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And, though the warrior’s sun has set,
Its light shall linger round us yet,
Bright, radiant, blest.

(J. Manrique; H. W. Longfellow)

To Antonio Aizpuru

In Memoriam
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PREFACE

The III International Course of Mathematical Analysis in Andalusia, held

in La Rábida (Huelva), 3–7 September 2007, continued the tradition of pre-

vious courses in Cádiz (2002) and Granada (2004). Five years ago, represen-

tatives of several Andalusian universities made a concerted effort organizing

a course to provide an extensive overview of the research in different areas

of Mathematical Analysis. The friendly cooperation of many Andalusian

research groups in these areas and the initiative of Antonio Aizpuru and

Fernando León made possible the organization of the first course in Cádiz.

A new and wider cooperation of the Andalusian research groups in Real

Analysis, Complex Variable and Functional Analysis and, mainly, the en-

couragement and hard work of Maŕıa Victoria Velasco were the cornerstone

to support the second course in Granada. During the Gala Dinner in this

course (held in a beautiful house which was used as a summer palace by the

latter Arab–Andalusian Kings), a group of professors from the universities

of Sevilla and Huelva agreed to organize the third course. With the sup-

port of the Spanish National Government, the universities of Seville and

Huelva, sponsored by several private and official institutions and hosted

by the International University of Andalusia (Sede Iberoamericana de La

Rábida) where we could invite some leading researchers in this area to give

three seminars and eleven plenary lectures. The course brought more than

70 participants from different countries and provided an ideal forum for

learning and exchanging of ideas. The high scientific quality of the lectures

and seminars offered in this course made us think about the interest of a

book collecting these talks. We asked the speakers for a written version of

their lectures. The lecturers kindly facilitated us and we could agree with

World Scientific Publishing Co. the publication of these proceedings which

can be of high interest to graduate students and researchers in several areas

of Mathematical Analysis.

The present book includes the contributions corresponding to the semi-

nars by Marco Abate, Eleonor Harboure and Edward Odell and to the ple-

nary talks by Óscar Blasco, Joaquim Bruna, Bernardo Cascales, Francisco
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L. Hernández, Lawrence Narici, Héctor Salas, Bertram Schreiber, Antonio

Villar and Wies law Żelazko. Seminars and talks lectured by these presti-

gious researchers attracted the interest of a big number of graduate students

and researchers who attended this conference. The excellent work of the lec-

turers and the scientific contributions from them and all participants made

possible the success of this course.

The talks of M. Abate concerns the theory of local discrete dynamical

systems in complex dimension 1, describing what is known on the topologi-

cal and dynamical structure of the stable set, and on topological, holomor-

phic and formal conjugacy classes.

O. Blasco presents DeLeeuw-type transference theorems for bilinear

multipliers. They allow us to obtain the boundedness of the periodic and

discrete versions of bilinear multipliers (even for their maximal versions)

and to get new applications of these results in Ergodic Theory.

J. Bruna studies functions which generate the Lebesgue space by trans-

lations. He shows that the discrete translation parameter sets Λ ⊂ R for

which some ϕ ∈ L1(R) exists such that the translates ϕ(x−λ), λ ∈ Λ, span

L1(R) are exactly the uniqueness sets for certain quasianalytic classes, and

gives explicit constructions of such generators ϕ.

B. Cascales’ lecture shows that several classical results about compact-

ness in functional analysis can all be derived from some suitable inequalities

involving distances to spaces of continuous or Baire one functions. In par-

ticular, he gives quantitative versions of Grothendieck’s characterization of

weak compactness in spaces C(K), and Eberlein–Grothendieck and Krein–

Smulyan theorems.

E. Harboure poses several situations in analysis where some kind of

smooth functions play a fundamental role. In connection with the study

of Laplace equation, she analyzes the behavior of the fractional integral

operator on Lp-spaces and presents a brief description of Besov spaces and

their connection with a problem of non-linear approximation of a function

by its wavelet expansion.

The domination problem for positive operators between Banach function

spaces consists in given two positive operators 0 ≤ R ≤ T between two

Banach lattices E and F and assuming that T belongs to a certain operator

class, should R belong to the same class? F. Hernández surveys recent

results on the behavior of related operator classes like strictly singular (or

Kato) operators, strictly co-singular (or Pelczynski) operators as well as

their local versions.
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L. Narici explains to us many facts concerning the Hanh–Banach Theo-

rem and the significant role played by the Austrian mathematician Eduard

Helly in the development of this theorem.

The contribution by E. Odell discusses the Banach space structure of

Lp[0, 1], mostly in the reflexive setting, 1 < p < ∞. This classical Banach

space has been a prime case study for abstraction to a more general study

of Banach space structure. E. Odell revises the most relevant properties

of this space, concerning complemented and non-complemented subspaces,

embeddings, normalized unconditional sequences, distortions of the norm,

etc.

H. Salas revises properties of hypercyclic operators and presents several

problems, some of them in the new classes of dual hypercyclic operators

and frequently hypercyclic operators.

In B. Schreiber’s lecture, the Operator Algebra Basic Theory is outlined

and some applications are described. Many of these applications lead easily

to open problems worthy of investigation, both in the area of the application

and in the development of the basic theory.

A. Villar’s lecture deals with the mathematical tools that permits to

understand the logics of competitive markets. It refers to the solvability of a

finite system of equations with non-negativity restrictions. Some changes in

the environment are also considered: non-competitive behavior, non-convex

feasible sets, non-finite sets of markets, a continuum of agents, etc.

W. Żelazco discusses some recent results and some open problems con-

cerning unital F -algebras (i.e., a topological algebra which is an F -space).

The following questions are considered:

(1) When are all maximal ideals closed?

(2) When are all ideals closed?

(3) When does a dense principal ideal exist?

There were many other pluses to the course; the tourist trip across

Huelva Rı́a on a typical boat with dinner on board, the memorable trip

to the Riotinto Mine Park and to the Marvels’s Cave in Sierra de Aracena

Natural Park, not to mention the BBQ and Gala Dinner held in the gar-

den of La Rábida Residence followed by an amazing “Cheen–Cheen-Poom”

dancing.

No conference can succeed without a lot of generous support and we

would like to express our gratitude to the other organizers, specially to

Cándido Piñeiro, Ramón Rodŕıguez and Enrique Serrano, who were in

charge of almost all necessary organization duties, the Sede Iberoameri-
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cana of the University International of Andalusia and its Director Luis C.

Contreras, the Local Committee, the many official and private sponsors,

listed at the end of this preface, and, of course, the participants themselves

without whom there could have been no conference.

Sevilla and Huelva, Spring 2008

The editors

J. M. Delgado and T. Domı́nguez
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Daniel Girela Álvarez – Universidad de Málaga

El Amin Kaidi Lhachmi – Universidad de Almeŕıa
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Ángel Rodŕıguez Palacios – Universidad de Granada
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AN INTRODUCTION TO DISCRETE HOLOMORPHIC

LOCAL DYNAMICS IN ONE COMPLEX VARIABLE

MARCO ABATE

Dipartimento di Matematica
Università di Pisa
56127 Pisa, Italy

E-mail: abate@dm.unipi.it

1. Introduction

In this survey, by one–dimensional discrete holomorphic local dynamical

system, we mean a holomorphic function f : U → C such that f(0) = 0,

where U ⊆ C is an open neighbourhood of 0; we shall also assume that f 6≡
idU . We shall denote by End (C, 0) the set of one–dimensional discrete

holomorphic local dynamical systems.

Remark 1.1. Since in this survey we shall only be concerned with the

one–dimensional discrete case, we shall often drop the adjectives “one–

dimensional” and “discrete” and we shall call an element of End (C, 0)

simply a holomorphic local dynamical system. We shall not discuss at all

continuous holomorphic local dynamical systems (e.g., holomorphic ODEs

or foliations); however, replacing C by a complex manifold M and 0 by a

point p ∈M , we recover the general definition of discrete holomorphic local

dynamical system in M at p.

Remark 1.2. Since we are mainly concerned with the behaviour of f

nearby 0, we shall sometimes replace f by its restriction to some suit-

able open neighbourhood of 0. It is possible to formalize this fact by using

germs of maps and germs of sets at the origin, but for our purposes, it will

be enough to use a somewhat less formal approach.

To talk about the dynamics of an f ∈ End (C, 0), we need to introduce

the iterates of f . If f is defined on the set U then the second iterate f 2 =

f ◦ f is defined on U ∩ f−1(U), which is still an open neighbourhood of
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the origin. More generally, the k-th iterate f k = f ◦ fk−1 is only defined

on U ∩f−1(U)∩· · ·∩f−(k−1)(U). Thus, it is natural to introduce the stable

set Kf of f by setting

Kf =

∞⋂

k=0

f−k(U).

Clearly, 0 ∈ Kf and so, the stable set is never empty (but it can happen that

Kf = {0}; see the next section for an example). The stable set of f is the

set of all points z ∈ U such that the orbit {fk(z) : k ∈ N} is well–defined.

If z ∈ U \Kf , we shall say that z (or its orbit) escapes from U .

Then the first natural question in local holomorphic dynamics is

Question 1.1. What is the topological structure of Kf?

For instance, when does Kf have non-empty interior? As we shall see in

Section 5, holomorphic local dynamical systems such that 0 belongs to the

interior of the stable set enjoy special properties.

Remark 1.3. Both the definition of stable set and Question 1.1 (as well as

several other definitions or questions we shall meet later on) are topological

in character; we might state them for local dynamical systems which are

only continuous. As we shall see, however, the answers will strongly depend

on the holomorphicity of the dynamical system.

Clearly, the stable set Kf is completely f -invariant, that is, f−1(Kf ) =

Kf (this implies, in particular, that f(Kf ) ⊆ Kf ). Therefore, the pair

(Kf , f) is a discrete dynamical system in the usual sense and so, the second

natural question in local holomorphic dynamics is

Question 1.2. What is the dynamical structure of (Kf , f)?

For instance, what is the asymptotic behaviour of the orbits? Do they con-

verge to the origin, or have they a chaotic behaviour? Is there a dense

orbit? Do there exist proper f -invariant subsets, that is, sets L ⊂ Kf such

that f(L) ⊆ L? If they do exist, what is the dynamics on them?

To answer all these questions, the most efficient way is to replace f by a

“dynamically equivalent” but simpler (e.g., linear) map g. In our context,

“dynamically equivalent” means “locally conjugated”; and we have at least

three kinds of conjugacy to consider.

Let f1 : U1 → C and f2 : U2 → C be two holomorphic local dynamical

system. We shall say that f1 and f2 are holomorphically (respectively, topo-

logically) locally conjugated if there are open neighbourhoods W1 ⊆ U1 and
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W2 ⊆ U2 of the origin and a biholomorphism (respectively, a homeomor-

phism) ϕ : W1 →W2 with ϕ(0) = 0 such that

f1 = ϕ−1 ◦ f2 ◦ ϕ on ϕ−1
(
W2 ∩ f−1

2 (W2)
)

= W1 ∩ f−1
1 (W1).

In particular, we have

fk
1 = ϕ−1 ◦ fk

2 ◦ ϕ on ϕ−1
(
W2 ∩ · · · ∩ f−(k−1)

2 (W2)
)

= W1 ∩ · · · ∩ f−(k−1)
1 (W1),

for every k ∈ N and thus, Kf2|W2
= ϕ(Kf1|W1

). So the local dynamics of f1

is to all purposes equivalent to the local dynamics of f2.

Whenever we have an equivalence relation in a class of objects, there are

classification problems. So the third natural question in local holomorphic

dynamics is

Question 1.3. Find a (possibly small) class F of holomorphic local dy-

namical systems such that every holomorphic local dynamical system f ∈
End (C, 0) is holomorphically (respectively, topologically) locally conju-

gated to a (possibly) unique element of F , called the holomorphic (respec-

tively, topological) normal form of f .

Unfortunately, the holomorphic classification is often too complicated to be

practical; the family F of normal forms might be uncountable. A possible

replacement is looking for invariants instead of normal forms:

Question 1.4. Find a way to associate a (possibly small) class of (possibly

computable) objects, called invariants, to any holomorphic local dynami-

cal system f so that two holomorphically conjugated local dynamical sys-

tems have the same invariants. The class of invariants is furthermore said

complete if two holomorphic local dynamical systems are holomorphically

conjugated if and only if they have the same invariants.

As remarked before, up to now all the questions we asked make sense

for topological local dynamical systems; the next one instead makes sense

only for holomorphic local dynamical systems.

A holomorphic local dynamical system is clearly given by an element

of C0{z}, the space of converging power series in z without constant terms.

The space C0{z} is a subspace of the space C0[[z]] of formal power series

without constant terms. An element Φ ∈ C0[[z]] has an inverse (with respect

to composition) still belonging to C0[[z]] if and only if its linear part is not

zero, that is, if and only if it is not divisible by z2. We shall then say
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that two holomorphic local dynamical systems f1, f2 ∈ C0{z} are formally

conjugated if there exists an invertible Φ ∈ C0[[z]] such that f1 = Φ−1◦f2◦Φ

in C0[[z]].

It is clear that two holomorphically locally conjugated dynamical sys-

tems are both formally and topologically locally conjugated too. On the

other hand, we shall see (in Remark 4.2) examples of holomorphic local

dynamical systems that are topologically locally conjugated without be-

ing neither formally nor holomorphically locally conjugated and (in Re-

marks 4.2 and 5.3) examples of holomorphic local dynamical systems that

are formally conjugated without being neither holomorphically nor topolog-

ically locally conjugated. So the last natural question in local holomorphic

dynamics we shall deal with is

Question 1.5. Find normal forms and invariants with respect to the rela-

tion of formal conjugacy for holomorphic local dynamical systems.

In this survey we shall present some of the main results known on these

questions. But before entering the main core of the paper, I would like to

thank heartily François Berteloot, Salvatore Coen, Santiago Dı́az–Madrigal,

Vincent Guedj, Giorgio Patrizio, Mohamad Pouryayevali, Jasmin Raissy,

Francesca Tovena and Alekos Vidras, without whom this survey would

never has been written.

2. Hyperbolic dynamics

As remarked in the previous section, an one–dimensional discrete holomor-

phic local dynamical system is given by a converging power series f without

constant term:

f(z) = a1z + a2z
2 + a3z

3 + · · · ∈ C0{z}.
The number a1 = f ′(0) is the multiplier of f . Since a1z is the best linear

approximation of f , it is sensible to expect that the local dynamics of f will

be strongly influenced by the value of a1. We then introduce the following

definitions:

• if |a1| < 1 we say that the fixed point 0 is attracting;

• if a1 = 0 we say that the fixed point 0 is superattracting;

• if |a1| > 1 we say that the fixed point 0 is repelling;

• if |a1| 6= 0, 1 we say that the fixed point 0 is hyperbolic;

• if a1 ∈ S1 is a root of unity we say that the fixed point 0 is parabolic (or

rationally indifferent);
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• if a1 ∈ S1 is not a root of unity we say that the fixed point 0 is elliptic

(or irrationally indifferent).

Remark 2.1. If a1 6= 0 then f is locally invertible, that is, there exists

f−1 ∈ End (C, 0) so that f−1◦f = f ◦f−1 = id where defined. In particular,

if 0 is an attracting fixed point for f ∈ End (C, 0) with non-zero multiplier

then it is a repelling fixed point for the inverse function f−1.

As we shall see in a minute, the dynamics of one–dimensional holo-

morphic local dynamical systems with a hyperbolic fixed point is pretty

elementary; so we start with this case.

Assume first that 0 is attracting (but not superattracting) for the

holomorphic local dynamical system f ∈ End (C, 0). Then we can write

f(z) = a1z + O(z2), with 0 < |a1| < 1; hence, we can find a large con-

stant M > 0, a small constant ε > 0 and 0 < δ < 1 such that if |z| < ε

then

|f(z)| ≤ (|a1| +Mε)|z| ≤ δ|z|. (1)

In particular, if ∆ε is the disk of center 0 and radius ε, we have f(∆ε) ⊂ ∆ε

for ε > 0 small enough and the stable set of f |∆ε
is ∆ε itself (in particular,

it contains the origin in its interior). Furthermore, since ∆ε is f -invariant,

we can apply (1) to f(z); arguing by induction we get

|fk(z)| ≤ δk|z| → 0 (2)

as k → +∞ and thus, every orbit starting in ∆ε is attracted by the origin,

which is the reason of the name “attracting” for such a fixed point.

If instead 0 is a repelling fixed point, a similar argument (or the obser-

vation that 0 is attracting for f−1) shows that for ε > 0 small enough the

stable set of f |∆ε
reduces to the origin only: all (non-trivial) orbits escape.

It is also not difficult to find holomorphic and topological normal forms

in this case, as shown in the following result, which has marked the begin-

ning of the theory of holomorphic dynamical systems:

Theorem 2.1 (Kœnigs, 1884 [19]). Let f ∈ End (C, 0) be an one–

dimensional discrete holomorphic local dynamical system with a hyperbolic

fixed point at the origin and let a1 ∈ C∗ \ S1 be its multiplier. Then:

(i) f is holomorphically (and hence, formally) locally conjugated to its

linear part g(z) = a1z. The conjugation ϕ is uniquely determined by

the condition ϕ′(0) = 1.
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(ii) Two such holomorphic local dynamical systems are holomorphically

conjugated if and only if they have the same multiplier.

(iii) f is topologically locally conjugated to the map g<(z) = z/2 if |a1| < 1

and to the map g>(z) = 2z if |a1| > 1.

Proof. Let us assume 0 < |a1| < 1; if |a1| > 1, it will suffice to apply the

same argument to f−1.

(i) Choose 0 < δ < 1 such that δ2 < |a1| < δ. Writing f(z) = a1z +

z2r(z) for a suitable holomorphic germ r, we can find ε > 0 such that

|a1| +Mε < δ, where M = maxz∈∆̄ε
|r(z)|. So we have

|f(z) − a1z| ≤M |z|2 (3)

that implies (1) and hence, we get (2) for all z ∈ ∆̄ε and k ∈ N.

Put ϕk = fk/ak
1 ; we claim that the sequence {ϕk} converges to a holo-

morphic map ϕ : ∆ε → C. Indeed (3) and (2) yield

|ϕk+1(z) − ϕk(z)| =
1

|a1|k+1

∣∣f
(
fk(z)

)
− a1f

k(z)
∣∣

≤ M

|a1|k+1
|fk(z)|2 ≤ M

|a1|

(
δ2

|a1|

)k

|z|2

for all z ∈ ∆̄ε and so, the telescopic series
∑

k(ϕk+1 − ϕk) is uniformly

convergent in ∆ε to ϕ− ϕ0.

Since ϕ′
k(0) = 1 for all k ∈ N, by Weierstrass’ theorem we have ϕ′(0) = 1

and so, up to possibly shrink ε, we can assume that ϕ is a biholomorphism

with its image. Moreover, we have

ϕ (f(z)) = lim
k→+∞

fk (f(z))

ak
1

= a1 lim
k→+∞

fk+1(z)

ak+1
1

= a1ϕ(z),

that is, f = ϕ−1 ◦ g ◦ ϕ, as claimed.

If ψ is another local holomorphic function such that ψ′(0) = 1 and

ψ−1 ◦ g ◦ ψ = f , it follows that ψ ◦ ϕ−1(λz) = λψ ◦ ϕ−1(z); comparing the

power series expansion of both sides we find ψ ◦ ϕ−1 ≡ id, that is, ψ ≡ ϕ,

as claimed.

(ii) Since f1 = ϕ−1 ◦ f2 ◦ ϕ implies f ′
1(0) = f ′

2(0), the multiplier is

invariant under holomorphic local conjugation and so, two one–dimensional

discrete holomorphic local dynamical systems with a hyperbolic fixed point

are holomorphically locally conjugated if and only if they have the same

multiplier.

(iii) It suffices to build a topological conjugacy between g and g< on ∆ε.

First choose a homeomorphism χ between the annulus {|a1|ε ≤ |z| ≤ ε}
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and the annulus {ε/2 ≤ |z| ≤ ε} which is the identity on the outer circle

and given by χ(z) = z/2a1 on the inner circle. Now extend χ by induction

to a homeomorphism between the annuli {|a1|kε ≤ |z| ≤ |a1|k−1ε} and

{ε/2k ≤ |z| ≤ ε/2k−1} by prescribing

χ(a1z) =
1

2
χ(z).

Putting finally χ(0) = 0, we then get a homeomorphism χ of ∆ε with itself

such that g = χ−1 ◦ g< ◦ χ, as required.

Remark 2.2. The proof of Theorem 2.1(i) relies on a standard trick used

to build conjugations in dynamics. Suppose we would like to prove that f

and g are conjugated with g invertible. Set ϕk = g−k ◦ fk, so that

ϕk ◦ f = g ◦ ϕk+1.

If the sequence {ϕk} converges as k → +∞ to a locally invertible function ϕ,

we automatically have ϕ ◦ f = g ◦ ϕ and so, ϕ is the conjugation we were

looking for.

Remark 2.3. The proof of Theorem 2.1(iii) uses a standard dynamical

trick for building topological conjugations too. Let f : X → X be a con-

tinuos closed injective map. A fundamental domain for f is a closed set

D ⊂ X with non-empty interior
◦
D such that

(i) X =
⋃

k≥0 f
k(D);

(ii) fh(
◦
D) ∩ fk(

◦
D) = ∅ for all h 6= k;

(iii) fh(D) ∩ fk(D) 6= ∅ if and only if |h− k| ≤ 1.

Assume now that you have two continuous closed injective maps f1 : X1 →
X1 and f2 : X2 → X2 with fundamental domains D1 ⊂ X1 and D2 ⊂ X2.

Assume furthermore that you have a homeomorphism χ : D1 → D2 such

that

χ (f1(z)) = f2 (χ(z)) (4)

for all z ∈ D1 ∩ f−1
1 (D1). Then we can extend χ to a homeomor-

phism between f1(D1) and f2(D2) by setting χ(z) = f2

(
χ
(
f−1
1 (z)

))
for

all z ∈ f1(D1); since (4) holds on D1 ∩ f−1
1 (D1), we have obtained a

homeomorphism between D1 ∪ f1(D1) and D2 ∪ f(D2) satisfying (4) on

(D1 ∪ f1(D1))∩f−1
1 (D1 ∪ f1(D1)). Proceeding in this way, we get a home-

omorphism χ : X1 → X2 satisfying χ ◦ f1 = f2 ◦ χ, as desired.
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Remark 2.4. Notice that g<(z) = 1
2z and g>(z) = 2z cannot be topologi-

cally conjugated, because (for instance) the stable set of g< is open whereas

the stable set of g> only contains the origin.

3. Superattracting dynamics

Let us now study the superattracting case. If 0 is a superattracting point

for an f ∈ End (C, 0), we can write

f(z) = arz
r + ar+1z

r+1 + · · ·

with ar 6= 0; the number r ≥ 2 is the order of the superattracting point. An

argument similar to the one described in the previous section shows that

for ε > 0 small enough, the stable set of f |∆ε
is still all of ∆ε and the orbits

converge (faster than in the attracting case) to the origin. Furthermore, we

can prove the following

Theorem 3.1 (Böttcher, 1904 [2]). Let f ∈ End (C, 0) be an one-

dimensional holomorphic local dynamical system with a superattracting fixed

point at the origin and let r ≥ 2 be its order. Then:

(i) f is holomorphically (and hence formally and topologically) locally con-

jugated to the map g(z) = zr.

(ii) two such holomorphic local dynamical systems are holomorphically (or

topologically or formally) conjugated if and only if they have the same

order.

Proof. First of all, up to a linear conjugation z 7→ µz with µr−1 = ar, we

can assume ar = 1.

Now write f(z) = zrh1(z) for some holomorphic germ h1 with h1(0) = 1.

By induction, it is easy to see that we can write f k(z) = zrk

hk(z) for a

suitable holomorphic germ hk with hk(0) = 1. Furthermore, the equalities

f ◦ fk−1 = fk = fk−1 ◦ f yield

hk−1(z)rh1

(
fk−1(z)

)
= hk(z) = h1(z)rk−1

hk−1 (f(z)) . (5)

Choose 0 < δ < 1. Then we can clearly find 1 > ε > 0 such that Mε < δ,

where M = maxz∈∆̄ε
|h1(z)|; we can also assume that h1(z) 6= 0 for all

z ∈ ∆̄ε. Since

|f(z)| ≤M |z|r < δ|z|r−1 ∀z ∈ ∆̄ε,

we have f(∆ε) ⊂ ∆ε, as anticipated before.
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We also remark that (5) implies that each hk is well–defined and never

vanishing on ∆̄ε. So, for every k ≥ 1, we can choose a unique ψk holomorphic

in ∆ε such that ψk(z)rk

= hk(z) on ∆ε and with ψk(0) = 1.

Set ϕk(z) = zψk(z) so that ϕ′
k(0) = 1 and ϕk(z)rk

= fk(z) on ∆ε. We

claim that the sequence {ϕk} converges to a holomorphic function ϕ on ∆ε.

Indeed, we have

∣∣∣∣
ϕk+1(z)

ϕk(z)

∣∣∣∣ =

∣∣∣∣∣
ψk+1(z)rk+1

ψk(z)rk+1

∣∣∣∣∣

1/rk+1

=

∣∣∣∣
hk+1(z)

hk(z)r

∣∣∣∣
1/rk+1

=
∣∣h1

(
fk(z)

)∣∣1/rk+1

=
∣∣1 +O

(
|fk(z)|

)∣∣1/rk+1

= 1 +
1

rk+1
O
(
|fk(z)|

)
= 1 +O

(
1

rk+1

)
,

and so, the telescopic product
∏

k(ϕk+1/ϕk) converges to ϕ/ϕ1 uniformly

in ∆ε.

Since ϕ′
k(0) = 1 for all k ∈ N, we have ϕ′(0) = 1 and so, up to pos-

sibly shrink ε, we can assume that ϕ is a biholomorphism with its image.

Moreover, we have

ϕk (f(z))
rk

= f(z)rk

ψk (f(z))
rk

= zrk+1

h1(z)rk

hk (f(z))

= zrk+1

hk+1(z) = [ϕk+1(z)r]r
k

,

and thus, ϕk ◦ f = [ϕk+1]r. Passing to the limit, we get f = ϕ−1 ◦ g ◦ϕ, as

claimed.

Finally, (ii) follows because zr and zs are locally topologically (or for-

mally) conjugated if and only if r = s.

Therefore, the one–dimensional local dynamics about a hyperbolic or

superattracting fixed point is completely clear; let us now discuss what

happens about a parabolic fixed point.

4. Parabolic dynamics

Let f ∈ End (C, 0) be a (non-linear) holomorphic local dynamical system

with a parabolic fixed point at the origin. Then we can write

f(z) = e2iπp/qz + ar+1z
r+1 + ar+2z

r+2 + · · · , (6)

with ar+1 6= 0, where p/q ∈ Q ∩ [0, 1) is the rotation number of f and the

number r + 1 ≥ 2 is the multiplicity of f at the fixed point.

The first observation is that such a dynamical system is never locally

conjugated to its linear part, not even topologically, unless it is of finite

order:
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Proposition 4.1. Let f ∈ End (C, 0) be a holomorphic local dynamical

system with multiplier λ and assume that λ is a primitive root of the unity of

order q. Then f is holomorphically (or topologically or formally) linearizable

if and only if f q ≡ id.

Proof. Indeed, if ϕ−1 ◦ f ◦ ϕ(z) = e2πip/qz we get ϕ−1 ◦ f q ◦ ϕ ≡ id, that

is, f q ≡ id. Conversely, assume that f q ≡ id and set

ϕ(z) =
1

q

q−1∑

j=0

f j(z)

λj
.

Then it is easy to check that ϕ′(0) = 1 and ϕ ◦ f(z) = λϕ(z) and so, f is

holomorphically (and topologically and formally) linearizable.

In particular, if the rotation number is 0 (that is, the multiplier is 1

and we shall say that f is tangent to the identity), then f cannot be locally

conjugated to the identity (unless it was the identity to begin with, which is

not a very interesting case dynamically speaking). More precisely, the stable

set of such an f is never a neighbourhood of the origin. To understand why,

let us first consider a map of the form

f(z) = z(1 + azr)

for some a 6= 0. Let v ∈ S1 ⊂ C be such that avr is real and positive. Then,

for any c > 0, we have

f(cv) = c(1 + cravr)v ∈ R+v;

moreover, |f(cv)| > |cv|. In other words, the half–line R+v is f -invariant

and repelled from the origin, that is, Kf ∩ R+v = ∅. Conversely, if avr

is real and negative then it is easy to see that the segment [0, |a|−1/r]v is

f -invariant and attracted by the origin. So Kf neither is a neighbourhood

of the origin nor reduces to {0}.

This example suggests the following definition. Let f ∈ End (C, 0) be

of the form

f(z) = z + ar+1z
r+1 + ar+2z

r+2 + · · · . (7)

Then a unit vector v ∈ S1 is an attracting (respectively, repelling) direction

for f at the origin if ar+1v
r is real and negative (respectively, positive).

Clearly, there are r equally spaced attracting directions, separated by r

equally spaced repelling directions: if ar+1 = |ar+1|eiα then v = eiθ is
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attracting (respectively, repelling) if and only if

θ =
2k + 1

r
π − α

r

(
respectively, θ =

2k

r
π − α

r

)
.

Furthermore, a repelling (attracting) direction for f is attracting (repelling)

for f−1, which is defined in a neighbourhood of the origin.

It turns out that to every attracting direction is associated a connected

component of Kf \ {0}. Let v ∈ S1 be an attracting direction for an f

tangent to the identity. The basin centered at v is the set of points z ∈
Kf \ {0} such that fk(z) → 0 and fk(z)/|fk(z)| → v (notice that, up to

shrinking the domain of f , we can assume that f(z) 6= 0 for all z ∈ Kf\{0}).

If z belongs to the basin centered at v, we shall say that the orbit of z tends

to 0 tangent to v.

A slightly more specialized (but more useful) object is the following:

an attracting petal centered at an attracting direction v is an open simply

connected f -invariant set P ⊆ Kf \ {0} such that a point z ∈ Kf \ {0}
belongs to the basin centered at v if and only if its orbit intersects P . In

other words, the orbit of a point tends to 0 tangent to v if and only if

it is eventually contained in P . A repelling petal (centered at a repelling

direction) is an attracting petal for the inverse of f .

The basins centered at the attracting directions are exactly the con-

nected components of Kf \{0}, as shown in the Leau–Fatou flower theorem:

Theorem 4.1 (Leau, 1897 [20]; Fatou, 1919-20 [12–14]). Let f ∈
End (C, 0) be a holomorphic local dynamical system tangent to the iden-

tity with multiplicity r + 1 ≥ 2 at 0. Let v1, v3, . . . , v2r−1 ∈ S1 be the r

attracting directions of f at the origin and v2, v4, . . . , v2r ∈ S1 the r re-

pelling directions. Then

(i) There exists for each attracting (repelling) direction v2j−1 (v2j) an at-

tracting (repelling) petal P2j−1 (P2j) so that the union of these 2r petals

together with the origin forms a neighbourhood of the origin. Further-

more, the 2r petals are arranged cyclically so that two petals intersect

if and only if the angle between their central directions is π/r.

(ii) Kf \{0} is the (disjoint) union of the basins centered at the r attracting

directions.

(iii) If B is a basin centered at an attracting direction, there exists a function

ϕ : B → C such that ϕ◦f(z) = ϕ(z)+1 for all z ∈ B. Furthermore, if P

is the petal constructed in part (i) then ϕ|P is a biholomorphism with

an open subset of the complex plane containing a right half–plane —

and so, f |P is holomorphically conjugated to the translation z 7→ z+ 1.
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Proof. Up to a linear conjugation, we can assume that ar+1 = −1, so that

the attracting directions are the r-th roots of unity. For any δ > 0, the

set {z ∈ C : |zr − δ| < δ} has exactly r connected components, each one

symmetric with respect to a different r-th root of unity; it will turns out

that, for δ small enough, these connected components are attracting petals

of f , even though to get a pointed neighbourhood of the origin we shall

need larger petals.

For j = 1, 3, . . . , 2r−1, let Σj ⊂ C∗ denote the sector centered about the

attractive direction vj and bounded by two consecutive repelling directions,

that is,

Σj =

{
z ∈ C∗ :

2j − 3

r
π < arg z <

2j − 1

r
π

}
.

Notice that each Σj contains a unique connected component Pj,δ of the set

{z ∈ C : |zr − δ| < δ}; moreover, Pj,δ is tangent at the origin to the sector

centered about vj of amplitude π/r.

The main technical trick in this proof consists in transferring the set-

ting to a neighbourhood of infinity in the Riemann sphere P1(C). For

j = 1, 3, . . . , 2r − 1, the function ψ : C∗ → C∗ given by

ψ(z) =
1

rzr

is a biholomorphism between Σj and C∗ \ R− with inverse of the form

ψ−1(w) = (rw)−1/r , suitably choosing the r-th root. Furthermore, ψ(Pj,δ)

is the right half–plane Hδ = {w ∈ C : Re w > 1/(2rδ)}.

When |w| is so large that ψ−1(w) belongs to the domain of definition

of f , the composition F = ψ ◦ f ◦ ψ−1 makes sense and we have

F (w) = w + 1 +O(w−1/r). (8)

Thus, to study the dynamics of f in a neighbourhood of the origin in Σj ,

it suffices to study the dynamics of F in a neighbourhood of infinity.

The first observation is that if Re w is large enough then

Re F (w) > Re w +
1

2
;

this implies that, for δ small enough, Hδ is F -invariant (and thus, Pj,δ is

f -invariant). Furthermore, by induction one has

Re F k(w) > Re w +
k

2
∀w ∈ Hδ (9)

which implies that F k(w) → ∞ in Hδ (and fk(z) → 0 in Pj,δ) as k → ∞.
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Now we claim that the argument of wk = F k(w) tends to zero. Indeed,

(8) yields

wk

k
=
w

k
+ 1 +

1

k

k−1∑

l=0

O(w
−1/r
l );

so Cesaro’s theorem on the averages of a converging sequence implies

wk

k
→ 1, (10)

and thus, argwk → 0 as k → ∞. Going back to Pj,δ, this implies that

fk(z)/|fk(z)| → vj for every z ∈ Pj,δ . Since furthermore Pj,δ is centered

about vj , every orbit converging to 0 tangent to vj must intersect Pj,δ and

thus, we have proved that Pj,δ is an attracting petal.

Arguing in the same way with f−1 we get repelling petals; unfortunately,

these petals are too small to obtain a full pointed neighbourhood of the

origin. In fact, as remarked before, each Pj,δ is contained in a sector centered

about vj of amplitude π/r; therefore, the repelling and attracting petals

obtained in this way do not intersect but are tangent to each other. We

need larger petals.

So our aim is to find an f -invariant subset P̃j of Σj containing Pj,δ and

which is tangent at the origin to a sector centered about vj of amplitude

strictly greater than π/r. To do so, first of all remark that there areR,C > 0

such that

|F (w) − w − 1| ≤ C

|w|1/r
(11)

as soon as |w| > R. Choose ε ∈ (0, 1) and select δ > 0 so that |w| > 1/(2rδ)

implies

|F (w) − w − 1| ≤ ε/2.

Set Mε =
√

1 + ε2/(2rδ) and let

H̃ε = {w ∈ C : ε|Im w| > −Re w +Mε} ∪Hδ ;

in particular, |w| > 1/(2rδ) for all w ∈ H̃ε. If w ∈ H̃ε we have

Re F (w) > Re w + 1 − ε/2 and |Im F (w) − Im w| < ε/2; (12)

it is then easy to check that F (H̃ε) ⊂ H̃ε and that every orbit starting

in H̃ε must eventually enter Hδ . Therefore, P̃j = ψ−1(H̃ε) is as required

and we have proved (i).

To prove (ii), we need a further property of H̃ε. Since

f−1(z) = z + zr+1 +O(zr+2),
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we have

F−1(w) = w − 1 +O(w−1/r);

up to decreasing δ, we can thus assume that |F−1(w)−w+1| < ε/2 on H̃ε.

But then, if w ∈ H̃ε we have

Re F−1(w) < Re w − 1 +
ε

2

and

ε|Im F−1(w)| + Re F−1(w) < ε|Im w| + Re w −
(

1 − ε(1 + ε)

2

)
;

this means that every inverse orbit must eventually leave H̃ε.

Coming back to the z-plane, we have thus proved that every (forward)

orbit of f must eventually leave any repelling petal. So if z ∈ Kf \ {0},

where the stable set is computed working in the neighbourhood of the

origin constructed in part (i), the orbit of z must eventually land in an

attracting petal and thus, z belongs to a basin centered at one of the r

attracting directions — and (ii) is proved.

To prove (iii), first of all notice that

|F ′(w) − 1| ≤ 21+1/rC

|w|1+1/r
(13)

in H̃ε. Indeed, (11) says that if |w| > 1/(2rδ) then the function w 7→
F (w) − w − 1 sends the disk of center w and radius |w|/2 into the disk of

center the origin and radius C/(|w|/2)1/r for some C > 0; inequality (13)

then follows from the Cauchy estimates on the derivative.

Now choose w0 ∈ Hδ and set ϕ̃k(w) = F k(w) − F k(w0). Given w ∈ H̃ε,

as soon as k ∈ N is so large that F k(w) ∈ Hδ , we can apply Lagrange’s

theorem to the segment from F k(w0) to F k(w) to get a tk ∈ [0, 1] such that
∣∣∣∣
ϕ̃k+1(w)

ϕ̃k(w)
− 1

∣∣∣∣ =

∣∣∣∣∣
F
(
F k(w)

)
− F k

(
F k(w0)

)

F k(w) − F k(w0)
− 1

∣∣∣∣∣

=
∣∣F ′ (tkF k(w) + (1 − tk)F k(w0)

)
− 1
∣∣

≤ 21+1/rC

min{Re |F k(w),Re |F k(w0)|}1+1/r
≤ C ′

k1+1/r
,

where we used (13) and (12) and the constant C ′ is uniform on compact

subsets of H̃ε (and it can be chosen uniform on Hδ).

As a consequence, the telescopic product
∏

k ϕ̃k+1/ϕ̃k converges uni-

formly on compact subsets of H̃ε (and uniformly on Hδ) and thus, the
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sequence ϕ̃k converges uniformly on compact subsets to a holomorphic func-

tion ϕ̃ : H̃ε → C. Since we have

ϕ̃k ◦ F (w) = F k+1(w) − F k(w0) = ϕ̃k+1(w) + F
(
F k(w0)

)
− F k(w0)

= ϕ̃k+1(w) + 1 +O
(
|F k(w0)|−1/r

)
,

it follows that

ϕ̃ ◦ F (w) = ϕ̃(w) + 1

on H̃ε. In particular, ϕ̃ is not constant; being the limit of injective functions,

by Hurwitz’s theorem, it is injective.

We now prove that the image of ϕ̃ contains a right half–plane. First of

all, we claim that

lim
|w|→+∞

w∈Hδ

ϕ̃(w)

w
= 1. (14)

Indeed, choose η > 0. Since the convergence of the telescopic product is

uniform on Hδ, we can find k0 ∈ N such that
∣∣∣∣
ϕ̃(w) − ϕ̃k0

(w)

w − w0

∣∣∣∣ <
η

2

on Hδ . Furthermore, we have
∣∣∣∣
ϕ̃k0

(w)

w − w0
− 1

∣∣∣∣ =

∣∣∣∣∣
k0 +

∑k0−1
j=0 O(|F j(w)|−1/r) + w0 − F k0(w0)

w − w0

∣∣∣∣∣ = O(|w|−1)

on Hδ ; therefore, we can find R > 0 such that
∣∣∣∣
ϕ̃(w)

w − w0
− 1

∣∣∣∣ < η

as soon as |w| > R in Hδ .

Equality (14) clearly implies that (ϕ̃(w) − wo)/(w − wo) → 1 as |w| →
+∞ in Hδ for any wo ∈ C. But this means that if Re wo is large enough

then the difference between the variation of the argument of ϕ̃− wo along

a suitably small closed circle around wo and the variation of the argument

of w −wo along the same circle will be less than 2π — and thus, it will be

zero. Then the principle of the argument implies that ϕ̃ − wo and w − wo

have the same number of zeroes inside that circle and thus, wo ∈ ϕ̃(Hδ), as

required.

So setting ϕ = ϕ̃ ◦ ψ, we have defined a function ϕ with the required

properties on P̃j . To extend it to the whole basin B, it suffices to put

ϕ(z) = ϕ
(
fk(z)

)
− k,
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where k ∈ N is the first integer such that fk(z) ∈ P̃j .

Remark 4.1. It is possible to construct petals that cannot be contained

in any sector strictly smaller than Σj . To do so, we need an F -invariant

subset Ĥε of C∗ \ R− containing H̃ε and containing eventually every half–

line issuing from the origin (but R−). For M >> 1 and C > 0 large enough,

replace the straight lines bounding H̃ε on the left of Re w = Mε by the

curves

|Im w| =

{
C log |Re w| if r = 1,

C|Re w|1−1/r if r > 1.

Then it is not too difficult to check that the domain Ĥε so obtained is as

desired (see [7]).

So we have a complete description of the dynamics in the neighbourhood

of the origin. Actually, Camacho has pushed this argument even further,

obtaining a complete topological classification of one–dimensional discrete

holomorphic local dynamical systems tangent to the identity:

Theorem 4.2 (Camacho, 1978 [6]; Shcherbakov, 1982 [34]).

Let f ∈ End (C, 0) be a holomorphic local dynamical system tangent to

the identity with multiplicity r+1 at the fixed point. Then f is topologically

locally conjugated to the map

z 7→ z − zr+1.

The formal classification is simple too, though different and it can be

obtained with an easy computation:

Proposition 4.2. Let f ∈ End (C, 0) be a holomorphic local dynamical

system tangent to the identity with multiplicity r + 1 at the fixed point.

Then f is formally conjugated to the map

g(z) = z − zr+1 + βz2r+1, (15)

where β is a formal (and holomorphic) invariant given by

β =
1

2πi

∫

γ

dz

z − f(z)
, (16)

where the integral is taken over a small positive loop γ about the origin.
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Proof. A computation shows that if f is given by (15) then β is given by

the integral (16). Conversely, let ϕ be a local biholomorphism fixing the

origin and set F = ϕ−1 ◦ f ◦ ϕ. Then

1

2πi

∫

γ

dz

z − f(z)
=

1

2πi

∫

ϕ−1◦γ

ϕ′(w) dw

ϕ(w) − f (ϕ(w))

=
1

2πi

∫

ϕ−1◦γ

ϕ′(w) dw

ϕ(w) − ϕ (F (w))
.

Now, we can clearly find M , M1 > 0 such that

∣∣∣∣
1

w − F (w)
− ϕ′(w)

ϕ(w) − ϕ (F (w))

∣∣∣∣

=
1

|ϕ(w) − ϕ (F (w))|

∣∣∣∣
ϕ(w) − ϕ (F (w))

w − F (w)
− ϕ′(w)

∣∣∣∣

≤ M
|w − F (w)|

|ϕ(w) − ϕ (F (w))| ≤M1

in a neighbourhood of the origin, where the last inequality follows from

the fact that ϕ′(0) 6= 0. This means that the two meromorphic functions

1/ (w − F (w)) and ϕ′(w)/ (ϕ(w) − ϕ((F (w))) differ by a holomorphic func-

tion; so they have the same integral along any small loop surrounding the

origin and

1

2πi

∫

γ

dz

z − f(z)
=

1

2πi

∫

ϕ−1◦γ

dw

w − F (w)
,

as claimed.

To prove that f is formally conjugated to g, let us first take a local

formal change of coordinates ϕ of the form

ϕ(z) = z + µzd +Od+1 (17)

with µ 6= 0 and where we are writing Od+1 instead of O(zd+1). It follows

that ϕ−1(z) = z−µzd +Od+1, (ϕ−1)′(z) = 1−dµzd−1 +Od and (ϕ−1)(j) =
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Od−j for all j ≥ 2. Then, using the Taylor expansion of ϕ−1, we get

ϕ−1 ◦ f◦ ϕ(z) = ϕ−1


ϕ(z) +

∑

j≥r+1

ajϕ(z)j




= z + (ϕ−1)′ (ϕ(z))
∑

j≥r+1

ajz
j(1 + µzd−1 +Od)j +Od+2r

= z + [1 − dµzd−1 +Od]
∑

j≥r+1

ajz
j(1 + jµzd−1 +Od) +Od+2r

= z + ar+1z
r+1 + · · · + ar+d−1z

r+d−1

+[ar+d + (r + 1 − d)µar+1]zr+d +Or+d+1. (18)

This means that if d 6= r+1 we can use a polynomial change of coordinates

of the form ϕ(z) = z + µzd to remove the term of degree r + d from the

Taylor expansion of f without changing lower degree terms.

So, to conjugate f to g, it suffices to use a linear change of coordinates

to get ar+1 = −1 and then apply a sequence of change of coordinates of

the form ϕ(z) = z + µzd to kill all the terms in the Taylor expansion of f

but the term of degree z2r+1.

Finally, formula (18) also shows that two maps of the form (15) with

different β cannot be formally conjugated and we are done.

The number β given by (16) is called index of f at the fixed point.

The holomorphic classification is much more complicated: as shown by

Voronin ([36]) and Écalle ([10–11]) in 1981, it depends on functional in-

variants. We shall now (very) roughly describe it; see [17,18,21,22] (and the

original papers) for details.

Let f ∈ End (C, 0) be tangent to the identity with multiplicity r + 1

at the fixed point; up to a linear change of coordinates, we can assume

that ar+1 = 1. Let P1, . . . , P2r be a set of petals as in Theorem 4.1(i)

chosen so that P2r is centered on the positive real semiaxis and the others

are arranged cyclically counterclockwise. Denote by Hj the biholomorphism

conjugating f |Pj
to the shift z 7→ z+ 1 in either a right (if j is odd) or left

(if j is even) half–plane given by Theorem 4.1(iii) — applied to f−1 for the

repelling petals. If we moreover require that

Hj(z) = − 1

rzr
+ β log z + o(1), (19)
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where β is the index of f at the origin then Hj is uniquely determined. Thus,

in the sets Hj(Pj∩Pj+1) we can consider the composition Φ̃j = Hj+1◦H−1
j .

It is easy to check that Φ̃j(w + 1) = Φ̃j(w) + 1 for j = 1, . . . , 2r − 1, and

thus, ψj = Φ̃j − id is a 1-periodic holomorphic function (for j = 2r, we need

to take ψ2r = Φ̃2r − id + 2πiβ to get a 1-periodic function). Hence, each ψj

can be extended to a suitable upper (if j is odd) or lower (if j is even) half–

plane. Furthermore, it is possible to prove that the functions ψ1, . . . , ψ2r

are exponentially decreasing, that is, they are bounded by exp(−c|w|) as

|Im w| → +∞ for a suitable c > 0 depending on f .

Now, if we replace f by a holomorphic local conjugate g = h−1 ◦ f ◦ h
and denote by Gj the corresponding biholomorphisms, it turns out that

Hj ◦G−1
j = id + a

for a suitable a ∈ C independent of j. This suggests the introduction

of an equivalence relation on the set of 2r-uple of functions of the kind

(ψ1, . . . , ψ2r).

Let Mr denote the set of 2r-uple of holomorphic 1-periodic functions

ψ = (ψ1, . . . , ψ2r) with ψj defined in a suitable upper (if j is odd) or lower

(if j is even) half–plane and exponentially decreasing when |Im w| → +∞.

We shall say that ψ, ψ̃ ∈ Mr are equivalent if there is a ∈ C such that

ψ̃j = ψj ◦ (id + a) for j = 1, . . . , 2r. We denote by Mr the set of all

equivalence classes.

The procedure described above allows us to associate to any f ∈
End (C, 0) tangent to the identity with multiplicity r+ 1 at the fixed point

an element µf ∈ Mr called the sectorial invariant. Then the holomorphic

classification proved by Écalle and Voronin is

Theorem 4.3 (Écalle, 1981 [10,11]; Voronin, 1981 [36]). Let f , g ∈
End (C, 0) be two holomorphic local dynamical systems tangent to the iden-

tity. Then f and g are holomorphically locally conjugated if and only if they

have the same multiplicity, the same index and the same sectorial invariant.

Furthermore, for any r ≥ 1, β ∈ C and µ ∈ Mr there exists f ∈ End (C, 0)

tangent to the identity with multiplicity r+ 1, index β and sectorial invari-

ant µ.

Remark 4.2. In particular, holomorphic local dynamical systems tangent

to the identity give examples of local dynamical systems that are topo-

logically conjugated without being neither holomorphically nor formally

conjugated and of local dynamical systems that are formally conjugated

without being holomorphically conjugated.
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Finally, if f ∈ End (C, 0) satisfies a1 = e2πip/q then f q is tangent to

the identity. Therefore, we can apply the previous results to f q and then

infer informations about the dynamics of the original f . We list here a few

results; see [6,10,11,23,24,36] for proofs and further details.

Proposition 4.3. Let f ∈ End (C, 0) be a holomorphic local dynamical

system with multiplier λ and assume that λ is a primitive root of the unity

of order q. Assume that f q 6≡ id. Then there exist n ≥ 1 and c ∈ C such

that f is formally conjugated to

g(z) = λz + znq+1 + cz2nq+1.

Theorem 4.4 (Camacho). Let f ∈ End (C, 0) be a holomorphic local

dynamical system with multiplier λ and assume that λ is a primitive root

of the unity of order q. Assume that f q 6≡ id. Then there exist n ≥ 1 such

that f is topologically conjugated to

g(z) = λz + znq+1.

Theorem 4.5 (Leau–Fatou). Let f ∈ End (C, 0) be a holomorphic local

dynamical system with multiplier λ and assume that λ is a primitive root

of the unity of order q. Assume that f q 6≡ id. Then there exist n ≥ 1 such

that f q has multiplicity nq+1 and f acts on the attracting (respectively, re-

pelling) petals of f q as a permutation composed by n disjoint cycles. Finally,

Kf = Kfq .

5. Elliptic dynamics

We are left with the elliptic case:

f(z) = e2πiθz + a2z
2 + · · · ∈ C0{z} (20)

with θ /∈ Q. It turns out that the local dynamics depends mostly on the

numerical properties of θ. More precisely, for a full measure subset B of

θ ∈ [0, 1] \Q all holomorphic local dynamical systems of the form (20) are

holomorphically linearizable, that is, holomorphically locally conjugated to

their (common) linear part, the irrational rotation z 7→ e2πiθz. Conversely,

the complement [0, 1] \ B is a Gδ-dense set and for all θ ∈ [0, 1] \ B the

quadratic polynomial z 7→ z2 + e2πiθz is not holomorphically linearizable.

This is the gist of the results due to Cremer, Siegel, Bryuno and Yoccoz we

are going to describe in this section.
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The first worthwhile observation in this setting is that it is possible

to give a topological characterization of holomorphically linearizable local

dynamical systems:

Proposition 5.1. Let f ∈ End (C, 0) be a holomorphic local dynamical

system with multiplier 0 < |λ| ≤ 1. Then f is holomorphically linearizable

if and only if it is topologically linearizable if and only if 0 is contained in

the interior of the stable set of f .

Proof. If f is holomorphically linearizable, it is topologically linearizable

and if it is topologically linearizable (and |λ| ≤ 1) then Kf is an open

neighbourhood of the origin. Assume then that 0 is contained in the interior

of the stable set. If 0 < |λ| < 1, we already know that f is holomorphically

linearizable. If |λ| = 1, set

ϕk(z) =
1

k

k−1∑

j=0

f j(z)

λj

so that ϕ′
k(0) = 1 and

ϕk ◦ f = λϕk +
λ

k

(
fk

λk
− id

)
. (21)

The hypothesis implies that there are bounded open sets V ⊂ U containing

the origin such that fk(V ) ⊂ U for all k ∈ N. Since |λ| = 1, it follows that

{ϕk} is a uniformly bounded family on V and hence, by Montel’s theorem,

it admits a converging subsequence. But (21) implies that a converging

subsequence converges to a conjugation between f and the rotation z 7→ λz

and thus, f is holomorphically linearizable.

The second important observation is that two elliptic holomorphic local

dynamical systems with the same multiplier are always formally lineariz-

able:

Proposition 5.2. Let f ∈ End (C, 0) be a holomorphic local dynamical

system of multiplier λ = e2πiθ ∈ S1 with θ /∈ Q. Then f is formally conju-

gated to its linear part.

Proof. We shall prove that there is a unique formal power series

h(z) = z + h2z
2 + · · · ∈ C[[z]]
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such that h(λz) = f (h(z)). Indeed, we have

h(λz) − f (h(z)) =

=
∑

j≥2




[
(λj − λ)hj − aj

]
zj −

j∑

`=1

(
j

`

)
z`+j


∑

k≥2

hkz
k−2




`




=
∑

j≥2

[
(λj − λ)hj − aj −Xj(h2, . . . , hj−1)

]
zj ,

where Xj is a polynomial in j − 2 variables. It follows that the coefficients

of h are uniquely determined by induction using the formula

hj =
aj +Xj(h2, . . . , hj−1)

λj − λ
, (22)

where Xj is a polynomial. In particular, hj depends only on λ, a2, . . . , aj .

The formal power series linearizing f is not converging if its coefficients

grow too fast. Thus, (22) links the radius of convergence of h to the be-

haviour of λj − λ: if the latter becomes too small, the series defining h

does not converge. This is known as the small denominators problem in

this context.

It is then natural to introduce the following quantity:

Ωλ(m) = min
1≤k≤m

|λk − 1|

for λ ∈ S1 and m ≥ 1. Clearly, λ is a root of unity if and only if Ωλ(m) = 0

for all m greater or equal to some m0 ≥ 1; furthermore,

lim
m→+∞

Ωλ(m) = 0

for all λ ∈ S1.

The first one to prove that there are non-linearizable elliptic holomor-

phic local dynamical systems has been Cremer in 1927 ([8]). His more gen-

eral result is the following:

Theorem 5.1 (Cremer, 1938 [9]). Let λ ∈ S1 be such that

lim sup
m→+∞

1

m
log

1

Ωλ(m)
= +∞. (23)

Then there exists f ∈ End (C, 0) with multiplier λ which is not holomorphi-

cally linearizable. Furthermore, the set of λ ∈ S1 satisfying (23) contains

a Gδ-dense set.
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Proof. Choose inductively aj ∈ {0, 1} so that |aj +Xj | ≥ 1/2 for all j ≥ 2,

where Xj is as in (22). Then

f(z) = λz + a2z
2 + · · · ∈ C0{z},

while (23) implies that the radius of convergence of the formal lineariza-

tion h is 0 and thus, f cannot be holomorphically linearizable, as required.

Let now S(q0) ⊂ S1 denote the set of λ = e2πiθ ∈ S1 such that
∣∣∣∣θ −

p

q

∣∣∣∣ <
1

2q!
(24)

for some p/q ∈ Q in lowest terms with q ≥ q0. Then it is not difficult to check

that each S(q0) is a dense open set in S1 and that all λ ∈ S =
⋂

q0≥1 S(q0)

satisfy (23). Indeed, if λ = e2πiθ ∈ S, we can find q ∈ N arbitrarily large

such that there is p ∈ N so that (24) holds. Now, it is easy to see that

|e2πit − 1| ≤ 2π|t|

for all t ∈ [−1/2, 1/2]. Then let p0 be the integer closest to qθ so that

|qθ − p0| ≤ 1/2. Then we have

|λq−1| = |e2πiqθ−e2πip0 | = |e2πi(qθ−p0)−1| ≤ 2π|qθ−p0| ≤ 2π|qθ−p| < 4π

2q!

for arbitrarily large q and (23) follows.

On the other hand, Siegel gave a condition on the multiplier ensuring

holomorphic linearizability in 1942:

Theorem 5.2 (Siegel, 1942 [35]). Let λ ∈ S1 be such that there exist

β > 1 and γ > 0 such that

1

Ωλ(m)
≤ γmβ ∀m ≥ 2. (25)

Then all f ∈ End (C, 0) with multiplier λ are holomorphically linearizable.

Furthermore, the set of λ ∈ S1 satisfying (25) for some β ≥ 1 and γ > 0 is

of full Lebesgue measure in S1.

Remark 5.1. It is interesting to notice that for generic (in a topological

sense) λ ∈ S1, there is a non-linearizable holomorphic local dynamical

system with multiplier λ, while, for almost all (in a measure–theoretic sense)

λ ∈ S1, every holomorphic local dynamical system with multiplier λ is

holomorphically linearizable.
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The original proof of Theorem 5.2 was based on the method of majorant

series, that requires finding a convergent series whose coefficients are greater

than the coefficients of the formal linearization. A different proof is in the

spirit of the so-called Kolmogorov–Arnold–Moser (or KAM) method (see

[15]). Unfortunately, both proofs (as well as the proofs of the next two

theorems) are well beyond the scope of this survey.

A bit of terminology is now useful: if f ∈ End (C, 0) is elliptic, we shall

say that the origin is a Siegel point if f is holomorphically linearizable;

otherwise, it is a Cremer point.

Theorem 5.2 suggests the existence of a number–theoretical condition

on λ ensuring that the origin is a Siegel point for any holomorphic local

dynamical system of multiplier λ. And, indeed, this is the content of the

celebrated Bryuno–Yoccoz theorem:

Theorem 5.3 (Bryuno, 1965 [3–5]; Yoccoz, 1988 [37–38]). Let λ ∈
S1. Then the following statements are equivalent:

(i) the origin is a Siegel point for the quadratic polynomial fλ(z) = λz+z2;

(ii) the origin is a Siegel point for all f ∈ End (C, 0) with multiplier λ;

(iii) the number λ satisfies Bryuno’s condition

+∞∑

k=0

1

2k
log

1

Ωλ(2k+1)
< +∞. (26)

Bryuno, using majorant series as in Siegel’s proof of Theorem 5.2 (see

also [16] and references therein), has proved that condition (iii) implies

condition (ii). Yoccoz, using a more geometric approach based on conformal

and quasi–conformal geometry, has proved that (i) is equivalent to (ii) and

that (ii) implies (iii), that is, that if λ does not satisfy (26) then the origin

is a Cremer point for some f ∈ End (C, 0) with multiplier λ — and hence,

it is a Cremer point for the quadratic polynomial fλ(z). See also [32,33] for

related results.

Remark 5.2. Conditions (23), (25) and (26) are usually expressed in a

different way. Write λ = e2πiθ and let {pk/qk} be the sequence of rational

numbers converging to θ given by the expansion in continued fractions.

Then (26) is equivalent to

+∞∑

k=0

1

qk
log qk+1 < +∞,
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while (25) is equivalent to

qn+1 = O(qβ
n)

and (23) is equivalent to

lim sup
k→+∞

1

qk
log qk+1 = +∞.

See [16,38] and references therein for details.

If 0 is a Siegel point for f ∈ End (C, 0), the local dynamics of f is

completely clear and simple enough. On the other hand, if 0 is a Cremer

point of f then the local dynamics of f is very complicated and not yet

completely understood. Pérez-Marco ([26, 28–31]) and Biswas ([1]) have

studied the topology and the dynamics of the stable set in this case. Some

of their results are summarized in the following

Theorem 5.4 (Pérez-Marco, 1995 [30,31]; Biswas, 2007 [1]).

Assume that 0 is a Cremer point for an elliptic holomorphic local dynamical

system f ∈ End (C, 0). Then:

(i) The stable set Kf is compact, connected, full (i.e., C\Kf is connected),

it is not reduced to {0} and it is not locally connected at any point

distinct from the origin.

(ii) Any point of Kf \ {0} is recurrent (that is, a limit point of its orbit).

(iii) There is an orbit in Kf which accumulates at the origin, but no non-

trivial orbit converges to the origin.

(iv) The rotation number and the conformal class of Kf are a complete

set of holomorphic invariants for Cremer points. In other words, two

elliptic non-linearizable holomorphic local dynamical systems f and g

are holomorphically locally conjugated if and only if they have the same

rotation number and there is a biholomorphism of a neighbourhood

of Kf with a neighbourhood of Kg.

Remark 5.3. So, if λ ∈ S1 is not a root of unity and does not satisfy

Bryuno’s condition (26), we can find f1, f2 ∈ End (C, 0) with multiplier λ

such that f1 is holomorphically linearizable while f2 is not. Then f1 and f2
are formally conjugated without being neither holomorphically nor topo-

logically locally conjugated.

See also [25,27] for other results on the dynamics about a Cremer point.
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conjecture de V.I. Arnold, Ann. Sci. École Norm. Sup. 26 (1993), 565–644.
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1. Notation and preliminaries

These notes contain an extended version of the talk given in the III Interna-

tional Course of Mathematical Analysis held in La Rábida (Huelva, Spain)

in September 2007 and they are based on results appeared in [1–4]. I would

like to thank the organizers for the kind hospitality and their nice work-

ing atmosphere that all the participants (students and professors) enjoyed

during our stay.

Let us start by recalling some classical operators whose bilinear formu-

lation will be considered throughout the paper. Let f : R → C belong to

the Schwarzt class and write

H(f)(x) = lim
ε→0

∫

|y|>ε

f(x− y)

y
dy

and

H∗(f)(x) = sup
ε>0

∣∣∣∣∣

∫

|y|>ε

f(x− y)

y
dy

∣∣∣∣∣ ,

for the Hilbert and maximal Hilbert transform respectively.

We also write

M(f)(x) = sup
ε>0

1

2ε

∫

|y|<ε

|f(x− y)|dy,

∗Partially supported by Proyecto MTM 2005-08350.
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for Hardy–Littlewood maximal function and

Iα(f)(x) =

∫

R

f(x− y)

|y|1−α
dy,

for the Fractional Integral where 0 < α < 1.

They are very classical operators in Harmonic Analysis and are rather

well understood not only in R but in many other groups and not only

for the Lebesgue measure but for weight functions w(x)dx. Of course the

boundedness in the setting of Lebesgue (and many other function spaces)

of these operators (not entering in the extreme cases) is well known. Let

recall that there exist constants Ap, Bp, Cp, Dp > 0 such that

‖H(f)‖p ≤ Ap‖f‖p,

‖H∗(f)‖p ≤ Bp‖f‖p

for 1 < p <∞. (1)

‖M(f)‖p ≤ Cp‖f‖p, for 1 < p ≤ ∞. (2)

‖Iα(f)‖q ≤ Dp‖f‖p, for 0 < α <
1

p
, 1 < p <∞,

1

q
=

1

p
− α. (3)

There are bilinear versions of these operators that have been studied in the

last decade and which will be the aim of our considerations.

Given f, g : R → C belonging to the Schwarzt class we can now define

the bilinear Hilbert transform by

H(f, g)(x) = lim
ε→0

∫

|y|>ε

f(x− y)g(x+ y)

y
dy,

the bisublinear maximal Hilbert transform by

H∗(f, g)(x) = sup
ε>0

∣∣∣∣∣

∫

|y|>ε

f(x− y)g(x+ y)

y
dy

∣∣∣∣∣ ,

the bisublinear Hardy–Littlewood maximal function by

M(f, g)(x) = sup
ε>0

1

2ε

∫

|y|<ε

|f(x− y)g(x+ y)|dy,

and the bilinear fractional integral by

Iα(f, g)(x) =

∫

R

f(x− y)g(x+ y)

|y|1−α
dy, 0 < α < 1.

It has been the effort of several authors and many years to get the range

of boundedness for the corresponding bilinear versions. We collect in the

following theorem the actual knowledge of the problem.
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Theorem 1.1. Let 1 < p1, p2 < ∞, 0 < α < 1/p1 + 1/p2, 1/q = 1/p1 +

1/p2−α, 1/p3 = 1/p1+1/p2 and 2/3 < p3 <∞. Then there exist constants

A,B,C,D such that

‖H(f, g)‖p3
≤ A‖f‖p1

‖g‖p2
(Lacey–Thiele [16–18]), (4)

‖H∗(f, g)‖p3
≤ B‖f‖p1

‖g‖p2
(Lacey [15]), (5)

‖M(f, g)‖p3
≤ C‖f‖p1

‖g‖p2
(Lacey [15]), (6)

‖Iα(f, g)‖q ≤ A‖f‖p1
‖g‖p2

(Kenig–Stein [14], Grafakos–Kalton [13]). (7)

We would like to consider analogue operators in the periodic or the

discrete case and to analyze their boundedness.

In particular, one can define the bilinear conjugate function as

B(F,G)(eit) =

∫ π

−π

F (t− s)G(t+ s) cot(s/2)
ds

2π

where F and G are polynomials on T.

Using Fourier series expansion of the polynomials, the operator can also

be written as

B(F,G)(eit) = −i
∑

k

(
∑

n+m=k

sign (n−m)F̂ (n)Ĝ(m)

)
eikt

where F (t) =
∑N

−N F̂ (n)eint and G(t) =
∑M

−M Ĝ(m)eimt.

The fundamental question is the following: Is the bilinear conjugate

transform bounded from Lp1(T) × Lp2(T) → Lp3(T) for some values of

p1, p2, p3?

While the situation in the linear case reduces to adapt the proof of the

group R to the group T (or to replace the half–space for the disc when

using a complex–variable approach), the techniques that were needed for

the real line in the bilinear case do not seem to have any easy modification

to the periodic setting to obtain the boundedness of the bilinear conjugate

function defined in T. However some transference techniques known in the

linear case can be adapted to the bilinear one.

Another analogue formulations that we would like to consider are dis-

crete bilinear Hilbert transform, the discrete bisublinear Hardy-Littlewood

maximal function and the discrete bilinear fractional transform, defined by

Hd(λ, β)(n) = lim
N→∞

∑

0<|k|≤N

λn−kβn+k

k
,
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Md(λ, β)(n) = sup
N∈N

1

2N

∑

0<|k|≤N

|λn−k ||βn+k| and

Iα
d (λ, β)(n) =

∑

k 6=0,k∈Z

λn−kβn+k

|k|1−α

for finite sequences λ, β respectively.

As above, the fundamental question is the following: Are they bounded

from `p1(Z) × `p2(Z) → `p3(Z) for some values of p1, p2, p3?

Several methods have been developed to such purposes in the last five

years. In fact two different approaches have been applied. The first one

is the bilinear formulation of the DeLeeuw method [8] first considered in

the paper by Fan and Sato [9] and then developed by O. Blasco and P.

Villarroya [1,5]. The second one is the bilinear formulation of the Coifman–

Weiss transference method [7] that has been extensively studied in [2–4] by

O. Blasco, E. Berkson, M. J. Carro and A.T. Gillespie.

We shall only mention one theorem and its application of each of the

procedures considered in the just mentioned papers. All the results ap-

pearing in Theorem 1.1 can be transferred to both situations periodic and

discrete. We will also present a detailed proof for the reader to see the tools

used in our approaches. The interested reader can consult the references in

the bibliography for a further study of the topic.

2. Methods and applications

Let us start considering the simplest situation, corresponding to bilinear

convolution with integrable kernels.

Assume K ∈ L1(R) and define

BK(f, g)(x) =

∫

R

f(x− y)g(x+ y)K(y)dy.

Writing f(x− y) =
∫

R
f̂(ξ)ei(x−y)ξdξ and g(x+ y) =

∫
R
ĝ(η)ei(x+y)ηdη, we

can also use expression:

BK(f, g)(x) =

∫

R

f(x− y)g(x+ y)K(y)dy

=

∫

R

∫

R

∫

R

f̂(ξ)ĝ(η)K(y)ei(x−y)ξei(x+y)ηdξdηdy

=

∫

R

∫

R

f̂(ξ)ĝ(η)

(∫

R

K(y)e−i(ξ−η)ydy

)
ei(ξ+η)xdξdη

=

∫

R

∫

R

ĝ(η)f̂(ξ)K̂(ξ − η)ei(ξ+η)xdξdη.
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This motivates the following definition.

Definition 2.1. Let 0 < p1, p2, p3 <∞ and 1/p1+1/p2 = 1/p3. A bounded

measurable function m(ξ, η) is said to be a bilinear multiplier on R of type

(p1, p2, p3) if the operator

Bm(f, g)(x) =

∫

R

∫

R

f̂(ξ)ĝ(η)m(ξ, η)ei(ξ+η)xdξdη

is bounded from Lp1(R) × Lp2(R) to Lp3(R).

The study of bilinear multipliers for smooth symbols (where m(ξ, η) is

a “nice” regular function) goes back to the work by R. R. Coifman and Y.

Meyer in [6].

Let us restrict ourselves to a smaller family of multipliers: the case

m(ξ, η) = m′(ξ − η) where m′(x) is bounded in R. The simplest case is

m′(x) = µ̂(x) where µ is a Borel regular measure in R. It is elementary to

see that m′ define a bilinear multiplier on R of type (p1, p2, p3) whenever

p3 ≥ 1 and 1/p1 + 1/p2 = 1/p3. Indeed, using the expression

Bm(f, g)(x) =

∫

R

f(x− t)g(x+ t)dµ(t)

one gets

‖Bm(f, g)‖p3
≤
∫

R

‖f(· − t)g(· + t)‖p3
d|µ|(t)

≤
∫

R

‖f(· − t)‖p1
‖g(· + t)‖p2

d|µ|(t)

= ‖f‖p1
‖g‖p2

∫

R

d|µ|(t) = ‖µ‖1‖f‖p1
‖g‖p2

.

However, the case where the symbol m′ is not smooth has a much shorter

story.

A very non trivial example is given by m′(x) = −i sign (x) which leads

to the bilinear Hilbert transform and it was first considered by Lacey and

Thiele in [16–18] and then extended to other cases in [10,11]. The solution

took many years to be achieved after the formulation of the question by A.

P. Calderón in the seventies.

Let us mention a general method to transfer results from R to T. The

approach follows the DeLeeuw method in the linear case and there are two

different proofs of the following result.

Theorem 2.1 ([1,9]). Let m(ξ, η) be a continuous function defining a bi-

linear multiplier on R of type (p1, p2, p3) where 1/p1 + 1/p2 = 1/p3 and
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p3 ≥ 1, i.e., the operator

Bm(f, g)(x) =

∫

R

∫

R

f̂(ξ)ĝ(η)m(ξ, η)ei(ξ+η)xdξdη

is bounded from Lp1(R) × Lp2(R) to Lp3(R). Then the sequence mk,k′ =

m(k, k′) define a bilinear multiplier on T of type (p1, p2, p3), i.e., the oper-

ator

B̃m(F,G)(t) =
∑

k

( ∑

n+n′=k

F̂ (n)Ĝ(n′)m(n, n′)
)
eikt

is bounded from Lp1(T) × Lp2(T) to Lp3(T).

Corollary 2.1. The bilinear conjugate function operator is bounded from

Lp1(T) × Lp2(T) to Lp3(T) whenever 1 < p1, p2 < ∞, 1/p1 + 1/p2 = 1/p3

and p3 ≥ 1.

The reader should be aware that the restriction p3 ≥ 1 is a limitation of

the proof but it can be removed using other approaches (see [4]).

To handle the discrete case, there are also two different techniques (see

[1] or [2,4]). We shall select here the second approach using a “discretiza-

tion” method.

Let us define the mappings P : `p(Z) → Lp(R) by

λ = (λn) → f =
∑

n∈Z

λnχ(n−1/4,n+1/4)

and Q : Lp(R) → `p(Z) by

f →
(∫

(n−1/4,n+1/4)

f(x)dx

)

n∈Z

.

Clearly ‖P (λ)‖p = C‖λ‖p for 0 < p < ∞ and ‖Q(f)‖p ≤ C‖f‖p for

1 ≤ p <∞.

Theorem 2.2 ([4]). Let K be integrable in R and denote

BK(f, g)(x) =

∫

R

f(x− y)g(x+ y)K(y)dy

for f and g simple functions. If

Kn =

∫

[−1/4,1/4]

∫

[n−1/4,n+1/4]

K(x− u)K(x+ u)dxdy

then

QBK

(
P (λ), P (β)

)
(n) =

∑

k∈Z

λn−kβn+kKk
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for any finite sequences λ and β.

In particular, for p3 ≥ 1 one has that QBKP is bounded from `p1(Z) ×
`p2(Z) to `p3(Z) with norm bounded by the norm of BK as an operator from

Lp1(R) × Lp2(R) to Lp3(R)).

Corollary 2.2. The bilinear discrete Hilbert transform is bounded from

`p1(Z)×`p2(Z) to `p3(Z) whenever 1 < p1, p2 <∞, 1/p1 +1/p2 = 1/p3 and

p3 ≥ 1.

The reader should also be aware that the restriction p3 ≥ 1 is again a

limitation of the proof but it was removed in [2] to get p3 >
2
3 .

Let us finally explain a bit how to get the transference method of

Coifman–Weiss in the bilinear setting (see [2–4]).

Let G be a l.c.a group with Haar measure m, let (Ω,Σ, µ) be a measure

space and let Ru be a representation of G in the space of bounded linear

operators on Lp(µ), i.e., R : G → L(Lp(µ), Lp(µ)) such that u→ Ru verifies

• RuRv = Ruv for u, v ∈ G,

• limu→0Ruf = f for f ∈ Lp(µ),

• supu∈G ‖Ru‖ <∞.

Let K ∈ L1(G) with compact support. Denote now

BK(φ, ψ)(v) =

∫

G

φ(v − u)ψ(v + u)K(u)dm(u)

for φ, ψ simple functions defined on G and assume that, for 0 < p1, p2 <

∞ and 1/p1 + 1/p2 = 1/p3, the bilinear operator BK is bounded from

Lp1(G) × Lp2(G) to Lp3(G) with “norm” Np1,p2
(BK).

We now consider the transferred operator by the formula

TK(f, g)(w) =

∫

G

R−uf(w)Rug(w)K(u)dm(u)

for f ∈ Lp1(µ) and g ∈ Lp2(µ).

Let us present, in a particular case, a prototype result that one can

produce in this setting. The assumptions can be weakened and the setting

can be relaxed but we concentrate in the case for simplicity.

Theorem 2.3. Let G = R, (Ω,Σ, µ) a measure space, 1 ≤ p1, p2 <∞ and

1/p3 = 1/p1 + 1/p2. Let R be a representation of R on acting Lpi(µ) for

i = 1, 2 with

sup
u∈R

‖Ru‖L(Lpi ,Lpi) = 1
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for i = 1, 2.

Assume that there exists a map u→ L(Lp3(µ), Lp3(µ)) given by u→ Su

such that Su are invertible with supu∈G ‖S−1
u ‖ = 1 and

Sv((R−uf)(Rug)) = (Rv−uf)(Rv+ug)

for u, v ∈ R, f ∈ Lp1(µ) and g ∈ Lp2(µ).

Let K belong to L1(R) and be supported in [−A,A]. If the bilinear

map BK defined as above is bounded with norm Np1,p2
(BK) then TK is

also bounded from Lp1(µ) × Lp2(µ) to Lp3(µ) and with norm bounded by

CNp1,p2
(BK).

Proof. Write, for each v ∈ R,

TK(f, g) = S−1
v

(
Sv

∫

R

R−ufRugK(u)du

)

= S−1
v

(∫

R

Sv(R−ufRug)K(u)du

)

= S−1
v

(∫

R

(Rv−uf)(Rv+ug)K(u)du

)

Hence

‖TK(f, g)‖p3

Lp3(µ) ≤
∥∥∥∥
∫

R

(Rv−uf)(Rv+ug)K(u)du

∥∥∥∥
p3

Lp3 (µ)

.

Given N ∈ N, integrating over v ∈ [−N,N ],

2N‖TK(f, g)‖p3

Lp3(µ) ≤
∫ N

−N

∥∥∥∥
∫

R

(Rv−uf)(Rv+ug)K(u)du

∥∥∥∥
p3

Lp3 (µ)

dm(v).
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Therefore

2N ‖TK(f, g)‖p3

Lp3 (µ) ≤
∫ N

−N

∫

Ω

∣∣∣∣
∫

R

Rv−uf(w)Rv+ug(w)K(u)du

∣∣∣∣
p3

dµ(w)dv

=

∫

Ω

(∫ N

−N

∣∣∣∣∣

∫ A

−A

Rv−uf(w)Rv+ug(w)K(u)du

∣∣∣∣∣

p3

dv

)
dµ(w)

=

∫

Ω

(∫

R

∣∣BK(Ruf(w)χ[−A−N,A+N ], Rug(w)χ[−A−N,A+N ])(v)
∣∣p3

dv

)

× dµ(w)

=

∫

Ω

∥∥BK(Ruf(w)χ[−A−N,A+N ], Rug(w)χ[−A−N,A+N ])
∥∥p3

Lp3 (R)
dµ(w)

≤ Np1,p2
(BK)p3

(∫

Ω

∥∥Ruf(w)χ[−A−N,A+N ]

∥∥p1

Lp1 (R)
dµ(w)

)p3/p1

×
(∫

Ω

∥∥Rug(w)χ[−A−N,A+N ]

∥∥p2

Lp2 (R)
dµ(w)

)p3/p2

= Np1,p2
(BK)p3

(∫ A+N

−(A+N)

‖Ruf‖p1

Lp1(µ) du

)p3/p1

×
(∫ A+N

−(A+N)

‖Rug‖p2

Lp2 (µ) du

)p3/p2

= Np1,p2
(BK)p3

(∫ A+N

−(A+N)

‖f‖p1

Lp1 (µ) du

)p3/p1

×
(∫ A+N

−(A+N)

‖g‖p2

Lp2 (µ) du

)p3/p2

≤ Np1,p2
(BK)p3(2(A+N))‖f‖p3

Lp1(µ)‖g‖
p3

Lp2(µ).

Therefore

‖TK(f, g‖Lp3(µ) ≤
(
A+N

N

)1/p3

Np1,p2
(BK)‖f‖p3

Lp1(µ)‖g‖
p3

Lp2(µ).

Note that, in particular, the assumptions in the previous theorem hold

for multiplicative representations, i.e., Ru(fg) = (Ruf)(Rug), selecting

Su = Ru.

Let us finish with an application to Ergodic theory. We state here the

result for maximal version of the operators, but results in the same spirit can
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be seen in [2,4]. Let (Ω,Σ, µ) be σ-finite measure space and T an invertible

and bounded operator on Lp(µ). Define the bisublinear maximal ergodic

transform by

MT (f, g)(w) = sup
N>0

1

2N

N∑

n=−N

Tnf(w)T−ng(w),

and the bisublinear maximal ergodic Hilbert transform by

H∗
T (f, g)(w) = sup

N>0

∑

0<|n|<N

Tnf(w)T−ng(w)

n
.

Theorem 2.4 ([2,3]). Let 1 < p1, p2 <∞ and 1/p1 + 1/p2 = 1/p3 < 3/2,

let T be an invertible operator on Lpi(µ) for i = 1, 2 such that T and T−1

are power bounded. Assume that there exists an invertible operator S defined

on L(Lp3(µ), Lp3(µ)) such that

Sm(TnfT−ng) = Tm+nfTm−ng

for f ∈ Lp1(µ) and g ∈ Lp2(µ). Then MT and H∗
T are bounded from

Lp1(µ) × Lp2(µ) to Lp3(µ).
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12. L. Grafakos and P. Honźık, Maximal transference and summability of multi-
linear Fourier series, J. Australian Math. Soc. 80 (2006), 65–80.

13. L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpo-
lation, Math. Annalen 319 (2001), 151–180.

14. C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration,
Math. Res. Lett. 6 (1999), 1–15.

15. M. Lacey, The bilinear maximal function maps into Lp for 2
3 < p ≤ 1 , Ann.

Math. 151 (2000), 35–57.
16. M. Lacey and C. Thiele, Lp estimates on the bilinear Hilbert transform for

2 < p < ∞, Annals Math. 146 (1997), 693–724.
17. M. Lacey and Thiele, C. Weak bounds for the bilinear Hilbert transform on

Lp, Documenta Mathematica, extra volume ICM 1-1000, [1997].
18. M. Lacey and C. Thiele, On Calderón’s conjecture, Ann. Math. 149(2) (1999),

475–496.



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

39

GENERATING FUNCTIONS OF LEBESGUE SPACES BY

TRANSLATIONS

JOAQUIM BRUNA∗

Departament de Matemàtiques
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1. Discrete translates, generating functions

We will be using the following notations. For a discrete set Λ ⊂ R and

f ∈ Lp(R), Λ(f) stands for the set of translates τλf(x) = f(x− λ), λ ∈ Λ.

It is a well–known result in the theory of frames that for ϕ ∈ L2(R), no

Λ(ϕ) is a frame in L2(R), that is, no ϕ,Λ can satisfy

A‖f‖2 ≤
∑

λ∈Λ

|〈f, τλϕ〉|2 ≤ B‖f‖2

for some constants A,B. This amounts to say that, in order to have

something useful for applications, translations alone are not enough and

something else must be considered, either modulations (leading to time–

frequency wavelets) or else dilations (leading to time–scale wavelets). From

a pure mathematical viewpoint this fact raises the question to investigate

what, if not frames, one can built with only translations. This is going to

be the main theme in this lecture (related to the above, the following seems

to be still an open question: can Λ(ϕ) be a Schauder basis of L2(R)?)

In case Λ(ϕ) spans Lp(R) (meaning that the space T (ϕ,Λ) of linear

combinations of functions in Λ(ϕ) is dense) we say that ϕ is a Λ- generator

of Lp(R). We call ϕ an Lp(R)-generator if it is a Λ-generator for some Λ.

Analogously, we say that Λ is a spectral set for Lp(R) if some Λ-generator

exists. The main issue in this talk is about characterizations of these con-

cepts, and is based on the papers [5], [4] and [3].

∗Supported by grants MTM2005-08984-C02-01 and 2005SGR00611.
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Of course we need quoting first Wiener’s and Beurling’s theorems, deal-

ing with all translates of ϕ, respectivelly in L1(R) and L2(R). As in all

problems dealing with translations, an essential tool is the Fourier trans-

form that we use here in the form ϕ̂(ξ) =
∫
ϕ(x)e−ixξ dx. Wiener’s theorem

asserts that all translates of ϕ ∈ L1(R) span L1(R) if and only if ϕ̂(ξ) 6= 0

for all ξ, while Beurling’s theorem states that all translates of ϕ ∈ L2(R)

span L2(R) if and only if ϕ̂(ξ) 6= 0 a.e. Incidentally, it is to be noted that

the analogous statement for 1 < p < 2 seems to be unknown.

2. Connections with density of exponentials

Next we point out some known facts. We will be using the notation E(Λ)

for the space of linear combinations of the characters eiξλ, λ ∈ Λ so that by

Fourier transform T (ϕ,Λ) corresponds to ϕ̂E(Λ). By Parseval’s theorem, ϕ

is a L2(R)-generator if and only if this later space is dense in L2(R), that

is,
∫ ∣∣∣g(ξ) − ϕ̂(ξ)

∑
aλe

iξλ
∣∣∣
2

dξ

can be made arbitrarily small for any g ∈ L2(R). It is convenient to restate

this in terms of weighted approximation as follows. We write g = ϕ̂h, so h

is a general function in the L2-weighted space L2(R, |ϕ̂|2) and the above is

written ∫ ∣∣∣h(ξ) −
∑

aλe
iξλ
∣∣∣
2

|ϕ̂(ξ)|2 dξ.

Thus we see that ϕ is a Λ-generator of L2(R) if and only if E(Λ) spans the

weighted space L2(R, |ϕ̂|2). For integer translates (Λ = Z), it is clear that

this can never be the case, because E(Z) consists of 2π periodic functions. A

similar argument works in Lp(R), 1 ≤ p ≤ 2. Surprisingly enough, Nikolskii

([9]) and later Atzmon–Olevskii ([1]) showed that for p > 2, Lp(R) has Z-

generators. For close to integer translates, however, Olevskii ([11]) showed

that Λ = {n+an : an 6= 0, an → 0} is a spectral set for L2(R); later, Olevski

and Ulanowski ([12]) showed that if |an| = O(r|n|) for some r < 1 then the

generator ϕ can be chosen in the Schwartz class.

Suppose that ϕ is a Λ-generator of L2(R). If Eε,N = {ξ : ε ≤ |ϕ̂(ξ)| ≤ N}
then, since ϕ̂ 6= 0 a.e., Eε,N has arbitrarily large measure and L2(Eε,N , |ϕ̂|2)

is the usual space L2(Eε,N ). Hence we see that if ϕ is a Λ-generator of L2(R)

then E(Λ) is dense in L2(E) for sets E of arbitrarily large measure.

This shows the connection of these questions with the subject of density

of exponentials E(Λ) in function spaces and, in particular, with Landau’s
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results. Landau ([10]) constructed certain perturbations of the integers Λ =

{n+an} where an are bounded, such that E(Λ) is dense in L2 on any finite

union of the intervals (2π(k − 1) + ε, 2πk − ε), ε > 0, in particular on

sets with arbitrarily large measure. In [13], Landau’s result was extended

to every sequence Λ as above, where an have an exponential decay. We

mention here that if E(Λ) is complete in L2 on “Landau sets”, then one

can construct a Λ-generator for L2(R) which belongs to the Schwartz class

S(R).

All the above shows as well that in the L2 case it is hopeless to look for a

characterization of the spectral sets in terms of some density of some kind,

as Z and its perturbations would have the same density under any reason-

able definition. This is so because the above shows that what is involved is

the density of complex exponentials in L2(R, ω) where ω is positive a.e. but

still might have some zeros, so that the sets Eε,N considered before might

be disconnected, say unions of intervals. In such situation, questions about

density of exponentials become very subtle and depend on arithmetic prop-

erties of the frequencies. However, the situation is greatly simplified when

looking at the problem in L1(R), as we proceed to explain.

3. The problem in L
1(R) and its connections with the

spectral radious problem

Since the L1(R)-norm of f dominates the sup–norm of f̂ , it is clear that if

ϕ is an L1(R)-generator then ϕ̂E(Λ) would be dense in the sup–norm in any

space X of functions included in the range of L1(R) by Fourier transform.

The fact that now ϕ̂ never vanishes makes a great difference; fix ρ > 0 and

consider the interval [−ρ,+ρ] on which ϕ̂ is bounded above and below and

so we may think it is one. Taking as X the space of test functions supported

in (−ρ,+ρ) we conclude that E(Λ) is dense in the sup–norm in X and hence

in any reasonable function space on [−ρ,+ρ], for all ρ > 0. This shows that

what is involved in this case is the density of exponentials in intervals, and

this is a much better known situation, classical in harmonic analysis.

We recall that the spectral radious of a set Λ ⊂ R is defined by

R(Λ) = sup{ρ > 0: E(Λ) is dense in L2([−ρ, ρ])} ≤ +∞.

This means that E(Λ) is dense in L2([−ρ,+ρ]) if ρ < R(Λ) and it is not if

ρ > R(Λ); obviously, R(Z) = π.

The spectral radious has a definition in terms of complex analysis, by

means of a duality argument. Indeed, incompleteness is equivalent to the

existence of f ∈ L2([−ρ,+ρ]), f 6= 0, orthogonal to E(Λ), which in terms of
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the Fourier–Laplace transform of f

F (z) =

∫ +ρ

−ρ

f(x)e−ixz dx,

means that F vanishes on Λ, yet F is not identically zero. The space of the

F is known to be the Paley–Wiener space PWρ, consisting of the entire

functions F such that

|F (z)| = O(eρ|z|),

∫ +∞

−∞
|F (x)|2 dx < +∞.

Hence

R(Λ) = inf{ρ > 0: ∃F ∈ PWρ, F 6= 0, such that F|Λ = 0},
or equivalently

R(Λ) = sup{ρ > 0: Λ is a uniqueness set for PWρ},
meaning for uniqueness sets of a given class of functions X those sets S

such that h = 0 whenever h ∈ X and h vanishes on S.

It is well–known that the value of R(Λ) is unaffected if one replaces the

L2-norm by another reasonable norm, for instance the sup–norm. Accord-

ingly, in the complex analysis description above one may use other spaces

instead of the Paley–Wiener spaces, for instance, their L∞-versions, the

Bernstein spaces consisting of entire functions F bounded in the real line

and such that |F (z)| = O(eρ|z|).
Hence, what we have proved before is that if ϕ is a Λ-generator for

L1(R) then R(Λ) = +∞, a fact that, as mentioned before, is far from being

true for L2(R).

The description of the spectral radious R(Λ) in geometric or metric

terms was one of the main problems in classical harmonic analysis during

the first half of last century, till Beurling and Malliavin gave a solution

in terms of the so–called Beurling–Malliavin exterior density DBM (Λ). Its

definition is not simple; here it will suffice to point out that it is related to

the ordinary upper density of Polya,

D(Λ) = lim sup
r→+∞

nΛ(r)

2r
,

where nΛ(r) denotes the number of points of Λ in (−r,+r). In fact one

has DBM (Λ) ≥ D(Λ), although it may happen that D(Λ) = 0 while the

Beurling–Malliavin density is infinite. In a series of celebrated papers, Beurl-

ing and Malliavin proved that R(Λ) = πDBM (Λ) (see [7] for all these top-

ics).
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4. Relation with quasianalytic classes

Let us look at the dual formulation in the case of L1(R). By Hann–Banach

theorem, ϕ is a Λ-generator of L1(R) if and only if whenever h ∈ L∞(R)

satisfies
∫ +∞

−∞
h(x)ϕ(x − λ) dx = 0, λ ∈ Λ,

one has h ≡ 0. Now notice that the above integral is the convolution h ∗ ϕ̌,

where ϕ̌(x) = ϕ(−x). Notice also that the statement h ≡ 0 is equivalent

to the statement h ∗ ϕ̌ ≡ 0; this is a consequence of Wiener’s tauberian

theorem, because the subspace E of L1(R) consisting of those Ψ for which

h ∗ Ψ ≡ 0 is translation invariant and contains ϕ̌, whose Fourier transform

never vanishes; hence E is the whole L1(R) and therefore h ∗ ϕ̌ ≡ 0 implies

h ≡ 0. In conclusion, we may say that ϕ is a Λ-generator of L1(R) if and

only ϕ̂ never vanishes and Λ is a uniqueness set for the class Y = L∞(R)∗ϕ̌.

If one is to search for classes of functions having discrete uniqueness

sets, it is quite natural to consider classes of analytic functions, or more

generally, quasianalytic classes. Among the different definitions of those we

use here the Denjoy–Carleman class C{Mn} associated to a sequence of

positive numbers (Mn). It consists of all f ∈ C∞(R) such that

|f (n)(x)| ≤ Cfβ
n
fMn, n = 0, 1, 2, . . . , x ∈ R.

Without loss of generality the sequence (Mn) can be assumed to be log–

convex (that is, M0 = 1, M2
n ≤Mn−1Mn+1, see [7]), implying that M

1/n
n is

increasing. This class is called quasianalytic if f ∈ C{Mn} and f (n)(0) = 0

∀n implies f ≡ 0; this is the case if and only if
∞∑

n=1

Mn−1

Mn
= +∞.

An equivalent condition is the divergence of the series with general term

M
−1/n
n . Among the quasianalytic classes, the analytic ones (consisting of

entire functions) correspond to sequences (Mn) such that (Mn/n!)1/n tends

to zero.

Generally speaking, a quasianalytic class C{Mn} has discrete unique-

ness sets Λ, whose description depends on a certain density depending on

the sequence (Mn) (see next section).

All this gives a way to construct concrete examples of L1(R)-generators

and spectral sets. Namely, we should choose a quasianalytic class C{Mn}
and ϕ with non-vanishing Fourier transform such that L∞(R)∗ϕ̌ is included

in C{Mn}. Then, if Λ is a uniqueness set for C{Mn}, ϕ will be a Λ-generator
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for L1(R) and so Λ is spectral for L1(R). However, it is immediate using

Cauchy inequalities that if M
1/n
n is bounded then C{Mn} is included in

some Bernstein class Bρ, and conversely, a Bernstein class is included in

some C{Mn} with M
1/n
n bounded; this means that the uniqueness sets

of the quasianalytic classes C{Mn} with M
1/n
n bounded are exactly the

uniqueness sets for some Bernstein class and these, as explained before, are

exactly those with R(Λ) > 0. Since we already know that R(Λ) = +∞ is

a necessary condition, this means that this approach can work only in case

M
1/n
n → +∞. In the same direction, note that the obvious condition on ϕ

ensuring that L∞(R) ∗ ϕ̌ is included in C{Mn}, namely
∫ +∞

−∞
|ϕ(n)(x)| dx ≤ CMn

implies |ξ|n|ϕ̂(ξ)| ≤Mn and so M
1/n
n → +∞.

The proof along these lines that the uniqueness sets of a quasianalytic

class C{Mn} with M
1/n
n → +∞ are spectral sets for L1(R) is to be found

in [5].

5. The spectral sets for L
1(R)

We have seen in Section 2 that the spectral sets of L1(R) have infinite

spectral radious and in Section 3 we have explained why the uniqueness

sets for certain analytic classes are spectral sets for L1(R). These three

concepts turn out to be equivalent, so the following theorem can be stated:

Theorem 5.1. For a discrete set Λ ⊂ R, the following conditions are

equivalent:

(a) It is a spectral set for L1(R), that is, there exists a Λ-generator ϕ for

L1(R).

(b) The spectral radius of Λ is +∞.

(c) Λ is a uniqueness set for a quasianalytic class C{Mn} with M
1/n
n ↗ ∞.

Moreover, the generator ϕ can be chosen in C{Mn}.

The remaining implication (b)⇒(c), the hardest one, is proved in full

generality in [4] (however, given Λ with R(Λ) = +∞ one can construct

directly a Λ-generator ϕ for L1(R) without appealing to (c), see also [4]).

The proof in [4] depends on the Beurling–Malliavin result, that is, one

shows that if DBM (Λ) = +∞ then Λ is a uniqueness set for a certain

quasianalytic class. This proof uses the methods in the Beurling–Malliavin
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theorem (see [7]), in fact one shows uniqueness for certain “generalized

Bernstein” classes of analytic functions. However, under the stronger hy-

pothesis that D(Λ) = +∞ one can give a simpler proof and in doing so

reviewing some facts about uniqueness sets for quasianalytic classes.

Hirschman ([6]) studied them for quasianalytic non analytic classes. For

general quasianalytic classes, a uniqueness criteria can be obtained from a

very interesting lemma of Bang ([2]). Bang’s lemma states that if g is C∞

in [−1, 1] and ‖g(n)‖∞ ≤ Mn, with Mn log–convex, then the number of

zeros of g (counting multiplicities) in [−1, 1] does not exceed the so–called

Bang’s number of g, which is defined as the largest integer N such that

∑

log ‖g‖−1
∞ <n≤N

Mn−1

Mn
< 2e.

From Bang’s lemma, one can obtain a result of the kind we are looking. For

a given quasianalytic class C{Mn}, let M̄ [k] denote the sequence of partial

sums

M̄ [k] =
k∑

n=1

Mn−1

Mn

so that M̄ [k] ↗ +∞ as k ↗ +∞. A rescaling of Bang’s lemma gives that

the condition

lim sup
r↗∞

M̄ [nΛ(r)]

2r
> e

implies that Λ is a uniqueness set for C{Mn}. Now it is enough to notice

that given Λ with D(Λ) = +∞ one can construct a sequence (Mn) such

that the above density is infinite.

6. The generators for L
1(R)

Of course, a very natural question is to ask for a characterization of the

generators for L1(R), that is, which condition(s) besides the non-vanishing

of ϕ̂ describe them. This seems to be a difficult question that we now

comment.

It is not difficult however to state conditions ensuring that ϕ is not a

generator, even with the obvious necessary condition ϕ̂(ξ) 6= 0 for all ξ.

For instance, this is trivially the case if ϕ is compactly supported, for then

just a finite number of the {τλϕ : λ ∈ Λ} will not be identically zero in

a fixed interval. A non trivial result, due to Ulanovski, can be obtained

from the observation that ϕ will not be a generator if for each ε > 0 there
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exists f ∈ L∞(R), f 6≡ 0, such that f ∗ ϕ̌ is supported in (−ε, ε), because

this forces every possible uniqueness set for L∞(R) ∗ ϕ̌ to be everywhere

dense. The so–called Beurling–Malliavin multiplier theory can be used for

this purpose. Recall that a weight ω ≤ 1 on R is said to admit multipliers

([7]) if there exist entire functions Gε of arbitrarily small exponential type

ε for which ω(x)Gε(x) is bounded or belongs to Lp(R). Then it can be

proved (see [5]) that ϕ is not a generator if |ϕ̂|−1 admits multipliers. A

necessary condition on a weight ω to admit multipliers is the convergence

of the logarithmic integral

∫ +∞

−∞

log(ω(x))

1 + x2
dx <∞.

This condition is sufficient when ω satisfies some regularity assumptions, in

particular when ω is even and increasing (see [7] for all these facts). So, if

|ϕ̂| is even, decreasing along the positive axis and the logarithmic integral

converges, ϕ is not a generator.

On the other hand, all generators exhibited in Section 3 have infinite

logarithmic integral. This is because |ξ|n|ϕ̂(ξ)| ≤Mn implies

|ϕ̂(ξ)| ≤ inf
n

Mn

|ξ|n
def
= M(ξ)

and

∫ +∞

−∞

logM(ξ)

1 + ξ2
dξ = −∞

is equivalent to the quasianalyticity condition of the class.

The divergence of the logarithmic integral,

∫ +∞

−∞

log |ϕ̂(ξ)|
1 + ξ2

dξ = −∞

is essentially necessary for quasianalytic generators, that is, such that

L∞(R) ∗ ϕ̌ ⊂ C{Mn} with C{Mn} quasianalytic.

So all results known up to now seem to indicate that

ϕ̂(ξ) 6= 0,

∫ +∞

−∞

log |ϕ̂(ξ)|
1 + ξ2

dξ = −∞

might be a characterization of the generators for L1(R).
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7. The restricted problem

Another interesting problem arises when we look at a specific generator ϕ

for L1(R) and ask for which discrete sets Λ the family Λ(ϕ) spans L1(R).

According to what has been said in Section 3, these sets are exactly the

uniqueness sets of the function space Yϕ = L∞(R)∗ϕ̌, so an exact knowledge

of Yϕ seems adequate.

One case in which the space Yϕ can be exactly described is the one of

the Poisson function

ϕ(t) =
1

π

1

1 + t2
.

This is achieved in [3], and we proceed to explain the main ideas. We are to

describe the functions of type F = f ∗ ϕ, f ∈ L∞(R) and real. In order to

do that we notice first that F makes sense for complex z with |Im z| < 1,

F (z) =
1

π

∫ +∞

−∞

1

1 + (t− z)2
dt, f ∈ L∞(R)

and that this defines an holomorphic function in the strip B = {z : |Im z| <
1} with bounded real part, and real in the real line, that is, F (z) = F (z).

We call E∞(B) the class of such F . In [3], it is proved that, conversely, any

function F ∈ E∞(B) can be expressed as above with f a bounded function.

Hence the problem for the Poisson function becomes the problem of

describing the uniqueness real sets for the class E∞(B). By transferring

the problem to the unit disk D by means of a suitable conformal map, it

is not hard to check that the required condition is nothing else that the

usual Blashke condition describing the uniqueness sets (µn)n for the Hardy

classes Hp(D), namely
∑

n(1−|µn|) = +∞. When transferring again to B

this condition becomes

∑

n∈Z

e−
π
2
|λn| = +∞,

so this is the exact description of the discrete sets Λ = {λn : n ∈ Z} such

that Λ(ϕ) spans L1(R).

Strictly speaking one does not need to know exactly the function space

Yϕ = L∞(R) ∗ ϕ̌ to describe its uniqueness sets, as often it is intermediate

between two spaces Y1, Y2 having the same uniqueness sets. This technique

can be used to deal with generators ϕ of Poisson type.

Another case which is worth mentioning is the Gaussian function ϕ(x) =

e−x2

. When dealing with the problem in L2(R), the corresponding space
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Y = L2(R) ∗ ϕ can be identified exactly with the Fock space of entire

functions F for which ∫

C

|F (z)|2e−|z|2 dm(z) < +∞.

Replacing L2(R) by L∞(R) leads to an L∞ version of the Fock space.

In any event, the description of the uniqueness sets for the Fock space is an

unsolved problem; this description is probably not possible just with size

conditions, as subtle equilibrium conditions play into role. The best size

condition on Λ = {λn : n ∈ Z} ensuring that it is a uniqueness set, and

hence Λ(ϕ) spans L1(R), is due to [14] and reads
∑

n

1

|λn|2
= +∞.
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Many classical results about compactness in functional analysis can be derived
from suitable inequalities involving distances to spaces of continuous or Baire
one functions: this approach gives an extra insight to the classical results as well
as triggers a number of open questions in different exciting research branches.
We exhibit here, for instance, quantitative versions of Grothendieck’s character-
ization of weak compactness in spaces C(K) and also of the Eberlein–Šmulyan
and Krein–Šmulyan theorems. The above results specialized in Banach spaces
lead to several equivalent measures of non-weak compactness. In a different di-
rection we envisage a method to measure the distance from a function f ∈ RX

to B1(X) — space of Baire one functions on X — which allows us to ob-
tain, when X is Polish, a quantitative version of the well-known Rosenthal’s
result stating that in B1(X) the pointwise relatively countably compact sets
are pointwise compact. Other results and applications are commented too.

Keywords: Eberlein–Grothendieck theorem, Krein–Smulyan theorem, oscilla-
tions, iterated limits, compactness, measures of non compactness, distances to
function spaces, Rosenthal theorem, Baire one functions.

1. Introduction

These are the written notes of a lecture with the same title delivered by

the second named author at the III International Course of Mathematical

Analysis of Andalucía, Huelva, September 3-7, 2007. We collect here results,

mostly without proof, that mainly correspond to the papers [3–5,11]. A good

deal of extra information about the subject can also be found in the Ph.D.

dissertation by the first named author ([1]).

In this survey, we present recent quantitative versions of many of the

classical compactness results in functional analysis and their relatives. As an

example and in order to fix ideas, one of the problems studied is illustrated
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and explained in the lines below. Take K a compact Hausdorff space and

let C(K) be the space of real–valued continuous functions defined on K.

Look at C(K) embedded in RK , let d be the metric of uniform convergence

on RK and take H ⊂ RK a uniformly bounded set. If τp is the topology of

pointwise convergence on RK , then Tychonoff’s theorem says that H
R

K

is

τp-compact. Therefore, for H to be τp-relatively compact in C(K), the only

thing we should worry about is to have H
R

K

⊂ C(K). Notice that if d̂ is the

worst distance from H
R

K

to C(K) then d̂ = 0 if and only if H
R

K

⊂ C(K).

In general d̂ ≥ 0 gives us a measure of non τp-compactness for H relative

to C(K). Hence the questions are: a) Is there any way of computing d̂?;

-�

C(K)

RK

H

d̂

co(H)
τp

ρ̂
-�

Fig. 1.

b) are there useful estimates involving d̂ that are equivalent to qualitative

properties of the sets H’s? The answer to a) has been known for a long time

and is yes: the distance of a function f ∈ RK to C(K) can be computed in

terms of the global oscillation of f on K, see Section 2. Here is a first case

in the spirit of b) that is illustrated through the Figure 1: if ρ̂ is the worst

distance from the closed convex hull co (H)
R

K

to C(K), then it is proved

that d̂ ≤ ρ̂ ≤ 5d̂ (the constant 5 can be replaced by 2 for sets H ⊂ C(K)).

Note that the above inequality is the quantitative version of the celebrated

Krein–Šmulyan theorem about weak compactness of the closed convex hull

of weakly compact sets in Banach spaces.

A bit of the history behind the classical results that we quantify follows.

In 1940 Šmulyan ([30]) showed that weakly relatively compact subsets of
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a Banach space are weakly relatively sequentially compact. He also proved

that if a Banach space E has w∗-separable dual then a subset H of E is

weakly relatively countably compact if and only if H is weakly relatively

sequentially compact. Dieudonné and Schwartz ([14]) extended this last

result to locally convex spaces with a coarser metrizable topology. The

converse of Šmulyan theorem was obtained by Eberlein ([15]) who proved

that relatively countably compact sets are relatively compact sets for the

weak topology of a Banach space. Grothendieck generalized these results

to locally convex spaces that are quasicomplete for its Mackey topology:

this result is based upon a similar one for spaces (C(K), τp) of continuous

functions on a compact space K endowed with the pointwise convergence

topology. Fremlin’s notion of angelic space and some of its consequences

can be used for proving the above results in a clever and clear way, see the

book by Floret [17]. Orihuela ([27]) showed in 1987 that spaces (C(X), τp)

with X a countably K-determined space (or even more general spaces)

are angelic. Similarly, for spaces (B1(X), τp) of Baire one functions on a

Polish space with the pointwise convergence topology, Rosenthal showed

that relatively countably compact sets are relatively compact. Bourgain,

Fremlin and Talagrand ([10]) showed that, in fact, (B1(X), τp) is angelic.

In recent years, several quantitative counterparts for some other clas-

sical results have been proved by different authors. These new versions

strengthen the original theorems and lead to new problems and applica-

tions in topology and analysis: see, for instance, [16,18–21].

A bit of terminology: by letters T,X, Y, . . . we denote sets or completely

regular topological spaces; (Z, d) is a metric space (Z if d is tacitly assumed);

R is considered as a metric space endowed with the metric associated to the

absolute value | · |. The space ZX is equipped with the product topology

τp. We let C(X,Z) denote the space of all Z-valued continuous functions

on X , and let B1(X,Z) denote the space of all Z-valued functions of the

first Baire class (Baire one functions), i.e., pointwise limits of Z-valued

continuous functions. When Z = R, we write, as usual, C(X) and B1(X)

for C(X,R) and B1(X,R), respectively.

If ∅ 6= A ⊂ (Z, d) we write diam (A) := sup{d(x, y) : x, y ∈ A}. For A

and B nonempty subsets of (Z, d), we consider the usual distance between

A and B given by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

and the Hausdorff non-symmetrized distance from A to B defined by

d̂(A,B) = sup{d(a,B) : a ∈ A}.
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In ZX we deal with the standard supremum metric given for arbitrary

functions f, g ∈ ZX by

d(f, g) = sup
x∈X

d(f(x), g(x))

that is allowed to take the value +∞. If F ⊂ ZX is some space of functions

we consequently define d(f,F) and d̂(A,F) for sets A ⊂ ZX ; the spaces of

functions F that we will consider are C(X,Z) and B1(X,Z).

By (E, ‖·‖) we denote a real Banach space (or simply E if ‖·‖ is tacitly

assumed). Finally, BE stands for the closed unit ball in E, E∗ for the dual

space of E and E∗∗ for the bidual space of E; w is the weak topology of a

Banach space and w∗ is the weak∗ topology in the dual.

2. Distance to spaces of continuous functions

We start with the proof for the formula (1) below that gives us the distance

of a function f ∈ RX to the space of continuous functions C(X). Next

result is used in the proof that we provide for Theorem 2.2.

Theorem 2.1 ([23, Theorem 12.16]). Let X be a normal space and let

f1 ≤ f2 be two real functions on X such that f1 is upper semicontinuous

and f2 is lower semicontinuous. Then, there exists a continuous function

f ∈ C(X) such that f1(x) ≤ f(x) ≤ f2(x) for all x ∈ X.

Theorem 2.2. Let X be a normal space. If f ∈ RX , then

d(f, C(X)) =
1

2
osc (f) (1)

where

osc (f) = sup
x∈X

osc (f, x) = sup
x∈X

inf{diam f(U) : U ⊂ X open, x ∈ U}.

Proof. We prove first that 1
2osc (f) ≤ d(f, C(X)). If d(f, C(X)) is infi-

nite, the inequality clearly holds. Suppose that ρ = d(f, C(X)) is finite.

Fix x ∈ X and ε > 0. Take g ∈ C(X) such that d(f, g) ≤ ρ + ε/3.

Since g is continuous at x, there is an open neighborhood U of x such

that diam (g(U)) < ε/3. Then, if y, z ∈ U ,

d(f(y), f(z)) ≤ d(f(y), g(y)) + d(g(y), g(z)) + d(g(z), f(z)) < 2ρ+ ε.

Thus osc (f, x) < 2ρ+ε for each ε > 0. We conclude that osc (f, x) ≤ 2ρ for

every x ∈ X and so, the inequality 1
2osc (f) ≤ d(f, C(X)) is established.
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Let us prove now that d(f, C(X)) ≤ 1
2osc (f). We only have to prove

the inequality when δ = 1
2osc (f) is finite. For x ∈ X , denote by Ux the

family of open neighborhoods of x and define

Vx := {U ∈ Ux : diam (f(U)) < osc (f) + 1}.
Clearly Vx is a basis of neighborhoods for x and for each U ∈ Vx, f |U is

upper and lower bounded.

An easy computation gives us that

2δ ≥ osc (f, x) = inf
U∈Ux

diam (f(U)) = inf
U∈Vx

diam (f(U))

= inf
U∈Vx

sup
y,z∈U

(f(y) − f(z))

≥ inf
U,V ∈Vx

sup
y∈U,z∈V

(f(y) − f(z))

= inf
U∈Vx

sup
y∈U

f(y) − sup
U∈Vx

inf
z∈U

f(z).

If we define

f1(x) := inf
U∈Vx

sup
z∈U

f(z) − δ

f2(x) := sup
U∈Vx

inf
z∈U

f(z) + δ

then f1 ≤ f2. It is easy to check that f1 is upper semicontinuous and f2

is lower semicontinuous. By Theorem 2.1, there is a continuous function

h ∈ C(X) such that

f1(x) ≤ h(x) ≤ f2(x)

for every x ∈ X . On the other hand, for every x ∈ X we have

f2(x) − δ ≤ f(x) ≤ f1(x) + δ
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and therefore

h(x) − δ ≤ f2(x) − δ ≤ f(x) ≤ f1(x) + δ ≤ h(x) + δ.

So d(f, h) ≤ δ = 1
2osc (f) and this finishes the proof.

A proof for the above result when X is a paracompact space and all

functions are assumed to be bounded can be found in [9, Proposition 1.18].

We note that the validity of Theorem 2.2 characterizes normal spaces.

Corollary 2.1. Let X be a topological space. The following statements are

equivalent:

(i) X is normal,

(ii) for each f ∈ RX there is g ∈ C(X) such that d(f, g) = 1
2osc (f),

(iii) d(f, C(X)) = 1
2osc (f) for each function f ∈ RX .

3. Distances to spaces of continuous functions on compact

spaces

We aim now to estimate d̂ = d̂(H
R

K

, C(K)) using some other distinguished

quantities that we shall define.

Let T be a topological space. For a subset A of T , AN is considered

as the set of all sequences in A and the set of all cluster points in T of a

sequence ϕ ∈ AN is denoted by clustT (ϕ). Recall that clustT (ϕ) is a closed

subset of T that can be expressed as

clustT (ϕ) =
⋂

n∈N

{ϕ(m) : m > n}.

Definition 3.1. Let X be a topological space and (Z, d) a metric space. If

H is a subset ZX we define

ck (H) := sup
ϕ∈HN

d(clustRK (ϕ), C(X,Z)).

If K ⊂ X we write

γK(H) := sup
{
d(lim

n
lim
m
fm(xn), lim

m
lim
n
fm(xn)) : (fm) ⊂ H, (xn) ⊂ K

}
,

assuming the involved limits exist.

By definition, we agree that inf ∅ = +∞. Observe that if H ⊂ C(X,Z) is

a τp-relatively countably compact subset of C(X,Z) then ck (H) = 0. Also

notice that γK(H) = 0 means in the language of [22] that H interchanges

limits with K.
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Theorem 3.1 ([3,11]). Let K be a compact space and let H be a uniformly

bounded subset of C(K). We have

ck (H)
(a)

≤ d̂(H
R

K

, C(K))
(b)

≤ γK(H)
(c)

≤ 2ck (H).

Explanation of the proof. The details of the proof can be found in

[3,11]. Here is a pretty short explanation of the ideas behind. Inequality

(a) straightforwardly follows from the definitions involved. Inequality (c)

uses the same kind of arguments than those used in the proof to show that

if H is τp-relatively compact in C(K) then H interchanges limits with K.

Inequality (b) is much more involved than the other two: here the idea is

to show that for every x ∈ K and f ∈ H
R

K

, the semioscillation

osc∗(f, x) := inf
U
{sup

y∈U
|f(y) − f(x)| : U ⊂ X open, x ∈ U}

is at most γK(H). Therefore, osc (f) ≤ 2γK(H) and now Theorem 2.2

applies to finally obtain that d(f, C(K)) ≤ γK(H). Thus d(H
R

K

, C(K)) ≤
γK(H) and (a) is proved.

The following theorem is a quantitative version of the Krein–Šmulyan

theorem: see next section for its consequences in Banach spaces.

Theorem 3.2 ([11]). Let K be a compact topological space and let H be

a uniformly bounded subset of RK. Then

γK(H) = γK(co (H)) (2)

and, as a consequence, for H ⊂ C(K) we obtain that

d̂(co (H)
R

K

, C(K)) ≤ 2d̂(H
R

K

, C(K)) (3)

and if H ⊂ RK is uniformly bounded then

d̂(co (H)
R

K

, C(K)) ≤ 5d̂(H
R

K

, C(K)). (4)

Explanation of the proof. The equality (2) is rather involved: the proof

offered in [11] uses some ideas from the proof of the Krein–Smulyan theorem

in Kelley–Namioka’s book [25, Chapter 5, Section 17]; we note that a version

for Banach spaces, less general than the one here, was proved first in [16]

using Ptak’s combinatorial lemma. Inequality (3) easily follows from (2)

and Theorem 3.1:

d̂(co (H)
R

K

, C(K)) ≤ γK(co (H)) = γK(H) ≤ 2ck (H) ≤ 2d̂(H
R

K

, C(K)).
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When H ⊂ RK , we approximate H by some set in C(K), then use inequal-

ity (3) and, after some computations with the sets, 5 appears as 5 = 2×2+1:

see [11] for details.

4. Distance to Banach spaces

The aim of this section is to specialize the result of the previous one in

the case of Banach spaces: in order to do so, we have to overcome some

technicalities. If E is Banach space and H is a bounded subset of E and

we consider the w∗-closure of H in E∗∗, we can measure how far H is from

being w-relatively compact in E using

k(H) = d̂(H
w∗

, E) = sup
y∈H

w∗
inf
x∈E

‖y − x‖.

Next theorem gives as a tool to export results obtained in the context of

distances to spaces of continuous functions on a compact set to the context

of Banach spaces.

Theorem 4.1 ([11]). Let E be a Banach space and let BE∗ be the closed

unit ball in the dual E∗ endowed with the w∗-topology. Let i : E → E∗∗ and

j : E∗∗ → `∞(BE∗) be the canonical embeddings. Then, for every x∗∗ ∈ E∗∗

we have

d(x∗∗, i(E)) = d(j(x∗∗), C(BE∗)).

Explanation of the proof. The proof of this result goes along the proof

we have given for Theorem 2.2 but instead of using Theorem 2.1 as a

tool now the concourse of Hahn–Banach theorem is required: namely, it is

used Theorem 21.20 in [12], that states that if f1 < f2 are two real–valued

functions defined on BE∗ with f1 concave and w∗-upper semicontinuous and

f2 convex and w∗-lower semicontinuous then there exist a w∗-continuous

affine function h defined on BE∗ such that

f1(x) < h(x) < f2(x)

for every x ∈ BE∗ . See [11] for details.

If we consider `∞(BE∗) as a subspace of (RBE∗ , τp), then the natural

embedding j : (E∗∗, w∗) → (`∞(BE∗), τp) is continuous. For a bounded set

H ⊂ E∗∗, the closure H
w∗

is w∗-compact and therefore, the continuity of
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j gives us that j(H)
τp

= j(H
w∗

). So

d̂(j(H)
τp

, C(BE∗ , w∗)) = d̂(j(H
w∗

), C(BE∗ , w∗))

= sup
z∈H

w∗
d(j(z), C(BE∗ , w∗))

= sup
z∈H

w∗
d(z, i(E)) = d̂(H

w∗

, i(E)). (5)

Similarly we have

d(j(H)
τp

, C(BE∗ , w∗)) = d(H
w∗

, i(E)). (6)

Definition 4.1. Let E be a Banach space and let H be a subset of E. We

define:

γ(H) := sup{| lim
n

lim
m
fm(xn)−lim

m
lim
n
fm(xn)| : (fm)m ⊂ BE∗ , (xn)n ⊂ H},

assuming the involved limits exists,

ck (H) := sup
ϕ∈HN

d(clustE∗∗,w∗(ϕ), E)

and

ω(H) := inf{ε > 0: H ⊂ Kε + εBE and Kε ⊂ X is w-compact}.

The function ω was introduced by de Blasi ([13]) as a measure of weak

noncompactness that can be regarded as the counterpart for the weak topol-

ogy of the classical Hausdorff measure of norm noncompactness. The func-

tion γ already appeared in [7] and in [26] with an a priori different definition:

in the latter, the sup is taken over all the sequences in the convex hull co (H)

instead of sequences only in H ; but, by Theorem 3.2, γ(H) = γ(co (H)),

which says that our definition for γ is equivalent to the one given in [26].

The index k has been used in [11,16,18]. Whereas ω and γ are measures of

weak noncompactness in the sense of the axiomatic definition given in [8]

the function k fails to satisfy k (co (H)) = k (H), that is one of the prop-

erties required in order to be a measure of weak noncompactness in the

sense of [8]: see [18,19] for counterexamples. Nonetheless, k as well as γ and

ω does satisfy the condition k (H) = 0 if and only if H is relatively weakly

compact in E.

All the above quantities are related with each other.

Theorem 4.2 ([4,11]). Let H be a bounded subset of a Banach space E.

Then

ck (H) ≤ k (H) ≤ γ(H) ≤ 2ck (H) ≤ 2k (H) ≤ 2ω(H) (7)
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γ(H) = γ(co (H)) and ω(H) = ω(co (H).

For any x∗∗ ∈ H
w∗

, there is a sequence (xn)n in H such that

‖x∗∗ − y∗∗‖ ≤ γ(H)

for any cluster point y∗∗ of (xn)n in E∗∗. Furthermore, H is relatively

compact in (E,w) if and only if it is zero one (equivalently all) of the

numbers ck (H), k (H), γ(H) and ω(H).

Explanation of the proof. The first part of the Theorem uses the results

stated in the previous section together with the equalities (5) and (6).

For the second part, the approximation by sequences, again equalities (5)

and (6) are used together now with [11, Proposition 5.2].

We point out that γ(H) = γ(co (H)) and k (H) ≤ γ(H) ≤ 2k (H)

have also been established in [16]: note that inequalities (7) immediately

imply Krein–Smulyan theorem for Banach spaces that states that the closed

convex hull of a weakly compact set is again weakly compact.

Recall that a topological space T is said to be angelic if, whenever H is

a relatively countably compact subset of T , its closure H is compact and

each element of H is limit of a sequence in H : a good reference for angelic

spaces is [17]. Inequalities (7) together with the approximation by sequences

in Theorem 4.2 offer us a quantitative version of the angelicity of a Banach

space endowed with its weak topology, Eberlein–Smulyan’s theorem.

Corollary 4.1. If E is a Banach space then (E,w) is angelic.

In (7), the constants involved are sharp but sometimes the inequalities

involved are equalities.

Theorem 4.3 ([4]). If E is a Banach space with Corson property C then

for every bounded set H ⊂ E we have ck (H) = k (H).

Recall that a Banach space E is said to have the Corson property C if

each collection of closed convex subsets of E with empty intersection has a

countable subcollection with empty intersection: the class of Banach spaces

with property C is a wide class that contains the classes of Banach spaces

which are Lindelöf for their weak topologies (in particular, w-K-analytic

Banach spaces) and also the class of Banach spaces with w∗-countably tight

(in particular Banach spaces with w∗-angelic dual unit ball), see [28]. We

note that equality ck (H) = k (H) does not hold for general Banach spaces:

see [4] for a counterexample.
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The Hausdorff measure of norm noncompactness is defined for bounded

sets H of Banach spaces E as

h (H) := inf{ε > 0: H ⊂ Kε + εBE and Kε ⊂ X is finite}.
A theorem of Schauder states that a continuous linear operator T : E → F

is compact if and only if its adjoint operator T ∗ : F ∗ → E∗ is compact. A

quantitative strengthening of Schauder’s result was proved by Goldenstein

and Marcus (cf. [7, p. 367]) who established the inequalities

1

2
h (T (BE)) ≤ h (T ∗(BF∗)) ≤ 2h (T (BE)). (8)

For weak topologies, Gantmacher established that the operator T is weakly

compact if and only if T ∗ is weakly compact. Nonetheless, the corresponding

quantitative version to (8) where h is replaced by ω fails for general Banach

spaces: Astala and Tylli constructed in [7, Theorem 4] a separable Banach

space E and a sequence (Tn)n of operators Tn : E → c0 such that

ω(T ∗
n(B`1)) = 1 and ω(T ∗∗

n (B∗∗
E )) ≤ ω(Tn(BE)) ≤ 1

n
.

On the positive side, there exists a quantitative version of Gantmacher

result for γ and henceforth for k and ck.

Theorem 4.4 ([4]). Let E and F be Banach spaces, T : E → F an oper-

ator and T ∗ : F ∗ → E∗ its adjoint. Then

γ(T (BE)) ≤ γ(T ∗(BF∗)) ≤ 2γ(T (BE)).

As a combination of the result and the aforementioned Astala and Tylli’s

construction we obtain:

Corollary 4.2 ([4,7]). The measures of weak noncompactness γ and ω

are not equivalent, meaning, there is no N > 0 such that for any Banach

space and any bounded set H ⊂ E we have ω(H) ≤ Nγ(H).

The following result is a quantitative strengthening of the classical

Grothendieck’s characterization of weakly compact sets in spaces C(K).

Theorem 4.5 ([4]). Let K be a compact space and let H be a uniformly

bounded subset of C(K). Then we have

γK(H) ≤ γ(H) ≤ 2γK(H).

Note that this result implies that such an H is uniformly bounded subset

of C(K), then H is relatively weakly compact (i.e., γ(H) = 0) if and only if

H is relatively τp-compact (i.e. γ(H) = 0). It is worth mentioning that the
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proof we provided in [4] does not use the Lebesgue Convergence theorem

as the classical proof of Grothendieck’s theorem does: our proof relies on

purely topological arguments.

5. Distances to continuous functions on countably

K-determined spaces

For people just interested about results for spaces of continuous functions

in non compact spaces X , it is possible to get rid of the constraints imposed

in Theorem 3.1 and also deal with pointwise bounded sets H ⊂ RX instead

of uniformly bounded sets made up of continuous functions. To do so, one

needs to prove first the two technical lemmas that follow.

Lemma 5.1 ([3]). Let X be a topological space, (Z, d) a metric space and

H a relatively compact subset of the space (ZX , τp). Then, for every rela-

tively countably compact subset K ⊂ X we have

γK(H) ≤ 2
(

ck (H) + d̂(H,C(X,Z))
)
.

Lemma 5.2 ([3]). Suppose that (Z, d) is a separable metric space and let

X be a set. Given functions f1, . . . , fn ∈ ZX and D ⊂ X there is a countable

subset L ⊂ D such that for every x ∈ D

inf
y∈L

max
1≤k≤n

d(fk(y), fk(x)) = 0.

With the above two lemmas at hand and a long way of technical dif-

ficulties to overcome one arrives to the following two results that greatly

extends Theorem 3.1.

Theorem 5.1 ([3]). Let X be a countably K-determined space, (Z, d) a

separable metric space and H a relatively compact subset of the space

(ZX , τp). Then, for any f ∈ H
ZX

, there exists a sequence (fn)n in H

such that

sup
x∈X

d(g(x), f(x))≤2ck (H) + 2d̂(H,C(X,Z))≤4ck (H)

for any cluster point g of (fn)n in ZX .

Theorem 5.2 ([3]). Let X be a countably K-determined space, (Z, d) a

separable metric space and H a relatively compact subset of the space

(ZX , τp). Then

ck (H)≤d̂(H
ZX

, C(X,Z))≤3ck (H) + 2d̂(H,C(X,Z))≤5ck (H).
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Recall that a topological space X is said to be countably K-determined

if there is a subspace Σ ⊂ NN and an upper semicontinuous set–valued

map T : Σ → 2X such that T (α) is compact for each α ∈ Σ and

T (Σ) :=
⋃{T (α) : α ∈ Σ} = X . Here the set–valued map T is called upper

semicontinuous if for each α ∈ Σ and for any open subset U of X such

that T (α) ⊂ U there exists a neighborhood V of α with T (V ) ⊂ U. A good

reference for countably K-determined spaces is [6] where they appear under

the name Lindelöf Σ-spaces: notice that this class of spaces does properly

contain the class of separable metric spaces and the class of K-analytic and

(so) the σ-compact spaces.

We point out that the above results imply the main result in [27].

Corollary 5.1 ([27]). Let X be a countably K-determined space and

(Z, d) a metric space. Then Cp(X,Z) is an angelic space.

Our Theorems 5.1 and 5.2 can be proved (same proofs and difficulty)

in the more general setting of spaces X being web-compact, quasi–Souslin,

etc. as studied in [27]. We also notice that this quite general results can be

used to obtain some consequences in the setting of locally convex spaces.

Although there are examples showing that the constants are truly

needed in the inequalities in Theorem 5.2, there are cases for which k = ck .

Lemma 5.3. Let X be a first countable space, (Z, d) a metric space and

H a pointwise relatively compact subset of (ZX , τp). Then

sup
f∈H

osc (f) = sup
ϕ∈HN

inf{osc (f) : f ∈ clustZX (ϕ)}. (9)

For Z = R the equality (9) holds when X is countably tight.

The above lemma can be read as:

Proposition 5.1. Let X be a metric space, E a Banach space and H a

τp-relatively compact subset of EX . Then

ck (H) ≤ d̂(H
EX

, C(X,E)) ≤ 2ck (H).

In the particular case when E = R, the space X can be taken normal and

countably tight and we have

d̂(H
R

X

, C(X)) = ck (H).
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6. Baire one functions

It is known that when E is a Banach space, the uniform limits of Baire one

functions are Baire one functions again. Hence, for a function f ∈ EX

we have that f ∈ B1(X,E) if and only if d(f,B1(X,E)) = 0. Conse-

quently, for any subset A ⊂ EX we have d̂(A,B1(X,E)) = 0 if and

only if A ⊂ B1(X,E). In this way and similarly to the case of continu-

ous functions, when E = R and H ⊂ RX is pointwise bounded, the number

d̂(H
R

X

, B1(X)) gives us a measure of non τp-compactness of H relative to

B1(X) — observe that d̂(H
R

X

, B1(X)) = 0 implies that H is τp-relatively

compact in B1(X). Henceforth, we might now pursue the study we already

did for continuous functions but now dealing with Baire one functions. In

order to do so, the first difficulty to overcome is to answer to the following

question:

Question 6.1. Given f ∈ ZX , is there any way to estimate the distance

d(f,B1(X,Z))?

To effectively compute this distance, we use the concept of fragmented

and σ-fragmented map as introduced in [24]. Recall that for a given ε > 0,

a metric space–valued function f : X → (Z, d) is ε-fragmented if for each

non-empty subset F ⊂ X there exists an open subset U ⊂ X such that

U ∩ F 6= ∅ and diam (f(U ∩ F )) ≤ ε. Given ε > 0, we say that f is ε-σ-

fragmented by closed sets if there is a countable closed covering (Xn)n of

X such that f |Xn
is ε-fragmented for each n ∈ N.

Definition 6.1. Let X be a topological space, (Z, d) a metric space and

f ∈ ZX a function. We define:

frag (f) := inf{ε > 0: f is ε-fragmented},

σ-fragc(f) := inf{ε > 0: f is ε-σ-fragmented by closed sets},
where, by definition, inf ∅ = +∞.

The indexes frag and σ-fragc are related to each other as follows:

Theorem 6.1 ([5]). Let X be a topological space and (Z, d) a metric space.

If f ∈ ZX then the following inequality holds

σ-fragc(f) ≤ frag (f).

If, moreover, X is hereditarily Baire, then

σ-fragc(f) = frag (f).
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With frag and σ-fragc one can estimate distances to B1(X,E).

Theorem 6.2 ([5]). Let X be a metric space and E a Banach space. If

f ∈ EX then

1

2
σ-fragc(f) ≤ d(f,B1(X,E)) ≤ σ-fragc(f).

In the case E = R, we have the equality

d(f,B1(X)) =
1

2
σ-fragc(f).

Next result is a consequence of the two previous ones.

Corollary 6.1 ([5]). If X is a hereditarily Baire metric space and f ∈ RX ,

then

d(f,B1(X)) =
1

2
frag (f).

Note that the corollary above extends [20, Proposition 6.4], where this

result is only proved when X is Polish.

Bearing in mind the definitions involved one proves:

Lemma 6.1 ([5]). Let X be a separable metric space, (Z, d) a metric space

and H a pointwise relatively compact subset of (ZX , τp). Then (closures are

taken relative to τp),

sup
f∈H

frag (f) = sup
φ∈HN

inf{frag (f) : f ∈ clust (φ)}. (10)

As we have done already in the case of continuous functions, we can

study how far a set H ⊂ EX from being τp-relatively countably compact

with respect to B1(X,E) using

ckB1
(H) := sup

ϕ∈HN

d(clustZX (ϕ), B1(X,E)).

If we combine all the above, we can prove the following quantitative

result about the difference between τp-relative compactness and τp-relative

countable compactness with respect to B1(X,E). The particular case of

ck (H) = 0 and E = R is the classic result due to Rosenthal ([29]).

Theorem 6.3 ([5]). Let X be a Polish space, E a Banach space and H a

τp-relatively compact subset of EX . Then

ck (H) ≤ d̂(H
EX

, B1(X,E)) ≤ 2ck (H).

In the particular case when E = R we have

d̂(H
R

X

, B1(X)) = ck (H).
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7. Further studies

The very idea that “qualitative” properties can be derived from some “in-

equalities” is likely true for a great number of results. In our papers [2,5]

there are more “quantitative” versions of classical results. We name some

of them in the lines below.

In [5], we also obtain, with I. Namioka, a quantitative version of a Sri-

vatsa’s result that states that whenever X is metric any weakly continuous

function f ∈ EX belongs to B1(X,E): our result here says that for an

arbitrary f ∈ EX we have

d(f,B1(X,E)) ≤ 2 sup
x∗∈BE∗

osc (x∗ ◦ f).

As a consequence, it is proved that for functions in two variables f : X ×
K → R, X complete metric and K compact, there exists a Gδ-dense set

D ⊂ X such that the oscillation of f at each (x, k) ∈ D×K is bounded by

the oscillations of the partial functions fx and fk. We indeed prove using

games, that if X is a σ-β-unfavorable space and K is a compact space, then

there exists a dense Gδ-subset D of X such that, for each (y, k) ∈ D ×K,

osc (f, (y, k)) ≤ 6 sup
x∈X

osc (fx) + 8 sup
k∈K

osc (fk).

When the right hand side of the above inequality is zero, we are dealing

with separately continuous functions f : X ×K → R and we obtain as a

particular case some well-known results obtained by I. Namioka in the mid

1970’s.

The first named author has studied in [2] the distances from the set of

selectors Sel (F ) of a set–valued map F : X → P(E) to the space B1(X,E).

To do so, the notion of d-τ -semioscillation of a set–valued map with values

in a topological space (Y, τ) also endowed with a metric d is introduced.

Being more precise, it is proved that

d(Sel (F ), B1(X,E)) ≤ 2osc∗w(F )

where osc∗w(F ) is the ‖·‖-w-semioscillation of F . In particular, when F

takes closed values and osc∗w(F ) = 0 it is obtained that F has a Baire one

selector: it should be pointed out that if F is weakly upper semicontinuous

then osc∗w(F ) = 0 and therefore, these results strengthen a Srivatsa selection

Theorem when F takes closed set.

More results along this line for other kind of spaces are foreseeable when

studying distances to spaces of measurable functions, to spaces of integrable

functions, etc. We are making an effort in this direction right now: if the

results obtained are worth it, they will be published elsewhere.
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We will pose several situations in analysis where some classes of smooth func-
tions play a fundamental role. In connection with the study of Laplace equation,
we shall analyze the behavior of the fractional integral operator on Lp spaces,
where BMO and Lipschitz spaces arise in a natural way. As a generalization,
we will present and study a family of spaces introduced by Spanne. In particu-
lar we will be interested in identifying those members of the family containing
only continuous functions. Finally we shall present a brief description of Besov
spaces and their connection with a problem of non-linear approximation of a
function by its wavelet expansion.

1. Fractional integration

The fractional integral operator arises in a natural way when solving prob-

lems involving differential operators. From elementary one variable calculus

we know that integration and differentiation are inverse operations. This is

basically the content of the Fundamental Theorem of Calculus. The picture

is not that simple in higher dimensions where the most interesting situations

occur. In order to solve partial differential equations, even in a theoretical

framework, we must deal with operators involving inverses of “derivatives”.

Fractional integrals are in many cases the key operators to handle such in-

verses. The basic identity that leads to a generalization of the fundamental

theorem of calculus in one variable, i.e.,
∫ t

a
f ′(s) ds = f(t) − f(a), is the

following:

f(x) = cn

∫

Rn

〈∇f(y), x − y〉
|x− y|n dy,

where f denotes a function defined on Rn, with compact support and con-

tinuous partial derivatives. In fact, let B(x,R) be a ball centered at x and

with radius large enough to contain the support of f . For each unit direction
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y′ we may apply the one dimensional result to get

f(x) =

∫ R

0

Dy′f(x− ty′) dt =

∫ ∞

0

〈∇f(x− ty′), y′〉 dt.

Integrating both sides over all the directions y′ we obtain

f(x) = cn

∫

Sn−1

∫ ∞

0

〈∇f(x− ty′), ty′〉
tn

tn−1 dt dy′

= cn

∫

Rn

〈∇f(x − y), y〉
|y|n dy = cn

∫

Rn

〈∇f(y), x− y〉
|x− y|n dy.

From here it follows immediately that

|f(x)| ≤ cn

∫

Rn

|∇f(y)|
|x− y|n−1

dy.

Now we introduce the definition of the Fractional Integral operator of

order α, 0 < α < n, by the expression

Iαg(x) =

∫

Rn

g(y)

|x− y|n−α
dy.

It follows that, taking α = 1 (as long as n is greater than one),

|f(x)| ≤ cnI1(|∇f |).

As a consequence we may say that an improvement on the integrability

of the function Iα(g) with respect to that of g, i.e., some boundedness

results of Iα on Lebesgue spaces, would lead to obtain a better degree of

integrability for a function f from assumptions on the size of its gradient.

As an example, if we start with a function in L2 whose gradient belongs

also to L2 and we are able to prove that the Fractional Integral operator for

α = 1 maps L2 into Lq for some q > 2, we might conclude that f has in fact

a better local integrability than that originally assumed. This type of result

is known as one of the “immersion Sobolev’s theorems” and it turns to be a

fundamental tool in proving regularity properties for weak solutions to some

uniformly elliptic partial differential equations, like the Laplace equation.

In a similar way, results on the behavior of Iα over smooth function spaces

are fundamental for obtaining regularity properties for classical solutions

of such kind of equations. During the last fifty years, Fractional Integral

operators have been intensively studied, not only in the present context,

but in more general situations to englobe larger classes of equations.

Another way of looking at the relationship between Fractional Integral

operators and derivatives is by studying their Fourier transforms. Since they
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are convolution operators, it is enough to know the Fourier transform of the

kernel k(x) = |z|α−n
. A homogeneity argument allows us to see that k̂(ξ)

is, up to a constant, |ξ|−α
. On the other hand, if we compute the Fourier

transform of (−∆)
α/2

using distributional calculus, we easily find that it

is a constant times |ξ|α. Therefore, the composition of Iα with (−∆)
α/2

,

whenever possible, gives the identity.

We shall start our study by stating some classical results concerning the

behavior of these operators on the Lebesgue space Lp(Rn), that is, the set

of measurable functions defined on Rn such that |f |p is integrable.

Theorem 1.1 (Hardy–Littlewood–Sobolev). Let 0 < α < n and 1 <

p < n/α. Then Iα is a bounded operator from Lp(Rn) into Lq(Rn) with

1/q = 1/p− α/n, that is, there exists a constant C such that

‖Iαf‖q ≤ C‖f‖p.

Remark 1.1. It is a pleasant exercise to check that, because of the homo-

geneity of the kernel, if the operator Iα maps Lp into Lq, the relationship

1/q = 1/p− α/n must hold. In fact, choosing g with ‖g‖Lp = 1, the above

norm inequality applied to f(x) = g(λx) gives that

λ−α−n/q ≤ Cλ−n/p

should be true for any λ > 0. That is possible only if α+n/q = n/p, which

is the same as 1/q = 1/p− α/n.

In order to prove the theorem we first introduce a new space, a little

bit larger than Lq, named weak-Lq or Lq,∗ for short. Given a measurable

function f , let us denote by µf its distribution function, that is, for λ > 0

µf (λ) = |{x : |f(x)| > λ}|.
We will say f ∈ Lq,∗(Rn) if there is a constant c such that

µf (λ) ≤ c

λq
for all λ > 0.

The infimum of such constants raised to 1/p-th power turns to be a norm

in this space as long as 1 ≤ q < ∞ and, moreover, it is complete. The

well–known Tchebycheff’s inequality

µf (λ) ≤ 1

λq

∫

Rn

|f |q ,

implies that Lq ⊂ Lq,∗ continuously. On the other hand, it is straightforward

to check that g(x) = 1/|x|n/q belongs to Lq,∗ but, however, g does not

belong to Lq.
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Now, if a given operator T is bounded from Lp into Lq,∗, we shall say

that it is of weak type (p, q), while we shall say that T is of strong type

(p, q), whenever it is bounded from Lp into Lq. From the above remark

we deduce that any strong type operator is of weak type. However, the

converse might be not true, as we shall illustrate later. We shall make

use of a famous theorem due to Marcinkiewicz that will allow us to derive

strong boundedness results from weak type inequalities. We give the precise

statement (for a proof, see [6]).

Theorem 1.2 (Marcinkiewicz’s interpolation theorem).

Let p0, p1, q0, q1 be real numbers such that 1 ≤ pi ≤ qi ≤ ∞, p0 < p1

and q0 6= q1. Let T be a sublinear operator which is simultaneously of

weak type (p0, q0) and (p1, q1). Then for each θ, 0 < θ < 1, with 1/p =

(1 − θ)1/p0 + θ1/p1 and 1/q = (1 − θ)1/q0 + θ1/q1, we have that T is of

strong type (p, q), that is,

‖Tf‖q ≤ A‖f‖p.

(When qi = ∞ weak type means ‖Tf‖qi
≤ Ai‖f‖pi

.)

We shall also use the the very well–known Young’s inequality for con-

volutions, namely

‖f ∗ g‖r ≤ ‖f‖s‖g‖t,

where 1 ≤ s, t ≤ ∞ and 1 + 1/r = 1/s+ 1/t.

Proof of Theorem 1.1. We will prove that for 1 ≤ p < n/α, 1/q =

1/p− α/n, the operator Iα satisfies

|{x : |Iαf |(x) > λ}| ≤ c

λq

(∫
|f |p

)q/p

.

In other words, Iα is of weak type (p, q), 1 ≤ p < n/α. From here, by means

of Marcinkiewicz’s interpolation theorem, we will obtain the strong type

(p, q) in the range 1 < p < n/α.

For each η > 0, we split the kernel K(x) = |x|α−n in

K = K0 +K∞,

where K0 = Kχ
B(0,η)

and K∞ = Kχ
Bc(0,η)

.

If f belongs to Lp, K0 ∗ f as well as K∞ ∗ f are finite a.e.. This is so

since K0 is an L1 function while K∞ is in Lp′

, and then an application of

Young’s inequality gives that K0 ∗ f belongs to Lp, and that K∞ ∗ f is in
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L∞ and, consequently, finite almost everywhere. Moreover, straightforward

calculations show that

‖K0‖1 ≤ c0η
α, ‖K∞‖p′ = c1η

−n/q .

Now, let us observe that

|{x : |K ∗ f |(x) > 2λ}|

≤ |{x : |K0 ∗ f |(x) > λ}| + |{x : |K∞ ∗ f |(x) > λ}|

= I + II.

To estimate I, we use Tchebycheff’s and Young’s inequalities to get

I ≤ 1

λp
‖K0 ∗ f‖p

p ≤ 1

λp
‖K0‖p

1‖f‖p
p ≤ cp0

(
ηα‖f‖p

λ

)p

.

On the other hand, since for almost every x,

|K∞ ∗ f |(x) ≤ ‖K∞‖p′‖f‖p ≤ c1η
−n/q‖f‖p,

choosing η such that c1η
−n/q‖f‖p = λ we obtain that II = 0.

Consequently, for this value of η we have

|{x : |K ∗ f |(x) > 2λ}| ≤ cp0

c
pqα/n
1

(‖f‖qα/n

λqα/n

‖f‖p

λ

)p

= c

(‖f‖p

λ

)q

,

since 1 + qα/n = q/p.

Therefore we have shown that Iα is of weak type (p, q) for p in the

interval [1, n/α). Since any p in the open interval (1, n/α) may be seen as

an intermediate point between two values p0 and p1 belonging to the same

interval, we may conclude via interpolation that Iα is of strong type for

p ∈ (1, n/α) and q such that 1/q = 1/p− α/n.

Remark 1.2. In the above proof, we have seen that Iα is also of weak type

(p, q) when p = 1 and q = n/(n− α).

Moreover it can be shown that it is not of strong type in the extreme

point. In fact, if we take a sequence of functions fk, ‖fk‖1 = 1 tending to

the Dirac delta we will have

Iαfk(x) = K ∗ fk → cn/|x|n−α,

for almost every x ∈ Rn. Therefore, if the strong type inequality were true

we would have

‖K ∗ fk‖n/(n−α) ≤ A,
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and by Fatou’s Theorem, we would arrive to
∫

Rn

|x|−n dx <∞,

which is obviously false.

We state our observation as another boundedness result for Iα.

Theorem 1.3. Let 0 < α < n. The operator Iα is of weak type (1, n/(n−
α)) but not of strong type.

It is also not difficult to check that in the other end point p = n/α, Iα

is not of strong type (n/α,∞) as may be expected. In this case it is enough

to take f(x) = |x|−α(log 1/|x|)−rα/nχ
B(0,1/2)

(x), with 1 < r ≤ n/α, which

belongs to Ln/α and observe that

Iαf(x) =

∫

|y|≤1/2

|y|−α

|x− y|n−α
(log 1/|y|)−rα/n dy,

is a continuous function for x 6= 0, and also

lim
x→0

Iαf(x) =

∫

|y|≤1/2

(log 1/|y|)−rα/n|y|−n dy = ∞,

since 1 − rα/n ≥ 0, giving that Iαf is not essentially bounded. Then,

a natural question arises. What can be said about Iα(f) for a function

f ∈ Ln/α? Certainly we should enlarge the space L∞ so as to allow functions

behaving locally as the logarithm at the origin. The appropriate space is

known as BMO (bounded mean oscillation) or the John–Nirenberg space

(see [2]) and it is defined as:

BMO =

{
f ∈ L1

loc : ‖f‖∗ = sup
B

1

|B|

∫

B

|f(x) −mBf | dx <∞
}
,

where the supremum is taken over the family of balls in Rn and mBf

denotes the average of f over the ball B, that is, mBf = |B|−1
∫

B f .

If we want ‖ · ‖∗ to be a norm, we must identify those functions whose

difference is a constant.

With this notation we will be able to prove the following result:

Theorem 1.4. Let f ∈ Ln/α and having compact support. Then, Iαf is

finite almost everywhere and

‖Iαf‖∗ ≤ C‖f‖n/α.
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Proof. Since such f belongs for instance to Lp, 1 < p < n/α, then Iαf ∈
Lq, 1/q = 1/p− α/n, and hence, locally integrable.

Let B = B(x0, r) be a ball. We decompose f = f1 + f2 with f1 = fχ
B̃

where B̃ = B(x0, 2r). Now,

1

|B|

∫

B

|Iαf −mBIαf | ≤
2

|B|

∫

B

|Iαf1| +
1

|B|

∫

B

|Iαf2 −mBIαf2| = I + II.

But if we choose p and q such that 1 < p < n/α, 1/q = 1/p − α/n, we

obtain

1

|B|

∫

B

|Iαf1| ≤
(

1

|B|

∫

B

|Iαf1|q
)1/q

≤ C
1

|B|1/q

(∫
|f1|p

)1/p

,

in view of Theorem 1.1. Applying Hlder’s inequality with r = n/αp > 1

and r′ = n/(n− αp) we get

I ≤ c
|B̃|(n−αp)/np

|B|1/q
‖f‖n/α = c‖f‖n/α.

On the other hand

II ≤ 1

|B|2
∫

B

∫

B

∫

B̃c

|f2(y)|
∣∣|x− y|α−n − |z − y|α−n

∣∣ dy dz dx.

Since x, z ∈ B and y ∈ B̃c, |x − y| ≥ r, |z − y| ≥ r. An application of the

mean value theorem leads to
∣∣|x− y|α−n − |z − y|α−n

∣∣ ≤ c|x− z|θα−n−1,

being θ an intermediate value between |x−y| and |z−y|. Since in our situ-

ation both values are equivalent to |x0 − y|, the last expression is bounded

by cr|x0 − y|α−n−1
, and then

II ≤ c · r
∫

|x0−y|>2r

|f(y)||x0 − y|α−n−1 dy

≤ c · r‖f‖n/α

(∫

|x0−y|>r

|x0 − y|(α−n−1)n/(n−α) dy

)(n−α)/n

.

Changing to polar coordinates the last integral equals to a constant times
∫ ∞

r

ρ−n−n/(n−α)ρn−1 dρ = c · r−n/(n−α),

and, therefore, we also obtain

II ≤ c‖f‖n/α.
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Remark 1.3. We have stated the theorem only for Iαf with f in Ln/α

and having compact support. Let us notice that for such functions, if we

define

Ĩαf(x) =

∫

Rn

(
1

|x− y|n−α
−
χ

Bc(0,1)

|y|n−α

)
f(y) dy

= Iαf(x) −
∫

|y|≥1

f(y)

|y|n−α
dy = Iαf(x) − C,

we would obtain that Ĩαf and Iαf are the same as functions in BMO . On

the other hand, it is easy to see that for f ∈ Ln/α, Ĩαf is finite almost

everywhere and, moreover, locally integrable. In fact, let BR = B(0, R)

with R > 1 and x ∈ BR. We write

Ĩαf(x) =

∫

|y|≤2R

f(y)

|x− y|n−α
dy +

∫

1≤|y|≤2R

f(y)

|y|n−α
dy

+

∫

|y|≥2R

[
1

|x− y|n−α
− 1

|y|n−α

]
f(y) dy.

The first term in the sum gives a function in L1
loc since it is the fractional

integral of a Ln/α function with compact support. The second integral is

a finite quantity and independent of x since 1/|y|n−α ≤ 1 and, being f

in Ln/α, is locally integrable. Finally, for x in BR, the quantity between

brackets is a difference of two values of the function tα−n away from the

origin, and hence the mean value theorem may be applied to bound the

integrand by C|x|/|y|n−α+1, since again |x − y| ' |y|. Clearly, this last

function belongs to Ln/(n−α), and then Hlder’s inequality gives that the

third integral is bounded by C|x| which is integrable on BR.

From these observations we can say that Ĩαf provides an extension

of Iαf for general functions belonging to Ln/α and not necessarily with

compact support.

Similar considerations hold for n/α ≤ p < n/(α − 1)+. It turns out

that Ĩαf is also well defined for f ∈ Lp, giving a class of locally integrable

functions that differ by a constant. In fact the same argument applies and

all we need is that 1/|y|n−α ∈ Lp′

loc and 1/|y|n−α+1χ
Bc

R

∈ Lp′

, and clearly

both are true in the stated range.

A new question therefore arises: what can be said about the image of

Lp under Ĩα when n/α < p < n/(α− 1)+?

From the above remark we know that Ĩαf is locally integrable and the

proof of Theorem 1.3 can be followed step by step; the only difference is
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that when estimating the averages in terms of ‖f‖p instead of ‖f‖n/α, we

will obtain C‖f‖p|B|α/n−1/p on the right hand side.

In this way we would get an estimate of the type

1

|B|α/n−1/p

1

|B|

∫

B

|Ĩαf −mB Ĩαf | ≤ C‖f‖p,

for p such that n/α < p < n/(α− 1)+. Let us observe that, in such a situa-

tion, the exponent α/n−1/p is always positive and less than 1/n. Moreover,

the above inequality for p = n/α gives the statement of Theorem 1.3.

Then, for a given 0 ≤ β < 1 we introduce the space

BMOβ =

{
f ∈ L1

loc : sup
B

1

|B|β/n

1

|B|

∫

B

|f −mBf | <∞
}
.

When β = 0, we recover BMO and for β > 0, as we shall see in the next

section, it coincides with a very well–known space of smooth functions.

2. Functions with controlled mean oscillation

As a generalization of the spaces we just introduced, when trying to describe

the image of Lp (p > n/α) under the fractional integration, S. Spanne ([5])

defined the BMOϕ spaces as the class of functions whose mean oscillation

is controlled by ϕ, a fixed non-decreasing and positive function defined on

(0,∞). More precisely,

BMOϕ =

{
f ∈ L1

loc : sup
B

1

ϕ(|B|1/n)

1

|B|

∫

B

|f −mBf | <∞
}

and, moreover, if we denote by ‖ · ‖∗,ϕ that supremum taking over all the

balls in Rn ,the space BMOϕ, turns to be a Banach space, after identifying

those functions that differ by a constant.

Clearly for ϕ(t) = tβ , 0 ≤ β < 1, we have the spaces introduced in the

previous section. In particular, for β = 0, we recover the John–Nirenberg

space. These spaces were firstly studied by Campanato ([1]) and Meyers ([4])

in connection with the study of regularity of solutions of elliptic partial

differential equations.

In this section, we plan to study some properties of these spaces. In par-

ticular, it is obvious that BMO (β = 0) contains non continuous functions

(obviously L∞ ⊂ BMO), while in [1] and [4] it is shown that for 0 < β < 1,

all the functions are continuous and, moreover, their modulus of continuity

is not worse than tβ.

Spanne ([5]) considered the problem of smoothness for functions in

BMOϕ, posing the questions of finding conditions on ϕ to guarantee that
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BMOϕ contains only smooth functions and when such situation does not

occur.

To answer these questions we introduce the space of Lipschitz-ϕ func-

tions, as those functions whose modulus of continuity is controlled by ϕ,

i.e.,

Λϕ =

{
f : ωf (t) = sup

|x−y|≤t

|f(x) − f(y)| ≤ cϕ(t)

}
.

It is immediate to check that Λϕ ⊂ BMOϕ and also that Λϕ = L∞/c when

ϕ(t) ' 1 (here, L∞/c means that we have identified functions differing a.e.

by a constant.)

In the next theorem, we state the results by Spanne.

Theorem 2.1. Let ϕ be a non-decreasing and positive function. Then we

have

(a) If the function ϕ also satisfies
∫ δ

0 ϕ(t) dt/t <∞ for some δ > 0 then any

function in BMOϕ is continuous and, moreover, ωf (s) ≤ c
∫ s

0 ϕ(t) dt/t.

(b) If ϕ(t)/t is non increasing and
∫ δ

0
ϕ(t) dt/t diverges, then the space

BMOϕ contains discontinuous and locally unbounded functions.

Corollary 2.1. If ϕ is such that
∫ s

0
ϕ(t) dt/t <∞ for some δ > 0, denoting

by ϕ̃(s) =
∫ s

0 ϕ(t) dt/t, it follows that BMO ϕ ⊂ Λϕ̃.

We will not show the result (a) of Spanne in its full generality. Instead,

to make the computations easier, we are going to assume that ϕ(t)/t is non

increasing also for the proof of (a).

We shall make use of the following simple lemma.

Lemma 2.1. Let f ∈ BMOϕ and B ⊂ B two balls in Rn. Then

|mBf −mBf | ≤ ‖f‖∗,ϕ
|B|
|B|ϕ(|B|1/n).

Proof.

|mBf −mBf | =
1

|B|

∫

B

|f −mBf |

≤ |B|
|B|

1

|B|

∫

B

|f −mBf | ≤
|B|
|B|ϕ(|B|1/n)‖f‖∗,ϕ.

Proof of theorem 2.1(a). Let us start by noticing that ϕ(t)/t non in-

creasing implies that for any fixed a ≥ 1, there is a constant c such that
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ϕ(at) ≤ cϕ(t). On the other hand, if a < 1, such inequality holds with

constant one, since ϕ is non-decreasing. It is also clear that ϕ(t/2) ≤
c
∫ t

t/2
ϕ(s) ds/s ≤ c

∫ t

0
ϕ(s) ds/s. Hence, ϕ(t) ≤ cϕ̃(t).

Let x, y ∈ Rn and B = B(x, |x − y|), B′ = B(y, |x − y|) and B̃ =

B(x, 2|x− y|).

|f(x) − f(y)|

≤ |f(x) −mBf | + |f(y) −mB′f | + |mB′f −mB̃f | + |mB̃f −mBf |

= I + II + III + IV.

Since both, B y B′, are contained in B̃, the terms III and IV, according to

Lemma 2.1, are bounded by

2nϕ(|B̃|1/n)‖f‖∗,ϕ ≤ c2nϕ(|x− y|)‖f‖∗,ϕ ≤ c‖f‖∗,ϕ

∫ |x−y|

0

ϕ(t)
dt

t
.

The terms I y II are quite similar, so we only bound the first. We set

Bi = B(x, 2−i|x− y|) for i ≥ 1 y B0 = B. Then we have

|f(x) −mBf | ≤ |f(x) −mBm
f | +

m−1∑

i=0

|mBi+1
f −mBi

f |.

Since f is locally integrable, Lebesgue’s differentiation theorem applies. Let

us assume that x is in fact a Lebesgue point. Then, taking limit for m→ ∞,

the first term on the right hand side goes to zero, and applying Lemma 2.1

to each term in the series we get

|f(x) −mBf | ≤
∞∑

i=0

|mBi+1
f −mBi

f | ≤ c‖f‖∗,ϕ

∞∑

i=0

ϕ(2−i|B|1/n)

≤ C ′‖f‖∗,ϕ

∞∑

i=0

∫ 2−i+1

2−i

ϕ(t|B|1/n)
dt

t
≤ C‖f‖∗,ϕ

∫ 1

0

ϕ(t|B|1/n)
dt

t
.

Since |B|1/n = ωn|x− y| with ωn = |B(0, 1)|1/n, performing the change of

variables s = t|x− y| and using that ϕ(as) ≤ cϕ(s) it follows that

I ≤ c‖f‖∗,ϕ

∫ |x−y|

0

ϕ(s)
ds

s
,

for some appropriate constant c. Therefore, (a) of the theorem is proved

under the extra assumption ϕ(t)/t non-increasing.
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Before proceeding with the proof of (b) of the theorem, let us observe

that a function f satisfying the property: for any ball B there is a constant

CB such that

1

|B|

∫

B

|f − CB | ≤ Aϕ(|B|1/n),

with A independent of the ball B, certainly belongs to BMOϕ and, more-

over, ‖f‖∗,ϕ ≤ 2A. In fact,

1

|B|

∫

B

|f −mBf | ≤
1

|B|

∫

B

|f − CB | + |CB −mBf |

≤ Aϕ(|B|1/n) +
1

|B|

∫

B

|f − CB | ≤ 2Aϕ(|B|1/n).

Consequently, in order to prove that a function does belong to BMO ϕ, we

may use any constant CB instead of mBf .

Proof of theorem 2.1(b). We set

h(x) =

∫ 1

|x|

ϕ(t)

t
dt.

Then h is continuous at x 6= 0 and under the assumptions on ϕ, it is

discontinuous at x = 0 and unbounded nearby. To check that h ∈ BMOϕ,

it is enough to consider balls B(z, r) with z 6= 0.

We set B = B(z, r), zB = z + r z
|z| and CB = h(zB). Let us notice that

|zB | = |z| + r and that for x ∈ B, |x| ≤ |x − z| + |z| ≤ |z| + r. Hence, for

x ∈ B,

|h(x) − CB | = |h(x) − h(zB)| =

∫ |z|+r

|x|
ϕ(t)

dt

t
.

In order to estimate the oscillation, let us consider first the case |z| < 2r.

In this situation we have

∫

B

|h(x) − CB | =

∫

B

∫ |z|+r

|x|
ϕ(t)

dt

t
dx ≤

∫ |z|+r

0

ϕ(t)

t

(∫

|x|≤t

dx

)
dt

≤ Cϕ(|z| + r)

∫ |z|+r

0

tn−1 ≤ Cϕ(3r) rn ≤ Cϕ(|B|1/n)|B|,

where we have used ϕ non-decreasing, |z| < 2r and ϕ(ar) ≤ Cϕ(r).
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Now, if |z| > 2r, the distance from the origin to the ball is at least r. In

fact, if x ∈ B, |x| ≥ |z| − |z − x| ≥ |z| − r ≥ r. In this way

∫

B

|h(x) − CB | ≤
∫

B

(∫ |z|+r

r

ϕ(t)
dt

t

)
dx ≤ |B|ϕ(r)

r
2r = 2|B|ϕ(|B|1/n),

where we have used that ϕ(t)/t is non-increasing.

Remark 2.1.

(1) It is worth noting that the proof of h ∈ BMO ϕ does not make use of

the divergence of the integral; we just used ϕ non-decreasing and ϕ(t)/t

non increasing.

(2) For ϕ(t)/t non-increasing, (a) and (b) imply that if
∫ δ

0
ϕ(t) dt/t diverges

then Λϕ  BMOϕ. In fact, when ϕ(0+) = 0, all the functions in Λϕ are

continuous and when ϕ(0+) > 0, they are bounded (locally). On the

other hand, if the integral converges and ϕ ' ϕ̃, then Λϕ = BMOϕ.

Conversely, it can be seen that if both spaces agree, not only the integral

must converge (a consequence of (b)) but ϕ ' ϕ̃ must hold. Indeed, by

the previous remark, h ∈ BMOϕ and hence h ∈ Λϕ. Therefore,

|h(x) − h(0)| ≤ Cϕ(|x|).
But, according to the definition of h,

|h(x) − h(0)| =

∫ |x|

0

ϕ(t)
dt

t
= ϕ̃(|x|).

Then ϕ̃(r) ≤ Cϕ(r) for any positive r. Since the converse inequality

always holds, we arrive to ϕ ' ϕ̃.

(3) An example where the assumptions made in (b) hold is ϕ(t) ≡ 1. In

such case the function h is

h(|x|) = log(1/|x|),
which is the classical example of unbounded function (even locally)

which does belong to BMO .

3. Smooth function spaces and wavelets

Besides BMOϕ, there are other families of spaces that generalize Lipschitz-

α spaces. We will introduce another line of spaces and we shall present a

problem arising in non-linear approximation where they become the appro-

priate spaces. We will follow closely the exposition given in the book by

Wojtaszczyk ([7, Chapter 9]).
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In the sequel, for simplicity, we will restrict our functions to one dimen-

sion, even though most of the results have an extension to higher dimen-

sions.

As we have seen, a Lipschitz function is defined in terms of its pointwise

modulus of continuity, i.e.,

ωf (t) = sup
|h|≤t

sup
x

|f(x+ h) − f(x)| = sup
|h|≤t

‖f(x+ h) − f(x)‖∞,

which measures, in some sense, the size of the difference between a function

and its translation. Since there are many ways of measuring the size of a

function, it is natural to introduce the p-modulus of continuity by

ωp(f, t) = sup
|h|≤t

‖f(x+ h) − f(x)‖p.

Clearly, ω∞(f, t) = ωf (t).

Next we establish several simple properties of ωp:

(i) ωp(f, t) is a non-decreasing function of t.

(ii) If 1 ≤ p < ∞ and f ∈ Lp, then limt→0 ωp(f, t) = 0, and moreover

ωp(f, t) ≤ 2 ‖f‖p for t > 0.

(iii) ωp(f,mt) ≤ mωp(f, t) if m ∈ N.

(iv) limt→0 t
−1ωp(f, t) = 0 ⇒ f = constant.

Clearly, (i) and (iii) hold. For (ii), the claim on the limit is obvious

for smooth functions with compact support, and the result follows by the

density of such functions in Lp. Finally, from (iii) we get

ωp(f, t) = ωp(f,mt/m) ≤ ωp(f, t/m)

t/m
t.

Making m tend to infinity, the assumption in (iv) implies that ωp(f, t) = 0

for each t > 0 and then f equal a.e to a constant.

A function belongs to a Lipschitz-α space whenever supt>0 t
−αω∞

(f, t) < ∞. Again, we may change the sup–norm by a different norm,

to introduce a new family of spaces: the non-homogeneous Besov spaces

Ḃp
α,s, with 0 < α ≤ 1 and 1 ≤ p, s ≤ ∞, as the set of functions such that

‖f‖p,α,s <∞, where

‖f‖p,α,s =





(∫ ∞

0

[
t−αωp(f, t)

]s dt

t

)1/s

if 1 ≤ s <∞,

sup
t>0

t−αωp(f, t) if s = ∞.
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In fact, ‖ · ‖p,α,s are seminorms and they vanish on constant functions. If

we want to work with a norm we should identify functions differing by a

constant, but the resulting spaces may not be complete. When these spaces

are completed, they involve not only functions but also distributions, and

their treatment becomes more difficult.

One way to bypass this difficulty is to introduce the so called ho-

mogeneous Besov spaces Bp
α,s, as the set of functions in Lp such that

‖f‖p,α,s < ∞. In this way, it turns to be a Banach space with respect

to the norm ‖f‖p + ‖f‖p,α,s.

The seminorm ‖ · ‖p,α,s has a discrete version as it is easy to check.

Proposition 3.1. For p, α, s as above, there exist positive constants c and

C such that

c ‖f‖p,α,s ≤
∑

j∈Z

2αjsωp(f, 2−j)
s ≤ C‖f‖p,α,s.

Proof. Splitting the integral into dyadic intervals and using (i) and (iii),

we get

∫ ∞

0

[
t−αωp(f, t)

]s dt
t

=
∑

j∈Z

∫ 2−j+1

2−j

ωp(f, t)
s dt

tαs+1
≤ 2s

∑

j∈Z

2αjsωp(f, 2−j)
s
.

Also by (i), the integral is bounded below by

2−αs−1
∑

j∈Z

2αjsωp(f, 2−j)
s

and the proposition is proved for s <∞. The case s = ∞ follows similarly,

just replacing integrals and sums by suprema.

To illustrate a situation where Besov’s spaces appear in a natural way,

we shall introduce, in an informal way, some basics concepts and facts from

the one dimensional wavelet theory.

A wavelet on R is a function ψ ∈ L2(R) such that the family of functions

ψjk(t) = 2j/2ψ(2jt− k) with j, k ∈ Z

gives an orthonormal system in L2(R).

A first natural question is whether or not such functions do exist. Let

us observe that taking ψ = χ
(0,1/2)

− χ
(1/2,1)

, the family {ψjk} is the well

known Haar system that is in fact a basis for L2(R). If we want to have a

wavelet ψ, smooth and with some decay at infinity, the examples are not
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that easy. Daubechies and Meyer, among others, constructed wavelets with

both properties through a method called a multiresolution analysis.

One of the main advantages in analyzing functions by means of wavelets

rather than through the Fourier method is that it makes possible to obtain

characterizations of most of the useful function spaces in terms of wavelet

coefficients.

Here we will not give details on what a multiresolution analysis is. For

those knowing this method for constructing wavelets, we say that we will

be working with a ψ coming from a scale–function φ satisfying

(i) φ ∈ C1(R), and

(ii) |φ(x)| + |φ′(x)| ≤ C(1 + |x|)−A, with A > 3.

Given a function f , its coefficients with respect to the system ψjk are

given by

〈f, ψjk〉 =

∫
f(t)ψjk(t) dt.

Although any function in L2 can be described in terms of coefficients

derived from any basis, if we have a system coming from a “good” wavelet,

that result can also be extended to Lp, 1 < p <∞. In that case, we obtain

‖f‖p '
∥∥∥∥
(∑

|〈f, ψjk〉|2χIjk
|Ijk |−1

)1/2
∥∥∥∥

p

,

where Ijk denotes the interval
[
k2−j , (k + 1)2−j

]
.

Also, the Besov seminorm of a function can be described in terms of

wavelet coefficients. For the application we have in mind, we shall need the

following result (for a proof, see [7, p. 228]).

Theorem 3.1. Let ψ be a wavelet associated to a multiresolution analysis

satisfying (i) and (ii). Assume further that |ψ(x)| ≤ c(1 + |x|)−A
. Then,

for 0 < α < 1 and 1 ≤ p, s ≤ ∞, there exists a constant C such that



∑

j∈Z


2jα

(
∑

k

2jp(1/2−1/p)|〈f, ψjk〉|p
)1/p




s


1/s

≤ C‖f‖p,α,s.

We are interested in the case s = p = (α+1/2)−1 with α ≤ 1/2. In that

situation the above theorem establishes
∑

j,k

|〈f, ψjk〉|p ≤ C|f‖p
p,α,p.
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Assuming this result, it is our intention to investigate the following

problem in data compression.

Suppose we have a function f ∈ L2. We know in this case that f

may be approximated in the L2-norm by a finite sum of its expansion,∑
jk〈f, ψjk〉ψjk . Now, assume that we can keep records of only a fix number

of coefficients N , not necessarily the first ones. How good is this approxi-

mation measured in the L2-norm? In other words: can we express the order

of the approximation in terms of N for all functions in L2?

The following example shows that the answer is negative if we deal with

a general function in L2. In fact, suppose we are allowed to useN coefficients

to approximate f , i.e., we search for the best approximation of f , in the

sense of L2, by
∑

(j,k)∈A〈f, ψjk〉ψjk , where A ⊂ Z× Z and card (A) ≤ N .

Let fN =
∑2N

k=1
1√
2N
ψ0,k. Then ‖fN‖2 = 1 and for any A with

card (A) ≤ N we have

∥∥∥∥∥∥
fN −

∑

(j,k)∈A

〈f, ψjk〉ψjk

∥∥∥∥∥∥
2

≥ 1√
2
.

This is so because the best choice for A is to keep non-vanishing coefficients

and having only 2N of them and with the same size, we may choose for

example A = {(0, k) : k = 1, . . . , N} and the norm of the difference gives in

this case
(∑2N

N+1 1/(2N)
)1/2

= 1/
√

2.

Since the L2-norm of a function is the `2-norm of its coefficients taken

with respect to an orthonormal basis, we may think the above problem in

the following way.

Given a sequence a = {ak}k∈Z
, with ‖a‖`2 = 1 and a natural number N ,

what additional conditions on the sequence would guarantee that choosing

the N largest coefficients (in absolute value) we will get a “good” approxi-

mation of the original one? (“good” means here that the error goes to zero

with N , or better yet, that goes to zero like a negative power of N).

Let us define the set B ⊂ Z such that card (B) = N and |ak| ≥ |a`|
whenever k ∈ B and ` /∈ B. Let b the sequence defined by

bk =

{
ak if k ∈ B,

0 if k /∈ B

Assume further that a ∈ `p for some p, 1 ≤ p < 2 with ‖a‖`p ≤ C. Then
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we have

sup
k/∈B

|ak| ≤ min
k∈B

|ak| ≤
(

1

N

∑

k∈B

|ak|p
)1/p

≤ CN−1/p.

Since p < 2, it follows that

‖b− a‖`2 =

(
∑

k/∈B

|ak|2
)1/2

=

(
∑

k/∈B

|ak|2−p|ak|p
)1/2

≤
(
CN−1/p

)1−p/2

Cp/2 = CN1/2−1/p,

and we obtain a “good” approximation since 1/2 − 1/p < 0.

We may rephrase what we have done in the following way. Assume as

above a ∈ `2 ∩ `p with p < 2, ‖a‖`2 = 1 and ‖a‖`p ≤ C. Instead of fixing

N , we fix a lower threshold for the size of the coefficients, say δ with δ > 0,

and let us approximate by the sequence neglecting those coefficients less

than δ. Let now B = {k : |ak| ≥ δ} and define the sequence b as above. The

previous estimates give that

card (B) ≤ Cp

mink∈B |ak|p
≤ Cpδ−p,

and hence

‖b− a‖`2 ≤ Cp/2 δ1−p/2.

In this way, the approximation improves as δ → 0, and the velocity of

convergence increases when p gets closer to 1.

Coming back to wavelet expansions, the above discussion shows that,

although such non linear approximation methods may not be good for all

the functions in L2, they will work for some special subspaces, namely those

functions satisfying



∑

j,k

|〈f, ψjk〉|p



1/p

≤ C

for some p < 2.

The description of Besov spaces in terms of wavelet coefficients allows

us to conclude that they are the appropriate spaces to make these methods

converge. The precise result is the following.
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Theorem 3.2. Let 0 < α ≤ 1/2, p = (α+ 1
2 )−1 and f ∈ L2 ∩ Ḃp

α,p. Then,

there exists a constant K such that for any N ∈ N it is possible to find a

set A, A ⊂ Z× Z with card (A) = N and
∥∥∥∥∥∥
f −

∑

(j,k)∈A

〈f, ψjk〉ψjk

∥∥∥∥∥∥
2

≤ K‖f‖p,α,pN
−α.

Or, alternatively, there exists a constant M such that for any δ > 0, if

Bδ = {(j, k) : |〈f, ψjk〉| ≥ δ}, we have
∥∥∥∥∥∥
f −

∑

(j,k)∈Bδ

〈f, ψjk〉ψjk

∥∥∥∥∥∥
2

≤M‖f‖p,α,pδ
2α.
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Department of Mathematical Analysis
Universidad Complutense de Madrid

20840 Madrid, Spain
E-mail: pacoh@mat.ucm.es

The aim of this talk is to study the domination problem for the class of strictly
singular operators and other related operator classes. We also discuss the strict
singularity of inclusions between rearrangement invariant function spaces.

A central question in the theory of Positive Operators between Banach

lattices is the so-called domination problem:

Let R and T be positive operators between the Banach lattices E

and F such that 0 ≤ R ≤ T : E → F . Assume that T satisfies

certain property (∗).

(i) Does the operator R inherit the property (∗)?

(ii) What effect does the property (∗) have on the dominated op-

erator R?

It can happen that for some properties the answer is the best possible:

(i) has a positive answer. For example, the case for (∗) to be an integral

operator, i.e., representable as

Tf(x) =

∫

Ω

K(x, y) f(y) dµ(y).

But in general, the answer is negative and thus the problem is to determine

the weakest conditions on the involved Banach lattices for a positive answer.

The domination problem for the important class of compact operators

was solved by P. Dodds and D. Fremlin in [7]:

Let E and F be Banach lattices with E∗ and F order continuous
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and consider operators 0 ≤ R ≤ T : E → F . If T is compact then

R is also compact.

In the special setting of Lp(µ)-spaces, it was also solved independently

by L. Pitt in [20]: If 1 < p ≤ ∞, 1 ≤ q < ∞ and we consider operators

0 ≤ R ≤ T : Lp(µ) −→ Lq(ν) with T compact then R is also compact.

This compactness domination result have been applied in several areas like

operator semigroup, ergodic theory, transport theory and bio–mathematica

(see the survey [2] for references).

The domination for weakly compact operators was considered by A.

Wickstead in [23] showing that if E∗ or F are order continuous and T is

weakly compact then R is also weakly compact.

For the class of Dunford–Pettis operators, N. Kalton and P. Saab [15]

proved that if F is order continuous and T is Dunford–Pettis then R is also

Dunford–Pettis.

1. Strictly singular operators

An operator T : X → Y between Banach spaces is said to be strictly singular

(or Kato) if for every infinite dimensional (closed) subspace M of X , the

restriction T |M is not an isomorphism into Y , i.e., there is not any infinite

dimensional subspace M of X and m > 0 such that, for every x ∈M ,

m‖x‖ ≤ ‖Tx‖.

This class forms a closed operator ideal, which properly contains the ideal

of compact operators. For example, the inclusion operators L∞[0, 1] ↪→
Lp[0, 1], 1 ≤ p < ∞ are strictly singular (but no compact) (cf. [21, The-

orem 5.2]). The strictly singular operator class is a very useful class in

Fredholm and perturbation operator theory (cf. [2,16]).

It is well–known that an operator T : X → Y between Banach spaces

is strictly singular if and only if for every infinite dimensional subspace M

of X there exists another infinite dimensional subspace N ⊂ M such that

the restriction T |N is compact. In general, T (resp., the adjoint T ∗) strictly

singular does not imply that T ∗ (resp., T ) is strictly singular.

A variant for Banach lattices is the following: given a Banach lattice E

and a Banach space Y , an operator T : E → Y is called disjointly strictly

singular if it is not invertible on any subspace of E generated by a disjoint

sequence.

Clearly, every strictly singular operator is also disjointly strictly sin-

gular, but the converse is not true. For example, the canonical inclusions
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Lq[0, 1] ↪→ Lp[0, 1], 1 ≤ p < q < ∞, are disjointly strictly singular but

no strictly singular. This follows from the Khintchine inequality for the

Rademacher functions (rn):

(∫ 1

0

|
∑

anrn|p dλ
)1/p

∼
( ∞∑

n=1

|an|2
)1/2

.

In some special cases, both concepts of singularity coincide: for instance,

for spaces with a Schauder basis of disjoint vectors or for C(K)-spaces. The

class of all disjointly strictly singular operators is stable by addition and

by composition by the right but in general it is not an operator ideal.

2. Strictly singular inclusions

Now we study the strict singularity and the disjoint strict singularity of

inclusions between rearrangement invariant function spaces.

Recall that the distribution function λx of a measurable function x on

[0,∞) is λx(s) = λ{t ≥ 0: |x(t)| > s}, and the decreasing rearrangement

x∗ of x is

x∗(t) = inf{s ≥ 0: λx(s) ≤ t}.
A Banach lattice E of measurable functions defined on [0,∞) is said to

be a rearrangement invariant space ( r.i. space) if y ∈ E and λx = λy imply

x ∈ E and ‖x‖E = ‖y‖E (cf. [17]). The fundamental function φE of an r.i

space E is defined by φE(t) = ‖χ[0,t]‖E . Classical examples of r.i. spaces

are Orlicz, Lorentz and Marcinkiewicz spaces. The Orlicz space Lϕ consists

of all measurable functions x on [0,∞) for which

‖x‖Lϕ = inf

{
s > 0:

∫ ∞

0

ϕ

( |x(t)|
s

)
dt ≤ 1

}
<∞

where ϕ is a positive increasing convex function with ϕ(0) = 0.

Given E1 and E2 r.i. spaces, the sum space E1 +E2 with the norm

‖x‖E1+E2
= inf{‖x1‖E1

+ ‖x2‖E2
: x = x1 + x2, x1 ∈ E1, x2 ∈ E2},

and the intersection space E1 ∩ E2, with the norm ‖x‖E1∩E2
=

max(‖x‖E1
, ‖x‖E2

), are r.i. spaces. If E1 = L1 and E2 = L∞ then

‖x‖L1+L∞ = sup
λ(A)=1

∫

A

|x(t)| dt =

∫ 1

0

x∗(t) dt.

Clearly φL1+L∞(t) = min(t, 1), and the space coincides with the space of

all locally integrable functions, i.e., L1 + L∞ = L1
loc(λ).
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In the finite measure case it holds L∞[0, 1] ↪→ E[0, 1] ↪→ L1[0, 1]. The

left canonical inclusions L∞[0, 1] ↪→ E[0, 1] are always strictly singular for

any r.i. space E 6= L∞ (S. Novikov [19]). On the other side, for the right

canonical inclusions E[0, 1] ↪→ L1[0, 1], it holds that:

(i) It is disjointly strictly singular for any r.i. space E 6= L1.

(ii) It is strictly singular if and only if E[0, 1] does not contain the order

continous Orlicz space Lexpx2

0 [0, 1].

In the statement (ii), proved by S. Novikov, E. Semenov and the author in

[12], the necessity part follows from the Rodin–Semenov characterization

of the r.i. spaces for which the Rademacher functions are equivalent to the

canonical basis of `2 (cf. [17]).

In the infinite case [0,∞), we have the inclusions L1 ∩ L∞ ↪→ E ↪→
L1 + L∞. It turns out that the strict and the disjoint strict singularity of

the left inclusions L1 ∩ L∞ ↪→ E coincide and they are characterized in

terms of the fundamental functions:

Theorem 2.1 ([13]). Let E be an r.i. space. For the inclusion L1∩L∞ ↪→
E, the following statements are equivalent: (i) strictly singular; (ii) dis-

jointly strictly singular; (iii) weakly compact; (iv) lim
t→0

φE(t) = lim
t→∞

φE(t)
t =

0.

Another strictly singular criterium has been obtained in [6] using inter-

polation.

The behavior of the right extreme inclusions E ↪→ L1 + L∞ is more

diverse and tricky than the left inclusions, not coinciding none of the above

three operator classes. Thus, conditions for the inclusion E ↪→ L1 +L∞ be-

ing strictly (resp., disjointly strictly) singular involve not only the behavior

of the associated fundamental function. This arises from the non-disjoint

strict singularity of the inclusions of the (order continuous) spaces Lp,∞
0

into L1 + L∞. Recall that Lp,∞ consists of all measurable functions x on

[0,∞) such that ‖x‖Lp,∞ = supt>0

{
t

1
px∗(t)

}
<∞.

Theorem 2.2 ([14]). Let E be a r.i. space. The inclusion E ↪→ L1 + L∞

is strictly singular if and only if

(i) lim
t→0

φE(t)/t = lim
t→∞

φE(t) = ∞.

(ii) sup
n

∥∥∥t−
1
pχ(1/n,n)

∥∥∥
E

= ∞ for all 1 < p <∞.

(iii) E[0, 1] does not contain Lexpx2

0 [0, 1].
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An important step in the proof of the above result is to show that condi-

tions (i) and (ii) characterize precisely the disjoint strict singularity of the

inclusion E ↪→ L1 +L∞. On the other hand, condition (i) characterizes the

weak compactness.

3. Domination by strictly singular operators

We proceed to present domination results for positive strictly singular op-

erators between Banach lattices.

First let us show that in general the domination property for this class

is not true:

There exist operators 0 ≤ R ≤ T : `1 → L∞[0, 1] such that T is

strictly singular but R is not.

Indeed, take R̃ : `1 → L∞[0, 1] the isometry defined by R̃(en) = rn. Con-

sider also the positive operators R1, R2 : `1 → L∞[0, 1] defined by R1(en) =

r+n and R2(en) = r−n respectively, where r+n and r−n are the positive and

negative part of rn. Clearly R̃ = R1 −R2. Moreover 0 ≤ R1, R2 ≤ T , where

T is the rank–one operator:

T (x) =

( ∞∑

n=1

xn

)
χ[0,1].

The operator T is strictly singular being compact, but neither the operator

R1 nor the operatorR2 are strictly singular. Now the equalities T = R1+R2

and R̃ = R1 −R2 lead to contradiction.

We can give a general result using the above and the existence of `∞

sublattices in non order continuous Dedekind complete Banach lattices:

Let E and F be two Banach lattices with F Dedekind–complete;

assume that neither E∗ nor F are order continuous. Then there

exist two positive operators 0 ≤ R ≤ T : E → F such that T is

strictly singular but R is not.

A first step to present positive domination results is to consider the case

when the range space of the operators is a L1(µ)-space, or more generally,

an space with the positive Schur property. Recall that a Banach lattice E

has the positive Schur property if every positive weakly null sequence is

convergent. Examples of Banach lattices with the positive Schur property

are the L1(µ) spaces, the Orlicz spaces Lx logp(1+x)[0, 1] for p > 0, and the

Lorentz spaces Lp,1[0, 1] for 1 < p <∞.
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Observe that the positive Schur property implies that E does not contain

an isomorphic copy of c0 (in particular, E is order continuous). Otherwise,

E would also contain a sequence of positive, pairwise disjoint elements

(en)∞n=1 equivalent to the unit vector basis of c0 . This sequence must be

weakly null and yet not convergent in norm, which gives a contradiction.

We also make use of the Kadec̆–Pe lczyński disjointification method for

order continuous Banach lattices (cf. [17]): Let X be any subspace of an

order continuous Banach lattice E. Then, either

(1) X contains an almost disjoint normalized sequence, that is, there exist a

normalized sequence (xn)∞n=1 ⊂ X and a disjoint sequence (zn)∞n=1 ⊂ E

such that ‖zn − xn‖ → 0, or,

(2) X is isomorphic to a closed subspace of L1(Ω,Σ, µ).

Notice that if X is separable, then it can be included in some ideal H

of E with a weak order unit. Therefore, this ideal has a representation as

a Köthe function space over a finite measure space (Ω,Σ, µ) and, in this

case, the previous dichotomy says that either X contains an almost disjoint

sequence or the natural inclusion J : H ↪→ L1(Ω,Σ, µ) is an isomorphism

when restricted to X .

Let E and F be Banach lattices such that F has the positive Schur

property. If 0 ≤ R ≤ T : E → F and T is strictly singular, then R

is strictly singular.

The proof of this result is based on factorizations of order weakly compact

operators as well as properties of the class of M-weakly compact operators.

Given a Banach lattice E and a Banach space Y , an operator T : E → Y

is order weakly compact if T [−x, x] is relatively weakly compact for every

x ∈ E+. And T : E → F is M-weakly compact if ‖Txn‖ → 0 for every norm

bounded disjoint sequence (xn)n in E.

Order weakly compact operators can be characterized as those opera-

tors not preserving a positive disjoint order–bounded isomorphic copy of

c0 (cf. [18, Corollary 3.4.5]). Also, if X is a Banach space and F a Banach

lattice, an operator T : X → F does not preserve an isomorphic copy of `1
complemented in F if and only if its adjoint T ∗ is order weakly compact

(cf. [18]).

The following factorization result for positive order weakly compact

operators is useful (see N. Ghoussoub and W. Johnson [11], also [5]):

Let E1, E2 be Banach lattices and operators 0 ≤ R ≤ T : E1 → E2.

There exist a Banach lattice F , a lattice homomorphism φ : E1 → F
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and operators 0 ≤ RF ≤ TF such that T = TFφ and R = RFφ:

E1

T−→−→
R

E2

φ↘ T F↗↗RF

F

And T : E1 → E2 is order weakly compact if and only if F is order

continuous.

A bounded subset A of a Banach lattice E is said to be L-weakly compact

if ‖xn‖ → 0 for every disjoint sequence (xn)n contained in the solid hull of

A. If T is a regular operator from a Banach lattice E into a Banach lattice

F with order continuous norm, then if A is a L-weakly compact subset of

E we have T (A) is also L-weakly compact.

If E is an order continuous Banach function space defined on a finite

measure space (Ω,Σ, µ), a bounded subset A ⊂ E is equi-integrable if for

every ε > 0 there is δ > 0 such that ‖fχB‖E < ε for every B ∈ Σ with

µ(B) < δ and every f ∈ A.

If E is an order continuous lattice with a weak unit (hence, representable

as an order ideal in L1(Ω,Σ, µ) for some probability space (Ω,Σ, µ)), then a

bounded subset of E is equi-integrable if and only if it is L-weakly compact.

An order continuous Banach lattice E satisfies the subsequence splitting

property (cf. [22]) if for every bounded sequence (fn)n in E there is a

subsequence (nk)k and sequences (gk)k, (hk)k in E with |gk| ∧ |hk | = 0 and

fnk
= gk + hk

such that (gk)k is equi-integrable and |hk| ∧ |hl| = 0 if k 6= l. Every p-

concave Banach lattice (p < ∞) has the subsequence splitting property.

Recall that E is p-concave if there exists a constant M < ∞ such that for

every choice of elements (xi)
n
i=1 we have

(
n∑

i=1

‖xi‖p

)1/p

≤M

∥∥∥∥∥∥

(
n∑

i=1

|xi|p
)1/p

∥∥∥∥∥∥
.

The following domination result for disjointly strictly singular operators

given in [8] is also needed .

Let E and F be Banach lattices such that F is order continuous.

If T is disjointly strictly singular and 0 ≤ R ≤ T : E → F then R

is also disjointly strictly singular.
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We can now state a general domination result for strictly singular op-

erators given recently by J. Flores, P. Tradacete and the author in [10],

which improves a previous result given in [9] removing the order continuity

hypothesis of E∗:

Theorem 3.1 ([10]). Let E be a Banach lattice with the subsequence split-

ting property, and F an order continuous Banach lattice. If 0 ≤ R ≤
T : E → F with T strictly singular, then R is strictly singular.

In particular for the class of r.i. spaces we have:

Let E be a r.i. space that contains no isomorphic copy of c0, F an

order continuous Banach lattice and consider operators 0 ≤ R ≤
T : E → F with T is strictly singular. Then R is strictly singular.

Let us mention that applications to the strictly co-singular (or Pelczyn-

ski) operator class are given in [9].

4. Powers of dominated operators

In this section we study the so-called power operator problem for dominated

endomorphisms.

When we consider Banach lattices E = F and endomorphisms 0 ≤
R ≤ T : E −→ E, it is interesting to study wether some iteration (power)

of the operator R inherits a certain property of the operator T , under no

assumptions on the Banach lattice E. This is called the power problem

relative to a certain operator class.

This approach was first developed by C. D. Aliprantis and O. Burkin-

shaw in [3] and [4] for compact and weakly compact operators:

Let E be a Banach lattice and consider operators 0 ≤ R ≤ T : E →
E.

(i) If T is compact then R3 is also compact.

(ii) If T is weakly compact then R2 is also weakly compact.

The power problem for the class of Dunford–Pettis operators was stud-

ied by N. Kalton and P. Saab in [15] and, for the class of disjointly strictly

singular operators, by J. Flores and the author in [8]:

Let E be a Banach lattice and consider operators 0 ≤ R ≤ T : E →
E.

(i) If T is Dunford–Pettis then R2 is also Dunford-Pettis.
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(ii) If T is disjointly strictly singular then R2 is also disjointly

strictly singular.

All these results are optimal in the sense that it is possible to produce

counterexamples when the powers of R are lower.

First let us show that the power problem for strictly singular endomor-

phisms is not trivial:

There exist operators 0 ≤ R ≤ T : L2[0, 1] ⊕ `∞ → L2[0, 1] ⊕ `∞

such that T is strictly singular but R is not.

Indeed, consider the rank–one operator Q : L1[0, 1] → `∞ defined by

Q(f) =

(∫ 1

0

f,

∫ 1

0

f, . . .

)
.

Take also an isometry S : L1[0, 1] → `∞ given by S(f) = (h′n(f))∞n=1, where

(hn)∞n=1 is a dense sequence in the unit ball of L1[0, 1], and (h′n)∞n=1 is a

sequence of norm one functionals such that h′n(hn) = ‖hn‖ for all n. If

J : L2[0, 1] ↪→ L1[0, 1] denotes the canonical inclusion, then the operator

SJ : L2[0, 1] → `∞ is not strictly singular.

Since `∞ is Dedekind complete we have that |SJ |, (SJ)+ and (SJ)−

are also continuous operators between L2[0, 1] and `∞. It is easy to see

that |SJ | ≤ QJ . Since SJ is not strictly singular, we must have that either

(SJ)+ or (SJ)− is not strictly singular, so let us assume, w.l.o.g., that

(SJ)+ is not strictly singular. Now consider the matrices of operators:

R =

(
0 0

(SJ)+ 0

)
, T =

(
0 0

QJ 0

)
,

which clearly define operators with the required properties.

Next, we show some positive results:

Theorem 4.1. Let E be a Banach lattice and consider operators 0 ≤ R ≤
T : E → E. If T is strictly singular, then R4 is also strictly singular.

This is deduced from a more general statement proved by J. Flores, P.

Tradacete and the author in [10] using factorization methods:

Theorem 4.2. Let

E1

T1−→−→
R1

E2

T2−→−→
R2

E3

T3−→−→
R3

E4

T4−→−→
R4

E5



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

Domination by positive operators 95

be operators between Banach lattices, such that 0 ≤ Ri ≤ Ti for i = 1, 2, 3, 4.

If T1, T3 are strictly singular and T2, T4 are order weakly compact then

R4R3R2R1 is also strictly singular.

As a direct consequence we have Theorem 4.1. Indeed, since T is strictly

singular, it cannot preserve an isomorphic copy of c0 so, in particular, it

is order weakly compact. Therefore, it suffices to apply Theorem 4.2 to

Ei = E, Ri = R and Ti = T for all i.

Corollary 4.1. Let 0 ≤ R ≤ T : E → F and 0 ≤ S ≤ V : F → G. If F and

G are order continuous Banach lattices, and T and V are strictly singular

operators, then the composition SR is strictly singular.

In particular, if 0 ≤ R ≤ T : E → E with T strictly singular and E

order continuous, then R2 is strictly singular.

Indeed, since F is order continuous, the identity IF : F → F is order weakly

compact. Consider E1 = E, E2 = F , E3 = F , E4 = G and E5 = G; and the

operators T1 = T , T2 = IF , T3 = V and T4 = IG. Then, by Theorem 4.2,

we obtain that IGSIFR = SR is strictly singular.

Note that in the above example the lattice L2[0, 1] ⊕ `∞ is not order

continuous and the square R2 is the zero operator (hence, strictly singular).

A open question is the following: Do there exist an order continuous

Banach lattice E and operators 0 ≤ R ≤ T : E → E such that T is strictly

singular but R is not?
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1. Introduction

Let M be a linear subspace of a normed space X and let f : M → K = R or

C be a continuous linear functional. An analytic form of the Hahn–Banach

theorem asserts the existence of a continuous linear extension of f to X .

Its consequences ring throughout functional analysis and other disciplines.

The Austrian mathematician Eduard Helly (1884-1943) played a significant

role played in the development of the theorem and we outline here what he

did and how he did it. We also discuss Helly’s life, from his poorly tended

wound in the first world war, to his flight from the Nazis, to his early death.

Although he only published five papers in journals — and only two of those

in functional analysis proper — his largely overlooked contributions are

quite significant. In the context of complex sequence spaces he defined an

abstract normed space X , a seminormed dual Xd (Sec. 4) and proved [1921]

a Hahn–Banach theorem for real or complex normed sequence spaces X for

which Xd was separable. The key to his argument was the one-dimensional

extension, the ability to continuously extend f to M ⊕ Kx for x /∈ M .

Hahn and Banach both used the one-dimensional extension technique, but

accomplished it by different means. Moreover, although they did not require

a separable dual, they only proved it for real spaces. Helly’s approach was

more geometric. He used the following “intersection theorem”, a result that

he discovered but which was first published by Johann Radon [1921]:

Theorem 1.1 (Helly’s Intersection Theorem I (Helly [1923])).

Let C1, C2, . . . , Cm be a finite number of convex subsets of Rn with m > n.
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If every n+ 1 of the Ci meet, then their intersection is nonempty.

Ultimately [1930], Helly generalized it to:

Theorem 1.2 (Helly’s Intersection Theorem II). If any n+ 1 mem-

bers of an arbitrary family of compact convex subsets of Rn meet, then

their intersection is nonvoid.

Things came full circle in the 1970’s and early 1980’s. Various au-

thors used intersection properties (Sec. 7) like these to avoid the standard

reduction–to–the–real–case argument to deduce the complex Hahn–Banach

theorem from the real one. You can prove it (Sec. 7) pretty much simultane-

ously when the underlying field is R, C, the quaternions, or certain fields

(“spherically complete”) with a non-Archimedean valuation. Intersection

properties also characterize the normed spaces Y which may be substi-

tuted for the field K in the Hahn–Banach theorem (Sec. 7, Theorem 7.1).

Other important applications of Helly’s intersection theorems appear in ar-

eas as distant from functional analysis as the study of DNA molecules (see

Grünbaum and Klee [1967] for a discussion of this and others).

2. The origin of the Hahn–Banach Theorem

For there to be a solution to a finite system of linear equations, the equations

have to be “compatible”, in that they cannot require contradictory things.

To determine compatibility for infinite systems, the first attempts extended

known techniques. Basically, it was classical analysis — almost solve the

problem in some kind of finite situation, then take a limit. A fatal defect in

this case was the need for the (very rare) convergence of infinite products.

Two problems of particular interest in the late nineteenth century which

directly led not just to the Hahn–Banach theorem but to the invention of

normed spaces in general were the moment and Fourier series problems:

• The moment problem. If all moments fn(x) =
∫ 1

0
tnx(t) dt = cn (n ∈

N) of a function x are known, find x.

• The Fourier series problem. If all Fourier coefficients of a function x

are known, find x.

Riesz and Helly obtained solutions to problems like these in important

special cases such as Lp [0, 1] and C [a, b]. In modern language, they discov-

ered that compatibility was equivalent to the continuity of a certain linear

functional. Consider more general versions of the problems above: Let X
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be a normed space with dual X ′, let S be a set, and let {cs : s ∈ S} be a

collection of scalars.

(V) The vector problem. Let {fs : s ∈ S} be a collection of bounded

linear functionals on X. Find x ∈ X such that fs(x) = cs for every s.
and its dual:

(F) The functional problem. Let {xs : s ∈ S} be a collection of vectors

from X. Find f ∈ X ′ such that f (xs) = cs for every s.

If X is reflexive then solving (F) also solves (V), for given “vectors”

{fs : s ∈ S} ⊂ X ′ there exists h ∈ X ′′ such that h (fs) = cs for every s.

Now choose the x ∈ X such that h (fs) = fs (x) for every s.

Motivated by Hilbert’s work on L2[0, 1], Riesz [1910] invented the spaces

Lp[0, 1], 1 < p <∞ (he didn’t consider the `p spaces until 1913). Instead of

the moment and Fourier series problems per se [1910, 1911], he considered

the vector problem (LP) below. In doing so, he inadvertently proved a

special case of the Hahn–Banach theorem.

(LP) Let S be a set. For p > 1 and 1/p+1/q = 1, given ys in Lq[a, b] (equiv-

alently, consider the functionals fs of Eq. (1)) and scalars {cs : s ∈ S},

find x ∈ Lp[a, b] such that

fs(x) =

∫ b

a

x(t)ys(t)dt = cs for each s ∈ S (1)

For there to be such an x, he showed that the following necessary and

sufficient connection between the y’s and the c’s had to prevail: There exists

K > 0 such that for any finite set of indices s and scalars as,

∣∣∣
∑

ascs

∣∣∣ ≤ K

(∫ b

a

∣∣∣
∑

asys

∣∣∣
q
)1/q

= K
∥∥∥
∑

asys

∥∥∥
q

(*)

Condition (*) implies that if the y’s are linearly dependent, i.e.,
∑
asys = 0

for a finite set of scalars as, then
∑
ascs = 0 as well. Thus, if we consider

the linear functional g on the linear span M = [ys : s ∈ S] of the y’s in

Lq[a, b] defined by taking g(ys) = cs (s ∈ S), g is well-defined. Not only

that, for any y in M , |g (y)| ≤ K ‖y‖q on M , so g is continuous on M . If

there is an x in Lp which solves (LP), then g has a continuous extension G

to Lq, namely, for any y in Lq,

G(y) =

∫
x(t)y(t) dt [G(ys) = cs (s ∈ S)]

Thus, Riesz showed that:
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• (LP) is solvable if and only if a certain linear functional g defined on a

subspace of Lq is continuous.

• If the system is solvable, then g can be extended to a continuous linear

functional defined on all of Lq.

3. Helly

Eduard Helly was born in Vienna in 1884 and got his Ph. D. from the Uni-

versity of Vienna in 1907 (a reproduction of the first page of his handwritten

dissertation appears on p. 130 of Butzer et al. [1980]; that article and an-

other by Butzer and others in 1984 are excellent sources for information

about Helly and his work). By means different from and simpler than Riesz

[1911], Helly also solved a moment problem in 1912 and proved special cases

of the Hahn–Banach and Banach–Steinhaus theorems for linear functionals

on C [a, b].

Helly volunteered for the Austrian Army in 1914 and went to the Rus-

sian front in 1915. He was wounded by a bullet through the lungs in Septem-

ber 1915, a wound that ultimately caused his death. He spent almost the

next five years as a prisoner of war in a camp near Tobolsk, Siberia. He en-

dured eastern Siberia’s frigidity along with a Hungarian university student

named Tibor Radó (1895-1965). Helly tutored Radó in the camp and im-

bued him with a taste for mathematical research. Ultimately, Radó became

a distinguished mathematician. The Great War ended but peace did not

come to Russia. The White Russian forces contended with the Red armies.

Other players on the scene were a Czech army of some 50,000 escaped pris-

oners who joined the White Russians. Japan saw an opportunity to pick up

some Russian territory and sent troops; so did the Americans, the British

and others. In the midst of this chaos, there was no repatriation of POWs.

Radó escaped from the camp in 1919 and went north! With the help of

some Eskimos, he eventually traversed thousands of kilometers on his way

west and reached Hungary in 1920. He abandoned civil engineering and

switched to mathematics at the University of Szeged. His teachers included

Frigyes Riesz and Alfred Haar. His most famous work is his solution to

the Plateau problem published in 1930 concerning bounding contours for

minimal surfaces.

As of the summer of 1920, Helly was still a POW in Tobolsk but by

first going east to Japan, then to the Middle East and Egypt, Helly got

back to Vienna in mid-November of 1920. In order to be a professor in the

Austrian system, it was necessary to write a post-doctoral thesis called a

Habilitationsschrift. As with a doctoral dissertation, it is reviewed by and
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defended before an academic committee. It is necessary to attain the Ha-

bilitation (the qualification) to be a Privatdozent, one who may supervise

doctoral students. Helly had presented talks about what became his 1921

paper to the Viennese Mathematical Association (Wiener Mathematischen

Gesellschaft) before the war. He successfully presented his Habilitation the-

sis to the faculty of the University of Vienna in 1921 and then applied for

a professorship there. Largely as a result of Hahn’s opposition, he did not

get one. Helly’s wife, Dr. Elise Bloch, also a mathematician, attributed

Hahn’s opposition to two sources: Helly was (1) Jewish and (2) too old,

Helly being 37 at the time. Helly did become a Privatdozent in August

1921, a position that paid nothing. To support himself, he went to work

for a bank. As a Privatdozent, he supervised three doctoral students and

taught practically every semester from 1921 until 1938. The bank failed in

1929 and he got a job in 1930 in the actuarial department of an insurance

company, Lebensversicherungs–Gesellschaft Phönix where his co-workers

included the mathematicians Eugene Lukacs (who had taken courses with

Helly and Hahn at the University of Vienna) and Z. W. Birnbaum. In a

1979 letter (Butzer et al. [1980, p. 139]), Birnbaum said:

Helly was a delightful man, cheerful in the face of adversities, with

a gentle sense of humor. There were three mathematicians in the

Phönix office who were my immediate superiors. One of them had

the title ”Prokurist” while Helly, to my knowledge, did not get

that high. Whenever a non-routine question came up, the differ-

ence between Helly and the other two became apparent: Helly gave

the problem a mathematical formulation and obtained a solution

which could be used over and over again in similar cases; the other

two worked the problem numerically in each case, by trial and error,

grinding it out on their hand-operated Odhner desk calculators. In-

cidentally, even the manner in which he handled his desk calculator

was ingenious, devising shortcuts and step–saving routines.

On March 13, 1938, the day after the Anschluss Österreichs, the politi-

cal union of Germany and Austria, Jews were ordered to appear in evening

dress and scrub the streets. Stores and apartments were pillaged. In May

1938 the Nazis enacted the Nuremberg racial laws. These excluded Jews

from most professions, barred them from attending universities and forced

them to wear a yellow badge. All Jewish women had to take the name

Sarah as part of their name, all Jewish men the name Israel. All Jew-

ish bank accounts were frozen and all licenses held by Jews—even driver’s
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licenses—were revoked. As a result, Helly was fired by the Phönix and could

no longer teach at the university. It was still possible, indeed encouraged,

for Jews to emigrate after paying an emigration tax, the Reichsfluchtsteuer

and 130,000 did. Among the 30,000 who came to the US were Helly, his wife,

and their eight-year old son Walter Sigmund; they emigrated to Brooklyn

in 1938 (Birnbaum and Lukacs also emigrated to the US). There were so

many qualified émigrés that Helly was unable to secure a university posi-

tion, even though he had letters of recommendation from Einstein, Oswald

Veblen and Hermann Weyl. He survived by tutoring high school students.

Eventually, he found employment at some junior colleges in New Jersey.

In 1943, upon the recommendation of Karl Menger among others, he was

offered the position of visiting lecturer at Illinois Institute of Technology in

Chicago. This turn of good fortune did him no good, however. His second

heart attack, a remnant of his WWI wound, killed him on November 28,

1943. Gödel, a thesis student of Hahn’s, summed it up in a note to Wal-

ter in the funeral book: “Now all is well but . . .Papa dies”. Walter got a

Ph. D. in physics from the Massachusetts Institute of Technology and later

became Professor of Operations Research at the Polytechnic Institute of

Brooklyn, our alma mater, now called Polytechnic University. He is noted

for “(p, q)-Helly cliques” and also his 1975 book “Urban Systems Models”.

We were at “Poly” as students and teachers until 1967 but never met him.

A friend of ours, Maurice Figueres, took a course with him there in 1987

and was frequently driven back to Manhattan by him after class. Maurice

quoted him as saying “My dad was a real mathematician”.

4. The “Landmark”: Helly’s 1921 article

Helly published the results of his Habilitationsschrift in 1921 in an article.

Dieudonné [1981, p. 130] subsequently called “a landmark in the history

of functional analysis”. As Helly says at the beginning of the article, the

conditions for solving infinite systems of linear equations had been given

by Schmidt [1908] and Riesz [1913] “in the case that the coefficients and

solutions satisfy certain inequalities”. His aim, he said, was to show that

the conditions could be interpreted geometrically. Some high points of the

article are:

F General normed sequence space. He abandoned special cases

and defined a general normed sequence space X ⊂ CN, although he did

not require that X be a vector space. He assumes that there is a norm D

defined on X ; he did not use the word norm, or the notation ‖·‖.

F Dual space. Helly took as the “dual space” of X the set Xd of all
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complex sequences u = (un) such that
∑

n∈N
xnun < ∞ for all (xn) ∈ X .

He did not giveXd a name. He did call the seminorm ∆ (see below) on Xd a

polare Abstandsfunktion, so he may have been thinking of polare Raum, the

name Hahn later used for the dual in a more general setting. Xd is a vector

space regardless of what X is. If X = c or c0, then Xd = `1; if X = `1,

then Xd = `∞ but if X = `∞, the Xd you get is a proper subset of what

we call the dual X ′ of X today. Nowadays, such pairs
(
X,Xd

)
, subject

to absolute convergence of
∑
xnun, are called Köthe sequence spaces and

α-duals, respectively.

F Seminorm for the dual. For x = (xn) ∈ X and u = (un) ∈ Xd,

Helly defines an analog of an inner product 〈·, ·〉 on X × Xd: for x in X

and u in Xd, 〈x, u〉 =
∑

n∈N
xnun (if X is a vector space, 〈·, ·〉 is a bilinear

form and (X,Xd) a dual pair). Using an idea of Minkowski’s, he defines

the polare Abstandsfunktion ∆ for Xd as

∆ (u) = sup {|〈x, u〉| : D (x) = 1} .

He observes that ∆ is generally a seminorm, not a norm. In the event that

∆ is not a norm, he notes that each point of X is in some subspace Y of

CN of codimension 1 (to see this, suppose u = (un) 6= 0 and, in particular,

u1 6= 0; if there exists a nonzero unit vector x = (c, 0, 0, . . . ) ∈ X then

|〈x, u〉| = |cu1| 6= 0 which implies that ∆ (u) 6= 0). He notes that D and ∆

satisfy a Cauchy–Schwarz–type inequality, namely,

|〈x, u〉| ≤ D (x) ∆ (u) .

F The problem. Helly sought to solve the following vector problem:

• Given sequences fn = (fnj) from Xd ⊂ CN and a sequence (cn) ∈ CN,

find x = (xj) ∈ X such that

〈x, fn〉 =
∑

j∈N

xjfnj = cn for each n ∈ N.

His method of attack is quite original: he doesn’t seek the x right away.

Apparently with a belief in reflexivity (when he began his investigation) he

seeks:

(1) a continuous linear functional h ∈ Xdd =
(
Xd
)d

such that h (fn) = cn
for each n, then

(2) x ∈ X such that h (fn) = fn (x) for every n.

He discovered that the x ∈ X corresponding to h did not always exist, thus

showing that some spaces are not reflexive.
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The first Hahn–Banach theorem. In order to establish (1), Helly

extended a bounded linear functional f from a subspace M to the whole

space. Assuming that Xd is separable so he could use induction, the key step

was the one-dimensional extension: For x not in M , find a linear functional

F such that, for K = R or C,

F : M ⊕ Kx |F | ≤ k ‖·‖
| ↘

f : M −→ K |f | ≤ k ‖·‖ (for some k)

Hahn [1927] and Banach [1929] used the technique of the one-dimensional

extension as well to prove what we call the Hahn–Banach theorem today. As

they used transfinite induction rather than ordinary induction, they gen-

eralized it by eliminating the separability of the dual. Each acknowledged

Helly’s work. Their gain in generality was offset by the fact that their proof

required the choice of a number between two others and so only applied

to real spaces. Helly used certain intersection properties that we discuss in

Sec. 5.

In one of the first important applications of the Hahn–Banach theorem,

Banach [1932, pp. 55–57, Theorems 4 and 5] solved the general functional

problem. In the proof of sufficiency in Theorem 4.1 below, he used condition

(**) to create a continuous linear functional on a subspace which he then

extended to the whole space by the Hahn–Banach theorem. As he was

generalizing a result of Helly [1912] (and Riesz [1910a]), Theorem 4.1 is

usually referred to as Helly’s theorem.

Theorem 4.1. Let X be a real normed space, let {xs} and {cs}, s ∈ S, be

sets of vectors and scalars, respectively. Then there is a continuous linear

functional f on X such that f (xs) = cs for each s ∈ S if and only if there

exists K > 0 such that for all finite subsets {s1, . . . , sn} of S and scalars

a1, . . . , an ∣∣∣∣∣

n∑

i=1

aicsi

∣∣∣∣∣ ≤ K

∥∥∥∥∥

n∑

i=1

aixsi

∥∥∥∥∥ (**)

5. Helly’s technique

Helly had observed in his 1912 paper that any collection of mutually inter-

secting closed intervals {[as, bs] : s ∈ S} has a nonempty intersection (Proof:

no left endpoint as can be greater than any right endpoint bt). He later ex-

tended this to finite collections of convex subsets of Rn, namely, that if any

n+ 1 members of a family of m > n convex subsets of Rn meet, then their
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intersection is nonvoid (to see the need for a finite number of sets, consider

the collection of closed upper half-planes in R2). Helly had lectured on the

result about convex sets to the Viennese Mathematical Union in 1913, but

did not publish it until 1923. In the meantime, Radon published the result

in 1921. To extend a certain continuous linear functional from a subspace to

the whole space, Helly observed that certain inequalities had to be satisfied;

he further observed that satisfaction of these inequalities was equivalent to

the nonemptiness of an intersection of a finite collection of disks in C. By

using his intersection theorem (Theorem 1.1 of the Introduction), he re-

duced the problem to showing that any three of these disks had nonempty

intersection. In the process, he deduced a Hahn–Banach theorem for real

or complex normed sequence spaces X when
(
Xd,∆

)
was separable.

6. The complex case

Although Helly proved his Hahn–Banach theorem for certain complex se-

quence spaces, the complex version for the general case languished until

1936. The key is the intimate relationship between the real and complex

parts of a complex linear functional f , namely that

Re f (ix) = Im f (x) .

Although usually credited to F. Murray [1936], H. Löwig discovered this in

1934. Murray reduced the complex case to the real case, then used the real

Hahn–Banach theorem to prove the complex form for subspaces of Lp[a, b]

for p > 1. Murray’s perfectly general method was used and acknowledged

by Bohnenblust and Sobczyk [1938] who proved it for arbitrary complex

normed spaces. They, incidentally, were the first to call it the Hahn–Banach

theorem. Also by reduction to the real case, Soukhomlinov [1938] and Ono

[1953] obtained the theorem for normed spaces over the complex numbers

and the quaternions.

We consider the complex case next in a way that does not depend on

reducing the complex case to the real case.

7. Intersection properties

Intersection properties can not only be used to prove the Hahn–Banach

theorem for normed spaces over R, C, the quaternions H, or certain fields

F with a non-Archimedean valuation. They are also useful in solving:

The extension problem. What normed spaces Y can replace the

scalar field K in the Hahn–Banach theorem? Specifically, if A : M → Y is
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a bounded linear map on the closed subspace M of the normed space X ,

under what circumstances is there is a linear extension Ā : X → Y of A

such that
∥∥Ā
∥∥ = ‖A‖?

If such an Ā exists for any A on any subspace M of any normed space

X , we say that Y is extendible. Banach and Mazur showed that there

are non-extendible spaces in 1933. An obvious difficulty of characterizing

extendible spaces Y is that the A, the M and the X have nothing to do

with Y . Nevertheless, Nachbin [1950] internally characterized extendible

real normed spaces Y as those for which any family of mutually intersecting

closed balls has nonempty intersection. But back to the problem for linear

functionals.

The key intersection property. Let X denote a normed space over a

field K with an absolute value |·|. For r > 0,B (0, r) = {c ∈ K : |c| ≤ r}. Let

f denote a continuous linear functional defined on a subspace M of X. As

the key to the proof of the Hahn–Banach theorem is the one-dimensional

extension, we need to know: For what K can we extend f from M to a

continuous linear functional F defined on M ⊕ Kx for any x /∈ M with

‖F‖ = ‖f‖? We may clearly assume that ‖f‖ ≤ 1 and, since we can extend

f by continuity to the closure of M , that M is closed.

To preserve the bound, it is necessary and sufficient to find a value a for

F (x) that satisfies |F (x) − f (m)| = |a− f (m)| ≤ ‖x−m‖ for all m ∈ M .

In other words, a must lie in B (f (m) , ‖x−m‖) for everym ∈M , i.e., must

belong to
⋂

m∈M B (f (m) , ‖x−m‖). To extend f , it is therefore necessary

and sufficient that K satisfy the following intersection property:
⋂

m∈M

B (f (m) , ‖x−m‖) 6= ∅ (HBIP)

The following intersection properties are equivalent to (HBIP) but they are

purely internal in that they do not involve the x ∈ X or the subspace M

of X .

Definition 7.1 (Intersection Properties). Let S be a set, {cs : s ∈ S}
a collection of scalars and B = {B (cs, rs) : cs ∈ K, rs > 0, s ∈ S} a

collection of closed balls in K. If
⋂B 6= ∅ whenever:

(a)
⋂ {B (bcs, rs) : s ∈ S} 6= ∅ (in K) for any |b| ≤ 1, then K has the

weak intersection property;

(b) for any finite subcollection B (csk
, rsk

) ∈ B, k = 1, 2, . . . , n, n ∈
N, and any scalars b1, b2, . . . , bn ∈ K,

∑n
k=1 bk = 0 implies that

‖∑n
k=1 bkcsk

‖ ≤ ∑n
k=1 |bk|rsk

, then K has Holbrook’s intersection

property.
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Let K = R, C or H, the quaternions. Since the closed balls B (bcs, rs) of

K are convex and compact,
⋂B 6= ∅ if any two, three or five, respectively,

of the B (cs, rs) have nonempty intersection by Helly’s second intersection

theorem — in particular, the “finite” in Holbrook’s intersection property

can be replaced by 2, 3, or 5 in those cases. Instead of reduction to the real

case, Hustad [1973], Holbrook [1975] and Mira [1982] used these properties

to prove the Hahn–Banach theorem for R, C or H simultaneously with no

reduction to the real case. Mira corrected an error in Holbrook’s argument

and also showed that if K is a non-Archimedean valued field (assuming that

X has a norm which also satisfies the ultrametric triangle inequality) then

we need only require nonempty intersections for each pair of elements of B.

As to the general extension problem, consider the following:

Definition 7.2 (Intersection Properties). Let S be a set and let B =

{B (ys, rs) : ys ∈ Y, rs > 0, s ∈ S} be a collection of closed balls in the

normed space Y with dual Y ′. If
⋂B 6= ∅ whenever:

(a)
⋂ {B (f (ys) , rs) : s ∈ S} 6= ∅ (in K) for each f in the unit ball of Y ′,
then Y has the weak intersection property;

(b) for any B (ysk
, rsk

) ∈ B, k = 1, 2, . . . , n, n ∈ N, and b1, b2, . . . , bn ∈ K,∑n
k=1 bk = 0 implies that ‖∑n

k=1 bkysk
‖ ≤ ∑n

k=1 |bk|rsk
, then Y has

Holbrook’s intersection property.

(V) The vector problem. Let {fs : s ∈ S} be a collection of bounded

linear functionals on X. Find x ∈ X such that fs(x) = cs for every s.
and its dual:

(F) The functional problem. Let {xs : s ∈ S} be a collection of vectors

from X. Find f ∈ X ′ such that f (xs) = cs for every s.

Theorem 7.1 (Extendible Spaces). A Banach space Y over K = R,

or C is extendible if and only if any of the three equivalent properties below

is satisfied:

(HBIP) For any subspace M of any normed space X, any continuous lin-

ear map A : M → Y and any x /∈ M ,
⋂

m∈M B(Am, ‖x−m‖) 6=
∅.

(WIP) [Hustad 1973] Y has the weak intersection property.

(HIP) [Holbrook 1975, Mira 1982] Y satisfies Holbrook’s intersection

property.

Holbrook’s intersection property is concerned with inequalities about

centers and radii of certain balls. It is not obvious that it has anything to do
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with intersections. It is straightforward to show that two closed ballsB (x, r)

and B (y, s) in a normed space meet if and only if the distance ‖x− y‖
between their centers is less than or equal to the sum r + s of their radii:

‖x− y‖ ≤ r + s. Suppose B is a collection of closed balls (closed intervals)

in R satisfying Holbrook’s intersection property and B (x, r), B (y, s) ∈ B.

With notation as in Def. 7.2(b), let b1 = 1 and b2 = −1. The condition

then implies that ‖x − y‖ ≤ r + s — therefore B (x, r) ∩ B (y, s) 6= ∅ by

the observation above. Since B satisfies this binary intersection property,⋂B 6= ∅ by Helly’s Intersection Theorem 1.2. A similar (but more difficult)

argument shows that if B is a collection of closed balls in C that satisfies

Holbrook’s intersection property, then any three of them meet; hence, by

Helly’s Intersection Theorem 1.2,
⋂B 6= ∅.

Finally, it seems clear to us that the Hahn–Banach theorem should be

called, in chronological order, the Helly–Hahn–Banach theorem. Of course,

as with so many other misnamed results, this will never happen, a final

piece of bad luck for Eduard Helly.
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Math.–Natur. Kl. S.-B. IIa, 121, 265–297.
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Gauthier-Villars, Paris.



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

110 L. Narici & E. Becknstein

32. F. Riesz [1918], Über lineare Funktionalgleichungen, Acta Math. 41, 71-98.
Also in his complete works [1960] below, 1053–1080.
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Our goal is to explore the structure of the “small” subspaces of Lp, mainly

for 2 < p < ∞, discussing older classical results and ultimately presenting

some new results of [12]. We will review first some Banach space basics. By

Lp we shall mean Lp[0, 1], under Lebesgue measure m.

Unless we say otherwise X,Y, . . . shall denote separable infinite dimen-

sional Banach spaces. X ⊆ Y means that X is a closed subspace of Y .

X
C∼ Y means that X is C-isomorphic to Y , i.e., there exits an invertible

bounded linear T : X → Y with ‖T‖ ‖T−1‖ ≤ C. If X
1∼ Y we shall say X

is isometric to Y . X
C
↪→ Y means X is C-isomorphic to a subspace of Y .

Definition 1. A basis for X is a sequence (xi)
∞
1 ⊆ X so that for all

x ∈ X there exists a unique sequence (ai) ⊆ R with x =
∑∞

1 aixi, i.e.,

limn

∑n
i=1 aixi = x.

Example 1. The unit vector basis (ei)
∞
i=1 is a basis for `p (1 ≤ p < ∞).

Of course ei = (δi,j)∞j=1 where δi,j = 1 if i = j and 0 otherwise.

Definition 2. (xi)
∞
1 ⊆ X is basic if (xi)

∞
1 is a basis for [(xi)] ≡ the closed

linear span of (xi)
∞
1 .

Proposition 1. Let (xi)
∞
1 ⊆ X. Then

(1) (xi) is basic iff xi 6= 0 for all i and for some K < ∞, all n < m in N

and all (ai)
m
1 ⊆ R,

∥∥∥∥∥

n∑

1

aixi

∥∥∥∥∥ ≤ K

∥∥∥∥∥

m∑

1

aixi

∥∥∥∥∥
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(In this case (xi) is called K-basic and the smallest K satisfying (1) is

called the basis constant of (xi)).

(2) (xi) is a basis for X iff (1) holds and [(xi)] = X.

(xi) is called monotone if its basis constant is 1.

The proof of this and other background facts we present can be found in

any of the standard texts such as [3,8,10,25]. The paper [2] contains further

background on Lp spaces.

Definition 3. A bounded linear operator P : X → X is a projection if

P 2 = P .

In this case if Y = P (X) then X = Y ⊕ Ker P . Writing X = Y ⊕ Z

means that Y and Z are closed subspaces of X and every x ∈ X can be

uniquely written x = y + z for some y ∈ Y , z ∈ Z. In this case Px = y

defines a projection of X onto Y . Y is said to be complemented in X if it

is the range of a projection on X . Y is C-complemented in X if ‖P‖ ≤ C.

If F ⊆ X is a finite dimensional subspace then the Hahn–Banach theo-

rem yields that F is complemented in X . If X is isomorphic to `2 then all

Y ⊆ X are complemented but this fails to be the case if X � `2 by a result

of Lindenstrauss and Tzafriri ([26]).

Now from Proposition 1 if (xi) is a basis forX then setting Pn(
∑
aixi) =∑n

i=1 aixi yields a projection of X onto 〈(xi)
n
1 〉 ≡ linear span of (xi)

n
i=1.

Moreover the Pn’s are uniformly bounded and supn ‖Pn‖ is the basis con-

stant of (xi).

Not every Banach space X has a basis but the standard ones do.

The Haar basis for Lp (1 ≤ p <∞): The Haar basis (hi)
∞
1 is a monotone

basis for Lp.

h1 = 1

h2 = 1[0, 1/2] − 1[1/2, 1]

h3 = 1[0, 1/4] − 1[1/4, 1/2] , h4 = 1[1/2, 3/4] − 1[3/4, 1]

. . .

To see this is a monotone basis for Lp is not hard via Proposition 1. We

need only check a couple of things. First note that

〈
(hi)

2n

1

〉
=

{
f =

2n∑

1

ai1Dn
i

: (ai)
2n

1 ⊆ R
}

where Dn
i =

[
i− 1

2n
,
i

2n

]
.

From real analysis these functions (over all n) are dense in Lp (1 ≤ p <∞).
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Secondly to see 1) holds with K = 1 it suffices to show for all n,

(ai)
n+1
1 ⊆ R,

∥∥∥∥∥

n∑

1

aihi

∥∥∥∥∥
p

≤
∥∥∥∥∥

n+1∑

1

aihi

∥∥∥∥∥
p

.

This reduces to proving if D = [(i−1)/2j , i/2j] is a dyadic interval with left

half D+ and right half D− supporting the Haar function h = 1D+
− 1D−

then for all a, b ∈ R, ‖a1D‖p ≤ ‖a1D +bh‖p. This is easy to see since a1D is

the average of a1D + bh and a1D − bh, both of which have the same norm.

Definition 4. Basic sequences (xi) and (yi) are C-equivalent if there exist

A,B with A−1B ≤ C and for all (ai) ⊆ R
1

A

∥∥∥
∑

aiyi

∥∥∥ ≤
∥∥∥
∑

aixi

∥∥∥ ≤ B
∥∥∥
∑

aiyi

∥∥∥ .

This just says that the linear map T : [(xi)] → [(yi)] with Txi = yi for all

i is an onto isomorphism with ‖T‖ ‖T−1‖ ≤ C.

Proposition 2 (Perturbations). Let (xi) be a normalized K-basic se-

quence in X and let (yi) ⊆ X satisfy

∞∑

i=1

‖xi − yi‖ ≡ λ <
1

2K
.

Then (xi) is C(λ)-equivalent to (yi) where C(λ) ↓ 1 as λ ↓ 0. If in addition

[(yi)] is complemented in X by a projection P and λ < 1/(8K‖P‖) then

[(xi)] is complemented in X by a projection Q where ‖Q‖ → ‖P‖ as λ ↓ 0.

Notation. If (xi) and (yi) are C-equivalent basic sequences we write

(xi)
C∼ (yi).

Definition 5. Let (xi) be basic. (yi) is a block basis of (xi) if yi 6= 0 for all

i and for some 0 = n0 < n1 < n2 < · · · and (ai) ⊆ R, yi =
∑ni

j=ni−1+1 ajxj .

Note. (yi) is then automatically basic with basis constant not exceeding

that of (xi).

If (xi) is a normalizedK-basis forX we define the coordinate or biorthog-

onal functionals (x∗i ) via x∗i (
∑
ajxj) = ai. From Proposition 1 we obtain

‖x∗i ‖ ≤ 2K and so for all (ai)

1

2K
‖(ai)‖∞ ≤

∥∥∥
∑

aixi

∥∥∥ ≤
∑

|ai| = ‖(ai)‖`1 .

In other words ‖∑aixi‖ is trapped between the c0 and `1 norms of (ai).
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From Proposition 2 we obtain

Proposition 3. Let X have a basis (xi) and let (yi) ⊂ SX ≡ {x ∈ X :

‖x‖ = 1} be weakly null (i.e., x∗(yi) → 0 for all x∗ ∈ X∗). Then given

εi ↓ 0 there exists a subsequence (zi) of (yi) and a block basis (bi) ⊆ SX of

(xi) with ‖zi − bi‖ < εi for all i. In particular given ε > 0 we can choose

(zi) to be (1 + ε)-equivalent to a normalized block basis of (xi).

Definition 6. A basis (xi) for X is K-unconditional if for all
∑
aixi ∈ X

and all εi = ±1,
∥∥∥
∑

aixi

∥∥∥ ≤ K
∥∥∥
∑

εiaixi

∥∥∥ .

It is not hard to show (xi) is unconditional iff for all x =
∑
aixi ∈ X

and all permutations π of N,

x =
∑

aπ(i)xπ(i)

iff for some C < ∞, all
∑
aixi ∈ X and all M ⊆ N, ‖∑i∈M aixi‖ ≤

C‖∑aixi‖ (this just says that the projections (PM : M ⊆ N) given by

PM (
∑
aixi) =

∑
i∈M aixi are well defined and uniformly bounded).

Easily, the unit vector basis (ei) is a 1-unconditional basis for `p (1 ≤
p <∞) or c0.

Example 2. The Haar basis is an unconditional basis for Lp if 1 < p <∞.

This is a more difficult result (see [5]), if p 6= 2. For p = 2, (hi) is an

orthogonal basis
∥∥∥∥
∑

ai
hi

‖hi‖2

∥∥∥∥
2

=
(∑

|ai|2
)1/2

.

More generally, if (xi) is a normalized block basis of (hi) then ‖∑aixi‖2 =

(
∑ |ai|2)1/2.

It is easy to check that (hi) is not unconditional in L1. For example if

(yi) = (h1, h2, h3, h5, h9, h17, . . .)

is the sequence of “left most” hi’s then
∥∥∥∥∥

n∑

1

yi

‖yi‖1

∥∥∥∥∥
1

= 1 while for some c > 0 ,

∥∥∥∥∥

n∑

1

(−1)i yi

‖yi‖1

∥∥∥∥∥
1

≥ cn.

Definition 7. A finite dimensional decomposition (FDD) for X is a se-

quence of non-zero finite dimensional subspaces (Fi) of X so that for all

x ∈ X there exists a unique sequence (xi) with xi ∈ Fi for all i and

x =
∑
xi.
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As with bases, the projections Pnx = Pn(
∑
xi) =

∑n
1 xi are uni-

formly bounded and supn ‖Pn‖ is the basis constant of the FDD. Also for

n ≤ m if P[n,m]x =
∑m

n xi, then the P[n,m]’s are uniformly bounded and

supn≤m ‖P[n,m]‖ is the projection constant of the FDD. (Ei) is monotone if

its basis constant is 1 and bimonotone if its projection constant is 1.

A blocking (Gi) of an FDD (Fi) for X is given by Gi = 〈(Fj)ni

j=ni−1+1〉
for some 0 = n0 < n1 < · · · . (Gi) is then also an FDD for X .

A basis (xi) also may be regarded as an FDD with Fi = 〈xi〉.
From Proposition 3 we see that if 1 < p <∞ and (yi) ⊆ SLp

is weakly

null (equivalently,
∫

E
yi → 0 for all measurable E ⊆ [0, 1]) then some subse-

quence is a perturbation of a block basis of (hi) and hence is unconditional

(just like for bases, block bases of unconditional bases are unconditional).

This fails in L1 by a deep new result of Johnson, Maurey and Schechtman.

Theorem 1 ([14]). There exists a weakly null sequence (xi) ⊆ SL1
satis-

fying: for all ε > 0 and all subsequences (yi) ⊆ (xi), (hi) is (1+ε)-equivalent

to a block basis of (yi).

Now let’s fix 2 < p < ∞ and let Kp be the unconditional constant of

(hi) in Lp. We shall list what we consider to be the small subspaces of Lp.

These are also subspaces of Lp for 1 < p < 2 but as we shall note shortly

the situation there as to what constitutes “small” is more complicated.

Lp contains the following “small” subspaces:

• `p (isometrically): If (xi) ⊆ SLp
are disjointly supported, (|xi| ∧ |xj | = 0

for i 6= j) then

∥∥∥
∑

aixi

∥∥∥ =

(∫
|
∑

aixi(t)|p dt
)1/p

=

(∑∫
|ai|p|xi(t)|p dt

)1/p

=
(∑

|ai|p
)1/p

.

Also [(xi)] is 1-complemented in X via Px =
∑∞

i=1 x
∗
i (x)xi where (x∗i ) are

the functions naturally biorthogonal to (xi), x
∗
i = sign(xi)|xi|p−1.

• `2 (isomorphically) via the Rademacher functions (rn). (rn) are ±1 valued

independent random variables of mean 0.
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Khintchin’s inequality: For 2 < p <∞,

(∑
|an|2

)1/2

=
∥∥∥
∑

anrn

∥∥∥
2
≤
∥∥∥
∑

anrn

∥∥∥
p

≤ Bp

(∑
|an|2

)1/2

.

For 1 < p < 2

Ap

(∑
|an|2

)1/2

≤
∥∥∥
∑

anrn

∥∥∥
p
≤
∥∥∥
∑

anrn

∥∥∥
2

=
(∑

|an|2
)1/2

.

The constants Ap, Bp depend solely on p.

• `2 (isometrically) via a sequence of symmetric Gaussian independent ran-

dom variables in SLp
.

• (`2 ⊕ `p)p (isometrically).

For this we use that Lp
1∼ (Lp[0, 1/2] ⊕ Lp[1/2, 1])p and Lp[0, 1/2]

1∼
Lp[1/2, 1]

1∼ Lp[0, 1]. More generally, if we partition [0, 1] into disjoint inter-

vals of positive measure (In)∞n=1 then Lp(In)
1∼ Lp and Lp

1∼ (
∑
Lp(In))p.

Hence Lp contains also

• (
∑
`2)p = (`2 ⊕ `2 ⊕ · · · )p ≡ {(xi) : xi ∈ `2 for all i and ‖(xi)‖ =

(
∑ ‖xi‖p

2)1/p <∞} (isometrically)

Our topic will be to characterize when X ⊆ Lp, 2 < p < ∞, embeds

isomorphically into or contains isomorphically one of the four spaces `p, `2,

`p ⊕ `2 or (
∑
`2)p.

Now some remarks are in order here. First it is known that Lq
1
↪→ Lp if

p < q ≤ 2. Thus Lp contain `q if p < q < 2 so is this “small”? Is Lq small?

Secondly we have

Proposition 4. Let X ⊆ `p (1 ≤ p < ∞). Then for all ε > 0 there exists

Y ⊆ X with Y
1+ε∼ `p and Y is 1 + ε-complemented in `p.

This is due to Pe lczyński ([31]). Every normalized block basis of (ei)

in `p is 1-equivalent to (ei) and 1-complemented in `p by the analogous

statement in Lp realizing (ei) as a disjointly supported sequence in SLp
.

Then one uses perturbation as in Proposition 3.

Some other classical facts are:

(i) The `p spaces are totally incomparable, i.e., for all X ⊆ `p, Y ⊆ `q if

p 6= q then X 6∼ Y .
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(ii) For 1 ≤ p, q <∞, Lq ↪→ Lp iff q = 2 or 1 ≤ p ≤ q < 2. Also `q ↪→ Lp iff

1 ≤ p ≤ q < 2 or q = 2.

Our next result shows that normalized unconditional basic sequences in

Lp, 1 < p <∞, are trapped between the `p and `2 norms.

Proposition 5.

(a) Let 2 < p < ∞ and let (xi) ⊆ SLp
be λ-unconditional. Then for all

(an) ⊆ R,

λ−1
(∑

|an|p
)1/p

≤
∥∥∥
∑

anxn

∥∥∥
p
≤ λBp

(∑
|an|2

)1/2

.

(b) Let 1 < p < 2 and let (xi) ⊆ SLp
be λ-unconditional. Then for all

(ai) ⊆ R,

(λAp)−1
(∑

|an|2
)1/2

≤
∥∥∥
∑

anxn

∥∥∥
p
≤ λ

(∑
|an|p

)1/p

.

Proof. For t ∈ [0, 1], 2 < p <∞,
∥∥∥
∑

anxn

∥∥∥
p
≤ λ

∥∥∥
∑

anxnrn(t)
∥∥∥

p

and so

∥∥∥
∑

anxn

∥∥∥
p

p
≤ λp

∫ 1

0

∥∥∥
∑

anxnrn(t)
∥∥∥

p

p
dt

(Fubini)
= λp

∫ 1

0

∫ 1

0

∣∣∣
∑

anxn(s)rn(t)
∣∣∣
p

dt ds

≤ (λBp)p

∫ 1

0

(∑
a2

nxn(s)2
)p/2

ds

≤ (λBp)p
(∑

‖a2
nx

2
n‖p/2

)p/2

(triangle inequality)
= (λBp)p

(∑
|an|2

)p/2

.

This gives the upper `2-estimate.

Similarly,

λp
∥∥∥
∑

anxn

∥∥∥
p

≥
∫ 1

0

(∑
a2

nx
2
n(s)

)p/2

ds

≥
∫ 1

0

∑
|an|p|xn(s)|p ds =

∑
|an|p
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(using ‖ · ‖`p
≤ ‖ · ‖`2). The argument is similar for 1 < p < 2.

The technique of proof, integrating against the Rademacher functions,

yields

Proposition 6. For 1 < p < ∞ there exists C(p) so that if (xi) ⊆ SLp
is

λ-unconditional then for all (ai)

∥∥∥
∑

anxn

∥∥∥
p

λC(p)∼
(∫ 1

0

(∑
|an|2|xn(s)|2

)p/2

ds

)1/p

. (1)

The expression on the right is the so called “square function”. By A
C∼ B

we mean A ≤ CB and B ≤ CA. Proposition 6 leads to a very nice result

(which we won’t need below but is too pretty not to give).

Corollary 1 ([35]). Let (xn) ⊆ SLp
, 1 < p < ∞, be unconditional basic.

Then (xn) is equivalent to a block basis (yn) of (hn).

Let’s give a brief sketch of the proof. By (1) it follows that if (yi) is a

block basis of (hi) with |yi| = |xi| on [0, 1] then (yi) ∼ (xi). By a perturba-

tion argument we may assume each xi ∈ 〈hj〉. Then it is easy to construct

the yi’s. Indeed given a simple dyadic function x and any n one can find

y ∈ 〈hi〉∞n so that |y| = |x|.
We are now ready to begin our investigation announced previously: if

X ⊆ Lp (2 < p < ∞), when does X contain or embed into one of the 4

small subspaces of Lp, namely `p, `2, `p ⊕ `2 or (
∑
`2)p? We begin with a

result from 1960.

Theorem 2 (Kadets and Pe lczyński [20]). Let X ⊆ Lp, 2 < p < ∞.

Then X ∼ `2 iff ‖·‖2 ∼ ‖·‖p on X; i.e., for some C, ‖x‖2 ≤ ‖x‖p ≤ C‖x‖2

for all x ∈ X. Moreover there is a projection P : Lp → X.

First note that if x ∈ SLp
and m{t : |x(t)| ≥ ε} ≥ ε then ‖x‖2 ≤ ‖x‖p =

1 ≤ ε−3/2‖x‖2. Indeed

‖x‖2 =

(∫
|x(t)|2 dt

)1/2

≥
(∫

[|x|≥ε]

|x(t)|2 dt
)1/2

≥ ε · ε1/2 .

The direction requiring proof is if X ∼ `2 then ‖ · ‖2 ∼ ‖ · ‖p on X . If not

we can find (xi) ⊆ SX , xi
ω−→ 0, so that for all ε > 0, limnm[|xn| ≥ ε] = 0.

From this we can construct a subsequence (xni
) and disjointly supported

(fi) ⊆ SLp
with limi ‖xni

− fi‖ = 0. Hence by a perturbation argument

a subsequence of (xi) is equivalent to the unit vector basis of `p which
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contradicts X ∼ `2. The projection onto X with ‖x‖p ≤ C‖x‖2 for x ∈ X

is given by the orthogonal projection P : L2 → X acting on Lp. For y ∈ Lp,

‖Py‖p ≤ C‖Py‖2 ≤ C‖y‖2 ≤ C‖y‖p.

Remark 1. The proof yields that if X ⊆ Lp, 2 < p < ∞, and X 6∼ `2

then for all ε > 0, `p
1+ε
↪→ X . Moreover if (xi) ⊆ SLp

is weakly null and

ε = limi ‖xi‖2 then a subsequence is equivalent to the `p basis if ε = 0 and

the `2 basis if ε > 0.

In the latter case we have essentially by Proposition 5 (assuming say

(xi) is a normalized block basis of (hi) with ‖xi‖2 = ε for all i)

ε
(∑

a2
i

)1/2

=
∥∥∥
∑

aixi

∥∥∥
2
≤
∥∥∥
∑

aixi

∥∥∥
p
≤ KpBp

(∑
a2

i

)1/2

.

Pe lczyński and Rosenthal ([32]) proved that if X
K∼ `2 then X is C(K)-

complemented in Lp via a change of density argument.

Our next result shows that if X does not contain an isomorph of `2
then it embeds into `p. The argument uses “Pe lczyński’s decomposition

method”.

Proposition 7 ([31]). Let X be a complemented subspace of `p, 1 ≤ p <

∞. Then X ∼ `p.

Proof. `p ∼ X ⊕ V for some V ⊆ `p. Also X ∼ `p ⊕W for some W ⊆ X

by Proposition 4. Finally `p ∼ `p ⊕ `p and moreover `p ∼ (`p ⊕ `p ⊕ · · · )p.

The latter is proved by splitting (ei) into infinitely many infinite subsets.

Thus

`p ∼ (`p ⊕ `p ⊕ · · · )p ∼ ((X ⊕ V ) ⊕ (X ⊕ V ) ⊕ · · · )p

∼ (X ⊕X ⊕ · · · )p ⊕ (V ⊕ V ⊕ · · · )p

∼ X ⊕ (X ⊕X ⊕ · · · )p ⊕ (V ⊕ V ⊕ · · · )p

∼ X ⊕ `p ∼W ⊕ `p ⊕ `p ∼W ⊕ `p ∼ X .

A consequence of this is that if (Hn) is any blocking of (hi) into an

FDD then (
∑
Hn)p ∼ `p. Indeed each Hn is uniformly complemented in

Lp and hence in `mn
p for some mn. Thus (

∑
Hn)p is complemented in

(
∑
`mn
p )p = `p.

Theorem 3 ([16]). Let 2 < p < ∞, X ⊆ Lp. Then X ↪→ `p ⇔ `2 6↪→ X.

([21] If `2 6↪→ X then for all ε > 0, X
1+ε
↪→ `p.)
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The scheme of the argument is to show if `2 6↪→ X then there is a

blocking (Hn) of the Haar basis into an FDD so that X ↪→ (
∑
Hn)p in a

natural way; x =
∑
xn, xn ∈ Hn → (xn) ∈ (

∑
Hn)p. Since (

∑
Hn)p ∼ `p

we are done.

We won’t discuss the specifics here of this argument but rather will

sketch shortly the proof of a stronger result. First we note the analogous

theorem for 1 < p < 2, which necessarily has a different form. Note Theo-

rem 4 would also hold for 2 < p < ∞ and, unlike 1 < p < 2, the constant

K need not be specified.

Theorem 4 ([13]). Let X ⊆ Lp, 1 < p < 2. Then X ↪→ `p if (and only if)

there exists K <∞ so that for all weakly null (xi) ⊆ SX some subsequence

is K-equivalent to the unit vector basis of `p.

These results were unified using the infinite asymptotic game/weakly

null trees machinery which we will discuss after stating

Theorem 5. Let X ⊆ Lp, 1 < p <∞. Then X ↪→ `p iff every weakly null

tree in SX admits a branch equivalent to the unit vector basis of `p.

A tree in SX is (xα)α∈T∞ ⊆ SX where

T∞ = {(n1, . . . , nk) : k ∈ N, n1 < · · · < nk are in N}.
A node in T∞ is all (x(α,n))n>nk

where α = (n1, . . . , nk) or α = ∅. The

tree is weakly null means each node is a weakly null sequence. A branch is

(xi)
∞
i=1 given by xi = x(n1,...,ni) for some subsequence (ni) of N.

It is worth noting that, just as in Proposition 3, if X ⊆ Z, a space with

a basis (zi), and (xα)α∈T∞ ⊆ SX is a weakly null tree then the tree admits

a full subtree (yα)α∈T∞ so that each branch is a perturbation of a block

basis of (zi). By full subtree we mean that (yα)α∈T∞ = (xα)α∈T ′ where

T ′ ⊆ T∞ is order isomorphic to T∞ and if yα = xγ(α) then |γ(α)| = |α| =

length of α. |(n1, . . . , nk)| = k. Thus each branch of (yα)α∈T∞ is a branch

of (xα)α∈T∞ .

Remark 2. The conditions for a reflexive space X ,

A) Every weakly null sequence (xi) ⊆ X has a subsequenceK-equivalent

to the unit vector basis of `p and

B) Every weakly null tree in SX admits a branch equivalent to the unit

vector basis of `p are generally different. Also it is not hard to show that

B) actually implies

B)′ For some C every weakly null tree in SX admits a branch C-

equivalent to the unit vector basis of `p.
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Note that B)′ ⇒A) by considering for a weakly null (xn) ⊆ SX , the

tree (xα)α∈Tα
where x(n1,...,nk) = xnk

. Indeed the branches of (xα) coincide

with the subsequences of (xi). But in Lp one can show that A) and B) are

in fact equivalent. Thus Theorem 5 encompasses both Theorems 3 and 4.

Theorem 5 follows from

Theorem 6 ([30]). Let 1 < p < ∞, let X be reflexive and assume that

every weakly null tree in SX admits a branch C-equivalent to the unit vector

basis of `p. Assume X ⊆ Z, a reflexive space with an FDD(Ei). Then there

exists a blocking (Fi) of (Ei) so that X naturally embeds into (
∑
Fi)p.

The conclusion means that for some K and all x ∈ X , x =
∑
xn,

xn ∈ Fn, we have ‖x‖ K∼ (
∑ ‖xn‖p)1/p.

We shall outline the steps involved in the proof. First we give a defini-

tion.

Definition 8. Let (Ei) be an FDD for Z. Let δ̄ = (δi), δi ↓ 0. A sequence

(zi) ⊆ SZ is a δ̄-skipped block sequence w.r.t. (Ei) if there exist integers

1 ≤ k1 < `1 < k2 < `2 < · · · so that

‖zn − PE
(kn,`n]zn‖ < δn for all n.

Here for x =
∑
xi, xi ∈ Ei, P

E
(k,`]x =

∑
i∈(k,`] xi. Thus above the

“skipping” is the PE
kn

terms. (zn) is almost a block basis of (En) with the

Ekn
almost skipped.

Now let X ⊆ Z = [(Ei)] be as in the statement of Theorem 6.

Step 1. There exists a blocking (Gi) of (Ei) and δ̄ so that every δ̄-skipped

block sequence w.r.t. (Gi) in SX is 2C-equivalent to the unit vector basis

of `p.

To obtain this one first shows that the weakly null tree hypothesis on

X is equivalent to (S) having a winning strategy in the following game (for

all ε > 0).

The infinite asymptotic game: Two players (S) for subspace and

(V ) for vector alternate plays forever as follows. (S) chooses

n1 ∈ N. (V ) chooses x1 ∈ SX ∩ [(Ei)i≥n1
], . . .. Thus the plays

are (n1, x1, n2, x2, . . .).

(S) wins if (xi) ∈ A(C + ε) ≡ {all normalized bases (C + ε)-equivalent to

the unit vector basis of `p}.
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(S) has a winning strategy means that

∃ n1 ∀ x1 ∈ SX ∩ [(Ei)i≥n1
]

∃ n2 ∀ x2 ∈ SX ∩ [(Ei)i≥n2
]

· · ·
(xi) ∈ A(C + ε)

(V ) wins if (xi) /∈ A(C + ε).

(V ) has a winning strategy means that

∀ n1 ∃ x1 ∈ SX ∩ [(Ei)i≥n1
]

∀ n2 ∃ x2 ∈ SX ∩ [(Ei)i≥n2
]

· · ·
(xi) /∈ A(C + ε)

Now these two winning strategies are the formal negations of each other,

but they are infinite sentences so must one be true? Yes, if the game is

determined which it is in this case since Borel games are determined ([27]).

Now if (V ) had a winning strategy one could easily produce a weakly null

tree in SX all of whose branches did not lie in A(C + ε). So (S) has a

winning strategy. Then by a compactness argument one can deduce Step 1

(2C could be any C + ε here).

The next step is a lemma of W.B. Johnson ([13]) which allows us to

decompose any x ∈ SX into (almost) a linear combination of δ̄-skipped

blocks, in X .

Step 2. Let K be the projection constant of (Gi). There exists a blocking

(Fi) of (Gi), Fi = 〈Gi〉j∈(Ni−1,Ni], N0 = 0 < N1 < · · · , satisfying the

following.

For all x ∈ SX there exists (xi) ⊆ X and for all i there exists ti ∈
(Ni−1, Ni) (t0 = 0, t1 > 1) satisfying

(a) x =
∑
xj

(b) ‖xi‖ < δi or ‖PG
(ti−1,ti)

xi − xi‖ < δi‖xi‖
(c) ‖PG

(ti−1,ti)
x− xi‖ < δi

(d) ‖xi‖ < K + 1

(e) ‖PG
ti
x‖ < δi

Moreover the above holds for any further blocking of (Gi) (which redefines

the Ni’s).



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

The Banach space Lp 123

Remark 3. Thus if x ∈ SX we can write x =
∑
xi, (xi) ⊆ X where if

B = {i ≥ 2 : ‖xi‖ ≥ δi} then (xi/‖xi‖)i∈B is a δ̄-skipped block sequence

w.r.t. (Gi). Also the skipped blocks (Gti
) are in predictable intervals, ti ∈

(Ni−1, Ni). And
∑

i/∈B
i>1

‖xi‖ <
∑
δi.

To prove Step 2 we have a

Lemma 1. ∀ ε > 0 ∀ N ∈ N ∃ n > N so that if x ∈ BX , x =
∑
yi,

yi ∈ Gi, then there exists t ∈ (N,n) with

‖yt‖ < ε and dist

(
t−1∑

1

yi, X

)
< ε.

Proof. If not we obtain y(n) ∈ BX for n > N failing the conclusion for

t ∈ (N,n). Choose y(ni) ω−→ y ∈ BX and let t > N satisfy ‖PG
[t,∞)y‖ < ε/2K.

Choose y(n) from (y(ni)) so that n > t and ‖PG
[1,t)(y

(n) − y)‖ < ε/2K. Then

‖PG
[1,t)y

(n) − y‖ ≤ ‖PG
[1,t)(y

(n) − y)‖ + ‖PG
[t,∞)y‖ <

ε

2K
+

ε

2K
≤ ε.

Also

‖PG
t y

(n)‖ ≤ ‖PG
t (y(n) − y)‖ + ‖PG

t y‖ <
ε

2
+
ε

2
= ε.

This contradicts our choice of y(n).

To use the lemma we select N0 = 0 < N1 < N2 < · · · so that for

all x ∈ BX there exists ti ∈ (Ni−1, Ni) and zi ∈ X with ‖PG
ti
x‖ < εi

and ‖PG
[1,ti)

x − zi‖ < εi. Set xi = z1, xi = zi − zi−1 for i > 1. Then∑n
1 xi = zn → x and the other properties b)–d) hold, as is easily checked,

if (K + 1)(εi + 2εi−1) < δ2i .

Now let (Fi) be the blocking obtained in Step 2. It is not hard to show

that if x =
∑
xi is as in Step 2 then ‖x‖ 3C∼ (

∑ ‖xi‖p)1/p, provided δ̄ = (δi)

is small enough. But this is not the decomposition given by x =
∑
yi,

yi ∈ Fi. However we do have

xi ≈ PG
(ti−1,ti)

(yi−1 + yi) and

yi ≈ PG
(Ni−1,Ni)

(xi + xi+1)

which yields ‖x‖ K(C)∼ (
∑ ‖yi‖p)1/p by making the appropriate estimates.

Returning to X ⊆ Lp (2 < p <∞) we have seen that one of these holds:

• X ∼ `2
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• X ↪→ `p
• `p ⊕ `2 ↪→ X

The latter comes from Theorems 2 and 3. If X � `2 and X 6↪→ `p then X

contains a subspace isomorphic to `2 so X ∼ `2 ⊕ Y . Now Y also contains

`p (or else X ∼ `2) and in fact complementably (as a perturbation of a

disjointly supported (fi) ⊆ SLp
) so `p ⊕ `2 ↪→ X .

Our next goal will be to characterize when X ↪→ `p ⊕ `2 and if not to

then show that (
∑
`2)p ↪→ X .

First we recall one more old result.

Theorem 7 ([17]). Let X ⊆ Lp, 2 < p < ∞. Assume there exists Y ⊆
`p ⊕ `2 and a quotient (onto) map Q : Y → X. Then X ↪→ `p ⊕ `2.

This is an answer, of a sort, to when X ↪→ `p ⊕ `2 but it is not an

intrinsic characterization. The proof however provides a clue as to how to

find one. The isomorphism X ↪→ `p ⊕ `2 is given by a blocking (Hn) of (hi)

so that X naturally embeds into
(∑

Hn

)
p
⊕
(∑

(Hn, ‖ · ‖2)
)

2
∼ `p ⊕ `2.

Before proceeding we recall some more inequalities.

Theorem 8 ([33]). Let 2 < p < ∞. There exists Kp < ∞ so that if (xi)

is a normalized mean zero sequence of independent random variables in Lp

then for all (ai) ⊆ R,

∥∥∥
∑

aixi

∥∥∥
p

Kp∼
(∑

|ai|p
)1/p

∨
(∑

|ai|2‖xi‖2
2

)1/2

.

Note that in this case [(xi)] ↪→ `p ⊕ `2 via the embedding

∑
aixi 7−→ ((ai)i, (ai‖xi‖2)i) ∈ `p ⊕ `2.

The next result generalizes this to martingale difference sequences, e.g.,

block bases of (hi).

Theorem 9 ([6,7]). Let 2 < p < ∞. There exists Cp < ∞ so that if (zi)

is a martingale difference sequence in Lp with respect to the sequence of

σ-algebras (Fn), then

∥∥∥
∑

zi

∥∥∥
p

Cp∼
(∑

‖zi‖p
p

)1/p

∨
∥∥∥∥
(∑

EFi
(z2

i+1)
)1/2

∥∥∥∥
p

.
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Recall something we said earlier. Suppose that (xi) ⊆ SLp
is weakly

null. Passing to a subsequence we obtain (yi) which, by perturbing, we may

assume is a block basis of (hi). Passing to a further subsequence we may

assume ε ≡ limi ‖yi‖2 exists. If ε = 0 a subsequence of (yi) is equivalent

to the unit vector basis of `p by the [20] arguments. Otherwise we have

(essentially)

ε
(∑

|ai|2
)1/2

=
∥∥∥
∑

aiyi

∥∥∥
2
≤
∥∥∥
∑

aiyi

∥∥∥
p

≤ C(p)
(∑

|ai|2
)1/2

,

using the fundamental inequality, Proposition 5. Thus [(yi)] embeds into

`p ⊕ `2 with (yi) as a block basis of the natural basis for `p ⊕ `2.

Johnson, Maurey, Schechtman and Tzafriri obtained a stronger version

of this dichotomy using Theorem 9.

Theorem 10 ([15]). Let 2 < p < ∞. There exists Dp < ∞ with the

following property. Every normalized weakly null sequence in Lp admits a

subsequence (xi) satisfying, for some w ∈ [0, 1] and all (ai) ⊆ R,

∥∥∥
∑

aixi

∥∥∥
p

Dp∼
(∑

|ai|p
)1/p

∨ w
(∑

|ai|2
)1/2

.

We are now ready for an intrinsic characterization of when X ⊆ Lp

embeds into `p ⊕ `2.

Theorem 11 ([12]). Let X ⊆ Lp, 2 < p < ∞. The following are equiva-

lent:

(a) X ↪→ `p ⊕ `2
(b) Every weakly null tree in SX admits a branch (xi) satisfying for some

K and all (ai)

∥∥∥
∑

aixi

∥∥∥ K∼
(∑

|ai|p
)1/p

∨
∥∥∥
∑

aixi

∥∥∥
2

≈
(∑

|ai|p
)1/p

∨
(∑

|ai|2‖xi‖2
2

)1/2

.

(c) Every weakly null tree in SX admits a branch (xi) satisfying for some

K and (wi) ⊆ [0, 1] and all (ai),

∥∥∥
∑

aixi

∥∥∥ K∼
(∑

|ai|p
)1/p

∨
(∑

|ai|2w2
i

)1/2

.
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(d) There exists K so that every weakly null sequence in SX admits a sub-

sequence (xi) satisfying the condition in b):

∥∥∥
∑

aixi

∥∥∥ K∼
(∑

|ai|p
)1/p

∨
∥∥∥
∑

aixi

∥∥∥
2

≈
(∑

|ai|p
)1/p

∨
(∑

|ai|2ε2
)1/2

where ε = lim
i
‖xi‖2.

Condition c) just says that every weakly null tree in SX admits a branch

equivalent to a block basis of the natural basis for `p ⊕ `2 (discussed more

below).

Conditions b) and c) do not require K to be universal but the “all

weakly null trees. . .” hypothesis yields this.

The latter “≈” near equalities in b) (and d)) come from the fact that

every weakly null tree in SLp
can be first pruned to a full subtree so that

each branch is essentially a normalized block basis of (hi).

Condition d) is an anomaly in that usually “every sequence has a

subsequence. . .” is a vastly different condition than “every tree admits a

branch. . .”. Here again the special nature of Lp is playing a role. Also note

the difference between d) and Theorem 10.

The embedding of X into `p ⊕ `2 will follow the clue from the proof

of Theorem 7 by producing a blocking (Hn) of (hi) and embedding X

naturally into
(∑

Hn

)
p
⊕
(∑

(Hn, ‖ · ‖2)
)

2
.

Thus if x =
∑
xn, xn ∈ Hn then ‖x‖ ∼ (

∑ ‖xn‖p)1/p ∨ (
∑ ‖xn‖2

2)1/2.

The proof of b)⇒a) is much like that of Theorem 6. We produce

a blocking (Hn) of (hn) so that X naturally embeds into (
∑
Hn)p ⊕

(
∑

(Hn, ‖ · ‖2))2 ∼ `p ⊕ `2. In fact we obtain a more general result.

A basis (vi) is 1-subsymmetric if it is 1-unconditional and ‖∑aivi‖ =

‖∑aivni
‖ for all (ai) and all n1 < n2 < · · · .

Theorem 12 ([12]). Let X and Y be Banach spaces with X reflexive. Let

V be a space with a 1-subsymmetric normalized basis (vi) and let T : X → Y

be a bounded linear operator. Assume that for some C every normalized

weakly null tree in X admits a branch (xn) satisfying:
∥∥∥
∑

anxn

∥∥∥
X

C∼
∥∥∥
∑

anvn

∥∥∥
V
∨
∥∥∥T
(∑

anxn

)∥∥∥
Y
.
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Then if X ⊆ Z, a reflexive space with an FDD(Ei), there exists a blocking

(Gi) of (Ei) so that X naturally embeds into (
∑
Gi)V ⊕ Y : if x =

∑
xi,

xi ∈ Gi then x 7→ (xi) ⊕ Tx ∈ (
∑
Gi)V ⊕ Y .

(
∑
Gi)V is the completion of 〈(Gi)〉 under

‖(xi)‖ =
∥∥∥
∑

‖xi‖vi

∥∥∥
V
.

This is applied to V = `p, Z = Lp and Y = L2 where T : X → L2 is the

identity map.

So we obtain b)⇒a) and clearly a)⇒c). Indeed suppose that X ⊆
(`p⊕`2)∞. Then given a weakly null tree in X some branch (xi) is a pertur-

bation of a normalized block basis (yi) of the unit vector basis for `p ⊕ `2.

Thus if ‖yi‖`p
= ci and ‖yi‖`2 = wi then ‖∑aiyi‖ = (

∑ |ai|p|ci|p)1/p ∨
(
∑ |ai|2w2

i )1/2. From Proposition 5, ‖∑aiyi‖(`p⊕`2)p
≥ (
∑ |ai|p)1/p, hence

(∑
|ai|p

)1/p

∨
(∑

|ai|2w2
i

)1/2

≤
∥∥∥
∑

aiyi

∥∥∥
(`p⊕`2)p

≤ 2
∥∥∥
∑

aiyi

∥∥∥

≤ 2

[(∑
|ai|p

)1/p

∨
(∑

|ai|2w2
i

)1/2
]
.

To see c)⇒b) we begin with a weakly null tree in SX and choose a branch

(xi) satisfying the c) condition:

∥∥∥
∑

aixi

∥∥∥ K∼
(∑

|ai|p
)1/p

∨
(∑

|ai|2|wi|2
)1/2

.

Now we could first have “pruned” our tree so that each branch may be

assumed to be a block basis of (hi), by perturbations. We want to say that

for some K ′,
∥∥∥
∑

aixi

∥∥∥ K′

∼
(∑

|ai|p
)1/p

∨
∥∥∥
∑

aixi

∥∥∥
2

(we have
K′

≥ by the fundamental inequality).

If this fails we can find a block basis (yn) of (xn),

yn =

kn∑

i=kn−1+1

aixi , with

kn∑

i=kn−1+1

w2
i a

2
i = 1

and




kn∑

i=kn−1+1

|ai|p



1/p

∨ ‖yn‖2 < 2−n.
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But then from the c) condition (yn) is equivalent to the unit vector basis

of `2 and from the above condition and the [20] argument, a subsequence

is equivalent to the unit vector basis of `p, a contradiction.

Note that b)⇒d) since if (xi) is a normalized weakly null sequence and

we define (xα)α∈T∞ by x(n1,...,nk) = xnk
then the branches of (xα)α∈T∞

coincide with the subsequences of (xn). Note that the condition d) just

says we may take the weight “w” in [15] to be “limi ‖xi‖2”.

It remains to show d)⇒b) in Theorem 11 and this will complete the

proof of Theorem 13. The idea is to use Burkholder’s inequality using d)

on nodes of a weakly null tree, following the scheme of [15] to accomplish

this. That argument will obtain a branch (xn) = (xαn
), αn = (m1, . . . ,mn)

with
∥∥∥
∑

aixi

∥∥∥ ∼
(∑

|ai|p
)1/p

∨
(∑

w2
i a

2
i

)1/2

where wi
C(p)∼ limn ‖x(αn,n)‖2 using d).

Our next goal is to show that if X ⊆ Lp and X does not embed into

`p ⊕ `2, then X contains an isomorphic copy of (
∑
`2)p. The idea will be

to use the failure of d) to show (
∑
`2)p ↪→ X . In the [20] argument, we

obtained a sequence (xi) ⊆ SX with the xi’s becoming more and more

skinny:

lim
i
m[|xi| ≥ ε] = 0 for all ε > 0

and then extracted an `p subsequence, of almost disjointly supported func-

tions. Here we want to replace xi by a sequence of skinny K-isomorphic

copies of `2.

Theorem 13 ([12]). Let X ⊆ Lp, 2 < p < ∞. If X does not embed into

`p ⊕ `2 then (
∑
`2)p ↪→ X.

We want to produce Xi ⊆ X , Xi
K∼ `2 where two things happen. First,

for all ε > 0 there exists i so that if x ∈ SXi
then m[|x| ≥ ε] < ε. Sec-

ondly we need that Xi is not too skinny, namely each BXi
is p-uniformly

integrable.

Definition 9. A ⊆ Lp is p-uniformly integrable if

∀ε > 0 ∃δ > 0 : ∀m(E) < δ ∀ z ∈ A,

∫

E

|z|p < ε.

Lemma 2. Assume for some K and all n there exists (xn
i )∞n=1 ⊆ SX with

limi ‖xn
i ‖2 = εn ↓ 0 and (xn

i )i is K-equivalent to the unit vector basis of `2.

Then (
∑
`2)p ↪→ X.
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Sketch of proof. Note that if y =
∑

i aix
n
i has norm 1 then, assuming as

we may that (xn
i )i is a block basis of (hi) and ‖xn

i ‖2 ≈ εn then

‖y‖2 ≈
(∑

a2
i ‖xn

i ‖2
2

)1/2

. Kεn.

So we have a sequence of skinny K-`2’s inside of X . We would like to have

if yn ∈ [(xn
i )i] then they are essentially disjointly supported so ‖∑ yn‖ ∼

(
∑ ‖yn‖p)1/p, as in the [20] argument. Unlike in [20] we cannot select one

yn from each [(xn
i )i] and pass to a subsequence. We need to fix a given

[(xn
i )i] for large n so it is skinny enough based on the earlier selections of

subspaces and also so that its unit ball is p-uniformly integrable so that

future selections of [(xm
i )i] will be essentially disjoint from it.

To achieve this we need a sublemma.

Sublemma. Let Y ⊆ Lp, 2 < p < ∞, with Y ∼ `2. There exists Z ⊆ Y

with SZ p-uniformly integrable.

Proof. This is proved in two steps. First showing a normalized mar-

tingale difference sequence (xn) with {(xn)} p-uniformly integrable has

A = {∑aixi :
∑
a2

i ≤ 1} also p-uniformly integrable by a stopping time

argument.

The general case is to use the subsequence splitting lemma to write a

subsequence of an `2 basis as xi = yi + zi where the (yi) are a p-uniformly

integrable (perturbation of) a martingale difference sequence and the zi’s

are disjointly supported and then use an averaging argument to get a block

basis where the zi’s disappear.

The subsequence splitting lemma is a nice exercise in real analysis: Given

a bounded (x′i) ⊆ L1 there exists a subsequence (xi) ⊆ (x′i) with xi = yi+zi,

yi∧zi = 0, (yi) is uniformly integrable and the zi’s are disjointly supported.

Now we return to condition d) in Theorem 11 and recall by [15] every

weakly null sequence in SX has a subsequence (xi) with, for some w ∈ [0, 1],

∥∥∥
∑

aixi

∥∥∥ Dp∼
(∑

|ai|p
)1/p

∨ w
(∑

|ai|2
)1/2

and d) asserts that for some absolute C, w
C∼ limi ‖xi‖2. Now clearly we

can assume that w ≥ limi ‖xi‖2 and if d) fails we can use this to construct

our `2’s satisfying the lemma and thus obtain (
∑
`2)p ↪→ X .
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Indeed d) fails yields that we can take a normalized block basis (yi) of

a given (xi) failing the condition for a large C to obtain (yi)
Dp∼ `2 basis yet

‖yi‖2 remains small.

So we have the dichotomy for X ⊆ Lp, 2 < p <∞. Either

• X ↪→ `p ⊕ `2 or

• (
∑
`2)p ↪→ X .

In the latter case, using Lp is stable we can get for all ε > 0, (
∑
`2)p

1+ε
↪→ X .

The theory of stable spaces was developed by Krivine and Maurey ([22]).

X is stable if for all bounded (xn), (yn) ⊆ X ,

lim
m

lim
n

‖xn + ym‖ = lim
n

lim
m

‖xn + ym‖

provided both limits exist. They proved that if X is stable then for some p

and all ε > 0, `p
1+ε
↪→ X . They also proved Lp is stable, 1 ≤ p <∞.

We have obtained in our proof that if X 6↪→ `p ⊕ `2 then for some K

and all ε > 0 there exist Xn ⊆ X , Xn
K∼ `2 and if xn ∈ Xn, ‖∑xn‖ 1+ε∼

(
∑ ‖xn‖p)1/p. Using Lp is stable we can choose Yn ⊆ Xn, Yn

1+ε∼ `2 for all

n.

In fact we can get (
∑
`2)p complemented in X via the next result. We

note first that if (xi) ⊆ SLp
is K-equivalent to the unit vector basis of `2

then, as mentioned earlier, by [32] it is C(K)-complemented in Lp by some

projection P . Also P must have the form (true for any projection of any

space onto `2)

Px =
∑
x∗i (x)xi where (x∗i ) is biorthogonal to (xi) and is weakly

null in Lp′ ( 1
p + 1

p′ = 1).

Proposition 8. For all n let (yn
i )i be a normalized basic sequence in Lp,

2 < p <∞, which is K-equivalent to the unit vector basis of `2 and so that

for yn ∈ [(yn
i )i],

∥∥∥
∑

yn

∥∥∥ K∼
(∑

‖yn‖p
)1/p

.

Then there exists subsequences (xn
i )i ⊆ (yn

i )i, for each n, so that [{xn
i :

n, i ∈ N}] is complemented in Lp.

Proof. By [32] each [(yn
i )i] is C(K)-complemented in Lp via projections

Pn =
∑

m yn
m

∗(x)yn
m. Passing to a subsequence and using a diagonal argu-

ment and perturbing we may assume there exists a blocking (Hn
m) of (hi), in

some order over all n,m, so that for all n,m, supp(yn
m

∗), supp(yn
m) ⊆ Hn

m.
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This uses yn
m

w−→ 0 and yn
m

∗ w−→ 0 (in Lp′) as m → ∞ for each n. Set

Py =
∑

n,m yn
m

∗(y)yn
m. We show P is bounded, hence a projection onto a

copy of (
∑
`2)p.

Let y =
∑

n,m y(n,m), y(n,m) ∈ Hm
n .

‖Py‖ =

∥∥∥∥∥
∑

n

∑

m

yn
m

∗(y(n,m))yn
m

∥∥∥∥∥

∼


∑

n

(
∑

m

|yn
m

∗(y(n,m))|2
)p/2




1/p

.

Now
(
∑

m

|yn
m

∗(y(n,m))|2
)1/2

∼ ‖Pny(n)‖ ≤ C(K)‖y(n)‖

where y(n) =
∑

m y(n,m). So

‖Py‖ ≤ C̄(K)
(∑

‖yn‖p
)1/p

≤
=

C(K)‖y‖.

Remark 4. The proof of Proposition 8 above is due to Schechtman (pri-

vate communication). He also proved by a different much more complicated

argument that the complementation result extends to 1 < p < 2.

In [12] the proofs of all the results are also considered using Aldous’ ([1])

theory of random measures. We are able to show if (
∑
`2)p ↪→ X ⊆ Lp,

2 < p < ∞, then given ε > 0 there exists (
∑
Yn)p

1+ε
↪→ X , d(Yn, `2) < 1 + ε

and moreover: there exist disjoint sets An ⊆ [0, 1] with for all n, y ∈ Yn,

‖y|An
‖ ≥ (1−ε2−n)‖y‖ and [Yn : n ∈ N] is (1+ε) C−1

p complemented in Lp

where Cp is the norm of a symmetric normalized Gaussian random variable

in Lp. This is best possible by [11].

We can also deduce the [17] result: X ⊆ Lp, 2 < p < ∞, and X is a

quotient of a subspace of `p ⊕ `2 ⇒ X ↪→ `p ⊕ `2, by showing that such an

X cannot contain (
∑
`2)p.

Lemma 3. Let W be a subspace of `p ⊕ `2. Let X = `2, let Q : W → X

be a quotient mapping and let λ be a constant with 0 < λ < ‖Q‖−1. For

every M > 0 there is a finite co-dimensional subspace Y of X such that,

for w ∈ W we have

‖w‖ ≤M, Q(w) ∈ Y, ‖Q(w)‖ = 1 =⇒ ‖w‖2 > λ.
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Proof. Suppose otherwise. We can find a normalized block basis (xn) in X

and elements wn ofW with ‖wn‖ ≤M ,Q(wn) = xn and ‖wn‖2 ≤ λ. Taking

a subsequence and perturbing slightly, we may suppose that wn = w+w′
n,

where (w′
n) is a block basis in `p ⊕ `2, satisfying ‖w′

n‖ ≤M , ‖w′
n‖2 ≤ λ.

Since Q(w) = w- lim Q(wn) = 0, we see that Q(w′
n) = xn. We may now

estimate as follows using the fact that the w′
n are disjointly supported:

∥∥∥∥∥

N∑

n=1

w′
n

∥∥∥∥∥ =

(
N∑

n=1

‖w′
n‖p

p

)1/p

∨
(

N∑

n=1

‖w′
n‖2

2

)1/q

≤ N1/pM ∨N1/2λ.

Since (xn) is a normalized block basis in X = `2 we have

N1/2 =

∥∥∥∥∥

N∑

n=1

xn

∥∥∥∥∥ ≤ ‖Q‖
∥∥∥∥∥

N∑

n=1

w′
n

∥∥∥∥∥ ≤M‖Q‖N1/p ∨ λ‖Q‖N1/2.

Since λ‖Q‖ < 1, this is impossible once N is large enough.

Proposition 9. (
∑
`2)p is not a quotient of a subspace of `p ⊕ `2.

Proof. Suppose, if possible, that there exists a quotient operator

`p ⊕ `2 ⊇ Z
Q−→ X =

(
⊕

n∈N

Xn

)

p

where Xn = `2 for all n. Let K be a constant such that Q[KBZ ] ⊇ BX ,

let λ be fixed with 0 < λ < ‖Q‖−1, choose a natural number m with

m1/2−1/p > Kλ−1, and set M = 2Km1/p.

Applying the lemma, we find, for each n, a finite co-dimensional sub-

space Yn of Xn such that

z ∈MBZ , Q(z) ∈ Yn, ‖Q(z‖ = 1 =⇒ ‖z‖q > λ. (2)

For each n, let (e
(n)
i ) be a sequence in Yn, 1-equivalent to the unit vector

basis of `2. For each m-tuple i = (i1, i2, . . . , im) ∈ Nm, let z(i) ∈ Z be

chosen with

Q(z(i)) = e
(1)
i1

+ e
(2)
i2

+ · · · + e
(m)
im

,

and ‖z(i)‖ ≤ Km1/p ‖e(1)i1
+ · · · + e

(m)
im

‖ = Km1/p.
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Taking subsequences in each coordinate, we may suppose that the fol-

lowing weak limits exist in Z

z(i1, i2, . . . , im−1) = w- lim
im→∞

z(i1, i2, . . . , im)

...

z(i1, i2, . . . , ij) = w- lim
ij+1→∞

z(i1, i2, . . . , ij+1)

...

z(i1) = w- lim
i2→∞

z(i1, i2).

Notice that, for all j and all i1, i2, . . . , ij , the following hold:

Q(z(i1, . . . , ij) = e
(1)
i1

+ · · · + e
(j)
ij

‖z(i1, . . . , ij)‖ ≤ Km1/p

‖z(i1, . . . , ij) − z(i1, . . . , ij−1)‖ ≤ 2Km1/p = M.

Since Q(z(i1, . . . , ij) − z(i1, . . . , ij−1)) = e
(j)
ij

∈ SYj
it must be that

‖z(i1, . . . , ij) − z(i1, . . . , ij−1)‖2 > λ, [by (2)]. (3)

We shall now choose recursively some special ij in such a way that

‖z(i1, . . . , ij)‖2 > λj1/2 for all j. Start with i1 = 1; since ‖z(i1)‖ ≤ M

and Q(z(i1)) = e
(1)
i1

we certainly have ‖z(i1)‖2 > λ by (2). Since z(i1, k) −
z(i1) → 0 weakly we can choose i2 such that z(i1, i2) − z(i1) is essentially

disjoint from z(i1). More precisely, because of (3), we can ensure that

‖z(i1, i2)‖q = ‖z(i1) + (z(i1, i2) − z(i1))‖2 > (λ2 + λ2)1/2 = λ21/2.

Continuing in this way, we can indeed choose i3, . . . , im in such a way that

‖z(i1, . . . , ij)‖q ≥ λj1/2.

However, for j = m this yields

λm1/2 ≤ Km1/p,

contradicting our initial choice of m.

We can also obtain some asymptotic results. First we recall the relevant

definitions

cof(X) = {Y ⊆ X : Y is of finite co-dimension in X}.
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Definition 10 ([28]). Let (ei)
n
1 be a normalized monotone basis. (ei) ∈

{X}n, the nth asymptotic structure of X, if the following holds:

∀ ε > 0 ∀ X1 ∈ cof(X) ∃ x1 ∈ SX1

∀ X2 ∈ cof(X) ∃ x2 ∈ SX2

· · ·
∀ Xn ∈ cof(X) ∃ xn ∈ SXn

with db((xi)
n
1 , (ei)

n
1 ) < 1 + ε.

The latter means that for some AB < 1 + ε for all (ai)
n
1 ⊆ R,

A−1

∥∥∥∥∥

n∑

1

aiei

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑

1

aixi

∥∥∥∥∥ ≤ B

∥∥∥∥∥

n∑

1

aiei

∥∥∥∥∥ ,

i.e., (xi)
n
1

1+ε∼ (ei)
n
1 . db(·) is the basis distance and is defined to be the

minimum of such AB.

An alternate way of looking at this when X∗ is separable is that {X}n is

the smallest closed subset of (Mn, db(·, ·)) satisfying: ∀ ε > 0 every weakly

null tree (of length n) in SX admits a branch (xi)
n
1 with db((xi)

n
1 , {X}n) <

1 + ε. Here Mn is the set of normalized bases of length n. The metric on

Mn is actually log db(·, ·) and Mn is compact under this metric.

Definition 11. X is K-asymptotic `p if for all n and all (ei)
n
1 ∈ {X}n,

(ei)
n
1 is K-equivalent to the unit vector basis of `np .

The [16,20] results yield for X ⊆ Lp, 2 < p <∞

• X is asymptotic `p ⇒ X ↪→ `p (since `2 6↪→ X)

• X is asymptotic `2 ⇒ X ↪→ `2 (since `p 6↪→ X).

Definition 12. X is asymptotically `p⊕`2 if ∃K ∀ n∀ (ei)
n
1 ∈ {X}n ∃ (wi)

n
1

with
∥∥∥∥∥

n∑

1

aiei

∥∥∥∥∥
K∼
(

n∑

1

|ai|p
)1/p

∨
(

n∑

1

w2
i a

2
i

)1/2

.

This just says that for some K every weakly null tree of n-levels in SX

admits a branch K-equivalent to a normalized block basis of `p ⊕ `2.

Proposition 10. Let X ⊆ Lp, 2 < p <∞. X is asymptotically `p ⊕ `2 iff

X ↪→ `p ⊕ `2.
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This follows easily from our results by showing that (
∑
`2)p is not

asymptotically `p ⊕ `2.

Indeed write (
∑
`2)p = (

∑
Xn)p, Xn = `2 for all n, and let (en

i )∞i=1 be

the unit vector basis of Xn. Let (Ni)
∞
i=1 be a partition of N into infinite

subsets. Set (xα)α∈T∞ to be the weakly null normalized tree in (
∑
Xn)p

given by

x(m1,...,mk) = ei
mk

if k ∈ Ni.

Then each branch of this tree is equivalent to the unit vector basis of

(
∑
`2)p, in some order. Since (

∑
`2)p 6↪→ `p ⊕ `2 this yields (

∑
`2)p is

not asymptotically `p ⊕ `2.

Recall our goal was to characterize when X ⊆ Lp (2 < p <∞) embeds

into or contains isomorphically one of the small subspaces `p `2, `p ⊕ `2 or

(
∑
`2)p. We have solved this except for one case which remains open.

Problem 1. Let X ⊆ Lp, p > 2. Give an intrinsic characterization of

when X ↪→ (
∑
`2)p.

In light of the [17] `p ⊕ `2 quotient result we ask the following.

Problem 2. Let X ⊆ Lp (2 < p < ∞). If X is a quotient of (a subspace

of) (
∑
`2)p does X embed into (

∑
`2)p?

We also note the following

Problem 3. Characterize when a reflexive space X embeds into (
∑
Fn)2⊕

(
∑
Gn)p for some sequences (Fn), (Gn) of finite dimensional spaces.

The difficulty here is to find a suitable norm to replace ‖ · ‖2 which

naturally existed when X ⊆ Lp, p > 2.

Extensive study has been made of the  Lp spaces. X is  Lp if for some

λ > ∞ and all finite dimensional F ⊆ X there exists F ⊆ G ⊆ X with

d(G, `dimG
p ) ≤ λ. It is known that X is  Lp (1 < p <∞) iff X is isomorphic

to a complemented subspace of Lp and X is not isomorphic to `2 (see e.g.,

[23] and [24]). In particular there are uncountably many such spaces ([4])

and even infinitely many which embed into (
∑
`2)p ([34]). Thus it seems

that a deeper study of the index in [4] will be needed for further progress.

However some things, which we now recall, are known.

• ([31]) If Y is complemented in `p then Y is isomorphic to `p (Proposi-

tion 7).

• ([19]) If Y is a  Lp subspace of `p then Y is isomorphic to `p.
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• ([9]) If Y is complemented in `p ⊕ `2 then Y is isomorphic to `p, `2 or

`p ⊕ `2.

• ([29]) If Y is complemented in (
∑
`2)p then Y is isomorphic to `p, `2,

`p ⊕ `2 or (
∑
`2)p.

We recall that Xp is the  Lp discovered by H. Rosenthal ([33]). For p > 2,

Xp may be defined to be the subspace of `p ⊕ `2 spanned by (ei + wifi),

where (ei) and (fi) are the unit vector bases of `p and `2, respectively,

and where wi → 0 with
∑
w

2p/p−2
i = ∞. Since `p ⊕ `2 embeds into Xp,

the subspaces of Xp and of `p ⊕ `2 are (up to isomorphism) the same. For

1 < p < 2 the space Xp is defined to be the dual of Xp′ where 1/p+1/p′ = 1.

When restricted to Lp-spaces, the results above lead to a dichotomy valid

for 1 < p <∞.

Proposition 11 ([12]). Let Y be a  Lp-space (1 < p < ∞). Either Y is

isomorphic to a complemented subspace of Xp or Y has a complemented

subspace isomorphic to (
∑
`2)p.

Proof. For p > 2 it is shown in [17] that a  Lp-space which embeds in `p⊕`2
embeds complementedly in Xp. Combining this with the main theorem of

the present paper gives what we want for p > 2. When 1 < p < 2, a simple

duality argument extends the result to the full range 1 < p <∞.

It remains a challenging problem to understand more deeply the struc-

ture of the  Lp-subspaces of Xp and `p ⊕ `2. If X has an unconditional basis

we know the answer.

• ([17]) If Y is a  Lp subspace of `p ⊕ `2 (or Xp), 2 < p < ∞, and Y has

an unconditional basis then Y is isomorphic to `p, `p ⊕ `2 or Xp.

• ([17]) If Y is a  Lp subspace of `p ⊕ `2 (1 < p < 2) with an unconditional

basis then Y is isomorphic to `p or `p ⊕ `2.

It is known ([18]) that every  Lp space has a basis but it remains open

if it has an unconditional basis.

So the main open problem for small  Lp spaces is to overcome the un-

conditional basis obstacle.

Problem 4.

(a) Let X be a  Lp subspace of `p ⊕ `2 (2 < p <∞). Is X isomorphic to `p,

`p ⊕ `2 or Xp?
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(b) Let X be a  Lp subspace of `p ⊕ `2 (1 < p < ∞). Is X isomorphic to `p
or `p ⊕ `2?
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10. M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler,
Functional analysis and infinite–dimensional geometry, CMS Books in Math-
ematics, Springer-Verlag, New York, 2001, x+451pp.

11. Y. Gordon, D. R. Lewis and J. R. Retherford, Banach ideals of operators
with applications, J. Functional Analysis 14 (1973), 85–129.

12. R. Haydon, E. Odell and T. Schlumprecht, Small subspaces of Lp, preprint.
13. W. B. Johnson, On quotients of Lp which are quotients of `p, Compositio

Math. 34 (1977), 69–89.
14. W. B. Johnson, B. Maurey and G. Schechtman, Weakly null sequences in L1,

J. Amer. Math. Soc. 20 (2007), 25–36.
15. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric struc-

tures in Banach spaces, Mem. Amer. Math. Soc. 19(217) (1979), v+298.
16. W. B. Johnson and E. Odell, Subspaces of Lp which embed into `p, Compo-

sitio Math. 28 (1974), 37–49.
17. W. B. Johnson and E. Odell, Subspaces and quotients of `p⊕`2 and Xp, Acta

Math. 147 (1981), 117–147.
18. W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional

decompositions and weaker structures in Banach spaces, Israel J. Math. 9

(1971), 488–506.



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

138 E. Odell

19. W. B. Johnson and M. Zippin, On subspaces of quotients of (
∑

Gn)`p
and

(
∑

Gn)c0 , Israel J. Math. 13 (1972), 311–316.
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HÉCTOR N. SALAS

Department of Mathematics
Universidad de Puerto Rico
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In this talk we review properties of hypercyclic operators, revisit some well
known results, and present several problems, some of them in the new classes
of dual hypercyclic operators and frequently hypercyclic operators.

1. Continuous functions with dense orbits

When studying a continuous function acting on a topological space, it is

often convenient to look at the orbit of elements and their closures. The two

extremes for these orbits would be either finite, in which case the element

is periodic, or the whole space. If the space is metric and perfect, then the

second alternative is not possible, but perhaps the closure of the orbit is the

whole space. We are interested in this kind of phenomena with the addi-

tional requirements that the space has a linear structure and the function is

linear. But first let’s look at a very simple situation. Let T = {e2πit : t ∈ R}
be the unit circle in the complex plane C, and let f be the function defined

on T by f(z) = ei2πθz. The action of f is very different according to θ

being rational or irrational. In the first case each point of T is periodic,

whereas in the second case each point has a dense orbit. This result was

known by Dirichlet in 1845. The function g(z) = z2 has a more compli-

cated behavior. There are some points for which the orbit of z under g is

periodic, others for which it is dense, and still others for which both the

preceding statements are not true. Our last example for now is Kroenecker’s

theorem, chapter 23 of [23], which says that in the n-torus T n the func-

tion f((z1, · · · , z2)) = (e2πiθ1z1, · · · , e2πiθnzn) has dense orbit whenever

{1, θ1, · · · , θn} is a linearly independent set over Q.

Let F be a Fréchet space and let L(F ) denote the continuous linear

operators on F . An operator T ∈ L(F ) is hypercyclic if there exists an
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x ∈ F such that

Orb (T, x) := {T nx : n = 0, 1, 2, . . .}

is dense in F , in which case F has to be infinite–dimensional and separable.

Let HF denote the hypercyclic operators on F and let

H(T ) := {x ∈ F : Orb (T, x) = F}.

The three following examples have become classic. Notice how they are

separated in time.

(1) Birkhoff ([7]) showed in 1929 that translation operators on Hol (C)

endowed with the compact–open topology are hypercyclic.

(2) In 1952, MacLane ([29]) did the same for the differentiation operator

D on Hol (C).

(3) The first example on Banach spaces was given by Rolewicz in 1967

([33]). For 1 ≤ p <∞, let S ∈ L(`p(N)) be the backward shift S(e0) = 0

and S(en) = en−1, where {en : n ∈ N} is the canonical basis. Then

λS ∈ H`p(N) whenever |λ| > 1.

The subject was dormant for several years. In 1982 Kitai ([25]) dis-

covered several key properties of hypercyclicity. Unfortunately, the only

portion of her thesis that she published was the last chapter ([26]). Hyper-

cyclicity has a very rich history and has contact with several other areas.

In the 1999 survey [21], Grosse-Erdmann gives a wealth of information. A

very nice treatment of hypercyclicty is given by Shapiro in [37]. Our bib-

liography is only a very small portion of the published literature in this

area.

An important tool for proving hypercylicity is the Hypercyclicity Cri-

terion. It was proposed by Kitai ([25]) and also by Gethner and Shapiro

([17]) for the full sequence (n)n. It is used in the examples 5-7 below.

Theorem 1.1. Let F be a Fréchet space and T ∈ L(F ). If T satisfies

the Hypercyclicity Criterion with respect to the subsequence (nk)k provided

there exist dense subsets X and Y of F and (possibly discontinuous) map-

pings Sk : Y −→ F (k = 1, 2, . . .) so that

(1) Tnk −→ 0 pointwise on X,

(2) Snk
−→ 0 pointwise on Y ,

(3) TnkSnk
−→ IY (Identity on Y ).

Then T is hypercyclic.
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In [17] this criterion was used to give a unified proof for the classical

examples. Let’s use it for example 2 as is done in [37]. Let X = Y be the

space of polynomials in Hol (C). Let D denote the differentiation operator,

and let S denote the operator of integration from 0 to z. Then for each

polynomial p is true that Dnp is eventually zero, Snp → 0 uniformly on

compact subsets of C, and DSp = p. Thus the hypotheses of the criterion

are satisfied and so D is hypercyclic.

More examples of hypercyclic operators:

(4) There are some weighted shifts, unilateral backward and bilateral; also

all identity plus unilateral backward shifts are hypercyclic ([17,18,34]).

(5) Recall that if ϕ is a self map of the unit disc U = {z ∈ C : |z| < 1}, the

composition operator Cϕ(f) = Cϕ ◦ f is bounded on the Hardy space

of the unit disc, H2(U). Bourdon and Shapiro ([13]) initiated the study

of which composition operators are hypercyclic.

(6) Godefroy and Shapiro ([18]) showed that some adjoint of multipliers

are hypercyclic.

(7) Herrero ([24]) discovered the surprising fact that some compact pertur-

bations of the identity are in HF .

(8) An easy consequence of Theorem 1.1 is: If Tj satisfy the Hypercylicity

Criterion for the same sequence, then ⊕∞
j=1Tj ∈ H⊕∞

j=1
Bj

.

(9) There are operators in HB that do not satisfy the Hypercylicity Crite-

rion. This is a recent work by De la Rosa and Read ([15]).

2. Some properties of hypercyclic operators

F will denote a a Fréchet space, and B a Banach space. If T ∈ HF , then:

(1) S−1TS ∈ HF , whenever S is invertible. Thus the set HF is invariant

under similarity.

(2) Suppose that F = E ⊕ G i.e., the projection P on E along G is

continuous (E is the fixed subspace of P whereas G = Ker (P )).

Suppose further that T (G) ⊂ G; i.e, G is invariant under T , then

PTP ∈ HE . This was first observed by Herrero when F is a Hilbert

space, but the same idea works in general. Indeed, let y ∈ E and

let x = Px ⊕ (I − P )x ∈ HF (T ). Therefore there is a subsequence

Tnk(x) → y and since T n = (PTP )n ⊕ (I − P )Sn it follows that

(PTP )nk(Px) → y. Furthermore, if E and G are both invariant, then

T |E ∈ HE and T |G ∈ HG.

(3) It was shown in [25] that σ(T ) meets the unit circle T and moreover,

every component of σ(T ) must meet T. To see the last part, let σ1 and
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σ2 be a decomposition of σ(T ) in two disjoint and nonempty closed

sets. Their corresponding Riesz projections decompose F = F1 ⊕ F2

and σ(T |Fj
) = σj for j = 1, 2. By the last observation in the second

property, it follows that σj meets the unit circle.

(4) H(T ) is a Gδ dense set ([17]).

(5) Moreover, in [9] Bourdon showed that: If x is hypercyclic, then

{P (T )x : P is a nonzero polynomial} is a connected subset of H(T ).

(6) The point spectrum σp(T ∗) is empty.

(7) T ∈ HF if and only if T is topologically transitive; i.e., given non empty

open subsets U and V of F there exists n such that T n(V )∩U is non

empty ([18]). A stronger property is mixing; i.e., given non empty open

subsets U and V of F there exists n0 such that Tn(V )∩U is non empty

for all n ≥ n0 (see Costakis and Sambarino [14]).

(8) In [1], Ansari showed that:

Theorem 2.1. Let B be a Banach space and let T ∈ L(B). If T is hyper-

cyclic, then so is T n for all n ∈ N and H(T ) = H(T n).

There are two immediate consequences.

Corollary 2.1. If T ∈ HB and λ = e2(m/n)πi, then λT ∈ HB.

Corollary 2.2. If T ∈ HB and σ(Tn) 6= σ(Tm) whenever n 6= m, then

Ansari’s theorem generates infinitely many hypercyclic operators none of

them similar to any other.

In [30], a new proof of this theorem is given. We give an outline of this

proof in the next section.

(9) In [12], Bourdon and Feldman proved a more general result:

Theorem 2.2. Let T ∈ L(F ). If Orb (T, x) has non empty interior, then

T ∈ H(F ).

(10) In view of Corollary 2.1, Bès asked if this is also the case for |λ| = 1.

In [27], León-Saavedra and Müller gave an affirmative answer.

Theorem 2.3. If T ∈ HB, then λT ∈ HB and H(T ) = H(λT ) whenever

λ ∈ T.

In Section 4, we indicate a possible non linear extension of this result

which was also obtained in [30].
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(11) If B is an infinite-dimensional separable Banach space, then HB is non

empty. This is an old question of Rolewicz ([33]) which was answered

affirmatively by Ansari ([2]) and also by Bernal-González ([5]), and for

the general Fréchet case by Bonet and Peris ([8]).

(12) Moreover, every X countable dense subset of B is contained in the

orbit of some T . When the space is a Hilbert space, it was proved

by Halperin, Kitai and Rosenthal ([26]). Their construction is quite

intricate, uses the geometry of Hilbert spaces in a fundamental way

and is obtained from first principles. It seems difficult to generalize this

proof to the general case when the space is Banach. However, in [20]

Grivaux proved that:

Theorem 2.4. Let Y be a countable dense linearly independent subset

of the Banach space B. Then there exists T = I + K ∈ HB such that

Orb {T, x} = Y , where K is compact and ‖K‖ < ε.

Proof. First she proves a proposition showing that if Y and V are two

countable dense sets and γ > 0, then there exists an isomorphism L ∈
L(B) such that L(V ) = Y with ‖I − L‖ < γ. The next step is to choose

T0 = I +K0 ∈ HB with K0 compact and ‖K0‖ < ε, which can be done by

[2] and [5]. Let x0 ∈ H(T0) and let V = Orb {T0, x0}. Set y0 = L(x0) and

T = LT0L
−1. Then {Tn(y0) = L(Tn

0 x0) : n = 0, 1, 2, . . .} = Y . By choosing

γ to be arbitrarily small, the theorem is proved.

Problem 2.1. Let H be an infinite–dimensional separable Hilbert space.

Let σ be a compact set of C such that every component intersects T. Must

there exist T ∈ HH such that σ = σ(T )? More generally, for each separable

Banach space B, characterize those σ for which there exists T ∈ HB with

σ = σ(T ).

Recall that there are Banach spaces with few operators, for instance.

if they are H.I. (hereditarily indecomposable, [19]). Thus the underlying

space determines how big the spectrum may be.

Example of operators which are never hypercyclic:

(1) Contractions, since if ‖T‖ ≤ 1, then Orb (T, x) is trapped in {‖y‖ ≤
‖x‖}.

(2) A finite dimensional operator T . The fastest proof is that σ(T ∗) is non

empty ([37]).

(3) Compact operators, by spectral reasons.

(4) Identity plus finite rank operators.
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(5) Normal operators on Hilbert spaces ([25]).

An operator T is said to be supercyclic if there is a vector x ∈ F

such that {λT nx : λ ∈ C and n = 0, 1, 2, . . .} is dense in F . The following

operators are not even supercyclic:

(6) Hyponormal operators. This was proved by Bourdon ([11]). (An oper-

ator T in a Hilbert space is hyponormal if T ∗T − TT ∗ ≥ 0.)

(7) Surjective isometries on Banach spaces. This was proved by Ansari and

Bourdon ([3]).

3. Ansari’s theorem

The results in this section are from [30]. The separation theorem below is

also valid for topological spaces which are not Hausdorff. For f : X −→ X

we use the notation fn = f ◦ · · · ◦ f ; i.e., f is composed with itself n times.

In [10], Bourdon proved a special case of Theorem 2.1; namely, that T 2 is

hypercyclic. This is the approach that we follow here. But this approach

doesn’t seem to yield the more general Theorem 2.2.

Theorem 3.1. Let (X, ρ) be a metric space without isolated points, and

let f be a continuous function from X into itself. Suppose that there exists

x ∈ X with Orb (f, x) dense in X but Orb (fp, x) is not dense, where p is

a prime number.

Then there exist p nonempty open sets G1, · · · , Gp separating the set

D = {z ∈ X : Orb (f, z) = X}
and f(Gk ∩D) ⊂ Gk+1 ∩D for k < p and f(Gp ∩D) ⊂ G1 ∩D.

Proof. We will just sketch the proof. For 1 ≤ k ≤ p, set

Ak = Orb (fp, f (k−1)x).

By hypothesis, A1 is not X . Let P be the set {1, 2, . . . , p}. The open sets

Gk are defined by

Gk = X \
⋃

P\{k}
Aj .

Since
⋃

j∈P Aj = X , these sets are pairwise disjoint: for j 6= k

Gk ∩Gj = X \
⋃

j∈P

Aj = ∅.

The following assertion is used to prove that each Gk is not empty.
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Assertion: f j−1x /∈ Ak whenever 1 ≤ j ≤ p and j 6= k.

If f j−1x ∈ Ak , then there would be an 1 < s ≤ p such that As ⊂ A1.

But then, since p is prime it would follow that At ⊂ A1 for t = 2, . . . , p,

but this is impossible because A1 is not X .

To see that D ⊂ ⋃j∈P Gj is enough to show that, for j 6= k,

D ∩ Aj ∩ Ak = ∅.

If z ∈ D, then Orb (f, z) ⊂ D since X does not have isolated points; in

particular fz ∈ D. On the other hand

f(Ak) ⊂ Ak+1 for 1 ≤ k < p and f(Ap) ⊂ A1.

Consequently, if z ∈ Gk, then fz ∈ Gk+1 when k < p and fz ∈ G1 when

k = p.

Corollary 3.1. Let (X, ρ) be a metric space without isolated points and

let f be a continuous function from X into itself. Suppose that there exists

x ∈ X with Orb (f, x) dense in X. Suppose further that

Orb (f, x) ⊂ E ⊂ D = {z ∈ X : Orb (f, z) = X}

with E connected. Then Orb (fn, fmx) is dense in X for any pair n,m.

As a consequence of the above theorem and its corollary, we recover

Theorem 2.1. The Banach space can be over the complex numbers or the

real numbers (that the space can be Fréchet and the scalars can be the real

numbers is because of [6]).

Proof. (of Ansari’s theorem) When p is prime, we use the separation the-

orem above and argue as Bourdon’s Theorem 3.4 of [10] since

{P (T )x : P is a non zero polynomial}

is a connected subset of H(T ) ([9]). We prove the general case by induction.

Assume that T q is hypercyclic whenever q < n. The only case that is

necessary to consider is when n is not prime. In that case, write n = mp

with p prime. Since m < n we have that Tm is hypercyclic, but then

Tn = (Tm)p is also hypercyclic because p is prime. Moreover, Corollary 3.1

implies that H(T ) = H(T n).
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4. Variations on a theme of Léon–Saavedra and Müller

The results in this section are also taken from [30]. Theorem 2.3 is true

also in the context of composition operators Cϕ on Hol (U) where ϕ is an

holomorphic self map of the open unit disk U . Shapiro showed in [37] that

Cϕ is hypercyclic if and only if ϕ is univalent and doesn’t have a fixed point

on U . Moreover, he showed that these operators are chaotic, which means

that they have in addition a dense set of periodic points. In [40], Yousefi and

Rezaei studied hypercyclicity for weighted composition operators MfCϕ on

H(U), where f ∈ H(U). In particular, they showed that when |λ| = 1 and

Cϕ is hypercyclic, so is λCϕ. These results motivate the following:

Problem 4.1. Suppose that X is a topological space such that, for λ ∈ T
and x ∈ X, the multiplication Mλx = λx makes sense and Mλ : X −→ X

is continuous. Let f : X −→ X be a map with a dense orbit. What are the

conditions on X and f for which λf has also a dense orbit for all λ ∈ T?

An example of such an X is when it is a subset of a topological vector

space over the complex numbers and such that it is invariant under Mλ for

all λ ∈ T.

Another example is the regular torus since it can be seen as T×T; i.e.,

the 2-torus. More generally, we can consider the n-th torus and the infinite

torus

Tn = T× · · · × T︸ ︷︷ ︸
n

and T∞ =

∞∏

j=1

Tj ,

with Tj = T for all j ∈ N and T∞ is equipped with the product topology.

T∞ is an abelian topological group with multiplication coordinate–wise

and with normalized Haar measure.

An easy example (which we have already mentioned in the introduction)

showing that the answer to the question is not always positive is the map

f : T −→ T defined by f(z) = αz, where α = e2πti is such that t ∈ R \ Q.

More generally we have:

Proposition 4.1. For each j ∈ N, let αj = e2πtj i be such that the sets

{1, t1, . . . , tn} are linearly independent over Q for all n ∈ N. Let f : T∞ −→
T∞ be defined as f(z1, z2, . . .) = (α1z1, α2z2, . . .). Then f has a dense orbit

but α−1
j f doesn’t have a dense orbit for all j ∈ N.

Proof. We claim that the point (1, 1, . . .) has a dense orbit under f . Let

(z1, z2, . . .) be a point of T∞. Let ε > 0. Since T∞ has the product topology,
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it is enough to find an n such that |αn
j − zj | < ε for j = 1, 2, . . . ,m. But

this is what Kroenecker’s theorem says, p. 381 in [23].

Let (X,M, µ) be a probability space and let V be a measure–preserving

map on X , i.e., µ(V −1(A)) = µ(A) for every measurable set A ∈ M. Re-

call that V is called ergodic if whenever A ∈ M is invariant under V then

µ(A) is either 0 or 1. According to Theorem 1.5 of [39], this is equivalent

to saying that whenever A and B are measurable sets with positive mea-

sure, there is an n ∈ N such that µ(V −n(A) ∩B) > 0. Thus ergodicity is a

stronger property than topological transitivity. However, one of the conse-

quences of Theorem 1.11 of [39] is that if X is a connected, metric, compact

abelian group and µ is its normalized Haar measure and B is a continu-

ous epimorphism, then B being ergodic is equivalent to being topologically

transitive, in which case the set of points with dense orbit has measure 1. It

is well–known that the only endomorphisms of the unit circle T are of the

form ϕ(z) = zn with n ∈ Z. They are ergodic, and therefore topologically

transitive, for |n| > 1.

The map in the proposition above is ergodic with respect to Haar mea-

sure in T∞. More related results are obtained in [30].

5. Dual hypercyclic operators

In [34], it was given a bilateral weighted shift T on `2(Z) such that T and

T ∗ are hypercyclic. It happens that T ⊕ T ∗ is not even cyclic. This is a

consequence of the weights of T being positive and the unpublished 1982

theorem of Deddens below:

Theorem 5.1. Let H be a separable Hilbert space. Suppose T ∈ L(H)

and its matrix with respect to some orthonormal basis consists only of real

entries. Then T ⊕ T ∗ is not cyclic.

In his note [37], Shapiro gave a proof of this result. We should notice

that in this case T ∗ is the Hilbert space adjoint which is different of the

adjoint in the Banach space sense when the scalar field is C.

An operator T ∈ HB is called dual hypercyclic if T and T ∗ are hyper-

cyclic. In particular this means that B∗ must be separable. In [32], Petersson

showed:

Theorem 5.2. Any Banach spaces with shrinking symmetric Schauder ba-

sis support dual hypercyclic operators.
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These operators were basically bilateral weighted shifts. He asked which

separable Banach spaces with separable duals support dual hypercylic op-

erators.

We can present the following curious proposition whose proof is similar

but even simpler than the proof of Deddens’ theorem.

Proposition 5.1. Let B be a separable Banach space. If T ∈ L(B), then

T ⊕ T ∗ ∈ L(B ⊕B∗) is not cyclic.

Proof. Let x ⊕ ϕ ∈ B ⊕ B∗, where ‖x ⊕ ϕ‖ = ‖x‖B + ‖ϕ‖B∗ . By Hahn–

Banach’s theorem, it suffices to find a continuous linear function g on B⊕B∗

such that g((T ⊕T ∗)n(x⊕ϕ) = 0 for n = 0, 1, 2, . . .. Choose g = −ϕ⊕ i(x)

where i is the canonical injection of B into B∗∗.

We can extend the conclusion in [37] to dual hypercyclic operators:

Corollary 5.1. The operators T and T ∗ cannot be both mixing.

The following material until the mentioning of Volterra operators is

taken from [36].

Recall that a Schauder basis {en : n ∈ Z} of a Banach space B is un-

condicional if and only if {eπ(n) : n ∈ Z} also forms a basis for any permu-

tation π of Z. It is a symmetric basis if, in addition, all {eπ(n) : n ∈ Z},

where π is a permutation, are equivalent.

Proposition 5.2. Let {en : n ∈ Z} be a symmetric basis of B with cor-

responding biorthogonal functionals {e∗n : n ∈ Z} and let {wn : n ∈ Z} be

a positive bounded sequence. If T =
∑

n∈Z
wne

∗
n ⊗ en−1, then σ(T ) has

circular symmetry.

It is well–known ([38]) that bilateral weighted shifts on `p(Z), with 1 ≤
p <∞, have spectra that could be the origin, a disk, a circle or an annulus,

all of them centered at the origin.

Problem 5.1. Do the spectra of these “bilateral weighted shifts” also look

like those four sets?

The system {(xn, x
∗
n) : xn ∈ B, x∗n ∈ B∗, n ∈ Z} is called biorthogonal

if x∗n(xm) = δm
n . If, in addition, [xn : n ∈ Z] = B and B∗ is the weak∗

closure of the linear span of {x∗n : n ∈ Z}, then {xn : n ∈ Z} is called a

Markushevich basis. Note that the (biorthogonal) functionals {x∗n : n ∈ Z}
are unique for such a basis {xn : n ∈ Z}.
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Ovsepian and Pelczyński showed (see p. 44 of [28]) that every separable

Banach space has a Markushevich basis in which

‖xn‖ = 1 for all n and sup
n

‖x∗n‖ <∞.

We call this property (OP). Moreover, when B∗ is separable, {xn : n ∈ Z}
may be chosen so that [x∗n : n ∈ Z] = B∗. When B∗ is separable, we will

always consider that property (OP) includes [x∗n : n ∈ Z] = B∗. Recall that

for y ∈ B and y∗ ∈ B∗, the tensor product y∗ ⊗ y ∈ L(B) is defined by

y∗ ⊗ y(x) = y∗(x)y and ‖y∗ ⊗ y‖ ≤ ‖y∗‖ ‖y‖. Also (y∗ ⊗ y)∗ = y⊗ y∗ if we

identify y with i(y) where i : B −→ B∗∗ is the canonical injection.

Proposition 5.3. Let B be a Banach space with Markushevich basis

{xn : n ∈ Z} which satisfies (OP). Let wn > 0 for all n and
∑

n∈Z
wn <∞.

Then the “bilateral weighted shift” T =
∑

n∈Z
wnx

∗
n ⊗xn−1 is compact and

quasinilpotent. Its adjoint T ∗ is
∑

n∈Z
wnxn−1 ⊗ x∗n.

If a “shift” T is hypercyclic, then the circular symmetry of σ(T ) and Ki-

tai’s result imply that σ(T ) must be a disk centered at the origin containing

T or an annulus centered at the origin containing T, or just T.

Observe that in the theorem below, T is compact. Also there is an H.I.

space constructed by Gowers and Maurey which is reflexive ([19]). But even

this space supports dual hypercyclic operators.

Theorem 5.3. Suppose that B is a Banach space whose dual is separable

and with Markushevich basis {en : n ∈ Z} which satisfies (OP). Let wn > 0

for all n and
∑

n∈Z
wn <∞. Then there exists a dual hypercyclic operator

I +
∑

n∈Z

vne
∗
n ⊗ en−1 = I + T

such that all vn > 0 and vn = wn except, possibly, for v0 ≤ w0, v4 ≤
w4, v−4 ≤ w−4, v12 ≤ w12 and, for k > 2,

v−(4+
∑k−1

i=2
22i) ≤ w−(4+

∑k−1

i=2
22i)

and

v4+
∑

k
i=2

22i−1 ≤ w4+
∑

k
i=2

22i−1 .

In the next theorem, V may be non-quasinilpotent and therefore σ(I +

V ) may be a disk centered in 1 with positive radius. Thus σ((I + V )n) are

more interesting.

Theorem 5.4. Let L be a bilateral weighted shift on `2(Z), with positive

bounded weight sequence {wn}. Then there exists another bilateral shift V
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on `2(Z) with positive weight sequence {vn} such that I+V and I+V ∗ are

hypercyclic and the corresponding weights of L and V are the same except,

possibly, for v0 ≤ w0, v4 ≤ w4, v−4 ≤ w−4, v12 ≤ w12, v−20 ≤ w−20, v44 ≤
w44, v−84 ≤ w−84, . . ..

In [32], Petersson also asked whether there are other kind of dual hyper-

cylic operators besides the one he considers. The answer is yes; the proof

consists of observing that σ(I+V ) has circular symmetry but around 1 not

0. But in the case of `2(Z) we can say more. There are dual hypercylic of

the form T = I + V , with V a bilateral weighted shift as in the theorem

above and such that V is not quasinilpotent. If σ(T ) = {z : |z − 1| ≤ 1
2},

then by the spectral theorem σ(T n) = {zn : |z − 1| ≤ 1
2}. For n > 1, these

sets don’t have circular symmetry with respect to a point. We can apply

Corollary 2.2: all T n are hypercyclic and T n and Tm cannot be similar for

n 6= m since their spectra are different.

Problem 5.2. Characterize those bilateral shifts V such that I + V is

hypercyclic.

Feldman pointed out that when V en = vnen−1 with 0 < vn ≤ vn+1 for

all n ∈ Z and limn→−∞ vn < 2, then I+V is hypercyclic. In this case V ∗ is

hyponormal, and the conclusion is a consequence of his work with V. Miller

and L. Miller ([16]).

Problem 5.3. Characterize those bilateral shifts V such that I+V is dual

hypercyclic.

The Volterra operator on L2([0, 1], dx) is defined by V f(x) =
∫ x

0
f(t) dt.

Let ϕ be a continuous self–map of [0, 1]. A Volterra type operator on

L2([0, 1], dx) is defined by V f(x) =
∫ ϕ(x)

0
f(t) dt.

The following four results were discovered by Montes–Rodŕıguez,

Rodŕıguez–Mart́ınez and Shkarin.

Theorem 5.5. Let H be a Hilbert space and let Q ⊂ L(H) be the compact

quasinilpotent operators. Then

{T = I +Q : Q ∈ Q and T is dual hypercyclic}

is a Gδ set in {I +Q : Q ∈ Q}.

Proposition 5.4. The set of w in c0(Z) for which I+Bw is dual hypercyclic

is a Gδ in c0(Z).
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Theorem 5.6. Let ϕ be a continuous strictly increasing self–map of [0, 1]

such that ϕ(x) < x for 0 < x ≤ 1. Then I + Vϕ is hypercyclic.

Theorem 5.7. Let T be a continuous operator on a separable Fréchet space

X such that

Ker+ T = span(∪∞
n=1(Tn(X) ∩KerTn)

is dense in X. Then I + T is hypercyclic.

6. Frequently hypercyclic operators

A subset A of N has positive lower density if

lim
Card (A ∩ {1, 2.., n})

n
) > 0.

An operator T ∈ L(B) is said to be frequently hypercyclic if there exists

x ∈ B such that, for each open V , the set {n : T nx ∈ V } has positive lower

density. This notion was introduced recently by Bayart and Grivaux ([4]).

Among their many results they have:

Theorem 6.1. Let X be a separable Fréchet space with ρ an invariant

metric, and let T be a continuous operator on X. Suppose that there exist

a dense sequence (xl) of X and a map S defined on X such that

(1)
∑∞

k=1 ρ(T kxl, 0) is convergent for each l

(2)
∑∞

k=1 ρ(Skxl, 0) is convergent for each l

(3) TS = I.

Then T is frequently hypercyclic.

The first three classical examples mentioned at the beginning are fre-

quently hypercyclic ([4]). In [22], Grosse-Erdman and Peris showed that

every frequently hypercyclic operator satisfies the Hypercyclicty Criterion.

Problem 6.1. Identify the compact subsets of C which are the spectra of

dual hypercyclic operators. Do the same for the spectra of frequently hy-

percyclic operators. In both cases the underlying space must be taken into

account. The most interesting case probably is for operators in a Hilbert

space.

Problem 6.2. Characterize the frequently hypercyclic unilateral backward

shifts ([4,22]). What about bilateral shifts?
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Problem 6.3. What is the intersection of the class of dual hypercyclic

operators and the class of frequently hypercyclic operators? It seems to be

empty.
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5. L. Bernal–González, On hypercyclic operators on Banach spaces, Proc. Amer.
Math. Soc. 127(4) (1999), 1003–1010.

6. J. P. Bès, Invariant manifolds of hypercyclic vectors for the real scalar case,
Proc. Amer. Math. Soc. 127(6) (1999), 1801–1804.

7. G. D. Birkhoff, Demonstration de un theoreme elementaire sur les fonctiones
entieres, C. R. Acad. Sci. Paris, 189 (1929), 473-475.

8. J. Bonet and A. Peris, Hypercyclic operators on non-normable Fréchet spaces,
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1. Operator spaces and completely bounded maps

In the past twenty years, the theory of operator spaces has become a well–

established area in Functional Analysis, with applications to the study of

Banach and operator algebras, Harmonic Analysis, Probability Theory and

Complex Analysis. In fact, some of the results now considered as embodied

in this area predate the establishment of this body of knowledge. Neverthe-

less, these ideas seem not to be as widely known as warranted. Our purpose

here is to survey some of the fundamental ideas in the field and mention

several applications, in order to indicate the variety of directions in which

these ideas can be applied. For proofs of the assertions in Sections 1-3, see

[2,6].

The basic idea of the theory is quantization — one replaces functions by

operators. We are interested here in looking at Banach spaces as subspaces

of B(H), the Banach algebra of operators on a Hilbert space H . One can

then exploit the special nature of those spaces of operators to create a new

category in which the maps are those bounded linear maps that preserve

this special nature.

Definition 1.1. A (concrete) operator space is a closed linear subspace of

B(H) for some Hilbert space H .

Definition 1.2. If X is a concrete operator space in B(H), let Mm,n(X)

∗Presented to III Curso de Análisis Matemático en Andalucia on 7 September, 2008.
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denote all m × n matrices (xij) of elements of X , normed as elements of

B(Hn, Hm), and set Mn(X) = Mn,n(X), Mm,n(C) = Mm,n, and Mn(C) =

Mn. For x ∈Mn(X), let ‖x‖n denote its operator norm. If x ∈Mm(X) and

y ∈Mn(X), let x⊕ y denote the obvious element of Mm+n(X):

x⊕ y =

(
x 0

0 y

)
=

(
(xij) 0

0 (ykl)

)
.

Definition 1.3. The operator–space structure of X consists of the sequence

of operator norms on Mn(X), n = 1, 2, . . .. They are related as in the

following proposition. We refer to X equipped with all of these norms on

the spaces of matrices as a concrete operator space.

Proposition 1.1. Let X be a concrete operator space.

(M1) ‖x⊕ y‖m+n = max{‖x‖m, ‖y‖n} : x ∈Mm(X), y ∈ Mn(X).

(M2) ‖αxβ‖n ≤ ‖α‖ ‖x‖m‖β‖, x ∈Mm(X), α ∈Mn,m, β ∈ Mm,n.

Example 1.1. Recall that γ : H → B(C, H), where γ(ξ)(a) = aξ, is an

isometry and thus defines H itself as a concrete operator space, denoted

Hc and called the column space of H .

On the other hand, if H̄ denotes the usual conjugate space of H and

ξ ∈ H , define ρ : H → H̄∗ by ρ(ξ)(η̄) = 〈ξ, η〉. Again H becomes a concrete

operator space, denoted Hr and called the row space of H .

Of course, Hc, Hr are isometric as Banach spaces, but they have in-

equivalent operator space structures, as defined below.

Definition 1.4. By an (abstract) operator space we mean a normed space

X equipped with norms ‖ · ‖n on the spaces Mn(X) satisfying (M1) and

(M2). As we will see, there are a lot of them. We call the norms ‖ · ‖n the

operator–space matrix norms of X and say that the normed space X has

been given an operator–space structure if such norms on the spaces Mn(X)

have been assigned.

Remark 1.1.

(1) Given an (abstract) operator space X and x ∈ Mn(X), it follows from

(M1) that the natural map x 7→ x ⊕ 0 is an isometry of Mn(X) into

Mn+1(X). So we can think of our operator space as defining a norm on

M0
∞(X) = all N×N matrices of elements of X with only finitely many

nonzero entries.
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(2) If X is an operator space, then Mm,n(X) also has a distinguished norm

as a subspace ofMp(X), p = max{m,n}. We assume this is the norm on

Mm,n(X). (M1), (M2) also hold here, when formulated appropriately.

Definition 1.5. Let X,Y be operator spaces and ϕ : X → Y be a bounded

linear map. Then ϕ induces obvious maps

ϕn : Mn(X) →Mn(Y ), ϕn

(
(xij )n

i,j=1

)
= (ϕ(xij ))

n
i,j=1 .

It is clear from the isometric embedding of Mn(X) in Mn+1(X) and (M1)

that

‖ϕ‖ = ‖ϕ1‖ ≤ ‖ϕ2‖ ≤ · · · .

We say ϕ is completely bounded (c.b.) if

‖ϕ‖cb = sup
n

‖ϕn‖ <∞.

It is easy to check that ‖ϕ‖cb is a norm on the space CB(X,Y ) of all

completely bounded maps from X to Y . We call ϕ a complete contraction

if ‖ϕ‖cb ≤ 1, a complete isometry if each ϕn : Mn(X) →Mn(Y ) is isometric,

and a complete isomorphism if ϕ is a linear isomorphism and both ϕ and

ϕ−1 are c.b.

The completely bounded maps are the natural morphisms in the cate-

gory of operator spaces. It is easy to see that every Banach space X can

be viewed as having at least one operator–space structure. Thus we have

constructed a functor:

{Ban. spaces, bdd. lin. maps} → {op. spaces, c.b. lin. maps}.

Example 1.2.

(1) If X and Y are operator spaces with dimX = n or dimY = n and

ϕ ∈ B(X,Y ), then ϕ ∈ CB(X,Y ) with

‖ϕ‖cb ≤ n‖ϕ‖.

(2) Let Ω be a locally compact space and X be any operator space. If

ϕ : X → C0(Ω) is bounded and linear, then ϕ is completely bounded

with ‖ϕ‖cb = ‖ϕ‖.

(3) (Grothendieck) Let X,Ω be as in (2). There exists KG > 0 such that

if ϕ : C0(Ω) → X is linear and bounded, then

ϕ ∈ CB(C0(Ω), X), ‖ϕ‖cb ≤ KG ‖ϕ‖.
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2. The fundamental theorem and some consequences

Theorem 2.1 (Fundamental Theorem; Z.-J. Ruan, 1987).

Let X be an abstract operator space. There is a Hilbert space H and a

complete isometry Φ mapping X onto a closed subspace of B(H). If X is

separable, then H can be taken separable.

Applications.

(1) Subspaces. Any subspace Y of an operator space X has the operator–

space structure it inherits from X by restriction, i.e., Mn(Y ) ⊂Mn(X).

(2) C∗-algebras. By the Gelfand–Naimark Theorem, every C∗-algebra is

*-isometrically isomorphic to a subalgebra of some B(H).

(3) Quotient spaces. If Y is a closed subspace of the operator space X ,

then Mn(Y ) is a closed subspace of Mn(X) and the natural map of

Mn(X) onto Mn(X/Y ) has kernel Mn(Y ). Thus

Mn(X/Y ) ∼= Mn(X)/Mn(Y ).

So give Mn(X/Y ) the quotient norm of Mn(X)/Mn(Y ). These norms

satisfy (M1) and (M2). Thus X/Y becomes an operator space with

respect to this quotient operator–space structure.

(4) Dual spaces. If X is an operator space, then every element of the

dual space X∗ is c.b., as is easily seen. Moreover, it is easy to see from

Example 1.2(1) of Section 1 that

Mn(X∗) ∼= B(X,Mn) ∼= CB(X,Mn); f(x) = (fij(x)) , f ∈Mn(X∗).

Give Mn(X∗) the norm it inherits from CB(X,Mn). One checks eas-

ily that this gives X∗ an operator–space structure, called the dual

operator–space structure on X∗.

(5) Mapping spaces. More generally, let X,Y be operator spaces. Then

each ϕ = (ϕij) ∈ Mn(CB(X,Y )) determines a mapping ϕ : X →
Mn(Y ) in the obvious way. Thus

Mn(CB(X,Y )) ∼= CB(X,Mn(Y )).

Now use the c.b.-norm on CB(X,Mn(Y )) to define ‖ϕ‖n on

Mn(CB(X,Y )). Then CB(X,Y ) becomes an operator space.

(6) Let G be a locally compact group, let C∗(G) denote its group C∗-

algebra (see Section 6) and let B(G) be the Banach algebra of all linear

combinations of functions of positive type (positive definite functions)

on G. Then C∗(G)∗ = B(G), so the Fourier–Stieltjes algebra B(G) has

a natural operator–space structure. Hence so does the Fourier algebra

A(G), as a subspace of B(G).
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(7) Bilinear maps. Let X,Y, Z be operator spaces and let Bil(X × Y, Z)

be the space of bounded bilinear maps u : X × Y → Z, i.e.,

‖u‖ = sup
‖x‖≤1,‖y‖≤1

‖u(x, y)‖ <∞.

Given such a u, for all x ∈ X there exists Φ(x) ∈ B(Y, Z):

Φ(x)(y) = u(x, y); Φ ∈ B(X,B(Y, Z)).

Call u completely bounded if

Φ(x) ∈ CB(Y, Z) ∀ x ∈ X and Φ ∈ CB(X,CB(Y, Z)).

This defines the space CBil(X × Y, Z) of completely bounded bilinear

maps. In particular, taking Z = C, if u ∈ Bil(X,Y ) = Bil(X × Y,C),

each x ∈ X defines Φ(x) ∈ Y ∗ as above: Φ(x)(y) = u(x, y). Then u is

c.b. if Φ : X → Y ∗ is c.b.. This defines the space CBil(X,Y ).

(8) Bimeasures. Let BM(Ω1,Ω2) = Bil(C0(Ω1), C0(Ω2)). Elements of

BM(Ω1,Ω2) are called bimeasures. If we put together what we have

said so far we get:

Theorem 2.2 (Grothendieck). Every u ∈ BM(Ω1,Ω2) is c.b., i.e.,

BM(Ω1,Ω2) = CBil(C0(Ω1), C0(Ω2)).

3. Tensor products of operator spaces

Recall that if H1, H2 are Hilbert spaces, then there is a natural way to make

the algebraic tensor product H1 ⊗H2 into an inner product space; namely,

set

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉H1
〈η1, η2〉H2

and extend linearly. The completion of H1 ⊗H2 with respect to the norm

induced by this inner product is called the Hilbert–space tensor product of

H1 and H2, and we shall henceforth refer to this completion as H1 ⊗H2.

If Ti ∈ B(Hi), i = 1, 2, then there is a unique operator T1 ⊗ T2 ∈
B(H1 ⊗2 H2) satisfying

T1 ⊗ T2(ξ ⊗ η) = T1ξ ⊗ T2η, ξ ∈ H1, η ∈ H2,

and ‖T1 ⊗ T2‖ = ‖T1‖ ‖T2‖.

If X,Y are Banach spaces, consider the algebraic tensor product X⊗Y .

For t ∈ X ⊗ Y , set

‖t‖γ = inf

{
n∑

i=1

‖xi‖‖yi‖ : t =

n∑

i=1

xi ⊗ yi

}
.
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It is easy to check this is a norm and the completion, denoted X ⊗γ Y , is

called the projective tensor product of X and Y . It is the natural tensor

product in the category of Banach spaces: for X,Y, Z Banach spaces,

B(X ⊗γ Y, Z) ∼= Bil(X × Y, Z) ∼= B(X,B(Y, Z)).

We want to quantize this notion on operator spaces.

Proposition 3.1. Let X,Y be vector spaces.

(1) Mp(X) ⊗Mq(Y ) ∼= Mpq(X ⊗ Y ) (Kronecker product).

(2) If t ∈ Mn(X ⊗ Y ), then there exist integers p and q, x ∈ Mp(X),

y ∈ Mq(Y ), α ∈Mn,pq and β ∈Mpq,n such that

t = α(x⊗ y)β.

Definition 3.1. Let X and Y be operator spaces. For t ∈Mn(X ⊗Y ), set

‖t‖Γ = inf{‖α‖‖x‖‖y‖‖β‖ : t = α(x⊗ y)β as in Proposition 3.1}.

As asserted in the following theorem, this formula defines a norm on

M0
∞(X ⊗ Y ). The completion X⊗̂Y with respect to this norm is called

the operator–space projective tensor product of X and Y .

Theorem 3.1. For any operator spaces X and Y , X⊗̂Y is an operator

space with ‖x⊗ y‖Γ ≤ ‖x‖m‖y‖n for all x ∈ Mm(X), y ∈Mn(Y ).

In fact, ⊗̂ is commutative and associative and is the natural tensor

product in the category of operator spaces:

Proposition 3.2. If X,Y, and Z are operator spaces, there are complete

isometries

CB(X⊗̂Y, Z) ∼= CBil(X × Y, Z) ∼= CB(X,CB(Y, Z)).

Corollary 3.1. If X and Y are operator spaces then we have as a complete

isometry

(
X⊗̂Y

)∗
= CB(X,Y ∗),

where each u ∈
(
X⊗̂Y

)∗
corresponds to the canonical map ϕu : X → Y ∗

given by

ϕu(x)(y) = u(x⊗ y).
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There is another notion of complete boundedness for multilinear maps

which plays an important role in operator space theory and its applications.

It is defined by mimicking the multiplication of matrices.

Definition 3.2. Let ϕ ∈ CBil(X × Y, Z) and ϕ̄ : X ⊗ Y → Z be its linear

extension. Then, as we have seen, there correspond maps

ϕn,n : Mn(X) ×Mn(Y ) →Mn2(Z)

given by

ϕn,n(x, y)(i,k),(j,l) = ϕ̄n2(x⊗ y)(i,k),(j,l) = ϕ(xij , ykl).

Define ϕ(n) : Mn(X) ×Mn(Y ) →Mn(Z) by

[
ϕ(n)(x, y)

]
i,j

=

n∑

k=1

ϕ(xik , yk,j), 1 ≤ i, j ≤ n.

We call ϕ matrix completely bounded (m.b.) if

‖ϕ‖mb = sup
n

‖ϕ(n)‖ <∞.

If ‖ϕ‖mb ≤ 1 we say ϕ is a matrix complete contraction.

Let MBil(X × Y, Z) be the linear space of all matrix c.b. maps from

X ×Y to Z with the mb-norm. If ϕ ∈ CBil(X ×Y, Z), then one can check

that ‖ϕ‖cb ≤ ‖ϕ‖mb. Thus

MBil(X × Y, Z) ⊂ CBil(X × Y, Z).

Let us now linearize the m.b. maps, just as we did for the c.b. maps to

create the operator–space projective tensor product. To do this, replace the

Kronecker product x ⊗ y by the “matrix inner product”— replace matrix

multiplication by tensor product, as follows.

Definition 3.3. If x ∈Mm,p(X), y ∈Mp,n(Y ), define

x� y ∈Mm,n(X ⊗ Y )

by

(x � y)ij =

p∑

k=1

xik ⊗ ykj .

Thus if ϕ : X × Y → Z is bilinear, then

ϕ(n)(x, y) = ϕ̄(x� y).
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Proposition 3.3. Let X,Y be vector spaces. If t ∈ Mn(X⊗Y ), then there

exist p ≥ 1, x ∈Mn,p(X) and y ∈Mp,n(Y ) such that t = x� y.

Definition 3.4. Let X and Y be operator spaces. For t ∈Mn(X ⊗Y ), set

‖t‖h = inf {‖x‖‖y‖ : t = x� y, p, x, y as in Proposition 3.3} .
By Proposition 3.3, the set on the right is nonempty. We now assert that

this defines an operator–space structure onX⊗Y , whose completionX⊗hY

is called the Haagerup tensor product of X and Y .

Theorem 3.2. Let X and Y be operator spaces. Then ‖ · ‖h defines an

operator–space structure on X ⊗ Y such that for any t in Mn(X ⊗ Y ),

‖t‖h ≤ ‖t‖Γ.

Corollary 3.2. MBil(X × Y, Z) ∼= CB(X ⊗h Y, Z).

Remark 3.1. The Haagerup tensor product is associative but not com-

mutative.

Theorem 3.3 (U. Haagerup). Let A and B be (unital) C∗-algebras and

suppose that u ∈ (A⊗h B)∗. Then there exist *-representations

π : A → B(Hπ), σ : B → B(Hσ), ξ ∈ Hσ , η ∈ Hπ ,

and T : Hσ → Hπ such that

u(a⊗ b) = 〈π(a)Tσ(b)ξ, η〉 = 〈Tσ(b)ξ, π(a∗)η〉 (1)

and ‖u‖ = ‖T‖‖ξ‖‖η‖.

Conversely, if ϕ : A⊗hB → C is given as in the right–hand side of (1),

then ϕ ∈ (A⊗h B)∗ with ‖ϕ‖ ≤ ‖T‖‖ξ‖‖η‖.

Remark 3.2.

(1) Theorem 3.3 implies an improvement of Theorem 2.2:

Theorem 3.4 (Grothendieck). Let Ω1,Ω2 be locally compact spaces.

Then every bounded bilinear form on C0(Ω1)×C0(Ω2) is matrix completely

bounded.

(2) Let X1, . . . , Xn be operator spaces. It is simple to extend Definition 3.2

to define matrix completely bounded multilinear maps

ϕ : X1 × · · · ×Xn → Y.

(3) Using the notion of a unitary dilation and a nontrivial generalization

of Theorem 3.3, we obtain the following theorem:
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Theorem 3.5 (E. Christensen, A. Sinclair). Let A1, . . . , An be C∗-

algebras, K be a Hilbert space, and

ϕ : A1 × · · · ×An → B(K)

be multilinear. Then ϕ is m.b. if and only if there is a Hilbert space H,

*-representations πi : Ai → B(H), 1 ≤ i ≤ n, S ∈ B(K,H) and T ∈
B(H,K) such that ‖ϕ‖mb = ‖S‖‖T‖ and

ϕ(a1, . . . , an) = Tπ1(a1) · · ·πn(an)S.

(4) It can be shown that ⊗h is injective in the category of operator spaces: if

X1 ⊂ X2, Y1 ⊂ Y2 then X1 ⊗h Y1 ⊂ X2 ⊗h Y2 completely isometrically.

This and a Hahn–Banach Theorem argument can be used to extend all

of the above results from C∗-algebras to all operator spaces.

4. Applications to operator algebra theory

4.1. An application of the operator–space projective tensor

product

Recall that a von Neumann (v.N.) algebra M on a Hilbert space H is a

C∗-subalgebra of B(H) that is equal to its double commutant:

M ′ = {t ∈ B(H) : tm = mt,m ∈M},

M ′′ = (M ′)′ and we require that M ′′ = M .

By a well–known theorem of Sakai, a C∗-algebra A can be realized as a

v.N. algebra in some B(H) if and only if A is isometrically the dual space

of some Banach space. In particular if A is embedded in some B(H), then

A′′ = A∗∗, so A∗∗ is a v.N. algebra.

The predual A∗ of a v.N. algebra is unique. For example, it is well–

known that B(H)∗ = T (H) (trace–class operators).

Let M be a v.N. algebra. Then M∗ has a natural operator–space struc-

ture as a subspace of M∗: M∗ ⊂ (M∗)∗∗ = M∗. And, in fact, the dual–space

operator–space structure induced by M∗ on M is the original one.

Definition 4.1. Let H,K be Hilbert spaces and M ⊂ B(H) and N ⊂
B(K) be v.N. algebras with preduals M∗ and N∗, respectively. Let M⊗N
be the v.N. algebra closure of

M ⊗N = {m⊗ n : m ∈M,n ∈ N} ⊂ B(H ⊗K).
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So M⊗N = (M ⊗ N)′′ = M ⊗N
wk∗

. It is known that this is (up to

equivalence) independent of the realizations and that

M∗ ⊗N∗ is dense in (M⊗N)∗.

Theorem 4.1. There is a complete isomorphism from M⊗N onto

CB(M∗, N).

Corollary 4.1. As a complete isomorphism,

(M⊗N)∗ ∼= M∗⊗̂N∗.

Proof. By Theorem 4.1 and Corollary 3.1,

M⊗N = CB(M∗, N) = CB(M∗, (N∗)∗) ∼= (M∗⊗̂N∗)∗.

That is, M∗⊗̂N∗ is the (unique) predual of M⊗N .

4.2. An application to nonselfadjoint operator algebras

Definition 4.2. An injective operator space is the range of an idempotent

complete contraction P on some B(H). Such a space is a ternary ring

of operators (TRO), i.e., a closed subspace Z of a C∗-algebra such that

ZZ∗Z ⊂ Z. A ternary morphism T between TRO’s is a map satisfying

T (xy∗z) = T (x)T (y)∗T (z).

Theorem 4.2 (M. A. Youngson). The range of an idempotent complete

contraction P on a TRO Z is (ternary isomorphic to) a TRO with new

triple product

(x, y, z) 7→ P (xy∗z), x, y, z ∈ P (Z).

Definition 4.3. For any subspace X of B(H), there is a subspace I(X) ⊃
X which is injective and contains no smaller injective space containing X .

We call I(X) an injective envelope of X . I(X) is unique up to ternary

isomorphisms.

Theorem 4.3 (M. Kaneda, V. Paulsen). A Banach space X has the

structure of an operator algebra if and only if it is an operator space such

that when it is represented as a concrete operator space there exists u ∈ I(X)

such that Xu∗X ⊂ X. To define the multiplication, make ‖u‖ = 1 and set

x · y = xu∗y.
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Proof. (D. Blecher) If X satisfies the given conditions, let

θ(x) =

(
xu∗ x(1 − u∗u)1/2

0 0

)
.

Then θ is a complete isometric algebra homomorphism.

If A is a subalgebra of B(H) and I(A) = P (B(H)) is an injective

envelope for A, set u = P (1). By Theorem 4.2,

xy = P (x1∗y) = P (xP (1)∗y) = xu∗y.

5. Applications to harmonic analysis

5.1. An application to Fourier algebras

Let G be a locally compact group, with right Haar (translation–invariant)

measure dx. Let λ denote the right regular (unitary) representation of G

on L2(G, dx):

(λ(x)f)(y) = f(yx) a.e., f ∈ L2(G), x, y ∈ G.

Denote the linear space of all “matrix coefficients” of λ, i.e., all functions

of the form

F (x) = 〈λ(x)f, g〉 = f ∗ g∗, x ∈ G, (2)

by A(G), and norm A(G) by

‖F‖ = inf {‖f‖2‖g‖2 : F is represented as in (2)} .

It can be shown that A(G), under pointwise operations on G and this norm,

becomes a commutative Banach algebra whose Gelfand space is G via point

evaluations.

Let V N(G) be the v.N. algebra in B(L2(G)) generated by λ(G). Then

A(G)∗ = V N(G).

Indeed, if Φ ∈ A(G)∗ one can find T ∈ V N(G) with ‖T‖ = ‖Φ‖ such that

Φ(F ) = 〈Tf, g〉, F as in (2), (3)

and every T ∈ V N(G) defines such a Φ via (3). V N(G) is called the reduced

group von Neumann algebra of G.

Definition 5.1. A quantized Banach algebra is a Banach algebra which is

also an operator space such that the multiplication operationm : A×A→ A

is completely bounded.



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

Operator spaces: Basic theory and applications 165

It can be shown (but it is not obvious) that A(G) is a quantized Banach

algebra.

Now, if G,H are locally compact groups, it is clear that

A(G) ⊗γ A(H) ⊂ A(G ×H).

It was shown long ago by V. Losert that this containment can be proper.

However:

Theorem 5.1 (E. Effros, Z.-J. Ruan). Let G,H be locally compact

groups. As a complete isomorphism of quantized Banach algebras,

A(G×H) ∼= A(G)⊗̂A(H).

Proof. It is easy to check that

V N(G)⊗V N(H) ∼= V N(G×H).

So, by Corollary 4.1,

A(G×H) ∼= V N(G×H)∗ ∼= V N(G)∗⊗̂V N(H)∗ ∼= A(G)⊗̂A(H).

It is easy to see that the multiplication on A(G) ⊗ A(H) agrees with that

of A(G ×H). As observed above, A(G) ⊗ A(H) is dense in A(G×H). So,

by completing, we finish the proof.

The algebras A(G) and some of their relatives are currently of great

research interest.

5.2. An application of the Haagerup tensor product

Definition 5.2. Let Ω1, . . . ,Ωn be locally compact spaces. Set

CB(Ω1, . . . ,Ωn) = (C0(Ω1) ⊗h · · · ⊗h C0(Ωn))∗.

Equivalently, CB(Ω1, . . . ,Ωn) is the space of all m.b. n-linear forms on

C0(Ω1) × · · · × C0(Ωn). Recall that when n = 2, Grothendieck’s theorem

says this includes all bounded bilinear forms (bimeasures). In C0(Ωi)
∗∗ =

M(Ωi)
∗, let L∞(Ωi) denote all bounded, Borel–measurable functions. Also,

we may identify f1 ⊗ · · · ⊗ fn with the function

(f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) = f1(x1)f2(x2) · · · fn(xn).
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Note that every u ∈ CB(Ω1, . . .Ωn) extends completely isometrically to

(L∞(Ω1) ⊗h · · · ⊗h L∞(Ωn))∗ in a canonical way.

Definition 5.3. For Ω1, . . . ,Ωn as above, and µ ∈ M(Ω1 × · · · × Ωn), let

uµ(f1 ⊗ · · · ⊗ fn) =

∫

Ω1×···×Ωn

f1(x1) · · · fn(xn) dµ(x1, . . . , xn).

Then one can show that uµ ∈ CB(Ω1, . . . ,Ωn).

Theorem 5.2 (G. Zhao, B. M. Schreiber). Let G1, . . . , Gn be locally

compact groups. There is a natural convolution multiplication and ad-

joint operation defined on CB(G1, . . . , Gn) making it into a unital Banach

*-algebra which extends the *-algebra structure of M(G1 × · · · × Gn) via

Definition 5.3.

These algebras behave in some ways like measure algebras and in some

ways differently. Some things are known about the harmonic analysis of

these convolution algebras, but there are many open questions.

6. Applications to Probability Theory

Let (Ω,A, P ) be a probability space and H be a Hilbert space. Consider a

stochastic process (random field)

X = {Xt : t ∈ G}

on a locally compact group G with values in H = L2(Ω, P ;H). Assume

that t 7→ Xt is continuous and X spans H.

X is called (weakly right) stationary if

E〈Xsg , Xtg〉 = E〈Xs, Xt〉, s, t, g ∈ G. (4)

If we look at the covariance function

κ(s, t) = E〈Xs, Xt〉 =

∫

Ω

〈Xs, Xt〉 dP, (5)

then stationarity says

κ(s, t) = E〈Xst−1 , Xe〉 = κ̃(st−1). (6)

Equations (5) and (6) imply that κ̃ is of positive type on G, so κ has spectral

properties, which are used heavily in applications.
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A great deal is known about stationary processes. For instance, if G is

abelian with character group Ĝ, then, by Bochner’s Theorem, there is an

associated spectral measure µ on Ĝ such that

κ̃(t) = µ̂(t) =

∫

Ĝ

γ(t) dµ(γ), t ∈ G,

so

κ(s, t) = µ̂(st−1) =

∫

Ĝ

γ(s)γ(t−1) dµ(γ).

We want to consider nonstationary processes which retain some connec-

tion to Harmonic Analysis, i.e, to the spectral representation theory.

Let C∗(G) be the group C∗-algebra of G. That is, there is a

*-representation π0 of the convolution algebra L1(G) on a Hilbert space

H0 such that

‖π(f)‖ ≤ ‖π0(f)‖
for every such representation π. If we set

‖f‖0 = ‖π0(f)‖, f ∈ L1(G),

then ‖f‖0 is a C∗-algebra norm, and C∗(G) is the completion of L1(G) with

respect to this norm. We call π0 the universal representation of L1(G).

If G is abelian, we can take C∗(G) = C0(Ĝ) and π0(f) = f̂ (Fourier

transform), f ∈ L1(G).

Let W ∗(G) be the v.N. algebra generated by C∗(G) in B(H0). It is called

the group von Neumann algebra of G. In fact, π0(x) ∈W ∗(G), x ∈ G.

If u is a bounded bilinear form on C∗(G) × C∗(G), canonically lift u

from C∗(G) × C∗(G) to W ∗(G) ×W ∗(G). Define

û(s, t) = u(π0(s), π0(t)), s, t ∈ G.

Definition 6.1. We say that X = {Xt : t ∈ G} is V -bounded if for some

C > 0,
∥∥∥∥
∫

G

f(t)Xt dt

∥∥∥∥
H

≤ C‖π0(f)‖, f ∈ L1(G).

The process X is called (weakly) harmonizable if there is a bounded bilinear

form u on C∗(G) × C∗(G) such that

κ(s, t) = û(s, t−1), s, t ∈ G.

Theorem 6.1 (M. M. Rao, H. Niemi, K. Ylinen). The following are

equivalent:
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(1) X is V-bounded.

(2) X is harmonizable.

If G is abelian, then (1) and (2) are equivalent to:

(3) X is truly “harmonizable” in the sense that there is a vector measure

Z on Ĝ with values in H such that

Xt =

∫

Ĝ

γ(t) dZ(γ), t ∈ G.

If the bilinear form u in (2) is matrix completely bounded (which is always

true when G is abelian, by Theorem 3.4), then (1) and (2) are equivalent

to:

(4) There exists a Hilbert space K ⊃ H and a stationary process Y =

{Yt : t ∈ G} with values in K such that Xt = PHYt, t ∈ G, where PH
is the canonical projection onto H.

A more quantized notion of harmonizability can be obtained as follows.

Definition 6.2. Let T (H) denote the ideal of trace–class operators on H .

For x, y ∈ H, let the operator inner product [x, y] be defined as a vector

integral of rank–one operators by

[x, y] =

∫

Ω

x(ω) ⊗ y(ω) dP (ω),

i.e.,

〈[x, y]ξ, η〉 =

∫

Ω

〈(x⊗ y) ξ, η〉 dP =

∫

Ω

〈ξ, y〉〈x, η〉 dP, ξ, η ∈ H.

The following assertions are easy to check.

Proposition 6.1. Let x, y, z ∈ H and λ ∈ C.

(1) [x, y] ∈ T (H).

(2) [x, x] ≥ 0 (positive operator) and [x, x] = 0 if and only if x = 0.

(3) [x+ y, z] = [x, z] + [y, z] and [λx, y] = λ[x, y].

(4) [y, x] = [x, y]∗.

(5) tr[x, y] = 〈x, y〉H and ‖[x, x]‖ = ‖x‖2
H.

Definition 6.3. For X as above, the operator covariance function of X is

K(x, t) = [Xs, Xt]
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Definition 6.4. We call X operator stationary if K satisfies the analogue

of Equation (4) and (weakly) operator harmonizable if there is a bounded

bilinear form U : C∗(G) × C∗(G) → T (H) such that

K(s, t) = Û(s, t−1) = U(π0(s), π0(t)∗)

(Recall T (H)∗ = B(H), so

U = U∗∗ : C∗(G) × C∗(G) → B(H)∗ ⊃ T (H)).

One can define operator V-boundedness and obtain an analogue of The-

orem 6.1 in this context, using ideas from operator–space theory. Other

classes of stochastic processes are waiting to be investigated via operator–

space techniques.
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1. Introduction

Most societies organize their economic activity through the functioning of

markets. Myriads of individual economic agents make decisions according

to their private interests, whose interaction results in an allocation of re-

sources. The production and exchange of commodities is at the centre of

the picture: consumers demand commodities and supply labour services,

firms produce commodities according to their technological knowledge, and

commodities flow among agents by means of an exchange process which is

realized through markets and prices.

General equilibrium models try to capture the logic of this complex net-

work of interactions viewing the economic system as a whole, that is, taking

all the simultaneous interdependencies established among economic agents

into account (as opposed to partial equilibrium models, that typically con-

centrate on the analysis of specific markets or decision units). The first

concern of general equilibrium theory is the analysis of conditions ensuring

that all the actions taken independently by economic agents are simultane-

ously feasible. An equilibrium is a situation in which all the agents are able

to realize their plans simultaneously; in other words, agents do not find it

beneficial to change their actions.

Note that nothing ensures that the feasibility of the collective action

corresponds to a socially desirable state of affairs. That is why the analysis

of the social desirability of equilibrium outcomes comes next in the agenda.

Suppose that the economy is arranged in such a way that all agents are
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simultaneously realizing their plans. Can the economy do better? If this

were the case, there would be scope for the intervention of some authority

(the Government, say), because changing the spontaneous allocation of re-

sources would result in a better state. The key questions are, of course, what

“better” means, and whether such an authority will be able to improve the

social situation.

There are many ways of ranking the outcomes of an economy, but there

is a simple principle which seems difficult to object: no resource allocation

can be considered satisfactory if it were possible to improve the situation

of all the members of the society with the available resources. This is the

Pareto principle, which is to be understood as a minimal test of economic

efficiency. Note that there may well be allocations passing this test which

still can be deemed socially undesirable. To be clear: we are not saying that

the Pareto principle ensures good outcomes; what we are saying is that one

should be worried about those outcomes which do not pass such a simple

test.

We present here a simplified general equilibrium model of a (pure ex-

change) competitive economy. A competitive economy is one in which in-

dividual agents have no market power. In particular, each individual agent

takes market prices as external parameters over which she has no influ-

ence (price–taking behaviour). This setting describes a world made of many

agents each of which is very small with respect to the global market. We

shall concentrate here on the case of “pure exchange economies” to make

things simpler (even though the argument extends immediately to the case

of production economies). We present here the basic standard results: (i)

A competitive equilibrium exists, under fairly reasonable assumptions; (ii)

Competitive equilibria yield efficient allocations (First Welfare Theorem);

and (iii) Any efficient allocation can be realized as competitive equilibria

(Second Welfare Theorem).

Those results may be regarded as the Invisible Hand Theorem, a sum-

mary of the most relevant features of competitive markets: competitive

equilibria constitute a non-empty subset of the set of efficient allocations.

The idea that markets are adequate institutions for the efficient allocation

of resources in a decentralized way is a very old one. It was first conceptu-

ally formulated by Adam Smith in 1776 ([11]). Lon Walras (1784) gave a

formal statement of this problem ([13]). It took more than fifty years to find

a proper answer, helped by the development of some mathematical tools,

such as convex analysis, non-linear programming and fixpoint theory.
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2. Social equilibrium

Let us present first a very abstract setting in which those questions can

be formally framed. This reference model will help us to understand the

nature of the requirements of general equilibrium models for competitive

markets.

We consider a society made of h agents. An agent is a decision unit,

that is, an individual or an institution that makes decisions over some

feasible set, according to some individual goal. We assume that agents are

“rational”, meaning that they make the best possible choices according to

their own goals. Note that this type of behaviour contains the ingredients of

a standard optimization problem: maximize some objective function (that

summarizes the agent’s goals) within some feasible set (that describes the

environmental restrictions).

An equilibrium in this context is a situation (a collection of decisions)

in which all the actions chosen by individual agents are compatible. That

is, they are individual best attainable choices that are collectively feasible.

The difficulty in ensuring the existence of such an array of actions comes

from the fact that agents’ choices are interdependent. On the one hand,

because we require collective feasibility. On the other hand, because an

agent’s feasible set may be conditioned by the actions of other agents.

Let us formalize these ideas and point out the implications of the way

of modelling.

A society is a collection of h agents. Agent i = 1, 2, . . . , h is characterized

by three different elements: (i) Her choice set Ai (the universe of alternatives

in which she has to choose); (ii) her objective function, vi, that embodies

her choice criterion; and (iii) the restrictions that the agent faces, γi(·) (a

subset of the choice set that may change with the actions of other agents).

We take Rl as the reference space, that is Ai ⊂ Rl, so that making a

choice amounts to selecting a vector in Rl. The agent’s objective function

vi : Ai → R is a real valued function. This implies, in particular, that all

choices are ordered because we associate a real number to any option in

Ai (hence, vi gives a full description of how this agent ranks the different

alternatives)∗. The mapping γi :
∏h

k=1 Ak → Ai that describes the restric-

tions faced by the agent, is a correspondence (a set–valued mapping) that

depends on the actions of other agents.

∗A more general approach would be to allow people’s objective functions to depend not
only on their own choices but also on the choices made by others. This implies that
vi is a real valued function defined on the Cartesian product of all agents’ choice sets,
vi :

∏h
k=1

Ak → R. No special difficulty derives from this more general model concerning
the existence of equilibrium
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A society (also called an abstract economy) can thus be summarized

by a tuple (Ai, vi, γi)
h
i=1. A point in the choice set of agent i is denoted

by ai ∈ Ai, whereas a = (a1, . . . , ah) denotes a point in
∏h

k=1Ak (that

is, an array of actions, one for each agent). For each a ∈ ∏h
k=1 Ak, the

set γi(a) ⊂ Ai defines agent i’s feasible set. Note that the very notion of

feasible set implies that γi is actually independent on its i-th coordinate

vector.

We say that a point a ∈ ∏h
k=1 Ak is collectively feasible if a ∈∏h

k=1 γk(a). That is, a collection of individual alternatives is jointly fea-

sible when they are consistent with the restrictions they impose.

The rational behaviour of agent i can be described by the following

program:

maxai
vi(ai)

s. t.: ai ∈ γi(a)

}
[P]

We denote by µi :
∏h

k=1 Ak → Ai the (typically set–valued) mapping that

associates agent i’s best response to environment a. That is, given the

actions chosen by all agents other than i, this agent’s rational behaviour

results in the selection of some option in the set:

µi(a) = {ai ∈ γi(a) : vi(a) ≥ vi(āi), ∀āi ∈ γi(a)}.

That is, agent i maximizes her objective function on her feasible set, which

is determined by others’ decisions.

We can now introduce the notion of social equilibrium. It corresponds

to a collection of decisions that is collectively feasible and such that every

agent is maximizing her objective function. Formally:

Definition 2.1. A social equilibrium for a society [Ai, vi, γi]
h
i=1 is a point

a∗ ∈∏h
k=1Ak such that:

(i) a∗ ∈∏h
k=1 γk(a∗);

(ii) vi(a
∗
i ) ≥ vi(ai), ∀ai ∈ γi(a

∗), i = 1, 2, . . . , h.

Ensuring the existence of a social equilibrium in this general context

is a very demanding quest. It amounts to knowing that we can solve h

simultaneous and interdependent optimization programs [P] with virtually

no data. Proving the existence of equilibrium calls, therefore, for powerful

tools. The most natural one in this context is the recourse to a fixed point

argument. This can be better understood as follows.
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First note that a point a∗ ∈∏h
k=1 Ak is a social equilibrium if and only

if a∗i ∈ µi(a
∗) for all i. Now let µ :

∏h
k=1 Ak → ∏h

k=1 Ak be a mapping

defined by µ(a) =
∏h

i=1 µi(a). Then, a∗ is a social equilibrium if and only

if a∗ ∈ µ(a∗), that is, if and only if a∗ is a fixed point of the correspondence

µ.

Kakutani’s fixed point theorem is the key mathematical tool to solve

our problem. It establishes that any upper–hemicontinuous correspondence

that applies a compact convex set over itself has a fixed point (see [3] for

some variants and extensions)†.
Consider now the following set of assumptions that will allow to apply

this theorem and ensure the existence of social equilibria.

• A.1.- Ai ⊂ Rl is non-empty, compact and convex.

• A.2.- vi :
∏h

k=1Ak → R is a continuous, quasiconcave function‡.
• A.3.- γi :

∏h
k=1Ak → Ai is a continuous correspondence with non-empty,

closed and convex values§.

The following theorem provides the basic result for the existence of

equilibrium:

Theorem 2.1. Let [Ai, vi, γi] be a society and suppose that assumptions

(A.1) to (A.3) hold. Then a social equilibrium exists.

Proof. First note that, under the conditions established (a continuous ob-

jective function and a compact non-empty feasible set), Weierstrass’ The-

orem ensures that program [P] has a solution. That is, µi(a) 6= ∅ for all

a. Moreover, the quasiconcavity and continuity of the objective function

imply that µi(a) is convex and closed.

Next we show that, for each i = 1, 2, . . . , h, the correspondence µi is up-

per hemicontinuous (this is just an application of the Maximum Theorem).

As Ai is compact, it suffices to show that for all sequences {an} ⊂∏h
k=1 Ak,

†A set mapping α : D ⊂ Rn → Y ⊂ Rk is upper–hemicontinuous if, for all sequences

{xn} ⊂ D, {yn} ⊂ Y converging to x0 and y0, respectively, and such that yn ∈ α(xn)
for all n, it follows that y0 ∈ α(x0).
‡A real valued function f : C ⊂ Rn → R is called quasiconcave if f(x) > f(x′) im-
plies that f [λx + (1 − λ)x′)] > f(x′) for all λ ∈ (0, 1). This property is a substantial

generalization of the concavity notion and implies that the upper level sets are con-
vex. Quasiconcavity is a postulate on the liking of variety: intermediate combinations of
choices tend to be more appreciated.
§A correspondence is continuous when it is both upper and lower hemicontinuous (where
lower hemicontinuity requires that each point y0 ∈ α(x0) be approachable by a sequence
of points {xn} ⊂ D, {yn} ⊂ Y , with yn ∈ α(xn)).
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{an
i } ⊂ Ai, converging to a0 and a0

i , respectively, and such that an
i ∈ µi(a

n)

for all n, it follows that a0
i ∈ µi(a

0).

Hence, let {an} ⊂ ∏h
k=1 Ak, {an

i } ⊂ Ai be sequences converging to a0

and a0
i , respectively, with an

i ∈ µi(a
n) for all n. As an

i ∈ γi(a
n) for all n and

γi is upper hemicontinuous, it follows that a0
i ∈ γi(a

0). Moreover, as γi is

lower hemicontinuous, for any z ∈ γi(a
0) there exists a sequence {zn} ⊂ Ai

converging to z such that zn ∈ γi(a
n) for all n. Thus, vi(a

n
i ) ≥ vi(z

n) for all

n, because an
i maximizes vi over γi(a

n) and, in the limit, vi(a
0
i ) ≥ vi(z). As

this inequality holds for every z ∈ γi(a
0), we have shown that a0

i ∈ µi(a
0).

We know that µi is an upper hemicontinuous correspondence with

non-empty, compact and convex values. Therefore, the correspondence

µ :
∏h

k=1 Ak → ∏h
k=1Ak given by µ(a) =

∏h
i=1 µi(a) exhibits the same

properties. As
∏h

k=1 Ak is a non-empty, compact and convex subset of Rlh,

we can apply Kakutani’s fixed point theorem to ensure the existence of

some point a∗ in
∏h

k=1Ak such that a∗ ∈ µ(a∗).

The existence of a social equilibrium, proven originally by Gerard De-

breu in 1952, is a neat and powerful result. Yet one has to be careful on

interpreting its scope. Because in order to use this theorem, one has to pro-

duce reasonable specific models of societies (or economies) whose character-

istics induce the properties that its application requires. In other words, we

have to ensure that assumptions (A.1) to (A.3) hold, out of the primitives of

the model (basic properties concerning the ingredients of the agents choice

problems in specific contexts). In particular, there is much more than apply-

ing a fixed point argument to show the existence of competitive equilibrium,

as we shall see next. The major difficulties are related, not surprisingly, to

the continuity of the restrictions and the objective function.

3. From social equilibrium to competitive equilibrium

Let us now consider a general equilibrium model of a competitive economy.

Here agents make decisions, relative to goods and services that are traded

in the market. The basic elements of the model are: (i) Commodities and

prices, which are the variables of the problem; (ii) The agents, which are

the relevant decision units.

We shall consider here, for the sake of simplicity in exposition, the case

of a pure exchange economy. That is, the only agents are the consumers

who trade in the market their possessions. Trade arises out of the diversity

in tastes and endowments.

We assume that there is a fixed number l of commodities (a natural
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number, with 1 ≤ l < ∞). Commodities are goods or services that can

be distinguished according to their characteristics and their availability.

The quantity of a commodity will be represented by a real number. This

amounts to saying that we assume that commodities are perfectly divisible

and implies that we take Rl as the commodity space¶.

Each commodity h = 1, 2, . . . , l has associated with it a real number ph

representing its price. A price system will be represented by a vector p ∈ Rl
+.

Observe that taking p as a point in Rl, which is precisely the commodity

space, introduces an implicit assumption which is essential: there is a price

for each commodity. This is usually expressed by saying that markets are

complete.

Economic agents are the decision units of the model. In a pure exchange

economy there are only two types of agents: consumers and the Government.

Of these two categories, only the first one will be explicitly modelled, while

“the Government” will appear as a central agency that may impose some

regulation policies and enforces the property rights.

A consumer is an individual agent (a single household or a family)

who takes consumption decisions, that is, decisions referring to the de-

mand for goods and services and the supply of different types of labour. It

will be assumed that there is a fixed number m of consumers, indexed by

i = 1, 2, . . . ,m. The consumer’s decision problem is a problem of choice un-

der restrictions. The consumer’s rational behaviour will be identified with

the choice of best options within the set of alternatives that are affordable.

There are three elements that define this problem: (a) The choice set, that

describes the universe of alternatives on which the consumer’s choice prob-

lem is formulated; (b) The choice criterion, that reflects the way in which

the consumer evaluates alternative options; and (c) The restrictions, that

limit the consumer’s effective opportunities of choice.

The choice set for consumer i is given by a subset Xi ⊂ Rl that describes

those consumption vectors that can be realized, given the individual’s abil-

ities and biological constraints. A consumption plan for the i-th consumer

is an l-dimensional vector xi ∈ Xi. A consumption plan specifies some

amounts of goods and labour which the consumer is able to realize. Those

goods and services that the consumer demands are usually denoted by pos-

itive numbers, whereas her supply of productive factors (different types of

¶Taking Rl as the commodity space is a convenient assumption, since it exhibits very
good operational properties. In particular, it provides both a vector space structure and
a suitable topology (e.g., the scalar product is a well defined and continuous operation).
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labour) are denoted by negative ones.

The way in which a consumer ranks different consumption plans is de-

scribed by a binary relation �i, called the consumer’s preference relation,

defined as follows: for each pair of points xi, x
′
i ∈ Xi, x

′
i �i xi means that

x′i is preferred to xi. We assume that this preference relation satisfies the

following properties:

• Transitivity: [x′i �i xi, xi �i x
′′
i ] ⇒ x′i �i x

′′
i ;

• Continuity: the sets B(xi) = {x′i ∈ Xi : x′i �i xi}, W (xi) = {x′i ∈
Xi : xi �i x

′
i} are open in Xi.

• Convexity: x′i �i xi ⇒ λx′i + (1 − λ)xi �i xi, for all λ ∈ (0, 1).

• Monotonicity: x′i >> xi ⇒ x′i �i xi.

Transitivity tells us about the consistency in the choice criterion. Conti-

nuity establishes that if a point x′i is better than (resp., worse than) xi, then

points that are close enough to x′i will also be preferred to xi. Convexity

says that the upper level sets are convex (i.e., intermediate combinations

of consumption plans tend to be more appreciated). Finally, monotonicity

says that more of all commodities is always better‖.

In a market economy, the consumer’s economic problem consists of

choosing a best consumption plan among those that are affordable in Xi.

Let p ∈ Rl be a price vector and xi ∈ Xi a consumption plan. Consumer

i’s expenditure is given by the scalar product pxi =
∑l

k=1 pkxik. The i-

th consumer’s wealth is given by the market worth of her assets; that is,

pωi, where ωi ∈ Rl is the i-th consumer’s initial endowments. The wealth

constraint of consumer i, which determines what is affordable to her, de-

fines her budget correspondence, given by a mapping βi : Rl → Xi with

βi(p) = {xi ∈ Xi : pxi ≤ pωi}.

Observe that βi is homogeneous of degree zero in p, that is, for every

λ > 0, βi(λp) = βi(p). This means that only relative prices actually matter

for consumers’ decisions. We can, therefore, substitute the price space by

the set ∆ = {p ∈ Rl
+ :
∑l

k=1 pk = 1} of normalized prices (also called the

price simplex), a non-empty compact and convex set.

Concerning consumers we shall assume the following∗∗:

‖This is a crude way of expressing the idea that, in any relevant economic problem, the
available commodities are always scarce relative to the needs and desires of consumers.
Some would postulate that this is the essence of economic problems.
∗∗The standard assumption is that the consumption set is bounded from below, which
turns out to be a natural assumption in this context. Nothing in the sequel depends on
the compactness hypothesis, that will simplify our reasoning.
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Axiom 1. For all i = 1, 2, . . . ,m,

(i) Xi is a non-empty compact and convex subset of Rl.

(ii) �i is a transitive, continuous, convex and monotone preference rela-

tion.

(iii) ωi ∈ Xi and there exists x̄i ∈ Xi such that x̄i << ωi.

It is immediate to check that, under Axiom 1, βi(p) is a non-empty,

closed convex set for all p ∈ Rl
+. Part (iii) of Axiom 1 (usually called the

“cheaper point” requirement) is a strong assumption that is required in

order to ensure that the budget correspondence is continuous and non-

empty valued.

The following results are far from trivial (e.g., [6]):

Proposition 3.1. Under Axiom 1, the preference relation �i can be rep-

resented by a real–valued function ui : Xi → R, called consumer i’s utility

function, that is continuous, quasiconcave and monotone.

Proposition 3.2. Under Axiom 1, the budget correspondence βi is contin-

uous in p, for all p ∈ ∆.

Under Axiom 1, in view of Proposition 3.1, the i-th consumer’s choice

problem can be expressed as the solution to the following program:

maxxi
ui(xi)

s. t.: xi ∈ βi(p)

}
[P’]

The behaviour of consumer i is characterized by the choice of a best

affordable option. We define the i-th consumer’s demand correspondence as

a mapping ξi : ∆ → Xi that associates the set of points that solve program

[P’] for each price vector.

Observe that since the budget correspondence is homogeneous of de-

gree zero, it follows that ξi(λp) = ξi(p) for all λ > 0 (i.e., the demand

correspondence inherits the zero homogeneity property of the budget cor-

respondence).

An allocation is a point (xi)
m
i=1 in the set

∏m
i=1Xi. An allocation is a

collection of actions, one for each agent, within their respective choice sets

(hence a point in Rlm). An allocation is feasible if
∑m

i=1 xi ≤ ω (i.e., if the

aggregate consumption does not exceed the available resources).

Definition 3.1. A competitive equilibrium for a pure exchange competitive

economy, E = (Xi, ui, ωi)
m
i=1 is a price vector p∗ ∈ ∆ and an allocation

(x∗i )m
i=1 such that:
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(a) For all i = 1, 2, . . . ,m, x∗i ∈ ξi(p
∗).

(b)
∑m

i=1 x
∗
i = ω.

A competitive equilibrium is a situation in which all consumers maxi-

mize utility within their budget sets at prices p∗ and all markets clear.

4. Equilibrium and efficiency

Let us show first that Axiom 1 is sufficient to ensure the existence of a com-

petitive equilibrium as a special case of a social equilibrium (Theorem 2.1).

To do so, let h = m+ 1 with

(a) For all i = 1, 2, . . . ,m, Ai = Xi, γi(a) = βi(p), vi(a) = ui(xi).

(b) For h = m + 1, Ah = γh(a) = ∆ for all a ∈ ∏h
k=1Ak and vm+1(a) =

p
∑m

i=1(xi − ωi).

Note that the choice of an individual consumers affects neither others’

choice sets nor utility functions (what is usually referred to as “no external-

ities”). So this is a much simpler setting than that presented above. Only

the actions of “the last agent” affect consumers budget sets. Indeed, “the

last agent” can be understood as an expression of the functioning of com-

petitive markets (usually identified with the auctioneer). Her choice set is

the price simplex, and her choice criterion consists of maximizing the worth

of the excess demand (in such a way prices go up when demand exceeds

supply and viceversa). It is not difficult to prove the following:

Proposition 4.1. Under Axiom 1, the correspondence π :
∏m

i=1Xi → ∆

given by

π(·) = arg maxp

{
p

(
m∑

i=1

xi − ω

)}

is continuous, with non-empty, compact and convex values.

Propositions 3.1, 3.2 and 4.1 ensure that Axiom 1 induces the necessary

conditions to apply Theorem 2.1. Therefore,

Corollary 4.1. Let E be a pure exchange economy satisfying Axiom 1.

Then, a competitive equilibrium exists.

The existence of equilibrium establishes that competitive markets are

institutions that are able to ensure that the exchange process, carried out

by price taking agents, can be consistently realized in a decentralized way.
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How good is an equilibrium allocation when compared with other feasi-

ble alternatives? To answer this question one has to introduce value judge-

ments, because different people may rank alternatives differently. Looking

for consensus on the way of evaluating allocations, we focus on the Pareto

principle. This principle says that a feasible allocation is better than an-

other one, when it is preferred by all consumers. A Pareto optimum is a

maximal element of this relation: there is no feasible allocation in which all

agents can be better off.

Asking for Pareto optimality can be regarded as an expression of John

Stuart Mill’s principle: “the highest welfare for the greatest number”. Some-

thing really hard to object. The cost of such a broad consensus is that the

Pareto principle is not very informative. In particular: (a) Many alternative

allocations are not comparable, according to this principle (those in which

some consumers are better off and some others are worse off); (b) The set of

Pareto optimal allocations can be very large, and include extremely differ-

ent welfare distributions (this indicates that the Pareto criterion is devoid

of any distributive justice feature).

We now show two results that are known as the Two Fundamental The-

orems of Welfare Economics. The first one says that every competitive equi-

librium is an optimum. The second one establishes that every optimum is

an equilibrium, provided that we can freely redistribute wealth among con-

sumers. Hence, if we can select an efficient allocation as a socially desirable

outcome, there is a redistribution of initial endowments and a price vec-

tor, that yield this particular allocation as a competitive equilibrium. The

message of this theorem is twofold: (1) Equity and efficiency are not incom-

patible aspirations in a competitive economy; (2) The desired outcome can

be obtained by a suitable modification of property rights, without having

to impose particular actions on individual agents.

Definition 4.1. We say that a feasible allocation (x0
i )m

i=1 is Pareto optimal

when there is no other feasible allocation (x′i)
n
i=1 such that, ui(x

0
i ) ≥ ui(x

′
i)

for all i, with ui(x
0
k) > ui(x

′
k) for some k.

Now we can prove:

Theorem 4.1 (First Welfare Theorem). Let E be a pure exchange

competitive economy in which every consumer has a locally non-satiated

utility function. Let (p∗, (x∗i )m
i=1) be a competitive equilibrium. Then the

allocation (x∗i )m
i=1 is Pareto efficient.



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

Mathematics and markets: Existence and efficiency of competitive equilibrium 181

Proof. Suppose that this is not true, that is, there exists a feasible allo-

cation (x′i)
m
i=1 such that ui(x

′
i) ≥ ui(x

∗
i ) for all i, with ui(x

′
k) > ui(x

∗
k) for

some k. Monotonicity implies that p∗x′i ≥ p∗x∗i for all i, with p∗x′k >

p∗x∗k for those consumers with uk(x′k) > uk(x∗k). Hence, p∗
∑m

i=1 x
′
i >

p∗
∑m

i=1 x
∗
i . As p∗x∗i = p∗ωi, this in turn implies: p∗

∑m
i=1 x

′
i > p∗

∑m
i=1 ωi.

Moreover,
∑m

i=1 x
′
i ≤ ω because (x′i)

m
i=1 is a feasible allocation. Therefore,

p∗
∑m

i=1 x
′
i ≤ p∗

∑m
i=1 ωi, against the former conclusion.

Theorem 4.2 (Second Welfare Theorem). Let E = [(Xi, ui), ω] be an

economy that satisfies Axiom 1 and let (x∗i )m
i=1 be a Pareto optimal alloca-

tion, with xi ∈∗ int Xi for all i. Then, there exists a price vector p∗ ∈ ∆ and

a wealth distribution such that (p∗, (x∗i )m
i=1) is a competitive equilibrium.

Proof. Let x =
∑m

i=1 xi, X =
∑m

i=1Xi. Define BE(x∗) ≡ {x ∈ X : ui(xi ≥
ui(x

∗
i ), ∀i}, a convex set. As (x∗i )m

i=1 is feasible, x∗ ≤ ω, it follows that

ω ∈ BE (x∗). Moreover, ω /∈ int BE(x∗) because (x∗i )m
i=1 is a Pareto optimal

allocation. Therefore, we can find a vector p∗ 6= 0 such that p∗ω ≤ p∗x for

all x ∈ BE(x∗). This implies p∗x∗ = min p∗x for all x ∈ BE(x∗) with p∗x∗ =

p∗ω. Hence, x∗ minimizes aggregate expenditure at prices p∗ on BE(x∗).

It is easy to see that this implies that x∗i is an expenditure minimizing

consumption plan at prices p∗ on the set of consumption plans that are

better than or equal to x∗i for all i. Thus, x∗i is the i-th consumer’s demand

at prices p∗.

So if we let ωi = x∗i , i = 1, 2, . . . ,m, it follows that [p∗, (x∗i )m
i=1] is a

competitive equilibrium for this economy.

5. Final comments

We have presented here the basic ingredients of a general equilibrium model

of a competitive economy, in a highly simplified scenario. The model, how-

ever, is robust enough to apply to much richer environments. Let us con-

clude by briefly commenting on those extensions.

The model presented here refers to the special case in which no pro-

duction activities take place (a “pure exchange” economy). This is not a

relevant restriction as long as we keep the competitive scenario. Indeed,

competitive firms are easily accommodated into the model (they can be

regarded as just providing a continuous transformation of the available re-

sources). The case in which firms do really matter is that in which markets

are not competitive. Yet we are far from solving a full fledged general equi-

librium model with non-competitive firms.
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We have assumed compact choice sets, monotone preferences, and ab-

sence of externalities. None of those assumptions are necessary to ensure the

existence of equilibrium (even the transitivity of the preference relation can

be dispensed with). There are also equilibrium models with a continuum of

agents or an infinite number of commodities.

Even though the externalities can be introduced in the model without

affecting the existence of equilibrium (indeed the social equilibrium adopts

such an approach), they kill the efficiency properties. The reason is that

agents make decisions regarding their private interests without paying at-

tention to the effects those actions produce on other agents. The standard

setting in which those externalities play a role is that of contamination,

public goods or resources of common property.

The convexity assumption (convex choice sets and quasiconcave objec-

tive functions) is, however, hard to avoid. The same applies to the conditions

that ensure the continuity of the mappings that describe the behaviour of

the agents.

Finally, let us point out that the existence of equilibrium tells us about

the possibility that markets are able to coordinate the economic activity.

Yet from this result one cannot deduce that market forces drive the economy

towards an equilibrium. Indeed, we know rather well when the existence of

an equilibrium can be ensured, and know very little about how this happens

(if indeed it happens) and how fast it does.

The classic works of Arrow and Debreu ([1]) and McKenzie ([10]) are

still exciting readings. Debreu ([6,7]), Arrow and Hahn ([2]), Cornwall ([4])

or Mas–Colell, Whinston and Green ([9]), among many others, discuss this

problem more thoroughly. Debreu ([5]) offers a number of interesting ex-

tensions to the model presented here. Border ([3]) offers a nice summary of

the results and the techniques involved. Villar ([12]) provides an analysis

of a general equilibrium model with non-convex firms.

There are three classical topics in the analysis of equilibrium that we

have omitted: the uniqueness, stability and core properties of competitive

equilibria. Mas–Colell et al. ([9]) provide a suitable introduction to the

analysis of these topics. Hildenbrand and Kirman ([8]) and Cornwall ([4])

contain detailed analysis of the core and its connection with competitive

equilibria. Further references can be found there.
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We give here a survey on several open problems and several related, mostly
recent, results concerning ideals in F -algebras and its subclasses (B0-algebras
and m-convex B0-algebras).

1. Introduction

F -algebras are topological algebras (i.e., topological vector spaces equipped

with a jointly continuous associative multiplication), which are F -spaces,

i.e., complete metric topological vector spaces. On one hand, it is quite

large class containing Banach algebras, locally bounded algebras (a class

of topological algebras containing Banach algebras; we shall not deal here

with this class, since the properties of their ideals are essentially the same

as those for Banach algebras) and B0-algebras. On the other, hand it is

narrow enough in order to obtain there interesting results. This paper is a

survey containing some general results concerning ideals in F -algebras and

stating or recalling some open problems important for further development

of the theory of topological algebras (note that an arbitrary complete topo-

logical algebra is an inverse limit of F -algebras [12]). For sake of simplicity

and avoiding unnecessary complication, we shall be considering only unital

(real or complex) algebras. For an information about general topological

algebras, the reader is referred to Mallios [8], see also [16].

2. Prerequisities

The concept of a F -space (Fréchet space) was introduced by Banach ([5]).

Later, French mathematicians added there the condition of local convexity;

such spaces are called B0-spaces by the Polish school (see [9] and [10]) and
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we shall keep here this terminology. The topology of a F -space X can be

given by means of an F -norm, i.e., a functional ‖ · ‖ on X satisfying the

following conditions:

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0,

(ii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖,

(iii) the map (λ, x) 7→ λx is jointly continuous.

Here x, y are elements in X and λ belongs to real or complex scalars. A

distance giving the topology of X can be given by ‖x−y‖, and X is assumed

to be complete with respect to this distance (then it is also complete with

respect to all equivalent F -norms, i.e., giving the same topology on X). For

more information about F -spaces the reader is referred to [5] and [13].

An F -algebra A is a F -space equipped with an associative jointly con-

tinuous multiplication making it a complex or real algebra. However, there

is no particular relation between F -norms ‖x‖, ‖y|| and ‖xy‖ expressing

the joint continuity of multiplication. The class of all F -algebras will be

denoted by F .

The topology of a B0-space X can be given by means of an increasing

sequence of homogeneous seminorms

‖x‖1 ≤ ‖x‖2 ≤ . . . , x ∈ X, (1)

and limi xi = y if ‖xi − y‖k → 0 for all natural k. An F -norm giving the

topology of a B0-space can be given by

‖x‖ =
∞∑

k=1

2−k ‖x‖k

1 + ‖x‖k
.

If A is a B0-algebra, then its seminorms (1) can be chosen so that

‖xy‖k ≤ ‖x‖k+1‖y‖k+1, x, y ∈ A, and ‖e‖k = 1, k = 1, 2, . . . , (2)

where e is the unity of A (see [15] or [16] and [7]). The class of all B0-algebras

will be denoted by B0.

For some algebras it is possible to choose seminorms (1) so that (2) can

be replaced by

‖xy‖k ≤ ‖x‖k‖y‖k, and ||e||k = 1. (3)

Such B0-algebras are called multiplicatively convex (shortly m-convex) and

the class of all m-convex B0-algebras will be denoted by MB0.

Finally, the class of all Banach algebras will be denoted by B. clearly,

we have

B ⊂MB0 ⊂ B0 ⊂ F .
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We shall provide now some examples of non-Banach F -algebras which

shall be useful in the sequel.

Example 2.1. Denote by E the algebra of all entire functions of one com-

plex variable provided with the compact–open topology (the topology of

uniform convergence on compact subsets of the complex plane). This topol-

ogy can be given by seminorms

‖x‖k = max
|ζ|≤k

|z(ζ)|.

Clearly these seminorms satisfy (1) and (3), and so E is an m-convex B0-

algebra.

Example 2.2. Denote by C∞[0, 1] the algebra of all infinitely derivable

functions with all derivatives continuous on the closed unit interval, and

provided with the topology of uniform convergence of functions together

with all their derivatives. This topology can be given by seminorms

‖x‖k = 2k max
0≤i≤k

max
0≤t≤1

2i|x(i)(t)|.

It is not difficult to verify that these seminorms satisfy (1) and (3), and so

the algebra of this example is an m-convex B0-algebra.

Example 2.3. Denote by (s) the algebra of all formal power series x =∑∞
k=0 ξk(x)tk with the topology of pointwise convergence of the coefficients

ξk(x) and with the Cauchy multiplication of power series. It is again an

m-convex B0-algebra with seminorms

‖x‖k =
k−1∑

i=0

|ξi(x)|,

which satisfy (1) and (3).

The following non-commutative version, constructed in [20], of the al-

gebra (s) will be useful in Section 4. Let w be an additional variable and

define the algebra A as the direct sum A = (s) + (s)w with the multipli-

cation given by the relations w2 = 0, wt = 0, so that the product of two

elements in A is given by the formula

(a+ bw)(c+ dw) = ac+ (ad+ ξ0(c)b)w, a, b, c, d ∈ (s). (4)

The topology of A is given by the seminorms |a+ bw|n = ‖a‖n + ‖b‖n, n =

1, 2, . . .. It is easy to see that A is again an m-convex B0-algebra.



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

Ideals in F -algebras 187

Example 2.4. Put Lω[0, 1] = ∩1≤p<∞Lp[0, 1], with the pointwise algebra

operations. The Lp spaces are taken with respect to the Lebesgue measure

on the unit interval and the topology of Lω is given by convergence in all Lp

norms ‖ · ‖p. The same topology is given by any sequence pn tending to an

infinity. Choosing pn = 2n−1 we obtain a sequence of seminorms satisfying

relations (1) and (2). Thus Lω is a B0-algebra and it can be shown (see e.g.

[15] or [16]) that it is not m-convex.

Example 2.5. Let (an,k) be a matrix of positive real numbers, n = 1, 2, . . .,

and k runs either over all integers or over all non-negative integers, such

that

an,k+l ≤ an+1,kan+1,l and an,0 = 1, (5)

for all involved n, k, l. The matrix algebra M(an,k) consists of all formal

series of the form

x =
∑

k

ξk(x)tk

which are Laurent series if k runs over all integers, or power series, if k runs

over all non-negative integers. We assume that

‖x‖n =
∑

k

an,k|ξk(x)| <∞, n = 1, 2, . . . , (6)

and the multiplication is Cauchy multiplication of Laurent or power series.

The conditions in (5) imply that the seminorms given by (6) satisfy (1) and

(2), so that matrix algebra are B0-algebras, which can be also m-convex.

Many interesting examples can be obtained in this way. We mention here

the Williamson’s algebra ([14], see also [15] or [16]) given by the matrix

an,k =





(1 + k)−
1+k

n for k ≥ 1

1 for k = 0

(1 − k)n(1−k) for k ≤ −1.

It is a non-m-convex B0-algebra. The Williamson’s algebra contains a dense

subalgebra isomorphic with the field of rational functions in one variable.

Example 2.6. Denote by L0[0, 1] the algebra of all Lebesgue measurable

(almost everywhere finite) functions with pointwise algebra operations and

with the topology of convergence in measure. This topology can be given

by the F -norm given by the formula

‖x‖ =

∫ 1

0

|x(t)|
1 + |x(t)| dt.

This algebra is not locally convex.
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3. Basic properties of F -algebras

The main properties of Banach algebras on which it is based their theory

are

(i) The group G(A) of invertible elements of a Banach algebra A is open

(a topological algebra with this property is called a Q-algebra).

(ii) The operation of taking an inverse x 7→ x−1 is continuous on G(A).

(iii) The Gelfand–Mazur theorem holds true for Banach algebras, i.e., every

complex Banach division algebra is isomorphic to C and every real

Banach division algebra is isomprphic to either of C, R, H, where H

denotes the division algebra of quaternions.

The F -algebras with the property (i) are rather rare. In the above ex-

amples, the algebra C∞[0, 1] of Example 2.2, and the algebras (s) and A of

Example 2.3 enjoy this property, and the algebra E of Example 2.1 has, in

a certain sense, an opposite property: the set G(A) ∪ {0} is closed.

The property (ii) holds true for all m-convex algebra and also for L0[0, 1]

(Example 2.6) but fails for the algebra Lω of Example 2.4 and for the

Williamson’s algebra of Example 2.5. For all F -algebras, the property (i)

implies the property (ii) as follows from the following result (see [14] or

[15]).

Theorem 3.1. Let A be a real or complex F -algebra. Then the operation

x 7→ x−1 is continuous on G(A) if and only it is a Gδ-set.

In particular, for all m-convex B0-algebras, G(A) is a Gδ-set. In non-

metrizable topological algebras Theorem 3.1 fails to be true: there are such

algebras with a continuous inverse for which G(A) is not a Gδ)-set and

there are algebras with discontinuous inverse for which G(A) is even open.

The Gelfand–Mazur theorem holds true for all m-convex algebras and

for all B0-algebras (see [11], [15] and [16]). In general, it fails to be true

for non-metrizable algebras, even for locally convex ones. The following

problem remains open for many years (see [15] and [16]).

Problem 3.1. Is the Gelfand–Mazur theorem true for F -algebras?

In the context of F -algebras we meet another concept of invertibility,

namely the topological invertibility. We call an element x of an F -algebra

A left topologically invertible if there is a sequence (zn) ⊂ A such that

limn znx = e, where e is the unity of A. Similarly we define right topolog-

ically invertible elements. An element x ∈ A is topologically invertible if

it is both left and right topologically invertible. A topologically invertible
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element is said proper if it is non-invertible. The m-convex B0-algebras do

not have proper topologically invertible elements, but those elements do

exist in Lω[0, 1] (the function x(t) = t is such an element) and also in the

Williamson’s algebra. The following result is given in [18] (it is proved there

for commutative algebras, but the proof works also in the non-commutative

case).

Theorem 3.2. Let A be a F -algebra, then the set Gt(A) of all its topolog-

ically invertible elements is a Gδ-set.

So, in view of theorem 3.1, every F -algebra with a discontinuous in-

verse must possess proper topologically invertible elements. We do not know

whether the converse is true.

Problem 3.2. Suppose that a F -algebra has a proper topologically invert-

ible element. Does it follow that the inverse is discontinuous on G(A)?

The answer is not known even in the commutative case.

For more information about topological algebras, and for more exam-

ples, the reader is referred to [8], [11], [15] and [16].

We pass now to the main topic of this paper.

4. Ideals in F -algebras

First we shall consider the following question.

Question 4.1. Let A be a real or complex F -algebra. When all maximal

ideals in A are closed?

Here we have in mind the left, right, and two–sided ideals. For left or right

ideals the complete answer is given by the following result in [21] (recall

that A is a Q-algebra if the set G(A) is open).

Theorem 4.1. Let A be a unital F -algebra. Then the following conditions

are equivalent.

(i) All maximal left ideals in A are closed.

(ii) The set Gl(A) of all left–invertible elements in A is open.

(iii) A is a Q-algebra.

(iv) The set Gr(A) of all right–invertible elements in A is open.
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(v) All maximal right ideals in A are closed.

For non-metrizable topological algebras the above result fails to be true.

The above result implies that in the class of F -algebras there cannot exist

an algebra for which the set Gl(A) is open, but which is not a Q-algebra,

i.e., there does not exist a proper Ol-algebra. But we do not know whether

such an algebra can exist for more general topological algebras. We do not

have a satisfactory answer to the Question 4.1 in the case of a two–sided

ideal. In [17], we defined Q2-algebras as (unital) topological algebras A for

which the set G2(A) is open. This set is defined as the set of all elements x

in A for which the smallest two–sided ideal generated by x coincided with

the whole of A. The result obtained in [17] says that and F -algebra A has

all maximal two–sided ideals closed if and only if A is a Q2-algebra. But

we do not know whether (non-commutative) Q2-algebras coincide with Q-

algebras. If such a coincidence holds true, then a F -algebra topology for a

simple algebra (an algebra for which the only two–sided ideal is the zero

ideal) is always a Q-algebra topology.

For the formulation of the next result we need following definitions. We

say that an ideal is finitely generated by elements x1, . . . , xn if it coincides

with the smallest ideal containing these elements (no closure is taken here).

Let A be a unital topological algebra and m(A) the family of all its closed

maximal two–sided ideals. The hull–kernel topology on m(A) is given by

the means of a closure operation: for S ⊂ m(A), define its closure as hk(S),

where k(S) is the intersection of all ideals in S, and k(I), for a two–sided

ideal I in A, is the set of all ideals in m(A) containing I . The hull–kernel

topology is, generally speaking, non-Hausdorff.

The following result, valid for all topological algebras, is due to Abel

and Jarosz ([1, theorem 1]).

Theorem 4.2. Let A be a unital topological algebra. Then all its maximal

two–sided ideals are closed if and only if

(i) Every proper finitely generated two–sided ideal of A is contained in

some ideal belonging to m(A), and

(ii) m(A) is compact in the hull–kernel topology.

Again we do not know what this result means in the case when A is a

F -algebra. The condition (ii) may suggest that closedness of all maximal

two–sided ideals of A is equivalent with the fact that A is a Q-algebra. Also

the condition (i) adds some importance to our further Question 4.3.
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Theorem 4.1 implies that any F algebra which is not a Q-algebra must

have a dense right maximal ideal and a dense left maximal ideal (and a

dense maximal ideal in the commutative case). So the algebras of Exam-

ples 2.1, 2.4, 2.6 and the Williammson’s algebra of Example 2.5 have dense

maximal ideals and all of them are of infinite codimension. In fact, all max-

imal ideals in Lω, L0[0, 1] and in the Williamson’s algebra are dense. Every

commutative m-convex complex (unital) B0-algebra must have a continu-

ous multiplicative–linear functional (character), and its kernel is a closed

maximal ideal. The Gelfand–Mazur theorem for B0-algebras implies that in

such a commutative algebra every closed maximal ideal is kernel of a char-

acter, but such a fact is not known for general F -algebras (cf. Problem 3.1).

The following problem is still open.

Problem 4.1. Let A be a F -algebra. Is every character of A continuous?

In the particular case A is an m-convex B0-algebra, it is the famous

Michael–Mazur Problem (cf. [11,15,16]). Call a topological algebra finitely

generated by elements x1, . . . , xn if it coincides with its smallest closed

subalgebra containing these elements. For finitely generated MB0-algebras,

Arens [3] solved this problem in positive, but for F -algebras or B0-algebras

it is open even for singly generated algebras.

Question 4.2. Let A be a F -algebra. When are all left (right) ideals

closed?

Such a question makes a sense since, contrary to the result of Theo-

rem 4.1, it is possible to have an algebra with all left, but not all right

ideals closed. Consider the algebra (s) of the Example 2.3. It is not hard

to see that every ideal of this algebra is of the form In = tn(s) (it follows

from the fact that an element x in (s) is invertible if and only if ξ0(x) 6= 0).

Thus, (s) is Noetherian, i.e., every strictly increasing chain of ideals is finite.

The algebra A of Example 2.3 is left Noetherian, but not right Noetherian,

and all its left ideals are closed while there are non-closed right ideals (e.g.

any vector subspace of (s)w ⊂ A is a right ideal and we can have such a

non-closed subspace). For details concerning this example, see [20].

Problem 4.2. Is it true that all left (resp., right) ideals of a F -algebra A

are closed if and only if A is left (resp., right) Noetherian?

It is quite easy to see that if a F -algebra A has all left ideals closed, then

it is left Noetherian, and the problem lies in proving the converse implica-

tion. For m-convex B0-algebras, a positive answer for the Problem 4.2 was



May 6, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

192 W. Żelazko

given by Choukri, El Kinani and Oudadess ([6]). An answer to a weaker

problem, also supporting the conjecture that the answer to Problem 4.2

should be in positive, is given in the following result ([19]).

Theorem 4.3. Let A be a unital real or complex F -algebra. Then A has

all one–sided ideals closed if and only if it is both left and right Noetherian.

Of course, if A has all left ideals closed, then it has also all two–sided

ideals closed. In the proof of the above result and similar results, there are

involved topologically invertible elements.

Question 4.3. When a F -algebra has a dense finitely generated ideal?

Clearly, a F -algebra A has a dense principal (singly generated) left ideal

if and only if it has a proper topologically left invertible element x (and then

the principal ideal Ax is dense). As it was mentioned earlier, such elements

and so such dense ideals exist in the commutative algebras Lω[0, 1] and in

the Williamson’s algebra. On the other hand, Arens has shown in [3] that m-

convex algebras cannot have dense finitely generated one–sided ideals (the

result was formulated for commutative algebras but, as was observed in [5],

its proof works also in the non-commutative case). It can be also shown that

the algebra L0[0, 1] has no dense finitely generated ideals. The real problem

(for F - or B0-algebras) is whether the existence of a finitely generated one–

sided dense ideal implies the existence of a singly generated one, i.e., the

existence of a one–sided topologically invertible element. The situation is

unclear for two–sided ideals. Does the existence of such a singly generated

ideal imply the existence of a one–sided or two–sided topologically invertible

element (the inverse implication is obvious)?

Question 4.4. When a F algebra has all non-zero ideals dense?

It is a long lasting and very famous problem, whether every non-unital

Banach algebra must have a proper closed (one–sided, two–sided) ideal.

The problem is open also for commutative algebras. However, our question

concerns unital algebras. Closed proper ideals must always exist in unital

m-convex algebras. Aharon Atzmon, however, constructed an infinite dime-

sional commutative, complete, locally convex algebra in which all non-zero

ideals are dense ([4]). The problem of existence of such an algebra is open

for F - or B0-algebras. So we pose

Problem 4.3. Does there exist an infinitely dimensional commutative uni-

tal F -algebra without proper closed ideals?
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Formally speaking, if there is an infinite dimensional field of type F ,

then it is such an algebra, but the question is about algebras not being

a field. The algebras of Examples 2.1, 2.2, 2.3 and 2.5 have proper closed

ideals. Also many matrix algebras (Example 2.4) have such ideals. In many

cases there exist even maximal closed ideals. The situation is unclear for the

Williamson’s algebra. The author does not know any proper (i.e., different

from the zero ideal and the whole algebra) closed ideal in this algebra. One

can suspect that the Williamson’s algebra has no proper closed ideals. The

completeness is essential here since the Williamson’s algebra contains the

field of rational functions which has no proper closed ideal.
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