs at the beginning of a
network session, and which could then control the interactions across the network
(Crocker, ).

The NWG work moved from concepts to the concrete problem of utilizing the
underlying IMP network when BBN issued its host-IMP specification in the spring
of . Around that time, the NWG decided that it was necessary to write down
notes that documented the meetings. Steve Crocker, who at that time had become
the chair of the NWG, started to put together memos about the topics discussed in
the NWG meetings. These memos were called ‘Request for Comments’. These RFCs
later became a major form of developing ARPANET and Internet technology.

.. RFCs and the Four Waves of Internet Development

According to Crocker, the early history of RFCs had a definitive impact on the evolu-
tion of the Internet and the way its development eventually became organized:

Two all-important aspects of the early work deserve mention, although they’re completely evid-
ent to anyone who participates in the process today. First, the technical direction we chose
from the beginning was an open architecture based on multiple layers of protocol. We were
frankly too scared to imagine that we could define an all-inclusive set of protocols that would
serve indefinitely. We envisioned a continual process of evolution and addition, and obviously
this is what’s happened.

The RFCs themselves also represented a certain sense of fear. After several months of 
meetings, we felt obliged to write down our thoughts. We parceled out the work and wrote 
the initial batch of memos. In addition to participating in the technical design, I took on the
administrative function of setting up a simple scheme for numbering and distributing the
notes. Mindful that our group was informal, junior and unchartered, I wanted to emphasize
these notes were the beginning of a dialog and not an assertion of control. (Crocker, )

The first two RFCs discussed the requirements of the host software. The third RFC
described the documentation conventions to be used in the RFCs. It pointed out
that the NWG was concerned with issues related to the host software, the strategies
for using the network, and the initial experiments with the network. The efforts of
the NWG were to be reported through the RFC notes. This early document, written
in April , set the tone for later ARPANET and Internet development:

The content of a NWG note may be any thought, suggestion, etc. related to the Host soft-
ware or other aspect of the network. Notes are encouraged to be timely rather than polished.
Philosophical positions without examples or other specifics, specific suggestions or 

 This idea was actually implemented in the Java language and ActiveX, about three decades later.



implementation techniques without introductory or background explanation, and explicit
questions without any attempted answers are all acceptable. The minimum length for a NWG
note is one sentence. (Crocker, )

In commenting on this third RFC, Jake Feinler notes:

Thus by the time the third RFC was published, many of the concepts of how to do business 
in this new networking environment had been established—there would be a working 
group of implementers (NWG) actually discussing and trying things out; ideas were to be free-
wheeling; communications would be informal; documents would be deposited (online when
possible) at the NIC and distributed freely to members of the working group; and anyone 
with something to contribute could come to the party. With this one document a swath was
instantly cut through miles of red tape and pedantic process. Was this radical for the times or
what! And we were only up to RFC ! (Feinler, )

The number of documents published in the RFC series shows that there have been
three or four waves of Internet-technology. This can be seen in Fig. .. The first
wave peaked around . This is the time when key ARPANET applications, such as
email and the FTP file transfer protocol, were designed. As the use of ARPANET
grew and the original development goals were achieved, ARPA started to look for an
organization that could take care of the operational management of the ARPANET
and provide nationwide public service (Abbate, : –). After unsuccessful
attempts to find a commercial operator, ARPANET was temporarily transferred to
the Defense Communications Agency (DCA) in . ARPA itself focused its efforts
on the problem of networking multiple networks. The first internetwork experi-
ments were conducted in  (Abbate, : –).

After the DCA started to operate the ARPANET, its future was uncertain for 
several years. ARPANET was built to develop computer networking technology. 
The experiment was successful, but ARPANET itself was still clearly an experimen-
tal system. The Defense Department was developing its own computer networks,
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and planned to replace ARPANET after these military-grade operational networks
were ready. First the DCA considered dismantling the ARPANET, but eventually 
the agency concluded that there was also a role for a research-oriented network
(Abbate, : ).

The parallel use of ARPANET and the operational military networks, however,
made it clear that internetworking was going to be a problem also in the future. In
 the Office of the Secretary of Defense adopted the new Internet protocols as
official standards. The existing ARPANET sites were encouraged to start developing
software for the new TCP/IP Internet protocols. In March of , DCA’s ARPANET
manager announced that all ARPANET hosts would be required to replace the old
ARPANET host-protocol with the new TCP/IP by January .

The new Internet protocols, therefore, became the centre of activity for the
ARPANET community. An increasing number of Internet-related notes started to
appear in the RFC series, and in  the Internet Experimentation Notes were
merged with the original RFC series. In that same year, also a new system for handling
host names was introduced. The original ARPANET host name system required that
each computer kept a full list of all host names and their corresponding ARPANET
addresses in a file. When the number of hosts increased, this became a major prob-
lem. The new domain name system divided the Internet into separate domains,
each managed by a host that managed host names in its own domain. Instead 
of maintaining all host names in a local file, a host could send a request to the
domain name server and retrieve the Internet address of the host with a given
name. Six top-level domains were selected to separate educational, military, gov-
ernmental, commercial, non-commercial organizations, and network resources.
These top-level domains were distinguished by adding .edu, .mil, .gov, .com, .org,
and .net to their names, respectively. Within each top-level domain the name sys-
tem was divided into domains. Each domain had a host that provided information
on the addresses of the host within the domain. To communicate with a host,
another host had to send a name request to the domain name server that translated
the Internet name to the corresponding Internet protocol address. New hosts could
therefore easily be added to domains without coordinating changes centrally or 
distributing the address information to all hosts in the network.

The second peak in RFC activity occured around . After that, clear waves are
difficult to distinguish. In  the RFC activity started to grow as the global Internet
expansion proceeded and the National Science Foundation started to connect aca-
demic networks to the Internet. In  Canada, Denmark, Finland, France, Iceland,
Norway, and Sweden were the first countries to connect to the new NSFNET
Internet backbone. New information-sharing applications, such as Archie, Gopher,
and World Wide Web released in  and , gained in popularity.

During that time, the Internet underwent a major transformation. The estimated
number of hosts connected to the Internet went from over , in , to over
, in , and to over , in . In  the first commercial TCP/IP 
network service was created by Performance Systems International (later known 
as PSINet). The original ARPANET was in theory available only for sites that had
defence contracts. NSF expanded the network to all academic institutions, and also
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linked its network to networks outside the US. The use of the NSFNET Internet
backbone, however, was still restricted. According to the NSF’s Acceptable Use
Policy, the backbone was reserved for open research and education, and commer-
cial use was not permitted. As a result, in the early s several commercial service
providers started to launch their own TCP/IP services. As it became increasingly
obvious that there would be alternative commercial Internet services, NSF decided
in  that its academic backbone services could be outsourced. The privatization
of the Internet created a new peak of activity around .

In  the Internet also broke through in the public media. The World Wide Web
and Mosaic created front-page publicity for the Internet. The Internet moved from
the academic world first to business use and quickly became a commodity that is
integrated with all PCs. This created a new entrepreneurial wave of Internet devel-
opment, and Internet standards became important for many new players. Judging
from Fig. ., the peak of this activity seemed to occur around .

.. Organization and Community Ecology

The ARPANET architecture thus led to a natural division of labour: someone had to
develop the hardware and software for the core network, and someone else had 
to develop computer programs that used the network. The NWG was set up for the
latter task. The former task was given to Bolt, Beranek and Newman, after a com-
petitive bid in . A Network Information Center (NIC) was also set up to manage
information related to ARPANET development. This task was contracted to SRI’s
Augmentation Research Center. When ARPANET expanded beyond its first four
nodes in the beginning of , it became apparent that the operation of the net-
work required support. ARPA therefore contracted BBN to set up a Network Control
Center (NCC), which monitored the network and gave support to network users.

As the network expanded, the NWG grew rapidly from half a dozen participants
to about one hundred, in a couple of years. Soon several informal working groups
and special interest groups were formed within NWG. These groups were set up
around interest areas and specific program development activities, and often they
were transitory.

ARPANET activity expanded rapidly in  when ARPA directors decided that the
system should be demonstrated at the First International Conference of Computer
Communications. Several applications were developed, and the possibilities of
computer networking were successfully demonstrated to an audience of about a
thousand experts. During the conference, an International Network Working Group
(INWG) was formed. INWG brought together people who were developing packet-
switching networks in different countries, including the US ARPANET, the UK
National Physical Laboratory’s newly designed Mark II, and the French Cyclades.
The INWG was chaired by one core member of the ARPANET NWG, Vinton Cerf.
The INWG reorganized itself a year later to be a part of the International Federation
for Information Processing (IFIP). As a result the INWG transformed itself into IFIP
Working Group ..



As the ARPANET grew, the number of users soon bypassed the number of
ARPANET developers. In  there was an attempt to set up a group to represent
users, but when it tried to get involved with the planning of ARPANET architecture,
ARPA ended funding for the group.

The various international network projects made it increasingly visible that
ARPANET was going to be only one network among several different networks.
ARPA was also funding packet-switching networks that used radio and satellite con-
nections. As a result, it became clear that some mechanisms should be developed
to interconnect the various networks. ARPA started to fund research on intercon-
nected networks in , and soon this became the main focus for ARPA’s network
activities. Vinton Cerf and Robert Kahn, at that time head of ARPA/IPTO, wrote the
first paper on Internet design in the summer of . Cerf continued this work under
a contract from ARPA, and became a program manager for ARPA’s network projects
in .

To develop the Internet, Cerf set up a group, along the lines of the original NWG,
which he called the Internet Working Group (IWG). When the size of this group
grew, Cerf reorganized it in  into three groups. One of these, the International
Cooperation Board (ICB) focused on coordinating European network projects and
ARPA’s Internet Program; another was an inclusive Internet Research Group (IRG),
which provided a platform of open discussions on internetting; and the third group
was the Internet Configuration Control Board, which became a decision-making
authority in the Internet Program. Although the original NWG still existed in the
form of informal working groups, after ARPANET switched to Internet technology
in , the original NWG-related groups effectively became part of the Internet
organization.

The organizational structure continued its evolution, reflecting emerging new
needs and the growth of the system. In  the ICCB was replaced by the Internet
Activities Board (IAB) and a set of Task Forces were created under it. The IAB con-
sisted of the chairs of the Task Forces. In this transition, the earlier ICCB group
effectively renamed itself as IAB: each ICCB member was given his own Task Force
and the original ICCB members became members of the new IAB. This evolution of
the ARPANET development structure is shown in Fig. ..

.. Spin-off and Resource Combination in the NWG

By looking at the somewhat simplified Fig. ., several characteristics of community
development become visible. First, the ARPANET project explicitly created groups
based on division of labour. When these groups started to work on their tasks, they
quickly evolved into communities of practice. Each community had its own prac-
tices, goals, values, and tools. Due to their common origin many of the commun-
ities, however, also shared values, practices, and tools. An important common 
practice was the use of RFCs, and the ARPANET itself became a common tool to dis-
tribute these RFCs. This practice was imitated in many communities that emerged
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from the NWG, including the Internet Working Group. The IWG published its own
Internet Experiment Notes series until it was merged into the RFC series in 

(Cerf, ).
When ARPANET became a working system, The Network Working Group expanded

together with the use of the network. After programs such as remote access (telnet),
file transfer (ftp), and email became available, specialized development communities
became increasingly independent of location. The new communities were to a large
extent virtual. They emerged in the context of NWG, and later in an ecology of NWG-
related communities. These communities developed technologies that improved the
network as an infrastructure, thus creating tools for each other.

Communities, however, did not always emerge simply as a result of special-
ization. The INWG, for example, was a community that brought together several
existing communities. Through the INWG, the NWG recruited resources that it
could not have developed itself. The membership of INWG included, for example,
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key experts from the French Cyclades project, the UK NPL networking experts, local
area network experts from Xerox Parc, and representatives from telecom carriers.

The transformation of INWG into IFIP Working Group . also shows how existing
practices, resources, and institutions can be appropriated for new purposes. IFIP

had standard processes of setting up new working groups, and it had goals and
interests that were closely related to those of the INWG. By reframing itself as an
IFIP working group, the INWG acquired a strong institutional status and access 
to organizational routines that were needed to efficiently manage international 
collaboration.

Although the evolution of ARPANET communities was in many ways unpre-
dictable and unplanned, it was not random. For example, the ARPANET Users
Interest Working Group was effectively killed by the director of ARPA/IPTO when it
became apparent that the group intended to influence the evolution of the system
(Abbate, : ). This explicit show of power was quite exceptional. In most cases,
ARPA simply promoted activities that its managers believed to be useful, and 
there was no need to explicitly control the evolution of the system. Partly this was
because ARPA had no serious contenders in this process. Within the generic and
rather ambiguous goals of the ARPANET project, local initiatives could be started
and their results could easily be integrated with the evolving system. It was also
widely understood that the system that was being developed was a complex plat-
form for further developments. There was no predetermined design for the system.
Therefore the system could opportunistically utilize all those innovations that its
developers made during the evolution of the system.

The history of the NWG shows that communities can have diffuse boundaries in
two dimensions. First, their membership may be unbounded. NWG communi-
ties were explicitly launched according to the principle that anyone can be a legiti-
mate participator in the community. NWG communities, therefore, differ from
those communities of practice that were described by Lave and Wenger (). In
Internet communities, the membership is ‘graded’: some members are in the core
of the community and others may be more loosely associated with a given commu-
nity. Inclusion, however, may smoothly move from non-existent to tight. As long as
the peripheral participants are simply observing the activities of the more central
participants, peripheral participants are more or less invisible in the community.
Only when they become increasingly active, can the impact of their presence 
be detected. In contrast to traditional communities, Internet communities are
therefore different: in economic terms, peripheral participation is costless to the
community. This change in the dynamics of communities is fundamentally created
by technology.

Communities also have a diffuse membership across time. Participators do not
deterministically move from periphery to centre; instead, some participators just
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 IFIP, or International Federation for Information Processing, is an international and apolitical
organization that coordinates research and development in the information technology area. 
Its Technical Committee  (TC ) deals with communication systems, and IFIP Working Group .

is ‘Architectures and Protocols for Distributed Systems’. Today, there are several Internet-related
working groups organized under TC .



visit the periphery, while others rapidly move to the centre, just to disappear at
some subsequent time. Due to the informal and voluntary nature of many Internet
development communities, the centrality in a community is to a large extent deter-
mined by the track record and activity of the members. Centrality therefore reflects
the shared memory of the community. The dynamics of NWG communities differ
from many earlier communities because their memory is recorded in great detail in
a medium that can be used to recreate the history of the community in question.

As NWG communities have exceptionally good organizational memory, one
might expect that their technological frames would become rigid. With almost total
recall, it is difficult to unlearn and find new ways to do things (Tuomi, ). The
history of the evolution of ARPANET and the Internet, however, shows that this has
not happened: many central values and goals of the developers have changed quite
radically during the years.

One important reason for this seems to be that the original technological frame
is constantly tested in practice. A current technological frame guides the develop-
ment, but the results of the development often break the frame. For example, when
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the Internet became interesting enough to attract commercial developers and
users, new organizational structures were set up to make commercial use possible.
When it became obvious that the goals of the US ARPA and Defense Department
were becoming increasingly difficult to match with commercial interests and the
requirements for global networking, the descendants of NWG finally formed the
Internet Society, in . As it became clear during the s that the Internet was
becoming a major driver in socio-economic development, the Internet Society 
created in  the Internet Societal Task Force, moving the original focus of NWG
from technological issues increasingly to issues related to social development.

The evolution of the NWG communities shows that communities have a ‘fractal’
character in the time dimension. The evolving division of labour creates commun-
ities, which further spin off new communities. As communities do not have well-
defined boundaries in time, one can ‘zoom in’ to a specific community and find its
origins in the developmentally earlier forms of community structure. This ‘fractal-
ization process’ is depicted in Fig. ., which schematically shows the evolution of
the NWG during the first fifteen years of Internet development.

 COMBINATION AND SPECIALIZATION

 The Internet Societal Task Force was closed down in Dec.  as it had difficulties in producing
concrete results of its work. The discussion continues at the isdf (internet societal discussion forum)
mailing list, managed by majordomo@www.isoc.org.

 The fractal model of organization was discussed in Tuomi (: –), where it was proposed
that organizations could be viewed as ‘communities within communities’. The developmental his-
tory of such organizational structures shows that part of this ‘fractal structure’ is generated as a result
of ongoing specialization and division of labour.

 This developmental view on communities of practice could be understood as a basis of imple-
menting the cellular organization form discussed by Miles et al. ().



CHAPTER

9
Retrospection and Attribution in the
History of Arpanet and the Internet

The traditional linear model of innovation implies that the source of innovation lies
upstream. Causal chains and ‘streams’, however, can be defined only after a specific
interpretation of an innovation is selected. What we find from ‘upstream’ depends
on how we map the terrain. This is theoretically important when we analyse the loci
of innovation, but it also has important practical implications, for example, for
attribution of intellectual property rights. When we discuss the actors and agents of
innovation, their importance depends on historical reconstruction.

Authorship and reputation are always assigned retrospectively. At the beginning
of the twentieth century, it was estimated that there were about , paintings by
Rembrandt. Since then, the number has been cut down to , then to , and to
. Ongoing research by the Rembrandt Research Project in Amsterdam will cut
the number further (Alpers, ). Many of the well-known ‘Rembrandt’ paintings
were not painted by Rembrandt. As Alpers describes, often they were works of
Rembrandt’s students and by artists influenced by his style.

Indeed, in Rembrandt’s studio the concept of authorship acquires a historically
new meaning and becomes an integral part of the economy of the art market. The
price of a Rembrandt painting, in turn, depends on our theory of authorship and
agency. Markets adopt a specific theory of authorship, and make authenticity a
question of the identity of the painter, even when it may be impossible to define
exactly who the painter is, or when the end result is a product of collaborative work.
As Alpers (: ) notes, Rembrandt willingly signed works painted by others.
Moreover, he got other artists to pass themselves off as him. In other times and
other cultures, the authorship for Rembrandt’s works could have been claimed by
his patrons. In another culture, the authorship could have been claimed by the
maker of the pigments that Rembrandt used for his paints. Historically, this prob-
lem becomes an acute problem in the case of Rembrandt, as he is one of the first
artists to emphasize the role of an individual author. As Alpers puts it:

The case of Rembrandt makes it particularly clear that the question of attribution is not 
the same as the question of originality or of invention. Where, then, does ‘quality’ lie? That



individuality claimed by Rembrandt’s mode of painting, an individuality which, however, 
is produced in a workshop situation, presents the problem in a particularly complex way.
(Alpers, : )

History has a very selective memory. Many artists who were well known and highly
respected authors in their own time have rapidly become forgotten. The retrospect-
ive prominence of authors has little to do with the quality of their work. As Gladys
and Kurt Lang () have shown, contemporary peer recognition does not predict
the survival of artistic reputation. Even during the lifetime of an author, the credit
often goes to someone else. Robert Merton (: –; ; ) introduced 
the concept of the ‘Matthew Effect’ to describe the allocation of credit among
authors of multiple discoveries or collaborators, arguing that the ‘rich are likely to
get richer’. Stephen Cole () and Harriet Zuckerman () showed that those 
scientists who are located to central positions in the social system of science tend
to get most visibility and credit. And, as common sense might hint, those who 
have accumulated strong reputations have a strong voice when history is told
(Gamson, ).

The problem of allocating authorship is clearly seen in the phenomenon of epo-
nymy. Eponymy associates a specific idea, phenomenon, or result with a person, 
as in Gaussian distribution, Planck’s constant, Halley’s comet, Rorschach test, or
Tobin tax. Based on his studies on the history of statistics, Stephen Stigler (: )
proposed his own ‘Stigler’s Law of Eponymy’. In its simplest and strongest form 
it says: ‘No scientific discovery is named after its original discoverer’.

History is important because it underlies our concept of progress. When innova-
tion is seen as progress, we implicitly generate the linear model of innovation.
Innovation becomes a solution to a problem, and we assume that the problem
existed before the innovation, waiting to be solved. We further assume that the
inventor becomes an agent of action and an author of its consequences. This 
theory is an integral part of modern concepts of authorship, ownership, and eco-
nomy. When historical accounts of technological development fit this model well,
we think the stories are accurate. When they reveal the complexity of social interac-
tion and development, they remain confusing and without a clear storyline.

Mircea Eliade () argued that in traditional cultures events become meaning-
ful to the extent that they repeat mythical archetypes. The collective mechanisms 
of attribution and interpretation are in this sense ‘pre-modern’. Innovation and
innovators become meaningful when they fit the mythical models of innovation. 
As Eliade showed, recall of meaningful stories quickly fills in the missing details and
puts the actors in their expected roles. Halbwachs (; ), Douglas (), and
others have noted the same point. Prototypical stories are well recalled and often
reproduced.

Histories are sources of meaning and they are actively organized to tell a story for
specific purposes (MacIntyre, ; Czarniawska, ). Innovations, therefore, are
not only reconstructed as historical facts. History is always told in a current context
and it is produced at the same time as it is recalled. This hits the core of the 
traditional model of innovation.

 RETROSPECTION AND ATTRIBUTION



. ‘THE FIRST PAPER ON PACKET-SWITCHING THEORY’

One example of this process can be found in some of the most authoritative
accounts of the history of ARPANET and the Internet. In his recent interviews and
papers, Larry Roberts claims that Leonard Kleinrock’s work at MIT was crucial in
helping Roberts to realize that packet-switched networks were the way to go. The
role of MIT becomes emphasized in this story, possibly because Kleinrock did his
Ph.D. at the same research laboratory with Roberts and, perhaps, because many
students of Kleinrock later become important contributors in the development of
the Internet. Also in the ‘Brief History of the Internet’, written by Roberts, Kleinrock
and others (Leiner, Cerf, et al., ) and published through the Internet Society,
Leonard Kleinrock’s work is mentioned as the primary source of convincing Roberts
that packet-switching would be possible. This rather authoritative version of the
history of the Internet also notes that Kleinrock published the first paper on packet-
switching theory in July .

It is, however, not obvious that Kleinrock’s paper (Kleinrock, ) should be con-
sidered as the first paper in packet-switching theory. The paper is a Ph.D. proposal,
which describes statistical methods that had been used for modelling telephone
networks since the early decades of the twentieth century, as the paper notes. 
The proposal mentions computers twice, in the context of simulating traffic in the
store-and-forward networks using a computer. Without the benefit of hindsight,
and Baran’s and Davies’s work on packet-switching, it would probably be difficult 
to understand Kleinrock’s paper as ‘the first paper on packet-switching theory’. The
paper itself is a well-written proposal, but indicates the difficulty of reading history
without seeing it through later developments.

The impression given by the ‘Brief History of the Internet’ is not historically very
accurate but it fits well with the traditional model of innovation as a logical progress
of improved technology. According to this account Kleinrock developed the theory
for packet-switched networks, Roberts went on to test it by building the first wide-
area network between MIT and SDC with Thomas Merrill, and the result of this
experiment was the realization that packet-switching was required as Kleinrock had
predicted. The logic of events is clear and history unfolds in an organized and lin-
ear way. At the same time, the key actors become well defined.

This emphasis on a logical progression of ideas reflects the traditional linear
model of innovation. Without well-defined heroes of innovation there cannot be
heroic innovation. This requires, however, that the meaning of events and their tim-
ing have to be adjusted. This version of the history of the Internet, for example, notes
that: ‘It happened that the work at MIT (–), at RAND (–), and at NPL
(–) had all proceeded in parallel without any of the researchers knowing
about the other work’. It is, however, difficult to match the years mentioned to any
available documents, and it is well known that there were many interactions and
interdependencies between RAND, NPL, and IPTO.
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 Roberts has presented this view of the history of the Internet, for example, in a recent presenta-
tion at SIGCOMM  (Roberts, b).



In his ‘Internet Chronology’, Roberts (a) notes that ‘the ARPANET and
Internet stemmed from the MIT work of Licklider, Kleinrock and Roberts, and had
no relation to Baran’s work’. In discussing the impact of Baran’s work, Roberts
writes: ‘Roberts read the Rand work and met with Baran . . . the Rand work had no
significant impact on the ARPANET plans and Internet history.’

Earlier, in O’Neill (: ), Roberts described his first encounter with Baran’s
work, in October , as a kind of revelation: ‘I got this huge collection of reports
back at the office, which were sitting around the ARPA office, and suddenly 
I learned how to route packets. So we talked to Paul and used all of his concepts and
put together the proposal . . . ’. In June  Roberts described the ARPANET as a
demonstration of the distributed network recommended in the RAND study.

The independence of MIT work on research at RAND is also somewhat unclear.
For example, Kleinrock used Baran as a reference in his Ph.D. work in  (Abbate,
: ). The first public presentation of the ARPANET concept by Roberts in
October , at the ACM Conference in Gatlinburg, is still based on a store-and-
forward message network, without well-defined packets. It was during this confer-
ence that Roberts first learned about Davies’s and Baran’s work on packet-switching.

The Internet is a major innovation with huge social consequences. The way soci-
ety allocates credit for this innovation has consequences, and an ‘unfair’ allocation
of credit quickly creates controversy. For example, when the US Vice President 
Al Gore was interviewed on CNN in , he was interpreted as claiming that he
invented the Internet. The sentence which generated a lot of comment was: ‘During
my service in the United States Congress, I took the initiative in creating the
Internet’ (McCullagh, ; ).

Many commentators rushed to note that this claim was absurd. But, as Quarterman
() points out, it is not necessarily as absurd as many believe. Senator Gore was
holding hearings about the Internet as early as . As Quarterman notes:

If I may paraphrase, Gore built the Internet in the same way as a mayor builds a bridge: 
neither by drawing up blueprints nor by welding steel; rather by facilitating its construction.
(Quarterman, )

Robert Kahn and Vinton Cerf, who played key roles in the s in coordinating and
developing the Internet, wrote a statement where they pointed out that—although
‘no one person or even a small group of persons ever “invented” the Internet’—
Al Gore was to be given some credit:

As far back as the s Congressman Gore promoted the idea of high speed telecommunica-
tions as an engine for both economic growth and the improvement of our educational system.
He was the first elected official to grasp the potential of computer communications to have a
broader impact than just improving the conduct of science and scholarship. Though easily
forgotten, now, at the time this was an unproven and controversial concept. Our work on the
Internet started in  and was based on even earlier work that took place in the mid–late
s. But the Internet, as we know it today, was not deployed until . When the Internet
was still in the early stages of its deployment, Congressman Gore provided intellectual leader-
ship by helping create the vision of the potential benefits of high speed computing and 
communication. (Kahn and Cerf, )

 RETROSPECTION AND ATTRIBUTION



. RECONSTRUCTING THE INTERNET

It is not surprising that the evolution of the Internet does not fit nicely with existing
models of innovation, or that it is not easy to say whether Al Gore should get a
patent on it. Exactly because of this, it allows us see where the conventional innova-
tion models fail. One reason for the success of the Internet has been that so many
people have felt that they have made important contributions to it. In other words,
there are—and there have been—many different Internets.

History is reconstructed from the present, but the present is also constructed
using history. We do not only reinterpret authorship and agency retrospectively
using hindsight. We also reinterpret the technology itself, based on its current uses
and the role it plays in our social practices. This has interesting implications, for
example, for policy-making. What, indeed, should we regulate and legislate when
we regulate and legislate on ‘the Internet’?

A very concrete example of the continuous process of technology reinvention can
be found in the recent history of the Internet. Many articles that discuss the Internet
at the beginning of the s do not actually discuss it at all. Indeed, the majority of
‘Internet’ articles from that period—articles that are today categorized in electronic
databases using Internet as a keyword—do not mention the Internet. In fact, they
discuss cases of paedophilia and crimes where ATM machines play a role. At some
point in the s, paedophilia and crime became associated with the Internet, and
news articles that discussed paedophilia and computer crime became categorized
as Internet articles.

The fact that crime became associated with the Internet is not an accident.
Almost all Internet-related articles before  mentioned the famous ‘Morris
worm’ that shut down much of the Internet in December . As a result, the
Internet became known as a domain of hackers. The dominance of the Morris
worm can be seen in Fig. .. The figure shows both the importance of the Morris
worm at the end of the s and the importance of retrospective categorization of
news as Internet-related news. The analysed articles include all newspaper articles
recorded in the Lexis-Nexis database.

Halbwachs () argued that social order is based on collective memory, which
provides the basis for interpersonal meaning. Some ideas fit with the way a social
group collectively understands its world. In the case of the Internet, this group is
global. The media have retold the story of the Morris worm for over a decade now.

RETROSPECTION AND ATTRIBUTION 

 Mitchell () and Lessig () have pointed out that technical design choices are becoming
increasingly important in regulation. According to Lessig, regulative forces include norms, laws,
markets, and technical architectures. The concept of technical architecture, however, implies that
we have a functional description of the system at hand. As our interpretation of functionality
depends on uses, the concept of functionality makes sense only within a community of practice.
This, in turn, means that norms, which are rooted in the internal values of a community, and func-
tionality are both expressions of community values. Lessig’s point seems to be that the norms of a
user community and the norms of a technology developer community can be independent, and are
increasingly so in the modern economy.



When anything occurs that has a perceived similarity with this prototypical example,
the worm sticks its head above the ground. This can be seen in Fig. ., which shows
the number of articles that mention the Morris worm in the Lexis-Nexis database.

Around  the Internet was a network that connected thousands of computers
around the world. For many people it was, however, a rather exotic thing: a techno-
logical system that had a worm. Most people didn’t know about the Internet at all.
In fact, the Internet started to attract attention only around the end of . Whereas
it was earlier typically described as ‘a U.S. computer research network’, and around
 as a ‘rapidly growing global computer network’, in  it became increasingly
associated with the World Wide Web. Rapidly it became an economic and political
topic. This can be seen in Fig. .. The figure shows the number of articles that dis-
cuss the Internet. The numbers are corrected so that they do not include articles
that have been retrospectively categorized as Internet articles but do not discuss
the Internet. Also articles which do not relate to the Internet computer network, are
not included in the numbers shown in the figure. For example, many articles that
discuss the ‘Internet’ around  are about the Internet banking system, which
does not have anything to do with Internet technology.

The nature of retrospective interpretation of history can easily be seen by study-
ing the content of Internet-related articles in different time periods. For example,
the Financial Times had  articles that mentioned the Internet in . In January
 it had  articles mentioning the Internet. In the first fifteen days in  it
had  articles. By iteratively categorizing the topics discussed in these articles a
number of themes can be found. For example, whereas about  per cent of Internet
articles discuss industry-related news in , in   per cent of the articles 
are industry analysis and news. The Internet had also become an investment 
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phenomenon. In  one article discussed the Internet in the context of investment
and venture capital. In  every fifth article related to these topics. Similarly,
whereas the Internet didn’t have anything to do with the stock markets in , in
the first half of January  almost every third article discussed stock markets.
Other topics became non-issues as the Internet evolved. For example, whereas in
 over  per cent of the articles discussed the number of users on the Internet, 
in  the growth of the Internet had become common knowledge. Only . per
cent of articles mentioned the number of users.

The emergence of new themes can be seen in Fig. .. It includes the categories
that emerge from the studied articles and shows the distribution of articles in .
As can be seen from the figure, in the second half of the s, the Internet acquired
new meaning in social practice. The empty categories in Fig. . represent those
topics that emerged after .

Technological systems and products have interpretative flexibility. Partly this flex-
ibility results from the alternative social contexts where technologies can acquire
their meaning. Fundamentally, however, meaning is always a historical phenom-
enon. To understand what a specific innovation is, we have to be able to tell a story
that explains where the thing came from, who made it happen, and why. In some
cases this is difficult. It may be impossible to know who invented the wheel, and
how many times it has been reinvented. Often our memory fails us. Lacking his-
torical detail, we can simply invent the missing parts of the story, including the
inventor herself. The traditional concept of innovation relies on a teleology where
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better functionality is the universal final cause, and from this Archimedean point
we start to unfold our stories. In such stories, square wheels are replaced by round
ones because of their smoother function. A more historically accurate concept of
innovation could be found by noting that there are several actors who have their
own perspectives on the various uses and benefits, that there exists a multitude of
agents of innovation, and many competing stories that can be told.
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CHAPTER

10
Learning from Linux

In the Introduction I argued that the Linux operating system is an interesting test
case for theories of innovation and technological development. During the last 
couple of years, the open source development model has been on the front pages of
newspapers, and the focus of much attention (e.g. DiBona, Ockman, and Stone,
; Wayner, ; Raymond, a; b; Bezroukov, ; Kuwabara, ;
Tuomi, ). It has been claimed, for example, that open source projects can 
produce better technology than traditional corporate R&D (Raymond, ). As a
result, many corporations have invested heavily in trying to adopt best practices
from the open source model.

In this chapter we return to the open source development model and the history
of Linux, which were briefly discussed in the Introduction. First, I will describe the
Linux system and its developer community in an evolutionary context, highlighting
some main characteristics of the socio-technical change that has led to the current
Linux system. I will then discuss the organization of this technology creation
process, focusing on control and coordination mechanisms. I will describe in some
detail the ways the Linux community has managed the trade-offs between innova-
tion and maintainability of the increasingly complex system, and discuss how the
learning has been embedded and reflected in the system architecture.

Linux has attracted considerable attention because it has been argued that the
open source quality control mechanisms are more effective than traditional meth-
ods used in software development. It has often been claimed that Linux is more 
reliable than proprietary systems because it is developed using the open source
principles. I will describe the Linux quality control system, analysing in some detail
the bug removal process and the complex socio-technical system that underlies it.

Open source development is a special form of technology development as it
intentionally reverses some common intellectual property rights. Instead of copy-
right it uses ‘copyleft’, which guarantees the rights of users to modify the results of
development, and derive new works from it. The fact that such a licensing model
seems to work and promote technology development has important consequences
for discussions on intellectual property rights, the patent system, and the theory of
appropriation of the results of innovation. The open source licensing policy can be
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seen as an important social innovation that has a major impact on the way Linux is
developed. I will discuss regulations and standards that underlie Linux develop-
ment, and describe the various forms of licensing that have been used in the open
source community.

As was noted before, innovation literature sometimes leaves the process of inven-
tion in a black box where undefined psychological forces operate outside the
domain of innovation research. The drivers for innovation are commonly under-
stood to be economic. In this context, it is interesting to note the incentives and
drivers of technology development as they can be observed in the case of Linux.
Reputation and attention are closely related in the Linux community, and they are
the key to resource allocation, which, in turn, directs technology development.

The present chapter covers a broad set of issues and introduces some new theo-
retical concepts. The goal of this chapter is to provide a rich enough description of
the history of Linux so that we can see how the concepts presented in the earlier
chapters work, and open the area for more detailed theoretical and empirical study.

. THE EVOLUTION OF LINUX

Linux development started in  when Linus Torvalds got a new Intel  PC and
wanted to learn it. In the beginning, Torvalds didn’t expect that anyone would use
Linux. It was, however, developed to be compatible with widely used Unix tools,
and its source code was made available through the Internet for anyone who was
interested. As a result, people who wanted to have a Unix-like operating system on
their Intel-based PCs quickly adopted Linux and started to add new functionality to
it (Torvalds, ).

Linux was inspired by a small Unix-like operating system, Minix, and many of its
early adopters were familiar with Minix. Minix had been developed by Professor
Andrew Tanenbaum—a well-known authority in operating systems theory—to
teach operating systems for students who had only the first generation PCs avail-
able. Whereas Minix was intended to introduce the basic theoretical concepts of
operating system design, Linux was a more pragmatic project. The goal was to
develop an operating system that worked well on Intel , and which users were
free to modify and play with (DiBona, Ockman, and Stone, : –). The first
version of the system was release ., in September . Although it is difficult to
find accurate data on the usage of Linux, today there are probably over  million
Linux users worldwide. Indirectly, almost all people who are connected to the
Internet use Linux, as many Web-servers rely on it.

 http://www.linux.org/info; http://counter.li.org. In  the IDC estimated that about . million
paid copies of Linux were sold in the previous year for client desktops and  million copies for server
operating environments. The IDC estimate for the annual compound growth rate for Linux server
shipments in – was . per cent (Kusnetzky and Gillen, ).

http://www.linux.org/info
http://counter.li.org


Linux, and its open source development model, started to attract attention
around . Until that time the Berkeley BSD Unix had been the most visible open
source development activity (McKusick, ). It was generally believed that the era
of Unix-based operating systems was over, and that Microsoft had secured its posi-
tion as the dominant player in the operating system market. As an indication of this
the Berkeley Unix development group was formally shut down (Raymond, :
–). The success of Linux came as a surprise to its developers, but also to people
who had been closely observing the evolution of software and open source projects.
In his influential article, Eric Raymond describes how Linux made him realize that
there exists a new mode in software development:

Linux overturned much of what I thought I knew. I had been preaching the Unix gospel of
small tools, rapid prototyping and evolutionary programming for years. But I also believed
there was a certain critical complexity above which a more centralized, a priori approach was
required. I believed that the most important software (operating systems and really large tools
like Emacs) needed to be built like cathedrals, carefully crafted by individual wizards or small
bands of mages working in splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of development—release early and often, delegate everything you 
can, be open to the point of promiscuity—came as a surprise. No quiet, reverent cathedral-
building here—rather, the Linux community seemed to resemble a great babbling bazaar of
differing agendas and approaches (aptly symbolized by the Linux archive sites, who’d take
submissions from anyone) out of which a coherent and stable system could seemingly emerge
only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well, came as a distinct shock. As I
learned my way around, I worked hard not just at individual projects, but also at trying to under-
stand why the Linux world not only didn’t fly apart in confusion but seemed to go from strength
to strength at a speed barely imaginable to cathedral-builders. (Raymond, : –)

During  Linux gained credibility as a serious contender for Microsoft. IBM, HP,
and Intel, along with other visible partners, created the Open Source Development
Lab in Portland, Oregon. Several major software companies started to offer their
products for the Linux environment. In  governments around the world
launched initiatives to study the open source model and the use of Linux as an
alternative to Microsoft operating systems. The Beijing government awarded 
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 http://www.tuxedo.org/~esr/writings/cathedral-bazaar/. The article is also included in
Raymond ().

 One should note that historically Raymond’s account is not very accurate. The building of
medieval cathedrals in many ways resembles the open source development process. Most cathed-
rals were built over long periods of time as several independent projects and their funding was
largely based on gifts (Watson, ; Branner, ). Visiting a cathedral, it is easy to see that they have
historical layers from many different centuries. Notre-Dame was constructed mainly between 

and , on a place where previously had been a Roman temple for Jupiter, a basilica dedicated to
St Étienne, and a Romanesque church. The Cathedral of Milan was built mainly in – and
–. Cologne Cathedral took  years to finish. During the centuries, wings, towers, windows,
and chapels were added, and sometimes churches were built over small older churches. As Branner
() notes, very few architects were disturbed by the juxtaposition of old and new.

 http://www.osdlab.org/.
 One of the most visible governmental studies was conducted by the UK consulting firm QinetiQ

(Peeling and Satchell, ).

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.osdlab.org/
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contracts to Chinese open source companies, including the Red Flag Linux. The US
National Science Foundation awarded a $ million grant for building the world’s
largest virtual Linux-based supercomputer. In January  IBM announced a new
series of Linux mainframe computers. Linux and the open source development
model had become politically and economically real.

.. The Basic Architectural Components of Linux

Linux is a fast-growing system. The core Linux—the operating system kernel—
consists of software that controls computer hardware and programs that run on it.
When new interesting hardware becomes available, the operating system kernel is
extended for it. Usually, Linux code for specific hardware components is developed
as ‘drivers’. Linux is available for several different processor architectures and there-
fore there also exist several ‘ports’ of the system.

An operating system can be built based on several different architectures. The
architecture of Linux has been strongly influenced by the Unix operating system.
Unix architecture is implemented as layers, where each layer provides service to the
layer above it (Tanenbaum and Woodhull, ). The bottom layer interfaces the soft-
ware with hardware. A layered operating system can be represented as in Fig. ..

The system kernel is usually considered to be the ‘core’ of the operating system. It
takes care of process, memory, file, security, network, and input and output device
management. Utility or system programs are applications that provide key services
that are needed for a functional operating system. In a Unix system, graphical user
interfaces, user management, command shell, file backup, and, for example, direct-
ory listing programs are examples of such system utilities. These programs use the
functionality provided by the kernel by calling system functions through the system
call interface. The various end-user applications, such as word processors, database
management systems, and web browsers, can use both utility programs and direct
system calls to interface with the operating system. The operating system kernel, in
turn, uses the underlying hardware through hardware-specific drivers that convert
operating system calls into function calls that run low-level hardware programs.
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Fig. .. Layers of a Unix operating system



An operating system kernel is not a very useful thing in itself. A fully functional
operating system needs system utility programs and applications before it becomes
a multipurpose platform that can support and run end-user applications. In prac-
tice, Linux relies on a large set of other open source programs to form a fully func-
tional operating system. Most critical of these are the GNU c-libraries and the GNU
c-language compiler, which are required for developing the system. A distinction is
often made between the Linux operating system kernel itself, and the set of open
source applications, including the kernel, that together make a functional environ-
ment. The operating system kernel is usually called Linux and the complete system
is called GNU/Linux.

The end-users of Linux mainly deal with large software distributions that com-
prise hundreds of applications in addition to the operating system. For example,
the Debian distribution of GNU/Linux has over , open source programs,
including word processors, graphics programs, databases, and web-servers and
clients. The evolution of Linux-based systems is therefore only loosely coupled
with the evolution of Linux itself. For example, the functionality of GNU/Linux has
grown considerably since major application software providers have recently
started to port their systems for Linux.

.. The Growth of the Linux Source Code

A complete Linux distribution is a complex system of interacting software pro-
grams. To study the open source development model it is useful to reduce this 
complexity and focus on the development of the Linux operating system kernel.
Already in itself, it provides an interesting example of technology development.
Since the first release of Linux, there has been about one new version of the system
released every week. During this same time, the total size of the kernel code has
grown from , characters in the distribution files to over  million charac-
ters. In other words, the code size has grown  times. The different versions and
their relative sizes are shown in Fig. .. The figure shows sizes for the compressed
kernel source code packages. The actual code size is typically about four times
larger.

From Fig. . one can note one of the key characteristics of Linux development.
The kernel releases are divided into ‘stable’ and ‘developmental’ paths. In practice,
the releases are numbered using a hierarchical numbering system where the first
number denotes a major version, and the second number gives the version tree in
question. In recent years, the even-numbered trees have been stable production
releases, and the odd-numbered trees have been ‘developmental’ releases, where
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 http://www.debian.org.
 Code size is measured here in characters, counting comments and documentation as parts of

the source. The last available stable release at the end of Jan. , .., was used as the end point
for the comparison.

http://www.debian.org


new features and functionality are introduced and tested. For example, in Fig. .

release paths for versions ..x and ..x create two distinctive paths. The paths 
fork when version .. was introduced in September , and when a new devel-
opmental path was started. New releases of the stable path are released in parallel
with developmental releases, but usually only with minor bug fixes. Indeed, the 
last version of the stable path ..x, .., was released about three years after 
the developmental path . started. The developmental path ., in turn, consisted
of  versions before it became the next stable version ., at the beginning 
of .

As Fig. . shows, Linux development has been active and continuous. In  a
major rewrite of the operating system . was under construction. Originally,
Torvalds estimated that the first version of the ..x kernel would be distributed in
. The release was, however, delayed for over a year as the kernel architecture
was adapted for large files and effective multiprocessor and network use during the
development process. During that time, kernel developers worked mainly by 
sharing patches of code. The resulting gap in Linux releases can be seen in Fig. ..
Version . was finally distributed at the beginning of , making Linux suitable
also for everyday operational use in large enterprises.

One of the characteristics of open source software projects is that the system
design evolves based on ongoing innovation and learning. One way to illustrate this
ongoing innovation is to analyse the increasing complexity of Linux during its his-
tory. The structural complexity of the system is reflected in the number of relatively
independent subsystems. In practice, the code for each subsystem is organized into
its own subdirectory. An estimate of the number of subsystems can therefore be
found by counting the subdirectories in the kernel distribution. Fig. . shows the
number of new subdirectories created within two-week time windows, as well as
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the number of subdirectories in use across time. The left vertical axis shows the
number of new directories and the right axis the total number of directories. Major
peaks in the number of new directories indicate a major rewrite of the system. This
happens when a new major version is released. On average, there were . new
directories created every two weeks. In release .., March , there were 

subdirectories in use. At the end of January , the number of subdirectories had
grown to  and contained , files in total.

Using a similar measure, it is also possible to estimate the intensity of ‘creative
destruction’ in Linux development. On a structural level, this can be viewed as the
number of system components that become obsolete within a given time window.
Using the directory structure as a proxy for this, we can count the number of direct-
ories that disappear within a given time window. The result is shown in Fig. ..

Already from this analysis, it is easy to see that the Linux development model has
led to continuing system development. Even within the kernel itself, the rate of
technology creation seems to increase as the development proceeds. Although the
system has gone through a large number of revisions, the rate of growth does not
seem to slow down.
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Fig. .. New source code directories

 The graph was produced by analysing the file creation dates for  kernel releases, including .

and .., and defining the directory creation date as the date the first file in the directory was cre-
ated. A moving -day time window was used, starting from the first file creation date found. The
total number of files was about ,. The analysis was done using a set of Perl programs that
processed the file lists of the various releases and counted the number of new directories within
each time window. This rather labour-intensive process was used as some of the directories in the
kernel archives had been recreated during the years, and therefore had lost their original creation
dates.

 The Jan.  numbers refer to version ... The number of subdirectories include all those
directories that have files in them. In the following analysis I will focus on changes in the source code
before version .. The last version used in the analysis is ...



. THE LINUX DEVELOPER COMMUNITY

Constant innovation creates major challenges for developing a coherent and main-
tainable system. When a number of people actively develop the same system, and
thousands of end-users can freely report bugs they find and express their ideas for
new functionality, there is an ongoing flow of suggestions for improvement. This
easily leads to an increasingly complex system that becomes extremely difficult to
understand and maintain. In the Linux development community, this phenom-
enon is known as ‘creeping featurism’, and it is one of the main concerns of the
developers. Yet, it is also important that new innovations are incorporated into new
releases without excessive delay. Without the possibility of new contributions being
integrated into the system, there would be little point in proposing and producing
improvements.

In practice, this inherent tension between the need to incorporate new innova-
tions and keep the system complexity manageable is a critical issue for open 
source development. A successful resolution of this issue requires effective social
coordination and control. The resulting social structures and processes, therefore,
reflect the requirements of successful system development. To the extent that 
Linux is a highly reliable and effective software system, one could then expect that
its developer community implements effective social structures for technology 
development.

Since version ., March , Linux kernel files have included a ‘credits’ file that
lists important contributors to the project. The most recent credits file for Linux
contains the names of  developers. This is a good estimate of the number of
people who have substantially and successfully contributed to the development of
the core Linux system. Fig. . shows the number of people in a sample of Linux
credit files.
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Fig. .. Removed directories as a function of time

 ftp://ftp.funet.fi/pub/Linux/kernel; the CREDITS file can be found in the root directory of each
release. Version ...



The actual number of co-developers is, however, much higher. There are about
, users who have registered themselves as Linux users, and a large propor-
tion of these have programmed at least minor applications for Linux. These active
developers are an important source of bug reports and bug fixes. Often the credit of
such contributions is given only in the change logs and in source code comments.
The ‘bazaar’ described by Raymond, therefore, seems to consist of several hundreds
of central members, and several thousands of more peripheral but technically
sophisticated users.

One important aspect of this ‘bazaar’ is that it relies heavily on the Internet to get
its work done. The Linux development model emerged simultaneously with the
explosion of Internet use. In early  it was argued that the development model
relied too much on the Internet, therefore excluding people without Internet access
(Tanenbaum, quoted in DiBona, Ockman, and Stone, : ). However, the rapid
expansion of Internet use at the time when the Linux kernel was developed pro-
vided the developer community with new ways to distribute development work, 
a new distribution channel, and a global community of sophisticated users.

The regional distribution of early Linux development work is depicted in Fig. ..
The figure shows the number of people in different countries mentioned in the first
credits file. To adjust for the different sizes of countries, the numbers in Fig. .

are given per million inhabitants. The figure shows that Linux development has
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Fig. .. Number of people in the Linux CREDITS file, –

 http://counter.li.org/.
 There were also at least  user communities, known as Linux User Groups, in  countries in

 (http://lugww.counter.li.org/). These typically consist of Linux activists and developers.

http://counter.li.org/
http://lugww.counter.li.org/
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been a geographically broadly distributed activity since the very beginning. The
Linux development community, therefore, is a virtual community. It started without
face-to-face meetings or the core members ever seeing each other.

The first credits file acknowledged  contributors coming from  different coun-
tries. The credits file for .. release, March , had contributors from  dif-
ferent identifiable countries. By January  the number of countries had grown
to . In absolute numbers, the USA was the biggest home base for contributors
with  people, and  contributors of the total  came from EU countries.

Fig. . shows the geographical distribution of people in the .. credits file.
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Fig. .. Location of active contributors, March 

 Raymond and others have argued that open source is based on post-scarcity economy and
abundance of resources. The evolution of the Linux development community shows, however, that
this is not the whole story. For example, according to Torvalds an important reason for distributing
Linux through the Internet was the scarcity of collaborators and development resources in Helsinki
University (personal communication, Sept. ). In this sense, the early phases of Linux were very
similar to the early phases of the World Wide Web (Berners-Lee and Fischetti, ). As Castells ()
has noted, resource scarcity also promotes adoption of open source in countries where resources are
limited. As these examples show, however, resources are not only economic but also social.

 In addition there were two contributors whose location it was not possible to identify using the
information in the file.

 There were  contributors with unidentifiable locations.
 The format for entries in the credits file includes the possibility of adding country information

but this field is often missing or does not contain country information. Simple text processing of
credits files by Perl scripts therefore easily give misleading information. In those cases where coun-
try information was missing, a database for contributor countries was built by examining email
addresses and other available information and filling some gaps using searches on the Internet. This
database was used to fill in missing country information when analysis was done across the differ-
ent versions. This may create minor errors in the country statistics. Some contributors with no
explicit country information are counted as residents in countries where they had lived at some
point of time. It is not known how many contributors changed countries while they were working
with Linux or how accurately the address information was maintained in the files. For example, of
the  names in the release .. credits file  were impossible to map to any specific country.
Linus Torvalds is counted as being located in Finland in the early releases and, after moving to
California, is included in the count of US contributors.

 Luxembourg had one developer in the most recent credits file, but as the country has less than
half a million inhabitants, it is omitted from Fig. ..



Linux development is in many ways a self-organizing effort. There is no formal
organization, although several non-profit and business organizations have become
important in the Linux development effort during  recent years. Linux development
is in practice organized around projects, communication procedures, communica-
tion and collaboration tools, and software modules that are constantly evolving. 
In many ways, the Linux development community resembles a community of 
communities, or a fractal organization (Tuomi, ), where people are members 
of a broad ‘Linux’ community at the same time joining one or more of its sub-
communities. These communities are organized around central ‘gurus’, ‘old-timers’,
and more peripheral novices who have been accepted as legitimate members of the
community.

In the case of Linux, the core community members consist of key contributors 
to the overall kernel development project. In contrast to the basic community of
practice model, the Linux development community has more than one centre, as
there are several important sub-projects. In recent years, the different main subsys-
tems have been managed by a self-nominated group of maintainers. As a default,
Linus Torvalds acts as the maintainer for those subsystems that have no explicitly
defined maintainer.

Linux kernel development, itself, is part of a much larger GNU/Linux develop-
ment activity. For example, the Linux Software Map, which maintains a database of
Linux applications and related software, contained , entries at the end of .
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Fig. .. Geographical expansion of development activity, March –March 

 The database is available at http://www.execpc.com/lsm/ and at http://www.ibiblio.org/pub/
Linux. The ibiblio-version sometimes contains multiple entries for the different versions of the same
software and therefore had almost , entries at the beginning of . Both databases also have
some corrupted entries.

http://www.ibiblio.org/pub/


Major Linux-related application projects, such as the Gnome desktop environment
project—itself a large umbrella project—are only loosely coupled to the Linux 
kernel development community.

Although Linux development has very little formal organization, a key to the 
success of Linux is that development is not random. Development is based on a
sophisticated system of social relations, values, expectations, and procedures. This
system is in many ways quite different from conventional industrial product 
creation. It is therefore interesting to see how coordination and control has been
managed in Linux development.

.. Control and Coordination in the Linux Community

Traditionally, organization theorists have argued that increasing complexity in divi-
sion of labour leads to formal organizational structures (e.g. Mintzberg, ). In the
case of Linux, this doesn’t seem to be the case. Although the Linux community has
some structural similarity with the cellular organizational form (Miles, Snow, et al.,
) and the hypertext organization (Nonaka and Takeuchi, ), existing organ-
izational models do not describe very well the structure of the Linux community.
Instead, the Linux developer community resembles a dynamic meritocracy, where
authority and control are closely associated with the produced technological arte-
facts. In this sense it also differs from most network-based organizational and 
innovation models, which typically have focused on firm and industry level net-
works (e.g. Powell, Koput, and Smith-Doerr, ; Van de Ven, ; Lynn, Aram, and
Reddy, ). Indeed, the organizational structure of Linux development could be
characterized as a network of communities of practice (Brown and Duguid, ),
or as a fractal organization (Tuomi, ).

A characteristic feature of the Linux development process is its openness. 
New peripheral additions to the GNU/Linux system are not controlled by anyone.
For example, anyone can develop a new application that uses the Linux kernel, and
distribute it. As a result, there exists a large set of potential sub-projects competing
for community development resources. As will be discussed below in more detail,
allocation of these resources is to a large extent based on managing community
attention, which in turn relies on accumulation of reputation. Sometimes it is pos-
sible to develop a simple program for one’s own use and get it added to the Linux
distribution; in most cases the development of an interesting subsystem, however,
requires that several developers become interested in it. Control, therefore, is indir-
ectly based on capability to mobilize resources. Directly, it lies very much with the
users and potential co-developers.

There is no formal organization in the Linux community, but its coordination 
and control mechanisms can be analysed by observing those explicit and implicit
procedures that the community relies on. In the Linux development community,
social issues are often described as technical issues. When Linux developers discuss
the way the system should be developed and how it should evolve, discussions
often focus on code portability, maintainability, possible forking of code-base, 
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programming interfaces, and code size and performance. These technical discus-
sions are critical for the success of the collaborative effort.

Implicitly, each technical choice implies specific procedures and constraints that
structure the development work. Often technical decisions are driven by the need
to keep the collaborative development going. Computer software is inherently flex-
ible, and there is a very large set of possible ways to implement a specific system.
Technical decisions, therefore, are to a large extent articulations of beliefs on the
effective ways to organize development. In the course of the evolution of the system
architecture, learning on problems and possibilities of collaborative development
becomes implemented in the architecture of the technological artefact. Technical
discussions on how things ‘work’, what a good design is, and how development
should be done are therefore often reflections of social practices, externalized 
as specifications for technology. This is most obvious when developers discuss 
the maintainability of the code, ‘cleanness’ of the interfaces, and the problem of
‘creeping featurism’.

.. Co-evolution of Social and Technical Structure

A contingency theoretic view would imply that in a successful development project,
such as Linux, the structure of software becomes a mirror image of important
aspects of the social structure that is needed for a successful system to emerge.
Although social institutions, of course, are not directly mapped to the system archi-
tecture, the architecture and ways of doing things have to be complementary for a
project to be successful. For example, software modularization, coordination
mechanisms, incentives, practices of social control, and goals have to be aligned for
the overall effort to be successful. These, in turn, have to be embedded within a
larger social and cultural context, which limits the arrangements within the Linux
community.

The lack of formal organizational structure in Linux development has enabled
flexible experimentation with the procedures and values that support effective
development. As Linux development occurs in ‘Internet time’, the speed of evolution
is fast. The resulting social innovations, therefore, crystallize some of the learning in
organizing collaborative and geographically distributed technology development.

Collaborative software development projects have inherent problems that create
specific forms of division of labour, and related design traditions. A sociological
description might view emergent social structures in the Linux development com-
munity as solutions to underlying social tensions. Blumenberg (), for example,
argued that social institutions grow around irreducible social contradictions and
fundamental conflicts, somewhat as a pearl grows around an irritating grain of sand.

In practice, interdependencies in pieces of software code developed in parallel
create a need to coordinate design decisions. Often there are conflicting interests.
For example, a minor modification in some part of the program code may require a
major rework from people who maintain other parts of the program. A generic way
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to reduce this problem is source code modularization. A well-designed program 
has modules whose design limits interactions between modules. If modularization
is successful, one programmer can modify the source code of his or her module
without requiring changes in other modules. In other words, a programmer can
control the evolution of a specific piece of code, without creating problems for
other programmers.

In the case of Linux, modularization is based on social agreements, which are
supported by commonly accepted development practices, and which are reflected
in the overall system design. Many of these social agreements are implicit, and
community members have to learn them through socialization. Indeed, only after
a novice programmer is able to display the mastery of the key rules, is he or she con-
sidered to be a full member of the community. To some extent these rules are also
dynamic and they can change.

Sometimes conflicts arise about the implementation and functionality of a spe-
cific program module. There can be two competing proposals for architectural
choices or two different ways to code a module. If two programmers create differ-
ent versions of the module, and the module is a key component of the system, this
leads to forking of the code base. In effect, the system evolves into two different and
incompatible variations. This means, in practice, that the synergy in development
is lost, and the developers have to choose one of the versions as the basis for their
future work. According to Torvalds, such code forking occurred in the first attempt
to port Linux to a non-Intel processor architecture. As a result, the kernel design
was modified to accommodate new processor architectures in a way that did not
risk forks in the code base (Torvalds, : ).

Design choices for modularization and module interfaces are critical success fac-
tors in collaborative software development. It is possible to define modules so that
development becomes extremely difficult. For example, if there is no simple map-
ping between the underlying hardware and the software, the implementation of
new hardware functionality may require changes in several modules. Similarly, a
small modification in the user interface may require extensive reprogramming if
the modularization is bad. The layered abstract architecture of Unix is one attempt
to alleviate this problem. In practice, this leads to major challenges in finding the
appropriate levels of system abstraction, which are then reflected in the structure of
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 A fundamental problem in the development of complex software is that small modifications in
one part of code can have major implications for another part of the code. There is no natural decay
in software, and therefore no universal dimension of distance or time. As Wiener () noted a long
time ago, digital computers are unique among computational systems because digitalization makes
computational machines noiseless, in the information processing sense. Modularity and ‘locality’,
therefore, have to be created and maintained through social processes.

 As the Linux development community is a community that develops a functional technical
artefact, its social structure has its foundation in the evolving division of labour. In other virtual
communities, such as adventure MUDs (multi-user dungeons) and social MUDs (multi-user
domains), social rules and control mechanisms evolve when conflicts arise (cf. Reid, ; DuVal
Smith, ). In MUDs, interdependencies between users are limited, and although division of
labour is sometimes possible, it is not necessary. The need to functionally link modules makes Linux
development a collaborative productive activity where tasks and projects are interdependent.



source code. The situation is made worse by the fact that programmers often want
to bypass some levels of the abstract system architecture, usually to improve per-
formance. Often it means that abstract representations of the system only remotely
resemble its concrete implementation.

.. Controlling the Kernel

The constant flow of improvements means that the Linux system is at constant risk
of losing its maintainability. In practice, balancing innovation and maintainability
has led to tight control of some parts of the system. The control structures, however,
are dynamic and continually reproduced in the ongoing communication within the
developer community. As Linus Torvalds notes in a recent email:

If anybody thinks that being the maintainer equals being in % control, then I don’t think
they have understood the TRUE meaning of Open Source. Open source is about letting go of
complete control. Accept the fact that other people are wonderful resources to fixing prob-
lems, and let them help you. (Torvalds, )

To study the interplay between control and technology design, it is necessary 
to describe the internal architecture of the Linux kernel. As was noted before, a
GNU/Linux distribution consists of a large set of application programs, Unix utility
programs, several versions of the kernel for the different supported processor archi-
tectures, and a large number of drivers for different types of hardware. In practice,
the abstract layered system architecture that was shown in Fig. . is therefore rel-
atively close to the actual Linux implementation. On a more detailed level, abstract
descriptions, however, start to deviate from the concrete implementation. The ker-
nel, for example, does not have a well-defined boundary between the system call
interface and the core kernel. This is partly because there are performance trade-
offs, which sometimes make it practical to bypass some internal parts of the kernel.
Partly it is simply because the evolution of Linux has led to interactions between the
different parts of the system, and, as a consequence, the boundaries have become
blurred. Also, in Linux the module called ‘kernel’, which architecturally most closely
resembles the system call interface, implements some process management and
memory management functions, as well as some error processing. The main com-
ponents of the Linux kernel architecture can be represented as in Fig. ..
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 For example, Linux modules that support different networks should in theory be independent
modules. In practice, there have been many interdependencies between the modules for different
networks. Armstrong () has used automatic architecture extraction tools to analyse the Linux
source code, and notes that these interdependencies create a potential maintenance problem for
the kernel.

 The architecture is extracted from version .. (Armstrong, ). The dependencies shown in
the figure are only some of the main dependencies. As the authors of another Linux architecture
extraction study (Bowman, Siddiqi, and Tanuan, ) note, automatic extraction is not possible as
extraction tools are not able to detect all dependencies and because the Linux kernel modules 
are highly interconnected. Bowman et al. were able to automatically extract about one hundred
thousand dependency facts that clustered into fifteen thousand dependencies. Their report provides
a useful discussion on the internal architecture of the subsystems.



The need to control the operating system kernel was one of the topics in the
famous debate between Andrew Tanenbaum and Linus Torvalds in .
Tanenbaum argued that it is critical for a successful operating system project that
someone maintains tight control of the code, so that its complexity does not
explode and so that the core of the system does not fork:

If Linus wants to keep control of the official version, and a group of eager beavers want to go
off in a different direction, the same problem arises. I don’t think the copyright issue is really
the problem. The problem is co-ordinating things. Projects like GNU, MINIX, or LINUX only
hold together if one person is in charge. During the s, when structured programming was
introduced, Harlan Mills pointed out that the programming team should be organized like a
surgical team—one surgeon and his or her assistants, not like a hog butchering team—give
everybody an axe and let them chop away. Anyone who says you can have a lot of widely dis-
persed people hack away on a complicated piece of code and avoid total anarchy has never
managed a software project. (Quoted in DiBona, Ockman, and Stone, : )

At that time, Linus emphatically argued that he would not control the system:

This is the second time I’ve seen this ‘accusation’ from ast [Andrew Tanenbaum] . . . Just so that
nobody takes his guess for the full truth, here’s my standing on ‘keeping control’, in  words
(three?):
I won’t.
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The only control I’ve effectively been keeping on linux is that I know it better than anybody
else, and I’ve made changes available to ftp-sites etc. Those have become effectively official
releases, and I don’t expect this to change for some time: not because I feel I have some moral
right to do it, but because I haven’t heard too many complaints, and it will be a couple 
of months before I expect to find people who have the same ‘feel’ for what happens in the 
kernel. (Quoted in DiBona, Ockman, and Stone, : )

Almost seven years later, at the end of , Torvalds argued that the development
had undergone major improvement when a new model for the kernel development
was taken into use with release .. In the new kernel architecture, the original
monolithic kernel was extended by introducing loadable kernel modules. These 
are mainly used to dynamically load device drivers according to the needs of the
specific computer configuration. According to Torvalds, this improved modularity
by creating a well-defined structure for writing modules:

Programmers could work on different modules without risk of interference. I could keep 
control over what was written into the kernel proper. So once again managing people and
managing code led to the same design decision. (Torvalds, : )

An indirect implication of loadable kernel modules is that performance-critical,
hardware-specific code can often be confined to a module. As a result, the core 
kernel becomes easily portable. For example, low-level interaction with hardware
devices can be programmed in separate device drivers that can be loaded if the 
specific device is present. Such device-specific functionality, therefore, does not
need to be implemented in the core kernel itself. The question, however, is not only
about technical performance. As Torvalds notes:

But Linux’s approach to portability has been good for the developer community surrounding
Linux as well. The decisions that motivate portability also enable a large group to work simul-
taneously on part of Linux without the kernel getting beyond my control. The architecture
generalizations on which Linux is based give me a frame of reference to check kernel changes
against, and provide enough abstraction that I don’t have to keep completely separate forks of
the code for separate architectures. So even though a large number of people work on Linux,
the core kernel remains something I can keep track of. And the kernel modules provide an
obvious way for programmers to work independently on parts of the system that really should
be independent. (Torvalds, : –)

.. Balancing Control and Innovation in the Linux Kernel

Comparing Torvalds’s early and later statements on controlling the system it is clear
that the system development practices had considerably evolved in a few years. In
, when there were only few people developing the system, there was no obvious
need to restrict derivative works. Although Tanenbaum warned Linux developers
about the problems of uncontrolled forking, at that time the developers were more
interested in the possibility to easily modify and improve the system. Indeed, the
system was perceived as a huge technical opportunity and there were no visible
constraints that restricted its future evolution. In other words, it was seen as a 
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platform that could easily adjust to the best technical ideas anyone could come up
with. Due to its simple structure, open source distribution, and constant improve-
ments, it was able to effectively grab attention among programmers who wanted to
show and use their programming skills, and who enjoyed the possibility of creating
code that contributed to the collective effort.

As the system has become more complex and there have been more active devel-
opers, the problem has increasingly been in balancing coordination, control, and
local innovation. The key factors in this process seem to be modularization and
implicit management of attention. Attention is allocated to a large extent based on
centrality in the community, and this, in turn, is based on reputation. Reputation
within the community is, in turn, to a large extent based on producing working
code that has relevance for the community.

Under these circumstances, reputation is a good predictor for future achieve-
ments. If someone has successfully coded Linux, he or she most probably knows
many things about programming. A distributed system of social control seems 
to work effectively in this case, and the technical artefact and its developer com-
munity evolve in compatible ways. Although the skill-base and tools change, the
open and collaborative environment makes it relatively easy to learn new tech-
niques and renew competences. As a result, meritocracy has definite merit in Linux 
development.

Innovation, however, is also closely related to the modularity and extensibility of
the underlying technical system. Effective resource mobilization is possible in the
Linux community only because the kernel architecture provides a relatively stable
focal point around which dynamic sub-communities can emerge.

Using the directory structure of the Linux kernel, it is possible to illustrate the 
evolution of the various kernel components. Such an analysis reveals that the growth
in the system is quite heterogeneous. Innovation and development are strongly con-
centrated on some parts of the system, whereas other parts rarely change. The core
kernel may be defined as those parts of the system that have stabilized. Fig. .

shows the evolution of some components of this core kernel. A typical pattern is that
a period of relatively rapid change is followed by stabilization and lock-in.

The ‘core’ of the Linux kernel in Fig. . is defined as those components that have
stabilized in the early phases of the development process. This conceptualiza-
tion means that there is no predetermined categorization of the components, for
example, based on theoretical understanding of what are the ‘foundational’ layers
of a typical Unix operating system architecture. Instead, the ‘foundational’ compo-
nents are defined as those components that provide a foundation. The fact that
these components acquire this role depends very much on the fact that this 
foundation has to address the needs of several actors. In this sense, foundational
components of the structure are its ‘institutional’ components.
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 The source code growth rate was analysed using a set of Perl programs that processed file size
information in a sample of  Linux releases, from .. to ... The growth rate was calculated by
dividing by the number of days between releases.



In most cases, changes in the core kernel would require extensive rewriting of
other parts of the system that rely on the functionality of the core. Therefore such
changes can happen only in limited ways. In practice, after there exists a substan-
tial amount of code that depends on the core kernel, the core becomes frozen. It can
only change its internal implementation or provide new functionality that is com-
patible with the old.

Technically, however, it is not possible to constrain changes in such a way. In
other words, the open source development model needs strong social controls.
These social controls are often expressed as design principles and ‘good’ program-
ming practices. For example, Torvalds notes:

The first very basic rule is to avoid interfaces. If someone wants to add something that involves
a new system interface you need to be exceptionally careful. Once you give an interface to
users they will start coding to it and once somebody starts coding to it you are stuck with it.
(Torvalds, : )

The core kernel changes as bugs are corrected or when inefficient code is rewritten.
New functionality is introduced only when there are extremely important reasons for
it. The conservative policy for the extensions originates from the fear that the core
kernel becomes difficult to maintain, or that new bugs are introduced into the core.
By keeping the core kernel simple and stable, and by providing support for exten-
sions in the kernel architecture, technical change can be directed to areas where
it can be managed. The fundamental trade-off is, of course, that radical innovation
in the core kernel becomes difficult, or impossible in practice. The interactions
between software modules make the system evolution extremely path-dependent,
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and tight control of some parts of the system is required to keep other parts of the
system open and extensible.

However, as we saw before, Linux has been growing rapidly for almost a decade.
As expected, in contrast to components shown in Fig. ., some other parts of the
kernel grow very fast. Linux was originally developed for Intel  processor archi-
tecture, but since version .. it has supported several alternative processor 
architectures. Linux can be extended to a new processor by porting its processor-
dependent parts. The code for these different processor-dependent parts is organ-
ized into their own directories. Using such a modularization of source code, the
code for different architectures becomes independent, and it is possible to add
support for new processor architectures without interfering with other parts of the
source code. In practice, this has led to a situation where several different teams of
programmers have been able to develop the overall system in parallel.

Similarly, the hardware-specific drivers can be developed as independent
modules. Indeed, most Linux development in recent years has been related to new
hardware components. The open source policy makes it easy for anyone to develop
hardware-specific additions to the system, as long as the developer knows the 
internals of the hardware in question.

Linux architecture is extensible also in areas that one would expect to be parts of
the core kernel. For example, Linux supports a large selection of file systems. As
long as existing file systems continue to work, it is possible to introduce a new file
system without much risk of destroying system reliability. As Torvalds notes:

Without modularity I would have to check every file that changed, which would be a lot, to
make sure nothing was changed that would effect anything else. With modularity, when some-
one sends me patches to do a new filesystem and I don’t necessarily trust the patches per se,
I can still trust the fact that if nobody’s using this filesystem, it’s not going to impact anything
else. (Torvalds, : )

As a result, the evolution of Linux is very much concentrated on those parts of the
system that can be developed independently. This can again be seen by analysing the
rate of change in the source code size. The main extensible components of the ker-
nel distribution are shown in Fig. .. Comparing the rates of change for core and
extensible components of the kernel, one can see that the extensible components
grow typically about two orders of magnitude faster than the core components.

In the Linux architecture, institutional innovation—innovation in the core com-
ponents of the system—seems to be rare. Some other parts of the Linux archi-
tecture, however, grow very rapidly. When new hardware is introduced, Linux 
developers very quickly integrate it with the Linux operating system. Linux, itself,
can therefore be viewed as an actor that quickly appropriates new technological
elements and turns them into resources for the Linux user community. This is also
probably the main difference between conventional software projects and the
Linux development project. Linux is clearly an ecology of socio-technical develop-
ment, not a project that implements a predefined plan. The developmental history
of Linux, therefore, also shows us how technological artefacts and social coordina-
tion co-evolve. One theoretically interesting position from which to observe some
key characteristics of this co-evolution is actor-network theory.
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. SEDIMENTATION, TRANSLATION, AND REDUCTION OF
COMPLEXITY

According to actor-network theory, society consists of networks of heterogeneous
actors, both human and non-human (Latour and Woolgar, ; Bijker and Law,
; Callon, Law, and Rip, ; Latour, ; Law and Hassard, ). Society,
organizations, agents, and machines are all effects generated through the interac-
tions of actor-networks. A person, for example, cannot be understood as an isolated
individual entity; instead, he or she is always linked to a heterogeneous network of
resources and agents that define the person as the specific person in question.
Without his or her instruments, laboratory, and social relationships, a scientist, for
example, loses his or her identity as a scientist. Similarly, a technical artefact can
only be understood as an element in a broader network of transformations accom-
plished by humans and other artefacts. A scientific laboratory may be viewed as a
network of test tubes, diaries, scientific publications, budgets, and researchers,
each with their own ‘competences’ and ‘resistances’. Scientific knowledge is pro-
duced in this network, and becomes an actor itself through new conceptualizations
and observations recorded in journals, or, for example, by becoming embedded in
scientific instruments and software code. A similar process also underlies evolution
of other social institutions. Families, organizations, computing systems, the eco-
nomy, and technology can all be similarly pictured (Law, : ).

A key concept in actor-network theory is ‘translation’. The total system of actors
in the full social network is extremely complicated. Reduction of this complexity is
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therefore a necessary requirement for practical action. Translation means a process
where complicated sub-networks become represented by actants, either human 
or non-human, and by which the complex underlying structure becomes a ‘black
box’ for practical purposes. For example, sometimes we can talk about ‘the British
Government’, ‘post office’, or ‘email’ without having to know what their exact
processes are, what technologies they use, or who the people are that make them
work. Similarly, an organization can be represented by a single individual, and 
a complex system of accounting procedures can be represented by a software 
package.

Translation means that complex sub-networks become ‘punctualized’, and start
acting like a unified entity from the point of view of those actors who interact with
the sub-network. At the same time such translated sub-networks become
resources. For example, a piece of paper, a pen, a computer keyboard, and an inter-
continental missile can be used without considering these processes, knowledge,
and other resources that are required to manufacture them. Translation therefore
means that complex networks can be taken for granted. But at the same time it
means that the point of translation also becomes a locus of power and control. 
The effects produced by the translated sub-network become resources that can 
be located and controlled. Through this process of translation the punctualized
network can be represented as if it were owned by the actor who manages the 
translation.

According to actor-network theory, translation generates ordering effects, such as
organizations, institutions, devices, and agents. Each of these has its own resist-
ances, and social change therefore is very much about a struggle to reorganize the
resources and relations in the actor-network. In this process, resistances are anticip-
ated and various strategies are deployed to overcome them. There is a continuous
threat that existing order breaks down, and the fact that order exists indicates that—
at least in some pragmatic sense—strategies and translation processes work and
form a relatively stable system.

.. Sedimentation of the Source Code

Linux is a continually evolving technical artefact and is therefore difficult to turn
into a resource. One generic strategy for doing this, however, becomes clear when
we study the history of Linux. I shall call this strategy ‘sedimentation’.
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 Niklas Luhmann () based his theory of social systems on a closely related idea. According
to Luhmann, both meaning and social order emerge because complexity needs to be reduced.
Meaning, for example, can be defined as order that emerges when one actual interpretation
becomes selected from many possible ‘latent’ interpretations in the cognitive process. The under-
lying order that makes the world a ‘meaningful’ world is a network of meaning relations or asso-
ciations that provide the basis of interpreting the world. Similarly, the specific order that makes 
fundamentally contingent communicative interaction understandable is what we can define as
‘social’. Cognition and communication depend on each other and change as the social system
evolves (cf. Tuomi, ).



In the early phase of Linux development, its source code was mainly used as a
platform for further development of the code itself. When Linux started to be a
viable operating system, it became used by people who can be characterized as
‘end-users’. For such end-users, Linux was not a complex system of interacting
source code modules and programming tools. Instead, Linux became a resource.
Furthermore, Linux distributors bundled the operating system kernel with applica-
tions and utility programs, and effective distribution required efficient manage-
ment of software configurations. This created a tension in the Linux development
model. For some user-developers Linux was a system where new components were
frequently added and which provided interesting opportunities to make novel and
high-impact contributions. For such users, Linux remained a complex and evolving
network of software modules, function calls, and software procedures. For others,
this flexibility was a problem. Continuous change intervened with the translation
processes and made it difficult to use Linux as a resource.

As we saw before, as a result of this tension between end-users and developers,
the development of Linux has been split into two development paths. The branch-
ing of source code into stable and developmental paths can be seen in Fig. ., and
in more detail in Fig. .. They show how fundamentally the same product can be
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translated into a resource and simultaneously keep evolving as a network. The 
need to translate the Linux code into a resource for other communities produces a
‘sedimented’ or ‘black-boxed’ version of the code.

Sedimentation is a good name for this phenomenon as typically several layers of
sediments become formed during the evolution of a system. New code is often
developed so that it is ‘backward compatible’.

Whereas Linux kernel developers need relatively open access to the Linux source
code, and application developers may greatly benefit from such open access, for
end-users it is relevant mainly in those cases where the black-box breaks down and
reveals its true nature. The proposed ‘superiority’ of the open source model, there-
fore, to a large extent reflects the fact that computer systems often do break down.
The value of the open source approach is, however, greatly reduced if the end-users
do not have enough competence to diagnose the problem. The open source model
is effective partly because it also facilitates competence development. More gener-
ally, transparency of the underlying system makes it possible for the end-users to
mobilize all resources and competences they have available to solve the problem 
at hand. The specific ‘style’ in which open source systems break down therefore
promotes effective use of problem-solving resources, at the same time facilitating
development of competences that can be used in solving similar problems in the
future.

To extend the metaphor of sedimentation: open source implies that layers that
sediment remain soft. If there is a problem, it is relatively easy to dig one’s way
through the module interfaces to see where the problem is and how it can be 
corrected.

.. Multifaceted Translation and Module Interfaces

According to Schumpeter (), the fundamental characteristic of the capitalistic
socio-economic system is that resources are dynamically moved from old uses to
new ones. Opportunities are materialized in an entrepreneurial process, and the
speed of innovation depends on the speed of moving from old activities to new
ones. In the history of Linux we can see that such a process also occurs at the level
of technological artefacts. Some modules disappear in the course of the evolution,
and their developers move to new activities.

As we saw above, a closer analysis of this process reveals, however, that Linux 
has several qualitatively different ‘regions of innovation’. A similar process of sedi-
mentation that was seen on the level of the Linux kernel, and which led to the 
separation of two development paths, can also be seen inside the kernel. The devel-
opers of the Linux kernel need to simplify the complexity of the development net-
work. Specifically, almost all module developers rely on some key components of the 
system, which provide core functionality. The translation processes for these key
components have to translate the underlying sub-networks simultaneously for
many different actors. This is accomplished by sedimenting the representation of,
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or the interface for, the resource. In other words, the potential problems of main-
taining a complex network of changing translation processes is solved by standard-
ization of the translation process and by stopping development that could break
the black box. The ‘hard core’ encapsulates the nucleus of the Linux kernel so that
Linux developers can continue working on other parts of the system. This is
schematically depicted in Fig. ..

The fact that development in these core components slowed down very quickly
in the evolution of Linux indicates how difficult it is to provide multifaceted 
translation interfaces. One might read the rapid stabilization of the Linux core 
components in Fig. . as showing that when several different actors approach a
sub-network each from their own perspective, no common abstraction is good
enough. In other words, there is no generic packaging for changing black boxes.
Instead, the code has to be frozen as a concrete technical artefact.

A source code module often acts as a punctualized resource. A standard proced-
ure—often implemented as a programming ‘interface’—is used to access the ser-
vices provided by the resource. As long as the protocol for using the resource and
the service associated with it are not changed, the users of the interface don’t have 
to know the internal details of the technological artefact or the organization of its
production network.

The use of actor-network concepts, therefore, highlights some generic strategies
to create order in socio-technical systems. As we saw before, activity, however, also
requires social learning. The community-based view argued that knowing and
learning occurs in practice-related communities, and that practices are embedded
in material and technological artefacts. In such a context, learning both socializes
community members, as Lave and Wenger noted, and creates new forms of activity
and new products, as Engeström argued. Actor-network theory, in contrast, argued
that human and non-human actors are symmetrical, and that they can often be
replaced with each other. The key idea was that the complexity of sub-networks can
be reduced by translation and punctualization, which makes one actant able to
stand for a whole sub-network.
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Putting these two perspectives together shows how both these approaches can
be refined and used to describe the evolution of socio-technical systems, such as
the Linux kernel. The tools used in social practice are translations of complex sub-
networks that produce the tool. The underlying community simultaneously articu-
lates these tools as carriers of knowledge and related practice. As long as technology
doesn’t break down, its users can use technology as a tool. Such an object is effec-
tively a black box that mediates the user’s activity, without requiring the user to con-
sider all the complex relationships that actually are hidden inside the system that
makes the tool an object. For example, as long as everything works fine, a computer
user doesn’t have to know about electrical or digital design, or program architectures,
any more than he or she needs to know how these things are developed and pro-
duced in practice, or where to find the experts that do know what is inside the box.

In this process of ‘black-boxing’ sub-networks, translation processes do not only
hide complexity of material components. As actor-network theory argued, the net-
work is a heterogeneous one and there are many ways in which material artefacts
and humans can switch roles in the network. Black-boxing also hides social net-
works and discourses. Instead of explicitly negotiating the forms of collaboration,
results of earlier negotiations become ‘the way we do things here’.

. QUALITY CONTROL, LINUS’S LAW, AND THE 
ECOLOGY OF BUGS

In the course of Linux’s evolution, many new translation mechanisms have been
invented. Linux is an exceptionally interesting case of such proliferation of trans-
lation mechanisms, as its developers are able to create technical solutions to the
problems of translation. In this sense, the Linux community is not only a Linux
developer community, but also a tool-developing community. This strength of the
Linux development model has been inherited from the Unix culture. Unix was
developed as a set of tools that can be easily combined and reused as components
of new tools. Indeed, one could argue that this is one of the reasons why Linux
development has been rapid. The boundaries between Linux development and
Linux tool development activities can be crossed rapidly and without great effort.

The ecology of produced resources is a complex one, and a main challenge 
in becoming a competent Linux developer is to learn how to use these resources.
Some of the resources can be characterized as organizational or community resources,
others can be viewed as technological artefacts, or simply as knowledge.

The Linux community has been able to produce high-quality code. Many proced-
ures and tools have been created to manage bugs and to improve the quality of
Linux. Product quality is a critical success factor for an operating system project,
and it is exactly here that the Linux development model shows its strength.

Almost all software has bugs, and in complex systems bugs can emerge as a result
of complex interactions between different program components. Large software
systems are therefore difficult to develop. The more developers there are, the more
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difficult it becomes to control and understand all the possible interactions between
software components. This is usually known as ‘Brooks’ Law’. In The Mythical Man-
Month, Fred Brooks () noted that adding programmers to a late software pro-
ject makes it later. He argued that the complexity and communication costs of a
project rise with the square of the number of developers, while work done only rises
linearly. Raymond, however, observes that if Brooks’ Law were the whole picture,
Linux would be impossible:

Gerald Weinberg’s classic ‘The Psychology Of Computer Programming’ supplied what, in
hindsight, we can see as a vital correction to Brooks. In his discussion of ‘egoless program-
ming’, Weinberg observed that in shops where developers are not territorial about their code,
and encourage other people to look for bugs and potential improvements in it, improvement
happens dramatically faster than elsewhere.

Weinberg’s choice of terminology has perhaps prevented his analysis from gaining the
acceptance it deserved—one has to smile at the thought of describing Internet hackers 
as ‘egoless’. But I think his argument looks more compelling today than ever. (Raymond,
: –)

Quality control is quite a different process in the Linux developer community than
it is in traditional product development. Openness means that members of the
developer community are able to review the work of others. Whereas traditional
software development models often in practice rely on end-users as a source of
reclamations and bug-reports, in the Linux model users become problem solvers,
providing an enlarged set of problem-solving resources. The user-developers
bring many different perspectives, approaches, and experiences into play. From
some of these perspectives, a specific problem is easier than from others. When the
developer population is large enough, there is probably someone to whom the
problem is easy. Raymond formulates this principle as ‘Linus’s Law’:

Given a large enough beta-tester and co-developer base, almost every problem will be charac-
terized quickly and the fix is obvious to someone.

Or, less formally, ‘Given enough eyeballs, all bugs are shallow.’ (Raymond, : )
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 It should be noted that end-users have played an important role in technology development
since the beginning of the computer era. To compete with resource-rich IBM that leased expensive
mainframes to its customers, the startup Digital Equipment Corporation sold its machines to its 
customers encouraging experimentation. DEC, for example, widely distributed documentation
about the inner workings of its machines. DEC’s first PDP- was sold to BBN in , and a number
of improvement suggestions came from Edward Fredkin of BBN (Ceruzzi, : –). Due to their
open and well-documented structure, the PDP-machines became the core of the hacker culture
(Levy, ).

 Torvalds () himself has formulated another and unrelated Linus’s Law. It states that
humans have three different types of motives related to physiological, social, and enjoyment needs,
that the lower level needs have to be fulfilled before the higher ones become actual, and that human
development occurs by rising from the level of lower motives to the higher ones. Although this form
of Linus’s Law is obviously influenced by the Maslowian theory of needs, Linus, however, seems 
to think that the progress towards the higher levels occurs through transformation of the motive
structure. Torvalds, for example, argues that Linux hackers have so much fun that they can live with
a chocolate bar and a Coke.



Raymond argues that this is the main difference underlying the coordinated cathe-
dral-building and the distributed bazaar styles. Whereas development problems are
tricky, insidious, and deep phenomena in the cathedral model, in the bazaar model
one can assume that ‘they turn shallow pretty quick when exposed to a thousand
eager co-developers pounding on every single new release’.

And that’s it. That’s enough. If ‘Linus’s Law’ is false, then any system as complex as the Linux
kernel, being hacked over by as many hands as the Linux kernel, should at some point have
collapsed under the weight of unforeseen bad interactions and undiscovered ‘deep’ bugs. If 
it’s true, on the other hand, it is sufficient to explain Linux’s relative lack of bugginess and its
continuous uptimes spanning months or even years. (Raymond, : )

.. Resources in the Bug Removal Process

Raymond’s formulation of Linus’s Law complements Von Hippel’s () argument
that users are important sources of product innovation. Indeed, Linus’s Law shows
that there are two essentially different reasons why users are important for innova-
tion. As Von Hippel noted, users can modify and adapt innovations, and thereby
add value to them. As Raymond notes, however, users can also play an important
role in quality control.

This second role is not a trivial one. Indeed, it is a very fundamental phenom-
enon which has major implications for the theory of innovations also more generally.
Users appropriate innovations in idiosyncratic contexts. These contexts differ both
cognitively and situationally. When the source code is available, software bugs can
be characterized and debugged using these multiple perspectives, each of which
rests on large stocks of unarticulated knowing. In an open source environment,
therefore, software bugs can become opportunities for innovative contribution,
and not just sources of frustration.

In Linux development, the situation consists in part of the complex system of
hardware and software that interacts with the operating system. To limit this com-
plexity, developers, for example, use old and tested compilers to be able to separate
compiler bugs from the kernel bugs. The Linux kernel mailing list FAQ answers 
the question of whether different compilers can be used to compile the kernel in
the following way:

Sure, it’s your kernel. But if it doesn’t work, you get to fix it. Seriously now, there is really no
point in compiling a production kernel with an experimental compiler. Production kernels
should only be compiled with gcc ...x, preferably .... Newer kernels are known to break
the . series kernels, known symptoms of this breakage are hwclock and the X server
seg.faulting . . . Regarding . kernels, they usually compile fine with other compiler versions,
but do NOT complain the list if you are not using ... Linux developers have enough work
tracking kernel bugs, to also be swamped with compiler related bugs.

LEARNING FROM LINUX 

 http://www.tux.org/lkml/.

http://www.tux.org/lkml/


Often it is impossible to predict the interactions between different system compon-
ents, and the only way to learn about them is to use the system in different concrete
settings. Sometimes the bugs are in the hardware, and there is no way they can be
corrected by studying the software. For example, Intel Pentium processors have
bugs that need to be corrected by workarounds. In some cases, hardware bugs can
be so unpredictable that there is no workaround. The Linux kernel mailing list FAQ
lists some of the known processor bugs and, for example, tells that the AMD K

processor has unpredictable hardware errors:

The AMD K ‘sig11’ bug, affects only a few K revisions. Was diagnosed by Benoit Poulot-
Cazajous. There is no workaround, but you can get your processor exchanged by contacting
AMD. ..x kernels will detect buggy K processors and report the problem in the kernel boot
message. Recently, a new K bug has been reported on the linux-kernel list. Benoit is check-
ing into it.

The importance of testing new software code is strongly emphasized, and ‘good
ideas’ rarely get support without a working code that implements the idea. The
MAINTAINERS file that lists people responsible for the various kernel modules also
gives guidelines for submitting changes to the kernel:

. Always test your changes, however small, on at least  or  people, preferably
many more.

. Try to release a few ALPHA test versions to the net. Announce them onto the
kernel channel and await results. This is especially important for new device
drivers, because often that’s the only way you will find things like the fact that
version  firmware needs a magic fix you didn’t know about, or some clown
changed the chips on a board and not its name. (Don’t laugh! Look at the SMC
etherpower for that.)

. Make sure your changes compile correctly in multiple configurations. In par-
ticular check that changes work both as a module and built into the kernel.

. When you are happy with a change make it generally available for testing and
await feedback.

The outline of the bug detection and removal process is straightforward. For a soft-
ware bug to be removed from the system, first someone has to realize that there is
a bug. After a bug has been detected, it has to be characterized, preferably by
describing repeatable conditions under which the bug can be observed. This phase
consists of diagnosing the exact nature of the bug. When the bug has been under-
stood, it can be solved. This phase consists of writing new code that corrects the
bug, and testing the new code to verify that the bug has been removed, and that no
new bugs have been introduced in the process. When a tested solution is available,
it is distributed to other developers. Finally, if the bug is important enough and 
the new code does not seem to create excessive problems, the bug fix is eventually
integrated into a new kernel release. This process is depicted in Fig. ..
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 MAINTAINERS file can be found from the root directory of new releases of the Linux kernel, for
example, from http://www.kernel.org/pub/linux/kernel/.
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In actual practice, this rather straightforward process is more complicated. It
relies on tools, social practices, and knowledge resources that implement the
abstract bug removal procedure. Moreover, the developers apply the various
resources in a creative way, improvising according to the needs of the situation. The
appropriate way to improvise depends on the audience: if the community of devel-
opers understands that a specific way of breaking the standard procedure is justi-
fied, rules can be broken. The behavioural standards are usually expectations and
suggestions, and there are only few explicit procedures for doing things. Usually
such explicit procedures do not result from explicit specification of social
processes; instead, they arise from the design of specific tools used in the process.
In other words, some aspects of the process are hard-wired into the functionality of
the tools.

Some widely used resources and tools for Linux kernel bug management are
shown in Table .. The table categorizes the resources as information resources,
tools, and communities. Information resources are texts that can be used to learn
what the community is doing, what its practices are, and what are the resources
available for it. Tools are resources used in the actual bug-removal practices.
Community resources are used to keep the community alive and coordinate its
activities. As the table shows, one technological artefact can have multiple roles in
this ecology. For example, the JitterBug system is a web-based database which
shows what bugs are known to the community and whether someone is doing
something to correct a bug. JitterBug acts as an information resource by allow-
ing people to find out what bugs are known, and as a community resource by 
coordinating the work needed to solve the problem.

Some informational resources are meta-level resources that describe procedures
used in bug processing. An important meta-level resource is, for example, the linux-
kernel mailing list FAQ document that lists frequently asked questions and gives
answers and links to further information on them. Some tools interface the object
of development, i.e. source code, to the development community. An example of
such a tool is the CVS version control system, and the CVS vger–server that main-
tains the different patches and versions of the kernel in hierarchical trees, and
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which provides a shared repository of source code to all developers. Many of the
tools listed in the table are well-known generic and Unix-tools. Although their
existence is often taken for granted, in practice the bug removal procedures criti-
cally depend on the tools and their evolution.
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Table .. Kernel bug management resources

Processing phase Information resource Tool Community resource

Detect Compiled code man LDP
Documentation

Debug
Characterize Source code Editor linux-kernel list

linux-kernel list FAQ gcc JitterBug
JitterBug make Personal email
oops-tracing.txt gdb IRC channels
Kernel Traffic ksymoops Kernel-newsflash
LDP IRC LDP
Project-specific sites Computer Project-specific lists
linux-kernel archives configuration
README files
Log files
Bug reporting form

Remove Source code Editor
gcc
make

Test Patch diff Personal email
MAINTAINERS file gcc linux-kernel list

make
Editor
ftp

Distribute Patch gzip linux-kernel list
MAINTAINERS file tar JitterBug

email
ftp

Integrate Patch CVS Maintainers
Release vger vger

package managers

 man is a program for reading manual pages. gcc is the GNU c-compiler. make is a program that
manages the compilation process. gdb is the GNU debugger. diff is a program that creates difference
files from two source code files, and which updates modified files using differences. This is used to
distribute patches that update files with modifications. gzip is used to compress files, and tar is used
to package several files into one for easier distribution. Linux developers also use generic tools such
as IRC, ftp, email, and mailing lists. Other tools and resources are systems that are more specific to
Linux development. ksymoops maintains a list of symbols used in error messages. Kernel Traffic is an
edited weekly summary of the mailings in the linux-kernel mailing list. LDP is Linux Documentation
Project, which maintains a set of guidelines and documents for Linux developers. JitterBug is system
that maintains information of known bugs and patches. CVS is a version control system that works
with a shared CVS server called vger.



Table . shows some main tools currently used in the bug removal process. One
should note, however, that many of these tools have emerged during the evolution
of the kernel. Some of the tools and resources explicitly address problems that the
success of the kernel development has created. For example, the Kernel Traffic list

provides an edited summary of the large volume of mailings in the linux-kernel
mailing list. The linux-kernel mailing list FAQ, in turn, documents common ques-
tions that novice developers have, as a way to keep such relatively low-priority
questions from crowding the linux-kernel list. Similarly, the mailings in the linux-
kernel list are archived, so that they can be searched when someone needs to know
whether something is known about a potential bug. In that way the mailing list
archives provide a simple but effective form of community memory.

Already a superficial analysis of the tools and resources used in the bug removal
process reveals that a complex socio-technical system underlies this apparently
simple process. Quality control in the Linux kernel, therefore, is not only about
finding bugs and correcting them. It is also very much about the complex and con-
tinuously evolving system that makes the detection, characterization, and remov-
ing of bugs possible in the first place.

Tools and resources therefore mediate the relations between developers, the
developer community, and the technical object that is developed. The overall bug
removal system can then be represented in a simplified conceptual way as in 
Fig. .. Raymond () emphasized the cognitive capabilities of co-developers.
Sociocultural analysis (e.g. Wertsch, ; Leont’ev, ; Engeström, ; Cole,
) would highlight the fact that cognition also very much depends on the tools
and resources that are available for the developers. Implicitly, the guidelines for 
kernel bug removal note this when they insist that new patches need to be tested in
different hardware configurations. Linus’s Law could then be augmented by noting
that a combination of eyeballs and other resources makes even the most insidious
bugs shallow.

Quality control in innovative and continuously evolving projects is essentially
about learning. Whereas the traditional models of learning in product development
focused on decreasing errors in a given product design, in the case of Linux learning
is also creative. Theoretical models of innovative learning generally claim that
learning starts when a problem arises, and innovative solutions are generated in the
process of defining ways to overcome the practical problem at hand (e.g. Dewey,
; Schön, ; Engeström, ).

The Linux development model is compatible with such theories of innovative
learning. In this sense, it is also different from the conventionally used product
development practices (cf. Griffin, ; Mahajan and Wind, ), which rarely con-
sider the microstructure of learning. The Linux model, however, does highlight
some characteristics of successful product development that have been discussed
within the disciplined problem-solving literature on product innovation (Brown
and Eisenhardt, ). Within this literature, the importance of exploratory learning,
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non-financial goals, continuous problem-solving, and diversity of problem-solving
resources have often been noted.

. RULES, REGULATIONS, AND INTELLECTUAL PROPERTY

As was noted above, procedures that underlie Linux development are often learned
when novice developers become socialized into the community. Many of the pro-
cedures and practices are also embedded into the functionality of the tools that
support the development. There also exist, however, important explicit standards
and agreements that are key components in the development system. On a tech-
nical level, one such standard is the ISO Posix interface standard, which defines the
way application programs can use the kernel functions.

A distinctive characteristic of open source projects, when compared with tradi-
tional corporate software development projects, is the way intellectual property
rights are handled. One key innovation in open source has been the GNU General
Public License (Stallman, ). This has made it possible to legally improve and
adopt software developed by others, at the same time facilitating continuous
improvement.

The open source licensing rules are important for learning and for creating deriv-
ative works. Open source licenses, however, also have important implications for
the way resources can be used. For example, the c-language compiler used in Linux
development is produced by the GNU gcc community, which is not part of the
Linux development community. The gcc compiler is a critical resource for the Linux
community (Torvalds, ). If the compiler were to become unavailable, Linux
development would become difficult or impossible.

The GNU General Public License obviously plays an important role here. It guar-
antees that the gcc compiler can be appropriated by the Linux community as a core
resource in the development. By relying on the institution of copyright, open source
licences provide an institutional basis for trust (Kramer and Tyler, ). Without
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open source licence, it would be very risky to build a system that so critically
depends on a resource that is produced outside the community. Commercial soft-
ware development projects have to manage these types of risks by constructing
complex legal arrangements and by relying on socially institutionalized sanctions.
Often software developers simply have to go for the ‘least risky’ choice by selecting
the biggest vendor. Using a standard interface to the intellectual property institu-
tion, Linux developers avoid this additional and often costly translation to legal
practice, and this is probably one important reason why change in the ecology of
Linux development is rapid.

Copyright law itself is here appropriated as an unintended resource, and used 
to ‘encapsulate’ software so that it can become a resource for many different 
actors, without the need for the actors to negotiate and coordinate their actions.
Deployment of this standard translation mechanism avoids the increase in com-
plexity when new actors start to use these translations and the underlying sub-
networks as resources in their own activities. This strategy for reducing complexity
by defining such a ‘property interface procedure’ is exactly the same as that which
generated the idea of utilizing interface message processors in the ARPANET archi-
tecture. Whereas the IMP hardware made it possible to develop simple host-to-host
protocols, the GPL licence terms make it possible to create a complex network of
software without extensive cross-licensing.

In the history of software, open source models have, however, been used before
copyrights became an issue. For example, as was noted before, about half of the
operating system programs for CTSS, an early time-sharing system at MIT, were
developed by the users of the system (Fano, ). One of the motivations for
launching the ARPANET project in the s was the belief that by connecting 
different computing sites, communities of computer programmers could more 
efficiently share their programs and knowledge. Indeed, two of the most influential
visionaries of ARPANET, J. C. R. Licklider and Robert Taylor, argued in great detail in
 that such on-line communities would radically transform computer program-
ming, but also society, work, and human thinking. Although they saw security and
privacy as important challenges in on-line communities, their underlying assump-
tion was that—within a given access control policy—software could be freely used
and shared (Licklider and Taylor, ).

Copyright—and intellectual property more generally—is a social institution that
reflects history. During this history, some interests have become central and others
have disappeared into oblivion (Machlup and Penrose, ). As a social institution,
copyright helps social actors to coordinate and control their interactions. In open
source development projects, copyright helps solve a well-known problem. Access
to source code facilitates learning, improvement, and integration with other sys-
tems. One important function of copyright agreements is that they keep this devel-
opment path open, in a world where innovation is increasingly embedded in 
software (Lessig, ), and where commercial appropriation of research and
development investments has become increasingly difficult (Davis, Samuelson,
Kapor, and Reichman, ).
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.. Forms of Open Source Copyright

There exist several variations of commonly used open source licence policies, some
of which are more restrictive than others. In a clear contrast to the typical use of
copyright licences, which restrict the ways the copyrighted work can be used, the
main goal of the free software licences is to guarantee the ongoing reuse and devel-
opment of software.

In commercial software, the license terms are designed to protect the copyright. They’re a way
of granting a few rights to users while reserving as much legal territory as possible for the
owner (the copyright holder). The copyright holder is very important, and the license logic so
restrictive that the exact technicalities of the license terms are usually unimportant . . . In free
software, the situation is usually the exact opposite; the copyright exists to protect the license.
The only rights the copyright holder always keeps are to enforce the license and to change the
license terms of future versions. Otherwise, only a few rights are reserved and most choices
pass to the user. In particular, the copyright holder cannot change the terms on a copy you
already have. Therefore, in free software the copyright holder is almost irrelevant—but the
license terms are very important.

Free software licences guarantee various rights to use, modify, distribute, and dis-
tribute modified code. According to the Debian Free Software Guidelines, and the
Open Source Definition (Perens, ) that has been derived from it, there are sev-
eral requirements that a software component must meet. First, the licence must
guarantee that the code may be freely distributed without royalties. Second, the
source code must be easily available, and the licence must not restrict the distribu-
tion of the source code. Third, the licence must allow distribution of modifications
and derived works under the same terms as the original code. These are the main
characteristics of open source software. In addition, to comply with the Debian
Guidelines and Open Source Definition, the licence may restrict distribution of
modified source code only if it allows distribution of ‘patch files’ that can modify the
original code at the compile time. This is to simultaneously guarantee that the ori-
ginal programmer can maintain the integrity of his or her code, and that subsequent
modifications are still possible by adding new ‘patches’. In addition, the licence
must not discriminate against any persons or groups, or against any uses, includ-
ing commercial use. The licence must also apply to all to whom the program is 
distributed, without the need to write separate licence agreements. Further, the
licence must not require that the program be used as a part of a specified software 
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 ‘Free software licensing alternatives’. http://metalab.unc.edu/pub/Linux/LICENSES/theory.html.
 The Open Source Definition is available at http://www.opensource.org/osd.html.
 ‘A social contract’. http://www.debian.org/social_contract.html.
 There was a heated discussion going on at beginning of  as some members of the World

Wide Web Consortium (WC) wanted to introduce royalty payments for patents related to Web stand-
ards. The proposed RAND (Reasonable and Non-Discriminatory) licensing mode attempted to align
the interests of intellectual property owners (corporations paying WC membership fees) and the
development of the Web. In practice, the RAND licensing scheme might make it impossible to
develop open source software based on such standards (cf. http://www.w.org/TR//WD-
patent-policy-/).
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distribution. To avoid contamination of licences, for example by requiring that 
the program be distributed only together with other programs that have similar
licences, the licence must not place restrictions on other programs.

The least restrictive form of licence is public domain, which puts no restrictions
on the use or distribution of the original code. It can be freely copied, used, and
modified for any purpose. If a public domain program is available as source code, it
adheres to the Open Source Definition. A rough estimate of the use of public
domain licences is that in mid- about  per cent of about , software pack-
ages and documents on the Sunsite server were defined as public domain sources.

Public domain licences are therefore not very common within the open source
community.

The least restrictive commonly used licence is the MIT or X consortium licence,
which requires only that the original copyright and licence terms are included in the
distribution. Shareware programs often use this type of licence, although they may
also request a donation from users who find the program useful. A slightly more
restrictive licence is the BSD-licence, which requires that all documentation and
advertisements acknowledge the original copyright holder. Freely Redistributable
Software, in turn, has an FRS licence, which requires that software can be freely
copied, used, and locally modified. It must also grant the right to distribute modi-
fied binaries, although it can put some restrictions on the ways the modified source
code can be distributed. To be ‘open source’, FRS restrictions have to adhere to the
Open Source Definition, however.

The most widely used free-software licence is the GNU General Public License, or
GPL. GPL was originally defined by the Free Software Foundation, with the explicit
aim to promote non-proprietary software. GPL proponents argue that proprietary
software limits innovation, and that fair use of software should be allowed in the
same way as fair use of scientific results (Stallman, ). This is the licence under
which the core Linux system is distributed. It allows free copy, use, and modifica-
tion. Modified source code can be redistributed if the modified source code shows
a ‘prominent notice’ of the modification. The GPL licence also requires that if a pro-
gram contains components that are licensed under GPL, all the components must
have a GPL. This last requirement of GPL has no simple interpretation in practice
(Perens, ). To enable commercial programs to be developed for the Linux plat-
form, the licence in Linux explicitly declares that the use of the system is not con-
sidered to generate a derivative work. This means that commercial and proprietary
programs can use Linux even when they don’t want to use GPL. The original idea in
GPL was that it shouldn’t be possible to make open source software proprietary by
adding to it some proprietary components (Stallman, ).
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source code.
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open source movement has to a large extent neglected the ethical implications of software licensing,



Linux Software Map (LSM) is a database of software available for the Linux plat-
form. Each entry in the LSM includes a field for describing the copyright policy for
the software package in question. By analysing the contents of the LSM database, it
becomes clear that the GNU licensing policy has been the most common policy
among Linux developers. About  per cent of the entries had a GNU-type ‘copyleft’
licence policy. The distribution of licence types in the LSM database at the begin-
ning of  is shown in Table ..

During the history of Linux, developers have also learned that licences are import-
ant. Whereas it was quite common until the mid-s for developers to describe
the copying policy for their software in ambiguous terms, towards the end of the
decade the use of copyrights became more exact. This can be seen from Fig. ..
The GNU-type ‘copyleft’ licences have been common for the whole history of the
Linux kernel development and more widely used than all the other well-defined
open source licences.

A key factor in open source development is that formal contracts are intended to
promote development, not to restrict it. Property rights are used here to enable
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and focused on a short-sighted way to the productivity aspects of the open source model. Stallman
and Raymond are often presented as two ideologically opposite poles of the open source movement.
Whereas Raymond emphasizes the effectiveness of the open source development and argues that
libertarian values are compatible with the open source model, Stallman emphasizes common good
and social responsibility. The Raymondian open source activists sometimes argue that Stallman and
the Free Software Foundation is based on ‘ideology’ and that they are antagonistic to free markets.
Such rhetoric, of course, assumes that free market and libertarian values would be free of ideology.
Stallman, himself, has often emphasized that when he talks about ‘free software’ he talks about it in
the sense of ‘free speech’, not in the sense of ‘free beer’.

 The Linux Software Map was created by Jeff Kopmanis, was taken over by Lars Wirzenius, and
is now maintained by Aaron Schrab at http://www.execpc.com/lsm/. There is another popular 
version of the LSM at ibiblio (http://www.ibiblio.org). The ibiblio database contained , entries 
at the beginning of  whereas Schrab’s version contained , entries. The main reason for the
difference is that the ibiblio database has multiple entries for the different versions of the same 
software. The ibiblio database also has many corrupted entries.

 The entries in the LSM database do not describe copying policies in any well-defined way. For
example, some entries declare their copying policy as ‘public domain excluding Microsoft’, ‘do not
sell it’, ‘free for people friendly to the USA.’, ‘freeware but send a postcard’, etc. Many entries also refer
to the copyright rules described in the documentation of the various software modules comprising
the package. Many packages also include modules with different copyright policies. For the pur-
poses of the present analysis, the , entries of the LSM were formatted by a Perl program,
imported to a Lotus Notes database, and categorized using the Notes full text search tools. Entries
that had multiple well-defined copyright policies were categorized as ‘copyleft’ if they included
GNU-type licences. The free format entries were then categorized using information in the entries.
For example, ‘do not sell it’ was categorized as ‘open with restrictions, non-commercial use’, and ‘free
for amateur radio use’ was categorized as ‘open with restrictions, other’. The copyright policy for
some entries was checked from their original distri-bution sites. As the terms used to describe copy-
ing policies have changed during the years, it was difficult to categorize entries for shareware and
freeware, and to know whether source code was included with the package or not. The figures in the
table, therefore, give a good overview of the licence policies used for the LSM entries, but have some
room for interpretation in particular for those entries that don’t refer to well-defined licence policies.

 The figure was generated by a Java program that analysed the entries in the Lotus Notes data-
base described in the previous note. Starting from the first entry date in the database, and using a
 day time window, the entries in each policy category were counted. The number of entries in
each time window is shown in the figure.

 Open source projects therefore also show that there are intellectual properties for which appro-
priation of returns on investment is not a major issue. In the historic controversies on patent rights
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Table .. Licence types in the Linux Software Map
database, 

Licence type Entries

Open source copyleft (GNU, ‘copyleft’) ,

‘Freeware’ without explicit licence 

Open source copyright (BSD, MIT, FRS . . .) 

Open with restrictions 

Public Domain 

Shareware 

Proprietary (commercial, demo) 

Free distribution, no source 

Documentation 

Not defined 

Total ,
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OS copyright
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Fig. .. Licence type distribution in the Linux Software Map database, –



symbiotic development, instead of competition. The fact that innovative use of
property rights can provide a platform for effective collaboration and division of
labour also without economic competition is an important insight of the free soft-
ware movement. It also shows that pure market and competition-based analyses of
technology development miss a fundamental aspect of socio-technical change.

.. Social Contracts

The copyright licence, although important, is only part of the story, however.
Several explicit and implicit expectations define appropriate behaviour within the
open source community. For example, the Debian GNU/Linux community has
defined a ‘social contract’ that declares its commitment to keeping the programs
free software, transparency in handling software bugs, and support for users who
develop commercial and restricted software based on the free software developed
by the community. Moreover, the rights to distribute key components of programs
are tightly controlled by informal social mechanisms.

In the course of time, commercial interests have become increasingly important in
the Linux community. In the beginning, Linux development was closely aligned with
the free software movement. Linux development was explicitly defined as a non-
commercial project. In  Torvalds noted that the only exception for the free use of
the code was the restriction on someone creating a commercial product out of it:

The only thing the copyright forbids (and I feel this is eminently reasonable) is that other 
people start making money off it, and don’t make source available etc . . . This may not be a
question of logic, but I’d feel very bad if someone could just sell my work for money, when 
I made it available expressly so that people could play around with a personal project. I think
most people see my point. (Quoted in DiBona, Ockman, and Stone, : )

More recently, commercial organizations have become important actors in the
Linux development system. This has created tensions and continuing discussions
on the way open source licensing can be applied in practice (e.g. Perens, ).
Raymond () argues that the Open Source Definition is a major improvement
over the original GNU licence policy, as it explicitly allows commercial software
developers to join the Linux development community.

When the institutions of licensing are viewed as social innovations, it is pos-
sible to see that also social innovations can be a source of path dependence in 
socio-technical evolution. When the Open Source Definition is used as a guideline
for licensing, it becomes very difficult to return to the closed source mode. Indeed,
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(Machlup and Penrose, ), the proponents of a free market argued that patent rights may slow
down development as they distort markets and do not necessarily allocate returns to those who con-
tributed to the invention. Both free market advocates and proponents of patent monopolies, how-
ever, missed the possibility that technological development can result from giving away monopolies.

 http://www.debian.org/social_contract.html.
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this was exactly the intention of the Free Software Foundation when it designed the
GNU licence, with the aim of guaranteeing that the results of technical work can
accumulate. The Open Source Definition, with its less contagious licensing policy,
however, makes it possible to incrementally develop closed extensions to the Linux
system. In practice, this may be difficult as most developers rely on the collective
resources of the community, and unfair free-riding easily leads to social exclusion.
The transparency of the open source development model also means that it is 
difficult to hide such attempts at free-riding.

An important role of copyrights and explicit declarations of expectations is that
they create norms that act as interfaces between developer communities. They
reduce the risks of relying on resources produced by others, and create an environ-
ment where trust can be accumulated and transformed from calculus-based trust to
knowledge- and identification-based trust (Lewicki and Bunker, ). If all resources
were to be generated within a given community, social learning and the internal
power structure within the community would in most cases make it unnecessary 
to explicitly declare copyrights, for example. Copyright, however, institutionalizes
relationships between communities. By using the GPL, the GNU gcc developer com-
munity guarantees that the Linux developer community will have access to this 
critical resource. But whereas copyrights and intellectual property are often viewed 
as the basis for economic transactions of knowledge related goods, or ‘knowledge
economy’, open source communities use them to manage an economy where trust,
reputation, competence, and attention operate in an ecology of productive commu-
nities. In this economy, money is often perceived as a technology which distorts
effective allocation of resources.

. DEVELOPER INCENTIVES AND RESOURCE ALLOCATION

Linus’s Law and the alignment of social and technical structures may explain why
community-based software development can lead to high-quality results. The-
oretically, Linus’s Law means that each contributor can contribute where his or her
impact is greatest. In this sense, the Linux development community implements 
a market where cognitive resources are effectively allocated.

The existence of such allocation mechanisms do not, however, explain why the
product emerges. In the case of a software project, some development may occur
simply because debugging, coding, and solving technical problems can be reward-
ing as such. This, indeed, is an important driver for development. Developers often
describe the joy of hacking as their primary motive (e.g. Raymond, ; Torvalds,
).
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 Torvalds () and Himanen () have tried to explain the motivations of Linux developers
using the popular Maslowian hierarchy of needs. Maslow’s basic idea was that human needs form a
hierarchy in which lower-level needs have to be satisfied before the higher-level needs become



To be able to make relevant contributions to the project, one has to skilfully use
tools and concepts, and do something that no one has ever done before. If one suc-
ceeds in creating a new piece of software that is taken into use in the community,
there is clear evidence of success and a socially validated proof of mastery. Indeed,
software projects provide unlimited opportunities for testing one’s skills and creat-
ing new grounds for mastery. In this sense, one may regard ‘the joy of hacking’ as
something highly non-trivial. Instead, it can be seen as a prototypical driver for
technological progress. As was noted before, Csikszentmihalyi () argued that
people are most happy when they are performing on the edge of their competences.
To an important extent, software developers live in a world of their own creation
(Weizenbaum, ). In such a world, each new advance and border-crossing
moves the boundaries further, expanding the domain where new achievements can
be realized. In this context, Linux, therefore, is not just an operating system kernel,
but an interesting metaphor of modern technological culture.

Such socio-cognitive explanations are important parts of the whole picture when
we try to understand the drivers of technological change. As such, however, they
cannot explain the fact that a technological system evolves as a coherent system.

Raymond proposed that the dynamic of Linux development can be understood
by noting that the ownership rights that underlie the development are essentially
similar to those that underlie the Anglo-American land tenure (Raymond, ). In
this Lockean theory of property rights, ownership can be gained in three different
ways. First, in frontier areas that have never had an owner, one can acquire owner-
ship by homesteading: by mixing one’s labour with the unowned land, fencing it,
and defending one’s title. Second, in an area where ownership already exists, one
can acquire ownership through the transfer of the title. In theory, at least, such a
chain of title goes back to the original homesteading. Third, property that has been
abandoned can be claimed by adverse possession. This happens in a similar way as
the original homesteading: one moves in, improves the property, and defends the
title as if homesteading (Raymond, : ). Similarly, in the space of potential
technological developments of the Linux system, developers can gain ownership
rights for specific sub-projects.

These informal ownership rights are important because they make exchange
possible. According to Raymond, the exchanges that underlie the success of Linux,
however, are not conventional economic transactions. Instead, following Rheingold
() and others (Kollock, ), he suggests that the system of social exchanges
can be understood as a gift culture (Raymond, : ). The developers give the
results of their work as gifts to the community, and the mutual exchange of gifts
leads to a technically highly advanced system with a very high quality. By giving
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actual. In the Maslowian context, software hacking, therefore, becomes a form of human self-
actualization and gains an aura of human emancipation. One should, however, note that there is no
empirical support for Maslow’s hierarchy or the different categories of needs proposed by Maslow
(Wahba and Bridgewell, ; Soper, Milford, and Rosenthal, ). Maslow’s conceptualization of
‘needs’ is also theoretically highly questionable (cf. Harré, Clarke, and De Carlo, ).

 Raymond discusses the property rights in his article ‘Homesteading the noosphere’. This is
included in Raymond (), and also available at http://www.tuxedo.org/~esr/writings/.
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gifts, the developers are also able to build reputation. Good reputation among one’s
peers is a source of reward in itself. Reputation, in turn, makes it easier to mobilize
community resources. In some cases, good reputation within the community may
spill over to other areas of society, and earn a higher status there.

In this sense, the Linux development community is similar to academic discip-
lines (Merton, ). As Raymond notes, one peculiarity of such communities is that
only the members of the community can appreciate the quality of gifts. Indeed, in
the Linux community the value of a gift is what others can make out of it.

There is, however, more than one way to run a gift culture. According to Raymond,
two sides of gift culture are represented within the software development commun-
ity by crackers, who try to gain reputation by breaking computer security, and by
benevolent hackers, who gain reputation by sharing useful software in source code
(Raymond, : ). The cracker culture is a tightly closed one, and protects its
secrets, whereas the hacker culture is based on transparency and openness. This
has obvious implications for the way competence, knowledge, and technological
artefacts develop. Openness means that results and techniques can accumulate, as
it is relatively easy to learn from others’ work and add to it. There is a very strong
expectation within the community that developers develop their systems in ways
that make it possible and easy for others to improve on them (e.g. DiBona, Ockman,
and Stone, : –). This expectation is reflected, for example, in the Open
Source Definition, which forbids deliberately obfuscating source code, and which
requires that source code be distributed in a format that a typical programmer
would use to modify the program.

Raymond argues that Linux development works well because reputation is
mainly associated with software modules. Although, according to Raymond, devel-
opers are driven by ego-satisfaction, there are strong taboos on claiming personal
credit. Reputation is made objective by associating it with the produced technical
artefacts. Although hackers relatively freely flame each other over ideological and
personal differences, it is rare that they would publicly attack someone else’s tech-
nical competences. Instead of criticizing each other, they criticize the software.

Bug-hunting and criticism is always project-labeled, not person-labeled. Furthermore, past
bugs are not automatically held against a developer; the fact that a bug has been fixed is gen-
erally considered more important that the fact that one used to be there. (Raymond, : )

Raymond also notes that the hacker culture consciously distrusts and despises 
egotism:

. . . self-promotion tends to be mercilessly criticized, even when the community might appear
to have something to gain from it. So much so, in fact, that the culture’s ‘big men’ and tribal
elders are required to talk softly and humorously deprecate themselves at every turn in order
to maintain their status. (Raymond, : )

In Raymond’s terms, reputation is very much ‘project-based’. His interpretation is
that most hackers, as members of the cultural matrix, learn that desiring ego satis-
faction is bad. However, he also notes that the rejection of self-interest in the hacker
community is so intense that it probably plays some other valuable function.
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Raymond proposes two explanations for the taboos on posturing and personal
attacks on technical competences. First, when results are judged by their merit, the
community competence base increases rapidly. The taboo against ego-driven pos-
turing therefore increases productivity. More importantly, however, when personal
status is discounted, the community information on system quality closely reflects
the quality of the system, and does not become polluted by personal reputations of
the developers.

Implicitly Raymond’s account on the reputation mechanisms assumes that there
are two systems of reputation operating in parallel. One drives the developers as
seekers of ego-satisfaction, whereas the other describes the quality of produced
software artefacts. Meritocracy, in the Linux developer community, assumes that
there exists a straightforward mapping between the quality of software and the 
reputation of its developers. As Merton and others have shown, the allocation of
individual reputation, however, is a complex social process and often only loosely
coupled with the quality of results associated with the individual in question.

The topic of reputation has been very popular in recent years, especially among
economists working in the game theoretic tradition. Economists generally assume
that reputations are based on information on individual behaviour (Wilson, )
and that their role is to make social relations less risky (Granovetter, ; Kollock,
). Although Raymond’s account on reputation associates it also with material
artefacts, fundamentally he locates reputation among characteristics of a specific
individual. This may appear to be a natural and obvious choice. The usefulness 
of an individualistic concept of reputation is, however, problematic, for example,
because trustworthiness, risk, and reputation are often loosely coupled (e.g. Meyerson,
Weick, and Kramer, ). The individualistic concept of reputation, of course, also
makes major theoretical assumptions about the nature of individuals, social activity,
‘information’, and human cognition. The question on incentives and reputation,
therefore, is an open one.

.. The Tulip Flame War

In any social system, reputation, authority, and legitimation are products of history,
and abstract definitions of them easily fail on a closer study. Reputation is defined
within the community in question and the criteria it uses in managing reputation
change as the community evolves. There are no ‘universal reputations’ as reputa-
tion forms and is reproduced in ongoing narratives and within a complex ecology
of actors whose acts gain them meaning as episodes in a history (Czarniawska, ;
MacIntyre, ). The only way to learn the rules of reputation building is to become
engaged in the community discourse. Breaking the rules, in turn, can lead to
excommunication.

All social interaction creates conflicts. To alleviate them, communities develop
norms and value systems. Durkheim () argued that the essence of modern cap-
italism was that the increasing importance of division of labour had eroded the
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basis for communally shared values. In the modernization of the society, insults
against communally shared values, in other words crimes against the community—
those that were encoded in religion and penal code—were increasingly being
replaced by conflicts between parties who regulated their interactions with con-
tracts. This was reflected in the increasing prominence of civil, commercial, proced-
ural, administrative, and constitutional laws in modern society.

In this sense, electronic communities resemble more medieval villages than
modern cities. Crimes in an electronic community are crimes against the commun-
ity. Whereas in modern society punishment is typically based on restitutive 
sanctions which try to return things as they were before norms were broken, in elec-
tronic communities sanctions are often repressive. As Reid (: ) has noted,
punishment in electronic communities often shows a return to the medieval, mak-
ing value conflicts highly visible spectacles that focus on the sins of individuals.

Open source communities, of course, have much less conflict than many other
communities. As virtual communities live on the net, their value systems are trans-
parent. Potential community members can easily check if the community adheres
to acceptable values. The effectiveness of this self-selection process is clearly indi-
cated, for example, by the fact that over  per cent of the people mentioned in the
Linux credits file are male.

Sometimes, however, conflicts arise from within the existing community. A recent
email exchange in the linux-kernel mailing list gives an example of this process. The
weekly Kernel Traffic linux-kernel mailing list summary called this episode ‘Tulip
driver developer flame war’. There were  mailings around the topic between  and
 March . The main issue was the style of development by Donald, one of the
people mentioned in the credits file. This exchange of messages shows in a concrete
form how behavioural norms are discussed and articulated in the Linux develop-
ment community. It also shows how technological architecture, development 
practices, open communication, and reputations interact, and how the Linux com-
munity implements reflective practices that maintain the community and facilitate
social learning. The Kernel Traffic editors summarized some of the discussion:

In the course of argument, Donald said to Jeff, ‘you didn’t understand the task you were taking
on when you decided to take over maintaining the Ethernet drivers. It took years to write the

LEARNING FROM LINUX 

 This is also one important reason why I think Himanen’s () proposal that the hacker ethic
could be generalized, for example, for development of education is problematic. Instead of being a
new model of community-based development, Himanen’s hacker ethic has close similarities with
the medieval social model, where conflicts between villages were often solved by brute force, or with
the ethic of modern fundamentalist religious movements. An attempt to develop an ethically more
sophisticated version of the hacker ethic could be based on Habermas’s () discourse ethic. The
norms that could take into account the different values systems of different communities, in turn,
could be developed by studying the theory of conflicts and justice (e.g. Rawls, ).

 As Kendall (: –) has noted, in electronic communities the first entrants often set the
norms for the community.

 I have edited the citations related to this episode so that they include only the first names of the
persons involved.

 This is an edited version of the summary in Kernel Traffic #,  Mar. , http://kt.linux-
care.com/.



driver set—it’s not something you can just pick up in a few months. And expecting me to now
fix or maintain your hacked up code branch is just completely unreasonable.’ Jeff replied with
venom:

No one expects anything from you and has not for a long time. If you wanted to actually
WORK on the drivers, rather than just complain, then I’m sure many people including myself
would find that work very valuable . . .

Elsewhere, Jeff went on, ‘Donald, I, and others all seem to agree that having his drivers and the
kernel drivers diverge is a poor situation. However, while Donald continues closed source
development with periodic code drops, and does not work with other kernel developers when
creating infrastructure, I do not see a resolution to the situation any time soon.’ David replied
angrily, ‘Please explain how his code development is closed source? This is totally BS and you
know it. All the code is available, all the list discussion is available, and patches and requests
are accepted all the time. Quit it. His development is quite open . . . ’. Linus replied:

David, pipe down.
You seem to like the approach Donald has taken. But take it from me, it DOES NOT WORK.

The problem is that maintaining the drivers in their own small universe means that only
those people who follow the driver development will ever even test them. . . .

I fixed the tulip driver at least twice to work with the media detection, and sent Donald
email about what I had done and why . . . I don’t know if my fixes ever actually made it into
Donald’s version, because after the second time I just stopped bothering trying to re-fix the
same thing, and I never updated his driver again.

In contrast, what Jeff and others have done have [sic] been of the type where immediately
when a fix is made, it is released. Which means that if there are problems with it, people who
follow new kernel releases will know. Immediately. Not in a few months time when the next
‘driver release’ happens.

This is what Jeff means with ‘closed source’. Yes, the sources are there. Yes, they get released
every once in a while. But Donald doesn’t let people _participate_. He thinks he is the only
one who should actually touch the driver, and then he gets very upset when things change
and others fix up ‘his’ drivers to take into account the fact that the interfaces changed. . . .

Jeff also replied to David:

Donald’s development is not open AT ALL. . . . He disappears for many months, creates a
design without interfacing with kernel developers, and then appears again with a code drop.
It is classic cathedral style of development. Read Eric Raymond’s paper on why the bazaar
method is far, far superior. . . .

Donald replied to Jeff:

A quick search of the two very active Tulip mailing lists reveals that you have contributed
nothing until this year. Apparently you were not even a subscriber until then, and know 
nothing about the very open way development has been done. Yet you willingly throw
around pejorative phrases like ‘cathedral style’—a hot button in this community.

For those not interested what superficially appears to be a kernel power grab, there are
issues underlying all of what appears to be a personal conflict.

The Kernel Traffic summarized in more detail Donald’s argument that the under-
lying questions are about the stability of kernel source code interfaces, testing 
the drivers in the context of continuously changing kernel releases, and the large
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and frequent kernel patches that make life difficult for driver developers. Donald
further stated that the earlier interfaces were better than the more recent ones, and
questioned the viability of the monolithic, single-point kernel source tree. Linus
replied:

You’re basically the only one thinking so.

The fairly recent changes in ..x (the so-called ‘softnet’ changes) are just incredibly more
readable and robust than the old crap was that I don’t see your point at ALL.

Just about every single network driver out there was SERIOUSLY broken . . . I know, I had fixed
many of them. The games the drives played . . . were just incredibly baroque, and had
absolutely NOTHING to do with ‘clean’.

All of that crap is gone, and it was much overdue. . . .

The Kernel Traffic summary further recorded that Donald was no longer considered
to be the owner of the network drivers that he had earlier developed. First Donald
lamented the difficult situation he was in because he didn’t have sufficient control
over the development. Then Linus gave his assessment of the situation. The Kernel
Traffic summarized:

Elsewhere in an entirely different subthread, Donald argued:

I’m in the increasingly untenable position of being expected to maintain drivers for the 
current and older kernels, but not having any influence over the new development exactly
because of that backwards compatibility. It’s no fun being responsible for just the old 
versions, especially after I did years of unpaid development work.

There were many interface changes added incrementally in the . kernels. Some were
added without consideration of, or even in opposition to, cross-version compatibility. 
And few of those interface changes were designed, as opposed to just hacked in. When 
I proposed a new PCI detection interface I wrote a skeleton driver, converted several of my
drivers, demonstrated that it worked with several hardware classes and wrote a usage guide.
But the few day hack was added because the patches were incremental (even if misdesigned
and broken).

Linus replied:

Donald, that’s not true, and you know it.

Neither I nor anybody else has expected you to maintain the drivers for quite a long time
now–you just didn’t seem to have the interest, and a lot of people have acknowledged that.
That is why there ARE new maintainers for things like tulip and eepro, whether you like it 
or not.

You did not lose influence of the drivers because you want to maintain backwards compat-
ibility. You lost influence over the drivers simply because you never bothered to send in your
changes. Don’t start blaming anybody else.

As this brief outline of the driver developer flame war shows, the open source model
has conflicts, and reputation and authority can be gained and lost. As the comments
of Linus Torvalds reveal, breaking of expectations can lead to neglect of contributions,
thus effectively destroying the possibilities of gaining reputation within the commu-
nity. When the reputation has decreased enough, it becomes easy for someone to start
parallel development. Eventually this can lead to explicit transfer of ‘ownership’ rights.
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The question is, however, also about the locus of control. Donald, as a driver
developer, prefers the kernel to stay stable so that he can more easily develop his
software. Linus indicates that in the Linux community, the kernel is the central 
artefact, and driver developers should adjust to the requirements of kernel devel-
opment. Donald’s position is therefore rather similar in relation to the kernel as 
kernel developers’ position is to the GNU c-compiler. As was noted above, the 
kernel developers argue that the compiler version needs to be held constant to
effectively debug problems in the new kernel releases. The big difference, of course,
is that the kernel developer community has to explicitly integrate the driver devel-
oper’s contributions to the overall system to make them useful. The kernel commun-
ity can simply say that it does not like the idea.

By following such discussions, novice developers can learn how open source
development is interpreted in practice, and what the taboos are that should not be
broken. As can be seen from the example above, the open source model implies a
code of conduct, which is supported by a socialization process that also occurs 
in the open source mode. One reason for the effectiveness of the open source 
development model is that negotiation of social practices and the development of
reputations can be observed by the global community in real-time.
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CHAPTER

11
Concluding Remarks

. LINUX AS MODERN ECONOMY

Since Schumpeter, economists have defined innovation as something that has a
direct economic impact. According to this view, inventions and technological
change become innovation when they change production functions that relate 
economic inputs to economic outputs. Much research and many policy recom-
mendations have been based on this economic view of innovation. The historical
examples discussed in the previous chapters show, however, that there can be innov-
ative technological change that is not captured by this definition of innovation. For
example, Linux, as it exists today, obviously has potentially important implications
for the software industry and for the rest of the economy. Yet, it is difficult to argue
that economic rationality would explain the evolution of Linux or, indeed, that eco-
nomic interests would have played a crucial role in its history. Linux developers
operate in a field of social interaction that is created as a result of this interaction.
As this field is constantly reorganized and expanded, ‘economic structure’ cannot
emerge easily within it. The evolution of Linux, therefore, cannot be described as
‘maximization’ of any given utility. Strictly speaking, Linux, therefore, is no more
based on an ‘economy’ of gifts than it is based on an economy of monetary trans-
actions. The economics of innovation requires a different—expansive—form of
economy. The economics of innovation requires a concept and theory of value that
is grounded outside the economy itself.

One way to approach this fundamental challenge is to redefine the concept 
of value so that it is linked to social practices. Here the analysis of MacIntyre ()
is particularly relevant. MacIntyre argued that we should distinguish internal and
external values. Internal values are the principles that organize the practice and
make the activities of the community members part of a meaningful history. For
example, for a football team ‘a good game’ may be a value in a similar way to that in
which a ‘beautiful code’ can be a value for Linux developers. Internal values, then,
are the ends-in-themselves for the community in question, and provide the ‘virtues’
of the community. External values, in contrast, are instrumental means for other
ends. Software, for example, can be developed because collaborative development



is fun and because it feels good to be able to develop one’s competencies as a 
programmer. These values are internal to the practice in question and they don’t
make sense outside it. It is also possible to hack the Linux code simply to be able to
get a nice sports car or a university degree. From the perspective of the Linux devel-
opment practice, such values are external.

In practice, internal and external values are difficult to separate. Conceptually,
however, they are independent. External values generate the domain of economic
transactions. The basic theoretical assumption of modern economic theory is that
there are no local currencies or values. In this view, all values are reflected on exter-
nal values that can be made universally comparable using the market mechanism.
The cost of this concept of value is that the social foundation of internal values 
disappears and the logic of productive communities becomes encrypted and hid-
den inside a black box which mysteriously emanates useful products. The source 
of the problem, of course, is in the fact that internal values were thought to be 
non-existent simply because they did not exist in the abstract world of economic
transactions.

The Linux community is a particularly interesting technology-producing com-
munity as it lacks the modern system of external values. Until recent years, it 
has produced only internal values. The external use of the produced results 
has occurred as an unintended side effect. Indeed, some critics have argued that 
the Linux community only cares about its own needs and fun and does not, for
example, document the system in a way that would allow people in developing
countries to utilize the potential of Linux. In this regard, of course, the modern
economy and the Linux community are both uninterested in the common good.
The modern economy, however, is fundamentally production ‘for others’—a labour
society, to use Arendt’s () term. The difference is that if consumers in develop-
ing countries had money, the modern economy would produce external values for
them. In the Linux community, the common good is not interesting because it is
external to the community and only internal values count. In the labour society,
common good does not count because only external values count. In the modern
economy, the assumption was that external values are fully expressed using money
as a universal signalling mechanism.

Although internal community values are invisible in the modern economy, they
often drive development of competences and technology. For example, open
source communities are in many ways similar to amateur radio communities.
Amateur radio licences explicitly prohibited commercial activities and the ama-
teurs were repeatedly pushed into useless and unusable parts of the radio spectrum
as soon as their innovations had prepared the ground—or space—for commercial

 CONCLUDING REMARKS

 As Paul Duguid has emphasized, open source communities of course rely on resources produced
by economic actors. There would be no Linux without Intel’s microprocessors, university computer
networks and file servers, or slack resources in business firms. In this regard, open source commu-
nities are economic free-riders. One reason why open source communities are able to live according
to their internal values is that the Internet both lowers development costs and makes it possible to
distribute them among a large population of developers. As a result, the costs can become invisible
to existing accounting systems.



or ‘professional’ use. Radio amateurs shared and developed technologies and com-
petencies that made, for example, mobile phones possible.

Similarly, electronic bulletin board networks prepared the way for the Internet in
the s. Many of the most skilled computer programmers of the s acquired
their skills by packing animations and music in ‘demos’ that simply showed off the
capabilities of their programmer or programmer team. Before the breakthrough of
the Internet in the early s, these demos were shipped around the globe on mag-
netic disks like viruses. This all happened despite the fact that collaboration and
communication were not particularly easy.

Linux, amateur radio, bulletin board networks, and the computer demo scene
provide historical examples that show that innovation does not determine eco-
nomic change and that economic rationality does not determine technological
change. Innovation and economy are only loosely coupled. To describe the linkages
between technology and economy, the modern economy itself has to be explained
as one of the sophisticated technologies of modern society.

Schumpeter, himself, adopted such a sociologically oriented view on economy.
He maintained that it is impossible to separate the processes of technological
development and the system of capitalism, arguing that they were essentially one
and the same thing (Schumpeter, : ). Capitalism, therefore, was not a way to
organize economic transactions in a system with private ownership, but a specific
institutional, cultural, and social form. In itself, capitalism is based on rationality
that generates the cost-profit calculus and turns money into a unit of account. By
crystallizing this rationality and representing it numerically, cost-profit calculus

CONCLUDING REMARKS 

 For example, in  there were over  electronic bulletin board systems in Finland. Hackers
were combining radio technology, computers, and computer networks (Tuomi, ). Several of the
active Finnish hackers of the s are now globally known Internet experts and entrepreneurs.

 Raymond’s (: ) argument that the open source development model relies on the abund-
ance of resources seems to assume that resource use and ownership are tightly connected. As
Duguid argues, open source developers often use resources owned by others. The history of amateur
radio, however, also shows that resource scarcity does not stop innovation and collaboration. On 
the contrary, sometimes it generates constraints that become challenges for the innovators. For
example, in , after two years of intensive experimentation, the first successful two-way radio
connection was made by bouncing radio waves from the moon (Janhunen, ). This two-person
earth–moon–earth network, between William Conkelin, Long Beach, California, and Lenna
Suominen, Nakkila, Finland, shows that breakthroughs are sometimes generated with great persist-
ence and effort, when experts argue that the goal is impossible, and without any perceivable eco-
nomic spillovers.

 Simmel’s () observation was that money is the most perfect tool. One could argue that mod-
ern economic theory has focused on one particular social interface and translation mechanism, the
social technology of money, taking the characteristics of this technology for granted. A sociological
and cultural starting point would lead us from the closed self-referential system of economic utility
relations to discuss economic systems as forms of socio-technical systems where other tools and
technologies are also relevant. Such a theory might be based on sociocultural activity theory
(Leont’ev, ), which inherently combines technology, social division of labour, and human cogni-
tion, and which could be expanded to include accumulation and creation of different types of
resources, for example, technologies, conceptual systems, and knowledge. Indeed, Engeström ()
has developed a version of activity theory where exchange, division of labour, productive action, and
technology are parts of the same structure of human activity. Engeström’s focus, however, was on the
theory of learning.



creates and promotes the modern enterprise. Economic rationality, however, does
not stop there:

And thus defined and quantified for the economic sector, this type of logic or attitude or
method then starts upon its conqueror’s career subjugating—rationalizing—man’s tools and
philosophies, his medical practice, his picture of the cosmos, his outlook of life, everything in
fact including his concepts of beauty and justice and his spiritual ambitions. (Schumpeter,
: –)

Schumpeter pointed out that the capitalistic enterprise is founded on institutions
that necessarily become decomposed as economic rationality becomes increas-
ingly dominant. The historical patterns of capitalistic consumption and accumula-
tion, for example, were based on a family structure where individual interests could
become intergenerational. The traditional bourgeois self-interest of entrepreneurs
and capitalists was historically never very individualistic and both the rhetoric and
action were impregnated with the idea that the entrepreneur was acting on behalf
of future generations. Family and family home used to be the mainspring of the typ-
ical profit motive (Schumpeter, : ). As the institution of the bourgeois family
increasingly came to be viewed through economic rationality, Schumpeter noted
that this foundation of capitalism was about to erode:

As soon as men and women learn the utilitarian lesson and refuse to take for granted the 
traditional arrangements that their social environment makes for them, as soon as they
acquire the habit of weighing the individual advantages and disadvantages of any prospective
course of action—or, as we might also put it, as soon as they introduce into their private life a
sort of inarticulate system of cost accounting—they cannot fail to become aware of the heavy
personal sacrifices that family ties and especially parenthood entail under modern conditions
and of the fact that at the same time, excepting the cases of farmers and peasants, children
cease to be economic assets. (Schumpeter, : )

Schumpeter pointed out that these sacrifices do not consist only of monetary 
sacrifices, but comprise an indefinite amount of loss of comfort, of freedom from
care, and opportunities to enjoy the increasing variety of attractive alternatives.

According to Schumpeter (: ), the questions that economic rationality makes
parents ask can be summarized: ‘Why should we stunt our ambitions and impover-
ish our lives in order to be insulted and looked down upon in our old age?’

Free markets enable individuals to make choices based on their preferences.
Freedom, however, is a social phenomenon, and it is bought at the expense of 
others. Individuality itself is a modern invention (Taylor, ). Individual choice 
is possible in the free market when everyone in the market buys the logic of eco-
nomic rationality. Economic rationality is one of the distinctive achievements of the
modern world, but its operation is possible only because it operates in a complex
institutional and ideological context.

 CONCLUDING REMARKS

 Martin Carnoy () has argued that increasing globalization, competition, and demand for a
flexible workforce require new integrative institutions and that they have already transformed 
families. His description of the changes of family structure is based on recent data, which seems to
support Schumpeter’s analysis of the consequences of capitalism in this regard.



Linux shows that in real life the assumption of universal economic rationalizing
is not necessarily valid. Modernity cannot be reduced to the modern economy, even
in the domain of production. The rationality that defines the logic of open source
development is a rationality of meaningful social action. It expands the opportun-
ities of human action, instead of optimizing them.

As Schumpeter observed, technological development is linked to social institu-
tions and the values that underlie them. These institutions provide resources for
development, but not all development fits easily within their constraints. Why,
then, does a complex technological system such as Linux seem to be so successful?
Where are its core institutions? Where is its home?

Berman () characterized the modern mentality as a set of culturally shared
beliefs. The modern mentality, according to Berman, is composed of strong indi-
viduality, belief in self-directed reason, assumption of the individual as the locus of
control, commitment to progressive improvement, a generally optimistic outlook,
and a strong belief in meritocracy and social mobility. In the Linux community,
these beliefs are easy to detect. The proponents of open source often adhere to a
very strict rhetoric of meritocracy (e.g. Raymond, ; Wayner, ). In theory,
everyone is judged based on the quality of the results, and seniority comes into play
only in those exceptional cases where peers cannot judge quality, or when owner-
ship rules do not work. The great commitment and enthusiasm of Linux developers
indicate that the developers believe that their efforts and contributions matter, and
that the system as a whole is improved as a result of these efforts. The joy of hack-
ing, in turn, is very much about getting control over a constructed world, and
becoming a wizard in such a technological world.

The way the Linux development community lives, indeed, reflects major currents
in the modern world. This is also probably one of the reasons why it has been so
successful in technological development. The social system of the Linux commun-
ity is not only aligned with the needs of the community itself. It is also aligned 
with important components of the broader social system where the development
transpires.

The great paradox of Linux is that although its developer community subscribes
to the core values of modernity, at the same time its social structure resembles 
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 Borsook () argued that computer hackers are greatly influenced by libertarian ideals, where
extreme individualism mixes with belief in technological solutions to individual and social prob-
lems. As always, reality is more complex than any of its descriptions, and it is possible to find hack-
ers with different world-views. It is, however, clear that discussions on technological development
and the future are often expressions of existing interests, conflicts, and values. The Internet, for
example, has often been argued to be a fundamentally important technology because it will bring
democracy, freedom, and expanded opportunities for choice, and because it will destroy the old
structures of power. Although there may be examples of all these developments in the recent history
of the Internet, there is little systematic evidence for such technological determinism. It is also quite
clear that, for example, democracy will be understood quite differently in an Internet-enabled world
than it has been understood in the various phases of Western political history. The Internet prob-
ably will change the processes of opinion formation, which, in turn, will change the institutions of
democracy. The exact forms of change, however, remain open for research. The safest bet is that the
reality will surprise us.



a medieval village. Social cohesion is based on shared values in the Linux com-
munity. The use of the Internet, however, has created a new virtual village of
transpatial solidarity, where Durkheim’s value-based mechanical solidarity and
organic solidarity coexist happily. This is possible because the Internet has made
the village large enough so that it can effectively organize the division of labour,
without giving up its values.

The system of values in the Linux community is that of modernity and is there-
fore in many ways compatible with the values of entrepreneurial capitalism. Why,
then, has Linux development not been organized using economic transactions?
One reason seems to be that, as the developers engage in a joint effort, it has been
difficult to atomize social interactions into economic transactions. The economy of
Linux is an economy of networks. As long as the developers produce a system with
many interdependencies, there is no easy way to ‘clear’ the transactions or repres-
ent them using a one-dimensional measure, such as money.

Instead of clearing social transactions on the spot, open source developers make
them reversible. Copyleft and the availability of the source code facilitate this.
Because social transactions are more reversible than market transactions—simply
because market transactions aim at making transactions historyless—developers
can become more interdependent. In other words, they can rely on each other’s
skills and capabilities more than they could under pure market conditions. This
possibility is especially important in creative and non-routine knowledge-based
work, such as Linux development. The evolving source code, therefore, provides a
platform on top of which social capital can be accumulated.

The culture of hacking is probably the most perfect and frictionless implementa-
tion of modernity, and therefore it also produces technological products effectively.
There are no deep internal conflicts that would compromise its competence-based
efficiency. As long as it builds itself around those technological artefacts that it 
produces, it is able to avoid many of those conflicts that make similar efficiency 
difficult in broader social contexts.

It would, indeed, be surprising to see successful technology development projects
in communities where the values of modernity were strongly contested. Could we
imagine successful collaborative development of a technological artefact in a cul-
tural setting where the developers would believe in unpredictable accidents, irrelev-
ance of one’s own interests and decisions, belief in the inevitable deterioration of
the developed system, and questionability of the meaning of the whole effort? In
this sense, successful technology development requires modern values. A different
set of values would require a very different concept of technology and technological
progress. But not all technology is created equal. Even within modern high-tech
organizations there are important cultural differences that may constrain or facil-
itate open source development. For example, the open source development model
seems to require a culture with low power distance and low uncertainty avoidance.
It is well known that the regions of the world differ greatly in this respect. Indeed, 
it may have some relevance that Finland, the country where the story of Linux 
started, and the USA, the mother lode of the high-tech gold rush, happen to be
countries with the least power distance and uncertainty avoidance (Hofstede, ).

 CONCLUDING REMARKS



The Linux community consists of members who live in many different local cul-
tures. It is therefore an interesting case of a ‘global’ culture, and it might provide
important insights on the mechanism that links regional cultural resources to
global technological development. As many economic actors currently try to integ-
rate their activities with open source communities, the analysis of the successes
and failures of this ‘civilizing’ and ‘modernizing’ process could also provide import-
ant insights on the nature of the emerging second modernity.

. THE HIERARCHY OF INNOVATION

Following Schumpeter, several authors have argued that new key technologies gen-
erate long waves in the economy. Perez () noted that before productivity of a
new key technology can be realized, existing forms of production, organizational
structures, banking and credit system, and other social institutions have to change.
According to this institutional interpretation of economic long waves, the rigidity of
social institutions is the reason why long economic waves are long.

The discussion on institutional change focused on the social basis of macro-
economic growth. It highlighted the fact that the diffusion and impact of new 
technologies cannot be understood by looking only at the characteristics of arte-
facts. In this view, technical innovations require complementary social innovations,
which often are the main bottlenecks in the adoption of innovations.

Although this view is insightful and useful, it is difficult to connect with the actual
use of technologies. This is because conceptually it separates technical and social
innovations, implicitly reproducing the distinction between artefacts and their
meaning. This is philosophically a bad choice, and it misses the essence of innov-
ative change. Artefacts embed meaningful uses. Meaningful uses, in turn, gain their
meaning from social practices. Innovation, therefore, is a social, material, and inter-
pretational complex. Innovation can occur in any of these dimensions, but often it
is about simultaneous change in all of them.

One way to describe analytically these different dimensions of innovation can be
based on Leont’ev’s activity hierarchy. As was noted above, Leont’ev distinguished
three levels in activity. The level of activity itself is the level where activity can be
understood as meaningful social practice. Activity, in turn, is implemented at the
level of actions. This level of action is visible for outside observers, but the meaning
of related activity is as impossible to derive from actions as it is to derive the mean-
ing of a sentence by concatenating definitions of words. Actions, finally, are made
concrete in specific contexts at the level of operations. For example, we can
hear someone beating a drum. Without knowing what the drummer is doing 
we cannot know if she is trying to frighten game, wolves, or lions; please spirits,
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 As was noted before, the theory of long waves has a long and controversial history (cf. Freeman,
Clark, and Soete, ; Kleinknecht, ; Berry, ; Mandel, ).



generals, or the court; or earn her living in a jazz band. The drum can be an empty
skull, hollow tree, parade snare, or an electronic device connected to a synthesizer.

Innovation can occur in all these levels of human activity. At the level of opera-
tions we can talk about technical innovation. Innovation at this level is concerned
with tools that enable and constrain operations. At the level of action, activity is
decomposed into sequences of goal-oriented actions that implement activity. At
this level, therefore, innovation is concerned with problem-solving strategies and
creative use of intended and unintended resources.

Change at the level of activity, in turn, has two independent sources. One is
related to the internal values of the underlying community of practice. New motives
and objectives may emerge and activity can acquire new meaning. Hunting, for
example, can be transformed from a food-producing activity into a sport. The
meaning of activity can also change because the relations between different com-
munities become reorganized. Such a configurational change cannot be under-
stood simply from the perspective of a single focal community; instead, it occurs at
the level of an ecology of practices.

Using the hierarchy of activity, we can therefore climb from the level of technical
artefacts all the way to the level of external values, linking technological change to
economic change. Instead of simple progression from the lower levels of hierarchy
towards the higher levels, the levels mutually construct each other.

Moving down from the higher levels of activity hierarchy, we can see how actions
and operations gain their meaning. Moving up, we can see how action, activity, and
communities gain their resources and configure their constraints and concrete
contexts. The technological development of societies occurs on these multiple 
levels simultaneously.

Innovative change is construction of meaning. The created meaning can become
social when it is externalized in symbolic representations and artefacts. But as the
material, mental, and social constraints are generated in a historical process of 
co-evolution, mind and matter are always mutually constructed. As Nishida argued,
we do not simply construct our reality out of thin air but the reality also constructs
us. Sometimes we surprise the reality—make real things that are novel. And we 
ourselves become real in a material, cultural, and social context. And often the 
reality surprises us.

. THE NEW ECONOMY

One of the consequences of the Internet may be that technology development is
increasingly unlinked from local social institutions. In the case of Linux we can see
a process where the social system and its institutions are continuously negotiated,
on-line, reflecting the problems and opportunities generated in the process.
Linux—and other Internet-based innovations—provide examples of socio-technical
development that perhaps escape the logic of long waves, and which potentially
break long waves into continuous ripples. The innovation process that underlies

 CONCLUDING REMARKS



Linux development, therefore, could also give a concrete example of what the ‘new
economy’ is about. But, as we saw in the case of Linux, new institutions may be
needed to keep the development going. The institutionalized core kernel of Linux,
therefore, is an interesting example of a generic process in which social structure
becomes embedded in technology. As Lessig () notes, such embedding is
becoming increasingly common and creates new policy challenges.

Linux development is based on a complex interplay between social practices 
and a focal technological artefact. Any single driving force, for example financial
rewards, cannot explain Linux development. In this sense, open source develop-
ment is similar to medieval cathedral building. We do things that our peers appreci-
ate and which are meaningful in the social context we are in. Linux development,
therefore, is not a result of any specific economy based on transactions, bartering,
or exchange of gifts. Instead, it is better characterized as a practice and a form of
social life. The artefact that organizes this form of life emerges as people go on with
their lives in ways that are meaningful to them. In this sense, Linux development is
totally endogenous: the technological artefact can be seen as a side-effect of the fact
that people live and construct their identities in a social world that is organized
around this technological artefact, which then becomes the stage for feasts and
congregations, and the centre of community life (Branner, ).

New technologies are always appropriated by integrating them into social 
practice. Indeed, it was argued above that innovation occurs only when social prac-
tice changes. Often such change results from appropriation of a new tool which
reorganizes the practices of a community. The key to innovation, therefore, is in
those social communication and learning processes that underlie change in social
practices.

Social practices, however, are interlinked in the ecology of communities. It is not
always possible to change social practice without breaking those translation
processes that make a community a resource for other actors. Change is difficult
especially when the same resource is used by several actors. As the evolution of
Linux shows, one way to solve this problem is to sediment resources, institutional-
ize practices, and stop innovating.

The history of Linux, however, also shows that effective resource translation
mechanisms can lead to rapid growth. In software development the problem of
managing interfaces between modules has led to relatively standardized ways 
of building modules and using interfaces. This, in turn, means that modules 
can easily be added to the system. Furthermore, these standardized translation
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 DeLong and Froomkin () have also argued that informational products create major policy
challenges as the basic assumptions underlying the efficiency of the market mechanism are becom-
ing increasingly invalid. One of the drivers of the quest for a new theory of political economy is the
fact that ‘products’ are becoming increasingly long-term relationships between producers and con-
sumers. In Victor and Boynton’s () terms, products require continuous co-configuration of pro-
duction and use. Adam Smith’s invisible hand, therefore, is attached to an increasingly blind body
that is ignorant of costs and benefits of entering an economic relationship. The theory of free mar-
kets, obviously, has great difficulty in handling such situations. Linux development is a particularly
clear example of such long-term relationships of co-configuration.



mechanisms mean that modules can be relatively easily used by different actors
even when the modules change. In the history of Linux, we can see this magic of
black-boxing in operation.

Linux is therefore in many ways open to combinatorial innovation. Standardized
interfaces and translation processes generate smooth module boundaries and 
facilitate rapid recombination. Sometimes the source code itself can be reused, 
but more importantly the learning that is represented in the source code can be
reapplied in different contexts without major problems. As a result, the various
communities that develop the different parts of the Linux kernel become very
mobile. In this way, the solution to the problem of translation leads to an ecology of
communities that can readily reconfigure its resources.

When money is used to coordinate social interactions, new combinations can be
created with little friction. Under these circumstances, however, combination also
easily destroys social capital. Economic rationality reduces history into a sequence
of ‘choices’ and atomizes the value of social transactions. From these ‘atomized’
transactions, networks can be built only by linking sequences of essentially inde-
pendent events. Open source and standardized interfaces, in contrast, enable a sys-
tem where collective interactions can be managed. This is a fundamental difference
between a traditional economic market and open source collaboration. This is also
the reason why already in its genetic origin open source development is a net-
worked form of collective production. A developer sub-community can simultan-
eously translate its resources for several user communities. This also means that 
several sub-communities can become involved in those innovation and develop-
ment processes that produce new technology. Whereas, in the theoretical model of
a traditional economy, only money talks, the open source mode of development is
an inherently polyphonic system of development.

In Linux development, the Schumpeterian creative destruction destroys pieces of
code, but competence and experience are reorganized with little waste. In this
sense, one could argue that the Linux development model and the Silicon Valley
innovation model (Kenney, ) have similar characteristics. The main difference,
of course, is that Silicon Valley has a venture capital driven entrepreneurial culture,
whereas the economic sphere has been relatively invisible in the Linux develop-
ment. As was noted above, free market capitalism and open source development
are fundamentally based on the same modern values. The difference is that market
capitalism makes economic rationality one of its core values, whereas open source
developers may regard it as less central. This tension is actively being managed by
the Open Source Initiative. Indeed, the Open Source Initiative can be seen as one
more institutional structure that pops up in the evolution of Linux to repair social
damage that is created when these two relatively similar cultures collide and create
conflicts in the developer community.

As the analysis of the evolution of Linux shows, rapid growth requires that the
core is institutionalized and that some of the translation processes are taken for
granted. In this model, innovation happens in periphery. It is interesting that such
peripheries are conventionally described as frontiers. We could, however, ask
whether—and in what sense—progress results from moving the boundaries of
periphery, or whether this is simply one strategy to reduce change in the core.

 CONCLUDING REMARKS



Today, we live in an age of individualism. Technological and social change is fast,
and traditions are mixed and matched according to individual preferences. In the
public discourse, social utopias have been pushed to the periphery and the focal
vision reveals a world where everyone has the responsibility and right to value and
cash their life options. Yet, perhaps it is also clear that to make meaningful choices,
somehow meaning has to be included in the equation. Meaning is grounded in his-
tory and social interaction. Individuality itself depends on shared history, and we
become individuals only in relation to others. Linux and the Internet, therefore,
were not produced because they were solutions to a well-defined problem or
because their development would have been economically beneficial. Instead, they
were produced as side-effects of meaningful social interaction. On the Internet,
much of this interaction becomes documented and available for further study. This
is also the reason why Internet-related innovations make visible those social
processes that underlie innovation and technology development. In the history 
of Linux, innovation can be seen in its bare form, without the legitimizing veil of
economic rationality. In the history of the Internet and packet-switching networks,
we have to follow a more complex route through layers of economic rhetoric 
and rationalizing. Eventually, however, the social core of innovation becomes so
obviously apparent that it is impossible to neglect any more.

. THE ROAD AHEAD

Technological innovation is more than the production of improved functionality. In
open source projects it is easy to see that striving for the common good is one of the
reasons why open source developers commit themselves to a development project.
Although the common good is evaluated based on the internal values of the com-
munity, even a small contribution can become important when it becomes part of
a bigger system. Most developers are not interested in positive economic returns.
They are interested in a great story, and the possibility to be part of it. As long as
people can make history, there is no end to history.

Innovation, therefore, has its deep roots in the processes of individuation, social-
ization, and meaning construction. We use language, signs, and tools, and integrate
them in our thinking and action. In this sense, human beings are technological
beings. Fundamentally, technological change, therefore, relates to questions con-
cerning the way we exist in the world. As technologies and technological change
become increasingly visible in our everyday life, the foundations of technology also
will be increasingly in our focus.

Above we saw many examples of those social processes that underlie innovation.
Due to the increasingly knowledge-intensive and networked nature of innovation
processes, the social dimension of innovation is becoming increasingly difficult to
neglect. The heroic model of innovation is being replaced by a social model of innova-
tion, and the various communities that provide resources for innovative change 
will certainly be studied with great interest in the future. Research on the politics 
of innovative ecologies will emerge as one important source of future innovation
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policies. Eventually, however, we also have to ask what our relation is to technology
and technological change. To answer such questions, we have to develop theoret-
ical concepts that allow us to simultaneously discuss meaning creation, human
cognition, social activity, and ethics. Today, attempts for such theoretical discussion
may seem philosophical and remote from the practical work of innovators. Partly
the reason is that we don’t really have very much empirical research that could 
provide concrete starting points for such discussions.

Although it is certainly difficult to predict the impact of new technologies, in the
future there will be increasing demand for processes that integrate technology
development with policy. This is simply because we already know that technolo-
gical development does not imply universal progress. Whereas technology policy
traditionally has been closely linked with national competition policies, in the
future the impact of technologies and policies will be increasingly global. Perhaps,
as Ulrich Beck (), for example, has proposed, we need new institutions that
negotiate and integrate the different interests and voices that interpret the meaning
of technology.

Internet-related innovations are interesting as they show how multiple interests
can be combined so that everyone is better off at the end of the day. They are also
interesting because, due to the networked nature of these innovations, the
processes that produced them are networked. In Internet-related innovations it is
difficult to neglect the fact that innovation is a social process. It is, however, not
clear whether the innovations discussed in the previous chapters fully represent all
the various types of innovative activity. We have focused mainly on a small set of
innovations that obviously have great impact, but which are also in many ways 
special. One may wonder whether the discussion in the previous chapters can 
readily be extended also to those innovations where software and communication
technology play only a minor role. One may also wonder what all the previous 
discussion means for organizing product creation in firms.

The obvious answer is that there is much more to be said. Many of the conclu-
sions presented above are tentative and can be contested. Although for some read-
ers some of the claims made in the previous chapters may seem radical, I believe in
incremental change and small contributions. As the case of Linux shows, incre-
mental modifications may have a big effect when they focus on critical points in the
overall system. For me, one such critical point is that there have been few empirical
cases that would enable us to open the black box of innovation, and allow us to fur-
ther study those social meaning creation processes that make technology what it is.
This does not mean that economic considerations would be irrelevant. It simply
means that economic considerations are not enough. Innovation is not only about
better functionality or about economic rationality. These are parts of a more 
complex picture.
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X. standard , 
Xanadu , , , 
X-consortium licence 
Xerox PARC , 

Yucatan midwives , 

ZigZag program 
ZOG hypertext system , 
zone of proximal development , 

SUBJECT INDEX 
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