
Martin WP Reid

Pro Access
2007

Pro Access 2007

Copyright © 2007 by Martin WP Reid

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-772-9

ISBN-10 (pbk): 1-59059-772-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jim Sumser
Technical Reviewer: Judith Myerson
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole Flores
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Lori Bring
Indexer: Carol Burbo
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

To my wife, Patricia,
and our children, Aine, Liam, Maeve,

Emer, Roisin, and Eoin

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Access 2007: What’s New? . 1

■CHAPTER 2 Text and Templates . 21

■CHAPTER 3 Getting Up and Running with RibbonX . 41

■CHAPTER 4 Data Collection Using Microsoft Outlook 2007 67

■CHAPTER 5 Introduction to Classes in VBA . 87

■CHAPTER 6 RAD Development for SQL Server 2000/2005 Express 113

■CHAPTER 7 Working with the SQL Server 2005 Express Tool Set 153

■CHAPTER 8 DAO, Complex Data Types, and Macros . 207

■CHAPTER 9 Introduction to SharePoint Server . 237

■CHAPTER 10 Access and SharePoint Applications. 263

■CHAPTER 11 Access, SharePoint, and SharePoint Designer 285

■CHAPTER 12 Getting Started with .NET Tools . 303

■CHAPTER 13 Code You Can Steal! . 331

■APPENDIX RibbonX and Custom Add-Ins . 361

■INDEX . 369

v

Contents

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Access 2007: What’s New?. 1

Access 2007 Interface . 3

Navigation Pane Replaces Database Window. 5

PDF Support Added . 5

Access 2007 Ribbons . 6

Access Options . 8

Access 2007 Tables . 9

Complex Data Types . 10

Multivalue Fields . 11

Filtering Tables. 13

Access 2007 Forms . 14

Form Layouts . 15

New Form Properties. 17

List Items . 17

Reports . 17

Macros. 18

Modules. 19

Working with SharePoint Server . 19

Security . 20

E-Mail Data Collection . 20

Summary. 20

■CHAPTER 2 Text and Templates . 21

XML: A Really Brief Overview! . 21

Office XML . 24

Open Packaging and OpenXML. 24

Microsoft Office 2007 and Access 2007 XML Structures 25

vii

Access Text Formats. 26

Saving Objects As Text . 26

Using the SaveAsText Method. 28

Saving Tables and Queries. 31

Using the LoadFromText Method . 32

Built-in Access Templates . 33

Template Structure . 34

Database Subfolder . 35

Tables and Database Objects . 36

WSS Templates . 38

Summary. 39

■CHAPTER 3 Getting Up and Running with RibbonX . 41

Creating Your First Ribbon . 43

Adding Functionality to the Ribbon. 46

Putting Together a Simple Tab . 47

Adding VBA Callback Functions . 50

Creating Split Buttons . 53

Adding Custom Images . 55

Adding Additional Groups. 56

Removing the Built-in Ribbon Items. 58

Using Contextual Ribbons . 59

Manipulating Existing Groups and Controls . 63

Adding Other Group Controls. 64

Check Box . 64

Toggle Buttons . 65

Summary. 65

■CHAPTER 4 Data Collection Using Microsoft Outlook 2007 67

Getting Started with HTML Forms . 68

Processing the Collection. 70

Collecting Data Using an InfoPath Form . 71

What Is InfoPath?. 72

Customizing an InfoPath-Generated Form. 72

Overview of the MSysDataCollection System Table 74

Breaking Down the Data Collection Mapping XML File 75

Breaking Down the Recipients Section of the XML File 78

Processing the Replies . 78

Populating MSysDataCollection Manually . 78

■CONTENTSviii

Working in Outlook . 82

Summary. 86

■CHAPTER 5 Introduction to Classes in VBA . 87

Some Definitions . 87

What Is a Class? . 88

Class Factories . 93

Collections. 94

Working with Data. 95

Adding Functionality . 101

Full Code Listings for Class Examples . 106

Summary. 111

■CHAPTER 6 RAD Development for
SQL Server 2000/2005 Express . 113

Options When Working with SQL Server . 115

Comparing Access and SQL Server . 116

Data Type Differences. 117

Delimiters . 118

System Tables . 119

Security . 119

Upsizing to SQL Server 2000. 125

Running the Upsizing Wizard . 127

Issues Before, During, and After Upsizing . 129

Upsizing to SQL Server 2005 Express . 130

Impact of Upsizing on Access Forms and Data . 132

A Short Introduction to Stored Procedures . 133

Populating Forms and Other Objects . 137

Storing and Retrieving Local Records . 140

Importing Data with Data Transformation Services 142

Access Data Projects . 142

Upsizing to SQL Server Reporting Services . 143

Creating a Basic Report Using the
Report Server Project Wizard . 144

Creating a Report Manually . 146

Upsizing Existing Reports . 148

Passing Parameters to Reports . 149

Summary . 152

■CONTENTS ix

■CHAPTER 7 Working with the SQL Server 2005
Express Tool Set . 153

SQL Server Express 2005 Overview. 154

Query Editor . 155

SQL Server Schemas and Other Objects . 156

Databases and System Objects. 157

Creating Triggers . 158

Stored Procedures . 160

User-Defined Functions . 173

Views . 175

SQL Server Express Security . 178

Database Roles . 178

Server Roles . 179

Logins . 180

Working with Functions, Views, and Other Objects with
Access 2007 . 182

ADPs and SQL Server 2005 Express . 183

SQL Server Migration Assistant for Access. 186

Overview: Migrating an Access MDB File to
SQL Server 2005 . 187

Creating a New Project File . 188

Adding MDB Files. 188

Preparing Your Database for Migration . 190

Connecting to SQL Server Express . 195

Converting Your Access Objects to SQL Server Syntax. 196

Moving Objects into SQL Server Using
Migration Assistant for Access. 205

Wrapping Up Migration . 205

Summary. 206

■CHAPTER 8 DAO, Complex Data Types, and Macros 207

Getting Started with DAO . 208

DAO Object Model . 208

Building SQL Statements with DAO . 224

Access 2007 and DAO . 225

Complex Data Types . 226

Attachments . 227

Multivalued Fields . 232

■CONTENTSx

New Macro Features. 233

TempVars . 234

Embedded Macros. 235

Macro Error Control . 236

Summary. 236

■CHAPTER 9 Introduction to SharePoint Server . 237

What Is Windows SharePoint Services? . 238

Microsoft Office SharePoint Server 2007 . 239

Behind the Scenes of WSS. 240

What Can You Do with WSS?. 240

Permissions . 242

Lists . 242

Creating a Team Site . 244

Libraries, Lists, and Workspaces . 247

Document Library . 248

Calendar Lists. 250

Tasks List . 252

Creating a Developer Discussion Group. 254

Surveys . 257

WSS Workspaces. 258

Personalization with Microsoft Office
SharePoint Server 2007 . 260

Summary. 261

■CHAPTER 10 Access and SharePoint Applications . 263

Using WSS Lists with Access . 263

Connecting to WSS Lists from Access . 264

Working with Lists in Access 2007. 266

Menu Commands from VBA. 270

Moving WSS Data Between Servers. 271

Migrating an Access Database to WSS . 271

Migrating Northwind . 272

Features Available After Migration . 277

Creating an Access View from WSS. 278

Linked Lists and VBA . 278

Working with WSS Data Offline . 281

■CONTENTS xi

List Management from Access . 281

Data Conflict Errors . 283

Reporting . 283

Summary. 283

■CHAPTER 11 Access, SharePoint, and SharePoint Designer 285

Getting Started: SharePoint Designer . 286

Data Source Library When Connected to WSS 286

Creating a Data View Web Part . 288

Web Parts and Workflows . 294

Linked Lists and Workflows . 295

Creating a WSS Workflow Using SPD and Access 295

Summary. 301

■CHAPTER 12 Getting Started with .NET Tools . 303

Creating Web Applications with Visual Web Developer
2005 Express . 304

Creating a Basic Web Application in Web Dev Express. 304

Running Web Dev Express . 304

Creating Data Grids with ASP.NET . 307

Creating the What’s On Web Site . 311

Accessing Data Using Queries. 313

List Templates . 315

Customizing the Data List . 316

Amending the ItemTemplate . 317

Getting More Interactive . 317

Creating a Search Page . 318

Moving into Application Tiers . 321

Creating Windows Applications with Visual Basic 2005 Express 325

Summary. 330

■CHAPTER 13 Code You Can Steal! . 331

Summary . 359

■CONTENTSxii

■APPENDIX RibbonX and Custom Add-Ins . 361

Controlled Situation. 362

Uncontrolled Situation. 363

General UI Guidelines . 364

Repurposing Commands . 364

Adding to the Home Tab . 365

Creating Your Own Tab. 365

Creating Your Own Group. 365

Modifying Microsoft Groups and Controls . 366

Using Microsoft Groups and Controls . 366

Using As Little Space As Possible . 366

Adding Your Functionality Only Once . 366

Changing Visibility . 367

Changing UI Elements Dynamically . 367

Adding to the Office Button Menu. 368

Using Custom Task Panes . 368

No Surprises . 368

Switching a Tab . 368

Making Your Tab the First Tab . 368

Summary. 368

■INDEX . 369

■CONTENTS xiii

About the Author

■MARTIN WP REID is an analyst at Queen’s University Belfast, where he
works in the Training and Assessment Unit. Martin has coauthored two
books, SQL Access to SQL Server and Beginning Access 2002 VBA. He has
also written several articles for Microsoft MSDN and other web sites.

Martin is married to Patricia, and together they have six children: Aine,
Liam, Maeve, Emer, Roisin, and Eoin. He lives in Belfast, Northern Ireland.
He is heavily involved with AccessD, a professional Internet-based Access
database support list where he can be found most nights!

xv

About the Technical Reviewer

■JUDITH M. MYERSON is a systems architect and engineer. Her areas of interest include middle-
ware technologies, enterprise-wide systems, database technologies, application development,
web development, web services, object-oriented engineering, software engineering, network
management, servers, security management, information assurance, standards, RFID tech-
nologies, and project management. Judith holds a master of science degree in engineering
and several certificates, and is a member of the IEEE organization. She has reviewed/edited
a number of books, including Hardening Linux, Creating Client Extranets with SharePoint
2003, Microsoft SharePoint: Building Office 2003 Solutions, Microsoft SQL Server Replication,
Microsoft Content Management Server Field Guide, Microsoft Operations Manager 2005
Field Guide, Pro SMS 2003, Pro InfoPath 2007, and Windows Vista: Beyond the Manual.

xvii

Acknowledgments

I would like to note the help I received from many individuals on the AccessD list, a group
of database developers who give freely of their time and expertise. In particular, I would like
to thank John Colby (http://www.colbyconsulting.com), Rocky Smolin (http://www.e-z-mrp.
com), Marty Connelly, Drew Wutka, Shamil Salakhetdinov, A. D. Tejpal, Bryan Carbonnell,
Gustav Brock, and Robert L Steward. If you are looking for developers, anyone on this list
would be an asset to any project.

I would also like to thank Clint Covington at Microsoft for his assistance, information,
and opening doors. Clint always responded in a timely and professional manner even when
I asked stupid questions.

In addition, the following individuals provided permissions to reference existing works
and web sites: Scott Mitchell (http://www.fourguysfromrolla.com) and Brian Goldfarb (http://
www.asp.net); both of their sites are more than worth a visit.

I would also like to acknowledge the team at Apress for giving me the opportunity to work
on this title, in particular Jim Sumser, who provided support and encouragement for many
months; Ami Knox, who got the short end of the stick as my copy editor (Ami did a fantastic
job on my poor grammar and spelling); and Judith Myerson, my technical reviewer, for the
effort and work.

Thanks go to Ben Saltzer and Jackie Nevelow (http://www.bartracks.com) for permission
to steal some code and reference their wonderful product BarTracks, and for their eternal
friendship, support, and unique insights into software design.

Finally, a tip of the hat to Patrick Schmid, who provided support, instruction, and a great
web site for those starting out with RibbonX. Patrick’s site, http://pschmid.net, should be
your first port of call when looking at RibbonX.

xix

Introduction

Many people ask, “Why write a book?” Usually, I respond by saying it’s an ego trip; it’s cer-
tainly not for the money, as John Colby recently pointed out. I wrote this book because I had
something to say about Access, the most maligned database development environment on
the market. In my view and the view of people I consider to be some of the best programmers
in the world, this is an attitude based mostly on ignorance of the software and what it can do.
I also wrote this book in response to the “Access is dead” argument. Access is a long way from
dead, and I believe this book goes some way to showing that. Access is moving forward, per-
haps in a direction many developers don’t like. It’s moving toward the Internet, .NET, and
SharePoint. I hope this book helps you accompany it on that journey.

Who This Book Is For
This book is intended for intermediate-to-experienced Microsoft Access developers, but it will
also provide value to those just starting out with Access. It also provides a solid grounding in
Access 2007 and the new feature set, including coverage on using Windows SharePoint Services
as the back-end data store.

How This Book Is Structured
Following is a brief rundown of what each of the chapters in this book covers:

• Chapter 1, “Access 2007: What’s New?”: This chapter provides a high-level overview of the
new features available in Access 2007 and lays the groundwork for the more detailed
material in succeeding chapters.

• Chapter 2, “Text and Templates”: This chapter begins looking at how you can save
Access 2007 objects as text files, which leads into a discussion of the new template
tools available in Access 2007. You learn the structure of existing templates and how
to create your own.

• Chapter 3, “Getting Up and Running with RibbonX”: Here we look at the new naviga-
tion system in Access 2007, RibbonX. Following a short introduction to the RibbonX,
it’s straight into creating your own custom Ribbons and changing existing Ribbons
in Access.

• Chapter 4, “Data Collection Using Microsoft Outlook 2007”: Starting off with a high-
level overview of the new data collection feature, the chapter moves on to look at the
structures used to enable this feature, including a section on beginning the process of
executing data collection tasks via VBA.

xxi

• Chapter 5, “Introduction to Classes in VBA”: Here you will get an introduction to class
programming and VBA. This chapter provides you with the skills required to take the
next steps in your programming with Microsoft Access.

• Chapter 6, “RAD Development for SQL Server 2000/2005 Express”: Using SQL Server as
the data store and Access 2007 as the front-end application, I discuss some of the issues
and problems you will face together with techniques and code examples to resolve
many common problems.

• Chapter 7, “Working with the SQL Server 2005 Express Tool Set”: Following on from
Chapter 6, we take a closer look at working with data held on SQL Server 2005 Express
including stored procedures, Access Data Projects, and linked tables.

• Chapter 8, “DAO, Complex Data Types, and Macros”: This chapter provides program-
ming techniques and material covering the new data types added to Access 2007.

• Chapter 9, “Introduction to SharePoint Server”: One of the major changes in Access is
the use of SharePoint as the back-end data store. This chapter introduces you to Win-
dows SharePoint Server and explains how it is structured and introduces how to work
with WSS data from Access 2007.

• Chapter 10, “Access and SharePoint Applications”: Working with SharePoint as a data
store, here we look at the various features within Access and SharePoint, including
working with list data offline, caching, and linking to WSS via VBA.

• Chapter 11, “Access, SharePoint, and SharePoint Designer”: This chapter gives an over-
view of using Microsoft SharePoint Designer to work with existing WSS web sites. This
chapter introduces you to some of the features of the software used to customize WSS
sites.

• Chapter 12, “Getting Started with .NET Tools”: Many developers are often asking when
Access will work with managed code. In this chapter, we look at two of the .NET tools
available when working with Microsoft Access 2007: Visual Basic 2005 Express and
Visual Web Developer 2005 Express. While not directly working inside Microsoft Access,
the example projects demonstrate the features of managed code.

• Chapter 13, “Code You Can Steal!”: Here you’ll find examples of real-life DAO and ADO
from the AccessD database developers group, the highlight of which is a trip to Area 51
from within Microsoft Access 2007.

• Appendix, “RibbonX and Custom Add-Ins”: The appendix is based on materials provided
to me by Patrick Schmid, one of the best exponents of RibbonX. This appendix provides
you with design guidelines to follow when working with RibbonX, particularly if you are
considering designing your own Microsoft Access add-ins.

■INTRODUCTIONxxii

Prerequisites
For the Windows SharePoint examples, you will need access to Windows SharePoint Services
running on Windows Server 2003. Both products can be downloaded freely from http://www.
microsoft.com. In the case of Windows Server 2003, a timed-out demo is available. For the web
and .NET example applications, you will require Visual Web Developer 2005 Express and
Visual Basic 2005 Express.

Downloading the Code
Example code will be available from the Apress site (http://www.apress.com). To download it,
click the Source Code/Download link and select the title of this book from the list on the page
that appears.

Contacting the Author
Please feel free to contact me at Martireid@gmail.com. It may take a day or two, but I will
respond to all e-mails.

■INTRODUCTION xxiii

Access 2007: What’s New?

It has been a widely held belief that Microsoft Access has been neglected during many of the
upgrades to Microsoft Office over the years. However, with the latest release, Microsoft Access
2007, many changes have been made to the interface and the database engine, and integra-
tion with Microsoft Outlook 2007 has been added in the form of Collect and Update Data via
Email. It is also now possible, by downloading an add-in, to save objects to various formats,
such as PDF.

Several new data properties are available, and increased server capability in the shape
of Microsoft Office SharePoint Server 2007 has been added to Access—all adding up to a
major increase in attention by Microsoft to what is the most widely used desktop database
in the world.

Also new in Access 2007 is the increased focus on macros including new error control.
While this might surprise many developers, it will meet the needs of many power users who
place greater reliance on macros when creating Access applications. The new database tem-
plates are macro driven, and while they do contain VBA code, they are developed using
embedded macros. Another change, one long called for, is the redevelopment of the North-
wind example database traditionally available with Access. The latest version of this example
database, Northwind 2007, has been totally redesigned from the ground up and makes exten-
sive use of class modules for data interaction.

Already feeling forgotten by the Access development team, Access developers may not
appreciate some of the changes, particularly the shift in focus toward full integration with
SharePoint Server, but I hope this book can assist you in moving toward this new storage
medium and in familiarizing yourself with this new enhanced version of Access. This chapter
provides an overview of the changes facing you when you move to Access 2007. Detailed cov-
erage of the topics I touch on here will appear later in the book. For now, I just give you a taste
of some of the changes made to your favorite database application.

The biggest changes in Access 2007 are those that have been made to the JET database
engine, which has been referred to as ACE during the beta process by Microsoft. The new
engine is a private copy of JET used by the Office 2007 team and has been refined and added
to for Access 2007. The default database type is the ACCDB format created using Access 2007,
but MDB files are still supported in the new release. Table 1-1 shows some of the differences in
behavior when using both the new engine and Access 2007 as opposed to Access 2000/2003
MDB files.

1

C H A P T E R 1

Table 1-1. Access 2007 and Access 2000/2003 Feature Comparison

Access 2007 Access 2000/2003

ACCDB file type Cannot be used

Complex data types Not available

Attachment data type Not available

Append-only memo fields Not available

Offline support for linking to SharePoint Not available

Linking tables to ACCDB files Not available

Encrypting with database password Not available

Linking to SharePoint Some data types not supported

Rich text support Not available (will appear as HTML)

Date picker Not available

Control layouts Independent controls

Linking to Excel 2007 Not available

Embedded macros Not available

Control auto-size Not available

Tabbed Document mode Not available

Navigation Pane Database Container

Custom groups in Navigation Pane Not available

Tables and View mode Not available

Ribbon Command bar

Saving imports and exports Not available

Improvements in filtering and sorting Not available

Save Database As command Not available

Sharing database on SharePoint Not available

Upsizing to SharePoint Not available

Trust Center Not available

New sorting and grouping Not available

Property Sheet Task Pane Not available

Creating schema in datasheet Table design only

Office 2007 Options Center Not available

Editable value lists Not available

Editing list items for combo and lists Not available

SharePoint Site Manager Not available

Form split view Not available

Search box Not available

Custom caption for navigation Not available

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?2

The following features are only supported in the new ACCDB database file type:

• Complex data (multivalue data types)

• Attachment data type

• Append-only memo fields

• Compressed image storage for any picture property

• The ability to send an Access file as an e-mail attachment

• Full support for linked tables to SharePoint

• The ability to publish to SharePoint

• The ability to take SharePoint data offline

• The ability to create linked tables to other ACCDB files

• Rich text support

As you can see, there are many differences between this new version of Access and previ-
ous versions. Now that you’ve gotten a brief overview of some of the changes Access 2007
offers, let’s take a quick tour of the program, starting with the interface.

Access 2007 Interface
The first thing to hit you when you open Access is the new graphical user interface (GUI),
which is used not only by Access, but also by the entire Office 2007 product line. To be honest,
although it looks good, at first I preferred the old menu system. It took me some time to find
out where all my favorite menu options had gone. Once I got used to the new dynamic menus,
I again felt at home with Access. (The appendix at the back of this book maps the old menu
system to the new system.)

However, many users will instantly appreciate this new interface. One complaint I always
get from Access beginners is that, when the program first starts, they are left looking at a
blank database window wondering what to do next. This is no longer the case, as several “get-
ting started” templates come with the application, and many more can be downloaded from
Office Online at http://office.microsoft.com/en-gb/access/FX100487571033.aspx. Links to
the available template databases are provided within the Access 2007 user interface. At the
time of writing, the following templates are planned for Access 2007:

• Assets

• Contacts

• Events

• Issues

• Tasks

• Customer Service

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 3

• Projects

• Marketing Projects

• Sales Pipeline Database

• Students

• Faculty

You can access the templates from the Access splash screen on startup or when clicking
the Office button and selecting File ➤ New. Links are also provided on the splash screen to
training resources, templates, and downloads.

In keeping with the Microsoft view of the world and tying in with the move toward Share-
Point Server, these templates are mainly tracking-type applications useful to some users, but
the developer and power user community will find them lacking in major functionality. How-
ever, it is possible to create custom user templates that focus on your own particular business
model. We will be looking at current templates and creating your own in Chapter 2. At some
point soon, a new tool will be available from the Access development team to make the tem-
plate creation process much easier: it will allow developers to avoid having to get to grips
manually with the underlying XML file and folder structures.

Templates provide both the developer and the user with a “getting started” opportunity,
and this in itself is to be welcomed. Figure 1-1 shows the new-look interface when Northwind
2007 is first opened and you have logged in.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?4

Figure 1-1. The new Access interface

■Note Templates may also provide a new business opportunity for you. How many times have standard
users screwed up a database? Countless consulting projects can arise out of poorly designed applications.
There is nothing to stop developers from using the same techniques employed by Microsoft and Access
2007 to create and sell third-party templates for Access 2007. Worth considering?

The user selects the required application template from the interface (or opens an exist-
ing database) and follows the instructions for downloading and installing it as a working
database. Once you have a database open, the new user interface really takes hold. It uses
a dynamic menu system called Ribbons. Ribbons and options available change to reflect the
task being carried out. A tabbed interface for database objects now makes it possible to have
several objects open at once—which can be either a help or a hindrance. Databases created
in previous versions open using the standard Access multiple document interface (MDI).

When creating a new database application, Access by default creates a blank table called
Table 1. This feature is designed to give the user a starting place when building applications,
but developers may find it extremely irritating! The new table determines the appropriate data
type as the user enters data, and it can and in all probability should be redesigned as usual in
Table Design view.

Navigation Pane Replaces Database Window
The database window is gone, replaced by a new highly customizable Navigation Pane. The
Navigation Pane can be organized by Access object, filtered by object types, or totally cus-
tomized by the developer or end user. Customized groups can be exported to and imported
from other databases, all more or less in the same vein as Access 2003. In this case, it is also
possible to group related objects together—for example, a table and all its related objects,
forms, queries, and reports.

PDF Support Added
PDF support was something long desired by Access developers who in the past relied on third-
party tools to provide this flexibility. Now, developers need no longer look to third-party
add-ins in order to publish PDF files, as this capability is now available using Office 2007. PDF
support must be installed by downloading a particular add-in from http://office.microsoft.
com/en-gb/access/HA101675271033.aspx.

■Note PDF support is available in all Office 2007 applications; it is not restricted to Access 2007.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 5

Access 2007 Ribbons
The new Office 2007 menu system is comprised of two types of Ribbon-based menu: regular
Ribbons, which will always be available, and dynamic task-based Ribbons, which are available
when completing a specific task. Many existing users of Access will at first find Ribbons some-
what confusing as they try and work out where all their old favorite commands have gone.
One or two older Access menu items are no longer available; for example, the Access Table
Wizard has been removed and replaced by a simple Ribbon command used to insert a new
table. The following are the new base Ribbon menus available from the main Access menu:

• Home tab

• Create tab

• External Data tab

• Database Tools tab

• Add-ins tab

Of course, many additional Ribbons are available to you depending on the task being car-
ried out. These are referred to as contextual Ribbons and are hidden or unhidden as required
when the application is running. The appendix at the back of this book contains details on the
available Ribbon commands within Access compared to those used in Access 2003.

As you may have gathered from the list of base Ribbon menus, the new menu system con-
sists of a set of tabs. Clicking a tab reveals groups that each contain a set of related commands.
For example, the Create tab contains a group providing commands used to insert a new table
(the Table group) and a group that gives you the option to add tables using prebuilt table tem-
plates (the Table Templates group). Figure 1-2 shows the Table Templates group.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?6

Figure 1-2. Table Templates group options

Figure 1-3 shows the Access Create Ribbon. The options are task based and therefore
grouped accordingly.

If you want to get to the heart of an Office 2007 Ribbon, it’s time to learn some XML,
because a Ribbon receives its structure from an XML file. We will be looking at Ribbons in
much more detail in Chapter 3, including customization. However, it should be said that cus-
tomizing Ribbons is a little removed from the ability of those who are used to creating custom
command bars in the Access interface. Many developers will rely on third-party tools to assist
in customization rather than take the leap into XML and .NET languages. This will be useful
for developers who have fairly simple needs, for example, turning off menu functions and per-
haps creating your own menu options (for instance, a drop-down list presenting a set of
reports to the user).

A third-party tool used to customize Ribbons has been developed by one of the Office 2007
beta testers and is available from http://pschmid.net/blog/category/ribbonx/. Chapter 3
demonstrates the functionality of Ribbons and the customization features available to you in
Access 2007. In the meantime, I strongly suggest you download the add-in. At the time of writ-
ing, there is no charge associated with this add-in. However, a developer’s version is also
available for a small charge. In my opinion, this is well worth the cost.

The new interface also contains a Quick Access Toolbar (QAT), which can be customized
with those menu options you use frequently. QAT options are globally available throughout
Access rather than as dynamic Ribbon options. This is a useful feature that can help a new user
get to grips quickly with the new menu structures. Microsoft recommends that the QAT not be
used by developers to position their own commands on the Ribbon. The QAT is designed to per-
mit users to add items they find useful from the existing Ribbon, rather than developers adding
their own items to the QAT programmatically. It is also possible that the QAT will change in fur-
ther releases of Access 2007, and developer changes made to the QAT may not be supported.

■Tip You can minimize the Ribbon to save screen space by right-clicking a tab and selecting Minimize
Ribbon from the context menu. To maximize the Ribbon, simply click one of the tabs.

Right-clicking a tab item and selecting Customize Quick Access Toolbar (QAT) will open
the Access Options dialog box from which any of the available Ribbon commands, controls, or
tools can be added or removed. The QAT can be customized for the current database only or all
databases opened using Access 2007. Figure 1-4 shows the default QAT before customization.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 7

Figure 1-3. Access Create Ribbon

For applications created in other versions, Office 2007 is backward compatible in as far
as your “old” custom menus will still be available. It’s well worth noting that there is no object
model to permit you to interact with a Ribbon. In addition, little in the way of user customiza-
tion is available for standard users in terms of creating new Ribbons. For many, it’s a case of
being stuck with what you’ve got!

Access Options
The Access Options dialog box provides you with quick access to almost all the configurable
options available to you within Access 2007. Each set of options is grouped by a specific cate-
gory. Some of the options will affect Access only, while others apply to Office 2007 generally.
Rather than bore you with the standard options, the following list focuses on those that may
be important to you, new in this release, or useful in development.

Popular: Options that are most popular with users. Of course, as this has been decided by
Microsoft, it is a little off as the options available, Always use Clear Type, Screen Tip Style,
and so on, would not jump out at me as being the most popular options!

Current Database: Options that affect the currently open database, for example, options
to add an application title or icon, to turn off Layout view, and one option that will prove
useful to many developers, to turn on or off the Navigation Pane. Within the Current
Database options, developers can also indicate a custom Ribbon ID to use for this data-
base in place of the built-in Ribbons.

Datasheet: Formatting options for Datasheet view. Using this option, you can select fonts
to use, display of grid lines in forms, and default cell effects.

Object Designers: Options that you can set to affect how various design tools are config-
ured for Access. The options are in distinct groups as follows:

• Table Design

• Query Design

• Form Design

• Error Checking

Proofing: Encompasses several options including spell checking, grammar checking, and
autocorrection. Many Access developers do not use the autocorrection features available
within Access, as they can cause problems with database performance and have been a
longtime developer issue. However, it is believed that the performance issues surround-
ing autocorrection have been resolved with Access 2007.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?8

Figure 1-4. Quick Access Toolbar

Advanced: Several options that can be set to deal with how Access interacts with your data
and users can interact with an application. The following option groups are available:

• Editing

• Display

• Printing

• General

• Advanced

Customization: Useful to help add or remove Ribbon options from the QAT using the
new Access customization dialog box. Users can place frequently used items on the QAT
in a similar way to working with command bars in previous versions.

Add-Ins: Listing of all add-ins currently being used by Access. This gives a quick overview
of any third-party development tools you happen to be using.

Trust Center: Accesses the Trust Center, one of those areas of Access 2007 you will either
love or hate. In all probability, many users will set the trust level to the lowest possible to
avoid all the nagging messages that could result when they open a database containing a
macro. The recommended approach from Microsoft is to leave the settings at their
default: full functionality. Two settings are available in the Trust Center: Show the mes-
sage bar in all applications when content has been blocked and Never show information
about blocked content. On my system, when I am writing, I turn them off. To be honest,
I got fed up with getting a nagging message every time I went to do an example for this
book and found I had to choose Enable Active Content. Of course, I then realized I could
set a folder as a trusted location and resolve the issue that way. That has worked out OK
and is a much more sensible approach than turning off everything. Files placed into the
Trust Center will not be challenged by the Access security features that block active con-
tent. The following locations are marked as trusted when you install Microsoft Office
2007: \Program Files\Microsoft Office\Templates and \Program Files\Microsoft Office\
Office12\Startup.

Resources: Contains links to online resources to assist users when working with Access.
Links are available to the Office web site, interactive Office 2007 diagnostics, online help
and resources, software updates, and a contact Microsoft feature.

As you can see, there are many options, controls, and tools available to you to help with
customization of the program and your application without your having to resort to code.
However, all options will be available to the end user as well, and in Chapter 3 we will be look-
ing at specific approaches to help close these gaps in customization.

Access 2007 Tables
Tables in Access 2007 remain much as they were in previous versions of the application. There
is little that can be done to add or decrease the functionality of a basic table; however, some
new data types have been added to complement the ability of Access to deal with other appli-
cations (most notably SharePoint Server), and additional table properties have been provided.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 9

The data filtering ability when in Standard view has been greatly improved. The new inter-
face also permits multiple objects to open in either Design or Standard view using a tabbed
interface to move between items, for example, multiple forms currently opened. Figure 1-5
shows the new form interface with several form objects open.

Complex Data Types
Developers will notice that a new data type is now available in Access 2007 to support the use
of complex data types, for example, documents that have been associated with a database
record. This new data type, attachment, permits the user to store many different types of
information with a single database record without complex programming by the developer.

A property is also available when using lookup lists, Allow Multiple Values, that does
just as it says: it permits a user or developer to associate multiple data values with a single
field without having to resolve a many-to-many relationship. One of the main reasons for
this is a feature in SharePoint Server lists that allows you to associate multiple values with
particular data, for example, multiple developers assigned to a project. Behind such
changes is the need to fit Access into the same underlying schema as that used by Share-
Point. Another reason is the Microsoft focus on insulating Access users from the finer points
of database design, though how they can be expected to take advantage of this feature with-
out knowing what a many-to-many relationship is in the first place escapes me!

To support these new features and, of course, integration with SharePoint, two major
changes have taken place in Access 2007—a new data engine (ACE) and extensions to Data
Access Objects (DAO) have been added. It should be some consolation to know that under

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?10

Figure 1-5. Multitabbed object interface

the covers within the data engine a fully normalized relationship is created (that is, the many-
to-many relationship is resolved using standard normalization techniques). This relationship
is not currently available to you via the user interface. It has been strongly suggested during
the beta process that this functionality be provided to developers at the very least. At the time
of writing, access to this area is not available.

■Note Now before the relational purists jump out of whatever chair they are reading this in, it’s real
important to say that such changes are intended purely for the world of SharePoint. Now I know that’s all
fine in theory; we will begin to see hundreds of Access applications using these features, and for many
small users this will not be an issue. It will be a real issue in applications that are to be upsized to SQL
Server. Such fields will upsize but contain issues that we will need to resolve.

Multivalue Fields
Multivalue fields are not the same text fields in which users are permitted to key in several
values (for example, developer names). In this case the data is fully normalized, but within
the database engine as opposed to within the table structures. This can be seen especially
when it comes to working with these values via DAO and VBA.

This design addition is intended to shield the end user from the classic many-to-many
relationship and can be applied to the Lookup property and the attachment data type, intro-
duced earlier. Once the Allow Multiple Values property is enabled, a checklist is available
within the field that permits users to select one or more values from the presented list.

Activating the Allow Multiple Values Property
As mentioned previously, Allow Multiple Values is a new property that has been added to the
Lookup property, which has long been available in Access. In this case, by setting this property
to Yes, it is possible to permit users to select one or more data items to associate with a partic-
ular lookup field.

To activate the Allow Multiple Values property, you could, for example, create a new table
called Employees with standard fields (fldForeName, fldSurName, and so on) and a second
table named Tasks containing a new field named fldAssignedTo. In the field properties for
fldAssignedTo, you would click the Lookup tab, change Display As to Combo Box, and set the
Allow Multiple Values property to Yes.

Using the Attachment Data Type
The attachment data type permits the storage of multiple file attachments within a single field
and is a useful tool when working with documents and other resources. It is no longer neces-
sary to deal with API calls to open File dialog boxes or worse still save such objects within the
database file. Internally, the attachment is stored in a binary field, and the underlying relation-
ships are not exposed via the interface. There is no way to see the true nature of the
relationship via the GUI. To open an attachment, double-click the file name within the Attach-
ment dialog box.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 11

To illustrate this new data type, I will walk you through a short example.

1. Create a table named tblAttachment.

2. Create a single field with a data type of attachment, and name the field fldMyDocs.

3. Save the table.

4. Open the table in Standard view.

5. Double-click the attachment paper clip icon.

This opens the Attachment dialog box, which can be used to navigate to and select
required files.

6. Click Add.

7. Select a file name using the Choose File dialog box.

8. Click Open.

9. Click OK to close the dialog box.

Once finished, note that the field uses a standard attachment icon and shows the number
of files referenced.

To view the attachment, you would double-click the field cell containing the attachment
to open the Attachment dialog box. Using the dialog box, you can

• Add additional attachments.

• Remove attachments.

• Open an attachment.

• Save an attachment.

• Save the attachment under a new name.

In order to see the real effects of this additional data type, open the relationship
window by clicking Database Tools ➤ Relationships. Look at the Attachment table,
particularly the Attachments field, and note the additional values: Attachments.FileData,
Attachments.FileName, and Attachments.FileType. These are revealed (as shown in
Figure 1-6) by clicking the plus symbol beside the Attachment field name. The values are self-
descriptive: FileData refers to the file being stored, FileName is just that, the name of the file,
and FileType refers to the file extension.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?12

Figure 1-6. Attachment data type field values

Let’s look at another example, this time using DAO to load an attachment located in
C:\AccessAttachments into tblMyDocs. The following code fragment loads a file from the fol-
lowing path, C:\AccessAttachments\test.doc.

■Note Remember to change the path and the file name to reflect your own setup before running this
example.

Public Sub loadfile()
Dim rsttblDocs As DAO.Recordset
Dim rstGetData As DAO.Recordset
Set db = CurrentDb
' Get the parent recordset
Set rsttblDocs = db.OpenRecordset("tblMyDocs")
' Put the parent record into edit mode
rsttblDocs.Edit

' Get the attachment recordset
Set rstGetData = rsttblDocs.Fields("fldMyDocs").Value
' Set first attachment to loaded picture
rstGetData.Edit
rstGetData.Fields("FileData").LoadFromFile ("C:\AccessAttachments\test.doc")
rstGetData.Update
' Update the parent record
rsttblDocs.Update
End Sub

Note the use of two recordsets: rsttblDocs to open the main parent recordset and rstGet-
Data to load the “child” recordset to permit access to the attachment field contained within
the parent recordset.

Filtering Tables
It has long been possible to filter data directly with an Access table, but this feature has
been enhanced in Access 2007. Tables now have a built-in sort-and-filter facility located to
the right of each field and indicated by a down arrow. It is possible to sort in ascending and
descending order and to filter any of the values being displayed. The filter type is dynamic,
changing according to the data type of the field selected. Table 1-2 shows the various filters
that you can use at table level according to the data type of the field selected.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 13

Table 1-2. Access 2007 Table Filters

Data Type Filters

Text Equals, Does Not Equal, Begins With, Does Not Begin With, Contains, Does
Not Contain, Ends With, Does Not End With

Date/Time Equals, Does Not Equal, Before, After, Between, All Dates in a Period

Number/Currency Equals, Does Not Equal, Smaller Than, Larger Than, Between

Basically the user is creating a standard Access query using the criteria to build up the
query. You can open the Query window to view the process by clicking the Data tab and select-
ing Advanced ➤ Advanced Filter/Sort.

Complex filters can be created directly at the table level by users. The ability to save a
complex filter as a stored query is another neat feature of the new filter ability. Once you have
filtered a table, select Save As from the File menu and save the filter as a query. The under-
lying SQL used to filter the table will now be available to you.

The Create Ribbon also provides a new feature in Access, Table Templates, which allows
you to choose from a small number of prebuilt table designs. From an Access viewpoint, they
can be badly designed. For example, the Task table template includes field names such as %
Complete; note the use of the wildcard symbol in the table name and that almost every field
contains spaces in field names. The first job therefore for anyone using the templates will be
to change most, if not all, the field names to meet proper design standards. Of course, the
reason the tables are designed this way is to enable easy integration with SharePoint.

Access 2007 Forms
Wow! Where to start with forms? There are lots of changes as far as forms are concerned, from
new properties to a whole new way of designing and working with objects. Some of the new
features are useful, some not. You have the ability to work with a form design while viewing
data. Through the Create tab, the following menu options are available:

• Basic Form: A standard Access form.

• Split Form: A new form containing a datasheet at the top and a standard Access form at
the bottom. The top of the screen displays multiple records, while the form section
shows the detail.

• Multiple Items: Standard continuous form.

• Pivot Chart: Pivot table–type chart based on the underlying record source.

• Blank: A standard blank disconnected form.

• More Forms: Pivot table, modal form, and datasheet. Also gives you access to the Form
Wizard.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?14

■Note When displaying an attachment data type via forms, the attachment is represented by an icon
within an object frame. For example, a Word document attachment will be represented using the MS Word
icon. Double-click the icon to open the Attachment dialog box. A small floating toolbar is also available to
enable you to move through the attachment files.

Form Layouts
You now have three options for how you want to work with forms: Layout view, Design view,
and Form view. A layout is used to group like objects together on the form for positioning.
Control objects can then be manipulated as a group. Control objects can be detached from
their layout group and repositioned elsewhere on the screen. Select an object, right-click, and
select Remove From Layout on the context menu. Figure 1-7 shows the Formatting Ribbon,
which contains this and other layout options when you are in Layout view.

Another neat feature added to forms is the ability to add existing fields while in Design
view mode (by clicking Add Existing Fields from the Tools group). This feature reminded me
of Data Access Pages (DAPs) in which fields are available within a tree view, and you can drag
and drop fields from tables onto the form background. Once a field is selected and dragged
onto a form, all nonrelated tables are removed from the tree view and the record source of
the form is set to a SELECT statement. Figure 1-8 shows the new Field List Pane. In this case,
I have clicked the Show all tables link located at the bottom left of the pane. Note this text is
dynamic and will change to read Show only fields in the current record source.

Rich text support has also been added within forms, such as the PDF support mentioned
earlier, removing the requirement to purchase third-party add-ins for this release. Rich text is
available as a field property in the Design view of a table for memo data types only. To activate
rich text, select a text field in Table Design view, select Text Format in the field properties, and
select Rich Text. Once the property has been set at the table level, you use a small floating
toolbar to format the text within the control in Form view. You may also use the formatting
options on the main Ribbon. Rich text support is provided using HTML mainly to ensure sup-
port when the data is moved to SharePoint Server. Figures 1-9 and 1-10 show the Design and
Layout Ribbons and their associated tools.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 15

Figure 1-7. Layout view and Formatting Ribbon

Rich text format is a nice idea; however, at the time of writing, the floating toolbar is dif-
ficult to see but fairly easy to use, and personally I always use the main Ribbon. But that’s a
minor issue compared to the functionality it gives the user and is in keeping with the appar-
ent decision by Microsoft to reduce dependence on third-party tools when working with
Access 2007.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?16

Figure 1-8. Inserting existing fields

Figure 1-9. Design Ribbon for a form

Figure 1-10. Layout Ribbon for a form

New Form Properties
Table 1-3 lists the new form properties available with Access 2007. As you can see, many of
these properties are related to the additional ways in which forms can be presented to the
user, for example, split-view forms.

Table 1-3. New Form Properties

Tab Property Comments

Format Split Form Orientation Options are On Left, On Right, Top, Bottom.

Format Split Form Datasheet Options are Allow Edits, Read Only.

Format Split Form Splitter Bar Options are Yes, No.

Format Save Splitter Bar Position Options are Yes, No.

Format Split Form Printing Options are Form Only, Datasheet Only.

Format Navigation Caption Free text caption for navigation buttons.

Data Filter on Load Options are Yes, No. (Applies filter on form load.)

Data Apply OrderBy on Load Options are Yes, No. (Applies OrderBy to Form start-up.)

Event After Layout Options are VBA, Macro for Pivot Table AfterUpdate
Event.

Event Before Render Options are VBA, Macro for Pivot Table BeforeRender
Event.

Event After Render Options are VBA, Macro for Pivot Table AfterRender
Event.

Event After Final Render Options are VBA, Macro for Pivot Table
AfterFinalRender Event.

Other RibbonName Loaded Customization Ribbon ID for On Open.
Use Default Paper Size Options are Yes, No.
Display on SharePoint Site Options are Do Not Display, Follow Table Settings.

List Items
A new feature behind lists is the ability to use object properties to open a form, which enables
users to edit list items. This works in much the same way as a Not In List event (which is still
available); in this case, an object property, List Items Edit Form, is used, which is the form to
open if a value entered is not already available in the list. You still need to code the form and
repopulate the combo box with the newly added value. Another property, Allow Value List
Edits, permits users to add or edit values to an object’s value list. A new dialog box, Edit List
Items, is opened to allow this.

Reports
Just like Access forms, reports now permit design changes in Data view, filtering in Design
view, and interactive grouping. It’s also possible to build clickable reports with a drill-down
capability using the new report On Click event. An example of this is shown in the Issues

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 17

template: clicking a contact name in the report opens the contact form in response to the
On Click event. The Issues template is available when you create a new database and can be
selected in the opening splash screen. Report objects now have the following events available:

• On Click

• On Exit

• On Got Focus

• On Lost Focus

• On Click

• On Dbl Click (Double Click)

• On Mouse Down

• On Mouse Move

• On Mouse Up

• On Key Down

• On Key Up

• On Key Press

Macros
As mentioned earlier, macros have received considerable focus with this release of Access,
perhaps on a par with SharePoint and the focus on the power user experience. Several new
macro-specific features have been added, and as you may already know, all of the Microsoft
template databases contain no VBA in the form control events—they are all macro driven.
One of the first areas you might notice the use of macros is in the Command Button Wizard,
which, rather than produce VBA, will create an embedded macro. The following is the macro
added by the Command Button Wizard to open a form:

OpenForm
Assignment List, Form, , , , Normal

The use of macros by wizards to create an embedded macro (that is, the macro is now
saved with the form and can be copied between objects as opposed to appearing in the
Navigation Pane and in the event property) is a major departure for Microsoft. One advan-
tage is that such macro-driven functionality will work in a database with code disabled.
Oh, and before I forget, I better mention macro error control. Yes, Microsoft has added error
trapping to macros! The new OnError feature is much like its equivalent in VBA and allows
you to totally ignore the error using the Next action. The Fail action reverts back to no error
control, and your execution halts in its tracks, much like the original action of a failed
macro. With the Macro Name action, the OnError feature of the macro will pass execution
to a named label. However, if your error-handling macro fails, it’s back to normal behavior,

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?18

and the whole show stops working! Another new feature, and one which may prove more
useful to developers, is that of temporary variables, or TempVars. TempVars are a variant
store, and they exist during the lifetime of the application. Many developers avoid the use
of variants, as they can add additional overhead to executions, and prefer to explicitly
declare variable data types. TempVars have .Value, .Remove, and .RemoveAll properties and
could prove useful to store values required elsewhere in code during execution. TempVars
provide you with an enumerated collection when you work in VBA and can be used to store
data only.

Within a macro, TempVars can be used as local variables to hold values, for example,
a form to open or a report to print. They can also be passed between macros and VBA,
although many developers will simply use them within macros.

Modules
At long last, developers can use a wheel mouse within the VBA IDE. That’s about it for the
VBA interface. Other than the mouse wheel, modules remain much as they were in Access
2003.

Working with SharePoint Server
SharePoint is one area where a lot of effort has been made by the Access development team
into improving both the user and the developer experience. For users, Access can act as a
front-end interface to data held on SharePoint Servers. Chapters 9 through 11 look at using
SharePoint in some detail and provide a solid overview of what in my view is a great collabora-
tion and development environment not only for Access, but also for the entire Office suite of
applications.

For many Access developers, SharePoint will be something they have read about on
MSDN or heard briefly mentioned. It’s my own belief that SharePoint may well become the
data store of choice for many smaller business groups as well as seeing increasing use in larger
organizations. SharePoint is a huge product and offers substantial scope for developers, par-
ticularly those who would like to move into the world of .NET. As I have already stated, the
tracking application templates provided are designed with SharePoint interaction in mind.
Such applications also fit in with the new Office Live service being offered by Microsoft. Share-
Point is a free downloadable component for the Windows Server 2003 operating system and
provides an Internet development environment based on the .NET Framework 2.0. Windows
SharePoint Services Version 3 can be downloaded from the Microsoft web site. Within Access
2007, it is possible to

• Link to a SharePoint list.

• Upsize your Access database to SharePoint.

• Take SharePoint data offline for remote use.

• View document version history and auditing information via SharePoint lists.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW? 19

■Note For the examples later in the book, you will require access to a SharePoint site. For those really
keen, this is actually possible using freely downloaded software: Windows Virtual Server 2005, an evaluation
copy of Windows Server 2003, and Windows SharePoint Services Version 3. Install the software in a virtual
environment and off you go! You will only have a limited amount of time to use the evaluation copy of the
Windows Server 2003 OS before it deactivates. The rest of the software is yours to keep.

The ability to work with SharePoint data offline will be very useful to many individuals
who already work with SharePoint. Using Access, it’s possible to connect to a SharePoint web
site, take a list down to Access, disconnect from the SharePoint Server, and when ready recon-
nect and update your SharePoint list with any changes. Members of staff, for example, could
download lists of data and documents into Access, work on the information offline, perhaps
at a meeting, and when ready connect and update the central data store.

Given the focus SharePoint has received with this release of Office, I think Access develop-
ers would be well advised to start looking at what this product brings to the game in terms of
functionality and .NET coding. Chapter 9 looks at SharePoint in some more detail and hope-
fully will encourage you to take a close look at this software, remembering that Windows
SharePoint Services is provided free of charge, and all you need is Windows Server 2003.

Security
The biggest blow to many developers will be the removal of user-level security in the new file
type. User-level security is supported for MDB files but not ACCDB files. It would appear to be
the Microsoft view that user-level security wasn’t actually intended to be used for security but
rather for custom navigation! The new file type has had security increased using an encrypted
database password, which is no longer stored in the database. Support for user-level security
will be maintained for earlier versions of Access.

E-Mail Data Collection
Using Access 2007 and Outlook 2007 (to process the replies), it is now possible to issue an
InfoPath form, or HTML form, to users, have them complete the form, reply to the e-mail, and
automatically update an Access table with the returned data. Users will need Microsoft
InfoPath installed in order to respond if you are using the option to send the request using
InfoPath forms; otherwise, standard HTML forms will not be an issue. E-mail data collection
and Microsoft InfoPath are discussed in Chapter 4.

Summary
Overall, many new features have been added to Access 2007, some of which will prove useful,
and others, as is the nature of things, will make your life as a developer a little bit more com-
plex. The focus of SharePoint Services could fundamentally change the way in which we as
developers and power users interact with data, building rich interactive applications. As you
progress through this book, I hope you can get a sense of where Access is going and pick up
some of the skills necessary to fully enjoy the journey.

CHAPTER 1 ■ ACCESS 2007: WHAT’S NEW?20

Text and Templates

One of the major changes you will see in Microsoft Access 2007 is the availability of template
databases mostly directed at users. Templates are provided with Microsoft Office 2007, and
additional templates can be downloaded and installed from the Office Online web site. Tem-
plates provide a way for users to get up and running right away with basic applications, whereas
before when they opened Access, they were left looking at a blank screen. Many users wonder-
ing what to do next simply closed the application, never to return. In this chapter, we will look
at the structure of Access database templates before I show you how to create your own.

The use of templates also offers the possibility of opening up a new market for Access
developers, creating and selling small template databases for Internet download. For corpo-
rate developers, templates may well provide the means to create in-house styles and content
for user databases, allowing them to get back some developer control over the applications
users are creating (for example, ensuring proper relationship design). In this case, a template
structure could be provided, leaving the user to simply populate tables with data, forms, and
reports. Of course, you could go the whole way and create a corporate style for use in all appli-
cations. One area Access developers in particular should keep an eye on is the use of Windows
SharePoint Services (WSS) lists and other data collection objects when thinking about tem-
plates. This is an area that may see further development by the Access and WSS development
teams in the future. Interestingly, over 1.4 million template downloads took place from the
Microsoft web site in 2004, demonstrating how popular templates are with users of Access.

■Note The Microsoft Blog site http://blogs.msdn.com/thirdoffive and other contacts provided a lot
of the background information I supply in this chapter, and I would like to thank them for their assistance
and permissions.

XML: A Really Brief Overview!
It is impossible to discuss templates in Access without first referencing XML and the overall
way XML is being used to define and work with file formats from the other Microsoft Office
system applications. Access templates and their structure are just one part of a large architec-
ture developed as an emerging standard by Microsoft.

It is also difficult to discuss Access templates and XML without a common understand-
ing of what XML is and what it is used for. In this section, I will provide a high-level overview

21

C H A P T E R 2

of XML, describing the basic structures and functionality available. It should be pointed out
that Microsoft will be making tools available at some point during the release of Office 2007
to make working with XML file formats and templates much easier for the developer and
power user.

XML is simply a tool that can be used to describe data and its structure. For example,
within Access you can export a table as an XML file (right-click and select Export ➤ XML). You
can export the data as shown in Listing 2-1, which shows a single customer record from the
Northwind database represented as an XML fragment.

Listing 2-1. Customer Table As XML

<Company>Company A</Company>
<Last_x0020_Name>Bedecs</Last_x0020_Name>
<First_x0020_Name>Anna</First_x0020_Name>
<Job_x0020_Title>Owner</Job_x0020_Title>
<Business_x0020_Phone>(123)456-7890</Business_x0020_Phone>
<Fax_x0020_Number>(123)456-7890</Fax_x0020_Number>
<Address>123 Any Street</Address>
<City>Any City</City>
<State_x002F_Province>WA</State_x002F_Province>
<ZIP_x002F_Postal_x0020_Code>99999</ZIP_x002F_Postal_x0020_Code>
<Country_x002F_Region>USA</Country_x002F_Region>
</Customers>

Or you can export the data and the schema of the table as shown in the schema frag-
ment in Listing 2-2, which is an XSD file created by exporting the schema of the Northwind
Customers table.

Listing 2-2. Customers Table Schema

<xsd:appinfo>
<od:fieldProperty name="ColumnWidth" type="3" value="2295"/>
<od:fieldProperty name="ColumnOrder" type="3" value="0"/>
<od:fieldProperty name="ColumnHidden" type="1" value="0"/>
<od:fieldProperty name="Required" type="1" value="0"/>
<od:fieldProperty name="AllowZeroLength" type="1" value="0"/>
<od:fieldProperty name="DisplayControl" type="3" value="109"/>
<od:fieldProperty name="IMEMode" type="2" value="0"/>
<od:fieldProperty name="IMESentenceMode" type="2" value="0"/>
<od:fieldProperty name="UnicodeCompression" type="1" value="1"/>
<od:fieldProperty name="AggregateType" type="4" value="-1"/>
<od:fieldProperty name="WSSFieldID" type="10" value="JobTitle"/>
<od:fieldProperty name="RowSourceType" type="10" value="Table/Query"/>
<od:fieldProperty name="BoundColumn" type="3" value="1"/>
<od:fieldProperty name="ColumnCount" type="3" value="1"/>
<od:fieldProperty name="ColumnHeads" type="1" value="0"/>

CHAPTER 2 ■ TEXT AND TEMPLATES22

<od:fieldProperty name="AllowMultipleValues" type="1" value="0"/>
<od:fieldProperty name="AllowValueListEdits" type="1" value="0"/>
<od:fieldProperty name="TextAlign" type="2" value="0"/>
<od:fieldProperty name="ShowOnlyRowSourceValues" type="1" value="0"/>
<od:fieldProperty name="GUID" type="9" value="a1nT7kFvTE+1RamEwGZHkQ=="/>
</xsd:appinfo>

In this case, you have two different XML files produced, Customers.xml and
Customers.xsd, one for the data and the other for the schema. What’s useful about this? Well,
you could simply take one or both files and import them into another Access database or SQL
Server 2005 Standard, Enterprise, or Express Edition. For example, you could take the preced-
ing XSD file and import it into SQL Server, giving you a copy of the customer table structure.

If you are already familiar with HTML, you will immediately begin to understand the
structure of the basic XML file generated. Just like HTML, XML uses opening and closing tags,
elements, and attributes to describe the structure and content of the file. Unlike HTML, XML
allows you to create your own tags for use with your own data and information. So, for exam-
ple, if I want a tag called RedDog, no problem, I can create one. As a simple example of an
XML file, consider this book. This book has a title, an author, chapter numbers, chapter titles,
and a page count. You can represent this information in a simple XML file, structured as
shown in Listing 2-3.

Listing 2-3. Book XML

<?xml version="1.0" encoding="ISO-8859-1"?>
<book>
<title>Professional Access 2007</title>
<author>M WP Reid</author>

<chapter1>
<title> What's New</title>
<pages>30</pages>

</chapter>1
</book>

When viewed within Microsoft Internet Explorer, you will get a tree view representation
of the data structure. In the preceding file, you have a root element, <book>, followed by sev-
eral other elements; the <chapter1> element contains two child elements, <title> and <pages>,
which have an opening and closing element. Each element in the file will have an opening
and closing element. It’s worth noting that even this simple example has a defined hierarchy
of information. The tree view, or document structure, in the browser is noticeably different
from the XML text file: that’s because IE is using its own built-in style to display the data.
Access can also export via the GUI a style sheet to be used to actually present the data in the
browser. Of course, I just made the elements up for this example; as stated earlier, this is one
of the advantages of XML—you decide on the elements you require to model your data. An
XML document therefore contains the following structure:

CHAPTER 2 ■ TEXT AND TEMPLATES 23

1. Declaration, <?xml version="1.0" encoding="UTF-8"?>, which is the first line in all
XML documents and is a required attribute.

2. Elements, for example, <Company>Company A</Company>, tell you the start and end of
a particular bit of information. Here, Company A is the value for the company field in
the Northwind Customers table. Elements contain an opening tag, <Company>, and
a closing tag, </Company>. The only difference is the closing tag contains a backward
slash (/).

3. Attributes provide extra information about an element. For example, in <book title
="My book">, title would be an attribute of the element book.

The ability to import and export XML has been available in Access for some time both via
the GUI and using VBA.

Office XML
As you will see in this chapter, XML plays an important role in the structure of both Office files
generally and Access templates specifically. Essentially, an Access template file is a single file
much like, say, a standard Word document (DOCX, which is the new Microsoft Word 2007 file
type), isn’t it? Well, actually, it’s not—it’s really a set of XML files that you can break apart and
look at. You can see the XML files by renaming the template file to a .zip extension and open-
ing the file using your favorite compression software. What you have is a ZIP package contain-
ing all of the XML and XSD files required to tell Access how to create the database application.
This section of the chapter provides a general overview of the Office XML file formats and is
not specifically about Access. Access XML files, however, have much in common with the
Office XML file formats as the same specification applies to all Office System XML documents.

Open Packaging and OpenXML
Office 2007 file formats are, across all the applications, based on OpenXML. The Open Packag-
ing convention provides a specification for taking various XML files and other resources and
packaging them into a ZIP file. As mentioned previously, all that is required to actually see the
ZIP package is to rename a file with a .zip extension and open it in a compression program. Fig-
ure 2-1 shows the structure of such an Access 2007 package once extracted to the hard drive.

CHAPTER 2 ■ TEXT AND TEMPLATES24

Figure 2-1. Folder structure of Access template package

If you carry out the rename exercise on, for example, a Microsoft Word DOCX file, you will
see the same result, and this applies across all the Office 2007 applications. You can actually
import any of the XML files from the package describing table structure into an Access data-
base by using the Ribbon: select External Data ➤ XML and navigate to the required XML table
structure file in the extracted package.

Microsoft Office 2007 and Access 2007 XML Structures
In terms of Access, think of the ZIP file package as containing a set of parts. These are the indi-
vidual pieces that taken together form the database template. The same holds true of other
Office documents, such as a standard Word document. The ZIP file is a container for these
parts and is initially represented as a single binary file—in this case, a standard Access 2007
template file format.

Some “parts” are shared across all the Office applications and file types; for example,
image files and metadata and others will be specific to the application being worked in, in this
case Access 2007. Parts can contain some or all of the following:

• Relationships with other parts

• Links to external documents (for example, a logo file)

• Parts that serve as a connection between other parts

• Metadata

• Actual data

XML relationships will exist in almost all containers for XML documents, with all parts
(or almost all) being referenced by at least one relationship. Relationships are implemented
using relationship ID, which allows relationships to be independent of schema specifics.
Following is an extract from an Access template XML file, Template.xml. You can see
the relationship ID and the relationship target, for example,
target="database/objects/tableCustomers.xsd" Id="tableCustomers".

■Note A code line that is too long to span the book page but should appear on a single line will be indi-
cated using a code continuation character (➥) where the line breaks. Remember that all such code should
be entered on a single line, or you will receive an error.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Relationships Xmlns=➥

"http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship Target="database/databaseProperties.xml"➥

Id="DatabaseProperties" Type="http://schemas.microsoft.com/office/access/2005/04/➥

template/properties"/>

CHAPTER 2 ■ TEXT AND TEMPLATES 25

<Relationship Target="database/objects/tableCustomers.xsd"➥

Id="tableCustomers" Type="http://schemas.microsoft.com/office/access/2005/➥

04/template/object"/>
<Relationship Target="database/objects/tableEmployeePrivileges.xsd"
Id="tableEmployeePrivileges"
Type="http://schemas.microsoft.com/office/access/2005/04/➥

template/object"/>
<Relationship Target="database/objects/tableEmployees.xsd"➥

Id="tableEmployees" Type="http://schemas.microsoft.com/office/access/2005/04/➥

template/object"/>

As I have stated, relationships not only deal with the internal structure of the document or
object, but also external links to other objects. For example, when you use the new version of
Northwind 2007, there is a company logo in place on the forms; if you check out the XML con-
tainer for Northwind, you will notice it contains the image file used for the logo, preview.jpeg.
This illustrates a feature of the XML package in that it can contain not only resources used to
create and populate structures, but also external files for use in the finished database. We look
further at Access-specific templates in this chapter, in the section “Built-in Access Templates.”
But first, you need to have an understanding of Access text formats, discussed next.

Access Text Formats
Before looking at templates, it is worthwhile to look at saving Access objects as text files, as
the output from this process shows you the structure of each object. An understanding of
this process is useful when we come to look at how the new template files in Access 2007
are structured and created and explore the content of the template XML files.

Saving Objects As Text
Listing 2-4 shows the structure of an Access form when saved as a text file. I have removed a
lot of the text simply to save some paper and am only showing the initial part of the file, but
you will get the general idea about the structure and nature of the contents. The actual text file
runs to several pages in length.

Listing 2-4. Northwind Customer Form Saved As Text

Version =20
VersionRequired =20
Checksum =1884425071
Begin Form

RecordSelectors = NotDefault
AutoCenter = NotDefault
DividingLines = NotDefault
AllowDesignChanges = NotDefault
DefaultView =5
ScrollBars =0

CHAPTER 2 ■ TEXT AND TEMPLATES26

TabularCharSet =204
PictureSizeMode =1
DatasheetGridlinesBehavior =3
GridX =24
GridY =24
Width =11055
DatasheetFontHeight =11
ItemSuffix =273
DatasheetGridlinesColor =-2147483632
Tag ="SplitList"
RecSrcDt = Begin

0x10455ac08d03e340
End
GUID = Begin

0x4d099361a9a43b4c89b4fce1995f299c
End

Note the use of Begin and End to define the form property. Each property will have its own
corresponding Begin and End pair used to define each property. For example, the following
section defines a form command button:

Begin CommandButton
TextFontCharSet =186
FontSize =9
FontWeight =400
ForeColor =1462991
FontName ="Arial"
LeftPadding =30
TopPadding =30
RightPadding =30
BottomPadding =30
GridlineStyleLeft =0
GridlineStyleTop =0
GridlineStyleRight =0
GridlineStyleBottom =0
GridlineWidthLeft =1
GridlineWidthTop =1
GridlineWidthRight =1
GridlineWidthBottom =1

End

If you export one of the Northwind 2007 forms, you will also see how the macro “code” is
saved with the form definition.

■Note Embedded macros are strictly an Access 2007 deal; they will not work in earlier versions.

CHAPTER 2 ■ TEXT AND TEMPLATES 27

How do you get this information about Access objects? You use an undocumented
method to copy Access objects as text files. Of course, you can use another undocumented
method to load them back in again. The two methods, Application.SaveAsText and
Application.LoadFromText, have been widely used by Access developers to copy database
objects to text files for some time. Undocumented may be too strong a term, because if you
right-click in the Object Browser and select Hidden Members, you will see both methods
and their arguments.

First, let’s take a closer look at SaveAsText as a means of saving Access objects as text files
(you will learn more about the other method in the section “Using the LoadFromText Method”
later in this chapter).

Using the SaveAsText Method
So although undocumented officially, the SaveAsText method is used on a day-to-day basis (as
is the LoadFromText method). Listing 2-5 shows the procedure used to save the Northwind
database forms into distinct text files.

■Note If you want to try this out on your own system, remember to change the path used to save the text
files into before running the procedure.

Listing 2-5. Saving Forms As Text Files

Public Sub createtemplate()
On Error GoTo Err_createtemplate

Dim db As Database
Dim doc As Document
Dim conn As Container
Dim strPath As String
Set db = CurrentDb()
strPath = "C:\forms\"
Set conn = db.Containers("Forms")

For Each doc In conn.Documents
Application.SaveAsText acForm, doc.Name, strPath & "Form_" & doc.Name➥

& ".txt"
Next doc

Set db = Nothing
Set conn = Nothing

Exit_createtemplate:

Exit Sub

CHAPTER 2 ■ TEXT AND TEMPLATES28

Err_createtemplate:
MsgBox Err.Number & " - " & Err.Description
Resume Exit_createtemplate

End Sub

The procedure in Listing 2-5 can also be modified to actually output the entire database
structure as a set of text files. Listing 2-6 demonstrates this approach, and when executed will
save queries, forms, reports, tables, and modules to the file system as a set of text files. For this
example, the background information on tables and queries will be covered in the section
“Saving Tables and Queries” shortly.

Listing 2-6. Dumping the Entire Database As a Set of Text Files

Public Sub createtemplate()
On Error GoTo Err_createtemplate

Dim db As Database
Dim doc As Document
Dim conn As Container
Dim strPath As String
Dim I As Integer
Set db = CurrentDb()
strPath = "C:\forms\"
' Export the forms
Set conn = db.Containers("Forms")
For Each doc In conn.Documents

Application.SaveAsText acForm, doc.Name, strPath & "Form_"➥

& doc.Name & ".txt "
Next doc
' Export the reports
Set conn = db.Containers("Reports")
For Each doc In conn.Documents

Application.SaveAsText acReport, doc.Name, strPath & "Report_"➥

& doc.Name & ".txt"
Next doc
Set conn = db.Containers("Modules")
For Each doc In conn.Documents

Application.SaveAsText acModule, doc.Name, strPath & "Module_"➥

& doc.Name & ".txt"
Next doc

For Each td In db.TableDefs ' Tables
If Left(td.Name, 4) <> "MSys" Then

DoCmd.TransferText acExportDelim, , td.Name, strPath & "Table_"➥

& td.Name & ".txt", True
End If

Next td

CHAPTER 2 ■ TEXT AND TEMPLATES 29

For I = 0 To db.QueryDefs.Count - 1
Application.SaveAsText acQuery, db.QueryDefs(I).Name, "strPath"➥

& db.QueryDefs(I).Name & ".txt"
Next I

Set db = Nothing
Set conn = Nothing
Set doc = Nothing

Exit_createtemplate:
Exit Sub

Exit_createtemplate:
On Error Resume Next

If Not (doc Is Nothing) Then doc.Close: Set doc = Nothing
If Not (conn Is Nothing) Then conn.Close: Set conn = Nothing
If Not (db Is Nothing) Then db.Close: Set db = Nothing

Exit Sub
Err_createtemplate:

MsgBox Err.Description, , "Error in Sub Module1.createtemplate"
Resume Exit_createtemplate

Resume 0 '.FOR TROUBLESHOOTING
End Sub

In this case, you are exporting queries, forms, tables, reports, and modules. The structure
of a report and module text file are shown next. Again, to save space, I have only shown a sec-
tion of the file contents.

Report Text File Contents
The report text file will contain information on both the structure of a report and any code
associated with it.

Version =20
VersionRequired =20
Checksum =-785581844
Begin Report

LayoutForPrint = NotDefault
AutoCenter = NotDefault
AllowDesignChanges = NotDefault
DateGrouping =1
GrpKeepTogether =1
PictureAlignment =2
PicturePages =1
DatasheetGridlinesBehavior =0
GridX =24
GridY =24
Width =11748
DatasheetFontHeight =10

CHAPTER 2 ■ TEXT AND TEMPLATES30

ItemSuffix =102
Tag ="Details~Extensions=OnOpen_CancelIfNoFilter"
RecSrcDt = Begin

0x7e78f9c78d03e340
End
GUID = Begin

0x33b2547e4d5f014a8c88cd30cccddacf
End

Module Text File Contents
This is a simple text file containing the actual code module exported as a text file:

Option Compare Database
Option Explicit
Public Enum InventoryTransactionTypeEnum

Purchase_TransactionType = 1
Sold_TransactionType = 2
Hold_TransactionType = 3

End Enum
Type InventoryTransaction

ProductID As Long ' Product being added or removed to inventory
TransactionType As InventoryTransactionTypeEnum ' 1=Purchase; 2=Sale;

' 3=Hold; 4=Waste;
Quantity As Long

' Quantity specified for purchase, sale, hold, etc.
QuantityGranted As Long ' Actual quantity granted;

' may be less than specified
InventoryID As Long ' Inventory Transaction ID returned to the caller
AllOrNothing As Boolean ' All or nothing flag for product allocations
Comments As String

End Type

■Note Access will only write out objects that have values that differ from their default values, thus helping
to keep field sizes small.

Saving Tables and Queries
Saving tables as text files works in a slightly different way than for other objects. With forms,
queries, and other database objects, you can walk the database container, returning the def-
inition for each object. For tables, you need to use the TableDef object and transfer each
table out of the application as a text file. This is a historical problem, as SaveAsText and
LoadFromText text are not meant to carry out day-to-day work, but rather to be used by
Access wizards to create objects. However, the process is much the same as before, only
on this occasion, you have to loop through the TableDefs, selecting each table for output.

CHAPTER 2 ■ TEXT AND TEMPLATES 31

Of course, you also need to ignore the system tables, as you don’t actually need them at this
point. Listing 2-7 demonstrates this approach.

Listing 2-7. Walking the TableDef Object

For Each td In db.TableDefs ' Tables
If Left(td.Name, 4) <> "MSys" Then

DoCmd.TransferText acExportDelim, , td.Name, strPath & "Table_"➥

& td.Name & ".txt", True
End If

Next td

■Note The If statement excludes all system tables from the export routine. You also concatenate the pre-
fix “Table” to each text field generated, as this will be required later on when you reload the definitions into
another database.

Queries are very similar; they require you use the QueryDef object with the SaveAsText
procedure used earlier. Listing 2-8 outlines this approach.

Listing 2-8. Exporting Queries As Text

For i = 0 To db.QueryDefs.Count - 1
Application.SaveAsText acQuery, db.QueryDefs(I).Name, "strPath" &

db.QueryDefs(I).Name & ".txt"
Next i

Listing 2-8 again uses a loop to cycle through the QueryDefs and outputs each individual
query as a standard text file. Again you concatenate the text “Query” to the file name to help
you reimport the files to a database later. Listing 2-6, shown earlier, puts it all together and
provides a generic procedure that can be used to export all database objects to the file system
as text files.

In my case, I executed the procedure in the Northwind database, exporting tables, queries,
forms, reports, and modules into C:\Forms. This also included linked SharePoint tables.

■Note Have a look at some of the text files created to get an idea about the structure of the files and the
objects they represent. You will be using this information shortly.

Using the LoadFromText Method
Once you have saved an object as a text file, you will of course want to get it back into a data-
base. The example in Listing 2-9 takes one of the text files output by Listing 2-6 and loads it
into a new blank database using the LoadFromText method.

CHAPTER 2 ■ TEXT AND TEMPLATES32

Listing 2-9. Loading Exported Files into Access

Public Sub ImpFromText()
Dim strTemp As String
Dim path As String

path = "c:\temp\test\Form*.*"
strTemp = Dir(path)
Do While strTemp <> ""
Dim test
test = Mid(strTemp, InStr(1, strTemp, "_", vbTextCompare) + 1)
Dim test2
test2 = Left(test, InStr(1, test, ".", vbTextCompare) - 1)

Application.LoadFromText acForm, test2, "C:\temp\test\" & strTemp
strTemp = Dir

Loop
End Sub

At this point, what have you got? Well, you have an entire copy of the database structured
in text files. Could you have just performed a copy and paste of the MDB file? Of course! What
I am doing here is trying to lay the groundwork for how the new templates in Access 2007 work.

Built-in Access Templates
As stated earlier, Access comes with several templates built into the software. A quick-and-
easy way to ensure that your users all have the same database style is to follow the upcoming
instructions.

In many organizations, one of the complaints about Access user–created databases is that
they are often poorly designed and unprofessional. The ability to create templates that your
users can use to get up and running is greatly enhanced with this version of Access. I used the
SaveAsText and LoadFromText discussions to introduce you to the structure of Access objects.
Hopefully, you have tried out the examples and checked out the files produced, as this will be
useful in the “Template Structure” section later in this chapter. However, outside some com-
plex programming, there is a very simple way to make template databases available to your
users. All you need to do is to create a new database called blank.accdb and save it in
\Program Files\Microsoft Office\Templates\1033\Access.

When a user clicks Blank Database in the Getting Started screen, a copy is made of your
blank.accdb file, and the user is almost up and running. Your blank template file can contain
any Access object you choose to create, including

• Library code

• References

• Database properties

• Ribbon XML and the loader

• Default forms and reports

• Other configuration settings

CHAPTER 2 ■ TEXT AND TEMPLATES 33

You user database will be created with the objects required already in place. To try this
out, create a new Access 2007 database named blank.accdb. Within the database, create a set
of standard tables; for example, I created a set of tables called tblStudent, tblSchool, tblMod-
ule. In addition, I created a standard form set, for example, a data maintenance form that
contains the command buttons Add, Edit, Delete, and View, and some standard queries and
reports. I added a small logo and set a standard design color for each form. For the student
form, I added in a customized RibbonX menu to provide quick access to standard activities
for the user.

■Note Don’t forget, for this to work, the database must be named blank.accdb and saved to \Program Files\
Microsoft Office\Templates\1033\Access.

This gives you a powerful and easy-to-use tool that can be used to distribute partially
complete applications to end users. Once complete, simply save the changes and close the
database. To test it out, create a new database by choosing Blank Database from the Getting
Started screen, save it to a local folder, and click Create. Note that all of the objects contained
within the template file will also be contained in the new database file. The main issue with
this approach is the location the blank database must be saved to. In this case, it’s a local folder
on the user’s PC. This is fine for those organizations where the installation of a common desk-
top and applications is the norm, but what about those systems that will not allow you to do
this? One way to deal with this issue would be to use typical deployment scripts, pushing the
template out to the user’s desktop, much like standard software.

Template Structure
As mentioned previously, in order to see how an Access template is put together, you must
first rename one with a .zip extension. On my PC, templates are located in \Program Files\
Microsoft Office\Templates\1033\Access. For the examples that follow, I have renamed the
Northwind.accdt file Northwind.zip. Once the file has been renamed, right-click, select Open
with, and choose your compression program, for example, Win Zip. Figure 2-2 shows the
folder structure inside my new zipped archive. Access templates are not actually database files
but a set of related XML and metadata files describing the database structure, objects and
content, and any relationships that exist between the various XML files. To view the various
files, including the metadata files, simply open one of the template folders or subfolders.

The archive contains the following folder structure:

• _rels

• docProps

• template

The template folder contains two subfolders, _rels and database. It also contains the
Northwind logo image and a single XML file, template.xml. For the moment, we will concen-
trate on the database subfolder, as it contains the main items of interest to Access developers.

CHAPTER 2 ■ TEXT AND TEMPLATES34

Database Subfolder
The database folder contains a single subfolder, Objects, and several XML files, as listed here:

• databaseProperties.xml contains a set of XML files related to each Access object. For
example, the file formCustomerDetails_Metadata.xml maintains metadata about the
Customers form. This file contains the following XML, which details the type, in this
case a form, and the name of the object, Customer Details.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<AccessObject xmlns="http://schemas.microsoft.com/office/access/2005/04/template/➥

object-metadata">
<Type>Form</Type>
<Name>Customer Details</Name>
</AccessObject>

You will find one such file for every Access object, table, query, form, report, macro, and
module. Each file contains the same metadata, type of object and name of object.

• navpane.xml contains the initial objects and structure for the Access Navigation Pane.
It contains the contents for the Navigation Pane system tables: MSysNavPaneGroup
Categories, MSysNavPaneGroups, MSysNavPaneGroupToObjects, and
MSysNavPaneObjectIDs. The following example XML shows the objects that will be
placed into the Navigation Pane:

<MSysNavPaneObjectIDs>
<Id>-2147483470</Id>
<Name>Top Ten Orders by Sales Amount</Name>
<Type>5</Type>
</MSysNavPaneObjectIDs>
<MSysNavPaneObjectIDs>
<Id>-2147483469</Id>
<Name>CustomerOnOrders</Name>
<Type>8</Type>
</MSysNavPaneObjectIDs>

CHAPTER 2 ■ TEXT AND TEMPLATES 35

Figure 2-2. Northwind ZIP archive

<MSysNavPaneObjectIDs>
<Id>-2147483468</Id>
<Name>EmployeePrivilegesforEmployees</Name>
<Type>8</Type>
</MSysNavPaneObjectIDs>
<MSysNavPaneObjectIDs>
<Id>-2147483467</Id>
<Name>EmployeePrivilegesLookup</Name>
<Type>8</Type>

• relationships.xml contains the contents of the MSysRelationships system table.

• vbareferences.xml contains external VBA references.

Tables and Database Objects
Remember that earlier in the chapter we looked at LoadFromText and SaveAsText. Well, you will
see why now. Again, all objects are defined using the same structure as previously shown except
tables, each of which are defined in two files of format XSD and XML. The XSD file contains the
schema for a table, while the XML file contains the actual data to be used for the table.

CHAPTER 2 ■ TEXT AND TEMPLATES36

WHAT IS AN XSD FILE?

An XSD file describes the schema or structure of an XML document. In this case, it describes the schema of a
database table, for example, the Customers table in Northwind. The Customers XSD file is very large, and I
have not included it in full in this chapter. Following is a small section defining the Company column:

<xsd:element name="Company" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">
<xsd:annotation>
<xsd:appinfo>
<od:fieldProperty name="ColumnWidth" type="3" value="-1"/>
<od:fieldProperty name="ColumnOrder" type="3" value="0"/>
<od:fieldProperty name="ColumnHidden" type="1" value="0"/>
<od:fieldProperty name="Required" type="1" value="0"/>
<od:fieldProperty name="AllowZeroLength" type="1" value="0"/>
<od:fieldProperty name="DisplayControl" type="3" value="109"/>
<od:fieldProperty name="IMEMode" type="2" value="0"/>
<od:fieldProperty name="IMESentenceMode" type="2" value="0"/>
<od:fieldProperty name="UnicodeCompression" type="1" value="1"/>
<od:fieldProperty name="TextAlign" type="2" value="0"/>
<od:fieldProperty name="AggregateType" type="4" value="-1"/>
<od:fieldProperty name="WSSFieldID" type="10" value="Company"/>
<od:fieldProperty name="GUID" type="9" value="6Nx0Nm/dA0upv734KdgMSg==

This section of the XSD file defines the Access field and sets the field properties; for example, Company
is defined in line 1 as text for JET, the required field property is set to “No”, and AllowZeroLength is set to
“No”. In addition to the XSD schema file, you will also find for each table object a standard XML file contain-
ing the data. Indeed, if you import the Customers table’s XML from the subfolder, you will find that it creates
an exact copy of the existing Customers table in Northwind.

■Note The following web site contains links to several articles on Access 2003 and XML, many of which
apply to Access 2007: http://www.officezealot.com/office2003zone/access.aspx.

Forms, reports, queries, and other objects retain the format we looked at earlier in this
chapter. Again, using the Customers table from Northwind, here is a short section that defines
some of the fields of this table:

<xsd:sequence>
<xsd:element name="ID" minOccurs="1" od:jetType="autonumber"➥

od:sqlSType="int" od:autoUnique="yes" od:nonNullable="yes"➥

type="xsd:int"/>
<xsd:element name="Company" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50"/>
<xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="Company_x0020_Furigana" minOccurs="0"➥

od:jetType="text" od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleType>

Almost all of the template files made available use embedded macros as opposed to VBA
for processing. In this case, the macros are also part of the form definition file. The next exam-
ple shows the OnClick embedded macro in the customers form XML file, much the same as
for SaveAsText shown earlier.

OnClickEmMacro = Begin
Version =196611
ColumnsShown =10
Begin

Action ="OnError"
Argument ="0"

End
Begin

Action ="SendObject"
Argument ="-1"
Argument =""
Argument =""
Argument ="=[E-mail Address] & IIf(Nz([E-mail ➥

Address])<>\"\",\" [\" & [E-mail Address] & \"]\")"

CHAPTER 2 ■ TEXT AND TEMPLATES 37

Argument =""
Argument =""
Argument =""
Argument =""
Argument ="-1"

End
Begin

Condition ="[MacroError].[Number]<>0"
Action ="MsgBox"
Argument ="=[MacroError].[Description]"
Argument ="-1"
Argument ="0"

End
End

So for the new Access templates, rather than saving and persisting to text files, you are
doing more or less the same thing, but persisting the objects to XML and XSD files. However,
the real interesting feature here is, in addition to allowing you to create corporate templates or
even set up a small Internet template business, the possibility to use templates to export and
import data and its structures to and from Microsoft Office SharePoint Services.

A neat example of this is the ability to create a new Access database based on an exist-
ing Windows SharePoint site. In this case, WSS could be considered a template for the new
application.

In addition, when working with one of the available Access templates, it is possible to
create the database and link it to Windows SharePoint Services. In this way, Access creates an
application linked to a set of SharePoint lists already created on the server. In essence, what
you also have available are web application templates.

WSS Templates
We have already looked at the templates available for Access, but there are also some tem-
plates available for Windows SharePoint Services located in Program Files\Microsoft Office\
Templates\1033\Access\WSS, which contains the following Access/WSS template files:

105: This is an Access template for the Windows SharePoint Services Contact list. For
example, if you create a new Access-linked application from WSS, the linking process will
use this template to provide additional functionality and objects in the resulting Access
database file—for example, forms and reports based on the template definitions.

107: This creates a new database based on a Windows SharePoint Services Task list. Just
like the Contacts database, this template also contains useful Task-based objects, forms,
and reports.

1100: This creates a new issue-tracking application. This is one of the most extensive WSS-
based templates and contains an almost complete out-of-the-box WSS experience.

CHAPTER 2 ■ TEXT AND TEMPLATES38

■Note It’s important to remember that you need to check the Create and Link Your Database to a Windows
SharePoint Services Site check box when creating the database from the templates provided via the Access
Ribbon. If you don’t, you end up with a standard Access database file.

It is expected that Microsoft will in the near future release a wizard-driven development
tool that will make the creation of templates very straightforward. This new tool, which may
be available as part of the Access Developers Extensions, will take an existing database and
create the XML structures required to allow you to save it as a template. This opens up great
opportunities to permit professional applications to be distributed as templates in a corporate
environment. It also, as I have already said, opens up a new market for Access developers, sell-
ing professional templates for specific business purposes.

From the WSS side, it may also be possible to save a WSS site as an Access template. You
can develop additional features either on the SharePoint server or in the Access back-end
database. I would expect this development to take place in the near future.

Summary
For the end user, templates provide a way to get up and running with Access quickly. Granted,
the templates provided by Microsoft are basic and have a focus toward Windows SharePoint
Services. Until Microsoft releases its template creation tools, it’s likely that almost all develop-
ers will remain on the sidelines when it comes to creating these objects. Once the template
software is released, it could be we will begin to see professional Access applications offered
as templates on the Web. Within the corporate environment, it’s likely that templates could
be widely used to ensure that at least the basic structure of applications has been created by
Access professionals.

CHAPTER 2 ■ TEXT AND TEMPLATES 39

Getting Up and Running with
RibbonX

In this chapter, we will be looking at the new menu interface in Access 2007, RibbonX. The
goal with this chapter is to get you started creating your own menu system. The Ribbon will be
the single most visible change to many developers and power users new to Access 2007, and
by the end of this chapter, you will have gained experience that will provide a solid grounding
in helping you to customize the menu system in Access 2007.

Being completely up front about this chapter, Ribbons were completely new to me, just as
they are to you. Like you, I had to wait on Microsoft examples to get started exploring this new
technology and try it out. Probably unlike you, however, I do have contacts within the beta
group to whom I can direct questions, and many questions have been asked.

This chapter is partially based on the RibbonX examples provided by Microsoft, as this is
the basis for my own understanding of RibbonX. I also had a great coach in the form of Patrick
Schmid, who has moved into the RibbonX code and done more with it than anyone else up to
this point. His help has been crucial to speeding up my own learning in terms of Ribbons. So
this chapter is a primer on RibbonX, but it is also a record of my personal experience playing
with RibbonX and XML, and I hope that it is of value to you.

■Note Patrick has released an add-in that allows you to customize the Ribbons in Office 2007, and it is
available free of charge from his web site at http://pschmid.net. It will be worthwhile to check out
Patrick’s site every so often, as it is Patrick’s intention to develop tools that will remove the need for devel-
opers and users to actually hand-code changes to the Ribbon interface.

Perhaps the best way to get started with the new menu system in Access 2007 is to dive
into some examples. The first example will create a totally blank menu system to which you
will add several different features as you progress through the remaining examples. Your new
Ribbon will be visible on the main Access Ribbon as a new tab. During the process, I will
define and explain each of the features you will be using. So without further ado, let’s get
started working with Access 2007 Ribbons. For all the examples in this chapter, you will need
to set a reference to the Microsoft Access Office 12 Object Library.

41

C H A P T E R 3

■Note Command bars and custom toolbars from previous versions should work as is with Access 2007.
However, they will appear on an additional tab called Add-Ins. Also, given the fact that most Access develop-
ers and power users are not familiar with C# and other .NET languages, we will not be looking at using these
languages to create Ribbons.

RibbonX code is basically XML. XML is a means to both describe and store data. If you are
new to XML, you might want to try the tutorial available at http://www.w3schools.com/xml/
before working through the examples in this chapter. Also, in order to work with the XML files
required for the examples (and your own development projects), you need to be using a free
Microsoft XML editor, Custom UI Editor, available at http://openxmldeveloper.org/articles/
CustomUIeditor.aspx, that is designed for use with RibbonX. One of the really good things
about the Custom UI Editor is that it will generate all the callback code stubs for you. Callback
functions simply execute and pass control back to the Ribbon. They can then be pasted into
the VBA IDE, and you are almost ready to go (of course, you still need to add the specific func-
tionality for the callback code). Figure 3-1 shows the editor screen for the partially complete
Ribbon you will be creating in this chapter. The XML editor will also ensure that your XML is
indeed valid. Figure 3-2 shows the generated code stubs created for this Ribbon.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX42

Figure 3-1. Custom UI Editor

■Tip Error reporting is crucial when starting out with RibbonX. In Access, if your XML Ribbon code fails,
you will not get an error message. It just will not appear. However, in the Access Options dialog box, make
sure you turn on the Show Add in User Interface Errors option located in the Advanced group. In order to
code for the Ribbon, you will need to set a reference to the Microsoft Access Office 12 Object Library.

Creating Your First Ribbon
In order to view some of the Ribbon features, you will need some data to work with. Create a
new database and then create a table called tblEmployee containing several fields. Table 3-1
shows the structure of the employee table for this example.

■Note You can run the following examples in any database you choose; just change the table and field
names as appropriate.

Table 3-1. Employee Example Table

Field Name Data Type

fldEmpID AutoNumber

fldSurName Text

FldForeName Text

fldAddress1 Text

fldAddress2 Text

fldTown Text

fldZip/PostCode Text

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 43

Figure 3-2. Callback code stub generation

Populate the table with some appropriate data to be used for the examples that follow.
You can start creating a Ribbon from scratch in Access by adding the following structures

to the new database, closing and opening the database file to view the new Ribbon, in this
case a blank Ribbon. Here are the steps:

1. Create a new table called USysRibbons. This is a hidden system table used to store the
RibbonX. When Access opens a database, it immediately looks for this table and will
load any Ribbon defined in it. You will need to have hidden objects exposed in the
database if you want to work directly with this system table.

2. Add two fields, RibbonName (Text) and RibbonXML (Memo), to the table.

3. Create a new record and name it as you like. (In the steps to come, I’ve used MyRibbon,
but you can use the Ribbon name of your choice.) Add the following XML to the
RibbonXML field:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="true">
<tabs>
<Ribbon Code>

</tabs>
</ribbon>
</customUI>

■Note All your Ribbon XML should be in lowercase. The majority of mistakes I encountered with Ribbon
code were related to spelling, initial capitals, and other typos. XML attributes and elements are case sensi-
tive, as are idMSOs (IDs for Microsoft-provided controls).

4. Click the Office Button and select Access Options. Click the current database. In the
Toolbars option, set the custom Ribbon ID to MyRibbon (or whatever name you used
in step 3).

5. Restart the database.

Figure 3-3 shows the Access interface with the default Ribbons removed. Because you
have not as yet defined a replacement Ribbon, the Ribbon is blank.

Turning off the display of the default Ribbon is achieved using the XML file you have
added to the table. The XML line startFromScratch="true" hides the default Ribbon and any
add-in tabs. Several options will also be removed from the Microsoft Office button. If this
attribute is not used and you had set startFromScratch to false as in the following code snip-
pet, your new Ribbon would blend into the existing Access Ribbon, showing up on the
Add-Ins tab on the main Access Ribbon.

<customUI Xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">
</ribbon>
</customUI>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX44

Table 3-2 shows the commonly used XML elements and attributes you will initially use
when working with Ribbons.

Table 3-2. Common Ribbon XML Elements and Attributes

Element/Attribute Comment

customUI The top-level element for a custom Ribbon.

ribbon Element that defines the Ribbon.

tab Element that creates a tab in the Ribbon.

group Element that creates a group in the Ribbon. You use groups to logically group
related items.

id Unique name of a control in the Ribbon.

label Static text displayed within a control.

button Similar to a command button. Use the onAction attribute to specify the name
of a callback function in the database, which will be called when you click
the button.

dropDown Element that creates a drop-down list that cannot be updated. To type text in
a drop-down list, you use a combo box control instead.

imageMso Name of a built-in control in Office that you can use to add an icon to your
Ribbon.

getImage Path to an image file to load.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 45

Figure 3-3. Access 2007 without a Ribbon

Adding Functionality to the Ribbon
In RibbonX, a tab contains a group (or groups) that contains one or more buttons. Each but-
ton displays a single icon and carries out a specific action when it is clicked. You can use
groups to combine similar functionality into a common interface object. Therefore, the gen-
eral idea with RibbonX is to create or amend a tab, define a group, and then add the associ-
ated buttons and code for the functionality of each button click. Of course, all of this (other
than the code events) is written in XML and loaded into the Access interface when the appli-
cation opens or can be executed on an object-by-object basis (for example, attaching spe-
cific Ribbon functionality to an Access form). The following XML elements will create a
single Ribbon tab called Employees.

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>
<tabs>
<tab id="EmpTab" label="Employees">
</tab>
</tabs>
</ribbon>
</customUI>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX46

USING DAO TO LOAD A RIBBON

It is also possible to load a ribbon using a DAP recordset as described in the MSDN article located at
http://msdn2.microsoft.com/en-us/library/bb187398.aspx. This article covers Ribbon cus-
tomization in great detail and is well worth a read. The DAO required to load the Ribbon is shown here for
information. The Ribbon table, of course, has the same structure as the Ribbon system table.

Function LoadRibbons()
Dim db As DAO.Database
Dim rstRibbon as DAO.Recordset
Set db = Application.CurrentDb
Set rstRibbon =db.Openrecordset("YourRibbonTable")
Do Until rstRibbon.EOF
Application.LoadCustomUI rstRibbon("RibbonName").Value, ➥

rstRibbon("RibbonXml").Value
rstRibbon.MoveNext
Loop
rstRibbon.Close
Set rstRibbon = Nothing
db.Close
Set db = Nothing
End Function

The function is then called from an AutoExec macro when the application starts. If you are changing the
Ribbon in an Access Data Project, you must use the LoadUI method to load your custom Ribbon.

Additional tabs are created within the opening (<tabs>) and closing (</tabs>) elements.
As you can see in the preceding example, each tab is opened with an opening <tab> element
and closed with a corresponding closing </tab> element. If you are one of those who work
with HTML, this should be very familiar.

Once you have created the tab itself, you can then start to add in the group, which will
contain the buttons for this item. The following XML fragment will create a group:

<group id ="empGroup" label="emplist">
</group>

Placing buttons onto the Ribbon is a straightforward process. imageMso points at an exist-
ing Office icon, and button id creates the button on the Ribbon. The following fragment will
add a button to the group just created:

<button id ="mybutton" imageMso="image file name"?>

Just like with HTML, there are additional attributes you can add to the button XML to
extend the element. For example:

<button id ="mybutton" imageMso="image file name"➥

size = "small" label ="Employee List" onaction ="run code" ?>

In this case, you are indicating that you would like a small button (as opposed to a large
one) and are assigning a label to the button. The onAction attribute executes the function con-
taining the actions you would like the button to carry out.

So now that you have an understanding of the XML elements you need to construct the
parts of a ribbon, you’ll next put what you have together, create the XML file, and add it to
Access to see the effect on the Ribbon interface.

Putting Together a Simple Tab
The initial shell of the XML document you are adding to the Employee database is shown in
Listing 3-1. Over the next few pages, you will add features to the basic Ribbon and see what
happens. I will walk you through this example in several stages, each time adding XML ele-
ments and features to the XML file in the Ribbon table. The first step is to create the following
XML file in the XML editor. Once created, you simply copy and paste the content into the
RibbonXML field of USysRibbons.

■Note When creating Ribbons, you will need to close and restart Access each time you make a change to
the Ribbon XML.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 47

Listing 3-1. Creating Your First Ribbon

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">
<tabs>
<tab idMso="TabAddIns">
<group id="EmpGroup" label="Employees">
<button id="btnEmp" imageMso="AddOrRemoveAttendees"➥

size="large" label="Employee Menu" onAction="cmdEmployee"/>
</group>
</tab>
</tabs>
</ribbon>
</customUI>

Listing 3-1 creates a new tab, called Add-Ins, on the existing Ribbon. This new tab con-
tains a single group, EmpGroup, which is labeled Employees. You then create a single button
in the group named Employee Menu with an onAction of cmdEmployee. Of course, at the
moment, if you click this button, an error message will result. onAction can be equated to
the On Click event of a standard Access button, and later you will see how the code associ-
ated with this action is created using VBA. Figure 3-4 shows the new Add-Ins tab and the
Employee Menu button.

So now you have created your own tab containing a single group and a single button.
Adding additional buttons is as simple as creating a block of XML as follows:

<button id="b1" imageMso="HappyFace"➥

size="large" label="Employee Menu" onAction="Code to execute"/>

and placing it into the appropriate group element. So now you will add a new button, which in
time will be used to open an employee form. Insert the following XML elements into the XML
shown in Listing 3-1 between the opening and closing <Group> tags.

<button id="frmbt" imageMso="HappyFace"➥

size="small" label="Employee Form" onAction="OpenEmpfrm"/>

In keeping with the approach just presented, add several additional buttons and features
to this group. Listing 3-2 show the full listing for EmpGroup. In this case, you simply use an
assortment of available Office graphics as indicated by the imageMso attribute.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX48

Figure 3-4. The Add-Ins tab and Employee Menu button

Listing 3-2. EmpGroup RibbonX

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">
<tabs>
<tab idMso="TabAddIns">
<group id="EmpGroup" label="Employees">
<button id="btEmp" imageMso="AddOrRemoveAttendees"➥

size="large" label="Employee Menu" onAction="cmdEmployee"/>
<button id="frmbt" imageMso="RecordsAddFromOutlook"➥

size="large" label="Employee Form" onAction="OpenEmpfrm"/>
<button id="frmAddbt" imageMso="MeetingsWorkspace"➥

size="large" label="Add Employee" onAction="AddEmpfrm"/>
<button id="frmVwbt" imageMso="FileManageMenu"➥

size="large" label="View Employees " onAction="VwEmpfrm"/>
</group>
</tab>
</tabs>
</ribbon>
</customUI>

Figure 3-5 shows the completed EmpGroup in the Add-Ins tab.

■Note If you need to save screen real estate, you can choose to hide the label of a button or buttons by
adding in the XML element showlabel="false" immediately after the imageMso element.

Now that you have created a simple group and a few buttons, let’s look at actually doing
something useful with them—for example, opening an employee form. To do so, however, you
will need to use VBA with RibbonX. So next, I give you some background and information on
VBA so you can move to the next step.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 49

Figure 3-5. EmpGroup custom group

Adding VBA Callback Functions
IRibbonControl exposes the following properties for use in your code:

Context Object: Read-only. Returns an object that represents the window where the
Ribbon is about to be displayed.

Id String: Read-only. Returns a string that represents the id attribute for the control.

Tag String: Read-only. Returns a string that represents the tag attribute for the control.
This could be the name of a form or a report you would like to pass to the onAction com-
mand.

You also need to create the employee form: click the table in the Navigation Pane, click
the Create tab, and finally click Form. This generates a basic form that you can use for the fol-
lowing example.

Looking at the button XML, repeated here, you can see that the onAction element con-
tains a reference to a callback function, OpenEmpfrm. OpenEmpForm will be the VBA callback
function that opens the employee form you just created.

<button id="frmbt" imageMso="HappyFace"➥

size="large" label="Employee Form" onAction="OpenEmpfrm"/>

To enable the callback function, create a new module called basRibbons and add the fol-
lowing procedure:

Sub OpenEmpfrm(ByVal control As IRibbonControl)
DoCmd.OpenForm "frmEmployees"

End Sub

Note the use of ByVal to pass the control ID of the button into the procedure. A simple
DoCmd statement to open the required form is all that is needed in this case. Try it out by click-
ing the button on the menu to see the results of adding in the callback. A more generic proce-
dure can be created by associating the form name with the tag element of the Ribbon XML.
This procedure is demonstrated in the Microsoft MSDN example code and in the Northwind
2007 demonstration database. For example:

<button id ="mybutton" label="MyLabel" imageMso="ImageName"➥

Size="large" onAction="MyAction" tag="myformName" />

A VBA callback is then created with the control ID and the form name passed to the
onAction procedure, for example, DoCmd.OpenForm control.tag.

The final bit of customization you will do is to add a tooltip to the button that opens the
employee form. Change the button element for the open employee form feature as follows,
adding in the supertip element shown in bold:

<button id="frmbt" imageMso="RecordsAddFromOutlook" size="large"➥

label="Employee Form" supertip ="Open the Employees form to add,➥

edit and review records" onAction="OpenEmpfrm"/>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX50

■Note Remember that every time you make a change to the code, you will need to close and reopen the
database file so that your changes take effect.

To view the tooltip, just hover the cursor over the button icon. To open the form, simply
click the appropriate button in the EmpGroup group. Of course, using DoCmd, you could open
the form in any available mode: Edit, Add, Read-Only. For example, Listing 3-3 shows a new
VBA callback function that has been added to basRibbons and is used by the Add Employee
button to open the employee form in Add mode.

Listing 3-3. Opening a Form in Add Mode

Public Function AddEmpfrm()
On Error GoTo Err_AddEmpfrm
DoCmd.OpenForm "frmEmployees", acNormal, , acFormAdd
Exit_AddEmpfrm:
Exit Function
Err_AddEmpfrm:

MsgBox Err.Description, , "Error in Function basribbons.AddEmpfrm"
Resume Exit_AddEmpfrm

Resume 0 '.FOR TROUBLESHOOTING
End Function

Continuing on with EmpGroup, you will now add a drop-down list to the group by
amending the elements used to create the button labeled View Employees. This is a little more
complex than the previous steps, as you will be populating the drop-down list from the data-
base table. First off, let’s look at the XML elements used to create the actual drop-down list,
which you are going to use in place of the following definition:

<button id="frmVwbt" imageMso="HappyFace"➥

size="large" label="View Employees " onAction="VwEmpfrm"/>

Listing 3-4 shows these elements.

Listing 3-4. Creating a Drop-Down List

<dropDown id="empDropdown" label="Emp List" supertip="See list of employees"➥

imageMso="HappyFace" onAction="text"></dropDown>

Not that much different from the elements used to create a button. However, you still
have a few items to add to the listing. At the moment, if you add the fragment in Listing 3-4 to
your XML file, you will get an empty drop-down list added to the EmpGroup group. Figure 3-6
shows the Ribbon at this point in the process. Notice also the Ribbon groups could use a little
tidying up. You can do so by placing a vertical separator between the button items; just add
the following XML line to the code: the separator is used to provide distance if required
between the items within the same Ribbon group.

<separator id="sep3"/>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 51

Here, sep3 is simply a separator ID. You would include a series of such IDs (e.g., sep1, sep2, and
so on) to give a unique value to each separator.

You can also use menuSeparator id to actually place some text between menu items.
For example:

<menuSeparator id="YourMenuSplit" title="New Menu Items"/>

To continue with the process, you now need to create a couple of callback functions to
provide information to the interface—specifically, how many items you will be displaying in
the list and, of course, the items themselves. You use the getItemCount and getItemLabel ele-
ments to provide this information to the Ribbon. To continue, add the following elements in
bold to the definition shown previously in Listing 3-4:

<dropDown id="empDropdown" label="Emp List" supertip="See list of employees"➥

getItemCount="" getItemLabel="" imageMso="HappyFace"➥

onAction="text"></dropDown>

Now you have to actually write up the VBA callbacks to be executed and provide the
required information to the drop-down list. The population of the drop-down list is achieved
using callback functions. First you need to tell Access how many items are actually in the call-
back. Access will then execute the callback once for every item, giving you an ID (0-based) as
the parameter. The ID is used as an index into the internal object array that contains the
values for the drop-down list.

The onAction callback for the drop-down list will give you two values that can be used:
selectedId is the actual string the user selected in the drop-down list, and selectedIndex is
the same ID used earlier to populate the list. So it should be identical to the index of the
internal array.

■Note A combo box returns only the text the user chose or entered. An index value is not returned in
this case.

Listing 3-5 shows the first callback, ItemLabel, which improves slightly on that used in the
Microsoft beta documentation. In this case, you use a single DLookup to get the values required
for display in the list. Listing 3-6 returns the count of the number of objects to be displayed.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX52

Figure 3-6. Initial drop-down list in EmpGroup

Listing 3-5. Callback Function to Populate Drop-Down Labels

Public Function ItemLabel(control As IRibbonControl, ➥

index As Integer, ByRef label)
Dim stFirstLastName As String
stFirstLastName = Trim(Nz(DLookup("nz(FirstName,'') & ' ' & ➥

nz(LastName,'')", "tblEmployees", "ID = " & index + 1), ""))
label = stFirstLastName
End Function

Listing 3-6. Callback Function to Get Record Count for Drop-Down List

Public Function CountEmp(control As IRibbonControl, ByRef count)
count = Nz(DCount("*", "tblEmployees"), 0)
End Function

Listing 3-7 shows another approach, this time using a recordset to populate the drop-down
list. The basic process is the same. The only difference is on this occasion you build up your sting
to pass to the callback label using a recordset. In this case, you also pass in Index +1 (because it’s
a zero-based array) as the WHERE clause to ensure you get the correct records listed.

Listing 3-7. Using VBA to Populate Drop-Down Lists

Public Function LogLabelempdata(control As IRibbonControl,➥

Index As Integer, ByRef label)
Dim strData As String
Dim rstEmp As Recordset
Dim lngindex As Integer
Dim db As Database
Set db = CurrentDb
Set rstEmp = db.OpenRecordset("SELECT FirstName,LastName,➥

Company FROM tblemployees Where EmployeeID = " & Index + 1)
strData = rstEmp!FirstName & " " & rstEmp!LastName & " " & Company
label = strData
End Sub

The procedure illustrates the point that virtually anything you can do within VBA you can
use within your RibbonX code calls. You will be reusing and completing the code you have
created so far.

Creating Split Buttons
Figure 3-7 shows another approach to button design, this time using a split button design.
A split button provides a nice interface to group several related objects together and com-
bines the functionality of a button and a menu—for example, you can create a single button
to display forms or reports; when the button is clicked, a drop-down menu appears listing
the objects, as opposed to using a drop-down list, which is text based. For me, a drop-down
split button containing relevant icons is a much improved experienced for the user. The main

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 53

difference between a split button and a regular button is the use of the MENU attribute to cre-
ate the drop-down menu portion of the button.

In this case, related reports are grouped together in a “drop-down menu” approach.
Clicking the visible button on the Ribbon drops down a number of choices. Just like all other
buttons, split buttons are created using XML. Listing 3-8 shows the XML structure required
to create a split button.

Listing 3-8. Creating a Split Button Drop-Down Menu

<splitButton id = "mysplitbutton" size ="large">
<menu id ="Reports" imageMso="PasteDuplicate" >
<button id = "button1" label="Report 1" imageMso ="CreateReport"➥

onAction="vba or macro to execute" />
<button id = "button2" label="Report 2" imageMso ="CreateReport"➥

onAction="vba or macro to execute" />
<button id = "button3" label="Report 3" imageMso ="CreateReport"➥

onAction="vba or macro to execute" />
</menu>
</splitButton>

The XML button elements are then repeated for each individual button required on the
drop-down menu. In this case, note that you use another XML tag, <menu>, to create the menu
structure for the split button. Listing 3-9 shows the full RibbonX code you have added at this
point.

Listing 3-9. Custom RibbonX

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">
<tabs>
<tab idMso="TabAddIns">
<group id="EmpGroup" label="Employees">
<button id="btEmp" imageMso="AddOrRemoveAttendees"➥

size="large" label="Employee Menu" onAction="cmdEmployee"/>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX54

Figure 3-7. Split button

<button id="frmbt" imageMso="RecordsAddFromOutlook"➥

size="large" label="Employee Form" supertip ="Open the Employees form to ➥

add, edit and review records"➥

onAction="OpenEmpfrm"/><button id="frmAddbt" imageMso="MeetingsWorkspace"➥

size="large" label=" Add Employee" onAction="AddEmpfrm"/>
<dropDown id="empDropdown" label="Emp List" supertip="See list of employees"➥

getItemCount="CountEmp" getItemLabel="LogLabel" imageMso="HappyFace"➥

onAction="text"></dropDown>
<splitButton id = "mysplitbutton" size ="large">
<menu id ="Reports" imageMso="PasteDuplicate" >
<button id = "button1" label="Report 1" imageMso ="CreateReport"➥

onAction="vba or macro to execute" />
<button id = "button2" label="Report 2" imageMso ="CreateReport"➥

onAction="vba or macro to execute" />
<button id = "button3" label="Report 3" imageMso ="CreateReport"➥

onAction="vba or macro to execute" />
</menu>
</splitButton>
</group>
</tab>
</tabs>
</ribbon>
</customUI>

Adding Custom Images
Up until this point, you have been using the images available as part of Office, simply including
them as required for the customized Ribbons. However, you can of course use your own custom
images in place of these built-in objects. Not being very graphically minded (that is, hands like
feet), I have not provided images for this example but rather will outline the approach, assuming
that you have images available. In order to use your own images, you will use another new
Ribbon XML attribute, getImage. In addition, of course, you will need to create a simple VBA
function to which you will pass the control ID of the button and use a CASE statement within
your VBA procedure load up the required image file. You will also be using the LoadPicture func-
tion to actually load the picture to the Ribbon. Listing 3-10 shows the RibbonX code to begin the
process, and Listing 3-10 shows the VBA procedure that is called to provide the image file. The
function uses a basic CASE statement to ensure that the correct button image file is loaded based
on the control ID being passed in.

I have shown the initial SELECT CASE statement. The rest of the statement is just the same,
with a CASE statement for each image you would like to use.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 55

Listing 3-10. Loading Custom Images

Function GetImage(control As IRibbonControl, ByRef image)
Dim controlName As String
controlName = control.ID

Select Case controlName
Case "Products":

Set image = LoadPicture("c:\images\Product.bmp")
Case "Customers"

Set image = LoadPicture("c:\images\Customers.bmp")
End Select

End Function

Adding Additional Groups
You can use the <group> tag to create additional function groups on your Ribbon. As you
may have picked up already, you must always have an opening tag, in this case an opening
<group> tag, and a closing tag, in this case </group>. Other XML elements specific to this
tag group go into the opening and closing tags. So, for example, on your existing Add-Ins
tab, you could add another group—for example, a group showing employees working in a
specific department. The notation that follows should be familiar to you if you have
worked with HTML in that there is a main tag (<group>) and then attributes that refine and
define the behavior of the tag. In this case, you give it an id and a label, which is displayed
in the user interface. For example:

<group id="TrainingEmp" label ="Training Staff">

As before, you then need to define the buttons for the Ribbon and provide them with
functionality. The full code for the new group listing is shown in Listing 3-11.

Listing 3-11. Creating the TrainingEmp Group

<group id="TrainingEmp" label ="Training Staff">
<button id ="btnViewrecord" label = "View My Record"➥

imageMso="ThesaurusRR" onAction="ViewTrRecord" />
</group>

Figure 3-8 shows the new group added to the Add-Ins tab. You will create the VBA call-
back in a moment. It is also possible to provide a pseudo drop-down menu listing display-
ing, for example, database objects. The techniques to do this are similar to those you have
seen before and are again built around a callback that populates the list with, for example,
user forms in your database. Just for a moment, think about how you would provide a list
of the database forms in a “normal” access application. In my case, I would use the
MSysObjects table to get a listing of all forms in the database, and in the example for the
Ribbon callback I will do just that.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX56

Now let’s have a look at how you could add this feature to a Ribbon button. Again, you
first define the Ribbon object and then add the code for the object into your new group. This
is a drop-down list, and the XML is similar to that used earlier. Listing 3-12 shows the XML
snippet to create the drop-down list displaying user forms in the database.

Listing 3-12. Creating the Drop-Down List

<dropDown id="FormList" label="View forms" ➥

imageMso="CreateReport" getItemCount=➥

"GetFormCount" getItemLabel="GetFormNames">
</dropDown>

Listings 3-13 and 3-14 show the callback functions used to populate the drop-down list
with form names and provide a count of forms back to the Ribbon code.

Listing 3-13. Getting a Form Count

Function GetFormCount(control As IRibbonControl, ByRef count)
Dim FormNames As String

FormNames = "SELECT Name FROM MSysObjects ➥

WHERE (((MSysObjects.Type)=-32768)) ➥

ORDER BY Name;"
Set rstForms = CurrentDb.OpenRecordset(FormNames)
count = rstForms.RecordCount

End Function

One of the advantages of this approach is that if you wanted to populate the drop-down
menu with a list of other system objects, all that is required is changing the WHERE clause to
reflect the object type needed: reports, queries, macros, and so on. Once you can populate the
drop-down menu with the names of the required forms, you then need to provide an ID for
the form. Listing 3-14 returns the ID for the form on each execution of the callback function.

Listing 3-14. Callback That Returns the Form Names

Function GetFormNames(control As IRibbonControl, index As Integer, ByRef ID)
rsForms.MoveFirst
rsForms.Move index
ID = rsForms("Name").Value

End Function

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 57

Figure 3-8. Training Staff group

Of course, you then need to provide a means for the information to be returned, in this
case the label that you would like to display. The easiest way to do this is by using the already
opened recordset and retrieving the form names. Listing 3-15 will return the labels used by
the list.

Listing 3-15. Returning the Drop-Down Form Label

Function GetFormLabel(control As IRibbonControl, index As Integer, ByRef label)
rstForms.MoveFirst
rstForms.Move index
label = rstForms("Name").Value
End Function

Removing the Built-in Ribbon Items
In addition to creating your own options in the Ribbon, it is also possible to remove the main
Ribbon items already available. You need to be careful here, as “remove” is actually the wrong
word to use. All you can really do is set the visible property of an object to false. This is a
useful feature that many Access developers currently employ to turn off options they do not
want to have available to the user. Again, like everything else Ribbon related, you use XML and
XML attributes to turn off the Ribbon items. The following code fragment will turn off some of
the options in the File menu:

<fileMenu>
<button idMso="OpenDatabase" visible="false"/>
<button idMso="NewDatabase" visible="false"/>
<splitButton idMso="AccessSaveAsMenu" visible="false"/>

</fileMenu>

All that we require to know beforehand is the idMso of the menu choice you want to
remove. A full listing of control IDs can be downloaded from the Microsoft web site. Just
search for “2007 Office System Document: Lists of Control IDs.” As mentioned previously, the
idMso indicates that this is a Microsoft-provided item as opposed to one that you have created
yourself. The idMso is also available as a tooltip if you go to the main Access customization
screen. Hover the mouse over a menu option, and in the tooltip the idMso appears as text in
brackets. So, for example, if you did not want your users to be able to view the properties for
your application, you could remove the appropriate tab item from the main Access Ribbon.
The View Database Properties option is on the File menu, its idMso is DatabaseProperties,
and it can be turned off as follows:

<fileMenu>
<button idMso="DatabaseProperties" Visible = "false"/>
</fileMenu>

You can also change and remove items from the Office menu button itself. For example,
to turn off the Office menu New database item, you could run the following Ribbon XML:

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX58

<officeMenu>
<button idMso="FileNewDatabase" visible="false"/>
</officeMenu>

If you need to change the position of menu options on the Office menu button, this can
also be achieved using XML to manipulate the Ribbon. The following fragment shows the
technique you can use to achieve this:

<button idMso="Menu Item to appear" insertBeforeMso ="FileCloseDatabase" />

The insertBeforeMSO and insertAfterMSO attributes allow you to control where your
commands appear in respect to the placement of other command buttons (that is,
before or after a specific named command).

Using Contextual Ribbons
In addition to creating generic Ribbons for use by the entire application, it is also possible to
create Ribbons associated with particular forms (that is, contextual). You can see examples of
contextual Ribbons using the Office applications, as Ribbons change depending on the task at
hand. Each form and report has a hidden contextual Ribbon that will remain hidden unless it
has content in it to display. You shall see in the next example how you can insert your own
commands into this hidden Ribbon, thus causing it to be displayed. However, in order to dis-
cuss some additional important Ribbon elements, you will start off by creating a totally new
Ribbon from the first example.

Here you will need to create a basic product form (or a form based on the table of your
choice). You will then add a Ribbon with options specific to that form. If you look at the forms
properties, you will notice a new property has been added. Clicking the Other tab in the form
property sheet reveals a Custom Ribbon ID property. This can be set to the Ribbon associated
with the specific form. Creation of the Ribbon is identical to the process already outlined. In
this case, you add the new Ribbon into USysRibbons as a new record. Do not add the Ribbon
code to the existing Ribbon record. Listing 3-6 shows the new Ribbon code for the form
frmProducts. This gives you the ability to build very sophisticated dynamic menu systems.

This time I have added several layers of complexity, and we will look at each in turn
including viewing and running reports and reusing some of the existing Access groups and
commands. So let’s look at the functionality you might need for a Product Ribbon:

• Group: Data Maintenance

• Group: General Access Menu Items

You will also remove several standard Access Ribbon commands that are not required by
users or that you explicitly would like to remove, for example, database backup, SQL Server-
related items, and the ability to use some of the items on the External data tab. The ideas and
code discussed can be applied to any Ribbon you would like to change. So the outline for your
Ribbon will be

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 59

Tab

Group1: Data maintenance including opening form for editing, adding, deleting

Group2: Product report listing

Group3: Mixture of Access Ribbon items

Group4: Removal of Access Ribbon items

End Tab

So the basic outline the Ribbon translates to is shown in the Ribbon XML Shell in
Listing 3-16.

Listing 3-16. Ribbon XML Shell

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">

<tabs>
<tab id="tabProducts" label="Products">

<group id="grpHome" label="Home">
</group>
<group id="group1" label="Products">
</group>

<group id="group2" label="Products">
</group>

<group id="group3" label="Products">
</Group>

</tab>
</tabs>

</ribbon>
</customUI>

Group4 will simply be turning off some of the Microsoft Ribbon groups. This is a useful
Ribbon feature if you want to restrict user ability within an application. Listing 3-17 creates
a new tab for the group.

Listing 3-17. frmProducts Ribbon Code

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">

<tabs>
<tab id="tabProducts" label="Products">

</tab>
</tabs>

</ribbon>
</customUI>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX60

You have already worked on creating tabs, groups, and buttons. Listing 3-17, however,
includes some new features. Figure 3-9 shows the new tab and your new Ribbon opened with
the product form. At this point in the process, the Ribbon is blank.

As I have said, Group1 will provide access to the product data, including adding new
records, viewing existing records, and running some product reports. The Ribbon code
required is shown in Listing 3-18.

Listing 3-18. Product Group: Group1

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">
<tabs>
<tab id="tabProducts" label="Products">
<group id = "ProdMain" label ="Product Menu">
<button id="ProdList" label="Product Listing" size="large" ➥

onAction="OpenProdList" getImage="GetImage"/>
<button id ="ProdForms" label="Product Forms" size="large" ➥

onAction="OpenProdForm" getImage="GetImage"/>
</group>

<group id="frmdrop" label ="Object Drop Downs">
<dropDown id="cboForms" label="Show Forms" onAction="OpenForm" ➥

getItemCount="GetFormCount" getItemID="GetFormName" />
<dropDown id="cbogetreports" label="Show Reports" onAction="OpenReports" ➥

getItemCount="GetReportCount" getItemID="GetReportName" />

</group>
</tab>

</tabs>
</ribbon>

</customUI>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 61

Figure 3-9. Blank Products Ribbon tab

Figure 3-10 shows the Ribbon groups at this point.

Note that there are no icons, as you have not yet added the getImage attribute to the XML
file. Nor indeed have you written the VBA callbacks required. Add an additional Dim statement
to the module as follows:

Dim rstReports as Recordset

The report drop-down callback functions are almost identical to those used to populate
the list with form objects and can be changed as shown in Listings 3-19 and 3-20.

Listing 3-19. Getting the Report Count

Function GetReportCount(control As IRibbonControl, ByRef count)
Dim ReportNames As String
ReportNames = "SELECT Name FROM MSysObjects ➥

WHERE (((MSysObjects.Type)=-32768)) ➥

ORDER BY Name;"
Set rstReport = CurrentDb.OpenRecordset(ReportNames)
count = rsReports.RecordCount

End Function

Listing 3-20. Getting the Report Names

Function GetReportName(control As IRibbonControl, index As Integer, ByRef ID)
rsReports.MoveFirst
rsReports.Move index
ID = rsReports("Name").Value

End Function

Defining the onAction attribute for the form and report drop-downs is next in the list.
Of course, if you wished, you could complete the Ribbon creation and then complete the
XML. The onAction VBA callback for the reports is again fairly straightforward, but it demon-
strates the technique required to open the report based on the value chosen in the list. As
you have already seen, the Ribbon drop-down list can pass its selectedID to the callback to
ensure the chosen report is opened. Listing 3-21 shows the basic function used to open
a report based on a choice from the drop-down list.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX62

Figure 3-10. Group1 Product Ribbon

Listing 3-21. Opening a Report

Function OpenReports(control As IRibbonControl, selectedId As String, ➥

selectedIndex As Integer)
DoCmd.OpenReport selectedId, acViewReport
End Function

■Note I have found it is almost always better from a debugging point of view to create the Ribbon and
individual groups, then create the callbacks for each group, and then create the onAction function or
procedure for each of the buttons. In this way, if something goes wrong with the XML, you are simply
debugging one group at a time rather than a lengthy XML script.

Manipulating Existing Groups and Controls
It is also possible, as I have stated, to remove built-in groups from the Ribbons. To illustrate
this process, the code in Listing 3-22 leaves the Create tab in place but removes all of the
group items. The required XML is shown in bold. This code could be used with the final group-
ing for the custom menu for the product form.

Listing 3-22. Removing the Create Groups

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon startFromScratch="false">

<tabs>
<tab idMso="TabCreate" visible="true">

<group idMso="GroupCreateTable" visible="false" />
<group idMso="GroupCreateForm" visible="false" />
<group idMso="GroupCreateReport" visible="false" />
<group idMso="GroupCreateAdvanced" visible="false" />
</tab>
<tab id="tabProducts" label="Products">
<group id = "ProdMain" label ="Product Menu">
<button id="ProdList" label="Product Listing" size="large" ➥

onAction="OpenProdList" getImage="GetImage"/>
<button id ="ProdForms" label="Product Forms" size="large" ➥

onAction="OpenProdForm" getImage="GetImage"/>
</group>
<group id="frmdrop" label ="Object Drop Downs">
<dropDown id="cboForms" label="Show Forms" onAction="OpenForm" ➥

getItemCount="GetFormCount" getItemLabel="GetFormLabel"/>
<dropDown id="cboReports" onAction="OpenReport" ➥

getItemCount="GetReportCount" getItemID="GetReportName" ➥

getItemLabel="GetReportCaption"/>

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 63

</group>
</tab>

</tabs>
</ribbon>

</customUI>

First of all, you specify the tab you would like to work with, in this case the Create tab,
<tab idMso="TabCreate" visible="true">. You want to keep the tab visible to demonstrate
the changes the code in Listing 3-22 brings about. The Create tab contains the following four
groups:

• GroupCreateTable

• GroupCreateForm

• GroupCreateReport

• GroupCreateAdvanced

Turning the groups off is simply a matter of setting their visibility to false (that is,
<group idMso="GroupCreateReport" visible="false" />). It’s unlikely that you will want to
remove all the groups and all their individual controls from a tab, but this shows how easy
it is and the fact that you can actually do it. It is more likely that you would want to remove
particular items from an individual group or groups. The bad news is that you can’t. Nice
and easy that one. You cannot remove or disable individual items from the Microsoft group
controls in any way other than remove them as shown.

Adding Other Group Controls
Most of the controls you have used so far have been fairly standard controls used on a day-to-
day basis by many Access developers. However, RibbonX allows you to make use of additional
objects and techniques when creating menu systems.

Check Box
Listing 3-23 shows the XML used to create a check box group and controls. In this case, I am
using the check box group to ask a couple of questions of the user. The input from the user
could then be inserted into a questionnaire table, for example.

Listing 3-23. Creating a Check Box Group

<group id="StaffGroup" label="Quick Question">
<checkBox id="Q1" label="Staff Pension" onAction="chkPension"/>
<checkBox id="Q2" label="Overtime" onAction="chkOvertime"/>
<checkBox id="Q3" label="Flexi" onAction="chkFlexi"/>
</group>

The XML in Listing 3-23 can be added to your existing RibbonX XML as a new group item,
and it will appear as so on the Products tab. Figure 3-11 shows the Products tab with this new
group added.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX64

In this example, you could use a simple SELECT CASE statement to carry out an action
based on the check box ID returned. For example, you could run an update statement incre-
menting a question table field for that option by 1 or open a data collection form for more
information concerning the chosen topic.

Toggle Buttons
Toggle buttons simply stay down when clicked. Other than that, there are no major differences
between a toggle button and a standard Ribbon button. The XML to create the toggle button is
also very similar:

<toggleButton id="btntoggle" imageMso="Image to display"➥

size="large" label="Label for image" onAction="Callback to execute"/>

Summary
As you may be beginning to see, RibbonX gives you a fairly dynamic and flexible way to
build custom menu systems for your applications. The actual XML coding of the Ribbon is
nothing complex and is made reasonably easy using the free tools supplied by Microsoft.
Over time, it is highly likely that many third-party developers will develop graphical tools for
amending existing menus and creating your own without the need to get up to your elbows
in RibbonX XML.

In this chapter, we only looked at creating Ribbons and some VBA callbacks; we did not
look at the issue of developing add-ins using other software such as Visual Studio. This was a
deliberate choice on my part, as many Access developers and power users will not have access
to such tools; indeed they might not even wish to get involved in this side of the development
process, and truthfully, I don’t want to either. All I require is the ability to create my own menu
items and remove those that could pose a danger to the application. RibbonX and a good XML
editor meet these requirements for me without the need to begin developing custom solutions
using .NET. At the start of this chapter, I was open and up front about my own experience with
XML and Ribbons, and I hope by this stage in the chapter you too have started the journey
into Ribbons and customizing Access 2007. For further information on Ribbons, the appendix
at the back of this book discusses some issues and recommendations about actual Ribbon
design as opposed to the mechanics of Ribbon creation.

CHAPTER 3 ■ GETTING UP AND RUNNING WITH RIBBONX 65

Figure 3-11. Adding a check box group

Data Collection Using
Microsoft Outlook 2007

In this chapter, we look at another new feature of Microsoft Access 2007: the ability to auto-
matically collect information by using a combination of Access 2007 and Microsoft Outlook
2007. This is mostly an interface-driven process at the moment, but even so it offers another
useful tool for developers and power users who have a need to collect data within an organiza-
tion. When I learned this feature had been added, I immediately began thinking about surveys
for users of our services. Here was a nice, simple, almost automatic approach to this issue. Of
course, you could still create a web-based form and have that input directly fed into a data-
base table, but this approach is another option available to you.

You can use a table or a query as the basis for the data collection process and can indeed
use a multiple table query if you require data to be added or updated in more than one table.
Two types of forms are available to you for e-mail data collection: standard HTML and
Microsoft InfoPath. InfoPath will allow you to create highly interactive collection forms, but
with the restriction that the user must have InfoPath installed in order to use the form for data
collection. When building your own data collection model as you will do shortly, you follow
three main steps:

1. Create the data collection action inside Access.

2. Register the data collection action with Outlook.

3. Create and send the e-mail.

We’ll take a closer look at how this is done next.

■Note I would like to thank Shamil Salakhetdinov, Gustav Brock, and Marty Connelly, talented members of
AccessD (Access developers list at http://www.databaseadvisors.com), for the advice, testing, and spe-
cific functions they provided when I was writing this chapter.

67

C H A P T E R 4

■Note As collecting data using Access and Outlook is a wizard-driven process, there are lots of screens to
complete. I have decided not to include all the screen shots, rather only those that may require some addi-
tional configuration by you during the process. Also be aware that this chapter was written using Beta 2 TR2
software and based on beta documentation, so some of the XML information and instructions may be sub-
ject to change, as is the nature of beta software.

Getting Started with HTML Forms
The examples that follow use the Northwind demonstration database available with Access 2007.
I have also added my own e-mail address to the Customers table for demonstration purposes.

To see the principles involved, you will start off by using the Customers table to begin the
process:

1. Select the Customers table in the Navigation Pane.

2. Right-click and select Collect and Update Data via Email.

This starts the Collect Data Through Email Wizard, which will offer you several options
during the process.

3. Click Next.

You can collect data using either an HTML or InfoPath form. Initially, you will use an
HTML form to collect your responses.

4. Select HTML Form.

5. Click Next.

6. Select Collect new information only. The next screen offers you two options:

• Collect new information only: Using this option enables you to select existing
e-mail addresses or enter new e-mail addresses in Outlook, to which the request is
issued. Data returned via the HTML form will be appended to the database table.

• Update existing information: If you choose this option, all e-mail addresses used
must exist in the database.

7. Click Next.

8. Select the fields for which you would like to collect data. Any field with a required
property set to yes will be preselected by the wizard. The wizard does not support the
following data types—AutoNumber, OLE, attachment, or multivalued fields—so these
fields cannot be used in the collection process.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200768

Once you have selected the fields, you can then choose whether you would like Access to
automatically process the replies or process them manually yourself. If you choose automatic
processing, you must have the database open in shared mode for it to work.

9. Check the Automatically process replies option.

10. Click Next.

11. Select Enter the email addresses in Microsoft Office Outlook.

12. Click Next.

13. You may if you like customize the message in the next screen and then click Next.

14. Click Create.

Outlook 2007 will open, requesting you to enter the required e-mail address. Figure 4-1
shows the generated HTML form in the e-mail message.

15. Enter an e-mail address and click Send.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 69

Figure 4-1. Access HTML e-mail form

Nothing much to this really. On receipt, the user simply completes the form and sends it
back. Outlook will keep a copy of the e-mail returned in a folder named Access Data Collec-
tion Replies. The wizard allows you to select a folder of your choice for replies. Click Access
Data Collection Replies on the Process Email page of the wizard. On the same wizard screen,
you can also set some of the properties for automatically processing replies. Clicking set prop-
erties to control the automatic processing of replies opens a new dialog box where you can set
the following options:

• Automatically process replies and add to database

• Discard replies from those to whom you did not send the e-mail

• Accept multiple replies from each recipient

• Allow multiple rows per reply

• Only allow updates to existing data

• Number of replies to be processed (default is 25)

• Date and time to stop processing

Figure 4-2 shows this dialog box.

Processing the Collection
If you have specified that replies be processed automatically, the data users return will be
added to the table for you. However, there is also the option to manually process the data in
e-mail replies. Figure 4-3 shows the Manage Data Collection Messages dialog box, available
on the External Data tab by clicking Managing Replies in the Collect Data group.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200770

Figure 4-2. Data collection options

Using this dialog box, you can perform the following actions:

• Change the data collection options discussed earlier.

• Re-send a particular message. If you choose to use this option, Access will ensure that
the original tables and queries still exist.

• Delete a message or messages.

• View general information about the message.

In addition to using a table, it is also possible to use a query as the source of a data collection
e-mail. This is essential if you would like to use this process to work with more than one table,
because a SELECT query is the only way to pass data to more than one table. In this case, the
process is just the same as if you where using a table.

Collecting Data Using an InfoPath Form
InfoPath, which has been available for some time, gives you more control over how users can
interact with your collection form. With the HTML form, what you see is generally what you
get. InfoPath allows some customization of your form above what the HTML form supplies,
provided of course you actually have InfoPath installed. The end user will also need InfoPath
installed in order to respond to the e-mail. Another point to consider is that the InfoPath form

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 71

Figure 4-3. Manage Data Collection Messages dialog box

is sent as an attachment with the collection e-mail and must be opened locally, filled in, and
reattached before the user can respond. However, you may find there are instances when the
customization opportunities InfoPath gives you over HTML forms outweigh the drawbacks of
using InfoPath forms.

What Is InfoPath?
InfoPath is a form development tool that supports XML. It allows you to create dynamic,
interactive forms and may be useful if you require additional validation and other interactive
options when running a data collection process—for example, creating a list of options via a
drop-down list to enable some user selection. As usual, due to space constraints, I cannot go
into every aspect of this software, but I will provide an overview of some of the more useful
things you can do. Once Access has created the InfoPath attachment, you can open and edit
it using InfoPath. Changes made can then be saved and will be available for the e-mail form
when it is issued, as they are saved into the attachment.

Customizing an InfoPath-Generated Form
Take for example the Job Title field of the Customers table in the Northwind database. By
default, the data collection form you generate from this table will contain a corresponding text
field. What if you wanted to change this to a drop-down list? With the HTML form, this would
not be possible, but using InfoPath it is straightforward, providing again you actually have the
software. To edit the form before you actually issue the data collection e-mail, run the Collect
Data Through Email Wizard, select the Customers table, and choose InfoPath for the e-mail.
Once you click the Create button, Outlook will open and you will then have access to the
InfoPath attachment. To continue:

1. Right-click the attachment.

2. Select Open to open the file in InfoPath.

3. In InfoPath, select Tools ➤ Design This Form.

4. Click the Job Title field to select it.

5. Right-click and select Change to from the context menu.

6. Select Drop-Down List.

7. Double-click the new drop-down list to open the Drop-Down List Box Properties
dialog box shown in Figure 4-4.

8. Select Enter list box entries manually.

9. Click Add.

10. Enter each job title required, clicking Add after each entry.

11. Click OK to close the dialog box.

12. Select File Save to save the changes and close the form.

13. Exit InfoPath.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200772

The changes made to the form will be reflected in the e-mail attachment, which can now
be sent to users. Following are other features InfoPath lets you include in your forms:

• Placeholder text (for example, an instruction to the user about what to actually enter
into a text box)

• Validation on each form object

• Conditional formatting

• Linking to a data source (for example, Access or SQL Server complex rule building to
populate one form field based on the input from another)

InfoPath is a powerful interactive form development environment with its own program-
ming model. Using a combination of this software, Outlook 2007 and Access 2007 developers can
create highly efficient and interactive e-mail data collection forms. Outside the data collection
area, InfoPath also provides you with a tool that lets you link directly to an Access table or query
data for similar data collection purposes. An overview of using Access and InfoPath together can
be found at http://office.microsoft.com/en-us/assistance/ha011032471033.aspx.

Up to this point, we have been looking at how the interface is used to both begin and
process the e-mail data collection process. As is standard with Access, the functionality is pro-
vided by data help within one of the Access system tables, which you will learn about next.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 73

Figure 4-4. Drop-Down List Box Properties dialog box

Overview of the MSysDataCollection System Table
Information relating to the data collection process is stored in a system table, MSysDataCol-
lection, that is structured as shown in Table 4-1.

Table 4-1. MSysDataCollection Table Structure

Field Type

Active Yes/No

BasedOnType Number

CreatedDate Date/Time

ExternalID Number (PK)

FormName Memo

InfoPathForm Yes/No

Mapping Memo

OutlookFolder Memo

DateSent Date/Time

As you can guess from Table 4-1, the system table maintains a record of your choices
when running the Collect Data Through Email Wizard, a sort of audit trail of what the wizard
carried out on your behalf. It does not maintain the actual e-mail address of the recipient,
but of course this information can be retrieved from Outlook 2007. This system table is cre-
ated the first time you run the wizard, but as you will see later in the section “Populating
MSysDataCollection Manually,” you can also work with the table manually. The following list
gives a bit more detail on each field:

Active: This field is not actually used, but it should always be set to true.

BasedOnType: This stores the source of the data collection (that is, a table or a query). The
data reflects the ACE database engine object types, 1 for a table, 4 for a linked SQL Server
table, 5 for a query, and 6 for a linked Windows SharePoint Services list.

CreatedDate: This is the date the data collection activity was created.

ExternalID: This is the primary key of the table and contains a GUID; for example,
{C6EBA1EA-948E-495B-B101-05319D3E7362} is the GUID from an e-mail data collection
record.

FormName: This is the default value in the subject line of the e-mail issued. If you are
using an InfoPath form, this is the InfoPath file name.

InfoPathForm: Set this to true if you are using an InfoPath form and false if you are using
HTML.

Mapping: This is XML data that contains the instructions for the data collection action.
Listing 4-1 shows the XML data for a data collection task. (I will discuss the actual XML
shortly in the next section.) As you can see from the listing, this XML data contains all of
the instructions I passed to the wizard while executing the data collection activity.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200774

Listing 4-1. Data Collection Mapping XML Data

<mapping>
<formProperties>
<automateDataCollection>true</automateDataCollection>
<enableDataCollection>true</enableDataCollection>
<maxReplies>25</maxReplies>
<numReplies>0</numReplies>
<allowMultipleReplies>true</allowMultipleReplies>
<allowMultipleRows>true</allowMultipleRows>
<onlyUpdates>false</onlyUpdates>
<stopDateTime>0</stopDateTime>
<onlySentTo>true</onlySentTo>
</formProperties>
<tables>
<table name="table1" accessTable="Customers" collectionType="insert">
<iterate root="/AccessInfoPathForm/dcip:inlinedata/dcip:row">
<mapitem IsPrimaryKey="1" formNode="dcip:PrimaryKey" tableCell="ID"/>
<mapitem formNode="table1:field1" tableCell="Company" caption="Company" ➥

readOnly="false" required="false" type="x:string"/>
<mapitem formNode="table1:field2" tableCell="Last Name" caption="Last Name" ➥

readOnly="false" required="false" type="x:string"/>
<mapitem formNode="table1:field3" tableCell="First Name" caption="First Name" ➥

readOnly="false" required="false" type="x:string"/>
</iterate>
</table>
</tables>
</mapping>

OutlookFolder: This is the EntryID for the Outlook folder to which replies will be sent.

DateSent: This is the last time an e-mail was issued for this data collection event. This
date is updated each time an e-mail is issued using the Manage Data Collection Mes-
sages dialog box.

Breaking Down the Data Collection Mapping XML File
The XML file shown in Listing 4-1 contains items specific to data collection. For example,
<formProperties> contains information on the automatic processing of replies. The listing
consists of several elements and attributes as follows:

automateDataCollection: Set this to true if you have selected to automatically process
replies. Of course, if the process is to be manual, this property will be set to false.

enableDataCollection: This is in fact not used and is always set to true.

maxReplies: This is the maximum number of replies that will be processed automatically.
Once this limit is reached, you must process the rest of the replies manually.

numReplies: This keeps a record of the number of replies received after each export to
Access. When numReplies is greater than maxReplies, automatic e-mail processing stops.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 75

allowMultipleReplies: If true, the user receiving the e-mail can reply several times.
If false, the replies are limited to one.

onlyUpdates: If true, replies can only update existing table data. If false, the replies can
actually add new data to the table and update existing records.

stopDateTime: This is the date and time to stop automatic processing of replies. This is a
useful feature when you require date/time-dependent responses. Replies received after
this date will not be processed.

onlySentTo: This is a useful element as well. Only those to whom the e-mail was originally
sent will have their replies processed automatically. If set to false, anyone can reply and
have his or her reply processed.

Listing 4-2 shows the properties from an e-mail data collection file demonstrating the
configuration information; for example, note that maxReplies has been set to 25, nunReplies
has been set to 0, and automateDataCollection has been set to true. All are items that are
selected when working through the Collect Data Through Email Wizard.

Listing 4-2. Form Properties XML Section

<formProperties>
<automateDataCollection>true</automateDataCollection>
<enableDataCollection>true</enableDataCollection>
<maxReplies>25</maxReplies>
<numReplies>0</numReplies>
<allowMultipleReplies>true</allowMultipleReplies>
<allowMultipleRows>true</allowMultipleRows>
<onlyUpdates>false</onlyUpdates>
<stopDateTime>0</stopDateTime>
<onlySentTo>true</onlySentTo>
</formProperties>

The next major section in the XML data deals with the Access tables. The table section
shows the mapping between table or query. Listing 4-3 shows just the tables section from
Listing 4-1.

Listing 4-3. Table XML Section

<tables>
<table name="table1" accessTable="Customers" collectionType="insert">
<iterate root="/AccessInfoPathForm/dcip:inlinedata/dcip:row">
<mapitem IsPrimaryKey="1" formNode="dcip:PrimaryKey" tableCell="ID"/>
<mapitem formNode="table1:field1" tableCell="Company" caption="Company" ➥

readOnly="false" required="false" type="x:string"/>
<mapitem formNode="table1:field2" tableCell="Last Name" caption="Last Name" ➥

readOnly="false" required="false" type="x:string"/>
<mapitem formNode="table1:field3" tableCell="First Name" caption="First Name" ➥

readOnly="false" required="false" type="x:string"/>
</iterate>
</table>

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200776

tables: This is the name of the table or query the data is being processed into. There is
only one single tag with no attributes.

name: Always set this to table1. This is used internally for data collection purposes.

accessTable: This is the name of the Access table or query data is being collected into.
In Listing 4-3, you can see that this data collection is designed for the Customers table.

collectionType: This specifies an update or insert depending on the data collection oper-
ation taking place. In Listing 4-3, you can see that this is an INSERT operation.

Iterate root: This contains the location inside the e-mail of the data to be stored.

■Note root refers to the XPath to the XML used internally to actually process the e-mail. For a full
overview of XPath, which is used to address XML files, please see http://www.w3.org/TR/xpath. The
entry in this element depends on the type of form you want to send. For a standard HTML form, you enter
AccessInfoPathForm/inlinedata/row; for an InfoPath form, the entry is AccessInfoPathForm/dcip:inlinedata/
dcip:row.

mapItem: This maps each column in the table or query to the data on the form. There will
be one item for each item in your data collection form plus one additional item for the
primary key even if you have not selected it.

IsPrimaryKey: If set to true, the column will be the primary key of the collection table.

formNode: This is the internal name for the field. Fields will be named in the order they
appear on the form, not the table, field1, field2, and so on.

tableCell: This is the column name of the field in Access.

Caption: This is the name displayed on the form for the chosen field and can be cus-
tomized when creating the data collection e-mail.

Type: This is the type of field using XSD data types. XSD defines an XML document in
terms of structure, elements, and attributes you can use and the types of data they can
contain. Table 4-2 shows some of the Access data types and their XSD equivalents.

Table 4-2. Access Data Types and XSD

Access XSD

Text, memo x:string

Byte, integer, long integer x:integer

Currency, decimal, float x:double

Date/Time x:dateTime

Yes/No x:Boolean

Hyperlink x:anyURI

Replication ID, AutoNumber, and binary are not supported.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 77

Breaking Down the Recipients Section of the XML File
The recipients section of the XML file is handled by Outlook and contains information about
who the e-mail was sent to. It is completed when the e-mail is actually sent out. Listing 4-4
shows the structure. It is mainly used to enforce automatic processing rules.

Listing 4-4. Recipients XML Section

<recipients>
<recipient email="" responded="">
<primaryKey value=""/>
</recipient>
</recipients>

The following list describes the elements and attributes of this section of the XML file:

recipient: This adds the name of each user who received the e-mail.

email: This is the e-mail address of each user who will receive a copy of the data collection.

responded: This will show true if the user has responded to the e-mail; otherwise it will
show false.

primaryKey: When your e-mail deals with updating existing data, each user will be associ-
ated with a specific set of primary keys marking the data as his or hers. This is used to
keep track of which rows have been sent to each user and makes sure users cannot
update rows that are not theirs.

Value: This is the value of the primary key sent to the user.

Processing the Replies
Replies can be processed automatically by selecting the appropriate option in the Collect Data
Through Email Wizard. They can also be processed manually using the Access interface. Man-
ual processing gives you a little more control over the process, and speaking for myself, makes
me feel a little better when I can see what is happening within the database.

Populating MSysDataCollection Manually
So now that you know all this data is required, what can you do about it? Well, from DAO
using standard VBA, you can create an insert procedure to add the records to the system table
for you. However, the documentation and system hooks for this are incomplete, especially in
terms of the XML mapping at this stage, so this section will provide a theoretical overview.
I have included code where it may help you out once the documentation and the hooks into
this process are made public.

The first thing you may need to do if populating the table manually from code is to actu-
ally create the system table MSysDataCollection using DAO. This table is created automatically
the first time you run the wizard and may already exist.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200778

Once the information discussed earlier has been added to the system table, the data col-
lection information will then appear in the Manage Data Collection Messages dialog box. The
only tricky parts about the table are the GUID primary key and the XML field, which you will
need to populate. Listing 4-5 shows the code used to generate a GUID for the ExternalID PK
field. I would like to thank Gustav Brock, a longtime member of the AccessD list, for supplying
the GUID functions.

Listing 4-5. Creating a GUID

Public Type GUID
Data1 As Long
Data2 As Integer
Data3 As Integer
Data4(0 To 7) As Byte

End Type

Private Declare Function CoCreateGuid Lib "ole32.dll" (_
ByRef pguid As GUID) As Long

Private Declare Function StringFromGUID2 Lib "ole32.dll" (_
ByRef rguid As Any, _
ByVal lpstrClsId As Long, _
ByVal cbMax As Long) As Long

Public Function GetGUIDString() As String
' Create a GUID and return its string representation.
'' 2002-12-15. Cactus Data ApS, CPH.
' Length of GUID string per definition.
Const clngGUID As Long = 38
' Length of buffer with added space for zero terminator.
Const clngBuffer As Long = clngGUID + 1

Dim udtGuid As GUID
Dim strGUID As String * clngGUID
Dim abytGUID() As Byte

' Dim byte array.
abytGUID() = String(clngBuffer, vbNullChar)
' Create GUID.
If CoCreateGuid(udtGuid) = 0 Then
' GUID was successfully created.
If StringFromGUID2(udtGuid, VarPtr(abytGUID(0)), clngBuffer) = clngBuffer Then
' GUID was successfully copied into byte array abytGUID in Unicode.
' Convert byte array to Ansi GUID string stripping zero terminator.
strGUID = abytGUID

End If
End If

GetGUIDString = strGUID
End Function

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 79

The next tricky part is the XML field data. This is the area that restricts what you can
actually do via code at the moment. The documentation at Beta 2 TR2 is still incomplete, and
some hooks into the code are not yet available. I have found the easiest way to do this is to
simply create the XML field and its data in an XML editor and cut and paste it into the table.
However, you could use VBA to create a concatenated string and pass the variables into the
procedure.

For this section, I am breaking the XML field down into its various elements and attrib-
utes. The shell of the XML file format is shown in Listing 4-6.

Listing 4-6. XML File Structure

<mapping>
<formProperties>

</formProperties>

<tables>
<table name=
<iterate root=">

</iterate>

</table>
</tables>

</mapping>

Each XML file created will have this same basic shell structure. For this example, you will
collect data for the Orders table of the Northwind database. Table 4-3 shows the XML tags and
their meaning in the context of this collection process. I have left out the structure tags and
some of the table tags, but this gives a general idea of what’s going on in this process. You can
refer back to the full example shown in Listing 4-1 for reference.

Table 4-3. XML Data Collection File

XML Comments

<automateDataCollection>true Data will be processed automatically.
</automateDataCollection>

<maxReplies>25</maxReplies> A maximum of 25 replies will be processed manually.

<allowMultipleReplies>true The user will be able to submit multiple e-mail
</allowMultipleReplies> replies.

<numReplies>0</numReplies> This is the default value, which will be incremented.

<allowMultipleRows>true The user may submit multiple rows for the Orders table.
</allowMultipleRows>

<onlyUpdates>false</onlyUpdates> The user can update and insert new rows.

<stopDateTime>0</stopDateTime> This is the date and time to stop processing. Date and time
is stored as a double (38990.00069444444).

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200780

XML Comments

<onlySentTo>true</onlySentTo> Only the individual the e-mail was issued to can have
responses automatically processed.

<tables> This tag set refers to the table and fields that will be used for
the collection process.

The actual VBA procedure to carry out the insert to the system table is straightforward
and is shown in Listing 4-7. I have created the XML mapping field data as a distinct XML file,
and I will pass this to the record once the VBA code has executed.

Listing 4-7. Adding a Record to MSysDataCollection

Public Sub addEmail()
On Error GoTo Err_addEmail
' Manually add a record to MSysDataCollection

Dim rstsysObj As DAO.Recordset
Dim strsql As String
Dim db As Database
Set db = CurrentDb

Set rstsysObj = db.OpenRecordset("MSysDataCollection")

With rstsysObj
.AddNew
!Active = "-1"
!BasedOnType = 1
!CreatedDate = Now()
!ExternalID = GetGUIDString()
!FormName = "My Data Collection Form"
InfoPathForm = "0"

.Update

End With

Exit_addEmail:
On Error Resume Next

If Not (rstsysObj Is Nothing) Then rstsysObj.Close: Set rstsysObj = Nothing
If Not (db Is Nothing) Then db.Close: Set db = Nothing

Exit Sub
Err_addEmail:

MsgBox Err.Description, , "Error in Sub basEmailDC.addEmail"
Resume Exit_addEmail

Resume 0 '.FOR TROUBLESHOOTING
End Sub

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 81

As I said earlier, data collection is a two-part process, and the second part involves work-
ing with Outlook 2007 and letting Outlook know that you are going to start using e-mail data
collection. Let’s now turn our attention to this process.

Working in Outlook
Outlook contains a COM add-in that enables e-mail data collection and processing. When
working with the wizard, this add-in is turned on for you. By default, it is disabled within Out-
look. This COM add-in examines e-mails as they arrive, and if they are data collection e-mails,
they are processed according to the instructions issued from the Access side of things. Once
again, XML is used to tell Outlook about the e-mails and their data collection properties. You
learned earlier that the primary key from the MSysDataCollection table contains a GUID that
uniquely identifies each e-mail collection process. To manually enable the data collection
COM add-in, follow these steps:

1. Click Tools.

2. Click Customize.

3. Click the Commands tab.

4. Scroll to the bottom of the command listing.

5. Select COM Add-Ins.

6. Drag and drop the COM Add-Ins button onto the Outlook toolbar.

Figure 4-5 shows the COM Add-Ins button in Outlook with the dialog box open. Notice
that I have enabled all the COM add-ins, and Outlook 2007 will now be ready to process data
collection. As shown in Figure 4-5, you may have additional COM add-ins installed in Micro-
soft Outlook 2007 e-mail, among other things.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200782

Figure 4-5. Enabling Outlook 2007 COM add-ins via the interface

To find out whether the COM add-ins are loaded in Outlook, you can execute the VBA
procedure shown in Listing 4-8 from within Access. This is a useful routine if you need to actu-
ally create the collection process via VBA code.

Listing 4-8. Checking Outlook COM Add-Ins

Public Sub GetCom()
On Error GoTo Err_GetCom
Dim OutObj As Object
Dim myAddIn As Office.COMAddIn
Set OutObj = CreateObject("Outlook.Application")

For Each myAddIn In OutObj.Application.COMAddIns
With myAddIn

Debug.Print "Connected = " & .Connect;
Debug.Print " , ProgId = " & .ProgId & " - ";
Debug.Print .Description

End With
Next myAddIn

Exit_GetCom:
On Error Resume Next

If Not (OutObj Is Nothing) Then OutObj.Close: Set OutObj = Nothing
Exit Sub
Err_GetCom:

MsgBox Err.Description, , "Error in Sub basEmailDC.GetCom"
Resume Exit_GetCom

Resume 0 '.FOR TROUBLESHOOTING
End Sub

This will output all the Outlook COM add-ins to the Intermediate window as shown here.
Note the first add-in is the data collection add-in, which in this case is active.

Connected = True , ProgId = AccessAddin.DC - Microsoft Access Outlook ➥

Add-in for Data Collection and Publishing
Connected = True , ProgId = BtOfficeAddin.BtOfficeIntegration.1 - Send to Bluetooth
Connected = True , ProgId = ColleagueImport.ColleagueImportAddin - Microsoft ➥

Office SharePoint Server Colleague Import Add-in
Connected = True , ProgId = Microsoft.OMSAddin - Microsoft Outlook Mobile Service
Connected = True , ProgId = Microsoft.VbaAddinForOutlook.1 - Microsoft VBA for ➥

Outlook Addin
Connected = True , ProgId = UmOutlookAddin.FormRegionAddin - Microsoft Exchange ➥

Outlook Add-in for Unified Messaging

This result also gives you the ProgID, which can then be used to start the required COM
add-in. To start the add-in, you can replace the For statement in Listing 4-8 with the fragment
shown in listing 4-9; in fact, the code in Listing 4-9 is all that is required.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 83

Listing 4-9. Starting the Data Collection COM Add-In

For Each myAddIn In OutObj.Application.COMAddIns
With myAddIn
If .ProgId = "AccessAddin.DC" Then
.Connect = True
Exit For

End If
End With

Next myAddIn

This will enable the data collection COM add-in within Outlook 2007. However, the
COM add-in should not be enabled until you have added the Outlook configuration e-mail
discussed next.

When you first run the Collect Data Through Email Wizard from within Access 2007, it
will also create two Outlook folders: a Data Collection Search folder, Access Data Collection
Replies, which makes it easy for Outlook to find the collection e-mail, and a default Data Col-
lection Replies folder, to store the replies upon receipt. Using the wizard, you can override
this default folder and redirect collection e-mails into a folder of your choice. In order to get
the COM add-in to recognize data collection e-mails, you must also have an XML configura-
tion file that contains the details of the data collection. When you are using the wizard, the
configuration file is generated for you. If you are trying this using code, you have to create the
file yourself. The XML configuration has the following format:

<ActionConfigFile>
<outlookFolders>
<defaultFolder/>
<searchFolder />
</outlookFolders>
<mdbMap />
</ActionConfigFile>

Listing 4-10 shows the structure and data contained in an example file. Some of the XML
structure and information should already be familiar to you from reading through the earlier
sections of this chapter.

Listing 4-10. AccessDCActionFile.XML

<ActionConfigFile>
<outlookFolders>
<defaultFolder>00000000DED792DDC981714FBC3➥

FD0EB94D7AB9382820000</defaultFolder>
<searchFolder>00000000DED792DDC981714FBC➥

3FD0EB94D7AB93E3000800</searchFolder>
</outlookFolders>
<mdbMap><form id="{5CD85176-C249-44D2-9009-38E8C6863478}" ➥

moveToFolder="00000000DED792DDC981714FBC3FD0EB94D7AB9382820000"➥

FormType="HTML">

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200784

<path>C:\AccessBook\Chapter4\Northwind2007.accdb</path>
<userReply>false</userReply>
<formProperties>
<automateDataCollection>true</automateDataCollection>
<enableDataCollection>true</enableDataCollection>
<maxReplies>25</maxReplies>
<numReplies>0</numReplies>
<allowMultipleReplies>true</allowMultipleReplies>
<allowMultipleRows>true</allowMultipleRows>
<onlyUpdates>false</onlyUpdates>
<stopDateTime>0</stopDateTime>
<onlySentTo>true</onlySentTo>
</formProperties>
</form>

Note the section <mdbMap> in bold. Each data collection action created in Access will get
an entry in this section. Also note the form properties, which are the same as in the Access
system table (that is, these are the instructions given to the wizard if it has been run, otherwise
they are whatever instructions you have coded). The following tags will be new to you:

defaultFolder: This is the default folder for the e-mail responses. Each additional e-mail
collection can override this folder if required and be sent to a new folder. This is useful, for
example, if you were sending out the same e-mail but to users in different business func-
tions. Note that the Outlook EntryID is used instead of the folder name.

searchFolder: This is the search folder, which again would be created by the wizard. Just
as with the defaultFolder, the EntryID is used to identify this folder.

Both of these folders will be populated by Access even if you are not using the wizard to
run the data collection.

Each individual data collection carried out will, however, require an entry under the
<mdbMap> tag. This section of the XML file is shown in Listing 4-11.

Listing 4-11. <mdbMap> Tag Structure

<mdbMap>
<form id="" moveToFolder="" FormType="">
<path />
<userReply />
<formProperties />
</form>
</mdbMap>

Following is a brief rundown of the elements and attributes of this section:

form: This is the root tag for each action that gets added. There can be an unlimited num-
ber of these tags, one per data collection action.

id: This is the unique GUID that identifies the form. This value should match the ExternalID
field in the MSysDataCollection table. There should only be one form entry for each ID.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 2007 85

moveToFolder: This is the EntryID for the folder that you will move the replies to.

FormType: This is set to InfoPath or HTML, depending on the type of e-mail form you are
using.

path: This is the fully-qualified path to the database that you’ll be collecting data into.

userReply: This tag tracks whether or not the original sender of the data collection form
has replied to it himself or herself. False means that the original sender has not, and true
means that the sender has. This is used to handle moving e-mails to the moveToFolder and
will be updated by Outlook as needed. It should default to false.

formProperties: This is an exact copy of the formProperties in the mapping column in the
system table inside Access.

Once the Access system table has been populated, the Outlook COM add-in activated,
and the AccessDCActionFile.XML file created, Outlook will be data collection aware and can
begin listening for collection activities. To actually send a data collection e-mail, the recom-
mended approach is to use the Access interface Collect Data Through Email Wizard as
opposed to using code for this action.

Summary
Data collection via e-mail is another useful tool available to Access users. How useful it will
be to developers remains to be seen. The XML and coding required to automate this process
using VBA is somewhat confusing, but that may just be because the software is still at beta
stage and documentation is not as yet complete. Personally, I can see a use for it even now,
but using the wizard-driven interface as opposed to writing my own code to duplicate the
process. Hopefully, this will change once more information and system hooks into the pro-
cess become available. I have tried in this chapter to open up the data collection process
and explain some of what goes on behind the scenes. While still incomplete, this informa-
tion does provide you with a start in looking at running this process via VBA.

CHAPTER 4 ■ DATA COLLECTION USING MICROSOFT OUTLOOK 200786

Introduction to Classes in VBA

If you have installed Northwind 2007, you may notice that almost all the VBA used in the
application is based on VBA classes. This is a major departure from previous versions and so
will be new to many Access 2007 users and developers. In this chapter, we will look at getting
started with class programming in Access. Hopefully, it will set you on the path to more
advanced VBA class programming, extending Microsoft Access 2007 even further than before.

This chapter is not designed to teach you class programming, but to introduce the con-
cepts and lay the groundwork for further study. Classes are one of those areas in coding that
you look at and say, “So what?” But once you begin to explore them, all of a sudden the light
will come on, and you will wonder how you ever got along without them. So I encourage you
to take this chapter as a springboard to investigating the power of VBA class modules and
Microsoft Access 2007.

■Note A good friend of mine, John Colby, has published an entire set of VBA class and framework tutorials
at http://www.colbyconsulting.com. John is an Access expert and is one of the leading proponents of
class and framework programming. His lectures on classes and WithEvents is well worth looking at, down-
loading, and trying out. You are guaranteed to learn something. While on John’s site, have a look at some of
his other demos, which push Access programming to its limits. I would also like to thank Drew “Code Boy”
Wutka for his help and patience with this chapter, and for giving permission for his examples to be used.
So thank you, John and Drew, for your help and patience over the years.

Some Definitions
Before looking at classes in VBA, you need to understand some useful terms related to object-
oriented programming (OOP). But first, a quote:

More important,VBA class modules offer concrete benefits to you, the developer, so what

difference does it make if VBA is not completely object oriented?

Access 2002 Developers Handbook,
Ken Getz, Mike Gunderloy, and Paul Litwin (Sybex, 2001)

87

C H A P T E R 5

Classes in Access are not fully OOP, but as Getz and co. say, who cares? They offer you
many benefits when working in development and should not be overlooked in your learning.
So on to the definitions you will need:

Abstraction: When you use a recordset in VBA, you have no idea how the actual recordset
object is put together, nor should you care, to be honest. All you know is that here is an
object you can use; you know you can open the object, close the object, and use MoveNext
and MovePrevious procedures to navigate the recordset. This is the idea of abstraction:
you don’t need to know the finer details of how something works, you only need to know
what you can pass to it and what it will pass back. You can therefore use its object and
methods to make it work. These “tools” you can use collectively are called the interface
of the object. It’s via the interface that you can work with the objects and methods of
the object.

Encapsulation: Class objects should contain within them everything they need to let
them do what they are designed to do. They contain their own methods, properties,
and data and do not need to rely on anything external in order to do their job.

Polymorphism: Objects can have the same properties and methods but they can imple-
ment them in different ways.

Inheritance: This is the ability of one class to inherit the features of another. For example,
a basic printer class could provide the core objects and methods to enable printing. From
this call, a specific printer class would inherit the core features and then build on them to
create specific functionality. Access does not support inheritance using VBA. Interestingly,
though, .NET does.

Now with these important terms defined, let’s turn our attention to what makes for a class
in VBA.

What Is a Class?
Basically a class is a module that contains all the code to describe and allow you to interact
with an object. An object can be something as simple as an order or as complex as a registra-
tion process. It important that each class models a single object; for example, a Student class
would not contain all of the objects required to model a student. You might have a class for
student registration, student module marks, and student attendance, but you would not use
a single class for all three. You would in this case have several classes, each modeling a spe-
cific object and containing all the methods required for that object. You can maybe see how
confusing it would be if everything was in the same class—a maintenance nightmare!

So if you have a class that modeled a student, this class would have properties describing
the student, his or her name, address, contact details, and so forth—all of the properties that
make up a student. The class, however, doesn’t actually describe anything until you actually
load it up with data. Once you set the properties with data, you have a class instance that
describes a specific student. In order to describe multiple students, you would load up multi-
ple instances of the Student class. However, not every class needs to be opened multiple times.
Classes can also be opened once to perform a specific function—for example, loading up
system global variables.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA88

One interesting feature about Access is that if you are already programming Access
VBA in forms, you are already using classes. Each form has a class module associated with
it. How many times have you coded ME.SomeValue = Some Value? ME in this case is actually
manipulating the instance of the form class to refer to a property of the form itself. See,
you are already a class programmer, and you maybe didn’t even know it!

However, one of the drawbacks to class programming in forms is that the class is not
only the form’s class, but it is also the class for every object on the form. Let’s have a look
at an example of some standard code and some of the issues that may arise. The proce-
dures in Listing 5-1 simply change the background color of a form’s text boxes as you tab
through them.

Listing 5-1. Using a Class to Change Background Color

Private Const mclngBackColor As Long = 16777088 ' A pretty blue color to set
' the text box back color to

Private mlngBackColorOrigFName As Long
Private mlngBackColorOrigLName

Private Sub txtFName_Enter()
mlngBackColorOrigFName = txtFName.BackColor ' When you enter the text box, save

' the original back color
txtFName.BackColor = mclngBackColor ' Set the back color to your favorite color
End Sub

Private Sub txtFName_Exit(Cancel As Integer)
txtFName.BackColor = mlngBackColorOrigFName ' Set the back color to the original

' color
End Sub

Private Sub txtLName_Enter()
mlngBackColorOrigLName = txtLName.BackColor ' When you enter the text box, save

' the original back color
txtLName.BackColor = mclngBackColor ' Set the back color to your favorite color
End Sub

Private Sub txtLName_Exit(Cancel As Integer)
txtLName.BackColor = mlngBackColorOrigLName ' Set the back color to the original

' color
End Sub

The code uses the OnEnter and OnExit events to change the background color of the text
box. At the top of the procedure is a variable to hold the original color of the text box. So if you
have, say, 40 text boxes, you would need 40 different variables to hold the original values. Not
only that, but you would also need to set the OnExit and OnEnter events for each of the con-
trols. This could lead to a whole lot of code needing to be written.

Now this is where a class can come in handy. You can create a class that will model a con-
trol, in this case, a text box. This example may be a little complicated if you are just starting
out, but bear with me. I would also advise entering the code yourself rather than cutting and

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 89

pasting from the example database. You will learn much more if you do this the hard way.
Listing 5-2 presents the bones for the class to achieve what we are after.

Listing 5-2. Your First Class Module

Option Compare Database
Option Explicit
' Dimension a text box WithEvents
Private WithEvents mtxt As TextBox
Private Const mstrEventProcedure = "[Event Procedure]"
Private Const mclngBackColor As Long = 16777088
Private mlngBackColorOrig As Long

' The init function of every class "initializes" the class.
' Pass in a pointer to a specific control.

Function Init(ltxt As TextBox)
Set mtxt = ltxt
mlngBackColorOrig = mtxt.BackColor ' When you enter the text box, save the

' original back color
mtxt.OnEnter = mstrEventProcedure
mtxt.OnExit = mstrEventProcedure
End Function

Function Term()
Set mtxt = Nothing ' Set the pointer to the control to nothing
End Function

To create the class, follow these steps:

1. Press Alt+F11 to open the VBA IDE.

2. Select Insert ➤ Class Module.

3. Name the class clstextboxs.

4. Enter the code shown in Listing 5-2 into the new class module.

■Note If the Properties window is not visible, select View ➤ Properties Browser from the main menu.
You can change the name property to the required value in the browser.

You will also need to create an Access form containing four text boxes. The text boxes on
the form should be named as follows for this example:

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA90

• txtFName

• txtLName

• txtAddr1

• txtAddr2

In Listing 5-2, you have a single variable to hold the new background color, and I intro-
duce a new item, WithEvents. This lets the class know you will be sinking events for this class.
See the sidebar titled “WithEvents” for more details. Next, you have an init function where
you pass in a pointer to a specific text box. You save this pointer to the text box to your private
variable in the class header. You also set the OnEnter and OnExit properties of that control to
the string [Event Procedure]. Setting any form or control property to [Event Procedure] will
cause the form or control to broadcast an event for that particular event. The reverse is also
true in that if you remove the [Event Procedure], you turn off this event broadcasting. Setting
this property in your class results in the event broadcast being made, and the class can then
sink to the event.

Function is used to clean up the pointer to the text box once you have finished with it. The
final bit of coding you have to do is to create the OnEnter and OnExit events to deal with the
form’s controls, as shown in the following fragments.

Private Sub mtxt_Enter()
mtxt.BackColor = mclngBackColor ' Set the background color to your

' favorite color
End Sub

Private Sub mtxt_Exit(Cancel As Integer)
mtxt.BackColor = mlngBackColorOrig
End Sub

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 91

WITHEVENTS

WithEvents allows you to handle events within any class outside the form. The example we are looking at
here changes the background color of a text box. Using WithEvents, you could handle this for any text box
within your applications. In normal use, you could, for example, dim mytext as a text box using
WithEvents as in Private WithEvents mtxt As TextBox. This is saying that the text box can source
events and that you will be sinking those events inside the class. It is worth noting that if you define
WithEvents inside a standard module in Access, you will get a compile error, as it can only be used inside
class modules. You let the class know which text box is sinking the event inside the Init function—for
example, Set mtxt = ltxt. You must of course then actually handle the particular event being sunk.

So why is this so powerful? Well, you can now sink form or control events outside the form’s code mod-
ule within class modules. So if you want to change the background color of all of your form, you would simply
sink to events in your change background color class, which would be held separately from the form. If you
need to change the particular color being used, it would simply be a matter of changing the color within the
class module, and there you go, all done. For a quick example of using WithEvents, try out the following:

Returning to the form example, Listing 5-3 shows the code behind the form.

Listing 5-3. Code Behind Your Form

Option Compare Database
Option Explicit

Private fdclsCtlTextBoxFName As dclsCtlTextBox
Private fdclsCtlTextBoxLName As dclsCtlTextBox
Private fdclsCtlTextBoxAddr1 As dclsCtlTextBox
Private fdclsCtlTextBoxAddr2 As dclsCtlTextBox

Private Sub Form_Close()
fdclsCtlTextBoxFName.Term
Set fdclsCtlTextBoxFName = Nothing

fdclsCtlTextBoxLName.Term
Set fdclsCtlTextBoxLName = Nothing

fdclsCtlTextBoxAddr1.Term
Set fdclsCtlTextBoxAddr1 = Nothing

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA92

1. Open Northwind 2007.

2. Create a new class module.

3. Enter the following code:

Dim WithEvents MyCombo As ComboBox
Public Function init(lcbo As ComboBox)

Set MyCombo = lcbo
MyCombo.AfterUpdate = "[Event Procedure]"

End Function

4. Open the Northwind 2007 Product Details form in Design view.

5. Enter the following into the AfterUpdateEvent of the Supplier combo box.

MsgBox "Handled by WithEvents"

6. At the top of the form module, enter the following:

Dim mywitheventtest as cbodemo

As you can see, WithEvents opens up a whole new world in Access when you can sink events virtu-
ally anywhere, resulting in very powerful, centrally managed applications.

fdclsCtlTextBoxAddr2.Term
Set fdclsCtlTextBoxAddr2 = Nothing

End Sub

Private Sub Form_Open(Cancel As Integer)
Set fdclsCtlTextBoxFName = New dclsCtlTextBox
fdclsCtlTextBoxFName.Init txtFName

Set fdclsCtlTextBoxLName = New dclsCtlTextBox
fdclsCtlTextBoxLName.Init txtLName

Set fdclsCtlTextBoxAddr1 = New dclsCtlTextBox
fdclsCtlTextBoxAddr1.Init txtAddr1

Set fdclsCtlTextBoxAddr2 = New dclsCtlTextBox
fdclsCtlTextBoxAddr2.Init txtAddr2

End Sub

Initially, you dimension the class four times, once for each of the text boxes on the form,
and each class instance is initialized by the form’s open event. As you move into each text box,
the background color will change.

Up to this point, there is still a considerable amount of coding required. However, there
are a few other things to classes that you can use, including class factories and collections,
that will decrease the amount of code you will have to write. Let’s have a look at these now.

Class Factories
A class factory is a function that returns a class based on the parameters passed into it. The
function dims the class, gets the new class and initializes it, and returns a pointer to the class
instance. In the majority of cases, the parameter is the data passed into the class. A class fac-
tory is also useful when you cannot directly reference a class—for example, if the class is held
in a library database (MDA file).

Listing 5-4 outlines a class factory function.

Listing 5-4. Class Factory

Function ClassFactory(txt As TextBox) as dclsCtlTextBox
Dim ldclsCtlTextBox as new dclsCtlTextBox

Set ldclsCtlTextBox = New dclsCtlTextBox
ldclsCtlTextBox.Init txt
set ClassFactory = ldclsCtlTextBox......' Returns the pointer to the new class

' instance
End Function
Function ClsDestroy(ldclsCtlTextBox As dclsCtlTextBox)

ldclsCtlTextBox.Term
Set ldclsCtlTextBox = Nothing

End Function

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 93

Collections
An excellent example of a situation that calls for a collection is when you want to keep track of
what classes are actually loaded and keep a check that when you are finished with them they
are unloaded. This is a problem in Access; loading a class and failing to unload it when you are
finished using it can cause memory leaks in Access and Windows. You can maintain a collec-
tion of loaded class names and check that the class name is removed from the collection once
you are done using the class instance.

■Caution It is important to realize that classes do not truly unload from memory until the last pointer to
the class is set to nothing. Thus, if you instantiate a class, store a pointer in this collection, and include a
variable in a form header, for example, the class will not unload until you delete the pointer in the collection
and in the form.

Listing 5-5 demonstrates the approach of creating a collection and adding and removing
the class names as required. This code declares the variables mlngObjCounter to maintain the
actual count and mcolObjNames to store the actual class name.

Listing 5-5. Counting Class Instances

Private mlngObjCounter As Long
Public mcolObjNames As Collection
Public Sub IncObjCounter(strObjName As String)

mlngObjCounter = mlngObjCounter + 1
mcolObjNames.Add strObjName

End sub

The public subroutine in Listing 5-5 simply increments and adds the class name.
Listing 5-6 is used to remove the class name from the collection and decrease the count of

loaded classes.

Listing 5-6. Removing a Class Instance

Public Sub DecObjCounter(strObjName As String)
mlngObjCounter = mlngObjCounter - 1
mcolObjNames.Remove strObjName

End sub

You can use a simple public function to read out the class names from the collection.
Listing 5-7 shows the function used.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA94

Listing 5-7. Public Function to Read Class Strings

Public Function ObjNames() As String
On Error GoTo Err_ObjNames
Dim strName As Variant
Dim str

For Each strName In mcolObjNames
If Len(str) > 0 Then

str = str & "; " & vbCrLf & strName
Else

str = strName
End If

Next strName
ObjNames = str

end function

Working with Data
In this next example, I show you how to create a set of classes that will allow you to actually
manipulate some data. For this example, two classes will be required: People and Persons.
To begin the process, create a new blank database containing a single table, tblPeople. Define
the following fields in the table:

• PersonID (AutoNumber type, primary key)

• FirstName (text type)

• LastName (text type)

■Note It is preferable to use a naming convention in which classes that hold data about one item are
named in the singular. ClsPerson is a class where each instance holds information about one person.
ClsPeople is a class where each instance may hold information about more than one person (a collection
of clsPerson, for example).

Next you will create your first class module.

1. From the main Access menu, click Create.

2. Click Macro.

3. Select Class Module from the drop-down list.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 95

4. Change the name of the module from Class1 to Person.

5. Add the following properties to the class:

Public ID As Long
Public FirstName As String
Public LastName As String

In addition, you are going to create a fourth property, FullName. This will be a concatena-
tion of the first and last name fields from tblPerson. Listing 5-8 shows the procedure to add to
the class.

Listing 5-8. Creating a FullName Property

Property Get FullName() As String
FullName = FirstName & " " & LastName
End Property

This will be a read-only property, as indicated by the Property Get statement. If you had
wanted the property to be writable, you would need to use a Property Let statement instead.

You have now created a simple class to represent a person within the database. You will
now create a second class that will contain collections of persons in your database.

1. Create a new class module and call it People. You are creating collections of people,
one sorted by first name the other by last name.

2. Add in the statements in Listing 5-9 just below Option Explicit at the top of the People
class module.

Listing 5-9. Dimming the Vars

Dim PeopleByFirst As Collection
Dim PeopleByLast As Collection

Next up you need to create a procedure that will be used to fill the collections. Listing 5-10
shows the procedure required.

Listing 5-10. Populating the Collections

Private Sub GetPeople()
Dim rs As ADODB.Recordset
Dim strSQL As String
Dim ps As Person
Dim i As Long
Set PeopleByFirst = New Collection
Set PeopleByLast = New Collection
Set rs = New ADODB.Recordset
strSQL = "SELECT PersonID, FirstName, LastName FROM tblPeople ORDER BY FirstName"
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockReadOnly

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA96

If rs.EOF = False Then rs.MoveFirst
i = 1
Do Until rs.EOF = True

Set ps = New Person
ps.ID = rs.Fields(0).Value
ps.FirstName = rs.Fields(1).Value
ps.LastName = rs.Fields(2).Value
ps.FirstSortOrder = i
PeopleByFirst.Add ps, "ID:" & ps.ID
Set ps = Nothing
rs.MoveNext
i = i + 1

Loop
rs.Close
Set rs = Nothing
Set rs = New ADODB.Recordset
strSQL = "SELECT PersonID, LastName FROM tblPeople ORDER BY LastName"
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockReadOnly
If rs.EOF = False Then rs.MoveFirst
i = 1
Do Until rs.EOF = True

Set ps = PeopleByFirst("ID:" & rs.Fields(0).Value)
ps.LastSortOrder = i
PeopleByLast.Add ps, "ID:" & ps.ID
Set ps = Nothing
rs.MoveNext
i = i + 1

Loop
rs.Close
Set rs = Nothing
End Sub

Within the procedure, you initialize the collections you have dimensioned in the class
header; the recordset is ordered first by first name and then added to the collection in the
order provided by the recordset. When you add the data to the collection, you use the PS
object and include a second argument, a custom ID. Collections can be recalled by the
order in the collection (for example, PeopleByFirst(1) would give you the first person in
the collection) or by the custom (unique) ID that you give it, which you do in the second
loop (PeopleByFirst("ID:" & rs.fields(0).value)).

In the second loop, you are again letting ADO/JET sort things for you, but you aren’t cre-
ating any more Person objects. A collection is really a set of pointers to objects, so you can
have one object in several different collections. The advantage to this is that if you change an
object that is in multiple collections, referencing it from any of those collections will show
the change. For example, if you change “Bob Smith” to “Bobby Smith,” both collections
(sorted by first and last name) will reference the new “Bobby Smith” object. A pointer is sim-
ply a long integer, so if you were dealing with larger class objects, you wouldn’t suffer from
having duplicate objects in memory.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 97

Next step in the process is to initialize the class. To do this, add the procedure shown in
Listing 5-11 to the class.

Listing 5-11. Initializing the Class

Private Sub Class_Initialize()
GetPeople
End Sub

Now you are almost done. You will need to add several records to tblPeople and create an
unbound form. The form should contain the following items:

• A label named lblRecordDisplayed

• A frame/option group, called SortOrder

• Two radio buttons: FirstName with an option value of 1, and LastName with an option
value of 2

• Three text boxes: txtFirstName, txtLastName, txtFullName

• Two command buttons: cmdNextRecord and cmdPreviousRecord

The GetPerson procedure created ensures that each Person class knows its own sort order.
What is now required is a process to get the person out of the People class, and you also need
to know how many people there actually are. Listings 5-12 through 5-14 will do this for you.

Listing 5-12. Getting the First Name

Property Get PersonByFirstName(intOrder As Long) As Person
Set PersonByFirstName = PeopleByFirst(intOrder)
End Property

Listing 5-13. Getting the Last Name

Property Get PersonByLastName(intOrder As Long) As Person
Set PersonByLastName = PeopleByLast(intOrder)
End Property

Listing 5-14. Getting a Count

Property Get PeopleCount() As Long
PeopleCount = PeopleByFirst.Count
End Property

At this point, you can close and save the class module, as you will be working now with
the form, frmPeople. Open frmPeople in Design view and add the information in the upcom-
ing listing to the form’s code module. In the code module, you need to dimension a variable
for the collection of people and a variable to let you know who the current person is.
Listing 5-15 shows the declarations.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA98

Listing 5-15. Dimensioning Variables

Dim PeopleClass As People
Dim CurrentPerson As Person

Listing 5-16 is added to the form’s OnLoad event.

Listing 5-16. Form OnLoad Event

Private Sub Form_Load()
Set PeopleClass = New People
Set CurrentPerson = PeopleClass.PersonByFirstName(1)
DisplayPerson
End Sub

Next you need to actually create the DisplayPerson function, which is used to actually dis-
play the record to the user. Listing 5-17 shows the required function.

Listing 5-17. DisplayPerson Function

Private Sub DisplayPerson()
Me.txtFirstName = CurrentPerson.FirstName
Me.txtLastName = CurrentPerson.LastName
Me.txtFullName = CurrentPerson.FullName
Select Case Me.SortOrder.Value

Case 1 ' Sorted by first name
Me.lblRecordDisplayed.Caption = "Record " &

CurrentPerson.FirstSortOrder & _
" of " & PeopleClass.PeopleCount
If CurrentPerson.FirstSortOrder = 1 Then

Me.cmdNextRecord.SetFocus
Me.cmdPreviousRecord.Enabled = False

Else

Me.cmdPreviousRecord.Enabled = True
End If
If CurrentPerson.FirstSortOrder = PeopleClass.PeopleCount Then

Me.cmdPreviousRecord.SetFocus
Me.cmdNextRecord.Enabled = False

Else
Me.cmdNextRecord.Enabled = True

End If
Case 2 ' Sorted by last name

Me.lblRecordDisplayed.Caption = "Record " & ➥

CurrentPerson.LastSortOrder & ➥

" of " & PeopleClass.PeopleCount

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 99

If CurrentPerson.LastSortOrder = 1 Then
Me.cmdNextRecord.SetFocus
Me.cmdPreviousRecord.Enabled = False

Else
Me.cmdPreviousRecord.Enabled = True

End If
If CurrentPerson.LastSortOrder = PeopleClass.PeopleCount Then

Me.cmdPreviousRecord.SetFocus
Me.cmdNextRecord.Enabled = False

Else
Me.cmdNextRecord.Enabled = True

End If
End Select
End Sub

With all the changes saved both to the classes and the form, try it out. Open frmPeople to
see the class at work. As you will see, the command buttons do not yet work. Listings 5-18
through 5-20 provide this functionality. Add the code in these listings into the form’s code
module.

Listing 5-18. Dealing with Sort Order

Private Sub SortOrder_Click()
DisplayPerson
End Sub

Listing 5-19. MoveNext Procedure

Private Sub cmdNextRecord_Click()
Select Case Me.SortOrder.Value

Case 1
Set CurrentPerson =➥

PeopleClass.PersonByFirstName(CurrentPerson.FirstSortOrder + 1)
Case 2

Set CurrentPerson =➥

PeopleClass.PersonByLastName(CurrentPerson.LastSortOrder + 1)
End Select
DisplayPerson
End Sub

Listing 5-20. MovePrevious Procedure

Private Sub cmdPreviousRecord_Click()
Select Case Me.SortOrder.Value

Case 1
Set CurrentPerson =➥

PeopleClass.PersonByFirstName(CurrentPerson.FirstSortOrder - 1)

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA100

Case 2
Set CurrentPerson =➥

PeopleClass.PersonByLastName(CurrentPerson.LastSortOrder - 1)
End Select
DisplayPerson
End Sub

With these listings added to the form, try it out again. Now you should have a fully func-
tional form—well, almost!

■Note Clicking the Next button (because the Previous button should be disabled by the DisplayPerson
routine) will let you click your way through your list of people. The label displays which record you are in at
any given time. Once you reach the end, the Next button is disabled. Now if you switch the sort order, none
of the data changes, but the Record x of y label should show you a new position in the recordset, and mov-
ing back and forth in the recordset will go by the new sort order. All of the displaying and controlling
functions are in DisplayPerson, and the controls that are moving things around are triggering that function
once they do their initial jobs. That is, in the Next and Previous buttons, you are setting the CurrentPerson
object to a new person (based on the current sort order and the position the old reference is currently in). For
the changing of the sort order, the applicable value is already changed, so you just run the DisplayPerson
function. To me, this is a wonderful process that demonstrates the simplicity of using classes!

Adding Functionality
Next you need to add additional functionality to the form—for example, the ability to create
a new person, delete an existing person, and edit a person’s info. The best place to do this
would be in the Person class itself. It already has all of the appropriate code but will require
some modification. The ID is set as a simple property (Public ID As Long). You need to
change this. The ID field is the unique identifier, so getting the value is going to require a
straightforward Property Get; however, when this value is set, you may want the class to fill
itself out, or you may not. So you are going to create a StorageOnly property, a simple
Boolean variable that you will set to false when the class initializes. In your People class, you
will change the GetPeople procedure to set that property to true, before it sets the ID value.

At the moment, the class has properties but cannot actually do anything on its own;
for example, if it initializes itself, all the property values will be blank. In the next exam-
ples, you will change that so that you can call a particular person simply by setting the ID
value. As you know, the People class fills its collections with the Person class, and it has to
set the ID property. You could let each instance of Person get its own data based on ID;
however, you would be opening and closing a lot of recordsets to do that. It’s faster and
more efficient to let the “group” class pull up the whole recordset and just fill in the data.
To do this, you use the StorageOnly property as a switch to override the independence of
the Person class.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 101

You also are going to create a Save routine, and for it you will want to determine whether
the record currently being worked on is an existing one or new. This can be accomplished in
several ways. You could initialize the intID variable with a value of 0. In this particular case,
this would work pretty well, as the 0 won’t show up as a value in an AutoNumber field for quite
sometime. However, there is a foolproof method that isn’t much more difficult. You create
another module-level Boolean variable, blNew. When the class is initialized, you set it to true,
and when the ID is set (regardless of StorageOnly), you set it to false (because it is then an
existing Person instance). Listing 5-21 shows the new Person class required to achieve these
results.

Listing 5-21. New Person Class

Public FirstName As String
Public LastName As String
Public FirstSortOrder As Long
Public LastSortOrder As Long
Public StorageOnly As Boolean
Dim intID As Long
dim blNew as Boolean
Property Get FullName() As String
FullName = FirstName & " " & LastName
End Property
Property Get ID() As Long ID = intID
End Property

Property Let ID(intEnter As Long)
intID = intEnter
blNew=False
If Not StorageOnly Then

Dim rs As ADODB.Recordset
Dim strSQL As String
strSQL = "SELECT FirstName, LastName FROM tblPeople WHERE PersonID=" &➥

ID
Set rs = New ADODB.Recordset
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockReadOnly
If rs.EOF = False Then

rs.MoveFirst
FirstName = rs.Fields(0).Value
LastName = rs.Fields(1).Value

End If
rs.Close
Set rs = Nothing

End If
End Property
Private Sub Class_Initialize()
StorageOnly = False
blNew=True
End Sub

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA102

In the preceding code, you add the StorageOnly property in the declarations. You also set
that property when the class is initialized. Get and Let statements have been created to allow
the ID property to be read/write. When the ID property is set now, if StorageOnly is still false, it
gets the FirstName and LastName properties based on the ID set. You must also make a change
to the GetPeople function created earlier. The third line in bold in the following fragment
shows the change required to the function.

Do Until rs.EOF = True
Set ps = New Person
ps.StorageOnly = True
ps.ID = rs.Fields(0).Value
ps.FirstName = rs.Fields(1).Value
ps.LastName = rs.Fields(2).Value
ps.FirstSortOrder = i
PeopleByFirst.Add ps, "ID:" & ps.ID
Set ps = Nothing
rs.MoveNext
i = i + 1

Loop

■Note You only create a new Person instance in the first loop (because the second loop is using existing
instances), so you just need to set that value right after you create the new instance.

You need to make one other addition at this point to the Person class. You need to create
a Property Let statement for FirstName. Listing 5-22 shows the statement you need to use.
Go ahead and add it to the Person class.

Listing 5-22. Property Let Statement for the Person Class FirstName

Property Let FullName(strEnter As String) Dim strArray() As String strArray➥

= Split(strEnter, " ") FirstName = strArray(0) LastName = strArray(1)
End Property

Now, as discussed previously, you want the Person class to be able to save its own record;
however, you need to check whether you are actually adding a new record or changing an
existing one. This is achieved using the btNew variable you added to the module earlier in the
process. Listing 5-23 shows the new Save function that will be added to the Person class.

Listing 5-23. Save Function Added to the Person Class

Friend Function Save()
Dim rs As ADODB.Recordset
Dim strSQL As String
Set rs=new ADODB.Recordset

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 103

If blNew Then
rs.Open "tblPeople", CurrentProject.Connection, adOpenKeyset,➥

adLockOptimistic, adCmdTableDirect
rs.AddNew

Else
strSQL = "SELECT PersonID, FirstName, LastName FROM tblPeople WHERE➥

PersonID=" & ID
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset,➥

adLockOptimistic
If rs.EOF = False Then rs.MoveFirst

End If
rs.Fields("FirstName").Value = FirstName
rs.Fields("LastName").Value = LastName
rs.Update
If blNew Then

intID = rs.Fields("PersonID").Value
blNew = False

End If
rs.Close
Set rs = Nothing
End Function

Similarly, Listing 5-24 shows the new Delete function added to the Person class.

Listing 5-24. Delete Function in the Person Class

Friend Function Delete()
Dim strSQL As String
strSQL = "DELETE * FROM tblPeople WHERE PersonID=" & ID
If blNew = False Then CurrentProject.Connection.Execute strSQL
End Function

■Note Adding Friend before Function makes this function visible inside your project but not outside it.

You now need to return to frmPeople and add in the AfterUpdate commands shown in
Listings 5-25 through 5-27.

Listing 5-25. txtFirstName AfterUpdate

Private Sub txtFirstName_AfterUpdate()
CurrentPerson.FirstName = Me.txtFirstName
DisplayPerson
End Sub

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA104

Listing 5-26. txtFullName AfterUpdate

Private Sub txtFullName_AfterUpdate()
CurrentPerson.FullName = Me.txtFullName
DisplayPerson
End Sub

Listing 5-27. txtLastName AfterUpdate

Private Sub txtLastName_AfterUpdate()
CurrentPerson.LastName = Me.txtLastName
DisplayPerson
End Sub

You will then need to add three additional controls to frmPeople. Listings 5-28 and 5-29
show the click event code for the command buttons.

Listing 5-28. Delete Command

Private Sub cmdDelete_Click()
Dim intPos As Long
Select Case Me.SortOrder.Value

Case 1
intPos = CurrentPerson.FirstSortOrder

Case 2
intPos = CurrentPerson.LastSortOrder

End Select
CurrentPerson.Delete
Set CurrentPerson = Nothing
Set PeopleClass = Nothing
Set PeopleClass = New People
If intPos > PeopleClass.PeopleCount Then intPos = PeopleClass.PeopleCount
Select Case Me.SortOrder.Value

Case 1
Set CurrentPerson = PeopleClass.PersonByFirstName(intPos)

Case 2
Set CurrentPerson = PeopleClass.PersonByLastName(intPos)

End Select
DisplayPerson
End Sub

Listing 5-29. New Command

Private Sub cmdNew_Click()
Set CurrentPerson = New Person
DisplayPerson
Me.txtFirstName.SetFocus
Me.cmdNew.Enabled = False
End Sub

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 105

The Save command is slightly different because if you are adding a new record, you need
to insert it into the existing records while remaining on the current record. Listing 5-30 shows
the new property you need to add to the People class.

Listing 5-30. New Property for the People Class

Property Get PersonByID(intID As Long) As Person
Set PersonByID = PeopleByFirst("ID:" & intID)
End Property

You can then create the Save routine shown in Listing 5-31.

Listing 5-31. Save Command

Private Sub cmdSave_Click()
Dim intID As Long
CurrentPerson.Save
intID = CurrentPerson.ID
Me.cmdNew.Enabled = True
Set PeopleClass = Nothing
Set PeopleClass = New People
Set CurrentPerson = PeopleClass.PersonByID(intID)
DisplayPerson
End Sub

Full Code Listings for Class Examples
For easy reference and double-checking your work, I have included the fully working code
examples in this section. I present the listings in the order you might tackle creating a simi-
lar application: Listing 5-32 shows the entire Person class for this example, Listing 5-33
shows the People class, and Listing 5-34 shows the code behind frmPeople. The listings
work—I know because I typed every last one of them into Access. Provided you follow the
instructions in creating frmPeople and name each of your objects as instructed, you will
have no problems with this code. Play, experiment, and enjoy. I know I plan on doing that
with VBA classes and Access 2007.

Listing 5-32. People Class

Option Compare Database
Dim PeopleByFirst As Collection
Dim PeopleByLast As Collection
Property Get PersonByID(intID As Long) As Person
Set PersonByID = PeopleByFirst("ID:" & intID)
End Property
Property Get PeopleCount() As Long
PeopleCount = PeopleByFirst.Count
End Property

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA106

Property Get PersonByFirstName(intOrder As Long) As Person
Set PersonByFirstName = PeopleByFirst(intOrder)
End Property
Property Get PersonByLastName(intOrder As Long) As Person
Set PersonByLastName = PeopleByLast(intOrder)
End Property
Private Sub GetPeople()
Dim rs As ADODB.Recordset
Dim strSQL As String
Dim ps As Person
Dim i As Long
Set PeopleByFirst = New Collection
Set PeopleByLast = New Collection
Set rs = New ADODB.Recordset
strSQL = "SELECT PersonID, FirstName, LastName FROM tblPeople ORDER BY FirstName"
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockReadOnly
If rs.EOF = False Then rs.MoveFirst
i = 1
Do Until rs.EOF = True

Set ps = New Person
ps.StorageOnly = True
ps.ID = rs.Fields(0).Value
ps.FirstName = rs.Fields(1).Value
ps.LastName = rs.Fields(2).Value
ps.FirstSortOrder = i
PeopleByFirst.Add ps, "ID:" & ps.ID
Set ps = Nothing
rs.MoveNext
i = i + 1

Loop
rs.Close
Set rs = Nothing
Set rs = New ADODB.Recordset
strSQL = "SELECT PersonID, LastName FROM tblPeople ORDER BY LastName"
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockReadOnly
If rs.EOF = False Then rs.MoveFirst
i = 1
Do Until rs.EOF = True

Set ps = PeopleByFirst("ID:" & rs.Fields(0).Value)
ps.LastSortOrder = i
PeopleByLast.Add ps, "ID:" & ps.ID
Set ps = Nothing
rs.MoveNext
i = i + 1

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 107

Loop
rs.Close
Set rs = Nothing
End Sub
Private Sub Class_Initialize()
GetPeople
End Sub

Listing 5-33. Person Class

Option Compare Database
Public FirstName As String
Public LastName As String
Public FirstSortOrder As Long
Public LastSortOrder As Long
Public StorageOnly As Boolean
Dim intID As Long
Dim blNew As Boolean

Property Get FullName() As String
FullName = FirstName & " " & LastName
End Property

Property Let FullName(strEnter As String)
Dim strArray() As String
strArray = Split(strEnter, " ")
FirstName = strArray(0)
LastName = strArray(1)
End Property

Property Get ID() As Long
ID = intID
End Property
Property Let ID(intEnter As Long)
intID = intEnter
blNew = False
If Not StorageOnly Then

Dim rs As ADODB.Recordset
Dim strSQL As String
strSQL = "SELECT FirstName, LastName FROM tblPeople WHERE PersonID=" & ID
Set rs = New ADODB.Recordset
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockReadOnly
If rs.EOF = False Then

rs.MoveFirst
FirstName = rs.Fields(0).Value
LastName = rs.Fields(1).Value

End If

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA108

rs.Close
Set rs = Nothing

End If
End Property

Private Sub Class_Initialize()
StorageOnly = False
blNew = True
End Sub

Friend Function Delete()
Dim strSQL As String
strSQL = "DELETE * FROM tblPeople WHERE PersonID=" & ID
If blNew = False Then CurrentProject.Connection.Execute strSQL
End Function

Friend Function Save()
Dim rs As ADODB.Recordset
Dim strSQL As String
Set rs = New ADODB.Recordset
If blNew Then

rs.Open "tblPeople", CurrentProject.Connection, adOpenKeyset, ➥

adLockOptimistic, adCmdTableDirect
rs.AddNew

Else
strSQL = "SELECT PersonID, FirstName, LastName FROM tblPeople WHERE ➥

PersonID=" & ID
rs.Open strSQL, CurrentProject.Connection, adOpenKeyset, adLockOptimistic
If rs.EOF = False Then rs.MoveFirst

End If
rs.Fields("FirstName").Value = FirstName
rs.Fields("LastName").Value = LastName
rs.Update
If blNew Then

intID = rs.Fields("PersonID").Value
blNew = False

End If
rs.Close
Set rs = Nothing
End Function

Listing 5-34. frmPeople VBA Module

Private Sub cmdSave_Click()
Dim intID As Long
CurrentPerson.Save
intID = CurrentPerson.ID

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 109

Me.cmdNew.Enabled = True
Set PeopleClass = Nothing
Set PeopleClass = New People
Set CurrentPerson = PeopleClass.PersonByID(intID)
DisplayPerson
End Sub
Private Sub Form_Load()
Set PeopleClass = New People
Set CurrentPerson = PeopleClass.PersonByFirstName(1)
DisplayPerson
End Sub
Private Sub DisplayPerson()
Me.txtFirstName = CurrentPerson.FirstName
Me.txtLastName = CurrentPerson.LastName
Me.txtFullName = CurrentPerson.FullName
Select Case Me.SortOrder.Value

Case 1 ' Sorted by first name
Me.lblRecordDisplayed.Caption = "Record " & ➥

CurrentPerson.FirstSortOrder & " of " & PeopleClass.PeopleCount
If CurrentPerson.FirstSortOrder = 1 Then

Me.cmdNextRecord.SetFocus
Me.cmdPreviousRecord.Enabled = False

Else
Me.cmdPreviousRecord.Enabled = True

End If
If CurrentPerson.FirstSortOrder = PeopleClass.PeopleCount Then

Me.cmdPreviousRecord.SetFocus
Me.cmdNextRecord.Enabled = False

Else
Me.cmdNextRecord.Enabled = True

End If
Case 2 ' Sorted by last name

Me.lblRecordDisplayed.Caption = "Record " & ➥

CurrentPerson.LastSortOrder & " of " & PeopleClass.PeopleCount
If CurrentPerson.LastSortOrder = 1 Then

Me.cmdNextRecord.SetFocus
Me.cmdPreviousRecord.Enabled = False

Else
Me.cmdPreviousRecord.Enabled = True

End If
If CurrentPerson.LastSortOrder = PeopleClass.PeopleCount Then

Me.cmdPreviousRecord.SetFocus
Me.cmdNextRecord.Enabled = False

Else
Me.cmdNextRecord.Enabled = True

End If
End Select

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA110

End Sub
Private Sub SortOrder_Click()
DisplayPerson
End Sub
Private Sub txtFirstName_AfterUpdate()
CurrentPerson.FirstName = Me.txtFirstName
DisplayPerson
End Sub
Private Sub txtFullName_AfterUpdate()
CurrentPerson.FullName = Me.txtFullName
DisplayPerson
End Sub
Private Sub txtLastName_AfterUpdate()
CurrentPerson.LastName = Me.txtLastName
DisplayPerson
End Sub

Summary
In this chapter, I introduced you to VBA classes. I hope what you have found in this chapter
gets you started on the road to VBA classes. I can tell you a great place to begin learning
about classes is the AccessD database developers community, where developers at the cut-
ting edge of Access programming like John Colby and Drew Wutka hang out, giving of their
time and skill on a daily basis.

CHAPTER 5 ■ INTRODUCTION TO CLASSES IN VBA 111

RAD Development for
SQL Server 2000/2005 Express

One of the major advantages of Microsoft Access for developers and power users has long
been the ability of Access to act as a Rapid Application Development (RAD) environment
when working with SQL Server. This chapter looks at working with SQL Server as the back-end
data store. We will look at upsizing to SQL Server 2000 or SQL Server 2005 Express Edition and
have a look at some of the other features available as part of the SQL Server 2005 Express
product including Reporting Services. Chapter 7 looks at working with SQL Server 2005
Express in more detail.

■Note The Chapter6 database (available as part of the downloads for this book at http://www.apress.
com) contains all the examples from this chapter.

As this is a single chapter, it’s difficult to cover everything on the topic at hand, but it does
provide an overall flavor of what’s involved in upsizing to SQL Server. Also, given the removal
of support for Microsoft SQL Server Desktop Engine (MSDE) in Vista by Microsoft, it is impor-
tant that if you do need to move your databases from MSDE, you have at least a basic under-
standing of MSDE’s replacement.

As an aside, the vast majority of Access database applications do not require upsizing to
SQL Server of any flavor. Some may require a rewrite, some may require a complete redesign,
but the databases that actually require an upsize are few. Databases that have become widely
used and provide a core business function are prime candidates for an upsize, but only if justi-
fied in terms of business provision and cost.

Access 2007 has one major change when moving to SQL Server. The focus is on using
ODBC-linked tables as opposed to creating an Access Data Project (ADP). ADPs are still avail-
able as a second-choice option, and in my opinion they offer a superb feature set when
working with SQL Server 2000/2005. (Most of this chapter also applies to upsizing to SQL
Server 2005 Express.)

113

C H A P T E R 6

■Note When working with a linked application, I often use an ADP in order to take advantage of the
ADP RAD GUI tools used to create stored procedures and other objects.

For server-side data, there is also the option of using SharePoint Server as the data
store. This has limits, and for a heavy-duty data-driven business application, it may not be
suitable. In the majority of cases, developers will use one of two back-end databases, SQL
Server 2000 or increasingly SQL Server 2005 Express Edition. SQL Server 2005 Express is
becoming the database engine of choice for Access developers who need a little more guts
in their data application. In addition, as I discovered recently, if you need a quick-and-dirty
web application, it’s hard to beat the development time achieved using Access 2007 and
Visual Web Developer 2005 Express. Chapter 12 looks at using Access 2007 as the back-end
data store for a small application created using Visual Web Developer 2005 Express. This will
be a real application, small and unsophisticated, but one which demonstrates the ease of
use of the Visual Web Developer Express tools.

There are many reasons to upsize your database to SQL Server. For example, you may find
you have increased users, and the application may be slowing down as a result. Or, increased
security may be required due to legal changes; for example, in the UK the Data Protection Act
requires appropriate security be taken with personal information, and in the US, Sarbanes-
Oxley financial control requirements are now standard. The following are some of the main
reasons many developers find they have to upsize MS Access databases:

• Increased database capacity

• Improved backup and recovery

• Integration with Microsoft Windows Authentication

• Interaction with a back end using .NET or Internet-based applications

• Broadened development base

• Improved network performance

■Note The fifth bullet point is increasingly becoming one of the main reasons to upsize. More and more
organizations are being required to reduce the number of smaller satellite data stores in use and to centrally
pool data. In this way, organizations can be more flexible in how they access such data via the Internet,
SharePoint, or Access. Of course, there is also a long-term cost saving associated with having data held
centrally.

Another reason to upsize is the continual pressure placed on Access developers from sys-
tem administrators and IT managers to move data onto “real” database back ends. In my own
field, I have noticed that this pressure is increasing as more and more applications are pulled
into the center for various reasons, including decreasing maintenance budgets, central man-
agement of systems, and control of data. In many industries, Access is simply used as a data

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS114

store that is populated overnight using SQL Server Data Transformation Services (DTS) to
download updated data files or indeed complete tables for users to work with.

Options When Working with SQL Server
There are three main choices available to Access developers who need to use SQL Server:

• Transfer your existing Access tables to SQL Server, retaining the Access front-end.

• Link to an existing SQL Server database using Access as the front end.

• Create an Access Data Project, moving almost totally into the world of SQL Server.

■Note If you expect to move your application to SQL Server, it is advisable to think of this at the design
stage and plan accordingly. For example, do not use spaces in table names, and if you want to be able to
edit and insert data, make sure each and every Access table has a unique index, or else it will be read-only
when moved to SQL Server.

Which option you choose depends on what it is you want to do, and for the majority of
applications, linking to the SQL Server table from Access is adequate. ADPs can be used, but
this moves you out of the pure Access world into full-blown SQL Server development environ-
ments. However, you will have the advantage of working within an application development
optimized for SQL Server, while at the same time using familiar objects such as forms and
reports and VBA to build your application. On the other hand, working with linked tables
keeps your feet firmly in the Access world of queries and other familiar Access objects. One
other major advantage to working in a linked application is that there are no restrictions on
what you can link to. An ADP, on the other hand, is a pure Microsoft SQL Server solution.

SQL Server DTS is also a great tool that can be used to bring your data into SQL Server
2000. One of its chief benefits is that it permits you to manipulate the data on the way into the
server (for example, changing field sizes and altering data types yourself). You can import
entire tables or use queries in a wizard-driven interface to restrict the data being imported.
The DTS Wizard will not import your relationships, and they will need to be re-created on SQL
Server, but this is a small price to pay for the flexibility offered by this tool. Running the DTS
Wizard is discussed later in this chapter in the section “Importing Data with Data Transfor-
mation Services.” For SQL Server 2005 Express, DTS has been replaced with SQL Server Inte-
gration Services; however, you will find that DTS still plays a major role in the new services.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 115

DOWNLOADING DTS FOR SQL SERVER 2005 EXPRESS

DTS is not available with the initial installation of SQL Server 2005 Express. However, you can download the
DTS runtime. The runtime allows you to run existing DTS packages with SQL Server 2005 Express. The run-
time is part of the feature pack for Express 2005 and can be downloaded from http://www.microsoft.
com/downloads/details.aspx?familyid=d09c1d60-a13c-4479-9b91-
9e8b9d835cdc&displaylang=en.

Comparing Access and SQL Server
SQL Server 2000 is still widely used in many corporations, and the majority of Access develop-
ers will find it available. However, we will also be looking at the structure of SQL Server 2005
Express here, as it is expected that this option, which is freely available from Microsoft, will be
increasingly used for upsizing projects.

SQL Server offers Access developers a somewhat familiar development environment, and
you will find many features similar to, but more complex than, those in Access; for example,
the relationship designer, query builders, tables, columns, and relationships all work in much
the same way as they do in Access. There are many differences, of course, some minor and
some major. In this section, I will highlight some of the similarities and differences you will
find between Access and the versions of SQL Server this chapter focuses on.

SQL Server 2005 Express Edition is the replacement for MSDE, the free version of the SQL
Server data engine long made available by Microsoft. However, unlike previous versions, the
performance of SQL Server 2005 Express is not restricted. Microsoft has also provided a free
management interface that is similar in many ways to the Enterprise Manager used by the full
version of SQL Server.

■Note SQL Server 2005 (commercial version) is covered only in minor detail here, as many Access devel-
opers may not have access to this professional version.

SQL Server 2005 Express is a major improvement over MSDE. SQL Server 2005 Express
has its own management interface, similar in many ways to the Enterprise Manager, available
with the full version of SQL Server. The Express Management tool can also be used with SQL
Server 2000 and MSDE 2000. Access developers using SQL Server 2005 Express can now man-
age the database directly via the GUI rather than fight with command-line arguments. SQL
Server 2005 Express is also not restricted in any way, unlike MSDE, which has a restriction
when more than five threads were executing at any one time. There are still practical limita-
tions to SQL Server 2005 Express, but it does provide a free and improved database engine for
Access developers. It is therefore another tool that can be added to the arsenal of every devel-
oper.

Table 6-1 shows some of the features of SQL Server 2005 Express compared to MS Access.
SQL Server 2005 Express can be downloaded from http://msdn.microsoft.com/vstudio/
express/sql/.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS116

Table 6-1. SQL Server 2005 Express Feature Set

Feature Access SQL Server 2005 Express

Automated tuning No Yes

GUI manager Yes Yes

Stored procedures No Yes

Triggers No Yes

User-defined functions No Yes

.NET CLR Support No Yes, but must be turned on

Full text search No Yes

Reporting Services No Yes

Code access security No Yes

Windows Authentication No Yes

Free No Yes

DB size 2GB 4GB

Integration with VS 2005 No Yes

One of the features that may attract Access developers to SQL Server 2005 Express is the
ability to code stored procedures in one of the .NET languages, as Express can integrate with
the common language runtime (CLR) hosted within the database software.

Let’s take a closer look at specific areas of difference between Access and SQL Server,
starting with data types.

Data Type Differences
A table is a table is a table, right? Wrong—well, sort of. In Access, a table is used to store data,
and the same is true of a table in SQL Server 2000. However, some things are different, for
example, data types. SQL Server provides a more comprehensive range of data types than

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 117

CLR SUPPORT

SQL Server 2005 supports the creation of database objects such as stored procedures using any of the .NET
languages. I will not be providing coverage on CLR integration with SQL Server 2005 Express because, like
many of the readers of this book, I am also just starting out on the path to writing managed code in SQL
Server. I should also say that many SQL Server 2005 DBAs do not support the use of managed code inside
the database for performance, design, and scalability. From the Access developer’s point of view, I think that
moving to SQL Server 2005 Express is a big enough headache without having to learn C# and Visual Studio
2005 as well. For those of you who would like to get started on this road there is a good basic tutorial avail-
able at http://www.aspfree.com/c/a/MS-SQL-Server/NET-CLR-Programming-with-SQL-
Server-2005-Made-Simple/1/.

Access, and it is important to know which ones to use and which ones equate to a similar data
type in Access. This is particularly true when you run the Microsoft Access Upsizing Wizard,
which converts data types automatically. Table 6-2 shows the differences in data types between
the programs.

Table 6-2. Access Data Types When Upsized to SQL Server 2000

Access 2007 Data Types SQL Server 2000 Upsized Data Type

Text char, nchar, varchar, nvarchar

Memo text, ntext

Integer smallint

Long integer integer

Single real

Double float

Replication ID uniqueidentifier

Decimal decimal

Date/Time smalldate, datetime, timestamp

Currency smallmoney, money

AutoNumber int

Yes/No bit (yes =1 and no =0)

OleObject image

Hyperlink N/A

None binary, varbinary

Attachment N/A

It’s also worth noting that SQL Server offers you much more choice when using certain
data types; for example, SQL Server offers several alternatives to the single Access text data
type: char, nvarchar, varchar, and nchar. Note also that timestamp is not a true date/time data
type, as it is used to record data changes. It’s useful to have a timestamp column in SQL Server
tables. This saves Access scanning every column for changes when doing updates. Instead, it
can check the timestamp column.

In addition, SQL Server 2005 Express also contains the new data types available with the
full versions of SQL Server 2005. These data types are generally designed to store large amounts
of blog data such as images (data type varbinary(max)). Also, there is a new XML data type that
allows you to store complete XML documents within the database.

Delimiters
One of the main gotchas for Access developers who turn to SQL Server is the differences in
delimiters. Table 6-3 shows the various delimiters used by SQL Server. In the case of mathe-
matical operators, they are the same in Access and SQL Server 2000/2005.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS118

Table 6-3. Delimiters in SQL Server

Delimiter Example

Date delimiter ‘

String delimiter ‘

Concatenation + (Access developers sometimes use this.)

Char wildcard %

Not equal !=, <>

Not less than !<, >=

Not greater than !>, <+

■Note The use of the % (percentage sign) is a major reason for query failure when a database has been
upsized. Before you upsize, it’s useful to check out all VBA code doing a simple find and replace of both the
* and & characters used by Access with % and +. This saves some work later on.

System Tables
As you know, Access contains it own system tables. SQL Server does the same, plus a little bit
more. As well as your database, SQL Server also contains its own system databases, each of
which performs a specific role in the system:

Master database: The master database contains information on all databases on the sys-
tem. This includes information on security (for example, user logins, server configuration,
data file locations, and system procedures).

Model database: This is the template database for all new databases created on the server.
Each database created on SQL Server will inherit the features contained within the model
database. The model database can be changed to include specific features you may
require in all new databases. It’s worth backing up before you make any changes, just in
case something goes wrong.

Tempdb: Tempdb exists when the server is started and removed when shut down. Tempdb
is used to hold temporary tables and stored procedures.

MSDB: This database stores information on backups and restores. It also maintains infor-
mation used by SQL Server Agent (for example, job scheduling).

Security
Access security is poor when compared to the security features available using SQL Server
2000/2005. Basically, there are three levels to SQL Server security: logins to the server, permis-
sions on database objects, and permissions on individual objects. In practice, a user is granted
access to the server and then granted permissions to use one or more databases. The user can

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 119

have permissions assigned directly or can be added to an SQL Server group to which permis-
sions have already been assigned.

■Tip It is much easier to manager users and permissions by using groups. Permissions assigned to a
group are inherited by all members of the group. In the same way, permissions can be revoked from the
group and hence the individuals. Much easier to manage than working with 1000 individual user accounts.

SQL Server login accounts can work in Windows Authentication mode (that is, the user’s
Windows Account details are used by SQL to check permissions for login). For example, an
Active Directory group could be assigned login permission to SQL Server. All members of the
group thus inherit the permissions. SQL Server also supports Mixed Mode security (that is,
using Windows Authentication security together with SQL Server’s own security system). If
using SQL Server security, users will be prompted for a username and password before they
can log in.

It is also possible to manipulate logins via the Access interface using SQL Distributed
Management Objects (SQLDMO). The Chapter6 database contains an example form,
frmLogin, that requests a username and password from the user. Basically, all that is required
is for you to create a connection dynamically using VBA and execute the code to connect. The
frmLogin command button does just that. Figure 6-1 shows the final form required to log in.

Error control has not been added to keep the procedure clear—many examples show the
use of the sa password or even a blank password. Do not take either of these approaches. Create
a new account on SQL Server with the appropriate permissions to carry out the upsizing task.

Before looking more closely at frmLogin, let’s examine the connection string SQL Server
is expecting.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS120

Figure 6-1. Using a form to log in to SQL Server

There are several forms that can be used to create and pass the connection information to
SQL Server, depending on the method used for the connection and the security context being
used. The following connection strings are based around ODBC, and which one you choose
will depend on the security model being used to log in to the server.

Standard security (no DSN):

Conn.Open "Driver={SQL Server};" & ➥

"Server=Your SQL Server Name;" & ➥

"Database=Your Database Name;" & ➥

"Uid=UserName;" & ➥

"Pwd=Your Password"

Windows Authentication (trusted connection—no DSN):

Conn.Open "Driver={SQL Server};" & ➥

"Server=Your SQL Server Name;" & ➥

"Database=Your Database Name;" & ➥

"Trusted_Connection=yes"

Using a DSN:

Conn.Open "DSN=Your System DSN Name;" & ➥

"Uid=Your Username;" & ➥

"Pwd=Your Password"

Listing 6-1 uses a DNS-less connection and Mixed Mode SQL Server security. Completing
the connection string is simply a matter of passing the appropriate values to the VBA function
via Access text boxes to create the connection string. The code to create this is shown in the
listing and is executed via command button.

Listing 6-1. Creating a Connection String

Dim strSQLServer As String, strDatabase As String,
strUsername As String, strPassword As String
Dim strConnect As String

strSQLServer = Me!txtserver
strDatabase = Me!txtdatabase
strUsername = Me!txtuser
strPassword = Me!txtpass

strConnect = "ODBC={SQL Server)" ➥

& ";SERVER=" & strSQLServer ➥

& ";DATABASE=" & strDatbase ➥

& ";UID=" & strUsername ➥

& ";PWD=" & strPassword & ";"

Running a Debug.Print statement to the Intermediate window shows the connection
string created (based on my input, of course):

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 121

ODBC=(SQL Server);
SERVER=MARTIN\BARTRACKS;
DATABASE=Pubs;
UID=mwpreid;
PWD=mwpreid;

One drawback to this example is that users must enter the SQL Server name and then the
database name. It’s unlikely that your users will have this information, nor in fact should they
be expected to have it. There are a couple of ways to resolve this issue, but generally you can
hard-code the server and database names into the code, as in frmLoggin2. The Chapter6 data-
base contains the code and form example to achieve this. In this case, both the database and
the server details are already created as default values within the form.

For completeness and to illustrate some of SQLDMO’s features, Listing 5-2 in the next
section demonstrates how you can use SQLDMO to enumerate both an SQL Server and the
objects on the server. In this way, you can present such information to the user as required.

■Tip You will need a reference set to the Microsoft SQLDMO Object Library for the following examples.
SQLDMO is the object model used to interact with many of the features made available using Enterprise
Manager. Enterprise Manager is the GUI tool used to manage SQL Server 2000 databases. For SQL Server
2005, SQLDMO has been replaced with SQL Management Objects (SMO), and for management you will
download the SQL Server Management Studio Express.

Using SQLDMO
SQL Data Management Objects provide you with an object model with which to manipulate
the management of an SQL Server.

Using SQLDMO it is a fairly straightforward process to return the SQL Server names (we
will briefly look at SMO, its replacement, in the sidebar “Enumerating SQL Server Database
Names”). Listing 6-2 will retrieve a list of all available servers on the system and add the server
names to an Access list box. The list box row source property must be set to the value list for
this to work. lstServers is the name of an Access list box placed onto a form.

Listing 6-2. Enumerating SQL Server Names

Dim oApp As SQLDMO.Application
Dim oNames As SQLDMO.NameList
Dim oName As Variant

Set oApp = New SQLDMO.Application
Set oNames = oApp.ListAvailableSQLServers()

For Each oName In oNames
lstServers.AddItem oName

Next

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS122

Putting It All Together to Create a Mixed Mode Login Form
Listing 6-3 outlines an example that permits a user to enter a username and password and log
in to an SQL Server 2000 application. Both the server and the database names are hard-coded
into the open event of the form for simplicity. Figure 6-2 shows the resulting form.

Listing 6-3. Creating a Login Form Procedure

Dim strSQLServer As String, strDatabase As String,
strUsername As String, strPassword As String
Dim strConnect As String

If IsNull(Me!txtuser) Then
strError = "Enter Your Username."
MsgBox strError, vbCritical, "Username Required"
Me!txtuser.SetFocus
Me.txtuser.BackColor = 255 'RED

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 123

ENUMERATING SQL SERVER DATABASE NAMES

The following code will list all the database names on the stated server to the Intermediate window:

Dim server As SQLDMO.SQLServer
Dim dbnames As SQLDMO.Database

Set server = New SQLDMO.SQLServer
With server
.LoginSecure = True
.Connect "MARTIN\BARTRACKS"
End With

For Each dbnames In server.Databases
Debug.Print dbnames.Name

Next dbnames

You could have bypassed the ODBC connection string and went for a pure SQLDMO solution, passing
the server name, username, and password to the Connect method of SQLDMO. However, I wanted to dem-
onstrate the features of creating a generic connection string, as this will prove useful when working with
Access and other engines.

SMO is the replacement for SQLDMO and is used by SQL Server 2005. SMO provides many of the same
features as SQLDMO and should be backwards compatible. SMO is actually a .NET assembly and therefore
has many features in common with other .NET object models including framework integration. SMO is the
preferred method when working with SQL Server 2005.

ElseIf IsNull(Me!txtpass) Then
strError = "Enter Your Password."
MsgBox strError, vbCritical, "Password Required"
Me!txtpass.SetFocus
Me!txtpass.BackColor = 255

Else

strSQLServer = Me!txtserver
strDatabase = Me!txtdatabase
strUsername = Me!txtuser
strPassword = Me!txtpass
' Create the connection string

strConnect = "ODBC DRIVER ={SQL Server)" ➥

& ";SERVER=" & strSQLServer ➥

& ";DATABASE=" & strDatabase ➥

& ";UID=" & strUsername ➥

& ";PWD=" & strPassword & ";"

End If

When the form opens, you set the values for the SQL Server and the database to be used
to the respective values. All the user must do is enter the correct username and password.

The code behind the login command button is basic and straightforward. You ensure that
the user enters a username and password. Failure to enter the required data is checked using
the ISNULL function, which returns an error if no data is entered and turns the text box red (as
a visual clue); the user can then enter the correct information.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS124

Figure 6-2. Logging in to SQL Server

■Tip Remember, you will need to change the server and database names to reflect those on your own
system.

Upsizing to SQL Server 2000
Access 2007, in common with all recent versions of Access, includes the Upsizing Wizard,
which will take your existing database and convert its tables to SQL Server 2000 and SQL
Server 2005 (both Express and Enterprise Editions). Once the wizard is finished, you will be
left with an unchanged Access front end containing new tables linked to the SQL Server data-
base. The majority of all other objects will remain unchanged, functioning as before. The
wizard will also leave your existing tables in place suffixed with the text _local.

For this example, I am going to use a real-world application for the upsizing process.
BarTracks (http://www.bartracks.com) is an asset management application developed in
Access 2003 and widely used by customers worldwide. The main reason I do this is because
many books use Northwind or some other fictional database to describe this process. I want
to use a real-world application and thus uncover real-world issues and problems. The Bar-
Tracks application is comprised of a large number of unbound forms populated using DAO
recordsets. In order to protect the commercial code, I will be rewriting procedures as
required, so you will not be looking at “real” code. However, the table structures and design
will be the real-world examples. In case you are the suspicious sort, understand that the
database has not been adjusted in any way for this process. The only change is that an early
version will be used.

■Note BarTracks uses a number of hand-held scanners as part of its application, but you will not be look-
ing at this area. At this point, all we are interested in is the database structure and any issues that may arise
during that process. Please note that any commercially sensitive information has been removed. When an
issue is discovered, it will be resolved and demonstrated using the Chapter6 database.

Creating a new linked application is a multistage process, and as usual it is now my stan-
dard practice to run SSW Upsizing Pro, a tool that checks your database before you upsize it
(available at http://www.ssw.com.au), on the MDB file to be upsized. Even if mainly done as a
time-saving or peace-of-mind action, this is always worthwhile in my opinion. Of course, you
can download various VBA procedures from the Web to do this or indeed write your own.

■Tip If a table has no primary key, it will be read-only to SQL Server. So it pays to check (unless, of course,
you want a table to be read-only).

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 125

Given this is a professionally designed application, Upsizing Pro returns two common
errors: zero length and missing unique index. The actual error messages returned are
detailed here:

Warning: Field tblXXX!fldUserXXX is a text field and 'Allow Zero Length' set to➥

NO The Microsoft Upsizing Wizard SHOULD upsize this to an nvarchar(varchar) ➥

column with 'Allow Zero Length' = NO However it incorrectly will upsize ➥

this to a nvarchar(varchar) column with 'Allow Zero Length' = YES More: ➥

http://www.ssw.com.au/ssw/kb/KB.asp?KBID=q711400

Warning: Table tblXXX does not have a unique index. It will be upsized but will ➥

be read-only from Access unless a unique index or primary key is added (optional)

This particular database will upsize with little additional work on my behalf, as far as the
table structures are concerned. However, this is not always the case. For comparison, I tried run-
ning Upsizing Pro against Northwind.mdb. In the case of the Northwind database, I received 32
warning messages. In addition to the warnings, as earlier, some tables where found to include
spaces in the table names. SQL Server does not permit spaces in table names, so avoid this nam-
ing convention. Many of the example databases provided with Access 2007 contain field names
including spaces, and these should be changed if you are moving them to SQL Server.

The key to reducing errors is obvious: taking time to design an Access application and
applying professional development techniques from the start of the project. Many SQL
Server and Oracle developers view Access as a “toy” database because in many cases the
applications they see are not written by developers. Generally, they are poorly designed
applications written to solve a simple problem (for example, a company mailing label data-
base). Almost all Access developers I work with apply the same techniques to their Access
databases as they do to SQL Server systems: no spaces in table names, a proper naming con-
vention for Access objects, choosing the right data types for the job, and applying Access
Referential Integrity when building relationships. But perhaps the most important factor is
planning from the start for future growth and perhaps the future use of SQL Server.

In my previous coauthored book, SQL: Access to SQL Server (Apress, 2002), I stated that
ADPs were the way to go with upsizing projects (we will look at ADPs later in this chapter and
again in Chapter 7). ADPs are almost fully functional with SQL Server 2005 (both Enterprise
and Express versions). The main proviso is that they will work as before, provided you have
not used any of the new SQL Server data types.

■Note Always bear in mind the upsizing tools in Access are there to deal with data. Everything else is for
you to do, and there is no substitute for good planning.

Now that you have checked the MDB file and, of course, fixed any issues, you can go
ahead and run the Access Upsizing Wizard, which you’ll do next. The preceding errors can be
fixed manually once the database has been upsized using the SQL Server design tools.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS126

Running the Upsizing Wizard
For this example, I am using Windows Authentication and have logged on the system using an
Administrator account. SQL Server provides two modes of security, its own and Windows
Authentication.

To run the Upsizing Wizard, follow these steps:

1. Click the Database Tools tab.

2. Click the SQL Server icon.

3. Accept the default on the first Wizard screen—Create New Database.

4. Click Next.

5. Select the name of the SQL Server you would like to use from the drop-down list.

6. Enter a name for the soon-to-be-upsized SQL Server database.

7. Click Next. The wizard will change the name of your database if it already exists on
SQL Server.

8. Select the tables to upsize to SQL Server.

■Note Tables with a suffix of _local will be ignored by the wizard.

9. Click Next.

Figure 6-3 shows the next screen in the wizard-driven process. In this screen, you can
choose which objects you would like to upsize in addition to the actual table.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 127

Figure 6-3. Upsizing objects

The objects you can upsize are indexes, validation rules, and table relationships, and we’ll
look at each in more detail next.

Indexes
Table 6-4 shows how Access indexes will be upsized.

Table 6-4. Index Upsizing

SQL Server 2005
Access Index SQL Server 2000 Index Express Index

None None None

Yes (duplicates) Nonclustered No change

Yes (no duplicates) Unique nonclustered No change

Primary key Primary key nonclustered, unique nonclustered No change

You must manually make the nonclustered primary key a clustered key within SQL Server
using either T-SQL or Enterprise Manager. The following SQL statement will create a single
table with an incrementing (AutoNumber) primary key and a clustered index. The following
T-SQL statement will alter the same table and create a clustered index. Note that first you
must delete or drop the existing index before creating the new clustered index. The DROP Index
statement takes the following form:

DROP Index tblStudent.Student_PK

Once the index has been removed, you can create a new clustered index by executing the
following SQL statement:

ALTER TABLE [dbo].[tblStudent] ADD CONSTRAINT [Student_PK] PRIMARY KEY CLUSTERED
([StudentRef] ASC)

Validation Rules
Validation rules will be exported to SQL Server as constraints. For example, the following
is reported by the wizard for a DateTime field with a table validation rule set as >=Now().
sp_addextendedproperty is an SQL Server system stored procedure that will add an
extended property to the table. Listing 6-4 shows a validation rule re-created from the
Access table constraint.

Listing 6-4. Upsizing a Validation Rule

ALTER TABLE [tblProps] ADD CONSTRAINT
[CK tblProps fldDateofBirth] CHECK
(fldDateofBirth>=getdate())
EXEC sp_addextendedproperty
N'MS_ConstraintText', N'Must be greater
than today', N'user', N'dbo', N'table',
N'tblProps', N'constraint', N'CK tblProps

Now() is replaced with an SQL function, GetDate(), which is functionally equivalent.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS128

Table Relationships
Relationships will be created as they exist in Access and copied across to the SQL Server database.

You will also be asked to include a timestamp field with each table and offered an option to
only upsize the tables, ignoring any data content. The timestamp is useful, as it records the last
change to a row of data and can help with reducing overheads in query execution, updates, and
inserts.

Issues Before, During, and After Upsizing
Creating a new SQL Server database and linking to it is a fairly straightforward process, espe-
cially if you are working from a blank canvas. Existing databases should be comprehensively
checked out before you begin the upsizing process. As I mentioned earlier, a good tool for this
is Upsizing Pro. Upsizing Pro will examine your Access database and report on any issues that
may inhibit the process. This allows you to fix any issues before starting the task. Some of the
main areas you should be looking at are as follows:

Spaces in field names: This is important with this release of Access, as Microsoft is
emphasizing ease of use and compatibility with SharePoint. Thus users may be
encouraged to use spaces in field names to fit in with the SharePoint model.

Dates: The date range used by Access is different from that used by SQL Server. It is
important that all tables be checked for dates outside the SQL Server–supported ranges
of 1 Jan 1793 to 31 December 9999.

Indexing: SQL Server offers much more flexibility in terms of indexing than Access.
There are two index types available: clustered and nonclustered. Each table can have
a single clustered index and multiple nonclustered indexes. You will have to set the
index manually once the tables are upsized.

Primary keys: Make sure all your Access tables have a primary key defined. If not,
they will be read-only when upsized.

Access indexes: One issue that has been around for some time is the issue of Access
adding an index to any field ending with the text “ID.” Any field in a table—for example,
filenameID—will automatically be added to the Access index. While this may not be a
major issue, it is worth looking at if it is a substantial database and you take a perform-
ance hit.

dbOpenDynaset, dbSeeChanges: Once a system has been upsized, you will find you have
to use dbOpenDynaset, dbSeeChanges for every VBA recordset that is working with a
linked table containing an IDENTITY column. Many developers use this notation “just
in case” upsizing may be required at some future point. Access will prompt you with
a message about using these terms with recordsets.

Reserved words: When creating an Access table, it is still possible to enter a reserved
word as a field name—for example, Date. Access will warn you that you are using a
reserved word and then continue to save the design changes in the table. Do not use
reserved words when creating database structures.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 129

■Tip The new data type attachment and the new property Allow Multiple Values do not upsize correctly.
Both will upsize as text and be shown in the Access interface as memo data types. If an Access database is
dependent on using these new features, it is conceivable that SQL Server 2000/2005 is not the appropriate
data store, and Windows SharePoint Services may be more appropriate. Don’t worry—I will be covering
Windows SharePoint Services in Chapters 9 and 10.

Many developers have found that upsizing large applications does not in fact improve
performance, but may actually degrade it. This is mainly due to the way in which Access
tables are linked using ODBC together with DAO, which is geared more toward working
with local MDB files (JET) rather than a large-scale client server database like SQL Server.
In such a case, a rewrite of much of the application using ActiveX Data Objects (ADO) may
be required. Another issue is that Access developers often use VBA- and Access-specific
functions. In a linked application, SQL Server knows nothing about such functions. All data
is passed to the client for processing. This can result in huge network traffic depending on
the size of the tables, of course.

■Note There are no equivalent objects in SQL Server (any version) that match Access forms or reports.
Conversely, as you will see, there are multiple SQL Server objects with no Access equivalent.

Upsizing to SQL Server 2005 Express
When working with SQL Server 2005 Express, the upsizing process is identical to that in SQL
Server 2000, including using the wizard interface to upsize tables. Figure 6-4 shows the results
within SQL Server Management Studio Express of upsizing the Issues template database to
SQL Server 2005 Express.

At the time of writing, some errors are reported in this process, but overall the upsizing
works well, in terms of tables at least. Just like in SQL Server 2000, the Access interface will
show the linked tables while maintaining a copy of the original table suffixed with _local—for
example, tablename_local. You will, however, lose the new features for complex data types,
and fields with attachments will no longer function as before. (The attachment data type will
be upsized as text.)

In my opinion, if you require the functionality of such fields (that is, the ability to show
multiple items within a field), you will need to revert back to the “old fashioned” way of design
using many-to-many relationships. The word “show” is used in this context because this is a
visual effect made possible using the new Access database file type. Behind the scenes, a fully
relational structure is maintained. See Chapter 1 for more information on the new complex
data types.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS130

Complex data types could become a major issue in the future, as users of Office 2007 may
want to see the same functionality in upsized applications. This depends, of course, on how
often such features are implemented. For instance, take the ability to permit multiple values
in lookups. When a table with the Allow Multiple Value property set is upsized, the result is a
comma-separated list within the field (that is, value1,value2,value3), hardly meeting with rela-
tional requirements. You will manually have to sort this out by adding the data to the appro-
priate table. Listing 6-5 uses the split function to retrieve the values of a field storing multiple
values. In this listing, multiple developers’ names have been associated with a project. The
split function is used to parse the multiple values using the semicolon as the delimiter to
create a string array of the required values.

Listing 6-5. Using split to Sort Out Multivalue Fields

While not rs.EOF
strDevelopers() = split(rs!DeveloperNames,";")
For lngLoop = 0 to UBound(strDevelopers)

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 131

Figure 6-4. Upsized tables in SQL Server 2005 Express

strSQL = "Insert into tblDevelopers (Project,Developer) Values ➥

(" & rs!Project & ",'" & strDevelopers(lngLoop) & "')"
' Write new record using the SQL string
Next
rs.movenext
Wend

Table 6-5 compares Access and SQL Server 2005 Express data types after a table has been
upsized.

Table 6-5. Comparing Data Types Following Upsizing

Access 2007 SQL Server 2005 Express

AutoNumber PK int PK nonclustered

Date/Time datetime

Hyperlink ntext

Currency money

Memo ntext

Yes/No bit

Attachment ntext

As mentioned previously, the new data type attachment is upsized, but with a loss of
the Access interface function. Any data held within the field will be upsized to a comma-
separated multivalue field list. In addition to the data types show in Table 6-5, SQL Server
2005 Express provides the standard SQL Server data types plus several types that will be
new to many Access developers, in particular the XML data type.

Impact of Upsizing on Access Forms and Data
Upsizing is mainly concerned with getting table structures into SQL Server. To the Upsizing
Wizard, everything else is secondary to this function. Many of the issues you will face concern
common features many developers build into Access front ends. A linked application will not
result in many form issues; however, an Access Data Project that results in all data processing
passing to SQL Server may require a lot of rewriting of such things as queries and dealing with
issues around passing form parameters to what were once Access queries that have become
stored procedures or user-defined functions (UDFs).

In an ADP, all queries will be translated to equivalent SQL Server stored procedures or
UDFs. As they become server-side objects once upsizing is complete, they are no longer aware
of such things as form parameters or Access VBA functions and will thus fail. As an example,
the following query will fail to function if the database is moved totally to SQL Server and your
queries are converted to SQL Server stored procedures:

SELECT fldCompanyName,fldTown,fldCounty FROM
tblCompany
WHERE
tblCompany.City like forms!formcompany!txtcity

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS132

In a linked application, this will work as before, but in an ADP application, the parameter will
fail, as SQL Server does not recognize a parameter passed to the procedure via a form using
the preceding syntax. In this case, the form’s reference will be replaced by passing a parameter
to a stored procedure either using a pass-through query or via ADO parameters.

In order to repair such objects, knowledge of stored procedures will be invaluable, so I will
give you an overview on stored procedures next that discusses some of the major features. (A
full reference can be found in SQL Server Books Online if you want to know more about stored
procedures.)

A Short Introduction to Stored Procedures
SQL Server uses a version of SQL referred to as T-SQL, which works similarly in many ways
to Access queries but with some huge differences. Just like an Access query, a stored proce-
dure can accept input parameters, but it can also return output parameters. Stored pro-
cedures can insert, update, and delete records, and they can contain conditional logic using
Begin, End, and Case statements. Stored procedures can be manipulated using VBA, DAO via
pass-through queries, and ADO from within Access. ADO will give you much more flexible
control over a stored procedure than any of the other methods. This is particularly true
when working with ADPs.

There are several advantages to using stored procedures including the following:

• Network traffic is reduced, as only an execute statement (and parameters) is passed
to the server.

• Execution plans can be reusable.

• Stored procedures can be shared between applications (such as Access and web
applications).

• Users can be granted permissions to work with data via stored procedures without
access to tables.

• Each user uses the same stored procedure.

• Stored procedures can contain conditional logic

The execution of a stored procedure is very simple. Listing 6-6 uses ADO to execute two
procedures, usp_CreatePeople and usp_InsertData (the “usp” prefix indicates a user stored
procedure). The first procedure creates a table on the server, and the second will insert some
sample data.

Listing 6-6. Executing Stored Procedures

Private sub cmdSQLData_Click()
Dim Conn as ADODB.Connection
Set conn = CurrentProjectAccessConnection
Conn.execute "usp_CreatePeople"
Conn.execute "usp_InsertData"
Set Conn=Nothing
End Sub

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 133

■Note The AccessConnection property is available within an ADP and provides the same functionality as
a standard connection property.

The stored procedures themselves can contain basic SQL statements, such as SELECT or
INSERT statements, or complex procedural code written using T-SQL.

Listing 6-7 shows a stored procedure containing a basic SELECT statement.

Listing 6-7. A Basic Stored Procedure

Create Procedure usp_CreatePeople as
SELECT [ID], [fldEmpname],
[fldComments], [fldMemo],
[fldDriver], [fldYesNo],
FROM [Chapter6].[dbo].[tblEmployee]

You can execute the procedure from within Access and assign the results to a recordset.
Using ADO, this is a straightforward task. Listing 6-8 executes a stored procedure,
uspGetStudents, returning the records into an ADO recordset and assigning them to a form.
In this case, a stored procedure and an ADO command object are used to execute the proce-
dure (frmExecuteStoredProc in the Chapter6 database demonstrates this).

Listing 6-8. Executing a Stored Procedure Using ADO and Assigning It to a Recordset

Private Sub Form_Open(Cancel As Integer)
Dim rstStudent As ADODB.Recordset
Dim cmd As ADODB.Command
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection
Set rstStudent = New ADODB.Recordset
Set cmd = New ADODB.Command
conn.ConnectionString = ➥

"Provider = SQLOLEDB.1;" & ➥

"Data Source =MARTIN\BARTRACKS;Initial Catalog=LinkedStudent;" & ➥

"User ID=martinreid;Password=martinreid"
conn.Open
cmd.ActiveConnection = conn
cmd.CommandText = "uspGetStudents"
Set rstStudent = cmd.Execute
Me.txtforename = rstStudent!fldStudentForeName
End Sub

■Note The connection string in this example is built into the code. It would be better to take the string
generated in the earlier example and hold it centrally, creating a global connection object that can be reused.
This is discussed in Chapter 7.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS134

Passing Parameters
Passing parameters is something that you will do on a constant basis. SQL Server stored proce-
dures can accept parameters and pass parameters back to the user interface. The example shown
later in this chapter (in Listing 6-12) uses a parameter, @ModuleCode, that is passed into the proce-
dure. As you will see, multiple parameters can be passed. Using the tblStudent table contained in
the Chapter6 database, you can add parameters to a stored procedure as shown in Listing 6-9.

Listing 6-9. Declaring Parameters in a Stored Procedure

Create Procedure Inst_Student
@StudentName varchar(20)
@StudentRef int

AS
INSERT INTO tblStudent
VALUES
@StudentName
@StudentRef

In addition, you must also declare the parameter data type. Here, both parameters are
passed to the stored procedure via ADO using its parameter object and Access.

A simple approach to executing stored procedures using DAO is to create a pass-through
query that executes the procedure. Using the Access main Ribbon, click the Insert tab and select
Query. In the Design view of the query, right-click and choose SQL Specific ➤ Pass-Through.
Enter the following text into the blank query document:

Execute Your Stored Procedure Name

Close and save the pass-through. You may at this point be prompted for a DSN connection.
It is also possible to execute a stored procedure via DAO by executing the pass-through

query and thus the procedure. In order to do this, you can use a standard QueryDef object and
pass the results into a DAO recordset. For example:

Set db=CurrentDb
Set qdf =db.QueryDefs("Pass-Through Query Name")
Set rstStudent = qdf.OpenRecordset

You can also amend VBA shown to accept a parameter using the Parameters collection of
the Command object. When passing a parameter to a command, you must also set its appropri-
ate data type. An example should help clarify this. The following fragment creates a stored
procedure, usp_AddStudent, which is will be used to carry out an insert operation to a table,
tblStudent.

CREATE Procedure usp_AddStudent
@StudentForename nvarchar (25),
@StudentSurName nvarchar (25)
AS
INSERT INTO tblStudent
(fldStudentForeName,fldStudentSurName)
VALUES
(@StudentForename,@StudentSurName)

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 135

Listing 6-10 shows the procedure that will insert a single record into tblStudent. In this
case, you are using ADO, as it is a more appropriate programming language for SQL Server
stored procedure manipulation.

Listing 6-10. Passing Parameters to Stored Procedures

Sub PassParam()

Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim prm As ADODB.Parameter
Set conn = New ADODB.Connection
conn.Open "Provider=sqloledb;" & ➥

"Data Source=MARTIN\BARTRACKS;" & ➥

"Initial Catalog=LinkedStudent;" & ➥

"Integrated Security=SSPI"
Set cmd = New ADODB.Command
cmd.ActiveConnection = conn
cmd.CommandText = "usp_AddStudent"
cmd.CommandType = adCmdStoredProc
Set prm = cmd.CreateParameter("StudentForeName", adVarWChar, adParamInput, 25,➥

"William ")
cmd.Parameters.Append prm

Set prm = cmd.CreateParameter("StudentSurname", adVarWChar, adParamInput, ➥

25, "Reid ")
cmd.Parameters.Append prm

cmd.Execute
Set prm = Nothing
Set cmd = Nothing
Set conn = Nothing
End Sub

Using Conditional Expressions
SQL Server stored procedures can also contain conditional logic. One of the common uses of
such logic is the replacement of the Access IIF function with a T-SQL CASE statement when it
is necessary to evaluate several values. Listing 6-11 illustrates the use of the CASE statement to
produce a summary query based on the Northwind database. (Well, no good Access book
would be complete without one!) To complete the procedure, the CASE statement, shown in
bold, is copied for each date range required.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS136

Listing 6-11. Using a CASE Statement

CREATE Procedure usp_Orders
AS
SELECT Customers.CustomerID,
Customers.CompanyName,
Sum(CASE When Orders,OrderDate Between 101-Jan-2000'
And '31-12-2001' THEN UnitPrice ELSE 0 END)
AS [2001],
Sum(CASE When Orders,OrderDate Between '01-Jan-2001'
And '31-12-2002' THEN UnitProce ELSE 0 END)
AS [2002]
GROUP BY Customers.CustomerID,
Customers.CompanyName
ORDERBY Customers.CustomerID

The CASE statement works with the Sum function to return the total unit sales for each
period.

Another example uses a conditional IF statement to branch processing within the stored
procedure to alternative SQL. In Listing 6-12, a parameter of the Student module is passed
into the procedure using the form @ModuleCode.

Listing 6-12. Using Multiple Parameters

IF (@ModuleCode < (SELECT ModuleCode
FROM Modules
WHERE MODULECODE = @Code))
BEGIN
UPDATE Student
SET ModuleCode = @ModuleCode
END
ELSE
BEGIN
DELETE Student Where ModuleCode = @ModuleCode
END

SQL Server 2000 provides several ways in which to work with stored procedures, but per-
haps the easiest way to start off is to duplicate your linked application with an Access Data
Project. In the ADP, you can take advantage of the graphical tools that allow you to work with
such things as stored procedures, user-defined functions, and table design in the familiar
Access interface. ADPs can be used with SQL Server as powerful design tools for your system,
even if the solution is not going to be implemented

Populating Forms and Other Objects
As with any standard Access application, you can go the bound or unbound route when creat-
ing forms. Having recently been working on a large unbound application, I have slowly moved
to the dark side of unbound forms. This is mainly for the control they can give, and in the case

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 137

of SQL Server, the way in which you can restrict the number of records you take down from
the server at any one point. Binding a form to a table returns all records to the application as
opposed to restricting the amount of data transferred.

■Note A good friend of mind, Arthur Fuller, has a nice phrase for populating forms one record at a time: he
refers to it as “opening the kimono slowly.”

Listing 6-13 populates a short form in Access with records from tblStudent in the Chapter6
database using DAO. Note the use of dbSeeChanges as discussed earlier. Without this, Access will
return an error message actually requesting that you include dbSeeChanges. Note that the
recordset is dimmed outside the procedure, as this permits its manipulation outside the initial
procedure.

Listing 6-13. Populating Unbound Forms

Set db = CurrentDb
Set rstStudent = db.OpenRecordset("Select * FROM tblStudent",➥

dbOpenDynaset, dbSeeChanges)
' Assign the recordset fields to the form text boxes.
With rstStudent
txtStudentForeName = !fldStudentForeName
txtStudentSurName = !fldStudentSurName
txtStudentEmail = !fldStudentEmail
txtStudentAddr2 = !fldStudentAddr2
End With
End Sub

Because the form is now unbound, you then have to code all the other procedures and
commands that Access normally does for you: move to the next record, move to the previous
record, delete, save, and so forth. For example, to move to the next record, you call the record-
set’s MoveNext using DAO (for example, rstStudent.MoveNext). What, you tried that and
nothing happened? Welcome to the world of unbound Access forms. You do it all yourself. In
addition to calling MoveNext, you need to repopulate the form text boxes with the next record.
To do this, a new function, getStudent, needs to be added. This function repopulates the form
with the next record. The procedure getStudent is called immediately following the MoveNext
statement attached to a command button.

rstStudent.MoveNext
call getStudent

Listing 6-14 shows the getStudent function.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS138

Listing 6-14. Another Approach to Populating a Record

Private Sub getStudent()
With rstStudent
txtStudentForeName = !fldStudentForeName
txtStudentSurName = !fldStudentSurName
txtStudentEmail = !fldStudentEmail
txtStudentAddr2 = !fldStudentAddr2
End With
End Sub

The getStudent procedure can also now be used to replace the initial code in the form open
event used to populate the text boxes. But what happens if the user has changed the record
before moving on? Well, again, you need to cover that possibility by checking the recordset for
changes. As may be apparent, there are many things you must take care of yourself if you use
unbound forms in your applications. The Chapter6 database contains a fully functioning exam-
ple of this approach.

When working with a combo box, a recent approach used by Rocky Smolin (http://
www.e-z-mrp.com), a member of the AccessD developers list and a good friend of mine, was to
store the combo records locally, thus reducing the overhead of connecting to the server and
retrieving all the records. For data that does not change a great deal, this is a reasonable
approach to take. Of course, a facility to update the local records should also be provided to
ensure they remain up to date. Listing 6-15 shows a more sophisticated example using this
approach.

Listing 6-15. Public Subroutine for Filling Combo Boxes from Local Tables

Public Sub gSetComboBoxValues(argForm As String)
'****************************
' Initial Course Combo Source
'****************************

gstrcboCourse = "SELECT tblCourse.CourseRef, tblCourse.fldCourseName" ➥

& "FROM tblLocalCourse;"
Forms(argForm)!cboCourse.RowSource = gstrcboCourse

'*****************************
' Initial Student Row Source
'*****************************

gstrcboStudent = "SELECT tblStudent.StudentRef, tblStudent.fldStudentSurName" ➥

& "FROM tblLocalStudent;"
Forms(argForm)!cboStudent.RowSource = gstrcboStudent

End Sub

A public function is created that accepts the name of the calling form, argform, and
passes back the appropriate row set for the named combo box. In this way, you can store all
the combo population code and SQL statements in one place, making application mainte-
nance much easier. In this case, this makes sense, as each combo box will be used on multiple
forms, and there is no sense creating the same recordset on a form-by-form basis when it can
be done in one place one time.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 139

The neat idea behind this process is that the public function can be called from anywhere
you are using the combo box simply by passing in the form name (frmComboExample in the
Chapter6 database demonstrates this approach). Within the public subroutine is a set of SQL
statements used to populate each of the combo boxes required by the application. A public
variable declared as a string is also created for each of the combos to be populated. frmCom-
boExample contains two combo boxes to illustrate this technique, cboStudent and cboCourse.
The following global variables have been declared in the module:

Public gstrcboStudent as String
Public gstrcboCourse as String

The form name calling the procedure is passed into the argument argForm. As you can see
in Listing 6-15, this is a very basic procedure in terms of coding requirements, but it releases
endless possibilities for the populations of combo boxes without hitting the server time. The
SELECT statements have been changed to reflect the local tables being used rather than pulling
data down the network from SQL Server. Of course, this is also a useful technique for
non–SQL-Server-based applications.

The public subroutine is called in the open event of the required form as shown here:

Call gSetComboBoxValue (Me.Name)

It’s also worth noting that the same technique can be used for any other object that makes use
of static data within the application other than combo boxes.

Storing and Retrieving Local Records
Storing records locally in tables can also be a useful tool when working with server-side data,
and the process is straightforward. In this case, a local table will be populated with records
from SQL Server. What’s the advantage? Well, you can reduce the number of connections to
SQL Server and at the same time improve the speed of response by not hauling static records
across networks. Static records may not change a great deal or in fact never change; for exam-
ple, in the UK a postcode is 100% set in stone. That being the case, why bother connecting to
a server every time you are required to populate a postcode or ZIP code combo box list?
Repopulation of the local tables can range from the simple execution of an update query to
get a data refresh to the creation of a VBA solution for those so inclined. Listing 6-16 contains
the SQL statement required to repopulate a local table. In future calls to this data, the local
table is used to retrieve the data, thus saving a server connection.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS140

ANOTHER APPROACH TO FILLING COMBO BOXES

Another way to fill combo boxes would be to simply execute a local query from the form open event and
requery the combo box rowsource. The effect would be the same, but not as flexible as that shown previ-
ously. In addition, you are storing the SQL statements in global variables for reuse in other areas of the
application. The approach outlined previously does, I believe, give you the best of both worlds: the use of
local tables for static data and ease of code management.

Listing 6-16. SQL to Repopulate a Local Table

INSERT INTO tblLocalStudent (fldStudentForeName,➥

fldStudentSurName, fldStudentEmail, flsStudentAddr1,➥

fldStudentAddr2, fldStudentAddr3, fldTown,➥

fldPostCode, fldStudentDOB, [Date])
SELECT tblStudent.fldStudentForeName,
tblStudent.fldStudentSurName,
tblStudent.fldStudentEmail, tblStudent.flsStudentAddr1,
tblStudent.fldStudentAddr2, tblStudent.fldStudentAddr3,
tblStudent.fldTown, tblStudent.fldPostCode,
tblStudent.fldStudentDOB, tblStudent.Date
FROM tblStudent;

Even getting the local table is easy. When you upsize Access tables, the wizard leaves a
copy in the database for you. All that is required is to remove the AutoNumber primary key
field and replace it with a number field. Execute the SQL INSERT statement shown previously,
and you are good to go.

Of course, you will then need some form of interface to permit users to repopulate the
tables on occasion. Again, this process should be standard. Create a form permitting the user
to select which tables to repopulate or set the default to repopulate all tables. Attach some
code to a command button, and you’re done. The Chapter6 database contains a working
example of this approach. The code, using a standard DoCmd statement to execute SQL, is
shown in Listing 6-17.

Listing 6-17. Repopulating Local Tables

DoCmd SetWarnings false
DoCmd.RunSQL "DELETE * FROM LOCALTABLENAME"
DoCmd.RunSQL "DELETE * FROM LOCALTABLENAME"
DoCmd.RunSQL "DELETE * FROM LOCALTABLENAME"
DoCmd.SetWarnings True
Set qdf =db.QueryDefs ("QUERYNAME")

qdf.Execute

As shown in the last two lines of Listing 6-17, you can use a QueryDef to execute your
INSERT query to repopulate the table.

The code could also be executed when the application opens, ensuring that your local
tables are always updated directly from the server. This means perhaps taking a one-time hit
at the start of the application in return for the speed of local processing. The other issue that
may arise is that of the Not In List event. When using local tables, what do you do when you
need to add a value? Using the Not In List event, you can execute code to write directly back
to the server and repopulate the combo box by executing your repopulation code and doing
a requery of the combo box record source per standard practice.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 141

Importing Data with Data Transformation Services
Many of the issues surrounding upsizing an Access database are issues with data as discussed
previously. DTS allows you to import data to SQL Server and manipulate that data during the
import process. At the time of writing, DTS is not available for those using SQL Server 2005
Express. In SQL Server 2005, DTS has been replaced by Integration Services, which is a com-
plete redesign of DTS from SQL Server 2000. SQL Server 2000 provides a wizard-driven inter-
face when you work with DTS. The DTS Wizard can import single or multiple tables, or you can
create queries within the process to return data meeting set criteria. DTS in SQL Server 2000
provides a very flexible means of importing large amounts of data. Many developers moving to
SQL Server use the Upsizing Wizard to move the tables to SQL Server and then use DTS Wizard
to import the data to the newly upsized tables. One of the reasons for doing this is that the data
can be manipulated during the import using the DTS Wizard to change data types to more suit-
able SQL Server types, for example. You can also create queries during the import itself to
reduce the amount of data you want to bring into SQL Server 2000, for example.

Access Data Projects
Access Data Projects—what can I say about them? ADPs are one of those features you will
either love or hate. Some developers swear by them, while others have never used the tech-
nology. Perhaps that is one of the reasons they have taken a back seat in the design of
Access 2007, and linking to SQL Server is the preferred method of connection and applica-
tion building. Given the focus that SharePoint Server is receiving in this release, this is no
surprise; however, considerable work has been done by the Microsoft development team
to ensure that ADPs are still a viable option with SQL Server 2005.

Initially, many experts predicted the death of ADPs with any new release of SQL Server.
That’s definitely not the case, and they still provide another option for the developer. The
graphical tools that can be used to design SQL Server objects are still available and can be
used with the new version of SQL Server, and they function in much the same way as in pre-
vious versions.

One of the limitations of ADPs (and one of the reasons linking is now the preferred
method) is that, unlike linking, you cannot use multiple data stores, and in particular you
cannot link to SharePoint list data. However, you can get around this limitation by using
SQL Server linked servers to connect to other data stores and then in turn use the linked
servers from within Access.

ADPs move you totally into the world of SQL Server. All data is held on the server, with
Access providing a container for user objects, forms, reports, and VBA modules. In theory, all
data processing is also carried out by SQL Server using stored procedures, user-defined func-
tions, and views. As already stated, ADPs give you access to a graphical tool set with which to
build such objects, lessening the development time involved. Graphical tools are available for
everything from table design and manipulation to creating basic stored procedures and are
a great learning device for those who are just starting out with this technology. ADPs are dis-
cussed in more detail in Chapter 7.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS142

Upsizing to SQL Server Reporting Services
When speaking about SQL Server 2005 Express, so far we have looked at the basic version.
There are actually several versions available for download as follows:

• SQL Server 2005 Express Edition

• SQL Server 2005 Express Edition with Advanced Services

• SQL Server 2005 Express Edition Toolkit

Both Advanced Services and the Toolkit versions include Reporting Services and all are
available for free! The example presented in this section will walk you through the process of
taking an Access report and converting it to Reporting Services. The free availability of Report-
ing Services, either with an Express Edition or as part of a licensed install of SQL Server 2005,
offers you the opportunity to take advantage of a server-based reporting tool. For the first time
using Reporting Services, it is possible to not only upsize an Access database, but also upsize
Access reports as well. I wonder how long it will be before someone develops something to
assist in upsizing Access forms to Windows Forms.

Just like upsizing MDB files, reports will have problems of their own when upsized to
Reporting Services, and some manual work is usually required by the developer. I should also
say that Reporting Services and its design tools are a lot more sophisticated than Access
reports and are fully covered in SQL Server 2005 Books Online, which contains several tutori-
als and walkthroughs in their use and programming. Figure 6-5 shows the blank report
designer in Visual Studio.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 143

Figure 6-5. Report designer

In order to run Reporting Services, you will also need to install the SQL Server Express
Toolkit, also available from Microsoft. Business Intelligence Development Studio (BIDS),
available as part of the download, is required to develop reports using Reporting Services.
The following walkthrough is based on using Visual Studio 2005, SQL Server 5000 Express
with Advanced Services, and the SQL Server Express Toolkit. Initially, you will use the wizard
interface to build a new report, and then you will look at importing and amending some
existing reports.

■Note Reports are written using Report Definition Language (RDL), which is an XML-based language that
contains all the details about the report (for example, connection, design layout, properties, and content).
Reports created this way are viewed via web browser, further expanding the platform and reachability of
your data. Given this is a short section, we will only look at creating reports via the interface, providing you
with the mechanics of getting started with these tools. There are many resources available to further your
learning in this area; SQL Server 2005 Books Online is a good place to start, as it contains many examples
and tutorials.

Creating a Basic Report Using the Report Server Project Wizard
In this walkthrough, you will create a new report using Visual Studio and SQL Server 2005
Express via the Report Server Project Wizard.

1. With Visual Studio open, select File ➤ New Project ➤ Business Intelligence Projects.

2. From the Templates group, select Report Server Project Wizard. Enter a name for the
project and select a location to save the project files into.

3. Click OK.

4. If the project already exists, you will be prompted to overwrite the solution.

5. The Report Server Project Wizard will start up. Once it does, click Next.

6. The next screen deals with naming and connection. Enter a name for the data source.
In my case, I used dsStudentReport.

7. There are several different connection types available using the drop-down list.
Specify a type of SQL Server.

8. To create the connection, start by clicking Edit.

9. In the screen that appears, enter or select the appropriate values for the connection.

10. Click Test Connection to ensure all is working.

11. When you are finished setting the connection properties, click OK.

Before moving on with the Report Server Project Wizard dialog box, you must set the
security credentials for this connection. In my case, I am using Windows Authentication. If
you are not using the same security mechanism, click Credentials to enter a username and

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS144

password to be used for this connection. You can also have the user prompted for the user-
name and password. That’s the first step in the report process. You have named the report
solution and created a connection to the database. Next, you will provide the data source for
the report.

The next stage in the wizard allows you to either enter an SQL statement directly into the
query builder or change it into a graphical query tool. To change to GUI query building, follow
these steps:

1. Click Query Builder. The query builder text editor will open.

2. Click the Generic Query Builder icon located at the top left of the query builder window.

3. Right-click in the GUI and select Add Table.

4. Select the table to add (in my case, I chose tblStudent) and close the Add Table
dialog box.

5. Click the * to select all fields form the table.

6. Execute the query by clicking the Execute icon to ensure it returns the data you
require.

7. Click OK.

8. Click Next on the Design Query dialog box.

9. Select Tabular as the report layout type.

10. Click Next on the Select Report Layout dialog box.

11. Click Next as you are not adding any grouping to this report.

12. Select a Table style.

13. Click Next to move to the next screen in the wizard and accept the default location for
the reports server. Accept the default for the deployment folder.

14. Click Next.

15. Enter a name for the report (I called mine rptStudent).

16. Click Finish.

Nothing to it. You are taken to the report designer window where you can add the fin-
ishing touches to the report. As you will see, this is very similar to the Report Designer in
Access. Unlike in Access reports, notice how each field within the report designer is defined:
=Fields!Forename.Value. Of course, you are no longer in the world of Access, and the termi-
nology will be different. In Reporting Services, this is termed an expression. The expression
builder available will appear very familiar to many Access developers, as it looks and works
in a similar way to the Access query builder. Just like in Access reports, you can use expres-
sions to add some of the features commonly seen in Access reports. For example, to con-
catenate fields together, simply join them in a report text box:

=fields!Surname.value +" "+fields!Forename.value

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 145

You need to precede an expression with an equals sign. Calculations are created in a similar
way. For example, using the Sum function:

=Sum(Fields!CourseRef.Value)

While the wizard gets you up and running, it’s almost as easy to create your own report.
Once again, the first step is naming it and creating a connection. The SQL scripts to create the
example SQL Server 2005 Express database can be downloaded from the Apress Source
Code/Downloads web page.

Creating a Report Manually
In this section, you will see how to use Visual Studio and SQL Server 2005 Express to create
a new report manually. With a project open, follow the instructions in the preceding sec-
tion to create a data connection to the Chapter6 example SQL Server 2005 Express data-
base and a query to select all values from tblCourse. This query will be used to provide the
dataset for the report. Name the dataset dsCourse. Once you have done this, you are ready
to create the report:

1. Click the toolbox.

2. Click and drag a table onto the blank design grid.

3. Click within the table to activate it.

4. Click dsCourse to view the columns.

5. On the table within the design page, click the button icon containing three solid verti-
cal lines to activate the detail section.

6. Drag each field you would like to appear in the report into the detail cells (one field
per cell).

7. The last row in the table is called the Total Row. In the first cell of the last row, enter the
text Total Number of Courses.

8. In the second cell, enter the following text:

=count(fields!fldCourseName.value)

This returns a simple record count for the report.

Figure 6-6 shows the designer at this stage in the process.
You can tidy up the report count by creating a new expression in the first cell of the last row.

9. Add the following expression to the cell, replacing the text Total Number of Courses:

="Total Number of Courses: " & count(fields!fldCourseName.value)

10. Click Preview to view the report. Figure 6-7 shows how the report looks in the report
designer if you click the Preview tab.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS146

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 147

Figure 6-6. The report designer at the current stage of building your report

Figure 6-7. Previewing the report in the report designer

Table 6-6 shows the aggregate functions available to you in the report designer, together
with an example of usage. Each function accepts a single parameter scope, which can apply to
a dataset or a grouping of data; that being the case, the value changes on break of a group or
can be applied to a data region.

Table 6-6. Reporting Service Aggregrate Functions

Function Usage

Sum Returns the summation of a range of values

AVG Returns the average of a range of values

CountDistinct Returns a count of distinct rows ignoring duplicated values

First Returns the first value in the dataset

Last Returns the last value in the dataset

Min Returns the minimum value in the dataset

Max Returns the maximum value from the dataset

SQL Server Books Online provides comprehensive coverage of all the functions available
to you within Reporting Services.

Upsizing Existing Reports
When it comes to upsizing existing reports, a walkthrough using the Northwind database
wouldn’t be very practical: you could import every report from the Northwind database into
a Reporting Services project, change a few minor things here and there, and they will all work.
Complex reports in the real world are another story. For this discussion, we will look at the
results of my using the Import Reports tool in SQL Server to import real-world reports from
the BarTracks application into Reporting Services. I did not expect this to achieve great suc-
cess, because the reports in this particular application are very sophisticated, as they are
highly configurable by the user.

■Note You cannot select individual reports to import. This is an all-or-nothing event. You must import all
the reports in a specific database and then remove those not required. Depending on the number of reports,
this can be a time-consuming process, so be patient.

Following the import, I received 38 errors and 16 warnings, as expected. Out of a sub-
stantial number of reports, I only managed to import four working copies. In the majority
of cases, the reports failed to import due to the widespread use of Access VBA and various
report events (that is, the reports are very code-heavy, relying on VBA modules both in the
reports and within the application to function). For this particular application, it would be
just as “easy” to write the reports entirely in the report designer. The four reports that actu-
ally upsized were basic reports with single table data, but no VBA code behind the reports.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS148

So, in my opinion, for simple listing-type reports and reports that do not have a great deal
of VBA code associated with them, the Import Reports tool is a useful choice. For reports
that are driven by VBA or that receive user options, this tool may not prove worth while.

Interestingly, overlapping items on reports result in report import failure. In my case,
almost all the reports contain overlapping labels and text boxes that are turned on and off
via VBA. So it was not a successful experiment for this real-world application. In addition,
any particular VBA functions used will also have to be rewritten or replaced with their
Report Definition Language equivalents.

One of the main reasons several reports failed to upsize was the use of the On No Data
event. This in fact is one of the easiest errors to fix, as the detail list has a No Rows property,
which serves the same purpose (that is, it indicates what to do if the report has no data to
show). In this case, you would simply add an expression into the No Rows property of the
region, for example:

= "No Data For This Report"

It has to be said that the reporting environment in SQL Express Advanced is powerful and
flexible and for experienced Access developers the learning curve is short. My advice is to
jump straight in and try it out.

Passing Parameters to Reports
One of the reasons many reports were not upsized when I tried importing the BarTracks appli-
cation into Reporting Services was the use of parameters. In almost every case, parameters are
passed to the report VBA using report query forms. Although this gives the user a more flexible
experience and is common in Access applications, it again means that it would be just as easy
to rewrite the reporting module in .NET, as the number of changes to code would be immense.
However, reports can also be configured to accept parameters within the report designer.

For this example, first create a basic stored procedure that accepts a single parameter,
the CourseCode of the course you would like to report on. The stored procedure is outlined
in Listing 6-18.

Listing 6-18. Report Stored Procedure

CREATE PROCEDURE usp_Course
(@courseref int)
AS SELECT tblStudent.fldStudentForeName,➥

.tblStudent.fldStudentSurName, tblCourse.fldCourseName, tblCourse.CourseRef
FROM tblStudent
INNER JOIN
tblStudentCourse ON
tblStudent.StudentRef =
tblStudentCourse.fldStudRef INNER JOIN
tblCourse ON tblStudentCourse.fldCourseRef
= tblCourse.CourseRef
WHERE (.tblCourse.CourseRef = @courseref)
ORDER BY .tblStudent.fldStudentSurName

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 149

Within Visual Studio, create a new Business Intelligence project called ClassProject and
add in a shared connection to the SQL Server database LinkedStudent. (The script for this is
included with the reference material for this chapter.) Figure 6-8 shows the report once you
have finished. It’s particularly important to note the inclusion of the parameter entry text box
located at the top of the report screen. Parameters are fed to the reports in this way during the
design process.

In this next example, you will create a report, ClassListing, that accepts a single parame-
ter. The report is based on uspCourse, a stored procedure to which the parameter is provided.

1. With an existing project open, right-click the Reports folder and select Add New Item.
Do not run the Report Server Project Wizard!

2. Select Report.

3. On the screen that appears, enter ClassListing as the report name.

4. Click Add.

5. Click the Data tab and select New Dataset from the Dataset combo box.

6. Enter dsClassReport in the Name field.

7. Select your data source.

If you have created a totally new project, you will need to create a new data source.

8. Select Stored Procedure as the command type.

9. Click OK.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS150

Figure 6-8. Finished report

10. Select the stored procedure, uspCourse, from the Stored Procedure combo box. Click
the execution icon to run the procedure.

11. Enter a value of 1 as the parameter value in the Define Query Parameters dialog box.

12. Click OK.

The stored procedure will execute, populating the dataset with the returned records, so
you know the stored procedure runs and accepts the parameter entered.

Now its time to build the report itself:

13. Click the Layout tab.

14. Click the Toolbox tab.

15. Select the Table item and drag it onto the report designer.

16. Click the Datasets table.

17. Expand the dataset dsClassReport available by clicking the Datasets tab.

18. Drag each field into a detail cell on the report designer.

Next you will add a simple count into the footer of the report:

19. Click in the far-right footer cell and enter the following expression:

="Number of Students " & count(fields!fldCourseName.Value)

20. Click Preview to view what you have to date.

21. At the top of the screen, you will see a parameter entry box. Enter a value and click
View report.

Your report should now open and return a subset of records.
When your query and procedure return no data, you should pass a sensible message back

to the interface as follows:

22. Select the table by clicking the top-left square above the detail section.

23. In the properties for the tab, scroll down until you see the No Rows property located in
the Data category.

24. Enter the following text for the No Rows property:

"No Course Records Found"

25. Click Preview.

26. Enter a value of 12 into the Parameter text box.

27. Click View report.

The text entered as the No Rows property should now be displayed.
Now via the reporting interface you have a report that is based on a stored procedure,

accepts a parameter, and has a No Data event triggered. All achieved without too much
“rocket science” involved.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS 151

Summary
When I started this chapter, I wanted to give you a flavor of what’s involved in upsizing your
Access database to both SQL Server 2000 and SQL Server 2005 Express. I hope I have achieved
that. It’s difficult, if not impossible, in a single chapter to cover a subject so broad, but at the
end of the day, SQL Server should not be a product outside the reach of almost all Access
developers—developers who are more than used to making software jump through hoops to
meet the needs of their clients. At the end of the chapter, I touched on Reporting Services as
another tool available freely to Access developers. There are many tutorials and notes avail-
able in the SQL Express Books Online, and I encourage you to take the basics introduced here
and try it out. It’s a powerful, flexible tool whose popularity can only grow.

CHAPTER 6 ■ RAD DEVELOPMENT FOR SQL SERVER 2000/2005 EXPRESS152

Working with the SQL
Server 2005 Express Tool Set

In this chapter, we look at working with SQL Server 2005 Express using Access Data Projects
(ADPs) and linked tables. In Chapter 12, I move on to discussing working with two of the
other tools in the SQL Server 2005 Express product set, Visual Web Developer Express and
VB Express, in terms of using Access to build quick, efficient applications.

During the course of the beta testing of Access 2007, many developers asked the question,
“What about ADPs?” The question also surfaced on many web sites, as those who had invested
in this technology began to wonder if ADPs would be supported in the new version. The answer
to that question, as we now know, is “Yes!” In this chapter, many of the example functions, trig-
gers, and stored procedures will be created either in an ADP front end or on the server itself. It
is really worthwhile when working with SQL Server to create an ADP, even if you are going to go
with a linked table application. This way, you can take advantage of the graphical tools of
Access to build many server-side objects.

In Chapter 6, we looked at the Access Upsizing Wizard; in this chapter, we will be looking
at a recent Microsoft development, the SQL Server 2005 Migration Assistant for Access, which
should be available by the time this book hits the shelves. For those working with SQL Server
2000, the Upsizing Wizard and third-party tools are likely the way to go. However, you could
always use the Migration Assistant as a simple error reporting tool for a move to SQL Server
2000, because many of the issues you face will be the same irrespective of which version of
SQL Server you are migrating to.

For those working with SQL Server 2005, this new application should be the tool of
choice. This application is in a whole different league from the built-in features of the Upsiz-
ing Wizard. You can guess from its name what it does, and it does it very well. However, it’s a
pure SQL Server 2005 solution to upsizing and therefore cannot be used with earlier versions
of SQL Server.

■Note When talking about SQL Server or SQL Server Express in this chapter, I am specifically referring to
SQL Server 2005 Express Edition, unless otherwise noted.

153

C H A P T E R 7

■Note In the Management Studio, it is really worthwhile looking at the templates provided for things like
stored procedures, functions, and views. SQL Server 2005 Express comes with a couple hundred “getting
started” T-SQL templates.

This chapter provides you with an overview of many of the features available to you in
SQL Server Express, from table design to triggers and stored procedures; migration issues are
covered in the section “SQL Server Migration Assistant for Access.” At the end of this chapter,
you should have enough information to continue exploring on your own the features of this
free database back-end server and management environment.

SQL Server Express 2005 Overview
SQL Server Express will be a new environment to many Access developers and indeed many
power users who wish to make use of this technology. Figure 7-1 shows the SQL Server Man-
agement Studio Express environment, which will be a huge advance for developers who have
been using MSDE, which did not have a graphical management interface.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET154

Figure 7-1. SQL Server Management Studio Express console

As you can see, this environment is a little bit more complex than that of Access, and it
closely resembles the environment of the full version of SQL Server 2005.

I think it is safe to assume that you can figure out the download and install instructions
without help from me. The only suggestion I have is that you download and install the Express
Edition Toolkit, which contains everything you will ever need (at this stage) for working with
SQL Server Express, including the reporting development tools for .NET Reporting Services.
For your information, when perusing the examples in this chapter, my own setup is Windows
Server 2003, SQL Server Express Toolkit, Visual Studio 2005, and Office 2007.

Table 7-1 shows the differences between SQL Server Express and MSDE, with which you
may already be familiar.

Table 7-1. SQL Server Express vs. MSDE

Item SQL Server Express MSDE

Database size 4GB 2GB

Workload governor No Yes

RAM 1GB 2GB

SMP 1 2

GUI tools Yes No

This new database and management environment, SQL Server Express together with
Management Studio Express, contains many features to assist the Access developer and is in
itself a development environment. It is worth remembering that SQL Server Express is not an
application front end in the same way as Access. It’s a database engine, but there is no appli-
cation interface. All it does is manage your data and other server-side objects. The interface
to these objects is provided by developers using either Access, as in our case, or another
development environment to build the front-end interface. One of the nice features of
Management Studio Express and one you may use a great deal is the Query Editor.

Query Editor
The Query Editor can be used to work with many types of server-side objects (for example,
stored procedures, functions, views, and triggers). Results from query execution can be dis-
played directly in a grid, or passed to a text file or a report file for later use. A useful feature is
the ability to change from text editor view to a graphical query builder much like that in
Access. Ctrl+Shift+Q will open the Query Editor for those who prefer the graphical approach.
Within the Query Editor, several tools are available to assist you in developing queries (for
example, fast access to SQL Server execution plans and client statistics). Figure 7-2 shows the
execution plan for a standard query. To add the execution plan to the results, right-click within
the Query Designer window and select the appropriate option from the context menu. Several
options may be added at any one time.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 155

The execution plan will show you how SQL Server will optimize (or not) the statements
being executed. You can view the proposed execution plan before the statements are actually
executed or the actual plan used upon execution. This is a great learning tool you can use to
speed up poorly performing statements—for example, statements that make full table scans
can indicate that better use of indexes may be required.

SQL Server Schemas and Other Objects
When migrating to SQL Server 2005, you will encounter a number of terms that may seem
unfamiliar. SQL Server describes a database in terms of a schema; a single database can con-
sist of a number of logical schemas. The examples in this chapter will feature a small SQL
Server database that contains data about students and modules (the scripts for these exam-
ples are available for download from the Apress web site at http://www.apress.com).

Management Studio Express’s Object Explorer provides a tree view of the objects available
to you on the server, and while I cannot go into great detail about all of them, I will provide a
general introduction to the features you will use daily in your development. Figure 7-3 shows
Management Studio Express with the database folder open.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET156

Figure 7-2. Execution plan in query builder

Databases and System Objects
Of course, expanding the database node will reveal the databases on the server; both user
and system databases are available to you. Chapter 6 briefly discussed the system databases,
but in SQL Server Express, you will have additional nodes under each of the system databases
and some items that we have not looked at yet. Here we will be looking at those nodes you
will need to understand in order to get up and running with the software. Each database
folder contains a similar set of subfolders, the contents of which are described here:

Database Diagrams: This folder contains interactive relationship diagrams that provide
more functionality than their Access counterpart. For example, you can work with table
properties and add and amend tables and columns.

Tables: Here you will find all user and system tables for the specific database.

Views: Database-specific views are stored in this folder.

Synonyms: As you can guess, this folder contains synonyms, which are basically names
for other objects, for example, an alias to another SQL Server, a table in the same data-
base, or a stored procedure or function. It is import to realize that SQL Server does not
check for existence of objects at the time the synonyms are created, only when they are
executed.

Programmability: This subfolder groups the programmability objects together. Each
database on the server will contain the same sort of substructure for these objects.
Here you will find everything related to programming and code, for example, stored
procedures, user-defined functions, database triggers, assemblies, types, rules, and
defaults.

Of the objects in the Programmability folder, what will be new to Access developers
and power users will be assemblies and triggers. Assemblies are .NET code that has been
taken into SQL Server to perform a specific task. Triggers warrant a bit more discussion,
so we’ll take a longer look at them next.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 157

Figure 7-3. Management Studio Express Object Explorer

Creating Triggers
A trigger is a block of code that can be fired when a database event takes place. For example,
if you want to track user inserts to a table, the trigger shown in Listing 7-1 will do this for you.
In this case, you simply get the table name, username, and the date the insert action took
place. However, this example shows the possibilities for triggers. Before creating the trigger,
you create a logging table, tblLogg, to store the results when the trigger is fired. Execute the
following SQL statement by first clicking New Query in SQL Server Management Studio
Express. Remember to change the database name in line 1 to reflect your database, if you
are not using the Chapter7 example.

Listing 7-1. Creating the Table Template

USE [Chapter7]
GO
/****** Object: Table [dbo].[tblLogg] Script Date: 06/04/2006 15:39:19 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[tblLogg](
[logID] [int] IDENTITY(1,1) NOT NULL,
[LogTable] [nvarchar](50) COLLATE Latin1_General_CS_AI NULL,
[LogDate] [datetime] NULL,
[logUser] [nvarchar](50) COLLATE Latin1_General_CS_AI NULL,
CONSTRAINT [PK_tblLogg] PRIMARY KEY CLUSTERED
(
[logID] ASC
)WITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Execute the statement in Listing 7-1 to create the table. Once the table is created, you can
then follow the steps here create the new trigger.

■Tip It’s important when working in the Query Designer window of Management Studio Express that you
ensure you are working in the correct database. A drop-down list is available that allows you to choose a
database for the procedure being written—use it!

1. Open Management Studio Express if it is not already open.

2. Open the database of interest. In this case, I have opened the Chapter7 example
database.

3. Expand the Trigger folder for the database selected.

4. Right-click the Trigger folder and select New Trigger.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET158

The structure of new trigger will be created for you. Listing 7-2 shows the trigger template.

Listing 7-2. Trigger Template

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author:<Author,,Name>
-- Create date: <Create Date,,>
-- Description: <Description,,>
-- ===
CREATE TRIGGER <Schema_Name, sysname, Schema_Name>.<Trigger_Name, ➥

sysname, Trigger_Name>
ON <Schema_Name, sysname, Schema_Name>.<Table_Name, sysname, Table_Name>
AFTER <Data_Modification_Statements, , INSERT,DELETE,UPDATE>

AS
BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

-- Insert statements for trigger here

END
GO

The trigger template gets you started with the syntax and is useful until you become
more comfortable with how these things are written. The trigger you will create will be
attached to tblLogg and fired in response to an INSERT statement. Once an insert takes
place, tblLogg will be updated. Replace everything after the CREATE statement with the
trigger shown in Listing 7-3.

Listing 7-3. Log Trigger

CREATE TRIGGER tr_addLog ON dbo.tblLogg
FOR INSERT
AS
INSERT INTO tblLogg
(LogTable,LogDate,logUser)
VALUES
('tblStudent',getdate(),user_name())

Note that the actual trigger in this case is much simpler than the outline proposed by
the template. In the trigger body, you use two built-in SQL Server functions: getdate(),
which returns the current date, and user_name(), which returns the name of the user doing
the insert. If you want to capture the Windows username of the account, you can also use

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 159

SUSER_SNAME. For example, to get my own Windows username, I can execute the following
SQL within the Query Designer window:

SELECT SUSER_SNAME()

The preceding trigger could be changed to also reflect updates and deletes by changing
the FOR INSERT line to read FOR INSERT, UPDATE, DELETE. In such cases, the trigger will fire if
any of the three named events take place. You may need to refresh tblLogg in order to see the
effect. The trigger will fire in response to a data event, but what if you also want to log and
audit a database schema event (for example, a user adding a column or, even worse, dropping
a table)? Triggers can also be fired in response to SQL Data Definition Language events. Rather
than the trigger being attached to a table, it can also be attached to fire with the ON DATABASE
statement. For example, if an attempt were made to drop or alter a table, the following trigger
could execute:

CREATE Trigger DontDrop
ON DATABASE
FOR DROP, ALTER
AS
"Text for Message"
ROLLBACK;

SQL Server Express contains an excellent overview on both data-level triggers and data-
base-level triggers, and they are well worth exploring, particularly if you need to log either
table-level or database-level events. Of course, it goes without saying that the trigger is fired
when adding data to the table from Access. You can see this if you create and link to tblLogg in
the previous example. Within SQL Server, you can view information on triggers by writing a
SELECT statement against one of the system views, sys.triggers, as follows:

SELECT * FROM sys.triggers

Triggers are a useful approach for jobs like audit trails, but for general data manipulation
you will work with stored procedures in some shape or form.

Stored Procedures
Stored procedures, briefly mentioned in Chapter 6, will be the mainstay of your development
effort in SQL Server Express. Graphical tools are available to assist you in this regard when
working in an ADP. For this example, you will create a stored procedure that can be called to
populate a record from an unbound form. The fairly basic form is based on two tables, tblStu-
dent and tblModule. Of course, you will also need some user input. Thus your procedure must
also accept parameters. Parameters within stored procedures are declared as

Declare Variable name Datatype

For example:

@CustomerName Nvarchar(250)

Parameters can also have a default value assigned, and you can declare your own vari-
ables to hold the results of processing. You will see an example of this a little later in the
section “Error Trapping in Stored Procedures.”

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET160

You will be creating the procedure in Management Studio Express by turning on the
Query Designer (select View ➤ Toolbars ➤ Query Designer). Creating a query in the Query
Designer is very similar to creating a standard Access query. The main difference, as you shall
see, is how stored procedures are executed from code using ADO. Enter Listing 7-4, the code
for this example, into the Query Designer window and execute it to create the procedure. You
can test the results by typing Exec Usp_FindStudent into the Query Designer window and exe-
cuting it. The actual procedure can also be created via the Access ADP interface using
graphical tools. If you do so, you may only see the SQL SELECT statement as opposed to the full
stored procedure definition shown in Listing 7-4.

Listing 7-4. Creating a Parameter in a Stored Procedure

CREATE Procedure usp_FindStudent
(@StudentRef int)
AS SELECT
dbo.tblStudent.StudForeName, dbo.tblStudent.StudSurName,
dbo.tblStudent.StudAdd1, dbo.tblStudent.StudAdd2,
dbo.tblStudent.StudTown, dbo.tblModule.ModName
FROM
dbo.tblModule INNER JOIN
dbo.tblStudent ON dbo.tblModule.ModStudent
= dbo.tblStudent.StudRef
WHERE
dbo.tblStudent.StudRef = @StudentRef

The procedure accepts a single parameter, StudentRef, which in this case will be passed
using ADO. Let’s add a few refinements to the procedure: a default value and a line to deal
with null values. In this case, if the value is null, you want all the student records to be
returned. The procedure can be passed the StudentRef parameter or indeed a null value,
and it will return records to the caller. Listing 7-5 shows the stored procedure rewritten to
deal with the possibility of a null variable.

Listing 7-5. Dealing with Nulls

CREATE Procedure usp_FindStudent
(@StudentRef int = null)
AS
IF @StudentRef is null
BEGIN
SELECT * FROM dbo.tblStudent
END
Else
BEGIN
SELECT
dbo.tblStudent.StudForeName, dbo.tblStudent.StudSurName,
dbo.tblStudent.StudAdd1, dbo.tblStudent.StudAdd2,
dbo.tblStudent.StudTown, dbo.tblModule.ModName

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 161

FROM
dbo.tblModule INNER JOIN
dbo.tblStudent ON dbo.tblModule.ModStudent
= dbo.tblStudent.StudRef
WHERE
dbo.tblStudent.StudRef= @StudentRef
END

The changed version includes some conditional branching. @StudentRef has been
given a default value, in this case null; @StudentRef is tested for a null value, and if true,
processing is carried out by the first BEGIN/END statement, in this case a simple SELECT *
statement. If @StudentRef does contain a value, the second set of SQL statements is exe-
cuted. Within an ADP, you can execute the procedure in Listing 7-5 and pass Access form
values to it as parameters. ADO parameters were introduced in Chapter 6 and offer you a
quick method to feed values from Access ADPs to stored procedures. Within Access, if you
need to pass a parameter to a procedure from a form, you can use the Input Parameter
property. Input parameters are discussed later in this chapter in the section “Passing
Parameters to Stored Procedures.”

In the preceding example, you could also have captured and halted the passing of the
null value from within the Access interface, and this is often viewed as the best way to deal
with such issues by building rules into the application. However, if you need to move the
interface to the Web, for example, you would need to rebuild the “smarts” into the front end
all over again. In the preceding case, the “smarts” are part of the procedure and are thus
independent of the application accessing it.

It is also possible to execute a stored procedure via DAO by using a QueryDef and a pass-
through query. Listing 7-6 shows how this is achieved.

Listing 7-6. Executing a Pass-Through Using DAO

Public Sub PtSPs()
On Error GoTo Err_PtSPs
Dim db As DAO.Database
Dim qdf As QueryDef
Dim rstlog As DAO.Recordset

Set db = CurrentDb
Set qdf = db.QueryDefs("pt_GetDbRoles")
Set rstlog = qdf.OpenRecordset()

Do While Not rstlog.EOF
Debug.Print rstlog!DbFixedRole
rstlog.MoveNext

Loop

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET162

Exit_PtSPs:
On Error Resume Next

If Not (rstlog Is Nothing) Then rstlog.Close: Set rstlog = Nothing
If Not (qdf Is Nothing) Then qdf.Close: Set qdf = Nothing
If Not (db Is Nothing) Then db.Close: Set db = Nothing

Exit Sub
Err_PtSPs:

MsgBox Err.Description, , "Error in Sub Module2.PtSPs"
Resume Exit_PtSPs

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Error Trapping in Stored Procedures
So far, the examples are basic to illustrate the procedure. If you can create an INSERT pro-
cedure and use it to add two values using VBA and ADO, for example, or directly in the
Management Studio Express interface, the move to insert 200 records should not prove to
be that difficult. So, before moving on, let’s look at how SQL Server Express deals with error
control. For this example, you will be looking at adding error management into the INSERT
procedure used to add a record into the module table, tblModule. I should say straight
away that error handling in stored procedures is poor to say the least. You have already
seen a simple example of procedure control when testing for a NULL parameter. Using IF
@parameter Is NULL, you can execute an alternative statement, or if you use the RETURN
keyword, you can kill execution of the procedure before it hits your code. For example:

IF @ModuleRef Is Null
RETURN

The only problem with this is that you will not receive any notification from the SQL
Server side that your procedure has been terminated.

On many occasions, you may want to catch and validate errors on the client, but plac-
ing error control into the stored procedure itself can give you a much more flexible back
end. Listing 7-7 shows the approach. The following procedure is taken from SQL Server
Books Online and demonstrates the new features for error control with SQL Server 2005.

Listing 7-7. Using TRY/CATCH

CREATE PROCEDURE usp_GetErrorInfo
AS

SELECT
ERROR_NUMBER() AS ErrorNumber,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState,
ERROR_PROCEDURE() as ErrorProcedure,
ERROR_LINE() as ErrorLine,
ERROR_MESSAGE() as ErrorMessage;

GO

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 163

BEGIN TRY
-- Generate divide-by-zero error.
SELECT 1/0;

END TRY
BEGIN CATCH

-- Execute the error retrieval routine.
EXECUTE usp_GetErrorInfo;

END CATCH;

The actual procedure is easy enough, but it contains much more sophisticated error con-
trol than was previously available with SQL Server. The bones of this error control come from
standard .NET programming language C# and involve the use of a TRY/CATCH block. What hap-
pens is that your code will be contained within the TRY block. If an error occurs, control of the
program flow is passed into the CATCH block for processing. Processing then continues at the
first SQL statement following the end of the CATCH block. Each TRY block is associated with at
most one CATCH block.

As can be seen in the preceding example, several functions have been declared in the
procedure. Table 7-2 shows their use.

Table 7-2. Try/Catch Error Functions

Function Comment

ERROR_NUMBER() Returns the error number

ERROR_MESSAGE() Returns the complete text of the error message

ERROR_SEVERITY() Returns the error severity

ERROR_STATE() Returns the error state number

ERROR_LINE() Returns the line number inside the routine that caused the error

ERROR_PROCEDURE() Returns the name of the stored procedure or trigger

With SQL Server, an error is associated with a severity level that may kill the code or
disable your connection. SQL Server Books Online contains a great section with examples
on error control.

Passing Parameters to Stored Procedures
When working with stored procedures and other server-side objects, you will often need to
pass one or more parameters to the objects using ADO and the parameters’ arguments to the
Command object and its execute method. The basic idea is to append the parameters to the
ADO Command object. The basic premise for passing a parameter is as follows:

Set parameter = command.CreateParameter("StudRef",adInteger,adParamInput)
Command.Parameters.Append Parameter

Each parameter must be in the same position as in the stored procedure. For this exam-
ple, the parameters will be passed to the procedure from a form that contains two text boxes,
Student ForeName and Student SurName. The code will be attached to the On Click event and
the values within the text boxes passed into the procedure. The code will execute the stored

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET164

procedure, inserting the values into the SQL Server student table. Listing 7-8 shows the click
event for the insert. I have omitted the cleanup code from this procedure.

Listing 7-8. Passing Parameters to Stored Procedures

Private Sub Command5_Click()
On Error GoTo Err_Command5_Click
Dim cmd As ADODB.Command
Dim prmForeName As ADODB.Parameter
Dim prmSurName As ADODB.Parameter
Dim rstStudent As ADODB.Recordset
Dim conn As ADODB.Connection
Set conn = CurrentProject.AccessConnection
Set cmd = New ADODB.Command
cmd.ActiveConnection = conn
cmd.CommandType = adCmdStoredProc
cmd.CommandText = "usp_InsertStudent"

Set prmForeName = cmd.CreateParameter("@ForeName", adVarChar, adParamInput, 10)
Set prmSurName = cmd.CreateParameter("@SurName", adVarChar, adParamInput, 10)

cmd.Parameters.Append prmForeName
prmForeName.Value = Me.txtforename
cmd.Parameters.Append prmSurName
prmSurName.Value = Me.txtsurname

cmd.Execute

Exit_Command5_Click:
On Error Resume Next

Exit Sub
Err_Command5_Click:

MsgBox Err.Description, , "Error in Sub Form_Form1.Command5_Click"
Resume Exit_Command5_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

The number of CreateParameter statements depends on the number of parameters
being passed to the event and can grow substantially given the size of the typical form.
Note that there is no visual indication within the interface that you have actually added the
record, even though the insert actually does work. What you need to do is amend the pro-
cedure to indicate that a record has been added. One way to do this is to return the new
record’s primary key using a built-in SQL Server function, @@Identity.

Returning to the CreateParameter statement, there are several parts to the syntax:

CreateParameter(name,type,direction,sizevalue)

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 165

name is the name of the parameter, type refers to the data type of the value, direction
refers to input or output value, and sizevalue relates to the maximum size of the value being
passed in. The size stated is usually related to the size of the column value being used. Type is
one area where new users of parameters can make some basic errors equating the parameter
type to the data type of the value. The data type used by the parameter is different from that of
your database. http://www.activeserverpages.ru/ADO/daprop06_4.htm contains a listing of all
the ADO types available, and their definitions are well worth a look.

Stored Procedures and Access Forms
When working with stored procedures and Access 2007, you can bind a form directly to a pro-
cedure. Simply select the procedure, click Create ➤ Form, and you have a fully updatable
recordset created by Access behind the scenes. An updatable snapshot is used by default for
forms based on stored procedures. However, this can give rise to issues when working with a
master detail form, as only the many side of a relationship can be updated. The Chapter7
example database contains a small example of working with an unbound form, frmStudent,
which displays student data. (The form is deliberately simplified to illustrate the point.) This
example is also unbound—that is, the data is provided to the form via VBA and a stored proce-
dure. Before creating this form, you will create an unbound form to allow a user to enter and
edit student data. The form will be populated using a number of stored procedures, which are
shown in Listings 7-9 through 7-11. Each procedure is created within the Access interface. The
INSERT procedure is simply a fuller example of the parameter example shown previously.

Listing 7-9. Basic Stored Procedure to Populate frmModule

CREATE PROCEDURE [dbo].[usp_GetStudentData]
AS
SELECT
StudForeName, StudSurName,
StudAdd1, StudAdd2, StudTown
FROM
dbo.tblStudent

Listing 7-10. Stored Procedure to Insert a New Student

CREATE PROCEDURE usp_InsertStudent
(

@StudentFName nchar(10),
@StudentSName nchar(10),
@StudentAddr1 nchar(10),
@StudentAddr2 nchar(10),
@StudentTown nchar(10)

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET166

)
AS
INSERT INTO dbo.tblStudent(StudForeName,
StudSurName, StudAdd1, StudAdd2, StudTown)

VALUES
(@StudentFName,
@StudentSName,
@StudentAddr1,
@StudentAddr2,
@StudentTown)

Listing 7-11. Stored Procedure to Delete a Module

CREATE PROCEDURE dbo.usp_deletemodule
(@StudRef int)
AS DELETE FROM dbo.tblStudent
WHERE (StudRef = @StudRef)

It is also possible to script the procedures with Management Studio Express. Right-click
a table name and select Script Table As. You will then be presented with several scripting
choices:

• CREATE

• ALTER

• DROP

• INSERT

• UPDATE

• DELETE

Choosing an option will create a new SQL statement that requires modification to change
it into a stored procedure. Of course, you can use the statement as is. Listing 7-12 shows an
INSERT statement generated for tblModule.

Listing 7-12. Generated INSERT Statement

INSERT INTO [Chapter7].[dbo].[tblModule]
([ModName]
,[ModStudent])

VALUES
(<ModName, nvarchar(50),>
,<ModStudent, nchar(10),>)

Note the placeholders indicated by the angle brackets (< >); these can be automatically
populated by selecting Query ➤ Specify Values for Template Parameters from the main menu.
Simply provide a parameter value in the Specify Parameter dialog box to have all placeholders
populated for you.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 167

These procedures, even if basic, illustrate several of the principles involved when manip-
ulating data via stored procedures. The stored procedures themselves contain basic SQL
statements. Note the use of the prefix before each object name. In this case, the prefix is dbo.
When using SQL Server objects, they are created and prefixed with the name of the owner who
created them. In this case, dbo is the system admin, which I am logged in as. From VBA, there
are several ways in which you could make use of the procedure and indeed execute it.

Returning to the example in Listing 7-12, you now have three stored procedures: one
returns all records, one inserts a record, and one deletes a record. Again, the approach is not
complicated, but it is designed to illustrate the process of how this can work. (And always bear
in mind that there is more than one way to skin a cat!) One tip I picked up relates to populat-
ing form text boxes using code. In form design, if the text boxes are named exactly the same as
the column names in the table, a simple FOR LOOP can be used to populate the data. This tech-
nique is demonstrated in the MoveNext event for information. In Chapter 5, you explicitly set
the value of each text box to a particular field.

For Each fld in rst.Fields
Me(fld.Name).Value = fld.value

Next

This simply looks over the values returned from your statement in VBA and populates each
matching text box on the form. The form’s On Open event is shown in Listing 7-13, and the
associated events for filing the recordset are shown in Listing 7-14. Listings 7-15 and 7-16
show the techniques used for the MoveNext and MovePrevious commands.

Listing 7-13. Form Open Event

Private Sub Form_Open(Cancel As Integer)
Dim cmd As ADODB.Command
Dim conn As ADODB.Connection

Set conn = CurrentProject.Connection
Set cmd = New ADODB.Command

Set rststudent = New ADODB.Recordset
Set cmd.ActiveConnection = conn
cmd.CommandText = "usp_getStudentData"
cmd.CommandType = adCmdStoredProc

rststudent.Open cmd, , adOpenKeyset, adLockOptimistic, adCmdStoredProc

Call fillform
End Sub

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET168

Listing 7-14. Providing Data for the Form

Public Sub fillform()
On Error GoTo Err_fillform
Me.StudForeName = rststudent!StudForeName
Me.StudSurName = rststudent!StudSurName
Me.StudAdd1 = rststudent!StudAdd1
Me.StudAdd2 = rststudent!StudAdd2
Me.StudTown = rststudetn!StudTown
Exit_fillform:
Exit Sub
Err_fillform:

MsgBox Err.Description, , "Error in Sub Form_frmClearListbox.fillform"
Resume Exit_fillform

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Listing 7-15. MoveNext

Private Sub cmdnext_Click()
On Error GoTo Err_cmdnext_Click
rststudent.MoveNext
If Not rststudent.EOF Then
For Each fld In rststudent.Fields

Me(fld.Name).Value = fld.Value
Next
End If
Exit_cmdnext_Click:
Exit Sub
Err_cmdnext_Click:

MsgBox Err.Description, , "Error in Sub Form_frmClearListbox.cmdnext_Click"
Resume Exit_cmdnext_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Listing 7-16. MovePrevious

Private Sub cmdPrevious_Click()
On Error GoTo Err_cmdPrevious_Click
rststudent.MovePrevious
If Not rststudent.EOF Then
For Each fld In rststudent.Fields

Me(fld.Name).Value = fld.Value
Next
End If
Exit_cmdPrevious_Click:
Exit Sub

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 169

Err_cmdPrevious_Click:
MsgBox Err.Description, , "Error in Sub ➥

Form_frmChapter7SPExample.cmdPrevious_Click"
Resume Exit_cmdPrevious_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

In this example, you use a Command object in the form open event and the stored procedure
directly in the recordset open event; note you must include the option adcmdStoredProc, which
indicates that this is a stored procedure. An SQL statement would be identified as adcmdText.
As in Chapter 5, because this is an unbound recordset, you need to take care of the MoveNext
and MovePrevious commands yourself. Listing 7-17 shows the code behind a New Record
button. The first thing it does is clear each of the form’s text boxes. The next step is to enable
a Save button, which has had its enabled property set to false.

■Note I am keeping each operation separate to show how the techniques work as opposed to setting
a value, for example, a Mode variable that can hold a value for testing of Add, Edit, or Delete. For example,
if Mode equals Add, add a new record, and if Mode equals Edit, edit the existing record.

Listing 7-17. Clearing Text Boxes

Me.StudForeName = ""
Me.StudSurName = ""
Me.StudAdd1 = ""
Me.StudAdd2 = ""
Me.StudTown = ""

Once the form is cleared, the user can then enter a new record. Finally, you need to vali-
date the data entered by the user (for example, leaving a text box null). This is tested in the
ValData routine attached to the click event of cmdSave.

Inserting a New Record
In this case, when inserting a new record, you will call your INSERT procedure, passing in the
required parameters. The procedure being called is that shown earlier in usp_InsertStudent.
Missing data errors are trapped within the front-end application. CmdSave checks the data and
executes the stored procedure to carry out the actual insert of the record. Listing 7-18 shows
the code to achieve this.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET170

Listing 7-18. Inserting a Record Using a Stored Procedure

Private Sub cmdSave_Click()
On Error GoTo Err_cmdSave_Click
Call valData
Dim cmd As ADODB.Command
Dim prmForeName As ADODB.Parameter
Dim prmSurName As ADODB.Parameter
Dim prmAddr1 As ADODB.Parameter
Dim prmAdd2 As ADODB.Parameter
Dim prmTown As ADODB.Parameter
Dim rststudent As ADODB.Recordset
Dim conn As ADODB.Connection
Set conn = CurrentProject.AccessConnection
Set cmd = New ADODB.Command

cmd.ActiveConnection = conn
cmd.CommandType = adCmdStoredProc
cmd.CommandText = "usp_InsertStudent"

Set prmForeName = cmd.CreateParameter("@ForeName", adVarChar, adParamInput, 10)
Set prmSurName = cmd.CreateParameter("@SurName", adVarChar, adParamInput, 10)
Set prmAddr1 = cmd.CreateParameter("@StudentAddr1", adVarChar, adParamInput, 10)
Set prmAdd2 = cmd.CreateParameter("@StudentAddr2", adVarChar, adParamInput, 10)
Set prmTown = cmd.CreateParameter("@StudentTown", adVarChar, adParamInput, 10)

cmd.Parameters.Append prmForeName
prmForeName.Value = Me.StudForeName
cmd.Parameters.Append prmSurName
prmSurName.Value = Me.StudSurName
cmd.Parameters.Append prmAddr1
prmAddr1.Value = Me.StudAdd1
cmd.Parameters.Append prmAdd2
prmAdd2.Value = Me.StudAdd2
cmd.Parameters.Append prmTown
prmTown.Value = Me.StudTown
cmd.Execute

Exit_cmdSave_Click:
On Error Resume Next

If Not (prmTown Is Nothing) Then prmTown.Close: Set prmTown = Nothing
If Not (prmAdd2 Is Nothing) Then prmAdd2.Close: Set prmAdd2 = Nothing
If Not (prmAddr1 Is Nothing) Then prmAddr1.Close: Set prmAddr1 = Nothing
If Not (prmForeName Is Nothing) Then prmForeName.Close: ➥

Set prmForeName = Nothing
If Not (cmd Is Nothing) Then cmd.Close: Set cmd = Nothing
If Not (conn Is Nothing) Then conn.Close: Set conn = Nothing

Exit Sub

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 171

Err_cmdSave_Click:
MsgBox Err.Description, , ➥

"Error in Sub Form_frmChapter7SPExample.cmdSave_Click"
Resume Exit_cmdSave_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Deleting a Record
All that is required for this example is to pass to the DELETE procedure the ID of the record
you would like to delete. In this case, you delete a single student record, passing in the
StudRef of the required record. On this occasion, you will add in a TRY/CATCH example to
roll back any changes should an error occur. The entire operation has also been wrapped
into a transaction. Listing 7-19 shows the amended procedure. (Yes, I know there’s mostly
error collection code in this procedure!)

Listing 7-19. Amended Delete Procedure

set ANSI_NULLS ON
set QUOTED_IDENTIFIER ON
GO
ALTER PROCEDURE [dbo].[usp_deletemodule](@modRef int)
AS
BEGIN TRANSACTION;

BEGIN TRY
DELETE FROM dbo.tblModule
WHERE (ModRef = @modRef)
END TRY
BEGIN CATCH

SELECT
ERROR_NUMBER() AS ErrorNumber,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState,
ERROR_PROCEDURE() as ErrorProcedure,
ERROR_LINE() as ErrorLine,
ERROR_MESSAGE() as ErrorMessage;

IF @@TRANCOUNT > 0
ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0
COMMIT TRANSACTION;

Deleting the actual record is a matter of passing the module reference primary key value
to the procedure. This is demonstrated in the Chapter7 example ADP file, which deletes a sin-
gle module using the preceding procedure.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET172

User-Defined Functions
Again, as briefly mentioned in Chapter 6, user-defined functions are a useful tool when
working with SQL Server Express and indeed SQL Server 2000. A UDF itself is much like a
stored procedure in that it contains a set of SQL statements that carry out a specific task or
tasks. The big thing about them is that in addition to returning single values, they can in fact
return a table. The table returned can also be used in a standard JOIN statement, and you
can also write SQL, including WHERE clauses, against the function. Take the function
fnStudentNames, shown in Listing 7-20.

Listing 7-20. User-Defined Function fnStudentNames

CREATE FUNCTION dbo.fnStudentNames
()
RETURNS TABLE
AS
RETURN (SELECT StudForeName + ' ,' + StudSurName AS Name,Studref➥

FROM dbo.tblStudent)

For this example, you will use the Access interface within the Chapter7 example ADP file.
To create the function, follow these steps:

1. Click Create.

2. Click Query Wizard.

3. Select Design In Line Function.

4. Click tblStudent and click Add.

5. Click Close to close the Add Table dialog box.

6. Enter StudForeName + ‘ ,’ + StudSurName in the column field.

7. Enter Name into the Alias field.

8. Click Run.

9. Click OK to save the changes.

So what use is this? Well, first off, any time you need the student name (or other concate-
nated data), it’s available for use. Listing 7-21 shows the function being used within a stored
procedure and in a JOIN statement.

Listing 7-21. Using a UDF

CREATE PROCEDURE dbo.uspFunctionJoin
AS
SELECT
fnStudentNames.Name, dbo.tblModule.ModName
FROM
dbo..tblModule INNER JOIN
dbo.fnStudentNames() fnStudentNames ON
dbo.tblModule.ModStudent = fnStudentNames.StudRef

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 173

In this case, you are simply treating the function as if it were a table, and you don’t have to
worry about entering the concatenation statements again. In addition, your new function can
also accept parameters; for example, changing one line in Listing 7-21 enables you to pass val-
ues to the function. Enter the statement in Listing 7-22 into a new Query Designer window in
Management Studio Express. Note the change of keyword to ALTER used to change a function
or stored procedure definition. In this case, you are amending the definition of the function to
include a new column and a parameter, studref.

Listing 7-22. Adding a Parameter to a Function

ALTER PROCEDURE dbo.uspFunctionJoin
(@studref int)
AS
SELECT
fnStudentNames.Name, dbo.tblModule.ModName,
dbo.tblModule.ModStudent, fnStudentNames.StudRef
FROM
dbo.tblModule INNER JOIN
dbo.fnStudentNames() fnStudentNames
ON dbo.tblModule.ModStudent = fnStudentNames.StudRef
WHERE
(fnStudentNames.StudRef = @studref)

If the function is executed with Access, you will be prompted for a parameter value. If the
value is null (that is, you don’t enter anything), zero records will be returned.

No discussion of UDFs would be complete without a look at scalar and table-valued
functions. A scalar function is a function that takes a single value, carries out an operation,
and returns a single value, for example, the Access Len and DateDiff functions. Listing 7-23
shows a short scalar function that concatenates StudForeName and StudSurName based on the
StudentRef number passed in. Note this function was created directly in the Query Editor of
SQL Server Express as opposed to Access.

Listing 7-23. Scalar Function

CREATE FUNCTION dbo. udf_GetStudent
(@StudentRef As int)
RETURNS nvarchar(40)
BEGIN
DECLARE @Name As nvarchar(40)
SELECT @Name = StudForeName+ ' ' + StudSurName
FROM tblStudent
WHERE StudRef = @StudentRef
RETURN (@Name)
END

Following is the SELECT statement that calls the function, passing in a value of 2:

SELECT [Chapter7].[dbo].[udf_GetStudent] (2)

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET174

A table-valued function, on the other hand, returns a table of results instead of a single
value. Inline functions are interesting animals, as they return a table that can then be used
within a SELECT statement. Listing 7-24 shows the syntax for a standard UDF template created
in the Access interface and is used as a building block for the function in Listing 7-25, which
accepts a StudentRef number and returns a table of student data. The SELECT statement that
follows passes the StudentRef number to the function.

Listing 7-24. UDF Syntax

CREATE FUNCTION "Function1"
(
/*
@parameter1 datatype = default value,
@parameter2 datatype
*/
)
RETURNS TABLE
AS
RETURN (/* sql select statement */)

Listing 7-25. Example User-Defined Function

Create FUNCTION dbo.udf_GetStudent
(@StudentRef int)
RETURNS TABLE
AS
RETURN (SELECT StudentRef, StudentSurname, StudentForename
FROM dbo.tblStudent
WHERE (StudentRef = @StudentRef))

Access permits you to create a user-defined function either graphically in the Query
Designer or directly within the SQL pane of the query builder.

Using the function is as easy as this:

SELECT * FROM udf_GetStudent (2)

The ability to use functions as if they were tables is a major improvement over the stan-
dard Access query types.

Views
SQL Server views are very handy objects for the developer and work much like saved queries
in Access. Views can serve a number of purposes in an ADP; for example, they hide complex
SQL statements and restrict the columns a user can see, and they can also be indexed, thereby
increasing performance. Views are also useful from a security standpoint: as with stored pro-
cedures, a user can be given access to a particular view only, thereby adding another level of
security to your application without too much effort on your behalf. You can use a view within
a linked application, or with an ADP as if it were a physical table. Of course, in an unbound
application, you can also use the view as a virtual table.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 175

Creating a view is straightforward, whatever the means you are using to do so. Within an
ADP, you can create a view using the graphical query builder, which is a handy way to go and
is another reason I advise building an ADP even if you are going with linked tables.

1. Click Create on the Ribbon.

2. Select Query Wizard.

3. Select Design View.

4. Click OK.

5. Within the Query Designer window, select the table or tables for the view. In my case,
I am adding tblStudent and tblModule.

6. Select the required fields from the tables.

7. Close and save the view (I used the name vwStsudentModule).

To execute the resulting view, double-click the view name within the Query category of
the Navigation Pane. Listing 7-26 shows the statement created within the view definition.

Listing 7-26. View SQL

CREATE VIEW [dbo].[vw_studentModule]
AS
SELECT
dbo.tblStudent.StudRef, dbo.tblStudent.StudForeName,
dbo.tblStudent.StudSurName, dbo.tblStudent.StudAdd1,
dbo.tblStudent.StudAdd2, dbo.tblStudent.StudTown,
dbo.tblModule.ModName
FROM
dbo.tblModule INNER JOIN
dbo.tblStudent ON dbo.tblModule.ModStudent
= dbo.tblStudent.StudRef

Within an Access ADP, you can base a form on a view simply by clicking the view name in
the Navigation Pane, and then clicking Create ➤ Form. Access will generate a form for you
based on the view selected. If you want to actually use the view to add records, you must
change one of the View properties. To do this, follow these steps:

1. Execute the view.

2. Change to Design view.

3. Right-click and select Properties.

4. Check Update Using View Rules.

5. Close the dialog box.

6. Close and save the changes to the view definition.

7. Create a new form based on the view.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET176

It is also possible to create a view directly via ADO when working with an ADP. Listing 7-27
shows a short procedure used to create a simple view. Note the simplicity of this statement; as
opposed to one containing command objects, procedures, and so forth, this just executes the
appropriate SQL string. This will also work in a linked application or indeed anything using
SQL Server.

Listing 7-27. Creating a View Using ADO and ADPs

Public Sub createadoview()
Dim strSQL As String
Dim conn As ADODB.Connection
Set conn = CurrentProject.Connection
strSQL = "CREATE VIEW VwModules " & ➥

"AS SELECT * FROM tblModule"
conn.Execute strSQL
conn.Close
End Sub

Figure 7-4 shows the resulting view created within Management Studio Express. It is
worth noting that in Access all you will see are the SQL statements used to create the view. In
Management Studio Express, the full syntax of the view is visible, and you also get a graphical
builder similar to that in Access.

The resulting view can be used anywhere you would normally place a table recordset,
for example, a form’s record source, a combo box, or indeed a list box. You can also run SQL
statements directly against the view, again simplifying the SQL requirements of applica-
tions. In a linked application, you can link to a view much like you would to a normal table.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 177

Figure 7-4. New view within Management Studio Express

Views are a useful tool for read-only recordsets; for example, they provide a great way to
populate reports with static recordsets, particularly if the SQL is complex. Using a view, Joins
can be performed on the server and a simple WHERE clause executed on the Access side to pre-
pare data for a report. In fact, this is a good technique to follow whenever you can: shift as
much of the complex processing to the server as possible and filter the returning records
from Access.

■Note Some time ago I coauthored an article on using SELECT Top 100 percent to add an ORDER BY
to a view. By its nature, a view cannot be created using ORDER BY. It is worth noting that this workaround is
ignored by SQL Server 2005 Express. You do not get an error message from the Access 2007 ADP designers,
but the ORDER BY is ignored. From a pure SQL viewpoint, it is better to leave the ORDER BY to the state-
ments querying the view as opposed to the view creation statement.

SQL Server Express Security
In SQL Server Express, security is defined in terms of principles. A principle is anything that
requires access to your database such as a Windows user, a Windows user group, or, if using
Mixed Mode security, an SQL Server login. Generally, you will require access to the server
itself and then permissions to work with a specific database or databases. In addition to
login access, SQL Server Express contains a number of prebuilt server and database roles.
By default, each user is a member of the built-in public role. Next in line, you have secur-
ables, items the database engine can control access to. Securables are objects like tables,
stored procedures, functions, and views, and they exist within a schema, which exists within
a database. The database itself resides upon an SQL Server instance, which resides upon a
physical operating system. Phew! To make this a bit easier to comprehend, think of a table
as a securable object, the user as a principle, and the database objects as the schema. Note
that the database itself is not the schema, rather it is a container for the schema!

Database Roles
Just like SQL Server 2000, SQL Server Express has a number of built-in database roles to which
users can be assigned. Table 7-3 outlines each of the built-in roles available to you.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET178

Table 7-3. SQL Server Express Database Roles

Role Name Comment

db_accessadmin Permission to add and remove logins

db_backupoperator Permission to perform a database backup

db_datareader Permission to read data

db_datawriter Permission to write data

db_ddladmin Permission to run DDL commands

db_denydatareader No permission to read data

db_denydatawriter No permission to write data

db_owner Permission on all objects within the database

db_securityadmin Permission to administrate security on the database

To view the database roles from within Access 2007, create a pass-through query contain-
ing the following command:

exec sp_helpdbfixedrole

sp_helpdbfixedrole is a system stored procedure that will display the database roles avail-
able. In addition to the built-in role, the neat thing is you can create your own. The interface
to create roles for those used to doing this via MSDE is superb. Creating your own database
roles can be a useful tool that will help cut down on the administrative overheads in manag-
ing security for your server database. Once created, users can then be added to a role and
immediately receive the same permissions as the role.

Server Roles
Server roles are specific to the server as a whole. Just like the built-in database roles, SQL
Server Express comes with some server-wide roles already created for you. Table 7-4 shows
the roles available.

Table 7-4. SQL Server Express Server Roles

Role Name Comment

bulkadmin Permission to run bulk INSERT statements

dbcreator Permission to create, alter, restore, and drop a database

diskadmin Permission to manage disk files

processadmin Permission to kill processes running on the server

securityadmin Permission to manage server security

serveradmin Permission to change server properties and shut down the server

setupadmin Permission to add and remove linked servers

sysadmin Permission to perform any action on the server

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 179

Logins
Before you can do anything on the server, you need to decide which security model you
will use: either Windows Authentication or SQL Server Mixed Mode. You can, of course,
change this in the server properties. Windows security allows you to map a user’s Windows
account into SQL Server, but you cannot then use SQL Server’s own built-in security system
in Mixed Mode. Mixed Mode permits you to use either Windows Accounts or SQL Server’s
own security system. The interface and some of the details are slightly different using Man-
agement Studio Express than was the case in SQL Server 2000, but the basics remain the
same. The login simply provides permissions for an individual or group to access the
server. It is generally accepted that where possible Windows Authentication should be
used, as it is more secure.

To create the login within Management Studio Express, follow these steps:

1. Expand the Security folder.

2. Right-click the Login folder and select New Login. This brings up the Login – New
dialog box shown in Figure 7-5.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET180

Figure 7-5. The Login – New dialog box

This dialog box presents several categories and options depending on which security
model you are using.

Windows Authentication
If you are using Windows Authentication, follow these steps in the Login – New dialog box:

1. Click Search.

2. Click Advanced.

■Note The Advanced dialog box lets you search all users and groups to which you have access
(for example, Active Directory).

3. Click Find Now.

4. Select the name of a user or group and click OK.

5. Specify a default database from the drop-down list on the Login – New dialog box.
This is the database this user or group will be defaulted to on login.

6. If this user or group has to be assigned a server role, click the Server Roles category to
view the built-in server roles (as discussed previously) and then check the appropriate
role or roles.

7. Click OK to save the changes for the login.

■Note The User Mapping category allows you to assign the login to a particular database or databases
and at the same time add the user or users to a database role.

SQL Server Authentication
Before using SQL Server authentication, you have to change the properties of the server if it’s
already been set up for Windows Authentication. To do this, right-click the server name, and
select Properties ➤ Security ➤ SQL Server and Windows Authentication. The process to create
the login and permissions is almost identical with the exception of the following steps:

1. Change the login to SQL Server authentication by clicking the appropriate radio but-
ton in the Login – New dialog box.

2. Enter a login name.

3. Enter a password (a strong password, please!).

4. Assign the user to a database or databases using User Mappings and assign that user
to a database role using either a built-in role or a new role created for this purpose.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 181

Once you complete the change of security method, check that your user has access to the
required database by expanding the database folder, select and expand Users, and ensure you
can see the new user listed. One thing that may not be visible is the way in which SQL Express
has named the tables. In a linked application, the tables are prefixed dbo, while in an ADP
application, the tables are suffixed dbo.

Working with Functions, Views, and
Other Objects with Access 2007
Access provides you with a graphical interface to allow you to create stored procedures when
using an ADP that is similar in nature to the standard query builder or da Vinci tool set. Access
2007 contains two new Ribbon icon shortcuts, Stored Procedures and Views. Figure 7-6 shows
the Stored Procedure icon on the Create ribbon in an ADP.

Note the graphical options to create main server-side objects, stored procedures, func-
tions, and views. This feature is very useful for helping you get to grips with the syntax of these
objects.

Table 7-5 shows the options now available in the Query Wizard while working inside an
ADP. In a linked application, you will simply see the standard Access Ribbon.

Table 7-5. Query Wizard in ADPs

Option Purpose

Design In Line Function Create a table-valued function.

Design View Create an SQL Server view.

Design Stored Procedure Graphically create an SQL Server procedure.

Create Text Stored Procedure Create a stored procedure using a simple text editor.

Create Text Scalar Function Create a scalar function using the text editor.

Create Text Table Valued Function Create a table-valued function using the text editor.

As you can see, it’s possible to graphically create a number of SQL Server objects
directly via the GUI. Now let’s turn our attention to a detailed look at how ADPs interact
with SQL Server Express.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET182

Figure 7-6. The Create Ribbon in an ADP

ADPs and SQL Server 2005 Express
Access Data Projects are an excellent technology for working with SQL Server 2000 and now
SQL Server 2005. They appear to have fallen from grace with Microsoft because they are a
pure SQL Server technology and don’t fit neatly into the world of “access data anywhere.”
In my view, for those working with SQL Server, ADPs still offer one of the fastest ways to
build a front-end application than almost anything else available. They are restricted in
that they can only be used for SQL Server, and if you need to access data in other systems
(for example, Oracle), you will need to build up a linked server from within SQL Server
itself. In order to use ADPs, you must first understand some of the objects on the server
side. In Chapter 6, we looked at some of the major objects in SQL Server of interest to
developers. In this chapter, we will look again at some of those options and explore how
you can use these features within your user interface.

So what exactly is an ADP? Simply put, it’s an Access front end to a pure SQL Server data
store. All data is held on SQL Server, and the Access front end contains only Access objects,
forms, reports, and VBA. All data processing takes place on the server (when possible) via
stored procedures, user-defined functions, and views. The ability to create an ADP has also
been “hidden” in Access 2007 and is available by clicking the folder icon when entering a new
database name. So it is not an obvious option in this release.

ADPs also provide a rapid development tool and teaching aid when working with a
linked solution using SQL Server. Working with an ADP at the same time as building your
linked table application permits you to take advantage of the graphical tools to create many
SQL Server objects. The resulting code can then be pasted into SQL Server using Enterprise
Manager or Query Analyzer.

So are there any problems with ADPs? Just like any technology, there are issues; with an
ADP, you are working in the world of SQL Server, and many of the techniques you are familiar
with will not be suitable. Queries will be a thing of the past as you move to stored procedures.
DAO can still be used, but ADO may be more appropriate for server data manipulation. You
will need to learn new skills when working with SQL Server (for example, you need an under-
standing of server-side security, SQL Server management, and creating views and other server
objects), but personally, I believe none of the issues are an obstacle to Access developers.

Access 2007 provides a couple of ways to create ADPs: you can create a new ADP and an
SQL Server database, or create the SQL Server database and then the ADP telling Access which
server database you would like to use during the creation process. As mentioned previously,
this process is slightly hidden in Access 2007.

The following example walks you through the process of creating an ADP:

1. Click the Office button.

2. Enter a file name for the new application.

3. Click the folder icon.

4. Select Microsoft Office Access Project in the Save As Type drop-down list.

5. Click OK.

6. Click Create. You will then be prompted to connect to an existing server database or
create a new one.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 183

7. Click No to create a new server database.

8. Select the server required.

9. Select the security method to be used.

10. Click Next.

11. Click Finish to create the server database and the ADP.

As this is a new database, you can use the ADP interface to work with server-side objects.
In this next example, you will create a new table within the ADP to illustrate the difference

in table structure and features when working with SQL Server. To begin:

1. Click Create on the main Ribbon.

2. Click Table Design.

Note the differences in the Table Design window. Columns equate to fields in Access.
Also note the multiple data types available to you now that your table is being created in SQL
Server. One of the major differences you will find is when you click the table Properties sheet
when in Table Design view (located on the Design tab). The properties of a table on the server
will be markedly different from those of an Access table, as described in Table 7-6. There are
several tabs available on the properties, each of which details a different element.

Table 7-6. SQL Server Table Properties

Tab Property Comment

Tables This tab allows you to view properties of specific
tables.

Selected Table Drop-down list used to select a table to view and
work with its properties. Will default to the
currently selected table.

Owner System owner of the table. This option will be
grayed out.

Table Identity Column A column that equates in a way to an
AutoNumber data type.

Table ROWGUIDID ID Used during replication.

Table FileGroup Table storage area.

Text FileGroup Storage area for text data types.

Description

Relationships This tab allows you to view existing relationships
and create new ones.

Check existing data on
creation.

Enforce relationships
for replication.

Enforce relationship for
inserts and updates.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET184

Tab Property Comment

Indexes/Keys This tab lets you delete or add a new index to table

Create Unique Create a constraint or an index.

Create as Clustered Create a new clustered index.

Check Constraints Use this tab to create new constraints for the table
data.

Let’s take a closer look at some of these options. You will have little choice in Access
about the type of index you get. SQL Server, on the other hand, is different. Each table can
have a single clustered index, meaning that the rows on the data pages are sorted in index
order. A nonclustered index stores the keys and a pointer to the actual data. You can have
multiple nonclustered indexes per table.

Constraints work much like Access table validation rules and follow the same format.
They will return either true or false based on the data. You need to be careful when using con-
straints to check values, as they ignore nulls and will not cause an error. For example, the
following CREATE TABLE SQL statement contains a check constraint to ensure the student
number is between 1 and 9999.

CREATE TABLE tblStudent
(
StudentID Int PRIMARY KEY,
StudentForename varchar(25),
StudentSurname varchat (25),
StudentAddress1 varchat (35),
StudentNumber int
CONSTRAINT check_SID(StudentNumber Between 1 AND 9999))

In Chapter 6, I briefly discussed the ability to control program flow within a stored proce-
dure. Control of flow is very similar to controlling logic within VBA. For example, the following
fragment shows the general CASE syntax to control behavior of code.

CASE expression

WHEN value1 THEN result1

WHEN value2 THEN result2

(

ELSE elseDifferentResult

)

END

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 185

SQL Server Migration Assistant for Access
Still in beta at the time of writing, the SQL Server 2005 Migration Assistant for Access is
designed to assist you in moving your Access database to SQL Server 2005 and creating a
linked application as opposed to an ADP. It can be used with SQL Server Express and the full
version of SQL Server 2005. As for Access, this tool currently doesn’t support the new ACCDB
file type, only the MDB file type, so you can use it only with Access 97 to Access 2003. Hope-
fully, a release for Access 2007 should be available once the product is embedded in the
market. So why have I included this discussion here? In a lot of cases, many developers will
still be working with MDB file types, which may require moving to SQL Server Express. That
being the case, this free software will aid you in that process. In a few months, as the new
Access 2007 file types see more usage, this software will again become invaluable when work-
ing with SQL Server 2005. The Migration Assistant will function in the same way as described
here once the development team catches up with the Access file type ACCDB.

Table 7-7 outlines some of the issues you may face moving to SQL Server 2005. It’s worth
noting that many are similar to those you face moving to SQL Server 2000. In almost all cases,
the Migration Assistant will warn you about the issue. In fact, via some of its options, it will
help you to avoid some of the more common problems.

Table 7-7. Access Issues That Can Affect Migration to SQL Server 2005

Issue Comment

Access tables do not have unique indexes. Table cannot be changed once migrated.

Access tables use replication columns. Replication will not function after migration.

Access tables include null unique indexes. Migration for such tables will fail.

Date values are out of SQL Server range. Migration will fail with an error report.

Index is over 900 characters. Migration may fail.

SQL Server reserved words have been used. Migration will be successful if the words are
enclosed in quotes or brackets.

Foreign keys appear on different data types. These keys will not be created on SQL Server.

Relationships have been created on tables These relationships will need to be re-created once
without a primary key or unique index the tables are repaired.

Hyperlinks are included. There is no support for hyperlinks.

Access or VBA functions are included. There is no support for these functions.

As you can see, many of the issues you will face are just like those you will see when mov-
ing to SQL Server 2000 as opposed to 2005. In almost all cases, proper preparation of the
database is required before running the Migration Assistant for Access. Well, that’s not strictly
the case. Migration Assistant will load your Access database into its project workspace, check
it for errors (for example, conflicting date formats), and provide a very comprehensive fix
report. It’s then a case of fixing the issues and reloading the files into the project.

When it comes to converting your SQL and queries, Migration Assistant will make a better
job of it than the Upsizing Wizard and offer you a lot more control over the process. The focus
of Migration Assistant is to create linked applications, and it will be of little use to those mov-
ing to ADPs. Perhaps this signifies the future of ADPs as a viable development technology? We
will have to wait and see! At the moment, you will work with what’s there and what’s available;

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET186

currently ADPs still work with SQL Server 2005 and therefore can still be used. Table 7-7 can
help you in sorting out some of the major problems before you begin. Following are the
requirements for this tool:

• Windows XP SP 2 or Windows Server SP 1

• Microsoft Windows Installer 3.1 or later

• .NET Version 2 Framework, free download (Most users should have this from the
SQL Server Express install.)

• J# 2 redistributable package, free download

Overview: Migrating an Access MDB File to SQL Server 2005
Unlike the built-in Upsizing Wizard, the Migration Assistant gives you the developer much
more control over what’s going on when migrating data to SQL Server 2005. The best way to
see this is to walk through a migration. In this case, the Northwind database will be migrated
to SQL Server Express. The database being moved is not important to this example; what
I want to do is demonstrate the features of the software and how it can help you avoid migra-
tion issues. Of course, as discussed in Chapter 6, there is no substitute for advance planning
no matter what tool you will use to carry out the migration.

Before moving the actual tables, let’s take a quick look at the Migration Assistant interface.
Figure 7-7 shows a blank interface to Migration Assistant. This tool is not limited to a single
Access file; multiple files can be added to a single project and treated individually or en masse.
In addition, it is also possible to scan a network share for any MDB files that may exist and
“pull” them into Migration Assistant.

■Caution This section is based on the latest beta build of the SQL Server 2005 Migration Assistant
available at the time of writing, which was an incomplete build in terms of query migration.

Following are the general steps for the migration process, with details on the various steps
to come:

1. Create a new project file.

2. Add one or more Access databases.

3. Prepare your Access database for migration.

4. Connect to SQL Server.

5. If required, change the default schema for mapping.

6. Convert your Access objects to SQL Server Objects.

7. Move the objects into SQL Server using Migration Assistant.

8. Move your data to SQL Server.

9. Link the tables from SQL Server to your Access application.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 187

Creating a New Project File
The first step in the process is to create a new migration project. To do so, follow these steps:

1. From the main menu, select File ➤ New Project.

2. Enter a name for the project (for example, NorthWindMigrate).

3. Select a location to save the project files.

4. Click OK.

Note that a tree view is added into the project interface in which you can see the Access
Meta Data node and a database folder. As your project is populated, objects from Access data-
bases will be added to the folders, as you’ll see in the next step.

Adding MDB Files
The next step in the process is to add some MDB files to your project. A really cool feature of
Migration Assistant is its ability to actually scan your local disk or a network and discover all
the Access files available to you. This will be a useful feature to help discover how many Access
databases are in, for example, small work groups. We will come back to this feature shortly.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET188

Figure 7-7. SQL Server Migration Assistant for Access

To add a database or databases to the project, follow these steps:

1. Click Add Files.

2. In the Open dialog box, navigate to the MDB file you would like to add to the project.
(In my case, I selected Northwind.mdb.) Note that multiple database files can be
added to the project at any given time.

3. Expand the project database folder.

4. Expand the Northwind database or the database you are working on; for this example,
I have abbreviated the database name to Nwind.

The Tables and Queries folders within the Northwind database will now be available. In
addition, you can also view indexes and keys for each table. Figure 7-8 shows the Northwind
database with Tables expanded.

At this point, let’s pause and look at some of the configuration settings available to you.
Settings should be explored and set before you begin your migration project but can also be
set/unset on a case-by-case basis. There are several settings you can apply to an individual
project or globally to all projects created. Configuration options are available from the Tools
menu, and we’ll look at some of these in the next section. Global options allow you to define
when and where the error reports are made. I have found it useful to run the error logging
options within the interface. You can set up the log files to be used and make several minor
error settings.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 189

Figure 7-8. Expanded Access metabase showing Northwind

Preparing Your Database for Migration
This section describes some of the project settings you can make to prepare for migrating
your database. You can also generate reports that provide you with comprehensive informa-
tion on issues and problems that may need attention before migrating. Data type mapping
can be changed, default date replacement values can also be added, but mostly tables usually
migrate with little trouble. Also, it is wise to ensure each table has a primary key by adding
one either automatically in Migration Assistant (by setting the appropriate option in the
Project Settings dialog box) or manually in the MDB before migration.

Specifying Project Settings
Selecting Tools ➤ Project Settings opens the dialog box shown in Figure 7-9. The default set-
tings are different depending on which mode the software is being operated in. Full mode is
perhaps the best option, but Migration Assistant for Access will take control of the process.
Of course, you can also change the setting within each of the three modes: Optimistic, Default,
and Full. A fourth option, Custom, is also available that will allow you to fully configure the
conversion options to your personal preferences. The project settings available fall into three
areas: Global, Project, and Default.

Let’s take a closer look at the various areas of this dialog box.

Project Information

Settings in the Project Information area affect the individual project you are working on and
basically indicate the name and location for the project.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET190

Figure 7-9. Project setting options in Migration Assistant

Conversion

Options in the Conversion area will save an awful lot of time and help reduce errors in the
conversion to SQL Server Express. The settings mostly involve the level of error messaging
within the project, but one or two settings are very useful in terms of fixing problems:

Add primary key: If true, Migration Assistant for Access will add a primary key to any
table identified as not having one from the Access side. The key, of course, is added to
the SQL Server 2005 database once the migration is complete.

Add timestamp columns: Migration Assistant will add a timestamp column as required.

Foreign key columns are of different sizes: This allows you to set the level of error as
Warning, No Message, or simply Error.

Indexed memo columns: Here you specify the type of message Migration Assistant
issues when it finds an index on a memo column.

Migration

The Migration area contains the options that are going to save you a lot of trouble when
moving to SQL Server. Again, the default settings change depending on the mode, and the
following options are available:

Check constraints: Here you tell SQL Server whether you would like check constraints
carried out when inserting data into the tables.

Fire triggers: This fires any associated insert triggers during data inserts.

Keep identity: This lets you specify whether identity values in the Access table should
be preserved when moved to SQL Server.

Keep nulls: This option lets you retain null values, ignoring any defaults in the table
being migrated.

Table locks: This option lets you retain a full table lock on the table or use row-level
locking when migrating.

Date correction: One of the major problems you face when migrating is the different
date range used by SQL Server. This option allows you to correct any Access dates ear-
lier than the SQL Server date range of 01 January 1753. You can also edit the date field,
adding your own default date, which will be used in the migration to replace any prob-
lem dates.

Type Mapping

Type Mapping is one of the most useful areas in the Project Settings dialog box. This deals
with the way Access maps its data types to SQL Server data types. Table 7-8 shows the
default mappings.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 191

Table 7-8. Access to SQL Server 2005 Data Type Mappings

Access Data Type SQL Server Data Type

Binary varbinary

Boolean bit

Byte tinyint

Currency money

Date/Time datetime

Double float

GUID uniqueidentifier

Integer int

Memo nvarchar(max)

Memo (Access 97) varchar(max)

Single real

Text nvarchar

Text (Access 97) varchar

Each mapping can also be removed and edited; for example, Access text data types can
have their length edited within the dialog box. Mappings can be set at either the project level
or customized at the database level. This ability to use either defaults or custom mapping at
the database level gives you a very flexible tool when moving tables to SQL Server 2005. To set
mapping for the entire project, select Tools ➤ Project Settings ➤ Type Mapping.

At the database level, select a database and in the right pane click the Type Mapping tab.
To add a new mapping, click Add, and to edit an existing type, click Edit. Individual types can
also be double-clicked to open the Edit dialog box. I am sure most developers will agree that
this is a huge improvement over the Upsizing Wizard in regards to the level of control you now
have when moving to SQL Server 2005. Figure 7-10 shows the Type Mapping tab for the
Northwind project created earlier.

Notice that there are two other tabs available to you, Schema and Properties. You need
to be real careful with the schema tab, as this indicates where on SQL Server and to which
database your project is to be moved. In order to edit this property, you must first connect to
SQL Server.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET192

Viewing Access Tables
With a database open, you can then view the structure of the table and its index. Simply click
on a table, and the structure will be available in the right-hand pane of Migration Assistant.
For each table, the following information is viewable:

• Columns

• Data type

• Validation rules

• Auto increment

• Defaults

• Nullable

• Zero length allowed

• Hyperlink

Right-clicking a table name allows you to run a quick report that will highlight any poten-
tial problems and also show suggested fixes. Figure 7-11 shows the report for the Northwind
Categories table. The report produced is highly interactive and uses a tree view to allow you to
expand and contract tables, indexes, and keys.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 193

Figure 7-10. Northwind type mapping tab

The same report can be executed for all tables within the database by selecting the data-
base name, right-clicking, and selecting Create Report. Such a report is shown in Figure 7-12.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET194

Figure 7-11. Running a single table report

Figure 7-12. Database report

Clicking a table name and expanding the tree will reveal a summary report of issues with
the selected table in the right-hand pane. This can assist greatly with fixing any issues prior to
migration of the database. Just to remind you, all of these features are available for use before
you actually convert a single table, giving you plenty of scope for fixes and improvements
before converting the objects for use on SQL Server 2005. At the moment, you have simply
loaded your Access metadata into a new project; you have not as yet done anything to physi-
cally move the schema to SQL Server.

Connecting to SQL Server Express
The next step in the migration process is to connect to SQL Server Express: on the main tool-
bar, click Connect to SQL Server, complete or accept the values in the Connection dialog box,
and click OK.

Figure 7-13 shows the SQL Server Metadata Explorer with the Northwind Access data-
base open and a connection to SQL Server Express available. Note that I have enabled the
Migrate SQL Server database check box option, as this is the target database for the migra-
tion on SQL Server 2005.

■Note For the migration project, it’s worthwhile to create a database on SQL Server 2005 to which you
will migrate. In my case, I created an empty database called Migrate, as you see in Figure 7-13. It is not
possible to create a new database with Migration Assistant for Access.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 195

Figure 7-13. SQL Server Metadata Explorer

Converting Your Access Objects to SQL Server Syntax
At this point, you can convert the Access objects to SQL Server. Note the objects are not being
moved to SQL Server, rather they are being converted to the appropriate SQL Server syntax to
ready them for the move. At this point, you can convert all tables or select individual tables,
right-click, and select Convert Schema. All converted objects appear in bold in the interface.

In this case, also note that your tables are visible in the SQL Server Object Explorer
but as yet do not physically exist there. Clicking the SQL table in the SQL Server Metadata
Explorer while a table is selected on the server will show you the SQL script that will be
used to create the table. Listing 7-28 shows the script for the Customers table (this is also
another good example of a stored procedure). Note that all Access constraints on the table
have been included within the SQL script. (These items are shown in bold.)

Listing 7-28. Migration Assistant SQL Script

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = ➥

OBJECT_ID(N'[dbo].[Orders]') AND type in (N'U'))
BEGIN

DECLARE @drop_statement varchar(500)

DECLARE drop_cursor CURSOR FOR
SELECT 'alter table '+quotename(schema_name(ob.schema_id))+
'.'+quotename(object_name(ob.object_id))+ ' drop constraint '➥

+ quotename(fk.name)
FROM sys.objects ob INNER JOIN sys.foreign_keys fk ON ➥

fk.parent_object_id = ob.object_id
WHERE fk.referenced_object_id = OBJECT_ID(N'[dbo].[Orders]')

OPEN drop_cursor

FETCH NEXT FROM drop_cursor
INTO @drop_statement

WHILE @@FETCH_STATUS = 0
BEGIN

EXEC (@drop_statement)

FETCH NEXT FROM drop_cursor
INTO @drop_statement

END

CLOSE drop_cursor
DEALLOCATE drop_cursor

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET196

DROP TABLE [dbo].[Orders]
END
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

CREATE TABLE
[dbo].[Orders]
(

[OrderID] int IDENTITY(1, 1) NOT NULL,
[CustomerID] varchar(5) NULL,
[EmployeeID] int NULL,
[OrderDate] datetime NULL,
[RequiredDate] datetime NULL,
[ShippedDate] datetime NULL,
[ShipVia] int NULL,
[Freight] money DEFAULT 0 NULL,
[ShipName] varchar(40) NULL,
[ShipAddress] varchar(60) NULL,
[ShipCity] varchar(15) NULL,
[ShipRegion] varchar(15) NULL,
[ShipPostalCode] varchar(10) NULL,
[ShipCountry] varchar(15) NULL

)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [Orders$PrimaryKey]
PRIMARY KEY
NONCLUSTERED ([OrderID] ASC)

GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$CustomerID$disallow_zero_length]
CHECK (len([CustomerID]) > 0)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$ShipName$disallow_zero_length]
CHECK (len([ShipName]) > 0)
GO

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 197

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$ShipAddress$disallow_zero_length]
CHECK (len([ShipAddress]) > 0)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$ShipCity$disallow_zero_length]
CHECK (len([ShipCity]) > 0)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$ShipRegion$disallow_zero_length]
CHECK (len([ShipRegion]) > 0)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$ShipPostalCode$disallow_zero_length]
CHECK (len([ShipPostalCode]) > 0)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [SSMA_CC$Orders$ShipCountry$disallow_zero_length]
CHECK (len([ShipCountry]) > 0)
GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [Orders$CustomersOrders]
FOREIGN KEY
([CustomerID])

REFERENCES
[master].[dbo].[Customers] ([CustomerID])
ON DELETE NO ACTION
ON UPDATE CASCADE

GO

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [Orders$EmployeesOrders]
FOREIGN KEY
([EmployeeID])

REFERENCES
[master].[dbo].[Employees] ([EmployeeID])
ON DELETE NO ACTION
ON UPDATE NO ACTION

GO

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET198

ALTER TABLE [dbo].[Orders]
ADD CONSTRAINT [Orders$ShippersOrders]
FOREIGN KEY
([ShipVia])

REFERENCES
[master].[dbo].[Shippers] ([ShipperID])
ON DELETE NO ACTION
ON UPDATE NO ACTION

GO

Right-clicking in the SQL pane allows you to save the SQL as a script for later execution.
You can also right-click over the Tables folder and create an SQL script of the entire database
for execution later or as a backup in case something goes wrong.

Of course, when you move objects to SQL Server 2005, the syntax of SQL can change, and
some of your standard Access functions will also need to be redone. For the impatient devel-
oper, there is also a one-click migration button that will cut out all the intermediate steps
and simply migrate the database to SQL Server. Once the conversion has been completed,
Migration Assistant will report back on what has happened. Again, this is a useful aid in trac-
ing and fixing any potential problems that may occur. Figure 7-14 shows the Conversion –
Error List dialog box. Double-click an error in the dialog box to open Migration Assistant’s
Table Design dialog box, where changes can be made directly within Migration Assistant.

The next sections provide a comprehensive list of JET Versus SQL Server statements and
their equivalent SQL Server 2005–suggested syntax. This is a very comprehensive list, and I
feel it is of sufficient value to be included here.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 199

Figure 7-14. Conversion Error report

Miscellaneous Statements
This section compares various forms of SQL SELECT statements generally used with Access and
their SQL Server equivalents.

JET SQL

Select Distinctrow <FieldsList> from Table Select <FieldsList> From (Select distinct *
From Table) Table

SELECT Suppliers.* INTO Suppliers IN SELECT Suppliers.* INTO BackupDB..Suppliers
'Backup.mdb' FROM Suppliers; FROM Suppliers;

SELECT (Price * discount) as saving, SELECT (Price * discount) as saving,
(Price - saving) as NewPrice FROM Products (Price - Price * discount) as NewPrice FROM

Products

SELECT Sum(discount = 0.8) FROM Products SELECT Sum(Case discount when 0.8 then -1
Else 0) FROM Products

SELECT top 3 * FROM Products SELECT top 3 With Ties * FROM Products

SELECT x.a.AAAA, x.b.AAAA FROM [SELECT SELECT x.Field1, x.Field2 FROM
a.AAAA, b.AAAA FROM table1 a Inner Join [SELECT a.AAAA as Field1, b.AAAA as Field2
Table2 b On a.ID = b.ID]. AS x FROM table1 a Inner Join Table2 b On a.ID =

b.ID]. AS x

Update Statements
Following is a comparison of JET and SQL Server SQL UPDATE statements:

JET SQL

Update AAA Inner Join BBB On AAA.ID = BBB.ID Update AAA
Set AAA.value = 'A', BBB.value = 'B' Set value = 'A'
Where <SomeCondition> From AAA Inner Join BBB On

AAA.ID = BBB.ID
Where <SomeCondition>
Update BBB
Set value = 'B'
From AAA Inner Join BBB On

AAA.ID = BBB.ID
Where <SomeCondition>

UPDATE Table2 RIGHT JOIN Table1 INSERT INTO Table2 (ID) -- List of
ON Table2.ID = Table1.ID Joined fields here

SET Table2.AAAA = Day(Table1.AAAA), Select ID From Table1 -- List of
Table2.ID = Table1.ID Joined fields here

WHERE Table1.ID > 2; Where Not exists (Select 1 From
Table2 where ID = Table1.ID)

UPDATE Table2
SET Table2.AAAA = Day(Table1.AAAA),

Table2.ID = Table1.ID
From Table2 Inner Join Table1 ON

Table2.ID = Table1.ID
WHERE Table1.ID > 2

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET200

Delete Statements
Following is a comparison of JET and SQL Server DELETE statements:

JET SQL

Delete * From Table Delete From Table

DELETE DISTINCTROW a.* FROM a some JOIN b ON ... DELETE FROM a FROM a some JOIN b ON ...

Commonly Used Statements
Here is a comparison of other commonly used statements in JET and SQL Server:

JET SQL

Select * from foo where c1 = 'a' & 'b' Select * from foo where c1 = 'a' + 'b'

a \ b Cast(Round(@a, 0) as int) / Cast(Round(@b, 0)
as int)

a mod b Cast(Round(@a, 0) as int) % Cast(Round(@b, 0)
as int)

a ^ b Power(@a, @b)

#03-22-2006# '03-22-2006'

Functions
This section shows some common JET functions with their SQL Server T-SQL counterparts.

JET SQL

ASC('A') ASCII('A')

CHR[$](65) CHAR(65)

LCASE[$]('ABCDEFG') LOWER('ABCDEFG')

UCASE[$]('abcdefg') UPPER('abcdefg')

LEFT[$]('String', Number) LEFT('String', Number)

RIGHT[$]('String', Number) RIGHT('String', Number)

LTRIM[$]('String') LTRIM('String')

RTRIM[$]('String') RTRIM('String')

FORMAT("12345.678", "#, ##0.00") No equivalent

INSTR(String, subString) CHARINDEX(String, substring)

INSTR(startposition, String, subString) CHARINDEX(String, substring, startposition)

INSTR(startposition, String, subString, No equivalent
ComparisionType)

INSTR(String, subString, ComparisionType) No equivalent

MID[$](String, StartPosition, SUBSTRING(String, StartPosition,
numberOfChararcters) numberOfChararcters)

Continued

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 201

JET SQL

MID[$](String, StartPosition) SUBSTRING(String, StartPosition,
Len('String') - StartPosition + 1)

REPLACE(String, Find, Replacement) REPLACE (String, Find, Replacement)

REPLACE(String, Find, Replacement, Start) SubString(String, 1, start - 1) +
Replace(SubString(String, Start,
Len(String) - start + 1), Find,
Replacement)

REPLACE(String, Find, Replacement, Start, Count) No equivalent (emulated as UDF Replace5)

REPLACE(String, Find, Replacement, Start, Count, No equivalent
ComparisionType)

STRCONV(Text, ConversionType[, LCID]) No equivalent

ISDATE(expression) ISDATE(expression) = 1

ISNULL(expression) Expression is null

ISNUMERIC(expression) IS NUMERIC(expression) = 1

NZ(expression1, expression2) ISNULL(expression1, expression2)

IIF(condition, statement_if_true, CASE WHEN condition THEN
statement_if_false) statement_if_true ELSE

statement_if_false END

SWITCH(condition1, statement1 … [,conditionN, CASE WHEN condition1 THEN statement1
statementN]) ... [WHEN conditionN THEN statementN]

ELSE null END

Choose(position, value1, value2, ... value_n) No equivalent

CURRENTUSER() CURRENT_USER()

Domain Functions
Following is a comparison of JET and TSQL domain functions:

JET SQL

DAvg() Avg()

DCount() Count()

DFirst() No equivalent

DLast() No equivalent

DLookup() Skipped (use only expression in SELECT clause)

DMin() Min()

DMax() Max()

DSum() Sum()

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET202

Mathematical Functions
Here is a comparison of JET and T-SQL mathematical functions:

JET SQL

ABS(ABC) ABS(@ABC)

ATN(ABC) ATAN(@ABC)

COS(ABC) COS(@ABC)

EXP(ABC) EXP(@ABC)

FIX(123.456) CAST(123.456 as integer)

INT(123.456) FLOOR(123.456)

LOG(ABC) LOG(@ABC)

RND RAND()

ROUND(ABC, 2) ROUND(@ABC, 2)

VAL (" 34 10 Main Street ") No equivalent

Date Functions
The following compares the date functions used by Access against those used by SQL Server:

Access Definition Explanation SQL Server Possible Equivalents

yyyy Year year, yyyy, yy

q Quarter quarter, q, qq

m Month month, mm, mm

y Day of the year dayofyear, dy, y

d Day day, dd, D

w Weekday weekday, dw

ww Week week, wk, ww

h Hour hour, hh

n Minute minute, mi, n

s Second second, ss, s

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 203

Date/Time Functions
Following is a comparison of JET and T-SQL date/time functions:

JET SQL

DATEADD('interval', Number, date) DATEADD(interval, Number, date)

DATEDIFF('interval', date1, date2) DATEDIFF(interval, date1, date2)

DATEPART('interval', date) DATEPART(interval, date)

DAY(date) DAY(date)

MONTH(date) MONTH(date)

YEAR(date) YEAR(date)

NOW() GETDATE()

DateSerial(2005, 11, 22) CAST('2005'+'11'+'22' as DateTime)

HOUR(NOW()) DATEPART(hour, GETDATE())

MINUTE(NOW()) DATEPART(minute, GETDATE())

MONTHNAME(NOW()) DATENAME(month, GETDATE())

SECOND (NOW()) DATEPART(second, GETDATE())

DATE() CONVERT(datetime,CONVERT(varchar,GETDATE(),1))

DATEVALUE("Jun 30") No equivalent

TIME() No equivalent

TIMESERIAL(hoursexpression, No equivalent
minuteexpression, secondexpression)

TIMEVALUE("3:12:54 PM") No equivalent

WEEKDAY(NOW()) DATEPART(weekday, GETDATE())

WEEKDAY(NOW(), firstdayofweek) No equivalent

Data Type Conversion
Following is a comparison of JET and SQL Server data type conversions:

JET SQL

CByte(expression) CAST (ROUND(expression) as tinyint)

CCur(expression) CAST (expression as money)

CDate(expression) CAST (expression as datetime)

CDbl(expression) CAST (expression asfloat)

CDec(expression) CAST (expression as decimal())

CInt(expression) CAST (ROUND(expression) as smallint)

CLng(expression) CAST (ROUND(expression) as integer)

CSng(expression) CAST (expression as real)

CStr(expression) CAST (expression as varchar)

CVar(expression) CAST (expression as sql_variant)

CVDate(expression) CAST (CAST (expression as datetime) as sql_variant)

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET204

Aggregate Functions
The following table compares JET and SQL Server aggregate functions:

JET SQL

AVG(expression) AVG(expression)

COUNT(expression) COUNT(expression)

MIN(expression) MIN(expression)

MAX(expression) MAX(expression)

SUM(expression) SUM(expression)

SELECT FIRST(expression), Min(Field1) from SomeTable SELECT (SELECT Top 1 expression
From SomeTable) as first,
Min(Field1) From SomeTable

SELECT LAST(expression), Max(Field1) From SomeTable SELECT (SELECT Top 1 expression
From SomeTable Order by
IdentityField Desc) as first,
Min(Field1) From SomeTa.ble

Moving Objects into SQL Server Using Migration Assistant
for Access
Once you are happy with the schema changes, you can then move the tables into SQL Server.
At this point, you again have total control over what is moved. You can move the entire data-
base or take it in table by table. You can exclude an index by unchecking the check box next
to it in the Indexes folder and do the same with primary keys. Unchecked items are excluded
from the process. Moving the structure of your database to SQL Server is as simple a clicking
the Load to Database button on the main menu. It is also possible to link the tables to the
Access application by right-clicking a table name and choosing Link Table. The process can
be reversed by selecting Unlink Table. As of this writing, query migration is not yet complete
in Migration Assistant, and information for this section of the book can be downloaded as an
additional free chapter from http://www.apress.com once this feature is available.

Wrapping Up Migration
As you can see, using Migration Assistant is a slightly more sophisticated process than using
the Upsizing Wizard, and it could reduce the market for some third-party tools already men-
tioned in this book. Personally, I feel the more tools available for migration, the better, and all
continue to have a role to play in the process. The more you plan and build for possible migra-
tion, the better the end result will be. Just remember, the last step in the process, whatever
migration tools you use, should be the actual moving of tables and data to SQL Server. The less
redesign you have to do to get your back-end applications into SQL Server, the better. There-
fore, the same old rule applies irrespective of new tools on the market: plan and design the
database professionally from the start.

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET 205

Summary
SQL Server Express offers Access developers a way to improve the speed and performance of
their applications. Although it is free, it does have its limitations—you can’t have everything.
However, it provides a fine back-end database engine for work group databases, integration
with Windows Security when required, and many server-side objects for use in your applica-
tions. Microsoft is touting this as a database for hobbyists; in my opinion, this is wide of the
mark, and this tool should be in the day-to-day workbox of almost all Access developers.

Later in the book, you will see how you can take the back end for an Access application
and create a basic .NET web-based application, making use of the same back-end objects as
your Access front end does.

■Note If this chapter has interested you in learning more about SQL Server 2005 Express, I recommend
you pick up a copy of Beginning SQL Server 2005 Express Database Applications with Visual Basic Express
and Visual Web Developer Express: From Novice to Professional by Rick Dobson (Apress, 2005).

CHAPTER 7 ■ WORKING WITH THE SQL SERVER 2005 EXPRESS TOOL SET206

DAO, Complex Data Types,
and Macros

This chapter, devoted to the power user, provides a solid introduction to working with
Microsoft Access 2007 via DAO. It also covers the new features introduced in Access 2007.
Why power users? In my view, most professional developers reading this book will be well
up to speed with DAO, and there is little that I can teach them here. In addition, many pub-
lished titles, including the Access Developers Handbook series (Sybex), cover DAO in a much
more detailed fashion than I can in one chapter. For the professional developer, Chapter 13,
which presents code you can steal, should more than make up for anything that may be
missing here!

Power users, on the other hand, are different. Many power users do not use code in
Access, at least those I have contact with, and this chapter is aimed mostly at that market.
The chapter starts off with demonstrating DAO and the various commands available to you,
followed by a look at opening tables and queries in code, adding new records, editing
records, and of course deleting records, all using DAO and Access 2007. Even if you are a
professional developer, you’ll find the information and examples on the new features of
DOA and Access toward the end of the chapter useful. When you are developing applica-
tions with Access, DAO is the way to go in terms of programming, particularly if the
application you are developing is a pure Access database solution. DAO still provides you
with the best tool set and ease of use of virtually any language when you are developing
MDB files, and that still holds true for ACCDB files in Access 2007. Access 2007’s default
library is DAO 3.6.

Also included here is a discussion on macros. You might be wondering why this appears
in a chapter on DAO; I decided to include the macro coverage here for two reasons: macros
have received substantial focus in Access 2007, including some changes that allow you to use
them from DAO, and (being honest) there is not enough material on this topic for developers
to fill a complete chapter.

■Note At the time of writing, it has been announced that the Developer Extensions for Access 2007 will be
available free of charge. This includes the runtime and the tools required to create template databases. The
files can be downloaded from http://www.microsoft.com where you will be able to search for the down-
loads once the software is released.

207

C H A P T E R 8

Getting Started with DAO
The examples in this chapter will use unbound Access forms to illustrate many of the features
of DAO. Unbound forms are forms populated via code rather than by being assigned a record-
set directly from a table or stored query. In this way, we can look at several techniques used to
manipulate databases and their records via code. Given the nature of this chapter, I am likely
to repeat some of the code you have already seen, and for that I apologize in advance. For the
example code, you will be working with a copy of the Northwind example file available with
Access 2007, and this will be used to demonstrate many of the features of DAO. To follow the
examples, simply make a copy of Northwind and save it as NorthwindCopy. To get started, the
first example will simply populate a form with some data from the Customers table in North-
wind. First of all, let’s have a look at the DAO Object Model.

DAO Object Model
Right at the top of the tree in Access is the DBEngine object, which serves as the interface to
the actual ACE engine itself. Next up, we have the Workspaces objects, which contain two col-
lections, Users and Groups. Both of these are used occasionally; for example, Workspaces
would be used mainly when you are working in multiuser systems. However, the next object,
the Database object, you will meet every day and in every application you are writing DAO
for. The Database object contains the following collections:

• Containers

• QueryDefs

• Recordsets

• Relations

• TableDefs

Of the preceding collections, again, in terms of programming and DAO, you will tend to
spend most of your time manipulating the recordset to get data to and from your application.
However, an appreciation of QueryDefs and TableDefs will also prove useful. So let’s take a
closer at these three most popular and necessary collections and how you can use them in
your access database, starting with TableDefs.

TableDefs
One table definition exists for every table within the database including system tables.
Listing 8-1 loops through the TableDefs in Northwind, printing each table name to the Inter-
mediate window, including the Access system tables.

Listing 8-1. Using TableDefs

Public Sub ex1()
On Error GoTo Err_ex1
Dim db As DAO.Database
Dim tdf As DAO.TableDef

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS208

Set db = CurrentDb

For Each tdf In db.TableDefs
Debug.Print tdf.Name
Next tdf
End

Exit_ex1:
On Error Resume Next

If Not (db Is Nothing) Then db.Close: Set db = Nothing
Exit Sub
Err_ex1:

MsgBox Err.Description, , "Error in Sub Module1.ex1"
Resume Exit_ex1

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Changing the Debug.Print line to the following example will show additional information
about the table. In this case, you can see whether the table is updatable, the date the table was
created, and the RecordCount (that is, the number of records in the table).

Debug.Print tdf.Name & " " & tdf.Updatable & " " & tdf.DateCreated & ➥

" " & tdf.RecordCount

In a standard linked application, you can also use TableDefs to output the current back-
end paths of your application. It can be quite difficult to read the paths using the linked table
manager, and one solution is to create your own form providing this information. The next
example creates an Access Form Load() procedure, which will show the paths to any linked
tables in the database. Listing 8-2 shows the code required. In this case, you amend the earlier
procedure and pass the values to a string. The string is displayed using a basic text box located
on a form. In this code, you use additional properties of the TableDef object, Connect and
SourceTableName.

Listing 8-2. Listing Linked Tables

Private Sub Form_Load()
On Error GoTo Err_Form_Load

Dim strConnect As String
Dim db As DAO.Database
Dim tdf As DAO.TableDef

On Error Resume Next

Set db = CurrentDb

DoCmd.Hourglass True

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 209

For Each tdf In db.TableDefs
If Len(tdf.Connect) > 0 Then

strConnect = tdf.Name & " " & tdf.Connect & " " & ➥

tdf.SourceTableName & vbCrLf
End If

Next

DoCmd.Hourglass False

' Display the linked paths in the text box.
Me.lstLink = strConnect

Set db = Nothing

Exit Sub
Exit_Form_Load:
On Error Resume Next

If Not (db Is Nothing) Then db.Close: Set db = Nothing
Exit Sub
Err_Form_Load:

MsgBox Err.Description, , "Error in Sub Form_frmLinkedTables.Form_Load"
Resume Exit_Form_Load

Resume 0 '.FOR TROUBLESHOOTING
End Sub

To run the example, create a new blank Access form containing a single text box. Add
the code in Listing 8-2 to the form’s On Load event. Open the form to preview the informa-
tion. You may find you have to extend the size of the text box in order to display the full path
to your linked tables.

■Note This technique will also display other linked objects—for example, Excel 2007 spreadsheets.

You could also use TableDefs to actually create a table within the database. Listing 8-3,
written by John Colby of Colby Consulting, does just that using a function.

Listing 8-3. Creating a Table

Function tblBld(strTblName As String, ParamArray strFields()) As Boolean
On Error GoTo Err_tblBld
Dim db As Database
Dim tdf As TableDef
Dim intI As Integer

Set db = CurrentDb

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS210

' IF THE TABLE ALREADY EXISTS, JUST OPEN THE TABLE
If ccObjectExists("Tables", strTblName) Then

Set tdf = db.TableDefs(strTblName)
Else ' ELSE Create a new TableDef object.

Set tdf = db.CreateTableDef(strTblName)
End If
With tdf

' Create fields and append them to the new TableDef object. This must
' be done before appending the TableDef object to the TableDefs collection
' of the db.
For intI = 0 To UBound(strFields())

.Fields.Append .CreateField(strFields(intI), dbText)
Next intI

' IF THE TABLE ALREADY EXISTS, JUST ERROR AND CONTINUE
db.TableDefs.Append tdf

End With
db.TableDefs.Refresh
tblBld = True

Exit_tblBld:
On Error Resume Next

Set tdf = Nothing
Set db = Nothing

Exit Function
Err_tblBld:

Select Case Err
Case 0 '.insert Errors you wish to ignore here

Resume Next
Case 3191 ' THE FIELD ALREADY EXISTS

Resume Next
Case 3367 ' THE TABLE ALREADY EXISTS

Resume Next
Case Else '.All other errors will trap

Beep
MsgBox Err.Description, , "Error in Function C2DbTableBuilder.tblBld"
Resume Exit_tblBld

End Select
Resume 0 '.FOR TROUBLESHOOTING

End Function

You call the function in Listing 8-3 as follows:

tblBld "tblMyTableName", "Field", "Field", "Field", "LineCnt", "Field"

Recordsets
You will use the recordsets collection almost every day when working with VBA and Access
2007. Basically, a recordset is a set of records. Simply open an Access table in datasheet view,

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 211

and you are looking at a recordset. To get you started with recordsets, execute the code shown
in Listing 8-4, which will simply print the Company record from the Northwind Customers
table to the Intermediate window.

Listing 8-4. Printing Out the Company Name

Public Sub ListCompany()
On Error GoTo Err_ListCompany
Dim rstCoName As DAO.Recordset
Dim strSQL As String
Dim db As Database

Set db = CurrentDb
strSQL = "SELECT Company from Customers"

Set rstCoName = db.OpenRecordset("strSQL")

Do While Not rstCoName.EOF
Debug.Print Company
rstCoName.MoveNext
Loop
rstCoName.Close

Exit_ListCompany:
On Error Resume Next

If Not (rstCoName Is Nothing) Then rstCoName.Close: Set rstCoName = Nothing
If Not (db Is Nothing) Then db.Close: Set db = Nothing

Exit Sub
Err_ListCompany:

MsgBox Err.Description, , "Error in Sub Form_frmLinkedTables.ListCompany"
Resume Exit_ListCompany

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Let’s take Listing 8-4 apart and look at each section. First, you set rstCoName as the DAO
recordset. Note that you use the DAO object library reference. You could have omitted it, but
using the DAO reference explicitly tells you which library you are using for the recordset. Next,
you set strSQL to the SQL statement that you use to populate the recordset, and then set
rstCoName as the open recordset. After this, you use a While loop to move through the record-
set. The loop continues until you have reached the end of file (EOF). During the loop, the value
of EOF is set internally to the value of true. The loop ends when you have reached the end of
the records. When this happens, the value of EOF internally changes from true to false.

The most important statement in the listing is OpenRecordset. In this example, you pass
in an SQL string to OpenRecordset. However, you could just as easily have used the actual
table name (for example, db.OpenRecordset("Customers")), and the end result of the code
would have been the same. Using an SQL string can be useful. When you use the table name,

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS212

all the records are returned; but if you only need a subset of fields, you can use another SQL
string method, such as a prebuilt query. The full syntax of the OpenRecordset method is

OpenRecordset,Name,Type,Options,LockEdit)As Recordset

You have already seen the name passed to a recordset can be a table, a saved query, or an
SQL string. The following section explains the remainder of the options using recordsets.

Types of Recordset

Of course, different types of recordset are available to you depending on what you want to do
with the resulting data:

Table: Returns a table of editable records. This can only be used with a table name, and
the table must be local. Example: db.OpenRecordset("tableName").

Dynaset: Represents a set of pointers to a table or tables. The returned recordset may not
be editable. Example: db.OpenRecordset("name",dbOpenDynaset).

SnapShot: Serves as a copy of the data created at the time the statement is executed.
Recordsets of this type cannot be updated. Example:
db.Openrecordset("Name",dbOpenSnapShot).

In addition to the different recordset types you can use, several options are also available
to you when working with recordsets. Table 8-1 shows some of the options available.

Table 8-1. Recordset Options

Options Comment

dbAppendOnly Allows new records only to be appended to dynasets.

dbSQLPassThrough Executes the SQL on another database engine (for example, SQL Server 2005).

dbSeeChanges Ensures that any records added to the recordset are available to you. You will
find that you must use this when working with DAO and SQL Server
recordsets that contain an Identity column.

dbDenyWrite Prohibits anyone else from changing records while you have them open.

dbDenyRead Prohibits other users from viewing the data while you have the recordset open.

dbForwardOnly Limits users to only moving forward within the recordset.

dbReadOnly Defines the recordset as read-only. However, other users of the application
can edit the records.

dbInconsistent Records can be changed even if they break relationship rules.

dbConsistent Records can be changed only if they don’t break relationship rules.

LockEdits Used when you may have multiple users in the application and offers the
following:
dbReadOnly: Records can be viewed by you, but other users can change them.
dbPessimistic: A data page will be locked as soon as editing begins and
remains locked until the editing is finished. This is known as pessimistic locking.
dbOptimistic: The data page is locked only when you update the changes.
This is known as optimistic locking.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 213

Moving in a Recordset

As you are starting to see, there is a great deal of flexibility available to you when working
with DAO and recordsets, and we have only looked at the recordset object. Once you have a
recordset open, you will, of course, need to move through it. DAO enables you to do this with
MoveNext, MovePrevious, MoveFirst, and MoveLast. Each of the statements will do exactly as
you might guess based on the name. The next example puts this all together and creates a
form with a fully editable recordset, command buttons to permit you to move around in the
recordset, and some functions to deal with other issues. The form will display the values from
the Customers table. When the form opens, the data will be locked. Users will be able to navi-
gate the recordset but unable to add, edit, or delete records until they click the appropriate
command button. This is achieved by simply looping over all the form objects and setting the
enabled property to false and the locked property to true. So let’s get started and create a new
Access form to demonstrate working with the recordset and its methods. To begin, create a
new blank Access form.

Create the text boxes shown in Table 8-2, if you would like to run the example code in this
section; otherwise, remember to change the form object references to those you will be using.
You will not be using all of the Customers table fields, but enough so that you get the general
idea of creating the procedure and an overview of how this works. Once you have created the
form, save it as frmCompany.

Table 8-2. Unbound Customer Form Objects

Object Type Object Name

Text box txtCompanyName

Text box txtFirstName

Text box txtLastName

Text box txtJobTitle

Text box txtBusinessPhone

Command button cmdEdit

Command button cmdDelete

Command button cmdAdd

Command button cmdSave

Command button cmdNext

Command button cmdPrevious

Command button cmdLast

Command button cmdFirst

Listing 8-5 shows the initial code required to populate the text boxes on the form. The code
is created within the form’s On Open event. Note the position of the Dimension statement for the
recordset. Because you may reuse this recordset, you can dimension the recordset outside the
procedure to enable its reuse in other procedures and functions within the form’s module. At
the end of the module, remember to close the recordset and set it to nothing (for example,
rst.Company.close, set rstCompany = nothing).

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS214

Listing 8-5. Initial Form Open Code

Option Compare Database
Dim db As Database
Dim rstCompany As DAO.Recordset

Private Sub Form_Open(Cancel As Integer)
Set db = CurrentDb
Set rstCompany = db.OpenRecordset("SELECT Company,[First Name],[Last Name],➥

[Job Title],[Business Phone] FROM Customers")

getCustomers
Call Lockform

End Sub

Note that you have two calls within the form’s open event: getCustomers and Lockform.
getCustomers is shown in Listing 8-6, and it simply supplies the initial records for the form.
Lockform, shown in Listing 8-7, loops over all of the form controls, locking them and setting
the enabled property to false.

■Note If your field names contain spaces, you must surround them with square brackets. However, stan-
dard practice is not to have spaces in field names. The only reason spaces are used here is because if you
are trying this example out, this is how the field names appear in the Northwind demo database.

Listing 8-6. getCustomers

Public Sub getCustomers()
On Error GoTo Err_getCustomers
With rstCompany
txtCompanyName = !Company
txtFirstName = ![First Name]
txtLastName = ![Last Name]
txtBusinessPhone = ![Business Phone]
txtJobTitle = ![Job Title]
End With

Exit_getCustomers:
Exit Sub
Err_getCustomers:

MsgBox Err.Description, , "Error in Sub Form_frmCompany.getCustomers"
Resume Exit_getCustomers

Resume 0 '.FOR TROUBLESHOOTING
End Sub

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 215

Listing 8-7. Lockform

Public Sub Lockform()
On Error GoTo Err_Lockform
' Lock Controls
Dim ctl As Control

For Each ctl In Me.Controls
If ctl.Tag = "Lock" Then

ctl.Enabled = False
ctl.Locked = True

End If
Next

Exit_Lockform:
Exit Sub
Err_Lockform:

MsgBox Err.Description, , "Error in Sub Form_frmCompany.Lockform"
Resume Exit_lockform

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Listing 8-7 contains an added feature. The test “Lock” has been added to each form con-
trol tag that should be locked. The procedure then simply loops over each form control and
locks a control when it reads this value in the control’s tag property. When the form opens, the
values that are displayed by the user cannot interact with any of the controls shown. As you
have already seen in other examples in this book, this will display a single record on the form.
For example, if you click the Move Next button, nothing happens. You need to add in the code
to make the record move. Listing 8-8 shows the MoveNext code. If you do not have any records
(that is, BOF and EOF are true), you exit the procedure. If you do have records, you move to
the next record.

Listing 8-8. MoveNext

Private Sub cmdNext_Click()
' Call CheckForSave

If rstCompany.BOF = True And rstCompany.EOF = True Then Exit Sub

If rstCompany.EOF = False Then rstCompany.MoveNext
If rstCompany.EOF = True Then rstCompany.MoveLast

Call getCustomers

End Sub

The code required to move back within the recordset is shown in Listing 8-9 and is very
similar to the code used for MoveNext. On this occasion, you are using MovePrevious to return
to the previous record in the customer recordset.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS216

Listing 8-9. MovePrevious

Private Sub cmdPrevious_Click()
On Error GoTo Err_cmdPrevious_Click
If rstCompany.BOF = True And rstCompany.EOF = True Then Exit Sub

If rstCompany.BOF = False Then rstCompany.MovePrevious
If rstCompany.BOF = True Then rstCompany.MoveFirst

Call getCustomers

Exit_cmdPrevious_Click:
Exit Sub
Err_cmdPrevious_Click:

MsgBox Err.Description, , "Error in Sub Form_frmCompany.cmdPrevious_Click"
Resume Exit_cmdPrevious_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

So let’s just pause here for a recap. At the moment, you have an Access form that is pro-
vided with data by a recordset created using VBA, as opposed to simply binding the form
directly to the Customers table, which I agree would have been real easy to do. You have two
functioning buttons that move the user one record at a time through the recordset, again
using some simple VBA code. I am sure you may already be beginning to see the amount of
work required from you in coding this approach.

Basic Record Editing

Now let’s move on and add some code to the Edit button so you can actually see how much
more work is required to manage a recordset and its interaction with a form and a form’s
objects. Listing 8-10 shows the code to be added to the On Click event of cmdEdit. Initially, all
you are doing is unlocking the controls previously locked. As you can see, the code is much
the same as that used to perform the lock. This time, however, you simply unlock the controls
again based on their tag. But as you will see, this actually isn’t sufficient when dealing with an
unbound recordset.

Listing 8-10. cmdEdit On Click Event

Private Sub cmdEdit_Click()
On Error GoTo Err_cmdEdit_Click
UnlockForm
Exit_cmdEdit_Click:
Exit Sub
Err_cmdEdit_Click:

MsgBox Err.Description, , "Error in Sub Form_frmCompany.cmdEdit_Click"
Resume Exit_cmdEdit_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 217

Once you have added the preceding code to cmdEdit’s On Click event, return to the form
and click the Edit button. The text boxes are now available for edit, but the rest of the form’s
buttons (those that you have coded thus far, Next and Previous) are also available. What you
really want to do is lock users into the record they are going to edit until they are either ready
to save the edits or cancel the edit. That being the case, in addition to opening the text boxes
for edit, you should also disable the navigation buttons when editing a record—bearing in
mind that once the edit has been saved or cancelled, you will need to relock the form and
enable the command buttons again. You can take care of this by writing a couple of functions
to turn the buttons off and on at will.

Editing a Record in the Real World

DAO also provides you with a method to edit existing records. Again, for this example, you
will be using an unbound form. When you use a bound form, Access deals with the edit
under the covers, and you don’t need to worry about it. However, when going the unbound
route, the edit is completely in your control. Listing 8-11 shows the basic syntax used to edit
a single record in a table. The recordset is populated using an SQL SELECT statement that
restricts the recordset to a single record based on its primary key value. Once the recordset
is available, you use the Edit method to actually carry out the record edit required. Visually
on the form you change the caption of the Edit command button to Save. This syntax is sim-
ply meant to show the process, not serve as an example of working code. It is worth stating
that there are occasions when you will not be able to update a record (for example, if you are
using a crosstab or Union query to populate the form).

Listing 8-11. Editing the Current Customer Record

.FindFirst "fldAssetBarCode = '" & txtAssetBarCode & "'"
If .NoMatch = True Then
Else

MsgBox "The Company Already Exists.", vbExclamation
Exit Sub

End If
End If
' Add or Edit

.AddNew
Else

.Edit
End If

To implement this for a real-world database, however, requires a few more lines of code
and a little more thinking. In general, what you want to do is to call a dedicated save function;
the edit button will unlock the records for edit, the caption will change to Save, and the save
routine will test the record to see whether anything has changed or indeed whether the user
has added a new record. In effect, you are killing two birds with one stone. Listing 8-12 shows
the basic approach when editing a record. (Listing 8-14, which you shall see shortly in the
“Adding a New Record” section, takes this whole process one step further using a number of
DAO methods.) A discussion of each of the new methods follows the listing. Note that you

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS218

don’t even bother to check which particular field has been changed. Given the speed at which
DAO works, this isn’t really required and, being honest, isn’t worth the coding effort to imple-
ment. Just simply save the whole record!

Listing 8-12. Edit Syntax

rstCompany.Edit
rstCompany.Field = Value
rstCompany.Update

In this case, because you are updating all the records, this process is fairly easy. All you
need do is to call a DAO Update method on the recordset and save the changes. It is also pos-
sible to actually test the recordset for changes using its Dirty property.

One of the major issues with the unbound recordset approach is highlighted in the fol-
lowing quote:

One problem with unbound is the whole locking issue, which the bound method han-

dles for you. Unless you place a lock on the record you are editing, then how do you

know that the underlying record wasn’t updated by another user while this user was

eating lunch? Thus for simple unbound, probably only updating fields changed is the

safest. If your form is going to lock the record being edited, then you can safely update

the entire record. Or you could refetch the original, compare the field values of the orig-

inal to the “old values” of the unbound form, and warn the user if there were changes to

the original.
John Colby, Colby Consulting

Being a great believer in not reinventing the wheel, I refer you to Chapter 2 of
Access 2002 Enterprise Developers Handbook by Ken Getz, Mike Gunderloy, and Paul Litwin
(Sybex, 2001), which contains an excellent example of handling record locking in a multi-
user environment.

Deleting a Record

Using DAO to delete a record is about as easy as this stuff gets; all that is required is that you
delete the current record and repopulate the form. Of course, it is always useful to allow users
to confirm that they actually want to delete the record before removing it from the table. Note
the use of the word “removing.” Many developers do not actually delete records. In many
cases, they add an additional field to the table that describes the state of the record as either
Active or Inactive. When “deleting” a record, this state field is simply updated to Inactive, and
the record no longer appears in the form. This approach requires that the SQL statements
used to create the recordset always contain a WHERE clause (for example, WHERE Active = True).
In this way, inactive records are never displayed. Listing 8-13 demonstrates deleting a record.
In this case, you do not need to reopen the recordset, as it is currently open. Remember from
earlier that you dimensioned the recordset at the top of the module to enable its use any-
where? Note also the use of the WITH statement, which saves you having to explicitly refer to
every method of the recordset object.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 219

Listing 8-13. Deleting a Record

intRpy = MsgBox("Are you sure you want to delete this Company?", vbYesNo)
If intRpy <> 6 Then Exit Sub

With rstCompany
.Delete
.Requery
If .BOF = False And .EOF = False Then getCustomers

End With

Adding a New Record

Adding a new record via the unbound form is again basically a straightforward process. In this
case, the Add button will clear the form, unlocking the controls and allowing the user to enter
new data. However, here it is important that before you actually carry out the INSERT operation,
you check the record does not already exist within the table being added to.

Listing 8-14, which appears toward the end of this section, shows the procedure that is
run in response to the On Click event of an Add button. The save procedure (available in the
Chapter8 example database, frmCustomer, of the book’s source downloads) demonstrates one
approach to using the DAO FindFirst method to make sure a record doesn’t already exist. If
the record doesn’t exist, you know you are working with a new set of data. If the record already
exists, you know this must be an edit (or nothing has changed). The procedure in Listing 8-14,
taken from a real working application, combines all of the methods already discussed, checks
whether this is a new record, if it is, adds it to the table; if it is an existing record, .Edit is called
to edit the record.

On this occasion, to demonstrate the ability to work with more than one recordset at a
time, the example database will also write the changes into a history table. Writing records to
a history table is one way you can audit database changes. I should say that because this is
from a working application, some of the references to control objects will be different from
those you will have used in the preceding examples.

For this example, I am interested in showing you the technique involved in the real world
as opposed to explaining the theory behind the code. There are several steps involved in this
process. If the user clicks the Add command button, the check for whether the record is a new
record or an already existing record is done in a novel way, by testing the color of the command
button caption text. When the user clicks a command button to carry out an action, the caption
of the button is changed, and the fore color is set to red. For example, clicking Add changes the
caption displayed on cmdAdd to the text Cancel Add, and the fore color is changed from blue
to red. In the same way, when a user clicks cmdEdit, the caption is changed to read Cancel Edit,
which the user can click if he or she changes his or her mind, and the fore color changes from
blue to red. We can use these color changes to our advantage during the save operations. Fol-
lowing is the process required when the user clicks the Add command button. The variables
gconRed and gconBlue are global variables set in a public module.

1. Empty the form of existing records by blanking out the text boxes. Simply use a func-
tion to set the value of each text box on the form equal to “”.

2. Turn off and on the appropriate command buttons. In this case, make sure that the
Save button is enabled.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS220

3. Change the caption of the Add command Button to Cancel Add and set its ForeColor
to red. This is actually carried out in the function required to clear the form.

4. Enable the Save button.

Listing 8-4 demonstrates only the code behind cmdAdd. The full working routine can be
downloaded from the Source Code/Download page on the Apress web site (http://
www.apress.com).

Listing 8-14. cmdAdd Routine

Private Sub cmdAdd_Click()
If cmdAdd.ForeColor <> gconRed Then
' Add a new record

Call EmptyBoxes
cmdAdd.Caption = "Cancel &Add"
cmdAdd.ForeColor = gconRed
cmdSave.Enabled = True
cmdSave.ForeColor = gconRed
cmdUndo.ForeColor = gconRed
cmdUndo.Enabled = True
cmdEdit.Enabled = False

Call UnLockForm
'txtCompany.SetFocus

Else
' Cancel adding a new record

cmdSave.ForeColor = gconBlue
cmdUndo.ForeColor = gconBlue
cmdAdd.ForeColor = gconBlue
cmdAdd.Caption = "&Add"
cmdAdd.Caption = "&Add"

cmdAdd.ForeColor = gconBlue
cmdSave.Enabled = False
cmdSave.ForeColor = gconBlue
cmdUndo.ForeColor = gconBlue
cmdUndo.Enabled = False
cmdEdit.Enabled = True
If rstCompany.BOF = True And rstCompany.EOF = True Then

Call EmptyBoxes
Exit Sub

End If
rstCompany.MoveFirst
Call getCustomers
cmdExit.SetFocus

End If
Exit_cmdAdd_Click:
Exit Sub

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 221

Err_cmdAdd_Click:
Select Case Err
Case 0 '.insert Errors you wish to ignore here

Resume Next
Case Else '.All other errors will trap

Beep
DoCmd.OpenForm "frmErrorMessage ", , , , , , "Error: " & Err.Number & ➥

" - " & Err.Description & vbCrLf & "In: frmAsset.cmdAdd_Click"
Resume Exit_cmdAdd_Click

End Select
Resume 0 '.FOR TROUBLESHOOTING

End Sub

■Note Check out this example in the demonstration database available with the book to see how you can
fit the whole mechanism together and create a fully updatable form without actually binding anything
directly to a table.

QueryDefs
QueryDefs (the saved definition of an Access query) allow you to create and manipulate Access
queries via DAO. For example, to execute a preexisting action query, you could use the code
shown in Listing 8-15, which updates a single company record. The criteria in this case is actu-
ally dealt with inside the query definition.

Listing 8-15. Executing a Query

Public Sub execquery()
On Error GoTo Err_execquery
Dim db As Database
Set db = CurrentDb
Dim qdf As DAO.QueryDef
Set qdf = db.QueryDef("qryupdatecompany")
qdf.Execute

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS222

BOOKMARKS

The Bookmark property allows you to set the current record in the form to the matching record in the
recordset. In this case, you are saving a reference to the Bookmark property in a variable to ensure you can
return to the same record in the form when you have finished a process.

Exit_execquery:
On Error Resume Next

If Not (qdf Is Nothing) Then qdf.Close: Set qdf = Nothing
If Not (db Is Nothing) Then db.Close: Set db = Nothing

Exit Sub
Err_execquery:

MsgBox Err.Description, , "Error in Sub Module1.execquery"
Resume Exit_execquery

Resume 0 '.FOR TROUBLESHOOTING
End Sub

This code could be made to execute any action query by simply changing a few lines and
passing the query required into a function. Listing 8-16 shows a slight modification to the
code to use this approach.

Listing 8-16. Generic Query Execution

Public Sub genericQry(qryName as string)
Dim db As Database
Set db = CurrentDb
Dim qdf As DAO.QueryDef
Set qdf=db.QueryDef(qryName)

This type of process is useful when, following a set of actions, for example, you need to
export, append, or remove data from a table once processing is complete. In addition to exe-
cuting an action query, you can actually use QueryDefs to create new queries within VBA.
Listing 8-17 shows one approach to how you can create queries.

Listing 8-17. Creating a Query in Code

Public Sub CreateQuery()
On Error GoTo Err_CreateQuery
With CurrentDb

.CreateQueryDef ➥

Name:="qrytest", ➥

strSQL:="Select CustomerID, CompanyName, Country" ➥

& " From Customers"
.QueryDefs.Refresh

End With
Exit_CreateQuery:
Exit Sub
Err_CreateQuery:

MsgBox Err.Description, , "Error in Sub Module1.CreateQuery"
Resume Exit_CreateQuery

Resume 0 '.FOR TROUBLESHOOTING
End Sub

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 223

Of course, you could always run a bit of SQL within the VBA to do the same thing as
shown in Listing 8-18.

Listing 8-18. Using SQL to INSERT a Record

strSQL = "INSERT INTO COMPANY(VALUES])" ➥

& " SELECT Fields from some TABLE"
DoCmd.RunSQL (strSQL)

If required, you can also change the SQL used to define a query using a similar
technique, in this case changing the SQL property of the QueryDef object (for example,
qdf.SQL = "Your SQL String"). The SQL statement will replace the existing SQL statement
used by the saved query.

Up to this point, in order to demonstrate some of the features of DAO, you have been
working with unbound recordsets. During the writing of this chapter, I had a discussion
with some developers on the AccessD list, and almost all of them agreed that when working
in a strictly Access environment, it is in many cases better to work with bound record sources
(that is, the form or report is bound directly to its data source, either a table or saved query).
One of the main reasons for this is the topic I touched on briefly earlier: locking of records in
a multiuser environment, which is not an easy task even for experienced programmers. The
consensus is to leave that to Access. Unbound sources really come into play when working
with external data sources—for example, SQL Server 2000 or 2005. The article “From DAO to
ADO” by Marc Israel (Database Journal, 2000, http://www.databasejournal.com/features/
msaccess/article.php/1490571) provides a useful overview of moving from DAO when
working with server-side data. Previous chapters in this book also cover some of this topic,
and you can find out more in another title I cowrote with Susan Sales Harkins, SQL: Access
to SQL Server (Apress, 2002).

Building SQL Statements with DAO
DAO and VBA also allow you to construct SQL statements within your code; for example, using
VBA, you can create SQL INSERT statements. Listing 8-19 creates one such statement that adds
records to a local table. In this case, you are using the local table to populate an Access report.
This is sometimes useful for performance reasons and removes the need to, say, work with
complex JOINs when populating a report. Listing 8-19 simply shows a code fragment demon-
strating how the SQL statement is put together. Note that the first step in the process is to
execute a DELETE statement in order to ensure that only the records you require are included in
the table.

Listing 8-19. Using SQL Within VBA

Set db = CurrentDb
db.Execute "DELETE * FROM tblLocalReportData"
strSQL = "INSERT INTO tblLocalReportData ➥

(fldRequired1, fldRequired2,fldRequired3,fldRequired3)" ➥

&"SELECT tblCustomer.fldRequired1, tblOrder.fldRequired2,➥

tblOrder.fldRequired3 FROM tblCustomer

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS224

The SQL statement being constructed can be almost any valid Access SQL, ranging from
as simple as the fragment shown to very complex. Either way, it is always useful to use the
Query Editor to ensure you have valid SQL before actually adding it to the code. Once the SQL
is valid, most other errors are mainly as a result of incorrect line breaks within the VBA IDE
when you paste the SQL into your code. A good example of the use of SQL in this way is shown
in Listing 8-20; here you use the fields from a DAO recordset to create a dynamic SQL state-
ment, which in turn provides a new recordset for further manipulation. In this case, you are
passing the value of txtCustomerID to the code in order to restrict the records returned to the
recordset. This is useful if you need to populate a recordset with specific data.

Listing 8-20. Dynamic SQL

Set rsttest = db.OpenRecordset("SELECT* FROM tblCustomer WHERE ➥

fldCustomerID = " & Val(txtCustomerID) ➥

&" ORDER BY fldOrderDate DESC")

Again, the example shown is basic, but as before, the SQL statement being created can be
as complex as required using any and all form control objects, for example.

Access 2007 and DAO
There have been several additions to DAO in Access 2007, mostly to deal with the new data
types available and to enable integration with MOSS 2007. A good friend of mine, Shamil S.,
has posted a list on his web site showing over 300 new properties available with Access 2007
(http://smsconsulting.spb.ru/info/acc2007/newPrpsInAccess2007.htm). As you will see, a
large number of the new properties are used for embedded macros—in fact over 157 of them!
A shortened version of Shamil’s list of new properties appears in Table 8-3. In general, you will
now find that a report has much the same functionality as a standard Access form in terms of
controls and their events. However, in the majority of cases, the property relates to the use of
embedded macros as opposed to VBA.

Table 8-3. New Access 2007 Properties

Property Property Type

AfterDelConfirmEmMacro Embedded macro

AfterFinalRenderEmMacro Embedded macro

AfterInsertEmMacro Embedded macro

AfterLayoutEmMacro Embedded macro

AfterRenderEmMacro Embedded macro

AllowDesignChanges Yes/No

AllowFilters Yes/No

AllowLayoutView Yes/No

AllowReportView Yes/No

BeforeDelConfirmEmMacro Embedded macro

Continued

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 225

Table 8-3. Continued

Property Property Type

BeforeInsertEmMacro Embedded macro

BeforeQueryEmMacro Embedded macro

BeforeRenderEmMacro Embedded macro

BeforeScreenTipEmMacro Embedded macro

CommandBeforeExecuteEmMacro Embedded macro

CommandCheckedEmMacro Embedded macro

CommandEnabledEmMacro Embedded macro

CommandExecuteEmMacro Embedded macro

For a quick example of using On Click with a report field, open the Northwind Contacts
report and click the Customer Name field to view the selected customer’s details. In this case,
a form opens allowing you to work directly with the underlying records. The form will open
filtered at the appropriate customer record.

■Note If you edit the record while the form is open, the changes do not automatically appear within the
report.

This is achieved using the On Click event of the report control to execute an embedded
macro. In terms of DAO and VBA, generally the programming model remains much as it was
with the exception of manipulation of the new data types such as the attachment data type
and Allow Multiple Values property columns, which will only be available when working with
the new Access 2007 database file type, ACCDB. For standard MDBs, they are not available.

■Note Many developers have stated their intention not to use the new data types and properties in appli-
cations, because from a developer’s point of view, they break some of the rules of database design and
normalization. However, I would expect these new data types, particularly the attachment data type, to be
very popular with end users, and it is important that developers do have an understanding of how they work.

Complex Data Types
Access 2007 introduces complex data types, which visually appear to store more than one data
item in a field. Under the covers (which you cannot get at by the way), Access implements a
fully relational model for these data types using hidden system tables. During the beta, many
developers requested access to these system tables. At each occasion, Microsoft appeared to
say that it would give some consideration to this. At the time of writing, Microsoft was still
considering the request.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS226

Attachments
The attachment data type allows you to associate many different files with a database record.
What you end up with is two recordsets where the attachment data is actually a recordset in
itself in addition to the main recordset containing the table data. In order to manipulate attach-
ment data, you must use two recordsets. The field with the attachments is a child recordset of
the main recordset. For example, in a Company table, you would create a recordset returning
the company data. If you then wanted to manipulate the attachment field in that table, you
would open a second child recordset to access the attachment data.

As stated before, the primary purpose of these new data types is to provide integration with
SharePoint Server lists, which already provide this functionality. Internally, the Access database
will create one or more system tables for the attachments. This is an effort by Microsoft to retain
relational design. However, one of the major drawbacks to this is the system tables are not visi-
ble to developers, so there is no way to interact with them directly. However, the system table
MSysComplexColumns contains information on each of the complex types you have defined.
Table 8-4 shows the columns that are exposed in the system table.

Table 8-4. MSysComplexColumns

Column Comment

ColumnName Name of the complex column in the database table.

ComplexID AutoNumber primary key for the system table.

ComplexTypeObjectID Attachments have an ID of 39; multivalue fields an ID
value of 27.

ConceptualTableID and FlatTableID Columns that refer to the hidden system table used to
maintain this data type. You do not have access to these
system tables at this time.

The other major drawback is database bloat. Try it out by adding a few attachments to an
Access 2007 database, and note how the database file size increases as you add each attachment.
For example, an empty database containing a single table (with no date) is approximately
280KB. If you add a single short Word 2007 document to the file, it will increase in size to 380KB,
and the file size will continually grow as attachments are added. However, in terms of storage,
this is still a major improvement on OLEB, which increases the actual file size itself. Of course,
this would apply if you were storing the graphic within the database application to begin with.
Just like everything else, there are several issues surrounding attachments, and the following list
provides a summary of the major ones:

• The individual attachment file size is 256MB.

• The data type is only available in the new ACCDB format.

• The maximum attachment size is the Access file size 2GB.

• Files are stored in the database, leading to database bloat.

• There is no Access to the system tables for attachments.

• Once created in the table, an attachment field cannot be changed.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 227

In addition, many files are automatically blocked by Access 2007. Table 8-5 shows the
blocked file types that at this time cannot be amended (that is, you cannot unblock them).

Table 8-5. Blocked Attachment File Types

ADE INS MDA SCR

ADP ISP MDB SCT

APP ITS MDE SHB

ASP JS MDT SHS

BAS JSE MDW TMP

BAT KSH MDZ URL

CER LNK MSC VB

CHM MAD MSI VBE

CMD MAF MSP VBS

COM MAG MST VSMACROS

CPL MAM OPS VSS

CRT MAQ PCD VST

CSH MAR PIF VSW

EXE MAS PRF WS

FXP MAT PRG WSC

HLP MAU PST WSF

HTA MAV REG WSH

The easiest way to work with attachments is via the user interface using the GUI tools pro-
vided. However, as usual, you can also manipulate the attachment via DAO. Listing 8-21 shows
a simple procedure that loads up an image file to a record in the attachment field of the North-
wind Customers table. In order to do this, you need two recordsets: the first gets the customer
data, and the second deals with the attachment field. Two new methods have been added to
DAO to deal with this: LoadFromFile and SaveToFile. The demo code provided by Microsoft
had one major problem: you need to already have an existing record for the example to work.
Listing 8-21 adds a new attachment to a Tasks table. The attachment field is called Attachments.
This example includes the “testing” debug statements to let you see the procedure as a working
example. Remember to change the path to your image file for this example.

Listing 8-21. Loading an Attachment

Private Sub cmdAdd_Click()
On Error GoTo Err_cmdAdd_Click
Dim rstTasks As Recordset2
Dim rstAttach As Recordset2
Dim fld As Field2
MsgBox "start"
Set rstTasks = Me.Recordset
Set rstAttach = rstTasks.Fields("Attachments").Value

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS228

' The basic idea is of a recordset within a recordset, i.e., the multivalue
' attachment field is exposed as a recordset within each record of
' the main recordset.
' Parent child recordsets, I guess?
Set fld = rstAttach.Fields("FileData")
rstTasks.Edit
rstAttach.AddNew
fld.LoadFromFile "C:\Documents and Settings\marty\My Documents➥

\polar bear penguin.jpg"
Debug.Print fld.Name
Debug.Print fld.Value
Debug.Print rstAttach.Fields("FileType")
Debug.Print rstAttach.Fields("FileName")
Debug.Print rstAttach.Fields("FileTimeStamp")
Debug.Print rstAttach.Fields("FileURL")
rstAttach.MoveFirst
Do While Not rstAttach.EOF

Debug.Print rstAttach!FileName, rstAttach!FileType, ➥

rstAttach!FileTimeStamp, rstAttach!Fileflags, rstAttach!FileURL
rstAttach.MoveNext

Loop
rstAttach.Update
MsgBox "File added"
rstTasks.Update
Me.Refresh ' Otherwise picture may not be updated
MsgBox "update" & rstTasks.Updatable
Exit_cmdAdd_Click:
On Error Resume Next

If Not (fld Is Nothing) Then Set fld = Nothing ' fld.close remove
If Not (rstAttach Is Nothing) Then rstAttach.Close: ➥

Set rstAttach = Nothing 'rstAttach.Close:
If Not (rstTasks Is Nothing) Then Set rstTasks = Nothing 'rstTasks.Close:

Exit Sub
Err_cmdAdd_Click:

MsgBox Err.Description, , "Error in Sub Form_Tasks.cmdAdd_Click"
If (Err.Number = 3820) Then
MsgBox " A duplicate of a file name " & ➥

vbCrLf & "has already been added to this record."
End If
Resume Exit_cmdAdd_Click

Resume 0 '.FOR TROUBLESHOOTING
End Sub

One of the issues you will have when adding attachments is the possibility that the file
already exists. Error handling in Listing 8-21 takes care of this in terms of the Error section.
Of course, as in everything to do with DAO, there is more than one way to check this. If the file
already exists, the user may want to replace it with a new copy. If the file does not already exist,

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 229

you can simply add it to the recordset. The code fragment shown in Listing 8-22 also deals
with this issue, and it checks using a simple recordset count before editing or adding the new
attachment to the recordset. If the count is less than 1, you are adding a new record, and if it is
greater than 1, it is an edit. This fragment can be added to the code in Listing 8-21. Remember
that you will need to update both the parent (rstTasks) and the child (rstAttach) recordsets,
and you need to move through the recordset to get an accurate record count before doing any-
thing. If you don’t do this, the record count will be for the number of records returned to date
as opposed to the count of the entire recordset.

Listing 8-22. Checking for Attachments

rstAttach.Movelast
rstAttach.MoveFirst
If rstAttach.Recordcount >= 1 then

rstAttach.Edit
Else

rstAttach.AddNew
End If

rstAttach.Update
rstTasks.Update

You could also make the procedure a little more generic by passing the file location into
the procedure. It is also possible to view attachment data via standard SQL statements as
shown in Listing 8-23. As you may be able to tell, this SQL statement was generated by the
Access query builder and returns data in the standard Access way.

Listing 8-23. Using SQL to Select Attachment Data

SELECT Customers.Company, Customers.Attachments.FileData,➥

Customers.Attachments.FileName,
Customers.Attachments.FileType, Customers.Attachments
FROM Customers
WHERE (((Customers.Attachments.FileName) Is Not Null));

■Note You cannot run an UPDATE or a DELETE statement on a multivalued field such as Attachments using
the query builder.

Traditionally, almost all Access developers do not store associated files, for example, Word
documents and image files, within the database. They simply store the path to the document or
image within a field. This avoids the issue of database bloat arising. One very simple approach
to this is to store, for example, an image file name within the table. The actual image file can be
stored in the same folder as the database. To view the file on an Access form, simply concate-
nate the path of the database file to the image name, producing a fully qualified file name. It
would also be possible to store the full path and use this as the control source of an Access image

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS230

control. This would also solve the problem of a database bloat. The main consideration with
this approach is that the files required must be available in the same folder as the Access file
itself. To get the current database path in Access 2007, you can use the function shown in
Listing 8-24, which will return the full path for the currently open database.

Listing 8-24. Getting the Current Database Path

Public Function GetPath() As String
GetPath = CurrentProject.Path & "\"

End Function

Then simply append the image file name, located in a text box control on the form, to the
path returned by the function and load the image control. Listing 8-25 demonstrates this.

Listing 8-25. Concatenating a Path and File Name

Private Sub Form_Current()
Picture = GetPath & Me.txtImage
Me.image1.Picture = Picture
End Sub

The following short exercise brings this approach together using a form, an image control,
and a small amount of VBA to load the required image into the control.

1. Create a new table called tblImages containing two fields, an AutoNumber primary key
and a text field called ImageName.

2. Save an image file into the same folder as the database.

3. Enter the name of the saved image file into tblImages.

4. Create a new blank Access form based on tblImages.

5. Add an image control by dragging it from the Design Ribbon onto the form.

6. Name the image control Image1.

7. Add a text box to the form bound to the ImageName field named txtImage.

8. Add the following code to the form’s On Current event:

Private Sub Form_Current()
Picture = GetPath & Me.txtImage
Me.image1.Picture = Picture
End Sub

9. View the form to see the loaded image file.

As you can see, using two very basic functions allows you to place images onto a form with
little effort. While this does not have the flexibility of the new attachment data type in that it only
works for image files, with a few lines of code it does solve the issue of database bloat.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 231

Multivalued Fields
You will either love or hate multivalued fields. I will be totally up front here and tell you that
I think it’s an awful invention from the Access application side. However, when you work
with SharePoint Server, it maps directly to the ability in lists to store multiple values; like the
attachment data type, the main purpose in life for this feature is to work with SharePoint.
Speaking as someone who will be moving into SharePoint projects real soon, this will prove
useful in some areas. As you know, this isn’t what multivalued fields will be used for. You will
on many occasions be required to fix up databases containing this structure, as discussed in
Chapter 7. Just like the attachment data type, multivalued fields are nonfunctional with SQL
Server, in any edition.

Figures 8-1 and 8-2 show a multivalued field, Givento, first in the Tasks table and then on
a form displaying the tasks. Visually, within the table level, this feature again breaks every rule
of relational design, and under the covers the relational model is supported in hidden system
tables, just as with the attachment data type. Within the database, a many-to-many structure
is maintained; you just can’t see it or get at it in any real meaningful shape or form. However,
I would guess that users are going to love this, particularly the multiple-selection list box
shown on the form, and will make a lot of use of such list boxes.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS232

Figure 8-1. Multivalued field data

Figure 8-2. Multivalued field displayed on an Access form

The multivalued type is very similar to the attachment type and has a similar .Value
property. In this case, .Value will hold the number value of the record being referred to; for
example, it will display an employee name but actually store the employee ID number within
the hidden system tables. This is the standard behavior of lookup lists and one of the reasons
many developers don’t encourage their use. The idea behind this is to make life easier for end
users. Following is a quote from the Microsoft web site (http://www.microsoft.com) on using
a multivalued field in a query:

In this example, the contact name field does not reside in a table. Instead, it resides in

the source query that provides data for the multivalued AssignedTo field. You can join

the source table or query for the multivalued field with the table that contains the mul-

tivalued field in order to include a field (contact name in this example) from the source

table or query in the query result.You can then search that field instead of the multival-

ued field.

I don’t know about your end users, but that one will give some of mine a bit of trouble! Per-
sonally, I would find it much easier to explain and demonstrate how to work with and create a
proper many-to-many relationship in the first place. No point moaning on about this feature;
it is in Access, and there it will stay. From an SQL point of view, you can work directly with the
.Value property in multivalued fields as shown in the following SQL fragments, which assumes
there are two tables, Tasks and Employees. Tasks contains a multivalued field, Givento, which
contains the ID primary key field in the Employee table. Listing 8-26 shows the UPDATE state-
ment, while Listing 8-27 shows the DELETE statement.

Listing 8-26. Update Statement

UPDATE Tasks
SET Tasks.Givento.[Value] = 1
WHERE Tasks.Givento.Value)=2

Listing 8-27. DELETE Statement

DELETE Tasks.Givento.Value
FROM Tasks
WHERE Tasks.Givento.Value =2

As you will see when you run a SELECT query, you have two fields to work with. In my case,
the Givento field will display all data items in a single cell, and the Givento.Value field, which
is a child of Givento, will display each individual data item (in my case, each name assigned to
the Givento field). If you want to delete the entire record, you use the Givento field. Individual
items are dealt with by using the .Value item.

New Macro Features
There have been substantial changes to Access macros including error control, temporary
variables, single-stepping in macros, and the ability to embed macros in form objects. One of
the basic reasons for the changes that have taken place with macros is Microsoft’s expanded

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 233

view on security. Code should only be executed from and on trusted sources and locations.
If your database is heavily VBA driven and is not in a trusted location on the PC, the VBA code
will be disabled. In this case, all you have to execute will be macros. It is recommended that
you use macros (which are available on the Create Ribbon) for simple processes; for example,
when opening a database in an untrusted location, simply pop up a more descriptive message
telling the user how to solve the issue.

You can determine whether your application is trusted by checking the new CurrentProject
IsTrusted property and fork your application to either macro control or VBA as required. Of
course, you would need to do this in an AutoExec macro, because if the application is not trusted,
the code would never run anyway! Listing 8-28 shows the required VBA to do this. Yes, I know
it has to be a macro, but it is worth using VBA to show the syntax of the new commands. You
can view the macro in the Northwind 2007 database. Just open the AutoExec macro to view
the design. Also note the new Arguments column available with macros in Access 2007.

Listing 8-28. CurrentProject.IsTrusted

If (Not .CurrentProject.IsTrusted) Then
DoCmd.OpenForm "Startup Screen", acNormal, "", "", , acNormal

End If
If (.CurrentProject.IsTrusted) Then

DoCmd.OpenForm "Login Dialog", acNormal, "", "", , acNormal
End If

Why Access doesn’t just open a form automatically with the relevant user action infor-
mation already in place is beyond me!

Perhaps the biggest change in terms of experienced Access developers are TempVars and
the ability to embed a macro as part of the form object itself. We’ll take a look at these next.

TempVars
TempVars are essentially global variables that are available to both macros and VBA code,
although they are more likely to be used with macros. They exist for the lifetime of the data-
base; that is, when you close the database, you lose whatever values they contain. You can
define up to 255 TempVars in the application. There are three new macro actions available:
SetTempVar(name,expression) allows you to set the variable, RemoveTempVar(name) removes
an individual variable from the store, and RemoveAllTempVars removes all variables from the
TempVar store. It is good practice to remove all variables once you have finished with them.

TempVars are also available to VBA because there is a single TempVar store per applica-
tion enabling this sharing. In my opinion, TempVars are not tools aimed at professional devel-
opers but rather at the power user who may need some data available in several places (for
example, a company name or other generic application detail). However, unlike global vari-
ables, TempVars are not wiped if there is an error in the application.

For example, to assign the current database path to a TempVar, you could use the follow-
ing code:

TempVars ("DBPath").Value = CurrentProject.Path

You can return a listing of all TempVars currently in use by creating a small procedure to
loop through the collection, returning the TempVar names and values. Listing 8-29 shows how

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS234

this works, printing the name and value of the TempVar to the Intermediate window using the
.Name and .Value property of the TempVar. In the case of Listing 8-29, this will print out the
name and value of DBPath if you have tried out the preceding example. You could also have
carried out the same procedure using a macro and used the variable within VBA if required.

Listing 8-29. Listing TempVars

Public Sub DisplayTempVars()
On Error GoTo Err_DisplayTempVars

Dim tempV As Variant
For Each tempV In TempVars

Debug.Print tempV.Name & " = " & tempV.Value
Next tempV

End

Exit_DisplayTempVars:
Exit Sub

Listing 8-30 demonstrates the use of a TempVar to populate a text box with the current
database path.

Listing 8-30. Using a TempVar

Private Sub Form_Current()
On Error GoTo Err_Form_Current
Me.txtPath = TempVars("DBPath").Value
Exit_Form_Current:
Exit Sub
Err_Form_Current:

MsgBox Err.Description, , "Error in Sub Form_Customer List.Form_Current"
Resume Exit_Form_Current

Resume 0 '.FOR TROUBLESHOOTING
End Sub

Embedded Macros
Just like the name suggests, an embedded macro belongs to the object in which it is created,
just like a control’s event procedure. When you copy an object, the macro is copied with it.
An example of an embedded macro can be seen in the Northwind database CustomerList
form. If the form is in Design view, click the CollectDataViaEmail button and look at its On
Click property. You will see that this is a very simple macro that executes a RunCommand,
specifically CollectDataViaEmail. The actual macro steps are as follows: open the query,
execute a RunCommand to start the Collect Data Through Email Wizard, and close the query.

The actual macro is not visible in the normal Macro view in the Navigation Pane; you
have to click the build button within the On Click property in Design view to see it. The Com-
mand Button Wizard, when working in form design view, will also generate embedded macros
when adding buttons to the form, as opposed to VBA code.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS 235

Macro Error Control
Microsoft has added a new error control action to macros, OnError, which is functionally the
same as its cousin, the VBA OnError statement. Three statement arguments are available: Next,
Macro Name, and Fail.

If the Next argument is selected, the error is recorded in the MacroError object. Execution
continues to the next statement. If the Macro Name argument is selected, execution is passed
to the named macro that will handle the error. If the Fail argument is selected, it stops the exe-
cution of the named macro. It will revert the macro behavior of handling errors back to the
“old” way in the previous version of Access. When creating and using macro error control, you
can use the MacroError object to help create meaningful messages to the user, replacing the
standard Access error messages. For example, placing the following in the Argument Macro
column will replace the default error message with one more accurately reflecting the error
that has occurred.

="Error # " & [MacroError].[Number] & " on " & ➥

[MacroError].[ActionName] & " action."

Once this has been done, you can call ClearMacroError to remove the error number from
the MacroError object. It is worth noting that the MacroError object will be cleared at the end of
macro execution anyway. You can also use Docmd.ClearmacroError to achieve the same thing.

Summary
This chapter discussed DAO, complex data types, and some of the new features in macros in
Access 2007. In all honesty, DAO is much the same in this release as in all other releases, and
there are few if any major changes other than those related to the new data types. Complex
data types designed to fit in with the SharePoint list model will find their way into standard
Access applications, and you will see them being used in almost all user-created Access 2007
applications. Many developers will refrain from using them, but the functionality, particularly
the multiple-selection lists, may actually mean you have little choice in the face of user demand.
Macros will continue to be the preserve of power users and other high-end users of Access,
with most if not all professional developers sticking to the power of VBA, including its excel-
lent error trapping capability. However, again, there will be an increase in the use of embedded
macros if only due to the fact that the wizards will be using them to provide functionality in,
for example, command buttons. Many users will also take advantage of the ease in which they
can be created and copied between objects.

CHAPTER 8 ■ DAO, COMPLEX DATA TYPES, AND MACROS236

Introduction to SharePoint
Server

Microsoft Access 2007 will bring many changes to the developer and power user. One of the
major focuses of this version is its interaction with Microsoft Windows SharePoint Services
(WSS). It appears SharePoint will be receiving tremendous focus from Microsoft as it becomes
the main data store for the information worker. In case you missed it, Access is aimed directly
at this market—those individuals who process, add value to, and work with information as part
of their day-to-day roles. It is my opinion that interaction with SharePoint will see increased
functionality with each progressive release of Access from here on in, and it is worthwhile for
Access developers to make themselves aware of the capabilities this software offers.

On the other hand, many developers have asked how the small to middle-size busi-
nesses they deal with will use this software or indeed afford it. Affording it is easy; it’s a free
download and is part of the Windows Server 2003 operating system. Will a small business
use it? Other developers have asked what use is it and why Microsoft has appeared to shift
focus within MS Access from SQL Server migration to SharePoint. To be honest, I think SQL
Server is still the way many developers will go, specifically to SQL Server 2005 Express, and
as such the ability to link to SQL Server tables will also see increased focus from the Access
team. From my own personal experience, I have yet to meet users or members of a particu-
lar business area within my own organization who, once they have seen how WSS operates
and the feature set it offers, have not asked for it to be introduced as a major feature when
managing business collaboration.

This chapter lays the groundwork for the following chapters by showing you what Win-
dows SharePoint Services is and what it is capable of. We will look at working directly within
SharePoint to create sites, lists, and workspaces. In the next chapter, you will use the new copy
of Northwind to migrate a database to SharePoint and see how to link to WSS lists. In doing so,
you will see why Microsoft has added in the new attachment data type and the Allow Multiple
Values property.

We will look at SharePoint and how it interacts with the Office 2007 applications during
the next three chapters; it is my belief that although Access developers might be tempted to
dismiss this out of hand, they need a good overview of what SharePoint is and what it is
capable of. The next three chapters will, I believe, prove my point. So I ask you to suspend
judgment until you have actually tried out the examples in these three chapters as we look
at Windows SharePoint Services before you decide it’s not for you.

237

C H A P T E R 9

What Is Windows SharePoint Services?
WSS is a collaborative environment supplied by Microsoft as a downloadable component for
the Windows Server 2003 operating system. It provides a complex environment for sharing dif-
ferent types of information and can be tightly integrated with Active Directory. SharePoint is a
web application that is available internally as an intranet solution or can be configured to act
as an extranet, thus allowing external access to internal company resources. Out of the box
SharePoint provides superb features, and when used with Office 2007, it can fundamentally
change the way in which you work with data and the sharing of information. Figure 9-1 shows
the interface to Windows SharePoint Services once a site has been created.

As you may have guessed, I would be classed as a SharePoint convert, as the potential of
this software to provide an environment that brings data and documents to life is excellent.
By “bringing to life,” I’m referring to the interactivity SharePoint provides. Each component
in Office 2007 has been changed to enable increased interaction with WSS, and Access is no
different. New features include the ability to take SharePoint data offline, migrate your appli-
cation to a WSS server, and link directly to WSS. Additional interaction has been added to
Word and Excel in respect to WSS.

For many Access developers, the biggest drawback will be actually getting the software to
run this on. WSS itself is free, so that is not much of a problem; however, you need to install it
on Windows Server 2003, which can be a problem given the cost of the software and indeed

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER238

Figure 9-1. Windows SharePoint Services

the hardware to run it on. One solution, at least to the software problem, is to install Windows
Server 2003 on a Virtual Machine, either Microsoft Virtual Server 2005 or some other VMware
solution. Virtual Server 2005 is another free download from Microsoft, and for testing purposes
an evaluation copy of Windows Server 2003 can be downloaded. In addition, a 30-day trial site
for SharePoint is available by registering at http://www.sharepointtrial.com/welcome.aspx.

■Note The example sites in this chapter have been created on a demonstration site provided by Microsoft
during the beta for Office 2007.

I would hope that this trial site will be upgraded to version 3 by publication date. One of
the major changes in WSS with this new version is that it is based totally on .NET Framework 2.

Microsoft Office SharePoint Server 2007
It’s impossible to talk about WSS without mentioning Microsoft Office SharePoint Server
(MOSS) 2007. WSS does one thing for you; behind all the hype it’s a bit of software that
allows you to create web sites, also called web applications. Using WSS, you (and your users)
can create many sites to assist in the day-to-day operations of a business. SharePoint Server
provides the means to aggregate content from multiple WSS sites and presents it in a com-
mon interface. I will primarily discuss WSS in this and the succeeding chapters, but some
areas of MOSS will also be covered for completeness. Unlike WSS, MOSS 2007 is not free and
must be licensed, but it does provide some great features over and above those of WSS—for
example, the ability to create audiences to whom content can be targeted, full site searching
and indexing capability, and the ability of users to create a personal view of the SharePoint
application using a “my site” feature. MOSS 2007 is highly recommended for wide-scale
deployment needs in the enterprise.

Data within an organization exists in many places: as Word documents, Excel spread-
sheets, and PowerPoint presentations; in e-mail folders (local and remote); in HTML on the
Web; in network shares and other applications; and, of course, the bit where you tend to be
involved, within many small to medium-sized Access databases. Given the IT world is not the
whole preserve of Microsoft, data also exists in other applications and software ranging from
Oracle to, in my case, Ingres databases. The focus of Microsoft has been to make this data
available to the user no matter what the source—of course, if it’s in a Microsoft product, all
the better and all the easier to get at!

People within business also interact with each other and with information. Many develop-
ers create Access databases that fit into a particular area within a business process; they tend
not to see how that area fits in the business as a whole, how the information is shared within an
office or indeed an organization. What happens to that report you spent weeks programming?
Who has it? What will that person do with it? Who else needs it? Does anyone even know it
exists outside the user you created it for? And does that matter? Many ad hoc Access databases
are also created for one-off tasks and projects, and this information may need to be shared in a
secure manner. SharePoint is an attempt to answer these questions and make information
much more active and available no matter where it is stored. SharePoint also provides a focus
on team work, supplying out-of-the box sharing features for documents and other information.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 239

Behind the Scenes of WSS
WSS is almost completely database driven using either SQL Server 2005 or SQL Server 2005
Express. All content that appears on the site is actually stored within an SQL Server database.
Each WSS installation will use several SQL Server databases for management and application
content. It is recommended that you leave these databases alone and work with SharePoint
via the management interface provided or via the object model, which is very extensive. On
the front end, SharePoint provides web applications for the user to work with, a web applica-
tion being a web site created by the user and based on the .NET Framework. A page within a
WSS site contains .NET Web Parts. Web Parts are .NET controls that provide a degree of func-
tionality for the user; for example, a Web Part can display the user’s Outlook inbox or perhaps
a dataset from Access or SQL Server. WSS comes with many Web Parts already available to you,
and developers can create their own using any of the MS .NET languages. Each page may con-
tain a number of Web Part zones, each containing in turn a number of Web Parts. Almost
everything you will see within a WSS web page will be contained within a Web Part zone of
some share or form, and this will apply to your Access data as well. We will be looking at
using such Web Parts in Chapter 11 to work with Access tables.

WSS will contain at the least two databases: a content database and a configuration
database. Of course, based on the database names, you can guess that one contains all site
content and the other configuration data for the installation.

What Can You Do with WSS?
WSS provides the ability to create collaborative web sites, which is best explained by briefly
looking at one of the sites that I have managed for a particular organization. As part of a
training program, staff can undertake exams, and in order to support each course, resources
and other training materials are made available on this site. The way this was historically
done was to simply place documents onto an Apache web server and create a standard web
page. Users could then download the documents to their PCs. This process worked very
well, and no issues arose. However, in order to provide a little more interactivity and to
make the actual upload process as easy as possible, it was decided to create a WSS site to
store the materials. In this site, I created a folder structure reflecting the courses being held
and a subfolder structure for the materials stored by file type. All of the training resources
could then be placed into the appropriate folder system on WSS. This alone probably does-
n’t sound very impressive, but out of the box, WSS provided the following capabilities not
available on the site originally:

• Automatically e-mail users when materials have been updated or added.

• Direct File ➤ Save As from MS Word to the WSS folder structure.

• Create an interactive discussion forum per course.

• Have full access to Active Directory Security.

• Use interactive Outlook calendars for training events.

• Perform internal task management for document production.

• Distribute interactive training surveys.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER240

And not one line of code had to be written. Now, that’s a vast improvement over a simple file
share download of some training materials. Again, you may be asking what this has got to do
with Access, but just think, if I then tied in the training course booking system with WSS, tak-
ing the best of both worlds, the organization I work for would have client-side database man-
agement and interactive web sites without too much effort. But, being honest, it’s highly likely
that WSS would provide everything you need either out of the box or with a little .NET coding.

Granted, I work in a large organization with lots of servers and can do this sort of thing
with minimal cost. But the average developer may not have the resources for this sort of devel-
opment; however, the average power user may well have access to a similar range of software,
and one of the great things about WSS is that a WSS site, once created, can be passed over to
the user for management when appropriate. From the user’s point of view, one of the other
features available is interaction with other individuals while on the web site via text-based
chat. Once logged in, users can interact with other members of staff interested in the same
training area, hopefully leading to a degree of peer support between those involved in the
training sessions.

From the desktop side of things and standard business processes, WSS provides many
useful features—for example, the ability to build ad hoc web sites for specific tasks or the
development of meeting materials.

■Caution Because of this ability of users to create ad hoc business sites, there is a certain amount of
work required to manage the server and its web site. It is easy to forget that users may be creating single-
purpose sites that may not be reused. Such sites may contain links to your Access tables but will not be
reused. From the other direction, it is possible that your Access applications can be linked into nonused
sites. It is therefore important that sites or subsites that are no longer used are removed from the structure
by SharePoint administrators.

WSS provides several built-in templates for things such as project management and
meeting organization: with a couple of mouse clicks, the user has a complete meeting man-
agement web site up and running using all the features for which that user has permissions,
including Active Directory for security and user management. The following site/workspace
templates are available with WSS version 3:

• Team Site

• Blank Site

• Blog Site

• Wiki Site

In addition, the following workspaces are available:

• Basic Meeting

• Blank Meeting

• Decision Meeting

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 241

• Social Meeting

• Multiple Page Meeting

One other interesting feature about SharePoint that I have so far neglected to mention
is the ability to set each site up for mobile access (that is, connect to your site via a mobile
device such as a PDA). For many developers, this could be useful for giving full access to
documents, lists, events—in fact all the features of SharePoint. This has proven to be a use-
ful project management tool while “out and about” in my own employment. All you need is
a mobile device and a connection to the Internet. No other work is required, as mobile
pages are created by WSS once the feature has been enabled. Not only that, but you could,
if required, permit your clients to have access to the site again for project-related materials.
This does, however, require a little bit of work on your part to enable forms-based authenti-
cation using .NET and SQL Server. We will be looking at this in Chapter 11 when we explore
some .NET coding issues. Of course, unlike the systems in many large organizations, it is
also possible to add clients directly into the Active Directory of the Windows Server hosting
the WSS server. Much easier!

The rest of this chapter provides you with the background information you may need if
you are going to take things forward using WSS and the Web. We will be looking at many of the
areas you will require knowledge of in order to use WSS as a back-end data store and as a
migration point for your Access databases.

Permissions
All users within a WSS site must have specific permissions to carry out site actions. Permis-
sions can be either granted to an individual user or assigned to a group to which your users
are added. The following permissions are available:

• Full control: Administration permissions on your WSS site

• Design: Ability to edit lists, document libraries, and pages within the site

• Contribute: Access to the site and ability to edit lists and documents

• Read: Read-only access to the site

WSS groups are recommended, as it is easier to manage security if it is group based, as
opposed to managing several hundred users when using user-level security. To assign per-
missions, click People and Groups on Quick Launch. It is also possible within lists them-
selves to further refine the security to individual items.

Lists
Almost everything in WSS is regarded as a list containing information; for example, a Docu-
ment Library list contains a list of documents, and a Tasks list contains a list of events. A list is
similar to a table within a database; each item in the list would correspond to a single record
about a specific event, task, or document.

The great thing about lists is they are accessible from within Access and other Microsoft
applications. For example, a document in a list can be opened, edited, and saved from within

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER242

Word 2007. A Tasks list can be opened within Access; in fact, an Access table can be linked to
a SharePoint list or indeed migrated from Access to SharePoint. Later, you will see how to
migrate the entire Northwind application to SharePoint and look at the objects that result
from the migration and how you interact with them. Do not be misled by the word “list”; a list
in SharePoint is not a static object—for example, in a Document Library list, it is possible to
check a document out, edit the document with Word, and resave back into the SharePoint list.

Another useful feature is the ability to retain history of documents within WSS. Almost
all of the new template databases supplied with Access 2007 are geared for use on Share-
Point. In fact, any database using the new data types cannot be migrated out of the box to
anything other than SharePoint. They are all list-based applications or applications that can
easily be converted over to the SharePoint list type. For example, the attachment data type
permits you to associate several documents with a particular Access field. The same feature is
available in SharePoint: a list item can have several attachments associated with it. The new
Allow Multiple Values property is again designed to allow the migration of tables to WSS and
have them fit in with the way WSS uses such data.

WSS provides the following lists:

• Document Library

• Form Library

• Wiki Page Library

• Announcements

• Contacts

• Discussion Board

• Links

• Calendar

• Tasks

• Project Tasks

• Issue Tracking

• Survey

You can also create your own individual custom lists should the templates not meet your
requirements. Lists can be further customized via the creation of views, which can be used to
create highly personal information systems by restricting list information to data added or of
interest only to the current user.

Perhaps the best way to understand WSS is to create a site and look at the functional-
ity provided from both the server and the client before looking at interaction with Access
2007. It is worth having a sound understanding of the capabilities of WSS before moving
on to look at interaction with Access 2007. As is the case with many Access developers and
power users, this may be the first opportunity you have had to play with such collabora-
tion software.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 243

Creating a Team Site
For this example, you will create a functioning team site using one of the WSS templates. This
site will be used to manage project development for a fictitious client. For this example, you
must use the following software installed on a single machine:

• Windows Server 2003 SP1

• Windows SharePoint Services version 2005

• SQL Server 2005 Express Edition

• Access 2007

If you don’t have access to WSS, you can get a 30-day trial account from http://www.
sharepointtrial.com/welcome.aspx that can be used to test out the features I will be dis-
cussing. However, bear in mind that some of the administrative features of the software
may not be available to you.

To create a new team site with WSS open, follow these steps:

1. Click Site Actions.

2. Select Create.

3. Select Sites and Workspaces in the Create Page screen.

4. Complete the following details in the new SharePoint site form:

• Title: Client Development

• Description: SharePoint Site for Access Project Development

• URL Name: Type Client Development

• User Permissions: Accept the default

• Display on Quick Launch: Enter Yes

• Team Site: Select or accept this option

10. When done, click Create.

WSS will create the site for you, opening the default home (Default.aspx) page shown in
Figure 9-2.

This site will form the basis for the interactive client site used for the development project
in this chapter.

The site will also contain the following features:

• A document library used to store specifications, project notes, and other client documents

• A calendar that will show any events related to projects (for example, meeting dates)

• Tasks associated with a particular project

• A discussion forum to be used by a team of developers or by indeed the client

• Integration with Active Directory for security

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER244

We will also look at customization and how you can set the site up so that each developer
or group of developers can personalize the site for themselves.

Once the site has been created, the Quick Launch menu on the left of the screen shows
some of the default items already added to this site for you: document library, pictures, lists,
discussions, surveys, sites, people, and groups. The first thing you will do is to simply change
the name of the web site. In this case, you will replace the default site name with your own.
In doing this, you will see how easy it is at a lower level to begin personalization of a web site
using WSS as opposed to something like SharePoint Designer. (However, for full branding of
a WSS site, SharePoint Designer would be the tool of choice.) To change the site name, follow
these steps:

1. Click Site Settings.

2. Click Title ➤ Description ➤ Icon.

3. Enter Access Client Site in the Title and Description text box.

4. Click OK to save the changes.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 245

Figure 9-2. WSS team site home

The following list outlines the site settings available to you depending on the permissions
you have on the WSS site:

People and Groups

Advanced Permissions

Title, Description, and Icon

Navigation Options

Site Theme

Top Link Bar

Quick Launch

Reset to Site Definition

Master Pages

Site Content Types

Site Columns

Regional Settings

Site Libraries and Lists

Site Usage Data

User Alerts

Web Discussion

RSS

Sites and Workspaces

Site Features

Delete This Site

Go to Top-Level Site Settings

As you can see, there are a wide range of items you can work with at the site level. For the
site you are creating, we will only be looking at the following: People and Groups, Site Theme,
Quick Launch, Site Content Types, Site Columns, User Alerts, Web Discussions, and Sites and
Workspaces.

People and Groups: People and groups provide you with the ability to secure your web
site/application. Only those users you grant permissions to will be able to access the infor-
mation. It is worth noting that you can set up anonymous access for a site if required.

Site Theme: You can select from a set of prebuilt themes that affect the layout and color
scheme of your web site. New themes can also be created within SharePoint Designer
and added to the collection.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER246

Quick Launch: This is the WSS-side menu system. Items (links to lists) can be added or
removed from the Quick Launch menu. The Quick Launch menu can also be customized
using SharePoint Designer.

Site Content Types: You can customize each of the content types associated with a WSS
site (for example, documents, lists, and folders). The easiest way to explain this feature is
to use a document as an example. Say you need to capture metadata for a particular doc-
ument. Using content types, you can define the metadata required, and this information
is stored with the file.

Site Columns: Available is an editable list of all columns used throughout the WSS sites.
Columns can be changed or added to the global set of columns available. Once columns
have been created, they can then be reused across all sites on the WSS server.

User Alerts: User alerts permit those using a list to request e-mail notification when an
item is added or changed. E-mails can be interactive (that is, sent as soon as a change
happens or rolled up on a weekly basis, depending on the frequency of change). For
example, if a developer places a new working document onto a list, an e-mail can be
issued to the rest of the team advising of its location.

Web Discussions: We will be looking at Discussion Board lists later in this chapter in the
section “Creating a Developer Discussion Group,” but most developers will already be
familiar with browser-based discussion groups.

Sites and Workspaces: Each WSS site will have one top-level web site and any number
of sub sites and workspaces. Workspaces are increasingly used to manage the day-to-
day activities of many organizations; for example, if the development team needs to
organize a meeting, all the administrative planning and notification could be carried
out via a WSS Meeting Workspace. Once the meeting has taken place, the site can be
deleted or archived. It is worth pointing out that workspaces could be one of those
things that you actually need to manage closely when using WSS. Users are free to cre-
ate workspaces virtually at will, and before long their growth can be uncontrolled, and
you can end up with sites several levels deep. Workspace creation and site creation in
general should be carefully managed to maintain the integrity of the web site.

Libraries, Lists, and Workspaces
At the heart of WSS lie its sites, libraries, lists, and workspaces. It is within these objects that
the majority of work will take place. From lists and Web Parts, data will be displayed, enabling
you to share data with users from a single interface tied tightly to Office 2007 and Access.
Using tools like SharePoint Designer, you will quickly be able to develop basic Web Parts con-
taining data from a number of sources, including Access and SQL Server. From within Access,
you will be able to migrate to WSS, link to WSS lists, and take data offline for updating later.
This next section of the chapter takes you over some of the more important lists and libraries
and services you are likely to need when you first start off working with WSS.

■Note A WSS list is a single record or group of records much like an Access table containing columns and
rows. A library is a collection of items, for example, Word Documents, PowerPoint files, or Excel Workbooks.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 247

Document Library
The Document Library is used to store and share documents required by the team site mem-
bers—for example, working papers, specifications, meeting agendas, and any permitted file
type required to be shared by the team. (File types are set by the system administrator and can
include Access database files.) Click the menu item Document Library to open the library
interface. Figure 9-3 shows the library. To upload a document, click the Upload button. Note
you can upload single or multiple files in a Windows Explorer–type interface.

Table 9-1 lists the menu options and the choices available in the Document Library.

Table 9-1. WSS Document Library Menu Options

Menu Options Comment

New Document Create a new document in Word.

Folder Create a new folder in the library. Useful for file
organization.

Upload Document Upload a single document.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER248

Figure 9-3. WSS Document Library

Menu Options Comment

Multiple Upload multiple documents at the one time.

Actions Edit in Datasheet Edit list in an Access table look-alike sheet.

Open with Windows Explorer Open file in Windows Explorer.

Connect to Outlook Connect to Outlook. Great for Calendar-type lists.

Export to Spreadsheet Export to Excel.

View RSS Feed Associate with an RSS Feed.

Alert Me Set up an e-mail alert for this list.

Settings Create Column Add a new column to the list.

Add from Existing Add a new column from existing columns.

Create View Create a new view on the list.

Settings Manage the setting for this list.

As you can see, there is a lot you can do to customize a list and its objects, and to make
items widely available to staff from linking to Excel to providing data via RSS feeds. One of the
more impressive areas of configuration is the ability to create custom views of list items (for
example, only showing those items a particular user has contributed).

In the next example, you will open a Word document and look at some of the client-side
features available when working in WSS. For this example, you will need to upload several doc-
uments into the library. Simply click Upload ➤ Multiple Files and select a range of MS Word
documents to load into the site. Note, however, that you are not restricted to only uploading
Word documents; you can upload many different file types depending on the file type permis-
sions set for the particular server. In my case, I have uploaded several Word, PowerPoint, and
Excel documents into the library.

Once you have a document within the library, you can then begin to see how WSS inter-
acts with client programs. For example, you can hover the mouse over a Word document and
click the downward arrow (located on the right) to reveal a submenu. From here, you can view
and edit the document properties, manage permissions, edit the document in Word, send it
via e-mail to another Document Library, and download a copy. A Check Out feature is also
provided (and can be enforced at the server level) to notify other users that the document is
out for edit. WSS version 3 also contains comprehensive versioning for documents.

Once you’ve uploaded some Word documents, follow these steps:

1. Select a Word document in the library and click Edit in Word. The document will open
in Word 2007.

2. Using the Office button, select Server ➤ Document Management Information.
(Figure 9-4 shows the Document Management Task Pane open in Word 2007.)

From within the client application (in this case Word), the following items are available:
status, the members online, associated tasks, documents within the list, and web links avail-
able from the WSS site. If other members of the site happen to be online, true document col-
laboration will be available via the client program. Saving a document back up to the WSS site
is as simple as selecting File Save As, entering the address of the site, and saving. Your new
document will be placed into the WSS area chosen. You may also view version history for the
current document if version history has been enabled for the Document Library.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 249

Calendar Lists
On the front page of your WSS site, you will see a Calendar Web Part. This is a fully functional
Web Part that will allow you to record appointments with clients and any other date- or time-
related information. Click the Calendar link to bring up the Calendar Web Part. To add an item
to the Calendar, follow these steps:

1. Click the Calendar from the home page of your site.

2. Click a date within the Calendar.

3. Click a time (for example, for an 8 a.m. meeting, click 8).

4. Complete the details in the Add Item Listing page.

When you return to the home page of your site, you should see the meeting listed within
the Calendar Web Part. You can take this one step further and customize the listing. To the
right of the Calendar title, you should see a small downward-pointing arrow. Click the arrow
to reveal the Web Part menu, shown in Figure 9-5.

The menu is used to customize the look and feel of the Web Part. All Web Parts within WSS
sites have this built-in customization feature available. Clicking the menu reveals several choices:
Minimize, Close, Modify Shared Web Part, and Help. For this example, click Modify Shared Web
Part. Once selected, your web page should change into edit mode, and all Web Parts within the
page should now be visible. You will now edit the Calendar Web Part.

The Calendar Task Pane should be available to the right of the screen as shown in Figure 9-6.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER250

Figure 9-4. Word 2007 Document Management Task Pane

If you expand all the options within the Navigation Pane, you’ll see the Add item form
contains several useful capabilities:

• Add recurring events.

• Create a new workspace to deal with a meeting.

• Add attachments to the specific list item.

• View by day, week, or month.

The Actions item also provides some nice capabilities:

• Connect to Outlook.

• Export to spreadsheet.

• Open with Access.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 251

Figure 9-5. Calendar Web Part menu

Figure 9-6. Calendar Task Pane

• View with RSS feed.

• Set up e-mail alerts.

The ability to connect your Calendar to Outlook is useful, as you can work in either
direction, updated directly from within Outlook or by logging into the WSS site and adding
items. You could also give the client access to the Calendar or, better yet, create a private
workspace below the main client site and provide the clients with access to that area. If you
look at the built-in functionality of the Calendar in WSS, you can begin to see the power
available using this software without any coding required. The amount of code you would
need to write, debug, and test to give you the same functionality would be enormous, but
with WSS, it is part of a free software download. Just like all other Web Parts in WSS, the Cal-
endar can be customized and different views presented. To customize the Calendar, follow
these steps:

1. Click the downward-pointing arrow to the right of the Calendar.

2. Select Modify Shared Web Part.

3. In the Calendar Task Pane, select Current View. You’ll see that several options are
available as follows:

• All Events: Show all events recorded in the list.

• Calendar: Show an interactive Calendar Web Part as opposed to a list view.

• Current Events: Show events for today.

For this example, just leave the defaults.

4. Click Apply to exit edit mode.

When working with WSS lists, several customization options are available to you. In list
view, access these options by clicking Settings ➤ Select List Settings. The best way to learn the
options is to simply play with them and look at how the Calendar changes. One of the interest-
ing options available is the ability to enable version history on the listing. This can prove very
useful for those projects that require an audit trail. In addition, almost every list in WSS has
the same customization features for you to set. In any list, simply click Settings ➤ Select List
Setting to open the customization screen.

Tasks List
The Tasks list allows you to enter details about upcoming work schedules and any other task-
related information. Task information can be updated directly within WSS, Access, or Outlook.
Information in the list can be shared with those who have access to the site or can be cus-
tomized on an individual basis, showing each site member only assigned items. In the
following example, you will be doing all three. To create a new Tasks list:

1. Click Site Actions.

2. Select Create.

3. From the Tracking category, select Tasks.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER252

4. Enter Client Updates as the name for this new Tasks list.

5. Click Create.

This will give you the basic task listing facility, which like all other lists can be customized.
Of particular interest is the ability to create views of lists. In this next example, you will add a
Gantt chart to the Tasks list.

Creating a Gantt Chart
Once you have a basic Tasks list created, you can go another step further and display the data
as a Gantt chart. Figure 9-7 shows the results of creating a view on the Tasks list created previ-
ously as a Gantt chart.

The basic ideas behind creating this view of the Tasks list can be applied to all of the lists
within WSS. Of course, what you can do with a view depends ultimately on the data and infor-
mation it contains. But the general techniques used here can be applied. To create the Gantt
chart view of your Tasks list, follow these steps:

1. Open the Tasks page.

2. Select Settings ➤ Create View.

3. Select Gantt View.

4. Enter a name for the view.

5. Create a public view.

■Note You can also create a private view, which will be restricted to yourself.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 253

Figure 9-7. Gantt chart view

6. Accept the default columns.

7. In the Gantt Columns section, select the following using the drop-down lists:

• Title

• Start Date

• Due Date

• % Complete

8. Scroll to the bottom of the page and click OK.

Enter a new task into the list, remembering to include a start and end date for the item.
The Gantt chart should be updated to reflect the changes. Using the drop-down Project Tasks
menu (located to the right of the list), you can also create “interactive” views of the data using
one of the following options:

• Active Tasks

• All Tasks

• By Assigned To

• Due Today

• My Tasks

• Modify the View

• Create a New View

The Gantt chart is only one type of view that can be created within WSS lists. As I am sure
you have noticed, within the Create View form there are several additional options that can be
used to create very complex views of list data, including the ability to create the view using
Access 2007. We will be looking at interactive Access features in Chapter 11. A Project Tasks list
is also available, which is a standard WSS list type and includes the features of the Gantt chart
without having to create a view of an existing listing.

Creating a Developer Discussion Group
Out of the box, WSS provides a somewhat limited, but still useful, discussion group, which can
provide additional features to your development team. The Discussion Board list can be used
by ten members and clients, if authorized, to discuss issues related to projects both onsite and
offsite. To create a discussion, follow these steps:

1. From the Quick Launch menu, select Discussions.

2. Click Create.

3. Select Discussion Board from the Communication category.

4. Name the discussion Client Discussion and accept the default as shown in Quick Launch.

5. Click Create.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER254

You will now be taken to the blank Discussion Board list. To add a new discussion topic:

1. Click New.

2. Select Discussion (topic).

3. Enter a description.

4. Enter some content.

5. Click OK.

Figure 9-8 shows the screen at this point.

As with other lists within WSS, the Discussion Board list can also be customized. Generally,
one of the first things many people do is to change the look of the list from Flat to Threaded.
Simply click the View drop-down list and select Threaded to do so.

The Actions drop-down list provides similar customization options as other lists. The
following sections discuss some of the options available with Discussion Board lists.

Connecting to Outlook
Connecting to Outlook is an interesting option when you are using Outlook 2007, because
once you are linked, it is then possible to access and interact with the discussion via the mail

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 255

Figure 9-8. Discussion group in WSS 3

client. Figure 9-9 shows the same discussion you first saw in Figure 9-8, but this time within
Outlook 2007.

The following options are available to allow you to export and interact with the discussion
in other ways:

• Export to Spreadsheet: Export the selected list to Excel 2007.

• Open with Office Access: Limited in usefulness as the discussion is linked as a flat table.

• View RSS Feed: Create an RSS feed of the discussion for use by members or clients. The
RSS can be made available within Outlook 2007.

• Alert Me: Create an e-mail alert when an item is added to the discussion.

■Note It is also possible to attach files when posting a reply. Attachments will also be available in a client
application; for example, Access will use the new attachment data type to make attachments available in a
table or form based on a link to the list.

While limited in functionality compared to many online discussion forums, WSS provides
a basic, usable discussion form for ad hoc project items and could be a useful tool when for
project and client communication. Note that fully featured discussion forum applications can
also be purchased from third-party suppliers.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER256

Figure 9-9. Discussion list in Outlook 2007

Surveys
Surveys provide you with the basic ability to create an online questionnaire. This could prove
useful when dealing with clients and gathering project requirements. To create a survey, follow
these steps:

1. Click Surveys in Quick Launch.

2. Click Create.

3. Select Survey on the Create Page screen.

4. Enter a name and description for the survey and accept the remaining defaults.

WSS will create the Survey list and open the Create Questions form. There are several
options available to you when creating answers to the survey questions:

• Single line of text

• Multiple lines of text

• Choice (list box–type menu that allows you to select an answer)

This can be configured as radio buttons, combo boxes, or check boxes if you need to per-
mit the user to record more than one response to a single question. The following question
types are available to you when building the survey:

Rating Scale: Sliding scale of options from which the user can select, for example, High,
Low, Wonderful.

Number: Numeric response. A maximum and minimum value can be set.

Currency: Currency types. These can be sent using a drop-down list of values.

Date and Time: Standard date/time data type.

Lookup Information: Option for allowing you to add information that is already on this
site for example a specific user or existing list.

■Note Lookups are particularly useful, as they let you populate responses from information already
contained with the site. Once the Lookup type is selected, another drop-down list is provided, called Get
Information From, which makes available information from existing lists on the site. Selecting a list results
in another combo box from which you can select the column of interest from the selected WSS list.

Yes/No: Simple Yes/No question response.

Person or Group: Drop-down list of WSS individuals or groups of users for the respondent
to select from.

Page Separator: Page break, which the user can insert into the survey. Useful for longer
surveys.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 257

Surveys also support branching. Once you have created a survey, return to the Survey set-
tings page to create the branching logic. For example, if a client responds to question 1, you
may require further information. Using conditional branching, you can immediately present
additional questions on response. This is particularly useful when you are using an answer of
type Choice. The user is presented with a range of answers, and, based on his or her response,
can be directed to additional relevant questions. To set up branching, click the Survey settings
link to return to the Customize the Survey page and click a question to open it for editing.
Branching options will be available toward the bottom of the edit form. Select the question
you would like to branch to follow a user response.

At the moment on the example developer web site (Internet or intranet), you have, with
minimal effort, the following features:

• An Active Directory–secured web site

• Interface document library with check-in/check-out capability and versioning

• An event calendar

• A Tasks list and Gantt chart for projects

• A client survey questionnaire

■Caution Not a bad start, and we have barely scratched the surface of WSS. As I have said on several
occasions in this chapter, WSS is free. However, this is a slight distortion. It is free in that the software itself
doesn’t cost any money, but as you may be beginning to see, it does require management, which does come
at a cost. Such costs will rise as customization is required (for example, developing specific Web Parts).

WSS Workspaces
I have already touched on WSS workspaces in this chapter. In this section, we will look at them
in some more detail, particularly the Meeting Workspace. Workspaces generally are created to
serve a particular need; for example, the Meeting Workspace is used to organize meetings and
provides a central location for agendas, invitations and confirmations, documents, and calen-
dars. For this next example, you will create a totally blank Meeting Workspace and manually
add functionally using WSS built-in Web Parts. To create a Team Meeting Workspace, follow
these steps:

1. Click the Site Actions drop-down list.

2. Select Create.

3. Select Sites and Workspaces.

4. Enter the following information:

• Title and Description: Development Team

• Description: Meeting site for the Access Dev Group Meeting

• URL Name: devgroup

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER258

• User Permissions: Same permissions as parent

• Display on Quick Launch: Yes

• Use Top Link from parent: Yes

• Language: English or whatever is required from the list

5. Click the Meeting tab.

6. Select Blank Meeting Workspace.

7. Click Create.

WSS will create the blank meeting space for you. At this point, you need to decide what
Web Parts are required for this subsite. In this case, you want to add the following features:

• Agenda

• Attendees

• Objectives

• Decisions

• Tasks

To begin adding the required Web Parts, follow these steps:

1. Select Site Actions ➤ Edit Page to switch the page into edit mode. Note that once in
edit mode, placeholders for Web Parts are already in place and the Add Web Part Task
Pane should be open on the right side of your screen.

2. Select the following Web Parts from the task pane and drag them into the appropriate
placeholder:

• Agenda: Left placeholder

• Attendees: Right placeholder

• Objectives: Center placeholder

3. Exit edit mode. Figure 9-10 shows the new screen once the Web Parts have been added.

4. Return to edit mode and add the following Web Parts to the placeholders:

• Decisions: Right placeholder

• Tasks: Left placeholder

You have now created an almost fully functional Meeting Workspace. But WSS has
another trick up its sleeve: the ability to connect and filter Web Parts. For example, you can
create a connection from the Agenda Web Part to the Task Web Part and show tasks related
to agenda item owners. We will be looking more closely at this topic in Chapter 11 when we
examine creating Web Parts populated from Access tables. For now, here are the general
steps to take to create such a connection. Make sure your page is in edit mode and select a
Web Part. Click the Edit drop-down list and select Connections. Using the submenu, select
one of these options: Provide row to, Provide data to, or Get row/filter from. Once an option
has been selected, a short wizard-based form interface opens requesting details of the data
to be used for the connection.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 259

Personalization with Microsoft Office SharePoint Server 2007
As you have seen, there are many things you can do to personalize objects such as lists and
document libraries within WSS. However, personalization can be taken to another level by
adding objects like personal e-mail folders, Outlook tasks, and calendars to the web site.
The only drawback here, and it is a significant one, is that you will need to use the full ver-
sion of Microsoft Office SharePoint Server 2007. Again, like many of the objects you have
seen in this chapter, this is an out-of-the-box experience with MOSS 2007. In addition to
the Web Parts you have already seen, MOSS 2007 includes the following personalization
parts (in addition to many others):

• Colleague Tracker

• My Calendar

• My Contacts

• My Inbox

• My Links

• My Mail Folder

• My SharePoint rollups

• My Workspace Sites

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER260

Figure 9-10. Meeting Workspace

The ability to display a personal Exchange inbox with no coding is a useful tool and one that
has been greatly admired by the team of developers I work with. MOSS 2007 also allows users to
create fully personalized views of the entire web application, showing only the information they
require for a specific business need. Figure 9-11 shows the My Site feature displaying my own
inbox and calendar using MOSS 2207 and Exchange 2003.

Of course, both the inbox and calendar are fully functional. The main drawback is if you
are not using Outlook 2007, updating is in a single direction only, from SharePoint to Outlook.
Outlook 2007 provides two-way communication with SharePoint, allowing you to update
information from within Outlook or SharePoint. Interaction with WSS and MOSS 2007 is also
fully available within each of the Office 2007 applications.

Summary
In this chapter, you have learned how to put together a fully functioning interactive web site,
out of the box. No .NET programming was required, and for me that is a superb bonus. I hope
that by reading this chapter and trying out the examples, you will begin to have an apprecia-
tion for what this product can offer the modern information worker without too much work
from you. In the next chapters, we will be taking this basic experience forward by looking at
some of the more advanced WSS features. We begin in Chapter 10 by looking at interaction
with Access 2007 and finish in Chapter 11 seeing how with Web Parts, Access 2007, and SQL
Server work together to demonstrate some of the data-handling capabilities of this collabora-
tion software.

CHAPTER 9 ■ INTRODUCTION TO SHAREPOINT SERVER 261

Figure 9-11. MOSS 2007 My Site feature

Access and SharePoint
Applications

Chapter 9 provided an overview of Windows SharePoint Services (WSS). In this chapter,
we will again be looking at WSS, but this time concentrating on its interaction with Microsoft
Access. From my own contact with developers, I believe many are still confused as to how WSS
is designed to fit into the Access development world, and this chapter should help in answer-
ing that question. We will kick off by looking at linking to WSS lists and working with them in
Access. Then we will move on to migrating an Access database (Northwind 2007) to WSS and
look at working with WSS objects in code. However, most Access developers will not be work-
ing in code with WSS data; instead, they will be using built-in features of Access, queries,
forms, and reports to build rich applications containing WSS list data.

More and more large organizations are moving into the WSS area by either using the full
portal product SharePoint Portal Server 2003 or upgrading to the new Microsoft Office Share-
Point Server (MOSS) 2007. However, many smaller businesses will only be running WSS, a
downloadable component for Windows Server 2003. This chapter concentrates on working
with WSS, but for completeness, you will see some examples of interaction with MOSS 2007.
For the current WSS or MOSS user or developer, Access can serve as another tool to get richer
views of data to the client by providing many new built-in features to expand WSS sites into
new applications.

Using WSS Lists with Access
As the growth of WSS increases, you can expect more data to be held within WSS lists (for
example, contacts, document libraries, image banks, and tasks). In the previous chapter, you
saw how to create a WSS web application to serve as a simple project management site. What
if you need to reuse some of that information—for example, pull in a set of project tasks for
reporting purposes? As you may have noticed, WSS has no reporting tools available within
the software, and one option is to use Access reports for this purpose. Access provides three
main means of communication with WSS data: linking to lists, importing from WSS into
Access, and migration of the whole show to WSS applications. It may also be required that
individuals have access to WSS data offline, and therefore Access could be a suitable tool for
this use (taking lists offline and then updating back to the WSS application on return to the
office, for example).

263

C H A P T E R 1 0

The new Access file type, ACCDB, takes full advantage of WSS, including the ability to
make use of the new attachment data type and multivalued fields. Creating a link to a WSS list
is similar in many ways to linking to any other object from Access. You can also work in both
directions from Access 2007 or from within many WSS lists. Of course, there are some subtle
differences, which we will explore as we go along. However, applications based on Access and
WSS have one huge drawback: Referential Integrity is not currently supported by WSS. This is
of course an important restriction, and one I am sure Microsoft has considered for future
releases. However, if you migrate Northwind to a WSS list, for example, you will find that rela-
tionships’ primary key/foreign key pairs are maintained as links between the WSS lists.

In terms of security and WSS, the security model you are using on your WSS server will be
reflected in the Access application. For example, if you require an Active Directory username
and password, they will also be required when working with data linked into Access. WSS
security information is not stored with the Access application, and that includes within the
linked table connection string. Once you are authenticated to the server, the authentication
lasts for the life of the Access application.

■Caution What you do need to be careful of is saving the username and password combination on your
PC. Speaking from personal experience, it can be a little embarrassing when your Active Directory security is
bypassed because of a simple error that you forgot about.

Connecting to WSS Lists from Access
From within WSS, it is possible to open a WSS list within Access. Figure 10-1 shows the Actions
menu with the Open with Microsoft Office Access option highlighted.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS264

Figure 10-1. Opening a WSS list through Access 2007

■Note At the time of this writing, Access must be running on the local PC for the Open with Microsoft
Office Access command to work.

WSS will begin the process by offering a location and name for a new Access database
based on the new Access database file type. You can also link or import the list to the new
database. Figure 10-2 shows the WSS Open in Microsoft Office Access dialog box. In this case,
I am going to link to the WSS list from Access.

To continue, click OK and log in to the WSS site if prompted. Access will create a new
database containing a link to the WSS list. Once the database opens, note that Access has cre-
ated additional objects for you, in this case several objects related to contacts, reports, forms,
and an Access query. Figure 10-3 shows the results viewed in the Access 2007 Navigation Pane.
This again is an attempt by Microsoft to get users up and running with a basic functioning
application that they can then build upon.

Within Access, the linked table functions as any other linked data source. You can add,
edit, and delete records, provided you have the appropriate permissions. If you have created
a link to the WSS list, changes made via the Access interface will immediately become avail-
able on the list. To view the changes in WSS, simply refresh the page in the browser. If the WSS
list contains “new” data types (for example, an attachment), they will be copied over into the
new Access 2007 application. This is where the new attachment data type really comes into
play. Once a table has been migrated to WSS, the attached documents then become active,
meaning that table can then take advantage of WSS features (for example, version history
and check-in/check-out).

Another interesting feature when linking via the Access interface is the Open Default View
button located at the top right of the generated Contact List form. Clicking this button will
open the original list on the WSS site.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 265

Figure 10-2. Open in Microsoft Office Access dialog box

When linking to WSS, it is also possible to take the data offline—for example, if you require
access to WSS data from home and perhaps have no connection to the WSS server. Using the
features of Access, you can make changes to the data offline, and then go back online when you
can to update your WSS list with the changes. On the main Ribbon, when you are working with
a linked list, a SharePoint Lists group becomes available. Initially, there are three options,
including Work Offline. When you click this option, Access will take your WSS list data offline.
Once offline, the contextual group buttons change to appropriate buttons that give you the
ability to take the list back online, change management, and synchronize data. We will be look-
ing at an example of this next.

Working with Lists in Access 2007
Once you hit the Synchronize button, all changes made to the offline Access list will be copied
to the WSS version, but your Access linked list will remain offline until you click Reconnect All.
This is a great feature when working with linked lists, as only data changes are passed to the
server rather than full tables or lists. In offline mode, data can be cached within the Access
database file and only updated when required. Caching can be activated via the SharePoint
Lists group on the Access Ribbon.

■Caution This can lead to an increase in database size as large lists are cached within the file. In addi-
tion, any data cached within the database will be available to anyone with access to the database file, even
if they do not have permissions to view the data on SharePoint.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS266

Figure 10-3. Access database objects created when linking from WSS

In order to improve cache performance, data will be refreshed and/or updated in the fol-
lowing circumstances:

• The first time data is taken from the server

• When the user deliberately refreshes the data via the Ribbon options

• Explicitly via code when taking data offline

Once you have a linked SharePoint list in the application, you will then have access to the
SharePoint Lists contextual menu. Simply click the External Data tab to view the SharePoint
Lists group. The button to cache data in the current database will then be available. Several
contextual options are available, of course, depending on what you happen to be doing with
the linked list and the operations you are carrying out. Figure 10-4 shows the SharePoint Lists
group in the External Data Ribbon. In this case, note that some options are grayed out, as they
do not apply at this point.

This group offers you the following options:

• Cache List Data

• Refresh All Lists

• Discard All Changes and Refresh

• Discard All Changes

• Synchronize

• Work Offline (check box control type)

One of the drawbacks when using the interface to create links is that you will be linking
to the entire list and accessing all its data. In order to reduce the data being pulled from WSS,
a new macro action has been added, TransferSharePointList, that will allow you to link to
WSS views in addition to standard lists, resulting in less, yet more meaningful, data being
pulled from the WSS sites. This is an important improvement when working with WSS from
Access, as it is always critical in terms of performance to try and reduce the data being pulled
from the server whenever possible. It is also the case that for the majority of users, a full list is
not actually what they want to see. When accessing a list, many individuals are only con-
cerned with tasks assigned to them. Using the WSS view creation feature, you can create a
view of a list restricted to the current user or for a specific time period. Previously, it has been
difficult to work via VBA with SharePoint data, and while this is still the case, this new option
does simplify the process somewhat. Table 10-1 shows the arguments available to you using
TransferSharePointList.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 267

Figure 10-4. SharePoint Lists group

Table 10-1. TransferSharePointList Arguments

Argument Comment

Transfer Type Import or link. Importing moves a copy of the list into Access.
Changes made to the list will not be reflected in the database.
Linking to the list will reflect changes made on the WSS site.

Site Address URL of the WSS site you want to use.

List ID GUID of the required list. This is a required item.

View ID GUID of the view you want to use. Leave this blank if you want all
items.

Table Name WSS object name once imported or linked to in Access.

Get Lookup Display Values Retrieves a lookup that displays text rather than the ID.

■Note In order to use the TransferSharePointList action, the database must be in a trusted location.

This all appears nice and straightforward, but there’s a real kicker in here. Note the
required value List ID. This is a GUID (that is, a unique ID for the list of interest). The GUID
provides a unique identity for each list on a WSS site. The recommended way to get this value
is to copy it from the URL displayed in the browser address bar. However, you can’t simply
copy and paste the GUID into your code—you have to carry out some replacements first.
The following instruction is taken from the Access 2007 help file:

The address in the browser’s address bar contains the GUIDs for both the list and the

view. The GUID for the list follows List=, and the GUID for the view follows View=. How-

ever, in the address, each { (left brace) character is represented by the string %7B, each -
(hyphen) character is represented by the string %2D, and each } (right brace) character

is represented by the string %7D.

Listing 10-1 shows one example of how to sort out the GUID using the Access Replace
function.

Listing 10-1. Using Replace to Fix a SharePoint GUID

Function fixGUID()
Dim site As String
site = "%7B357B4FE6%2D44CF%2D4275%2DB91F%2D46558301579B%7D"
site = Replace(site, "%7B", "{")
site = Replace(site, "%2D", "-")
site = Replace(site, "%7D&", "%7D")
site = Replace(site, "%7D", "}")
Debug.Print site
End Function

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS268

This outputs a correctly formatted GUID to the Intermediate window structured as follows:

{357B4FE6-44CF-4275-B91F-46558301579B}

From within Access, when you have a list already linked, the easy way to find out the
GUID is to do a SELECT from MSysObjects where Name = Linked Object Name. The Database
field contains the following data:

{7E154024-643C-4F3F-BA87-B02676296647}

which is the GUID for the list. The actual SQL statement is shown in Listing 10-2.

Listing 10-2. Returning a GUID Using SQL

SELECT MSysObjects.Name, MSysObjects.Database
FROM MSysObjects
WHERE (((MSysObjects.Name)="Customers1"));

■Note You could also use WHERE Type = 6, which will return a SharePoint linked list.

This statement will return the full HTTP string for the linked table, and you then simply
extract the GUID without having to worry about replacing tokens as in the previous example.
However, from the WSS side, or to access a list via code (if you have not already linked to the
list), getting the GUID is the only way to proceed.

To demonstrate the process, I have created a view of the Northwind Orders list on WSS.
The view only retrieves records for Orders where the order date is within the current month.
I named the view simply ThisMonthsOrders. Because I have not linked this view to Access, I
will have to rip the GUID from the address bar in Internet Explorer. The partial URL is as fol-
lows (I have clipped the string, as it is fairly long and not of particular interest here):

View=%7B3C648DC4%2DF1D3%2D4365%2D9B5A%2DB4217605E1A8%7D

Passing this string into the function created in Listing 10-1 will retrieve the GUID to use for
this example. The correctly structured string for this example is {3C648DC4-F1D3-4365-9B5A-
B4217605E1A8}. The function to transfer this view to Access 2007 is shown in Listing 10-3.

Listing 10-3. Using TransferSharePointList

DoCmd.TransferSharePointList (acLinkSharePointList), ➥

"http://martinreid.spbeta.iponet.net", ➥

ListID = "Orders", ViewID = "{3C648DC4-F1D3-4365-9B5A-B4217605E1A8}"

Of course, this is just the same as using the SharePoint menu items to run the wizard to
actually do the linking for you. It is important to note that a typo in the view or list name site
will not result in an error message from the server.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 269

Menu Commands from VBA
In addition to the interface changes, the following RunCommands are available when working
with SharePoint data programmability, and they allow you to carry out Access menu com-
mands without recourse to actually clicking the menu item. Each menu item in Microsoft
Access will have a corresponding RunCommand available for you to use. For example, within
VBA or embedded macros, you have the following SharePoint RunCommands available:

• acCmdBrowseSharePointList: Opens the SharePoint list on the server, which in the fol-
lowing example is named “Contacts”:

DoCmd.SelectObject acTable, "Contacts"
DoCmd.RunCommand acCmdBrowseSharePointList

• acCmdShareOnSharePoint: Starts up the move to SharePoint Wizard.

• acCmdRefreshSharePointList: Refreshes the linked SharePoint list.

• acCmdDeleteSharePointList: Deletes the currently open SharePoint list. The following
fragment will delete a linked list called Contacts:

DoCmd.SelectObject acTable, "Contacts"
DoCmd.RunCommand acCmdDeleteSharePointList

This will not only break the link to the Contacts table in the Access database, but also
delete the list from the SharePoint site. Make sure this is what you really want to do
before running the command.

• acCmdDiscardChangesAll or acCmdDiscardChangesRefreshAll: The former allows you to
discard all changes you made to a WSS listing, and the latter will discard the changes
and refresh the linked SharePoint list. Start the Export to WSS Wizard to move the cur-
rently open table onto the WSS server. Listing 10-4 shows a basic example of this
process. In this case, the table must be open for the process to work. The function sim-
ply starts up the wizard, which enables you to select the server for the transfer and
actually move the data to a WSS list.

Listing 10-4. Moving a Table to WSS

Function CopytoWss()
On Error GoTo Err_CopytoWss

DoCmd.SelectObject acTable, "Customers"
DoCmd.RunCommand acCmdExportSharePointList

Exit_CopytoWss:
Exit Function
Err_CopytoWss:

MsgBox Err.Description, , "Error in Function CopytoWss"
Resume Exit_CopytoWss

Resume 0 '.FOR TROUBLESHOOTING
End Function

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS270

• acCmdImportAttachSharePointList: Starts the SharePoint Attach to List Wizard to walk
you through the process of attaching a SharePoint list within Access.

• acCmdModifySharePoint: Changes the structure of an existing WSS list.

• acCmdRelinkSharePointLists: Forces a relinking to take place to the SharePoint lists.

• acCmdSharePointSiteRecycleBin: Simply opens the SharePoint recycle bin if it has been
activated by the server administrator. This allows you to retrieve deleted lists and is a
useful feature to turn on when you first start modifying lists and other server objects.

One of the chief reasons for moving to SharePoint is to connect to data you may other-
wise have to duplicate (for example, stored documents that may not otherwise be available
to you within the Access interface) or to which you would have to code to get the same level
of access. That said, many Access developers may need to just bite the bullet when it comes
to the use of WSS and its widespread adoption within many organizations. This can be par-
ticularly true of databases created using the new Access data types. As I have said before, you
cannot move these databases to SQL Server and retain the out-of-the-box functionality of
data types such as attachment and multivalued fields. However, if it is a linked application,
you could move particular tables to WSS lists and the rest of the database to SQL Server. This
gives you the best of both worlds: the use of SQL Server for the majority of your data-process-
ing tasks and the use of the new functionality retained by using WSS lists. The new local
caching of SharePoint list data makes this a possibility.

Moving WSS Data Between Servers
Another new feature in Access 2007 is the ability to move WSS lists between servers. This
process is designed to assist developers in the move from a test server environment to a pro-
duction server environment. However, it must be stressed that this is a list-based option, and
if you need to move an entire WSS application between servers, other tools are available to
assist you in using the management features of WSS. This built-in feature of Access is, how-
ever, particularly useful if you need to move lists between a production server and the
development server.

Migrating an Access Database to WSS
In addition to the more common approach of migrating an Access database to SQL Server,
you will now be able to migrate an Access database to a WSS server via the user interface. This
could be a useful alternative to SQL Server, particularly if some of the new data types have
been used in the Access application. As mentioned in Chapters 6 and 7, SQL Server will not
understand the new data types, and considerable manual work is required by you should you
take this route to duplicate the functionality of, for example, an attachment data type. In this
section of the chapter, I will walk you through migrating Northwind 2007 to a WSS server.

■Note You can also migrate to a WSS version 2 web site.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 271

Before actually migrating a database, it is worth pointing out some of the major issues
that can slow down the process. After the migration of a database, a new table will be created
in the original database containing migration errors reported during the process. The major
issues reported with the Northwind application are as follows:

• SharePoint does not support Referential Integrity.

• Only indexes with unique IDs are supported.

• Cascade updates are not enforced.

• Cascade deletes are not enforced.

• The decimal data type is not supported.

You can expect similar issues to arise when working with your own applications, particu-
larly the core problems related to Referential Integrity and cascade updates and deletes. At the
end of the day, WSS is not a relational database, but an application that contains lists of data,
though these lists are not related in the same sense as those in a database like Access 2007.
However, it does bring new features to the game and should not be ignored because of these
obvious limitations for relational purists.

Migrating Northwind
I have created a document library specifically for this migration. The document library is
called Northwind—just to keep things obvious during the process. Figure 10-5 shows the
newly created document library on WSS. (It may be easier to follow the example if you cre-
ate a similar library.)

Enter the name for the WSS site you would like to connect to. For the moment, leave the
Linked check box unchecked. You will return to this option shortly.

Once you click Next, the Move to SharePoint Site Wizard will immediately begin the
migration process. Figure 10-6 shows this stage in the process.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS272

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 273

Figure 10-5. WSS document library creation

Figure 10-6. WSS Move to SharePoint Site Wizard

During the migration process, each table in Northwind will be migrated to a correspon-
ding WSS list and a link created to the list in the Access database. Migration can take some
time, as each Access table is adjusted for WSS. Table 10-2 shows some of the errors resulting
from the migration. The error list is very extensive, covering 71 issues. However, generally they
are the same issues as outlined in Table 10-2, and they will be written to a new table in your
database called Move to SharePoint Issues. The table is very comprehensive and provides
detailed information down to the property level. An abbreviated copy of the table created by
the wizard is shown in Figure 10-7.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS274

Table 10-2. Employee Table Migrated to a WSS List

Issue Comment Object Table Object

SharePoint does not support unique Unique index Table Customers Attachments
indexes on any column other than ID. will not be

enforced.

SharePoint does not support referential Referential Relationship Customers- ID
integrity. integrity will Orders

not be
enforced.

SharePoint does not support unique Unique index Table Employees Attachments
indexes on any column other than ID. will not be

enforced.

Figure 10-7. Access table migrated to WSS

In terms of data types, Table 10-3 shows the results on WSS of Access tables exported
as a list to the server. There will also be additional fields available in the data taken directly
from the WSS listing: ID, which contains a unique reference number; Modified By, which
contains the user name of the user who changed a record; and Created By, which contains
the name of the user who created the item. These three items provide you with a useful
audit trail in terms of the list data.

Table 10-3. Access and WSS Data Type Comparison

Access Data Type WSS Data Type

Text Single line of text

Memo Multiple lines of text

Number Number

Date/Time Date/Time

Currency Currency

AutoNumber Number

Yes/No Yes/No

OLE Object Not exported

Hyperlink Hyperlink

Attachment Attachment

Multivalue Choice

■Note When viewed within Access, the linked list will show standard Access data types as opposed to
those from the WSS list definition.

As part of the migration process, the database will be backed up. For a large database, the
process can be time consuming.

At the end of the process, you will receive a confirmation message. In this dialog box, click
the Show Details check box to view a brief summary of the process, which should look similar
to the following information that appeared on my system:

Microsoft Office Access has created a backup copy of your database.
C:\Documents and Settings\mwpreid\My Documents\Northwind 2007_Backup.accdb
The following URL takes you to the published copy of your database where it can ➥

be downloaded!
http://martinreid.spbeta.iponet.net/Northwind/Northwind 2007.accdb
WARNING:
Some issues were encountered while moving your tables. Access has created ➥

a log table called 'Move to SharePoint Site Issues' listing these issues.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 275

■Note The following lists have been created on the SharePoint site http://martinreid.spbeta.iponet.
net, which is a private beta list hosted by Microsoft and therefore will not be available to you. I have simply
used it for demonstration purposes.

Customers, Employee Privileges, Employees, Inventory Transaction Types, Inventory Transactions,
Invoices, Order Details, Order Details Status, Orders, Orders Status, Orders Tax Status, Privileges, Products,
Purchase Order Details, Purchase Order Status, Purchase Orders, Sales Reports, Shippers, Strings, Suppliers

Your first stop following the migration should be the error table generated by the migra-
tion process. The error table, discussed earlier, will contain information on each issue that
resulted from the migration to WSS.

Table 10-4 shows the results in terms of data types for the Northwind customer table when
converted to a list. Unlike a standard linked front end, there will be no local tables in the migrated
database application—hence the backup copy created during the process. It is probably worth-
while creating your own backup as well before starting the process, just in case. Table 10-4 shows
the customer table definition on WSS and the new data types associated with the linked list. From
Design view in Access, however, the data types will remain as they were before the migration.

Table 10-4. Northwind Customer Table Migrated

Column (Click to Edit) Type Required

Last Name Single line of text

First Name Single line of text

Full Name Single line of text

E-mail Address Single line of text

Company Single line of text

Job Title Single line of text

Business Phone Single line of text

Home Phone Single line of text

Mobile Phone Single line of text

Fax Number Single line of text

Address Multiple lines of text

City Single line of text

State/Province Single line of text

ZIP/Postal Code Single line of text

Country/Region Single line of text

Web Page Hyperlink or picture

Notes Multiple lines of text

_ID Number

Created By Person or group

Modified By Person or group

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS276

From the WSS side of things, Chapter 9 covered some of the basic interaction you can
carry out; however, it is worth knowing about some of the additional functionality available
to you once the tables have been migrated:

• Adding additional indexes to the columns on the WSS server. This should help improve
speed when working with the list via the Internet.

• Adding new columns to the list. However, this will mean that the list is now out of synch
with the original database.

• Creating sophisticated views of the list and relinking these views back to Access. This
can also help in the reduction of network traffic, as by default in Access you will have
access to the entire list data, which in some cases can result in large amounts of data
being cached in the database.

• Turning off list versioning for all lists or specific lists, removing the need to code VBA
history data when data is manipulated by end users.

• Caching data from the server within the Access application.

Features Available After Migration
Linking the tables is sort of part one in the process of migration.

A new property, Display on SharePoint, has been added to forms and reports. Forms and
reports with this property set to Follow Table Links will be added to the views created by the
Move to SharePoint Site Wizard on the WSS server.

If you look at a list definition on the WSS server after a migration and select Settings ➤ List
Settings, the Customize List screen will open. Scroll to the bottom of the screen and check out
the views. This particular property, Follow Table Links, should form part of the premigration
process, deciding which forms, reports, and queries you would like to migrate to the WSS
server in addition to your tables.

Table 10-5 shows the views created for the Northwind Customers table during the migra-
tion process and equates them back to the original Access object.

Table 10-5. Customer Views on WSS

View Name Access Object

All Contacts Default view for this list

Customer List Access form

Customer Details Access form

Customer Address Book Access report

Customer Phone Book Access report

Order Details Access report

Monthly Sales Report Access report

Quarterly Sales Report Access report

Yearly Sales Report Access report

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 277

Clicking the view opens a read-only copy of the full database if you have Access 2007
installed on the calling machine. The read-only copy of the database will contain links back
to the WSS lists on the server. However, both the form and report definitions still reside in your
Access database. One of the main uses for this approach is to permit access to the lists and
thus the database while “on the road.” If required, you can save a local copy of the database for
additional offline work.

Creating an Access View from WSS
Up to this point, we have been looking at interaction from the Access side of the fence. How-
ever, you can also interact with Access directly from within SharePoint lists, and in particular
when working with list views. List views are very similar to other views in Access, and they are
useful tools not only to Access developers, but also for WSS users and developers who would
like to add some rich interface design to their WSS applications and sites. WSS views give you
a powerful feature to restrict the data being made available via Access.

From within WSS, you can also create an Access-based view of any list to which you have
permissions. Clicking Create View opens a WSS form that gives you a range of options, one of
which is Access View. This option will create a linked Access database (as has already been dis-
cussed in Chapter 9). Of course, the primary means of view creation for Access developers will
continue to be using queries and VBA to restrict the data being displayed. However, server-
based views have the advantage, as they restrict the amount of data pulled down into the WSS
cache within the database and, of course, along the network.

Linked Lists and VBA
Once you have linked your WSS lists to Access, you can treat them like any other table and
manipulate the data via VBA code. For example, to get a list of all the fields in an Employees
list, execute the code in Listing 10-5, which will print each field in the recordset to the Inter-
mediate window.

Listing 10-5. Printing WSS Lists via VBA

Public Sub WSSData()
On Error GoTo Err_WSSData
Dim rstEmp As Recordset
Set db = CurrentDb
Set rstEmp = db.OpenRecordset("SELECT * FROM Employees")
For Each fld In rstEmp.Fields

Debug.Print fld.Name
Next fld
Exit_WSSData:
On Error Resume Next

If Not (rstEmp Is Nothing) Then rstEmp.Close: Set rstEmp = Nothing
Exit Sub

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS278

Err_WSSData:
MsgBox Err.Description, , "Error in Sub Module1.WSSData"
Resume Exit_WSSData

Resume 0 '.FOR TROUBLESHOOTING
End Sub

As you can see, this is just the same as working with any other linked table within Access
and VBA. The only difference this time is that the data is actually held on a Windows 2003
SharePoint Server. Data held on WSS can be used with forms and reports again just like any
other linked table. This makes it very easy to include WSS list data within the Access applica-
tion. Once you have got the data, you can then carry out many of the basic day-to-day data
management tasks. You then also have the added advantage of using Access to build typical
rich Access interfaces to the list data, which allows you to extend the desktop database directly
out to the Internet with little effort. The next example will look at an asset record recorded as
having been sighted and logged on a WSS asset list. Listing 10-6 demonstrates the features. I
have included only the first section of the procedure merely to illustrate the use of VBA to grab
WSS list data. In this case, rstWSSImport refers to a WSS linked list. rstAsset here would be a
local Access table into which you would be placing the WSS asset records.

Listing 10-6. Processing Linked WSS Records Using VBA

Private Sub cmdImportWSS_Click()
If boolTrapErrors = True Then On Error GoTo Err_cmdImport_Click
fAssetTypeNotFound = False
Set db = CurrentDb
' Open recordsets
Set rstAsset = db.OpenRecordset("Select * FROM tblAsset")
Set rstIWSSImport = db.OpenRecordset("Select * FROM WSSAssetList")
'Set rstRoom = db.OpenRecordset("Select * FROM tblLab")
Set rstRoom = db.OpenRecordset("qryGetRooms")
Set rstCondition = db.OpenRecordset("Select * FROM tblCondition")
Set rstHistory = db.OpenRecordset("Select * FROM tblHistory")
Set rstAssetType = db.OpenRecordset("Select * FROM tblAssetType")
Set rstFundingType = db.OpenRecordset("Select * FROM tblFundingType")
Set rstConfig = db.OpenRecordset("Select * FROM tblConfig")
With rstWSSImport
If rstWSSImport.BOF = True And rstWSSImport.EOF = True Then GoTo EndIt:

' Loop through the Linked ASSETlist and process all records with a date.
.MoveFirst
Do While Not .EOF

' If !AssetCode = "10101010101010" Then MsgBox "Stop"

' Is it an added asset?
If rstAsset.BOF = True And rstAsset.EOF = True Then GoTo AddAnAsset:

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 279

rstAsset.MoveFirst
rstAsset.FindFirst "fldAssetBarCode = '" & !AssetRef & "'"
If rstAsset.NoMatch = True Then GoTo AddAnAsset:
'If !assetid = 0 Then GoTo AddAnAsset:

' Is It Still in the Asset Table?
'rstasset.FindFirst "fldAssetID = " & !assetid
' If rstasset.NoMatch = True Then
' MsgBox "Warning!! Asset Logged with Reference " & ! AssetRef & ➥

" does not appear in the database!!", vbExclamation
' GoTo NextImport:
' End If

' Add History Record of WSS log
rstHistory.AddNew

rstHistory!fldAssetID = rstAsset!fldAssetID
rstHistory!fldXactTypeID = 1 ' Record 1 in the ttype Table is ➥

'Logged on WSS'!
rstHistory!fldUSerID = !CreatedBy
rstHistory!fldHistoryDate = !SIGNTEDDATE
rstRoom.FindFirst "fldRoomID = " & !SCNDRMID
rstHistory!fldHistoryNote = "Sighted in Building " ➥

& rstRoom!Bldg & " Rm/Loc" & rstRoom![Rm/Loc]

rstHistory.Update
' Did condition change?

If Nz(!NEWCOND) <> "" Then

As you can see, this code opens and manipulates several VBA recordsets including data
drawn in from WSS. The advantage in using the WSS list to capture the asset logging data is
that you can make the list available directly on a secured web site, but only to those users you
grant permissions to. The rest of the data lives in Access but could just as easily be linked-in
SQL Server 2005 or Oracle data. Could you do the same with Access and put a table on the Web
to capture this information? Of course, but that would mean writing all the code and the user
interface to deal with the system, including the security system. Using WSS is a totally out-of-
the-box solution to this particular problem.

From a front-end point of view, you can again treat the linked list as if it were a local table,
but doing this will negate some of the benefits of actually using WSS. For example, take the
customer table; if you where to simply create a form within Access, any user who needs to
update a customer record would be required to have a local copy of the database. Using WSS,
all the user requires is access to the list on the server, and you have immediate two-way com-
munication between your WSS customer list and the linked Access table. “Well, so what?” I
hear you say. Now that the data is on the WSS server, you can take full advantage of WSS fea-
tures, including version history for individual list items (for example, who changed a customer
record and when did he or she change it), and if required, you have the ability to roll back to a
previous version. All of this, of course, is secured using Active Directory permissions to your
WSS list. None of this is available in a standard Access application without a considerable
amount of programming from developers.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS280

Working with WSS Data Offline
As mentioned earlier in this chapter, when there is a requirement to have access to WSS data
offline, this can also be achieved using Access. Simply take the linked table offline, take the
database on the road with you, and upload any changes to the lists when you return to the
office. For example, when visiting customers, it is an easy matter to take the customer data-
base with you on a laptop, make any revisions (for example, adding customer details or
creating new orders), return to the office, and synch the database back to the WSS lists. To
demonstrate this process using a linked customer list from Northwind, create a new form
based on the customer linked list. Open the customer form and notice the status bar informa-
tion. Figure 10-8 shows the online SharePoint information.

To take the list offline, click the text Online with SharePoint to open the context menu.
Click Work Offline to break the link between your linked list and Access. A dialog box will
inform you that the data is being taken offline, and you will need to reopen the customer
form, which will now be in offline mode. Changes made to the Access version will not at this
point be reflected in the WSS version and vice versa. To try out the process, make some
changes to the offline linked list in Access.

To return to online mode, simply click the Offline with SharePoint text on the status bar
and click Work Online. To simply synchronize your changes, click Synchronize in the context
menu. If you choose to synchronize, you will remain offline, but your data from WSS will be
refreshed. You will again have to reopen the customer form to view the changes. Selecting
Online will return the live link into the WSS list for the linked table. The context menu also
offers you the opportunity to disregard all changes and to refresh the list. In the case of this
example, I have had versioning history turned on for the WSS side. This enables me to main-
tain a history of all changes made to the data on the WSS server, and again this information is
also available to me should I need to roll back a particular change.

List Management from Access
Access also provides you with the ability to carry out basic list management on individual
linked lists via the GUI. Right-click a linked WSS list and select SharePoint List Options. From
the context menu, you can make a selection of the following options on the WSS server:

Open Default View: This opens the linked list on the WSS server. This gives you direct
access to the features of WSS. This is an interactive view, and any changes made to the list
will be reflected in the linked Access list.

Modify Columns and Settings: This opens the Customize web page for the selected WSS
list. From here, you can manage the column settings for the list, and add indexing, version
history, and other management features available to you on WSS. If you need to create a
custom view of the list (for example, for display as an Access form), you can set this up in

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 281

Figure 10-8. Online with SharePoint status bar indicator

this area. One interesting feature with views is the ability to create a new Access appli-
cation complete with forms and reports for the view. If you need to do this, simply click
Create View ➤ Access View. If you are creating a standard view, you will need to create a
new link within your current Access application, as linking in this case will not be an
automatic process.

Alert Me: This is one of my favorite features in Windows SharePoint Services, as it notifies
you if something of interest on a list is added to or changed. This removes the need to
constantly check for changes personally via the Web. In the case of alerts, I can have the
system monitor the list on my behalf and e-mail me if something is changed. For exam-
ple, sales staff could be e-mailed when you have updated the Access product table with
new pricing, and accounts can be notified once the overdue invoices table is updated.
Of course, all of this is automatic once the user subscribes to the alert. A system admin-
istrator can subscribe the user as well.

Modify Work Flow: A workflow is basically a set of business processes. For example, you
e-mail a document ready for review to your boss, and your boss reviews it and passes it
to the next in line. This process would form a simple workflow, each stage of which
would be incorporated into WSS. In this simple example, the workflow could simply
move the document once approved into your personal WSS document library for fur-
ther work. We will look at authoring this simple workflow in Chapter 11 when we
explore how Access, SharePoint, and SharePoint Designer interrelate.

More complex workflows are created using Visual Studio 2005, but for our purposes
SharePoint Designer will meet the requirements. Workflows are defined on the WSS list
and not within Access, although from within Access you can carry out basic workflow
processes.

Change Permissions for This List: This allows you to set up new permissions for the WSS
list. However, this only applies server side and has no impact on the Access database
security. The linked list is, however, covered by the security model used on the WSS server.

SharePoint Site Recycle Bin: This gives you access to the WSS recycle bin, which is really
useful if you happen to delete a file in error.

Relink Lists: When building a WSS site, it is common to do so on a development server.
Relinking the Access lists to the production server is a useful feature in this release. This
is a wizard-driven interface that allows you to select one or more lists you have linked to
on the development server and relink them to the live production versions.

Refresh List: This allows you to update the current WSS link in your application.

Delete List: This allows you to delete the currently selected list from the WSS server. This
does not break the link between Access and WSS; it actually deletes the list from the
server, so be careful. From within Access, you have limited management features, and the
majority of WSS management tasks will actually take place on the Windows 2003 server
on which WSS is running.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS282

Data Conflict Errors
When working in multiuser applications, there is always the possibility of data conflict
errors. If such an error occurs, particularly when working offline, the Conflict Resolution
dialog box is available. Using this dialog box, you can cancel your changes or try to apply
them once more. The dialog box can also be used to see further information about each
conflict and take appropriate action.

Reporting
One of the features obviously lacking in WSS is the ability to actually report on the data.
You can create complex views via the interface, but there is no built-in reporting tool avail-
able. Access provides the perfect environment to permit you to build complex reports
against WSS list and list view data. For Access developers, everything works as before in
terms of report creation; as for end users, they now have an ad hoc reporting tool that can
be used to enhance list data. The ability to cache data within the Access application should
provide a solution to some of the issues that have been reported, in terms of performance
when using Access as an ad hoc WSS reporting tool.

Summary
There have been many advances in Access 2007 and WSS integration. Personally, I don’t see
any reason why Access developers cannot make use of both products to further extend the
reach of Access databases. Indeed, many Access developers are often asked to make data
available via the web browser, and WSS provides the perfect platform to do so. Many organi-
zations are moving into WSS as the product of choice for collaborative work, and it would be
unwise to ignore the shift in emphasis placed by Microsoft on this product. Data Access
Pages are no longer available, and WSS is a more than worthy replacement. The collabora-
tion features available not only via the Internet, but also from the entire range of Office 2007
applications, make this a compelling piece of software for Access developers and power
users to become familiar with.

CHAPTER 10 ■ ACCESS AND SHAREPOINT APPLICATIONS 283

Access, SharePoint, and
SharePoint Designer

Microsoft Access 2007 is missing support for two technologies used by developers who
want to get data onto the Internet: Active Server Pages (ASP) and Data Access Pages (DAPs).
Never being a great fan of DAPs, I will not miss them. When I first started out with Access and
the Web, I made great use of the Save As ASP feature in Access to make simple datasets avail-
able. In this chapter, we will be looking specifically at what more you can do once you have
your Access application on Windows SharePoint Services (WSS) and how you can use the
replacement to FrontPage 2003, SharePoint Designer (SPD), to make your data available via
the Internet. SPD is designed to work directly with SharePoint and can be used as a design
and development tool when communicating with WSS sites. However, you can also use SPD
to create standard web pages displaying data from Access 2007. In this chapter, you will learn
about both options.

■Note In order to use an MDB or ACCDB file with SPD and WSS, it must be located on the front-end web
server so that it is visible to the .NET controls.

The interaction between the Access GIU and WSS, while good from a data point of view,
is restricted when it comes to building database applications that do not conform to the WSS
list-based model. This is where SPD comes in, allowing you to create database sites using
both Access and WSS data. In addition, SPD can also be used to bring other data into the web
site (for example, XML data, SQL Server data, and other data from multiple sources). This
gives you a very powerful tool you can use to combine data from many different sources into
a single interface or application available via the web browser. Many of the techniques and
.NET objects will be the same as those used when working with Visual Studio Express tools,
the main difference being how you interact with them using SPD.

In this chapter, we will look at the features of SPD used to

• Customize a WSS site.

• Create a WSS Workflow.

• Design a Workflow from Access 2007.
285

C H A P T E R 1 1

It’s also important to state that most Access developers are not web developers or design-
ers, both of which require a different skill set than they might have. However, the requirement
to make your data available via an Internet browser is becoming increasingly popular, particu-
larly if we do indeed see a huge takeoff in the use of WSS. It is therefore important to have
some understanding of the technology used to work with and extend WSS.

Are other tools available? Of course, one of which is the Visual Web Developer 2005
Express environment also provided by Microsoft, only free of charge (see Chapter 12 for more
on this environment). So why use SharePoint Designer? Well, it’s a full professional develop-
ment environment containing many of the features of Visual Studio 2005. In addition, it is
designed to be used with WSS sites and provides a seamless experience when working with
such sites.

■Note I have stated several times in the last three chapters that SharePoint will be the future of Access,
and this is becoming more apparent. A recent blog post by Clint Covington, Access program manager, con-
tained a couple of job postings for the Access team that will be working on Office 14. I quote a line from one
of the Access team job specifications:

The next version of Access will embrace Web 2.0 technologies, while continuing to build

on our push toward ease of use for the consumer and deeper SharePoint integration.

I think that sort of sums up the future of Access and Windows SharePoint as one that is tightly coupled—
a future most Access developers cannot ignore.

Getting Started: SharePoint Designer
In the example in this section, you will be working with the Northwind demonstration data-
base that has been migrated to WSS. Later, you will create a site from scratch and build some
data interfaces. Before getting started, let’s have a look at the Data Source Library. In order to
keep things simple for the first example, I have created a new copy of Northwind and only
upsized the Customers and Orders tables. This is sufficient to demonstrate some of the tech-
niques you will be learning.

Data Source Library When Connected to WSS
The Data Source Library allows you to use many different sources of data available within the
web site. You can add XML files, Access MDB and ACCDB files, web services, SQL Server files,
Oracle files, and of course WSS list data to the library. Once added to the library, the data
retrieved by the various library items (connections) is available for use within your web site.
This library reflects the real world where data can be held in a number of different systems and
formats. The use of the library allows you to bring this data together inside your applications.
For the example web site, the first thing you will do is add a connection to the Northwind 2007
demonstration database and a connection to a WSS list. Figure 11-1 shows the existing Data
Source Library when the site is first opened.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER286

An existing item in the library can be expanded by clicking the plus (+) symbol beside its
name; for example, clicking the plus beside SharePoint Lists reveals the initial eight lists avail-
able on the server I am using, as you can see in Figure 11-1. Note that the following categories
of library items are available to you within the Data Source Library:

• SharePoint lists

• SharePoint libraries

• Database connections

• XML files

• Server-side scripts

• XML web services

• Business data catalog

• Linked sources

As you can see, there is a great deal of flexibility when it comes to working with data,
including the availability of all the SharePoint lists and, as you will see, your recently upsized
Access database. One of the interesting options available is the linked sources items, which
allow you to combine different related data sources into a single view or indeed a linked view
on the web page—for example, this feature lets you combine a staff table with a SharePoint

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 287

Figure 11-1. Data Source Library

Tasks list. In this way, you could show information from the staff table, which is not held on
SharePoint, with information for the Tasks list, which is held on SharePoint. We will return to
linked sources later in the chapter.

Creating a Data View Web Part
To begin the process of working with data and SPD, you will create a special set of Web
Parts for the Customers and Orders lists that have been upsized from Northwind 2007 to a
Microsoft Office SharePoint Server (MOSS) 2007 site. In this web page, you will display a
list of customers. When a customer name is clicked, you will open a corresponding listing
of customer records on the page. There is one main issue you need to consider, however:
once you move the data to WSS, you lose the relationships you created in Access, and you
also lose the ability to enforce the relationships on WSS. However, for this example, remem-
ber you will have migrated the primary key of the Customers table and the corresponding
foreign key in the Orders table and can therefore make use of this feature when you create
the .NET page as part of the next example. In order to follow this example, you will need to
be logged in to a WSS site and have a migrated copy of the Northwind 2007 Customers and
Orders tables available. To begin, follow these steps:

1. From the main menu, select File ➤ New.

2. On the New dialog box’s Page tab, select General, select ASPX as the file type, and spec-
ify VB as the programming language.

3. Click OK to close the New dialog box, leaving you in the new ASPX web form page.

4. From the main menu, select Data View ➤ Insert Data View to insert a placeholder for
the data into the blank ASPX page you have just created.

It’s worth looking at the code behind the page before and after this insertion. Before you
insert the Data View control, the HTML in the ASPX file is shown in Listing 11-1.

Listing 11-1. HTML Before Inserting Data View Control

<%@ Page Language="VB" %>
<html dir="ltr">

<head runat="server">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Untitled 1</title>
<meta name="Microsoft Theme" content="Belltown 1011, default">
</head>

<body>

<form id="form1" runat="server">
</form>

</body>

</html>

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER288

Listing 11-2 shows the same fragment once you have inserted the Data View control. The
new code has been highlighted in Listing 11-2 for clarity.

Listing 11-2. After Inserting a Data View

<%@ Page Language="VB" inherits="Microsoft.SharePoint.WebPartPages.WebPartPage, ➥

Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral, PublicKeyToken=➥

71e9bce111e9429c" %>
<%@ Register tagprefix="WebPartPages" namespace="Microsoft.SharePoint.➥

WebPartPages" assembly="Microsoft.SharePoint, Version=12.0.0.0, ➥

Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<html dir="ltr">
<head runat="server">
<meta name="ProgId" content="SharePoint.WebPartPage.Document">
<meta name="WebPartPageExpansion" content="full">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Untitled 1</title>
<meta name="Microsoft Theme" content="Belltown 1011, default">
</head>

<body>

<form id="form1" runat="server">
<WebPartPages:DataFormWebPart runat="server" IsIncluded="True" FrameType="None" ➥

NoDefaultStyle="TRUE" ViewFlag="0" Title="DataView 1" __markuptype=➥

"vsattributemarkup" __WebPartId="{E51F2A8C-1FFE-4DE5-8634-1028DE9F9E72}" ➥

id="g_e51f2a8c_1ffe_4de5_8634_1028de9f9e72">
<DataSources>

</DataSources>

<datafields/>
<XSL>

</XSL>
</WebPartPages:DataFormWebPart>
</form>

</body>
</html>

■Note The Data View Web Part is a special Web Part that acts as a client to the data retrieval service,
as it can retrieve and manipulate data from any data source supported by data retrieval services. The
data retrieval service is a web service, thus it returns data in the form of XML. The Data View uses Extensible
Stylesheet Language Transformations (XSLT) on this XML to format the data.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 289

What you are doing here is inserting a Web Part, a component that you can reuse within
your web site. If you have been playing with WSS, you will see that there are many Web Parts
available to you, and you can also create your own. Later in this chapter, you will in fact be
creating a simple Web Part for reuse on a WSS site. For more information on Web Parts, please
see the “Web Parts and Workflow” section later in this chapter.

To continue with this example, hover the mouse over the Customers list in the Data Source
Library, click the drop-down list arrow, and select Show Data to view the data within the WSS
Customers list. Notice that the tab title changes to Data Source Details. To drag a field onto the
ASPX page, hold down Ctrl and drag the Company and ID fields onto the Data View region. Once
the mouse is released, the data should be immediately available on the screen

If you return to the code view of your page, you should see a huge difference in the code
generated by SPD. Reading the code, you may now begin to see that you are using XML to dis-
play the data from the Customers list on WSS. This is one of the things that make this approach
so popular. You can take any XML-based data and create objects like this within your WSS site
(for example, Oracle or SQL Server XML exports). Figure 11-2 shows the SDP at this point.

Next you need to add another Data View control to the page, this time displaying data
from the Orders list. Follow the procedure outlined previously to add this control, only this
time choose the following fields from the Orders list: Order Date, Shipped Date, Shipped
Address, Shipped City, and CustomerID. Add the fields to the Orders Data View control.

At the moment, you have two totally unconnected Data View controls on the page. The
next step is to create the relationship between the parts. In fact, what you will do is pass a fil-
ter to the Orders Data View based on the currently selected customer’s name in the Customer
Data View. To continue:

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER290

Figure 11-2. Displaying the customer data

1. Within the Customer Data View, select the customer name.

2. Right-click and select Web Part Connections.

Web Part connections allow you to pass values between different Web Parts to build and
interact with Data Views on the web page.

3. Accept the default, Send Row of Data To.

4. Click Next.

5. Accept the default, Connect to a Web Part on This Page.

6. Click Next.

7. Accept the default target Web Part, in this case, Orders, and the default target action,
Get Filter Values From.

8. Click Next

9. The next screen allows you to select those data items that you want to use to create a
relationship between the Web Parts. Scroll down the Inputs to Orders column until you
reach CustomerID.

10. Click in the cell in the Customers column directly opposite CustomerID.

11. Select Company from the drop-down list within the cell.

12. Click Next.

13. Accept the default, Create a Hyperlink on Company, in the next screen.

14. Click Next.

15. Click Finish.

This completes the setup of the connection between the Customers Web Part and the
Orders Web Part for the moment. You will return to the connection shortly. To continue:

16. Save the file as Customers.aspx on the WSS site.

17. From the File menu, choose File Preview in Browser and then select the browser you
would like to use from the list. Figure 11-3 shows the resulting page previewed in IE 7.
You may be required to log in to the WSS site at this point.

Try out the Web Parts by clicking a customer’s name to view the associated order informa-
tion. This could be a useful technique when data (for example, contact information) is stored
within a WSS list and the customer information is held in another system, which could be an
Oracle, SQL Server, or indeed Access system.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 291

Formatting the Data View Web Part
Up to this point, you have two plain Data Views. However, using SPD, you customize the Web
Parts to improve the overall look and feel and to deal with those situations when the Web Part
does not return data. In order to work with the formatting options, follow these steps:

1. Select the Customers Data View.

2. Click the small right arrow located at the upper-right corner of the Web Part to open
the Common Data View Tasks list.

3. From the list, click Change layout.

4. In the Data View Properties dialog box, under HTML view styles on the Layout tab,
select the style that you want.

■Tip Click a view style to read a brief description of it. If you select and apply a layout that displays fewer
fields than your original Data View, those fields are removed from your Data View. For example, if you create
a Data View that displays four fields, and then you apply a layout that displays one of those fields, the other
three fields are removed from your Data View. If you change the layout, any custom formatting or provider
Web Part connections are removed.

5. Click OK.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER292

Figure 11-3. Customers.aspx previewed in IE 7

One of the problems you will face at this point (and in fact the reason why I have pre-
sented this exercise in this order) is that once you change the style of the Customers Web
Part, you will lose the Web Part connection, which is not what you want. The general idea is
that, when using SPD and Web Part connections, you will want to format the style for your
Web Parts before creating any connections. However, this is a minor issue, as all you need do
in this case is select the Orders Web Part, right-click, and step through the Web Parts connec-
tions process again to re-create the connection for your Customers Web Part.

Setting Data View Properties
If you are familiar with WSS Web Parts, you may have noticed that the Customers and Orders
Web Parts do not have the usual WSS drop-down list options. However, using the properties of
the Data View, you can add these menu items to the Web Parts. Remember, you want the Web
Parts you create to behave as the default Web Parts supplied with WSS. To add the WSS menu
items to the Orders Web Part, follow these steps:

1. Open the Data View Properties dialog box.

2. On the General tab, select SharePoint List Toolbar.

3. Go to the Show toolbar with check box options for filter, sort, and group and enable all
three items. Grouping is a nice feature and will create a tree view–type grouping struc-
ture within the Data View, which can be expanded to view data items within the group.

4. Save the changes and preview the results in your browser. Figure 11-4 shows the results
of the changes you have made.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 293

Figure 11-4. Data View in the initial format

The following WSS menu items will be fully functional. This will allow your user to work
with the Web Parts using standard WSS features (for example, the ability to minimize the
Web Part).

• Add a new item to the Orders WSS list

• Export to a spreadsheet

• Open in Access

• Set up to use with RSS

• Set up e-mail alerts for changes to the order data

• Create views of the order data

• Sort and group the data

• Apply filters to the order data

There are additional properties you can set for the Data View. On the General tab, you
can choose Header and Footer – View, or Display text if no matching records are found to
allow you to add your own message such as “Data is not found here.” On the Layout tab,
choose a layout for the Data View Web Part. On the Source tab, define and link to your own
XSLT style sheet, which you can then apply to the Data View. On the Paging tab, set the pag-
ing options for the Data View. On the Editing tab, set the options for editing if you would like
the user to be able to change or delete items in the Data View via this Web Part.

The Web Part itself has another set of properties that duplicate those you will see on all
Web Parts on a WSS page. To view the properties, right-click the Orders Web Part and select
Web Part Properties. Within the Web Part Properties dialog box, you can edit the XSL files and
set other properties that affect how the Web Part behaves once inside WSS.

One of the interesting properties available to you is audience targeting. In WSS, you can
create an audience of users to whom this Web Part is available or targeted at. Only the users
within the audience will see the Web Part on WSS. The audience is created from the group of
your Active Directory users. For example, your Customers and Orders Web Parts may only be
available to staff in the Order department or sales staff. Using the audience option allows you
to restrict the Web Parts to only those staff who need to see it by simply making it available to
an Active Directory or SharePoint user group of that staff.

Web Parts and Workflows
Web Parts are the technology that underpins WSS and provides much of the functionality on
the WSS site. As described previously, a Web Part is a discrete block of functionality that can be
reused. For example, a Web Part is available that can be configured to display your Microsoft
Exchange inbox or calendar. This Web Part can be placed on any number of WSS ASPX pages,
though it is commonly placed on the MySite personalization site. Web Parts can also be used
to expose data to the end user, and like most other Web Parts on WSS, it can target a specific
user or group of users. In the previous example, you created two Web Parts embedded within
a Customers.aspx page used to display customer records.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER294

Workflows allow you to create structured processes that follow a set of business rules, for
example, routing a document for approval before publication. In the following text, we take a
look at how Workflows and Web Parts work together.

Linked Lists and Workflows
From the Access 2007 side, as you have seen, you can also link to WSS lists from a database
application. This is not limited to a single WSS site, but you could if required link into listings
from several sites. The great thing about this is the option to take the Access application
offline, work on the data, and then synch the changes back to the WSS list concerned.

This next example features a MOSS site called Training Admin; on the site is a Tasks list
to which you assign specific tasks to members of staff. The Staff table is stored on a small
Access personnel database as opposed to the WSS site. Even though each person’s tasks are
visible on WSS, the staff requests the option to work with the Tasks list in offline mode. The
obvious answer to this is to link to the MOSS list from Access 2007 and permit staff to take
the data offline for updating.

On the WSS site it is possible to assign more than one member of staff to a particular
task, and this fits in with the new multivalue fields capability in Access 2007. Integration
with the WSS data types and list features is where the new feature set in Access comes into
play. For the user, the experience is seamless. From the SPD side, you also have another
toolbox option available to allow you to build a Workflow on a particular WSS list.

Creating a WSS Workflow Using SPD and Access
In order to use Workflows with WSS, you will need to download and install .NET Framework
3.0. However, it is highly likely that this is already available on the server running WSS, as it is
embedded within the SharePoint software.

A Workflow can be something as simple as routing a document from a WSS list through
an approval process to something completely customized to your organization’s business
process. As this is a WSS process, it will also be triggered from Access 2007 when you are
linking to a WSS list or object. You can author Workflows directly using SPD or code them
using Visual Studio 2005. There are major differences in the Workflows designed by each of
these software tools, however; for example, VS 2005 Workflows can contain your own code
using code-behind files, whereas SPD Workflows cannot. With SPD, you create a Workflow
for a single WSS list; however, a VS 2005 Workflow can be used with many different lists. One
of the other major differences is that VS 2005 workflows can be modified by the user at run-
time, while those created using SPD cannot be modified by the user and will execute until
completion.

In the example that follows, you will be using SPD to create a Workflow that will route
a document through a checking process. Workflows, even out-of-the-box stuff that can be
designed using SPD, are very powerful tools that allow you to specify how a process is man-
aged and additional information collected for the user during the process. In this Workflow
example, you will set up an authorization to approve a purchase requisition. One of the condi-
tions is that only a purchase order with a value in excess of $200 needs to be approved. The
idea here is to demonstrate the process and features of the Workflow designer tools, and you
can then apply the process to other more complex Workflows.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 295

To get started, follow these steps:

1. Log in to a WSS site using SPD.

■Note From the WSS side, the Purchase Order list (which I have created on my WSS server for this exam-
ple) has also had document versioning turned on. This also enables a history or log of changes to individual
documents to be maintained by the WSS server.

2. From the main menu, select File ➤ New.

3. Click the SharePoint Content tab.

4. Select Workflow.

5. Click OK.

6. Enter a name for the Workflow (in my case, I entered CustomerWF).

7. Select a list you want the Workflow to be attached to. I selected Purchase Orders, a WSS
list created for this purpose.

8. You can then choose from three selections as follows:

• Allow this Workflow to be manually started from an item

• Automatically start this Workflow when a new item is created

• Automatically start this Workflow when an item is changed

In my case I have left the selection with the default value, Automatically start this
Workflow when a new item is created.

Before proceeding, we should also look at the command button options on this screen.
The following two options are available to you:

Check Workflow: You can click this button at any point in the process to have SPD check
the Workflow for errors.

Initiation: This one will open a dialog box that permits you to create a .NET form, which
will be available to the user as soon as the Workflow begins. For example, in the case of a
user entering a company name to the list, you could open the .NET form and allow the
user to enter any special comments he or she might have.

To return to the example, click Next. In the next screen, you can begin to create the condi-
tions for the Workflow. Here you can create a simple Workflow; for example, you can e-mail an
administrator or use branching logic to route a document through an approval process. For
this Workflow, you want to enforce a couple of rules for the purchase order:

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER296

• All purchase orders with a value over $200 must be approved.

• Each purchase order approver will receive an e-mail notifying him or her of the request,
and a task will be added to WSS directed at each approver.

Let’s create the condition:

1. Click the Conditions button and select Compare PurchaseOrder field.

2. Click the first hyperlink in the word field and select Total Amount from the drop-down
list.

3. Click the default equal hyperlink and select Greater Than from the list.

4. Click the second hyperlink and enter 200 as the value. The screen should now show the
following text as the condition: If Total Amount is greater than 200.

■Note You can build a very sophisticated AND/OR condition by clicking the condition again and building up
your statements.

5. Next click the Actions button and choose Send an Email.

6. Click the hyperlink text “This message,” and complete the e-mail screen with a valid
e-mail address and message.

■Note The address book is to the right of the To text box. This allows you to look up site users or site
groups.

At this point, the screen should look as shown in Figure 11-5, with the Actions step con-
taining the following text:

Assign Purchase Order to USERNAME

Then Email USERAME

7. Click Finish.

Any errors in the Workflow will be flagged using yellow exclamation marks beside the step
containing the errors. You can correct the errors and continue to complete the Workflow design.
Test out this first stage in the Workflow and ensure it is working (that is, check that you get an
e-mail if a purchase order meeting the conditions is added to the list via Access 2007 or directly
in WSS) before continuing with adding additional functionality to the Workflow.

At this point, when the user enters a new purchase order with a value greater than $200,
the nominated user will receive an e-mail asking him or her to go to the WSS list and approve
the item. At the same time, the purchase order will be added to the specific Tasks list for the
user specified in the action step.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 297

Within SPD, a new folder containing the Workflow code and any forms defined for the
process will be created within the WSS site structure. In order to edit the Workflow, you need
to double-click the Workflow file with the .xoml extension. To view the files associated with
the Workflow, follow these steps:

1. Expand the Workflow folder.

2. Select and expand the folder named as your Workflow.

3. Double-click the XMOL file to reopen the Workflow designer.

Once you have created the basic Workflow, you can edit it using the designer to add addi-
tional steps. For example, you could add an action that deals with purchase orders over $500,
routing them to a more senior member of staff for approval, or indeed you could have the pur-
chase order immediately rejected using the Workflow.

From the Access 2007 side, you can also interact with Workflows set for specific lists. For
example, you could right-click over the linked Purchase Order list in Access and select Share-
Point List Options ➤ Modify Workflow. This will take you to the Workflow screen in Windows
SharePoint Server. However, you cannot modify a Workflow created in SPD using WSS directly.
The Workflow must be amended using SPD. What you can do from the Access interface is cre-
ate a Workflow. For example, if you right-click the Purchase Order list and select Modify

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER298

Figure 11-5. Creating Workflow conditions and actions

Workflow, you will be taken to WSS with a Change Workflow Settings screen. From this screen,
you can add Workflows to a list, but you are restricted to those defined by WSS, which aren’t as
flexible as the Workflows you can author yourself. Within WSS, you can define four out-of-the-
box Workflow options:

Approval: Routes a document for approval to a member or members of the WSS site.
Assigns the approval to a WSS Tasks list for the users concerned. Records details of the
actions taken into a Workflow history list. The approval Workflow does contain some
flexibility; for example, a user involved in the process can be given permission to reroute
the document if required to another user for approval.

Collect feedback: Routes a document for approval and permits users to provide feedback.

Collect signatures: This Workflow cannot be started within WSS and must be started from
an Office application.

Disposition approval: Allows users to decide when a document expires from the site.

At this point, it has to be said that the real power of SharePoint Workflows lies in .NET
and Visual Studio 2005, where very complex Workflows can be authored using any of the
.NET languages. This topic is well outside the scope of this chapter, but if you are seriously
interested in Workflows, this is a topic you should investigate further. Workflows provide
excellent functionality, and SPD allows you to create sophisticated Workflows without too
much effort. WSS itself also permits Workflow creation without too much effort. Of course,
you could duplicate this functionality directly via Access and VBA, but the Workflow (even
one as basic as that shown) is created with no programming and provides the user with an
interactive experience. Even if you excluded the e-mails, users would still be informed that a
task was outstanding via their SharePoint Tasks list. Also note that the Workflow function is
available in other Office 2007 applications; for example, a document approval Workflow is
available from Word 2007 when you are using SharePoint as your document store. This Work-
flow will route a document to different staff members for approval and edit.

In addition to creating and designing Workflows, SPD also allows you to create objects on
the SharePoint site and to design existing layouts and other objects. From the SPD design
interface, you can create new WSS lists, libraries, and surveys. In terms of working with the
style of your SharePoint site, one of the main design tools at your disposal is the .NET master
page. Think of a master page as the design template for your web site and any subsites it con-
tains. Design and structure in the master page will be replicated on any page it is associated
with using the master page directive. In terms of presentation of your page and its content,
Cascading Style Sheets (CSS) are used. Now you may not have a great deal of experience when
it comes to working with master pages and CSS and web design in general. Master pages are
one of those things you will need to at least understand in order to begin the process of site
customization. The “Master Pages” sidebar provides a high-level introduction to the concept
of .NET master pages. If you are already familiar with .NET 2.0 master pages, you will find little
difference when it comes to working with master pages in SharePoint.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 299

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER300

MASTER PAGES

A master page looks after the structure and layout of your web page and will typically contain content place-
holders. Master pages are merged with the content at runtime. You can view the SharePoint master pages by
expanding the Catalogs folder and the Master Page subfolder. In the subfolder, you will find the default mas-
ter page, default.master. Figure 11-6 shows the default master page for a site I am working on.

The only safe way to work with the default master page is to make a copy of it. Do not mess with the
original copy unless you really know what you are doing. You can use the copy to try out the various editing
features when working with master pages. To view an associated CSS style for an item on a master page,
simply click the item; the style will be highlighted in the Apply Styles pane within SPD. SPD Help contains a
brief introduction to master pages, and more information is available by performing a quick web search on
the subject.

Figure 11-6. default.master page in SPD

Summary
In this admittedly brief overview of SPD, Access, and SharePoint, I have touched on the major
areas for further investigation: Web Parts, master pages, and .NET. All of these areas will see
increased focus from Microsoft in future releases of Office including Access, and it is perhaps
time for many Access developers like myself to begin making moves into these areas. Share-
Point will figure highly in my own future work, as I have a great deal of faith in its ability to
solve business process problems. However, this does not exclude Access and the power we all
know Access has to build the best desktop applications in the world.

CHAPTER 11 ■ ACCESS, SHAREPOINT, AND SHAREPOINT DESIGNER 301

Getting Started with .NET Tools

Many Access developers and power users occasionally need to use Microsoft Access data
without actually using Access as the front end. For example, you may have a requirement to
make data available on the Internet or for a web-based data collection form. Often, the time
you have to complete such small-scale applications is usually short, while the learning curve
required to develop them could be long, given the languages and development environments
involved.

The Microsoft Express set of free software applications can be used to meet your needs for
small one-off projects without requiring you to learn languages such as VB .NET, ASP, or formal
VB to any great depth. Express Editions are advertised by Microsoft as tools for the student or
hobby programmer, but this is misleading. Many Access developers work within tight budgets
and cannot afford products such as Visual Studio 2005. The Express Editions offer a way around
these budget limits, as all of the software is free, albeit somewhat restricted. For example, Express
Editions offer only a single-language development environment, usually either Visual Basic or C#.
However, it’s been my experience that many developers work in a single language anyway and
have no requirement for a multilanguage-capable tool.

In this chapter, we will look at using some of the Microsoft Express Editions to solve sim-
ple data projects using Access 2007. The examples outlined in this chapter are real-world basic
data problems I have been requested to solve. None of the applications can be classified as
“rocket science.” They provided solutions to basic data requirements that covered specific
business requirements.

Several Express Editions of the software are available, and we will be using two of them
in this chapter: Visual Web Developer 2005 Express (Web Dev Express) and Visual Basic 2005
Express (VB Express). Microsoft has also provided a huge resource of learning materials avail-
able at http://msdn.microsoft.com/vstudio/express/vb/ for each of the Express Editions.
This resource should be your first port of call for anything related to these tools. Another
resource I have used for many years is http://4guysfromrolla.com, one of the oldest sites,
and in my view the best, on ASP and now ASP.NET development on the Web. Microsoft also
provides starter kits to get you up and running in each development environment with sam-
ple applications.

303

C H A P T E R 1 2

Creating Web Applications with Visual Web
Developer 2005 Express
Visual Web Developer 2005 Express is a cut-down .NET developer’s environment that is provided
for free by Microsoft. You can download a copy from the Microsoft Express web site at http://
msdn.microsoft.com/vstudio/express/vwd/. Notice that there is a Reporting Services add-in also
available on the download page. It really is worthwhile to download this application if you are
considering moving into some form of web development environment. It can be used to build
basic web applications and even fairly complex SQL Server 2005-driven web applications.

Creating a Basic Web Application in Web Dev Express
First we’ll look at a simple application that makes data available on the Web for training ses-
sions and other events. This application was requested by the people in my unit. I was required
to take existing data, build a small Access back-end database, and make the information avail-
able online. The only other side issue was that it had to be dynamically displayed on a large
LCD screen. Visitors to the building would then see a listing of training and other events to be
held that day, and another scrolling page showing events due to take place the next day. The
data was stored in a MySQL database on a UNIX box. So rather than try to learn PHP fairly
quickly, I opted to write the system using Web Dev Express. The Access database eventually
consisted of three tables: a table for events (tblEvent) and two lookup tables (tblEventCategory
and tblLocations). As I said earlier, this was nothing complex, just a basic data requirement that
had to be met, but it proves useful here to illustrate the features of the software.

Running Web Dev Express
Upon starting Web Dev Express, you will see the very professional interface to this software.
If judged purely on the interface, it’s hard to see the difference between this edition and a
professional development environment. Figure 12-1 shows the initial screen for the adminis-
trative interface.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS304

EXPRESS STARTER KITS

Microsoft provides prebuilt development kits for both Web Dev Express and VS Express that get you up and
running with each of the development environments. Starter kits are a great learning tool, particularly for
those who have never worked in the language or indeed interface before, and it is well worth your time to
see what kits are provided, read the documentation, and download the extra kits available online at http://
msdn2.microsoft.com/en-us/vstudio/aa718342.aspx.

VB Express comes with two starter kits, with additional kits available for download. (Most kits are avail-
able in either VB or C#.) For database developers, the My Movie Starter Kit is the more useful of the two, as
this application interacts with an SQL Server database file. The other starter kit is the Screen Saver Starter
Kit. You can access these starter kits by selecting File ➤ New Project.

Several starter kits are also available for Web Dev Express, and again it is worthwhile downloading
them and trying them out. The Time Tracker application would be a useful place to start for many Access
developers.

As shown in Figure 12-1, the main working area of the screen is divided into a toolbox,
a work area, and Solution and Object Explorers. As you work over a project, other windows
become available (for example, error listings and a Properties Explorer).

Jumping right in, the first thing you need to do is to create a new project. Click File ➤
New Web Site and select ASP.NET Web Site from the dialog box. Either accept or change the
default project location and click OK. You will arrive in the new project window containing a
blank default.aspx page. In the Solution Explorer, you should see some new items: App_Data,
which is a new folder, and Web.Config.

Web.Config is an XML file that is vital to the operation of your web application. It contains
information on authentication, error handling, and other configuration options for the appli-
cation. It is generated automatically by the software when you create a new web project. It can
be edited by hand, but if this is your first time out, you should consider using the web inter-
face for this file, available by selecting Web Site ➤ ASP.NET Configuration from the main menu.
Figure 12-2 shows the web-based interface used to manage the Web.Config file for this project.
In this case, I have the Home tab selected, which presents the main menu system for this
application. This administration tool is available by selecting Application Configuration on the
Web Site Administration Tool dialog box. As you try out these examples, check back with the
Web.Config file, as this is where you will be placing the connection strings for the database.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 305

Figure 12-1. Web Dev Express interface

You now need to add a database connection to the project. Web Dev Express provides sev-
eral connectors for you to use as follows:

• ObjectDataSource, for connecting to a middle tier object that can return data

• SqlDataSource, for working with SQL Server, Oracle, or other .NET managed providers
including OLEDB and ODBC

• AccessDataSource, for working with Access databases

• XMLDataSource, for working with XML files

• SiteMapDataSource, for working with .NET site maps

■Note It is worth pointing out that this software almost always defaults to SQL Server when adding data
connections. Here, you will be using Access, but the process is more or less the same when working with
SQL Server. Of course, your connection string will be different. Personally, I have noticed no difference when
using either SqlDataSource or AccessDataSource when creating a connection to Access, and I simply
treat them as the same connection object.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS306

Figure 12-2. Web.Config management using the Web Site Administration Tool

To add a connection to a project, follow these steps:

1. Click Tools on the main menu.

2. Select Connect to Database.

3. At the Data Source drop-down list, click the Change button.

4. Select <other>.

5. Select .NET Framework Provider for OLEDB.

■Caution Do not select Access if you are using the new Access database file type (ACCDB). In order to
connect to the new file type, you need to select the Microsoft Office 12 Access Database Engine OLEDB
Provider.

6. Click OK.

7. Select Microsoft Office 12 Access Database Engine OLEDB Provider from the OLEDB
provider drop-down list.

8. Navigate to the Access database file required and select it.

9. Click OK.

The database will be added to the Database Explorer. Using its tree view, you can navigate
the database objects, tables, views, stored procedures, and functions. As you may now see, all
are fairly specific SQL Server objects, even though you are using an MDB file.

Creating Data Grids with ASP.NET
ASP.NET allows you to build highly interactive web applications using a common set of tools
and languages. Any of the supported languages—VB, C#, or J#—may be used. In this sample
application, you are interested in using this technology to get some data from a database and
make it available via the browser. ASP.NET will allow you to do this by using the graphical tool
set to add server objects to the web page. In order to display data on the page, you can use
built-in .NET objects (controls) that will “hold” and display the data, allowing a user to navi-
gate, add, delete, and edit records. All of these features are available out of the box, and as is
often the case, if you need advanced or additional functionality, you do need to code it your-
self. The easiest way to get data to the page is to simply drag a table or query from the Database
Explorer into the document window.

■Note For the example that follows, you will need a new project and a connection to the Events database.
Detailed instructions follow in the “Getting More Interactive” section of this chapter. For now, I just want to
give you an overview of the process and the features of the software.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 307

This will create a fully functional data grid on the page. Once on the page, you can set the
properties of the grid using a GridView Tasks menu. Figure 12-3 shows the default grid with
the GridView Tasks menu showing.

Using the menu, you can enable the following features depending on the requirements:

• Enable Paging: Allows you to display restricted groupings of records—for example,
10 records at a time out of a possible 100 available. The user can then click a button
or link to view the next set of 10 records. This is very useful when you have a large
recordset to display.

• Enable Sorting: Sorts the recordset using a hyperlink within the header of the form.
Useful for recordsets containing dates or times.

• Enable Editing: Allows the user to edit the records being displayed.

• Enable Deleting: Permits the user to delete a record or records from those displayed.

• Enable Selection: Permits selection of the data item when clicked.

Enabling each feature will add the appropriate hyperlink to the grid.
There are many other data-centric controls that you can add to the page from the Data

section of the toolbox as follows:

• DataView

• DataList

• DetailsView

• FormView

• Repeater

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS308

Figure 12-3. Data grid and GridView Tasks menu

The data grid can also be customized using the built-in features of the control and the
GridView Tasks Smart Tag. To customize a data grid:

1. Right-click and select Show Smart Tag.

2. Click AutoFormat.

This will open the AutoFormat Smart Tag from which you can select one of many prebuilt
designs. Column headers can also be changed from the field names used by default. To change
column headers, click Edit Columns in the Smart Tag. In the Selected fields section of the screen,
simply click a field name to select it. In the BoundField properties area, click in the HeaderText
property and change the text. Figure 12-4 shows the Fields dialog box.

Once you have selected a format for the grid and changed the field names, you can then
save the page and preview it in a web browser. Figure 12-5 shows the Events table in a browser.
In this case, I have applied some basic formatting to the control. Note that in the first record,
the Edit link has been clicked. The data can now be edited. What was once static text has been
“converted” on the fly into an interactive text box that permits editing of the data once the
user clicks the Edit hyperlink.

You can also review the code produced by the editor by looking at the source of the page.
Listing 12-1 shows a partial block of code produced by the interface for the data grid. It is inter-
esting to look at the placeholder question marks created by the development environment and
the number of lines generated and compare this code with the code you will create manually
(shown later in this chapter in Listings 12-4 and 12-5).

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 309

Figure 12-4. Changing a field header in the Fields dialog box

Listing 12-1. Data Grid Code

<asp:GridView ID="GridView1" runat="server" AllowPaging="True" AllowSorting="True"
AutoGenerateColumns="False" BackColor="LightGoldenrodYellow" BorderColor="Tan"
BorderWidth="1px" CellPadding="2" DataKeyNames="ID" DataSourceID="AccessDataSource1"
EmptyDataText="There are no data records to display." ForeColor="Black" ➥

GridLines="None"
Height="279px" Width="770px">
<FooterStyle BackColor="Tan" />
<Columns>
<asp:AccessDataSource ID="AccessDataSource1" runat="server" ➥

DataFile="C:\AccessBook\Chapter7\Events.mdb"
DeleteCommand="DELETE FROM `tblEvent` WHERE `ID` = ?" ➥

InsertCommand="INSERT INTO `tblEvent` (`ID`, `fldEventTitle`, ➥

`fldEventNote`, `fldEventStart`, `fldEventStartTime`, `fldEventEndTime`, ➥

`fldEventLocation`, `fldEventCategory`) VALUES (?, ?, ?, ?, ?, ?, ?, ?)"
SelectCommand="SELECT `ID`, `fldEventTitle`, `fldEventNote`, `fldEventStart`, ➥

`fldEventStartTime`, `fldEventEndTime`, `fldEventLocation`, `fldEventCategory` ➥

FROM `tblEvent`"
UpdateCommand="UPDATE `tblEvent` SET `fldEventTitle` = ?, `fldEventNote` = ?, ➥

`fldEventStart` = ?, `fldEventStartTime` = ?, `fldEventEndTime` = ?, ➥

`fldEventLocation` = ?, `fldEventCategory` = ? WHERE `ID` = ?">

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS310

Figure 12-5. Customized data grid

■Note I have removed the central block of generated code to save space.

Like most wizard-generated code, you can see the choices made during the design
process—for example, AllowPaging="True" AllowSorting="True".

You can also see the set of commands required to allow you to delete, select, and update
records within the grid, which you’ll recognize as your basic SQL statements required for this
purpose.

Creating the What’s On Web Site
For this example, you will be using an Access 2007 database containing a single query. As
stated previously, the database contains three tables, named and structured as follows:

tblEvent:

ID, primary key, AutoNumber

fldEventTitle, text

fldEventNote, memo

fldEventStart, Date/Time

fldEventStartTime, text

fldEventEndtime, Date/Time

flsEventLocation, lookup to tblLocation

fldEventCategory, lookup to tblCategory

tblLocation:

ID, primary key, AutoNumber

fldLocation, text

tblEventCategory:

ID, primary key, AutoNumber

fldCategory, text

■Note For speed, you will use tblLocation and tblEventCategory as lookups to the main table.

You can create and save the database anywhere on the PC, as you will copy it into your
new web project environment once created. To get started, follow the instructions earlier to
create a new web site in Web Dev Express. Once created, you will add your database to the

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 311

application. To add the database, right-click the App_Data folder in the Solution Explorer and
select Add Existing Item. Using the Add Existing dialog box, navigate to the database file and
add it to the project. You can use the App_Data folder to save any data or information required
by your project (for example, XML or image files). However, now that you have done this, real-
ize that it is virtually useless because Web Dev Express does not support the new Access file
type in this manner. You cannot even simply drag an AccessDataSource onto the page and con-
figure it if you are using the new file type. In the normal course of things, this is the preferred
approach to working with the database: place it in the App_Data folder.

If you would like to view the structure of the database, add it to the Database Explorer. To
add the connection, click the Database Explorer, right-click Data Connections, and select Add
Connection. Remember to change the connection type to <other> and choose the Microsoft
Office 12 Access Database Engine OLEDB Provider for this connection. Once you have created
a valid connection, you can use the Database Explorer to examine and review the structure of
the database. Figure 12-6 shows the Database Explorer for this project with the Events data-
base expanded.

Now back to the problem at hand. This is simply a list of events taking place today and
another list of events taking place tomorrow. A query would solve the data problem and has
been created directly within Access. However, Web Dev Express also permits you to create
queries directly via its interface, which does save a little time. The Query Designer is almost
identical to that in SQL Server Express, so it should be familiar to many developers and power
users. To create a query, follow these steps:

1. Right-click anywhere within the Database Explorer and select New Query.

2. Select a table (in the case of this example, Events) from the Add Table dialog box.

3. Click Close.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS312

Figure 12-6. Current Database Explorer view for this project

Accessing Data Using Queries
You may find that the SQL statement in the Query Designer is not what you expect when it first
opens. For example, the query type available to you when you first open the Query Designer may
default to a DELETE query. To change the query type on the main menu, follow these steps:

1. Click Query Designer.

2. Select Change Type.

3. Choose the appropriate query type from the submenu.

The query I required was very basic. I just needed to select those events taking place
today. Listing 12-2 shows the SQL statement required in this case within the Access database.
I have saved this as qryTodaysEvents.

Listing 12-2. SQL Statement

SELECT fldEventTitle, fldEventNote, fldEventStart,
fldEventStartTime, fldEventEndTime, fldEventLocation, fldEventCategory
FROM tblEvent
WHERE (fldEventStart = NOW())

■Note Always select the fields required and do not be tempted to write a SELECT * statement even if you
do actually require all the fields. It is considered bad practice to retrieve fields you are not actually going to
use, as it can have an impact on performance.

To place the data onto the page using a .NET web control, follow these steps:

1. Add a new blank ASPX file to the project, and from the toolbox drag a DataList control
onto the web page.

2. Open the DataList control Smart Tag.

3. Select Configure <New Data Source>.

4. In the Configuration Wizard, click Database (do not select the Access option that is
available to you in the dialog box).

5. Rename the Data Source ID to EventsAccess.

6. Click OK.

7. Click New Connection.

8. Click Change (beside the Data Source drop-down list).

9. Select Other.

10. Click OK.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 313

11. In the OLEDB Provider drop-down list, select Microsoft Office 12 Access Database
Engine OLEDB Provider.

12. Enter the full path to the ACCDB file in the Server or file name text box.

13. Click OK.

14. Click Next.

15. Accept the default connect string name and click Next.

16. Make sure the query you created earlier is selected, and select the field returned by the
query you would like to appear on the form.

17. Click Next.

18. Click Finish.

The bare data list appears within the Design view window. Figure 12-7 shows the list pro-
vided by Events.aspx.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS314

Figure 12-7. .NET data list

As you can see, there’s nothing too exciting at this point. Next, you will add some customiza-
tion to the listing, which is little more than an HTML table containing some data. First, let’s look
at a data list.

List Templates
The data list web server control is really a set of templates that are used to define the layout
of the data. The data list has the following templates available, each of which performs a spe-
cific task:

ItemTemplate: Displays the data being returned to the list. This template looks after each
individual item returned to the browser. Listing 12-3 shows the ItemTemplate used in this
example. As you can see, each field within the template is treated as a distinct item. You
can use any valid HTML within the ItemTemplate (for example, you could add in table
tags, changing the way the code in Listing 12-3 appears to a standard HTML table).

Listing 12-3. ItemTemplate

<ItemTemplate>
fldEventTitle:
<asp:Label ID="fldEventTitleLabel" runat="server" ➥

Text='<%# Eval("fldEventTitle") %>' >
</asp:Label>

fldEventStartTime:
<asp:Label ID="fldEventStartTimeLabel" runat="server" ➥

Text='<%# Eval("fldEventStartTime") %>'>
</asp:Label>

fldEventEndTime:
<asp:Label ID="fldEventEndTimeLabel" runat="server" ➥

Text='<%# Eval("fldEventEndTime") %>'>
</asp:Label>

fldEventLocation:
<asp:Label ID="fldEventLocationLabel" runat="server" ➥

Text='<%# Eval("fldEventLocation") %>'>
</asp:Label>

fldEventCategory:
<asp:Label ID="fldEventCategoryLabel" runat="server" ➥

Text='<%# Eval("fldEventCategory") %>'>
</asp:Label>

</ItemTemplate>

■Note The Eval function is a read-only method and is used to return the value of the data as a string.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 315

AlternatingItemTemplate: Used to format the display of the list in alternating row colors.

SelectedItemTemplate: Controls the layout and appearance of the item selected (for exam-
ple, the behavior of a data item in a grid or the background color of the selected item).

EditItemTemplate: Enables editing of a data item. A common example is to use a text box
control to permit editing of a record field.

HeaderTemplate: Defines the content and layout of the list header.

FooterTemplate: Defines the content and layout of the list footer.

SeparatorTemplate: Places a separator between list items.

You can edit each of the templates used via the interface by clicking the object’s Smart Tag
and selecting Edit Templates. Pick the appropriate template to edit using the drop-down list
and make your changes. When finished with the edit, click the Smart Tag and select End Tem-
plate Edit. Using templates gives you a great deal of flexibility over how your .NET control is
rendered in the browser.

Customizing the Data List
Customization of the data list is straightforward and is achieved by either using the object
Smart Tag or going directly to the control’s properties. To add a heading to the data list, follow
these steps:

1. Select the control object (the data list) by clicking it.

2. Click the object Smart Tag.

3. Click Edit Templates.

4. Select Header Template from the Display drop-down list.

5. Enter the text you would like to use into the header cell.

6. Click End Template Editing.

If you check out the source of the page, you will now find a HeaderTemplate has been
added at the bottom of the document.

<HeaderTemplate>
Chapter 7 List Demo
</HeaderTemplate>

Of course, you could have simply entered this yourself manually into the source of the
page. The heading can be further customized by clicking Property Builder in the object’s
Smart Tag. In the resulting dialog box, you can set font, font color, and alignment of the
header object.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS316

Amending the ItemTemplate
To change the default field names used by the list, again, using the object Smart Tag, select
Edit ItemTemplate and simply change the default labels to something more meaningful. As
you can see, amending the various templates is a fairly straightforward process. But what if
you would like to do something more meaningful with the list—for example, adding a button
to allow the user to delete or add a record? You can do this, but you’ll have to make do without
a wizard.

Getting More Interactive
In this next example, you will use the same database, but this time you will make the web page
fully interactive. In this case, you will be using a data grid that is another .NET server-side con-
trol. To get started, follow these steps:

1. Create a new blank ASPX page.

2. Drag an SQLDataSource onto the page.

3. Click Configure Data Source.

4. Select the existing Events connection for this example.

5. Click Next.

6. Select tblEvents from the Name drop-down list.

7. Select all the records from tblEvent.

8. Click the Advanced button.

9. Click Generate INSERT, UPDATE, and DELETE statements.

10. Click OK to close the Advanced dialog box.

11. Click Next.

12. Click Finish.

What you have done is to create the connection and, using the Connection dialog box, set
up the required structures to enable the user to edit the grid. If you check out the source code
now, you will see that you have generated the required SQL statements to perform the insert,
update, and delete tasks. To continue:

13. Drag a GridView onto the page.

14. Using the Smart Tag, set the data source to the connection created previously.

15. Click the grid’s Smart Tag icon and select the following properties:

• Enable Paging

• Enable Sorting

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 317

• Enable Editing

• Enable Deleting

• Enable Selection

You should now have a fully interactive data grid on the page. You can check out the func-
tionality by clicking File ➤ View in your browser.

Creating a Search Page
For this example, you will create a basic search page using a drop-down list to select an event
location and display the associated events in the page dynamically. To begin, follow these steps:

1. Create a new ASPX page.

2. Add an SQLDataSource to the page. Create a new connection to the event location table,
tblLocations. Select the primary key and the location description field.

3. Drag and drop a DropDownList control onto the page and click Choose Data Source in
the drop-down Smart Tag.

4. Using the Choosing a Data Source dialog box, select the data source you created earlier
using the drop-down list; select the field to display, fldLocation, in the second drop-
down list; and select the primary key value, ID, in the third drop-down list.

5. Check the Enable AutoPostBack check box in the Smart Tag menu.

6. Click OK to finish configuring the drop-down list.

You will be using the primary key value shortly as part of the WHERE clause used to popu-
late a data grid also on the page. The data grid will be used to display the associated events for
the location chosen. The location primary key value will be passed to the SQL statement for
the connection in the data grid. To continue:

7. Drag a new data grid onto the same web page. Create another data source and point
the new source at the Events table in the Access database.

8. Click the WHERE button when asked to configure the SELECT statement.

9. In the resulting screen, you can build your clause, passing in the selected value from the
drop-down list created earlier to the SQL statement used by the data grid. To do this:

a. Select ID from the Column drop-down list.

b. Select = as the operator using the drop-down list.

c. Select control from the Source drop-down list.

d. In the Parameter Properties section of the dialog box, select the drop-down list cre-
ated previously as the ControlID.

e. Enter a default value of 1.

f. Click Add.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS318

Figure 12-8 shows the dialog box when you have completed this initial WHERE clause setup.

To preview the page in the browser, press Ctrl+F5, which will open the page in your
default web browser. Figure 12-9 shows the results in Internet Explorer.

Try out the form by selecting a value in the drop-down list and watch how only those val-
ues matching the ID value from the drop-down list are returned in the data grid. What if there
are no matching records? You can cover that possibility by amending the EmptyDataTemplate
of the data grid. To do this, follow these steps:

1. Select the data grid’s Smart Tag.

2. Select Edit Templates.

3. Select the EmptyDataTemplate.

4. Enter the text “There are No Records matching your search” into the template.

5. Click End Template Editing.

Now if there are no matching records, the text you entered will be displayed. Try it out
selecting a value in the drop-down list that you know will have no matching records in the
template table.

You could also replace the drop-down list with a text box, allowing the user to type val-
ues into the box and returning matching records. Your query would need to change slightly
to make use of the LIKE comparison operator instead of the = sign when setting up the WHERE
clause.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 319

Figure 12-8. Setting up the WHERE clause

It would also be possible to combine both dialog box controls (the drop-down list and
the text box) to create a more complex query restriction. For example, you can add ANDs and
ORs to the SQL statement used by the data grid based on the user selecting a value from the
drop-down list and entering a search string in the text box. Remember, all you are doing via
the interface is referencing controls as parameters, which in turn are added to the SQL state-
ment used by the grid. Think of a standard Access query-by-form interface, and you will
immediately see the possibilities here!

If you would like to add a command button to the .NET page, simply drag one from the
toolbox. No code is required, and, when clicked, the button will send the data to the server
for processing.

Before ending this section, let’s look at one more area: the use of a TableAdapter. This con-
trol will allow you to get data onto the page and bind it to the full range of .NET server controls
with a very small amount of code. It is also used to begin the process of breaking apart your
applications into their respective layers. So far in this chapter, you have been using the built-
in features of the software to basically drag and drop controls onto the page and bind them to
their respective data stores. In the following example, you will again use the interface, but
you’ll begin to open the door to the powerful combination of .NET and the Web.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS320

Figure 12-9. Browser preview of the search form

Moving into Application Tiers
So far in this chapter’s examples, you have embedded the data and code within your web
pages. This example takes this a step further and builds a data access layer accessible from
anywhere within your web project file.

■Note In order to follow this example, you will need a database located in the App_Data folder of your
web project. This example uses the Events database, so remember, if you are using another database, follow
the instructions, renaming objects as appropriate.

■Note When I first worked with web sites, I usually created applications by embedding code within the
ASP file itself. Then I found http://www.4guysfromrolla.com, Scott Mitchell’s web site. This is one of the
oldest and best ASP and .NET web sites around. Scott’s set of articles on http://www.asp.net are a must
read for those who are new to .NET and working with databases. I recommend them highly. I picked up the
techniques shown here from the set of tutorials on this Microsoft web site, and I would like to thank Scott
and Brian Goldfarb for permission to outline the thinking and functionality presented there.

In this section, I will discuss how you can design and build your web application using
a three-tiered approach involving data, presentation, and business logic layers. All the code
required to access and manipulate data will exist in the data access layer, and the front-end
pages will simply make calls into and out of the layer. So let’s have a look at a small example
to illustrate the principles of classes and tiered application building. To get started, follow
these steps:

1. Create a new web site project.

2. Add the Events Access database to the project’s App_Data folder.

■Note If you select New Item Web Dev Express and then SQL Database in the Add New Item dialog box,
you can create a new SQL Server database for use by the project.

Once you have the database connection set up, you will add a dataset to the project. To
add the dataset, continue with these steps:

3. Right-click the project name in the Solution Explorer and select Add New Item.

4. Click the Dataset icon in the New Item dialog box.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 321

■Note A dataset returns a collection of data in the form of data table instances for use in the application.

5. Name the dataset EventsDS.XSD.

6. Click Add.

■Note You may receive a warning message that the dataset should be placed in the App_Code folder. Web
Dev Express will offer to do this for you. Click Yes in response to this message.

7. If you wait a second, the TableAdapter Configuration Wizard will start up to allow you
to add a TableAdapter to the dataset. Any database in the App_Data folder will be avail-
able using the drop-down list, or you can go ahead and create a new connection if
required. Click Next.

8. Accept the default selection by clicking Next.

9. In the next dialog box, select all records from tblEvent or enter the correct SQL state-
ment if you are not using the Events database.

10. Click the Advanced Options button on the dialog box.

11. Accept the default selection, Generate INSERT, UPDATE, and DELETE Statements.

12. Click OK.

13. Click Next.

14. Change the method name to GetEvents (the default will be GetData).

15. Click Finish.

Figure 12-10 shows the TableAdapter at this point. What you have created is a dataset
with one data table, tblEvent, and a DataAdapter class called EventTableAdapters.
tblEventTableAdapter, which contains a GetEvents() method. The GetEvents() method
returns your tblEvents data.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS322

Figure 12-10. Selecting tblEventTableAdapter

Now that the TableAdapter is set up and ready to use, create a new web form (ASPX file)
called Events.aspx. When creating the file, make sure you check the Place Code in Separate
File box. In this case, you are going to have two files: a .NET web page (think Access form) and
a code page (think Access class module). Your “form” page will make use of the code page in a
way similar to how Access uses a form’s code module to carry out an action. In this example,
what’s going to happen is similar in theory to using an unbound form and populating it using
VBA in the form’s open event. Here, you are going to use the .NET PageLoad event to populate
a data grid. Enter the code shown in Listing 12-4 into Events.aspx.

Listing 12-4. Events.aspx Code

<%@ Page Language="VB" AutoEventWireup="true" ➥

CodeFile="Events.aspx.vb" Inherits="Events" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">

<title>View All Events in a GridView</title>

</head>
<body>

<form id="form1" runat="server">
<div>

<h1>
Our Events</h1>

<p>
<asp:GridView ID="GridView1" runat="server"
CssClass="DataWebControlStyle">
<HeaderStyle CssClass="HeaderStyle" />
<AlternatingRowStyle CssClass="AlternatingRowStyle" />

</asp:GridView>
 </p>

</div>
</form>

</body>
</html>

The next step is to add the code to actually load up the data grid created in Listing 12-4.
In the code-behind file, which should be named Events.aspx.vb, enter the code shown in
Listing 12-5. Note the availability of IntelliSense when building the code up.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 323

Listing 12-5. Events Code Behind

Imports EventDSTableAdapters

Partial Class Events
Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As ➥

System.EventArgs) Handles Me.Load
Dim EventsAdapter As New tblEventTableAdapter
GridView1.DataSource = EventsAdapter.GetEvents()
GridView1.DataBind()

End Sub
End Class

Notice the difference between this example and the previous examples—in particular,
the small amount of code required to actually do this. In addition, there is no code, data con-
nection, or anything else related to the actual database in the Events.aspx page.

■Note A .NET page goes through a series of stages, each of which can cause events to take place, and
just like an Access form, you can code for the events. In this case, you are looking at the Page_Load event
and adding some code to be executed. Another basic example is the button event, ButtonClick(), similar
to a command button in Access. You can add code to execute in response to the button being clicked.

To test out the page, press Ctrl+F5 to preview in the default browser. Figure 12-11 shows
this example, and I have also used the GUI tools to lay out and format the grid. (Click the grid’s
Smart Tag in Events.aspx to edit the control.)

This really only covers the basics of the tiered approach to web applications; a full and
extensive tutorial is available at http://www.aspnet.com, and I highly recommend it. I do hope
in this basic example you have begun to see the possibility for rapid development of simple
.NET web sites.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS324

Creating Windows Applications with
Visual Basic 2005 Express
In this section, you are going to use VB Express (which you can download from http://
msdn.microsoft.com/vstudio/express/vb/download/default.aspx) to create the same appli-
cation you just created for the Web using ASP.NET, only this time you will build the structure
using a Windows Form and reuse some of the objects you have already seen when working
on the Web. You are going to create a Windows Form application that will display data from
the Events database. If you are using your own example database, remember to change refer-
ences and code as appropriate.

To get started, follow these steps:

1. Use VB Express to create a new project, selecting Windows Application in the New Pro-
ject dialog box and naming your project Events.

2. Click OK to create the initial project files.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 325

Figure 12-11. Training events preview

Figure 12-12 shows the design interface at this point.

Next, you need to add a connection to the database. To do this from the main menu, fol-
low these steps:

1. Click Data.

2. Select Add New Data Source.

3. Click Next to accept the default database.

4. Click Next.

5. Click New Connection.

6. Click the Change button beside the Data Source text box.

7. Select Access Database file.

8. Browse to the database file to select it.

9. Click OK once you have selected the database file.

10. Click Next. Accept the offer to copy the local database file into the project if you are
asked to.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS326

Figure 12-12. VB Express Interface

That’s basically the first stage, configuring the connection. The Connection dialog box will
then continue to permit you to create a dataset. To do so:

1. Click the Tables check box in the next page of the dialog box.

2. Select all the tables in the database for this example.

3. Name the dataset dsEvent.

4. Click Finish.

The dialog box will have added your database connection and dsEvent to the Solution
Explorer. If you click the Database Explorer tab, you will also have access to tblEvents from the
database. Your screen should resemble Figure 12-13.

The easy way to add to the Windows Form is to simply drag and drop tblEvents onto the
form. To do this:

1. Click the Data Sources tab.

2. Expand the database.

3. Drag tblEvents onto the blank form.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 327

Figure 12-13. Building a Windows Form

Note that several objects are created for you within the project as follows:

• A data set (EventsDataSet).

• A TableAdapter (tblEventsTableAdapter).

• A binding source (tblEventBindingSource), which acts as the data source for the con-
trols on the Windows Form.

• An EventBinding navigator (tblEventBindingNavigator), which resembles the Access
navigation bar at the bottom of a form. Within VB Express, it’s comprised of a tool strip
containing objects, allowing you to navigate and manipulate the bound records.

Preview the new form by pressing Ctrl+F5. Figure 12-14 shows the form in debug mode.
Note that by dragging and dropping, you have created a fully interactive data grid that will
allow you to navigate the records in a familiar way. Also note how similar the navigation bar
is to that used on an Access form.

To demonstrate the power of VB Express, you will next create a small Windows Form
application for the Events database. Once again, if you are using your own database, remem-
ber to change field and connection references as appropriate. To get started:

1. Create a new project.

2. Add a connection to the project.

3. Select Data from the main menu.

4. From the toolbox, drag a tab control onto the blank form.

5. Resize the tab as appropriate.

6. Click the Data Sources tab.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS328

Figure 12-14. The completed Windows Form

7. Drag tblEvents onto Tab1 in the tab control.

8. Move the navigation bar to the bottom of the form by clicking its Smart Tag and select-
ing the Bottom Placement option.

9. Click the text Insert Standard Items to add additional features to the navigation strip.

Figure 12-15 shows the designer window at this point.

Press Ctrl+F5 to see the form running. Notice the built-in Date Picker control used for the
Date/Time data type. Figure 12-16 shows the control on your tabbed form.

At this point, you could go ahead and actually build this into a Windows application by
selecting Build ➤ Publish from the main menu. The Publish Wizard will kick in, allowing you to
create a small Windows application that can be installed on the PC. Try it out and see how it goes.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS 329

Figure 12-15. Creating a Windows Form for the Events database

Figure 12-16. Date Picker control

Summary
In this chapter, you have seen how you can use the free .NET tools, both web and Windows-
based, to quickly generate basic applications using Access databases. Both Web Dev Express
and VB Express offer you much more functionality than previously discussed features of
Access, for example, using Data Access Pages and exporting as an ASP file. Both products get
you started on the road to .NET development and provide at least a launching point for its
huge range of features. By exploring mostly the GUI features of the software to generate
basic working applications, this chapter gives you the foundation on which you can build
your .NET skills.

CHAPTER 12 ■ GETTING STARTED WITH .NET TOOLS330

Code You Can Steal!

In this chapter, thanks to many of the members of AccessD who gave permission, I will be
providing several examples of Access VBA using DAO, ADO, and some Windows API calls. The
code comes from working Access developers and is free for you to use in any application.
Where copyright is included in the code headers, I request that you retain it. The code is not
categorized into specific functional areas. Where appropriate, I have also added the question
that resulted in the code example in an attempt to place it into some context. However, feel
free to sign up to AccessD (http://databaseadvisors.com/mailman/listinfo/accessd) and ask
questions about specific code yourself! The code examples are available for download with the
book’s demonstration databases and within the archives of AccessD.

■Note Some examples are basic, some intermediate, and some highly complex. Some contain a few lines
of code, others classes and modules. All are available, as stated, in the book’s source code (which you can
download from http://www.apress.com), where many are placed into context (for example, hooked up to
forms, command buttons, and events).

We all stand on the shoulders of giants, and here for you is the code from the giants of
AccessD! In no particular order of merit, the “giants” in question are

• Marty Connelly

• John W Colby

• Drew Wutka

• A. D. Tejpal

• Rocky Smolin

• Charlotte Foust

• Darren Dick

• Gustav Brock

• Jim De Marco

• Mark A. Matte
331

C H A P T E R 1 3

• Robert L. Stewart

• Stuart McLaughlin

• Susan Sales Harkins

• William Hindman

• Gary Klos

• Andy Lacey

Question: How can I return the exchange rate from a web page?

Answer: Place the code in Listing 13-1 into a new module.

Listing 13-1. Returning an Exchange Rate, Example 1

Option Compare Database
Private Declare Function URLDownloadToFile Lib "urlmon" Alias ➥

"URLDownloadToFileA" (ByVal pCaller As Long, ByVal szURL ➥

As String, ByVal szFileName As String, ByVal dwReserved As Long, ➥

ByVal lpfnCB As Long) As Long

Function CurrencyConversion(strOriginal As String, strFinal As String, intValue ➥

As Currency) As Currency
Dim strPath As String
Dim strURL As String
Dim strSearch As String
Dim f As Long
Dim strData As String
Dim strFirstData As String
Dim strEndData As String
strSearch = "<span style=""font-size:14pt; font-weight:bold;"" "
strPath = Application.CurrentProject.Path & "\CurrencyTestData.tmp"
If Dir(strPath) < "" Then Kill strPath
strURL = "http://www.xe.com/ucc/convert.cgi?From=" & strOriginal & "&To=" & ➥

strFinal & "&Amount=" & intValue
URLDownloadToFile 0, strURL, strPath, 0, 0
f = FreeFile
Open strPath For Binary Access Read As f
strData = Space(LOF(f))
Get f, , strData
Close f
Kill strPath
strData = Mid(strData, InStr(1, strData, strSearch, vbTextCompare) + Len(strSearch))
strFirstData = Left(strData, InStr(1, strData, "</span ") - 1)
strData = Mid(strData, InStr(1, strData, strSearch, vbTextCompare) + Len(strSearch))
strEndData = Left(strData, InStr(1, strData, "</span ") - 1)
CurrencyConversion = Left(strEndData, Len(strEndData) - 4)
End Function

CHAPTER 13 ■ CODE YOU CAN STEAL!332

In order to try out the preceding example, you will need to create an Access form. The fol-
lowing instructions outline the process and the names for the form controls:

1. To the form, add an unbound text box named txtStartingValue.

2. Add a combo box bound to a currency table (fields named Currency, Abbreviation) and
name it cbmStart.

3. Add a combo box named cbmNew, also bound to the currency table.

4. Add an unbound text box and name it txtNewValue.

5. Add a command button and place the following code in the click event:

me.txtNewValue = CurrencyConversion(Me.cmbStart, Me.cmbNew,
Me.txtStartingValue)

6. Enter a value into the Starting Value text box and click the command button to return
the exchange rate.

Just to prove there’s more than one way to skin a cat, Listing 13-2 contains code that
shows a different way of returning an exchange rate.

Listing 13-2. Returning an Exchange Rate, Example 2

Option Compare Database
Option Explicit
Dim mcolRate As Collection
Sub testxml()
Set mcolRate = New Collection

GrabXMLFile ("http://www.ecb.int/stats/eurofxref/eurofxref-daily.xml")
Debug.Print mcolRate("USD")
MsgBox "US dollar Euro Rate ECB " & mcolRate("USD")

End Sub

Public Function GrabXMLFile(ByRef AdviserXML As String)
' http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html

' Base currency is Euro so you will have to do a conversion for USD.
' Note the link for other pages with sources for XML, etc.
' http://www.ecb.int/stats/eurofxref/eurofxref-daily.xml

' On Error GoTo ErrorHandler
' needs reference set to XML 4.0 and maybe ADO 2.8
Dim oDOMDocument As MSXML2.DOMDocument40
Dim oNodeList As IXMLDOMNodeList
Dim oAdviserDetailsNode As IXMLDOMNode
Dim oLowestLevelNode As IXMLDOMElement
Dim oNode As IXMLDOMNode

CHAPTER 13 ■ CODE YOU CAN STEAL! 333

Dim objXMLDOMNamedNodeMap As IXMLDOMNamedNodeMap
Dim xPError As IXMLDOMParseError
Dim Mydb As Database
' Dim myrs As ADODB.Recordset
Dim sTempValue As String

Set oDOMDocument = New MSXML2.DOMDocument40

oDOMDocument.async = False
oDOMDocument.validateOnParse = True ' You may want to parse for errors
oDOMDocument.resolveExternals = False
oDOMDocument.preserveWhiteSpace = True

' Use if XML disk file
If Not oDOMDocument.Load(AdviserXML) Then
MsgBox ("XML File error")

Set xPError = oDOMDocument.parseError
DOMParseError xPError

End If
Set oAdviserDetailsNode = oDOMDocument.documentElement
Debug.Print oDOMDocument.XML

' Use appropriate XPath expression to select nodes

' Set oNodeList = oAdviserDetailsNode.selectNodes("Envelope/Cube/Cube/@*")
Set oNodeList = oAdviserDetailsNode.selectNodes("//@*")

Debug.Print oNodeList.length

For Each oNode In oNodeList

' Debug.Print "*" & oNode.Text; oNode.nodeName & "*"

Select Case oNode.nodeName
Case "currency"

sTempValue = oNode.Text

Case "rate"
' This path is used to store a variable on the collection

On Error Resume Next
mcolRate.Remove sTempValue
mcolRate.Add oNode.Text, sTempValue
Debug.Print sTempValue & " rate " & oNode.Text

On Error GoTo ErrorHandler

CHAPTER 13 ■ CODE YOU CAN STEAL!334

End Select
Next

Set oNodeList = Nothing
Set oDOMDocument = Nothing
Set oAdviserDetailsNode = Nothing
Set objXMLDOMNamedNodeMap = Nothing
Exit Function

ErrorHandler:
' Call NewError.Raise(Err.Number, Err.Source, Err.Description)

End Function

Sub DOMParseError(xPE As IXMLDOMParseError)
' The document failed to load.
Dim strErrText As String
' Obtain the ParseError object
With xPE
strErrText = "Your XML Document failed to load" & ➥

"due the following error." & vbCrLf & ➥

"Error #: " & .errorCode & ": " & xPE.reason & ➥

"Line #: " & .Line & vbCrLf & ➥

"Line Position: " & .linepos & vbCrLf & ➥

"Position In File: " & .filepos & vbCrLf & ➥

"Source Text: " & .srcText & vbCrLf & ➥

"Document URL: " & .url
End With
Debug.Print strErrText

Dim s As String
Dim r As String
Dim i As Long
s = ""
For i = 1 To xPE.linepos - 1
s = s & " "

Next
r = "XML Error loading " & xPE.url & " * " & xPE.reason
Debug.Print r
' Show character postion of error; tired of counting chars in XML file

If (xPE.Line 0) Then
r = "at line " & xPE.Line & ", character " & xPE.linepos & vbCrLf & ➥

xPE.srcText & vbCrLf & s & "^"
End If
Debug.Print r
MsgBox strErrText, vbExclamation

End Sub

CHAPTER 13 ■ CODE YOU CAN STEAL! 335

As you can see, this one question has two excellent solutions.

Question: I want to output a sequence number as a field in a query result. Each time the
query runs, it should restart the sequence number from 1.

Answer: The code shown in Listing 13-3 performs this function.

Listing 13-3. Adding a Sequence Number to a Query

Public Function SequentialID(➥

ByVal booReset As Boolean, ➥

Optional ByVal varDummy, ➥

Optional ByVal intIncrement As Integer = 1, ➥

Optional ByVal lngInitialID As Long) ➥

As Long

' Increments static variable lngCurrentID with intIncrement.
' Returns the new value of lngCurrentID.
' Parameter varDummy is used to force repeated calls of
' this function when used in a query.
' Reset to start counting from zero incrementing by one:
' Call SequentialID(True)
' Reset to start counting from 1000:
' Call SequentialID(True, Null, 1, 1000)
' Reset to start counting from zero incrementing by 2:
' Call SequentialID(True, Null, 2)
' Reset to start counting from -2000 incrementing by -8
' and returning initial ID:
' lngID = SequentialID(True, Null, -8, -2000) '
' Retrieve the current ID:
' lngID = SequentialID(False)
' Do a count by one and retrieve the current ID:
' lngID = SequentialID(False, Null, 1)
' Do a count by one in a query and retrieve the current ID:
' lngID = SequentialID(False, [fldAnyField], 1)
' Do a count by minus two and retrieve the current ID:
' lngID = SequentialID(False, varAny, -2)

Static lngCurrentID As Long
Dim intSgn As Integer

If booReset = True Then
' Reset ID.
lngCurrentID = lngInitialID

ElseIf Not intIncrement = 0 Then
intSgn = Sgn(intIncrement)
If intSgn * lngCurrentID < intSgn * lngInitialID Then
' Reset ID.

CHAPTER 13 ■ CODE YOU CAN STEAL!336

lngCurrentID = lngInitialID
Else
' Increment ID.
lngCurrentID = lngCurrentID + intIncrement

End If
End If
SequentialID = lngCurrentID

End Function

Alternative Answer: Again, to demonstrate that developers will often come up with differ-
ent solutions to the same problem, Listing 13-4 shows another approach to this issue.

Listing 13-4. Sequential Row Numbers

Fn_RowNum() - User defined function

Function Fn_RowNum(ByVal QueryName As String, ➥

ByVal PrimaryKeyName As String, ➥

ByVal PrimaryKeyValue As Long) As Long
' Returns Row number for the record having primary key field
' named PrimaryKeyName with a value = PrimaryKeyValue,
' in source query named QueryName

Dim Rct As Long
Dim rst As DAO.Recordset

Rct = 0
Set rst = CurrentDb.OpenRecordset(QueryName)
rst.FindFirst PrimaryKeyName & " = " & PrimaryKeyValue
If Not rst.NoMatch Then

Rct = rst.AbsolutePosition + 1
End If

Fn_RowNum = Rct
rst.Close
Set rst = Nothing

End Function
=====================================

So long as the source table has a primary key field, simplified function Fn_RowNum() gets
sequential row numbers, starting from 1, as the sample query in Listing 13-4 demonstrates.
This function has an additional advantage in that the output is stable compared to alterna-
tives using increments to static or global variables, where the results are volatile and prone to
change with repeat navigation (up and down) through the column concerned. Q_Source is the
source query (where the content of source table(s) is duly collected and sorted as desired),
while ID is the name of primary key field in source table. If you want to use raw data in a single
source table directly, without any sorting, the name of this table can be used (in lieu of
Q_Source) in the following sample query:

CHAPTER 13 ■ CODE YOU CAN STEAL! 337

SELECT Q_Source.*,
Fn_RowNum("Q_Source","ID",[ID]) AS RowNum
FROM Q_Source;

The next example is a lovely bit of code written by A. D. Tejpal, one of the most talented
and original Access programmers I know. The issue this time is how to create a complete
duplicate of a currently running application, including multiple back-end Access databases,
and switch the user into this duplicate application. Once the user is finished testing in the
duplicate application, a means must be provided for that user to return to the original data-
base. I will not display all of the code here, as you will be able to download a fully working
version as part of the code downloads for this book. The function in Listing 13-5 is used to
create and link your original front-end application to the new back end.

Listing 13-5. Duplicating an Application

Private Sub P_CreateAndLinkTempBE()
On Error Resume Next ' Reqd for (A), which follows
Dim db As DAO.Database, tdf As TableDef
Dim fso As FileSystemObject
Dim Cnc As String, CncMaster As String, CncTemp As String
Dim Qst As String, BeFolderPath As String, BeFileName As String
Dim BePathOriginal As String, BePathTemp As String

Set db = CurrentDb
Set fso = New FileSystemObject

' Clear table T_Link
Qst = "Delete * From T_Link;"
db.Execute Qst, dbFailOnError

CncMaster = "" ' (See note that follows)
For Each tdf In db.TableDefs

' Get value of Connect string for the linked table
' and create temp copy of BE if the new connect
' string (Cnc) is not zero length string (i.e., BE exists)
' and it is not a repetition of any previous one (i.e., it is not
' found in CncMaster)
Cnc = tdf.Connect
' Ignore nonlinked and tables with Deleted status
If Len(Cnc) 0 And Left(tdf.Name, 1) < "~" Then

BePathOriginal = Fn_GetBeFullPath(Cnc)
BeFolderPath = Left(BePathOriginal, ➥

InStrRev(BePathOriginal, "\") - 1)
BeFileName = Mid(BePathOriginal, ➥

InStrRev(BePathOriginal, "\") + 1)

CHAPTER 13 ■ CODE YOU CAN STEAL!338

If fso.FileExists(BePathOriginal) = True Then
BePathTemp = BeFolderPath & "\" & ➥

TempPreFix & BeFileName
CncTemp = Replace(Cnc, BePathOriginal, BePathTemp)

If InStr(CncMaster, Cnc) = 0 Then
' Delete temp BE if existing
Kill BePathTemp ' (A)
' Make temp copy of this BE
fso.CopyFile BePathOriginal, BePathTemp, True
' Update value of CncMaster
CncMaster = CncMaster & "< " & Cnc

End If

' Relink the table
tdf.Connect = CncTemp
tdf.RefreshLink

Else
BePathTemp = "<< Original BE Path Is Not Valid "
CncTemp = Cnc

End If

' Append data to table T_Link
Qst = "INSERT INTO T_Link (T_Name, Link_Original, " & ➥

"Link_Current, BE_Original, BE_Current) " & ➥

"VALUES ('" & tdf.Name & "', '" & ➥

Cnc & "', '" & CncTemp & "', '" & BePathOriginal & ➥

"', '" & BePathTemp & "');"
db.Execute Qst, dbFailOnError

End If
Next

ExitPoint:
Set tdf = Nothing
Set fso = Nothing
Set db = Nothing
On Error GoTo 0

End Sub

Question: How can I select multiple records on a subform?

Answer: Once again, the answer has been provided by A. D. Tejpal. Listing 13-6 will ensure
that all records selected by the user are highlighted.

CHAPTER 13 ■ CODE YOU CAN STEAL! 339

Listing 13-6. Selecting Multiple Records on a Subform

Private Sub Form_Click()
P_SetFormat_A

End Sub
Private Sub Form_Current()

P_SetFormat_A
End Sub

Private Function Fn_SelectedBlock(ByVal PkNumber ➥

As Long) As Long
' Returns 1 if the record with this PkNumber
' falls in selected block, otherwise 0
Dim rst As DAO.Recordset
Dim RecNum As Long, InSelection As Long

InSelection = 0 ' Default
Set rst = Me.RecordsetClone
rst.FindFirst "ID = " & PkNumber
If Not rst.NoMatch Then

RecNum = rst.AbsolutePosition + 1
If RecNum = Me.SelTop And ➥

RecNum <= Me.SelTop + ➥

(Me.SelHeight - 1) Then
InSelection = 1

End If
End If

Fn_SelectedBlock = InSelection

rst.Close
Set rst = Nothing

End Function

Public Sub P_SetFormat_A()
' Sets fresh Conditional Formatting in Detail section
Dim ct As Control

For Each ct In Me.Detail.Controls
P_SetFormat_B ct.Name

Next

Me.Repaint
End Sub

CHAPTER 13 ■ CODE YOU CAN STEAL!340

Private Sub P_SetFormat_B(ByVal ControlName As String)
' Sets fresh Conditional Formatting
' (in text box named ControlName)

Dim Cdn As String

On Error Resume Next ' For controls not suited to
' conditional formatting

With Me(ControlName).FormatConditions
.Delete

Cdn = "Fn_SelectedBlock(ID) < 0"
With .Add(acExpression, , Cdn)

.BackColor = 16777164

.FontBold = True
End With

End With
On Error GoTo 0

End Sub

Question: Is it possible to check the visible property of a control on a form in another
database that is an MDE?

Answer: The function in Listing 13-7 will retrieve the visible status of a control in an exter-
nal database file. It opens the target form, but this process is invisible to the end user.

Listing 13-7. Retrieving the Visible Status of a Control in an MDE

Function Fn_IsControlVisibleInExternalDb(➥

ByVal FilePath As String, ➥

ByVal FormName As String, ➥

ByVal ControlName As String) As Boolean
' Returns True if the control is visible.
' Otherwise False On Error GoTo ErrTrap
Dim acp As Access.Application

Fn_IsControlVisibleInExternalDb = False ' Default

Set acp = New Access.Application
acp.OpenCurrentDatabase FilePath

acp.DoCmd.OpenForm FormName

If acp.Forms(FormName)(ControlName).Visible ➥

= True Then
Fn_IsControlVisibleInExternalDb = True

End If
acp.DoCmd.Close acForm, FormName

CHAPTER 13 ■ CODE YOU CAN STEAL! 341

ExitPoint:
On Error Resume Next
acp.Quit
Set acp = Nothing
On Error GoTo 0
Exit Function

ErrTrap:
MsgBox "Err " & Err.Number & " - " & Err.Description
Resume ExitPoint

End Function

Question: How can I inform users if they have added too much text to a text box?

Answer: Listing 13-8 will restrict users to inputting less than 255 characters in a text box.

Listing 13-8. Restricting Text Entered into a Text Box

Private Sub txtRegarding_Change()
' Comment: prevents users from adding too much text to the Regarding line

On Error GoTo Form_Open_ERR
If Len(Me.txtRegarding.Text) > 255 Then
MsgBox "The Regarding line can only contain 255 characters, " & ➥

"please use the message box for longer text."
Me.txtRegarding.Text = Left(Me.txtRegarding.Text, 255)

End If

Form_Open_EXIT:
Exit Sub

Form_Open_ERR:
MsgBox Err.Description
Resume Form_Open_EXIT

End Sub

Question: How can I clear a missing reference check box using VBA?

Answer: The procedure in Listing 13-9 can be called from a form’s command button.

Listing 13-9. Clearing Missing References via VBA

Private Sub CmdTest_Click()
Dim ref As Reference

For Each ref In Application.References
If ref.IsBroken = True Then

CHAPTER 13 ■ CODE YOU CAN STEAL!342

MsgBox "Missing Reference: " & ref.Name & ➥

vbCrLf & "Path: " & ref.FullPath & ➥

vbCrLf & "(This Reference has now been removed)"
Application.References.Remove ref

End If
Next

En Sub

Question: How can I change the existing criteria in a query via VBA?

Answer: You could consider the simple alternative of setting up a wrapper saved query
whose WHERE clause could be modified as required from time to time. The original query
would be a standard SELECT query, without the WHERE clause. This approach should suit
most situations unless it is a case of a Totals query, where the criteria needs to be applied
before the Group By clause. Function Fn_PutQueryFilter(), shown in Listing 13-10, will
create the required wrapper query (or modify the query if it already exists). It takes the
name of original query and the criteria string as its arguments. For example, if the original
query is named Q_A, a new query called Q_A_Filtered will be created, incorporating the
desired criteria in its WHERE clause (where query Q_A is the plain query with no WHERE
clause). If Q_A_Filtered already exists, it will be modified.

Listing 13-10. Changing Query Criteria via VBA

Function Fn_PutQueryFilter(ByVal QueryName As String, ➥

Optional ByVal CriteriaString As Variant) As Long
' Creates new saved query named QueryName_Filtered
' based upon saved query named QueryName and returns
' 1 if successful, otherwise 0
On Error GoTo ExitPoint
Dim Status As Long, Qst As String
Dim NewQueryName As String, Rtv As Variant
Dim db As DAO.Database

Status = 0 ' Default
NewQueryName = QueryName & "_Filtered"
If IsMissing(CriteriaString) Or ➥

Len(Nz(CriteriaString, "")) = 0 Then
Qst = "Select * From " & QueryName & ";"

Else
Qst = "Select * From " & QueryName & ➥

" Where " & CriteriaString & ";"
End If

Set db = CurrentDb
On Error Resume Next
Rtv = db.QueryDefs(NewQueryName).Name

CHAPTER 13 ■ CODE YOU CAN STEAL! 343

If Err.Number = 0 Then
db.QueryDefs(NewQueryName).SQL = Qst

Else
db.CreateQueryDef NewQueryName, Qst

End If
Err.Clear

db.QueryDefs.Refresh

Status = 1

ExitPoint:
Fn_PutQueryFilter = Status
On Error GoTo 0

End Function

Question: Given the following data:

1234,Name,Address
1234,Name,Address
1234,Name,Address
1234,Name,Address
2345, Name Address
2345,Name Address

How can I get a mailing label structured as follows?

1234, Name1, Name2,Name3,Name4
Address

2345,Name1,Name2

Answer: The sample query in Listing 13-11 should get you the desired label strings for
each distinct four-digit identifier prefix. It makes use of function Fn_GetLabel().
DataString is the name of the field holding comma-separated raw data in table T_Data.

Listing 13-11. Creating Label Strings

SELECT Query
=====================================
SELECT Left([DataString],4) AS PreFix, Fn_GetLabel(Left([DataString],4)) ➥

AS LabelString FROM T_Data
GROUP BY Left([DataString],4);
=====================================

CHAPTER 13 ■ CODE YOU CAN STEAL!344

Function Fn_GetLabel(ByVal IdString As String) As String
On Error Resume Next
Dim rst As DAO.Recordset
Dim Txt As String, Qst As String, Rtv As Variant

Txt = "" ' Default
Qst = "SELECT * FROM T_Data " & ➥

"Where Left(DataString, 4) = '" & ➥

IdString & "';"
Set rst = CurrentDb.OpenRecordset(Qst)

Do While Not rst.EOF
Rtv = Split(rst.Fields("DataString"), ",")
Txt = Txt & IIf(Len(Txt) > 0, ",", "") & Rtv(1)
rst.MoveNext

Loop

Txt = IdString & "," & Txt & "," & Rtv(2)
Fn_GetLabel = Txt

rst.Close
Set rst = Nothing
On Error GoTo 0

End Function

Question: Using a continuous form, I want to type in the text box and have the form go to
the first record that matches what I typed. How can I do this without filtering?

Answer: If the form is used independently, the sample code in the form’s module in
Listing 13-12 will perform the required action. If the form is used as a subform and the
desired search value is contained in a text box on the parent form, sample code in the par-
ent form’s module in Listing 13-13 would apply. MyNumberField and MyTextField are
names of pertinent bound controls on the continuous form.

■Note The value of ControlSource is used in VBA statements in order to provide situations where the
name of the bound control is different from its control source.

■Note In Listing 13-12, TxtSearch is a text box in the header or footer of the form.

CHAPTER 13 ■ CODE YOU CAN STEAL! 345

Listing 13-12. Code in Module of Independent Continuous Form

' For locating number type field
Me.Recordset.FindFirst ➥

Me.MyNumberField.ControlSource & ➥

" = " & Me.TxtSearch
' For locating text type field
Me.Recordset.FindFirst ➥

Me.MyTextField.ControlSource & ➥

" = '" & Me.TxtSearch & "'"

■Note In Listing 13-13, TxtSearch is a text box on parent form. SF_SearchSub is the name of control on
the parent form, acting as container for the subform.

Listing 13-13. Code in Module of Parent Form

' For locating number type field on subform
Me.SF_SearchSub.Form.Recordset.FindFirst ➥

Me.SF_SearchSub("MyNumberField").ControlSource & ➥

" = " & Me.TxtSearch
' For locating text type field on subform
Me.SF_SearchSub.Form.Recordset.FindFirst ➥

Me.SF_SearchSub("MyTextField").ControlSource & ➥

" = '" & Me.TxtSearch & "'"

Question: How can I check whether a particular field exists using VBA?

Answer: The code in Listing 13-14 will search for an existing field in the specified table.

Listing 13-14. Checking for Field Existence

Function Fn_FieldExists(ByVal FieldName As String, ➥

ByVal TableName As String) As Boolean
On Error Resume Next
Fn_FieldExists = Not IsError(DLookup(FieldName, TableName))

End Function

Question: How can I filter a report using the values in a multiple-selection list box?

Answer: Listing 13-15 shows how to check the values in a list box and filter a report using
the results.

CHAPTER 13 ■ CODE YOU CAN STEAL!346

Listing 13-15. Filtering a Report Using a List Box

Dim frm As Form, ctl As Control
Dim varItem As Variant
Dim strSQL As String

Set frm = Me
Set ctl = frm!lstBusType
strSQL = "[BusTypeID]="
For Each varItem In ctl.ItemsSelected

strSQL = strSQL & ctl.ItemData(varItem) & " OR [BusTypeID]="
Next varItem

strSQL = Left$(strSQL, Len(strSQL) - 16)
DoCmd.OpenReport "rptBusinessType", acViewPreview, , strSQL

Question: How can I delete a table using VBA?

Answer: On this occasion, the response is based on using ADO as opposed to DAO, which
illustrates the need to be reasonably flexible in your coding approach. Listing 13-16
demonstrates how to delete a table using VBA.

Listing 13-16. Deleting a Table Using VBA

Dim cnn as ADODB.Connection
Dim rs as ADODB.Recordset
Set cnn=new ADODB.Connection
Cnn.Provider="Microsoft.Jet.OLEDB.4.0"
Cnn.Open "D:\Test.mdb" ' Change this to the path of the database you want to

' use this for
Set rs = Cnn.OpenSchema(adSchemaTables)
If rs.EOF = False Then rs.MoveFirst
Do Until rs.EOF = True

If rs.Fields("TABLE_NAME").Value = "schednew" Then
Cnn.Execute "DROP TABLE schednew"

End if
Rs.movenext
Loop
Rs.close
Set rs=nothing
Cnn.close
Set cnn=nothing

This will work from outside the database. To use this inside, change it to the code used in
Listing 13-17.

CHAPTER 13 ■ CODE YOU CAN STEAL! 347

Listing 13-17. Deleting a Table from an External Source

Dim cnn as ADODB.Connection
Dim rs as ADODB.Recordset
Set cnn=CurrentProject.Connection
Set rs = Cnn.OpenSchema(adSchemaTables)
If rs.EOF = False Then rs.MoveFirst
Do Until rs.EOF = True

If rs.Fields("TABLE_NAME").Value = "schednew" Then
Cnn.Execute "DROP TABLE schednew"
End if
Rs.movenext
Loop
Rs.close
Set rs=nothing
Set cnn=nothing

Question: How can I print out the fields for each table within a database?

Answer: The code in Listing 13-18 uses ADO to accomplish this task. Please ensure you
have set the appropriate references in Access 2007.

Listing 13-18. Printing Out Table Fields

Public Sub GetTablesFields()
Dim cnn As ADODB.Connection
Dim rstTbl As ADODB.Recordset
Dim rstCol As ADODB.Recordset
Set cnn = CurrentProject.Connection
Set rstTbl = cnn.OpenSchema(adSchemaTables, Array(Empty, Empty, Empty, "Table"))
' List tables.
With rstTbl
Do While Not .EOF = True
Debug.Print .Fields(2).Value
Set rstCol = cnn.OpenSchema(adSchemaColumns, ➥

Array(Empty, Empty, CStr(.Fields(2).Value)))
' List fields of table.
With rstCol
Do While Not .EOF = True
Debug.Print vbTab & .Fields(3).Value
.MoveNext

Loop
.Close

End With
.MoveNext

Loop
.Close

End With

CHAPTER 13 ■ CODE YOU CAN STEAL!348

If rstCol.State = adStateOpen Then
rstCol.Close

End If
If rstTbl.State = adStateOpen Then
rstTbl.Close

End If
If cnn.State = adStateOpen Then
cnn.Close

End If
Set rstCol = Nothing
Set rstTbl = Nothing
Set cnn = Nothing

End Sub

Question: I have got a user running a database in Access. A list of names have been input
into a single “name” field, rather than using both a “last name” field and a “first name”
field. How would I split these names up, taking into account the fact that there are some
“double” first names—for example, Jr. and Sr. suffixes?

Answer: The function shown in Listing 13-19 will solve this issue including the suffixes.

Listing 13-19. Splitting Names Including Suffixes

Function Fn_FirstName(ByVal FullName As String) As String
' Returns first name
Dim Txt As String, Cnt As Long
Dim SuffixList As String, Rtv As Variant
SuffixList = "Sr-Jr-Dr-Esq-Rev-Hon-Sir-Lord"
Txt = FullName
Rtv = Split(SuffixList, "-")
For Cnt = 0 To UBound(Rtv)

Txt = Trim(Replace(Txt, " " & Rtv(Cnt), ""))
Next
Fn_FirstName = Trim(Left(Txt, InStrRev(Txt, " ") - 1))

End Function

Function Fn_LastName(ByVal FullName As String) As String
' Returns last name
Dim Txt As String

Txt = Fn_FirstName(FullName)
Fn_LastName = Trim(Mid(FullName, Len(Txt) + 1))

End Function

CHAPTER 13 ■ CODE YOU CAN STEAL! 349

Question: How can I set the color of a text box based on its value?

Answer: Listing 13-20 will do this for you.

Listing 13-20. Changing a Text Box Color Based on Its Value

Private Function SetTest(ByVal varValue As Variant) As Variant

Dim lngForeColor As Long

With Me!txtTest
' Specify default ForeColor value.
lngForeColor = vbBlack
If IsNumeric(varValue) Then
If Val(varValue) > 500 Then
lngForeColor = vbBlue

Else
lngForeColor = vbRed

End If
End If
' Make other tests.
' ...
' Set ForeColor
.ForeColor = lngForeColor

End With

SetTest = varValue

End Function

The function is then called by setting the ControlSource of text box txtTest to

=SetTest([txtInput])

Question: How can I prevent users from entering data into a subform before they enter
data into the main form?

Answer: Assume SF_01 is the name of a control on main form, acting as container for the
subform in question. Adding the code shown in Listing 13-21 to the control’s Enter event
will ensure that if a user tries to go into it while it happens to be in a locked state, there
will be a message followed by a transfer of focus to the required control on the main form.

Listing 13-21. Locking Subform Controls

Private Sub SF_01_Enter()
If SF_01.Locked = True Then

MsgBox "Please Make Entry In ... First"
ControlOnParentForm.SetFocus

End If
End Sub

CHAPTER 13 ■ CODE YOU CAN STEAL!350

Question: I have a custom toolbar for reports that gets displayed in report preview if the
database is an MDE. It has only a printer icon, close button, and zoom control. The pag-
ing navigation is, of course, at the lower left of the screen in preview mode. Can I add
navigation buttons to the custom toolbar where an inexperienced user might be more
likely to see them?

Answer: The code in Listing 13-22, when added to the module of a pop-up form, enables
page navigation of report named R_Test. A command button named CmdNext allows users
to step forward through the pages, while the button named CmdPrev does the reverse. You
might like to adapt it suitably for your specific situation.

■Note For the SendKeys command (up or down arrow) to be effective, it is necessary that the report be in
FitToWindow mode and that the report’s window is the active one.

Listing 13-22. Report Page Navigation

Code module for Pop Up Form
' Declarations Section
Private RepHdw As Long, FrmHdw As Long

Private Declare Function BringWindowToTop Lib "user32" ➥

(ByVal hwnd As Long) As Long
Private Sub CmdNext_Click()

DoCmd.Echo False
Me.Visible = False
BringWindowToTop RepHdw
DoCmd.RunCommand acCmdFitToWindow
SendKeys "{DOWN}", True
DoCmd.RunCommand acCmdZoom100
Me.Visible = True
BringWindowToTop FrmHdw
DoCmd.Echo True

End Sub

Private Sub CmdPrev_Click()
DoCmd.Echo False
Me.Visible = False
BringWindowToTop RepHdw
DoCmd.RunCommand acCmdFitToWindow
SendKeys "{UP}", True
DoCmd.RunCommand acCmdZoom100
Me.Visible = True
BringWindowToTop FrmHdw
DoCmd.Echo True

End Sub

CHAPTER 13 ■ CODE YOU CAN STEAL! 351

Private Sub Form_Activate()
DoCmd.Restore

End Sub

Private Sub Form_Load()
RepHdw = Reports("R_Test").hwnd
FrmHdw = Me.hwnd

End Sub

Question: Is it possible to set the cursor at the beginning of a field when it receives the focus?

Answer: The following line of code sets the cursor to the last position of a piece of data in
a field:

txtMyFormField.SelStart = txtMyFormField.SelLength

Question: How can I deselect all items in a multiple-selection list box?

Answer: Attach the code in Listing 13-23 to a command button. Remember to change the
list box reference (lstCompany) to your own reference.

Listing 13-23. Deselecting All Items in a List Box

Private Sub CmdClearList_Click()
Dim lcv As Integer

For lcv = 0 To lstCompany.ListCount - 1
lstCompany.Selected(lcv) = False

Next lcv
End Sub

Question: Is there a SQL syntax or method for identifying duplicate records and automati-
cally removing (or marking) the second and subsequent instances of that record?

Answer: The sample query in Listing 13-24 will remove all duplicates (other than the first
occurrence for each case). T_Data is the name of table, while F1, F2, and F3 are the names
of fields whose combined value determines whether a record is a duplicate or not. ID is
the primary key.

Listing 13-24. Removing Duplicate Records

DELETE * FROM T_Data
WHERE (SELECT Count(*) FROM T_Data As T1
WHERE (T1.F1 & T1.F2 & T1.F3 = T_Data.F1 & T_Data.F2 & T_Data.F3)
AND (T1.ID <= T_Data.ID)) > 1;

To finish off the book, here is something just for fun: the code to create a route using
Microsoft Virtual Earth to Area 51! Listing 13-25 is an example of just playing with Access
and seeing what you can see. However, it shows what’s possible, and it does have a serious
side, too (it shows the use of XML and the Internet within an application). Please be very
careful with the wrapping in the code, as it is fairly complicated and easy to make a mistake.

CHAPTER 13 ■ CODE YOU CAN STEAL!352

This is not something every developer will do or indeed want to do, but it is a fine example
of pushing VBA and Access to the limit and demonstrates what can be done with skill and
imagination. The code is here to make it fairly easy for you to read through it. A working
example is available in the code download for this book. Personally, I found it very instruc-
tive. For those who would like to explore the possibilities of this a little further, the following
web sites will be useful:

• http://dev.live.com/virtualearth/sdk/

• http://www.ftponline.com/special/web20/pvarholasp/default.aspx

Also note that some of the functions within the following code module are useful in their
own right—for example, the creation of HTML strings and output to an HTML file in the cur-
rent database directory. To try out the function, run the following in the intermediate window:

testVirtualEarthMap
testVirtualEarthMapRoute

Also note the HTML file output to the Intermediate window once the procedure has been
executed.

Listing 13-25. Going to Area 51

' MashUp Using Virtual Earth

Function testVirtualEarthMap()
'------------------
' Display Virtual Earth at a fixed latitutude and longitude
' then click the map to display lat/long position of cursor.
' For info see
' http://dev.live.com/virtualearth/sdk/
' http://www.ftponline.com/special/web20/pvarholasp/default.aspx

Dim objExplorer As Object
Dim objDocument As Object
Dim strHTML As String

Set objExplorer = CreateObject("InternetExplorer.Application")

objExplorer.Navigate "about:blank"
objExplorer.Toolbar = 1 ' 0= off
objExplorer.StatusBar = 1 ' 0 =off
objExplorer.Width = 800
objExplorer.Height = 870
objExplorer.Left = 0
objExplorer.Top = 0
objExplorer.Visible = 1

Do While (objExplorer.Busy)
Loop

CHAPTER 13 ■ CODE YOU CAN STEAL! 353

Set objDocument = objExplorer.Document
objDocument.Open
' Create HTML string and dump to a test file
strHTML = ""
strHTML = strHTML & createhtml
' Output HTML file to same directory as MDB.
' Use HTML for debugging or later viewing in IE.

WriteFile CurrentDBDir & "test.html", strHTML

objDocument.Write strHTML
objExplorer.Refresh ' ??This has to be done because

' of http://local.live.com/veapi.ashx
'objDocument.Close 'stall here
Do While (objExplorer.Busy)
Loop
'MsgBox "finished"
'Set objExplorer = Nothing
'Set objDocument = Nothing

End Function

Function testVirtualEarthMapRoute()
'------------------
' Display Virtual Earth at a fixed lat/long
' then click the map to display lat/long position of cursor.
' This then displays a route map from Microsoft.
' There will be a 5-10 second pause while route map comes up.
' For info see
' http://dev.live.com/virtualearth/sdk/
' http://www.ftponline.com/special/web20/pvarholasp/default.aspx

Dim objExplorer As Object
Dim objDocument As Object
Dim strHTML As String
Dim strFileHTML As String
Set objExplorer = CreateObject("InternetExplorer.Application")

objExplorer.Navigate "about:blank"
objExplorer.Toolbar = 1 ' 0= off
objExplorer.StatusBar = 1 '0 =off
objExplorer.Width = 800
objExplorer.Height = 870
objExplorer.Left = 0
objExplorer.Top = 0
objExplorer.Visible = 1

CHAPTER 13 ■ CODE YOU CAN STEAL!354

Do While (objExplorer.Busy)
Loop

Set objDocument = objExplorer.Document
objDocument.Open
' Create HTML string and dump to a test file
' strHTML = ""
' strHTML = strHTML & createhtml

'WriteFile "c:\gis\test.html", strHTML
strFileHTML = CurrentDBDir

strHTML = createhtmlroute

' Output HTML file to same directory as MDB.
' Use HTML for debugging or later viewing in IE.

WriteFile CurrentDBDir & "route.html", strHTML

objDocument.Write strHTML
objExplorer.Refresh ' ??This has to be done

' because of http://local.live.com/veapi.ashx
'objDocument.Close 'stall here
Do While (objExplorer.Busy)
Loop
objExplorer.Refresh
' Might be able to retrieve text route directions
' via this method.
'Dim strHTMLout As String
'strHTMLout = objExplorer.Document.BODY.parentElement.outerHTML
Debug.Print strHTML
'Set objExplorer = Nothing
'Set objDocument = Nothing
End Function

Private Sub WriteFile(ByVal sFileName As String, ByVal sContents As String)
' Dump XML or HTML string to file for debugging

Dim fhFile As Integer
fhFile = FreeFile
' Debug.Print "Length of string=" & Len(sContents)
Open sFileName For Output As #fhFile
Print #fhFile, sContents;
Close #fhFile
Debug.Print "Out File" & sFileName

End Sub

CHAPTER 13 ■ CODE YOU CAN STEAL! 355

Public Sub ReadFile(ByVal sFileName As String, ByRef sContents As String)
' Dump XML string to file for debugging
Dim strLine As String
Dim intLine As Long
Dim fhFile As Integer

intLine = 0
sContents = ""
fhFile = FreeFile
' Debug.Print "Length of string=" & Len(sContents)
Open sFileName For Input As #fhFile

Do While Not EOF(1) ' Loop until end of file.
Input #1, strLine ' Read data
intLine = intLine + 1
sContents = sContents & strLine
'Debug.Print sContents ' Print data to Debug window.

Loop
Close #fhFile ' Close file.

Debug.Print "Input File" & sFileName & " lines=" & intLine
End Sub

Function createhtml() As String
Dim strHTML As String
strHTML = ""
strHTML = strHTML & "<html><head><title>Virtual Earth Map</title></head>"
strHTML = strHTML & "<meta http-equiv=""Content-Type"" ➥

content=""text/html; charset=utf-8"">"
' When your page has referenced the map control, set up the call to display
' a default map by completing a LoadMap () method call:
strHTML = strHTML & vbCrLf & "<script ➥

src='http://dev.virtualearth.net/mapcontrol/v3/mapcontrol.js'></script> "
' strHTML = strHTML & vbCrLf & "<script type='text/javascript' ➥

src='http://local.live.com/veapi.ashx'></script>"
strHTML = strHTML & vbCrLf & "<script language=""javascript"" ➥

type=""text/javascript"">"
' strhtml = strhtml & vbCrLf & "<!-- "
strHTML = strHTML & vbCrLf & " var map=null;"
strHTML = strHTML & vbCrLf & " function ShowLatLon(e)"
strHTML = strHTML & vbCrLf & " {"
strHTML = strHTML & vbCrLf & "alert('Latitude = ' + e.view.LatLong.Latitude + ➥

' Longitude = ' + e.view.LatLong.Longitude);"
strHTML = strHTML & vbCrLf & " }"
strHTML = strHTML & vbCrLf & " function GetMap()"
strHTML = strHTML & vbCrLf & " { "
strHTML = strHTML & vbCrLf & " map = new VEMap(""myMap"");"
strHTML = strHTML & vbCrLf & "map.onLoadMap = function(){ alert➥

('The map has loaded.') };"

CHAPTER 13 ■ CODE YOU CAN STEAL!356

strHTML = strHTML & vbCrLf & " map.LoadMap(new VELatLong➥

(48.51, -123.36), 10 ,""h"" ,false);"
strHTML = strHTML & vbCrLf & " map.AttachEvent(""onclick"", ShowLatLon);"
strHTML = strHTML & vbCrLf & " }"
strHTML = strHTML & vbCrLf & "</script>"
' strhtml = strhtml & vbCrLf & "// -->"
' Last, you display the map:
strHTML = strHTML & vbCrLf & "<body onload='GetMap();'>"
strHTML = strHTML & vbCrLf & "<div id='myMap' ➥

style='position:relative; width:600px; height:600px;'></div>"
strHTML = strHTML & vbCrLf & "<td> right or left click map for ➥

latitude longitude position </td>"
strHTML = strHTML & vbCrLf & "</body>"
strHTML = strHTML & vbCrLf & "</html>"
'WriteFile CurrentDBDir & "test.html", strHTML
createhtml = strHTML
End Function
Function CurrentDBDir() As String
Dim strDBPath As String
Dim strDBFile As String

strDBPath = CurrentDb.Name
' May need to call Win API apiFindFirstFile
' to get true name, otherwise DOS contracted form.
strDBFile = Dir(strDBPath)
CurrentDBDir = Left$(strDBPath, Len(strDBPath) - Len(strDBFile))

End Function

Function GetDirPath() As String
Dim db As Database
Set db = CurrentDb
GetDirPath = db.Name
GetDirPath = fGetLongName(GetDirPath)
End Function
Function CurrentDBDirLong() As String
Dim strDBPath As String
Dim strDBFile As String

strDBPath = CurrentDb.Name
' strDBPath = fGetLongName(strDBPath) 'removes "~" in path
strDBFile = Dir(strDBPath)
CurrentDBDirLong = Left$(strDBPath, Len(strDBPath) - Len(strDBFile))

End Function

Function createhtmlroute() As String
Dim strHTML As String
strHTML = ""
strHTML = strHTML & "<html><head><title>Route Microsoft ➥

To Area 51 Virtual Earth Map</title></head>"

CHAPTER 13 ■ CODE YOU CAN STEAL! 357

' strHTML = strHTML & "<meta http-equiv=""Content-Type"" content=""text/html; ➥

charset=utf-8"">"
' When your page has referenced the map control, set up the call to display
' a default map by completing a LoadMap () method call:
strHTML = strHTML & vbCrLf & "<script src=➥

'http://dev.virtualearth.net/mapcontrol/v3/mapcontrol.js'></script> "
' strHTML = strHTML & vbCrLf & "<script type='text/javascript'➥

src='http://local.live.com/veapi.ashx'></script>"
strHTML = strHTML & vbCrLf & "<script language="➥

"javascript"" type=""text/javascript"">"
' strhtml = strhtml & vbCrLf & "<!-- "
strHTML = strHTML & vbCrLf & " var map;"
strHTML = strHTML & vbCrLf & " function GetMap ()"
strHTML = strHTML & vbCrLf & " {"
strHTML = strHTML & vbCrLf & " map = new VEMap (""myMap"")"
strHTML = strHTML & vbCrLf & " alert (""1"");"
strHTML = strHTML & vbCrLf & " map.LoadMap(new VELatLong➥

(48.51, -123.36), 10 ,""h"" ,false)"
strHTML = strHTML & vbCrLf & " alert (""12"");"
strHTML = strHTML & vbCrLf & " map.GetRoute(""microsoft"", ➥

""area 51"",null,null,onGotRoute)"
' strHTML = strHTML & vbCrLf & " alert (""13"");"
strHTML = strHTML & vbCrLf & " }"
strHTML = strHTML & vbCrLf & " function onGotRoute(route)"
strHTML = strHTML & vbCrLf & " {"
strHTML = strHTML & vbCrLf & " var routeinfo=""Route info:\n\n"";"
strHTML = strHTML & vbCrLf & " routeinfo += ""Total distance: "";"
strHTML = strHTML & vbCrLf & " routeinfo += route.Itinerary.Distance+"" "";"
strHTML = strHTML & vbCrLf & " routeinfo += route.Itinerary.DistanceUnit+""\n"";"
strHTML = strHTML & vbCrLf & " var steps="""";"
strHTML = strHTML & vbCrLf & " var len = route.Itinerary.Segments.length;"
strHTML = strHTML & vbCrLf & " for(var i = 0; i<len ;i++)"
strHTML = strHTML & vbCrLf & " {"
strHTML = strHTML & vbCrLf & " steps+=➥

route.Itinerary.Segments[i].Instruction+"" -- ("";"
strHTML = strHTML & vbCrLf & " steps+=➥

route.Itinerary.Segments[i].Distance+"") "";"
strHTML = strHTML & vbCrLf & " steps+=route.Itinerary.DistanceUnit+""\n"";"
strHTML = strHTML & vbCrLf & " }"
strHTML = strHTML & vbCrLf & " routeinfo += ""Steps:\n""+steps;"
strHTML = strHTML & vbCrLf & " alert(routeinfo);"
strHTML = strHTML & vbCrLf & " }"
strHTML = strHTML & vbCrLf & "</script>"
' strhtml = strhtml & vbCrLf & "// -->"
' Last, you display the map:
strHTML = strHTML & vbCrLf & "<body onload='GetMap();'>"

CHAPTER 13 ■ CODE YOU CAN STEAL!358

strHTML = strHTML & vbCrLf & "<div id='myMap' ➥

style='position:relative; width:600px; height:600px;'></div>"
strHTML = strHTML & vbCrLf & "<td> right or left click map for ➥

latitude longitude position </td>"
strHTML = strHTML & vbCrLf & "</body>"
strHTML = strHTML & vbCrLf & "</html>"
'WriteFile CurrentDBDir & "test.html", strHTML
createhtmlroute = strHTML
End Function

Summary
In this chapter, I have provided many examples of real-world Access programming issues,
some minor, some more complex—but all should prove useful. The examples here come
from real working developers who give freely of their time and experience to help other
developers. The Internet is full of communities like AccessD, but AccessD is different in
many ways from most other lists. It is a community of peers and professional developers,
but mostly friends, and it is an honor to be a part of it and to learn from some of the best
Access developers around.

So that’s about it: we started looking at what’s new in Access 2007, took a tour of SQL
Server and Windows SharePoint Services, and ended up at Area 51—sounds about right for
a day in the life of an Access developer!

CHAPTER 13 ■ CODE YOU CAN STEAL! 359

RibbonX and Custom Add-Ins

This text is reproduced with the permission of Patrick Schmid, who maintains one of the
most informative RibbonX web sites on the Internet (http://pschmid.net).

RibbonX lets you do a lot of things, but which actions are the right ones? How should your
add-in behave and integrate itself into the Office UI? Where should you place your add-in?
Which modifications are OK, and which are not? This appendix provides some guidance on
these topics. In a more generic sense, I am going to talk about user interface style guidelines.
When you take RibbonX into your hands, the deciding factor on what you should do is whether
you control (directly or indirectly) the Office application. You control the Office application if
any of the following applies:

• You are writing a full-fledged application based on it. The two most notable examples
are Access 2007 applications and Excel dictator applications. In both situations, your
code completely takes over the Office application, frequently to the point where the
user does not even recognize anymore that there is an underlying Office application.

• You are modifying the Ribbon of your own personal copy of Office 2007.

• You are designing the corporate “look” of an Office application. Many corporations
choose to roll out Office applications with a set of add-ins and with a UI that is cus-
tomized to the needs of their corporate users.

• You are developing a template or document that is rather unique and offered in a cor-
porate environment. A good example for a rather unique template is Word’s blogging
feature, which displays very different tabs. However, the blogging template does not fit
into the controlled category per se, because a user could install add-ins that modify
those tabs. If the blogging template were to be used in a corporate environment with
IT preventing users from installing any add-ins themselves, it would be considered
controlled.

• You are developing an add-in for a corporate environment. Generally, corporate IT con-
trols which add-ins can be installed, and hence you have some control about which
other add-ins are changing the user interface.

361

A P P E N D I X

You do not control the Office application if

• You don’t know and/or can’t influence what other add-ins, documents, and/or tem-
plates might be installed.

• You are not developing for one particular client. That means you are developing a com-
mercial add-in that is available for anyone who wants to have it (via a free download,
purchase, and so on). If you are developing a customized solution for one particular
client, you might be dealing with a controlled situation, but not necessarily.

The distinction between controlled and uncontrolled is crucial, because in an uncon-
trolled situation, you do not know (and have no way of finding out) what other add-ins, docu-
ments, or templates (which Microsoft collectively refers to as “solutions,” but here will be
referred to by the umbrella term “add-ins”) might be doing to the user interface. You also do
not have any way of figuring in changes to the basic user interface by Microsoft. Office 14
might seem far away (Microsoft is skipping version 13), but your program might be around a
lot longer than 2 or 3 years on a machine. In addition, you cannot control which locale (user
interface language) a user is running your add-in with. With Office 2007, changing the UI lan-
guage is as simple as a few mouse clicks, given that appropriate language packs are installed.

If two add-ins modify the same element on the Ribbon, the last one to load wins. As
you cannot control nor predict whether your add-in will be the last one to load, this is an
extremely indeterministic situation—one you should avoid at all cost. Therefore, whether
you are working in a controlled or uncontrolled situation, keep your UI modifications to a
minimum. Let’s now discuss the implications of both situations and then talk about modi-
fying the Ribbon UI in general.

Controlled Situation
In a controlled situation, you could do whatever you want. I say “could,” because you should
restrain yourself and follow these guidelines:

• Do not use RibbonX to restore an Office 2003–like UI. This might be tempting to avoid
the training costs associated with upgrading, but it is not a forward-looking invest-
ment. Future upgrades from Microsoft will probably require additional work. Most
importantly, though, you are not reaping any benefits from the new UI design. If you
want an Office 2003–like UI, stick with Office 2003 and do not upgrade.

• You will want to make sure that your UI is similar in behavior to the Office UI, so that
users can transfer their knowledge of how to use Microsoft components to your own
components. Users might have no familiarity with the Office 2007 UI experience cur-
rently, but they will definitely have some one year from now, and they will expect
identical behavior from your program. Follow the general UI guidelines to ensure this.

• Do not use the startFromScratch attribute for the Ribbon tag unless you are developing
an application based on an Office application. startFromScratch truly means that the
Ribbon starts from scratch. This is a killer approach when you have to deal with more
than one add-in, even in a controlled scenario. Avoid it, avoid it, avoid it! If you have to
use it, remember that you should ensure that only one add-in, namely yours, contains

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS362

RibbonX. If you use startFromScratch in a scenario with two or more add-ins modify-
ing the Ribbon UI, you are setting yourself up for a disaster. You should also know that
startFromScratch does not reset the contextual tabs. Even with startFromScratch, all
contextual tabs will still be there and look as they were created by Microsoft. The only
way to deal with them in this case is to individually alter or hide them.

• Decide carefully about what you place in the Quick Access Toolbar. There are only 40
spots, and every one you use is one less your user has available. Users can place any
Ribbon control on the Quick Access Toolbar and might want to make good use of this,
even in a strictly controlled corporate environment. In contrast to previous Office ver-
sions, your users will not be able to mess up most of the user interface, and so won’t
generate lots of support requests as a result. You should therefore leave them some free-
dom to do with their Quick Access Toolbar what they like. Microsoft preloads the Quick
Access Toolbar with three to five controls. I suggest that you keep the number of pre-
loaded Quick Access Toolbar items to less than 15 (including the Microsoft ones). Note
that you can only modify the Quick Access Toolbar if you are using startFromScratch.

• “Everything starts from the Ribbon.” Microsoft didn’t follow this mantra 100% of the
time. (There are commands not in the Ribbon that can be added to the Quick Access
Toolbar. Some exist by default only in the Quick Access Toolbar, namely Undo and
Redo.) However, you should try to follow it as best as you can. That means do not put a
control only in the Quick Access Toolbar. All your controls should be either in the Office
button menu or on the tabs, and only added to the Quick Access Toolbar as an addi-
tional means to find it. So do not use the Quick Access Toolbar as the primary and only
location for a functionality. Remember that a user can remove any item on the Quick
Access Toolbar with a right-click followed by a left-click; if that is the only place where
a user can access some functionality and the user removes it, he or she will probably
need support to get it back.

Uncontrolled Situation
In this kind of situation, you really have to be a good Office citizen. The most important guide-
lines to follow are these:

• Do not use startFromScratch.

• Do not put anything in the Quick Access Toolbar. The Quick Access Toolbar is for the
user to use, not for you to advertise your add-in. If the user wants to put any of your
functionality in the Quick Access Toolbar, he or she can do so manually. You, however,
should never touch the Quick Access Toolbar with RibbonX. Note that you can modify
the Quick Access Toolbar only if you are using startFromScratch, which you should
never do in this situation.

• Remember, your add-in is not the most important thing in the Office user interface.
Do not make it prominently available just because you can.

• “Everything starts from the Ribbon” applies as well to uncontrolled situations, obviously.

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS 363

• Follow the general UI guidelines outlined in the next section.

• Make your add-in fit in with the rest of Office 2007.

• Mark your add-in clearly as such in the UI. If your add-in blends seamlessly with
Microsoft features and there is no way to distinguish your add-in from any Microsoft
component, your users will first go to Microsoft for help. Microsoft’s web site already
gets more traffic than your web site, so why increase it even more? To mark your add-in,
include the words “add-in” somewhere where the user can see it. For example, include
it as part of the group label. Or add a labeled menu separator to the top of a menu like
I did for my own add-in:

• Tell your users how to get in touch with you. For example, I include an About button
that shows a dialog box with the URL for my web site on it.

General UI Guidelines
After discussing the general implications of each situation, we will now turn our attention to
more generic guidelines that apply in both situations.

Repurposing Commands
RibbonX lets you “hijack” any MS command and redirect it to your own add-in. As with
any RibbonX conflicts, if two add-ins repurpose the same command, the last add-in to load
wins. Except for a controlled situation, you should never repurpose a command. Even in a con-
trolled situation, repurpose only when there is a very good reason (doing so in your own
application based on an Office application is the only one that comes to my mind). Whenever
you repurpose a command, the original functionality of the command is no longer accessible
to the user or any other add-in at all. There is no workaround; the access to the Microsoft func-
tionality is gone while your add-in is loaded. Repurposing is tempting, but following are two
examples why you should not use it.

Word 2007 has built-in functionality for creating citations and bibliographies. However,
that functionality is inferior compared to a full-fledged citation manager like EndNote. End-
Note comes with an add-in for Word to easily insert citations into documents. It would be
tempting for the creators of EndNote to repurpose the Word 2007 controls for the Citations &
Bibliography group on the References tab with a new version of the EndNote add-in to provide
seamless integration into Word 2007. What happens though if the user gets a document that

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS364

was created using the built-in feature? If EndNote repurposed all the built-in commands, the
user would not have any way of editing those citations, because access to the MS functionality
would be gone. Repurposing in this situation proves even more problematic if another cita-
tion manager, RefWorks, decides to do the same. If a user installs both, the user might one day
have access to EndNote via the built-in UI items and another day have access to RefWorks,
simply depending on which add-in managed to load first on a given day. A much better solu-
tion would be for EndNote and RefWorks to each add its own group to the References tab and
leave the MS commands alone.

As another example of the pitfalls of repurposing, take the control for labels that appears in
the Create group on the Mailings tab. As you might know, label manufacturers provide add-ins
for Word that are designed to work specifically with their labels. What if two label manufactur-
ers, say Avery and Herma, both decide to repurpose that particular control to provide access to
their custom label wizards? If a user installed both, which is quite plausible, he or she would
have access to only one of the two wizards, again depending on the load order of the add-ins.
The user would also lose access to the MS label functionality.

Adding to the Home Tab
If you want your add-in to be visible immediately when a user opens a Ribbon application,
where do you put it? On the Home tab, of course. Are the commands of your add-in among
the 80% most used commands when you count all MS and add-in commands? No? Does your
add-in provide functionality that is similar to the functionality of the MS commands on the
Home tab (or expands on it, for example, by providing a button for Paste Special as Image)?
No? If you answered no to both, what is your add-in doing on the Home tab?

Do not put your add-in on the Home tab simply because you want users to be able to find
it. Advertising your add-in is not a good reason to clutter the Home tab. Be a good Office citizen
and remember that the Home tab is for the functionality that a user accesses 80% of the time.

Creating Your Own Tab
It is tempting to create your own tab, but do you really need it, or do you just want to adver-
tise your add-in (as it would be prominently displayed with the other tabs at all times)? The
rule for creating your own tab is simple: if you can fill the tab, make one; otherwise do not. If
your add-in can be logically categorized to fit into any of the existing tabs, put it there, except
if you really need the space of a full tab. A full tab generally has at least three groups (a tab
that is full but has only one group is a sign of a poor layout). “Full” means that when viewed
with a 1024✕768 resolution (the MS target resolution for the Ribbon UI), you cover at least
70% of the tab space (estimate based on the least-full MS tabs).

Creating Your Own Group
Your own group is the only way you are able to add controls to tabs. The question is mainly
where to put your group. If your functionality fits into any of the existing tabs logically, put it
there. Otherwise, use the Add-Ins tab. Remember that your functionality might fit best into
a contextual tab, because it is only relevant when a picture, chart, table, and so on is selected.
If your add-in is limited in functionality to any of the built-in objects that have contextual
tabs, you should definitely place it there.

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS 365

Modifying Microsoft Groups and Controls
You cannot modify any MS groups directly. For example, if you wanted to add a Paste Special
as Image button next to the Paste button in the Clipboard group on the Home tab, you would
have to make your own group and put it next to the Clipboard group, as you cannot modify
the Microsoft group. What you could do is hide the MS group and create a new group that
contains all the MS controls plus your own. While this would conserve space, you should
never do this in an uncontrolled situation. If you do, you rob any other add-in from access
to that particular group, and you really do not know what other add-ins might do. It is feasi-
ble that another add-in will display the Clipboard group again if it loads after yours. In that
case, the user would now suddenly have two Clipboard groups.

Avoid hiding or disabling MS controls and groups in an uncontrolled situation. Again,
you do not know what other add-ins will do and what the overall effect for the user will be.

Using Microsoft Groups and Controls
You can use any Microsoft group, control, or tab in your own Ribbon by specifying it via
RibbonX. Unfortunately, there are several limitations. You can only use core tabs, for example
Home, as core tabs. That means a core tab cannot be used within a contextual tab set. Vice
versa, a contextual tab cannot be used outside its tab set. Also, the groups on the Add-Ins tab
displaying legacy add-ins can only be on that tab or in the Quick Access Toolbar.

You are also not able to change the order of Microsoft tabs and groups in their default
location. That means, for example, that you cannot place the Create tab before the Home tab.
It also means that you cannot change the order of the groups originally placed on the Home
tab by Microsoft. Hence Views will always be before Clipboard. You can, however, place a
group not originally on a tab anywhere on that tab. For example, the Tables group of the
Create tab can be placed anywhere you choose on the Home tab.

Using As Little Space As Possible
Space is at a premium on a tab. Microsoft groups will shrink in size and make space available
for your groups (to see this effect, just slowly make a window narrower and watch what hap-
pens to the Ribbon). You cannot shrink your own groups automatically, though. If your group
uses a lot of space, this means that one or more MS groups shrink if the screen resolution is
1024✕768, which is the screen resolution you should target in a noncontrolled situation. As
MS groups shrink, however, the user has to click twice to get to the same functionality that he
or she could get to with one click before your add-in was added. If your add-in uses space too
freely and forces the user to click too much, the user might just get annoyed with your add-in
and uninstall it. Remember that space is at a premium, and it is your job to use it wisely. Also,
remember that yours might not be the only add-in on any particular tab using space. You
should consider using a menuButton, splitButton, or dynamicMenu for all your functionality to
consume as little space as possible.

Adding Your Functionality Only Once
There really is no need to put your functionality in more than one place, except if you are
working with some contextual tabs. For example, the Format contextual tab is repeated almost

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS366

identically for SmartArt graphics, charts, and shapes. If your add-in extends the functionality
offered on a particular tab, you should add it to all similar tabs.

However, there is no reason to put your functionality on two regular tabs. Put it only in one.

Changing Visibility
You can change the visibility of tabs, groups, and controls dynamically. Don’t. If you go through
the Office UI, you should notice that no group, tab, or control ever disappears or appears magi-
cally. If something is not available, it is visible but not enabled. The rule is this: from the time
you open a particular Ribbon to the time you close it, the visibility of your items should not
change (although there are some exceptions, which I mention toward the end of this section).
Do not change the visibility of your controls ever during runtime. You should determine the
visibility once and then leave it at that. As an example, the Ink group on the Review tab is only
visible if you have a Tablet PC, but this visibility is never altered during runtime. Office deter-
mines at startup whether you have a Tablet PC or not and sets the visibility accordingly.

Why should you not change the visibility? The Ribbon UI is all about the user finding fea-
tures. If your UI elements are visible, but not enabled, the user knows that the functionality is
there, but that he or she cannot use it currently. If your UI elements are not visible, the user
will go searching for them and become frustrated. Your user will even be more frustrated if one
time the elements are suddenly there and another time they are not. Remember that whether
something is visible or not might be logical to you (as it is context dependent and you know
what the context is), but to your user this might be totally random and serve as a source of
frustration.

There are exceptions to the rule, of course. It could be that a certain user action triggers a
fundamental change. For example, you might require the user to log in somewhere, and after
a successful login, a lot more functionality is available to the user. This is a situation you should
try to avoid, but it would be a case where you might be able to get away with changing the visi-
bility during runtime. Creating your own “fake” custom contextual tab set is also an example.
You cannot create an actual contextual tab set, but you can fake it by changing the visibility of
a core tab based on the context, and potentially switching to that tab.

If you decide to hide certain elements of your add-in’s UI via RibbonX, you should also
disable all those elements. In the case of a group or tab, you should also disable every single
control in the group or tab. The reason is that invisible controls are still accessible to the user
via the Quick Access Toolbar and its customization dialog box. That means a user could add
a control of yours to the Quick Access Toolbar, and it would be available to him or her even
when you explicitly hide it. The only way to prevent the user from using a hidden control
therefore is to ensure that it is also disabled.

Changing UI Elements Dynamically
You might want to change UI elements dynamically in a rather drastic manner. Again, don’t.
Look at the Office UI itself and you will see that no group (including all controls, labels, and
icons) ever changes during runtime. The reason is the same as with the visibility issue.

If you have to change your UI dynamically, do what Office does: change a menu. You
might notice that the menus that you can open from the Ribbon buttons change their con-
tent frequently, yet the buttons themselves stay. You can do the same by using a dynamicMenu.

To sum up: leave your groups and controls visible and unchanged during runtime. Use
a dynamicMenu to deal with dynamic UI modifications.

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS 367

Adding to the Office Button Menu
Again, the Office button menu is no place to simply advertise your add-in. Add commands to
it if your add-in affects the entire database. As you can see from the built-in menu, commands
for sharing, printing, sending, saving, and opening are there instead of in the tabs.

Using Custom Task Panes
According to the Office UI style guide (http://www.microsoft.com/downloads/details.aspx?
FamilyID=19e3bf38-434b-4ddd-9592-3749f6647105), if “your solution needs to present data
about a document that is required to be visible, in a nonmodal fashion, use a custom task
pane. However, only display this task pane based on user actions. Also use one if you need to
use custom controls that are outside of the Ribbon control set.”

No Surprises
The Office UI style guide summarizes this one best: “Task panes or dialogs do not appear
automatically on document open. Only user actions should open and close task panes or
dialogs. Ideally, all task panes are opened using a button in the Ribbon. For example, clicking
the launcher button on the Clipboard group opens and closes the Clipboard task pane.”

Switching a Tab
You should only trigger a tab switch if you are creating your own fake contextual tab set. Trig-
gering a tab switch requires you to send the KeyTip as keyboard input for it to Access. This is
rather problematic, as different locales provide different KeyTips, and other add-ins might
request the same KeyTip as yours. Avoid doing this except in a controlled situation.

Making Your Tab the First Tab
Office does not necessarily treat the Microsoft Home tab as the Home tab (that is, the one it
shows at startup and returns to by default). Rather, the first tab is treated as such. That means
you could create your own tab and put it in order before the Home tab using
insertBeforeIdMso="Home". The answer to when you should do this should be rather clear by
now: never, except in a controlled situation, and even then very sparingly (such as the situa-
tion where your application is based on an Office application).

Summary
The Ribbon gives you a very flexible way to create a navigation structure for your Access
(and Office) 2007 applications, and the guidelines are really there to assist you and your
users to make best use of the interface and navigation tools. Following the “rules” means
that in many cases Office 2007 users will already be familiar with Ribbons and should have
little trouble taking advantage of any custom navigation you implement.

APPENDIX ■ RIBBONX AND CUSTOM ADD-INS368

■numbers and symbols
< > (angle brackets), indicating placeholders

with, 167
= (equals) sign , preceding an expression

with, 146
% (percentage sign), 152

as reason for database query failure, 119
105 Access template, for WSS Contact list, 38
107 template, for creating a database based

on WSS Task list, 38
1100 template, for creating a new issue-

tracking application, 38

■A
@ModuleCode form, using, 137
abstraction, defined, 88
ACCDB database file type, features only

supported in, 3
ACCDB file, using with SPD and WSS, 285
Access

and WSS data type comparison, 275
finding the GUID for a linked list, 269
for communication with WSS

applications, 263
function of linked table function within,

266
new file type ACCDB, 264
using WSS lists with, 263–271

Access 2000/2003, compared to Access 2007,
1–3

Access 2002 Developers Handbook, by Getz,
et al. (Sybex, 2001), 87, 219

Access 2007
Access Options dialog box, 8
advanced options in, 9
and DAO, 225–226
and Microsoft Office 2007 XML structures,

25–26
blocked attachment file types, 228
building complex reports against WSS

lists, 283
built-in templates, 33–39
change when moving to SQL Server, 113
changes to support new features in, 10–11

Collect and Update Data via Email added
in, 1

comparing to SQL Server, 116–124
comparison to Access 2000/2003, 1–3
creating HTML e-mail form in, 69–70
creating your own menu system in, 41–65
current database options, 8
data properties added in, 1
data type differences between SQL Server

and, 118
database window replacement in, 5
example without a Ribbon, 44
feature set vs. SQL Server 2005 Express,

116–117
HTML e-mail form, 69
increased focus on macros in, 1
integration with MS Outlook 2007 added

in, 1
issues affecting migration to SQL Server

2005, 186
list management with, 281–282
list of new properties available with, 225
Microsoft Office SharePoint Server 2007

added in, 1
missing support for ASP and DAPs in, 285
moving WSS lists between servers, 271
new macro features, 233–236
new Ribbon-based menus available in, 6
opening a WSS list through, 264–265
options available in, 8–9
partial list of new properties, 225–226
PDF support added in, 5
popular options per Microsoft, 8
reasons for upsizing to SQL Server,

114–115
Ribbons, 6–8
saving objects as PDFs in, 1
server capabilities in, 1
table filters, 13–14
to SQL Server 2005 data type mappings,

191–192
understanding text formats in, 26–33
use of command bars and custom

toolbars with, 42

Index

369

viewing database roles within, 179
ways to create ADPs in, 183–186
what’s new in, 1–20
working with functions, views, and other

objects with, 182
working with lists in, 266–269
working with SharePoint Server in, 19–20

Access 2007 forms , 14–17
Access 2007 interface

changes from previous versions, 3–5
example of, 4–5
templates planned for in, 3–4

Access 2007 Navigation Pane, viewing new
database created in, 265

Access 2007 Ribbons. See Ribbons; RibbonX
Access 2007 tables, data types and properties

added to, 9–14
Access and SharePoint applications, 263–283
Access and WSS, no Referential Integrity

support by WSS, 264
Access Create Ribbon, in Access 2007, 7
Access Customization dialog box. See

Customization dialog box
Access Data Projects (ADP), 142

for working with SQL Server, 115
limitations of, 142
rewriting required when upsizing, 132–135

Access Data Projects (ADPs), 206
and SQL Server 2005 Express, 183–186
Create ribbon in, 182
creating a new table within, 184
creating a view using ADO and, 177
defined, 183
graphical tools for working in, 160–163
options available in Query Wizard, 182
passing form values to as parameters,

162–163
problems with, 183
steps for creating, 183–184

Access data types and XSD, table of, 77–78
Access database

migrating to WSS, 271–278
storage of associated files for, 230–231

Access database objects, created when
linking from WSS, 265

Access Developers Extensions, possible new
tools soon available in, 39

Access Developers Handbook series (Sybex),
DAO covered in, 207

Access form
code behind, 92–93
creating containing four text boxes, 90–93

Access forms, and stored procedures,
166–170

Access forms and data, impact of upsizing
on, 132–142

Access forms or reports, no equivalent SQL
Server objects for, 130

Access GUI, interaction with WSS, 285
Access indexes. See also indexes

handling of issues with, 129
Access list box, adding SQL Server Names to,

122–123
Access macros, changes to, 233–235
Access MDB file, migrating to SQL Server

2005, 187–188
Access Navigation Pane, objects and

structures in navpane.xml, 35–36
Access objects

converting to SQL Server syntax, 196–205
getting information about, 27–28
results after moving to SQL Server 2005,

199
types of for blank template files, 33–34

Access Options dialog box
options available in, 8–9
turning options on in, 43

Access Ribbon commands, removing several
standard, 59

Access splash screen, accessing templates
from, 4

Access table properties vs. SQL Server table
properties, 184–185

Access tables
available functionality after migrated, 277
exported as a list to the server, 275
features available after migration, 277–278
information viewable in, 193
viewing structure of and its index, 193–195

Access template package, folder structure of,
24–25

Access templates
extract from an XML file, 25–26
structure of, 34

Access text formats, understanding, 26–33
Access Upsizing Wizard, 152

running after checking MDB file, 126–129
Access view, creating from WSS, 278
AccessConnection property, functionality vs.

standard connection property, 134

■INDEX370

AccessD
AccessD (Access developers)

giants of, 331–332
website address, 67, 331

AccessDataSource connector, provided by
Web Dev Express, 306

accessTable property, setting, 77
Actions item, useful capabilities in, 251–252
Active Server Pages (ASP), 301

lack of support for in Access 2007, 285
ad hoc web sites, WSS ability to build, 241
Add command button, process required

when user clicks, 220–221
Add Existing dialog box, adding database file

to project in, 312
Add item form, useful capabilities in, 251
add-in

adding your functionality only once,
366–367

importance of marking clearly, 364
making it fit in Office 2007, 364

add-ins, listing all in Access, 9
Add-Ins tab

completed EmpGroup in, 49
Training Staff group added to, 56–57

Add-Ins tab and Employee Menu button,
example of, 48

address book, location of for looking up site
users/groups, 297

administrative interface
initial screen for in Web Dev Express,

304–305
starting a new project from, 305

ADO types, website address for listing of all
available, 166

ADPs. See Access Data Projects (ADPs)
Advanced option group, in Access 2007, 9
AfterUpdate commands, adding to

frmPeople form, 104–105
aggregate functions

available in report designer, 148
JET vs. SQL Server, 205

Alert Me option, function of on WSS server,
282

Allow Multiple Values property
activating, 11
designed to allow table migration to WSS,

243
in Access 2007, 10
problems upsizing in SQL Server, 130

Allow Value List Edits object property, in
Access 2007, 17

allowMultipleReplies property, setting, 76
AlternatingItemTemplate, function of, 316
AND/OR condition, building sophisticated,

297
Appendix, RibbonX and Custom Add-Ins,

361–368
application, code for duplicating, 338–339
application tiers, moving into, 321–324
ASP. See Active Server Pages (ASP)
ASP.NET

adding server objects to web page, 307
creating data grids with, 307–311

ASPX page
differences in code generated by SPD,

290
dragging data onto, 290

assemblies, new to Access developers and
power users, 157

attachment data type
displaying via forms, 15
function of, 227–231
major drawbacks to using, 227
major issues surrounding, 227–228
new in Access 2007, 10
using, 11–13
using to associate documents with an

Access field, 243
working with, 12

Attachment dialog box, using, 12
attachment file types, table of blocked, 228
attachments, checking for, 230
attributes and elements, common in

Ribbons, 45–46
audience targeting property, available in

WSS, 294
autocorrection, in Access 2007, 8
automateDataCollection property, setting, 75
Automatically process replies option,

selecting, 69

■B
background color, using a class to change, 89
BarTracks application

use of hand-held scanners by, 125
using for upsizing process, 125–130
website address for, 125

Basic Form, menu option through Create tab,
14

■INDEX 371

Find
itfasterathttp://superindex.apress.com

/

Blank Form, menu option through Create
tab, 14

blank.accdb, creating and saving for users, 33
Bookmark property, setting, 222
branching, setting up for surveys, 258
Brock, Gustav, member of AccessD, 67
btNew variable, function of, 103
Business Development Studio (BIDS), for

developing reports, 144
buttons

adding additional, 48–49
adding attributes to, 47
placing onto the Ribbon, 47

■C
caching

data in offline mode, 266
improving performance of, 267

Calendar lists, 261
function of, 250–252

Calendar Task Pane
customizing calendar in, 252
editing Calendar Web Part in, 250–252

Calendar Web Part. See also Calendar lists
adding items to the Calendar, 250
customizing listings, 250–252
editing, 250–252
function of, 250–252

calendars, customizing, 252
callback code stubs, example of generation,

42–42
callback functions. See VBA callback

functions
Caption property, setting, 77
CASE statement, using, 136–137
Change Permissions for This List option,

function of on WSS server, 282
check box group, creating, 65
Check Out feature, for notifying that

document is out for edit, 249
Check Workflow command button, for

having SPD check for errors, 296
Choosing a Data Source dialog box, selecting

the data source in, 318
class

creating to model a control, 89–93
defined, 88–95
initializing, 98

class examples, full code listing for, 106–111
class factory function, using, 93–94
class instances, counting, 94

class module
for interacting with an object, 88–95
steps for creating, 90

class objects, contents of, 88
class programming

drawbacks to, 89
new in Access 2007, 87–111

class string, public function to read, 94–95
ClassListing report, that accepts a single

parameter, 150–151
ClearMacroError, for removing error number

from MacroError object, 236
click event, passing parameters to a stored

procedure, 165
CLR (common language runtime), SQL

Server 2005 support for, 117, 152
clustered index, SQL statement for creating

new, 128
cmdAdd routine, code behind, 221–222
cmdEdit, adding code to the On Click event

of, 217–218
code listing

AccessDCActionFile.XML, 84–85
adding a record to MSysDataCollection,

81–82
adding a sequence number to a query,

336–337
adding an attachment to a Tasks table,

228–229
adding MoveNext code, 216
adding MovePrevious code, 216–217
adding parameters to a function, 174
adding properties to Person class, 96
after inserting Data View control, 289–290
another approach to populating a record,

138–139
assigning current database path to a

TempVar, 234
basic edit syntax, 219
basic stored procedure, 134
bones for first class module, 90
by Command Button Wizard to open a

form, 18
callback that returns the form names,

57–58
CASE syntax to control behavior of code,

185–186
changing and removing Office menu

button items, 58–59
changing color of text box based on its

value, 350

■INDEX372

changing query criteria via VBA, 343–344
checking for field existence using VBA, 346
checking Outlook COM add-ins, 83
class factory function, 93–94
clearing missing references via VBA,

342–343
clearing text boxes, 170
cmdEdit On Click event, 217–218
code behind Access form, 92–93
code behind cmdAdd routine, 221–222
code in module of independent

continuous form, 345–346
code in module of parent form, 346
code you can steal, 331–359
concatenating a path and file name, 231
counting class instances, 94
creating a check box group, 64
creating a connection string, 121
creating a FullName property, 96
creating a group, 47
creating a GUID, 79–80
creating a parameter in a stored

procedure, 161
creating a query in code, 223–224
creating a view using ADO and ADPs, 177
creating an Employee Ribbon tab, 46–47
creating DisplayPerson function, 99–100
creating drop-down list to display user

forms, 57
creating drop-down lists, 51
creating label strings, 344–345
creating Login form procedure, 123–124
creating new Person class, 102–103
creating OnEnter and OnExit events,

91–92
creating the Table template, 158
creating the TrainingEmp group, 56
creating your first Ribbon, 47–48
CurrentProject.IsTrusted, 234
custom RibbonX, 54–55
data collection mapping XML data, 74–75
data grid code, 309–311
dealing with frmPeople form sort order,

100–101
declaring parameters in stored

procedures, 135, 160
defining a form command button, 27
defining Company column in XSD file, 36
Delete command click event code,

105–106
Delete function in the Person class, 104

deleting a table from an external source,
347–348

deleting a table using VBA, 347
deselecting all items in a list box, 352
dimensioning variables, 98–99
dimming the vars, 96
dumping database as set of text files,

29–30
dynamic SQL, 225
editing the current customer record, 218
EmpGroup RibbonX, 48–49
enumerating SQL Server database names,

123
enumerating SQL Server Names, 122–123
Events code behind, 323–324
Events.aspx code, 323
example user-defined function, 175
executing a pass-through using DAO,

162–163
executing a query, 222–223
executing a stored procedure using ADO,

134–135
exporting a table as an XML file, 22
exporting data and schema of a table,

22–23
exporting queries as text, 32
fields defined in Customer table in

Northwind, 37
filtering a report using a list box, 346–347
fnStudentNames user-defined function,

173
for additional information about

TableDefs, 209
for amended delete procedure, 172
for calling TableDefs function, 211
for changing GetPeople function, 103
for checking for attachments, 230
for checking if application is trusted, 234
for creating a table, 210–211
for duplicating an application, 338–329
for filling combo boxes from local tables,

139
for form Open Event, 168–169
for getting a form count, 57
for getting a people count, 98
for getting initial records for a form,

215–216
for getting the first name, 98
for getting the last name, 98
for inserting a new record, 170–172
for listing TempVars, 235

■INDEX 373

Find
itfasterathttp://superindex.apress.com

/

for loading custom images, 55–56
for locking a form, 215–216
for locking subform controls, 350–351
for passing a parameter, 164
for populating unbound forms, 138
for printing out table fields, 348–349
for Product Group 1, 61–62
for providing data for a form, 169
for removing duplicate records, 352
for removing group items, 63–64
for report page navigation, 351–352
for report stored procedure, 149–150
for returning a GUID using SQL, 269
for returning an exchange rate, example 1,

332–333
for returning an exchange rate, example 2,

333–336
for selecting multiple records on a

subform, 339–341
for sequential row numbers, 337–338
for sorting out multivalue fields, 131–132
for starting data collection COM add-in,

83–84
for turning off DatabaseProperties, 58
for turning off options in File menu, 58
form OnLoad event, 99
form properties XML section, 76
fragment for loading a file, 13
frmPeople VBA module, 106–111
frmProducts Ribbon code, 61
from an Access template XML file, 25–26
generated INSERT statement for

tblModule, 167
generic query execution, 223
getting information in module text file, 31
getting information in report text file,

30–31
getting the current database path, 231
getting the report count, 62
getting the report names, 62
going to Area 51, 353–359
HTML before inserting Data View control,

288–289
initial form open code, 214–215
initializing the GetPeople subclass, 98
ItemTemplate, 315
listing linked tables, 209–210
loading exported files into Access, 32–33
log trigger, 159
<mdbMap> tag structure, 85
Migration Assistant SQL script, 196–199

MoveNext procedure, 100–101
MovePrevious procedure, 100–101
moving a table to WSS, 270–271
New command click event code, 105–106
new property for People class, 106
Northwind Customer form saved as text,

26–27
objects placed into Navigation Pane,

35–36
of a simple XML file, 23
opening a form in Add mode, 51
opening a report, 62–63
passing parameters to stored procedures,

136
People class module, 106–111
Person class module, 106–111
populating the collections, 96–97
printing Company record from Customers

table, 212
printing WSS lists via VBA, 278–279
processing linked WSS records using VBA,

279–280
Property Let statement for Person class

FirstName, 103
public function to read class string, 94–95
recipients XML section, 78
removing a class instance, 94
repopulating local tables, 141
restricting text entered in a text box, 342
retrieving visible status of a control in an

MDE, 341–342
returning the drop-down form label, 58
Ribbon XML shell, 60
Save command, 106
Save function added to Person class,

103–104
saving forms as text files, 28–29
scalar function, 174
setting cursor to beginning of a field, 352
showing mapping between table or query,

76–78
showing OnClick embedded macro, 37–38
showing Update and Delete statements,

233
splitting names including suffixes,

349–350
SQL statement saved as qryTodaysEvents,

313
SQL to repopulate a local table, 140–141
stored procedure for deleting a module,

167

■INDEX374

stored procedure for inserting a new
student, 166–167

stored procedure to deal with nulls,
161–162

stored procedure to populate frmModule,
166

techniques for MoveNext, 169
techniques for MovePrevious, 169–170
to get record count for drop-down lists,

52–53
to populate drop-down labels, 52–53
trigger template, 159
txtFirstName AfterUpdate, 104–105
txtFullName AfterUpdate, 104–105
txtLastName AfterUpdate, 104–105
user-defined function syntax, 175
using a CASE statement, 136–137
using a class to change background color,

89
using a TempVar to populate a text box,

235
using ADO to execute stored procedures,

133–134
using DAO to delete a record, 219–220
using getStudent function, 138–139
using Replace to fix SharePoint GUID,

268–269
using SQL to INSERT a record, 224
using SQL to select attachment data, 230
using SQL within VBA, 224–225
using TableDefs, 208–209
using the MoveNext statement, 138
using TransferSharePointList, 269
using TRY/CATCH, 163–164
using WithEvents, 91–92
view SQL, 176
walking the TableDef object, 32
XML file structure, 80
XML for databaseProperties.xml file, 35
XSD file created by exporting schema,

22–23
Colby, John (Colby Consulting)

code for creating a table written by,
210–211

VBA class and framework tutorials by, 87
Collect and Update Data via Email, added in

Access 2007, 1
Collect Data Through Email Wizard

Outlook folders created when first run, 84
overriding default folder in, 84
starting, 68

Collect new information only option
in HTML form, 68
selecting fields for data collection in, 68
selecting reply processing options in, 69

collections
as sets of pointers to objects, 97
populating, 96–97
removing a class instance from, 94
using, 94–95

collectionType property, setting, 77
COM add-in, 86

enabling within Outlook, 83–84
for data collection emails in Outlook,

82–84
manually enabling, 82–83
output from checking for, 83

COM Add-Ins button, in Outlook, 82–83
combo boxes

filling from local tables, 139
filling using a local query, 140
working with, 139–140

Command Button Wizard, use of macros in,
18

Common Data View Tasks list, opening, 292
common language runtime (CLR). See CLR

(common language runtime)
complex data types

introduced in Access 2007, 226–233
upsizing issues in future, 131–132

conditional branching, in a stored procedure,
161–162

conditional branching, , 261. See also
branching

conditional expressions, using, 136–137
conditional IF statement, using, 137
configuration setting, for migration project,

189
confirmation message, received after

migration process, 275–276
Connection dialog box

connecting to SQL Server Express in,
195–196

creating a dataset in, 327
connection information, creating and

passing to SQL Server, 121–122
connection strings

creating, 121
standard security (no DSN), 121
using a DSN, 121
Windows Authentication (trusted-no

DSN), 121

■INDEX 375

Find
itfasterathttp://superindex.apress.com

/

Connelly, Marty, member of AccessD, 67
Containers collection, in Database object,

208
Context Object property, for use in VBA, 50
contextual Ribbons

available in Access 2007, 6
outline for, 59–60
using, 59–63

contextual tabs, using, 366
control IDs, downloading from Microsoft

web site, 58
Control objects, manipulating as a group, 15
controlled situation, guidelines for RibbonX,

362–363
controls, changing visibility of, 367
Conversion settings, options in Migration

Assistant, 191
ConversionEMDASHError List dialog box,

opening Table Design dialog box in,
199

core tabs, using, 366
Covington, Clint, blog regarding next Access

version, 286
Create Questions form, options available in,

257–258
Create Ribbon, new Table Templates feature

in Access, 14
Create tab

contents of, 64
menu options available through, 14–15

CreateParameter statements, function of,
165–166

Ctrl+F5, for opening search form in default
browser, 319

Current Database options, in Access 2007, 8
CurrentProject.IsTrusted property, for

checking if application is trusted, 234
Custom UI Editor

callback code stubs generated by, 42
example of, 42
website address for, 42

Customer form, saved as text, 26–27
Customer.xml file, example of, 22
Customer.xsd file, example of, 22–23
Customers and Orders lists, upsized to MOSS

2007, 288
Customers.aspx file, previewing, 291
Customization dialog box, for adding and

removing Ribbon options, 9
customized Ribbons

adding custom images to, 55–56

■D
DAO

and Access 2007, 225–226
building SQL statements with, 224–225
deleting a record with, 219–220
getting started with, 208–225
introduction to working with Access 2007

via, 207
using to create a pass-through query, 135
using to load a Ribbon, 46

DAO. See Data Access Objects (DAO)
DAO Object Model, function of, 208–224
DAO, complex data types, and macros,

207–236
DAPs. See Data Access Pages (DAPs)
data, working with, 95–101
data access layer, building one accessible

from web project file, 321–324
Data Access Objects (DAO), 20

executing a pass-through using, 162–163
extensions added to in Access 2007, 10
using to load an attachment, 13

Data Access Pages (DAPs), 301
lack of support for in Access 2007, 285

data collection
using an InfoPath form for, 71–73
using HTML or Microsoft InfoPath form,

68
using Microsoft Outlook 2007, 67–86
working in Outlook, 82–86
XML file items specific to, 75–76

data collection COM add-in. See COM add-in
data collection e-mail, using a query as

source of, 71
data collection mapping XML file

breaking down, 75–78
elements and attributes of, 75–76

data collection model, main steps for
building, 67

Data collection options dialog box, example
of, 70

data collection process
processing replies automatically, 70–71
using Customer table to begin, 68

data conflict errors, dealing with, 283
data connection, creating, 144
data engine (ACE), added in Access 2007, 10
data filtering, improved in Access 2007, 10
data grids

creating the connection to, 317
creating with ASP.NET, 307–311

■INDEX376

customizing, 309
data-centric controls to add to, 308–309
example of customized, 309
setting up structure to allow editing of, 317

data lists
adding a heading to, 316
controlling layout and appearance of, 316
customizing, 316
formatting display in alternating row

colors, 316
data properties, added in Access 2007, 1
Data Source Library

categories of items available within,
287–288

function of, 286–288
when connected to WSS, 286–288

Data Transformation Services (DTS). See DTS
data type conversions

JET vs. SQL Server, 204–205
data types

comparing after upsizing, 132
differences between Access and SQL

Server 2000, 118
Data View

additional properties that can be set, 294
example in initial format, 293–294

Data View control
adding another to the page, 290–291
code after inserting, 289–290
creating relationship between two parts,

290–291
HTML before inserting, 288–289

Data View properties, setting, 293–294
Data View Properties dialog box, selecting

style you want in, 292
data view Web Part

creating, 288–294
formatting, 292–293
function of, 289–290
steps for creating, 288

database
adding a connection to, 326–327
adding to your web application, 312
viewing the structure of, 312

database connection
adding to your web application project,

306–307
steps for adding to a project, 307

database diagrams folder, contents of, 157

Database Explorer
getting data to a web page with, 307–308
with Events database expanded, 312

database file, retrieving visible status of a
control in external, 341–342

database migration
issues that can slow the process, 272
using WSS Move to SharePoint Site Wizard,

272–278
Database object, function of, 208
database programmability folder, contents

of, 157
database roles

in SQL Server Express security, 178–179
viewing within Access 2007, 179

database subfolder, contents of, 35–36
database synonyms folder, contents of, 157
database tables folder, contents of, 157
database views folder, contents of, 157
databaseProperties.xml file, in database

subfolder, 35
databases

adding to your project, 189
dumping as set of text files, 29–30
preparing for migration, 190–195

databases and system objects, 157
DataList control, that can be added to a web

page, 308
DataView control, that can be added to a web

page, 308
date functions, JET vs. SQL Server, 203–204
Date Picker control, used for Date/Time data

type, 329
date/time functions, JET vs. SQL Server, 204
dates, fixing before upsizing, 129
DBEngine object, function of, 208
dbOpenDynaset and dbSeeChanges, use of

after system is upsized, 129
dbSeeChanges and dbOpenDynaset, use of

after system is upsized, 129
Debug Print line, changing to show more

information, 209
Debug Print statement, results of running,

121–122
defaultFolder, tag for e-mail responses, 85
definitions, related to object-oriented

programming (OOP), 87–88
Delete command click event code, code for,

105–106
Delete function, in the Person class, 104

■INDEX 377

Find
itfasterathttp://superindex.apress.com

/

Delete List option , function of on WSS
server, 282

DELETE procedure, for deleting a record, 172
Delete statement, code for, 233
DELETE statements, JET vs. SQL Server

statements, 201
delimiters, in SQL Server, 118–119
Design view, adding existing fields while in,

15
DetailsView control, that can be added to a

web page, 308
Developer Discussion Group, creating,

254–256
diagrams folder, contents of, 157
dialog boxes

Connection dialog box, 327
Data collection options, 70
Drop-Down List Box Properties, 72
Fields dialog box, 309
Manage Data Collection Messages, 70–71
Open in Microsoft Access, 265

Dirty property, testing recordset for changes
with, 219

discussion, creating, 254–255
Discussion Board list

adding a new discussion topic to, 255
connecting to Outlook, 255–256
customizing, 255
options to export and interact with, 256
to discuss issues related to projects,

254–255
Display option group, in Access 2007, 9
DisplayPerson function, creating, 99–100
Dobson, Rich, SQL Server 2005 Express book

by (Apress, 2005), 206
Docmd.ClearmacroError, for removing error

number from MacroError object, 236
document library, created on WSS for

migrating Northwind, 272
Document Library, 261

editing Word documents in, 249
example of, 248
menu options and choices in, 248–249
opening the library interface, 248
uploading documents into, 249
used to store and share documents,

248–249
Document Management Task Pane

example of, 249
items available in client application, 249

document versioning, contained in WSS
version 3, 249

DOCX, new file type in Word 2007, 24
domain functions, JET vs. SQL Server,

202–203
DROP Index statement, form for, 128
Drop-Down List Box Properties dialog box

entering list box entries manually, 72–73
example of, 72

drop-down lists
adding to EmpGroup, 51
changing the WHERE clause in, 57
creating and configuring, 318
creating to display user forms, 57
getting record count for, 52–53
initial in EmpGroup, 52
populating with form names and getting

form count, 57using VBA to
populate, 53

DTS, 152. See also SQL Server DTS
importing data with, 142

Dynaset recordset, function of, 213

■E
e-mail data collection, in Access 2007, 20
editing, records in the real world, 218–219
Editing option group, in Access 2007, 9
EditItemTemplate, enables editing of a data

item, 316
elements and attributes, common in

Ribbons, 45–46
email addresses, entering in Microsoft Office

Outlook, 69
email element, function of, 78
embedded macros

as part of form definition file, 37–38
creating and using, 235
use of wizards to create, 18

EmpGroup RibbonX, listing for, 48–49
employee example table, field names and

data types, 43–44
employee form

creating, 50
opening, 51

employee table, structure of, 43–44
EmptyDataTemplate, amending, 319–320
Enable Deleting feature, in GridView Tasks

menu, 308
Enable Editing feature, in GridView Tasks

menu, 308

■INDEX378

Enable Paging feature, in GridView Tasks
menu, 308

Enable Selection feature, in GridView Tasks
menu, 308

Enable Sorting feature, in GridView Tasks
menu, 308

enableDataCollection property, setting, 75
encapsulation, defined, 88
EndNote, for inserting citations into Word

documents, 364–365
Error Checking options, in Access 2007, 8
error control, 206. See also error trapping

new in Access 2007, 1
SQL Server Books Online for examples on,

164
using TRY/CATCH, 163–164

error handling, for attachments, 229
error messages, minimizing in databases for

upsizing, 126
error reporting, importance of with RibbonX,

43
error trapping

added to macros in Access 2007, 18–19
in stored procedures, 163–164

[Event Procedure], setting OnEnter and
OnExit properties to, 91

Events.aspx, 323
example developer web site, features on, 258
exchange rate

code for returning, 332–333
creating Access form to try out code, 333

Express Edition Toolkit, for working with SQL
Server Express, 155

Express starter kits, available free from
Microsoft, 304

expression, in Reporting Services, 145
expression builder vs. Access query builder,

145

■F
Fail argument, stopping execution of named

macro with, 236
field names

fixing before upsizing, 129
use of spaces in, 215

fields, checking for existence of using VBA,
346

Fields dialog box, changing a field header in,
309

files, attaching when posting a reply, 256
filtering, a report using a list box, 346–347

filtering tables, 13–14
filters, creating and saving complex, 14
fnStudentNames, user-defined function,

173–174
folder structure, of Northwind Zip archive, 34
FooterTemplate, for defining content and

layout of list footer, 316
form command button, code defining, 27
Form Design options, in Access 2007, 8
form interface, new multitabbed in Access

2007, 10
form layouts

options for, 15
working with, 15–16

form properties, new in Access 2007, 17
<formProperties> attribute, 75
Form Wizard, accessing through More Forms

option, 14
formatting options, steps for working with,

292–293
Formatting Ribbon, and Layout view, 15
FormLoad() procedure

creating Access, 209–210
running the example, 210

formNode property, setting, 77
forms

creating contextual Ribbons for, 59–63
Design Ribbon for, 15
Layout Ribbon for, 15
providing data for, 169

forms and other objects
populating, 137–140

FormView control, that can be added to a
web page, 308

Friend, adding to make Function visible in
project, 104

frmCompany, creating form for, 214
frmLogin form, using to login to SQL Server,

120
frmModule, basic stored procedure to

populate, 166
frmPeople form

adding functionality to, 100–106
clicking through list of people in, 101
dealing with sort order, 100–101
dimensioning variables for, 98–99
form OnLoad event, 99
MoveNext procedure, 100–101
MovePrevious procedure, 100–101
working with, 98–101

frmPeople VBA module, code for, 106–111

■INDEX 379

Find
itfasterathttp://superindex.apress.com

/

From DAO to ADO
article by Marc Israel (Database Journal,

2000), 224
ftponline.com/special/web20/pvarholasp/

default.aspx, 353
FullName property, creating, 96
Function, cleaning up pointer to text box

with, 91
functionality

adding additional to frmPeople form,
101–106

adding to frmPeople form, 100–106

■G
Gantt chart, displaying Tasks list data as,

253–254
Gantt chart view

creating of your Tasks list, 253–254
example of, 253

General option group, in Access 2007, 9
getdate() function, use of in triggers, 159
getImage attribute , using for customized

Ribbons, 55
getItemCount element, for providing

information to the Ribbon, 52
getItemLabel element, for providing

information to the Ribbon, 52
GetPeople function, changing, 103
getStudent function, for populating a record,

138–139
Getz, Gunderloy, and Litwin (Sybex, 2001),

Access 2002 Developers Handbook
by, 87

global variables, TempVars as, 234–235
grammar checking, in Access 2007, 8
graphical tool set, adding server objects to

web pages with, 307
GridView Tasks menu

and data grid, 308
features that can be enabled, 308
for setting grid properties, 308

group, creating to add controls to tabs, 365
Group 1 product Ribbon, example of, 62
group controls, adding, 64–65
<group> tag, for creating groups on your

Ribbon, 56–58
groups

adding additional, 56
changing visibility of, 367
creating on your Ribbon, 56–58
turning off, 64

groups and controls, manipulating existing,
63–64

GUI query building, steps for changing to,
145

GUID, instruction from Access help file, 268

■H
Harkins, Susan Sales, Access to SQL Server

(Apress, 2002) cowritten by, 224
HeaderTemplate, for defining content and

layout of list header, 316
Home tab, caution about adding Ribbon

applications to, 365
HTML vs. XML, 23
HTML forms

automatically processing replies, 69
getting started with, 68–70
options offered for processing replies, 70
options offered in, 68

HTML notation, example of, 56

■I
Id String property, for use in VBA, 50
idMSOs (IDs for Microsoft-provided

controls), 58
case sensitivity of, 44

IDs for Microsoft-provided controls , case
sensitivity of, 44

image file, exercise for placing onto a form,
231

images, adding custom to customized
Ribbons, 55–56

Import Reports tool, for importing reports,
148–149

independent continuous form, code in
module of, 345–346

indexes, 152
fixing before upsizing, 129
upsizing, 128

InfoPath
features allowed in forms, 73
using, 72–73

InfoPath form
customizing, 72–73
editing before issuing data collection e-

mail, 72–73
using to collect data, 71–73

inheritance, defined, 88
Init function, for passing a pointer to a text

box, 91

■INDEX380

Initiation command button, for creating a
.NET form, 296

Input Parameter property, for passing a
parameter to a procedure, 162

INSERT procedure, adding error
management in, 163–164

INSERT statements, using VBA to create,
224–225

interface, working with objects and methods
of object with, 88

IRibbonControl, properties exposed for use
in VBA, 50

ISNULL function, checking required login
data with, 124

IsPrimaryKey property, setting, 77
Israel, Marc, “From DAO to ADO” article by,

224
ItemTemplate, function of, 315
ItemTemple, amending, 317
Iterate root property, setting, 77

■J
JET database engine, changes to in Access

2007, 1
JET functions, with SQL Server T-SQL

counterparts, 201–202
JET vs. SQL Server, 206

aggregate functions, 205
data type conversions, 204–205
date functions, 203–204
date/time functions, 204
domain functions, 202–203
mathematical functions, 203

JET vs. SQL Server statements
commonly used, 201
tables of, 200

■L
label strings, creating, 344–345
Layout view and Formatting Ribbon, 15
libraries, lists, and workspaces, at the heart of

WSS, 247–261
library, defined, 247
linked lists

and VBA, 278–280
and workflows, 295

linked table functions, function of within
Access, 265

list box
deselecting all items in, 352
filtering a report with, 346–347

List ID, required for each list on a WSS site,
268

list items, editing in Access 2007, 17
List Items Edit Form, in Access 2007, 17
list templates

used to define layout of data, 315–316
lists

accessability within Access and
applications, 242

creating custom, 243
function of in WSS, 242–243
provided by WSS, 243

LoadFromFile method, new in DAO, 228
LoadFromText method, using, 32–33
LoadPicture function, using, 55–56
local records, storing and retrieving, 140–141
_local suffix, wizard handling of tables with,

127
local table, getting, 141
log trigger

code for, 159
reflecting updates and deletes, 160

logging table, creating before creating a
trigger, 158

login accounts
manipulating using SQLDMO, 120
SQL Server, 120

login accounts, 152. See also SQL Server login
accounts

Login—New dialog box, choosing security
model to use in, 180–181

login form, creating a mixed mode, 123–124
logins

creating within Management Studio
Express, 180–181

deciding which security model to use, 180
lookups, usefulness of in surveys, 257

■M
macro code, saved with form definition, 27
macro error control, added in Access 2007,

18–19
Macro Name argument, function of, 236
macro-specific features, added in Access

2007, 18–19
macros

embedded, 235
error control action added to, 236
error control added to, 18–19
features of in Access 2007, 18–19
new in Access 2007, 233–236

■INDEX 381

Find
itfasterathttp://superindex.apress.com

/

use of embedded in Access 2007, 1
use of TempVars feature within, 19

mailing labels, creating label strings for,
344–345

Manage Data Collection Messages dialog box
example of, 70–71
options available in, 71

Management Studio Express , 154–155
creating a login within, 180–181
creating parameters in, 161
new view within, 177
scripting stored procedures with, 167–168

Management Studio Express Object Explorer,
with database folder open, 156–157

mapItem property, setting, 77
master database, role of in SQL Server, 119
master pages, as main design tool for

SharePoint sites, 299–300
mathematical functions, JET vs. SQL Server,

203
mathematical operators, in SQL Server and

Access, 118
maxReplies property, setting, 75
mcolObjNames variable, for storing class

name, 94
MDB files

adding to your project, 188–189
migrating to SQL Server 2005, 187–188
running Upsizing Wizard after checking,

126–129
using with SPD and WSS, 285

<mdbMap> tag structure, rundown of
elements and attributes of, 85–86

Meeting Workspace. 261. See also Team
Meeting Workspace

menu commands
from VBA, 270–271
creating your own, 41–65

menuSeparatorid, placing text between
menu items with, 52

Microsoft Access, 20. See also Access 2007
Microsoft Access 2007, 301. See also Access

2007
Microsoft Access Office 12 Object Library,

setting reference to for Ribbons
examples, 41

Microsoft Blog site, website address for, 21
Microsoft Express Editions

language development environment
offered by, 303

using for simple Access 2007 projects, 303
versions available, 303

Microsoft groups and controls
limitations on using in Ribbon

applications, 366
modifying, 366

Microsoft InfoPath, e-mail data collection
with, 20

Microsoft Office 2007
and Access 2007 XML structures, 25–26
locations marked as trusted when

installing, 9
Microsoft Office SharePoint Server (MOSS)

2007. See MOSS 2007
Microsoft Office SharePoint Server 2007. See

SharePoint Server 2007
Microsoft Office SharePoint Services, use of

Access templates with, 38–39
Microsoft Outlook 2007

checking COM add-ins in, 83
integration with in Access 2007, 1
using for data collection, 67–86

Microsoft Ribbon groups, turning off, 61
Microsoft SQL Server Desktop Engine

(MSDE), 152
lack of support for in Vista, 113

Microsoft Virtual Earth, website address for,
353

Microsoft website address, on using
multivalued fields in a query, 233

Microsoft Windows SharePoint Services
(WSS)

built-in templates provided by, 241–242
setting up sites for mobile access in, 242
useful features provided by, 241

Microsoft Windows SharePoint Services
(WSS). See Windows SharePoint
Services (WSS)

Microsoft XML editor
website address for, 42

Migration Assistant, 206
new in SQL Server 2005, 153–154

migration process
connecting to SQL Server Express,

195–196
wrapping up, 205

migration project, creating a new, 188
Migration settings, options in Migration

Assistant, 191
mingObjCounter variable, for maintaining

class instances count, 94

■INDEX382

mobile access, SharePoint ability to set up
sites for, 242

model database, role of in SQL Server, 119
Modify Columns and Setting option,

function of on WSS server, 281–282
Modify Workflow option, function of on WSS

server, 282
module text file, contents of, 31
More Forms, menu option through Create

tab, 14
MOSS 2007, 261.

for creating web applications, 239
Customers and Orders lists upsized to, 288
My Site feature displaying inbox and

calendar, 261
personalization of objects within WSS,

260–261
personalization parts included in, 260–261
using with WSS, 239

mouse, ability to use wheeled within the VBA
IDE, 19

Move statements, for moving in a recordset,
214

MoveNext, techniques for, 169
MoveNext code, adding to make the record

move, 216
MoveNext procedure

for frmPeople form, 100–101
navigating recordset with, 88

MoveNext statement, calling to move to next
record, 138

MovePrevious, techniques for, 169–170
MovePrevious code, adding to move back to

previous record, 216–217
MovePrevious procedure

for frmPeople form, 100–101
navigating recordset with, 88

MS commands, caution against repurposing,
364–365

MSDB, role of in SQL Server, 119
MSDE. See also Microsoft SQL Server

Desktop Engine (MSDE)
vs. SQL Server Express, 155

MSysComplexColumns system table,
columns exposed in the system table,
227

MSysDataCollection system table
adding a record to, 81–82
creating using DAO, 79–80
details of fields in, 74–75
overview of, 74–78

processing manually, 78–82
record of choices kept, 74
structure of, 74

Multiple Items, menu option through Create
tab, 14

multivalued fields
design additions in Access 2007, 11–13
displayed on an Access form, 232–233
example of data in, 232–233
quote on using in a query, 233
using split function to sort out, 131–132
vs. text fields, 11
working with, 232–233

■N
name property, setting, 77
names, splitting first, last, and suffixes,

349–350
Navigation Pane

replacing database window in Access
2007, 5

useful capabilities in Add item form, 251
navpane.xml file, in database subfolder,

35–36
.NET data list, example of, 314–315
.NET Framework 3.0, needed for using

Workflows with WSS, 295
.NET languages, authoring complex

Workflows with, 299
.NET master pages, as main design tool for

SharePoint sites, 299–300
.NET PageLoad event, 330,

populating a data grid with, 323
.NET tools, getting started with, 303–330
.NET web control, placing data onto a web

page with, 313–314
.NET Web Parts. See Web Parts
New command click event code, 105–106
New Project dialog box, creating Windows

application in, 325–326
New Record button, code behind, 170
Next argument, error recorded in MacroError

object, 236
Northwind 2007 database

adding a connection to for example web
site, 286

fields defined in Customer table in, 37
migrating to a WSS server, 271–278
redesigned in Access 2007, 1
Type Mapping tab for, 192
with Tables expanded, 189

■INDEX 383

Find
itfasterathttp://superindex.apress.com

/

Northwind Categories table, running a table
report on, 193–194

Northwind Customers table, views created
during migration process, 277–278

Northwind Zip archive, example of, 34
numReplies property, setting, 75

■O
object designer options, in Access 2007, 8
Object Explorer, Management Studio

Express, 156–157
ObjectDataSource connector, provided by

Web Dev Express, 306
Office 2003-like UI, importance of not using

RibbonX to restore, 362
Office 2007, 39. See also Microsoft Office 2007

backward compatibility of, 8
Office application

deciding factors regarding control of, 361
distinction between controlled and

uncontrolled, 362
reasons you do not control, 362

Office button menu, adding to, 368
Office menu button

changing and removing items from, 58–59
changing menu item positions on, 59

Office UI, importance of your UI’s similarity
to, 362

Office XML
in structure of Access templates, 24–26
in structure of Office files, 24–26

Office XML file formats, overview of, 24–26
On Click event

adding code to, 217–218
example using with a report field, 226

On Open event, code for, 168–169
onAction attribute

defining for form and report drop-downs,
62

function of, 47
onAction callback, values that can be used,

52
OnEnter event, changing text box

background color with, 89
nError feature, for macros in Access 2007,

18–19
OnError statement

arguments available for macros, 236
for macro error control, 236

OnExit event, changing text box background
color with, 89

online resources, available when working
with Access, 9

onlySentTo property, setting, 76
onlyUpdates property, setting, 76
Open Default View button, opening original

list on WSS site with, 265
Open Default View option, function of on

WSS server, 281
open event, class instances initialized by, 93
Open Packaging, and Open XML, 24–25
Open with Microsoft Office Access

command, how it works, 265
Open XML, and Open Packaging, 24–25
Orders list, adding Data View control for

displaying data, 290–291
Orders Web Part

adding WSS menu items to, 293–294
WSS menu items fully functional in, 294

Outlook 2007, 86. See also Microsoft Outlook
2007

connecting Discussion Board list to,
255–256

■P
page navigation, code for in report page,

351–352
PageLoad event. See .NET PageLoad event
parameters

adding to a function, 174
amending VBA to accept, 135–136
declaring in a stored procedure, 135
declaring in stored procedures, 160
passing, 135–136
passing to stored procedures, 164–166

parent form, code in module of, 346
parts. See also Web Parts

possible contents of, 25
shared across Office applications and file

types, 25
PDF, saving objects as in Access 2007, 1
People and Groups permissions, use of, 246
People class module

code for, 106–111
creating for tblPeople database, 96
new property for, 106

percentage sign (%). See % (percentage sign)
permissions

assignment of, 119–122
required for WSS sites, 242

■INDEX384

Person class module
adding functionality to frmPeople form in,

101–106
code for, 106–111
creating for tblPeople database, 95–96
Save function added to, 103–104

Pivot Chart, menu option through Create
tab, 14

placeholders, indicating with < >, 167
polymorphism, of class objects, 88
primary key, ensuring table has before

migration, 190
primary key value, using to populate data

grid, 318–319
primary keys, for Access tables before

upsizing, 129
primaryKey element, function of, 78
principles, SQL Server Express security

defined in terms of, 178–182
Printing option group, in Access 2007, 9
Process Email page, Access Data Collection

Replies option on, 70
Product Ribbon, functionality needed for,

59
Products tab, with new group added, 64–65
program flow, controlling within a stored

procedure, 185–186
programmability folder, contents of, 157
Project Information settings, in Migration

Assistant, 190
project settings, specifying in Migration

Assistant, 190–192
Project Settings dialog box, Type Mapping

area in, 191–192
Project Tasks menu, options for creating

interactive views, 254
proofing options, 8
Property Get statement

getting unique identifier value with, 101
indicating a read-only property, 96

Property Let statement
for Person class FirstName, 103
indicating a writable property, 96

PS object, adding data to the collection with,
97

public function
creating for use with combo boxes, 139
for reading class string, 94–95

Public ID As Long property, setting, 101

public subroutine, incrementing and adding
class name, 94

purchase requisition, setting up
authorization to approve, 295–296

■Q
QAT. See Quick Access Toolbar (QAT)
queries, using to access data, 313–315
query

code for executing, 222–223
code for generic execution, 223
using as source of data collection e-mail,

71
query criteria, changing via VBA, 343–344
Query Design options, in Access 2007, 8
Query Designer

changing query type on main menu in,
313

creating a query in, 161–163, 312–313
creating parameters in, 163

Query Editor
opening for graphical approach, 155
tools for developing queries, 155–156
using to ensure SQL is valid, 225
using to work with server-side objects,

155–156
Query Wizard, options available in ADPs,

182
QueryDef object

for executing a stored procedure via DAO,
135

for exporting queries as text, 32
QueryDefs

function of, 222–224
in Database object, 208

Quick Access Toolbar (QAT), 20
customizing, 7
default, 7
not adding controls to it only, 363
not using in uncontrolled situations,

363
use of limited spots on, 363

Quick Launch, WSS-side menu system,
247

Quick Launch menu, default items added
to team site, 245

quotation, from Access 2002 Developers
Handbook, 87

■INDEX 385

Find
itfasterathttp://superindex.apress.com

/

■R
recipient element, function of, 78
record editing, basic, 217–218
record locking, handling in a multiuser

environment, 219
records

checking for existance of before adding,
220

code for removing duplicate, 352
code for selecting multiple on a subform,

339–341
editing in the real world, 218–219

recordsets
available options, 213–214
in Database object, 208
moving in, 214–217
setting locked property in, 214
types of, 213–214
working with multiple, 220–222

recordsets collection, working with, 211–222
references, clearing missing via VBA, 342–343
Refresh List option, function of on WSS

server, 282
RefWorks, for inserting citations into Word

documents, 365
Reid, Martin WP, Access to SQL Server (Apress,

2002) coauthored by, 126, 224
Relations, in Database object, 208
relationships.xml file, contents of, 36
Relink Lists option, function of on WSS

server, 282
RemoveAllTempVars, removes all variables

from TempVar store, 234
RemoveTempVar(name), removes individual

variable from store, 234
Repeater control, that can be added to a web

page, 308
Replace function (Access), using to fix a

SharePoint GUID, 268–269
replies, processing, 78
report count, getting, 62
Report Definition Language (RDL), using to

write reports, 144
report designer

aggregate functions available in, 148
at current report building stage, 146

report names, getting, 62
report objects, events available in, 18
Report Server Project Wizard

creating a basic report using, 144–146
steps for creating a new report, 144

report text file, contents of, 30–31
reporting, feature lacking in WSS, 283
Reporting Services, SQL Server Express

Toolkit needed to run, 144
Reporting Services add-in, available from

Microsoft, 304
reporting tools, available free for SQL Server

2005 Express, 143
reports

creating manually, 146–148
creating using Report Server Project

Wizard, 144–146
design changes permitted in, 17–18
example of finished with parameters,

150
passing parameters to, 149–151
previewing in report designer, 146–148
problems upsizing to Reporting Services,

143
reasons for import failures, 149
setting security credentials for, 144–145
upsizing existing, 148–149
using Import Reports tool to import,

148–149
reserved words, warning against use of as

field names, 129
resources, available when working with

Access, 9
responded element, function of, 78
Ribbon

importance of adding controls to, 363
in uncontrolled situations, 363

Ribbon tab, example of blank, 61
Ribbon XML, case sensitivity of, 44
Ribbon-based menus, types of, 6
Ribbons. See also RibbonX

add-in from Patrick Schmid, 41
adding and removing from the QAT, 9
adding custom images to, 55–56
adding functionality to, 46–47
code for Product Group 1, 61–62
common elements and attributes, 45–46
creating from scratch, 44
creating new tab in, 47–48
creating your first, 43–46
dynamic menu system in Access 2007, 5
in Access 2007, 6–8
minimizing and maximizing, 7
placing buttons onto, 47
removing built-in items from, 58–59
tools needed for customization of, 7

■INDEX386

turning off display of default, 44
using contextual, 59–63

RibbonX
Custom UI Editor for, 42
getting up and running with, 41–65
guidelines for a controlled situation,

362–363
using VBA with, 49–53

RibbonX and Custom Add-Ins, 361–368
RibbonXML field, adding XML to, 44
rich text support, added within forms in

Access 2007, 15–16
roles, 206. See also database roles
RunCommands, for working with SharePoint

data, 270–271

■S
Salakhetdinov, Shamil, member of AccessD,

67
Save command, code for, 106
Save function, added to the Person class,

103–104
Save routine, creating, 102
SaveAsText method, saving Access objects as

text files, 28–31
SaveToFile method, new in DAO, 228
scalar functions, creating, 174
Schema tab, function of, 192
Schmid, Patrick

RibbonX help from, 41
text in Appendix from web site, 361

screen resolution, target in uncontrolled
situation, 366

scripting, stored procedures, 167–168
search form

previewing in your default browser, 319
trying out, 319–320

search page, creating, 318–320
searchFolder, in AccessDCActionFile.XML

file, 85
security

available using SQL Server 2000/2005,
119–122

changes in user-level in Access 2007, 20
substantial changes to macros for,

233–235
SELECT statements

for viewing information on triggers, 160
JET vs. SQL Server statements, 200

SelectedItemTemplate, function of, 316

separator, adding between button items,
51–52

SeparatorTemplate
for placing a separator between list items,

316
sequence number, adding to a query,

336–337
sequential row numbers, adding to a query,

337–338
server capabilities, added in Access 2007, 1
server roles, in SQL Server Express security,

179–180
server-side data

using SharePoint Server as data store for,
114

using SQL Server 2000/2005 for, 114
SetTempVar(name,expression), for setting

the variable, 234
SharePoint, advantages of moving to, 271
SharePoint data, ability to work with offline,

20
SharePoint Designer (SPD)

creating database sites with, 285–286
developing basic Web Parts with, 247
example of default.master page in, 300
for making data available via the Internet,

285
getting started with, 286–294
uses in addition to Workflows, 299
using to create a Workflow, 295–296
using vs. Visual Web Developer 2005

Express, 286
SharePoint information, example of online,

281
SharePoint Lists contextual menu, gaining

access to, 267
SharePoint Lists group, options in, 267
SharePoint recycle bin, opening, 271
SharePoint RunCommand

for deleting the currently open list, 270
for discarding all changes made to WSS

listing, 270–271
for discarding changes and refreshing

linked list, 270–271
for opening a list on the server, 270
forcing a relink to SharePoint lists, 271
starting the Attach to List Wizard, 271
starting the move to SharePoint Wizard,

270

■INDEX 387

Find
itfasterathttp://superindex.apress.com

/

SharePoint Server
introduction to, 237–261
working with multivalued fields in,

232–233
SharePoint Server 2007, 20added in Access

2007, 1
changes in Access to support, 10
effect on building interactive applications,

20
working with, 19–20

SharePoint Site Recycle Bin option, function
of on WSS server, 282

Show Add in User Interface Errors option,
turning on, 43

Site Columns, function of, 247
Site Context Types, function of, 247
site settings, available depending on WSS site

permissions, 246
Site Theme, function of, 246
site/workspace templates, built-in provided

by WSS, 241–242
Sites and Workspaces, function of, 247
SitMapDataSource connector, provided by

Web Dev Express, 306
Smart Tag

amending Item template with, 317
customizing a data list with, 316
setting data source to connection with,

317
setting properties with, 317

SMO, used by SQL Server 2005, 123
Smolin, Rocky, website address, 139
SnapShot recordset, function of, 213
software, downloadable from Microsoft

website, 20
sort order, dealing with in frmPeople form,

100–101
spaces, use of in field names, 215
spellchecking, in Access 2007, 8
split buttons, creating, 53–55
Split Form, menu option through Create tab,

14
split function, using to sort out multivalue

fields, 131–132
SQL

using to select attachment data, 230
using within VBA, 224

SQL Data Definition Language events,
triggers fired in response to, 160

SQL Data Management Objects (SQLDMO).
See SQLDMO

SQL script, creating and saving for later
execution, 199

SQL Server
comparing to Access, 116–124
delimiters in, 118–119
objects matching Access forms or reports,

130
options when working with, 115
overview for upsizing to, 113–152
schemas and other objects, 156–157
security permissions for upsizing task,

120–122
table properties, 184–185
using a form to log in to, 120
using constraints to check values, 185
working with as back-end data store,

113–152
SQL Server. See SQL Server 2000; SQL Server

2000/2005 Express; SQL Server 2005
Express

SQL Server 2000
data type differences between Access and,

118
upsizing to, 125–130

SQL Server 2000/2005
security features, 119–122
upsizing Allow Multiple Values property

in, 130
upsizing of data type attachment in, 130

SQL Server 2000/2005 Express, 152
RAD development for, 113–152
using for server-side data store, 114

SQL Server 2005
Access data type mappings to, 191–192
Access issues that can affect migration to,

186
migrating Access MDB files to, 187–188
new features for error control with,

163–164
SQL Server 2005 Express

ADPs and, 183–186
as replacement for MSDE, 116
book by Rich Dobson (Apress, 2005), 206
CLR support, 117
errors in upsizing tables in, 130
feature set vs. Access, 116–117
overview of, 154–178
T-SQL templates included in, 154
upsized tables in, 130
upsizing to, 130–132
versions available for download, 143

■INDEX388

SQL Server 2005 Express tool set, working
with, 153–206

SQL Server 2005 Migration Assistant for
Access. See Migration Assistant; SQL
Server Migration Assistant for Access

SQL Server authentication
changing properties of server before

using, 181
creating the login and permissions for,

181–182
SQL Server Books Online

for coverage of Reporting Services
functions, 148

for examples on error control, 164
SQL Server database names, enumerating,

123
SQL Server DTS

bringing data into SQL Server 2000 with,
115

downloading for SQL Server 2005 Express,
115–116

SQL Server Express
database subfolders and contents of, 157
error control in, 163–164
security, 178–182
server roles available in, 179–180
table of built-in database roles, 178–179
vs. MSDE, 155

SQL Server Express database, downloadable
from Apress website, 146

SQL Server Express security, defined in terms
of principles, 178–182

SQL Server Express Toolkit, needed to run
Reporting Services, 144

SQL Server login accounts, working in
Windows Authentication mode, 120

SQL Server Management Studio Express
console, 154–155

SQL Server Metadata Explorer, with
Northwind Access database, 195–196

SQL Server Migration Assistant for Access,
206. See also Migration Assistant

blank interface to, 187
conversion of SQL and queries by, 186–187
file types supported by, 186
focus of, 186
general steps for the migration process,

187–188
moving objects into SQL Server with, 205
project setting options in, 190
requirements for working with, 187

specifying project settings in, 190–192
SQL script for, 196–199
using, 186–205
viewing Access tables in, 193–195

SQL Server Names
adding to Access list box, 122–123
code for enumerating, 122–123

SQL Server Reporting Services, upsizing to,
143–151

SQL Server security, levels, 119–122
SQL Server syntax, converting Access objects

to, 196–205
SQL Server T-SQL counterparts, common JET

functions with, 201–202
SQL Server table properties, vs. Access table

properties, 184–185
SQL Server vs. JET. See JET vs. SQL Server
SQL Server vs. JET statements, tables of, 205
SQL statements

building with DAO, 224–225
for creating new clustered index, 128
saved as qryTodaysEvents, 313

SqlDataSource connector, provided by Web
Dev Express, 306

SQLDMO, 152
illustrating features of, 122–123
using, 122–123

SQLDMO Object Library, reference set for
SQLDMO examples, 122

SSW Upsizing Pro
common errors returned by, 126
using before upsizing, 125
website address for, 125

startFromScratch attribute
caution about using for Ribbon tag,

362–363
using in uncontrolled situation, 363

stopDateTime property, setting, 76
StorageOnly property, creating, 101
stored procedures

advantages to using, 133
and Access forms, 166–170
basic to populate frmModule, 166
containing basic SELECT statement, 134
error trapping in, 163–164
executing, 133–134
executing using DAO, 135
for deleting a module, 167
for inserting a new record, 170–172
for inserting a new student, 166–167
parameters declared within, 160

■INDEX 389

Find
itfasterathttp://superindex.apress.com

/

passing parameters to and from, 135–136,
164–166

short introduction to, 133–137
to deal with nulls, 161–162
using in SQL Server Express, 160–172

subform, selecting multiple records on,
339–341

subform controls, code for locking, 350–351
Survey list, options available in Create

Questions form, 257–258
surveys

for creating an online questionnaire,
257–258

question types available when building,
257–258

steps for creating, 257
Synchronize button, for copying offline

changes to WSS version, 266
synonyms folder, contents of, 157
system tables, SQL Server, 119

■T
T-SQL, used by SQL Server, 133
T-SQL templates, included in SQL Server

2005 Express, 154
Table 1, default blank table created in Access,

5
Table Design options, in Access 2007, 8
table fields, code for printing out, 348–349
table filters, in Access 2007, 13–14
table recordset, function of, 213
table relationships, in upsizing, 129
table reports

example of, 194–195
running a single, 193–194

table template, creating, 158
Table Templates group, in Access 2007, 6–7
table XML code section, showing mapping

between table or query, 76–78
table-valued function, 175
TableAdapter, using, 320
TableAdapter Configuration Wizard, for

adding a TableAdapter to a dataset,
322

tableCell property, setting, 77
TableDef object, walking, 32
TableDefs

creating a table within the database with,
210–211

function of, 208–211
in Database object, 208

tables
adding in Access, 6
deleting from an external source, 347–348
filtering, 13–14
linking to the Access application, 205
tracking user inserts to, 158
unlinking from Access application, 205
using VBA to delete, 347

tables and database objects, 36–38
tables and queries, saving as text files, 31–32
tables folder, contents of, 157
tables property, setting, 77
tabs

creating, 47
making yours the first, 368
putting together a simple, 47–49
reasons for creating your own, 365
switching, 368
using as little space as possible on, 366

<tabs> elements, creating tabs within, 47
tabs, groups, and controls, changing visibility

of, 367
Tag String property, for use in VBA, 50
task panes, using custom, 368
Tasks list

creating basic, 252–253
function of, 252–254

tblEmployee, structure of, 43–44
tblEvent table, structure of in What’s On web

site, 311
tblEventCategory table, structure of in What’s

On web site, 311
tblLocation table, structure of in What’s On

web site, 311
tblLogg, creating before creating a trigger,

158
tblModule, INSERT statement generated for,

167
tblPeople database

adding records to and creating unbound
form, 98

defining fields in, 95
Team Meeting Workspace

adding features to, 259
creating blank, 258–259

team site
changing name of, 245–246
creating, 244, 247
creating new with WSS open, 244
site settings available, 246
software used to create, 244

■INDEX390

Tejpal, A. D., code for duplicating an
application by, 338–339

tempdb, role of in SQL Server, 119
template database, in SQL Server, 119
template databases

making available to users, 33–34
new in Access 2007, 21

templates
accessing in Access 2007, 4–5
as new consulting business opportunity, 5
built into Access, 33–39
built-in provided by WSS, 241–242
editing, 316
structure of, 34
the enables editing of a data item, 316

templates and text, 21–39
temporary variables feature, new in Access

2007, 19
TempVars

available to macros and VBA code,
234–235

maximum number definable in
application, 234

new in Access 2007, 19
new macro actions available, 234
returning a listing of all currently in use,

234–235
testing, the first stage of the Workflow,

297–299
text and templates, 21–39
text box

changing color of based on its value, 350
restricting text entered into, 342

text box color, changing based on its value,
350

text boxes
creating in Access form, 90–93
populating using code, 168–170

text fields vs. multivalue fields, 11
toggle buttons, creating, 65
tooltip, adding to button that opens

employee form, 50–51
Training Admin MOSS site, assigning tasks to

staff members on, 295
TransferSharePointList

arguments available using, 267–268
for linking to WSS views and standard lists,

267
using to tranfer view to Access 2007, 269

trigger, steps for creating structure of,
158–159

trigger template, code for, 159
triggers

creating, 158–160
new to Access developers and power

users, 157
Trust Center options, in Access 2007, 9
TRY/CATCH error functions, table of, 164
txtFirstName AfterUpdate, code for, 104–105
txtFullName AfterUpdate, code for, 104–105
txtLastName AfterUpdate, code for, 104–105
Type Mapping

in Project Settings dialog box, 191–192
setting for an entire project, 192

Type property, setting, 77

■U
UI elements, changing dynamically, 367
UI guidelines

caution about adding Ribbon to the Home
tab, 365

for controlled and uncontrolled situations,
364–368

pitfalls of repurposing label controls, 365
repurposing commands, 364–365

unbound Access forms, working with,
138–139

unbound customer form objects, table of,
214

unbound forms
adding a new record via, 220–222
defined, 208
populating, 138

Unbound recordset, major issues with per
John Colby, 219

uncontrolled situations
guidelines for, 363–364
telling users how to contact you, 364

Update existing information option, in
HTML form, 68

Update method (DAO), for updating all
records, 219

Update statement, code for, 233
UPDATE statements

JET vs. SQL Server statements, 200–201
upsizing

comparing data types after, 132
issues before, during, and after, 129–130
problems with large applications, 130
to SQL Server 2000, 125–130
to SQL Server 2005, 130–132
validation rules, 128

■INDEX 391

Find
itfasterathttp://superindex.apress.com

/

Upsizing Wizard. See also Access Upsizing
Wizard

choosing objects to upsize in, 127–128
running, 127–129
upsizing to SQL Server 2000 with, 125–130

User Alerts, function of, 247
user forms, creating drop-down list to

display, 57
user-defined functions, 173–175

adding parameters to, 174
example code for, 175
steps for creating, 173
syntax for, 175
using within a stored procedure, 173–174

UserMapping category, assigning login to a
database with, 181

user_name() function, use of in triggers, 159
usp prefix, meaning of, 133
USysRibbons, steps for creating, 44

■V
validation rules

exported to SQL Server as constraints, 128
upsizing, 128

Value element, function of, 78
VB Express, 330

creating Windows applications with,
325–329

creating Windows Form application with,
328–329

interface, 326
website address for downloading, 325

VBA
amending to accept a parameter, 135–136
and linked lists, 278–280
changing query criteria via, 343–344
clearing missing references via, 342–343
introduction to classes in, 87–111
using SQL within, 224
using to check for field existence, 346
using to delete a table, 347
using to process linked WSS records,

279–280
VBA callback functions, 65

creating, 56–58
enabling, 50
for opening the employee form, 50
for providing information to the interface,

52–53
to get record count for drop-down lists,

52–53

to populate drop-down labels, 52–53
using with RibbonX, 49–53

VBA class and framework tutorials, by John
Colby, 87

vbareferences.xml file, contents of, 36
vertical separator, adding between button

items, 51–52
view SQL, statement created within view

definition, 176
view styles, a brief description of, 292
views

basing a form on within Access ADP,
176–177

creating directly using ADO and ADPs, 177
creating within an ADP, 176
executing after creating, 176
SQL Server, 175–178
using to add records, 176–177
using to perform Joins on the server, 178

views folder, contents of, 157
visible property, setting to remove Ribbon

items, 58
Visual Basic 2005 Express. See VB Express
Visual Studio, blank report designer in,

143–144
Visual Web Developer 2005 Express, using vs.

SharePoint Designer (SPD), 286
VS Express, available free from Microsoft, 304

■W
Web Administration tool, Web.Config

management using, 305–306
web application

creating with Visual Web Developer 2005
Express, 304–307

using three-tiered approach for building,
321–324

Web Dev Express
administrative interface, 304–305
available free from Microsoft, 304
creating a basic Web application with, 304
creating a new Web site project in,

305–307
running, 304–307

Web Discussions, browser-based discussion
groups, 247

web page
creating the connection to, 317
data-centric controls you can add to,

308–309
making fully interactive, 317–318

■INDEX392

Web Part connections
function of, 291
losing when changing Customers Web Part

style, 293
Web Part Properties dialog box, viewing and

setting Web Part properties in, 294
Web Parts, 261, 301. See also data view Web

Part
adding to Team Meeting Workspace, 259
and workflows, 294–299
as .NET controls, 240
connecting and filtering, 259
contained in a page within a WSS site, 240
creating relationship between two parts,

291
inserting for reuse within your web site,

290
web site project

adding a dataset to, 321–323
adding code to load up the data grid,

323–324
changing method name, 322
creating a new web form for, 323
creating database connection, 321
creating new with VB Express, 325–329
selecting tblEventTableAdapter, 322–323
testing out the page, 324

Web.Config
management using Web Administration

tool, 305–306
vital to operation of web application, 305

website address
for AccessD, 331
for add-in for PDF support, 5
for BarTracks application, 125
for Chapter6 database for examples, 113
for CLR programming with SQL Server

2005, 117
for Developer Extensions for Access 2007,

207
for downloading SQL Server 2005 Express,

116
for Express starter kits, 304
for John Colby VBA tutorials, 87
for links to Access 2003 and XML articles,

37
for listing of ADO types available, 166
for Microsoft Blog site, 21
for Microsoft Virtual Earth, 353
for new properties available with Access

2007, 225

for Office UI style guide, 368
for overview of using Access and InfoPath,

73
for Patrick Schmid RibbonX web site, 361
for Ribbons customization tool, 7
for Rocky Smolin idea about combo boxes,

139
for SSW Upsizing Pro, 125
for three-tiered approach tutorial, 324
for WSS 30-day trial account, 244
ftponline.com/special/web20/pvarholasp

/default.aspx, 353
quote on using multivalued fields in a

query, 233
What’s On web site

creating, 311–317
structure of tblEvent table in, 311
structure of tblEventCategory table in, 311
structure of tblLocation table in, 311

WHERE clause
building, 318–319
setting up, 319
using to populate data grid, 318–319

Where statement, for returning a SharePoint
linked list, 269

Windows Authentication, choosing security
model to use in, 181

Windows Form
adding to, 327–328
building, 327
dragging and dropping tblEvents onto,

327–328
example of completed, 328

Windows Form application
creating small for Events database,

328–329
creating with VB Express, 325–329
objects created within, 328

Windows SharePoint Services (WSS) , 261,
285

actual cost of, 258
Allow Multiple Values property in, 243
behind the scenes of, 240
capabilities provided right out of the box,

240–241
changing Workflow settings in, 299
creating an Access view from, 278
creating view to get GUID, 269
databases contained in, 240
defining out-of-the-box Workflow options

in, 299

■INDEX 393

Find
itfasterathttp://superindex.apress.com

/

how it interacts with client programs, 249
interaction with Access, 263–283
interaction with Access GUI, 285
lack of reporting tools in, 263
libraries, lists, and workspaces in, 247–261
Microsoft Access 2007 interaction with,

237
migrating an Access database to, 271–278
Northwind customer table migrated,

276–277
saving a document back up to, 249
security and, 264
storage of content on the site, 240
updating list after data changes offline,

266
website address for trial account, 244
what it is and capabilities of, 238–239
what you can do with, 240–242

Windows SharePoint Services Version 3,
downloading from Microsoft
website, 19

Windows username, capturing, 159–160
WithEvents, using, 91–92
Word 2007, ability to create citations and

bibliographies, 364
Workflow options, defining four out-of-the-

box, 299
Workflows

advantages of using, 299
and linked lists, 295
and Web Parts, 294–299
modifying one created in SPD, 298–299

Workspace object, function of, 208
workspace templates

built-in provided by WSS, 241–242
WSS. See Windows SharePoint Services

(WSS); WSS sites
WSS Customers list, viewing data within, 290
WSS data

moving between servers, 271
working with offline, 281

WSS Document Library. See Document
Library

WSS lists
Access table migrated to, 274–275
advantage of using to capture asset

logging data, 280
connecting to from Access, 264–266
customization options available, 252
defined, 247

employee table migrated to, 274–275
moving between servers, 271–278
printing via VBA, 278–279
returning to online mode, 281
synchronizing changes, 281
taking offline to work on, 281
using with Access, 263–271
working with in Access 2007, 266–269

WSS Move to SharePoint Site Wizard,
example of, 272–274

WSS Open in Microsoft Access dialog box, for
linking to WSS list, 265

WSS reporting tool, using Access as, 283
WSS server, options available on, 281–282
WSS sites, 261, 301

advantages of, 241
available permissions in, 242
created to store training materials,

240–241
permissions, 242
pulling data from, 267
setting up for mobile access in, 242

WSS team site home page
example of, 244
features contained in, 244–245

WSS templates, available for Windows
SharePoint Services, 38–39

WSS version 3, versioning for documents in,
249

WSS Workflow
command button options, 296
created conditions and actions, 297
creating the conditions for, 296–297
creating using SPD and Access, 295–299
editing, 298
flagging of errors in, 297
interacting with from Access 2007, 298
.NET Framework 3.0 needed for using, 295
routing a document through a checking

process, 295–296
testing the first stage of, 297–298
types of, 295

WSS Workflow condition, creating, 297
WSS workspaces, creating to serve a

particular need, 258–259
Wutka, Drew “Code Boy”, examples from

used in chapter, 87

■INDEX394

■X
XML, brief overview, 21–24
XML configuration file, for recognizing data

collection e-mails, 84
XML data, for a data collection task, 74–75
XML data collection file, table of tags and

their meanings, 80–81
XML documents

structure of, 23–24
XML relationships in containers for, 25–26

XML field data, creating, 80–82
XML file

breaking down recipients section of, 78
contains data used for a table, 36
elements and attributes of, 75–76
structure of simple, 23–24

XML tutorial, website address for, 42
XMLDataSource connector, provided by Web

Dev Express, 306
.xoml filename extension, for Workflow file to

be edited, 298
XPath, website address for overview of, 77
XSD file

contains schema for a table, 36
defined, 36

■Z
ZIP package, as parts container in Access

XML structure, 25–26

■INDEX 395

Find
itfasterathttp://superindex.apress.com

/

	Front Matter
	Access 2007: What’s New?
	Text and Templates
	Getting Up and Running with RibbonX
	Data Collection Using Microsoft Outlook 2007
	Introduction to Classes in VBA
	RAD Development for SQL Server 2000/2005 Express
	Working with the SQL Server 2005 Express Tool Set
	DAO, Complex Data Types, and Macros
	Introduction to SharePoint Server
	Access and SharePoint Applications
	Access, SharePoint, and SharePoint Designer
	Getting Started with. NET Tools
	Code You Can Steal!
	Back Matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

	Blank Page: This page intentionally blank

