
Borland C++ Power Programming

i

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

orland C++
Power Programming

PROGRAMMING
S E R I E S

B
Clayton Walnum

Borland C++ Power Programming

ii

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Borland C++ Power Programming

 1993 by Que Corporation

All rights reserved. Printed in the United States of America. No part of this book
may be used or reproduced in any form or by any means, or stored in a database
or retrieval system, without prior written permission of the publisher except
in the case of brief quotations embodied in critical articles and reviews. Making
copies of any part of this book for any purpose other than your own personal
use is a violation of United States copyright laws. For information, address Que
Corporation, 11711 N. College Ave., Carmel, IN 46032.

Library of Congress Catalog No.: 93-83382

ISBN: 1-56529-172-7

This book is sold as is, without warranty of any kind, either express or implied,
respecting the contents of this book, including but not limited to implied
warranties for the book’s quality, performance, merchantability, or fitness for
any particular purpose. Neither Que Corporation nor its dealers or distributors
shall be liable to the purchaser or any other person or entity with respect to any
liability, loss, or damage caused or alleged to be caused directly or indirectly
by this book.

96 95 94 93 8 7 6 5 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the
year of the book’s printing; the rightmost single-digit number, the number of
the book’s printing. For example, a printing code of 93-1 shows that the first
printing of the book occurred in 1993.

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Que cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Publisher: Lloyd J. Short

Associate Publisher: Rick Ranucci

Operations Manager: Sheila Cunningham

Acquisitions Editor: Joseph B. Wikert

Borland C++ Power Programming

iii

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Dedication

To my wife, Lynn, for her love and understanding.

Borland C++ Power Programming

iv

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Credits

Title Manager

Joseph B. Wikert

Product Director

Jay Munro

Production Editor

Kezia Endsley

Copy Editors

Susan Pink
Judy Brunetti
Lori Cates

Technical Editor

Jeffrey D. Clark

Editorial Assistants

Elizabeth D. Brown
Stacey Beheler

Production Manager

Corinne Walls

Proofreading/Indexing

Coordinator

Joelynn Gifford

Production Analyst

Mary Beth Wakefield

Book Designer

Scott Cook

Cover Designer

Jay Corpus

Graphic Image Specialists

Jerry Ellis
Dennis Sheehan
Susan VandeWalle

Production Team

Katy Bodenmiller
Julie Brown
Laurie Casey
Brook Farling
Dennis Clay Hager
Heather Kaufman
Bob LaRoche
Jay Lesandrini
Caroline Roop
Linda Seifert
Susan Shepard
Sandra Shay
Phil Worthington

Indexer

Johnna VanHoose

Composed in ITC Century Light and MCPdigital by
Prentice Hall Computer Publishing.

Borland C++ Power Programming

v

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

About The Author

Clayton Walnum has been writing about computers for a decade and has
published over 300 articles in major computer publications. He is also the
author of 10 books, which cover such diverse topics as programming, computer
gaming, and application programs. He lives in Connecticut with his wife and
their three children, Christopher, Justin, and Stephen.

Acknowledgments
I would like to thank the following people for their contribution to this book:
Joe Wikert for giving me the project; Jay Munro for his encouragement and
invaluable guidance; Kezia Endsley, Susan Pink, Judy Brunetti, and Lori Cates
for making the words right; and Jeff Clark for checking the facts. Thanks to
Bryan Schappel and Computer Components Inc. of Middleton, Wisconsin for
bailing me out when the equipment went bad. Finally, a special thank you is due
to some special people—my wife, Lynn, and my three great kids, Christopher,
Justin, and Stephen—who make many sacrifices so Dad can do his writing
thing.

Borland C++ Power Programming

vi

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Overview

Introduction . 1

Part I DOS Topics

Chapter 1 C++ Style Considerations . 11

Chapter 2 Developing a String Class . 41

Chapter 3 Event-Driven Programming in DOS 63

Chapter 4 Graphical Controls and Windows for DOS 91

Chapter 5 Playing with Life . 143

Chapter 6 An Introduction to Recursion . 191

Chapter 7 Using Recursion to Parse Formulas 229

Chapter 8 Writing Interrupt Handlers and TSR Programs 259

Part II Windows Topics

Chapter 9 Creating Status Bars and Toolbars 291

Chapter 10 Designing Custom Controls . 345

Chapter 11 Scaling Printer Output . 407

Chapter 12 The Windows Clipboard . 443

Chapter 13 Writing Dynamic Link Libraries . 481

Chapter 14 Using Multimedia Sound with Windows 501

Chapter 15 Writing Screen Savers for Windows 3.1 527

Part III References

Appendix A DOS Window Library Quick Reference 557

Appendix B Detecting Whether a TSR Is Loaded 569

Index . 579

Borland C++ Power Programming

vii

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Table of Contents

Introduction 1
The New Age .1
Who This Book Is For .2
Hardware and Software Requirements .2
An Overview of the Book .3
Compiling the Programs in This Book .5
Conventions Used in This Book .6
A Word to the Wise .7

I DOS Topics

1 C++ Style Considerations 11
A Programming History .12

From Switches to Objects .12
An Obvious, Yet Brilliant, Solution .13

A Review of Object-Oriented Programming 13
Encapsulation .14
Classes as Data Types . 20
Header Files and Implementation Files 21
Inheritance .23
Polymorphism .26

Classes: From General to Specific . 29
Single-Instance Classes .34
Responsible Overloading . 36

Overloading Versus Default Arguments 36
Using Operator Overloading Logically 37

When to Use Virtual Functions . 39
Conclusion .40

Borland C++ Power Programming

viii

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

2 Developing a String Class 41
Designing a String Class .42
The Components of a String Class .43

String Construction and Destruction 47
String Assignments .48
String Concatenation .49
String Comparison .50
String Searches .51
String Insertion .52
String Deletion .53
String Extraction .54
String Retrieval .54

Conclusion .55

3 Event-Driven Programming in DOS 63
What Is an Event-Driven Program? .64
Developing an Event Handler .65
Polling for Events .65

Keyboard Events .68
Mouse Events .71

The Complete Mouse Class .80
The Event Handler .88
Conclusion .90

4 Graphical Controls and Windows for DOS 91
Designing the Basic Window .92
Your Basic Window .93

Constructing Windw .94
Destructing Windw .95
Drawing Windw .95
Running Windw .97
Programming the Basic Window .98

The Captioned Window . 101
Constructing CapWindw . 102
Drawing CapWindw . 103

The Captioned Text Window . 104
Constructing CapTWindw . 105
Drawing CapTWindw .107

Borland C++ Power Programming

ix

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Getting Button Presses .107
The Button Window .108

Constructing Button .109
Drawing Button .109
Clicking Button .111

The OK Window .115
Constructing OKWindw .116
Destructing OKWindw .116
Drawing OKWindw .117
Running OKWindw .117

The Yes/No and Yes/No/Cancel Windows 118
The Input Window .120

Drawing InputWindw .121
Running InputWindw .121

Conclusion .125

5 Playing with Life 143
The Story of Life .144
The Rules of Life .144
Life Implementation .145
The Speed Problem .146
Linked Lists .147
An Object-Oriented List .151
A Cell List .155
The Life Program .159
Examining Life .162
Conclusion .176

6 An Introduction to Recursion 191
Recursion: Barrels Within Barrels .192
A Real-World Example .193
A Power Function .195
Recursion and the Stack .197
An Example Application: Trap Hunt .200

Trap Hunt and Inheritance .215
Programming with Trees .220
Trap Hunt’s Trees .224

Conclusion .228

Borland C++ Power Programming

x

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

7 Using Recursion to Parse Formulas 229
A Difficult Task? .230
Formulas as a Grammar . 230
Defining Grammar Syntax . 231

Backus-Naur Form .232
Defining an Expression . 233
Defining a Term .234
Defining a Factor . 235
The Finished Grammar . 236

A Recursive-Descent Parser . 237
Returning Syntax Errors .256
Conclusion .258

8 Writing Interrupt Handlers and TSR Programs 259
What’s an Interrupt? .260
Writing an Interrupt Handler . 261
Writing a TSR Program . 265
An On-Screen Clock . 269
The MS-DOS Busy Flag . 278
Conclusion .286

II Windows Topics

9 Creating Status Bars and Toolbars 291
Windows and ObjectWindows . 292
Painting a Status Bar .294
A Status Bar Object . 302
Status Bars and MDI Applications .312

A Review of MDI Applications .313
The Mysterious Client Window .314
Reserving Space in the Frame Window 315
Adding a Status Bar .324
Adding a Toolbar . 333

Conclusion .344

Borland C++ Power Programming

xi

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

10 Designing Custom Controls 345
Customized Buttons .346

Owner-Draw Buttons .346
Three Button States .362
Any Look You Want .365

Customized Menus .366
A Little About Bitmaps .372
Adding Images to a Menu .372

Creating a Toolbox .375
Drawing in a Window .393
The Toolbox Class .397
The Custom Button Class .401
Drawing Bitmapped Buttons .403
Full-Size Toolboxes .406

Conclusion .406

11 Scaling Printer Output 407
Example Application: WinCassette .408
A Dialog Main Window .424

The Dialog Window Class .424
Handling Dialog Data .426
A Two-Faced Dialog .428

The Printer Device Context .431
Printer Output .434
Creating and Using Fonts .436
Ending a Print Job .442
Conclusion .442

12 The Windows Clipboard 443
Introducing the Clipboard .444
Clipboard Formats .445
Handling Text with the Clipboard .446

Enabling and Disabling Paste .448
Copying Text to the Clipboard .449
Extracting Text from the Clipboard 452

Handling Bitmaps with the Clipboard .459
Copying a Bitmap to the Clipboard 470

Borland C++ Power Programming

xii

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Pasting a Bitmap from the Clipboard 477
Clipboard Etiquette .479

Conclusion .479

13 Writing Dynamic Link Libraries 481
Sharing Functions Among Applications 482
DLLs Versus Programs .482
A Simple DLL: SHAPELIB.DLL .484
Calling Functions in a DLL .493
DLL Caveats and Points of Interest .499
Conclusion .500

14 Using Multimedia Sound with Windows 501
The Media Control Interface . 502
Playing a Waveform File .503
Having More Control Over Sound .509
Conclusion .525

15 Writing Screen Savers for Windows 3.1 527
Where Is SCRNSAVE.LIB? . 528
The Bubbles Screen Saver . 528
The Screen Saver’s Application Class . 530
The Configuration Dialog .532
The Case of the Invisible Window .535
Avoiding Multiple Screen Savers . 540
Closing a Screen Saver .541
Registering a Screen Saver with the Desktop 543
Conclusion .554

III References

A DOS Window Library Quick Reference 557
Class Windw .557
Class CapWindw <- Windw . 559
Class CapTWindw <- CapWindw <- Windw 560
Class OKWindw <- CapTWindw

<- CapWindw <- Windw . 561

Borland C++ Power Programming

xiii

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Class YesNoWindw <- CapTWindw

<- CapWindw <- Windw .562
Class YesNoCanWindw <- CapTWindw

<- CapWindw <- Windw .563
Class InputWindw <- CapTWindw

<- CapWindw <- Windw .565
Class Button <- Windw .566

B Detecting Whether a TSR Is Loaded 569

Index 579

Borland C++ Power Programming

xiv

SAMS/q3 Borland C++ Power Prog Paula 2-17-93 FM lp7

Introduction

1

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

Introduction

It wasn’t too long ago that a hobbyist programmer got by with a
monochrome monitor, two floppy drives, 16K of RAM, and a decent
understanding of BASIC. Back then, a big program may have com-
prised 500 lines and taken a few days to write. Even professional
programmers—the folks who produced commercial-quality soft-
ware—had it much easier. Most commercial programs took a single
author six months to a year to write.

The New Age
N ow, programmers (even hobbyist programmers) have to know their

machines inside and out and be familiar with two or three operating
systems if they are to survive in a world in which a typical commercial-quality
program may take up an astounding 50,000 (or more) lines of code. And it’s not
only the programs that have expanded—Borland C++ 3.1 requires over 40
megabytes of disk space for a full installation. The scary part is that you need
most of that 40 megabytes to create programs for today’s complex operating
systems and state-of-the-art computers.

Learning a complex language like C++ is a tough enough job without finding
yourself lost in an ocean of questions every time you sit down to write a
program. With the power of a language like C++ comes a seemingly infinite

Borland C++ Power Programming

2

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

number of ways to complete even the simplest task. This complexity is
multiplied by the huge libraries of functions that make up a graphical user
interface like Microsoft Windows 3.1, which boasts nearly 1,000 functions in its
Application Programming Interface (API).

This book, Borland C++ Power Programming, was written to provide you
with some of the answers you need to write the type of programs you’ve only
dreamed of before. With the techniques presented here, you are able to write
your own Windows-like programs without ever leaving DOS.

In addition, you learn to handle such tricky tasks as designing classes, parsing
formulas, installing interrupt handlers, and much more. In the Windows
section of the book, you learn to create professional-looking applications with
status bars, toolboxes, custom controls, and snazzy sound effects. You even
learn to program screen savers, those delightful graphical interludes that have
become so popular.

Who This Book Is For
T his book is not an introductory text for programmers interested in

learning Borland C++ programming. To understand the lessons included
here, you must have a working knowledge of C++ and be comfortable with
Borland’s C++ development system. Obviously, you should have experience
programming in MS-DOS, but it also helps to have a basic understanding of
programming in Microsoft Windows, particularly using Borland’s
ObjectWindows library. This is not to say that you have to be a Windows guru,
only that some Windows programming experience is helpful.

In short, if you are at least an intermediate-level C++ programmer, you should
have the skills and knowledge necessary to get the most from this book.

Hardware and Software Requirements
T o compile and run the programs on this book’s disk, and to get the most

out of the upcoming lessons, you must have the following:

• An IBM-compatible 80286 with at least two megabytes of RAM (a
80386 or better with four or more megabytes is recommended)

• MS-DOS 3.31 or greater (MS-DOS 5.0 recommended)

Introduction

3

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

• VGA graphics

• A hard drive

• Microsoft Windows 3.1

• Borland C++ 3.1

As always, the faster your processor, the better. Fast processors mean fast
compiles and zippy programs. This is especially true for Windows programs,
because Windows pushes your hardware to the limits.

Note: If your system doesn’t meet the requirements listed, you may still be
able to use this book. However, you are limited to those programs and
chapters that your system can handle. For example, if your system is not

capable of VGA graphics, you are unable to run programs that display graphics in VGA
mode. Other programs, however, may run fine in any graphics mode. Similarly, if you
don’t have Microsoft Windows, you are unable to compile and run the programs from
the Windows section of this book. The programs in the DOS section, however, do not
require Microsoft Windows.

An Overview of the Book
T his book contains a wealth of programming tips and techniques that help

you produce more efficient and powerful C++ programs. The following
is a brief outline of the three sections of this book.

These chapters compose Part I, “DOS Topics”:

• Chapter 1 offers an overview of the C++ programming style with a
concentration on object-oriented program design. Discussed in this
chapter are some of C++’s more difficult topics, including class
design, polymorphism, function and operator overloading, and virtual
functions.

• Chapter 2 extends the discussion in Chapter 1 by applying object-
oriented programming techniques to the creation of a string-handling
class. This string class gives your C++ programs the power to handle
strings like Borland’s Turbo Pascal does.

Borland C++ Power Programming

4

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

• Chapter 3 begins a discussion of event-driven programming in DOS.
It discusses event handlers and dispatchers, and presents a basic class
for handling a mouse in your programs. Both keyboard and mouse
events are covered.

• Chapter 4 adds graphical windows and controls to the event-driven
programming concepts discussed in Chapter 3. A basic library of
windows, dialog boxes, and button controls is developed using object-
oriented programming techniques.

• Chapter 5 takes the window library developed in Chapter 4 and
shows how to use it in a full-feature program. The simulation pro-
gram, based on Conway’s famous Life, also shows how to use linked
lists effectively, incorporating a list class developed especially for
the program.

• Chapter 6 offers an in-depth discussion of recursion and how it can
be used to simplify complex algorithms. A commercial-quality game,
Trap Hunt, is developed, using the recursive techniques presented in
the chapter and providing further use for Chapter 4’s window library.

• Chapter 7 continues the recursion topic by exploring a method for
parsing mathematical formulas such as those used in spreadsheet
programs. Topics include grammar syntax, Backus-Naur Form, and
recursive-descent parsing.

• Chapter 8 discusses the basics of programming interrupt handlers
and TSR programs. Installing interrupt handlers, hooking and chain-
ing interrupts, and calling DOS from a TSR are some topics covered
during the development of an on-screen clock TSR.

The remaining chapters compose Part II, “Windows Topics”:

• Chapter 9, the first on Windows programming, shows how to create
status bars and toolbars in your ObjectWindows programs. Several
demonstration programs are included, and a brief explanation of the
Multiple Document Interface (MDI) is featured.

• Chapter 10 explores the topic of custom controls by showing how to
handle owner-draw buttons, how to add bitmaps to menus, and how
to create custom toolboxes that can be moved around the screen, yet
remain accessible at all times.

Introduction

5

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

• Chapter 11 tackles the tricky task of printer output in Windows.
Besides the basics of sending data to a printer, font creation and
image scaling are covered. The techniques discussed are demon-
strated with a program that prints audio-cassette labels.

• Chapter 12 introduces the Windows Clipboard. Here, you learn to
transfer text and bitmaps to and from the Clipboard. You also learn
important rules for handling the Clipboard, rules that ensure that all
applications have access to the Clipboard when necessary.

• Chapter 13 covers the mysterious topic of programming Dynamic
Link Libraries (DLLs). Discussions include the differences between
a DLL and an executable program and how to set up Borland C++
to compile DLLs. A sample DLL that draws shapes in a window is
included.

• Chapter 14 features two sample programs that show how to use
multimedia sound in your applications. Two ways of playing waveform
files are described, including methods for stopping, pausing, and
resuming a sound.

• Chapter 15 closes Part II of the book with a tutorial on writing
Windows 3.1 screen savers. Here, you learn how screen savers blank
the screen, how to draw graphics as other applications run in the
background, and how to close a screen saver when the user presses a
key or moves the mouse.

These appendixes compose Part III, “References”:

• Appendix A contains a complete reference to the window library
developed in Chapter 4.

• Appendix B, for advanced programmers, contains additional informa-
tion about writing TSR programs.

Compiling the Programs in This Book
T he programs in this book were written with Borland C++ 3.1. It is best

if your copy of Borland C++ was installed using all the default settings
and directories. If you have changed any of the default settings or directories,
and are not sure how to fix errors that might result from these changes, you
should reinstall Borland C++. You can also use Turbo C++ to compile the
programs in Part I of this book, and Turbo C++ for Windows to compile the
programs in Part II.

Borland C++ Power Programming

6

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

The programs that follow are organized on the disk by chapter. Each chapter’s
programs are found in their own directory on-disk. The programs in Chap-
ter 1 are in the CHAP1 directory, the programs in Chapter 2 are in the
CHAP2 directory, and so on.

To compile the programs for a specific chapter, copy all the files from the
chapter’s directory to your main Borland C++ directory. Then start Borland
C++ and load the project file for the program you want to compile. Selecting
the Run entry of the Run menu compiles and runs the program. To only
compile the program, select the Build All entry of the Compile menu.

Many programs in this book require that you set certain options of the
compiler. In particular, when compiling programs that require Borland’s
graphics library, you must enable that library by selecting the Graphics library
in the Libraries dialog box. Display this dialog box by selecting the Options/
Linker/Libraries menu item.

Windows programs must be compiled with WIN31 defined. This is accom-
plished by selecting the Options/Compiler/Code generation menu item, which
displays the Code Generation Options dialog box. Be sure that you type WIN31
in the Defines text field.

Conventions Used in This Book
T o get the most out of this book, you should know how it is designed. New

terms and emphasized words are presented in italicized text and are
defined on first reference. Pay close attention to italicized text. Functions,
commands, parameters, and the like are set in monospace text; for example, the
main() function.

Full C++ programs appear as listings with listing heads, whereas code frag-
ments appear alone within the text. All full listings are also included on the
disk. Tables and figures (all numbered) also help organize material within the
chapters.

Other visual pointers found in this book include:

Caution: Caution boxes that warn you of problem areas, including
possible cases in which you might introduce bugs into your program or
crash your system.

Introduction

7

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

and

Note: Note boxes that provide you with extraneous information. Many
times, this information helps speed your learning process and provides you
with shortcuts in C++. Other times, it simply reminds you of information

important enough to be mentioned twice.

All these conventions are used simply to help arrange the material in a logical
manner, thus helping you quickly find the information you need.

A Word to the Wise
A s every developer knows, a good program is virtually crash proof. Error-

checking must be done for every action that might fail, and appropriate
error messages must be provided to the user. Unfortunately, good error-
checking requires a lot of extra program code. For the programmer working on
her or his next magnum opus, this is all just part of the game. But for an author
writing a programming book, this extra code has different implications.

A programming book should present its topics in as clear a manner as possible.
This means featuring programs with source code that is not obscured by details
that don’t apply directly to the topic at hand. For this reason, the programs in
this book do not always employ proper error-checking. User input might
sometimes go unverified, memory-allocation routines might sometimes as-
sume that memory is available, and (horror of horrors) pointers might be
assumed to be valid—all for the clarity and conciseness of the code.

In short, if you use any of the code in this book in your own programs, it’s up
to you to add the error-checking procedures. Never assume anything in your
programs. Add error-checking whenever you can’t be 100 percent sure that
your program will function correctly. This ensures that the program doesn’t
come crashing down on your user.

Now, let’s get programming!

Borland C++ Power Programming

8

SAMS/Q6 Borland C++ Power Programming 172-7 Brook 2-17-93 Intro Lp#4

SAMS/Q6 Borland C++ Power Programming #172-7 Part 1 Brook 2-11-93 LP#2

I

DOS Topics

SAMS/Q6 Borland C++ Power Programming #172-7 Part 1 Brook 2-11-93 LP#2

Chapter 1 ■ C++ Style Considerations

11

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

1
C++ Style Considerations

Mastering a new programming language, par-
ticularly one that requires a new way of think-
ing, can be a frustrating and difficult task. C++
is no exception. Because C++ adds many pow-
erful features to the C language—not the least
of which is object-oriented programming—
many programmers, once they learn the

language’s syntax, are often unsure of how to apply what they’ve learned to
problems at hand. Knowing how to hammer is not the same as knowing how to
build a house.

Before you get into the main topics in this book, review the basics of object-
oriented programming and C++ programming style, with an eye toward using
new features of the language in an appropriate and sensible way. An excellent
book you might want to check into is Tom Swan’s C++ Primer, published by
Sams Publishing. In this 750-page tome, Tom starts with the very basics of C++
programming and leads his readers through to the more advanced topics,
including class design and operator overloading.

Part I ■ DOS Topics

12

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

A Programming History
Programming languages, like spoken languages, evolve over time. They are

constantly refined and focused to meet the ever-changing needs of their
users. The C++ language that you use today—possibly the most powerful high-
level language in existence—is an amalgamation of all the techniques devel-
oped over the years. Therefore, start exploring C++ by briefly looking at the
history of programming languages.

From Switches to Objects
Way back in the dark ages of computing, technicians programmed computers
by flipping banks of switches; each switch represented a single bit of informa-
tion. In those days, even simple programs required agonizing patience and
precision to create. As the need for more sophisticated programs grew,
however, so did the need for better ways to write these programs. Assembly
language and—shortly thereafter—high-level languages like FORTRAN were
invented to speed and simplify the programming task.

With the advent of high-level languages, programming became accessible to
more people; writing code was no longer the domain of highly trained
scientists. As a result, computing was used in increasingly complex roles. It
was soon clear, however, that a more efficient way of programming was
needed, one that would eliminate the obscure “spaghetti” code produced by
these early languages.

Programmers needed a new way of using high-level languages, one that
enabled them to partition their programs into logical sections that represented
the general tasks to be completed. Thus, the structured-programming para-
digm was born. Structured programming encourages a top-down approach to
programming, in which the programmer focuses on the general functions a
program must accomplish, rather than the details of how those functions are
implemented. When programmers think and program in top-down fashion, it
is easier for them to handle large projects without the tangled code that results
from GOTO-ridden programs. Moreover, programmers can write black-box

routines, general functions that can be reused in many programs.

Today, the need for efficient programming is more important than ever.
Computer programs have grown dramatically, comprising hundreds of thou-
sands of code lines. With these huge programs, reusability is even more critical.

Chapter 1 ■ C++ Style Considerations

13

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Again, a better way of programming is needed; that better way is object-
oriented programming.

An Obvious, Yet Brilliant, Solution
Our world is made up of many objects, most of which manipulate other objects
or data. For example, a car is an object that manipulates its speed and direction
to transport people to a different location. This car object encapsulates all the
functions and data it needs to get its job done. It has a switch to turn it on, a
wheel to control its direction, and brakes to slow it down. These functions
directly manipulate the car’s data, including direction, position, and speed.

When you travel in a car, however, you don’t have to know the details of how
these operations work. To stop a car, for example, you simply step on the brake
pedal. You don’t have to know how the pedal stops the car. You simply know
that it works.

All these functions and data work together to define the object called a car.
You’re not likely to confuse a car with a dishwasher, a tree, or a playground. A
car is a complete unit—an object with unique properties.

You can also think of computer programs as objects. Instead of thinking of a
piece of code that, for example, draws a rectangle on-screen, and another piece
of code that fills the rectangle with text, and still another piece of code that
enables you to move the rectangle around the screen, you can think of a single
object: a window. This window object contains all the code it needs to operate.
Moreover, it also contains all the data it needs. This is the philosophy behind
object-oriented programming.

A Review of Object-Oriented Programming
O bject-oriented programming enables you to think of program elements

as objects. In the case of a window object, you don’t need to know the
details of how it works. Nor do you need to know about the window’s private
data. You need to know only how to call the various functions that make the
window operate. Think about the car object discussed in the previous section.
To drive a car, you don’t have to know the details of how a car works. You need
to know only how to drive it. What’s going on under the hood is none of your
business. (And, if you try to make it your business, plan to face an amused
mechanic who will have to straighten out your mess!)

Part I ■ DOS Topics

14

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

If this were all there was to object-oriented programming, you wouldn’t have
gained much over structured programming techniques. After all, with struc-
tured programming, you could create black-box routines, which you could
then use without knowing how they worked. Obviously, there must be much
more to object-oriented programming than just hiding the details of a process.

Encapsulation
One major difference between conventional procedural programming and
object-oriented programming is a handy thing called encapsulation. Encap-
sulation enables you to hide both the data and the functions that act on that
data inside the object. Once you do this, you can control access to the data,
forcing programs to retrieve or modify data only through the object’s interface.
In strict object-oriented design, an object’s data is always private to the object.
Other parts of a program should never have direct access to that data.

How is this data-hiding different from a structured-programming approach?
After all, you could always hide data inside functions, just by making that data
local to the function. A problem arises, however, when you want to make the
data of one function available to other functions. The way to do this in a
structured program is to make the data global to the program, which gives any

function access to it. It seems that you could use another level of scope—one
that would make your data global to the functions that need it—but still
prevent other functions from gaining access. Encapsulation does just that.

The best way to understand object-oriented programming is to compare a
structured program to an object-oriented program. Now you can extend the
car-object metaphor by writing a program that simulates a car trip. The first
version of the program, shown in Listing 1.1, uses a typical structured design.

Listing 1.1. CAR1.CPP—a program that simulates a car trip.

#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

#include <time.h>

#define HOME 10

void StartCar(void)

{

Chapter 1 ■ C++ Style Considerations

15

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

 cout << “Car started.\n”;

 getch();

}

int SteerCar(int destination, int &position)

{

 cout << “Driving...\n”;

 getch();

 if (++position == destination) return 1;

 return 0;

}

void BrakeCar(void)

{

 cout << “Braking.\n”;

 getch();

}

void ReverseCar(int &forward, int &position)

{

 if (forward)

 {

 cout << “Backing up.\n”;

 getch();

 --position;

 forward = 0;

 }

 else forward = 1;

}

void TurnOffCar(void)

{

 cout << “Turning off car.\n”;

 getch();

}

int FindObstacle(void)

{

 int r = random(4);

 if (r) return 0;

 return 1;

}

continues

Part I ■ DOS Topics

16

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.1. Continued

int position = 0, destination = HOME;

int at_destination = 0;

int obstacle, forward = 1;

void main()

{

 randomize();

 StartCar();

 while (!at_destination)

 {

 at_destination = SteerCar(destination, position);

 obstacle = FindObstacle();

 if (obstacle && !at_destination)

 {

 cout << “Look out! There’s something in the road!\n”;

 getch();

 BrakeCar();

 ReverseCar(forward, position);

 ReverseCar(forward, position);

 }

 }

 cout << “Ah, home at last.\n”;

 TurnOffCar();

}

Now examine this program, starting with main(). The call to Randomize()
initializes the random-number generator, which is used to simulate obstacles
in the road. Then the function StartCar() simply prints the message Car
started, informing the user that the trip is about to begin.

The program simulates the trip with a while loop that iterates until
at_destination becomes true (1). In the loop, the car moves forward by calling
the function SteerCar(). This function prints the message Driving... and
moves the car one unit closer to the destination. When the integer position is
equal to the destination, this function returns a 1, indicating that the trip is
over. Otherwise, it returns 0.

Of course, the car’s driver must always watch for obstacles. The function
FindObstacle() acts as your eyes by looking for obstacles and reporting what
it finds. In this function, each time the random-number generator comes up

Chapter 1 ■ C++ Style Considerations

17

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

with a 0, FindObstacle() informs you that something is blocking the route, by
returning 1 rather than 0.

If the car reaches an obstacle, the function BrakeCar() puts on the brakes and
the function ReverseCar() backs up the car. Both functions print an appropri-
ate message; however, ReverseCar() also sets the car’s position back one
unit—unless it was already moving backward, in which case it just reverses the
direction again, setting the car back in the forward direction. (The variable
forward keeps track of the car’s current direction.) The second call to
ReverseCar() gets the car moving forward again. Finally, when the car reaches
its destination, the function TurnOffCar() ends the program. Here is the
output from a typical run of the program:

Car started.

Driving...

Driving...

Driving...

Driving...

Look out! There’s something in the road!

Braking.

Backing up.

Driving...

Driving...

Driving...

Driving...

Driving...

Look out! There’s something in the road!

Braking.

Backing up.

Driving...

Driving...

Driving...

Ah, home at last.

Turning off car.

Note that when the program is running, you must press a key after each
message is printed to the screen.

Listing 1.2 is the object-oriented version of the program. This version includes
the same functions and data. However, now everything unique to a car is
encapsulated as part of the Car object.

Part I ■ DOS Topics

18

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.2. CAR2.CPP—the object-oriented version of the car-driving program.

#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

#include <time.h>

#define HOME 10

class Car

{

 int test, position, forward;

public:

 Car(int destination);

 void StartCar(void) { cout<<“Car started.\n”; getch(); }

 int SteerCar(void);

 void BrakeCar(void) { cout<<“Braking.\n”; getch(); }

 void ReverseCar(void);

 void TurnOffCar(void) { cout<<“Turning off car.\n”; getch(); }

};

Car::Car(int destination)

{

 randomize();

 test = destination;

 forward = 1;

 position = 0;

}

int Car::SteerCar(void)

{

 cout << “Driving...\n”;

 getch();

 if (++position == test) return 1;

 return 0;

}

void Car::ReverseCar(void)

{

 if (forward)

 {

 cout << “Backing up.\n”;

Chapter 1 ■ C++ Style Considerations

19

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

 getch();

 --position;

 forward = 0;

 }

 else forward = 1;

}

int FindObstacle(void)

{

 int r = random(4);

 if (r) return 0;

 return 1;

}

int obstacle, at_destination = 0;

Car car(HOME);

void main()

{

 randomize();

 car.StartCar();

 while (!at_destination)

 {

 at_destination = car.SteerCar();

 obstacle = FindObstacle();

 if (obstacle && !at_destination)

 {

 cout << “Look out! There’s something in the road!\n”;

 getch();

 car.BrakeCar();

 car.ReverseCar();

 car.ReverseCar();

 }

 }

 cout << “Ah, home at last.\n”;

 car.TurnOffCar();

}

Because the program encapsulates much of the data into the class Car, rather
than using global variables as in the first version, fewer variables are passed to
functions that make up the car. This points out a subtle stylistic difference
between structured programming and object-oriented programming. The first

Part I ■ DOS Topics

20

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

version of the program passed variables into functions—even though those
variables were global—so the programmer had a clear idea of what data the
function used. This is a form of self-documentation; the style of the code says
something about what the code does.

In an object, the encapsulated data members are global to the object’s function
members, yet they are local to the object. They are not global variables.
Because objects represent smaller portions of an entire program, there’s no
need to pass data members into member functions to help document a
function’s purpose. Objects are usually concise enough that this type of self-
documentation is unnecessary. In Listing 1.2, no variables are passed into
functions (except into the class’ constructor).

Another advantage of the object-oriented approach taken in Listing 1.2 is that
the car object is clearly defined. All the data and functions required for a car
(at least, all that’s needed for this simple computer car) are encapsulated into
the class. That means there is less clutter in the main program. It also means
that the code is more logically organized. In Listing 1.1, you have no clear idea
of what makes up a car. The functions and data needed for the entire program
are defined on the same level. For example, whereas starting a car is clearly a
function of a car, finding an obstacle is not. (If you don’t agree, go out to your
car, climb in, and press the find-obstacle button.) Yet the scope of both the
StartCar() and FindObstacle() functions are the same. This is also true of the
data. Whereas the car’s destination, position, and direction are all information
that help define a car, obstacles are not. You don’t need an obstacle to drive a
car; you do need a destination, a position, and a direction.

In Listing 1.2, every element that makes up a car is part of the class. To drive
the car, the program doesn’t have to deal with the car’s data members. The
class takes care of them. The only data the program needs from Car is whether
the car has arrived at its destination. The only function left in the main program
is FindObstacle(), the one function in the program that has nothing to do with
being a car. Finding obstacles is not a car’s job. In all these ways, encapsulation
makes the programming task more logical and organized.

Classes as Data Types
Classes are really nothing more than user-defined data types. As with any data
type, you can have as many instances of the data type as you need. For
example, you can have more than one car in the car program, each with its own

Chapter 1 ■ C++ Style Considerations

21

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

destination. This is because a class is really nothing more than a custom data
type. Once you have created a data type, you can create as many instances of
that data as you need.

For example, one standard data type is an integer. It’s absurd to think that a
program can have only one integer. You can declare many integers, just about
all you want. The same is true of classes. Once you define a new class, you can
create many instances of the class. Each instance (called an object) normally
has full access to the class’ member functions and gets its own copy of the data
members. In the car simulation, you can create two cars, each with its own
destination, as in the following:

Car car1(10), car2(20);

Although these cars derive from the same class, they are completely separate
objects. The object car2 has to go twice as far as car1 to reach its destination.

Header Files and Implementation Files
In Listing 1.2, all the program code is in a single file. This makes it easy to
compare the first version with the second. When using object-oriented pro-
gramming techniques, however, it’s standard practice to place each class into
two files of its own. The first, the header file, contains the class’ definition.
Usually, the header file contains all the information you need to use the class.
The header file traditionally has an .H extension. The actual implementation
of a class’ functions goes into the implementation file, which usually has the
extension .CPP. From this point on in the book, most classes are organized in
this way.

The header and implementation files for the Car class are shown in Listings 1.3
and 1.4, respectively. Note that the class definition has been slightly modified
by adding the keyword protected to the data member section. This is done so
derived classes can inherit these data members. (You read about inheritance
in the next section.)

Listing 1.3. CAR.H—the header file for the Car class.

#ifndef _CAR_H

#define _CAR_H

#include <iostream.h>

continues

Part I ■ DOS Topics

22

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.3. Continued

#include <stdlib.h>

#include <conio.h>

#include <time.h>

class Car

{

protected:

 int test, position, forward;

public:

 Car(int destination);

 void StartCar(void)

 { cout<<“Car started.\n”; getch(); }

 int SteerCar(void);

 void BrakeCar(void)

 { cout<<“Braking.\n”; getch(); }

 void ReverseCar(void);

 void TurnOffCar(void)

 { cout<<“Turning off car.\n”; getch(); }

};

#endif

Listing 1.4. CAR.CPP—the implementation file for the Car class.

#include “car.h”

Car::Car(int destination)

{

 randomize();

 test = destination;

 forward = 1;

 position = 0;

}

int Car::SteerCar(void)

{

 cout << “Driving...\n”;

 getch();

Chapter 1 ■ C++ Style Considerations

23

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

 if (++position == test) return 1;

 return 0;

}

void Car::ReverseCar(void)

{

 if (forward)

 {

 cout << “Backing up.\n”;

 getch();

 --position;

 forward = 0;

 }

 else forward = 1;

}

Inheritance
Inheritance enables you to create a class that is similar to a previously defined
class, but one that still has some of its own properties. Consider the car
simulation. Suppose you want to create a car that has a high-speed passing
gear. In a traditional program, that would require much code modification. As
you modified the code, you would probably introduce bugs into a tested
program. To avoid these hassles, use the object-oriented approach: create a
new class by inheritance. This new class inherits all the data and function
members from the ancestor class. (You can control the level of inheritance
with the public, private, and protected keywords.)

Listings 1.5 and 1.6 show the header and implementation files for a new class
of car, PassingCar. This car inherits the member functions and data from its
ancestor class, Car, and adds two member functions of its own. The construc-
tor, PassingCar(), does nothing but pass parameters to the ancestor class’
constructor. The member function pass(), however, is unique to PassingCar.
This is the function that gives the new car its passing gear. (Ignore the keyword
virtual for a moment. You learn about virtual functions in the next section.)

If you look at Listing 1.6, you see that Pass() is similar to Car’s SteerCar()
function, the difference being that Pass() increments the car’s position by two
units rather than one, which simulates a faster speed. Remember that although
PassingCar has a new passing gear (implemented in the Pass() function), it
still has access to SteerCar().

Part I ■ DOS Topics

24

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.5. PASSCAR.H—the header file for PassingCar.

#ifndef _PASSCAR_H

#define _PASSCAR_H

#include “car.h”

class PassingCar: public Car

{

public:

 PassingCar::PassingCar(int destination): Car(destination) {}

 virtual int Pass(void);

};

#endif

Listing 1.6. PASSCAR.CPP—the implementation file for PassingCar.

#include “passcar.h”

int PassingCar::Pass(void)

{

 cout << “Passing...\n”;

 getch();

 position += 2;

 if (position >= test) return 1;

 return 0;

}

Listing 1.7, a new version of the simulation’s main program, gives PassingCar
a test drive. When you run the program, PassingCar reaches its destination a
little faster because after it backs up, it makes up time by going into passing
gear. By using inheritance, this program creates a new kind of car, with only
a few lines of code. And the original class remains unchanged (except for the
addition of the protected keyword). Impressed?

Chapter 1 ■ C++ Style Considerations

25

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.7. CAR3.CPP—a new version of the car-driving program that gives
PassingCar a test drive.

#include “passcar.h”

#define HOME 10

int FindObstacle(void)

{

 int r = random(4);

 if (r) return 0;

 return 1;

}

int obstacle, at_destination = 0;

PassingCar car2(HOME);

void main()

{

 randomize();

 car2.StartCar();

 while (!at_destination)

 {

 at_destination = car2.SteerCar();

 obstacle = FindObstacle();

 if (obstacle && !at_destination)

 {

 cout << “Look out! There’s something in the road!\n”;

 getch();

 car2.BrakeCar();

 car2.ReverseCar();

 car2.ReverseCar();

 at_destination = car2.Pass();

 }

 }

 cout << “Ah, home at last.\n”;

 car2.TurnOffCar();

}

Part I ■ DOS Topics

26

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Polymorphism
The last major feature of object-oriented programming is polymorphism. By
using polymorphism, you can create new objects that perform the same
functions found in the ancestor object, but which perform one or more of these
functions in a different way. For example, when the previous program used
inheritance, it created a new car with a passing gear. This isn’t polymorphism
because the original car didn’t have a passing gear. Adding the passing gear
didn’t change the way an inherited function worked; it simply added a new
function. Suppose, however, you want an even faster passing gear, without
having to change the existing classes? You can do that easily with polymor-
phism.

Listings 1.8 and 1.9 show the header and implementation files for a new class,
called FastCar. A FastCar is exactly like a PassingCar, except it uses its passing
gear a little differently: A FastCar moves three units forward (rather than two)
when passing. To do this, the program takes an already existing member
function and changes how it works relative to the derived class. This is
polymorphism. Remember that when you create a polymorphic function, you
must preface its definition with the keyword virtual.

Listing 1.8. FASTCAR.H—the header file for FastCar.

#ifndef _FASTCAR_H

#define _FASTCAR_H

#include “passcar.h”

class FastCar: public PassingCar

{

public:

 FastCar(int destination):

 PassingCar(destination) {}

 virtual int Pass(void);

};

#endif

Chapter 1 ■ C++ Style Considerations

27

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.9. FASTCAR.CPP—the implementation file for FastCar.

#include “fastcar.h”

int FastCar::Pass(void)

{

 cout << “High-speed pass!\n”;

 getch();

 position += 3;

 if (position >= test) return 1;

 return 0;

}

Look at Listing 1.10, the new main program for the car simulation. To take
advantage of polymorphism, the program allocates the new FastCar dynami-
cally—that is, it creates a pointer to the base class and then uses the new
keyword to create the object. Remember that you can use a pointer to a base
class to access any derived classes. Note also that the base class for FastCar is
not Car, but rather PassingCar, because this is the first class that declares the
virtual function Pass. If you tried to use Car as a base class, the compiler would
complain, informing you that Pass is not a member of Car. One way around this
is to give Car a virtual Pass function, too. This would make all car classes
uniform with respect to a base class. (And that would probably be the best
program design.)

Listing 1.10. CAR4.CPP—the new main program for the car simulation.

#include “fastcar.h”

#define HOME 10

int FindObstacle(void)

{

 int r = random(4);

 if (r) return 0;

 return 1;

}

int obstacle, at_destination = 0;

PassingCar *car3;

continues

Part I ■ DOS Topics

28

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.10. Continued

void main()

{

 randomize();

 car3 = new FastCar(10);

 car3->StartCar();

 while (!at_destination)

 {

 at_destination = car3->SteerCar();

 obstacle = FindObstacle();

 if (obstacle && !at_destination)

 {

 cout << “Look out! There’s something in the road!\n”;

 getch();

 car3->BrakeCar();

 car3->ReverseCar();

 car3->ReverseCar();

 at_destination = car3->Pass();

 }

 }

 cout << “Ah, home at last.\n”;

 car3->TurnOffCar();

}

You must use pointers with polymorphism because the point of polymorphism
is to enable you to access different types of objects through a common pointer
to a base class. You might want to do this, for example, to iterate through an
array of objects. To see polymorphism work, change the line

car3 = new FastCar(10)

to

car3 = new PassingCar(10).

When you run the new version, you will be back using the slower passing gear,
even though both cars use a pointer to the class PassingCar.

Now that you’ve reviewed the basics of object-oriented programming and have
discovered some ways it makes programming easier, it’s time to learn some
usage and style considerations that are unique to the object-oriented paradigm
and C++.

Chapter 1 ■ C++ Style Considerations

29

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Classes: From General to Specific
Starting with object-oriented programming can be a daunting experience;

it’s unlike other programming methods and requires adherence to a new
set of principles. The process of designing a class is rarely as easy as it was with
the car simulation, because classes are often based on abstractions rather than
physical objects like automobiles. This makes it difficult to know which parts
of a program belong in the object and which don’t. Moreover, a complex
program has many classes, many of which are derived from classes that may
have been derived from still other classes. And each class may have many data
and function members. Obviously, designing classes requires some thought
and the careful application of the object-oriented philosophy.

The first step in designing a class is to determine the most general form of an
object in that class. For example, suppose you’re writing a graphics program
and you need a class to organize the types of shapes it can draw. (In this new
class, you draw only points and rectangles, to keep things simple.) Determin-
ing the most general class means determining what the objects in the class have
in common. Two things that come to mind are color and position. These
attributes become data members in the base class. Now, what functions must
a shape perform? Each shape object needs a constructor and a way to draw
itself on-screen. Because drawing a point is different from drawing a square,
you have to put polymorphism to work and use a virtual function for the
drawing task.

Listing 1.11 is the header file for a Shape class. This class needs no imple-
mentation file because the class is fully implemented in the header file.
The constructor is implemented in-line, and the pure virtual function
DrawShape() requires no implementation because it is only a placeholder for
derived classes.

Listing 1.11. SHAPE.H—the header file for the Shape class.

#ifndef _SHAPE_H

#define _SHAPE_H

class Shape

{

protected:

 int color, sx, sy;

public:

continues

Part I ■ DOS Topics

30

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.11. Continued

 Shape(int x, int y, int c)

 { sx=x; sy=y; color=c; }

 virtual void DrawShape(void) = 0;

};

#endif

As you can see from Listing 1.11, Shape does nothing but initialize the data
members color, sx, and sy, which are the color and x,y coordinates of the
object. To do anything meaningful with the class, you must derive a new class
for each shape you want to draw. Start with the point. Listings 1.12 and 1.13
are the header and implementation files for this new class.

Listing 1.12. POINT.H—the header file for the Point class.

#ifndef _POINT_H

#define _POINT_H

#include <graphics.h>

#include “shape.h”

class Point: public Shape

{

public:

 Point(int x, int y, int c): Shape(x, y, c) {};

 virtual void DrawShape(void);

};

#endif

Listing 1.13. POINT.CPP—the implementation file for the Point class.

#include “point.h”

void Point::DrawShape(void)

{

 putpixel(sx, sy, color);

}

Chapter 1 ■ C++ Style Considerations

31

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

The constructor for this class does nothing but pass parameters to the base
class’ constructor; thus it is implemented in-line. The DrawShape() function,
however, must draw the shape—in this case, a dot on-screen at the coordinates
and in the color found in the sx, sy, and color data members. This function, too,
is short and could have been implemented in-line. However, to keep the
program construction parallel with the next example, there is a separate
implementation file for the Point class.

Listing 1.14 is the test program for the shape classes. Because polymorphism
is used to create shape classes, and because each class is derived from the
Shape base class, the program can test a new shape class simply by changing
the type of object created by the new statement. Run the program now. A dot
should appear in the middle of your screen.

Listing 1.14. TSTSHAPE.CPP—the test program for the Shape classes.

#include <graphics.h>

#include <iostream.h>

#include <conio.h>

#include “point.h”

#include “rectngle.h”

#include “barrec.h”

void main()

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 Shape *r;

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 else {

 int maxx = getmaxx();

 int maxy = getmaxy();

 r = new BarRec(maxx/2, maxy/2, 100, 100, WHITE);

 r->DrawShape();

 getch();

 }

 delete r;

 closegraph();

}

Part I ■ DOS Topics

32

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

To make things interesting, add a second shape, Rectngle, to the classes.
Rectngle is also derived from Shape. Listings 1.15 and 1.16 show the files for
this new class.

Listing 1.15. RECTNGLE.H—the header file for the Rectngle class.

#ifndef _RECTNGLE_H

#define _RECTNGLE_H

#include <graphics.h>

#include “shape.h”

class Rectngle: public Shape

{

protected:

 int x2, y2;

public:

 Rectngle(int x1, int y1, int w, int h, int c);

 virtual void DrawShape(void);

};

#endif

Listing 1.16. RECTNGLE.CPP—the implementation file for the Rectngle class.

#include “rectngle.h”

Rectngle::Rectngle(int x1, int y1, int w, int h, int c):

 Shape(x1, y1, c)

{

 x2 = sx + w;

 y2 = sy + h;

}

void Rectngle::DrawShape(void)

{

 setcolor(color);

 rectangle(sx, sy, x2, y2);

}

Chapter 1 ■ C++ Style Considerations

33

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

To test this new class in the main program, change the line

r = new Point(maxx/2, maxy/2, WHITE);

to

r = new Rectngle(maxx/2, maxy/2, 100, 100, WHITE);

Thanks to polymorphism, this is the only change you need in the main program
to draw a rectangle.

The class Rectngle is more complicated than the Point class. To draw a
rectangle the program needs—besides the rectangle’s x,y coordinates—the
rectangle’s width and height. This means that Rectngle’s constructor does
more than send parameters to the base class. It also initializes two extra data
members, x2 and y2. Rectngle’s DrawShape() function, too, is more compli-
cated than Point’s, because drawing a rectangle takes more work than drawing
a dot.

So far, you’ve gone from an abstract shape, which did nothing but initialize a
couple of data members, to drawing two simple shapes on-screen. You can now
move down another level, from the general shape of a rectangle to a more
specific type: a rectangle with a colored bar at the top. This type of rectangle
might, for example, be the starting point for a labeled window. Listings 1.17 and
1.18 are the source code for the BarRec object.

Listing 1.17. BARREC.H—the header file for the BarRec object.

#ifndef _BARREC_H

#define _BARREC_H

#include <graphics.h>

#include “rectngle.h”

class BarRec: public Rectngle

{

public:

 BarRec(int x1, int y1, int w, int h, int c):

 Rectngle(x1, y1, w, h, c) {}

 virtual void DrawShape(void);

};

#endif

Part I ■ DOS Topics

34

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.18. BARREC.CPP—the implementation file for the BarRec object.

#include “barrec.h”

void BarRec::DrawShape(void)

{

 setcolor(color);

 rectangle(sx, sy, x2, y2);

 setfillstyle(SOLID_FILL, RED);

 bar(sx+2, sy+2, x2+-2, sy+15);

}

To test this new shape, change the new statement in the main program to

r = new BarRec(maxx/2, maxy/2, 100, 100, WHITE);

Now, when you run the program, the new type of rectangle object appears on-
screen.

You could easily continue creating new types of rectangles. For example, if you
want a rectangle with both a bar at the top and a double-line border, you can
derive a new type from BarRec, overriding its virtual DrawShape() with one of
its own. (This new function would probably need to call its ancestor’s DrawShape()
function to draw the bar at the top and then do the extra drawing required for
the double border.)

Note: By using the general-to-specific method of creating classes, you end
up with extremely flexible code. You have many classes from which to
choose when it comes time to derive a new one. Moreover, classes are less

complex than they would be if you tried to cram a lot of extra functionality into them.
Remember that the more general you make your classes, the more flexible they are.

Single-Instance Classes
O bject-oriented programming means power. When programmers first

experience this power, they find it irresistible. Suddenly, they’re using
objects for everything in their programs, without thinking about whether each

Chapter 1 ■ C++ Style Considerations

35

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

use is appropriate. Remember that C++ is both an object-oriented language
and a procedural language. In other words, C++ programmers get the best of
both worlds and can develop a strategy for a particular programming problem
that best suits the current task. That strategy may or may not include an object-
oriented approach.

Classes are most powerful when used as the basis for many instances. For
example, in the next chapter you delve more deeply into object-oriented
programming techniques by putting together a string class to help overcome
C++’s limited string-handling capabilities. After developing the class, you’re
likely to have many instances of strings in your programs, each inheriting all
the functionality of its class.

Nothing comes free, however. There is always a price. For example, to call an
object’s member functions, you must use a more complicated syntax than you
need for ordinary function calls; you must supply the object and function
name. Moreover, creating classes is a lot of work. Why go through all the extra
effort if the advantages don’t balance the disadvantages?

Although classes are most appropriate when used to define a set of objects,
there are times when creating a single-instance class is a reasonable strategy.
For example, later in the book, you study a class for controlling a mouse.
Although you’ll never have more than one mouse operating simultaneously,
writing mouse functions into a single-instance class enables you to conve-
niently package and organize routines that you’ll need often.

Generally, a single-instance class is appropriate for wrapping up a big idea, like
a screen display, a mouse driver, or a graphics library. It may not, however, be
appropriate for smaller uses that suffer from the overhead inherent in using
classes.

Note: Just because you are programming in C++ doesn’t mean you can’t
use simpler data structures like structures and arrays. When you need to
create a new data type, don’t automatically assume that the object-oriented

approach is best. Often, it’s not.

Part I ■ DOS Topics

36

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Responsible Overloading
One of the things that differentiates C from C++ is function and operator

overloading. Overloading is the capability to create several versions of
a function or operator, each version of which has an identical name but
requires different arguments. For example, in C++, you can have two functions
named Sum(), one that adds integers and another that adds floating-point
numbers. When you call Sum() in a program, the compiler can determine which
function you mean by checking the function’s parameters.

The capability of C++ to overload functions and operators offers immense
flexibility. You no longer have to come up with different names for functions
that, although they take different parameters, perform virtually identical
operations. You can simply write several versions of the function, using the
same name, each version with its own set of arguments. As you’ve already
learned, however, powerful techniques are often misused. In this section, you
examine function and operator overloading etiquette.

Overloading Versus Default Arguments
There’s no question that function overloading is a great feature of C++
programming. However, when overused, it can make code more difficult to
understand. If nothing else, having several versions of a function considerably
increases program maintenance. The solution? Default arguments also enable
you to call functions with different parameters, but without resorting to
overloading. For example, consider the following overloaded function:

int Example(int x);

int Example(int x, int y);

Because of overloading, you can call the function Example() with one or two
integer arguments:

Example(1);

Example(1,2);

This adds much to the function’s flexibility. However, do you really need two
copies of the function to get this flexibility? Not really. By using default
arguments, you can create one version of Example() that accepts either one or
two integer arguments:

int Example(int x, int y = 0);

Chapter 1 ■ C++ Style Considerations

37

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

This new function retains the flexibility of the overloaded function, but
without the extra baggage. Of course, you can’t always replace overloaded
functions with default arguments. For example, if the parameter types of
overloaded functions are different, the default argument technique won’t
work. The following overloaded function cannot be written using default
arguments:

int Example(int x);

float Example(float x);

You can’t have a default type, only a default value. When you get the urge to
overload a function, first consider whether it would be more expedient to use
default arguments.

Using Operator Overloading Logically
You’ve seen how function overloading can be both bounty and bane. Operator
overloading, too, requires thought before you use it. Although the use of
default arguments doesn’t apply here, there are still important considerations.
The most important is using overloaded operators logically—in other words,
using them as they were originally designed to be used.

Using operator overloading, you can make any of C++’s operators perform
whatever task you want. For example, the + operator sums two values. Without
operator overloading, this operator can be used only on C++’s built-in data
types—in other words, types like int, float, and long. Suppose, however, you
want to add two arrays and assign the result to a third array? You can then
overload the + and = operators in an array class so they can take arrays as
arguments. Assuming you’ve done this, what do you suppose the following line
would do (where a, b, and c are objects of your array class)?

c = a + b;

You’d expect that the equals sign acts as an assignment operator, because that
is normally its purpose. Similarly, you’d expect that the + operator summed the
elements of each array. (You can find the code that performs this overloading
in Listing 1.19.) What you wouldn’t expect is for the sum operator to take, for
example, two two-element arrays and combine them into a four-element array.
This type of operation would not be consistent with the operator’s conven-
tional usage.

Part I ■ DOS Topics

38

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Listing 1.19. OVERLOAD.CPP—code that uses the + operator to sum the
elements of two arrays.

#include <iostream.h>

#include <conio.h>

class Array

{

 int a[2];

public:

 Array(int x=0, int y=0);

 void Print(void);

 Array operator=(Array b);

 Array operator+(Array b);

};

Array::Array(int x, int y)

{

 a[0] = x;

 a[1] = y;

}

void Array::Print(void)

{

 cout << a[0] << ‘ ‘ << a[1] << ‘\n’;

}

Array Array::operator=(Array b)

{

 a[0] = b.a[0];

 a[1] = b.a[1];

 return *this;

}

Array Array::operator+(Array b)

{

 Array c;

 c.a[0] = a[0] + b.a[0];

 c.a[1] = a[1] + b.a[1];

 return c;

}

Chapter 1 ■ C++ Style Considerations

39

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

void main()

{

 Array a(10, 15);

 Array b(20, 30);

 Array c;

 a.Print();

 b.Print();

 c.Print();

 c = a + b;

 c.Print();

 getch();

}

Operators should perform as expected. This means more than just using them
for the expected operation. It also means performing that operation in a way
that is consistent with the language’s implementation. For example, look at the
code for the + operator in the array class (Listing 1.19). Notice that the source
arrays are unchanged by the operation. Instead, a third array is used to hold
the results of the addition. This third array is returned from the function. This
is how you expect the addition operator to work in C++. Contrast this with the
way an addition instruction works in assembly language, by storing the result
of the operation into one of the two operands. In most assembly languages, one
of the operands is changed by the operation. In C++, it is not.

Note: Overloading functions and operators is a powerful technique. Like all
powerful features of a language, however, it must be used with thought and
style. Don’t use overloading when a simpler method will do, and ensure that

overloaded operators perform in the expected way.

When to Use Virtual Functions
Using virtual functions, you can create classes that, like the simple

graphics demonstration in a previous section, perform the same general
functions, but perform those functions differently for each derived class. Like
overloading, however, virtual functions are often misused.

Part I ■ DOS Topics

40

sams/Q6 borland c++ power prog #172-7 Brook (folio, LAC) 2-17-93 ch.1 lp#4

Before using a virtual function, consider how the classes in the hierarchy differ.
Do they need to perform different actions? Or do the classes require only
different values? For example, in the shapes demonstration, the program used
virtual functions so each class could draw its shape properly. Every shape
object must know how to draw itself; however, every object needs to do it
differently. Drawing a shape is an action. It’s inappropriate, however, to use a
virtual function to assign a color to an object. Although each shape object has
its own color attribute, the color attribute is a value rather than an action, and
so it is best represented by a data member in the base class. Using polymor-
phism to set an object’s color is like trying to kill a mosquito with a machine gun.

Note: Make sure that when you use virtual functions you are creating
classes that differ in action rather than value.

Conclusion
C++ programming—and object-oriented programming in particular—

requires thought and practice to master. By following the guidelines
presented in this chapter, you can design C++ programs that are easier to
understand and maintain than programs written using traditional methods.

In the next chapter, you put this new knowledge to work by creating a string
class for your C++ programs.

Chapter 2 ■ Developing a String Class

41

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

Developing a String Class
2

In the preceding chapter, you reviewed object-oriented program
design and some C++ style considerations. In this chapter, you will
apply much of what you learned to create a string class for your C++
programs.

Handling strings in C has always been tougher than pulling meat from
a lion’s mouth, especially when compared with the excellent string-
handling capabilities of many other high-level languages. Unfortu-

nately, in C, you can’t create classes and overload operators, so good string
handling can’t be incorporated into the language, even by user-written rou-
tines. For example, in C, strings cannot be assigned by the simple expression
A = B.

Thankfully, you’re a C++ programmer. By using C++’s overloading capabili-
ties, both for functions and operators, as well as taking advantage of its object-
oriented programming features, you can create a string class that provides all
the string-manipulation features of languages like Pascal. In fact, the string
class presented in this chapter uses Borland’s excellent Turbo Pascal as a
model.

How do you design a string class? I’m glad you asked!

Part I ■ DOS Topics

42

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

Designing a String Class
T o design your own string class, ask yourself a couple of questions. First,

how should you represent the string? There are two approaches you can
take: a standard character array or dynamically allocated memory. Both
approaches have strong and weak points. For example, the character-array
approach is the simplest, enabling you to use C++’s array-handling capabilities
without having to worry about the details of memory allocation.

On the other hand, using a character array is the least flexible of the choices,
because you must choose a maximum string size and stick with it. Moreover,
your character array will take up the same amount of memory regardless of the
actual length of the string. Suppose you choose an 81-element character array,
which has enough space for 80 characters, plus a null. Then, each string you
create will take up 81 bytes of memory, although the string data may be only
a few bytes. Figure 2.1 illustrates this problem.

Figure 2.1. The standard character-array approach sometimes results in wasted
memory space.

By dynamically allocating space for a string and by grabbing only the memory
you actually need to contain the string, you can use memory more efficiently.
This method, however, requires a lot of program overhead. You must write
code to handle memory allocation and deallocation, check for allocation errors
and null strings, keep track of a string’s size, and take care of other messy
details. In fact, the extra code required for a dynamically allocated string class
would probably use as much memory as you’d waste with the character-array
approach (depending on the number of strings a program uses, of course). To
keep things simple and clean, then, the class presented in this chapter uses the
character-array method, with an 81-element array.

Now that you’ve chosen a type of storage, consider how your programs will use
strings. To be as flexible as possible, your programs must be able to handle two
types of strings: standard character arrays and String objects (instances of the
String class). For example, you must allow string assignments such as str1 =
str2 (in which str1 and str2 are String objects) and str1 = “STRING” (in which
str1 is a String object and “STRING” is a standard C character array). This

Chapter 2 ■ Developing a String Class

43

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

means you’re going to have to overload functions to accept either type of
parameter.

You now have a general strategy for string storage and string usage. Next, you
need to decide what functions will give you the string-handling power you
want.

The Components of a String Class
T he basic functions required in a string class vary with the needs of each

programmer; everyone programs differently. Moreover, each program
has its own requirements. The string class in this chapter contains the most
often-used functions. When the string class is complete and you’ve used it in
your own programs, you may find you need additional functions. No problem!
Add them by modifying the original class. When you understand how the basic
class was created, you should have no difficulty modifying it to meet specific
needs.

What are the basic functions a string class requires? You can answer this
question easily, by examining a popular high-level language with good string
handling, such as Borland’s Turbo Pascal. Examining Turbo Pascal yields a list
of important string-handling functions. These functions are

• String construction and destruction

• String assignment

• String concatenation

• String comparison

• String searches

• String insertion

• String deletion

• String extraction

• String retrieval

Each function in the string class is covered in its own section.

Before you get started, however, look at Listing 2.1, the header file for the
string class. Compare it with Table 2.1, which lists each function and its usage.

Part I ■ DOS Topics

44

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

Obviously, if you understand how to use the class, you’ll better understand the
programming involved. You might also want to look over Listing 2.3 to get a
general idea of how the string functions are used in a program.

Listing 2.1. STRNG.H—the header file for the string class.

#ifndef _STRNG_H

#define _STRNG_H

#include <string.h>

#include <conio.h>

#include <iostream.h>

class String

{

 char s[81];

public:

 String(char *ch);

 String(String &str) { strcpy(s, str.s); }

 void Show(void) { cout << s << ‘\n’; }

 void GetStr(char *ch, int size);

 String GetSubStr(int index, int count);

 void Delete(int index, int count);

 void Insert(String str, int index);

 void Insert(char *ch, int index);

 int Length() { return strlen(s); }

 int Pos(String str);

 int Pos(char *ch);

 String operator=(String str);

 String operator=(char *ch);

 String operator+(String str);

 String operator+(char *ch);

 int operator==(String str);

 int operator==(char *ch);

 int operator!=(String str);

 int operator!=(char *ch);

 int operator<(String str);

 int operator<(char *ch);

 int operator>(String str);

 int operator>(char *ch);

 int operator>=(String str);

 int operator>=(char *ch);

Chapter 2 ■ Developing a String Class

45

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

 int operator<=(String str);

 int operator<=(char *ch);

};

#endif

Table 2.1. String class description.

String Function Use

String(char *ch) These are the class’ constructors. The
String(String &str) constructor accepts as a parameter either a

character array or a String object.

void Show(void) This function is mostly for testing purposes.
It displays a String on-screen using standard
stream output.

void GetStr This function retrieves a String and places
(char *ch, int size) it into a character array. The parameter ch is

a pointer to the destination character array,
and size is the length of the destination
array.

String GetSubStr This function returns a String made up of
(int index, int count) count characters. The characters are ex-

tracted from the String starting with the
character at position index.

void Delete This function deletes count characters from
(int index, int count) the String object, starting with the character

at position index.

void Insert This function inserts str into a String, at
(String str, int index) position index.

void Insert This function inserts a character array
(char *ch, int index) pointed to by ch into a String, starting at

String character position index.

int Length() This function returns the length of a String.

continues

Part I ■ DOS Topics

46

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

int Pos(String str) This function returns the character position
of the first occurrence of str within a
String.

int Pos(char *ch) This function returns the character position
of the first occurrence of ch (a character
array) within a String.

String operator= This function assigns str to a String.
(String str)

String operator= This function assigns ch (a character array)
(char *ch) to a String.

String operator+ This function concatenates a String and str.
(String str)

String operator+ This function concatenates a String and ch
(char *ch) (a character array).

int operator== This function compares a String with str,
(String str) returning 1 if they are equal or 0 if they are

not equal.

int operator== This function compares a String to ch (a
(char *ch) character array), returning 1 if they are

equal or 0 if they are not equal.

int operator< This function returns 1 if String is less than
(String str) str, else returns 0.

int operator< This function returns 1 if String is less than
(char *ch) ch, else returns 0.

int operator> This function returns 1 if String is greater
(String str) than str, else returns 0.

int operator> This function returns 1 if String is greater
(char *ch) than ch, else returns 0.

int operator<= This function returns 1 if String is less than
(String str) or equal to str, else returns 0.

Table 2.1. String class description (continued).

String Function Use

Chapter 2 ■ Developing a String Class

47

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

int operator<= This function returns 1 if String is less than
(char *ch) or equal to ch, else returns 0.

int operator>= This function returns 1 if String is greater
(String str) than or equal to str, else returns 0.

int operator>= This function returns 1 if String is greater
(char *ch) than or equal to ch, else returns 0.

String Construction and Destruction
Thanks to object-oriented programming, String initialization can be handled
by the class’ constructor. This means you can create and initialize a new String
with a single declaration—for example, String str(“TEST STRING”)—or, to
create an empty string, String str(“”).

By using conventional character arrays, rather than dynamically allocated
memory, the class needs no string destructor. The class creates nothing that
can’t be handled automatically by C++. If, however, the string class used
dynamically allocated memory, its destructor would have been responsible for
releasing memory allocated to a String.

Finally, as mentioned previously, the string class must deal with both String
objects and standard C character arrays. Therefore, it has to overload the
constructor. One version constructs a String from an existing String and
another constructs a String from a character array. The former is imple-
mented in-line:

String(String &str) { strcpy(s, str.s); }

The constructor doesn’t have to worry about the length of str.s. It’s already
a String object; thus, it is guaranteed to be 80 characters or less. To construct
the new String, the function simply copies one string into the other.

The following is the source code for the character-array version of the
constructor:

String::String(char *ch)

{

 if (strlen(ch) > 80) ch[80] = 0;

 strcpy(s, ch);

}

String Function Use

Part I ■ DOS Topics

48

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

Here, the function first checks the length of ch. If it’s larger than 80 characters,
it places a null in ch[80], which truncates the array to the correct size. The
function then uses the C function strcpy() to copy the source array, ch, into
the destination array, s.

String Assignments
To handle string assignments conveniently, the string class overloads C++’s
assignment operator (=). In fact, it overloads it twice: once for character arrays
and once for String objects. An assignment operator would be crippled if it
couldn’t accept string constants, which are represented in C++ by character
arrays. The following is the source code for the String version:

String String::operator=(String str)

{

 strcpy(s, str.s);

 return *this;

}

As with the string constructor, the source String is already in the acceptable
format, so the function can just copy it directly into the destination String.
Note the use of the pointer this, which is a pointer to the object that called the
function. Every call to a class’ function gets this as a hidden parameter. So, the
previous function returns a pointer to the object. This makes it possible to use
the new assignment operator in such expressions as str1 = str2 = “TEST
STRING”. Also, this is the way programmers expect the C++ assignment
operator to work. You should avoid giving programmers nasty surprises.
Surprises make them cranky.

The following is the character-array version of the function:

String String::operator=(char *ch)

{

 if (strlen(ch) > 80) ch[80] = 0;

 strcpy(s, ch);

 return *this;

}

This version works much like the first, except the function can no longer
assume that the source character array is 80 characters or less. As with the
character-array version of the constructor, therefore, the function checks
the length of ch and truncates it if necessary. Then, it uses strcpy() to copy
the array into s.

Chapter 2 ■ Developing a String Class

49

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

String Concatenation
There probably aren’t too many string-intensive programs that couldn’t
benefit from a string-concatenation function. For example, a program may
need to combine a person’s first and last names, build a complete pathname out
of directory and filename strings, or assemble phrases into sentences.

Concatenating strings is trickier than making simple string assignments. First,
you must be sure that the final String is no longer than the allowable 80
characters. Also, as discussed in the previous chapter, you must use the
+ operator in the expected way. Specifically, you must not change either of
the source strings, but rather return a third string that is the concatenation
of the source strings. Also, you need two versions of the function, one for
Strings and one for character arrays. The following is the String version:

String String::operator+(String str)

{

 char ch[161];

 String str1(“”);

 strcpy(ch, s);

 strcpy(&ch[strlen(s)], str.s);

 ch[80] = 0;

 strcpy(str1.s, ch);

 return str1;

}

Although the function concatenates two strings, you may wonder why only
one string is listed in the function’s parameters. This is because the other
source string is the String object that called the function.

Which object calls the operator function? With operators, the object on the left
is always the one that makes the function call. For example, in the statement
str2 = str1 + “TEST STRING”, the object str1 calls the concatenation function.
You don’t have to pass str1 as a parameter, because you already have access
to it within the class.

The previous function uses a 161-element character array as temporary
storage for the Strings being concatenated. By using this double-sized char-
acter array, the function can concatenate the two Strings (which are 80
characters or less) without worrying about overrunning the destination array.
To return a String in the proper format, the function simply places a null in
ch[80], which truncates ch if it’s larger than 80 characters. After concatenating

Part I ■ DOS Topics

50

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

the Strings, the function copies the resulting character string into a new
String object, str1, which is the String returned.

The character-array version of the concatenation function is much simpler:

String String::operator+(char *ch)

{

 String str(ch);

 return *this + str;

}

Rather than duplicate a lot of code, it’s much easier to convert the character
array to a string object and then use the String version of the concatenation
function to do the dirty work. Notice that the function uses a dereferenced this
pointer to access the String object that called the function.

String Comparison
Comparing strings is a particularly handy function. Often, for example, in an
interactive program, you have to check a user’s input against some expected
response. C++ already provides string-comparison functions, but those func-
tions can be improved by hiding their somewhat clumsy implementation inside
the string class. By overloading C++’s == operator, you can compare strings in
a more natural way. The following is the implementation for both versions of
this function:

int String::operator==(String str)

{

 if (strcmp(s, str.s) == 0) return 1;

 return 0;

}

int String::operator==(char *ch)

{

 if (strcmp(s, ch) == 0) return 1;

 return 0;

}

These functions differ only in the type of parameter they accept. Both use the
C++ function strcmp() to compare two character arrays. Unlike the strcmp()
function, however, which returns a false (0) value when the strings match, the
string class’ comparison function returns true (1) for a match, and false (0)
otherwise. This is the way you would expect the == comparison operator to
work.

Chapter 2 ■ Developing a String Class

51

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

The string class also includes overloaded functions for all other types of
comparisons, as shown in Table 2.1. Note that the comparison functions
provided here are case-sensitive. You might want to develop comparison
operators that are not case-sensitive.

String Searches
Sometimes, you may want to locate a series of characters within a string. Again,
as with string comparisons, C++’s string library already provides a function for
locating substrings. The strncmp() function works like strcmp(), except it
limits its comparison to the number of characters specified in the last param-
eter. You can easily use strncmp() to locate a substring and return its position.
The string class’ Pos() function uses strncmp() for just this task:

int String::Pos(String str)

{

 int found = 0;

 if ((str == “”) || (str.Length() > Length())) return 0;

 int i = 0;

 while ((!found) && (i<Length()))

 {

 if (strncmp(&s[i], str.s, str.Length()) == 0)

 found = 1;

 else ++i;

 }

 if (found) return i+1;

 return 0;

}

Here, the function first checks whether the passed String is null or is longer
than the String that called the function. In either case, there can’t possibly be
a match; therefore, the function returns a 0. If the function gets past this first
check, it enters a while loop that uses the index i to cycle through each
character of the String object. In the call to strncmp(), the index is used to
calculate the address of the character with which to start the comparison
(&s[i]) with the search String. If strncmp() finds a match, the flag found is set,
which causes the loop to end. Then the value i+1, the position of the character
that begins the substring, is returned from the function.

The character-array version of Pos(), like the character-array version of the
concatenation function, simply converts the character array to a String object,

Part I ■ DOS Topics

52

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

and then calls the String version of Pos(). This trick makes adding a character-
array version of most functions easier than toasting marshmallows in a forest
fire.

int String::Pos(char *ch)

{

 String str(ch);

 return Pos(str);

}

String Insertion
Another handy string operation—one that’s similar to string concatenation—
is string insertion (placing one string into another). The String class
accomplishes this task with the function Insert(). The String version follows:

void String::Insert(String str, int index)

{

 char ch[161];

 if ((index <= Length()) && (index > 0))

 {

 strncpy(ch, s, index-1);

 strcpy(&ch[index-1], str.s);

 strcpy(&ch[strlen(ch)], &s[index-1]);

 ch[80] = 0;

 strcpy(s, ch);

 }

}

This function first checks for a valid index. If the index is okay, it uses
strncpy() to copy all the characters, up to the index, into a temporary
character array. Then it adds the string you want to insert to the array. Finally,
it copies the remaining characters in the original String into the temporary
array, placing a null in ch[80] to ensure that the returned string is 80 charac-
ters or less, as required by the String class. Note that this function returns no
value; it operates directly on the String object that calls the function.

The character-array version of Insert(), again, does nothing more than
convert the array to a String object and then call the String version of the
function. Following is that version of the function:

Chapter 2 ■ Developing a String Class

53

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

void String::Insert(char *ch, int index)

{

 String s1(ch);

 Insert(s1, index);

}

String Deletion
The opposite of insertion is, of course, deletion. A string-deletion function
enables you to remove a substring from a String object. In the String class, the
function Delete() does the job:

void String::Delete(int index, int count)

{

 String s1(“”);

 if ((index <= strlen(s)) && (index > 0) && (count > 0))

 {

 strncpy(s1.s, s, index-1);

 if ((index+count-1) <= strlen(s))

 strcpy(&s1.s[index-1], &s[index+count-1]);

 else s1.s[index-1] = 0;

 *this = s1;

 }

}

This function works similarly to the insertion function. It first checks that the
index is valid. It also checks that count is greater than 0. If the index or the
count is invalid, the function does nothing. If the index is valid (greater than
zero and less than or equal to the length of the string) and count is greater than
zero, index-1 characters are copied from the beginning of the source String
(the one that called the function) into a temporary String. Then the function
checks whether the source String, starting at index, contains at least count
characters. If it does, the characters starting at index+count-1 are added to the
temporary String. Otherwise, if count is larger than the number of remaining
characters in the source String, the function just adds a null to the temporary
String, which effectively deletes all remaining characters in the String. Note
that in the last line, *this = s1, the assignment operator is the one defined for
the String class, not the usual C++ assignment operator.

Part I ■ DOS Topics

54

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

String Extraction
A string-extraction function is much like a string-deletion function, except
the extraction function returns a new string containing the requested charac-
ters, without deleting the characters from the original string. In the String
class, the function GetSubStr() takes on this chore. Because the function takes
only integer parameters, only one version is needed:

String String::GetSubStr(int index, int count)

{

 String s1(“”);

 if ((index <= strlen(s)) && (index > 0) && (count > 0))

 {

 int c = Length() - index + 1;

 if (count > c) count = c;

 strncpy(s1.s, &s[index-1], count);

 s1.s[count] = 0;

 }

 return s1;

}

As always, the function first checks for a valid index and count. If the index is
valid (less than or equal to the length of the string and greater than zero) or
the count less than 1, it returns a null String from the function. If the index and
count are valid, the number of characters in the String starting at index are
calculated, and count is adjusted if necessary. (You don’t want to try to copy
more characters than exist in the String.) Finally, strncpy() copies the
requested characters into the new String object and that String is returned
from the function.

String Retrieval
The last function in the String class enables you to convert the contents of a
String back to a character array. You might need to do this, for example, to
manipulate the string in a manner that is not supported by the String class.
The GetStr() function handles the following conversion task:

void String::GetStr(char *ch, int size)

{

 strncpy(ch, s, size-1);

 ch[size-1] = 0;

}

Chapter 2 ■ Developing a String Class

55

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

Here, the function simply copies the String object’s character array into the
array pointed to by ch. Note that it’s imperative that the size parameter, which
informs the function of the size of ch, be correct. To be sure of this, you should
always use sizeof() as the second parameter in a call to this function, as in the
following:

str.GetStr(ch, sizeof(ch));

Why can’t you use the sizeof() function inside GetStr() and avoid having to
pass it as a parameter? Because GetStr() only knows that ch is a pointer to
char; the size of a pointer is four bytes. Dereferencing the pointer won’t work
either, because then you’d be asking for the size of the data to which ch pointed.
What does ch point to? Characters, of course, which are actually integers, so
their size is two bytes. GetStr() has no way of knowing that ch actually points
to an array of characters.

Conclusion
T hat’s it! You now have a versatile string class that relieves you from having

to manipulate character arrays the old-fashioned C way. Listing 2.2 is the
complete source code for the String class’ implementation. Listing 2.3 is a
program that tests the new class and shows how each function is called.

Listing 2.2. STRNG.CPP—the complete source code for the String class’
implementation.

#include “strng.h”

String::String(char *ch)

{

 if (strlen(ch) > 80) ch[80] = 0;

 strcpy(s, ch);

}

void String::GetStr(char *ch, int size)

{

 strncpy(ch, s, size-1);

 ch[size-1] = 0;

}

continues

Part I ■ DOS Topics

56

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

String String::GetSubStr(int index, int count)

{

 String s1(“”);

 if ((index <= strlen(s)) && (index > 0) && (count > 0))

 {

 int c = Length() - index + 1;

 if (count > c) count = c;

 strncpy(s1.s, &s[index-1], count);

 s1.s[count] = 0;

 }

 return s1;

}

void String::Delete(int index, int count)

{

 String s1(“”);

 if ((index <= strlen(s)) && (index > 0) && (count > 0))

 {

 strncpy(s1.s, s, index-1);

 if ((index+count-1) <= strlen(s))

 strcpy(&s1.s[index-1], &s[index+count-1]);

 else s1.s[index-1] = 0;

 *this = s1;

 }

}

void String::Insert(String str, int index)

{

 char ch[161];

 if ((index <= Length()) && (index > 0))

 {

 strncpy(ch, s, index-1);

 strcpy(&ch[index-1], str.s);

 strcpy(&ch[strlen(ch)], &s[index-1]);

 ch[80] = 0;

 strcpy(s, ch);

 }

}

Listing 2.2. Continued

Chapter 2 ■ Developing a String Class

57

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

void String::Insert(char *ch, int index)

{

 String s1(ch);

 Insert(s1, index);

}

int String::Pos(String str)

{

 int found = 0;

 if ((str == “”) || (str.Length() > Length())) return 0;

 int i = 0;

 while ((!found) && (i<Length()))

 {

 if (strncmp(&s[i], str.s, str.Length()) == 0)

 found = 1;

 else ++i;

 }

 if (found) return i+1;

 return 0;

}

int String::Pos(char *ch)

{

 String str(ch);

 return Pos(str);

}

String String::operator=(String str)

{

 strcpy(s, str.s);

 return *this;

}

String String::operator=(char *ch)

{

 if (strlen(ch) > 80) ch[80] = 0;

 strcpy(s, ch);

 return *this;

}

continues

Part I ■ DOS Topics

58

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

String String::operator+(String str)

{

 char ch[161];

 String str1(“”);

 strcpy(ch, s);

 strcpy(&ch[strlen(s)], str.s);

 ch[80] = 0;

 strcpy(str1.s, ch);

 return str1;

}

String String::operator+(char *ch)

{

 String str(ch);

 return *this + str;

}

int String::operator==(String str)

{

 if (strcmp(s, str.s) == 0) return 1;

 return 0;

}

int String::operator==(char *ch)

{

 if (strcmp(s, ch) == 0) return 1;

 return 0;

}

int String::operator!=(String str)

{

 if (strcmp(s, str.s) != 0) return 1;

 return 0;

}

int String::operator!=(char *ch)

{

 if (strcmp(s, ch) != 0) return 1;

 return 0;

}

Listing 2.2. Continued

Chapter 2 ■ Developing a String Class

59

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

int String::operator<(String str)

{

 if (strcmp(s, str.s) < 0) return 1;

 return 0;

}

int String::operator<(char *ch)

{

 if (strcmp(s, ch) < 0) return 1;

 return 0;

}

int String::operator>(String str)

{

 if (strcmp(s, str.s) > 0) return 1;

 return 0;

}

int String::operator>(char *ch)

{

 if (strcmp(s, ch) > 0) return 1;

 return 0;

}

int String::operator>=(String str)

{

 if (strcmp(s, str.s) >= 0) return 1;

 return 0;

}

int String::operator>=(char *ch)

{

 if (strcmp(s, ch) >= 0) return 1;

 return 0;

}

int String::operator<=(String str)

{

 if (strcmp(s, str.s) <= 0) return 1;

 return 0;

}

continues

Part I ■ DOS Topics

60

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

int String::operator<=(char *ch)

{

 if (strcmp(s, ch) <= 0) return 1;

 return 0;

}

Listing 2.3. TSTSTRNG.CPP—a program that tests the new class and shows how
each function is called.

#include “strng.h”

#include “iostream.h”

#include “conio.h”

void main ()

{

 String s1(“THE HAT”);

 String s2(s1);

 String s3(“”);

 char ch[81];

 cout<<‘\n’;

 s1.Show();

 s2.Show();

 s2.Insert(“CAT “, 5);

 s2.Show();

 s3 = “IN THE THE”;

 s3.Show();

 s2.Insert(s3, 9);

 s2.Show();

 s2.Delete(16, 3);

 s2.Show();

 s3 = s2;

 s3.Show();

 cout << “s3 is “ << s3.Length() << “ characters long.\n”;

 cout << “‘CAT’ is at position “ << s3.Pos(“CAT”) << “.\n”;

 s2 = “HAT”;

 cout << “‘HAT’ is at position “ << s3.Pos(s2) << “.\n”;

 s3 = s2 + “ TRICKS”;

 s3.Show();

Listing 2.2. Continued

Chapter 2 ■ Developing a String Class

61

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

 s3 = s3 + “ “ + s3;

 s3.Show();

 s1 = s3.GetSubStr(5, 6);

 s1.Show();

 s3 = s2;

 if ((s2 == “HAT”) && (s2 == s3))

 cout << “The strings are equal.\n”;

 s2.GetStr(ch, sizeof(ch));

 cout << ch << ‘\n’;

 getch();

}

The output from the test program should look like this:

THE HAT

THE HAT

THE CAT HAT

IN THE THE

THE CAT IN THE THEHAT

THE CAT IN THE HAT

THE CAT IN THE HAT

s3 is 18 characters long.

‘CAT’ is at position 5.

‘HAT’ is at position 16.

HAT TRICKS

HAT TRICKS HAT TRICKS

TRICKS

The strings are equal.

HAT

Now, not only do you have a handy programming tool, but you have also
reinforced some of what you learned in Chapter 1—specifically, what you
learned about the proper use of function and operator overloading.

This class overloads functions that vary in parameter type, not parameter
count. Also, it overloads operators in a way consistent with their intended
use—except in one instance.

Part I ■ DOS Topics

62

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#4 CH5

Note: Do you see a problem with the concatenation function? The
concatenation function allows an expression like

str3 = str1 + str2

or

str3 = str1 + “TEST”

It doesn’t, however, allow an expression like

str3 = “TEST” + str1

Why? Because, if you recall, it’s the object on the left of the operator that calls the
overloaded operator function. Because “TEST” is a character array and not a String
object, the previous expression is invalid. It doesn’t even compile. To perform the
operation in question, “TEST” must first be converted to a String object.

In Chapter 3, “Event-Driven Programming in DOS,” you get more practice
developing classes. You also see how to write event-driven DOS programs.

Chapter 3 ■ Event-Driven Programming in DOS

63

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Event-Driven Programming
in DOS

I

3

knuckle under and give the people what they want.

In the next couple of chapters, you learn to create event-driven programs
featuring interactive screen objects such as windows, dialog boxes, and button
controls. Before you can start thinking about these objects, however, you must
learn the basics of event-driven program design, which you do in this chapter.
You also develop a basic mouse class that instantly adds mouse support to your
programs.

n these days of graphical user interfaces (GUIs), any program worth
its weight in microchips features sophisticated screen elements like
windows, buttons, and dialog boxes. The immense popularity of
Microsoft Windows is testament that GUIs have not only moved in, but
have brought enough luggage to stay. Undoubtedly, designing a
program interface is much more difficult than it used to be. If you want
your software to get rave reviews, however, you have no choice but to

Part I ■ DOS Topics

64

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Note: If you have a strong urge to bolt for the nearest exit, please stick
around. You may find that the job at hand is easier than you expect—and
maybe even a little fun.

What Is an Event-Driven Program?
With an application written using conventional procedural programming

techniques, the user has limited control over the program’s features. For
example, suppose an application requires keyboard input from a user. In a
typical program, the application waits until the user enters the required string
(or an escape code of some type from the keyboard). Until the user enters the
requested information, he cannot go on to something else. What if the user
wants to use her mouse to select a different option? It doesn’t matter. The
program is expecting character input and nothing short of a reboot is going to
interrupt it.

In an event-driven program, input comes from any device at any time. For
example, when the user requests a string, she would probably use a dialog box.
While the dialog box is active, the program isn’t locked onto the keyboard; it’s
still ready to accept input from any device. After all, the program has no way
of knowing in advance whether the user is going to type characters or click a
button.

When the user chooses an action, the program receives a message, which it
then interprets and routes to the appropriate functions. This interpretation
and routing is performed by the program’s event loop, a short section of code
that loops continuously, receiving events from the user and dispatching those
events to the parts of the program designed to handle them. This loop iterates
endlessly, doing nothing until the user interacts with the program in some
way, usually by pressing a key on the keyboard or selecting a control with the
mouse.

To create event-driven programs, you must do the following:

• Decide which devices to support.

• Define message types for each device.

• Write a handler for each device.

Chapter 3 ■ Event-Driven Programming in DOS

65

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

• Write an event loop to gather messages.

• Write an event dispatcher to send messages to their appropriate
functions.

These steps are discussed in the sections that follow.

Developing an Event Handler
Because a program’s event handler defines the program’s interactive

nature, you must carefully consider what types of events your programs
have to handle in order to provide a flexible and easy-to-use interface. In a full-
scale GUI, this is no small matter. Programs written for Microsoft Windows, for
example, must deal with hundreds of different types of events.

The next two chapters discuss the techniques you need to build event-
handling into your DOS programs. Instead of obscuring the principles by trying
to create the ultimate event-driven program interface, the discussion keeps
things simple. Then, you can expand on what you’ve learned and enhance the
basic routines presented here to better suit your specific programming needs.

With this in mind, think about the events you need to handle to provide a solid
program interface. First, which input devices will your programs support?
There are many types, including keyboards, graphics tablets, joysticks, mice,
light pens, trackballs, and more. For the sake of clarity and simplicity, however,
this chapter considers only the two most useful: the keyboard and the mouse.
Using these two input devices, you can write just about any type of program,
including applications, utilities, and even games.

Now you need to consider how those devices generate input. You can then
gather that input, translate it into an appropriate event message, and dispatch
that message to the proper part of your program. Gathering input events
requires a programming technique called polling.

Polling for Events
I f you have no experience with event-driven programming, you probably

think all this stuff about event loops, message translating, and message
dispatching sounds complex. Actually, however, it’s not difficult to implement,
and the code involved is surprisingly short. In the event handler, you need only

Part I ■ DOS Topics

66

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

two functions. These functions are GetEvent() and DispatchEvent(). The
following is a typical event loop:

int repeat = 1;

while (repeat)

{

 GetEvent(evntmsg);

 DispatchEvent(evntmsg);

}

The function GetEvent() is a general function that you can use in any event-
driven program. It simply polls the devices until it gets input. It then uses the
input to formulate an event message, which it passes to the second function,
DispatchMessage(). The basic event handler presented in this chapter handles
only two types of events: mouse-button events and keyboard events. The
GetEvent() function loops until the user types a key or presses a mouse button.
Here’s the code for GetEvent():

void GetEvent(EvntMsg &evntmsg)

{

 while ((!mouse.Event()) && (!(evntmsg.key = KeyEvent()))) {}

 evntmsg.button = mouse.GetButton();

 if (evntmsg.button)

 {

 evntmsg.type = MBUTTON;

 mouse.GetXY(evntmsg.mx, evntmsg.my);

 }

 else

 {

 evntmsg.type = KEYBD;

 evntmsg.mx = -1;

 evntmsg.my = -1;

 }

}

Although the details of how to retrieve input from the devices haven’t been
discussed, you should be able to make some general sense out of this function.
In the first line, the while loop iterates until it senses either a mouse-button or
keyboard event. If it senses a mouse-button event, it constructs a mouse-
button message, which includes the message type, the number of the button
pressed, and the coordinates of the mouse when the button was pressed. If the
function gets a keyboard event, it constructs a keyboard message, which
contains the key that was pressed and the message type. The structure that
contains these messages (which is defined in the next chapter) looks like this:

Chapter 3 ■ Event-Driven Programming in DOS

67

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

typedef struct EvntMsg

{

 int type, // Event type.

 mx, my, // Mouse coords.

 button; // Mouse button pressed.

 unsigned key; // Key pressed.

};

The function DispatchEvent(), unlike GetEvent(), is closely tied to a specific
program. It is here that a general keyboard or mouse event is directed to a
specific function. Because every program has different functions,
DispatchEvent() is different in every program. Here’s what DispatchEvent()
looks like in a program from Chapter 4:

void DispatchEvent(EvntMsg evntmsg)

{

 if (startbut.Clicked(evntmsg))

 Life();

 else if (clearbut.Clicked(evntmsg))

 ClearWorld();

 else if (generatebut.Clicked(evntmsg))

 GetGens();

 else if (speedbut.Clicked(evntmsg))

 GetSpeed();

 else if (quitbut.Clicked(evntmsg))

 repeat = 0;

 else PlaceCell(evntmsg);

}

Again, although the details have not been discussed, you can see that this
function checks which button control the user clicked and then calls the
appropriate function.

Chapter 4 returns to GetEvent() and DispatchEvent(). For now, you need to
know how to receive keyboard and mouse events. Gathering keyboard events
is easy: You only have to poll for a keystroke, and, if one is received, translate
that keystroke into the appropriate message. Handling a mouse, however, is
more complex: You must access the operating system at an assembly-language
level. This is because C++ provides no direct mouse support. Instead, you must
control the mouse with calls to a mouse handler.

Part I ■ DOS Topics

68

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Keyboard Events
Consider the keyboard first. In a nonevent-driven program, handling the
keyboard is easy. For example, it’s not uncommon to prompt for a string and
then wait for the user to enter it. Until the user enters the string, the program
is idle. Because no further processing is possible anyway, you can use a
function like getch(), which waits for a keystroke, to gather input.

An event-driven program, however, must never wait for a specific type of
input. This is, in fact, what distinguishes an event-driven program from a
nonevent-driven program. An event-driven program must always be ready to
accept any type of event from the user. This means that you can’t gather
keystrokes with a function like getch().

Suppose your program has displayed a dialog box in response to a user’s menu
selection. This dialog, which prompts for a line of text, contains an editable text
line, along with OK and Cancel buttons. When your program starts the dialog,
it has no idea what the user will do with it. The user may enter the string you’ve
requested and click the OK button. He may enter the string, change his mind,
and click the Cancel button. Or the user may press the Cancel button without
attempting to enter a string. Obviously, you can’t wait for any particular type
of event. Instead, you must poll the devices your program supports.

To get keyboard input under these conditions, you need a function that only
inquires whether a key has been pressed, without waiting for a key. If this
function informs you that a key was pressed, you can then read the keystroke
and decide what to do with it. If there is no keystroke available, you are free to
check other devices (in this case, the mouse) for input. The event-driven
programs in this book handle keyboard input with the function KeyEvent():

int KeyEvent(void)

{

 // Check for key press.

 int key = bioskey(1);

 // Get key if one is available.

 if (key) key = bioskey(0);

 return key;

}

Chapter 3 ■ Event-Driven Programming in DOS

69

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

As you can see from this function, Borland C++ provides exactly the keyboard
function you need to inquire about the keyboard’s state, without stalling your
program. The function bioskey() directly calls the BIOS via interrupt 0x16
to return information about the keyboard’s status. This function accepts one
of three values as a parameter. The value of the parameter determines the
type of information the function will return. If this parameter is 1, bioskey()
checks whether a key is available. If this parameter is 0, bioskey() returns the
last keystroke. If this parameter is 2, bioskey returns the status of certain
special keys, including the Shift, Alt, and Ctrl keys. (You can read more about
this function in the Borland C++ Library Reference.)

KeyEvent() first calls bioskey(1) to determine whether a key has been
pressed. If a key has, the function retrieves its value with another call to
bioskey(), this time with the parameter 0. In either case, the value of key is
returned from the function. This value will be 0 if no key was retrieved, or the
value of the key if a key was available. This function doesn’t wait for input. It
does its job and returns control to the event loop.

Listing 3.1 demonstrates KeyEvent(). Try the program now. When you’re
through, press Ctrl-C to exit the program.

Listing 3.1. KEY1.CPP—a demonstration of KeyEvent().

// KEY1.CPP: Test Program for KeyEvent().

#include <iostream.h>

#include <bios.h>

#define CTRL_C 0x2e03

//Function prototype.

int KeyEvent(void);

void main()

{

 int k = 0;

 while ((k=KeyEvent()) != CTRL_C)

 if (k) cout << “Key value: “ << k << ‘\n’;

}

int KeyEvent(void)

{

continues

Part I ■ DOS Topics

70

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Listing 3.1. Continued

 // Check for key press.

 int key = bioskey(1);

 // Get key if one is available.

 if (key) key = bioskey(0);

 return key;

}

When you run KEY1.CPP, you’ll discover that values returned from bioskey(0)
are quite cryptic. This is because bioskey(0), a call to the BIOS function 0x00
(Int 0x16), returns both the key’s scan code and the key’s ASCII code (if
appropriate) combined into a single integer. The scan code is in the upper
byte and the ASCII code is in the lower byte, as shown in Figure 3.1. (A scan

code is a special code assigned to every key on the keyboard, even keys that
have no ASCII representation.)

To get the ASCII code of the key pressed, you must mask out the upper byte
of the value returned from bioskey(0). Listing 3.2 is a refinement of KEY1.CPP
that uses a key’s ASCII code to print the actual key pressed.

Figure 3.1. The bioskey(0) function returns both the key’s scan code and the key’s
ASCII code as a single integer.

Listing 3.2. KEY2.CPP—a refinement of Listing 3.1.

// KEY2.CPP: Test Program for KeyEvent().

#include <iostream.h>

#include <bios.h>

#define CTRL_C 0x2e03

//Function prototype.

int KeyEvent(void);

void main()

Chapter 3 ■ Event-Driven Programming in DOS

71

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

{

 int k = 0;

 while ((k=KeyEvent()) != CTRL_C)

 {

 if (k)

 {

 cout << “Key value: “ << k << “. “;

 // Mask out the key’s scan code.

 k &= 0x00ff;

 if (!k) cout << “Not an ASCII character.\n”;

 else cout << “The character is: “ << (char) k << ‘\n’;

 }

 }

}

int KeyEvent(void)

{

 // Check for key press.

 unsigned key = bioskey(1);

 // Get key if one is available.

 if (key) key = bioskey(0);

 return key;

}

Using KeyEvent(), you can now retrieve keyboard events on the fly. In fact,
KeyEvent() is all the event handler you need for an event-driven program—
albeit one that supports only the keyboard. After all, a user can select
interactive objects like buttons from the keyboard, right? However, because
most modern programs support mice, you can’t get off this easily. At the least,
you need minimal mouse support in your programs.

Mouse Events
When PCs were first introduced, there were no mice. Virtually all program
input was entered through the keyboard. Today, however, a program’s inter-
face must be as interactive as possible, and this means providing mouse
support. Although you may grumble and groan about the extra work, in all
fairness to the user you must accept the responsibility.

Part I ■ DOS Topics

72

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Because a mouse is not a standard PC device, mouse support is not built into
the operating system. To add mouse support to a system, the user must first
load a mouse driver. This is typically done in the user’s CONFIG.SYS or
AUTOEXEC.BAT files. Once the driver is loaded, a program can access the
mouse through interrupt 0x33.

Although there are many mouse manufacturers, there is one standard driver.
This standard mouse driver, developed by Microsoft Corporation, supplies
more than 30 functions for controlling a mouse, including not only the
capability to respond to mouse-button presses, but also to get the mouse’s
location, adjust the mouse’s sensitivity, change the mouse pointer’s shape,
detect mouse motion, and much more. Most mouse manufacturers have
adopted this standard and incorporated it into their own mouse drivers.

To access a mouse driver, you must call functions at an assembly-language
level. This task isn’t as scary as it sounds. Read on to assemble a basic mouse
class. Once you understand how to call mouse functions, you can extend the
class to provide additional mouse functions.

In a basic mouse class, you need to support the mouse driver’s most-used
functions. These functions enable you to initialize the mouse, check that a
mouse exists, set the limits of its screen coordinates, hide and show the mouse
pointer, and read the mouse’s buttons and current location.

The header file for this chapter’s mouse class is shown in Listing 3.3, MOUS.H.
A description of each function is included in Table 3.1.

Note: This chapter’s mouse class is developed for use only with a graphics
screen, not a text screen. If you want to develop text-based programs with
mouse support, you might as well use Borland’s Turbo Vision, which

comes with Borland C++.

Listing 3.3. MOUS.H—the header file for the Mouse class.

// MOUS.H: Mouse class header file.

#ifndef MOUSE_H

#define MOUSE_H

// Mouse button values.

Chapter 3 ■ Event-Driven Programming in DOS

73

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

#define LEFT 1

#define RIGHT 2

#define CENTER 3

class Mouse {

 int mx, my, // Mouse coordinates.

 got_mouse, // Mouse init flag.

 num_buttons, // # buttons on mouse.

 button, // Button status.

 ax,bx,cx,dx; // Register saves.

 public:

 Mouse(void);

 ~Mouse(void) { MouseIntr(0x00); }

 int GotMouse(void) { return got_mouse; }

 void SetLimits(int min_Xlimit, int max_Xlimit,

 int min_Ylimit, int max_Ylimit);

 void ShowMouse(void) { MouseIntr(0x01); }

 void HideMouse(void) { MouseIntr(0x02); }

 int Event(void);

 int GetButton(void) { return button; }

 void GetXY(int &x, int &y) { x=mx; y=my; }

 void ButtonUp(void);

 private:

 void MouseIntr(int func);

};

extern Mouse mouse;

#endif

Table 3.1. Functions in the Mouse class.

Mouse Class Description

Mouse(void) This is the class’ constructor. It calls
mouse function 0x00 to initialize the
mouse driver.

continues

Part I ■ DOS Topics

74

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

~Mouse(void) This is the class’ destructor. It calls
mouse function 0x00 a second time to
reset the mouse driver to its default
state.

int GotMouse(void) Returns a –1 if a mouse is present and
a 0 if a mouse is not present.

void SetLimits(int Sets the horizontal and vertical
min_Xlimit, int max_Ylimit, screen coordinate limits for the
int max_Xlimit, int the mouse. Usually, these limits
min_Ylimit) are set to the full screen.

void ShowMouse(void) Displays the mouse pointer
on-screen.

void HideMouse(void) Removes the mouse pointer from
the screen.

int Event(void) Updates the mouse’s button and
position variables. This function
should always be called immediately
before retrieving the values of the
button, mx, and my mouse variables.

int GetButton(void) Gets the value of button returned
from the last call to Event().

void GetXY(int &x, int &y) Gets the coordinates of the mouse
returned from the last call to Event().

void ButtonUp(void) Waits for all mouse buttons to be
released.

The Mouse class is a single-instance class (in other words, you’ll never have
more than one mouse in a program) that provides all the basic mouse
functions. To include a mouse in a program, you need only include the mouse
class. A mouse object is already declared as part of the class. Now you can
examine the Mouse class a function at a time.

Table 3.1. Functions in the Mouse class (continued).

Mouse Class Description

Chapter 3 ■ Event-Driven Programming in DOS

75

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Initializing a Mouse
As with most classes, Mouse contains a constructor that initializes a Mouse
object:

Mouse::Mouse(void)

{

 got_mouse = 0;

 if (getvect(0x33))

 {

 _AX = 0x00;

 geninterrupt(0x33);

 got_mouse = _AX;

 num_buttons = _BX;

 }

}

Here, after checking that the mouse driver is installed (by calling getvect()),
this function makes the first call to the mouse driver with the 0x33 interrupt.
To call an interrupt, you must first place appropriate values into the CPU’s
registers. Then, generate the interrupt by calling Borland C++’s
geninterrupt() function. When the interrupt takes over, the values you placed
in the registers inform the mouse driver what function you’ve requested and
the parameters you want to send to that function. Borland C++ provides easy
access to registers, through the pseudovariables _AX, _BX, _CX, and _DX. (There
are other registers, but these are all you have to be concerned with for now.)

To initialize a mouse, you must call interrupt 0x33 with a 0 in AX. The mouse
function 0x00 initializes the mouse driver and sets the mouse to its default
state, returning a –1 in AX if a mouse is available, and a 0 if a mouse is not
available. It also returns, in BX, the number of buttons on the mouse. In the
previous constructor, the function saves these return values in the data
members got_mouse and num_buttons.

Setting Mouse Screen Limits
After initializing your mouse, you need to set its screen limits. Normally, this
task is handled by the mouse initialization; however, for some reason, when
you use a mouse with high-resolution graphics screens, you need to remind
the driver of the screen’s resolution. If you fail to do this, the mouse will be
unable to traverse the full screen.

Part I ■ DOS Topics

76

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

To set a mouse’s screen coordinate limits, call function 0x07 for the horizontal
limits and 0x08 for the vertical limits. In the Mouse class, the function
SetLimits() handles this task:

void Mouse::SetLimits(int min_Xlimit, int max_Xlimit,

 int min_Ylimit, int max_Ylimit)

{

 if (!got_mouse) return;

 _AX = 0x07;

 _CX = min_Xlimit;

 _DX = max_Xlimit;

 geninterrupt(0x33);

 _AX = 0x08;

 _CX = min_Ylimit;

 _DX = max_Ylimit;

 geninterrupt(0x33);

}

Here, the function first checks that the mouse is present. There’s no need to
set the screen limits of a nonexistent mouse. If there’s no mouse, the function
returns immediately. If the mouse is present, SetLimits() loads the registers
with the function number 0x07 and the horizontal screen limits, after which it
generates an interrupt 0x33. It sets the vertical screen limits the same way,
with the exception of using function 0x08 and the vertical coordinates.

Caution: In spite of the fact that the function checks for a mouse, you
should always check whether the mouse exists before you call other mouse
functions. This is especially important if your program cannot run properly

without a mouse.

There are many other uses for the SetLimits() function. For example, there
may be times when you want to limit mouse movement to a particular rectan-
gle on-screen. You could, if you wanted, force the mouse to stay within the
boundaries of a particular window.

Showing and Hiding a Mouse Pointer
Showing and hiding the mouse pointer is critical. Without this capability,
screen displays would soon become corrupted. Why? First, when you write to
the screen, you may erase the mouse pointer. (The mouse pointer isn’t
magical; it’s simply a graphic drawn on-screen.) This, by itself, is no big deal.

Chapter 3 ■ Event-Driven Programming in DOS

77

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

After all, the pointer is redrawn the next time you move the mouse. However,
if you don’t disable the mouse before drawing to the screen, something else is
restored along with the mouse pointer: the data that was behind the pointer
when it was last drawn. This saved data writes over your new screen, erasing
what you just drew in the mouse’s location.

In short, whenever you want to draw on-screen, you must first turn off (or
hide) the mouse pointer. When you’re finished drawing, turn the mouse
pointer back on. If you fail to follow this rule (and sooner or later, we all do),
the user of your program may not notice it at first, because the faulty screen
update occurs only when the mouse pointer happens to be where your
program is drawing. However, the first time the mouse is in the way of your
drawing, you’ve got a faulty screen.

The Mouse class can show or hide the mouse pointer through calls to its
HideMouse() and ShowMouse() member functions, both of which are written
in-line in the MOUS.H header file:

void ShowMouse(void) { MouseIntr(0x01); }

void HideMouse(void) { MouseIntr(0x02); }

These functions call the private member function MouseIntr(). Because many
mouse functions require only the function number in AX before calling the
interrupt, MouseIntr() saves a lot of duplicated code. You simply supply the
value to be placed in AX, and the function takes care of the rest. The
MouseIntr() function looks like this:

void Mouse::MouseIntr(int func)

{

 if (!got_mouse) return;

 _AX = func;

 geninterrupt(0x33);

 ax = _AX;

 bx = _BX;

 cx = _CX;

 dx = _DX;

}

This function simply loads the value func into the AX register and then
generates an interrupt 0x33. It saves the values returned in the AX, BX, CX, and
DX registers right after the interrupt returns, because the registers may
change when the function exits. Note that this function is private to the Mouse
class—in other words, it can be called only by a class member function. It
cannot be called directly from your programs.

Part I ■ DOS Topics

78

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Note: A final note about hiding and showing a mouse: The mouse
functions, 0x01 and 0x02, count the number of times the pointer has been
hidden and shown. If you don’t want your mouse pointer to disappear, every

hide function must be matched with a show function. In other words, if you call the
HideMouse() function three times in a row (usually due to nested function calls), you
must also call ShowMouse() three times to restore the mouse pointer.

Retrieving Mouse Events
Now that the mouse is functioning, you have to know when it is used. If the user
clicks an on-screen button, for example, you must determine which on-screen
button was clicked so you can perform the requested operation. Gathering this
information is a snap. First, when the user clicks a mouse button, GetEvent()
sends a mouse-button event. Use the data stored in this event to determine the
mouse’s coordinates at the time of the click. If these coordinates match those
of your on-screen button, you know the button was selected.

In the Mouse class, the function that checks for mouse-button presses is
Event(), which calls mouse function 0x03, returning the mouse-button status
and the current location of the pointer:

int Mouse::Event(void)

{

 if (!got_mouse) return 0;

 MouseIntr(0x03);

 button = bx;

 mx = cx;

 my = dx;

 if (button) return 1;

 else return 0;

}

Here, the function first checks that the mouse is present. Then it calls mouse
function 0x03 with MouseIntr(). After the call, the button status and the
mouse coordinates are saved in the data members button, mx, and my, respec-
tively, from which your program can retrieve them when necessary.

Chapter 3 ■ Event-Driven Programming in DOS

79

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

When you use a mouse in your programs, remember that button, mx, and my are
updated only when you call Event(). Therefore, you must process the informa-
tion retrieved by this function immediately. Otherwise, the mouse-status data
may be obsolete. In short, you should always call Event() before testing the
button, mx, and my variables.

As you know, the object-oriented approach dictates that Mouse’s data members
be private—it never allows a program to access the members directly. By
following this rule, you can change the class without affecting programs that
use it. For example, suppose you want to store the mouse variables button, mx,
and my in a structure. By keeping the data members private, you can make this
change easily. You need not change anything more (other than the data) than
the functions in the class that return the variable’s values. In other words,
although the class’ interface must remain consistent, the way you implement
that interface can change any way you want. This is one way object-oriented
programming makes programs more maintainable.

Because the mouse variables are private, you need functions to retrieve those
values. In the Mouse class, you do this with the in-line functions GotMouse(),
GetButton(), and GetXY():

int GotMouse(void) { return got_mouse; }

int GetButton(void) { return button; }

void GetXY(int &x, int &y) { x=mx; y=my; }

There’s little to say about these functions. GotMouse() checks the mouse-
driver status returned from the class’ constructor. GetButton() returns the
button-press last retrieved by Event(). Finally, GetXY() returns the mouse
coordinates last retrieved by Event(). Notice that, whereas GetButton()
returns button directly from the function, GetXY() stores the mouse coordi-
nates in variables you pass to the function.

Sticky Buttons
The last function in the Mouse class allows your program to wait until the user
releases the mouse button. A program’s event loop typically processes events
very quickly. This means that if the user is a slow mouse clicker, several button
clicks may be registered before she releases the button. To avoid this problem,
you can call ButtonUp(), which loops until the user releases the mouse button:

Part I ■ DOS Topics

80

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

void Mouse::ButtonUp(void)

{

 while (button) Event();

}

The Complete Mouse Class
Listing 3.4, MOUS.CPP, is the implementation source code for the com-

plete Mouse class. (The listing is short because many functions are
implemented in-line in the MOUS.H source listing.)

Listing 3.5 is a short program that demonstrates the Mouse class. When you run
the program, click anywhere on-screen. The program prints the mouse’s
coordinates on-screen, at the location you click. To exit the program, click the
right mouse button.

Note: This program must be run on a VGA-compatible system and
Borland’s VGA graphics driver, EGAVGA.BGI, must be in the same directory
as the program. Later, you learn how to link the graphics driver into your

programs so you don’t need the separate file.

Listing 3.4. MOUS.CPP—the implementation of the Mouse class.

// MOUS.CPP: Mouse class implementation.

#include <dos.h>

#include <conio.h>

#include “mous.h”

Mouse mouse;

// Initialize the mouse.

Mouse::Mouse(void)

{

 got_mouse = 0;

 if (getvect(0x33))

 {

 _AX = 0x00;

 geninterrupt(0x33);

Chapter 3 ■ Event-Driven Programming in DOS

81

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

 got_mouse = _AX;

 num_buttons = _BX;

 }

}

// Set the mouse’s screen coord limits.

void Mouse::SetLimits(int min_Xlimit, int max_Xlimit,

 int min_Ylimit, int max_Ylimit)

{

 if (!got_mouse) return;

 _AX = 0x07;

 _CX = min_Xlimit;

 _DX = max_Xlimit;

 geninterrupt(0x33);

 _AX = 0x08;

 _CX = min_Ylimit;

 _DX = max_Ylimit;

 geninterrupt(0x33);

}

// Check the status of the mouse’s buttons

// and get the mouse’s current position.

int Mouse::Event(void)

{

 if (!got_mouse) return 0;

 MouseIntr(0x03);

 button = bx;

 mx = cx;

 my = dx;

 if (button) return 1;

 else return 0;

}

// Wait for mouse button to be released.

void Mouse::ButtonUp(void)

{

 while (button) Event();

}

// Call a mouse function.

void Mouse::MouseIntr(int func)

{

 if (!got_mouse) return;

continues

Part I ■ DOS Topics

82

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Listing 3.4. Continued

 _AX = func;

 geninterrupt(0x33);

 ax = _AX;

 bx = _BX;

 cx = _CX;

 dx = _DX;

}

Listing 3.5. MDEMO.CPP—a demonstration of the Mouse class.

// MDEMO.CPP: Mouse test program.

// Before running, make sure the VGA graphics driver

// EGAVGA.BGI is in the same directory as the program.

#include <graphics.h>

#include <stdio.h>

#include <conio.h>

#include <iostream.h>

#include <stdlib.h>

#include “mous.h”

void main()

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 int mbutton, mouseX, mouseY;

 char s[10];

 // Initialize the graphics screen.

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics error: “ << errorcode << ‘\n’;

 getch();

 abort();

 }

 // Check that the mouse exists.

 if (!mouse.GotMouse())

 {

 cout<<“Got no Mouse!”;

Chapter 3 ■ Event-Driven Programming in DOS

83

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

 getch();

 }

 else

 {

 // Allow mouse to use entire VGA screen.

 mouse.SetLimits(0,getmaxx(),0,getmaxy());

 // Display mouse pointer.

 mouse.ShowMouse();

 mbutton = 0;

 while (mbutton != RIGHT)

 {

 // Update mouse data.

 mouse.Event();

 // Get mouse button status.

 mbutton = mouse.GetButton();

 if (mbutton == LEFT)

 {

 // Get new mouse coords.

 mouse.GetXY(mouseX, mouseY);

 sprintf(s, “%d,%d”, mouseX, mouseY);

 // Hide pointer before drawing on-screen.

 mouse.HideMouse();

 outtextxy(mouseX, mouseY, s);

 // Restore mouse pointer.

 mouse.ShowMouse();

 // Wait for the mouse button to be released.

 mouse.ButtonUp();

 }

 }

 }

 closegraph();

}

Part I ■ DOS Topics

84

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

You should now understand the basic mouse class. As you develop mouse-
based programs, you may want to expand this basic class to include more
sophisticated capabilities. To get you started, Table 3.2 lists some handy
functions available in a Microsoft-compatible mouse driver. Look them over
and try adding a few to the basic mouse class.

Table 3.2. Useful mouse functions.

Function 0x00 Reset Mouse

Entry: AX = 0x00.

Exit: AX = 0xFFFF if mouse is present or 0x00 if
no mouse is present.

BX = number of buttons on mouse.

Function 0x01 Show Mouse Pointer

Entry: AX = 0x01.

Exit: Returns nothing.

Function 0x02 Hide Mouse Pointer

Entry: AX = 0x02.

Exit: Returns nothing.

Function 0x03 Get Mouse Status

Entry: AX = 0x03.

Exit: BX = 0x00 if no button is pressed, 0x01 if left
button is pressed, 0x02 if right button is
pressed, and 0x04 if center button is
pressed.

CX = Horizontal coordinate.

DX = Vertical coordinate.

Chapter 3 ■ Event-Driven Programming in DOS

85

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Function 0x04 Set Mouse Position

Entry: AX = 0x04.

CX = New horizontal coordinate.

DX = New vertical coordinate.

Exit: Returns nothing.

Function 0x05 Get Button Press Status

Entry: AX = 0x05.

BX = 0x00 to check left button, 0x01 to check
right button, and 0x02 to check center
button.

Exit: AX = 0x01 if left button is pressed, 0x02 if
right button is pressed, and 0x04 if center
button is pressed.

BX = Number of button presses.

CX = Horizontal coordinate of last button
press.

DX = Vertical coordinate of last button press.

Function 0x06 Get Button Release Status

Entry: AX = 0x06.

BX = 0x00 to check left button, 0x01 to check
right button, and 0x02 to check center
button.

Exit: AX = 0x01 if left button is pressed, 0x02 if
right button is pressed, and 0x04 if center
button is pressed.

BX = Number of button releases.

CX = Horizontal coordinate of button release.

DX = Vertical coordinate of button release.

continues

Part I ■ DOS Topics

86

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Table 3.2. Useful mouse functions (continued).

Function 0x07 Set Horizontal Limits

Entry: AX = 0x07.

CX = Minimum horizontal coordinate.

DX = Maximum horizontal coordinate.

Exit: Returns nothing.

Function 0x08 Set Vertical Limits

Entry: AX = 0x08.

CX = Minimum vertical coordinate.

DX = Maximum vertical coordinate.

Exit: Returns nothing.

Function 0x09 Set Graphical Shape

Entry: AX = 0x09.

BX = X coordinate of hot spot.

CX = Y coordinate of hot spot.

DS:DX = Address of bitmap image.

Exit: Returns nothing.

Note: The bitmap comprises 64 bytes, the
first 32 bytes of which are the bit image for
the pointer and the second 32 bytes of which
are the bit image of the pointer mask.

Function 0x0B Get Mouse Motion

Entry: AX = 0x0B.

Exit: CX = Number of mickeys moved horizontally.

DX = Number of mickeys moved vertically.

Note: Mickeys are equivalent to 1/200th of an
inch. The values returned from this function
are the number of mickeys moved since the
last call to this function.

Chapter 3 ■ Event-Driven Programming in DOS

87

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Function 0x10 Set Exclusion Rectangle

Entry: AX = 0x10.

CX = Left edge X coordinate.

DX = Top edge Y coordinate.

SI = Right edge X coordinate.

DI = Bottom Y coordinate.

Exit: Returns nothing.

Note: An exclusion rectangle is an area of
the screen in which the mouse pointer will
not be shown.

Function 0x1A Set Sensitivity

Entry: AX = 0x1A.

BX = Horizontal speed (number of mickeys
per 8 pixels).

CX = Vertical speed (number of mickeys per
8 pixels).

DX = Double-speed threshold in mickeys per
second.

Exit: Returns nothing.

Note: The double-speed threshold is the
speed the mouse must travel before the
pointer begins to move twice as fast.

Function 0x1B Get Sensitivity

Entry: AX = 0x1B.

Exit: BX = Horizontal speed (number of mickeys
per 8 pixels).

CX = Vertical speed (number of mickeys per
8 pixels).

DX = Double-speed threshold in mickeys per
second.

Part I ■ DOS Topics

88

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

The Event Handler
Now take a quick look at this chapter’s complete event handler, which,

now that you know how to handle keyboard and mouse input, is really
quite simple. Listing 3.6 is the header file, which declares some constants and
data types needed by programs that use the event handler.

Listing 3.6. EVENT.H—the header file for the event handler.

#ifndef _EVENT_H

#define _EVENT_H

#define MBUTTON 1

#define KEYBD 2

#define CR 13

#define ESC 27

#define BACKSP 8

typedef struct EvntMsg

{

 int type, // Event type.

 mx, my, // Mouse coords.

 button; // Mouse button pressed.

 unsigned key; // Key pressed.

};

#endif

The first two #defines define constants for the two types of messages (mouse
button and keyboard) that the event handler supports. Next, constants for a
few important keys are defined; you use these key constants in the next
chapter. Finally, the header file defines the structure that carries event
messages between your programs’ functions. The event handler stores infor-
mation in this structure, so your program can respond to the user’s actions.
Listing 3.7 is the implementation of the event handler.

Chapter 3 ■ Event-Driven Programming in DOS

89

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Listing 3.7. EVENT.CPP—the implementation of the event handler.

#include <bios.h>

#include “event.h”

#include “mous.h”

// Check for and retrieve key events.

int KeyEvent(void)

{

 // Check for key press.

 int key = bioskey(1);

 // Get key if one is available.

 if (key) key = bioskey(0);

 return key;

}

// Wait for an event. When one is received,

// construct an event message.

void GetEvent(EvntMsg &evntmsg)

{

 while ((!mouse.Event()) &&

 (!(evntmsg.key = KeyEvent()))) {}

 evntmsg.button = mouse.GetButton();

 if (evntmsg.button)

 {

 evntmsg.type = MBUTTON;

 mouse.GetXY(evntmsg.mx, evntmsg.my);

 }

 else

 {

 evntmsg.type = KEYBD;

 evntmsg.mx = -1;

 evntmsg.my = -1;

 }

}

Part I ■ DOS Topics

90

SAMS/Q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) CH03 LP#3

Earlier in this chapter, you saw the two functions that make up the event
handler. At that time, however, the mouse class had not been discussed.
Now, you can see exactly how the event handler works. Notice that it is the
function GetEvent() that creates the event message, by storing appropriate
values into the members of the evntmsg structure.

Conclusion
Learning about event-driven programming techniques is only half the

battle. Now, you have to apply what you’ve learned and create an event-
driven user interface that you can use in your programs. Chapter 4 presents a
class of graphical windows and controls that provide this interface in an
attractive and logical way.

Chapter 4 ■ Graphical Controls and Windows for DOS

91

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

4
Graphical Controls and

Windows for DOS

commands in a logical and natural way, by activating on-screen controls.
These controls make a computer program look and act more “physical,” as
if the program were just another piece of electronic equipment, such as a TV,
stereo, or microwave oven.

The idea is to make computers less intimidating and easier to use. How do
windows and interactive controls accomplish this? By replacing conceptual
information with visual information. The human mind is visually oriented. You
can interpret graphical information much faster than any other type of
information. So, the more software looks like familiar objects, the less intimi-
dating it becomes.

Even the most casual computer user can’t help but
notice that most major software packages incorporate
some type of windowing. Windows, after all, are handy
entities that can display large amounts of data by
overlapping information or by providing viewports
into a small portion of a large data set. In addition,
most windowing software enables the user to select

Part I ■ DOS Topics

92

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

In this chapter, you design a set of graphical window classes. Using these
classes, you can display program screens, button controls, and even dialog
boxes. Because the windows you develop are graphical windows rather than
text-based windows (like the windows you can create with Borland’s Turbo
Vision), you must decide on a graphics mode. Most computer systems can
display VGA graphics, so you develop the windows for that graphics mode,
using the high-resolution 640x480 mode in 16 colors.

Although the classes presented here are far from a full-fledged GUI, you’ll be
surprised at what you can do with even a limited window library. And, as
always, after you understand how the basic window library works, you can
extend the classes to include other graphical objects that more precisely fit
your programming needs.

Designing the Basic Window
T o design the window library, you need a plan. What type of windows will

you have? How will these windows be related? If you can decide on a
minimum window, one that provides all the basic window characteristics, you
can use this minimum window as a template for new types of windows. Object-
oriented programming enables you to do this through inheritance, which
enables you to build a new class on the foundation of a previous one.

To keep things simple, assume that your window library will feature the
following:

• Blank windows that you can use as 3-D graphical screen elements or
as backdrops for your programs.

• Dialog boxes of several types, from simple message boxes to data-
entry boxes.

• Animated, 3-D button controls that can be used independently or as
part of a dialog box. (Yes, buttons are windows.)

To come up with a minimum window, you must determine what the listed
objects have in common. First, all are rectangles. So, the first step in creating
any window is to draw some type of rectangle on-screen. To keep things
interesting, all the windows will use 3-D rectangles that seem to stand out from
the background. But whether you’re drawing 3-D shapes or plain rectangles,
you have to know the object’s coordinates and size. Position and size, then, are
two characteristics that all windows share.

Chapter 4 ■ Graphical Controls and Windows for DOS

93

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Another characteristic all windows must have is the capability to restore the
screen area they cover. Imagine a dialog box that, when closed, leaves a blank
rectangle in the middle of your document! That’s clearly unacceptable.
Although every window you create may not have to restore the screen, it must
at least have that capability. The basic window class will support this feature
by having a buffer in which to hold screen data.

Finally, to make the basic window class more versatile, the basic window will
be drawn with or without a border. A Boolean value controls this feature. If the
value is true, the window is drawn with a border; otherwise, the window has
no border.

Your Basic Window
Y ou’ve determined the data you need to handle a basic window. Now you

must combine that data with the functions that will bring your window to
life. In short, you must create a base class for your window hierarchy. As with
most classes, every window always needs a constructor and sometimes needs
a destructor. Every window needs also a way to draw itself and a way to inter-
act with the user.

The basic window class, called Windw, is the base for every window in the
window library. That is, you will derive new types of windows from this basic
class, using inheritance to create more specialized windows. Figures 4.1 and
4.2 show unbordered and bordered windows, respectively, of the Windw class.

Figure 4.1. An unbordered window of the Windw class.

Figure 4.2. A bordered window of the Windw class.

Part I ■ DOS Topics

94

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

The declaration for the base window class, Windw, follows:

class Windw

{

 int *buffer; // Pointer to screen buffer.

protected:

 int wx, wy, ww, wh; // Window coordinates.

 int border, // Flag for border.

 buffered; // Flag for buffer.

 EvntMsg evntmsg; // Event message.

public:

 Windw(int x, int y, int w, int h, int bdr, int buf);

 virtual ~Windw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

private:

 void WindwError(char *s);

};

The data members wx, wy, ww, and wh are the position and size of the window.
The data member border is the Boolean value that determines whether a
window has a 3-D border. Notice that all the data except buffer is declared as
protected so the data can be inherited in derived classes. Notice also the extra
data member named evntmsg, which you use to store event messages (see
Chapter 3).

Constructing Windw
The first member function is the class’ constructor:

Windw::Windw(int x, int y, int w,

 int h, int brd, int buf)

{

 wx = x; wy=y; ww=w; wh=h;

 border=brd;

 buffered = buf;

 buffer = NULL;

}

Chapter 4 ■ Graphical Controls and Windows for DOS

95

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

The parameters for calling the constructor are the x,y coordinates of the
window, the width and height of the window, and two Boolean values,
indicating whether the window will have a border and whether the window
must buffer the screen area that it will cover.

In the constructor, the window’s requested coordinates are copied into wx,
wy, ww, and wh, and the border and buffered flags are set. Finally, the buffer
pointer is set to NULL.

Destructing Windw
The next member function is the class’ destructor:

Windw::~Windw(void)

{

 if (buffer != NULL)

 {

 mouse.HideMouse();

 putimage(wx, wy, buffer, COPY_PUT);

 free(buffer);

 mouse.ShowMouse();
 }

}

In this function, the value of buffer is checked. If it’s NULL, there’s no screen
data to restore, so the function just exits. If buffer isn’t NULL, the function
hides the mouse and then copies the contents of the buffer back to the screen.
This both erases the window and restores the screen. After redrawing the
screen, the function frees the memory used by the buffer and turns back on
the mouse.

Drawing Windw
Now that you know how the window is initialized and how it is erased, it would
be nice to learn how to draw the window in the first place! That’s the job of the
virtual function DrawWindow():

void Windw::DrawWindow (void)

{

 int size;

 mouse.HideMouse();

Part I ■ DOS Topics

96

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 // Save window screen area, if requested.

 if (buffered)

 {

 if ((size = imagesize(wx, wy, wx+ww, wy+wh)) < 0)

 WindwError(“Image too large to store.”);

 else

 {

 if ((buffer = (int *)malloc(size)) == NULL)

 WindwError(“Not enough memory.”);

 else getimage(wx, wy, wx+ww, wy+wh, buffer);

 }

 }

 //Draw basic 3-D window.

 setcolor(WHITE);

 moveto(wx+ww, wy);

 lineto(wx, wy);

 lineto(wx, wy+wh);

 moveto(wx+ww-1, wy+1);

 lineto(wx+1, wy+1);

 lineto(wx+1, wy+wh-1);

 setcolor(DARKGRAY);

 moveto(wx+1, wy+wh);

 lineto(wx+ww, wy+wh);

 lineto(wx+ww, wy);

 moveto(wx+2, wy+wh-1);

 lineto(wx+ww-1, wy+wh-1);

 lineto(wx+ww-1, wy+1);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 bar(wx+2, wy+2, wx+ww-2, wy+wh-2);

 //Draw border, if requested.

 if (border) {

 setcolor(DARKGRAY);

 moveto(wx+ww-10, wy+10);

 lineto(wx+10, wy+10);

 lineto(wx+10, wy+wh-10);

 setcolor(WHITE);

 lineto(wx+ww-10, wy+wh-10);

 lineto(wx+ww-10, wy+10);

 }

 mouse.ShowMouse();

}

Chapter 4 ■ Graphical Controls and Windows for DOS

97

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Here, as with all graphical operations, the function first turns off the mouse.
Then it checks whether it must buffer the screen background. If buffered is
false, it skips over this operation. Otherwise, it uses Borland’s imagesize()
function to determine how large the buffer must be.

If the image is too large to store (over 64K), DrawWindow() generates an error.
(This means that large windows cannot be buffered, except by using multiple
buffers to store segments of the screen. This operation is not included in the
class, but you can add it.) If the image is not too large, the function obtains
the memory needed with a call to malloc(), saving the buffer’s address
in the buffer pointer. It then copies the screen display data into the buffer,
using Borland’s getimage() function.

The function is now free to draw the window with calls to standard Borland
graphics functions. The window’s coordinates are used to calculate the
coordinates for each of the window’s graphics elements. For example, the first
line is drawn from the upper-right corner of the window to the upper-left
corner of the window. The X coordinate of this line is calculated by adding wx
(the X position of the window’s left edge) to ww (the window’s width). The Y
coordinate of this line is wy (the Y coordinate of the window’s top edge). Notice
that a border is drawn only if the border flag is true.

Running Windw
So far, you have functions to initialize a window, draw a window, and erase a
window. Because your window class is interactive, you also need a way to
receive commands from the user. The RunWindow() function, also a virtual
function, takes care of this:

void Windw::RunWindow(void)

{

 GetEvent(evntmsg);

}

In the base class, RunWindow() doesn’t accomplish much. It simply waits for an
event of any type to occur. In derived window types, though, RunWindow() takes
on greater responsibilities. In a dialog box, for example, RunWindow() gathers
text input and responds to buttons. Note that the function GetEvent() is the
event handler developed in Chapter 3.

When RunWindow() is called—usually by your main program, immediately after
calling DrawWindow()—it takes over processing and returns only when the user

Part I ■ DOS Topics

98

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

exits the window. The base class could have implemented RunWindow() as an
empty function. In that case, calling RunWindow() would immediately return
control to the calling program. Because this might be deceptive, however, the
simplest version of RunWindow() waits for a keypress or a mouse click before
returning.

Keep in mind that not every window needs input, so not every window needs
to call RunWindow(). For example, if you’re using a window as a graphical screen
frame, you shouldn’t call RunWindow(). If you do, your program will halt until
the user presses a key or clicks the mouse, at which time your frame window
will vanish.

Note: You should never call RunWindow() for a window that requires no
interaction with the user. Display windows (windows used merely as screen
dressing) require a call only to DrawWindow().

Programming the Basic Window
The basic window class is now complete. Before examining the derived
window classes, though, you should learn how to handle this basic class in your
programs. Listing 4.1 is a program that shows how to display and run a window
of the Windw class. Figure 4.3 shows the screen created by the program.

Listing 4.1. WNDW1.CPP—a program that displays and runs a Windw window.

#include <graphics.h>

#include <iostream.h>

#include <conio.h>

#include “windw.h”

void main(void)

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 getch();

 }

Chapter 4 ■ Graphical Controls and Windows for DOS

99

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 else

 {

 setbkcolor(BLUE);

 Windw wndw1(150, 100, 200, 200, FALSE, FALSE);

 wndw1.DrawWindow();

 Windw *wndw2 = new Windw(200, 150, 200, 200, TRUE, TRUE);

 wndw2->DrawWindow();

 wndw2->RunWindow();

 delete wndw2;

 getch();

 closegraph();

 }

}

Figure 4.3. The basic windows created by Listing 4.1 (WNDW1.CPP).

This program creates both an unbordered and bordered window, with the
bordered window’s coordinates overlapping the unbordered window. Because
the bordered window overlaps important screen information, its screen
buffering is turned on. To see how this works, run the program. Both windows
appear on-screen. Press any key or click the mouse, and the top window
vanishes, leaving the bottom window intact. That’s the buffering in action.
Press a key to exit the program.

Now you can examine the program in detail. First, the program initializes the
screen for VGA graphics by loading Borland’s EGAVGA.BGI graphics driver.
(Note that this driver must be in the same directory as the program. In the next
chapter, you’ll learn to link the graphics driver directly into your programs.)
After initializing the graphics driver, the program sets the screen’s background
color to blue. It then creates the first window with the statement:

Windw wndw1(150, 100, 200, 200, FALSE, FALSE);

Part I ■ DOS Topics

100

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

This statement sets the window’s x,y coordinates to 150,100, sets its width
and height to 200, turns the window border off, and turns screen buffering off.
The statement creates the window only in memory; the window is still not
visible on-screen. So, the next line of the program calls the window’s
DrawWindow() function:

wndw1.DrawWindow();

This displays the window on-screen. If user interaction with this window was
required, the program would call the window’s RunWindow() function next.
Instead, it creates a second window, with the statement:

Windw *wndw2 = new Windw(200, 150, 200, 200, TRUE, TRUE);

This statement creates a window at the coordinates 200,150. This window has
a width and height of 200 pixels and a border, and buffers the screen area it
covers.

Notice that this window is created dynamically on the heap. Why? First, you
should see both methods of declaring a window. More importantly, however,
without using dynamic allocation, this program cannot command the top
window to erase itself. Remember: The windows are erased by their destruc-
tors, and destructors aren’t called until an object is deleted or goes out of
scope. Because the WNDW1.CPP program has only the main() function, none
of the objects created in it can go out of scope until the program ends. This
leaves no way to remove a statically allocated window from the display.

The solution is to create the window dynamically. Then, when you’re ready to
erase the window, you can call the window’s destructor implicitly by deleting
the window. Keep this in mind when you create your own windows. A statically
allocated window’s destructor is called only when the window goes out of
scope. A dynamically allocated window’s destructor is called indirectly by the
delete instruction.

Note: A statically allocated window’s destructor is called only when the
window goes out of scope. So, if you must display and erase a window in a
single function, you must create the window with the new keyword, which

allocates the window dynamically on the heap. To erase the window, you call delete.

After creating the second window, the program displays it by calling its
DrawWindow() function:

wndw2->DrawWindow();

Chapter 4 ■ Graphical Controls and Windows for DOS

101

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Notice that you must use the indirect component selector (->) to access
members of the second window’s class. You must use this syntax to access
members of any dynamically allocated structures. You’ve probably used this
operator frequently with pointers to structs.

After drawing the window, the program waits for user input by calling the
window’s RunWindow() function, which waits for a keypress or a mouse click:

wndw2->RunWindow();

When the window receives input, the program deletes the window by calling
delete. When this dynamically allocated window is deleted, its destructor is
called, which removes the window’s image from the screen, leaving the first
window intact. The program then waits for a keypress, after which the program
closes the graphics driver and ends.

The Captioned Window
A n empty window is fine to use as a background or as a screen element

when creating a 3-D display. Other than adding interesting graphical
effects to your programs, however, a basic, unadorned window is mostly
useless. To do something more useful with your window class, you must create
windows that display information and, in some cases, allow user input.

Now that you have a basic window class, you can create windows with new
characteristics by deriving them from the basic class. When you do this, the
new window class inherits all the characteristics of its ancestor class, leaving
you free to add whatever you need, without worrying about introducing bugs
into already tested code.

The next type of window you’ll create is a captioned window. A captioned

window is like a basic window, except it has a caption bar at the top, which
enables you to label the window. Figure 4.4 shows a captioned window.

Figure 4.4. A captioned window has a caption bar at the top.

Part I ■ DOS Topics

102

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Here’s the declaration for the new class:

class CapWindw: public Windw

{

protected:

 char label[61];

public:

 CapWindw(int x, int y, int w, int h,

 int bdr, int buf, char *s);

 virtual void DrawWindow(void);

 void SetCaption(char *s);

private:

 void DrawCapBar(void);

};

First, notice that CapWindw is derived publicly from Windw, which gives CapWindw
access to all the public and protected data members and member functions of
Windw. Without the public keyword in CapWindw’s definition, this class would
lose all of Windw’s functionality. In fact, without the public keyword, the source
code for the CapWindw class will not compile. The compiler will complain loudly,
informing you that Windw’s data members are not accessible.

The CapWindw class adds one data member, label, which is a character array
that will hold the window’s caption. Note that this array can hold only 60
characters plus the terminating null.

Caution: CapWindw’s member functions do not check the source string
(the one you supply when you create a captioned window) for proper length.
Therefore, you must be careful that your captions are no longer than 60

characters. If you aren’t, the string-copying functions may overwrite other data, yielding
unpredictable results. In a commercial program, this lack of error checking would be
unacceptable. Keep this in mind when writing your own code.

Constructing CapWindw
Now, you can see how to construct a captioned window. This class’ constructor
requires the same parameters as the basic window, except it also needs a
pointer to the caption string:

Chapter 4 ■ Graphical Controls and Windows for DOS

103

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

CapWindw::CapWindw(int x, int y, int w, int h,

 int brd, int buf, char *s) :

 Windw(x, y, w, h, brd, buf)

{

 strcpy(label, s);

}

This constructor lets the Windw class do the bulk of the initialization work by
passing most of the parameters to that class’ constructor. CapWindw() then
takes the caption-string parameter and copies it into label. By using inherit-
ance, this function creates a new window type, and only copied one string to
do it! This is an example of the power of object-oriented programming.

Drawing CapWindw
Now that you’ve created a captioned window, you need to display it. You do
that with its DrawWindow() function:

void CapWindw::DrawWindow(void)

{

 // Draw basic window.

 Windw::DrawWindow();

 // Draw caption bar.

 DrawCapBar();

}

This function takes advantage of its relationship with Windw by calling that
class’ version of DrawWindow() to draw the basic window. After calling that
function, CapWindw::DrawWindow() must draw only the caption bar and the
caption text. Again, OOP techniques have saved much work.

Notice that the caption-drawing code is placed into its own function,
DrawCapBar(). This is because the class must call DrawCapBar() from more than
one function. Here’s the code for DrawCapBar():

void CapWindw::DrawCapBar(void)

{

 mouse.HideMouse();

 setcolor(WHITE);

 moveto(wx+20, wy+40);

 lineto(wx+20, wy+20);

 lineto(wx+ww-20, wy+20);

Part I ■ DOS Topics

104

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 setcolor(BLACK);

 lineto(wx+ww-20, wy+40);

 lineto(wx+20, wy+40);

 setfillstyle(SOLID_FILL, DARKGRAY);

 bar(wx+21, wy+21, wx+ww-21, wy+39);

 setcolor(WHITE);

 int x = (wx+ww/2) - (strlen(label)*4);

 outtextxy(x, wy+27, label);

 mouse.ShowMouse();

}

First, the function uses Borland’s graphics library to draw the 3-D bar at the top
of the window. Then, it calculates the caption’s x coordinate so the string is
centered in the caption bar. Next, it draws the caption as graphics text, with
the outtextxy() function.

In the class’ declaration, DrawCapBar() is declared as private, which means
only functions of the CapWindw class may access DrawCapBar(). New caption
bars must be drawn through the public function SetCaption():

void CapWindw::SetCaption(char *s)

{

 strcpy(label, s);

 DrawCapBar();

}

This function, which takes as a parameter a pointer to the caption string, copies
the new caption into label. It then draws the new caption bar by calling the
private function DrawCapBar().

The Captioned Text Window
M any windows in your programs will be dialog boxes of one type or

another, which means you need a way to display text in your windows.
For example, before exiting a program, you may want to ask users whether
they want to save the current file. As your window class stands now, you cannot
create a window containing a text message, except to create a captioned
window and then draw the text “by hand.” Wouldn’t it be nice to have a window
class that can take care of this task?

The next derived class, CapTWindw (for captioned text window), is shown in
Figure 4.5. It provides the basis for your dialog boxes:

Chapter 4 ■ Graphical Controls and Windows for DOS

105

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

class CapTWindw: public CapWindw

{

protected:

 char *line1, *line2;

 int button;

public:

 CapTWindw(char *s1, char *s2, char *s3);

 virtual void DrawWindow(void);

 int GetButton(void) { return button; }

};

Figure 4.5. A captioned window with a text display.

As you can see, this class is publicly derived from CapWindw. Thus, it inherits
all the functionality of not only the CapWindw class but also the Windw class,
because CapWindw is derived from that class.

This new class declares three new data members, line1, line2, and button.
The first two are pointers to the lines of text that appear in the window when
it is drawn. The integer button holds the value of the button that is clicked to
exit the dialog. This data member isn’t used in CapTWindw because windows of
that class have no buttons. However, several classes that you derive from
CapTWindw do have buttons. Rather than duplicate the button data member in
each class, it has been moved back one step in the hierarchy, to the CapTWindw
class.

Constructing CapTWindw
The CapTWindw constructor is very different from the constructors you’ve seen
so far:

CapTWindw::CapTWindw(char *s1, char *s2, char *s3) :

 CapWindw(0, 0, 0, 150, FALSE, TRUE, s1)

{

Part I ■ DOS Topics

106

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 // Calculate which string is the longest and

 // use that width to calculate the window’s width.

 int w = strlen(s1) * 8 + 60;

 if (strlen(s2) > strlen(s3))

 ww = strlen(s2) * 8 + 60;

 else ww = strlen(s3) * 8 + 60;

 if (w > ww) ww = w;

 // Enforce a minimum width.

 if (ww < 230) ww = 230;

 // Calculate the window’s x,y coordinates.

 wx = 320 - ww/2;

 wy = 164;

 // Set the window’s text.

 line1 = s2;

 line2 = s3;

}

To create a captioned text window, you need supply only three pointers to the
strings used for the window’s caption and body text. The other parameters
needed by the base class constructor are supplied by CapTWindw’s constructor.
This is because a CapTWindw window, like all dialogs derived from it, always
appears in the center of the screen, is always 150 pixels high, never has a
border, and always buffers the screen background.

The CapTWindw constructor passes to the CapWindw constructor all zeroes for
the window’s wx, wy, and ww attributes because the CapTWindw constructor sizes
its own windows. As mentioned, a CapTWindw window is always centered on-
screen. In addition, the width of the window is determined by the width of the
text the window must display.

The CapTWindw constructor first calls the CapWindw constructor, which in turn
first calls the Windw constructor. It is Windw() that actually starts drawing the
window. The window is created piece by piece, first drawing the basic window
and then moving a step at a time back down through the hierarchy, from
Windw() to CapWindw to CapTWindw(), drawing new window elements with each
step. Each derived class adds to the previous classes, moving from a general
form to a more specific implementation of the base object. The further down
the hierarchy you go, the more specific the classes become.

After calling the base constructor, the CapTWindw constructor determines the
longest of the three strings it must display, then uses that information to set
the x,y coordinates and width of the window.

Chapter 4 ■ Graphical Controls and Windows for DOS

107

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Drawing CapTWindw
A captioned text window, just like any of the windows, must have its own
version of DrawWindow():

void CapTWindw::DrawWindow(void)

{

 // Draw the captioned window.

 CapWindw::DrawWindow();

 // Position and draw window body text.

 mouse.HideMouse();

 int x = (wx+ww/2) - (strlen(line1)*8)/2;

 setcolor(BLACK);

 if (strlen(line2)==0)

 outtextxy(x, wy+68, line1);

 else

 {

 outtextxy(x, wy+56, line1);

 x = (wx+ww/2) - (strlen(line2)*8)/2;

 outtextxy(x, wy+71, line2);

 }
 mouse.ShowMouse();

}

This version first calls the DrawWindow() function of its base class, CapWindw,
which in turn calls Windw::DrawWindow(). When you draw the window (just as
when you constructed the window), you move up through the hierarchy to the
base class, then move down again a step at a time, drawing the appropriate
window screen elements for each of the object’s ancestor classes.

After those drawing operations are complete, the function draws the window’s
text. The text strings are centered horizontally in the box. The vertical spacing
of the text is based on the number of lines to print. A single line of text (an
option you can choose by sending the constructor an empty string for the third
string parameter) is printed lower in the box than the first line of a two-line
message.

Getting Button Presses
The last function in CapTWindw, GetButton(), is implemented in-line. GetButton(),
like the data member it returns, is not used directly in this class. Rather,
GetButton() is placed here to provide button support to all classes derived
from CapTWindw.

Part I ■ DOS Topics

108

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

The Button Window
S peaking of classes derived from CapTWindw, the first of these is the OK

window, which is a message box containing an OK button. But before you
can look at this class, you need to examine the Button class. After all, if you
don’t know how buttons work, how can you study classes that use them?

Here’s the declaration for the Button class:

class Button: public Windw

{

 char label[20];

 unsigned hotkey;

 int altkey;

public:

 Button(int x, int y, char *s);

 void DrawWindow(void);

 int Clicked(EvntMsg evntmsg);

 void ClickButton(void);

};

A button is derived from the basic window class, Windw, because it has little in
common with the other derived types created so far. In fact, a button is so
radically different from even the basic window type that you may be surprised
to discover it’s a window.

The Button class adds three private data members to the data members
inherited from Windw. The first is a character array that holds the button’s label.
The second is an integer that holds the value of the button’s hot key, which is
the key (rather than the mouse button) the user can press to select the button.
For all buttons, hot keys are Ctrl-key combinations. For example, a Cancel
button can be selected from the keyboard by pressing Ctrl-C.

The third data member, altkey, is similar to hotkey. This data member holds
the value of an alternate hot key used specifically with OK buttons and Cancel
buttons. This enables the user to press Enter to select an OK button and to
press Esc to select the Cancel button. These are alternate keystrokes because
both buttons also respond to their regular hot keys, Ctrl-O and Ctrl-C.

Chapter 4 ■ Graphical Controls and Windows for DOS

109

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Constructing Button
Now look at Button’s member functions, starting with the constructor:

Button::Button(int x, int y, char *s) :

 Windw(x, y, 64, 32, FALSE, FALSE)

{

 strcpy(label, s);

 altkey = 0;

 hotkey = 0;

}

This constructor passes almost all initialization chores to its ancestor class,
Windw, which sets most of the button’s attributes. The only data left to initialize
after the Windw constructor does its job are Button’s three private data
members. This is accomplished by copying the string parameter into label and
setting hotkey and altkey to 0.

The text in label appears on the button. This text has a special format that
allows your button object to determine which character of the label is the
button’s hot key. When you enter the label text, you must place a caret (^)
immediately before the hot-key character. When the button is drawn, the
object searches for the caret in its label, sets the hot key to the appropriate Ctrl-
key value, and underlines the hot-key character on the button.

Drawing Button
Study Button’s DrawWindow() function to see how the button-drawing works:

void Button::DrawWindow(void)

{

 int pos = -1;

 char tlabel[20];

 Windw::DrawWindow();

 mouse.HideMouse();

 // Find and remove the ^ character and

 // set the appropriate hot key.

 strcpy(tlabel, label);

 for (int i = 0; i<strlen(tlabel); ++i)

 {

Part I ■ DOS Topics

110

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 if (tlabel[i] == ‘^’)

 {

 pos = i;

 hotkey = ctrlkeys[tlabel[i+1]-65];

 for (int j=i; j<strlen(tlabel); ++j)

 tlabel[j] = tlabel[j+1];

 }

 }

 if (strcmp(tlabel,”OK”)==0) altkey = OKALT;

 else if (strcmp(tlabel, “CANCEL”)==0) altkey = CANCELALT;

 // Center and draw text on button.

 int x = (wx+ww/2) - (strlen(tlabel)*4);

 setcolor(BLACK);

 outtextxy(x, wy+12, tlabel);

 // Underline the hot-key character.

 if (pos >= 0)

 line(x+pos*8, wy+20, x+pos*8+6, wy+20);

 mouse.ShowMouse();

}

This function has a lot of work to do. First, it makes a temporary copy of the
button’s label text. It then searches through the text, looking for the caret.
When it finds the caret, it marks its position in the string with pos and sets the
value of the hot key by using i to index an array of Ctrl-key values. This array,
which contains a control value for every letter in the alphabet, is declared in
the window library’s implementation file, WINDW.CPP:

unsigned ctrlkeys[] =

 {0x1e01, 0x3002, 0x2e03, 0x2004, 0x1205, 0x2106,

 0x2207, 0x2308, 0x1709, 0x240a, 0x250b, 0x260c,

 0x320d, 0x310e, 0x180f, 0x1910, 0x1011, 0x1312,

 0x1f13, 0x1414, 0x1615, 0x2f16, 0x1117, 0x2d18,

 0x1519, 0x2c1a};

After assigning the hot key, the function removes the caret from the label string
because you don’t want the caret to show up on the button. It then checks the
label text to see whether it is marked OK or CANCEL. If it finds a match, it sets
the appropriate alternate hot key for the button. The values OKALT and
CANCELALT are defined in the window library’s header file, WINDW.H, and are

Chapter 4 ■ Graphical Controls and Windows for DOS

111

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

the raw key codes for the Enter and Esc keys, respectively. Finally, the
function centers and prints the button’s text label and underlines the hot-key
character.

Whew! That’s a lot more work than drawing other classes of windows (except
maybe the base class Windw). And the fun is far from over. A button is a
sophisticated type of window. Besides being created and drawn, a button must
know when the user has selected it.

Clicking Button
The Clicked() function handles the interaction when the user clicks the
button or presses its hot key:

int Button::Clicked(EvntMsg evntmsg)

{

 int mx, my;

 int click = FALSE;

 // Check whether button was selected by the mouse.

 if ((evntmsg.type == MBUTTON) &&

 (evntmsg.mx>wx) && (evntmsg.mx<wx+ww) &&

 (evntmsg.my>wy) && (evntmsg.my<wy+wh))

 {

 ClickButton();

 click = TRUE;

 }

 // Check whether button was selected from the keyboard.

 else if (evntmsg.type == KEYBD)

 {

 if ((evntmsg.key == hotkey) || (evntmsg.key == altkey))

 {

 ClickButton();

 click = TRUE;

 }

 }

 return click;

}

This function returns a 0 if the button was not selected or a 1 if the button was
selected. The value is returned to the button’s owner, either a dialog box or
your main program. To determine the return value, Clicked() compares the

Part I ■ DOS Topics

112

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

values in the event message you pass to it with its own coordinates and hot
keys. Because you must pass a current event message to this function,
GetEvent() (found in the message handler) must be called before Clicked().
You can then call Clicked() for each button you need to check. If a button
returns true, your program knows what action the user has requested.

The function Clicked() first checks for a mouse-button event. If it has one, it
compares the mouse’s coordinates at the time of the event with the button’s
coordinates. If they match, the user has selected the button with the mouse.
So the function animates the button by calling the ClickButton() member
function, then sets the function’s return value to true.

If the function didn’t get a mouse-button event, it checks for a keyboard event.
If there was a keystroke, and the key pressed matches either the button’s hot
key or the alternate hot key, the function animates the button and sets the
function’s return value to true.

Note that both if statements could have been combined into one gigantic and
complicated one, but that would have made the code almost impossible to
read. Nothing will fry your brain faster than an if statement with a dozen
conditions. Just figuring out where to put all the parentheses is enough to
render your gray matter useless for the rest of the day.

The Clicked() function is straightforward. But before you move on, you’d
probably like to know how the ClickButton() function works, because it makes
your buttons act like buttons. Here it is

void Button::ClickButton(void)

{

 int *buff;

 mouse.HideMouse();

 // Shift the image on the button down and right

 // to simulate button movement.

 int size = imagesize(wx+2, wy+2, wx+ww-2, wy+wh-2);

 buff = (int *)malloc(size);

 if (buff)

 {

 getimage(wx+2, wy+2, wx+ww-2, wy+wh-2, buff);

 putimage(wx+3, wy+3, buff, COPY_PUT);

 free(buff);

 }

Chapter 4 ■ Graphical Controls and Windows for DOS

113

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 // Draw the button’s borders so the

 // button appears to be pressed.

 setcolor(DARKGRAY);

 moveto(wx+ww, wy);

 lineto(wx, wy); lineto(wx, wy+wh);

 moveto(wx+ww-1, wy+1);

 lineto(wx+1, wy+1); lineto(wx+1, wy+wh-1);

 setcolor(WHITE);

 moveto(wx+1, wy+wh);

 lineto(wx+ww, wy+wh); lineto(wx+ww, wy);

 moveto(wx+2, wy+wh-1);

 lineto(wx+ww-1, wy+wh-1);

 lineto(wx+ww-1, wy+1);

 // Make button beep.

 sound (2000);

 delay (100);

 nosound();

 // Redraw button in unselected form.

 DrawWindow();

 mouse.ShowMouse();

}

Here, the function first hides the mouse, so it stays out of the way of the screen-
drawing operations. It then copies the image of the button’s surface into a
buffer and writes that image back to the screen, shifting it down and to the right
one pixel. This gives the illusion of movement. To make the button look
pressed, the function reverses its outline with a series of calls to moveto() and
lineto(), after which it calls Borland’s Sound(), delay(), and nosound()
functions to make a beep. Finally, it restores the button’s image by calling the
button’s DrawWindow() function.

Note: If you add window types to the window library, you must be careful
when calling DrawWindow(). Remember, for some window types, the
DrawWindow() function creates a screen buffer. In other words, succes-

sive calls to this function for the same object may re-create the screen-image buffer,
destroying the pointer to the previous buffer. Your screen may not be updated properly
when the window is closed. The button objects have no screen buffers, so calling
DrawWindow() does nothing more than draw the button.

Part I ■ DOS Topics

114

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.2 is a program that demonstrates how to use a button object.

Listing 4.2. WNDW2.CPP—a demonstration of the button class.

#include <graphics.h>

#include <iostream.h>

#include <conio.h>

#include “mous.h”

#include “windw.h”

#include “event.h”

void main(void)

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 EvntMsg evntmsg;

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 getch();

 }

 else

 {

 setfillstyle(SOLID_FILL, BLUE);

 bar(0, 0, getmaxx(), getmaxy());

 mouse.SetLimits(0,getmaxx(),0,getmaxy());

 mouse.ShowMouse();

 Button wndw1(200, 200, “^OK”);

 Button wndw2(280, 200, “^CANCEL”);

 wndw1.DrawWindow();

 wndw2.DrawWindow();

 // Loop until a button is chosen.

 int button = 0;

 while (!button)

 {

 GetEvent(evntmsg);

 // Check for button click.

 if (wndw1.Clicked(evntmsg))

 button = OK;

 else if (wndw2.Clicked(evntmsg))

 button = CANCEL;

 }

Chapter 4 ■ Graphical Controls and Windows for DOS

115

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 mouse.HideMouse();

 if (button == OK)

 outtextxy(200, 300, “You clicked OK.”);

 else

 outtextxy(200, 300, “You clicked CANCEL.”);

 getch();

 closegraph();

 }

}

The program’s display is shown in Figure 4.6. When you run the program, two
button objects appear on-screen. To exit the program, simply select a button.
Because the buttons are OK and Cancel buttons, you can select them in several
ways. To select the OK button, click it with the mouse, press Enter, or press
Ctrl-O. To select the Cancel button, click it with the mouse, press Esc, or press
Ctrl-C.

Figure 4.6. The buttons created by WNDW2.CPP.

The OK Window
N ow that you know how buttons perform their magic, you can create

window classes that use buttons. The first of these is an OK window,
which displays messages to the user. After reading the message, the user can
close the box by selecting the OK button with the mouse or the keyboard.
Figure 4.7 shows an OK window. Its declaration is as follows:

class OKWindw: public CapTWindw

{

 Button *butn;

public:

 OKWindw(char *s1, char *s2, char *s3);

 virtual ~OKWindw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

};

Part I ■ DOS Topics

116

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Figure 4.7. An OK window displays messages to the user.

The OK window is the first of several classes that will be derived from
CapTWindw. Each class differs in the type of buttons it displays. The OKWindw
declaration contains a new data member, butn, which is a pointer to a Button
window. By declaring this pointer as a data member, any function in the
OKWindow class can access it. The DrawWindow() and RunWindow() functions use
this pointer.

Constructing OKWindw
The constructor for the OKWindw class is about as simple as it gets in a class
hierarchy:

OKWindw::OKWindw(char *s1, char *s2, char *s3) :

 CapTWindw(s1, s2, s3)

{

 butn = NULL;

}

This constructor does little more than pass its parameters to the CapTWindw
constructor, which does most of the required initialization. The only data
member that an OKWindw object needs to initialize directly is its button pointer,
butn, which the constructor sets to NULL.

Destructing OKWindw
OKWindw is the first class that has needed a destructor since the base class,
Windw. The cleanup for the other classes could be handled by C++. However,
an OKWindw, like other dialog classes to follow, creates a button window on the
heap. This button must be deleted with the rest of the object when the
destructor is called:

Chapter 4 ■ Graphical Controls and Windows for DOS

117

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

OKWindw::~OKWindw(void)

{

 if (butn != NULL) delete butn;

}

Drawing OKWindw
Drawing an OKWindw is much like drawing a CapTWindw:

void OKWindw::DrawWindow(void)

{

 CapTWindw::DrawWindow();

 butn = new Button(wx+ww/2-32, wy+wh-42, “^OK”);

 butn->DrawWindow();

}

In fact, drawing an OKWindw is so much like drawing a CapTWindw that
OKWindw::DrawWindow() first calls CapTWindw::DrawWindow() to do the bulk of
the work. Then it simply draws the window’s OK button by allocating a new
button on the heap and calling the button’s DrawWindow() function.

Running OKWindw
Because OKWindw is a dialog box (albeit a simple one), it must interact with the
user. This means OKWindw must implement its own version of RunWindow():

void OKWindw::RunWindow(void)

{

 button = 0;

 // Loop until a button is chosen.

 while (!button)

 {

 GetEvent(evntmsg);

 // Check for mouse click on button.

 if (butn->Clicked(evntmsg))

 button = OK;

 // Check for a keyboard event.

 else if (evntmsg.type == KEYBD)

 {

Part I ■ DOS Topics

118

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 // Convert character code to ASCII,

 // and check for Esc key.

 char k = evntmsg.key & 0x00ff;

 if (k == ESC) button = CANCEL;

 }

 }

}

This function enables the user to close the dialog by selecting the OK button
or pressing Enter (the alternate key for an OK button). First, the function sets
the object’s button data member to 0, which gets it into the while loop. In the
loop, the GetEvent() function is called to poll for a mouse or keyboard event.
When an event comes in, the function checks whether the user selected the OK
button. If the user clicked the button, pressed the hot key, or the alternate hot
key, butn->Clicked() returns true (as well as animates the button). In this
case, the function sets button to OK (which indicates that the OK button was
selected), and then returns.

If the button wasn’t selected, the function checks for a keyboard event—
specifically an Esc, which always cancels a dialog box. If Esc was pressed, the
function sets button to Cancel, simulating a Cancel-button click, even though
this window has no Cancel button. (The button values are defined in the
WINDW.H header file.)

The Yes/No and Yes/No/Cancel Windows
M essage boxes require different types of responses, depending on the

prompt they display. For example, when a user tries to quit your
program, you may want to ask “Do you really want to quit?” This type of prompt
requires only a yes or no answer. But suppose a user tries to close a file that
hasn’t been saved. You might display a message box asking “Do you want to
save your file?” In this case, yes and no buttons are not adequate because both
answers assume that the user wanted to close the file in the first place. (The
user may have selected the close command accidentally.) Therefore, you also
need a Cancel button, which terminates the command without taking an
action.

Both of the Yes/No and Yes/No/Cancel types of message boxes are included in
your window library. The first is called YesNoWindw and is defined as follows:

Chapter 4 ■ Graphical Controls and Windows for DOS

119

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

class YesNoWindw: public CapTWindw

{

protected:

 Button *butn1, *butn2;

public:

 YesNoWindw(char *s1, char *s2, char *s3);

 virtual ~YesNoWindw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

};

Figure 4.8 shows a typical Yes/No window. Except for having two buttons
instead of one, this type of window is almost identical to an OK window. For
this reason, its member functions aren’t discussed here. (If you’d like to
compare them to the ones in OKWindw, see Listing 4.5 near the end of the
chapter.)

Figure 4.8. A typical Yes/No window.

Your window library also features YesNoCanWindw, which displays Yes, No, and
Cancel buttons in addition to the message box’s prompt. Here’s its declaration:

class YesNoCanWindw: public CapTWindw

{

 Button *butn1, *butn2, *butn3;

public:

 YesNoCanWindw(char *s1, char *s2, char *s3);

 virtual ~YesNoCanWindw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

};

Again, except for the number of buttons, this window is almost identical to an
OK window. Its member functions, too, are implemented in Listing 4.5. The
window is shown in Figure 4.9.

Part I ■ DOS Topics

120

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Figure 4.9. A window of the YesNoCanWindw class.

The Input Window
O ften your programs require the user to input short strings. You might

need the user to supply a filename, for example. Your window library
takes care of this requirement with a special dialog box, InputWindw:

class InputWindw: public CapTWindw

{

 char input[81];

 Button *butn1, *butn2;

public:

 InputWindw(char *s1, char *s2, char *s3);

 virtual ~InputWindw(void);

 void GetInput(char *s) { strcpy(s, input); }

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

private:

 void HandleInput(char k);

};

Figure 4.10 shows a typical input window. In addition to button pointers, this
type of window includes a data member in which it can store an array of
characters—this is where input from the user is placed. As far as its data
members go, this new character array is the only difference between InputWindw
and the other dialogs in the window library.

Because constructing and destructing an input window is much like construct-
ing and destructing the other dialog boxes, these functions are not examined
here. Instead, take a quick look at InputWindw’s constructor and destructor in
Listing 4.5 (at the end of this chapter).

Chapter 4 ■ Graphical Controls and Windows for DOS

121

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Figure 4.10. An input window accepts short strings from the user.

Drawing InputWindw
On the screen, an input window is similar to any other dialog. The main
difference is that an input window includes a data-entry field in which users
can type their response to the dialog’s prompt. As with any dialog, you draw
an InputWindw by calling its DrawWindow() member function, shown in the
following:

void InputWindw::DrawWindow(void)

{

 CapTWindw::DrawWindow();
 butn1 = new Button(wx+ww/2-70, wy+108, “^OK”);

 butn1->DrawWindow();

 butn2 = new Button(wx+ww/2+6, wy+108, “^CANCEL”);

 butn2->DrawWindow();

 mouse.HideMouse();

 setfillstyle(SOLID_FILL, BLACK);

 bar(wx+15, wy+85, wx+ww-15, wy+99);

 mouse.ShowMouse();

}

This function first calls the ancestor class’ DrawWindow(), which draws the main
window, the caption bar, and the dialog’s text prompt. After that function
returns, InputWindw::DrawWindow() creates and draws the input window’s
buttons and the text-entry field, which is simply a black bar.

Running InputWindw
When you run an input window, you must do more than check the dialog’s
buttons. You also must allow the user to enter text into the text-entry field.

Part I ■ DOS Topics

122

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

This means you must capture and analyze every keyboard event that flows
through your dialog. All this is handled in InputWindw’s RunWindow() member
function:

void InputWindw::RunWindow(void)

{

 button = 0;

 while (!button)

 {

 GetEvent(evntmsg);

 if (butn1->Clicked(evntmsg))

 button = OK;

 else if (butn2->Clicked(evntmsg))

 button = CANCEL;

 else if (evntmsg.type == KEYBD)

 {

 char k = evntmsg.key & 0x00ff;

 HandleInput(k);

 }

 }

}

The button handling here is identical to the button handling in any other dialog
box. The function grabs an event and then calls each button’s Clicked()
function to determine whether that button has been selected.

If InputWindw::RunWindow() gets a keyboard event (other than a keyboard
event that selects a button), it must check the key’s value and decide whether
that key is intended for the text-entry field. First, the function translates the
key into an ASCII code by masking the upper byte. It then sends the key to the
HandleInput() private function:

void InputWindw::HandleInput(char k)

{

 int l = strlen(input);

 int w = (ww - 30)/8;

 settextjustify(LEFT_TEXT, TOP_TEXT);

 // Check that an appropriate key was pressed

 // and that the string can hold another character.

 if ((k>31) && (k<127) && (l<80))

 {

 // Add character to string.

Chapter 4 ■ Graphical Controls and Windows for DOS

123

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 input[l+1] = 0; input[l] = k;

 // Draw the portion of the string that will

 // fit into the text-entry field.

 setcolor(WHITE);

 if (l < w) outtextxy(wx+15, wy+88, input);

 else

 {

 int i = l - w + 1;

 setfillstyle(SOLID_FILL, BLACK);

 bar(wx+15, wy+85, wx+ww-15, wy+99);

 outtextxy(wx+15, wy+88, &input[i]);

 }

 }

 // Check for a Backspace character and that

 // the string has a character to delete.

 else if ((k==BACKSP) && (l>0))

 {

 // Delete the last character.

 l -= 1;

 input[l] = 0;

 // Draw the portion of the string that

 // will fit in the text-entry field.

 setfillstyle(SOLID_FILL, BLACK);

 bar(wx+15, wy+85, wx+ww-15, wy+99);

 setcolor(WHITE);

 if (l < w+1) outtextxy(wx+15, wy+88, input);

 else

 {

 int i = l - w;

 outtextxy(wx+15, wy+88, &input[i]);

 }

 }

}

The first if statement determines whether the key pressed is a text character.
If it is, the function adds the character to the input string and draws the string
in the text-entry field. However, because the text-entry field is only w charac-
ters wide (w is calculated by dividing the text field’s width by a character’s
width) but allows strings as long as 80 characters, the function must provide
text scrolling. This is accomplished by displaying only the characters of input
that fit in the text-entry field, counting backward from the end of the string.

Part I ■ DOS Topics

124

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

If the key received is a Backspace and the input string contains at least one
character, the function removes the last character from the string. Again, it
must then display the portion of the string that fits in the text-entry field.

To retrieve the string entered by the user, you must call the dialog’s GetInput()
function, which is implemented in-line, as shown in the class’ declaration.
When calling GetInput(), you must supply the address of a character array in
which the function can store the input string. Size checking is not performed,
so you must be sure that your character array can hold at least 81 characters,
which provides enough space for 80 characters plus a NULL.

Listing 4.3 shows how to program an InputWindw. When you run the program,
it draws an input window on-screen. You can then enter whatever you want
into the window’s text-entry field. If you exit the dialog by clicking the OK
button, your input is displayed on-screen, after which you must press any key
to exit the program. If you exit the dialog by selecting the Cancel key, your
input is ignored.

Listing 4.3. WNDW3.CPP—this program shows how to program an input
window.

#include <graphics.h>

#include <iostream.h>

#include <conio.h>

#include “mous.h”

#include “windw.h”

void main(void)

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 char s[81];

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 getch();

 }

 else

 {

 setfillstyle(SOLID_FILL, BLUE);

 bar(0, 0, getmaxx(), getmaxy());

Chapter 4 ■ Graphical Controls and Windows for DOS

125

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 mouse.SetLimits(0,getmaxx(),0,getmaxy());

 mouse.ShowMouse();

 InputWindw *wndw1 = new InputWindw(“INPUT WINDOW”,

 “Enter a text string:”, “”);

 wndw1->DrawWindow();

 wndw1->RunWindow();

 if (wndw1->GetButton() == OK)

 {

 wndw1->GetInput(s);

 mouse.HideMouse();

 outtextxy(0, 350, s);

 getch();

 }

 delete wndw1;

 closegraph();

 }

}

Conclusion
Y ou now have a simple window library that you can use to create programs

with an attractive and useful graphical interface. Because your library has
many types of windows, each with its own set of functions, a quick reference
for the library is provided in Appendix A. Also, Listing 4.4 shows the complete
header file for your window classes, and Listing 4.5 shows the implementa-
tion file.

In the next chapter, you apply all you’ve learned to create an interesting
simulation program. Along the way, you meet a handy data structure called a
linked list.

Listing 4.4. WINDW.H—the header file for your window classes.

#ifndef _WINDW_H

#define _WINDW_H

#include <string.h>

#include “event.h”

continues

Part I ■ DOS Topics

126

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.4. Continued

#define TRUE 1

#define FALSE 0

#define OK 1

#define YES 2

#define NO 3

#define CANCEL 4

#define OKALT 0x1c0d

#define CANCELALT 0x011b

// Function prototypes.

void GetEvent(EvntMsg &evntmsg);

class Windw

{

 int *buffer; // Pointer to screen buffer.

protected:

 int wx, wy, ww, wh; // Window coords.

 int border, // Flag for border.

 buffered; // Flag for buffer.

 EvntMsg evntmsg; // Event message.

public:

 Windw(int x, int y, int w, int h, int bdr, int buf);

 virtual ~Windw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

private:

 void WindwError(char *s);

};

class CapWindw: public Windw

{

protected:

 char label[61];

public:

 CapWindw(int x, int y, int w, int h, int bdr, int buf, char *s);

 virtual void DrawWindow(void);

 void SetCaption(char *s);

Chapter 4 ■ Graphical Controls and Windows for DOS

127

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

private:

 void DrawCapBar(void);

};

class CapTWindw: public CapWindw

{

protected:

 char *line1, *line2;

 int button;

public:

 CapTWindw(char *s1, char *s2, char *s3);

 virtual void DrawWindow(void);

 int GetButton(void) { return button; }

};

class Button: public Windw

{

 char label[20];

 unsigned hotkey;

 int altkey;

public:

 Button(int x, int y, char *s);

 void DrawWindow(void);

 int Clicked(EvntMsg evntmsg);

 void ClickButton(void);

};

class OKWindw: public CapTWindw

{

 Button *butn;

public:

 OKWindw(char *s1, char *s2, char *s3);

 virtual ~OKWindw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

};

class YesNoWindw: public CapTWindw

{

continues

Part I ■ DOS Topics

128

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.4. Continued

protected:

 Button *butn1, *butn2;

public:

 YesNoWindw(char *s1, char *s2, char *s3);

 virtual ~YesNoWindw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

};

class YesNoCanWindw: public CapTWindw

{

 Button *butn1, *butn2, *butn3;

public:

 YesNoCanWindw(char *s1, char *s2, char *s3);

 virtual ~YesNoCanWindw(void);

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

};

class InputWindw: public CapTWindw

{

 char input[81];

 Button *butn1, *butn2;

public:

 InputWindw(char *s1, char *s2, char *s3);

 virtual ~InputWindw(void);

 void GetInput(char *s) { strcpy(s, input); }

 virtual void DrawWindow(void);

 virtual void RunWindow(void);

private:

 void HandleInput(char k);

};

#endif

Chapter 4 ■ Graphical Controls and Windows for DOS

129

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. WINDW.CPP—the implementation file for window classes.

#include <graphics.h>

#include <alloc.h>

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

#include <dos.h>

#include “mous.h”

#include “windw.h”

unsigned ctrlkeys[] =

 {0x1e01, 0x3002, 0x2e03, 0x2004, 0x1205, 0x2106,

 0x2207, 0x2308, 0x1709, 0x240a, 0x250b, 0x260c,

 0x320d, 0x310e, 0x180f, 0x1910, 0x1011, 0x1312,

 0x1f13, 0x1414, 0x1615, 0x2f16, 0x1117, 0x2d18,

 0x1519, 0x2c1a};

///

// Implementation of the Windw class

///

Windw::Windw(int x, int y, int w, int h, int brd, int buf)

{

 wx = x; wy=y; ww=w; wh=h;

 border=brd;

 buffered = buf;

 buffer = NULL;

}

Windw::~Windw(void)

{

 if (buffer != NULL)

 {

 mouse.HideMouse();

 putimage(wx, wy, buffer, COPY_PUT);

 free(buffer);

 mouse.ShowMouse();

 }

}

void Windw::DrawWindow (void)

{

continues

Part I ■ DOS Topics

130

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. Continued

 int size;

 mouse.HideMouse();

 // Save window screen area, if requested.

 if (buffered)

 {

 if ((size = imagesize(wx, wy, wx+ww, wy+wh)) < 0)

 WindwError(“Image too large to store.”);

 else

 {

 if ((buffer = (int *)malloc(size)) == NULL)

 WindwError(“Not enough memory.”);

 else getimage(wx, wy, wx+ww, wy+wh, buffer);

 }

 }

 //Draw basic 3-D window.

 setcolor(WHITE);

 moveto(wx+ww, wy);
 lineto(wx, wy);

 lineto(wx, wy+wh);

 moveto(wx+ww-1, wy+1);

 lineto(wx+1, wy+1);

 lineto(wx+1, wy+wh-1);

 setcolor(DARKGRAY);

 moveto(wx+1, wy+wh);

 lineto(wx+ww, wy+wh);

 lineto(wx+ww, wy);

 moveto(wx+2, wy+wh-1);

 lineto(wx+ww-1, wy+wh-1);

 lineto(wx+ww-1, wy+1);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 bar(wx+2, wy+2, wx+ww-2, wy+wh-2);

 //Draw border, if requested.

 if (border) {

 setcolor(DARKGRAY);

 moveto(wx+ww-10, wy+10);

 lineto(wx+10, wy+10);

 lineto(wx+10, wy+wh-10);

Chapter 4 ■ Graphical Controls and Windows for DOS

131

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 setcolor(WHITE);

 lineto(wx+ww-10, wy+wh-10);

 lineto(wx+ww-10, wy+10);

 }

 mouse.ShowMouse();

}

void Windw::RunWindow(void)

{

 GetEvent(evntmsg);

}

void Windw::WindwError(char *s)

{

 cout << “ERROR: “ << s << ‘\n’;

 cout << “Press any key”;

 getch();

 abort();

}

///

// Implementation of the CapWindw class

///

CapWindw::CapWindw(int x, int y, int w, int h,

 int brd, int buf, char *s) :

 Windw(x, y, w, h, brd, buf)

{

 strcpy(label, s);

}

void CapWindw::DrawWindow(void)

{

 // Draw basic window.

 Windw::DrawWindow();

 // Draw caption bar.

 DrawCapBar();

}

void CapWindw::SetCaption(char *s)

{

 strcpy(label, s);

continues

Part I ■ DOS Topics

132

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. Continued

 DrawCapBar();

}

void CapWindw::DrawCapBar(void)

{

 mouse.HideMouse();

 setcolor(WHITE);

 moveto(wx+20, wy+40);

 lineto(wx+20, wy+20);

 lineto(wx+ww-20, wy+20);

 setcolor(BLACK);

 lineto(wx+ww-20, wy+40);

 lineto(wx+20, wy+40);

 setfillstyle(SOLID_FILL, DARKGRAY);

 bar(wx+21, wy+21, wx+ww-21, wy+39);

 setcolor(WHITE);

 int x = (wx+ww/2) - (strlen(label)*4);

 outtextxy(x, wy+27, label);

 mouse.ShowMouse();

}

CapTWindw::CapTWindw(char *s1, char *s2, char *s3) :

 CapWindw(0, 0, 0, 150, FALSE, TRUE, s1)

{

 // Calculate which string is the longest and

 // use that width to calculate the window’s width.

 int w = strlen(s1) * 8 + 60;

 if (strlen(s2) > strlen(s3))

 ww = strlen(s2) * 8 + 60;

 else ww = strlen(s3) * 8 + 60;

 if (w > ww) ww = w;

 // Enforce a minimum width.

 if (ww < 230) ww = 230;

 // Calculate the window’s x,y coordinates.

 wx = 320 - ww/2;

 wy = 164;

 // Set the window’s text.

Chapter 4 ■ Graphical Controls and Windows for DOS

133

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 line1 = s2;

 line2 = s3;

}

void CapTWindw::DrawWindow(void)

{

 // Draw the captioned window.

 CapWindw::DrawWindow();

 // Position and draw window body text.

 mouse.HideMouse();

 int x = (wx+ww/2) - (strlen(line1)*8)/2;

 setcolor(BLACK);

 if (strlen(line2)==0)

 outtextxy(x, wy+68, line1);

 else

 {

 outtextxy(x, wy+56, line1);

 x = (wx+ww/2) - (strlen(line2)*8)/2;

 outtextxy(x, wy+71, line2);

 }

 mouse.ShowMouse();

}

///

// Implementation of the OKWindw class

///

OKWindw::OKWindw(char *s1, char *s2, char *s3) :

 CapTWindw(s1, s2, s3)

{

 butn = NULL;

}

OKWindw::~OKWindw(void)

{

 if (butn != NULL) delete butn;

}

void OKWindw::DrawWindow(void)

{

 CapTWindw::DrawWindow();

continues

Part I ■ DOS Topics

134

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. Continued

 butn = new Button(wx+ww/2-32, wy+wh-42, “^OK”);

 butn->DrawWindow();

}

void OKWindw::RunWindow(void)

{

 button = 0;

 // Loop until a button is chosen.

 while (!button)

 {

 GetEvent(evntmsg);

 // Check for mouse click on button.

 if (butn->Clicked(evntmsg))

 button = OK;

 // Check for a keyboard event.

 else if (evntmsg.type == KEYBD)

 {

 // Convert character code to ASCII,

 // and check for Esc key.

 char k = evntmsg.key & 0x00ff;

 if (k == ESC) button = CANCEL;

 }

 }

}

///

// Implementation of the YesNoWindw class

///

YesNoWindw::YesNoWindw(char *s1, char *s2, char *s3) :

 CapTWindw(s1, s2, s3)

{

 butn1 = butn2 = NULL;

}

YesNoWindw::~YesNoWindw(void)

{

 if (butn1 != NULL) delete butn1;

Chapter 4 ■ Graphical Controls and Windows for DOS

135

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 if (butn2 != NULL) delete butn2;

}

void YesNoWindw::DrawWindow(void)

{

 CapTWindw::DrawWindow();

 butn1 = new Button(wx+ww/2-70, wy+108, “^YES”);

 butn1->DrawWindow();

 butn2 = new Button(wx+ww/2+6, wy+108, “^NO”);

 butn2->DrawWindow();

}

void YesNoWindw::RunWindow(void)

{

 button = 0;

 while (!button)

 {

 GetEvent(evntmsg);

 if (butn1->Clicked(evntmsg))

 button = YES;

 else if (butn2->Clicked(evntmsg))

 button = NO;

 else if (evntmsg.type == KEYBD)

 {

 char k = evntmsg.key & 0x00ff;

 if (k == ESC) button = CANCEL;

 }

 }

}

///

// Implementation of the YesNoCanWindw class

///

YesNoCanWindw::YesNoCanWindw(char *s1, char *s2, char *s3) :

 CapTWindw(s1, s2, s3)

{

 butn1 = butn2 = butn3 = NULL;

}

YesNoCanWindw::~YesNoCanWindw(void)

{

 if (butn1 != NULL) delete butn1;

continues

Part I ■ DOS Topics

136

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. Continued

 if (butn2 != NULL) delete butn2;

 if (butn3 != NULL) delete butn3;

}

void YesNoCanWindw::DrawWindow(void)

{

 CapTWindw::DrawWindow();

 butn1 = new Button(wx+ww/2-105, wy+wh-42, “^YES”);

 butn1->DrawWindow();

 butn2 = new Button(wx+ww/2-32, wy+wh-42, “^NO”);

 butn2->DrawWindow();

 butn3 = new Button(wx+ww/2+41, wy+wh-42, “^CANCEL”);

 butn3->DrawWindow();

}

void YesNoCanWindw::RunWindow(void)

{

 button = 0;

 while (!button)

 {

 GetEvent(evntmsg);

 if (butn1->Clicked(evntmsg))

 button = YES;

 else if (butn2->Clicked(evntmsg))

 button = NO;

 else if (butn3->Clicked(evntmsg))

 button = CANCEL;

 }

}

///

// Implementation of the InputWindw class

///

InputWindw::InputWindw(char *s1, char *s2, char *s3) :

 CapTWindw(s1, s2, s3)

{

 input[0] = 0;

 butn1 = butn2 = NULL;

}

InputWindw::~InputWindw(void)

{

Chapter 4 ■ Graphical Controls and Windows for DOS

137

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 if (butn1 != NULL) delete butn1;

 if (butn2 != NULL) delete butn2;

}

void InputWindw::DrawWindow(void)

{

 CapTWindw::DrawWindow();

 butn1 = new Button(wx+ww/2-70, wy+108, “^OK”);

 butn1->DrawWindow();

 butn2 = new Button(wx+ww/2+6, wy+108, “^CANCEL”);

 butn2->DrawWindow();

 mouse.HideMouse();

 setfillstyle(SOLID_FILL, BLACK);

 bar(wx+15, wy+85, wx+ww-15, wy+99);

 mouse.ShowMouse();

}

void InputWindw::RunWindow(void)

{

 button = 0;

 while (!button)

 {

 GetEvent(evntmsg);

 if (butn1->Clicked(evntmsg))

 button = OK;

 else if (butn2->Clicked(evntmsg))

 button = CANCEL;

 else if (evntmsg.type == KEYBD)

 {

 char k = evntmsg.key & 0x00ff;

 HandleInput(k);

 }

 }

}

void InputWindw::HandleInput(char k)

{

 int l = strlen(input);

 int w = (ww - 30)/8;

 settextjustify(LEFT_TEXT, TOP_TEXT);

 // Check that an appropriate key was pressed

 // and that the string can hold another character.

continues

Part I ■ DOS Topics

138

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. Continued

 if ((k>31) && (k<127) && (l<80))

 {

 // Add character to string.

 input[l+1] = 0; input[l] = k;

 // Draw the portion of the string that will

 // fit into the text-entry field.

 setcolor(WHITE);

 if (l < w) outtextxy(wx+15, wy+88, input);

 else

 {

 int i = l - w + 1;

 setfillstyle(SOLID_FILL, BLACK);

 bar(wx+15, wy+85, wx+ww-15, wy+99);

 outtextxy(wx+15, wy+88, &input[i]);

 }

 }

 // Check for a Backspace character and that

 // the string has a character to delete.

 else if ((k==BACKSP) && (l>0))

 {

 // Delete the last character.

 l -= 1;

 input[l] = 0;

 // Draw the portion of the string that

 // will fit in the text-entry field.

 setfillstyle(SOLID_FILL, BLACK);

 bar(wx+15, wy+85, wx+ww-15, wy+99);

 setcolor(WHITE);

 if (l < w+1) outtextxy(wx+15, wy+88, input);

 else

 {

 int i = l - w;

 outtextxy(wx+15, wy+88, &input[i]);

 }

 }

}

Chapter 4 ■ Graphical Controls and Windows for DOS

139

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

///

// Implementation of the Button class

///

Button::Button(int x, int y, char *s) :

 Windw(x, y, 64, 32, FALSE, FALSE)

{

 strcpy(label, s);

 altkey = 0;

 hotkey = 0;

}

void Button::DrawWindow(void)

{

 int pos = -1;

 char tlabel[20];

 Windw::DrawWindow();

 mouse.HideMouse();

 // Find and remove the ^ character and

 // set the appropriate hot key.

 strcpy(tlabel, label);

 for (int i = 0; i<strlen(tlabel); ++i)

 {

 if (tlabel[i] == ‘^’)

 {

 pos = i;

 hotkey = ctrlkeys[tlabel[i+1]-65];

 for (int j=i; j<strlen(tlabel); ++j)

 tlabel[j] = tlabel[j+1];

 }

 }

 if (strcmp(tlabel,”OK”)==0) altkey = OKALT;

 else if (strcmp(tlabel, “CANCEL”)==0) altkey = CANCELALT;

 // Center and draw text on button.

 int x = (wx+ww/2) - (strlen(tlabel)*4);

 setcolor(BLACK);

 outtextxy(x, wy+12, tlabel);

 // Underline the hot-key character.

continues

Part I ■ DOS Topics

140

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Listing 4.5. Continued

 if (pos >= 0)

 line(x+pos*8, wy+20, x+pos*8+6, wy+20);

 mouse.ShowMouse();

}

int Button::Clicked(EvntMsg evntmsg)

{

 int mx, my;

 int click = FALSE;

 // Check whether button was selected by the mouse.

 if ((evntmsg.type == MBUTTON) &&

 (evntmsg.mx>wx) && (evntmsg.mx<wx+ww) &&

 (evntmsg.my>wy) && (evntmsg.my<wy+wh))

 {

 ClickButton();

 click = TRUE;

 }

 // Check whether button was selected from the keyboard.

 else if (evntmsg.type == KEYBD)

 {

 if ((evntmsg.key == hotkey) || (evntmsg.key == altkey))

 {

 ClickButton();

 click = TRUE;

 }

 }

 return click;

}

void Button::ClickButton(void)

{

 int *buff;

 mouse.HideMouse();

 // Shift the image on the button down and right

 // to simulate button movement.

Chapter 4 ■ Graphical Controls and Windows for DOS

141

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

 int size = imagesize(wx+2, wy+2, wx+ww-2, wy+wh-2);

 buff = (int *)malloc(size);

 if (buff)

 {

 getimage(wx+2, wy+2, wx+ww-2, wy+wh-2, buff);

 putimage(wx+3, wy+3, buff, COPY_PUT);

 free(buff);

 }

 // Draw the button’s borders so the

 // button appears to be pressed.

 setcolor(DARKGRAY);

 moveto(wx+ww, wy);

 lineto(wx, wy); lineto(wx, wy+wh);

 moveto(wx+ww-1, wy+1);

 lineto(wx+1, wy+1); lineto(wx+1, wy+wh-1);

 setcolor(WHITE);

 moveto(wx+1, wy+wh);

 lineto(wx+ww, wy+wh); lineto(wx+ww, wy);

 moveto(wx+2, wy+wh-1);

 lineto(wx+ww-1, wy+wh-1);

 lineto(wx+ww-1, wy+1);

 // Make button beep.

 sound (2000);

 delay (100);

 nosound();

 // Redraw button in unselected form.

 DrawWindow();

 mouse.ShowMouse();

}

Part I ■ DOS Topics

142

Sams/Q3 Borland c++ Power Programming 172-7 Paula(folio, LAC) 2-17-93

Chapter 5 ■ Playing with Life

143

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

Playing with Life
5

playing information, as well as interactive dialog boxes with animated controls.
These interactive controls make function selection more natural, like changing
a television channel or the volume of a stereo.

Now you will use these tools to create a commercial-quality simulation
program, one that takes full advantage of the event-driven, windowing envi-
ronment. This simulation uses windows of various types to build its main
display. In addition, it uses button controls, not only in dialog boxes but also
in a simple button-controlled menu bar that the user can access with the mouse
or by pressing Ctrl-key combinations. And to add to the fun, you learn about
a data structure that you may have not run into before: a linked list.

In Chapters 3 and 4, you developed powerful tools for writing interac-
tive programs. Your event-handling system allows programs to accept
continual keyboard and mouse input, by polling those devices in an
event loop. This event-driven system gives users full control over your
program; they can select program functions at almost any time, rather
than in the manner dictated by the program. In addition, the window
library provides attractive windows for organizing screens and dis

Part I ■ DOS Topics

144

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

The Story of Life
A bout 30 years ago, a fine English fellow by the name of John Conway

invented simple rules for a system that simulated the lives of special one-
celled animals. Although the rules of the simulation were simple, the results
were fascinating. Before long, every computer scientist worth his or her
diploma had written a version of Life and had spent hours trying different
combinations of cells to see what patterns might emerge.

Today, people are still fascinated by Conway’s computer simulation. Many
computer science books at least mention Life, and each year thousands of
computer science students write versions of Life as part of their programming
curriculum. The simplest implementations result in programs that accurately
portray the simulation, but run too slowly to be practical. Other implementa-
tions blaze across the screen in vivid colors and kaleidoscopic patterns,
hypnotizing any viewer that happens to glance in its direction.

In this chapter, you not only put your event-driven windows to work, but also
examine a speedy algorithm for implementing the Life simulation.

Caution: After you start dabbling with Life, you may find it hard to tear
away. This author and his publisher cannot be held responsible for lost
productivity!

The Rules of Life
T he Life simulation is played on a grid of any size. In the original rules, the

grid is unbounded, but you can limit the grid to the screen. You might
want to think of the screen display as a sort of petri dish holding a culture of
microscopic cells. Cells are placed randomly on the grid and the simulation is
started. The cells then run through their life cycles a given number of
generations, living and dying according to the rules set forth by Mr. Conway.

The rules are simple and elegant, as follows:

• Any live cell with fewer than two neighbors dies of loneliness.

• Any live cell with more than three neighbors dies of crowding.

Chapter 5 ■ Playing with Life

145

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

• Any dead cell with exactly three neighbors comes to life.

• Any live cell with two or three neighbors lives, unchanged, to the next
generation.

Life Implementation
A s you may imagine, a large grid could contain hundreds if not thousands

of cells living and dying every generation. The computer must work
furiously, calculating the number of neighbors for each cell in the grid, then
creating or killing cells based on these counts. Keep in mind, too, that counting
the neighbors for a single cell requires checking each adjacent cell—as many
as eight.

Suppose you implemented the grid as a two-dimensional array of integers, like
this:

int map[28][50];

Each element of the map can be one of two values: 0 if the cell is dead and 1
if the cell is alive. The logical way to process this grid is to check each element
of the array, counting its neighbors and marking it as alive or dead.

In the example 28x50 array, 1400 cells must be processed every generation.
Each cell processed must check the status of as many as eight adjacent cells
to count its neighbors. That’s about 11,000 operations for the entire grid.
Worse yet, this processing must be performed for every generation of the
simulation. A single run of the simulation may have as many as 10,000
generations!

All this calculating wouldn’t be a problem if you planned to let the simulation
run all night. However, to make the simulation interesting, you must update
the screen as quickly as possible—ideally, several times a second. Obviously,
this creates a problem in the speed department.

Speed is not the only problem. You also must consider the effects of prema-
turely creating or killing cells. It’s not enough to scan though the grid, creating
and killing cells as you go, because the cells you create or kill may affect cells
you have not yet processed. Suppose cell X in a grid has only two neighbors.
Now assume that a cell next to X dies as you process the grid. Although this cell
died, cell X should still remain alive for this generation because it had two
neighbors; it won’t be lonely until the next generation. When you finally
process cell X, however, the counting function recognizes cell X as having
only one neighbor. As a result, cell X dies prematurely.

Part I ■ DOS Topics

146

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

Confused? Look at Figure 5.1. Three cells are in the first-generation grid,
which is on the left. In this generation, the top cell must die because it has only
one neighbor. The middle cell must remain alive to the next generation,
because it has two neighbors. The bottom cell must die because, like the top
cell, it has only one neighbor. The empty cells to the left and right of the center
cell must be brought to life because both have exactly three neighbors. After
processing the grid, you should have the second-generation grid, which is on
the right.

Figure 5.1. Applying the rules of Life to three cells.

However, if you start at the top and process the grid by creating and killing cells
as you go, you get incorrect results. First, you kill the top cell because it has
only one neighbor. Then, when you get to empty cell 1,2, even though it should
have come to life, you determine that it has only two neighbors and leave it
alone. When you get to cell 2,2, you think it has only one neighbor and kill it,
even though this cell should have survived to the next generation. After
processing the entire grid, you don’t have the correct second-generation
result. Instead, you have an empty grid!

In short, in each generation, you must determine which cells live and die,
without changing the grid. Then when you are finished, you must simulta-
neously create and kill the appropriate cells. This requires tricky algorithms,
especially when you consider that all these calculations must be performed at
a speed that allows fast screen updates. Sound like fun? Now give it a shot.

The Speed Problem
What can you do to speed things up? First, add another map array to keep

a running count of each cell’s neighbors. When the simulation starts, the
program updates the neighbor count. From then on, rather than recalculating
the entire grid in each generation, the program changes neighbor counts for
only those cells adjacent to cells that have just been created or killed. This

Chapter 5 ■ Playing with Life

147

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

method cuts processing time significantly: In a given generation, the program
must change the neighbor counts of only a small number of cells instead of the
entire grid.

Then, although the original map grid records the status of each cell, you add
two lists of cells, one for cells about to be created and one for cells about to die.
These are the only cells that affect the map, so why check the entire grid every
generation?

But what type of data structure enables you to build lists of items—lists that
can grow or shrink dynamically? You’ve probably already guessed that the
answer is a linked list.

Linked Lists
To create a linked list, you first must decide what information makes up

the items, or nodes, that are to be stored in the list. In the simulation
program, you must store enough data to identify a cell. All the information you
need in order to identify a cell are its x and y coordinates in the grid, so a node
could be

struct Node

{

 int x, y;

};

When a cell is born or dies, you can create a node for the cell like this:

Node *node = new Node;

node->x = x_ccord;

node->y = y_coord;

This code creates a new Node structure on the heap and sets its x and y
members to the coordinates of a cell. But what good is it to have a bunch of
these nodes sitting around in memory? You must link them into a list. To do
this, you must add to your structure a pointer to a Node. You can then use this
pointer to point to the next node in the list. The new Node structure, then, looks
like this:

struct Node

{

 int x, y;

 Node *next;

};

Part I ■ DOS Topics

148

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

In addition to the data structure for a node, you also need a pointer to the first
node of the list (a head pointer) and a pointer to the end of the list (a tail

pointer). Having a pointer to the head of the list is most important. Without
it, you couldn’t find the list in memory. A pointer to the tail is a convenience.
You can use it to quickly add new nodes to the end of the list, without having
to scan the list from the first node. The head and tail pointers look like this:

Node *list_h, *list_t;

Figure 5.2 illustrates how a linked list looks in memory. The list_h pointer
points to the first node in the list. Each node has a pointer that leads to the next
node in the list. The next pointer in the last node is left NULL, which indicates
the end of the list. Finally, the list_t pointer points to the last node in the list.

Figure 5.2. A linked list in memory.

Listing 5.1 demonstrates this simple linked list.

Listing 5.1. LIST1.CPP—a simple linked-list demonstration.

#include <iostream.h>

#include <conio.h>

struct Node

{

 int x, y;

 Node *next;

};

Node *node = NULL,

 *list_h = NULL,

 *list_t = NULL;

void main(void)

{

 for (int i = 0; i < 10; ++i)

 {

 node = new Node;

 node->x = i;

Chapter 5 ■ Playing with Life

149

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 node->y = i * 10;

 if (!list_h) list_h = node;

 else list_t->next = node;

 list_t = node;

 list_t->next = NULL;

 }

 while (list_h)

 {

 node = list_h;

 list_h = list_h->next;

 cout << node->x << ‘,’ << node->y << ‘\n’;

 delete node;

 }

 getch();

}

Study Listing 5.1 carefully, so you’re sure you understand how to create and
manage a linked list. In this program, the Node structure is the type of item
stored in the list. This structure contains two data elements, as well as a pointer
to a Node. This pointer, next, is used to point to the next node in the list.

The program begins with a for loop, in which 10 nodes are created and linked.
In the loop, the new command creates a new node on the heap, after which the
node’s data elements are set to the values of i and i*10. (These values hold no
particular significance.) After creating the node, the program checks whether
list_h is NULL. If it is, the program has a new list, so it sets list_h to point to
node. Then list_t is set to point to the same node (if the list has only one item,
the head and tail of the list are the same), and list_t’s next pointer is set to
NULL, indicating there are no other items in the list.

Getting back to the if statement, if list_h isn’t NULL, there’s already at least
one node in the list. In this case, list_h shouldn’t be changed. Rather, the new
node must be added to the end of the list. This is where list_t comes in handy.
Rather than having to scan through the entire list, looking for a NULL next, the
program can use list_t to tack the new node to the end of the list. It does this
by setting list_t’s next pointer to point to the new node and then changing
list_t to point to the new last node. Figures 5.3 through 5.6 illustrate this
process.

After the program creates the linked list, a while loop scans the list, printing
each node’s contents before deleting the node. Notice how the temporary node
pointer keeps track of the current node. By setting node to list_h, then setting

Part I ■ DOS Topics

150

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

list_h to point to the next item in the list, you effectively “pop off” the first
node. Without saving the pointer in node, you could not access this node. The
program’s output follows:

0,0

1,10

2,20

3,30

4,40

5,50

6,60

7,70

8,80

9,90

Figure 5.3. Creating a linked list—step one.

Figure 5.4. Creating a linked list—step two.

Figure 5.5. Creating a linked list—step three.

Chapter 5 ■ Playing with Life

151

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

Figure 5.6. Creating a linked list—step four.

An Object-Oriented List
I f you’ve an idea that a linked list might be the perfect candidate for a class,

you could be correct, depending on how you plan to use the list. Creating
a linked-list class to handle only a single list in a small program such as Listing
5.1 is overkill. However, if you plan to use many different lists in a program—
that is, the class won’t be a single-instance class—it might be worthwhile to
create a linked-list class.

For the sake of discussion, you can now convert Listing 5.1 into an object-
oriented program. (For the moment, ignore that this results in a single-
instance class.) Listing 5.2 is the header for the resultant List class.

Listing 5.2. LIST.H—the header file for the List class.

#ifndef _LIST_H

#define _LIST_H

class List

{

 struct Node

 {

 int x, y;

 Node *next;

 };

 Node *node, *list_h, *list_t;

continues

Part I ■ DOS Topics

152

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

public:

 List(void);

 ~List(void);

 void MakeNewNode(int n1, int n2);

 void DisplayList(void);

};

#endif

As you can see, all the list-handling operations have been taken out of the main
program and placed into the List class. The data that defines the list—the
pointers and the node declaration—are placed inside the class also. The main
program no longer has to know how a linked list works. It has only to draw on
the capabilities of the class. Look at the class’ constructor first:

List::List(void)

{

 list_h = list_t = NULL;

}

This function initializes a new list by setting its pointers to NULL. This creates
an empty list. Of course, an empty list isn’t particularly useful. Now, the class
needs a way to add nodes to the list:

void List::MakeNewNode(int n1, int n2)

{

 node = new Node;

 node->x = n1;

 node->y = n2;

 if (!list_h) list_h = node;

 else list_t->next = node;

 list_t = node;

 list_t->next = NULL;

}

This function takes as parameters the values for the new node’s x and y
members. First, the new node is allocated on the heap, after which the x and
y members are set to their appropriate values. Then, using the same code
examined in Listing 5.1, the new node is added to the list.

To display the contents of the list, you call the class’ DisplayList() function:

Listing 5.2. Continued

Chapter 5 ■ Playing with Life

153

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

void List::DisplayList(void)

{

 node = list_h;

 while (node)

 {

 cout << node->x << ‘,’ << node->y << ‘\n’;

 node = node->next;

 }

}

This function simply scans the list (using the temporary node pointer, so it
doesn’t destroy list_h), printing the contents of x and y. Unlike the program
in Listing 5.1, each node isn’t deleted after it is printed. That job is left for the
class’ destructor:

List::~List(void)

{

 while (list_h)

 {

 node = list_h;

 list_h = list_h->next;

 delete node;
 }

}

As with any class, the List class’ destructor is called when a List object goes
out of scope or when a dynamically allocated List object is deleted. The
destructor then deletes every node in the list, using the same method you saw
in Listing 5.1 (but without printing the contents of the node before deleting it).

Listings 5.3 and 5.4 are the List class’ implementation and the new main
program, respectively.

Listing 5.3. LIST.CPP—the implementation of the List class.

#include <iostream.h>

#include “list.h”

List::List(void)

{

 list_h = list_t = NULL;

}

continues

Part I ■ DOS Topics

154

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

List::~List(void)

{

 while (list_h)

 {

 node = list_h;

 list_h = list_h->next;

 delete node;

 }

}

void List::MakeNewNode(int n1, int n2)

{

 node = new Node;

 node->x = n1;

 node->y = n2;

 if (!list_h) list_h = node;

 else list_t->next = node;

 list_t = node;

 list_t->next = NULL;

}

void List::DisplayList(void)

{

 node = list_h;

 while (node)

 {

 cout << node->x << ‘,’ << node->y << ‘\n’;

 node = node->next;

 }

}

Listing 5.4. LIST2.CPP—a program for testing the List class.

#include <iostream.h>

#include <conio.h>

#include “list.h”

void main(void)

{

 List list;

Listing 5.3. Continued

Chapter 5 ■ Playing with Life

155

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 for (int i = 0; i < 10; ++i)

 list.MakeNewNode(i, i*10);

 list.DisplayList();

 getch();

}

The main program is much shorter and clearer. Although the effort of creating
the class for such a small program is probably not worthwhile, imagine how
much easier it would be to use a similar class in a large program that must
handle multiple lists. By using a list class, you no longer must worry about
initializing pointers or linking nodes. You don’t even have to worry about
releasing nodes from memory, because the class’ destructor takes care of this
task for you. Using the class, your main program is clean and to the point,
uncluttered with the details of handling a linked list.

A Cell List
T he linked-list class in Listings 5.2 and 5.3 is far from complete. It’s been

used only to illustrate the process of creating a list class. In the Life
program, the list class is more sophisticated, enabling you to do more than add,
display, and delete nodes. Look at that class now. Listing 5.5 is the CList (Cell
List) class header file, CLIST.H.

Listing 5.5. CLIST.H—the header file for the CList class.

#ifndef _CLIST_H

#define _CLIST_H

class CList

{

 struct Node

 {

 int x, y;

 Node *next;

 };

 Node *node, *list_h, *list_t;

continues

Part I ■ DOS Topics

156

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

public:

 CList(void);

 ~CList(void);

 void MakeNewNode(int n1, int n2);

 void TransferList(CList &list2);

 void ClearList();

 int HasNodes();

 void GetNode(int &c, int &r);

 void DisplayList(void);

};

#endif

The CList class features several more functions than the List class. The class’
constructor and destructor work similarly, however, so they aren’t discussed.
Likewise, the MakeNewNode() and DisplayList() functions are identical to the
same functions in List. You can start by focusing on the TransferList()
function:

void CList::TransferList(CList &list2)

{

 list2.ClearList();

 list2.list_h = list_h;

 list2.list_t = list_t;

 list_h = NULL;

 list_t = NULL;

}

This function enables you to transfer the contents of one list to another. No
data is actually moved or copied. This task is accomplished simply by setting
the destination-list pointers to the same values as the source-list pointers.

Caution: The danger in setting the destination-list pointers to the same
values as the source-list pointers is that after copying the pointers, you
have two sets of pointers to the same data. When one of the lists is deleted,

its destructor deletes all the nodes in the list. That leaves pointers to nodes that have
been deleted, a dangerous situation. This problem is avoided in TransferList() by
setting the source-list pointers to NULL after they are copied. This way, there is only
one set of pointers to the nodes in the list.

Listing 5.5. Continued

Chapter 5 ■ Playing with Life

157

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

You use TransferList() often in the Life program to shift the contents of lists.
Another function you use often is GetNode():

void CList::GetNode(int &c, int &r)

{

 if (list_h)

 {

 node = list_h;

 c = node->x;

 r = node->y;

 list_h = list_h->next;

 if (!list_h) list_t = NULL;

 delete node;

 }

}

This function retrieves the first cell node in a list, returns its contents in the
variables c and r (column and row), then deletes the node from the list. Calling
GetNode() for every node in a list results in an empty list.

Another handy function is HasNodes(), which returns a Boolean value indicat-
ing whether there are nodes in the list or the list is empty:

int CList::HasNodes()

{

 return (list_h != NULL);

}

This function is particularly useful with a function such as GetNodes(). By using
HasNodes() as the conditional for a while statement, you can scan an entire list,
ending the looping when the list is empty, that is, when HasNodes() returns
false.

The last new function in the CList class is ClearList():

void CList::ClearList()

{

 while (list_h)

 {

 node = list_h;

 list_h = list_h->next;

 delete node;

 }

}

Part I ■ DOS Topics

158

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

This function enables you to empty a list at any time. It simply reads through
the list, deleting nodes as it goes. This function is called by CList’s destructor,
but you can use it also in your programs (and you use it in the Life program).
The entire implementation for CList is shown is Listing 5.6.

Listing 5.6. CLIST.CPP—the implementation of the CList class.

#include <iostream.h>

#include “clist.h”

CList::CList(void)

{

 list_h = list_t = NULL;

}

CList::~CList(void)

{

 ClearList();

}

void CList::MakeNewNode(int n1, int n2)

{

 node = new Node;

 node->x = n1;

 node->y = n2;

 if (!list_h) list_h = node;

 else list_t->next = node;

 list_t = node;

 list_t->next = NULL;

}

void CList::DisplayList(void)

{

 node = list_h;

 while (node)

 {

 cout << node->x << ‘,’ << node->y << ‘\n’;

 node = node->next;

 }

}

void CList::ClearList()

Chapter 5 ■ Playing with Life

159

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

{

 while (list_h)

 {

 node = list_h;

 list_h = list_h->next;

 delete node;

 }

}

void CList::TransferList(CList &list2)

{

 list2.ClearList();

 list2.list_h = list_h;

 list2.list_t = list_t;

 list_h = NULL;

 list_t = NULL;

}

int CList::HasNodes()

{

 return (list_h != NULL);

}

void CList::GetNode(int &c, int &r)

{

 if (list_h)

 {

 node = list_h;

 c = node->x;

 r = node->y;

 list_h = list_h->next;

 if (!list_h) list_t = NULL;

 delete node;

 }

}

The Life Program
Y ou now know how to handle linked lists. You’ve even created a handy cell-

list class that you can use in your program to track cells as they are created

Part I ■ DOS Topics

160

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

and killed. It’s time to put your knowledge of linked lists to work, by examining
the full Life program. This program’s lengthy listing is explored a piece at a
time, in the order in which it is executed. But first, run the program and see
what it does.

When you compile and run Life, the main screen appears, as shown in Figure
5.7. Most of the screen is made up of the grid in which your cells live and die.
Below the grid is the button bar, which contains several command buttons
used to control the program. Also at the bottom of the screen, on the right, is
the generation count. Before the simulation starts, this readout shows the
current setting for the number of generations (the default is 100). While the
simulation is running, the readout shows the number of the current genera-
tion.

Note: Remember when you compile programs that use Borland’s graphics
library, you must enable that library by turning on the Graphics library
selection in the Libraries dialog box. You can display this dialog box by

selecting the Options/Linker/Libraries menu item.

Figure 5.7. The main screen of Life.

Chapter 5 ■ Playing with Life

161

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

To get started, you must first seed the grid with cells. To do this, place your
mouse pointer where you want to place a cell and click the left button. A green
cell appears where you clicked. If you want to place cells quickly, you can paint
them to the grid by holding down the left mouse button as you sweep the
pointer across the screen.

When you’ve placed your cells, activate the simulation by selecting the START
button, either by clicking the button or by pressing Ctrl-S. When you select
START, the simulation springs into life, with cells living and dying as they
speed through their life cycles. To stop the simulation before the generations
run out, click the mouse or press any key.

Next to the START button is the CLEAR button, which removes all cells from
the grid. The GENER button sets the generation count. When you select this
button, the Generations dialog box appears, as shown in Figure 5.8. To change
the generation setting, type a number from 1 to 10,000. Invalid entries yield
the default value of 100.

Figure 5.8. The Generations dialog box.

You may want to view the simulation at slower speeds so you can see more
clearly the patterns that emerge from specific cell configurations. You can set
the simulation to one of 10 speeds by selecting the SPEED button. The
Simulation Speed dialog box then appears, as shown in Figure 5.9. Enter a
value from 1 to 10. (1 is the slowest and 10 is the fastest.) Invalid entries yield
the default value of 10.

Figure 5.9. The Simulation Speed dialog box.

Part I ■ DOS Topics

162

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

To quit the simulation, select the QUIT button. A Yes/No box appears, asking
whether you really want to quit. Select Yes to exit the program or No to return
to the simulation.

Examining Life
N ow that you know how the program operates, take a look at the code,

starting with the #include and #define statements:

#include <graphics.h>

#include <conio.h>

#include <iostream.h>

#include <stdlib.h>

#include <stdio.h>

#include <dos.h>

// Use mouse, window, and list classes.

#include “mous.h”

#include “windw.h”

#include “clist.h”

#include “event.h”

// Define global constants.

#define TRUE 1

#define FALSE 0

#define DEAD 0

#define ALIVE 1

#define MAXCOL 50

#define MAXROW 28

Most of this should be familiar territory. The files in the angle brackets are
Borland C++’s system header files, which give you access to the libraries you
need. Then come the header files for your own classes, enabling you to use the
Mouse, Windw, and CList classes in the program. The event handler is also
#included here. Finally, the program constants are defined. Of particular
interest are DEAD and ALIVE, which are the status values for cells, and MAXCOL
and MAXROW, which specify the size of the grid map.

After including the necessary header files, the data for the program is declared:

int mousex, mousey, // Mouse coordinates.

 repeat; // Main program loop controller.

Chapter 5 ■ Playing with Life

163

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

int generations, // # of life generations.

 speed; // Speed of simulation.

int world[MAXROW][MAXCOL], // Cell map.

 nbrs[MAXROW][MAXCOL]; // Neighbor count map.

It’s obvious from the comments what this data is used for. But pay special
attention to the world and nbrs arrays; these arrays were described when the
algorithm for the program was developed.

After declaring this global data, the linked lists you use in the program are
declared:

// Linked lists.

CList live, die, nextlive, nextdie;

The live and die lists hold the cells that live and die in a given generation. The
nextlive and nextdie lists are used as temporary storage for cells that are
eventually transferred to the live and die lists. You see how this works when
you get further into the program’s code.

The Life program uses many types of windows to draw its display. These
windows are defined and created next:

// Windows and controls for main screen.

CapWindw wnd1(0, 0, 639, 479, TRUE, FALSE, “CONWAY’S LIFE”);

Windw wnd2(20, 409, 599, 50, FALSE, FALSE);

Windw wnd3(420, 419, 170, 32, FALSE, FALSE);;

Button startbut(30, 420, “^START”);

Button clearbut(105, 420, “^CLEAR”);

Button generatebut(180, 420, “^GENER”);

Button speedbut(255, 420, “S^PEED”);

Button quitbut(330, 420, “^QUIT”);

Note that these windows are defined, but not yet drawn on-screen. They are
drawn later in the program by calling each window’s DrawWindow() function.

Finally, before getting to the program code, the event-message structure is
declared, and prototypes for all functions in the program are listed:

// Event message structure.

EvntMsg evntmsg;

// Function prototypes.

int KeyEvent(void);

void GetEvent(EvntMsg &evntmsg);

Part I ■ DOS Topics

164

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

void DispatchEvent(EvntMsg evntmsg);

void Life(void);

void CreateLists(void);

void ClearWorld(void);

void GetGens(int &generations);

void GetSpeed(int &speed);

void PlaceCell(EvntMsg evntmsg);

void Live(void);

void Die(void);

void AddNbrs(void);

void SubNbrs(void);

void CalcLimits(int c, int r, int &xlow, int &xhigh,

 int &ylow, int &yhigh);

void UpdateGens(int g);

void Init(void);

void ReleaseNodes(void);

void DrawScreen(void);

void InitMouse(void);

void Cleanup(void);

Now you’re ready to see what makes this program tick. As always, program
execution begins at main():

void main(void)

{

 // Initialize game, mouse, and screen.

 Init();

 DrawScreen();

 InitMouse();

 // Repeat event loop until Quit.

 repeat = 1;

 while (repeat)

 {

 GetEvent(evntmsg);

 DispatchEvent(evntmsg);

 }

 closegraph();

}

This function initializes the program, draws the display, handles the event
loop, and finally closes the program. Its first step is to call Init() to initialize
the graphics display and the global program variables:

Chapter 5 ■ Playing with Life

165

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

void Init(void)

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 errorcode = registerbgidriver(EGAVGA_driver);

 if (errorcode < 0)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 cout << “Press any key.”;

 getch();

 abort();

 }

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 cout << “Press any key.”;

 getch();

 abort();

 }

 for (int r=0; r<MAXROW; ++r)

 for (int c=0; c<MAXCOL; ++c)

 world[r](c) = DEAD;

 generations = 100;

 speed = 1;

}

This function starts by initializing the graphics driver. In previous programs,
you did this by loading the EGAVGA.BGI graphics driver from the disk at
runtime. This program links the graphics driver with the program so the user
doesn’t have to worry about it being a separate file.

To do this, you first run Borland’s BGIOBJ.EXE program to convert the
EGAVGA.BGI driver to object-file format. When the driver is converted, you
can link it into your program by adding the EGAVGA.OBJ file to your project
list. That takes care of the linking, but in your program, you must inform the
system that the driver is present. You do this with the registerbgidriver()
function, as shown in the preceding code. After you register the driver, you
initialize it as usual. (For more information on linking graphics drivers, consult
the Borland C++ Library Reference or the UTIL.DOC file, which is included
on your C++ disks.)

Part I ■ DOS Topics

166

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

After initializing the graphics driver, Init() sets the status of every cell in the
grid to DEAD and sets the default speed and generation count.

The DrawScreen() function draws the main display:

void DrawScreen(void)

{

 wnd1.DrawWindow();

 wnd2.DrawWindow();

 wnd3.DrawWindow();

 startbut.DrawWindow();

 clearbut.DrawWindow();

 generatebut.DrawWindow();

 speedbut.DrawWindow();

 quitbut.DrawWindow();

 setcolor(BLUE);

 for (int y=55; y<400; y+=12)

 {

 moveto(20, y); lineto(getmaxx()-20, y);

 }

 for (int x=20; x<630; x+=12)

 {

 moveto(x, 55); lineto(x, 391);

 }

 setcolor(BROWN);

 outtextxy(435, 431, “Generation #100”);

}

This function calls each window’s DrawWindow() member function, which
displays each window on-screen. After drawing the windows, it adds the grid
to the main window using Borland’s moveto() and lineto() graphics functions.
Finally, it prints the generation readout at the bottom right of the screen,
using Borland’s outtextxy() function.

The last thing you must do before turning control over to the user is initialize
the mouse:

void InitMouse(void) {

 if (!mouse.GotMouse()) {

 cout << “You have no mouse.\n”;

 cout << “Press any key.”;

 getch();

 }

 mouse.SetLimits(0,getmaxx(),0,getmaxy());

 mouse.ShowMouse();

}

Chapter 5 ■ Playing with Life

167

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

You’ve seen this code before.

Now that the initialization is complete, the program enters the event loop,
where it waits for the user to select a command. When the user presses a key
or clicks a mouse button, the event loop passes the event message to
DispatchEvent():

void DispatchEvent(EvntMsg evntmsg)

{

 if (startbut.Clicked(evntmsg))

 Life();

 else if (clearbut.Clicked(evntmsg))

 ClearWorld();

 else if (generatebut.Clicked(evntmsg))

 GetGens(generations);

 else if (speedbut.Clicked(evntmsg))

 GetSpeed(speed);

 else if (quitbut.Clicked(evntmsg))

 {

 YesNoWindw wndw(“QUIT”, “Are you sure you”,

 “want to quit?”);

 wndw.DrawWindow();

 wndw.RunWindow();

 if (wndw.GetButton() == YES) repeat = 0;

 }

 else PlaceCell(evntmsg);

}

This function simply checks each button control to see whether it has been
selected and sends program execution to the appropriate function. If the user
clicks the mouse button without selecting a control button, the PlaceCell()
function checks whether the mouse click was in the grid:

void PlaceCell(EvntMsg evntmsg)

{

 if ((evntmsg.mx > 20) && (evntmsg.mx < 620) &&

 (evntmsg.my > 56) && (evntmsg.my < 390))

 {

 mouse.HideMouse();

 int col = (evntmsg.mx - 20) / 12;

 int row = (evntmsg.my - 56) / 12;

 if (!world[row][col])

 {

 setfillstyle(SOLID_FILL, GREEN);

 setcolor(RED);

Part I ■ DOS Topics

168

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 fillellipse(col*12+26, row*12+61, 4, 4);

 world[row][col] = ALIVE;

 }

 mouse.ShowMouse();

 }

}

If the click was in the grid, this function draws a cell in the appropriate location
and sets that cell to ALIVE in the world array. Notice that the function turns off
the mouse pointer before drawing on-screen.

Note: You must always hide the mouse pointer before drawing to the
screen, then restore the pointer immediately after the drawing is done.

If the user has selected the START button, the Life function, which is the main
simulation loop, takes over:

void Life(void)

{

 mouse.ButtonUp();

 CreateLists();

 for (int g=0; g<generations; ++g)

 {

 delay(speed);

 UpdateGens(g);

 Live();

 Die();

 AddNbrs();

 SubNbrs();

 nextlive.TransferList(live);

 nextdie.TransferList(die);

 if (KeyEvent() || mouse.Event())

 {

 mouse.ButtonUp();

 break;

 }

 }

}

This function performs the simulation by calling the functions that count cell
neighbors, create cells, and kill cells. To get started, it waits for the user to

Chapter 5 ■ Playing with Life

169

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

release the mouse button (this prevents button drop-throughs, in which
holding the button down too long causes new event messages to be sent), then
calls CreateLists():

void CreateLists(void)

{

 int c, r;

 ReleaseNodes();

 for (c=0; c<MAXCOL; ++c)

 for (r=0; r<MAXROW; ++r)

 {

 nbrs[r](c) = 0;

 if (world[r](c) == ALIVE)

 live.MakeNewNode(c, r);

 }

 AddNbrs();

 for (c=0; c<MAXCOL; ++c)

 for (r=0; r<MAXROW; ++r)

 if (((nbrs[r](c) < 2) || (nbrs[r](c) > 3))

 && (world[r](c) == ALIVE))

 nextdie.MakeNewNode(c, r);

 nextlive.TransferList(live);

 nextdie.TransferList(die);

}

This function is responsible for initializing live and die, the two linked lists
that the simulation has to get started, as well as initializing the starting
neighbor counts. The function first calls ReleaseNodes(), which simply makes
sure that all lists are empty. (When the program begins, the lists are empty. But
in subsequent calls to Life(), your linked lists probably won’t be empty,
because it is rare for every cell on-screen to be dead after the generations run
out.):

void ReleaseNodes(void)

{

 live.ClearList();

 die.ClearList();

 nextlive.ClearList();

 nextdie.ClearList();

}

After clearing the lists, CreateLists() scans the newly created world array,
creating a new node for each living cell in the array. As CreateLists() scans

Part I ■ DOS Topics

170

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

the world array, it also takes advantage of the loop to initialize all the neighbor
counts in the nbrs array to zero. After creating the live linked list, it calls the
AddNbrs() function, which updates the neighbor counts and creates a nextlive
and nextdie array for cells that may (or may not) live and die in the next
generation:

void AddNbrs(void)

{

 int xlow, xhigh, ylow, yhigh;

 int c, r;

 while (live.HasNodes())

 {

 live.GetNode(c, r);

 CalcLimits(c, r, xlow, xhigh, ylow, yhigh);

 for (int x=xlow; x<=xhigh; ++x)

 for (int y=ylow; y<=yhigh; ++y)

 if ((x != c) || (y != r))

 {

 nbrs[y][x] += 1;

 switch (nbrs[y][x])

 {

 case 1, 2: break;

 case 3:

 if (world[y][x] == DEAD)

 nextlive.MakeNewNode(x, y);

 break;

 case 4:

 if (world[y][x] == ALIVE)

 nextdie.MakeNewNode(x, y);

 break;

 case 5, 6, 7, 8: break;

 }

 }

 }

}

As you can see, AddNbrs() scans the live list, which contains all the cells that
have just come to life. The while loop iterates until this list has been emptied.
It first gets the cell’s coordinates by calling the list’s GetNode() member
function. (Remember: GetNode() also deletes the node.) It then calls the
CalcLimits() function, which determines the minimum and maximum coor-
dinates for cells adjacent to the live cell:

Chapter 5 ■ Playing with Life

171

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

void CalcLimits(int c, int r, int &xlow, int &xhigh,

 int &ylow, int &yhigh)

{

 if (c == 0) xlow = 0;

 else xlow = c - 1;

 if (c == MAXCOL-1) xhigh = MAXCOL-1;

 else xhigh = c + 1;

 if (r == 0) ylow = 0;

 else ylow = r - 1;

 if (r == MAXROW-1) yhigh = MAXROW-1;

 else yhigh = r + 1;

}

This calculation must be done because cells on any edge of the grid do not have
eight adjacent cells.

After calculating the coordinates, nested for loops increment the neighbor
count for every adjacent cell. After incrementing a cell’s neighbor count, the
switch statement checks the count, adding new nodes to the nextlive or
nextdie list, as appropriate. Keep in mind that the nodes on the list are only
“maybes.” That is, by adding nodes to these two lists, you are saying, “When I
finish counting all neighbors, I will check these cells again to see whether they
actually live or die.” Not every cell on the nextlive list comes to life, and not
every cell on the nextdie list dies. Some cells may appear in both lists at the
same time. Using these temporary lists, you can keep track of cells that might
change—without changing the grid, which, as you learned, can really mess up
the simulation.

Getting back to CreateNodes(), after the call to AddNbrs(), the function must
scan the neighbor counts, looking for cells with fewer than two neighbors. It
adds these cells to the nextdie list that AddNbrs() started. Unfortunately,
AddNbrs() finds only cells that are being crowded to death (have four or more
neighbors), not those that are about to die of loneliness, which is why you must
look for lonely cells in CreateNodes(). After building the nextlive and nextdie
lists, CreateNodes() finally transfers them to the live and die lists, where
Life() expects to find them.

When CreateLists() has finished initializing the starting lists, program exe-
cution goes back to Life() and enters the main simulation loop. This loop
is controlled by a for statement that compares its loop variable against
generations, which is the number of generations that the simulation runs.
Inside the loop, Borland’s delay() function is called using speed as its param-
eter. This single function call is all that’s required to control the speed of
the simulation. Life() then calls UpdateGens() to draw the new generation
count on-screen.

Part I ■ DOS Topics

172

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

At last you get to the meat of the simulation. After updating the generation
count, Life() calls the Live() function (not to be confused with Life() or the
live linked list), which checks all the nodes on the live list, bringing to life
only the nodes that meet the requirements for life:

void Live(void)

{

 CList temp;

 int r, c;

 live.TransferList(temp);

 while(temp.HasNodes())

 {

 temp.GetNode(c, r);

 if ((world[r](c) == DEAD) &&

 (nbrs[r](c) == 3))

 {

 world[r](c) = ALIVE;

 mouse.HideMouse();

 setcolor(RED);

 setfillstyle(SOLID_FILL, LIGHTRED);

 fillellipse(c*12+26, r*12+61, 4, 4);
 mouse.ShowMouse();

 live.MakeNewNode(c, r);

 }

 }

}

Here, Live() takes that “maybe” list and separates the wheat from the chaff,
as it were. Cells that don’t meet the requirements for life are simply deleted
from memory. Cells that do meet the requirements are added to the world
array, drawn on-screen, and placed back on the live list so they can be counted
in the next generation.

After calling Live() and handling the live list, Life() calls Die(), which is
Live()’s counterpart:

void Die(void)

{

 CList temp;

 int c, r;

 die.TransferList(temp);

 while(temp.HasNodes())

Chapter 5 ■ Playing with Life

173

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 {

 temp.GetNode(c, r);

 if ((world[r](c) == ALIVE) &&

 (nbrs[r](c) != 2) &&

 (nbrs[r](c) != 3))

 {

 world[r](c) = DEAD;

 mouse.HideMouse();

 setcolor(LIGHTGRAY);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 fillellipse(c*12+26, r*12+61, 4, 4);

 mouse.ShowMouse();

 die.MakeNewNode(c, r);

 }

 }

}

Here, Die() checks the die list, killing the cells that meet the requirements for
death and deleting from the list the cells that don’t. Any cells that die are placed
back on the die list, so they can be evaluated in the next generation.

Now that all the cells on the “maybe” lists have been processed, it’s time to
update the neighbor counts for all cells adjacent to any cells that were just
created or killed, all of which are now in the live or die list. First, Life()
handles the live list by calling AddNbrs(). You looked at this function already.
Then, Life() calls SubNbrs(), which scans the die list, decrementing the
neighbor counts for any cells adjacent to a cell that just died:

void SubNbrs(void)

{

 int xlow, xhigh, ylow, yhigh;

 int c, r;

 while (die.HasNodes())

 {

 die.GetNode(c, r);

 CalcLimits(c, r, xlow, xhigh, ylow, yhigh);

 for (int x=xlow; x<=xhigh; ++x)

 for (int y=ylow; y<=yhigh; ++y)

 if ((x != c) || (y != r))

 {

 nbrs[y][x] -= 1;

 switch (nbrs[y][x])

Part I ■ DOS Topics

174

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 {

 case 0: break;

 case 1:

 if (world[y][x] == ALIVE)

 nextdie.MakeNewNode(x, y);

 break;

 case 2: break;

 case 3:

 if (world[y][x] == DEAD)

 nextlive.MakeNewNode(x, y);

 break;

 case 4, 5, 6, 7: break;

 }

 }

 }

}

This function works similarly to its counterpart, AddNbrs(), except it processes
the die list, adding to the nextlive list any cells that have three neighbors
(even though the cells may not keep all three neighbors) and adding to the
nextdie list any cells with fewer than two neighbors (even though the cell’s
final neighbor count may not qualify it to die). Remember, these are “maybe”
lists.

After the neighbor counts are fully updated, Life() transfers the nextlive and
nextdie lists to the live and die lists, respectively, and checks for a keyboard
or mouse event. If an event is detected, the program breaks out of the loop with
a break statement. Otherwise, execution goes back to the top of the loop for
the next generation.

This leaves only three other functions to discuss: GetGens(), GetSpeed(), and
ClearWorld(). The user activates any of these by clicking the appropriate
command button on the button bar. Look at GetGens() first:

void GetGens(int &generations)

{

 InputWindw w(“GENERATIONS”, “Enter # of generations:”,

 “(Max = 10,000)”);;

 char inp[81];

 w.DrawWindow();

 w.RunWindow();

 if (w.GetButton() == 1)

 {

 w.GetInput(inp);

Chapter 5 ■ Playing with Life

175

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 generations = atoi(inp);

 if (generations < 1) generations = 100;

 if (generations > 10000) generations = 10000;

 sprintf(inp, “Generation #%d”, generations);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 settextjustify(LEFT_TEXT, TOP_TEXT);

 bar(435, 431, 575, 441);

 setcolor(BROWN);

 outtextxy(435, 431, inp);

 }

}

This function is called when the user selects the GENER button. It creates and
displays an input box for entering a new value for the maximum number of
generations. The user’s input is converted to an integer and compared against
the generation’s minimum and maximum values. Adjustments are made, if
necessary, and the function displays the value on-screen. Notice that, because
the w window is declared in the GetGens() function, it is deleted when the
function ends, which is when the window goes out of scope and its destructor
is called.

The function GetSpeed() works similarly:

void GetSpeed(int &speed)

{

 InputWindw w(“SIMULATION SPEED”, “Enter new speed:”,

 “(Min=1 Max=10)”);;

 char inp[81];

 w.DrawWindow();

 w.RunWindow();

 if (w.GetButton() == 1)

 {

 w.GetInput(inp);

 speed = atoi(inp);

 if (speed < 1) speed = 10;

 if (speed > 10) speed = 10;

 speed = (10 - speed) * 100;

 }

}

Using this function, which is called by selecting the SPEED button, the user
can change the simulation’s speed. Unlike GetGens(), the final chosen value is
not displayed on-screen.

Part I ■ DOS Topics

176

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

The last function is ClearWorld():

void ClearWorld(void)

{

 mouse.HideMouse();

 for (int c=0; c<MAXCOL; ++c)

 for (int r=0; r<MAXROW; ++r)

 if (world[r](c) == ALIVE)

 {

 world[r](c) = DEAD;

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 setcolor(LIGHTGRAY);

 fillellipse(c*12+26, r*12+61, 4, 4);

 }

 ReleaseNodes();

 mouse.ShowMouse();

}

This function returns the simulation to its start-up state, with all cells marked
DEAD, the on-screen grid blank, and all cell lists emptied. This function is called
when the user selects the CLEAR button.

Conclusion
T he entire Life program is shown in Listing 5.7. Your author has spent far

too many hours watching little creatures live and die on-screen. Time to
get back to work.

There’s probably much that can be done to speed up the simulation even more,
but that’s left to you. Experimenting with code, after all, is a great way to learn.

Listing 5.7. LIFE.CPP—Conway’s Life program.

///

// CONWAY’S LIFE

// by Clayton Walnum

// Written with Borland C++ 3.1

//

#include <graphics.h>

#include <conio.h>

#include <iostream.h>

Chapter 5 ■ Playing with Life

177

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

#include <stdlib.h>

#include <stdio.h>

#include <dos.h>

// Use mouse, window, and list classes.

#include “mous.h”

#include “windw.h”

#include “clist.h”

#include “event.h”

// Define global constants.

#define TRUE 1

#define FALSE 0

#define DEAD 0

#define ALIVE 1

#define MAXCOL 50

#define MAXROW 28

int mousex, mousey, // Mouse coordinates.

 repeat; // Main program loop controller.

int generations, // # of life generations.

 speed; // Speed of simulation.

int world[MAXROW][MAXCOL], // Cell map.

 nbrs[MAXROW][MAXCOL]; // Neighbor count map.

// Linked lists.

CList live, die, nextlive, nextdie;

// Windows and controls for main screen.

CapWindw wnd1(0, 0, 639, 479, TRUE, FALSE, “CONWAY’S LIFE”);

Windw wnd2(20, 409, 599, 50, FALSE, FALSE);

Windw wnd3(420, 419, 170, 32, FALSE, FALSE);;

Button startbut(30, 420, “^START”);

Button clearbut(105, 420, “^CLEAR”);

Button generatebut(180, 420, “^GENER”);

Button speedbut(255, 420, “S^PEED”);

Button quitbut(330, 420, “^QUIT”);

// Event message structure.

EvntMsg evntmsg;

continues

Part I ■ DOS Topics

178

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

// Function prototypes.

int KeyEvent(void);

void GetEvent(EvntMsg &evntmsg);

void DispatchEvent(EvntMsg evntmsg);

void Life(void);

void CreateLists(void);

void ClearWorld(void);

void GetGens(int &generations);

void GetSpeed(int &speed);

void PlaceCell(EvntMsg evntmsg);

void Live(void);

void Die(void);

void AddNbrs(void);

void SubNbrs(void);

void CalcLimits(int c, int r, int &xlow, int &xhigh,

 int &ylow, int &yhigh);

void UpdateGens(int g);

void Init(void);

void ReleaseNodes(void);

void DrawScreen(void);

void InitMouse(void);

void Cleanup(void);

//

// Main program.

//

void main(void)

{

 // Initialize game, mouse, and screen.

 Init();

 DrawScreen();

 InitMouse();

 // Repeat event loop until Quit.

 repeat = 1;

 while (repeat)

 {

 GetEvent(evntmsg);

 DispatchEvent(evntmsg);

 }

 closegraph();

}

Listing 5.7. Continued

Chapter 5 ■ Playing with Life

179

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

//

// DispatchEvent()

//

// This function checks the current event message and

// branches to the function chosen by the user.

//

void DispatchEvent(EvntMsg evntmsg)

{

 if (startbut.Clicked(evntmsg))

 Life();

 else if (clearbut.Clicked(evntmsg))

 ClearWorld();

 else if (generatebut.Clicked(evntmsg))

 GetGens(generations);

 else if (speedbut.Clicked(evntmsg))

 GetSpeed(speed);

 else if (quitbut.Clicked(evntmsg))

 {

 YesNoWindw wndw(“QUIT”, “Are you sure you”,

 “want to quit?”);

 wndw.DrawWindow();

 wndw.RunWindow();

 if (wndw.GetButton() == YES) repeat = 0;

 }

 else PlaceCell(evntmsg);

}

//

// Life()

//

// This function is the simulation’s main loop and is

// called when the user selects the Start button.

//

void Life(void)

{

 mouse.ButtonUp();

 CreateLists();

 for (int g=0; g<generations; ++g)

 {

 delay(speed);

 UpdateGens(g);

 Live();

continues

Part I ■ DOS Topics

180

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 Die();

 AddNbrs();

 SubNbrs();

 nextlive.TransferList(live);

 nextdie.TransferList(die);

 if (KeyEvent() || mouse.Event())

 {

 mouse.ButtonUp();

 break;

 }

 }

}

//

// GetGens()

//

// This function creates a dialog box with which the

// user can change the number of generations to run

// in each cycle of the Life() function.

//

void GetGens(int &generations)

{

 InputWindw w(“GENERATIONS”, “Enter # of generations:”,

 “(Max = 10,000)”);;

 char inp[81];

 w.DrawWindow();

 w.RunWindow();

 if (w.GetButton() == 1)

 {

 w.GetInput(inp);

 generations = atoi(inp);

 if (generations < 1) generations = 100;

 if (generations > 10000) generations = 10000;

 sprintf(inp, “Generation #%d”, generations);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 settextjustify(LEFT_TEXT, TOP_TEXT);

 bar(435, 431, 575, 441);

 setcolor(BROWN);

 outtextxy(435, 431, inp);

 }

}

Listing 5.7. Continued

Chapter 5 ■ Playing with Life

181

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

//

// GetSpeed()

//

// This function creates a dialog box with which the

// user can change the speed of the simulation.

//

void GetSpeed(int &speed)

{

 InputWindw w(“SIMULATION SPEED”, “Enter new speed:”,

 “(Min=1 Max=10)”);;

 char inp[81];

 w.DrawWindow();

 w.RunWindow();

 if (w.GetButton() == 1)

 {

 w.GetInput(inp);

 speed = atoi(inp);

 if (speed < 1) speed = 10;

 if (speed > 10) speed = 10;

 speed = (10 - speed) * 100;

 }

}

//

// ClearWorld()

//

// This function clears all cells from the map.

//

void ClearWorld(void)

{

 mouse.HideMouse();

 for (int c=0; c<MAXCOL; ++c)

 for (int r=0; r<MAXROW; ++r)

 if (world[r](c) == ALIVE)

 {

 world[r](c) = DEAD;

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 setcolor(LIGHTGRAY);

 fillellipse(c*12+26, r*12+61, 4, 4);

 }

 ReleaseNodes();

continues

Part I ■ DOS Topics

182

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 mouse.ShowMouse();

}

//

// PlaceCell()

//

// This function places a cell on-screen where the

// user clicked the map.

//

void PlaceCell(EvntMsg evntmsg)

{

 if ((evntmsg.mx > 20) && (evntmsg.mx < 620) &&

 (evntmsg.my > 56) && (evntmsg.my < 390))

 {

 mouse.HideMouse();

 int col = (evntmsg.mx - 20) / 12;

 int row = (evntmsg.my - 56) / 12;

 if (!world[row][col])

 {

 setfillstyle(SOLID_FILL, GREEN);

 setcolor(RED);

 fillellipse(col*12+26, row*12+61, 4, 4);

 world[row][col] = ALIVE;

 }

 mouse.ShowMouse();

 }

}

//

// CreateLists()

//

// This function initializes the cell maps and linked

// lists for the Life() function.

//

void CreateLists(void)

{

 int c, r;

 ReleaseNodes();

 for (c=0; c<MAXCOL; ++c)

 for (r=0; r<MAXROW; ++r)

Listing 5.7. Continued

Chapter 5 ■ Playing with Life

183

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 {

 nbrs[r](c) = 0;

 if (world[r](c) == ALIVE)

 live.MakeNewNode(c, r);

 }

 AddNbrs();

 for (c=0; c<MAXCOL; ++c)

 for (r=0; r<MAXROW; ++r)

 if (((nbrs[r](c) < 2) || (nbrs[r](c) > 3))

 && (world[r](c) == ALIVE))

 nextdie.MakeNewNode(c, r);

 nextlive.TransferList(live);

 nextdie.TransferList(die);

}

//

// Live()

//

// This function scans the live linked list and brings

// to life any cell that fits the requirements for life.

// Cells that come to life are placed back into the live

// list. Cells that don’t meet the requirements for life

// are deleted.

//

void Live(void)

{

 CList temp;

 int r, c;

 live.TransferList(temp);

 while(temp.HasNodes())

 {

 temp.GetNode(c, r);

 if ((world[r](c) == DEAD) &&

 (nbrs[r](c) == 3))

 {

 world[r](c) = ALIVE;

 mouse.HideMouse();

 setcolor(RED);

 setfillstyle(SOLID_FILL, LIGHTRED);

 fillellipse(c*12+26, r*12+61, 4, 4);

 mouse.ShowMouse();

continues

Part I ■ DOS Topics

184

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 live.MakeNewNode(c, r);

 }

 }

}

//

// Die()

//

// This function scans the die linked list and kills

// any cell that fits the requirements for death.

// Cells that die are placed back into the die list.

// Cells that don’t meet the requirements for death

// are deleted.

//

void Die(void)

{

 CList temp;

 int c, r;

 die.TransferList(temp);

 while(temp.HasNodes())

 {

 temp.GetNode(c, r);

 if ((world[r](c) == ALIVE) &&

 (nbrs[r](c) != 2) &&

 (nbrs[r](c) != 3))

 {

 world[r](c) = DEAD;

 mouse.HideMouse();

 setcolor(LIGHTGRAY);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 fillellipse(c*12+26, r*12+61, 4, 4);

 mouse.ShowMouse();

 die.MakeNewNode(c, r);

 }

 }

}

//

// AddNbrs()

//

// This function increments the neighbor count of every

Listing 5.7. Continued

Chapter 5 ■ Playing with Life

185

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

// cell adjacent to a cell that has just come to life.

// Cells that might come to life in the next generation

// are added to the nextlive list, and cells that might

// die in the next generation are added to the nextdie

// list. This function leaves the live list empty.

//

void AddNbrs(void)

{

 int xlow, xhigh, ylow, yhigh;

 int c, r;

 while (live.HasNodes())

 {

 live.GetNode(c, r);

 CalcLimits(c, r, xlow, xhigh, ylow, yhigh);

 for (int x=xlow; x<=xhigh; ++x)

 for (int y=ylow; y<=yhigh; ++y)

 if ((x != c) || (y != r))

 {

 nbrs[y][x] += 1;

 switch (nbrs[y][x])

 {

 case 1, 2: break;

 case 3:

 if (world[y][x] == DEAD)

 nextlive.MakeNewNode(x, y);

 break;

 case 4:

 if (world[y][x] == ALIVE)

 nextdie.MakeNewNode(x, y);

 break;

 case 5, 6, 7, 8: break;

 }

 }

 }

}

//

// SubNbrs()

//

// This function decrements the neighbor count of every

// cell adjacent to a cell that has just died. Cells

continues

Part I ■ DOS Topics

186

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

// that might die in the next generation are added to

// the nextdie list, and cells that might come to life

// in the next generation are added to the nextlive list.

// This function leaves the die list empty.

//

void SubNbrs(void)

{

 int xlow, xhigh, ylow, yhigh;

 int c, r;

 while (die.HasNodes())

 {

 die.GetNode(c, r);

 CalcLimits(c, r, xlow, xhigh, ylow, yhigh);

 for (int x=xlow; x<=xhigh; ++x)

 for (int y=ylow; y<=yhigh; ++y)

 if ((x != c) || (y != r))

 {

 nbrs[y][x] -= 1;

 switch (nbrs[y][x])

 {

 case 0: break;

 case 1:

 if (world[y][x] == ALIVE)

 nextdie.MakeNewNode(x, y);

 break;

 case 2: break;

 case 3:

 if (world[y][x] == DEAD)

 nextlive.MakeNewNode(x, y);

 break;

 case 4, 5, 6, 7: break;

 }

 }

 }

}

//

// CalcLimits()

//

// This function calculates the beginning and ending

// columns and rows to be checked by the AddNbrs() and

Listing 5.7. Continued

Chapter 5 ■ Playing with Life

187

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

// SubNbrs() functions.

//

void CalcLimits(int c, int r, int &xlow, int &xhigh,

 int &ylow, int &yhigh)

{

 if (c == 0) xlow = 0;

 else xlow = c - 1;

 if (c == MAXCOL-1) xhigh = MAXCOL-1;

 else xhigh = c + 1;

 if (r == 0) ylow = 0;

 else ylow = r - 1;

 if (r == MAXROW-1) yhigh = MAXROW-1;

 else yhigh = r + 1;

}

//

// UpdateGens()

//

// This function draws the generation count on the

// screen.

//

void UpdateGens(int g)

{

 char s[10];

 mouse.HideMouse();

 setcolor(BROWN);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 bar(531, 431, 580, 439);

 sprintf(s, “%d”, g+1);

 outtextxy(531, 431, s);

 mouse.ShowMouse();

}

//

// Init()

//

// This function performs general program initialization,

// initializing the graphics driver, setting all cells

// in the map to their DEAD state, and setting the

// default simulation speed and number of generations.

//

continues

Part I ■ DOS Topics

188

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

void Init(void)

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 errorcode = registerbgidriver(EGAVGA_driver);

 if (errorcode < 0)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 cout << “Press any key.”;

 getch();

 abort();

 }

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 cout << “Press any key.”;

 getch();

 abort();

 }

 for (int r=0; r<MAXROW; ++r)

 for (int c=0; c<MAXCOL; ++c)

 world[r](c) = DEAD;

 generations = 100;

 speed = 1;

}

//

// DrawScreen()

//

// This function draws the main screen.

//

void DrawScreen(void)

{

 wnd1.DrawWindow();

 wnd2.DrawWindow();

 wnd3.DrawWindow();

 startbut.DrawWindow();

 clearbut.DrawWindow();

 generatebut.DrawWindow();

 speedbut.DrawWindow();

Listing 5.7. Continued

Chapter 5 ■ Playing with Life

189

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

 quitbut.DrawWindow();

 setcolor(BLUE);

 for (int y=55; y<400; y+=12)

 {

 moveto(20, y); lineto(getmaxx()-20, y);

 }

 for (int x=20; x<630; x+=12)

 {

 moveto(x, 55); lineto(x, 391);

 }

 setcolor(BROWN);

 outtextxy(435, 431, “Generation #100”);

}

//

// InitMouse()

//

// This function initializes the user’s mouse.

//

void InitMouse(void) {

 if (!mouse.GotMouse()) {

 cout << “You have no mouse.\n”;

 cout << “Press any key.”;

 getch();

 }

 mouse.SetLimits(0,getmaxx(),0,getmaxy());

 mouse.ShowMouse();

}

//

// ReleaseNodes()

//

// This function deletes all nodes from the linked

// lists.

//

void ReleaseNodes(void)

{

 live.ClearList();

 die.ClearList();

 nextlive.ClearList();

 nextdie.ClearList();

}

Part I ■ DOS Topics

190

SAMS/q6 Borland C++ Power Programming 172-7 Brook(folio, LAC) 2-17-93 LP#3 CH5

Chapter 6 ■ An Introduction to Recursion

191

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

6
An Introduction to Recursion

uring your programming career, you’ve probably
heard the words “divide and conquer” as often as
a mouse hunts for food. This is because experi-
enced programmers know that writing a large
program can be a psychologically draining chal-
lenge. When you think about all that goes into a
full-length program, it’s easy to become over-

whelmed by the magnitude of the job. So, just as you read a book page by page
or clean a house room by room, you write a program one function at a time. In
this way, you can understand a huge task that might otherwise be beyond your
abilities to grasp as a whole.

You can adopt the divide-and-conquer strategy in several ways, including
using object-oriented programming and structured programming. Recursion,

the subject of this chapter, is another technique you can use to break complex
tasks into their components. Using recursion, you can take a repetitive task
and reduce it to a single step that is repeated again and again until you obtain
the desired result.

D

Part I ■ DOS Topics

192

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

In this chapter, you learn what recursion is and how it can be used to replace
complex code with short and elegant functions. You also use recursion in a full-
length program, thus applying what you’ve learned to a practical case. In this
program (a game!), you also learn more about object-oriented program de-
sign by using inheritance with your window library to create a new kind of
interactive button.

Recursion: Barrels Within Barrels
W hen I was a kid, one of my favorite toys was a bunch of nested plastic

barrels. I’d unscrew the first barrel, only to find a smaller one inside. In
that barrel was yet another smaller barrel, and so on. Finally, in the tiniest
barrel, was a small plastic rabbit. I spent hours fascinated with those barrels.

Recursion fascinates me in the same way, probably because recursion is a lot
like those nested barrels. With recursion, you work your way deeper and
deeper into an operation until you finally find that little bunny—the result of
the operation you’re trying to perform. Using recursion, complex operations
can be programmed in only a few lines of code.

But what exactly is recursion? In a program, recursion occurs when a function
calls itself. This may sound a little crazy. Why would a function want to call
itself? When you called a function in past programs, you expected the function
to do its job and return. With recursion, though, you must think about functions
differently. Rather than finishing a job, a recursive function does only a small
portion of the task and passes what’s left to another call to itself.

The simplest recursive function looks something like this:

void Recursive(void)

{

 Recursive();

}

This function accomplishes nothing. Worse, it’s an infinite loop. The
Recursive() function is called again and again, until, finally, you run out of
stack space. For a recursive function to operate correctly, it needs some way
to break out of the recursion. A more useful template for a recursive function
is

void Recursive(void)

{

 if (condition) return;

Chapter 6 ■ An Introduction to Recursion

193

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 else Recursive();

}

Here, when condition equals true, you return immediately rather than call
Recursive() again. After breaking out of the recursion, previous calls to
Recursive()—all of which have already executed their last statement (the
else statement)—also return, until you finally return to the original call to
Recursive().

This last example function doesn’t accomplish much, but it does illustrate the
most important elements of a recursive function, as follows:

• A recursive function calls itself.

• A recursive function must contain a conditional statement that breaks
the recursive cycle.

A Real-World Example
N ow, how about an example that does something? If you consider those

little barrels mentioned in the last section, you might see how recursion
can simplify a programming task. To get to the bunny in those barrels, a child
must open barrels, one after another, until she or he reaches the last one.
Opening a single barrel is only a small part of the entire task. After the first
barrel is opened, the same function must be performed on the remaining
barrels.

Think of barrel-opening as a function in a program. In fact, you can do more
than think about it, you can learn how to write it. Listing 6.1 is a program that
simulates the bunny-in-barrels toy.

Listing 6.1. BARRELS.CPP—the bunny-in-barrels program.

#include <iostream.h>

#include <conio.h>

void OpenBarrel(int num)

{

 if (num == 0) cout << “Got the bunny!” << ‘\n’;

 else

 {

continues

Part I ■ DOS Topics

194

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 cout << “Opening barrel #” << num << ‘\n’;

 OpenBarrel(num-1);

 }

}

void main(void)

{

 OpenBarrel(10);

 getch();

}

When you compile and run the program, you see the following output:

Opening barrel #10

Opening barrel #9

Opening barrel #8

Opening barrel #7

Opening barrel #6

Opening barrel #5

Opening barrel #4

Opening barrel #3

Opening barrel #2

Opening barrel #1

Got the bunny!

In the main program, OpenBarrel() is called with a parameter of 10. (This
parameter indicates the number of barrels and can be any integer.) In
OpenBarrel(), the value of num is first checked to determine whether the
program has reached the last barrel. If it has, it prints the Got the bunny!
message. Otherwise, the program calls OpenBarrel() again with a parameter
of num-1. This call invokes OpenBarrel() a second time —before the first
invocation has ended—with a value of 9. This second invocation checks the
value of num, finds it to be 9, and calls OpenBarrel() a third time, this time with
a value of 8. This process continues until a call to OpenBarrel() gets a value of
0 for num.

Note: Each invocation of OpenBarrel() has its own num variable. The
num variable for the first invocation is not the same num you use in the
second invocation. This is important to understand, because this series

of values eventually breaks the program out of the recursion.

Listing 6.1. Continued

Chapter 6 ■ An Introduction to Recursion

195

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

A Power Function
A lthough the bunny-in-barrels program illustrates recursion well by simu-

lating an easy-to-grasp, real-world problem, it doesn’t show how you
might use recursion in your programs. It’s unlikely that you’ll ever need to write
programs about bunnies and barrels. So, take a look at a recursive function that
accomplishes something worthwhile, but is still as easy to understand as the
barrel program.

Consider the value 103. The result of the exponentiation is calculated by
multiplying 10 by itself three times: 10*10*10. You can use a for loop to
calculate this value, but that’s much too pedestrian for power programmers.
Instead, you can perform this multiplication operation recursively. Listing 6.2
includes a recursive function, Power(), which calculates the value of any
integer raised to a positive integer exponent.

Listing 6.2. POWER.CPP—a recursive exponentiation example.

#include <iostream.h>

#include <conio.h>

int Power(int num, int exp)

{

 if (exp == 1) return num;

 else return num * Power(num, exp-1);

}

void main(void)

{

 cout << Power(10,3) << ‘\n’;

 getch();

}

Examine this short program carefully. Although the Power() function is only
a few lines long, a lot more is going on than may at first be apparent. Basically,
this function repeatedly calls itself with smaller and smaller values of exp, until
exp equals 1. At this point, instead of calling itself again, Power() simply returns
the value num. (In the 103 example, num would be 10.) Notice that no calcula-
tions are performed until the recursion is as deep as it can go. Then it returns

Part I ■ DOS Topics

196

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

10 to the previous invocation of Power(), which multiplies that return value by
10. The result (100) is passed to the first invocation, which also multiplies it
by 10—the final result being 1000.

Confused? Figure 6.1 will help dispel the mystery. Starting at the top of the
figure, Power() is called with the parameters 10 and 3. In the first call to
Power(), the if statement examines exp and finds it to be 3, so the else
statement executes. In the else statement, num is multiplied by the value
returned from Power(num, exp-1).

The function can’t perform the multiplication until it gets a return value from
Power(), however, so it drops down to the second call to Power(), which gets
the parameters 10 and 2. Again, the if statement is evaluated and program
execution drops down to the else statement, which multiplies num by yet
another call to Power(), this time with the parameters 10 and 1.

This brings the program to the third call to Power(), shown in the bottom box.
This call gets the parameters 10 and 1. This time the if statement finds that
exp is 1, so it immediately returns the value of num, which in this case is 10.

Figure 6.1. Solving 103 recursively.

Notice that the program has performed no multiplication operations, because
it has had no result from Power(). Instead, it has simply called Power() exp
times. The multiplication takes place as the program works its way back out of
the recursions. The third recursion returns 10 to the second recursion, where
this 10 is multiplied by num. The result of 100 is returned to the first call to
Power(), which also multiplies the result by num. The result of 1000 is finally
returned to your original call.

Chapter 6 ■ An Introduction to Recursion

197

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Recursion and the Stack
A s you shall soon see, recursion is useful for more than solving simple

mathematical problems. Recursion is also used in sorting routines, tree-
traversal routines, parsing and solving complex mathematical expressions,
disk directory management, and much more. In this chapter, you examine a
tree-traversal routine. In Chapter 7, you use recursion to parse and evaluate
formulas. But first you have to know how recursive routines affect the stack
and how this can get you into trouble.

Earlier in this chapter, you looked at a simple recursive function that ran
endlessly because there was no way to break out of the recursion. This function
called itself repeatedly until it ran out of stack space. What does the stack have
to do with recursion?

Every time a function is called, certain values are placed on the stack. These
values are part of something called a stack frame. They include the parameters
being passed to the particular function and the address to which the program
should return after the function ends. The stack has only a limited amount of
space, so it can hold only so many stack frames. When a recursive function calls
itself too often, the stack fills with stack frames, until no space is left. And when
the stack overflows, the program drops dead.

Listing 6.3 is a program that calls a recursive function containing no conditional
with which to break out of the recursion. Each invocation of the Recursive()
function prints the call number on-screen, so you can see that the program is
actually doing something.

Listing 6.3. STACK1.CPP—version 1 of the stack-overflow program.

#include <iostream.h>

void Recursive(int c)

{

 cout << c << ‘ ‘;

 Recursive(c+1);

}

void main(void)

{

 Recursive(1);

}

Part I ■ DOS Topics

198

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

If you run this program, you see that it calls Recursive() approximately 8000
times before it runs out of stack space.

Caution: You should compile this program with stack-overflow checking
turned on. You can find this option in the Options/Compiler/Entry Exit
menu. If you run the program without stack checking, you will have to

reboot your computer.

Listing 6.4 is the same program, only this time the Recursive() function takes
three parameters instead of one. By having more parameters, a call to
Recursive() generates larger stack frames. Each call uses more stack space,
so this program can call the function only about 5000 times before it runs out
of stack space.

Listing 6.4. STACK2.CPP—version 2 of the stack-overflow program.

#include <iostream.h>

void Recursive(int c, int c2, int c3)

{

 cout << c << ‘ ‘;

 Recursive(c+1, c2, c3);

}

void main(void)

{

 Recursive(1, 1, 1);

}

As you already know, every recursive function needs a conditional statement
that eventually ends the recursion, something Listings 6.3 and 6.4 are missing.
Listing 6.5 adds a conditional statement that allows only 5000 recursions.

Listing 6.5. STACK3.CPP—version 3 of the stack-overflow program.

#include <iostream.h>

void Recursive(int c, int c2, int c3)

{

 cout << c << ‘ ‘;

Chapter 6 ■ An Introduction to Recursion

199

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 if (c==5000) return;

 Recursive(c+1, c2, c3);

}

void main(void)

{

 Recursive(1, 1, 1);

}

Does this solve your stack problem? Yes and no. As long as you don’t change
the size of the stack or add additional parameters to the Recursive() function,
you should have no trouble with the stack. Listing 6.6 shows that adding even
a single integer parameter can get you into trouble by overflowing the stack.

Listing 6.6. STACK4.CPP—version 4 of the stack-overflow program.

#include <iostream.h>

void Recursive(int c, int c2, int c3, int c4)

{

 cout << c << ‘ ‘;

 if (c>5000) return;

 Recursive(c+1, c2, c3, c4);

}

void main(void)

{

 Recursive(1, 1, 1, 1);

}

Caution: Always be aware that you place a lot of data on the stack when
using recursive routines. Moreover, the more parameters required by the
recursive routines, the fewer number of stack frames fit on the stack, which

limits even further the number of recursive calls you can make. To avoid stack
problems, recursive functions should use as few parameters as possible. Be especially
careful of passing large data structures such as arrays as parameters in a recursive
function. If you have to use a large data structure as a parameter to a recursive
function, pass it by reference (which passes only the data’s address), not by value
(which passes the contents of the entire data structure).

Part I ■ DOS Topics

200

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

An Example Application: Trap Hunt
T hat takes care of all the work. Now you can have a little fun. Listing 6.7

is a puzzle game called Trap Hunt, shown in Figure 6.2. When you
compile and run the program, the main screen appears with 400 buttons in a
25x16 grid. To win the game, you must find the 60 traps hidden under these
buttons.

Figure 6.2. The Trap Hunt game board.

Listing 6.7. TRAPHUNT.CPP—the Trap Hunt program.

///

// TRAP HUNT

// by Clayton Walnum

// Written with Borland C++ 3.1

//

#include <stdlib.h>

#include <graphics.h>

#include <iostream.h>

#include <conio.h>

#include <dos.h>

Chapter 6 ■ An Introduction to Recursion

201

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

#include “windw.h”

#include “event.h”

#include “mous.h”

#include “butn.h”

#define TRUE 1

#define FALSE 0

#define TRAP -1 // Value for a trap square.

#define BLANK 0 // Value for a blank square.

#define TRAP_CNT 60 // # of traps on the board.

#define MAXCOLS 25 // # of columns on the board.

#define MAXROWS 16 // # of rows on the board.

#define XOFF 44 // Offset from left of first button.

#define YOFF 60 // Offset from top of first button.

// Game board array.

int board[MAXROWS][MAXCOLS];

// Numbers for marking numbered squares.

char *numbrs[5] = {“1”, “2”, “3”, “4”};

int repeat, // Controls main game loop.

 buttons_left, // # of unpressed buttons on the board.

 butn_num, // Total # of buttons on the board

 mark_cnt, // # of marked buttons.

 good_marks; // # of correctly marked buttons.

EvntMsg evntmsg;

// Function prototypes.

int KeyEvent(void);

void GetEvent(EvntMsg &evntmsg);

void DispatchEvent(EvntMsg evntmsg);

void CheckButton(EvntMsg evntmsg);

void ShowSquare(int x, int y);

void DoBlanks(int x, int y);

void Check4Blank(int x, int y);

void Init(void);

void Start(void);

void InitMouse(void);

void DrawScreen(void);

continues

Part I ■ DOS Topics

202

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

void PlaceTraps(void);

void PlaceCounts(void);

void DrawNumbers (int x, int y);

void DeleteButns(void);

void FallIntoTrap(int x, int y);

void ShowBoard(void);

void GameOver(void);

void DrawTrap(int c, int r);

void DrawNoTrap(int c, int r);

void MarkButn(int x, int y);

int CountTraps(int c, int r);

// Array of button pointers for game board.

Butn *butn[MAXCOLS*MAXROWS];

// Display windows and buttons.

CapWindw wnd1(0, 0, 639, 479, TRUE, FALSE, “TRAP HUNT”);

Button butn1(528, 425, “^QUIT”);

Button butn2(450, 425, “^START”);

//

// Main program.

//

void main(void)

{

 // Initialize game, mouse, and screen.

 Init();

 // Repeat event loop until Quit.

 repeat = TRUE;

 while (repeat)

 {

 if ((buttons_left == 0) || (mark_cnt == TRAP_CNT))

 GameOver();

 GetEvent(evntmsg);

 DispatchEvent(evntmsg);

 }

 DeleteButns();

 closegraph();

}

Chapter 6 ■ An Introduction to Recursion

203

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

//

// Init()

//

// This function performs general program initialization.

// It initializes the graphics driver and mouse, then

// calls the Start() function, which initializes a

// new game.

//

void Init(void)

{

 int gdriver = VGA, gmode = VGAHI, errorcode;

 errorcode = registerbgidriver(EGAVGA_driver);

 if (errorcode < 0)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 cout << “Press any key.”;

 getch();

 abort();

 }

 initgraph(&gdriver, &gmode, “”);

 if ((errorcode = graphresult()) != grOk)

 {

 cout << “Graphics not initialized: “ << errorcode << ‘\n’;

 cout << “Press any key.”;

 getch();

 abort();

 }

 InitMouse();

 Start();

}

//

// DispatchEvent()

//

// This function checks the current event message and

// branches to the function chosen by the user.

//

void DispatchEvent(EvntMsg evntmsg)

{

 mouse.ButtonUp();

continues

Part I ■ DOS Topics

204

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

 // Check whether START button was clicked.

 if (butn1.Clicked(evntmsg))

 repeat = FALSE;

 // Check whether QUIT button was pressed.

 else if (butn2.Clicked(evntmsg))

 {

 DeleteButns();

 Start();

 }

 // Cycle through all the buttons on the board

 // to check whether one has been pressed.

 else

 for (int bn=0; bn<butn_num; ++bn)

 if (!butn[bn]->Pressed())

 if (butn[bn]->Clicked(evntmsg))

 CheckButton(evntmsg);

}

//

// GameOver()

//

// This function is called when the player finds all

// the traps on the board or marks the maximum number

// of buttons allowed. It displays a dialog box and

// then resets the variables buttons_left and mark_cnt

// to prevent main() from calling GameOver() again.

//

void GameOver(void)

{

 // If all the buttons have been pressed or the number

 // of correctly marked buttons matches the number of

 // traps, the player has won the game.

 if ((buttons_left == 0) || (good_marks == TRAP_CNT))

 {

 OKWindw wndw(“YOU WIN!”, “Congratulations! You”,

 “found all the traps.”);

 wndw.DrawWindow();

 wndw.RunWindow();

 }

Chapter 6 ■ An Introduction to Recursion

205

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 // Otherwise, the player loses, because he or she

 // has used up all marks without marking the

 // correct buttons.

 else

 {

 OKWindw *wndw = new OKWindw (“YOU LOSE”,

 “You’ve marked the maximum”,

 “number of buttons.”);

 wndw->DrawWindow();

 wndw->RunWindow();

 delete wndw;

 ShowBoard();

 }

 // These variables are reset so the main game

 // loop will not recall this function.

 buttons_left = MAXCOLS * MAXROWS;

 mark_cnt = 0;

}

//

// Start()

//

// This function initializes all variables needed to

// begin a new game, including setting the playing board

// to all blanks, calling the functions that place and

// count the traps, and calling the function that draws

// the main screen.

//

void Start(void)

{

 // Initialize the random-number generator.

 randomize();

 // Set the entire game board to blanks.

 for (int col=0; col<MAXCOLS; ++col)

 for (int row=0; row<MAXROWS; ++row)

 board[row][col] = BLANK;

 // Place traps and numbers on game board.

 PlaceTraps ();

 PlaceCounts ();

continues

Part I ■ DOS Topics

206

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

 // Draw game screen and init some variables.

 DrawScreen();

 buttons_left = MAXCOLS * MAXROWS;

 mark_cnt = good_marks = 0;

}

//

// CheckButton()

//

// This function checks to see what is beneath the

// selected button, calling the appropriate function

// to display the part of the puzzle chosen.

//

void CheckButton(EvntMsg evntmsg)

{

 // Translate mouse-button coords to column and

 // row coords for the playing board.

 int x = (evntmsg.mx - XOFF) / 22;

 int y = (evntmsg.my - YOFF) / 22;

 // If right mouse button pressed, mark

 // clicked button for a trap...

 if (evntmsg.button == RIGHT)

 {

 butn[y*MAXCOLS+x]->MarkButton();

 buttons_left -= 1;

 mark_cnt += 1;

 if (board[y][x] == TRAP)

 good_marks += 1;

 }

 // ...or if button pressed hides a trap, end game...

 else if (board[y][x] == TRAP)

 FallIntoTrap(x, y);

 // ...or else show what’s under the square.

 else ShowSquare(x, y);

}

//

// FallIntoTrap()

//

Chapter 6 ■ An Introduction to Recursion

207

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

// This function is called when the player selects a

// button hiding a trap. It first displays a dialog

// box, informing the player of the mistake, then

// reveals all the squares on the board.

//

void FallIntoTrap(int x, int y)

{

 // Draw trap image.

 DrawTrap(x, y);

 // Display and run dialog box.

 OKWindw *wndw = new OKWindw (“YOU LOSE”,

 “Whoops! You fell”, “into a trap!”);

 wndw->DrawWindow();

 wndw->RunWindow();

 delete wndw;

 // Reveal all the squares on the board.

 ShowBoard();

}

//

// ShowSquare()

//

// This function shows the contents of the selected

// square. If the square is blank, the recursive

// function DoBlanks() is called to show all the blank

// squares connected to the selected square.

//

void ShowSquare (int x, int y)

{

 int b = board[y][x];

 // If the square contains a blank, call the

 // function to show all connecting blanks.

 if (!b) DoBlanks(x, y);

 // Otherwise show the square’s number.

 else DrawNumbers(x, y);

}

continues

Part I ■ DOS Topics

208

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

//

// ShowBoard()

//

// This function reveals all the squares on the board.

//

void ShowBoard(void)

{

 // Cycle through all the buttons on the board.

 for (int c=0; c<MAXCOLS; ++c)

 for (int r=0; r<MAXROWS; ++r)

 {

 // If the square contains a trap and the

 // button was not marked, show the trap.

 if ((board[r](c)==TRAP) && (!butn[r*MAXCOLS+c]->Marked()))

 DrawTrap(c, r);

 // If the button is marked, but the square doesn’t

 // contain a trap, display the error symbol.

 else if ((butn[r*MAXCOLS+c]->Marked()) &&

 (board[r](c)!=TRAP))

 DrawNoTrap(c, r);

 // If the square contains a number, show it.

 else if (board[r](c) > 0)

 DrawNumbers(c, r);

 // If the square contains a blank, show it.

 else if (board[r](c) == 0)

 butn[r*MAXCOLS+c]->PressButton();

 }

}

//

// DoBlanks()

//

// This function reveals all the blank squares

// connected to a selected square.

//

void DoBlanks (int x, int y)

{

 butn[y*MAXCOLS+x]->PressButton();

 buttons_left -= 1;

Chapter 6 ■ An Introduction to Recursion

209

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 // Move one square up.

 if (y != 0)

 Check4Blank(x, y-1);

 // Move one square up and to the right.

 if ((y != 0) && (x != MAXCOLS-1))

 Check4Blank(x+1, y-1);

 // Move one square right.

 if (x != MAXCOLS-1)

 Check4Blank(x+1, y);

 // Move one square down and to the right.

 if ((y != MAXROWS-1) && (x != MAXCOLS-1))

 Check4Blank(x+1, y+1);

 // Move one square down.

 if (y != MAXROWS-1)

 Check4Blank(x, y+1);

 // Move one square down and to the left.

 if ((y != MAXROWS-1) && (x != 0))

 Check4Blank(x-1, y+1);

 // Move one square left.

 if (x != 0)

 Check4Blank(x-1, y);

 // Move one square up and to the left.

 if ((y != 0) && (x != 0))

 Check4Blank(x-1, y-1);

}

//

// Check4Blank()

//

// This function checks the square at x,y for a blank.

// If it finds one, it makes a recursive call to

// DoBlanks() to traverse all the blank squares in the

// current direction. If the square is not a blank, it

// calls DrawNumbers() to reveal the contents of the

// square.

//

void Check4Blank(int x, int y)

continues

Part I ■ DOS Topics

210

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

{

 if ((board[y][x] == BLANK) &&

 (!butn[y*MAXCOLS+x]->Pressed()))

 DoBlanks (x, y);

 else if ((!butn[y*MAXCOLS+x]->Pressed()) &&

 (!butn[y*MAXCOLS+x]->Marked()))

 DrawNumbers (x, y);

}

//

// DrawTrap()

//

// This function draws the image that represents a trap.

//

void DrawTrap(int c, int r)

{

 butn[r*MAXCOLS+c]->PressButton();

 setcolor(RED);

 setfillstyle(SOLID_FILL, BLACK);

 setlinestyle(SOLID_LINE, 0, NORM_WIDTH);

 int sx = c*22+XOFF;

 int sy = r*22+YOFF;

 mouse.HideMouse();

 fillellipse(sx+10, sy+10, 6, 6);

 mouse.ShowMouse();

}

//

// DrawNoTrap()

//

// This function draws the image that represents an

// incorrect trap-marked square.

//

void DrawNoTrap(int c, int r)

{

 butn[r*MAXCOLS+c]->PressButton();

 setlinestyle(SOLID_LINE, 0, THICK_WIDTH);

 setcolor(RED);

 int sx = (c*22)+XOFF;

 int sy = (r*22)+YOFF;

 circle(sx+10, sy+10, 8);

 moveto(sx+4, sy+4);

 lineto(sx+16, sy+17);

}

Chapter 6 ■ An Introduction to Recursion

211

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

//

// DrawNumbers()

//

// This function is called when the player selects a

// square containing a number. It draws the square and

// its number.

//

void DrawNumbers (int x, int y)

{

 butn[y*MAXCOLS+x]->PressButton();

 setcolor(BLUE);

 int n = board[y][x];

 int sx = (x*22) + XOFF;

 int sy = (y*22) + YOFF;

 mouse.HideMouse();

 outtextxy(sx+7, sy+7, numbrs[n-1]);

 mouse.ShowMouse();

 buttons_left -= 1;

}

//

// DrawScreen()

//

// This function draws the main screen.

//

void DrawScreen(void)

{

 // Draw main display.

 wnd1.DrawWindow();

 butn1.DrawWindow();

 butn2.DrawWindow();

 // Create and display all the game-board buttons.

 butn_num = 0;

 for (int y=0; y<MAXROWS; ++y)

 for (int x=0; x<MAXCOLS; ++x)

 {

 butn[butn_num] = new Butn(x*22+XOFF, y*22+YOFF);

 butn[butn_num]->DrawWindow();

 ++butn_num;

 }

}

continues

Part I ■ DOS Topics

212

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

//

// PlaceTraps()

//

// This function places traps on an empty playing board.

// The traps are placed so that no more than four traps

// are adjacent to any square.

//

void PlaceTraps(void)

{

 int n;

 // Loop for each trap on the board.

 for (int z=0; z<TRAP_CNT; ++z)

 {

 int okay = FALSE;

 // The while loop will repeat until the

 // trap is properly placed.

 while (!okay)

 {

 // Get a random column and row for the trap.

 int c = random(MAXCOLS);

 int r = random(MAXROWS);

 // If there isn’t already a trap at this

 // location, calculate the maximum and minimum

 // coordinates for every square adjacent to

 // this one.

 if (board[r](c) != TRAP)

 {

 int yl = r - 1;

 int yh = r + 1;

 int xl = c - 1;

 int xh = c + 1;

 if (xl == -1) xl = 0;

 if (xh == MAXCOLS) xh = MAXCOLS-1;

 if (yl == -1) yl = 0;

 if (yh == MAXROWS) yh = MAXROWS-1;

 okay = TRUE;

Chapter 6 ■ An Introduction to Recursion

213

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 // Count the traps surrounding every adjacent

 // square to be sure that no trap count goes

 // over four.

 for (int y=yl; y<yh+1; ++y)

 for (int x=xl; x<xh+1; ++x)

 {

 n = CountTraps(x, y);

 if (n > 3) okay = FALSE;

 }

 // If all trap counts are low enough,

 // place the trap.

 if (okay) board[r](c) = TRAP;

 }

 }

 }

}

//

// PlaceCounts()

//

// This function counts the number of traps adjacent to

// each square on the board.

//

void PlaceCounts(void)

{

 // Cycle through every square on the board,

 // counting adjacent traps.

 for (int row=0; row<MAXROWS; ++row)

 for (int col=0; col<MAXCOLS; ++col)

 if (board[row][col] != TRAP)

 board[row][col] = CountTraps(col, row);

}

//

// CountTraps()

//

// This function counts the traps adjacent to the square

// located at c,r.

//

int CountTraps(int c, int r)

{

continues

Part I ■ DOS Topics

214

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Listing 6.7. Continued

 // Calculate the minimum and maximum coords

 // for every square adjacent to the one you’re

 // checking.

 int yl = r - 1;

 int yh = r + 1;

 int xl = c - 1;

 int xh = c + 1;

 if (xl == -1) xl = 0;

 if (xh == MAXCOLS) xh = MAXCOLS-1;

 if (yl == -1) yl = 0;

 if (yh == MAXROWS) yh = MAXROWS-1;

 // Count all traps in adjacent squares.

 int count = 0;

 for (int y=yl; y<yh+1; ++y)

 for (int x=xl; x<xh+1; ++x)

 if (((x != c) || (y != r)) &&

 (board[y][x] == TRAP))

 ++count;

 return count;

}

//

// DeleteButns()

//

// This function deletes all buttons from the playing

// board.

//

void DeleteButns()

{

 for (int x=0; x<butn_num; ++x)

 if (butn[x] != NULL)

 delete butn[x];

 }

//

// InitMouse()

//

// This function initializes the user’s mouse.

//

void InitMouse(void) {

Chapter 6 ■ An Introduction to Recursion

215

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 if (!mouse.GotMouse()) {

 cout << “You have no mouse.\n”;

 cout << “Press any key.”;

 getch();

 }

 mouse.SetLimits(0,getmaxx(),0,getmaxy());

 mouse.ShowMouse();

}

Each square on the game board contains one of three things: a trap, a number,
or a blank. To start, click a button on the game board with your left mouse
button (not the right button). If the button you choose reveals a trap, you lose
the game (whew, that was fast!), and the entire game board is revealed. If the
button reveals a blank square, every blank square connected to it is shown, up
to and including bordering number squares. If a button reveals a number, this
number informs you of the number of traps adjacent to the selected button.

Try to locate all the traps by using the number clues. When you locate a trapped
button, click it with the right mouse button (not the left button). This marks
the button with a red X and locks the button so it can no longer be clicked. You
are apportioned only 60 markers, exactly enough for the traps, so you can’t
waste even one. If you use your markers before you’ve located all the traps, the
game ends.

At the bottom of the screen are the START and QUIT buttons. You can start
a new game any time by clicking the START button, and you can exit the
program any time by clicking the QUIT button. Neither button warns you
before it performs its function, so you can’t undo your action if you accidentally
click one during a game.

Trap Hunt and Inheritance
Look at the top of the Trap Hunt listing (Listing 6.7). See the
#include “butn.h” line? If you looked at the program code already, you
probably suspect that Butn is a new type of interactive screen object—and
you’re right. But more important, a Butn object is a new type of button derived
from the Button class in your window library. All the buttons on the game board
(except the START and QUIT buttons at the bottom of the screen) are objects
of the Butn class.

Why do these buttons look and act so differently than the buttons you’ve used
before? The original buttons’ behavior has been modified to suit this program.

Part I ■ DOS Topics

216

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Rather than rewrite the original Button class or write a new class, however,
inheritance adds to this new class all the things about the Button class you can
use. Then, one only has to add the code to handle the differences between a
Butn class and a Button class.

Now look at how this works. Listing 6.8 is the header file for the new Butn class.

Listing 6.8. BUTN.H—the Butn class header file.

#ifndef _BUTN_H

#define _BUTN_H

#include “windw.h”

class Butn: public Button

{

 int pressed, marked;

public:

 Butn(int x, int y);

 void PressButton(void);
 void MarkButton(void);

 int Pressed(void) { return pressed; }

 int Marked(void) { return marked; }

};

#endif

You can see from this listing that the Butn class is derived from Button. In
addition, Butn has two private data members (besides those inherited from
Button), pressed and marked, which keep track of whether the button has been
pressed or marked. This class also has a constructor and four member
functions (again, besides those inherited from Button). These functions
perform the actions of pressing or marking a button, and returning the value
of the pressed and marked private variables, so your program can read the
button’s status.

Now examine each of these functions, starting with the class’ constructor:

Butn::Butn(int x, int y): Button(x, y, “”)

{

 ww = wh = 20;

 pressed = FALSE;

 marked = FALSE;

}

Chapter 6 ■ An Introduction to Recursion

217

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Here, because a Butn is a type of Button, the program first calls Button’s
constructor. But, because you don’t want the game board buttons to have a
label, this constructor is sent an empty string. Button’s constructor does
everything required to create a functional screen button, except display it.
Buttons of the Button class are always 64 pixels wide and 32 pixels high, but
the buttons used on the game board are much smaller than this. Luckily, you
can change the button’s size by modifying its ww and wh data members, both of
which are inherited from the Button class, which in turn inherits them from the
Windw class. (My, what a tangled web.) In the Butn constructor, the program
sets both ww and wh to 20. Finally, it initializes the pressed and marked data
members to false, which indicate that the button has not been pressed or
marked.

That’s all you have to do to create a new button type. Are you surprised that
it was so easy? You shouldn’t be. Inheritance is one of object-oriented
programming’s most powerful features. If you’ve never used object-oriented
programming techniques before, you’re now getting a good idea of why
modern programmers love them.

Now that you’ve created an object of the Butn class, how do you use it? Here’s
the DispatchMessage() function from Listing 6.7:

void DispatchEvent(EvntMsg evntmsg)

{

 mouse.ButtonUp();

 // Check whether START button was clicked.

 if (butn1.Clicked(evntmsg))

 repeat = FALSE;

 // Check whether QUIT button was pressed.

 else if (butn2.Clicked(evntmsg))

 {

 DeleteButns();

 Start();

 }

 // Cycle through all the buttons on the board

 // to check whether one has been pressed.

 else

 for (int bn=0; bn<butn_num; ++bn)

 if (!butn[bn]->Pressed())

 if (butn[bn]->Clicked(evntmsg))

 CheckButton(evntmsg);

}

Part I ■ DOS Topics

218

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Look near the bottom of the function. Here, nested for loops cycle through an
array of pointers to Butns. As you can see, this function checks the new buttons
the same way you checked your old buttons, by calling their Clicked()
function. You can do this because a button of the Butn class inherits all the
functions of its ancestor class, Button.

Notice also that, before the program calls Clicked() for a button, it first calls
the button’s Pressed() member function. If this function returns false, the
program knows that the button has not been clicked. If the function returns
true, the program shouldn’t call Clicked(), because that would animate a
button that has already been pressed and erased. (The button object still exists
in memory even though it’s been erased from the screen.)

When the player clicks a button, its ClickButton() function (inherited from
Button and called automatically by the Clicked() function) animates the
button. However, when the button is clicked in Trap Hunt, the program must
reveal what’s beneath it. To do this, it first calls the class’ PressButton()
function:

void Butn::PressButton(void)

{

 pressed = TRUE;
 sound(500);

 delay(10);

 nosound();

 setlinestyle(SOLID_LINE, 0, NORM_WIDTH);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 mouse.HideMouse();

 bar(wx, wy, wx+ww, wy+wh);

 setcolor(BLUE);

 rectangle(wx, wy, wx+ww, wy+wh);

 mouse.ShowMouse();

}

This function first sets the button’s pressed data member to true. After setting
pressed, the program adds some extra sound to make things interesting. You
hear this new beep immediately after the beep normally generated by the
button’s ClickButton() function. After the beep, the program erases the
button by drawing a gray rectangle with a blue border. The Trap Hunt program
decides whether to leave this square blank, draw a number in it, or reveal a trap.

Your new type of button behaves differently when it’s clicked with the right
mouse button. In this case, the program must mark the button with a red X.
This task is handled by the class’ MarkButton() function:

Chapter 6 ■ An Introduction to Recursion

219

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

void Butn::MarkButton(void)

{

 PressButton();

 DrawWindow();

 setcolor(RED);

 mouse.HideMouse();

 outtextxy(wx+7, wy+7, “X”);

 mouse.ShowMouse();

 marked = TRUE;

}

Here, the program calls PressButton() to record the button press and get the
beep sound. Then it redraws the button (because PressButton() has the side
effect of erasing it) by calling its DrawWindow() member function. Finally, the
red X is drawn on the button.

Look over the Trap Hunt listing carefully to be sure you understand how the
new Butn class works. In your future programming projects, you can make use
of inheritance to quickly create new classes based on classes that contain some
characteristics you need. To practice with inheritance, experiment further
with the window library, creating new kinds of windows and buttons. How
about a button that can hold longer labels? Or a dialog box that enables the user
to select a file from a list?

The full Butn class implementation is shown in Listing 6.9.

Listing 6.9. BUTN.CPP—the Butn class implementation.

#include “butn.h”

#include “dos.h”

#include “mous.h”

#include “graphics.h”

Butn::Butn(int x, int y): Button(x, y, “”)

{

 ww = wh = 20;

 pressed = FALSE;

 marked = FALSE;

}

void Butn::PressButton(void)

{

 pressed = TRUE;

continues

Part I ■ DOS Topics

220

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 sound(500);

 delay(10);

 nosound();

 setlinestyle(SOLID_LINE, 0, NORM_WIDTH);

 setfillstyle(SOLID_FILL, LIGHTGRAY);

 mouse.HideMouse();

 bar(wx, wy, wx+ww, wy+wh);

 setcolor(BLUE);

 rectangle(wx, wy, wx+ww, wy+wh);

 mouse.ShowMouse();

}

void Butn::MarkButton(void)

{

 PressButton();

 DrawWindow();

 setcolor(RED);

 mouse.HideMouse();

 outtextxy(wx+7, wy+7, “X”);

 mouse.ShowMouse();
 marked = TRUE;

}

Programming with Trees
The Trap Hunt program contains an excellent example of recursion that you
can study to get further insight into this handy and interesting programming
technique. In a previous discussion of ways to use recursion, tree-traversal
routines were mentioned. This is the type of recursion used in Trap Hunt.

What’s a tree? A tree is a data structure that connects a collection of items,
called nodes. A tree starts with a root node. Connected to the root are any
number of child nodes. Each child node, too, can have any number of its own
child nodes. This hierarchy continues down the tree until a child node has no
children of its own.

Figure 6.3 shows a binary tree, which is a special type of tree that has left and
right children for every node except the base nodes. Node A is the root node.
Nodes B and C, which are called siblings because they are on the same level of
the tree, are A’s child nodes. Nodes B and C also have two child nodes each,
the base nodes D, E, F, and G.

Listing 6.9. Continued

Chapter 6 ■ An Introduction to Recursion

221

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Root node

Left child
node

Right child
node

Base nodes

Figure 6.3. A binary tree.

Recursion is particularly useful for traversing trees—that is, for following
every path in the tree from the root to the base nodes. Listing 6.10 creates and
traverses the binary tree shown in Figure 6.4. The program’s output follows:

At node A

At node B

At node D

At node E

At node C

At node F

At node G

Listing 6.10. TREE.CPP—creating the binary tree shown in Figure 6.3.

#include <stdlib.h>

#include <iostream.h>

#include <conio.h>

struct Node

{

 char name;

 Node *left, *right;

};

Node *tree;

void AddNodes(Node *node, char c1, char c2);

void TraverseTree(Node *n);

void main(void)

continues

Part I ■ DOS Topics

222

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

{

 tree = new Node;

 tree->name = ‘A’;

 AddNodes(tree, ‘B’, ‘C’);

 AddNodes(tree->left, ‘D’, ‘E’);

 AddNodes(tree->right, ‘F’, ‘G’);

 TraverseTree(tree);

 delete tree;

 getch();

}

void AddNodes(Node *node, char c1, char c2)

{

 Node *n = new Node;

 n->name = c1;

 n->left = NULL;

 n->right = NULL;

 node->left = n;

 n = new Node;

 n->name = c2;

 n->left = NULL;

 n->right = NULL;

 node->right = n;

}

void TraverseTree(Node *n)

{

 cout << “At node “ << n->name << ‘\n’;

 if (n->left)

 {

 TraverseTree(n->left);

 delete n->left;

 }

 if (n->right)

 {

 TraverseTree(n->right);

 delete n->right;

 }

}

Listing 6.10. Continued

Chapter 6 ■ An Introduction to Recursion

223

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

The program implements a node as a struct containing the node’s label and
pointers to the node’s left and right children. In main(), the program first
creates the tree’s root node, which is appropriately named tree. Then it calls
the AddNodes() function to create two child nodes for tree. The program also
calls Addnodes() (indirectly by way of the tree->left and tree->right point-
ers) for each of tree’s child nodes to create their child nodes. The operations
here are similar to those you learned when studying linked lists.

There should be no need to go into the details of the tree construction. What
you must examine closely, though, is the recursive procedure that traverses
the tree structure. In Listing 6.10, that function is TraverseTree().

Here’s how the recursion works:

1. The program calls TraverseTree() from main() with tree, which is a
pointer to the tree’s root node.

2. In TraverseTree(), the function first prints a message, showing which
node it’s currently examining. In this case, the node is A.

3. Then the function checks node A’s left pointer. If it’s not NULL, A
has a left child, so the function calls TraverseNode() recursively to
check that left child, which is B.

4. This call initiates a second invocation of TraverseNode(), in which a
message for node B is printed and node B’s left pointer is checked.

5. Because node B also has a left child, the program calls
TraverseNode() yet again, this time for node D. In this third invoca-
tion of TraverseTree(), the program prints D’s message and checks
its left pointer.

6. D has no left child, so the program drops out of the first if and checks
D’s right pointer. D has no right child either. So, the third invocation
of TraverseTree() ends, and the program is back to the second,
where it last checked B’s left pointer.

7. The program is now finished with B’s left child, D, so it deletes it and
checks B’s right pointer, only to discover that it has a right child, E.
This means the program must call TraverseTree() to examine node E.

8. Because node E, like node D, has no left or right children, the pro-
gram promptly returns to B, where it deletes E and steps back to the
first invocation of TraverseTree().

Part I ■ DOS Topics

224

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

9. The program had last checked A’s left pointer, so it can delete that
left child and move to A’s right child, C.

10. The right side of the tree is traversed the same way the left side was,
by visiting C, F, and finally G.

11. At the end of the traversal, the program returns to A with all nodes
examined and all nodes deleted, except the root node. The root node,
tree, is deleted in main().

Trap Hunt’s Trees
Trap Hunt uses trees. How? When the player selects a blank square, the
program must reveal all blank squares connected to it, as well as any number
squares adjacent to blank squares. It does this by forming a tree and traversing
the tree recursively.

The first step in forming the tree is to select the tree’s root. Trap Hunt makes
the selected square the root of the tree. When the program has selected this
root node, all other squares on the board fall logically into a tree pattern (not
a binary tree), as you soon see. No matter which square the user selects, the
remaining squares can be thought of as a tree structure with the selected
square as the root.

The program then calls a recursive routine to traverse the tree, starting at the
root. Any node in the tree can have as many as seven child nodes. A child node,
in this case, is an unpressed button covering either another blank square or a
number. Number squares are the tree’s base nodes—that is, the traversal
never goes past a number square.

This tree traversal is more complex than the first example. In the binary tree,
the program had to examine only left and right pointers for each node in a tree.
In the game-board tree, the program must examine nodes in eight directions:
up, up-right, right, right-down, down, left-down, left, and left-up. Still, except
for extra recursive calls to the additional directions, the process is identical to
the one used for binary trees.

Two functions in the Trap Hunt program accomplish the tree traversal. They
are DoBlanks() and Check4Blank():

void DoBlanks (int x, int y)

{

 butn[y*MAXCOLS+x]->PressButton();

 buttons_left -= 1;

Chapter 6 ■ An Introduction to Recursion

225

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

 // Move one square up.

 if (y != 0)

 Check4Blank(x, y-1);

 // Move one square up and to the right.

 if ((y != 0) && (x != MAXCOLS-1))

 Check4Blank(x+1, y-1);

 // Move one square right.

 if (x != MAXCOLS-1)

 Check4Blank(x+1, y);

 // Move one square down and to the right.

 if ((y != MAXROWS-1) && (x != MAXCOLS-1))

 Check4Blank(x+1, y+1);

 // Move one square down.

 if (y != MAXROWS-1)

 Check4Blank(x, y+1);

 // Move one square down and to the left.

 if ((y != MAXROWS-1) && (x != 0))

 Check4Blank(x-1, y+1);

 // Move one square left.

 if (x != 0)

 Check4Blank(x-1, y);

 // Move one square up and to the left.

 if ((y != 0) && (x != 0))

 Check4Blank(x-1, y-1);

}

void Check4Blank(int x, int y)

{

 if ((board[y][x] == BLANK) &&

 (!butn[y*MAXCOLS+x]->Pressed()))

 DoBlanks (x, y);

 else if ((!butn[y*MAXCOLS+x]->Pressed()) &&

 (!butn[y*MAXCOLS+x]->Marked()))

 DrawNumbers (x, y);

}

Part I ■ DOS Topics

226

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Although this code performs a recursive traversal of your game board’s tree,
there are no calls to DoBlanks() inside DoBlanks() and no calls to Check4Blank()
inside Check4Blank(). How, then, is this routine recursive? Easy! DoBlanks()
calls Check4Blank(), which then calls DoBlanks(). This circular pattern is
recursive because new calls to DoBlanks() are made before previous invoca-
tions of DoBlanks() have ended. Neither of these functions is recursive, but
together they form a recursive routine.

The if statements in the DoBlanks() function check that the recursion doesn’t
overrun the boundary of the game board. DoBlanks() also makes sure that all
eight directions are checked. DoBlanks() selects the next square in the
traversal and passes it to Check4Blank(), which decides what to do with the
square. If the square is a blank and its button hasn’t been pressed, Check4Blank()
calls DoBlanks() recursively for the new blank square. Otherwise, if the
square’s button hasn’t been pressed or marked, Check4Blank() calls
DrawNumbers() to reveal the square’s number.

This is probably very confusing, not because the concept is difficult to
understand, but because it is difficult to follow the many recursions needed to
traverse the tree. To help you understand Trap Hunt’s tree-traversal routine,
try the exercise in Figure 6.4, which shows the Trap Hunt game screen
immediately after the player has selected a blank square.

At the point shown in the figure, the program has traversed the game-board
tree, revealing blank squares and bordering number squares. The large black
rectangle is the square the player originally chose. (During the game, there is
no black rectangle. It was added to the figure for the exercise.) Get a pencil and
draw the path that the traversal took to reveal the squares, using the source
code for the DoBlanks() and Check4Blank() functions.

Note: Start the traversal by moving upward from the selected square.
If you run into a numbered square, back up and try the next direction. Every
new blank square you run into starts the process over again, because it

results in a recursive call to DoBlanks().

To get you started, Figure 6.5 shows the first 14 squares in the traversal.
The entire traversal is shown in Figure 6.6.

Chapter 6 ■ An Introduction to Recursion

227

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Figure 6.5. The first 14 steps in the tree traversal.

Figure 6.4. Tree-traversal exercise.

Part I ■ DOS Topics

228

SAMS/Q3 Borland C++ Power Prog. 172-7 Paula (folio, LAC) 2/17/93 CH6 LP#3,4

Figure 6.6. The complete tree traversal.

Conclusion
T he exercise in Figure 6.4 may look like an immense task, but after you get

the hang of it, you will be able to trace the traversal without even looking
at the source code. When you can do that, you will have a good understanding
of how recursive tree-traversal works (which is the whole point). And when
you have that understanding, you’ll be ready to tackle Chapter 7, which shows
how recursion can be used to parse and evaluate mathematical formulas.

Chapter 7 ■ Using Recursion to Parse Formulas

229

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

Using Recursion to
Parse Formulas

7

A
fill an encyclopedia. Unfortunately, this book doesn’t have that much space
to dedicate to this important topic. This chapter, however, looks at one of
the most useful forms of parsing: recursive-descent parsing.

In this chapter, you learn to translate complex formulas entered from the
keyboard into data with which the computer can work. Moreover, you learn to
solve these formulas and return the results to the user. The techniques
presented here can be the basis for any type of math program, from a simple
text-based calculator to a full-blown spreadsheet application.

nyone who has ever written a program that must
accept elaborate text input from a user knows how
difficult it can be to change that input into usable
data. Parsing—the process of analyzing text in-
put and translating it into something the computer
can understand—is a complex task. A complete
tutorial on the subject of parsing could probably

Part I ■ DOS Topics

230

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

A Difficult Task?
Look at this formula:

AVG(SQRT(7*ABS(AVG(-15,-20,-32.5))),SQRT(999))

What if your job was to write a program that could solve expressions like this?
How would you go about it? Your first inclination might be to scan the
characters comprising the formula, starting at the left and working your way
to the right. However, because formulas like the preceding can contain any
number of nested functions or operations, the process of keeping track of
parentheses, not to mention the results of the operations within parentheses,
would be clumsier than a blind date.

One solution to working with nested functions is to use a data structure like a
stack as a temporary holding place, storing values to be used after operations
with higher precedence have been solved. But there’s a more elegant solution.
Think about the structure of the example formula. It has formulas within
formulas within formulas. Looks a lot like the old bunny-in-barrels problem,
doesn’t it? And as you did when finding that little bunny (see Chapter 6), you
can use recursion to work your way to the deepest level of the formula, then
solve the formula a step at a time as you work your way back out of the
recursion.

Before you can solve a formula, though, you have to define exactly what a
formula is.

Formulas as a Grammar
Your formulas can contain many types of functions and operations. This

means you must develop a grammar for your formulas so the user knows
how your program expects a formula to be constructed. For example, if you
were writing a spreadsheet program, your program, as well as the user, must
know not only how basic mathematical operations are entered from the
keyboard, but also what built-in functions are available. Trying to write a parser
without this information is like trying to make a cake without a recipe.

To define the syntax for formulas, you must think of formulas as language
constructions. Just as a sentence is the expression of a concept in the English
language, so a formula is the expression of a concept in a mathematical

Chapter 7 ■ Using Recursion to Parse Formulas

231

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

language. It’s up to you, the author of the parser, to decide the rules of this
mathematical language. To do this, you must identify the elements of the
language and its hierarchical structure. After you’ve identified these important
characteristics, you can define your language’s formal rules, or grammar.

Think about what makes up a formula like the one you saw previously. First,
it has a few built-in functions. AVG returns the average of a list of numbers, SQRT
returns the square root of a number, and ABS returns the absolute value of a
number. Besides these functions, the example formula has multiplication (*),
one of the basic mathematical operations that also include addition, subtrac-
tion, and division (+, –, and /, respectively). The formula also contains
parentheses for specifying operation precedence and enclosing function
arguments. And, finally, the formula contains values, which are expressed
using a combination of digits, decimal points, and minus signs.

All these items are the building blocks of a formula, but knowing them is not
enough to define a grammar. You must know the proper way in which these
elements can be combined to form valid expressions. In short, you must know
the language’s syntax. This syntax can be expressed in top-down form by
using something called the Backus-Naur Form.

Defining Grammar Syntax
Every language is defined by its grammar. In the English language, you use

letters to form words, words to form sentences, and sentences to form
paragraphs. In addition, to organize these constructions, you use syntactical
rules that define the way the elements of the language can be combined. Your
mathematical language can also be defined as a grammar. You can identify the
elements of your language and organize these elements into a hierarchy.
Finally, you can develop rules for combining these language elements into
formulas.

Assume that a formula is the mathematical equivalent of a paragraph in
English. But instead of calling a formula a paragraph, you call it an expression.

An expression, then, is the top of your grammatical hierarchy. Unfortunately,
your formulas are not written in anything much like English—they don’t have
sentences or words. You must think of your grammar in mathematical terms
before you can fully represent it in hierarchical form.

So, if an English paragraph contains sentences and punctuation, what does a
mathematical expression contain? The answer is one or more terms combined

Part I ■ DOS Topics

232

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

with the + and – additive operators. An example of an expression, then,
might be

term + term - term

Guess what? You’ve just developed the first rule for your grammar. But before
you define the complete syntax, you have to develop many similar rules. This
means you must have a notation for specifying the rules of your grammar.
There are many forms of grammar notation; this book uses the Backus-Naur
Form.

Backus-Naur Form
With Backus-Naur Form, or BNF, a grammar is broken into a set of rules.
These rules—each of which defines one element of the grammar—are devel-
oped using a top-down approach. The first rule describes the entire grammar
in general, the same way the main() function in a well-structured C program
describes a program in general. Each subsequent rule is more specific, with
the last rules defining grammar elements that can no longer be described
generally.

For example, a grammar describing a simplified version of the Pascal program-
ming language would begin with a rule that defines a program. This rule might
state that a program is the keyword PROGRAM, followed by a program name, the
keyword VAR, a variable-declaration list, the keyword BEGIN, a statement list,
and the keyword END. Program elements such as the variable-declaration list
and the statement list would be defined in their own rules. Likewise, general
elements of the variable-declaration list and the statement list would be
defined in their own rules. And so on until the entire grammar has been
described.

To describe rules clearly and concisely, BNF grammars use special symbols,
some of which (the ones you need for your formulas) are listed in Table 7.1.
Basically, BNF rules consist of terminal symbols and nonterminal symbols
organized using the symbols listed in the table.

• Terminal symbols are elements of the grammar that cannot be
described in general terms. In other words, they have been described
as specifically as possible. In the simplified Pascal grammar, the
keywords PROGRAM, VAR, BEGIN, and END are all terminal symbols.

• Nonterminal symbols are the elements of the grammar that have
to be further defined in other rules. In the Pascal example, the

Chapter 7 ■ Using Recursion to Parse Formulas

233

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

nonterminal symbols are the program name, the variable-declaration
list, and the statement list. A nonterminal symbol is always enclosed
in angle brackets, so it can’t be confused with terminal symbols or
other symbols used to define the grammar.

Table 7.1. BNF symbols used in a formula grammar.

Symbol Definition

<> Identifies a nonterminal symbol (e.g. <strg>)

::= Is defined as

{} Identifies an item that is repeated 0 or more times
(e.g. { item })

| Or

So, the first rule in the simplified Pascal grammar might look like this:

<program> ::= PROGRAM <prgname> VAR <decl-list>

 BEGIN <stmt-list> END.

Here, the nonterminal symbol <program> is on the left of the ::= symbol, so it
is the symbol being defined by the rule. (The ::= is read as “is defined as”.) The
nonterminal symbols on the right side of the ::= symbol (in this case,
<prgname>, <decl-list>, and <stmt-list>) are defined elsewhere in the
grammar.

Defining an Expression
Now, getting back to your formula, the first grammar rule looks like this in
Backus-Naur notation:

<expr> ::= <term> { <addop> <term> }

In this rule, the nonterminal symbol <expr> (expression) is being defined by
the rule. Now, although you have a definition for <expr>, you don’t have
definitions for <term> and <addop> (additive operator). These nonterminal
symbols must be defined in other rules, as you will do soon.

In a BNF rule, the items enclosed in the braces may be repeated zero or more
times, but always as a complete set. In other words, based on the preceding

Part I ■ DOS Topics

234

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

rule, if you place an <addop> after the first <term> in an <expr>, you must follow
that <addop> with another <term>. So, an <expr> is defined as a <term>, which
may be followed by one or more sets of <addop> and <term>.

You’ve taken a step down your grammar’s hierarchy, but you’re a long way
from finished. You now must define both <term> and <addop>. Defining <addop>
is easy:

<addop> ::= + | -

This rule is read as “an additive operator is defined to be a plus or minus
symbol.” The plus and minus symbols in this rule are terminal symbols,
because they require no further definition. The single vertical line separating
the terminal symbols (|) is the symbol for or. A nonterminal symbol can have
more than one definition, as long as you use the | symbol to separate each
definition.

Defining a Term
Now you can tackle <term>. If an <expr> is any number of <term>s combined
with additive operators, it’s logical to say that a <term> can be any number of
<factor>s combined with multiplicative operators. When you define the basic
mathematical operations in this order, you retain the standard operator
precedence, in which multiplication and division must be performed before
addition and subtraction.

Note: In your recursive routines, you first find your way to the formula’s
deepest level, then work your way back up, solving expressions as you go.
That is, the lowest items in the hierarchy are solved before higher ones.

This is why placing the multiplicative operators lower in precedence than the additive
operators assures that operator precedence is maintained.

Here’s your rule for a <term>:

<term> ::= <factor> { <multop> <factor> }

This rule is similar to the one for an <expr>, except here <factor> and <multop>
are used instead of <term> and <addop>. The <multop> (multiplicative opera-
tor) nonterminal is easily defined as

<multop> ::= * | /

Chapter 7 ■ Using Recursion to Parse Formulas

235

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

Defining a Factor
Now look at a <factor>. It must be something that yields a value you can
multiply, divide, add, or subtract. So, the most obvious way to define a <factor>
is to say that it is a constant value, such as 0, 10, or 54.6746. If you were to stop
there, however, you could parse only formulas that contain constant values
and mathematical operations.

Luckily, a <factor> can be anything that results in a value, including functions.
In addition, remember that your formulas can have nested functions. More-
over, you can use parentheses not only to enclose a function’s arguments, but
also to change the standard operator precedence. Somehow, you have to add
a recursive element to your definition of a <factor>, one that includes
parentheses and, more important, brings you back to the top of the hierarchy.
So, assume that a <factor> can also be an <expr> enclosed in parentheses. Your
rule for a factor then is

<factor> ::= value | <func> | (<expr>)

As you can see, this is where the recursion is necessary. A formula that starts
with <expr> (as all formulas must) can lead you back to <expr> any number of
times. That is, an <expr> is a <term>, a <term> is a <factor>, a <factor> is an
<expr>, an <expr> is a <term>, a <term> is a <factor>, a <factor> is an <expr>,
and so on, until <factor> finally evolves into something other than an <expr>.
This rule enables you to describe expressions that are nested any number of
levels. This process is summarized in Figure 7.1, using the expression (3) as
an example.

Figure 7.1. Recursion in a formula.

Part I ■ DOS Topics

236

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

Now you can define a <func> (function). Because you have two types of
functions—one that takes only a single argument and one that takes a list of
arguments—a <func> is defined as

<func> ::= <func1> | <func2>

in which the following is true:

<func1> ::= <fname1> (<expr>)

<func2> ::= <fname2> (<expr> { , <expr> })

Notice that, even if a <factor> evolves into a <func>, you still can end up back
at <expr> because any argument for a function is an <expr>!

Finally, to finish your grammar definition:

<fname1> ::= ABS | SQRT

<fname2> ::= AVG

You really don’t need a separate rule for <fname2>, because you could have
used the AVG terminal in the rule for <func2>. But by defining the single func-
tion name this way, you are remaining consistent with the definition for
<func1>, and you can add a new function easily, by adding the | symbol and
another function name.

The Finished Grammar
Here’s the entire grammar in Backus-Naur Form. Look it over to be sure you
understand how it works. Write a few formulas of your own, and trace them
through the rules to see how they are derived.

<expr> ::= <term> { <addop> <term> }

<term> ::= <factor> { <multop> <factor> }

<factor> ::= value | <func> | (<expr>)

<func> ::= <func1> | <func2>

<func1> ::= <fname1> (<expr>)

<func2> ::= <fname2> (<expr> { , <expr> })

<fname1> ::= ABS | SQRT

<fname2> ::= AVG

<addop> ::= + | -

<multop> ::= * | /

Chapter 7 ■ Using Recursion to Parse Formulas

237

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

A Recursive-Descent Parser
Developing the grammar for formulas, or for any type of language (espe-

cially programming languages), is a lot of work. The good news is that
after the grammar is written, it can be used as an outline for the actual parser
program.

To write the code for your parser, you need only follow the map you’ve
developed. Each nonterminal in the grammar has a corresponding function. In
other words, you start evaluating a formula with a function called Expr(). This
function calls a function called Term(), Term() calls a function called Factor(),
and so on down the hierarchy, until you have a function for every nonterminal
in the grammar. (See Figure 7.2.) This type of program is called a recursive-

descent parser because it uses recursion to descend to the deepest level of
the grammar it’s parsing.

Figure 7.2. Changing grammar rules to functions.

Listing 7.1 is the recursive-descent parser for the grammar you just developed.
If you start at the top of the listing and work your way down, you see all the
functions that represent the nonterminals in your grammar. Following these
functions are several utility functions that help the nonterminal functions do
their jobs. Notice that the comments at the beginning of each nonterminal
function include the rule for the appropriate nonterminal.

Listing 7.1. PARSER.CPP—a parser for mathematical formulas.

#include <math.h>

#include <string.h>

#include “strng.h”

#define TRUE 1

#define FALSE 0

continues

Part I ■ DOS Topics

238

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

void Expr(String &s, float &v);

void Term(String &s, float &v);

void Factor(String &s, float &v);

void Func(String &s, float &v);

int Func1(String &s, float &v);

int Func2(String &s, float &v);

int FName1(String &s, String &name);

int FName2(String &s, String &name);

int AddOp(String &s, String &op);

int MultOp(String &s, String &op);

int FindValue(String &s, float &v);

int GetFuncName(String &s, String &name);

float CalcValues(String &name, float *values, int indx);

int NumChar(String s, int indx);

float Do_SQRT(float v);

float Do_ABS(float v);

float Do_AVG (float *values, int indx);

int Expect(String &s, char *c);

float Evaluate(String formula);

//

// Expr()

//

// <expr> ::= <term> { <addop> <term> }

//

void Expr(String &s, float &v)

{

 Term(s, v);

 float v1 = v;

 String op(“”);

 while (AddOp(s, op))

 {

 Term(s, v);

 if (op == “+”)

 v += v1;

 else

 v = v1 - v;

 v1 = v;

 }

}

Listing 7.1. Continued

Chapter 7 ■ Using Recursion to Parse Formulas

239

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

//

// Term()

//

// <term> ::= <factor> { <multop> <factor> }

//

void Term(String &s, float &v)

{

 Factor(s, v);

 float v1 = v;

 String op(“”);

 while (MultOp(s, op))

 {

 Factor(s, v);

 if (op == “*”)

 v *= v1;

 else v = v1 / v;

 v1 = v;

 }

}

//

// Factor()

//

// <factor> ::= value | <func> | (<expr>)

//

void Factor(String &s, float &v)

{

 if (s.GetSubStr(1,1) == “(“)

 {

 Expect(s, “(“);

 Expr(s, v);

 Expect(s, “)”);

 }

 else

 if (!FindValue(s, v))

 Func(s, v);

}

//

// Func()

//

// Func ::= <func1> | <func2>

//

continues

Part I ■ DOS Topics

240

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

void Func(String &s, float &v)

{

 if (!Func1(s, v))

 Func2(s, v);

}

//

// Func1()

//

// <func1> ::= <fname1> (<expr>)

//

int Func1(String &s, float &v)

{

 int result = FALSE;

 String name(“”);

 if (FName1(s, name))

 {

 result = TRUE;

 Expect(s, “(“);

 Expr(s, v);

 Expect(s, “)”);

 if (name == “ABS”)

 v = Do_ABS(v);

 else

 v = Do_SQRT(v);

 }

 return result;

}

//

// Func2()

//

// <func2> ::= <fname2> (<expr> { , <expr> })

//

int Func2(String &s, float &v)

{

 float values[10];

Listing 7.1. Continued

Chapter 7 ■ Using Recursion to Parse Formulas

241

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

 int result = FALSE;

 String name(“”);

 if (FName2(s, name))

 {

 result = TRUE;

 Expect(s, “(“);

 s.Insert(“,”,1);

 int indx = 0;

 while (s.GetSubStr(1,1) == “,”)

 {

 Expect(s, “,”);

 Expr(s, v);

 values[indx++] = v;

 }

 Expect(s, “)”);

 v = Do_AVG(values, indx-1);

 }

 return result;

}

//

// FName1()

//

// <fname1> ::= ABS | SQRT

//

int FName1(String &s, String &name)

{

 GetFuncName(s, name);

 if ((name != “ABS”) && (name != “SQRT”))

 {

 s.Insert(name, 1);

 return FALSE;

 }

 else

 return TRUE;

}

//

// FName2()

//

// <fname2> ::= AVG

//

continues

Part I ■ DOS Topics

242

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

int FName2(String &s, String &name)

{

 GetFuncName(s, name);

 if (name != “AVG”)

 {

 s.Insert(name, 1);

 return FALSE;

 }

 else

 return TRUE;

}

//

// AddOp()

//

// <addop> ::= + | -

//

int AddOp(String &s, String &op)

{

 op = s.GetSubStr(1,1);

 if ((op == “+”) || (op == “-”))

 {

 s = s.GetSubStr(2, s.Length()-1);

 return TRUE;

 }

 else

 return FALSE;

}

//

// MultOp()

//

// <multop> ::= * | /

//

int MultOp(String &s, String &op)

{

 op = s.GetSubStr(1,1);

 if ((op == “*”) || (op == “/”))

 {

 s = s.GetSubStr(2, s.Length()-1);

 return TRUE;

 }

Listing 7.1. Continued

Chapter 7 ■ Using Recursion to Parse Formulas

243

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

 else

 return FALSE;

}

//

// Expect()

//

int Expect(String &s, char *c)

{

 String chr(c);

 if (s.GetSubStr(1,1) != chr)

 return FALSE;

 else

 {

 s = s.GetSubStr(2, s.Length()-1);

 return TRUE;

 }

}

//

// FindValue()

//

int FindValue (String &s, float &v)

{

 int result;

 result = TRUE;

 int indx = 1;

 if (s.GetSubStr(1,1) == “-”)

 indx = 2;

 while ((indx <= s.Length()) && (NumChar(s, indx)))

 ++indx;

 if (indx == 1)

 result = FALSE;

 else

 {

 String ts = s.GetSubStr(1, indx-1);

 char c[81];

 ts.GetStr(c, sizeof(c));

 v = atof(c);

 s = s.GetSubStr(indx, s.Length()-indx+1);

 }

continues

Part I ■ DOS Topics

244

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

 return result;

}

//

// GetFuncName()

//

int GetFuncName(String &s, String &name)

{

 int found_open_paren = FALSE;

 int indx = 1;

 while ((indx <= s.Length()) && (!found_open_paren))

 {

 if (s.GetSubStr(indx, 1) != “(“)

 ++indx;

 else found_open_paren = TRUE;

 }

 int result;

 if (indx > s.Length()) result = FALSE;

 else

 {

 name = s.GetSubStr(1, indx-1);

 s = s.GetSubStr(indx, s.Length()-indx+1);

 result = TRUE;

 }

 return result;

}

//

// NumChar()

//

int NumChar(String s, int indx)

{

 if (((s.GetSubStr(indx, 1) >= “0”) &&

 (s.GetSubStr(indx, 1) <= “9”)) ||

 (s.GetSubStr(indx, 1) == “.”))

 return TRUE;

 else

 return FALSE;

}

Listing 7.1. Continued

Chapter 7 ■ Using Recursion to Parse Formulas

245

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

//

// Do_ABS()

//

float Do_ABS(float v)

{

 return fabs(v);

}

//

// Do_AVG()

//

float Do_AVG (float *values, int indx)

{

 float sum = 0;

 for (int x=0; x<=indx; ++x)

 sum += values[x];

 return sum / (indx+1);

}

//

// Do_SQRT()

//

float Do_SQRT(float v)

{

 if (v > 0)

 return sqrt(v);

 else

 return 0;

}

//

// Evaluate

//

float Evaluate(String formula)

{

 String s(formula);

 float v;

 v = 0;

 Expr(s, v);

 return v;

}

continues

Part I ■ DOS Topics

246

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

//

// Main program

//

void main(void)

{

 char s[81];

 String formula(“”);

 while (formula != “QUIT”)

 {

 cout << “Type Formula: “;

 cin >> s;

 formula = s;

 float answer = Evaluate(formula);

 cout << “Answer: “ << answer << ‘\n’;

 }

}

Run the program and try it out. Enter a formula, and the parser returns the
answer. The parser isn’t smart enough to handle lowercase characters, so
enter all function names in uppercase. To exit the program, type QUIT when
prompted for a formula. Table 7.2 shows the steps involved in parsing a
formula. Refer to this table as you learn how the program works.

Caution: Be extra careful not to make a mistake when entering your
formula in Listing 7.1. To keep the workings of the parser as clear as
possible, there is no error-checking in this program. If, for example, you

enter a formula that results in a division-by-zero error, you crash the program. Ditto
for something like requesting the square root of a negative number.

Listing 7.1. Continued

Chapter 7 ■ Using Recursion to Parse Formulas

247

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

continues

Table 7.2. Parsing a formula.

Contents of s

Before Function Function Terminals Value

Call Trace Extracted of v

4*(SQRT(10+15)) Enter Expr()1 0

4*(SQRT(10+15)) Enter Term()1 0

4*(SQRT(10+15)) Enter Factor()1 4 4

*(SQRT(10+15)) Exit Factor()1 4

*(SQRT(10+15)) Return to Term()1 * 4

(SQRT(10+15)) Enter Factor()2 (4

SQRT(10+15)) Enter Expr()2 4

SQRT(10+15)) Enter Term()2 4

SQRT(10+15)) Enter Factor()3 4

SQRT(10+15)) Enter Func()1 4

SQRT(10+15)) Enter Func1()1 4

SQRT(10+15)) Enter FName1()1 SQRT 4

(10+15)) Exit FName1()1 4

(10+15)) Return to Func1()1 (4

10+15)) Exit Func1()1 4

10+15)) Enter Expr()3 4

10+15)) Enter Term()3 4

10+15)) Enter Factor()4 10 10

+15)) Exit Factor()4 10

+15)) Exit Term()3 10

+15)) Return to Expr()3 + 10

15)) Enter Term()4 10

15)) Enter Factor()5 15 15

Part I ■ DOS Topics

248

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

)) Exit Factor()5 15

)) Exit Term()4 15

)) Return Expr()3 25

)) Exit Expr()3 25

)) Return to Func1()1) 5

) Exit Func1()1 5

) Exit Factor()3 5

) Return to Term()2 5

) Exit Term()2 5

) Exit Expr()2 5

) Return to Factor()2) 5

Exit Factor()2 5

Return to Term()1 5

Exit Term()1 20

Exit Expr()1 20

Note: The numbers following the functions identify the specific function call. For example,

Factor()1 is the first call to Factor(), and Factor()2 is the second call to Factor(). This

numbering scheme helps track recursive calls.

Now, you can see what makes the program tick. (Somewhere along the line,
you might want to trace through Table 7.2, which shows a formula going
through the parsing process.) Look at the main program first:

void main(void)

{

 char s[81];

 String formula(“”);

Table 7.2. Parsing a Formula (continued).

Contents of s

Before Function Function Terminals Value

Call Trace Extracted of v

Chapter 7 ■ Using Recursion to Parse Formulas

249

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

 while (formula != “QUIT”)

 {

 cout << “Type Formula: “;

 cin >> s;

 formula = s;

 float answer = Evaluate(formula);

 cout << “Answer: “ << answer << ‘\n’;

 }

}

As you can see from Listing 7.1, there’s a lot of string handling in this program,
so the String class you developed in Chapter 2 is included in the program.
Using this class greatly simplifies the parsing process. In the main program, the
String formula holds the formula to be parsed. However, because the String
class doesn’t include functions for accepting a string from an input stream, an
81-element character array is used to get the formula from the user. This
character array is then converted to a String and passed to the function
Evaluate():

float Evaluate(String formula)

{

 String s(formula);

 float v;

 v = 0;

 Expr(s, v);

 return v;

}

Evaluate() initializes the data needed by the parser, then calls Expr(), which
begins the parsing process. See the String s and the floating point value v? At
any point in the parsing process, s contains the portion of formula that has yet
to be parsed. Each time a part of s is parsed, that part is removed from s. At
the end of the parsing process, s contains an empty String. The value v is used
to pass the value of the most recently evaluated expression between functions.

Now you can see how your grammar is converted into C++ functions, starting
at the top of the hierarchy. As you examine these functions, you should
compare them to the grammar you developed earlier.

void Expr(String &s, float &v)

{

 Term(s, v);

 float v1 = v;

 String op(“”);

Part I ■ DOS Topics

250

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

 while (AddOp(s, op))

 {

 Term(s, v);

 if (op == “+”)

 v += v1;

 else

 v = v1 - v;

 v1 = v;

 }

}

According to the grammar rules, an <expr> must start with a <term>, so the first
thing Expr() does is call Term(). After returning from Term(), there is a value
in v, which is the result of parsing the first term in the expression. For example,
if the first term were 10, v would be 10. If the first term were AVG(10,30,5), v
would be 15.

Because it might use the result of the first term in an addition or subtraction
operation, Expr() saves it in v1. (The variable v changes the next time you call
Term().) Expr() then creates a String to hold the additive operator, if there is
one. Because, according to the grammar, the program must allow any number
of <term> and <addop> pairs, Expr() sets up a while loop that iterates until
there are no additive operators in the expression. The function AddOp(), which
is the loop’s conditional expression, returns true if the next character in the
formula is a plus or minus sign. It also returns the character in the op String:

int AddOp(String &s, String &op)

{

 op = s.GetSubStr(1,1);

 if ((op == “+”) || (op == “-”))

 {

 s = s.GetSubStr(2, s.Length()-1);

 return TRUE;

 }

 else

 return FALSE;

}

If AddOp() returns true, Expr() must call Term() to get a value for the next term
in the expression. When Term() returns, the operator in op is checked. If it’s a
plus sign, v1 is added to the new v. Otherwise, v is subtracted from v1. In any
case, the result is stored in v, after which the program returns to the top of the
loop and checks AddOp() again. As long as AddOp() returns true, Expr()
continues to add or subtract new terms.

Chapter 7 ■ Using Recursion to Parse Formulas

251

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

Now, look at Term():

void Term(String &s, float &v)

{

 Factor(s, v);

 float v1 = v;

 String op(“”);

 while (MultOp(s, op))

 {

 Factor(s, v);

 if (op == “*”)

 v *= v1;

 else v = v1 / v;

 v1 = v;

 }

}

The Term() function is similar to Expr(), just as the rule for <term> is similar to
the rule for <expr>. In fact, Term() works exactly like Expr(), except it
evaluates factors and performs multiplication and division. To check math-
ematical operations, Term() calls MultOp() instead of AddOp().

Factor(), on the other hand, is very different from Expr() and Term():

void Factor(String &s, float &v)

{

 if (s.GetSubStr(1,1) == “(“)

 {

 Expect(s, “(“);

 Expr(s, v);

 Expect(s, “)”);

 }

 else

 if (!FindValue(s, v))

 Func(s, v);

}

Factor() must allow for three types of factors: constant values, functions, or
expressions enclosed in parentheses. First, Factor() checks whether the first
character of the String s is an open parenthesis. If it is, Expect() is called,
which checks for a specific character and, if found, removes the character from
the String. (Expect() also returns true or false, depending on whether it found
the expected character. The return value isn’t used here, but it is discussed in
the “Returning Syntax Errors” section.):

Part I ■ DOS Topics

252

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

int Expect(String &s, char *c)

{

 String chr(c);

 if (s.GetSubStr(1,1) != chr)

 return FALSE;

 else

 {

 s = s.GetSubStr(2, s.Length()-1);

 return TRUE;

 }

}

Then, Factor() calls Expr() recursively to evaluate the expression enclosed
in the parentheses. After Expr() returns, Factor() checks for the closing
parenthesis.

If the first character in s is not a parenthesis, Factor() must check for a value
or a function. Because a value is a terminal, there is no function called Value().
However, there is a utility function called FindValue() that returns true if the
next characters in s form a constant. Also, the value of the constant is returned
in v.

int FindValue (String &s, float &v)

{

 int result;

 result = TRUE;

 int indx = 1;

 if (s.GetSubStr(1,1) == “-”)

 indx = 2;

 while ((indx <= s.Length()) && (NumChar(s, indx)))

 ++indx;

 if (indx == 1)

 result = FALSE;

 else

 {

 String ts = s.GetSubStr(1, indx-1);

 char c[81];

 ts.GetStr(c, sizeof(c));

 v = atof(c);

 s = s.GetSubStr(indx, s.Length()-indx+1);

 }

 return result;

}

Chapter 7 ■ Using Recursion to Parse Formulas

253

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

Here, s is scanned one character at a time, until a character that is not part of
a value is found (that is, it is not a decimal point or a digit from 0 to 9). The
NumChar() function does this checking, returning true if it finds an appropriate
character or false if it does not.

If no value is found, FindValue() returns false. If it does find a value, it not only
returns true, but also converts the ASCII characters to a floating point value
and removes the converted characters from s.

Getting back to Factor()—if a value isn’t found, the only possible factor left is
a function. Factor() checks for this with the Func() nonterminal function:

void Func(String &s, float &v)

{

 if (!Func1(s, v))

 Func2(s, v);

}

Just as with the rule for <func>, Func() first checks for a function of type
<func1>. If it doesn’t find one, it looks for a function of type <func2>. Both
functions return true or false, as appropriate. Notice, however, that the
program doesn’t use the return value from Func2(). This is because this
stripped-down parser doesn’t check for errors and instead assumes that if it
doesn’t have a <func1>, it must have a <func2>. In a full program, you’d want
to generate an error if both Func1() and Func2() returned false.

Now, move on to Func1():

int Func1(String &s, float &v)

{

 int result = FALSE;

 String name(“”);

 if (FName1(s, name))

 {

 result = TRUE;

 Expect(s, “(“);

 Expr(s, v);

 Expect(s, “)”);

 if (name == “ABS”)

 v = Do_ABS(v);

 else

 v = Do_SQRT(v);

 }

 return result;

}

Part I ■ DOS Topics

254

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

Here, the FName1() nonterminal function is first called, which checks for the
function names ABS and SQRT. If it finds either, it returns true. FName1() also
returns the function name in the name reference variable. If a function name is
found, Func1() then calls Expect() to get the function’s opening parenthesis.
It then makes a recursive call to Expr() to evaluate the function’s argument,
after which another call to Expect() gets the closing parenthesis. Finally, the
function’s value is calculated by calling Do_ABS() or Do_SQRT(), as appropriate.

Func2() works similarly, except it must handle an unknown number of
arguments:

int Func2(String &s, float &v)

{

 float values[10];

 int result = FALSE;

 String name(“”);

 if (FName2(s, name))

 {

 result = TRUE;

 Expect(s, “(“);

 s.Insert(“,”,1);

 int indx = 0;

 while (s.GetSubStr(1,1) == “,”)

 {

 Expect(s, “,”);

 Expr(s, v);

 values[indx++] = v;

 }

 Expect(s, “)”);

 v = Do_AVG(values, indx-1);

 }

 return result;

}

As Func2() is written, you can have a maximum of 10 arguments for a <func2>
function. If you like, you can increase this maximum by changing the declara-
tion of the values[] array.

Func2() checks for function names just as Func1() did, except it calls the
FName2() nonterminal function instead of FName1(). If it finds a function name
of type <fname2>, it checks for and removes the open parenthesis, then inserts
a comma into the beginning of s. The comma is added only so the function can

Chapter 7 ■ Using Recursion to Parse Formulas

255

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

get into the while loop, which iterates as long as it finds a comma in the first
character of s.

Note: In the parser presented in Listing 7.1, <fname2> can only be AVG,
but you can add other functions of this type if you like. How about MIN and
MAX, which return the minimum and maximum value, respectively, in a list

of values?

In the loop, a call to Expect() gets the comma, after which Expr() is called
recursively to evaluate the current argument. The value returned in v is saved
in the values array. Finally, after processing all the arguments, the program
breaks from the loop, checks for the closing parenthesis, and calls Do_AVG() to
average the values stored in the values[] array.

The FName1() nonterminal function looks for function names of the type
<fname1>:

int FName1(String &s, String &name)

{

 GetFuncName(s, name);

 if ((name != “ABS”) && (name != “SQRT”))

 {

 s.Insert(name, 1);

 return FALSE;

 }

 else

 return TRUE;

}

First, the GetFuncName() utility function is called, which scans s, looking for
and removing the function name. The name is returned in the name reference
variable. This variable is checked against the function names ABS and SQRT. If
it doesn’t match, s is restored to its original state by reinserting name into the
beginning of String, after which the function returns false. If an appropriate
function name is found, FName1() returns true, with the function name stored
in name.

The FName2() function is similar. The main difference is that this function
looks for the name AVG, rather than ABS or SQRT:

int FName2(String &s, String &name)

{

Part I ■ DOS Topics

256

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

 GetFuncName(s, name);

 if (name != “AVG”)

 {

 s.Insert(name, 1);

 return FALSE;

 }

 else

 return TRUE;

}

The remaining functions in the program are fairly self-explanatory, so there’s
no need to explore them in any detail. However, before closing up shop for this
chapter, you have to consider an important parsing topic: syntax errors.

Returning Syntax Errors
The program in Listing 7.1 does no error checking. It is assumed that the

formula the parser receives follows the rules of the grammar. More
important, there is no checking for illegal mathematical operations, which
could crash the program if they sneak through. The error checking was left out
because the extra code would have made the source code much more difficult
to follow.

Before you use a parser like Listing 7.1, you must add enough error checking
to ensure that the program doesn’t crash and that the values returned from the
parser are always accurate. As the parser stands now, a return value of 0 may
be the formula’s result or may indicate an error in the formula. Obviously, this
ambiguity cannot be tolerated in a finished program.

Where should you add the error checking? The first place to look is any
function that performs mathematical operations. For example, in the Term()
function, the statement v = v1 / v won’t get far if v happens to be zero. You
should not only check for this illegal value, but also display an error message
and, probably, stop the parsing. Exiting the parser early is tricky, because
you have to back out of the recursion first. You could do this by setting an error
flag that can be checked by each function. If an error is detected, each func-
tion does nothing but return.

Another type of error arises when the user types a formula that doesn’t follow
the rules of the grammar. For example, what if every open parenthesis can’t be
matched with a closed parenthesis? One place to check for an error like

Chapter 7 ■ Using Recursion to Parse Formulas

257

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

this is in the Expect() function. If the character that Expect() is expecting
doesn’t exist, the function could return an error.

The error message you return to the user should be as helpful as possible. For
example, if your error message indicates that a parenthesis is missing, the user
knows at least what type of problem for which to look.

This is how you might rewrite the Factor() function with error checking:

void Factor(String &s, float &v)

{

 if (s.GetSubStr(1,1) == “(“)

 {

 Expect(s, “(“);

 Expr(s, v);

 if (!error)

 if (!Expect(s, “)”))

 error = MISSINGPAREN;

 }

 else

 if (!FindValue(s, v))

 if (!Func(s, v))

 error = NOSUCHFUNC;

}

In this new version of Factor(), the function first checks for an open parenthe-
sis. If it finds one, it calls Expect() to remove the parenthesis from s. Expect()’s
return value is ignored because, if the program got past the if statement, it
already knows it has the open parenthesis.

Next, Expr() is called to evaluate the expression enclosed in the parentheses.
By the time Expr() returns, an error condition may have been detected. So,
before continuing, the program checks the error flag. If there is no error, it
calls Expect() to look for the close parenthesis. If the parenthesis is missing,
error is set to a constant that indicates the type of error discovered. At the end
of the parsing process, the program can check error. If it’s not zero, an
appropriate error message should be printed rather than the value returned
from the parser.

If the first if statement doesn’t find an open parenthesis, it’s safe to assume
that the factor is a value or a function. Therefore, FindValue() is called. If
FindValue() returns true, the constant value is in v. If FindValue() returns
false, the only thing left to check for is a function. If Func() returns true, the
value returned from the function is in v. If Func() returns false, the program

Part I ■ DOS Topics

258

SAMS/Que4 Borland C++ Power Programming 172-7 Laurie(Folio, LAC) 2-17-93 LP#4 CH7

has discovered an error, because there is no other type of factor for which to
check. To flag this error, error is set to NOSUCHFUNC.

You can check for other error conditions throughout the parser by adding
similar code to the other functions. As you beef up the parser with error-
checking routines, you discover why the errors you get from your C++
compiler don’t always seem to make sense. Because C++ includes no mind-
reading functions, it’s often impossible to know exactly why something is
wrong. All you can do is make an educated guess and hope the user can find
the problem from the clues you supply.

Conclusion
Recursive-descent parsing is an excellent way to evaluate mathematical

formulas. It can also be used for many other tasks. For example, many
compilers use recursive-descent parsing to check the syntax of source code.
Before the compiler is written, the entire programming language must be
reduced to a grammar, which is then used as a model for the parser. In a way,
the parser is a mini-compiler. Isn’t that clever?

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

259

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

T

8

hese days, the word multitasking gets a lot of attention.
Products like Microsoft Windows 3.1 and IBM OS/2 2.0 boast
multitasking capability, which enables you to run more than
one program simultaneously. But you may be surprised to
learn that your computer has always been capable of
multitasking, although in a very limited way. Without this
capability, in fact, your computer would be little more than

a big paperweight. Think about what goes on inside your computer. Data
travels its data buses, clocks tick, keystrokes are gathered from the keyboard,
the screen is continually refreshed, and on and on. All this activity is appar-
ently happening simultaneously, thanks to things called interrupts.

The key word in the preceding sentence is apparently. The truth is that a
computer with only a single CPU can never do more than one thing at a time.
Because the CPU operates so quickly, however, it can divide its attention
between several tasks, switching between them so fast that it seems as though
the tasks are running simultaneously. This is the way Windows and OS/2
perform their magic. It’s also the way interrupts keep your computer running.

Writing Interrupt Handlers
and TSR Programs

Part I ■ DOS Topics

260

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

In this chapter, you learn how to use interrupts to change the way the operating
system responds to certain events. Your knowledge of interrupts will enable
you to write TSR (terminate and stay resident) programs, which sit in the
background, unaffected by any other program you may run. You put this
knowledge to the test by writing a TSR clock that displays the time in the
corner of the screen.

What’s an Interrupt?
A s mentioned, computers must do a great deal of work to keep the

operating system active and responding to input. For example, what
good would a word processor be if the computer’s operating system didn’t
have a way to gather keystrokes from the keyboard without interfering with
the word processor? Likewise, if the computer’s monitor was not continually
refreshed with new information, you couldn’t see your keystrokes. That would
be a tough way to produce a document! Thanks to interrupts, the computer’s
operating system can perform dozens of these little tasks without affecting the
currently running program.

Because a single CPU can work on only one task at a time, it must be continually
interrupted to perform all operating system tasks. Each operating system task
has its own interrupt. For example, when you press a key, a keyboard interrupt
is sent to the CPU. The CPU stops what it’s doing, grabs the keystroke, then
picks up where it left off with the task that was interrupted. These interrupts
occur constantly. A timer interrupt alone occurs about 18 times a second.
When you consider that the CPU can service hundreds of different interrupts,
it’s a wonder that your programs can run at all.

You may wonder how the CPU knows what to do when it receives an interrupt.
Each interrupt is handled by a small program called an interrupt handler.

When the CPU receives a keyboard interrupt, for example, it runs the keyboard
handler, which gets the keystroke. Although every interrupt has a handler,
some interrupt handlers do nothing. Later, you see how such an apparently
pointless handler can perform a useful task.

Each interrupt in the system owns an entry in a table of addresses, or vectors,
in low memory. When the CPU must find an interrupt handler, it uses the
interrupt number to index the interrupt vector table, using the address it finds
there to run the handler. Luckily for people who write interrupt handlers and
TSR programs, the addresses in the interrupt vector table can be changed to

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

261

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

continues

point to any place in memory. By changing a vector to point to your custom-
written interrupt handler, you can change the way the operating system
responds to a specific interrupt.

Writing an Interrupt Handler
T here are two ways to take over an interrupt, by chaining one and by

hooking one. They are defined as follows:

• By chaining to an interrupt. Chaining, which allows many interrupt
handlers to run off the same interrupt, is discussed later in this
chapter because it’s the more complicated method.

• By hooking an interrupt. Hooking an interrupt is a fairly straightfor-
ward process: You simply place the address of your custom interrupt
handler into the interrupt vector table. When the interrupt occurs,
the CPU runs your handler instead of the original one. This may
sound high-tech, but modifying the interrupt vector table is a snap
because Borland C++ provides many handy functions for dealing with
interrupts.

Listing 8.1 contains an interrupt handler that takes over the control-break
interrupt, which occurs when you try to exit a program by pressing
Ctrl-C. When you run the program, it installs the interrupt handler and
continually prints the message Waiting... on-screen. When you press
Ctrl-C, the interrupt handler takes over and prints the message
 *** Ctrl-C caught! ***.

Listing 8.1. CTRLC.CPP—Control-C interrupt program.

#include <dos.h>

#include <iostream.h>

#include <string.h>

#define CTRLC 0x23

extern unsigned _heaplen = 1024;

extern unsigned _stklen = 512;

void interrupt (*old_ctrlc)(...);

Part I ■ DOS Topics

262

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Listing 8.1. Continued

void interrupt ctrlc(...)

{

 char s[] = {“*** Ctrl-C caught! ***\r\n”};

 for (int i=0; i<strlen(s); ++i)

 bdos(0x02, s[i], 0);

}

void main(void)

{

 old_ctrlc = getvect(CTRLC);

 setvect(CTRLC, ctrlc);

 for (int x=0; x<300; ++x)

 {

 cout << “Waiting...\n”;

 for (long x=0; x<60000; ++x);

 }

 setvect(CTRLC, old_ctrlc);

}

Ordinarily, when there is a control-break interrupt, its handler terminates the
running program and exits to the DOS prompt. However, this interrupt is often
disabled in commercial programs so users don’t accidentally exit the applica-
tion. Remember the mention of interrupt handlers that do nothing? Handlers
that hook the control-break interrupt are often in this category, being com-
posed of nothing more than the IRET (return from interrupt) instruction. With
this type of handler, the Ctrl-C keystroke does nothing. The previous handler,
however, prints a message to the screen when Ctrl-C is pressed to show that
the handler is working.

How does the program work? First, near the top is the line #define CTRLC 0x23.
The value 0x23 is the control-break interrupt number. Every interrupt is
identified by a unique interrupt number that you use when you change the
interrupt vector table. The CPU uses this number to index the interrupt vector
table and find the right address. After the interrupt number definition are
these lines:

extern unsigned _heaplen = 1024;

extern unsigned _stklen = 512;

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

263

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

The first line sets the maximum size of the heap to 1024 bytes (normally this
is around 64K), and the second sets the size of the stack to 512 bytes (which
is normally around 4K). Because interrupt handlers and TSR programs stay
in memory while other programs are running, they should be as small as poss-
ible. The less memory they consume, the less likely they are to prevent larger
programs from loading.

The next line, void interrupt (*old_ctrlc)(...), declares old_ctrlc as a
pointer to an interrupt function. The address of the old control-break handler
is stored in this pointer. Now examine main():

void main(void)

{

 old_ctrlc = getvect(CTRLC);

 setvect(CTRLC, ctrlc);

 for (int x=0; x<300; ++x)

 {

 cout << “Waiting...\n”;

 for (long x=0; x<60000; ++x);

 }

 setvect(CTRLC, old_ctrlc);

}

First, Borland’s getvect() function gets the address of the old control-break
interrupt handler. Notice that getvect() needs the interrupt number, which
is used by the CPU to index the interrupt vector table. After saving the address
of the old interrupt handler, Borland’s setvect() function installs the new
handler. The function’s parameters are the interrupt number and the address
of your interrupt handler. Believe it or not, after these two simple calls, the new
handler is installed and ready to go.

In the for loop, the message Waiting... is printed and another for loop acts
as a delay. After printing the message 300 times (to give you plenty of time to
experiment with the Ctrl-C key), setvect() is called to reinstall the old
handler, using the address saved in old_ctrlc. (Actually, the old handler is
supposedly reinstalled automatically when the program terminates, but why
take a chance?)

You can see that the message *** Ctrl-C captured! *** is nowhere in the main
program, nor is there any call in the program to any function containing the
message. The message is, instead, in the interrupt handler, which is called by
the CPU whenever it detects a Ctrl-C keystroke:

Part I ■ DOS Topics

264

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

void interrupt ctrlc(...)

{

 char s[] = {“*** Ctrl-C caught! ***\r\n”};

 for (int i=0; i<strlen(s); ++i)

 bdos(0x02, s[i], 0);

}

First, notice the interrupt keyword used in this function’s declaration. When
programmers wrote interrupt handlers in the old days, they had to write
assembly-language code that saved the contents of all the registers before
their handler ran. They had to do this to restore the machine to its original state
after the handler exited. To avoid all this assembly-language programming,
Borland created a special type of function for interrupt handlers. When the
Borland compiler sees the interrupt keyword in a function’s definition, it
automatically generates the code needed to save and restore the registers.

Caution: An interrupt doesn’t care what a program is doing when it takes
over. The interrupted program’s state is represented only by the contents
of the registers. Changing those registers without restoring them to their

original state leads to disastrous results when the interrupted program tries to take up
where it left off.

Now look at the body of the function. In the first line, the function declares and
initializes a string for the message. Then, in the for loop, the 0x02 DOS function
prints the message to the screen, one character at a time. When you run the
program and press Ctrl-C, notice that the interrupt handler’s message inter-
rupts whatever the main program is printing to the screen. Such is the nature
of an interrupt: It takes over immediately and returns control to the main
program only after it has finished doing its thing.

In a real program, you wouldn’t print a message when the user pressed
Ctrl-C. Instead, you would probably ignore the keystroke. You might do this
by creating a control-break interrupt handler that does nothing:

void interrupt ctrlc(...)

{

}

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

265

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Writing a TSR Program
A TSR program is a lot like an interrupt handler because it relies on

interrupts to interact with the user and the system. When a user loads a
TSR, it first runs like any other program, executing the code in main(), which
usually contains the TSR’s initialization. After main() ends, however, the
program doesn’t terminate in the same way a conventional program does.
Instead, it stays in memory, waiting to be reactivated by the user or by a system
interrupt. When the TSR receives its appropriate signal, it “wakes up,” does
what it is designed to do, then becomes dormant until it’s needed again.

Some TSR programs, like the on-screen clock in this chapter, require no user
input. The user runs the program and then forgets about it. This type of TSR,
like any TSR, gets its wake-up call through an interrupt. (For example, the
clock TSR presented later in this chapter is activated by the timer interrupt.)
Other TSR programs, like Borland’s famous SideKick, are activated when the
user types a specific hot key. This type of TSR works by chaining to the
keyboard interrupt, which occurs when you press a key. This interrupt actually
takes place twice for every keystroke, once when the key is pressed and once
when the key is released. A TSR can look for its own hot key by examining the
keys that are pressed.

Listing 8.2 contains an interrupt handler that chains to the keyboard interrupt.
After you run this program, you hear a beep when you press a key and also
when you release it. This magical, yet annoying, special effect continues until
you reboot your computer.

Listing 8.2. TSR1.CPP—key beep program, version 1.

#include <dos.h>

#include <iostream.h>

#include <string.h>

#define KEYBRD 0x09

extern unsigned _heaplen = 1024;

extern unsigned _stklen = 512;

void interrupt (*old_keybrd)(...);

void interrupt keybrd(...)

continues

Part I ■ DOS Topics

266

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Listing 8.2. Continued

{

 old_keybrd();

 sound(500);

 delay(30);

 nosound();

}

void main(void)

{

 old_keybrd = getvect(KEYBRD);

 setvect(KEYBRD, keybrd);

 keep(0, (_SS + (_SP/16) - _psp));

}

Look at main():

void main(void)

{

 old_keybrd = getvect(KEYBRD);

 setvect(KEYBRD, keybrd);

 keep(0, (_SS + (_SP/16) - _psp));

}

Here, the program first gets the old keyboard interrupt vector and saves it in
old_keybrd. Then it changes the interrupt vector table to point to the new
handler. You saw this in Listing 8.1, so you should know what’s going on here.
One big difference between Listings 8.1 and 8.2 is that, in Listing 8.1, main()
prints messages, but in Listing 8.2 main() only sets up the new interrupt. The
second difference is that strange last line in main(), the one that calls the
keep() function.

The keep() function is the magician that allows TSR programs to be written
with Borland C. It’s the command that informs DOS to keep your program in
memory when main() has terminated, which is what is meant by “terminate
and stay resident.” When you call keep(), the first argument should be 0, which
is the status code returned by DOS. The second argument is the size of the
program. This is calculated by the formula (_SS + (_SP/16) - _psp).

This formula finds the program’s highest address by determining the address
of the end of the stack (using the SS and SP pseudo-variables, which contain the
contents of the stack-segment and stack-pointer registers). It then subtracts

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

267

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

the address of the program segment prefix (stored in the psp global variable)
from the address of the top of the stack. Because the address of the PSP is also
the starting address of the program, this subtraction yields the size of the
program. If all this has your head spinning, don’t worry—simply use the
formula as it’s shown.

Now look at the interrupt handler:

void interrupt keybrd(...)

{

 old_keybrd();

 sound(500);

 delay(30);

 nosound();

}

First, the old keyboard handler is called. (Remember: old_keybrd is defined as
a pointer to an interrupt function, so you can call it like any other function.)
This calling of the old interrupt is what is meant by chaining to the interrupt.
You have to do this because the keyboard interrupt must be allowed to perform
its usual function, unlike the control-break interrupt, which performs no
essential services for the operating system. If the regular keyboard interrupt
doesn’t run, your computer stops responding to the keyboard, a predicament
to which the only solution is a reboot.

Note: When writing an interrupt handler for an interrupt that performs
essential services, you must chain to the interrupt. That is, you must allow
the old interrupt handler to run either before or after your own handler. You

can hook an interrupt (take it over completely) only when the old interrupt handler can
be ignored.

After the old keyboard handler runs, it returns control to the new interrupt
handler, which sounds a short beep and exits. In this case, it doesn’t matter
whether you call the original interrupt handler before or after the beep. But
with critical interrupts like the keyboard handler, it’s usually a good idea to let
them run first.

Chaining to an interrupt is important for interrupts that perform critical
operating system functions. But it’s also a good idea for most other types of
interrupts. Why? Suppose a user loads a TSR that chains to the timer interrupt.
Now suppose the user loads another TSR that also uses the timer interrupt, but

Part I ■ DOS Topics

268

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

it only hooks the interrupt, rather than chains to it (which is dumb, but ignore
that for now). The second TSR disables the first TSR, because the first TSR’s
entry in the interrupt vector table was wiped out by the second TSR. By
chaining to an interrupt, you ensure that critical operating system functions
work properly and that other custom interrupt handlers and TSR programs
continue to run properly.

In the “key beeper,” you can see that the chaining is working because the
keyboard continues to work along with the beeps. You can test this further by
running yet another TSR that chains to the keyboard interrupt. Listing 8.3 is
a version of the key beeper TSR that produces a higher beep. Run the first
beeper and then run the second. Every time you press a key, you hear both
types of beeps, which proves that all three interrupts—beep one, beep two,
and the original keyboard handler—are running off the single keyboard
interrupt.

Listing 8.3. TSR2.CPP—key beep program, version 2.

#include <dos.h>

#include <iostream.h>

#include <string.h>

#define KEYBRD 0x09

extern unsigned _heaplen = 1024;

extern unsigned _stklen = 512;

void interrupt (*old_keybrd)(...);

void interrupt keybrd(...)

{

 old_keybrd();

 sound(1000);

 delay(10);

 nosound();

}

void main(void)

{

 old_keybrd = getvect(KEYBRD);

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

269

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 setvect(KEYBRD, keybrd);

 keep(0, (_SS + (_SP/16) - _psp));

}

An On-Screen Clock
N ow that you know the basics of writing interrupt handlers and TSR

programs, how about writing something useful? Listing 8.4 combines
everything you’ve learned to produce an on-screen clock. When you run the
clock TSR, the clock display appears in the upper-right corner of your screen.
It’s a tenacious little critter; as long as the computer stays in text mode, the
clock should stay on your screen.

Listing 8.4. CLOCK1.CPP—on-screen clock TSR program.

///

// ON-SCREEN CLOCK TSR, VERSION 1
// by Clayton Walnum

// Written with Borland C++ 3.1

//

#include <dos.h>

#define CLOCK 0x1c

#define ATTR 0x7900

#define FALSE 0

#define TRUE 1

// Reduce size of TSR.

extern unsigned _heaplen = 1024;

extern unsigned _stklen = 512;

// Define pointer to hold old vector.

void interrupt (*oldclock)(...);

// Define a pointer to screen memory.

unsigned int (far *screen);

continues

Part I ■ DOS Topics

270

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Listing 8.4. Continued

// Define some global data.

struct time t; // Struct for gettime().

int hour, min, sec; // Counters for time.

int count, // Interrupt counter.

 tick, // Another interrupt counter.

 colon; // Flag for colon visibility.

char clockstr[] = {“00:00”}; // Clock display string.

// Function prototypes.

void FormatClockStr();

void HandleColon();

void HandleTime();

void interrupt ClockIntr(...);

//

// FormatClockStr()

//

// This function uses the hour and minute counters to

// construct the clock’s display.

//

void FormatClockStr()

{

 // Format hour portion of string.

 if (hour < 10)

 {

 clockstr[0] = ‘0’;

 clockstr[1] = hour + ‘0’;

 }

 else

 {

 clockstr[0] = hour/10 + ‘0’;

 clockstr[1] = hour%10 + ‘0’;

 }

 // Format minute portion of string.

 if (min < 10)

 {

 clockstr[3] = ‘0’;

 clockstr[4] = min + ‘0’;

 }

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

271

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 else

 {

 clockstr[3] = min/10 + ‘0’;

 clockstr[4] = min%10 + ‘0’;

 }

}

//

// HandleColon()

//

// This function is responsible for the blinking colon

// in the clock display. Every 9 ticks (1/2 second), the

// colon is added to or deleted from the string, which

// causes the colon to blink in 1-second intervals.

//

void HandleColon()

{

 // Increment counter.

 ++tick;

 // If a half second has passed, set counter back

 // to zero, and then add or remove the colon.

 if (tick == 9)

 {

 tick = 0;

 // If colon is in the string, remove it.

 if (colon)

 {

 clockstr[2] = ‘ ‘;

 colon = FALSE;

 }

 // If colon is not in the string, add it.

 else

 {

 clockstr[2] = ‘:’;

 colon = TRUE;

 }

 }

}

continues

Part I ■ DOS Topics

272

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Listing 8.4. Continued

//

// HandleTime()

//

// This function calculates when a minute has passed,

// at which time it updates the time counters to

// reflect the current time.

//

void HandleTime()

{

 // Increment timer.

 ++count;

 // If count == 1092, a minute has passed.

 // (18.2 ticks per second times 60.)

 if (count == 1092)

 {

 // Reset counter.

 count = 0;

 // Increment minutes.

 ++min;

 // If min == 60, reset min and increment hour.

 if (min == 60)

 {

 min = 0;

 ++hour;

 // If hour == 24, recycle back to 0 to

 // simulate 24-hour clock.

 if (hour == 24)

 hour = 0;

 }

 // Create new display string from new times.

 FormatClockStr();

 }

}

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

273

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

//

// ClockIntr()

//

// This is the interrupt handler. It displays the

// current clock string, checks the counters, and

// finally chains to the old interrupt.

//

void interrupt ClockIntr(...)

{

 // Get the screen address.

 screen = (unsigned int far *) MK_FP(0xb800,0);

 // Get address of clock position on first screen line.

 screen += 75;

 // Write clock display string directly to screen memory.

 for (int x= 0; x<5; ++x)

 *screen++ = clockstr[x] + ATTR;

 // Update counters.

 HandleColon();

 HandleTime();

 // Chain to old handler.

 _chain_intr(oldclock);

}

//

// Main program.

//

void main(void)

{

 // Get old vector and set new vector.

 oldclock = getvect(CLOCK);

 setvect(CLOCK, ClockIntr);

 // Initialize time counters and colon flag.

 gettime(&t);

 min = t.ti_min;

 hour = t.ti_hour;

 count = t.ti_sec * 18;

 tick = 0;

 colon = FALSE;

continues

Part I ■ DOS Topics

274

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 // Initialize display string.

 FormatClockStr();

 // Go TSR.

 keep(0, (_SS + (_SP/16) - _psp));

}

Although the clock TSR is a bit more sophisticated than the keyboard beeper,
you should be delighted to know that it’s still a fairly simple program. The
following discusses the program function by function, starting with main():

void main(void)

{

 // Get old vector and set new vector.

 oldclock = getvect(CLOCK);

 setvect(CLOCK, ClockIntr);

 // Initialize time counters and colon flag.

 gettime(&t);
 min = t.ti_min;

 hour = t.ti_hour;

 count = t.ti_sec * 18;

 tick = 0;

 colon = FALSE;

 // Initialize display string.

 FormatClockStr();

 // Go TSR.

 keep(0, (_SS + (_SP/16) - _psp));

}

In a TSR, most program initialization takes place in main(), which executes
once when the program is initially loaded. Here, the program first gets and
saves the old timer vector, then installs the new handler. Next, a call to
gettime() gets the current time, which is saved in the min, hour, and count time
counters. Because count counts timer ticks (each timer interrupt represents
one tick and occurs 18.2 times a second), count is initialized by multiplying
t.ti_sec by 18. After initializing the remaining variables and the starting clock
string, the program calls keep() to exit the program and to leave it resident in
memory.

Listing 8.4. Continued

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

275

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

After main() finishes its tasks, it’s finished forever (or at least until the next
time the program is loaded). However, the TSR, which is represented by the
interrupt handler and the functions it calls, stands ready to spring into action
whenever it detects a timer interrupt, which is 18.2 times a second:

void interrupt ClockIntr(...)

{

 // Get the screen address.

 screen = (unsigned int far *) MK_FP(0xb800,0);

 // Get address of clock position on first screen line.

 screen += 75;

 // Write clock display string directly to screen memory.

 for (int x= 0; x<5; ++x)

 *screen++ = clockstr[x] + ATTR;

 // Update counters.

 HandleColon();

 HandleTime();

 // Chain to old handler.
 _chain_intr(oldclock);

}

The handler first calculates the address of screen memory. It then adds 75 to
the resulting address, yielding an address near the end of the first screen line
(80 characters to a line). After calculating the screen address, the handler
writes the clock display string directly into screen memory.

Why print directly to screen memory? First, if the handler prints to the screen
using standard stream I/O (cout) or a string-display function like cputs(), it
changes the location of the text cursor, which messes up the user’s screen.
(You could get around this problem by saving the location of the cursor,
printing your string, and then restoring the cursor’s location.)

There’s another, more important reason why the handler must write directly
to screen memory. When the handler wants to print your clock display, MS-
DOS may be busy with another task, so it cannot call MS-DOS safely.

Caution: Your TSR is running in the background; a foreground application,
or even another TSR, may be running as well. MS-DOS can handle only one
task at a time; to ask it to do more is courting disaster. Imagine, for

example, trying to save two files to disk simultaneously. Ouch!

Part I ■ DOS Topics

276

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Unless you know what you’re doing, calling MS-DOS from a TSR can yield
unpredictable behavior, anything from locking up the keyboard to destroying
data on a hard disk. The next section shows some ways to determine whether
MS-DOS is busy. For now, however, keep things simple. (Note that the
program can call the MS-DOS gettime() function in main() because, when
main() is running, the program is not yet a TSR program. When main() is
running, the clock program is like any other program. There can be no conflict
with MS-DOS, because no other program can call MS-DOS until main() is
finished.)

After the handler displays the clock string, it calls the HandleColon() and
HandleTime() functions, which implement the blinking colon in the display and
update the time counters, respectively. Finally, the handler chains to the old
timer interrupt by calling _chain_intr() with the address of the old handler.
This function turns control over to the old handler without returning to the
handler that called it. For this reason, call _chain_intr() only as the last line
of a handler. If you must call the original handler before executing your own,
use the method shown in Listing 8.3.

The HandleColon() function implements the blinking colon that marks the
passing seconds:

void HandleColon()

{

 // Increment counter.

 ++tick;

 // If a half second has passed, set counter back

 // to zero, and then add or remove the colon.

 if (tick == 9)

 {

 tick = 0;

 // If colon is in the string, remove it.

 if (colon)

 {

 clockstr[2] = ‘ ‘;

 colon = FALSE;

 }

 // If colon is not in the string, add it.

 else

 {

 clockstr[2] = ‘:’;

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

277

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 colon = TRUE;

 }

 }

}

This function first increments the tick counter. Because the timer interrupt
occurs 18.2 times a second, a half second has passed when this counter reaches
nine. In that case, the counter is set back to 0, and the colon character is added
to or removed from the string. Which is done depends on the value of the colon
flag. By adding or removing the colon every half second, the colon appears to
blink.

The next function, HandleTime(), is responsible for keeping the clock up to
date:

void HandleTime()

{

 // Increment timer.

 ++count;

 // If count == 1092, a minute has passed.

 // (18.2 ticks per second times 60.)

 if (count == 1092)

 {

 // Reset counter.

 count = 0;

 // Increment minutes.

 ++min;

 // If min == 60, reset min and increment hour.

 if (min == 60)

 {

 min = 0;

 ++hour;

 // If hour == 24, recycle back to 0 to

 // simulate 24-hour clock.

 if (hour == 24)

 hour = 0;

 }

 // Create new display string from new times.

 FormatClockStr();

 }

}

Part I ■ DOS Topics

278

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

This function works similarly to HandleColon(), except its counter can count
up to 1092, which is the number of timer interrupts per minute (60 * 18.2).
When the counter reaches 1092, it’s time to update the clock string with a new
minute, and maybe even a new hour. After resetting the counter, min is
incremented. If min is 60, another hour has passed, so min is reset to 0 and hour
is incremented. If hour is 24, it’s reset to 0, which simulates a 24-hour clock.
Finally, FormatClockStr() builds the clock’s display string:

void FormatClockStr()

{

 // Format hour portion of string.

 if (hour < 10)

 {

 clockstr[0] = ‘0’;

 clockstr[1] = hour + ‘0’;

 }

 else

 {

 clockstr[0] = hour/10 + ‘0’;

 clockstr[1] = hour%10 + ‘0’;

 }

 // Format minute portion of string.

 if (min < 10)

 {

 clockstr[3] = ‘0’;

 clockstr[4] = min + ‘0’;

 }

 else

 {

 clockstr[3] = min/10 + ‘0’;

 clockstr[4] = min%10 + ‘0’;

 }

}

There’s not much to talk about here. This function simply uses the values in min
and hour to construct the display string.

The MS-DOS Busy Flag
When the designers of MS-DOS knew that folks like you and me would be

writing interrupt handlers and TSR programs, they provided a way for

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

279

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

these programs to find out whether MS-DOS is busy. After all, if MS-DOS isn’t
servicing some other program, there’s no reason why you can’t call it in your
interrupt handlers and TSR programs. To provide this extra service, the
designers of MS-DOS added the InDos flag.

The InDos flag is nothing more than a location in memory that marks whether
MS-DOS is currently servicing a function request. When MS-DOS is busy, this
flag is set to 1. When MS-DOS is idle, the InDos flag is cleared to 0. So, to use
MS-DOS in your TSR programs, you need only check the value of InDos. If it’s
0, you can go ahead and do what you like. Right?

Well, 99.9 percent of the time you would be right. Unfortunately, MS-DOS’
critical error handler (that’s the handler that displays the infamous Abort,
Retry, Fail? prompt) complicates matters. The details of this complication
are beyond the scope of this book; simply put, to safely call MS-DOS, you must
check both the InDos flag and another flag called CritErr (Critical Error). If
both these flags are clear, you can use MS-DOS without worry.

Listing 8.5 is a new version of the clock TSR that relies on the InDos and CritErr
flags to determine whether it can call MS-DOS. In this version, the call to
gettime() is moved from main() to the interrupt handler. Doing this means the
handler can get the current time at every timer interrupt, without keeping
track of minute and hour counters. Because the handler no longer needs the
time counters, the entire HandleTime() function has been deleted.

Listing 8.5. CLOCK2.CPP—on-screen clock TSR program, version 2.

///

// ON-SCREEN CLOCK TSR, VERSION 2

// by Clayton Walnum

// Written with Borland C++ 3.1

//

#include <dos.h>

#define CLOCK 0x1c

#define ATTR 0x7900

#define FALSE 0

#define TRUE 1

// Reduce size of TSR.

extern unsigned _heaplen = 1024;

extern unsigned _stklen = 512;

continues

Part I ■ DOS Topics

280

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Listing 8.5. Continued

// Define pointer to hold old vector.

void interrupt (*oldclock)(...);

// Define a pointer to screen memory.

unsigned int (far *screen);

// Define some global data.

struct time t; // Struct for gettime().

int tick, // Interrupt counter.

 colon; // Flag for colon visibility.

char clockstr[] = {“00:00”}; // Clock display string.

// Declare pointers to InDOS and CritErr flags.

char far *indos;

char far *criterr;

// Function prototypes.

void FormatClockStr();

void HandleColon();

void interrupt ClockIntr(...);

//

// FormatClockStr()

//

// This function uses the hour and minute counters to

// construct the clock’s display.

//

void FormatClockStr()

{

 // Format hour portion of string.

 if (t.ti_hour < 10)

 {

 clockstr[0] = ‘0’;

 clockstr[1] = t.ti_hour + ‘0’;

 }

 else

 {

 clockstr[0] = t.ti_hour / 10 + ‘0’;

 clockstr[1] = t.ti_hour % 10 + ‘0’;

 }

 // Format minute portion of string.

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

281

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 if (t.ti_min < 10)

 {

 clockstr[3] = ‘0’;

 clockstr[4] = t.ti_min + ‘0’;

 }

 else

 {

 clockstr[3] = t.ti_min / 10 + ‘0’;

 clockstr[4] = t.ti_min % 10 + ‘0’;

 }

}

//

// HandleColon()

//

// This function is responsible for the blinking colon

// in the clock display. Every 9 ticks (1/2 second), the

// colon is added to or deleted from the string, which

// causes the colon to blink in 1-second intervals.

//

void HandleColon()

{

 // Increment counter.

 ++tick;

 // If a half second has passed, set counter back

 // to zero, and then add or remove the colon.

 if (tick == 9)

 {

 tick = 0;

 // If colon is in the string, remove it.

 if (colon)

 {

 clockstr[2] = ‘ ‘;

 colon = FALSE;

 }

 // If colon is not in the string, add it.

 else

 {

 clockstr[2] = ‘:’;

 colon = TRUE;

continues

Part I ■ DOS Topics

282

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

Listing 8.5. Continued

 }

 }

}

//

// ClockIntr()

//

// This is the interrupt handler. It displays the

// current clock string, checks the counters, and

// finally chains to the old interrupt.

//

void interrupt ClockIntr(...)

{

 // Handle the blinking colon.

 HandleColon();

 // Is it safe to call MS-DOS?

 if (!*indos && !*criterr)

 {

 // Use MS-DOS to get current time.

 gettime(&t);

 // Build clock display string.

 FormatClockStr();

 // Get the screen address.

 screen = (unsigned int far *) MK_FP(0xb800,0);

 // Get address of clock position on first screen line.

 screen += 75;

 // Write clock display string directly to screen memory.

 for (int x= 0; x<5; ++x)

 *screen++ = clockstr[x] + ATTR;

 }

 // Chain to old handler.

 _chain_intr(oldclock);

}

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

283

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

//

// Main program.

//

void main(void)

{

 // Get address of inDOS flag.

 _AH = 0x34;

 geninterrupt(0x21);

 // Initialize InDOS and CritErr pointers.

 unsigned int seg = _ES;

 unsigned int off = _BX;

 indos = (char far *) MK_FP(seg, off);

 criterr = indos - 1;

 // Get old vector and set new vector.

 oldclock = getvect(CLOCK);

 setvect(CLOCK, ClockIntr);

 // Initialize time counters and colon flag.

 tick = 0;

 colon = FALSE;

 // Go TSR.

 keep(0, (_SS + (_SP/16) - _psp));

}

Now you can see what else has changed in this version, starting with main():

void main(void)

{

 // Get address of inDOS flag.

 _AH = 0x34;

 geninterrupt(0x21);

 // Initialize InDOS and CritErr pointers.

 unsigned int seg = _ES;

 unsigned int off = _BX;

 indos = (char far *) MK_FP(seg, off);

 criterr = indos - 1;

Part I ■ DOS Topics

284

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 // Get old vector and set new vector.

 oldclock = getvect(CLOCK);

 setvect(CLOCK, ClockIntr);

 // Initialize time counters and colon flag.

 tick = 0;

 colon = FALSE;

 // Go TSR.

 keep(0, (_SS + (_SP/16) - _psp));

}

First, the program gets the address of the InDos flag by calling the MS-DOS
function 34 (Int 21). This function call returns the segment portion of the
address in ES and the offset portion of the address in BX. To create a far
pointer from these values, use Borland’s MK_FP() macro. The CritErr flag
is a little easier to calculate. In MS-DOS Version 3.0 or greater, it’s located at
InDos-1.

After getting these all-important pointers, the program chains into the timer
interrupt, initializes a few variables, and exits, leaving the program resident in
memory. Because more of the work is done in the interrupt handler, main() is
much smaller, and does little more than get the TSR going.

As with the first version of the clock program, after main() finishes, the
interrupt handler is installed and starts responding to timer interrupts:

void interrupt ClockIntr(...)

{

 // Handle the blinking colon.

 HandleColon();

 // Is it safe to call MS-DOS?

 if (!*indos && !*criterr)

 {

 // Use MS-DOS to get current time.

 gettime(&t);

 // Build clock display string.

 FormatClockStr();

 // Get the screen address.

 screen = (unsigned int far *) MK_FP(0xb800,0);

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

285

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

 // Get address of clock position on first screen line.

 screen += 75;

 // Write clock display string directly to screen memory.

 for (int x= 0; x<5; ++x)

 *screen++ = clockstr[x] + ATTR;

 }

 // Chain to old handler.

 _chain_intr(oldclock);

}

Here, HandleColon() updates the interrupt count and modifies the clock
display string each half second (nine ticks). This is done before anything else
to ensure that the counter remains accurate. The colon in the display string
does not blink at the proper interval if the counter is not kept up to date.

After taking care of the colon, the handler checks the indos and criterr flags
to determine whether it’s safe to call MS-DOS. If MS-DOS is busy, the bulk of
the handler is skipped, and control is given to the old handler. (This is why the
HandleColon() call wasn’t placed here. When MS-DOS is busy, the interrupt
counter would not be updated properly.) If it’s safe to request MS-DOS
services, the handler calls gettime() to get the current time and uses the
values it returns to format the clock display string. Finally, the clock’s display
string is written to the screen. After the code inside the if statement
concludes, the program chains to the old handler.

Note: Whether or not MS-DOS is busy, the old timer handler in Listing 8.5
is always called. If the program didn’t do this, results would be unpredict-
able and other TSR programs chained to the interrupt might not run

properly.

The other functions in version 2 of the clock program (Listing 8.5) are similar
or identical to version 1 (Listing 8.4). The only difference is that the
FormatClockStr() function no longer uses the values of the timer counters to
construct the display string; it uses the time data in the t structure, which
contains the values returned from gettime().

To see that the indos and criterr flags are really doing their job, try this
experiment: After resetting your machine (to be sure that all versions of the
clock TSR are erased from memory), run CLOCK1 (Listing 8.4). Now,

Part I ■ DOS Topics

286

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

watching the clock display, copy a file to a diskette. Although MS-DOS is busy
copying the file, the clock continues to function. Now, after resetting your
machine again, load CLOCK2 (Listing 8.5) and repeat the experiment. This
time when you copy a file, the clock stops working until MS-DOS finishes its
task. This proves that your TSR now knows when to leave MS-DOS alone.

One final note about the InDos flag. When you’re at the DOS prompt, your
computer calls an MS-DOS function to poll the keyboard for input, so the InDos
flag is continually set and cleared as your computer looks for keystrokes. You
can see this in action by modifying the interrupt handler in Listing 8.5 so the
HandleColon() function call comes after the if statement. When you run the
clock, the colon blinks about half as fast because the interrupt counter isn’t
properly updated when the InDos flag is set.

This can be a problem for a TSR that relies on the InDos flag to get its work
accomplished. Luckily, there’s a solution. When your computer is polling for
keystrokes, it continually generates interrupt 0x28, which is the idle loop
interrupt. By chaining to this interrupt, you can determine when MS-DOS is
polling for keystrokes. Moreover, this interrupt is issued only when it’s safe to
call MS-DOS, regardless of the InDos flag’s state. When you detect interrupt
0x28, you can safely call MS-DOS functions from your TSR.

Conclusion
In this chapter, you explored the basics of writing interrupt handlers and

TSR programs. However, this chapter didn’t cover advanced topics, such as
how to know when your TSR is already loaded, how to unload a TSR from
memory, how to avoid TSR stack overflows, or how to communicate with your
or other TSR programs. These and other advanced topics are best left to highly
experienced programmers with a good knowledge of assembly-language
programming.

However, such advanced topics cannot be overlooked by any programmer who
plans to distribute her or his TSR programs. Because this chapter was meant
as only an introduction to TSR programs for intermediate-level programmers,
it does not confront many of the critical topics that a competent TSR
programmer must know. Writing TSR programs is a complex subject that
requires much study to master. Please don’t assume that this humble introduc-
tion arms you with the knowledge you need to write commercial-quality TSR
programs. It does not.

Chapter 8 ■ Writing Interrupt Handlers and TSR Programs

287

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

If you want to write TSR programs for general distribution, here are a few
additional resources:

• A TSR standard has been developed by a group known as the
TesSeRact Development Team. The TSR specifications included in
this standard dictate a consistent way for TSR programs to communi-
cate through interrupt 0x2f. For a copy of this standard, write to:

TesSeRact Development Team
1657 The Fairways, Suite 101
Jenkintown, PA 19046

• You may find additional information about interrupts and TSR pro-
grams in advanced programming books. Two you might want to check
out are Using Borland C++, Second Edition (published by Que
Corporation) and Advanced MS-DOS Programming by Ray Duncan
(published by Microsoft Press).

• You can obtain the source code for several working TSR programs
from Borland’s BBS at (408) 439-9096. One example program,
TSR_C.ZIP, includes code for checking whether a TSR is already
running and for unloading a TSR from memory.

Part I ■ DOS Topics

288

sams/Q4 borland c++ power prog #172-7 Laurie (Folio, LAC) 2-17-93 ch.8 lp#4

II

Windows Topics

SAMS/Q6 Borland C++ Power Programming #172-7 Part 2 Brook 2-11-93 LP#1

Chapter 9 ■ Creating Status Bars and Toolbars

291

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

L

9
Creating Status Bars

and Toolbars

earning the basics of Windows programming is not
particularly difficult, especially when you use a powerful
class library like ObjectWindows. With ObjectWindows,
it takes only a few lines of code to bring a window on-
screen and only a few more lines to add menus, dialog
boxes, and other Windows objects.

After you get past the basics, however, the Windows
learning curve is steep. Simply finding the right function in the immense API
is time-consuming and frustrating. In addition, there is seemingly no limit to
the ways a particular task can be accomplished. In this chapter, you learn that,
although there are many ways to solve a programming problem in Windows,
the best method depends, as always, on your particular application.

One question new Windows programmers often ask is “How do I program
toolbars and status bars?” The answer to that question varies depending on

Part II ■ Windows Topics

292

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

how you want the application to run. In this chapter, you examine three
methods of adding these special windows to your applications:

1. Painting the status bar or toolbar directly into a main window.

2. Creating custom status bar and toolbar windows.

3. Creating custom status bar or toolbar windows in an MDI application.

Each of these methods is increasingly difficult to implement; but with the extra
difficulty comes extra flexibility. Moreover, although it is much easier to
implement method 1 than method 3, none of the methods requires inordinate
programming skill. The most important consideration is not how difficult any
particular method is to implement, but rather which method is most appropri-
ate for your program.

Because the basic methods used for programming both status bars and
toolbars are similar, you first learn methods for adding a status bar to an
application. You create a toolbar only in the final example for MDI applications.
The toolbar methods learned there, however, can be applied directly to
method 1 or 2.

Before jumping into the main topics, a quick overview of Windows program-
ming and Borland’s ObjectWindows library is in order.

Windows and ObjectWindows
Earlier in this book, you developed an event-driven window library for

DOS that you can use to create programs with captioned windows, dialog
boxes, and animated button controls. Microsoft Windows, although many
times more complex, is not unlike that DOS windows library. It, too, enables
you to display windows, dialog buttons, and button controls. However, Win-
dows allows many different types of windows and special features.

Although Windows is more complex than the DOS window library in Chapter
4, it is also a veritable workhorse that handles much of an application’s activity
automatically. Windows applications usually have a main window with a menu
bar, scroll bars, sizing buttons, and other controls—all of which are handled to
a great extent by Windows. For example, when you create a window with a
menu bar, your program doesn’t have to control the menu. Windows does this
for you by sending your program a message whenever the user selects an item
in the menu.

Chapter 9 ■ Creating Status Bars and Toolbars

293

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

A Windows program can recieve hundreds of different messages while it’s
running. It’s up to your application to decide whether to respond to these
messages or to ignore them. If the user clicks her mouse pointer in your
window, for example, your program gets a message (WM_LBUTTONDOWN). If
you determine that the user clicked something important, you can handle the
message, performing the function the user requested. On the other hand, you
can simply ignore the message. It’s up to you.

All this sounds terrific until you get your first look at a Windows programming
manual and see the almost 1,000 function calls included in the Application
Program Interface (API). Surely there must be an easier way to program
Windows than to plow through thousands of pages of documentation. Isn’t
there?

Yes and no. No matter what route you take, learning to program Windows,
while not especially difficult, takes time and practice. Before you program your
first application, you should be familar with the most frequently used functions
in the API, so you know the tools you have at your disposal.

Borland’s ObjectWindows library goes a long way toward simplifing the
process of writing Windows applications by hiding much of the details inside
custom window classes. Using ObjectWindows, you can create a fully opera-
tional window in a little more than a dozen lines of code. Compare this to the
over 80 lines of C code required to produce the same window without
ObjectWindows.

Learning to use ObjectWindows is no picnic, either. It has its own set of rules
and requirements, in addition to Windows. Even once you’ve learned the
basics of Windows and ObjectWindows programming, you’ll undoubtedly have
many questions about how to do some of the things you see every day in
Windows applications. This section of Borland C++ Power Programming

was designed to help answer some of those questions.

Caution: The bottom line is, if you’ve had no experience with Windows
or ObjectWindows programming, put this book down for a couple of days
and pick up the ObjectWindows for C++ User’s Guide that came with your

copy of Borland C++. Read the book and practice with the coding examples you find
there. When you get to the end of the user’s guide, you should be ready to continue
with this book.

Part II ■ Windows Topics

294

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

By reading this book, you learn some of the tricks of professional Windows
programmers. And speaking of tricks, how can you add a status bar to your
windows? Read on, and see.

Painting a Status Bar
When you create a main window for your Windows application, you must

make sure that the window is properly updated with the data it should
display. You can display any type of data in the window, in any manner you
choose. Windows simply presents a blank slate.

Although most of the data you display in a main window is textual, graphics can
also be displayed. (Text displayed in a window is actually graphics text.
Everything in Windows is drawn graphically.) The Windows Graphics Device
Interface (GDI) provides a rich set of graphics functions upon which you can
draw (yes, that’s a pun) to create the contents of a window. Using these
functions, you can draw anything from a simple text display to a complex
graphical display.

Although Windows won’t update your windows for you, it does inform you
when it is time to update them. Like everything else in Windows, this
notification comes in the form of a window message. Specifically, when your
application receives a WM_PAINT message, it knows it’s time to redraw the
window that generated the message. Luckily for Borland C++ programmers,
ObjectWindows automatically routes these messages to the window’s Paint()
function. You provide this function, which draws the contents of the window.

In the first status bar program, the WM_PAINT message is used to draw a status
bar at the bottom of the main window. Listings 9.1 through 9.4 show the files
needed for this program.

Listing 9.1. STATAPP1.CPP—version 1 of the status bar application.

// STATAPP1.CPP: Status bar application, version 1.

#include <owl.h>

#include “statwnd1.h”

// Application class declaration.

class TStatbarApp: public TApplication {

public:

Chapter 9 ■ Creating Status Bars and Toolbars

295

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 TStatbarApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {};

 virtual void InitMainWindow();

};

//

// TStatbarApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TStatbarApp::InitMainWindow()

{

 MainWindow = new TStatbarWnd(

 NULL, “Status Bar Window 1”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 TStatbarApp StatbarApp(“StatbarApp1”, hInstance,

 hPrevInstance, lpszCmdLine, nCmdShow);

 StatbarApp.Run();

 return StatbarApp.Status;

}

Listing 9.2. STATWND1.H—the main window’s header file.

// STATWND1.H: Header file for the main window.

#ifndef _STATWND1_H

#define _STATWND1_H

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TWindow {

continues

Part II ■ Windows Topics

296

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Listing 9.2. Continued

public:

 TStatbarWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void Paint(HDC DC, PAINTSTRUCT&);

};

#endif

Listing 9.3. STATWND1.CPP—the main window’s implementation.

// STATWND1.CPP: Implementation for the main window.

#include <owl.h>

#include “statwnd1.h”

//

// TStatbarWnd::TStatbarWnd()

//

// This is the main window’s constructor.

//

TStatbarWnd::TStatbarWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s size.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

//

// TStatbarWnd::Paint()

//

// This function paints the status bar into the window.

//

void TStatbarWnd::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

 // Get the size of the window’s client area.

 GetClientRect(HWindow, &r);

Chapter 9 ■ Creating Status Bars and Toolbars

297

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 // Select a new brush and pen into the device context.

 HPEN new_pen = GetStockObject(BLACK_PEN);

 HPEN prev_pen = SelectObject(DC, new_pen);

 HBRUSH new_brush = GetStockObject(LTGRAY_BRUSH);

 HBRUSH prev_brush = SelectObject(DC, new_brush);

 // Draw a filled rectangle for status bar.

 Rectangle(DC, r.left, r.bottom - 22,

 r.right, r.bottom);

 // Draw a 3-D outline in the status bar.

 MoveTo(DC, r.left+3, r.bottom-3);

 LineTo(DC, r.left+3, r.bottom-19);

 LineTo(DC, r.right-3, r.bottom-19);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+3, r.bottom-3);

 LineTo(DC, r.right-3, r.bottom-3);

 LineTo(DC, r.right-3, r.bottom-19);

 // Print info line into the status bar.

 char s[] = “Client Area Width: “;

 wsprintf(&s[20], “%d”, r.right - r.left);

 HANDLE prev_mode = SetBkMode(DC, TRANSPARENT);

 TextOut(DC, r.left+10, r.bottom-19, s, lstrlen(s));

 // Restore old pen, brush, and mode.

 SelectObject(DC, prev_pen);

 SelectObject(DC, prev_brush);

 SetBkMode(DC, prev_mode);

}

Listing 9.4. STATTOOL.DEF—definition file for the status bar application.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Part II ■ Windows Topics

298

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

When you run the program (which comprises all four listings), the window
shown in Figure 9.1 appears. This window features a status bar that shows the
width of the window’s client area (the area in which you can draw). If you
change the size of the window, the value displayed in the status bar changes
to show the new width. (Go ahead; give it a try.)

Figure 9.1. The first version of the status bar application.

Now look at the code. As with all ObjectWindows programs, you must begin
with an application class:

class TStatbarApp: public TApplication {

public:

 TStatbarApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {};

 virtual void InitMainWindow();

};

Thanks to the power of ObjectWindows, there’s not much to discuss here. The
application object is a descendent of the TApplication class. Although the
application class inherits many goodies from its ancestor, the only two function
members with which you’re directly concerned are the TStatbarApp() con-
structor and InitMainWindow(). The constructor is implemented in-line and
does nothing more than pass parameters to the TApplication() constructor.
InitMainWindow() creates the application’s main window:

Status bar

Chapter 9 ■ Creating Status Bars and Toolbars

299

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

void TStatbarApp::InitMainWindow()

{

 MainWindow = new TStatbarWnd(

 NULL, “Status Bar Window 1”);

}

Here, a new window is created on the heap and its address is assigned to the
MainWindow pointer, which is a data member of the TApplication class. This
new window is an object of the window class TStatbarWnd:

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TWindow {

public:

 TStatbarWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void Paint(HDC DC, PAINTSTRUCT&);

};

This custom window class, derived from the ObjectWindows class TWindow,
includes a constructor and a Paint() function. In the constructor, TWindow()
is called to construct the basic window. Then the window’s position and size
are set by assigning new values to each member of the Attr structure, which
is a data member of the TWindow class:

TStatbarWnd::TStatbarWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s size.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

The GetSystemMetrics() function returns various system settings, depending
on the function’s parameter. Here, the program is requesting the full screen’s
height (SM_CYSCREEN) and \width (SM_CXSCREEN). To get the height and width
for the main window, the return values from GetSystemMetrics() are divided
by 1.5. The divisor 1.5 yields a window height and width suitable for this
example.

As mentioned, Paint() is called automatically when the window receives a
WM_PAINT message:

void TStatbarWnd::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

Part II ■ Windows Topics

300

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 // Get the size of the window’s client area.

 GetClientRect(HWindow, &r);

 // Select a new brush and pen into the device context.

 HPEN new_pen = GetStockObject(BLACK_PEN);

 HPEN prev_pen = SelectObject(DC, new_pen);

 HBRUSH new_brush = GetStockObject(LTGRAY_BRUSH);

 HBRUSH prev_brush = SelectObject(DC, new_brush);

 // Draw a filled rectangle for status bar.

 Rectangle(DC, r.left, r.bottom - 22,

 r.right, r.bottom);

 // Draw a 3-D outline in the status bar.

 MoveTo(DC, r.left+3, r.bottom-3);

 LineTo(DC, r.left+3, r.bottom-19);

 LineTo(DC, r.right-3, r.bottom-19);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+3, r.bottom-3);

 LineTo(DC, r.right-3, r.bottom-3);

 LineTo(DC, r.right-3, r.bottom-19);

 // Print info line into the status bar.

 char s[] = “Client Area Width: “;

 wsprintf(&s[20], “%d”, r.right - r.left);

 HANDLE prev_mode = SetBkMode(DC, TRANSPARENT);

 TextOut(DC, r.left+10, r.bottom-19, s, lstrlen(s));

 // Restore old pen, brush, and mode.

 SelectObject(DC, prev_pen);

 SelectObject(DC, prev_brush);

 SetBkMode(DC, prev_mode);

}

This function isn’t as complicated as it looks. It does little more than draw
rectangles and lines to create a 3-D graphic. It first calls GetClientRect() to get
the size of the window’s client area. Then, it selects a new pen and brush into
the device context. Any lines drawn are black, and any fill operations are
performed with the light gray brush. After selecting the new pen and brush, the
program draws a filled rectangle at the bottom of the window, using the
coordinates stored in the structure r, which was filled by the call to

Chapter 9 ■ Creating Status Bars and Toolbars

301

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

GetClientRect(). Next, a series of MoveTo() and LineTo() function calls (along
with another pen change for white lines) draws the status bar’s 3-D outline.

After drawing the 3-D outline, standard string-handling is used to build the
status bar’s display string, and then the TextOut() GDI function is called to
display the string. Notice the call to SetBkMode(). If the background mode is not
set to TRANSPARENT, the text’s background, which is normally solid white, erases
part of the status bar. Finally, the old pen, brush, and background mode are
restored.

As you can see, displaying a status bar in this way is quick and easy. However,
it suffers from at least two limitations.

First, this method works well only with windows that don’t have scroll bars.
When you add scroll bars to this type of window, the status bar scrolls along
with the other data in the window. To see this in action, add the following lines
to the end of the TStatbarWnd() constructor (isn’t it amazing how much you
can do in ObjectWindows with only two lines of code?):

Attr.Style |= WS_VSCROLL;

Scroller = new TScroller(this, 0, 15, 0, 100);

When you run the program after adding these lines, you see the window in
Figure 9.2. Click the scroll arrows a few times, and the status bar scrolls with
the rest of the window, as shown in Figure 9.3. The solution to this scrolling
problem might be to write a function that responds to the WM_VSCROLL message
(or the WM_HSCROLL message for horizontal scrollers). This function could then
redraw the status window back at the bottom of the main window after it’s been
scrolled. This solution, however, leads to unattractive flickering and is a
workaround, at best.

Figure 9.2. The status bar application with scroll bars.

New
Scroll bar

Part II ■ Windows Topics

302

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Figure 9.3. The status bar application after scrolling.

Another problem with this method of displaying a status bar is that it places the
burden of updating the status bar on the main window. In a full application, the
main window usually has enough to do. A main window’s Paint() function can
get unwieldy if it’s overburdened. So, if your status bar is displaying data that
must be updated often, create a new class for your status bar. Then you can
manipulate it as a unique object, separate from your main window. You look at
this method in the next section.

A Status Bar Object
To implement a more sophisticated status bar—one that can take care of

itself without cluttering the code of your main window—you’re better off,
in the spirit of object-oriented programming, to create a separate status bar
window. Implementing this method isn’t much more difficult than implement-
ing the previous one. You need do little more than move the code to handle the
status bar out of the TStatbarWnd class and into its own TStatbar class.

Listings 9.5 through 9.9 are the program listings for creating the second version
of the status bar application—minus the STATTOOL.DEF file, which is
identical to Listing 9.4.

Scrolled
Status bar

Chapter 9 ■ Creating Status Bars and Toolbars

303

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Listing 9.5. STATAPP2.CPP—version 2 of the status bar application.

// STATAPP2.CPP: Status bar application, version 2.

#include <owl.h>

#include “statwnd2.h”

#include “statbar2.h”

class TStatbarApp: public TApplication {

public:

 TStatbarApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {};

 virtual void InitMainWindow();

};

//

// TStatbarApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TStatbarApp::InitMainWindow()

{

 MainWindow = new TStatbarWnd(

 NULL, “Status Bar Window 2”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 TStatbarApp StatbarApp(“StatbarApp2”, hInstance,

 hPrevInstance, lpszCmdLine,

 nCmdShow);

 StatbarApp.Run();

 return StatbarApp.Status;

}

Part II ■ Windows Topics

304

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Listing 9.6. STATWND2.H—the main window’s header file.

// STATWND2.H: Header file for the main window.

#ifndef _STATWND2_H

#define _STATWND2_H

#include “statbar2.h”

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TWindow {

 PTStatbar pstatbar;

public:

 TStatbarWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMSize(RTMessage)

 = [WM_FIRST + WM_SIZE];

};

#endif

Listing 9.7. STATWND2.CPP—the main window’s implementation.

// STATWND2.CPP: Implementation for the main window.

#include <owl.h>

#include “statbar2.h”

#include “statwnd2.h”

//

// TStatbarWnd::TStatbarWnd()

//

// This is the main window’s constructor.

//

TStatbarWnd::TStatbarWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s size.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

Chapter 9 ■ Creating Status Bars and Toolbars

305

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 // Create the status bar object.

 pstatbar = new TStatbar(this);

}

//

// TStatbarWnd::WMSize()

//

// This function ensures that the status bar window will

// correctly position itself whenever the main window

// is moved.

//

void TStatbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TWindow::WMSize(msg);

 // Send the move message to the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

}

Listing 9.8. STATBAR2.H—the status bar class’ header file.

// STATBAR2.H: Header file for the status bar class.

#ifndef _STATBAR2_H

#define _STATBAR2_H

_CLASSDEF(TStatbar)

class TStatbar: public TWindow {

public:

 TStatbar(PTWindowsObject AParent);

 virtual LPSTR GetClassName();

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual void Paint(HDC PaintDC, PAINTSTRUCT &);

 void MoveBar(int w, int h);

};

#endif

Part II ■ Windows Topics

306

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Listing 9.9. STATBAR2.CPP—the status bar class’ implementation.

// STATBAR2.CPP: Implementation for the status bar class.

#include <owl.h>

#include “statbar2.h”

//

// TStatbar::TStatbar()

//

// Status bar constructor.

//

TStatbar::TStatbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

}

//

// TStatbar::GetWindowClass()

//

// Set attributes for registering a status bar window

// class.

//

void TStatbar::GetWindowClass(WNDCLASS &AWndClass)

{

 // Set the default registration attributes.

 TWindow::GetWindowClass(AWndClass);

 // Set the window background color to light gray.

 AWndClass.hbrBackground = GetStockObject(LTGRAY_BRUSH);

}

//

// TStatbar::GetClassName()

//

// Supply the class name for the status bar window.

//

LPSTR TStatbar::GetClassName()

{

 return “TStatbar2”;

}

Chapter 9 ■ Creating Status Bars and Toolbars

307

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

//

// TStatbar::MoveBar()

//

// Respond to message from main window to move status

// bar to new location.

//

void TStatbar::MoveBar(int w, int h)

{

 MoveWindow(HWindow, 0, h-22, w, 22, TRUE);

}

//

// TStatbar::Paint()

//

// Draw 3-D outline and text into status bar.

//

void TStatbar::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

 // Get the size of the client area.

 GetClientRect(HWindow, &r);

 // Draw a 3-D border.

 HPEN new_pen = GetStockObject(BLACK_PEN);

 HPEN prev_pen = SelectObject(DC, new_pen);

 MoveTo(DC, r.left+2, r.bottom-2);

 LineTo(DC, r.left+2, r.top+2);

 LineTo(DC, r.right-2, r.top+2);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+2, r.bottom-2);

 LineTo(DC, r.right-2, r.bottom-2);

 LineTo(DC, r.right-2, r.top+2);

 // Print info string.

 char s[] = “Client Area Width: “;

 wsprintf(&s[20], “%d”, Attr.W);

 HANDLE prev_mode = SetBkMode(DC, TRANSPARENT);

 TextOut(DC, r.left+10, r.top+2, s, lstrlen(s));

 // Restore old pen and mode.

 SelectObject(DC, prev_pen);

 SetBkMode(DC, prev_mode);

}

Part II ■ Windows Topics

308

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

When you run this program, the window shown in Figure 9.4 appears. Except
for the new window name, the differences between this version and the first
one are not apparent on-screen. The changes are in the code, where you make
the status bar a separate object.

Figure 9.4. The second version of the status bar application.

The application class for this program and the first version are almost identical;
the differences are that the window caption is now Status Bar Window 2 and
the application’s name is StatbarApp2. In addition, new versions of the include
files are used.

Look at the main window class, TStatbarWnd:

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TWindow {

 PTStatbar pstatbar;

public:

 TStatbarWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMSize(RTMessage)

 = [WM_FIRST + WM_SIZE];

};

The first difference here is the pstatbar private data member, which is a
pointer to this window’s status bar object. Soon you see how this pointer fits
in with the scheme of things. Another big difference is the conspicuous lack of
a Paint() function. Because the status bar can now take care of itself, there’s
no need for the main window to paint it. (In a full application, you’d still need
the Paint() function to draw the data the main window should display.)

Chapter 9 ■ Creating Status Bars and Toolbars

309

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Another difference in the new main window class is the WMSize() message-
response member function. The WM_SIZE message is sent by Windows when the
user changes the size of a window. If the user changes the size of the main
window, the size of the status bar window must be changed, too. As you will
see, the program can take care of this by responding to the WM_SIZE message.

The new TStatbarWnd constructor is similar to the first version:

TStatbarWnd::TStatbarWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s size.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create the status bar object.

 pstatbar = new TStatbar(this);

}

Here, besides calling the TWindow() constructor and setting the position and
size of the window, a new TStatbar object is created, a pointer to which is saved
in the pstatbar data member. The program uses this pointer to call the status
bar’s member functions, as you can see in the WMSize() function:

void TStatbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TWindow::WMSize(msg);

 // Send the move message to the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

}

As mentioned, this function responds to WM_SIZE messages directed to the
main window. When the window receives this message, the WMSize() message-
response function is called. Here, the ancestor function is called to size the
main window. Then the status bar’s member function, MoveBar(), is called,
which repositions the status bar at the bottom of the main window. The
parameters to this function are the main window’s new width and height as
retrieved from the msg window message.

Part II ■ Windows Topics

310

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Most of the action in the program takes place in the status bar’s class, TStatbar:

_CLASSDEF(TStatbar)

class TStatbar: public TWindow {

public:

 TStatbar(PTWindowsObject AParent);

 virtual LPSTR GetClassName();

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual void Paint(HDC PaintDC, PAINTSTRUCT &);

 void MoveBar(int w, int h);

};

This class includes the usual constructor and member functions to register a
new window class, paint the status bar on-screen, and move the status bar to
a new location. The constructor simply sets the new window’s style:

TStatbar::TStatbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

}

The program doesn’t have to set the status bar’s position here, because that is
handled by the MoveBar() function. But before worrying about moving a status
bar, you must create its Windows class.

Note: Don’t confuse a window’s Windows class with a window’s object
class. A Windows class is the type of window that Windows displays on-
screen and includes such attributes as its color, cursor type, and menu. The

window’s object class determines how it fits into the ObjectWindows object-oriented
hierarchy.

To create a new Windows class, you must override the ObjectWindows
GetWindowClass() function:

void TStatbar::GetWindowClass(WNDCLASS &AWndClass)

{

 // Set the default registration attributes.

 TWindow::GetWindowClass(AWndClass);

 // Set the window background color to light gray.

 AWndClass.hbrBackground = GetStockObject(LTGRAY_BRUSH);

}

Chapter 9 ■ Creating Status Bars and Toolbars

311

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Here, the program first calls the ancestor function to set the window’s class
attributes to the ObjectWindows default values. Then it modifies the class by
changing the background brush to the light gray brush. The handle to this
brush is stored in the hbrBackground member of the AWndClass structure,
which is used to pass the class attributes to Windows when the new class is
registered.

Besides setting the Windows class attributes, you must also give the new class
a name. This is done by overriding the GetClassName() function:

LPSTR TStatbar::GetClassName()

{

 return “TStatbar2”;

}

ObjectWindows calls this function when it registers the new Windows class.
The program doesn’t call the GetClassName() ancestor function because it only
supplies the default class name OWLWindow. You want to use your new class
name, not the default name supplied by ObjectWindows.

When the new status bar window is created (in the TStatbarWnd constructor),
the window appears as a gray rectangle, thanks to your changing its back-
ground brush to a light gray brush. To fill the status bar with data that is
updated as required, the status bar needs a Paint() function, just like any
window:

void TStatbar::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

 // Get the size of the client area.

 GetClientRect(HWindow, &r);

 // Draw a 3-D border.

 HPEN new_pen = GetStockObject(BLACK_PEN);

 HPEN prev_pen = SelectObject(DC, new_pen);

 MoveTo(DC, r.left+2, r.bottom-2);

 LineTo(DC, r.left+2, r.top+2);

 LineTo(DC, r.right-2, r.top+2);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+2, r.bottom-2);

 LineTo(DC, r.right-2, r.bottom-2);

Part II ■ Windows Topics

312

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 LineTo(DC, r.right-2, r.top+2);

 // Print info string.

 char s[] = “Client Area Width: “;

 wsprintf(&s[20], “%d”, Attr.W);

 HANDLE prev_mode = SetBkMode(DC, TRANSPARENT);

 TextOut(DC, r.left+10, r.top+2, s, lstrlen(s));

 // Restore old pen and mode.

 SelectObject(DC, prev_pen);

 SetBkMode(DC, prev_mode);

}

This Paint() function is not unlike the one in the first version of TStatbarWnd.
It draws the window’s 3-D border and displays a string. The coordinates used
in the drawing operations are different because now they’re relative to the
coordinates for the status bar window rather than to the entire main window.

The last function in the new status bar class repositions the status bar in its
parent window:

void TStatbar::MoveBar(int w, int h)

{

 MoveWindow(HWindow, 0, h-22, w, 22, TRUE);

}

If you remember, this function is called by TStatbarWnd’s WMSize() function,
which leaps into action when the user generates a WM_SIZE message by
changing the size of the main window. The MoveBar() parameters are the new
width and height of the main window. A call to the Windows API MoveWindow()
function with these values sets the window’s position and size.

That’s all there is to creating a status bar window. Unfortunately, this type of
status bar exhibits the same type of scrolling problems that the earlier version
did: The status bar scrolls along with the rest of the main window’s contents.
One way around this problem is to place the status bar window into an
application that takes advantage of the Multiple Document Interface (MDI).
You do this in the next section.

Status Bars and MDI Applications
The Windows Multiple Document Interface (MDI) offers programmers a

powerful way to control the objects—especially the document win-
dows—that make up an application. An MDI application not only creates a sort

Chapter 9 ■ Creating Status Bars and Toolbars

313

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

of minidesktop on which the user can organize related windows and icons,
but also provides the programmer with many easy-to-implement functions
that automatically handle those windows. MDI applications require more
effort to program, but their advantages far outweigh any extra labor involved.

Why should you care about MDI applications? First, MDI applications are an
important part of learning to program in Windows. Specifically, by making your
status bar program an MDI application, you can create status bars and toolbars
that are unaffected by the main window, even if that window is scrollable.
Could this finally be the cure for your status bar blues?

A Review of MDI Applications
MDI applications in Windows are as common as skid marks on a highway. You
may not realize it, but if you use Windows, you use MDI applications. The
Windows Program Manager and File Manager, for example, are MDI applica-
tions. Other MDI applications with which you may be familiar include Microsoft
Works for Windows, Quicken for Windows, Windows System Configuration
Editor, PageMaker 4.0, and Borland’s Resource Workshop.

What exactly makes up an MDI application? Here’s a list of the most important
characteristics:

• An MDI application’s main window is called a frame window. The
frame window doesn’t provide a workspace for the display of data like
a conventional window; rather, it provides a desktop-like surface for
the organization of child (document) windows.

• When a new file is opened in an MDI application, it is represented by a
document window, which appears over the frame window’s client
area. An MDI application may have any number of document windows
open simultaneously.

• An MDI frame window always has a menu bar, which includes, but is
not limited to, a Window menu for controlling MDI document win-
dows. From this menu, document windows can usually be selected,
tiled, and cascaded, among other things.

• MDI document windows have no menus. They receive commands
from the application’s frame-window menu.

• MDI document windows cannot be moved outside the frame window.

• When an MDI document window is minimized, it’s displayed as an
icon at the bottom of the frame window.

Part II ■ Windows Topics

314

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

• When an MDI document window is maximized, it takes over the entire
frame window, and its controls merge with those of the frame
window.

• An MDI application’s frame window is covered by an invisible client

window, which acts as a parent to windows and controls that appear
over the frame window.

Most of this probably sounds familiar. If not, you should spend more time using
Windows. But what’s this invisible client window?

The Mysterious Client Window
Figure 9.5 shows the main elements of an MDI application. One element of
particular interest is the client window. The client window is an invisible
window (well, not always fully invisible, as you see later) that usually covers
the frame window’s entire client area. The client window is a child to the frame
window, and MDI child windows are children to the client window. The client
window controls most of what makes an MDI application work. You might think
of it as an invisible container that holds many of the elements—including child
windows, scroll bars, and icons—that have to work together in an MDI
application.

Figure 9.5. The main elements of an MDI application.

Although the client window seems mysterious, it is still nothing more exotic
than a window. Like any window, you can manipulate it in various ways. For

Window menu

Client window

Frame window

Child window

Chapter 9 ■ Creating Status Bars and Toolbars

315

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

example, you can resize the client window so it no longer entirely covers the
frame window’s client area. Consider that MDI child windows have the client
window (not the frame window) as their parent and cannot be moved outside
the client window. When you reduce the size of the client window, you restrict
the area in which the child windows can function. It is this characteristic of the
client-window and child-window relationship that makes a scroll-proof status
bar possible.

Reserving Space in the Frame Window
To place the status bar somewhere safe—where it can’t be ravaged by
inconsiderate controls such as scroll bars—you must reserve space for it in the
application’s frame window. Because the frame window is normally covered by
the client window, you must first change the size and position of the client
window. When you do this, you uncover sections of the frame window—
sections that make perfect homes for windows that you want excluded from
normal MDI activity. Listings 9.10 through 9.14 show how you can do this.
When you compile and run the listings, they create an MDI application that has
space reserved at the bottom of the frame window.

Listing 9.10. STATAPP3.CPP—version 3 of the status bar application.

// STATAPP3.CPP: Status bar application, version 3.

#include <owl.h>

#include <mdi.h>

#include “childwnd.h”

#include “statwnd3.h”

class TStatbarApp : public TApplication

{

public:

 TStatbarApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

continues

Part II ■ Windows Topics

316

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

//

// TStatbarApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TStatbarApp::InitMainWindow()

{

 MainWindow = new TStatbarWnd(Name);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TStatbarApp StatbarApp(“Status Bar Window 3”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 StatbarApp.Run();

 return StatbarApp.Status;

}

Listing 9.11. STATWND3.H—the frame window’s header file.

// STATWND3.H -- Header file for the frame window.

#ifndef _STATWND3_H

#define _STATWND3_H

#include <owl.h>

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TMDIFrame

{

public:

 TStatbarWnd(LPSTR ATitle);

 virtual void SetupWindow();

 virtual PTWindowsObject InitChild();

Listing 9.10. Continued

Chapter 9 ■ Creating Status Bars and Toolbars

317

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

};

#endif

Listing 9.12. STATWND3.CPP—the frame window’s implementation.

// STATWND3.CPP -- Implementation for the frame window.

#include <stdio.h>

#include <owl.h>

#include <mdi.h>

#include “statwnd3.h”

#include “childwnd.h”

//

// TStatbarWnd::TStatbarWnd()

//

// This is the frame window’s constructor.
//

TStatbarWnd::TStatbarWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “STATMENU”)

{

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

//

// TStatbarWnd::SetupWindow()

//

// This function creates the starting child window for

// the application.

//

void TStatbarWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

continues

Part II ■ Windows Topics

318

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 CreateChild();

}

//

// TStatbarWnd::InitChild()

//

// This function creates a new child window.

//

PTWindowsObject TStatbarWnd::InitChild()

{

 return (new TMyMDIChild(this));

}

//

// TStatbarWnd::WMSize()

//

// This function sets the size and position of the

// client window whenever the frame window is moved.

// This assures that space at the bottom of the frame

// window is reserved for the status bar window.

//

void TStatbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 0,

 msg.LP.Lo, msg.LP.Hi-22, TRUE);

}

Listing 9.13. CHILDWND.H—the child window’s header file.

// CHILDWND.H: Header file for the child window.

#ifndef _CHILDWND_H

Listing 9.12. Continued

Chapter 9 ■ Creating Status Bars and Toolbars

319

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

#define _CHILDWND_H

_CLASSDEF(TMyMDIChild)

class TMyMDIChild : public TWindow

{

public:

 TMyMDIChild(PTWindowsObject AParent):

 TWindow(AParent, “Child Window”) {}

};

#endif

Listing 9.14. STATTOOL.RC—resource file for an MDI status bar application.

#include <owlrc.h>

STATMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE

BEGIN

 POPUP “&Window”

 BEGIN
 MenuItem “C&reate”, CM_CREATECHILD

 MenuItem “&Cascade”, CM_CASCADECHILDREN

 MenuItem “&Tile”, CM_TILECHILDREN

 MenuItem “C&lose All”, CM_CLOSECHILDREN

 END

END

When you run the program, the screen appears as shown in Figure 9.6. If you
examine this figure closely, you see that a client window isn’t completely
invisible—except in the sense that it has no controls. Its client area is visible
because it is often a different color than the client area of the frame window,
depending on how the colors for your Windows desktop are configured. If you
have your application workspace set to a different color than your window
background, you can see the client window (which really is the application
workspace).

Part II ■ Windows Topics

320

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Figure 9.6. The client window exposed.

To see the difference between the frame and client windows more clearly,
move the child window so it’s off the screen at the left and bottom, as shown
in Figure 9.7. Moving the child window this way forces the MDI application to
display scroll bars. But because these scroll bar controls are owned by the
client window, they do not intrude on the area you reserved in the frame
window.

Client
window

Figure 9.7. The scroll bars are owned by the client window.

As a final experiment, use the Create option of the Window menu to open
several new child windows. Then tile them, using the Window menu’s Tile
option. Figure 9.8 shows the result. Because the child windows have as a
parent the client window rather than the frame window, your reserved area is
safe, even from the tiling operation.

Scroll bars
inside Client
window

Reserved area
of Frame window

Exposed Frame
window

Chapter 9 ■ Creating Status Bars and Toolbars

321

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Figure 9.8. MDI child windows are children to the client window.

Now look over the program. The application object in this program is much like
the application classes you already examined, so you don’t have to spend time
with it. The application’s main window, however, has been modified exten-
sively:

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TMDIFrame

{

public:

 TStatbarWnd(LPSTR ATitle);

 virtual void SetupWindow();

 virtual PTWindowsObject InitChild();

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

};

Notice that this window is no longer derived from TWindow. Rather, it is derived
from TMDIFrame, which is a special class for MDI frame windows. By using this
window class, the program automatically inherits all the power that goes with
being an MDI application.

The main window is now a frame window, which means it must be able to create
and manage child windows. The child windows display any data that your
application has to display. To tackle window-creation duties, the InitChild()
function is included.

You examine these functions soon, but first look at the class’ constructor:

TStatbarWnd::TStatbarWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “STATMENU”)

Reserved area

Tiled windows

Part II ■ Windows Topics

322

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

{

 // Set the size and position of the frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

At first glance, this constructor seems identical to the previous main-window
constructors. But the ancestor constructor is now TMDIFrame(), which re-
quires different parameters than the TWindow() constructor. When you de-
rived a window from TWindow(), you had to supply the ancestor constructor
with a pointer to the parent window, as well as the window’s title. Because a
TMDIWindow can never be a child window, its constructor does not need a
pointer to a parent window. A TMDIWindow must have a menu, however, so its
constructor needs a menu resource ID (in addition to a window title). This
parameter may be an integer or a menu name. In this constructor, the pro-
gram uses the menu name found in the menu’s resource, STATAPP3.RC
(Listing 9.14).

When an MDI frame window appears on-screen, it contains no child windows.
It’s up to the program to create those windows. Some applications require that
the user select a file before a child window appears. Others automatically begin
with a generic child window that is renamed when the user assigns a file to it.
The application you’re now studying is in the latter category. It creates a
starting child window by overriding the SetupWindow() function:

void TStatbarWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

 CreateChild();

}

Because SetupWindow() performs vital services for the frame window, the
program must first call the ancestor function, TMDIFrame::SetupWindow().
Afterwards, it can set up the specific frame window. In this case, the program
creates the first child window by calling CreateChild(), which is a member
function of the TMDIFrame class. This function calls InitChild(), which is
overridden by TStatbarWnd::InitChild():

PTWindowsObject TStatbarWnd::InitChild()

{

 return (new TMyMDIChild(this));

}

Chapter 9 ■ Creating Status Bars and Toolbars

323

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

This function comprises a single line of code that performs two tasks. First, it
calls new to create a new child-window object on the heap. Then, the pointer
returned from new is returned from the function. Notice that, when the user
selects the Create entry of the Window menu, CreateChild() is called auto-
matically by TMDIFrame’s member function CMCreateChild(). To get this
service, you need only provide a menu item with the CM_CREATECHILD ID.

The final function, the WMSize() message-response function, handles the
application’s client window:

void TStatbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 0,

 msg.LP.Lo, msg.LP.Hi-22, TRUE);

}

Here, the program first calls TMDIFrame’s WMSize() function to properly process
the WM_SIZE message. Then it resizes and repositions the client window with
a call to MoveWindow(). Accessing the client window’s handle, which is the first
parameter in the call to MoveWindow(), is easy thanks to the ClientWnd data
member, which contains a pointer to the frame window’s client window. (This
pointer is supplied by ObjectWindows as a data member of the TMDIFrame class.
You needn’t do anything to create or initialize it.)

As in previous versions of this program, the new window’s width and height,
supplied in the message structure, are used to calculate the new size of the
child window. Here, the child window is not a status bar, but rather the client
window. Notice that the height of the client window is set to 22 pixels shorter
than the height of the frame window. This reserves space for the status bar,
which you add in the next version of this program.

The only thing left to look at is the child window class:

_CLASSDEF(TMyMDIChild)

class TMyMDIChild : public TWindow

{

public:

 TMyMDIChild(PTWindowsObject AParent):

 TWindow(AParent, “Child Window”) {}

};

Part II ■ Windows Topics

324

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

A child-window class couldn’t get much simpler than this. It has only a single,
in-line constructor that creates a child window. Because the program doesn’t
use these windows, this is all the code you need. This simple class demon-
strates the power of the ObjectWindows library. Imagine creating a window
with a single line of code!

Now that you know how to handle the client window, the next sections show
you how to add your status bar window and a toolbar.

Adding a Status Bar
In the preceding section, you learned to reserve space in an MDI application’s
frame window for screen objects that shouldn’t be treated as MDI objects.
Armed with this technique, you can now add a status bar to the MDI
application. Listings 9.15 through 9.19 are the program listings needed to
construct this application.

Listing 9.15. STATAPP4.CPP—version 4 of the status bar application.

// STATAPP4.CPP: Status bar application, version 4.

#include <owl.h>

#include <mdi.h>

#include “childwnd.h”

#include “statwnd4.h”

class TStatbarApp : public TApplication

{

public:

 TStatbarApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

//

// TStatbarApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TStatbarApp::InitMainWindow()

Chapter 9 ■ Creating Status Bars and Toolbars

325

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

{

 MainWindow = new TStatbarWnd(Name);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TStatbarApp StatbarApp(“Status Bar Window 4”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 StatbarApp.Run();

 return StatbarApp.Status;

}

Listing 9.16. STATWND4.H—the frame window’s header file.

// STATWND4.H -- Header file for the frame window.

#ifndef _STATWND4_H

#define _STATWND4_H

#include <owl.h>

#include “statbar4.h”

_CLASSDEF(TStatbarWnd)

class TStatbarWnd: public TMDIFrame

{

private:

 PTStatbar pstatbar;

public:

 TStatbarWnd(LPSTR ATitle);

 virtual void SetupWindow(void);

 virtual PTWindowsObject InitChild();

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

};

#endif

Part II ■ Windows Topics

326

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Listing 9.17. STATWND4.CPP—the frame window’s implementation.

// STATWND4.CPP -- Implementation for the frame window.

#include <stdio.h>

#include <owl.h>

#include <mdi.h>

#include “statwnd4.h”

#include “childwnd.h”

#include “statbar4.h”

//

// TStatbarWnd::TStatbarWnd()

//

// This is the frame window’s constructor.

//

TStatbarWnd::TStatbarWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “STATMENU”)

{

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create status bar object.

 pstatbar = new TStatbar(this);

}

//

// TStatbarWnd::SetupWindow()

//

// This function creates the starting child window for

// the application.

//

void TStatbarWnd::SetupWindow(void)

{

 TMDIFrame::SetupWindow();

 CreateChild();

}

Chapter 9 ■ Creating Status Bars and Toolbars

327

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

//

// TStatbarWnd::InitChild()

//

// This function creates a new child window.

//

PTWindowsObject TStatbarWnd::InitChild()

{

 return (new TMyMDIChild(this));

}

//

// TStatbarWnd::WMSize()

//

// This function sets the size and position of the

// client window and the status bar whenever the frame

// window is moved.

//

void TStatbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 0, msg.LP.Lo,

 msg.LP.Hi-22, TRUE);

 // Set the size and position of the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

}

Listing 9.18. STATBAR4.H—the status bar’s header file.

// STATBAR4.H -- Header file for status bar class.

#ifndef _STATBAR4_H

#define _STATBAR4_H

_CLASSDEF(TStatbar)

class TStatbar: public TWindow {

continues

Part II ■ Windows Topics

328

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

public:

 TStatbar(PTWindowsObject AParent);

 virtual LPSTR GetClassName();

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual void Paint(HDC PaintDC, PAINTSTRUCT &);

 void MoveBar(int w, int h);

};

#endif

Listing 9.19. STATBAR4.CPP—the status bar class’ implementation.

// STATBAR4.CPP: Implementation for status bar class.

#include <owl.h>

#include “statbar4.h”

//

// TStatbar::TStatbar()

//

// Status bar constructor.

//

TStatbar::TStatbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 SetFlags(WB_MDICHILD, FALSE);

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

}

//

// TStatbar::GetWindowClass()

//

// Initialize a window class for the status bar.

//

void TStatbar::GetWindowClass(WNDCLASS &AWndClass)

{

 // Allow normal processing.

 TWindow::GetWindowClass(AWndClass);

 // Set the window background color to light gray.

Listing 9.18. Continued

Chapter 9 ■ Creating Status Bars and Toolbars

329

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 AWndClass.hbrBackground = GetStockObject(LTGRAY_BRUSH);

}

//

// TStatbar::GetClassName()

//

// Supply the class name for the status bar window.

//

LPSTR TStatbar::GetClassName()

{

 return “TStatbar4”;

}

//

// TStatbar::MoveBar()

//

// Respond to the message from main window to move the

// status bar to a new location.

//

void TStatbar::MoveBar(int w, int h)

{

 MoveWindow(HWindow, 0, h-22, w, 22, TRUE);

}

//

// TStatbar::Paint()

//

// Draw a 3-D outline and text into status bar.

//

void TStatbar::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

 // Get the size of the client area.

 GetClientRect(HWindow, &r);

 // Draw a 3-D border.

 int new_pen = GetStockObject(BLACK_PEN);

 int prev_pen = SelectObject(DC, new_pen);

 MoveTo(DC, r.left+2, r.bottom-2);

 LineTo(DC, r.left+2, r.top+2);

continues

Part II ■ Windows Topics

330

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 LineTo(DC, r.right-2, r.top+2);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+2, r.bottom-2);

 LineTo(DC, r.right-2, r.bottom-2);

 LineTo(DC, r.right-2, r.top+2);

 // Print info string.

 char s[] = “Client Area Width: “;

 wsprintf(&s[20], “%d”, Attr.W);

 int prev_mode = SetBkMode(DC, TRANSPARENT);

 TextOut(DC, r.left+10, r.top+2, s, lstrlen(s));

 // Restore the old pen and mode.

 SelectObject(DC, prev_pen);

 SetBkMode(DC, prev_mode);

}

When you run the program, the application’s main window appears with your
status bar drawn at the bottom, as shown in Figure 9.9. No matter what you do
with the window’s controls, the status window is unaffected. For example,
Figure 9.10 shows the application when the child window has been maximized.

Listing 9.19. Continued

Figure 9.9. The final status bar application.

Chapter 9 ■ Creating Status Bars and Toolbars

331

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Figure 9.10. Even maximizing a child window does not affect the status bar.

As you’ve probably guessed, the application class for this program is similar to
previous versions. Likewise, the frame window class has undergone only
minimal adjustments. One change can be found in the class’ constructor:

TStatbarWnd::TStatbarWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “STATMENU”)

{

 // Set the size and position of the frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create the status bar object.

 pstatbar = new TStatbar(this);

}

Here, besides setting the frame window’s size and position, the program also
creates a TStatbar object and stores a pointer to the object in pstatbar. You
can also find a change in the class’ WMSize() function:

void TStatbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

Part II ■ Windows Topics

332

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 0, msg.LP.Lo,

 msg.LP.Hi-22, TRUE);

 // Set the size and position of the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

}

Here, the program resizes and repositions not only the client window but also
the status window. The status window is resized with a call to the status
window’s MoveBar() function.

Not surprisingly, the status bar class is also similar to the previous one. Its
constructor, however, has one important change:

TStatbar::TStatbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 SetFlags(WB_MDICHILD, FALSE);

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

}

Notice the call to the SetFlags() function. This function is a member of the
ObjectWindows TWindowsObject class, from which all windows are derived. By
calling this function with the parameters of WM_MDICHILD and FALSE, the
program informs ObjectWindows that this object is not an MDI child window,
which it’s assumed to be in an MDI application.

If the program doesn’t call SetFlags(), the status bar object will have as its
parent the client window, not the frame window. In this case, when the
program tries to draw the status bar at the bottom of the frame window, it is
drawn in the client window instead.

At first, it looks as though the status bar wasn’t drawn, because its coordinates
are below the visible portion of the client window. However, the addition of
scroll bars to the main window is a hint that if you scroll the window you see
the status window, as shown in Figure 9.11. Notice that the status window is
missing its display string and 3-D outline, but has gained a few controls. This
is because it has inherited the type of controls an MDI child window must have.
This bizarre new status bar can be sized, as shown in Figure 9.12, proving that
it has indeed metamorphosed into a full-fledged MDI child window.

Chapter 9 ■ Creating Status Bars and Toolbars

333

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Figure 9.11. The status bar transformed into a regular child window.

Figure 9.12. The child-window status bar can even be resized.

You’re now ready to add a toolbar to the developing application. In the next
section, you discover that a toolbar is little more than a status bar with controls.

Adding a Toolbar
It may have occurred to you that, if you can change the size of the client window
to make room at the bottom of the frame window, you can make room also in
other areas of the frame window. All you have to do is resize and reposition the
client window as necessary. You can reserve space all the way around the client
window, as shown in Figure 9.13.

Scrolled
Client
window

Status bar
disguised
as an MDI
Child window

Misplaced
Status bar

Part II ■ Windows Topics

334

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Figure 9.13. The client window can be reduced to any size.

So, the first step in adding a toolbar to your application is to reserve room at
the top of the frame window, while leaving room at the bottom for the status
bar. Then you can create a toolbar using the same techniques you used to
create the status bar. Compile and run Listings 9.20 through 9.24 to see the
toolbar application.

Listing 9.20. TOOLAPP.CPP—the toolbar application.

// ToolAPP.CPP: Tool bar application.

#include <owl.h>

#include <mdi.h>

#include “childwnd.h”

#include “toolwnd.h”

class TToolbarApp : public TApplication

{

public:

 TToolbarApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

//

// TToolbarApp::InitMainWindow()

Client window

Minimized Child
window

Exposed
Frame
window

Chapter 9 ■ Creating Status Bars and Toolbars

335

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

//

// This function creates the application’s main window.

//

void TToolbarApp::InitMainWindow()

{

 MainWindow = new TToolbarWnd(Name);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TToolbarApp ToolbarApp(“Tool Bar Window”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 ToolbarApp.Run();

 return ToolbarApp.Status;

}

Listing 9.21. TOOLWND.H—the frame window’s header file.

// TOOLWND.H -- Header file for the frame window.

#ifndef _TOOLWND_H

#define _TOOLWND_H

#include <owl.h>

#include “toolbar.h”

#include “statbar4.h”

_CLASSDEF(TToolbarWnd)

class TToolbarWnd: public TMDIFrame

{

private:

 PTStatbar pstatbar;

 PTToolbar ptoolbar;

public:

continues

Part II ■ Windows Topics

336

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 TToolbarWnd(LPSTR ATitle);

 virtual void SetupWindow();

 virtual PTWindowsObject InitChild();

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

};

#endif

Listing 9.22. TOOLWND.CPP—the frame window’s implementation.

// TOOLWND.CPP -- Implementation for the frame window.

#include <stdio.h>

#include <owl.h>

#include <mdi.h>

#include “toolwnd.h”

#include “childwnd.h”

#include “statbar4.h”

#include “toolbar.h”

//

// TToolbarWnd::TToolbarWnd()

//

// This is the frame window’s constructor.

//

TToolbarWnd::TToolbarWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “STATMENU”)

{

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create status bar and tool bar objects.

 pstatbar = new TStatbar(this);

 ptoolbar = new TToolbar(this);

}

Listing 9.21. Continued

Chapter 9 ■ Creating Status Bars and Toolbars

337

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

//

// TToolbarWnd::SetupWindow()

//

// This function creates the starting child window for

// the application.

//

void TToolbarWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

 CreateChild();

 HWND childh = GetWindow(ClientWnd->HWindow, GW_CHILD);

 SendMessage(ClientWnd->HWindow, WM_MDIMAXIMIZE, childh, 0);

}

//

// TToolbarWnd::InitChild()

//

// This function creates a new child window.

//

PTWindowsObject TToolbarWnd::InitChild()

{

 return(new TMyMDIChild(this));

}

//

// TToolbarWnd::WMSize()

//

// This function sets the size and position of the

// client window, the status bar, and the tool bar

// whenever the frame window is moved.

//

void TToolbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 26, msg.LP.Lo,

 msg.LP.Hi-48, TRUE);

 // Set the size and position of the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

 ptoolbar->MoveBar(msg.LP.Lo);

}

Part II ■ Windows Topics

338

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Listing 9.23. TOOLBAR.H—the toolbar class’ header file.

// TOOLBAR.H: Header file for the tool bar class.

#ifndef _TOOLBAR_H

#define _TOOLBAR_H

_CLASSDEF(TToolbar)

class TToolbar: public TWindow {

public:

 TToolbar(PTWindowsObject AParent);

 virtual LPSTR GetClassName();

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual void Paint(HDC PaintDC, PAINTSTRUCT &);

 virtual void ButtonMsg()

 = [ID_FIRST + 100];

 void MoveBar(int w);

};

#endif

Listing 9.24. TOOLBAR.CPP—the toolbar class’ implementation.

// TOOLBAR.CPP: Implementation for the tool bar class.

#include <owl.h>

#include <button.h>

#include “toolbar.h”

//

// TToolbar::TToolbar()

//

// Tool bar constructor.

//

TToolbar::TToolbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 SetFlags(WB_MDICHILD, FALSE);

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

 new TButton(this,100,”Create”,100,2,200,20,FALSE);

Chapter 9 ■ Creating Status Bars and Toolbars

339

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

}

//

// TToolbar::GetWindowClass()

//

// Set up a window class for the tool bar.

//

void TToolbar::GetWindowClass(WNDCLASS &AWndClass)

{

 // Allow normal processing.

 TWindow::GetWindowClass(AWndClass);

 // Set the window background color to light gray.

 AWndClass.hbrBackground = GetStockObject(LTGRAY_BRUSH);

}

//

// TToolbar::GetClassName()

//

// Supply a class name for the tool bar.

//

LPSTR TToolbar::GetClassName()

{

 return “ToolBar”;

}

//

// TToolbar::MoveBar()

//

// Respond to the message from main window to move the

// tool bar to a new location.

//

void TToolbar::MoveBar(int w)

{

 MoveWindow(HWindow, 0, 0, w, 26, TRUE);

}

//

// TToolbar::Paint()

//

continues

Part II ■ Windows Topics

340

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

// Draw a 3-D outline and text into the tool bar.

//

void TToolbar::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

 // Get the size of the client area.

 GetClientRect(HWindow, &r);

 // Draw 3-D graphics.

 HPEN new_pen = GetStockObject(BLACK_PEN);

 HPEN prev_pen = SelectObject(DC, new_pen);

 MoveTo(DC, r.left+4, r.bottom-4);

 LineTo(DC, r.left+4, r.top+4);

 LineTo(DC, r.left+90, r.top+4);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+4, r.bottom-4);

 LineTo(DC, r.left+90, r.bottom-4);

 LineTo(DC, r.left+90, r.top+4);

 new_pen = GetStockObject(BLACK_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+309, r.bottom-4);

 LineTo(DC, r.left+309, r.top+4);

 LineTo(DC, r.right-4, r.top+4);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+309, r.bottom-4);

 LineTo(DC, r.right-4, r.bottom-4);

 LineTo(DC, r.right-4, r.top+4);

 // Restore the old pen and mode.

 SelectObject(DC, prev_pen);

}

//

// TToolbar::ButtonMsg()

//

// When the user clicks the tool bar’s button, this

// function responds by sending a CM_CREATECHILD message

Listing 9.24. Continued

Chapter 9 ■ Creating Status Bars and Toolbars

341

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

// to the frame window.

//

void TToolbar::ButtonMsg()

{

 SendMessage(Parent->HWindow,

 WM_COMMAND, CM_CREATECHILD, 0);

}

Besides the now-familiar status bar, this application has a toolbar containing
a single button, as shown in Figure 9.14. When you click this button, a new child
window appears. This button, then, is a shortcut for choosing the Create option
of the Window menu.

Figure 9.14. The toolbar application.

Because much of the application is similar to the previous versions, you look
at only the functions that play an important role in adding the toolbar to the
program. The first function on the list is the frame window’s constructor:

TToolbarWnd::TToolbarWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “STATMENU”)

{

 // Set the size and position of the frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create the status bar and tool bar objects.

Toolbar

Status bar

Maximized
Child window

Part II ■ Windows Topics

342

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

 pstatbar = new TStatbar(this);

 ptoolbar = new TToolbar(this);

}

Here, the program sets the size and position of the window, as usual. Then,
after creating a new status bar object, it creates a new toolbar object, too. The
ptoolbar pointer, like pstatbar, is a data member of the frame window class,
TToolbarWnd.

When you ran this program, you may have been surprised to see that the first
child window was not only already created, but also maximized. This little
piece of prestidigitation is accomplished in the frame window’s SetupWindow()
function:

void TToolbarWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

 CreateChild();

 HWND childh = GetWindow(ClientWnd->HWindow, GW_CHILD);

 SendMessage(ClientWnd->HWindow, WM_MDIMAXIMIZE, childh, 0);

}

To maximize the child window, you get its handle by a call to the Windows API
GetWindow() function. Then you call the Windows API SendMessage() function
to send a WM_MDIMAXIMIZE message to the child window. (The message is
actually sent to the client window, which then passes it to the window
indicated by the childh handle.) When the child window receives the message,
it responds by maximizing itself, just as if the user had clicked its maximize
button.

The last important change in the frame window class is in its WMSize() function:

void TToolbarWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 26, msg.LP.Lo,

 msg.LP.Hi-48, TRUE);

 // Set the size and position of the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

 ptoolbar->MoveBar(msg.LP.Lo);

}

Chapter 9 ■ Creating Status Bars and Toolbars

343

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Just as the program sends a move message to the status bar to keep it in
position when the frame window is moved, it must send a move message to the
toolbar. The only difference is that your toolbar must know only the window’s
new width; the height is unnecessary because the toolbar is always drawn at
the coordinates 0, 0.

Here is the toolbar’s class definition:

_CLASSDEF(TToolbar)

class TToolbar: public TWindow {

public:

 TToolbar(PTWindowsObject AParent);

 virtual LPSTR GetClassName();

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual void Paint(HDC PaintDC, PAINTSTRUCT &);

 virtual void ButtonMsg()

 = [ID_FIRST + 100];

 void MoveBar(int w);

};

Everything looks similar to the status bar class definition, except for the
addition of the ButtonMsg() message-response function. As you saw when you
ran the program, the toolbar contains a button that, when clicked, creates a
new child window. This function responds to those button clicks. The button
is added to the toolbar in the toolbar’s constructor:

TToolbar::TToolbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 SetFlags(WB_MDICHILD, FALSE);

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

 new TButton(this,100,”Create”,100,2,200,20,FALSE);

}

Here, the program first informs Windows that the toolbar is not an MDI child
window. Then it sets the window’s style attributes and adds the button to the
toolbar by using new to create a TButton object on the heap.

The this parameter is the button’s parent window, which is the toolbar. The
first integer parameter, 100, is the button’s ID. The string parameter is the text
that appears on the button. The remaining integer parameters are the button’s
x and y coordinates, with respect to its parent window, and its width and
height.

Part II ■ Windows Topics

344

SAMS/Q6 Borland C++ Power Prog. #172-7 2-18-93(Folio, LAC) Brook LP#5

Finally, the last parameter indicates whether the button is the default button,
the one that is automatically selected when the user presses Enter. This
applies mainly to windows that contain many buttons, such as dialog boxes.

Note: Remember that every call to an object’s functions includes the
hidden this parameter, which is a pointer to the object that called
the function.

When the user clicks the toolbar button, the class’ ButtonMsg() message-
response function, which is keyed to the button’s ID number, takes over:

void TToolbar::ButtonMsg()

{

 SendMessage(Parent->HWindow,

 WM_COMMAND, CM_CREATECHILD, 0);

}

Here, the program simply sends a CM_CREATECHILD message to the frame
window, which yields the same result as selecting the Create option of the
Window menu.

You should be able to figure out the rest of the source code for the toolbar
application with little difficulty. Much of it is similar to code you went over
earlier in this chapter. In addition, the code is liberally commented.

Conclusion
K eep in mind that, although the example toolbar contains only a single

button, you can add as many controls as you like to a toolbar—not only
buttons, but also list boxes, check boxes, and any other controls that fit. As
users of power applications know, there’s nothing like having the tools you
need right at your fingertips (or mouse tip, to be precise). As a power
programmer, you can provide that consideration to your users.

Chapter 10 ■ Designing Custom Controls

345

Folio, LAC)

10
Designing Custom Controls

In the last chapter, you learned to create custom toolbars for your
application’s main window. By adding a toolbar to your applications,
you provide convenient access to menu commands and frequently
needed tools. Most professional applications with toolbars, however,
use custom buttons rather than conventional window buttons. Other
types of custom controls include graphical menu items and floating
toolboxes. All these items are easy to create, after you learn a few

techniques.

In this chapter, you add a custom button to the status bar application. In addition,
you add a graphical menu item to the Window menu and create a toolbox window
that, like the toolbar, provides quick and easy access to sets of related tools.

Part II ■ Windows Topics

346

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Customized Buttons
When Windows was designed, its programmers went to great lengths to

provide a flexible and powerful graphical interface. To this end, they
created many types of controls that you can use in your programs— controls
that are easily modified to suit a specific application. For example, button
controls can contain any text, can be almost any size, and can be placed
virtually anywhere on-screen. List boxes (and most other controls), too, can
be modified a number of basic ways.

Although you can change the size, placement, and text of controls, they all look
basically the same from one program to the next. Because buttons are the most
prevalent control in a Windows program, they can become boring. To avoid this
problem, the Windows designers provided ways for application programmers
to add their own buttons (and other custom controls). These custom buttons
are used like regular Windows buttons, but can look any way you like.

As with any Windows programming option, there are several ways to create
custom buttons. The most common way is through the use of owner-draw
buttons.

Owner-Draw Buttons
Owner-draw buttons work like other Windows buttons, but they can take on
any appearance because Windows turns the button-drawing tasks over to your
program. You can draw any kind of button you like, from conventional
Windows-like buttons to objects that look like controls from another universe.

Amazingly, even if your program draws no button image, the button still works;
if you click the button’s location, the function assigned to the button is
selected, yet you see no button animation. This is because Windows gives you
control of the appearance of the button only, not the way it functions. Figure
10.1 shows a window with an undrawn owner-draw button in the toolbar.
Although the button’s image hasn’t been drawn on-screen, the button still
functions. When the user clicks in the white rectangle, a new child window is
created.

Chapter 10 ■ Designing Custom Controls

347

Folio, LAC)

Undrawn
button

Figure 10.1. A window with an undrawn owner-draw button in the toolbar.

To create an owner-draw button, you must do only four things:

1. Create a new button class descended from the TButton class.

2. Make the button’s style BS_OWNERDRAW.

3. Write the functions to draw the button in its various states.

4. In the button’s parent window class, provide a message-response
function for the WM_DRAWITEM message.

Listings 10.1 through 10.9 are the files needed to create an MDI application
with an owner-draw button in its toolbar. (The files CHILDWND.H,
STATBAR4.H, and STATBAR4.CPP are not shown because they are identical
to the listings of the same names in Chapter 9.)

Listing 10.1. CUSCTL1.CPP—version 1 of the custom control application.

// CUSCTL1.CPP: Custom control application, version 1.

#include <owl.h>

#include <mdi.h>

#include “childwnd.h”

#include “cusctlw1.h”

// Class for the application.

class TCusCtlApp : public TApplication

{

public:

continues

Part II ■ Windows Topics

348

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.1. Continued

 TCusCtlApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

//

// TCusCtlApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TCusCtlApp::InitMainWindow()

{

 MainWindow = new TCusCtlWnd(Name);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TCusCtlApp CusCtlApp(“Custom Control Demo 1”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 CusCtlApp.Run();

 return CusCtlApp.Status;

}

Listing 10.2. CUSCTLW1.H—the frame window’s header file.

// CUSCTLW1.H: Header file for frame window.

#ifndef _CUSCTLW1_H

#define _CUSCTLW1_H

#include <owl.h>

#include “toolbar2.h”

Chapter 10 ■ Designing Custom Controls

349

Folio, LAC)

#include “statbar4.h”

_CLASSDEF(TCusCtlWnd)

class TCusCtlWnd: public TMDIFrame

{

private:

 PTStatbar pstatbar;

 PTToolbar ptoolbar;

public:

 TCusCtlWnd(LPSTR ATitle);

 void SetupWindow();

 virtual PTWindowsObject CreateChild();

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

};

#endif

Listing 10.3. CUSCTLW1.CPP—the frame window’s implementation.

// CUSCTLW1.CPP: Implementation for frame window.

#include <owl.h>

#include <mdi.h>

#include “cusctlw1.h”

#include “childwnd.h”

#include “statbar4.h”

#include “toolbar2.h”

//

// TCusCtlWnd::TCusCtlWnd()

//

// This is the frame window’s constructor.

//

TCusCtlWnd::TCusCtlWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “CUSCTLMENU”)

{

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

continues

Part II ■ Windows Topics

350

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.3. Continued

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create status bar and tool bar objects.

 pstatbar = new TStatbar(this);

 ptoolbar = new TToolbar(this);

}

//

// TCusCtlWnd::SetupWindow()

//

// This function creates the starting child window for

// the application.

//

void TCusCtlWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

 CreateChild();

}

//

// TCusCtlWnd::CreateChild()

//

// This function creates a new child window.

//

PTWindowsObject TCusCtlWnd::CreateChild()

{

 return GetApplication()->

 MakeWindow(new TMyMDIChild(this));

}

//

// TCusCtlWnd::WMSize()

//

// This function sets the size and position of the

// client window, the status bar, and the tool bar

// whenever the frame window is moved.

//

void TCusCtlWnd::WMSize(RTMessage msg)

Chapter 10 ■ Designing Custom Controls

351

Folio, LAC)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 26, msg.LP.Lo,

 msg.LP.Hi-48, TRUE);

 // Set the size and position of the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

 ptoolbar->MoveBar(msg.LP.Lo);

}

Listing 10.4. TOOLBAR2.H—the toolbar class’ header file.

// TOOLBAR2.H: Header file for tool bar class.

#ifndef _TOOLBAR2_H

#define _TOOLBAR2_H

#include “custmbut.h”

_CLASSDEF(TToolbar)

class TToolbar: public TWindow

{

 PTCustmBut pcustmbut;

public:

 TToolbar(PTWindowsObject AParent);

 virtual LPSTR GetClassName();

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual void Paint(HDC PaintDC, PAINTSTRUCT &);

 virtual void ButtonMsg(void)

 = [ID_FIRST + 100];

 void WMDrawItem(RTMessage msg)

 = [WM_FIRST + WM_DRAWITEM];

 void MoveBar(int w);

};

#endif

Part II ■ Windows Topics

352

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.5. TOOLBAR2.CPP—the toolbar class’ implementation.

// TOOLBAR2.CPP -- Tool bar class implementation.

#include <owl.h>

#include <button.h>

#include “toolbar2.h”

//

// TToolbar::TToolbar()

//

// Tool bar constructor.

//

TToolbar::TToolbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 SetFlags(WB_MDICHILD, FALSE);

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

 pcustmbut = new TCustmBut(this,100,”Create”,

 100,2,200,20,FALSE);

}

//

// TToolbar::GetWindowClass()

//

// Set up a window class for the tool bar.

//

void TToolbar::GetWindowClass(WNDCLASS &AWndClass)

{

 // Allow normal processing.

 TWindow::GetWindowClass(AWndClass);

 // Set window background color to light gray.

 AWndClass.hbrBackground = GetStockObject(LTGRAY_BRUSH);

}

//

// TToolbar::GetClassName()

//

// Supply a class name for the tool bar.

//

LPSTR TToolbar::GetClassName()

Chapter 10 ■ Designing Custom Controls

353

Folio, LAC)

{

 return “ToolBar2”;

}

//

// TToolbar::MoveBar()

//

// Respond to message from main window to move tool

// bar to new location.

//

void TToolbar::MoveBar(int w)

{

 MoveWindow(HWindow, 0, 0, w, 26, TRUE);

}

//

// TToolbar::Paint()

//

// Draw 3-D outline and text into tool bar.

//

void TToolbar::Paint(HDC DC, PAINTSTRUCT&)

{

 RECT r;

 // Get size of client area.

 GetClientRect(HWindow, &r);

 // Draw 3-D graphics.

 HPEN new_pen = GetStockObject(BLACK_PEN);

 HPEN prev_pen = SelectObject(DC, new_pen);

 MoveTo(DC, r.left+4, r.bottom-4);

 LineTo(DC, r.left+4, r.top+4);

 LineTo(DC, r.left+90, r.top+4);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+4, r.bottom-4);

 LineTo(DC, r.left+90, r.bottom-4);

 LineTo(DC, r.left+90, r.top+4);

 new_pen = GetStockObject(BLACK_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+309, r.bottom-4);

 LineTo(DC, r.left+309, r.top+4);

continues

Part II ■ Windows Topics

354

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.5. Continued

 LineTo(DC, r.right-4, r.top+4);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(DC, new_pen);

 MoveTo(DC, r.left+309, r.bottom-4);

 LineTo(DC, r.right-4, r.bottom-4);

 LineTo(DC, r.right-4, r.top+4);

 // Restore old pen and mode.

 SelectObject(DC, prev_pen);

}

//

// TToolbar::ButtonMsg()

//

// This function responds when the user clicks the tool

// bar’s button, by sending a CM_CREATECHILD message to

// the frame window.

//

void TToolbar::ButtonMsg(void)

{

 SendMessage(Parent->HWindow,

 WM_COMMAND, CM_CREATECHILD, 0);

}

//

// TToolbar::WMDrawItem()

//

// This function is called when the program receives a

// WM_DRAWITEM message. It determines which object needs

// to be drawn and calls the appropriate drawing

// function.

//

void TToolbar::WMDrawItem(RTMessage msg)

{

 LPDRAWITEMSTRUCT p = (DRAWITEMSTRUCT FAR*) msg.LParam;

 if (p->CtlID == 100)

 pcustmbut->DrawButton(p);

}

Chapter 10 ■ Designing Custom Controls

355

Folio, LAC)

Listing 10.6. CUSTMBUT.H—the button class’ header file.

// CUSTMBUT.H: Header file for button class.

#ifndef _CUSTMBUT_H

#define _CUSTMBUT_H

#include <button.h>

_CLASSDEF(TCustmBut)

class TCustmBut: public TButton

{

public:

 TCustmBut(PTWindowsObject AParent, int AnID,

 LPSTR ATitle, int x, int y, int w,

 int h, BOOL IsDfault);

 void DrawButton(LPDRAWITEMSTRUCT p);

 void DrawSelected(LPDRAWITEMSTRUCT p);

 void DrawUnselected(LPDRAWITEMSTRUCT p);

 void DrawFocused(LPDRAWITEMSTRUCT p);

};

#endif

Listing 10.7. CUSTMBUT.CPP—the button class’ implementation.

// CUSTMBUT.CPP: Button class implementation.

#include <button.h>

#include “custmbut.h”

//

// TCustmBut::TCustmBut()

//

// This is the custom button’s constructor.

//

TCustmBut::TCustmBut(PTWindowsObject AParent, int AnID,

 LPSTR ATitle, int x, int y, int w,

 int h, BOOL IsDefault): TButton

continues

Part II ■ Windows Topics

356

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.7. Continued

 (AParent, AnID, ATitle, x, y, w, h,

 IsDefault)

{

 Attr.Style = BS_OWNERDRAW | WS_CHILD | WS_VISIBLE;

}

//

// TCustmBut::DrawUnselected()

//

// This function draws the unselected version of the

// button.

//

void TCustmBut::DrawUnselected(LPDRAWITEMSTRUCT p)

{

 // Select new pen and brush into the display context.

 HPEN new_pen = GetStockObject(NULL_PEN);

 HPEN prev_pen = SelectObject(p->hDC, new_pen);

 HBRUSH new_brush = GetStockObject(LTGRAY_BRUSH);

 HBRUSH prev_brush = SelectObject(p->hDC, new_brush);

 // Fill button’s background area with gray.

 Rectangle(p->hDC, 0, 0, Attr.W+1, Attr.H+1);

 // Change pen and brush.

 new_pen = GetStockObject(BLACK_PEN);

 SelectObject(p->hDC, new_pen);

 new_brush = GetStockObject(NULL_BRUSH);

 SelectObject(p->hDC, new_brush);

 // Draw button’s 3-D outline.

 Ellipse(p->hDC, 1, 1, 198, 19);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(p->hDC, new_pen);

 Ellipse(p->hDC, 0, 0, 197, 18);

 // Change drawing mode and print button label.

 HANDLE prev_mode = SetBkMode(p->hDC, TRANSPARENT);

 TextOut(p->hDC, 79, 2, “Create”, 6);

 // Restore device context to defaults.

 SelectObject(p->hDC, prev_pen);

 SelectObject(p->hDC, prev_brush);

Chapter 10 ■ Designing Custom Controls

357

Folio, LAC)

 SetBkMode(p->hDC, prev_mode);

 // Draw button’s focused image, if necessary.

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

}

//

// TCustmBut::DrawSelected()

//

// This function draws the button in its selected form.

//

void TCustmBut::DrawSelected(LPDRAWITEMSTRUCT p)

{

 // Select new pen and brush into the device context.

 HPEN new_pen = GetStockObject(NULL_PEN);

 HPEN prev_pen = SelectObject(p->hDC, new_pen);

 HBRUSH new_brush = CreateSolidBrush(RGB(255, 0, 0));

 HBRUSH prev_brush = SelectObject(p->hDC, new_brush);

 // Draw button filled with red.

 Ellipse(p->hDC, 1, 1, 198, 19);

 // Set drawing mode and draw button text.

 HANDLE prev_mode = SetBkMode(p->hDC, TRANSPARENT);

 TextOut(p->hDC, 79, 2, “Create”, 6);

 // Restore device context to defaults.

 SelectObject(p->hDC, prev_pen);

 SelectObject(p->hDC, prev_brush);

 SetBkMode(p->hDC, prev_mode);

 // Delete custom brush object.

 DeleteObject(new_brush);

 // Draw button’s focused image, if necessary.

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

}

//

// TCustmBut::DrawFocused()

//

continues

Part II ■ Windows Topics

358

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.7. Continued

// This function draws the button in its focused form.

//

void TCustmBut::DrawFocused(LPDRAWITEMSTRUCT p)

{

 RECT r = {74, 3, 125, 17};

 DrawFocusRect(p->hDC, &r);

}

//

// TCustmBut::DrawButton()

//

// This function is called when the tool bar receives a

// WM_DRAWITEM message.

//

void TCustmBut::DrawButton(LPDRAWITEMSTRUCT p)

{

 // Respond to action.

 switch (p->itemAction)

 {

 // Draw full button.

 case ODA_DRAWENTIRE:

 DrawUnselected(p);

 break;

 // Check button state and draw appropriate image.

 case ODA_SELECT:

 if (p->itemState & ODS_SELECTED)

 DrawSelected(p);

 else

 DrawUnselected(p);

 break;

 // Draw button’s focused image, if necessary.

 case ODA_FOCUS:

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

 break;

 }

}

Chapter 10 ■ Designing Custom Controls

359

Folio, LAC)

Listing 10.8. CUSCTL1.RC—the application’s resource file.

#include <owlrc.h>

CUSCTLMENU MENU LOADONCALL MOVEABLE PURE DISCARDABLE

BEGIN

 POPUP “&Window”

 BEGIN

 MenuItem “C&reate”, CM_CREATECHILD

 MenuItem “&Cascade”, CM_CASCADECHILDREN

 MenuItem “&Tile”, CM_TILECHILDREN

 MenuItem “C&lose All”, CM_CLOSECHILDREN

 END

END

Listing 10.9. CUSTMCTL.DEF—the application’s definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

When you run the program, you see the window shown in Figure 10.2. The only
difference between this window and the one in your toolbar application in
Chapter 9 is that this toolbar now sports a custom button. If you click the
button, it flashes red and a new child window appears.

Figure 10.2. A window with an owner-draw button in the toolbar.

Owner-draw button

Part II ■ Windows Topics

360

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

The listings for CUSCTL1.CPP, CUSCTLW1.H, and CUSCTLW1.CPP contain
nothing new, so they aren’t discussed here. Still, look them over to be sure
you understand them.

The new toolbar class, too, is similar to the first version, which you saw in
Chapter 9, but one function contains an important change:

TToolbar::TToolbar(PTWindowsObject AParent):

 TWindow(AParent, NULL)

{

 SetFlags(WB_MDICHILD, FALSE);

 Attr.Style = WS_CHILD | WS_VISIBLE | WS_BORDER;

 pcustmbut = new TCustmBut(this,100,”Create”,

 100,2,200,20,FALSE);

}

This is the toolbar’s constructor. In the first version of the toolbar, the TButton
object was created here. Notice that this time, something called TCustmBut is
created. This is the custom button class, which is described shortly.

Besides this simple change in the TToolBar class, a new function has been
added:

void TToolbar::WMDrawItem(RTMessage msg)

{

 LPDRAWITEMSTRUCT p = (DRAWITEMSTRUCT FAR*) msg.LParam;

 if (p->CtlID == 100)

 pcustmbut->DrawButton(p);

}

This function informs the custom button when it must be redrawn and what its
current state is. The function does this by responding to the Windows
WM_DRAWITEM message, which is sent whenever an object must be drawn. If you
have more than one owner-draw object, many WM_DRAWITEM messages pass
through your application. To draw an object properly, you must know for
which object the message is intended. You can find this information by
examining the message’s DRAWITEMSTRUCT, a pointer to which is stored in the
message’s LParam field.

DRAWITEMSTRUCT contains nine fields, each of which holds information about
the item to be drawn. Four of these fields—CtlId, itemAction, itemState, and
hDC—are of interest in this program.(You can find the full description of the
DRAWITEMSTRUCT structure in your Borland manuals, Borland’s on-line help, or

Chapter 10 ■ Designing Custom Controls

361

Folio, LAC)

most Windows programming manuals.) The CtlId field holds the ID of the item
to be drawn. The itemAction field indicates the action the object has to take.
The itemState field holds the object’s current state. And, finally, the hDC field
contains a handle to the item’s device context.

In the WMDrawItem() function, a pointer to DRAWITEMSTRUCT is first obtained.
Then, the CtlId field is examined. If CtlId is the same as the button’s ID (it
always will be in this program because there’s only one owner-draw item), the
program calls the function to draw the button. This brings you to the custom
button class:

_CLASSDEF(TCustmBut)

class TCustmBut: public TButton

{

public:

 TCustmBut(PTWindowsObject AParent, int AnID,

 LPSTR ATitle, int x, int y, int w,

 int h, BOOL IsDfault);

 void DrawButton(LPDRAWITEMSTRUCT p);

 void DrawSelected(LPDRAWITEMSTRUCT p);

 void DrawUnselected(LPDRAWITEMSTRUCT p);

 void DrawFocused(LPDRAWITEMSTRUCT p);

};

Here, a button class named TCustmBut is declared that is derived from OWL’s
TButton class. The TCustmBut class includes a constructor and four functions
that handle button-drawing duties. Look at the constructor first:

TCustmBut::TCustmBut(PTWindowsObject AParent, int AnID,

 LPSTR ATitle, int x, int y, int w,

 int h, BOOL IsDefault): TButton(

 AParent, AnID, ATitle, x, y, w, h,

 IsDefault)

{

 Attr.Style = BS_OWNERDRAW | WS_CHILD | WS_VISIBLE;

}

The constructor first calls the TButton constructor to create a normal button
object. Then, in the main body of the constructor, the button’s style is set,
including the BS_OWNERDRAW flag. This is all you must do to change the button
from a conventional Windows button to one that you can draw on your own.
After setting the button’s style, it still operates like any other Windows button,
except you are in charge of drawing the object. If you don’t draw the object, the
button appears as a blank rectangle (as shown in Figure 10.1).

Part II ■ Windows Topics

362

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Three Button States
When Windows sends a WM_DRAWITEM message, the button’s parent window
(the toolbar) checks the message to make sure it is intended for the button
and then calls the button’s DrawButton() function:

void TCustmBut::DrawButton(LPDRAWITEMSTRUCT p)

{

 // Respond to action.

 switch (p->itemAction)

 {

 // Draw full button.

 case ODA_DRAWENTIRE:

 DrawUnselected(p);

 break;

 // Check button state and draw appropriate image.

 case ODA_SELECT:

 if (p->itemState & ODS_SELECTED)

 DrawSelected(p);

 else

 DrawUnselected(p);

 break;

 // Draw button’s focused image, if necessary.

 case ODA_FOCUS:

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

 break;

 }

}

Here, the function first checks the itemAction field of DRAWITEMSTRUCT, which
can have three states: ODA_DRAWENTIRE, ODA_SELECT, or ODA_FOCUS. If itemAction
is set to ODA_STATE, the entire button must be drawn in its unselected state. If
itemAction is set to ODA_SELECT, the button’s selection state has changed. And,
if itemAction is set to ODA_FOCUS, the button’s focus has changed.

In the case of ODA_DRAWENTIRE, the program’s task is easy: simply draw the
complete button, in its unselected state, which must be done the first time the
button is drawn. If itemAction equals ODA_SELECT, the program must change
the button’s selection state, drawing it as either selected or unselected. To
know which image to draw, the program has to know the button’s current state.

Chapter 10 ■ Designing Custom Controls

363

Folio, LAC)

It finds this information by checking the itemState field. If itemState is set to
ODS_SELECTED, the button should be drawn in its selected state. Otherwise, the
button should be drawn in its unselected state.

The same is true when itemAction is set to IDA_FOCUS. This informs the
program that the button’s focus state has changed—but to draw the button
properly, its current state must be known. This state is found by checking the
itemState field as before. If it is set to ODS_FOCUS, the program draws the
button’s focus rectangle. Otherwise, it leaves the button as it is.

The DrawButton() function does no drawing. Instead, it routes program
execution to the appropriate drawing function based on the itemAction and
itemState fields of DRAWITEMSTRUCT. Because every button can be in one of
three states—unselected, selected, and focused—there are three functions
to draw the button. The first is DrawUnselected():

void TCustmBut::DrawUnselected(LPDRAWITEMSTRUCT p)

{

 // Select new pen and brush into the display context.

 HPEN new_pen = GetStockObject(NULL_PEN);

 HPEN prev_pen = SelectObject(p->hDC, new_pen);

 HBRUSH new_brush = GetStockObject(LTGRAY_BRUSH);

 HBRUSH prev_brush = SelectObject(p->hDC, new_brush);

 // Fill button’s background area with gray.

 Rectangle(p->hDC, 0, 0, Attr.W+1, Attr.H+1);

 // Change pen and brush.

 new_pen = GetStockObject(BLACK_PEN);

 SelectObject(p->hDC, new_pen);

 new_brush = GetStockObject(NULL_BRUSH);

 SelectObject(p->hDC, new_brush);

 // Draw button’s 3-D outline.

 Ellipse(p->hDC, 1, 1, 198, 19);

 new_pen = GetStockObject(WHITE_PEN);

 SelectObject(p->hDC, new_pen);

 Ellipse(p->hDC, 0, 0, 197, 18);

 // Change drawing mode and print button label.

 HANDLE prev_mode = SetBkMode(p->hDC, TRANSPARENT);

 TextOut(p->hDC, 79, 2, “Create”, 6);

 // Restore device context to defaults.

 SelectObject(p->hDC, prev_pen);

Part II ■ Windows Topics

364

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

 SelectObject(p->hDC, prev_brush);

 SetBkMode(p->hDC, prev_mode);

 // Draw button’s focused image, if necessary.

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

}

This function draws the entire button image, using standard GDI calls to select
pens and brushes and to draw various shapes. You’ve seen most of these
graphics functions before. In DrawUnselected(), a gray rectangle is first drawn
to fill the empty button area (the white area shown in Figure 10.1). Then a
three-dimensional ellipse is drawn for the button’s border. Finally, the button’s
text label is printed.

At the end of the function, the button’s focus state is checked. A button can
retain the focus regardless of its selection state, so the button’s focus must be
checked whenever it’s redrawn.

The DrawSelected() function draws the button in its selected state:

void TCustmBut::DrawSelected(LPDRAWITEMSTRUCT p)

{
 // Select new pen and brush into the device context.

 HPEN new_pen = GetStockObject(NULL_PEN);

 HPEN prev_pen = SelectObject(p->hDC, new_pen);

 HBRUSH new_brush = CreateSolidBrush(RGB(255, 0, 0));

 HBRUSH prev_brush = SelectObject(p->hDC, new_brush);

 // Draw button filled with red.

 Ellipse(p->hDC, 1, 1, 198, 19);

 // Set drawing mode and draw button text.

 HANDLE prev_mode = SetBkMode(p->hDC, TRANSPARENT);

 TextOut(p->hDC, 79, 2, “Create”, 6);

 // Restore device context to defaults.

 SelectObject(p->hDC, prev_pen);

 SelectObject(p->hDC, prev_brush);

 SetBkMode(p->hDC, prev_mode);

 // Delete custom brush object.

 DeleteObject(new_brush);

Chapter 10 ■ Designing Custom Controls

365

Folio, LAC)

 // Draw button’s focused image, if necessary.

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

}

This function fills the button’s interior with a red ellipse. Because the Windows
GDI does not include a stock red brush, the function must create one. It does
this with a call to CreateSolidBrush(), after which the ellipse is drawn. When
creating your own pens, brushes, or other objects, you must be sure to delete
them as soon as possible because they take up valuable Windows resources.
In this example, this is done near the end of the function, with a call to
DeleteObject(). Finally, the function again checks the button’s focus and
draws the focus rectangle, if necessary.

The button’s focused state is drawn easily:

void TCustmBut::DrawFocused(LPDRAWITEMSTRUCT p)

{

 RECT r = {74, 3, 125, 17};

 DrawFocusRect(p->hDC, &r);

}

Here, the function simply calls the Windows DrawFocusRect() function, using
a rectangle that is large enough to surround the button’s text label. The
function could have used the rcItem rectangle, which is included as one of the
fields in DRAWITEMSTRUCT. However, the rcItem rectangle is set to the entire
button area. If the program uses the rcItem rectangle coordinates, the focus
rectangle is drawn around the perimeter of the button, rather than around the
button’s text, as is usually the case with buttons.

Note: It is customary on toolbars not to draw the button’s focus state,
because toolbars are not accessible with the keyboard, only with the mouse.
In the sample program, the button’s focussed state is included only to

demonstrate the handling of that state. Normally, a toolbar button has only two states:
selected and unselected.

Any Look You Want
That’s all there is to incorporating user-draw buttons. As you can see, you can
give buttons any look you want, virtually anything that you can draw on-screen.
Drawing buttons with GDI calls, however, can generate a lot of source code.

Part II ■ Windows Topics

366

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Another way to draw custom buttons is simply to transfer a bitmap to the
button’s screen location. Using bitmaps, you can design all types of sophisti-
cated looking buttons containing icons and other graphical elements. You learn
how to do this later in the chapter, when you design a toolbox window. But, as
an introduction to bitmaps, you’ll now add a graphical menu entry to the
application’s Window menu.

Customized Menus
A lthough a menu item is not a control in the usual Windows sense, it can

still be modified to look any way you like. The easiest way to do this is by
adding to the menu a bitmap, rather than the usual text string. Using a bitmap,
you can display not only text, but also all kinds and sizes of graphical images.
This is particularly useful in programs in which the user has to choose graphics
tools, fonts, or other types of objects that are more easily displayed as a bitmap
than as text.

Listings 10.10 through 10.13 are the new files needed to add a bitmap menu
item to the application. (Listings shown in Chapter 9 are not repeated here.)

Listing 10.10. CUSCTL2.CPP—version 2 of the custom control application.

// CUSCTL2.CPP: Custom control application, version 2.

#include <owl.h>

#include <mdi.h>

#include “childwnd.h”

#include “cusctlw2.h”

// Class for the application.

class TCusCtlApp : public TApplication

{

public:

 TCusCtlApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

Chapter 10 ■ Designing Custom Controls

367

Folio, LAC)

 virtual void InitMainWindow();

};

//

// TCusCtlApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TCusCtlApp::InitMainWindow()

{

 MainWindow = new TCusCtlWnd(Name);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TCusCtlApp CusCtlApp(“Custom Control Demo 2”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 CusCtlApp.Run();

 return CusCtlApp.Status;

}

Listing 10.11. CUSCTLW2.H—the frame window’s header file.

// CUSCTLW2.H: Header file for frame window.

#ifndef _CUSCTLW2_H

#define _CUSCTLW2_H

#include <owl.h>

#include “toolbar2.h”

#include “statbar4.h”

_CLASSDEF(TCusCtlWnd)

class TCusCtlWnd: public TMDIFrame

{

 PTStatbar pstatbar;

continues

Part II ■ Windows Topics

368

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.11. Continued

 PTToolbar ptoolbar;

 HBITMAP hBitmap;

public:

 TCusCtlWnd(LPSTR ATitle);

 void SetupWindow();

 virtual PTWindowsObject CreateChild();

 virtual BOOL CanClose();

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

 virtual void Save()

 = [CM_FIRST + 100];

};

#endif

Listing 10.12. CUSCTLW2.CPP—the frame window’s implementation.

// CUSCTLW2.CPP: Implementation for frame window.

#include <owl.h>

#include <mdi.h>

#include “cusctlw2.h”

#include “childwnd.h”

#include “statbar4.h”

#include “toolbar2.h”

//

// TCusCtlWnd::TCusCtlWnd()

//

// This is the frame window’s constructor.

//

TCusCtlWnd::TCusCtlWnd(LPSTR ATitle):

 TMDIFrame(ATitle, “CUSCTLMENU”)

{

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

Chapter 10 ■ Designing Custom Controls

369

Folio, LAC)

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Create status bar and tool bar objects.

 pstatbar = new TStatbar(this);

 ptoolbar = new TToolbar(this);

}

//

// TCusCtlWnd::SetupWindow()

//

// This function creates the starting child window for

// the application. It also loads a bitmap and appends

// it to the application’s Window menu.

//

void TCusCtlWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

 hBitmap = LoadBitmap(

 GetApplication()->hInstance, “BITMAP_1”);

 HMENU hMenu1 = GetMenu(HWindow);

 HMENU hMenu2 = GetSubMenu(hMenu1, 0);

 AppendMenu(hMenu2, MF_BITMAP | MF_ENABLED,

 100, LPCSTR(hBitmap));

 CreateChild();

}

//

// TCusCtlWnd::CreateChild()

//

// This function creates a new child window.

//

PTWindowsObject TCusCtlWnd::CreateChild()

{

 return GetApplication()->

 MakeWindow(new TMyMDIChild(this));

}

//

// TCusCtlWnd::WMSize()

//

continues

Part II ■ Windows Topics

370

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.12. Continued

// This function sets the size and position of the

// client window, the status bar, and the tool bar

// whenever the frame window is moved.

//

void TCusCtlWnd::WMSize(RTMessage msg)

{

 // Process WM_SIZE message.

 TMDIFrame::WMSize(msg);

 // Set the size and position of the client window.

 MoveWindow(ClientWnd->HWindow, 0, 26, msg.LP.Lo,

 msg.LP.Hi-48, TRUE);

 // Set the size and position of the status bar.

 pstatbar->MoveBar(msg.LP.Lo, msg.LP.Hi);

 ptoolbar->MoveBar(msg.LP.Lo);

}

//

// TCusCtlWnd::Save()

//

// This function responds to the menu’s save command.

//

void TCusCtlWnd::Save()

{

 MessageBox(HWindow, “Save Menu Selected”,

 “Save”, MB_OK);

}

//

// TCusCtlWnd::CanClose()

//

// This function deletes the bitmap object from memory

// before the application closes.

//

BOOL TCusCtlWnd::CanClose()

{

 DeleteObject(hBitmap);

 return TRUE;

}

Chapter 10 ■ Designing Custom Controls

371

Folio, LAC)

Listing 10.13. CUSCTL2.RC—the application’s resource file.

BITMAP_1 BITMAP “disk.bmp”

CUSCTLMENU MENU

BEGIN

 POPUP “&Window”

 BEGIN

 MENUITEM “C&reate”, 24339

 MENUITEM “&Cascade”, 24337

 MENUITEM “&Tile”, 24336

 MENUITEM “C&lose All”, 24338

 END

END

When you run the program, you see the same window as in Figure 10.2. When
you pull down the Window menu, however, you see a disk bitmap, as shown in
Figure 10.3. This bitmap represents a file-save function that might be used in
a program for children. When you select this item, a message box pops up,
verifying that you’ve selected the file-save function.

Bitmap menu
item

Figure 10.3. A disk bitmap used as a menu item.

Surprisingly little has been added to the original program. But before you get
into the actual program, you should learn about bitmaps.

Part II ■ Windows Topics

372

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

A Little About Bitmaps
Bitmaps are nothing more than screen images that can be loaded from disk and
“pasted” anywhere on-screen. Because bitmaps can contain any image that
can be displayed on-screen, they are the perfect objects for sprucing up a
program. You’ve seen many bitmaps in other Windows programs. Most custom
buttons, for example, are bitmaps.

How do you create a bitmap? You can use the bitmap editor supplied with
Borland’s Resource Workshop. This editor works much like a paint program,
except it limits your drawing to the area you’ve defined as a bitmap (which can
be any size). After creating the bitmap, you save it to disk as a .BMP file and
then include the bitmap’s filename in the application’s resource file (see
Listing 10.13).

Adding Images to a Menu
Now look at the declaration for the new frame-window class, which contains
the menu to which you’ll be adding the bitmap:

_CLASSDEF(TCusCtlWnd)

class TCusCtlWnd: public TMDIFrame

{

 PTStatbar pstatbar;

 PTToolbar ptoolbar;

 HBITMAP hBitmap;

public:

 TCusCtlWnd(LPSTR ATitle);

 void SetupWindow();

 virtual PTWindowsObject CreateChild();

 virtual BOOL CanClose();

 virtual void WMSize(RTMessage msg)

 = [WM_FIRST + WM_SIZE];

 virtual void Save()

 = [CM_FIRST + 100];

};

Besides pointers to the status bar and toolbar, the declaration contains
hBitmap, which is a handle to a bitmap. The class also includes the Save()

Chapter 10 ■ Designing Custom Controls

373

Folio, LAC)

message-response function, which is called whenever the user selects the
bitmap menu item. Finally, a virtual function called CanClose() has been
added. This function, which is a member of the OWL TWindowsObject class, is
called whenever a window tries to close, and normally does nothing more than
return true. By overriding this function, you can perform whatever functions
you need before a window closes. In this case, the program uses CanClose() to
delete the bitmap from memory when it’s no longer needed.

The bitmap is loaded into memory by the window’s SetupWindow() function:

void TCusCtlWnd::SetupWindow()

{

 TMDIFrame::SetupWindow();

 hBitmap = LoadBitmap(

 GetApplication()->hInstance, “BITMAP_1”);

 HMENU hMenu1 = GetMenu(HWindow);

 HMENU hMenu2 = GetSubMenu(hMenu1, 0);

 AppendMenu(hMenu2, MF_BITMAP | MF_ENABLED,

 100, LPCSTR(hBitmap));

 CreateChild();

}

Here, the program calls the SetupWindow() ancestor function, after which it
loads the bitmap into memory using the Windows LoadBitmap() function.
LoadBitmap()’s parameters are the application’s instance handle and the
bitmap’s name (or ID). After loading the bitmap, the program calls GetMenu()
to retrieve the handle of the window’s menu. Using that handle, GetSubMenu()
is called to get the handle of the pop-up menu into which the bitmap should be
placed. The second parameter to this function is the position of the pop-up
menu in the menu bar. In usual C fashion, the first pop-up is 0.

After getting the pop-up menu’s handle, the program calls AppendMenu() to add
the bitmap to the end of the menu’s entries. The first parameter to this function
is the pop-up menu’s handle. The second parameter comprises the menu-item
flags. In this case, the program is informing Windows that the menu item is a
bitmap and that the menu item should be enabled rather than grayed. The third
parameter is the menu item’s ID. The fourth parameter is the bitmap’s handle
stored in the low word of a long pointer to a character string. Normally, this
parameter would be the text string you wanted to add to the menu, such as:

AppendMenu(hMenu2, MF_STRING | MF_ENABLED,

 100, “&Save”);

Part II ■ Windows Topics

374

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

That’s all there is to inserting the bitmap into the menu. Now, when the user
displays the menu, the bitmap is in position, and when the user selects the
bitmap, it triggers a menu message as any other menu item does. The program
grabs that message with the window’s Save() message-response function:

void TCusCtlWnd::Save()

{

 MessageBox(HWindow, “Save Menu Selected”,

 “Save”, MB_OK);

}

This function doesn’t do much, it simply brings up a message box so you know
the menu worked. In a real program, you can do something wildly wonderful
here…or maybe you can simply save a file.

The last function to examine is the window’s CanClose() function:

BOOL TCusCtlWnd::CanClose()

{

 DeleteObject(hBitmap);

 return TRUE;

}

As mentioned, this function, which is a member of the OWL TObjectWindows
class, is called immediately before a window is allowed to close. If this function
returns true, the window closes. If this function returns false, the window is not
allowed to close. In a full application, this is where you would check whether
all new or changed files have been saved. The CanClose() function is also a
good place to do clean-up. In this example, the program must delete the bitmap
it previously loaded. It does this with a quick call to DeleteObject().

Caution: It’s extremely important that you delete bitmaps you load. If you
don’t, they stay in memory after the program ends, stealing valuable
Windows resource space from other programs that might need it. If enough

resource space is used up, Windows comes to a screaming halt.

You’re probably surprised to see how easy it is to add a bitmap to a menu. The
hardest part is drawing the bitmap in the first place. Creating a toolbox, on the
other hand, is trickier, as you see in the next section.

Chapter 10 ■ Designing Custom Controls

375

Folio, LAC)

Creating a Toolbox
N ow that you know a bit about owner-draw buttons and using bitmaps,

you can put together a toolbox object that users can call up like a dialog
box. Unlike most dialog boxes, though, your toolbox does not force users to
close it before they can return to the application’s main window. Instead, the
toolbox floats over the main window, enabling users to select tools and
immediately return to work. Listings 10.14 through 10.23 are the files needed
to create the toolbox program.

Listing 10.14. TOOLBAPP.H—the toolbox application’s header file.

// TOOLBAPP.H: Header file for Tool box application.

#ifndef _TOOLBAPP_H

#define _TOOLBAPP_H

#include <owl.h>

// Custom button IDs.

#define ID_BUT1 101

#define ID_BUT2 102

#define ID_BUT3 103

#define ID_BUT4 104

// User-defined message.

#define PM_CHANGELINE WM_USER

#define PM_CLOSETOOLS WM_USER + 1

#endif

Listing 10.15. TOOLBAPP.CPP—the toolbox application.

// TOOLBAPP.CPP: Toolbox application.

#include <owl.h>

#include “toolbapp.h”

#include “toolbxw.h”

continues

Part II ■ Windows Topics

376

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.15. Continued

// Class for the application.

class TToolBoxApp : public TApplication

{

public:

 TToolBoxApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

//

// TToolBoxApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TToolBoxApp::InitMainWindow()

{

 MainWindow = new TToolbxWnd(NULL, “Toolbox Demo”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TToolBoxApp ToolBoxApp(“ToolBoxDemo”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 ToolBoxApp.Run();

 return ToolBoxApp.Status;

}

Listing 10.16. TOOLBXW.H—the frame window’s header file.

// TOOLBXW.H: Header file for frame window.

#ifndef _TOOLBXW_H

#define _TOOLBXW_H

Chapter 10 ■ Designing Custom Controls

377

Folio, LAC)

#include <owl.h>

#include “toolbapp.h”

#include “tooldlg.h”

_CLASSDEF(TToolbxWnd)

class TToolbxWnd: public TWindow

{

 int linewidth, // Currently selected line width.

 button, // Mouse-button flag.

 new_pen, // Handle for drawing pen.

 prev_pen; // Handle for old pen.

 HDC lineDC; // Window’s device context handle.

 PTToolDlg pdialog; // Pointer to the tool box object.

public:

 TToolbxWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMLButtonDown(RTMessage msg)

 = [WM_FIRST + WM_LBUTTONDOWN];

 virtual void WMLButtonUp()

 = [WM_FIRST + WM_LBUTTONUP];

 virtual void WMMouseMove(RTMessage msg)

 = [WM_FIRST + WM_MOUSEMOVE];

 virtual void Dialog()

 = [CM_FIRST + 101];

 virtual void PMChangeLine(RTMessage msg)

 = [WM_FIRST + PM_CHANGELINE];

 virtual void PMCloseTools()

 = [WM_FIRST + PM_CLOSETOOLS];

};

#endif

Listing 10.17. TOOLBXW.CPP—the frame window’s implementation.

// TOOLBXW.CPP: Implementation for frame window.

#include <owl.h>

#include “toolbxw.h”

#include “tooldlg.h”

continues

Part II ■ Windows Topics

378

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.17. Continued

//

// TToolbxWnd::TToolbxWnd()

//

// This is the frame window’s constructor.

//

TToolbxWnd::TToolbxWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Add menu to window.

 AssignMenu(“TOOLMENU”);

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Initialize variables.

 linewidth = 1;

 button = FALSE;

 pdialog = NULL;

}

//

// TToolbxWnd::Dialog()

//

// This function responds to the menu’s Dialog command.

//

void TToolbxWnd::Dialog()

{

 // If you don’t already have a tool box...

 if (!pdialog)

 {

 // Create and display a new tool box.

 pdialog = new TToolDlg(this, “DIALOG_1”, linewidth);

 GetApplication()->MakeWindow(pdialog);

 }

}

Chapter 10 ■ Designing Custom Controls

379

Folio, LAC)

//

// TToolbxWnd::WMLButtonDown()

//

// This function responds to a WM_LBUTTONDOWN message.

//

void TToolbxWnd::WMLButtonDown(RTMessage msg)

{

 // If this is a new button press...

 if (!button)

 {

 // Get device context and pen.

 lineDC = GetDC(HWindow);

 HPEN new_pen = CreatePen(PS_SOLID, linewidth*2,

 BLACK_PEN);

 prev_pen = SelectObject(lineDC, new_pen);

 // Direct all mouse input to the window.

 SetCapture(HWindow);

 // Set line start to the mouse coords.

 MoveTo(lineDC, msg.LP.Lo, msg.LP.Hi);

 // Set mouse-button flag.

 button = TRUE;

 }

}

//

// TToolbxWnd::WMLButtonUp()

//

// This function responds to a WM_LBUTTONUP message.

//

void TToolbxWnd::WMLButtonUp()

{

 // Restore and release device context.

 SelectObject(lineDC, prev_pen);

 ReleaseDC(HWindow, lineDC);

 // Delete custom pen object.

 DeleteObject(new_pen);

 // Turn off button flag.

 button = FALSE;

continues

Part II ■ Windows Topics

380

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.17. Continued

 // Release mouse capture.

 ReleaseCapture();

}

//

// TToolbxWnd::WMMouseMove()

//

// This function responds to a WM_MOUSEMOVE message.

//

void TToolbxWnd::WMMouseMove(RTMessage msg)

{

 if (button)

 LineTo(lineDC, msg.LP.Lo, msg.LP.Hi);

}

//

// TToolbxWnd::PMChangeLine()

//

// This function responds to the user-defined

// PM_CHANGELINE message, issued by the tool box when a

// new line width is selected.

//

void TToolbxWnd::PMChangeLine(RTMessage msg)

{

 linewidth = msg.WParam;

}

//

// TToolbxWnd::PMCloseTools()

//

// This function responds to the user-defined

// PM_CLOSETOOLS message, issued by the tool box when it

// is closed.

//

void TToolbxWnd::PMCloseTools()

{

 pdialog = NULL;

}

Chapter 10 ■ Designing Custom Controls

381

Folio, LAC)

Listing 10.18. TOOLDLG.H—the toolbox dialog’s header file.

// TOOLDLG.H: Header file for the toolbox dialog.

#ifndef _TOOLDLG_H

#define _TOOLDLG_H

#include <owl.h>

#include “toolbutn.h”

#include “toolbapp.h”

_CLASSDEF(TToolDlg)

class TToolDlg: public TDialog

{

 HBITMAP hBitmap1, // Handles to button bitmaps.

 hBitmap2;

 PTToolButn ptoolbutn[4]; // Array of button pointers.

 int selected; // Current button selected.

public:

 TToolDlg(PTWindowsObject AParent, LPSTR AName,

 int linewidth);

virtual void SetupWindow();

virtual void TToolDlg::WMDrawItem(RTMessage msg)

 = [WM_FIRST + WM_DRAWITEM];

virtual void IDBut1() = [ID_FIRST + ID_BUT1];

virtual void IDBut2() = [ID_FIRST + ID_BUT2];

virtual void IDBut3() = [ID_FIRST + ID_BUT3];

virtual void IDBut4() = [ID_FIRST + ID_BUT4];

virtual void WMDestroy(RTMessage msg)

 = [WM_FIRST + WM_DESTROY];

};

#endif

Listing 10.19. TOOLDLG.CPP—the toolbox’s implementation.

// TOOLDLG.CPP: Tool box implementation.

#include “tooldlg.h”

#include “toolbutn.h”

continues

Part II ■ Windows Topics

382

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.19. Continued

#include “toolbapp.h”

//

// TToolDlg::TToolDlg()

//

// This is the tool box’s constructor.

//

TToolDlg::TToolDlg(PTWindowsObject AParent, LPSTR AName,

 int linewidth): TDialog(AParent, AName)

{

 // Load button bitmaps.

 hBitmap1 = LoadBitmap(

 GetApplication()->hInstance, “BITMAP_1”);

 hBitmap2 = LoadBitmap(

 GetApplication()->hInstance, “BITMAP_2”);

 // Add custom buttons to dialog window.

 ptoolbutn[0] =

 new TToolButn(this,ID_BUT1,1,1,46,26,FALSE);

 ptoolbutn[1] =

 new TToolButn(this,ID_BUT2,48,1,46,26,FALSE);

 ptoolbutn[2] =

 new TToolButn(this,ID_BUT3,1,28,46,26,FALSE);

 ptoolbutn[3] =

 new TToolButn(this,ID_BUT4,48,28,46,26,FALSE);

 // Set selected button.

 selected = linewidth + 100;

}

//

// TToolDlg::SetupWindow()

//

// This function is called after the tool-box object

// is created, but before it is drawn.

//

void TToolDlg::SetupWindow()

{

 // Call ancestor function.

 TDialog::SetupWindow();

Chapter 10 ■ Designing Custom Controls

383

Folio, LAC)

 // Post message to give focus to the

 // currently selected control.

 HWND hButton = GetDlgItem(HWindow, selected);

 PostMessage(HWindow, WM_NEXTDLGCTL, hButton, 0x1L);

}

//

// TToolDlg::WMDrawItem

//

// This function responds to the WM_DRAWITEM message,

// by setting the selected-button flag if necessary and

// then drawing the button in its appropriate state.

//

void TToolDlg::WMDrawItem(RTMessage msg)

{

 // Get a pointer to the DrawItemStruct.

 LPDRAWITEMSTRUCT p = (DRAWITEMSTRUCT FAR*) msg.LParam;

 // Check whether ID is one of the buttons.

 if ((p->CtlID >= ID_BUT1) && (p->CtlID <= ID_BUT4))

 {

 // If the button is being selected, set the

 // selected flag to the control’s ID.

 if ((p->itemAction == ODA_SELECT) &&

 (p->itemState & ODS_SELECTED))

 selected = p->CtlID;

 // Draw button in appropriate state.

 ptoolbutn[p->CtlID-ID_BUT1]->

 DrawButton(p, selected, hBitmap1, hBitmap2);

 }

}

//

// TToolDlg::IDBut1()

//

// This function responds to a mouse click on button

// #1, by sending a user-defined PM_CHANGELINE message

// to the main window.

//

continues

Part II ■ Windows Topics

384

SAMS Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10a Lp#4 (Folio, LAC)

Listing 10.19. Continued

void TToolDlg::IDBut1()

{

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CHANGELINE, 1, 0x0L);

}

//

// TToolDlg::IDBut2()

//

// This function responds to a mouse click on button

// #2, by sending a user-defined PM_CHANGELINE message

// to the main window.

//

void TToolDlg::IDBut2()

{

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CHANGELINE, 2, 0x0L);

}

//

// TToolDlg::IDBut3()

//

// This function responds to a mouse click on button

// #3, by sending a user-defined PM_CHANGELINE message

// to the main window.

//

void TToolDlg::IDBut3()

{

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CHANGELINE, 3, 0x0L);

}

//

// TToolDlg::IDBut4()

//

// This function responds to a mouse click on button

// #4, by sending a user-defined PM_CHANGELINE message

// to the main window.

//

void TToolDlg::IDBut4()

{

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CHANGELINE, 4, 0x0L);

Chapter 10 ■ Designing Custom Controls

385

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

}

//

// TToolDlg::WMDestroy()

//

// This function is called immediately before the tool

// box window is destroyed. It deletes the bitmaps and

// notifies the parent window that the tool box is

// closing.

//

void TToolDlg::WMDestroy(RTMessage msg)

{

 // Delete bitmaps from memory.

 DeleteObject(hBitmap1);

 DeleteObject(hBitmap2);

 // Notify main window that tool box is gone.

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CLOSETOOLS, 0, 0x0L);

 // Perform normal WM_DESTROY processing.

 TDialog::WMDestroy(msg);

}

Listing 10.20. TOOLBUTN.H—the button class’ header file.

// TOOLBUTN.H: Header file for button class.

#ifndef _TOOLBUTN_H

#define _TOOLBUTN_H

#include <button.h>

_CLASSDEF(TToolButn)

class TToolButn: public TButton

{

public:

 TToolButn(PTWindowsObject AParent, int AnID,

 int x, int y, int w, int h, BOOL IsDfault);

 void DrawLine(LPDRAWITEMSTRUCT p, int offset);

 void DrawButton(LPDRAWITEMSTRUCT p, int selected,

 HBITMAP hBitmap1, HBITMAP hBitmap2);

continues

Part II ■ Windows Topics

386

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

Listing 10.20. Continued

 void DrawSelected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap2);

 void DrawUnselected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap1);

 void DrawFocused(LPDRAWITEMSTRUCT p);

};

#endif

Listing 10.21. TOOLBUTN.CPP—the button class’ implementation.

// TOOLBUTN.CPP: Button class implementation.

#include <button.h>

#include “toolbutn.h”

//

// TToolButn::TToolButn()
//

// This is the custom button’s constructor.

//

TToolButn::TToolButn(PTWindowsObject AParent, int AnID,

 int x, int y, int w, int h,

 BOOL IsDefault): TButton(

 AParent, AnID, “”, x, y, w, h,

 IsDefault)

{

 Attr.Style =

 BS_OWNERDRAW | WS_CHILD | WS_VISIBLE;

}

//

// TToolButn::DrawLine()

//

// This function draws the appropriate-sized line on the

// button’s face. The offset is used to simulate

// movement when the button is selected, by drawing the

// line down and to the right one pixel.

//

Chapter 10 ■ Designing Custom Controls

387

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

void TToolButn::DrawLine(LPDRAWITEMSTRUCT p, int offset)

{

 // Select new pen and brush.

 HPEN custom_pen = CreatePen(PS_SOLID, (p->CtlID-100)*2,

 BLACK_PEN);

 HPEN prev_pen = SelectObject(p->hDC, custom_pen);

 HBRUSH new_brush = GetStockObject(LTGRAY_BRUSH);

 HBRUSH prev_brush = SelectObject(p->hDC, new_brush);

 // Draw line on button.

 MoveTo(p->hDC, 8+offset, 13+offset);

 LineTo(p->hDC, 39+offset, 13+offset);

 // Square the lines’ rounded ends.

 HPEN new_pen = GetStockObject(NULL_PEN);

 SelectObject(p->hDC, new_pen);

 Rectangle(p->hDC, 4+offset, 6+offset,

 8+offset, 22+offset);

 Rectangle(p->hDC, 40+offset, 4+offset,

 44+offset, 22+offset);

 // Restore device context.

 SelectObject(p->hDC, prev_pen);

 SelectObject(p->hDC, prev_brush);

 DeleteObject(custom_pen);

}

//

// TToolButn::DrawUnselected()

//

// This function draws the unselected version of the

// button.

//

void TToolButn::DrawUnselected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap1)

{

 // Create memory device context.

 HDC hMemDC = CreateCompatibleDC(p->hDC);

 // Select bitmap into device context.

 HBITMAP hOldBitmap = SelectObject(hMemDC, hBitmap1);

 // Copy the bitmap to the screen.

continues

Part II ■ Windows Topics

388

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

Listing 10.21. Continued

 BitBlt(p->hDC, 1, 1, 47, 27, hMemDC, 0, 0, SRCCOPY);

 // Restore old memory DC.

 SelectObject(hMemDC, hOldBitmap);

 DeleteDC(hMemDC);

 // Draw the appropriate line on the button.

 DrawLine(p, 0);

 // Draw focus rectangle, if necessary.

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

}

//

// TToolButn::DrawSelected()

//

// This function draws the button in its selected form.

//

void TToolButn::DrawSelected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap2)

{

 // Create a memory device context.

 HDC hMemDC = CreateCompatibleDC(p->hDC);

 // Select the bitmap into the memory DC.

 HBITMAP hOldBitmap = SelectObject(hMemDC, hBitmap2);

 // Draw the bitmap.

 BitBlt(p->hDC, 1, 1, 47, 27, hMemDC, 0, 0, SRCCOPY);

 // Restore old memory DC.

 SelectObject(hMemDC, hOldBitmap);

 DeleteDC(hMemDC);

 // Draw the appropriate line on the button.

 DrawLine(p, 1);

 // Draw focus rectangle, if necessary.

 if (p->itemState & ODS_FOCUS)

Chapter 10 ■ Designing Custom Controls

389

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

 DrawFocused(p);

}

//

// TToolButn::DrawFocused()

//

// This function draws the button in its focused form.

//

void TToolButn::DrawFocused(LPDRAWITEMSTRUCT p)

{

 // Set a rectangle to just larger than the

 // button’s line image.

 RECT r = {5, 7, 43, 20};

 // Draw the focus rectangle.

 DrawFocusRect(p->hDC, &r);

}

//

// TToolButn::DrawButton()

//

// This function is called when the tool box receives a

// WM_DRAWITEM message.

//

void TToolButn::DrawButton(LPDRAWITEMSTRUCT p,

 int selected, HBITMAP hBitmap1, HBITMAP hBitmap2)

{

 // Respond to action.

 switch (p->itemAction)

 {

 // Draw full button.

 case ODA_DRAWENTIRE:

 if (selected != p->CtlID)

 DrawUnselected(p, hBitmap1);

 else

 DrawSelected(p, hBitmap2);

 break;

 // Check button state and draw appropriate image.

 case ODA_SELECT:

 if (p->itemState & ODS_SELECTED)

 DrawSelected(p, hBitmap2);

 else if (p->CtlID != selected)

continues

Part II ■ Windows Topics

390

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

Listing 10.21. Continued

 DrawUnselected(p, hBitmap1);

 break;

 // Draw button’s focused image, if necessary.

 case ODA_FOCUS:

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

 break;

 }

}

Listing 10.22. TOOLBAPP.RC—the application’s resource file.

BITMAP_1 BITMAP “button1.bmp”

BITMAP_2 BITMAP “button2.bmp”

TOOLMENU MENU

BEGIN

 POPUP “&File”

 BEGIN

 MENUITEM “&Tool Box”, 101

 END

END

DIALOG_1 DIALOG 11, 19, 48, 28

STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION “Tool Box”

BEGIN

END

Listing 10.23. TOOLBAPP.DEF—the application’s definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Chapter 10 ■ Designing Custom Controls

391

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

When you run the program, the main window appears, as shown in Figure 10.4.
You can draw in the window by holding the left mouse button down and moving
the mouse pointer over the window’s client area. To choose another line
thickness, select the Tool Box entry of the File menu. The line-thickness
toolbox appears. Select a new line thickness by clicking the appropriate
button.

You can move the toolbox out of the way by dragging it outside the main
window, where it stays accessible.

Note: This program cannot redraw its main window, so if you change the
size of the window or move the toolbox over your drawing, the screen image
is partially or fully erased.

Figure 10.4. The toolbox application.

Now that you’ve had a chance to draw a few masterpieces (sorry, you can’t save
them), you can learn how the toolbox works. Start with the TToolbxWnd class,
which is the application’s main window:

_CLASSDEF(TToolbxWnd)

class TToolbxWnd: public TWindow

{

 int linewidth, // Currently selected line width.

 button, // Mouse-button flag.

 new_pen, // Handle for drawing pen.

 prev_pen; // Handle for old pen.

 HDC lineDC; // Window’s device context handle.

Part II ■ Windows Topics

392

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

 PTToolDlg pdialog; // Pointer to the tool box object.

public:

 TToolbxWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMLButtonDown(RTMessage msg)

 = [WM_FIRST + WM_LBUTTONDOWN];

 virtual void WMLButtonUp()

 = [WM_FIRST + WM_LBUTTONUP];

 virtual void WMMouseMove(RTMessage msg)

 = [WM_FIRST + WM_MOUSEMOVE];

 virtual void Dialog()

 = [CM_FIRST + 101];

 virtual void PMChangeLine(RTMessage msg)

 = [WM_FIRST + PM_CHANGELINE];

 virtual void PMCloseTools()

 = [WM_FIRST + PM_CLOSETOOLS];

};

As you can see, this class contains a number of private data members, all of
which you learn more about as you examine the listings. This class also
contains six message-response functions besides the usual constructor. These
functions control the drawing process, as well as activate the toolbox. The
class’ constructor gets things started:

TToolbxWnd::TToolbxWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Add menu to window.

 AssignMenu(“TOOLMENU”);

 // Set size and position of frame window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Initialize variables.

 linewidth = 1;

 button = FALSE;

 pdialog = NULL;

}

Chapter 10 ■ Designing Custom Controls

393

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

Here, the program constructs the window, assigns the window’s menu, sets the
window’s size and position, and initializes a few data members. The linewidth
variable keeps track of the currently selected line width, button is a flag that
indicates whether the left mouse button is down, and pdialog is a pointer to
the toolbox dialog. Because the toolbox is not on-screen when the program
begins, this pointer is set to NULL.

When the user selects the Tool Box entry of the File menu, the Dialog()
function is called:

void TToolbxWnd::Dialog()

{

 // If you don’t already have a toolbox...

 if (!pdialog)

 {

 // Create and display a new toolbox.

 pdialog = new TToolDlg(this, “DIALOG_1”, linewidth);

 GetApplication()->MakeWindow(pdialog);

 }

}

If a toolbox is not present, this function creates and displays the toolbox dialog.
If the user has already opened the toolbox, the pdialog pointer is not NULL,
and this function does nothing. Notice that the program calls MakeWindow(),
which creates a modeless dialog box, rather than ExecDialog(), which creates
a modal dialog box.

What’s the difference? A modal dialog box takes over the application until the
dialog is closed. If you used this type of dialog for a toolbox, users would have
to bring up the toolbox, select their tool, then close the toolbox every time they
wanted to change line thicknesses. This is clearly a major inconvenience. A
modeless dialog, on the other hand, doesn’t take over the application, enabling
users to freely switch from window to window while the toolbox remains
visible. This type of dialog is perfect for a toolbox.

Drawing in a Window
In addition to creating a toolbox, the program enables the user to draw simple
line shapes in the window. The drawing functions are called when the user
presses the left mouse button while the pointer is over the window’s client
area, generating a WM_LBUTTONDOWN message. When the program receives this
message, the WMLButtonDown() message-response function takes over:

Part II ■ Windows Topics

394

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

void TToolbxWnd::WMLButtonDown(RTMessage msg)

{

 // If this is a new button press...

 if (!button)

 {

 // Get device context and pen.

 lineDC = GetDC(HWindow);

 HPEN new_pen = CreatePen(PS_SOLID, linewidth*2,

 BLACK_PEN);

 prev_pen = SelectObject(lineDC, new_pen);

 // Direct all mouse input to your window.

 SetCapture(HWindow);

 // Set line start to the mouse coordinates.

 MoveTo(lineDC, msg.LP.Lo, msg.LP.Hi);

 // Set the mouse-button flag.

 button = TRUE;

 }

}

Here, the program starts the drawing process by creating a device context.
Then, it uses linewidth in a call to the Windows CreatePen() function to set
the pen to the right line thickness and color, after which it selects the pen into
the device context. A call to the Windows SetCapture() function ensures that
all mouse input is directed to the window, even if the mouse isn’t over the
window. If the program didn’t do this, strange side effects would result.

For example, if the user dragged the mouse pointer out of the window and
released the button, the program wouldn’t know that the button was up and
consequently wouldn’t set the button flag to the button’s new state. When the
user brought the mouse pointer back over the window, the drawing would
continue even though the button was no longer down. SetCapture() guards
against this type of problem, because mouse releases that occur outside the
window are still directed to the window.

Finally, after setting the mouse capture to the window, the program posi-
tions the line’s starting point to the mouse’s current coordinates and sets the
mouse-button flag to true, which indicates that the button is down.

When the user moves the mouse pointer across the window, a long series of
WM_MOUSEMOVE messages is generated. This activates the WMMouseMove() mes-
sage-response function:

Chapter 10 ■ Designing Custom Controls

395

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

void TToolbxWnd::WMMouseMove(RTMessage msg)

{

 if (button)

 LineTo(lineDC, msg.LP.Lo, msg.LP.Hi);

}

Here, the program first checks whether the button is down. It must do this
because the mouse generates WM_MOUSEMOVE messages whether a button is
pressed or not. You don’t want to draw lines when the button is up, so the
program checks button first. If button is true, indicating that the mouse button
is pressed, the program draws a line from the mouse’s previous position
(originally set by the MoveTo() call in WMLButtonDown(), but updated by every
call to Line()) to the mouse’s current position.

When the mouse button is released, it generates a WM_LBUTTONUP message,
which is grabbed by the WMLButtonUp() message-response function:

void TToolbxWnd::WMLButtonUp()

{

 // Restore and release device context.

 SelectObject(lineDC, prev_pen);

 ReleaseDC(HWindow, lineDC);

 // Delete the custom pen object.

 DeleteObject(new_pen);

 // Turn off the button flag.

 button = FALSE;

 // Release mouse capture.

 ReleaseCapture();

}

This function restores and deletes the device context, deletes the custom pen,
sets the button flag to false (indicating the button is now up), and allows mouse
input to be sent to other windows.

The last two functions in the main window class handle messages sent from the
toolbox. The first responds to the user-defined PM_CHANGELINE message, which
is sent when the user clicks a button on the toolbox:

void TToolbxWnd::PMChangeLine(RTMessage msg)

{

 linewidth = msg.WParam;

}

Part II ■ Windows Topics

396

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

All the program does here is set the line width to the value returned in the
message’s WParam field.

The second function responds to the user-defined PM_CLOSETOOLS message,
which is sent by the toolbox when the user closes it:

void TToolbxWnd::PMCloseTools()

{

 pdialog = NULL;

}

Caution: Use the PMCloseTools() function to set the pdialog pointer
to NULL when the toolbox shuts down. Failure to reset this pointer results
in the inability to reopen the toolbox, because the pointer must be NULL

before the toolbox can be opened.

If you’ve never used user-defined messages before, the PM_CHANGELINE and
PM_CLOSETOOLS messages may be perplexing. You won’t find them in your
Windows or Borland manuals. Why? They are user-defined—in other words,
they are made up. Although Windows defines hundreds of messages, it can’t
possibly anticipate the needs of every Windows program. Therefore, the
developers of Windows set aside a range of messages that applications can
define and use internally. These message identifiers range in value from
WM_USER through WM_USER + 0x7FFF. The user-defined messages used in this
program are defined in the application’s header file, TOOLBAPP.H:

// Custom button IDs.

#define ID_BUT1 101

#define ID_BUT2 102

#define ID_BUT3 103

#define ID_BUT4 104

// User-defined message.

#define PM_CHANGELINE WM_USER

#define PM_CLOSETOOLS WM_USER + 1

You see how the toolbox uses these messages when you examine the toolbox’s
class. What’s important to realize here is that you can create message-response
functions for your own messages just as you can for regular Windows mes-
sages. And, because you can have over 32,000 different user-defined mes-
sages in your program, there’s virtually no limit to the special messages your

Chapter 10 ■ Designing Custom Controls

397

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

applications can send between their objects. (If you ever write a program in
which you use all possible user-defined messages, you’ll win the Most Ineffi-

cient Programmer of the Year award, hands down.)

The Toolbox Class
Now, look at the toolbox class. Here is its declaration:

_CLASSDEF(TToolDlg)

class TToolDlg: public TDialog

{

 HBITMAP hBitmap1, // Handles to button bitmaps.

 hBitmap2;

 PTToolButn ptoolbutn[4]; // Array of button pointers.

 int selected; // Current button selected.

public:

 TToolDlg(PTWindowsObject AParent, LPSTR AName,

 int linewidth);

virtual void SetupWindow();

virtual void TToolDlg::WMDrawItem(RTMessage msg)

 = [WM_FIRST + WM_DRAWITEM];

virtual void IDBut1() = [ID_FIRST + ID_BUT1];

virtual void IDBut2() = [ID_FIRST + ID_BUT2];

virtual void IDBut3() = [ID_FIRST + ID_BUT3];

virtual void IDBut4() = [ID_FIRST + ID_BUT4];

virtual void WMDestroy(RTMessage msg)

 = [WM_FIRST + WM_DESTROY];

};

This class, like the TToolbxWnd class, also has several private data members.
First are handles for the bitmaps that represent the custom buttons in selected
and unselected form. Then, there’s an array of pointers to these custom
buttons. Having these pointers in an array simplifies sections of the code,
eliminating some case or if statements. Finally, there’s a variable that holds
the ID number of the currently selected button. In the function declarations,
notice that there are message-response functions for each button. The pro-
gram also responds to the WM_DRAWITEM and WM_DESTROY messages.

Next is the class’ implementation. The toolbox dialog, like all objects, is created
in its constructor:

TToolDlg::TToolDlg(PTWindowsObject AParent, LPSTR AName,

 int linewidth): TDialog(AParent, AName)

Part II ■ Windows Topics

398

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

{

 // Load button bitmaps.

 hBitmap1 = LoadBitmap(

 GetApplication()->hInstance, “BITMAP_1”);

 hBitmap2 = LoadBitmap(

 GetApplication()->hInstance, “BITMAP_2”);

 // Add custom buttons to the dialog window.

 ptoolbutn[0] =

 new TToolButn(this,ID_BUT1,1,1,46,26,FALSE);

 ptoolbutn[1] =

 new TToolButn(this,ID_BUT2,48,1,46,26,FALSE);

 ptoolbutn[2] =

 new TToolButn(this,ID_BUT3,1,28,46,26,FALSE);

 ptoolbutn[3] =

 new TToolButn(this,ID_BUT4,48,28,46,26,FALSE);

 // Set the selected button.

 selected = linewidth + 100;

}

Here, after calling the ancestor function, the program loads the two bitmaps
for the buttons. The bitmaps were created using the Resource Workshop’s
bitmap editor. Figure 10.5 shows what these bitmaps look like.

Figure 10.5. Button bitmaps created with the Resource Workshop’s bitmap editor.

Next, the program creates a button object for each button in the toolbox,
saving the pointers in the array. Finally, it uses linewidth to initialize selected
to the number of the last selected button. The program must do this so the
toolbox always appears with the currently active tool selected. Suppose, for
example, that the user closes the toolbox after selecting the thickest line. If the
user brings the toolbox back up, the thickest line should still be selected.

Chapter 10 ■ Designing Custom Controls

399

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

After the constructor finishes its work, SetupWindow() gets a call:

void TToolDlg::SetupWindow()

{

 // Call ancestor function.

 TDialog::SetupWindow();

 // Post message to give focus to the

 // currently selected control.

 HWND hButton = GetDlgItem(HWindow, selected);

 PostMessage(HWindow, WM_NEXTDLGCTL, hButton, 0x1L);

}

This function ensures that the selected button has the focus. Because the
program uses the WM_DRAWITEM message to update the buttons, the dialog must
begin with the focus on the selected button. (You see why later.) The focus for
the selected button is set by posting a WM_NEXTDLGCTL message to the dialog.
The program has to do it this way, rather than use a call to SetFocus(), because
a control’s focus cannot be changed until it has been created and drawn. By
posting a message, the program allows time for these actions to take place.

The buttons are drawn in their proper form by capturing the WM_DRAWITEM
message, as was done for the first program in this chapter:

void TToolDlg::WMDrawItem(RTMessage msg)

{

 // Get a pointer to the DrawItemStruct.

 LPDRAWITEMSTRUCT p = (DRAWITEMSTRUCT FAR*) msg.LParam;

 // Check whether ID is one of the buttons.

 if ((p->CtlID >= ID_BUT1) && (p->CtlID <= ID_BUT4))

 {

 // If the button is being selected, set the

 // selected flag to the control’s ID.

 if ((p->itemAction == ODA_SELECT) &&

 (p->itemState & ODS_SELECTED))

 selected = p->CtlID;

 // Draw the button in the appropriate state.

 ptoolbutn[p->CtlID-ID_BUT1]->

 DrawButton(p, selected, hBitmap1, hBitmap2);

 }

}

Part II ■ Windows Topics

400

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

This function is not unlike the one you looked at in Listing 10.5. Here, however,
the program also changes the value of selected, which holds the ID of the
currently selected button. To do this, the program checks whether itemAction
is set to ODA_SELECT. If it is, the program knows that a new button has been
selected. By checking itemState, the program can determine whether it’s the
current button instance that has been selected, rather than one of the other
three. If so, it sets selected to the button’s ID.

Each of the buttons has its own message-response function in the dialog. All
are similar, so you have to examine only the first one:

void TToolDlg::IDBut1()

{

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CHANGELINE, 1, 0x0L);

}

Here, the program sends a message to the main window, informing it to switch
to a new line thickness, the value for which is placed in the message’s WParam
field. The PM_CHANGELINE message is one of the user-defined messages. If you
look back a few paragraphs, you see that when the main window receives this
message, it sets linewidth to the value sent in the message’s WParam field. The
other button message-response functions vary only in the WParam value: the
larger the value, the thicker the line.

The last function in this class is WMDestroy():

void TToolDlg::WMDestroy(RTMessage msg)

{

 // Delete the bitmaps from memory.

 DeleteObject(hBitmap1);

 DeleteObject(hBitmap2);

 // Notify the main window that the toolbox is gone.

 SendMessage(GetApplication()->MainWindow->HWindow,

 PM_CLOSETOOLS, 0, 0x0L);

 // Perform normal WM_DESTROY processing.

 TDialog::WMDestroy(msg);

}

Chapter 10 ■ Designing Custom Controls

401

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

This message-response function takes control when the user closes the
toolbox, either by clicking its close box or by closing the entire application.

Note: You cannot use the WM_CLOSEWINDOW message to close the
toolbox. Although the WM_CLOSEWINDOW message-response function is
called when the user clicks the toolbox’s Close box, it is not called when the

application closes with the toolbox still open. In this class, using WMCloseWindow()
rather than WMDestroy() can lead to undeleted bitmaps.

In WMDestroy(), the program first deletes the button bitmaps. Then it sends
another user-defined message, PM_CLOSETOOLS, to the main window, notifying
it that the toolbox is closing and the pdialog pointer has to be set to NULL. The
program then calls the TDialog::WMDestroy() ancestor function to finish the
toolbox’s destruction.

The Custom Button Class
Your toolbox wouldn’t be very useful without its buttons. The new custom
button class is not unlike the one in this chapter’s first program:

_CLASSDEF(TToolButn)

class TToolButn: public TButton

{

public:

 TToolButn(PTWindowsObject AParent, int AnID,

 int x, int y, int w, int h, BOOL IsDfault);

 void DrawLine(LPDRAWITEMSTRUCT p, int offset);

 void DrawButton(LPDRAWITEMSTRUCT p, int selected,

 HBITMAP hBitmap1, HBITMAP hBitmap2);

 void DrawSelected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap2);

 void DrawUnselected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap1);

 void DrawFocused(LPDRAWITEMSTRUCT p);

};

Part II ■ Windows Topics

402

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

In this class, there are many of the same functions used in the first user-draw
button class. In addition, there’s the DrawLine() function, which draws the
appropriate line graphic on each button’s face. The biggest difference in this
class, though, is that it draws each button’s main image with bitmaps, rather
than with GDI calls. Also, it uses the WM_DRAWITEM message to ensure that only
one button at a time is selected in the toolbox.

As in the first user-draw button program, the buttons in the toolbox are drawn
by the DrawButton() function, which is called when the toolbox receives a
WM_DRAWITEM message:

void TToolButn::DrawButton(LPDRAWITEMSTRUCT p,

 int selected, HBITMAP hBitmap1, HBITMAP hBitmap2)

{

 // Respond to the action.

 switch (p->itemAction)

 {

 // Draw the full button.

 case ODA_DRAWENTIRE:

 if (selected != p->CtlID)

 DrawUnselected(p, hBitmap1);

 else

 DrawSelected(p, hBitmap2);

 break;

 // Check button state and draw appropriate image.

 case ODA_SELECT:

 if (p->itemState & ODS_SELECTED)

 DrawSelected(p, hBitmap2);

 else if (p->CtlID != selected)

 DrawUnselected(p, hBitmap1);

 break;

 // Draw the button’s focused image, if necessary.

 case ODA_FOCUS:

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

 break;

 }

}

Recall how, in the TToolDlg class just before calling DrawButton(), the program
set selected to the currently selected button’s ID. The program passes
selected, along with the bitmap handles, to DrawButton(), where it uses

Chapter 10 ■ Designing Custom Controls

403

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

selected to redraw the buttons in a way that mimics radio buttons. (Radio
buttons allow only one button to be selected at any given time.) First, the
program checks for the ODA_DRAWENTIRE action. If it has one, it must check
whether the button it’s drawing is selected and draw the button in its
appropriate state.

Note: Although the ODA_DRAWENTIRE action occurs only when the
buttons are first drawn, the program can’t draw all the buttons in their
unselected states. This is because, from the start, the toolbox has one

button selected. In fact, the toolbox always has one—and only one—button selected.

If itemAction is set to ODA_SELECT, the selection state of the button has
changed. As usual, the program checks the button’s state and draws the
appropriate button image. In the case of ODA_FOCUS, the program draws the
button’s focus rectangle. You may now wonder why the images of two buttons
change when you click a button on the toolbox, with the button you clicked
drawn selected and the old button changed to unselected.

When you click a new button, it not only is selected, but also gets the focus. Why
is this important? Only one button can have the focus at one time. When a new
button is selected, the old button loses its focus. This causes a WM_DRAWITEM
message to be sent for both buttons.

Drawing Bitmapped Buttons
Drawing buttons in this program is both less and more complicated than it was
in the first custom-button program. The drawing is less complicated because
you don’t have to painstakingly create a button’s image with many GDI calls,
but it’s more complicated in that you have to manipulate bitmaps.

Look at the DrawUnselected() function:

void TToolButn::DrawUnselected(LPDRAWITEMSTRUCT p,

 HBITMAP hBitmap1)

{

 // Create memory device context.

 HDC hMemDC = CreateCompatibleDC(p->hDC);

Part II ■ Windows Topics

404

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

 // Select bitmap into device context.

 HBITMAP hOldBitmap = SelectObject(hMemDC, hBitmap1);

 // Copy the bitmap to the screen.

 BitBlt(p->hDC, 1, 1, 47, 27, hMemDC, 0, 0, SRCCOPY);

 // Restore old memory DC.

 SelectObject(hMemDC, hOldBitmap);

 DeleteDC(hMemDC);

 // Draw the appropriate line on the button.

 DrawLine(p, 0);

 // Draw the focus rectangle, if necessary.

 if (p->itemState & ODS_FOCUS)

 DrawFocused(p);

}

This function first creates a device context (DC) in memory where it can
manipulate the bitmap. This memory DC must be compatible with the button’s
DC, a pointer to which is included in DRAWITEMSTRUCT. Luckily, Windows
provides a function called CreateCompatibleDC() that creates compatible
device contexts. The program uses this function to create the memory DC,
after which it selects the appropriate bitmap into the newly created DC.

The program can then display the bitmap by calling BitBlt(), which copies the
bitmap in memory to the screen. The parameters for this function are the
destination DC, the x,y coordinates of the upper-left corner of the destination
rectangle, the width and height of the bitmap, the source DC, the x,y
coordinates of the upper-left corner of the source bitmap, and the raster
operation to be performed. The raster operation is the way in which the
source and destination values are combined. For more information on this
topic, consult your Borland C++ manuals.

Finally, after the program displays the bitmap, it restores and deletes the
memory DC, draws the appropriate line image on the button’s face, and checks
whether it must draw a focus rectangle.

The selected form of the button is drawn by the DrawSelected() function. This

Chapter 10 ■ Designing Custom Controls

405

4 (Folio, SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 10b Lp#3

function is identical to DrawUnselected(), except it draws a different bitmap.

The last function of interest in this class is DrawLine():

void TToolButn::DrawLine(LPDRAWITEMSTRUCT p, int offset)

{

 // Select new pen and brush.

 HPEN custom_pen = CreatePen(PS_SOLID, (p->CtlID-100)*2,

 BLACK_PEN);

 HPEN prev_pen = SelectObject(p->hDC, custom_pen);

 HBRUSH new_brush = GetStockObject(LTGRAY_BRUSH);

 HBRUSH prev_brush = SelectObject(p->hDC, new_brush);

 // Draw the line on the button.

 MoveTo(p->hDC, 8+offset, 13+offset);

 LineTo(p->hDC, 39+offset, 13+offset);

 // Square the lines’ rounded ends.

 HPEN new_pen = GetStockObject(NULL_PEN);

 SelectObject(p->hDC, new_pen);

 Rectangle(p->hDC, 4+offset, 6+offset,

 8+offset, 22+offset);

 Rectangle(p->hDC, 40+offset, 4+offset,

 44+offset, 22+offset);

 // Restore device context.

 SelectObject(p->hDC, prev_pen);

 SelectObject(p->hDC, prev_brush);

 DeleteObject(custom_pen);

}

This function draws the appropriate line image on a button’s face. First, it calls
CreatePen() to get a pen of the right line thickness, using the button’s ID to
determine the thickness of the line needed. Then, it draws the line on the
button. Because the thicker lines are drawn with rounded ends, the function
next squares the ends of the lines by drawing two small gray rectangles over
them. Finally, the function restores the DC and deletes the custom pen.

Notice the offset variable in all the drawing operations. If a button is being
drawn unselected, offset is 0. If a button is being drawn selected, offset is 1.
By adding 1 to the coordinates of all drawing operations for a selected button,
the line on the face of the button is drawn one pixel down and to the right,
which gives the button the illusion of movement.

Part II ■ Windows Topics

406

SAMS/Q3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 10b Lp#4 (Folio,

Full-Size Toolboxes
Although your toolbox has only four buttons, it doesn’t take a lot of extra
programming to expand it. You only have to increase the size of the dialog box
and the button-pointer array. Depending on your application, you may also
have to create additional button bitmaps, especially if the images on the
buttons’ faces cannot be drawn easily with GDI calls. Still, you can use the
techniques presented here to create the perfect toolbox for almost any
application.

A final note about this type of toolbox: You must not allow the user to change
button focus with the Tab key. In other words, the buttons’ style must not
include the WS_TABSTOP flag. This is because the toolbox assumes that the
selected button is also the one with the focus. If this were not the case, the
buttons would be drawn incorrectly.

As an experiment, add the WS_TABSTOP flag to the button class by adding
| WS_TABSTOP to the end of the line Attr.Style = BS_OWNERDRAW | WS_CHILD
| WS_VISIBLE in the buttons’ constructor. Now run the program, bring up the
toolbox, change the button focus with the Tab key, and click an unselected
button. Whoops! Now you have two pressed buttons, as shown in Figure 10.6.
To allow users to select tools with the keyboard, you have to add a tool menu
(which you should do, anyway).

Two buttons pressed

Figure 10.6. The results of allowing tabbing in the toolbox.

Conclusion
A s you can see, custom controls give your programs any look you want.

Moreover, they enable you to create new kinds of objects—such as the
toolbox presented here—that make your programs more professional looking.
In business, they say the customer is always right. In the programming
business, it’s the user who’s always right, and users want programs that are
easy and convenient to use.

Chapter 11 ■ Scaling Printer Output

407

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

O

11

Scaling Printer Output

ne of the greatest advantages of running applica-
tions in Windows is device independence. This
means that Windows can handle most graphics
cards, printers, or sound cards (as well as other
devices) almost invisibly to the user. All the user
has to do is install Windows with the correct
drivers. From then on Windows takes care of itself.

Unfortunately, this device independence means that programmers must work
a little harder. They must write their programs such that they never access
devices directly. This goes double for printers, especially considering that
many DOS programmers are accustomed to accessing printers directly. This
habit must be broken when programming in Windows.

In this chapter, you learn to not only send output to a printer—a complicated
process in Windows—but also to scale the output so it looks similar from one
printer device to the next. To demonstrate the printer techniques presented
here, this chapter includes a small Windows application that prints audio-
cassette labels.

Part II ■ Windows Topics

408

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Example Application: WinCassette
Listings 11.1 through 11.6 contain the files needed to create this chapter’s

sample program, WinCassette. As mentioned, this application is a label
printer for audio cassettes.

Listing 11.1. WINCASS.H—the WinCassette application’s header file.

// WINCASS.H: Header file for the WinCassette application.

#ifndef _WINCASS_H

#define _WINCASS_H

#define ID_SIDE 201

#define ID_PRINT 202

#define ID_ABOUT 203

#define ID_SIDETITLE 102

#define ID_TITLESTRING 300

#endif

Listing 11.2. WINCASS.CPP—the WinCassette application’s implementation.

// WINCASS.CPP: Implementation for the

// WinCassette application.

#include <owl.h>

#include “twnd.h”

#include “twcwnd.h”

#include “bwcc.h”

// WinCassette application class.

class TWCApp: public TApplication

{

public:

 TWCApp(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

Chapter 11 ■ Scaling Printer Output

409

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 virtual void InitMainWindow();

};

//

// TWCApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TWCApp::InitMainWindow()

{

 MainWindow = new TWCWnd(NULL, “DIALOG1”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 BWCCGetVersion();

 TWCApp WCApp(“WinCassette”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 WCApp.Run();

 return WCApp.Status;

}

Listing 11.3. TWCWND.H—the main window’s header file.

// TWCWND.H: Header file for the WinCassette main window.

#ifndef _TWCWND_H

#define _TWCWND_H

#include “owl.h”

#include “wincass.h”

typedef struct

{

 char cassTitle[38], // Title for cassette.

 sideTitle[38]; // Title for side A or B.

continues

Part II ■ Windows Topics

410

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.3. Continued

 // Song titles.

 char edit1[38], edit2[38], edit3[38],

 edit4[38], edit5[38], edit6[38],

 edit7[38], edit8[38], edit9[38],

 edit10[38], edit11[38], edit12[38],

 edit13[38], edit14[38], edit15[38],

 edit16[38];

} TRANSFERREC;

_CLASSDEF(TWCWnd)

class TWCWnd: public TDialog

{

 int sideA, // Cassette side flag.

 result; // Printer error flag.

 TRANSFERREC dlgStrgs, // Transfer buffer for dialog.

 sideAStrgs, // Storage for side A data.

 sideBStrgs; // Storage for side B data.

 HDC pDC; // Printer device context.

 char *dlgEdits[18], // Pointers to edit field strings.

 *sideAEdits[18],

 *sideBEdits[18];

public:

 TWCWnd(PTWindowsObject AParent, LPSTR AName);

 virtual void IDSide()

 = [ID_FIRST + ID_SIDE];

 virtual void IDPrint()

 = [ID_FIRST + ID_PRINT];

 virtual void IDAbout()

 = [ID_FIRST + ID_ABOUT];

private:

 void LoadStrings(char **s, char **d);

 int StartPrinting();

 void StopPrinting();

 void PrintLabel();

 void DrawLabel(int horDots, int verDots);

 void DrawBodyText(int horDots, int verDots);

Chapter 11 ■ Scaling Printer Output

411

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 void DrawTitleText(int horDots, int verDots);

 HFONT CreateCassFont(int hSize, int vSize);

};

#endif

Listing 11.4. TWCWND.CPP—the main window’s implementation.

// TWCWND.CPP: The main window implementation for

// WinCassette.

#include “twcwnd.h”

#include “edit.h”

#include “string.h”

//

// TWCWnd::TWCWnd()

//

// This is the main window’s constructor.

//
TWCWnd::TWCWnd(PTWindowsObject AParent, LPSTR AName):

 TDialog(AParent, AName)

{

 // Create OWL edit-control objects.

 for (int x=101; x<=119; ++x)

 new TEdit(this, x, 38);

 // Initialize the buffers to all NULLs.

 memset(&dlgStrgs, 0, sizeof dlgStrgs);

 memset(&sideAStrgs, 0, sizeof sideAStrgs);

 memset(&sideBStrgs, 0, sizeof sideBStrgs);

 // Set the address of the dialog’s transfer buffer.

 TransferBuffer = &dlgStrgs;

 // Initialize string-pointer arrays by storing the

 // address of each of the 38-character strings that

 // make up each buffer.

 for (x=0; x<18; ++x)

 {

continues

Part II ■ Windows Topics

412

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.4. Continued

 dlgEdits[x] = dlgStrgs.cassTitle + x*38;

 sideAEdits[x] = sideAStrgs.cassTitle + x*38;

 sideBEdits[x] = sideBStrgs.cassTitle + x*38;

 }

 // Start on side A.

 sideA = TRUE;

}

//

// TWCWnd::LoadStrings()

//

// This function transfers the contents of one

// TRANSFERREC structure to another. To simplify the

// transfer, you don’t address the structures directly,

// but instead find their strings by the pointer arrays

// you initialized for each buffer.

//

void TWCWnd::LoadStrings(char **s, char **d)

{

 for (int x=0; x<18; ++x)

 strcpy(d[x], s[x]);

}

//

// TWCWnd::IDSide()

//

// This function responds when the user clicks the

// Side button.

//

void TWCWnd::IDSide()

{

 HWND hControl1, hControl2;

 // Transfer data from the dialog’s edit controls

 // to the transfer buffer.

 TransferData(TF_GETDATA);

 // Get handles to the Side button and the

 // dialog’s static string for the side label.

 hControl1 = GetDlgItem(HWindow,ID_SIDE);

Chapter 11 ■ Scaling Printer Output

413

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 hControl2 = GetDlgItem(HWindow, ID_TITLESTRING);

 // If the user was on side A...

 if (sideA)

 {

 // Copy the dialog’s data to the side A buffer.

 LoadStrings(dlgEdits, sideAEdits);

 // Change the Side button’s text and the

 // side static string’s text.

 SetWindowText(hControl1, “&Side A”);

 SetWindowText(hControl2, “Side B:”);

 // Copy the cassette’s title because it is the

 // same for side B.

 strcpy(sideBStrgs.cassTitle, sideAStrgs.cassTitle);

 // Copy the side B buffer to the transfer buffer.

 LoadStrings(sideBEdits, dlgEdits);

 sideA = FALSE;

 }

 // Else if on side B...

 else

 {

 // Copy the dialog’s data to the side B buffer.

 LoadStrings(dlgEdits, sideBEdits);

 // Change the text in the Side button and the

 // side static string.

 SetWindowText(hControl1, “&Side B”);

 SetWindowText(hControl2, “Side A:”);

 // Copy the cassette’s title, in case it has changed.

 strcpy(sideAStrgs.cassTitle, sideBStrgs.cassTitle);

 // Copy the side A buffer to the transfer buffer.

 LoadStrings(sideAEdits, dlgEdits);

 sideA = TRUE;

 }

continues

Part II ■ Windows Topics

414

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.4. Continued

 // Set focus to the side-title edit field.

 hControl1 = GetDlgItem(HWindow, ID_SIDETITLE);

 SetFocus(hControl1);

 // Copy the data in the transfer buffer to

 // the dialog’s controls.

 TransferData(TF_SETDATA);

}

//

// TWCWnd::IDPrint()

//

// This function responds when the user clicks the

// Print button.

//

void TWCWnd::IDPrint()

{

 // Copy data from the dialog’s edit controls

 // into the transfer buffer.

 TransferData(TF_GETDATA);

 // Copy the transfer buffer into the appropriate

 // buffer, depending on the current side.

 if (sideA)

 LoadStrings(dlgEdits, sideAEdits);

 else

 LoadStrings(dlgEdits, sideBEdits);

 // Initialize the printer.

 result = StartPrinting();

 // Print the label.

 if (result > 0)

 PrintLabel();

 // Shut down printing.

 StopPrinting();

}

Chapter 11 ■ Scaling Printer Output

415

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

//

// TWCWnd::PrintLabel()

//

// This function sends the cassette label to the

// printer.

//

void TWCWnd::PrintLabel()

{

 // Get horizontal and vertical resolution for printer.

 int horDots = GetDeviceCaps(pDC, LOGPIXELSX);

 int verDots = GetDeviceCaps(pDC, LOGPIXELSY);

 // Draw the cassette label’s outline.

 DrawLabel(horDots, verDots);

 // Print the side titles and song titles.

 DrawBodyText(horDots, verDots);

 // Print the main cassette titles.

 DrawTitleText(horDots, verDots);

}

//

// TWCWnd::DrawLabel()

//

// This function draws the cassette label’s outline.

//

void TWCWnd::DrawLabel(int horDots, int verDots)

{

 MoveTo(pDC, horDots/2, verDots/2);

 LineTo(pDC, horDots*4.5, verDots/2);

 LineTo(pDC, horDots*4.5, verDots*4.3);

 LineTo(pDC, horDots/2, verDots*4.3);

 LineTo(pDC, horDots/2, verDots/2);

 MoveTo(pDC, horDots/2, verDots*0.75);

 LineTo(pDC, horDots*4.5, verDots*0.75);

 MoveTo(pDC, horDots/2, verDots*0.93);

 LineTo(pDC, horDots*4.5, verDots*0.93);

 MoveTo(pDC, horDots/2, verDots*3.1);

 LineTo(pDC, horDots*4.5, verDots*3.1);

 MoveTo(pDC, horDots/2, verDots*3.62);

 LineTo(pDC, horDots*4.5, verDots*3.62);

continues

Part II ■ Windows Topics

416

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.4. Continued

 MoveTo(pDC, horDots*2.5, verDots*0.75);

 LineTo(pDC, horDots*2.5, verDots*3.1);

}

//

// TWCWnd::DrawBodyText()

//

// This function prints the cassette’s side and song

// titles.

//

void TWCWnd::DrawBodyText(int horDots, int verDots)

{

 TEXTMETRIC metrics; // Physical font description.

 char s[80]; // Output text line.

 // Create and select the font for the cassette text.

 HFONT newFont = CreateCassFont(horDots/30, verDots/8);

 HFONT oldFont = SelectObject(pDC, newFont);

 // Get the size of the physical font.

 GetTextMetrics(pDC, &metrics);

 // Construct and print side A and side B titles.

 strcpy(s, “Side A: “);

 strcpy(&s[strlen(s)], sideAStrgs.sideTitle);

 TextOut(pDC, horDots*0.6, verDots*0.77, s, strlen(s));

 strcpy(s, “Side B: “);

 strcpy(&s[strlen(s)], sideBStrgs.sideTitle);

 TextOut(pDC, horDots*2.6, verDots*0.77, s, strlen(s));

 // Print song titles for sides A and B.

 for (int x=2; x<18; ++x)

 {

 TextOut(pDC, horDots*0.6, (verDots*0.87)+((x-1)

 *metrics.tmHeight), sideAEdits[x],

 strlen(sideAEdits[x]));

 TextOut(pDC, horDots*2.6, (verDots*0.87)+((x-1)

 *metrics.tmHeight), sideBEdits[x],

 strlen(sideBEdits[x]));

 }

Chapter 11 ■ Scaling Printer Output

417

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 // Restore the device context.

 SelectObject(pDC, oldFont);

 DeleteObject(newFont);

}

//

// TWCWnd::DrawTitleText()

//

// This function prints the cassette’s main titles.

//

void TWCWnd::DrawTitleText(int horDots, int verDots)

{

 int strWidth; // Width of text line.

 long textExtent; // Width and height of text line.

 // Create the new title font.

 HFONT newFont = CreateCassFont(horDots/20, verDots/5);

 HFONT oldFont = SelectObject(pDC, newFont);

 // Get the width and height of the title string.

 textExtent = GetTextExtent(pDC, sideAStrgs.cassTitle,

 strlen(sideAStrgs.cassTitle));

 // Extract the width of the title string.

 strWidth = LOWORD(textExtent);

 // Print the main cassette titles.

 TextOut(pDC, (horDots*2.5)-(strWidth/2), verDots*0.52,

 sideAStrgs.cassTitle, strlen(sideAStrgs.cassTitle));

 TextOut(pDC, (horDots*2.5)-(strWidth/2), verDots*3.25,

 sideAStrgs.cassTitle, strlen(sideAStrgs.cassTitle));

 // Restore the device context.

 SelectObject(pDC, oldFont);

 DeleteObject(newFont);

}

//

// TWCWnd::CreateCassFont()

//

// This function creates fonts for the cassette label.

// Fonts vary only in their horizontal and vertical

// size.

//

continues

Part II ■ Windows Topics

418

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.4. Continued

HFONT TWCWnd::CreateCassFont(int hSize, int vSize)

{

 LOGFONT cassLogFont; // Logical font description.

 // Fill in LOGFONT structure.

 cassLogFont.lfHeight = vSize;

 cassLogFont.lfWidth = hSize;

 cassLogFont.lfEscapement = 0;

 cassLogFont.lfOrientation = 0;

 cassLogFont.lfWeight = FW_NORMAL;

 cassLogFont.lfItalic = 0;

 cassLogFont.lfUnderline = 0;

 cassLogFont.lfStrikeOut = 0;

 cassLogFont.lfCharSet = ANSI_CHARSET;

 cassLogFont.lfOutPrecision = OUT_DEFAULT_PRECIS;

 cassLogFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;

 cassLogFont.lfQuality = PROOF_QUALITY;

 cassLogFont.lfPitchAndFamily = VARIABLE_PITCH | FF_ROMAN;

 strcpy(cassLogFont.lfFaceName, “Times New Roman”);

 // Create new font.

 return CreateFontIndirect(&cassLogFont);

}

//

// TWCWnd::IDAbout()

//

// This function responds when the user clicks the

// About button.

//

void TWCWnd::IDAbout()

{

 char s[100];

 // Construct the string to display.

 strcpy(s, “ WinCassette 1.0”);

 s[17] = 13;

 strcpy(&s[18], “by Clayton Walnum”);

 s[35] = 13;

 s[36] = 13;

 strcpy(&s[37], “ Copyright 1992”);

 s[55] = 13;

Chapter 11 ■ Scaling Printer Output

419

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 strcpy(&s[56], “ by Prentice Hall”);

 s[76] = 13;

 strcpy(&s[77], “Computer Publishing”);

 // Use messageBox to display “About” info.

 MessageBox(HWindow, s, “About”, MB_OK);

}

//

// TWCWnd::StartPrinting()

//

// This function creates a device context for the

// user’s printer and initializes the printer.

//

int TWCWnd::StartPrinting()

{

 char buffer[80], // Storage for profile string.

 *cp, // Character pointer.

 *driver, // Pointer to driver string.

 *device, // Pointer to device string.

 *output; // Pointer to output port string.

 // Change the cursor to an hourglass shape.

 SetCursor(LoadCursor(0, IDC_WAIT));

 // Get the printer device string from WIN.INI.

 GetProfileString(“windows”, “device”, “,,”,

 buffer, sizeof buffer);

 // Parse the printer device string to get the

 // device, driver, and output port strings.

 device = buffer; // Set device to start of string.

 cp = strchr(buffer, ‘,’); // Get address of first comma.

 *cp = 0; // Change comma to null.

 driver = &cp[1]; // Get adr of char after device.

 cp = strchr(driver, ‘,’); // Get address of next comma.

 *cp = 0; // Change comma to null.

 output = &cp[1]; // Set pointer to port string.

 // Create a printer device context.

 pDC = CreateDC(driver, device, output, NULL);

 // Begin printing the document.

continues

Part II ■ Windows Topics

420

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.4. Continued

 if (pDC != 0)

 {

 DOCINFO tdi;

 tdi.cbSize = 5;

 tdi.lpszDocName = “Label”;

 tdi.lpszOutput = output;

 result = StartDoc(pDC, &tdi);

 // Escape(pDC, STARTDOC, 5, “LABEL”, NULL);

 if (result > 0)

 result = StartPage(pDC);

 }

 if ((result <= 0) || (pDC == NULL))

 MessageBox(0, “Printer initialization failed”,

 “Error”, MB_ICONEXCLAMATION | MB_OK);

 return result;

}

//

// TWCWnd::StopPrinting()

//

// This function shuts down the printing job.

//

void TWCWnd::StopPrinting()

{

 EndPage(pDC); // Escape(pDC, NEWFRAME, 0, NULL, NULL);

 EndDoc(pDC); // Escape(pDC, ENDDOC, 0, NULL, NULL);

 SetCursor(LoadCursor(0, IDC_ARROW));

 DeleteDC(pDC);

}

Listing 11.5. WINCASS.RC—the application’s resource file.

DIALOG1 DIALOG 12, 13, 276, 202

STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE |

 WS_CAPTION | WS_SYSMENU

CLASS “BorDlg”

CAPTION “WinCassette”

BEGIN

 CONTROL “”, 101, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 24, 6, 98, 12

Chapter 11 ■ Scaling Printer Output

421

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 CONTROL “”, 102, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 158, 6, 97, 12

 CONTROL “”, 103, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 28, 100, 12

 CONTROL “”, 104, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 45, 100, 12

 CONTROL “”, 105, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 63, 100, 12

 CONTROL “”, 106, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 81, 100, 12

 CONTROL “”, 107, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 99, 100, 12

 CONTROL “”, 108, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 117, 100, 12

 CONTROL “”, 109, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 135, 100, 12

 CONTROL “”, 110, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 23, 153, 100, 12

 CONTROL “”, 111, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 28, 100, 12

 CONTROL “”, 112, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 45, 100, 12

 CONTROL “”, 113, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 63, 100, 12

 CONTROL “”, 114, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 81, 100, 12

 CONTROL “”, 115, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 99, 100, 12

continues

Part II ■ Windows Topics

422

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.5. Continued

 CONTROL “”, 116, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 117, 100, 12

 CONTROL “”, 117, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 135, 100, 12

 CONTROL “”, 118, “EDIT”, ES_LEFT | ES_AUTOHSCROLL |

 WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP,

 155, 153, 100, 12

 CONTROL “&Side B”, 201, “BorBtn”, BS_PUSHBUTTON |

 WS_CHILD | WS_VISIBLE | WS_TABSTOP,

 14, 176, 32, 20

 CONTROL “&Print”, 202, “BorBtn”, BS_PUSHBUTTON |

 WS_CHILD | WS_VISIBLE | WS_TABSTOP,

 57, 176, 32, 20

 CONTROL “&About”, 203, “BorBtn”, BS_PUSHBUTTON |

 WS_CHILD | WS_VISIBLE | WS_TABSTOP,

 100, 176, 32, 20

 CONTROL “Quit”, 2, “BorBtn”, 0 | WS_CHILD |

 WS_VISIBLE | WS_TABSTOP, 230, 176, 34, 20

 LTEXT “Side A:”, 300, 133, 8, 24, 8

 LTEXT “1”, -1, 15, 30, 5, 8

 LTEXT “2”, -1, 15, 47, 5, 8

 LTEXT “3”, -1, 15, 65, 5, 8

 LTEXT “4”, -1, 15, 83, 5, 8

 LTEXT “5”, -1, 15, 101, 5, 8

 LTEXT “6”, -1, 15, 119, 5, 8

 LTEXT “7”, -1, 15, 137, 5, 8

 LTEXT “8”, -1, 15, 155, 5, 8

 LTEXT “9”, -1, 147, 30, 5, 8

 LTEXT “10”, -1, 144, 47, 8, 8

 LTEXT “11”, -1, 144, 65, 8, 8

 LTEXT “12”, -1, 144, 83, 8, 8

 LTEXT “13”, -1, 144, 101, 8, 8

 LTEXT “14”, -1, 144, 119, 8, 8

 LTEXT “15”, -1, 144, 137, 8, 8

 LTEXT “16”, -1, 144, 155, 8, 8

 LTEXT “Title:”, -1, 6, 8, 16, 8

 CONTROL “”, 119, “BorShade”, 2 | WS_CHILD |

 WS_VISIBLE, 4, 22, 269, 2

 CONTROL “”, 120, “BorShade”, 2 | WS_CHILD |

 WS_VISIBLE, 4, 170, 269, 1

END

Chapter 11 ■ Scaling Printer Output

423

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Listing 11.6. WINCASS.DEF—the application’s definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

When you run the program, you see the window shown in Figure 11.1. In the
first edit box (the one in the upper-left corner), type the main title of the
cassette. Then press Tab and type the title for side A. Next, type up to 16 song
titles for side A of the cassette, then click the Side B button to enter song titles
for side B. Finally, click the Print button to print the cassette label.

Figure 11.1. The WinCassette main window.

Thanks to the power of a Windows dialog box, this program does little more
than format and print data. But as you can see from the size of the listing, it
takes many lines of code to print even something as simple as a cassette label.
You must select fonts, create printer device contexts, and scale output for the
printer. Because you want the application to work with more than one type of
printer, you must handle all this processing in a general way, assuming nothing
about the output device.

WinCassette accomplishes this goal to produce similar labels on any printer.
Read on to see how the program works.

Part II ■ Windows Topics

424

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

A Dialog Main Window
WinCassette’s main window requires many controls: four buttons and 18

edit fields. To create these controls in the program would be a major
chore. You would have to experiment with different control sizes and coordi-
nates by typing values into the program, compiling the program, seeing how
the controls look, then readjusting them. A way around this meticulous
process is to create a dialog box using the Resource Workshop, and then use
the dialog as your main window.

Although it may seem at first that this is a tricky task, using a dialog box for a
main window is no more complex than using a regular window. This fact can
be seen in the application’s InitMainWindow() function:

void TWCApp::InitMainWindow()

{

 MainWindow = new TWCWnd(NULL, “DIALOG1”);

}

Here, the program substitutes the dialog box’s constructor for the usual
TWindow constructor (or a window derived from TWindow). When the program
runs now, the screen displays the dialog box instead of a conventional main
window. This dialog window, however, has some limitations. For example, a
dialog box doesn’t have a menu (except for the system menu) and normally
can’t specify an icon or a cursor, as a window derived from TWindow can.

Except for having a dialog box as a main window, this application class is almost
identical to the other application classes you’ve used. This is typical of an
ObjectWindows program. With only minimal changes, the application class
you’ve been using all along can be the basis for practically any program.

The Dialog Window Class
Virtually all of WinCassette’s functionality is in the TWCWnd class:

_CLASSDEF(TWCWnd)

class TWCWnd: public TDialog

{

 int sideA, // Cassette side flag.

 result; // Printer error flag.

 TRANSFERREC dlgStrgs, // Transfer buffer for dialog.

 sideAStrgs, // Storage for side A data.

 sideBStrgs; // Storage for side B data.

Chapter 11 ■ Scaling Printer Output

425

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 HDC pDC; // Printer device context.

 char *dlgEdits[18], // Pointers to edit field strings.

 *sideAEdits[18],

 *sideBEdits[18];

public:

 TWCWnd(PTWindowsObject AParent, LPSTR AName);

 virtual void IDSide()

 = [ID_FIRST + ID_SIDE];

 virtual void IDPrint()

 = [ID_FIRST + ID_PRINT];

 virtual void IDAbout()

 = [ID_FIRST + ID_ABOUT];

private:

 void LoadStrings(char **s, char **d);

 int StartPrinting();

 void StopPrinting();

 void PrintLabel();

 void DrawLabel(int horDots, int verDots);

 void DrawBodyText(int horDots, int verDots);

 void DrawTitleText(int horDots, int verDots);

 HFONT CreateCassFont(int hSize, int vSize);

};

This class contains a number of private data members. The sideA flag indicates
whether the user is working on side A or B of the cassette. The result integer
contains the results of certain printer operations.

Next are three copies of the dialog’s transfer buffer. (The transfer buffers are
described in more detail in the next section.) The first, dlgStrgs, is the transfer
buffer OWL uses to transfer data from your dialog box. The other two,
sideAStrgs and sideBStrgs, provide storage for data copied from the main
transfer buffer. The pDC handle holds the handle to a printer device context.

Finally, the dlgEdits[], sideAEdits[], and sideBEdits[] character pointer
arrays hold pointers to each of the fields in the three TRANSFERREC structures.
By having these pointer arrays, the program can access the strings in the
buffers more easily.

The public member functions in this class include only the class’ constructor
and three message-response functions, one each for the Side, Print, and About
buttons. The class doesn’t need to declare a message-response method for the
Cancel button because it has inherited that function from the OWL TDialog
class.

Part II ■ Windows Topics

426

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Finally, the private member functions handle all the printing operations. They
also allow the transfer of data between the TRANSFERREC structures and the
selection of new fonts.

Handling Dialog Data
The WinCassette dialog box contains 18 edit fields, any or all of which may hold
the information you need to print a cassette label. Before you can print the
label, you must be able to access this data. In a traditional Windows program,
handling dialog data requires checking each control before the dialog closes;
the data in the controls must be saved in a buffer or processed before the dialog
closes. When the dialog closes, the data is gone.

Borland C++ programmers, however, don’t care about the details of accessing
dialog data, because ObjectWindows supplies a transfer mechanism that
automatically copies this data into a buffer when the dialog closes. You can
then process the data any way you like, in your own good time.

To enable this transfer mechanism, you must first define a transfer buffer. This
transfer buffer is a structure that contains a field for each control that you
want involved in the transfer. The types of fields in the structure vary
depending on the type of control. For example, an edit control requires a
character array, whereas an option button requires only a single integer in
which to store its state (checked or unchecked).

The transfer buffer for WinCassette is defined in the TWCWND.H file and looks
like this:

typedef struct

{

 char cassTitle[38], // Title for cassette.

 sideTitle[38]; // Title for side A or B.

 // Song titles.

 char edit1[38], edit2[38], edit3[38],

 edit4[38], edit5[38], edit6[38],

 edit7[38], edit8[38], edit9[38],

 edit10[38], edit11[38], edit12[38],

 edit13[38], edit14[38], edit15[38],

 edit16[38];

} TRANSFERREC;

Chapter 11 ■ Scaling Printer Output

427

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

The dialog box has two title fields and 16 song title fields. As you can see, each
edit field has a 38-element character array. You don’t have to provide fields in
this structure for the dialog’s buttons because the buttons do not contain
information you need after the dialog closes.

Supplying the transfer buffer is only the first step in setting up the transfer
mechanism. Next, you have to associate the controls of your dialog box with
OWL controls, because only OWL controls can participate in the transfer.
Moreover, you must create these OWL controls in the same order in which they
are represented in your transfer buffer. Finally, you must supply OWL with the
address of the transfer buffer.

All this happens in the dialog’s constructor:

TWCWnd::TWCWnd(PTWindowsObject AParent, LPSTR AName):

 TDialog(AParent, AName)

{

 // Create OWL edit-control objects.

 for (int x=101; x<=119; ++x)

 new TEdit(this, x, 38);

 // Initialize the buffers to all NULLs.

 memset(&dlgStrgs, 0, sizeof dlgStrgs);

 memset(&sideAStrgs, 0, sizeof sideAStrgs);

 memset(&sideBStrgs, 0, sizeof sideBStrgs);

 // Set the address of the dialog’s transfer buffer.

 TransferBuffer = &dlgStrgs;

 // Initialize string-pointer arrays by storing the

 // address of each of the 38-character strings that

 // make up each buffer.

 for (x=0; x<18; ++x)

 {

 dlgEdits[x] = dlgStrgs.cassTitle + x*38;

 sideAEdits[x] = sideAStrgs.cassTitle + x*38;

 sideBEdits[x] = sideBStrgs.cassTitle + x*38;

 }

 // Start on side A.

 sideA = TRUE;

}

Part II ■ Windows Topics

428

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Here, the program first creates 18 OWL edit controls. The first control stores
its data in the first field of the transfer buffer, the second stores its data in the
second field, and so on. After creating the controls, the program calls memset()
to initialize all the buffers to NULLs. In the case of dlgStrgs, which is the
transfer buffer, this call ensures that all fields in the dialog box are blank when
the box first appears.

After clearing the buffers, the program gives OWL the address of the transfer
buffer by setting the dialog’s TransferBuffer data member. At this point, the
transfer mechanism is fully initialized and ready to go. Next, the pointer arrays
are initialized, using pointer math in a for loop. Because each edit control is 38
characters long, calculating the address of a control is only a matter of
multiplying the loop variable x by 38 and adding the result to the address of
the first field in the structure. Finally, the sideA flag is set to true, which
indicates that the dialog is currently on side A.

When the user first runs the program, the dialog box basically takes care of
itself. The user can type and edit data in any of the displayed edit fields with
no help from the program. WinCassette kicks into action when the user selects
one of its buttons (unless this button happens to be Cancel, which does nothing
more than close the dialog).

A Two-Faced Dialog
Because all the edit fields needed for both sides of the cassette cannot fit into
one dialog box, the dialog box displays only one side’s worth of data at a time.
In a way, this window is really two dialogs in one. Because of this design, when
users finish entering data for side A of the cassette, they must press the Side
B button to switch the dialog to side B.

When the user selects the Side button, the faces must switch, as it were, to
display the edit fields for the other side. This bit of magic is performed by the
IDSide() message-response function:

void TWCWnd::IDSide()

{

 HWND hControl1, hControl2;

 // Transfer data from the dialog’s edit controls

 // to the transfer buffer.

 TransferData(TF_GETDATA);

Chapter 11 ■ Scaling Printer Output

429

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 // Get handles to the Side button and the

 // dialog’s static string for the side label.

 hControl1 = GetDlgItem(HWindow,ID_SIDE);

 hControl2 = GetDlgItem(HWindow, ID_TITLESTRING);

 // If the user was on side A...

 if (sideA)

 {

 // Copy the dialog’s data to the side A buffer.

 LoadStrings(dlgEdits, sideAEdits);

 // Change the Side button’s text and the

 // side static string’s text.

 SetWindowText(hControl1, “&Side A”);

 SetWindowText(hControl2, “Side B:”);

 // Copy the cassette’s title because it’s the same

 // for side B.

 strcpy(sideBStrgs.cassTitle, sideAStrgs.cassTitle);

 // Copy the side B buffer to the transfer buffer.

 LoadStrings(sideBEdits, dlgEdits);

 sideA = FALSE;

 }

 // Else if on side B...

 else

 {

 // Copy the dialog’s data to the side B buffer.

 LoadStrings(dlgEdits, sideBEdits);

 // Change the text in the Side button and the

 // side static string.

 SetWindowText(hControl1, “&Side B”);

 SetWindowText(hControl2, “Side A:”);

 // Copy the cassette’s title, in case it’s changed.

 strcpy(sideAStrgs.cassTitle, sideBStrgs.cassTitle);

 // Copy the side A buffer to the transfer buffer.

 LoadStrings(sideAEdits, dlgEdits);

 sideA = TRUE;

 }

Part II ■ Windows Topics

430

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 // Set the focus to the side-title edit field.

 hControl1 = GetDlgItem(HWindow, ID_SIDETITLE);

 SetFocus(hControl1);

 // Copy the data in the transfer buffer to

 // the dialog’s controls.

 TransferData(TF_SETDATA);

}

In this function, a call to TransferData() first copies the data from the dialog
to the transfer buffer. (The automatic data transfer takes place only when the
user closes the dialog box. Thus, here, the program must inform the transfer
mechanism when it needs data and when it needs the dialog updated with new
data.) After this call, the text the user typed into the dialog’s edit fields is in the
dlgStrgs structure.

After transferring the data, the program must modify a few of the dialog’s
controls so it appears as if it has switched sides. First, the program gets handles
to the ID_SIDE button and the ID_TITLESTRING static text controls. After
getting the handles, the program determines which side is being processed. If
the user is on side A, LoadStrings() is called to copy the transfer buffer into
the side A buffer. This short function looks like this:

void TWCWnd::LoadStrings(char **s, char **d)

{

 for (int x=0; x<18; ++x)

 strcpy(d[x], s[x]);

}

This function takes as parameters the arrays of pointers the program initialized
previously. Using a for loop, it iterates through the arrays, copying the source
strings (pointed to by the pointers in s[]) into the destination strings (pointed
to by the pointers in d[]).

Getting back to IDSide(), after saving the data in the transfer buffer, the
program calls SetWindowText() to change the text strings displayed in the two
controls for which it got handles. It changes the button’s text to Side A

(because the button now will be used to switch to side A) and the static text
string to Side B (because this is the side the user is now on). Then, because
the cassette’s main title is the same for either side, the title is copied to side B’s
buffer. Next, side B’s strings are copied to the transfer buffer so OWL can
display them. Before the function ends, SetFocus() is called to place the text
cursor in the side B text field, where the user will most likely want to begin
typing. Finally, the program copies the new data to the dialog’s edit fields by
calling TransferData().

Chapter 11 ■ Scaling Printer Output

431

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

The process is almost identical when switching from side B back to side A, so
the else statement is not discussed here.

When the users have entered all the data for the cassette label, they’ll want to
print it. They do this by selecting the Print button, which calls the IDPrint()
message-response function:

void TWCWnd::IDPrint()

{

 // Copy data from the dialog’s edit controls

 // into the transfer buffer.

 TransferData(TF_GETDATA);

 // Copy the transfer buffer into the appropriate

 // buffer, depending on the current side.

 if (sideA)

 LoadStrings(dlgEdits, sideAEdits);

 else

 LoadStrings(dlgEdits, sideBEdits);

 // Initialize the printer.

 result = StartPrinting();

 // Print the label.

 if (result > 0)

 PrintLabel();

 // Shut down printing.

 StopPrinting();

}

Here, the program copies the data from the dialog box to the transfer buffer
and then copies the transfer buffer to the appropriate storage buffer, depend-
ing on the current side. Then StartPrinting() is called to start the printing
job. If the job starts okay, PrintLabel() is called to print the label and then
StopPrinting() is called to end the print job. These three functions contain
the details of the printing process.

The Printer Device Context
W hen outputting graphics to a window, you don’t write directly to the

screen. Instead, you get a device context for the currently active

Part II ■ Windows Topics

432

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

window and use GDI calls to draw the output. In this way, you are sure that the
output is translated by the active graphics driver, so it’s displayed properly on
the monitor. The device context acts as a middle layer between your program
and the physical devices.

Sending output to the printer works similarly. In your Windows programs, you
should never write directly to the printer. Rather, you should create a device
context for the printer and use GDI calls to send data to the device context.
This is accomplished with the StartPrinting() function:

int TWCWnd::StartPrinting()

{

 char buffer[80], // Storage for profile string.

 *cp, // Character pointer.

 *driver, // Pointer to driver string.

 *device, // Pointer to device string.

 *output; // Pointer to output port string.

 // Change the cursor to an hourglass shape.

 SetCursor(LoadCursor(0, IDC_WAIT));

 // Get the printer device string from WIN.INI.

 GetProfileString(“windows”, “device”, “,,”,

 buffer, sizeof buffer);

 // Parse the printer device string to get the

 // device, driver, and output port strings.

 device = buffer; // Set device to start of string.

 cp = strchr(buffer, ‘,’); // Get address of first comma.

 *cp = 0; // Change comma to null.

 driver = &cp[1]; // Get adr of char after device.

 cp = strchr(driver, ‘,’); // Get address of next comma.

 *cp = 0; // Change comma to null.

 output = &cp[1]; // Set pointer to port string.

 // Create a printer device context.

 pDC = CreateDC(driver, device, output, NULL);

 // Begin printing the document.

 if (pDC != 0)

 {

 DOCINFO tdi;

 tdi.cbSize = 5;

Chapter 11 ■ Scaling Printer Output

433

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 tdi.lpszDocName = “Label”;

 tdi.lpszOutput = output;

 result = StartDoc(pDC, &tdi);

 // Escape(pDC, STARTDOC, 5, “LABEL”, NULL);

 if (result > 0)

 result = StartPage(pDC);

 }

 if ((result <= 0) || (pDC == NULL))

 MessageBox(0, “Printer initialization failed”,

 “Error”, MB_ICONEXCLAMATION | MB_OK);

 return result;

}

First, SetCursor() is called to change the mouse cursor to the hourglass,
informing the user that the system is busy sending data to the printer. Next,
the program has to get a device context for the active printer. To do this, it first
must know which printer driver to use, which printer is active, and to which
port the printer is connected. This information is in the user’s WIN.INI file. A
call to GetProfileString() with the parameters shown results in the profile
string for the current printer, for example:

HP DeskJet Plus,HPDSKJET,LPT1:

The first part of the string is the type of printer, the second part is the printer
driver’s name, and the third part is the port to which the printer is connected.
In StartPrinting(), the program does some tricky pointer handling to parse
the string and separate it into the driver, device, and output strings. Finally,
it creates the printer DC by calling CreateDC().

After the program has a handle to the DC, it can start the print job. To do this
with older versions of Windows, devices had to be accessed by the clumsy
Escape() function. Functions have been added to Windows 3.1 to simplify the
printing process. To start the job, the program calls the Windows StartDoc()
function, with parameters that are the printer DC and a pointer to the DOCINFO
structure. The DOCINFO structure contains three fields. The first, cbSize, is the
length of the document’s name. The second, lpszDocName, is the document’s
name (used to identify the document in the print queue). And the third,
lpszOutput, is the string containing the output-port identifier.

If the print job starts without error, a call to StartPage() sets up the printer
device and begins printing the document. This function also notifies Windows
that a page is about to be printed, which prohibits changes to the device mode
(including such things as paper size and orientation) until the page is fully
printed.

Part II ■ Windows Topics

434

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Printer Output
A lthough sending output to a printer is much more complicated than

sending it to a window, both processes have much in common. To
generate printer output, you simply call the appropriate GDI functions,
directing them to your device context, just as you do with a window. Windows
can translate GDI function calls into appropriate graphics commands for a
specific printer, but it can’t scale the output so it looks similar on different
printers. It’s up to your program to translate the output’s logical coordinates
into physical coordinates that take into consideration the resolution of the
device.

For example, consider a dot-matrix printer with a horizontal resolution of 120
DPI and a laser printer with a horizontal resolution of 300 DPI. If you were to
send the Rectangle(10,10,310,10) command to each printer, you’d get
different results. With the dot-matrix printer, the rectangle would be almost
three inches wide. The laser printer, however, would produce a rectangle only
one inch wide. When dealing with printers, the coordinates in the GDI
Rectangle() function (and other GDI drawing functions) are dot coordinates,
just as they are pixel coordinates for a window. In other words, on both the
120-DPI and 300-DPI printer, the rectangle is 300 dots wide, but because the
dot-matrix printer has larger dots, the rectangle comes out larger.

Note: Windows uses various mapping modes to translate logical coordi-
nates to physical coordinates. The default mapping mode, which is used in
WinCassette, is MM_TEXT, a mode in which logical and physical coordi-

nates are the same. The MM_TEXT mapping mode also specifies that values of x
increase as you move to the right and values of y increase as you move down. This is
probably the type of coordinate system you’re used to working with. For a more in-
depth look at mapping modes, consult your Borland C++ manuals or Windows
programming guide.

So, to produce drawings of the same physical dimensions on different printers,
you must scale the coordinates to the printer. In the PrintLabel() function,
the program gets the printer’s resolution and uses the resolution to scale the
output:

void TWCWnd::PrintLabel()

{

Chapter 11 ■ Scaling Printer Output

435

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 // Get horizontal and vertical resolution for printer.

 int horDots = GetDeviceCaps(pDC, LOGPIXELSX);

 int verDots = GetDeviceCaps(pDC, LOGPIXELSY);

 // Draw the cassette label’s outline.

 DrawLabel(horDots, verDots);

 // Print the side titles and song titles.

 DrawBodyText(horDots, verDots);

 // Print the main cassette titles.

 DrawTitleText(horDots, verDots);

}

First, the Windows GetDeviceCaps() function is called to get the printer’s
horizontal and vertical resolutions, which are given as dots per inch. Then, the
program calls the functions that draw the label’s various elements, passing the
printer’s horizontal and vertical resolution as parameters.

The first drawing function, DrawLabel(), draws the label’s outline with a series
of calls to MoveTo() and LineTo():

void TWCWnd::DrawLabel(int horDots, int verDots)

{

 MoveTo(pDC, horDots/2, verDots/2);

 LineTo(pDC, horDots*4.5, verDots/2);

 LineTo(pDC, horDots*4.5, verDots*4.3);

 LineTo(pDC, horDots/2, verDots*4.3);

 LineTo(pDC, horDots/2, verDots/2);

 MoveTo(pDC, horDots/2, verDots*0.75);

 LineTo(pDC, horDots*4.5, verDots*0.75);

 MoveTo(pDC, horDots/2, verDots*0.93);

 LineTo(pDC, horDots*4.5, verDots*0.93);

 MoveTo(pDC, horDots/2, verDots*3.1);

 LineTo(pDC, horDots*4.5, verDots*3.1);

 MoveTo(pDC, horDots/2, verDots*3.62);

 LineTo(pDC, horDots*4.5, verDots*3.62);

 MoveTo(pDC, horDots*2.5, verDots*0.75);

 LineTo(pDC, horDots*2.5, verDots*3.1);

}

Because the horDots and verDots variables represent the number of dots per
inch both horizontally and vertically, you can easily think of your printer
output in terms of inches. For example, you want to start drawing your cas-
sette label a half an inch from the top and left of the page, so you simply move

Part II ■ Windows Topics

436

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

to the coordinates given by horDots/2 and verDots/2. On a 120-DPI printer,
this is 60 dots from the top and left. On a 300-DPI printer, this is 150 dots from
the top and left. In both cases, it is half an inch, resulting in an identical location
on the page for either printer. Using similar calculations, the program can draw
the entire cassette label’s outline with no further fuss.

Creating and Using Fonts
After drawing the cassette’s outline, the program must print text for the

side titles and the song titles. Because these titles use a smaller font than
the font for the cassette’s main title, the program can’t rely on default fonts. It
must create fonts that are not only the proper size for both types of titles, but
also scaled for the current printer. The CreateCassFont() function handles
these font-creation duties:

HFONT TWCWnd::CreateCassFont(int hSize, int vSize)

{

 LOGFONT cassLogFont; // Logical font description.

 // Fill in LOGFONT structure.

 cassLogFont.lfHeight = vSize;

 cassLogFont.lfWidth = hSize;

 cassLogFont.lfEscapement = 0;

 cassLogFont.lfOrientation = 0;

 cassLogFont.lfWeight = FW_NORMAL;

 cassLogFont.lfItalic = 0;

 cassLogFont.lfUnderline = 0;

 cassLogFont.lfStrikeOut = 0;

 cassLogFont.lfCharSet = ANSI_CHARSET;

 cassLogFont.lfOutPrecision = OUT_DEFAULT_PRECIS;

 cassLogFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;

 cassLogFont.lfQuality = PROOF_QUALITY;

 cassLogFont.lfPitchAndFamily = VARIABLE_PITCH | FF_ROMAN;

 strcpy(cassLogFont.lfFaceName, “Times New Roman”);

 // Create new font.

 return CreateFontIndirect(&cassLogFont);

}

Chapter 11 ■ Scaling Printer Output

437

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

The parameters passed to this function are the horizontal and vertical size of
the font. To create a font, the program first must initialize a LOGFONT (logical
font) structure, which holds a complete description of the font. This structure
contains 14 fields, although many of the fields can be set to 0 or their default
values, depending on the program’s needs. Each field of LOGFONT is briefly
described in Table 11.1.

Table 11.1. LOGFONT fields and their descriptions.

Field Description

lfHeight Height of font in logical units

lfWidth Width of font in logical units

lfEscapement Angle at which to draw the text

lfOrientation Character tilt in tenths of a degree

lfWeight Used to select normal (400) or boldface
(700) text

lfItalic A nonzero value indicates italics

lfUnderline A nonzero value indicates an underlined
font

lfStrikeOut A nonzero value indicates a
strikethrough font

lfCharSet Font character set

lfOutPrecision How to match requested font to actual
font

lfClipPrecision How to clip characters that run over clip
area

lfQuality Print quality of the font

lfPitchAndFamily Pitch and font family

lfFaceName Typeface name

The LOGFONT description in Table 11.1 gives only an overview of the structure.
Before experimenting with custom fonts, you may want to look up this
structure in your Borland manual or on-line help, where you’ll find a more

Part II ■ Windows Topics

438

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

complete description of each of its fields, including the many constants that are
already defined for use with the structure. In any case, you can use
CreateCassFont() to create fonts of different sizes quickly.

In CreateCassFont(), the program sets the lfHeight and lfWidth fields to the
height and width of the requested font. These values are the parameters
passed to the function. Note that, in most cases, you should set the width to
0, which allows Windows to select a width that better matches the height. With
your cassette labels, however, you have to conserve space. The font width
selected in the function yields a compressed font that enables the program to
print longer song titles.

Finally, in CreateCassFont(), the program sets many of the other LOGFONT
fields to zero or to their default values and selects the variable-pitch Roman
font family and the Times New Roman face.

After filling in the LOGFONT structure, the font is created by calling
CreateFontIndirect(), which returns a handle to the new font. CreateCassFont()
returns this handle, to be used by the calling function.

There’s still more to know about using a custom font, though, as you can see
in the DrawBodyText() function:

void TWCWnd::DrawBodyText(int horDots, int verDots)

{

 TEXTMETRIC metrics; // Physical font description.

 char s[80]; // Output text line.

 // Create and select the font for the cassette text.

 HFONT newFont = CreateCassFont(horDots/30, verDots/8);

 HFONT oldFont = SelectObject(pDC, newFont);

 // Get the size of the physical font.

 GetTextMetrics(pDC, &metrics);

 // Construct and print side A and side B titles.

 strcpy(s, “Side A: “);

 strcpy(&s[strlen(s)], sideAStrgs.sideTitle);

 TextOut(pDC, horDots*0.6, verDots*0.77, s, strlen(s));

 strcpy(s, “Side B: “);

 strcpy(&s[strlen(s)], sideBStrgs.sideTitle);

 TextOut(pDC, horDots*2.6, verDots*0.77, s, strlen(s));

 // Print song titles for sides A and B.

Chapter 11 ■ Scaling Printer Output

439

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

 for (int x=2; x<18; ++x)

 {

 TextOut(pDC, horDots*0.6, (verDots*0.87)+((x-1)

 *metrics.tmHeight), sideAEdits[x],

 strlen(sideAEdits[x]));

 TextOut(pDC, horDots*2.6, (verDots*0.87)+((x-1)

 *metrics.tmHeight), sideBEdits[x],

 strlen(sideBEdits[x]));

 }

 // Restore the device context.

 SelectObject(pDC, oldFont);

 DeleteObject(newFont);

}

This function draws the text for the side and song titles. It first calls
CreateCassFont() to create an appropriately sized font, scaling horDots and
verDots as needed for the application. It then selects the new font into the
printer DC. Because Windows cannot always guarantee that you will get
exactly the font requested, the program must check the selected font’s
metrics (characteristics). It does this with a call to GetTextMetrics(), which
fills in a TEXTMETRIC structure, a pointer to which is one of the function’s
parameters. The TEXTMETRIC structure contains 20 fields that describe the
selected font. See Table 11.2.

Table 11.2. TEXTMETRIC fields and their descriptions.

Field Description

tmHeight Height of a character in logical units

tmAscent Height of a character above the baseline in
logical units

tmDescent Height of a character below the baseline in
logical units

tmInternalLeading The difference between the point size and
the physical size of the font

tmExternalLeading Spacing between rows of text

tmAveCharWidth Average width of characters in logical units

continues

Part II ■ Windows Topics

440

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Table 11.2. TEXTMETRIC fields and their descriptions (continued).

Field Description

tmMaxCharWidth The maximum width of a character in logical
units

tmWeight Indicates normal or boldface font

tmItalic A nonzero value indicates an italic font

tmUnderlined A nonzero value indicates an underlined font

tmStruckOut A nonzero value indicates a strikethrough
font

tmFirstChar The code for the first character in the font

tmLastChar The code for the last character in the font

tmDefaultChar Character displayed by Windows for charac-
ters not included in the selected font

tmBreakChar Character used for breaks between words

tmPitchAndFamily Pitch and font family

tmCharSet Character set of font

tmOverhang Extra space needed for italic or bold
characters

tmDigitizedAspectX Aspect ratio of the device for which the font
tmDigitizedAspectY was selected

In this program, you are concerned only with the height of the font, so you can
determine the proper line spacing.

After the program calls GetTextMetrics(), it builds the side A and B title
strings and prints them on the label. Each line is printed by calling the GDI
TextOut() function, scaling horDots and verDots to position the titles. After
printing the side titles, the program then prints the song titles, using a for loop
to iterate through the edit-field pointer arrays. Notice how the tmHeight field
of the metrics TEXTMETRIC structure is used to space the text vertically. Finally,
the function exits, the program restores the old DC by selecting the old font
and deleting the new one.

Chapter 11 ■ Scaling Printer Output

441

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Now that the cassette’s outline has been drawn and the side and song titles
have been printed, the only thing left to do is to print the cassette’s main title,
which is accomplished in the DrawTitleText() function:

void TWCWnd::DrawTitleText(int horDots, int verDots)

{

 int strWidth; // Width of text line.

 long textExtent; // Width and height of text line.

 // Create the new title font.

 HFONT newFont = CreateCassFont(horDots/20, verDots/5);

 HFONT oldFont = SelectObject(pDC, newFont);

 // Get the width and height of the title string.

 textExtent = GetTextExtent(pDC, sideAStrgs.cassTitle,

 strlen(sideAStrgs.cassTitle));

 // Extract the width of the title string.

 strWidth = LOWORD(textExtent);

 // Print the main cassette titles.

 TextOut(pDC, (horDots*2.5)-(strWidth/2), verDots*0.52,

 sideAStrgs.cassTitle, strlen(sideAStrgs.cassTitle));

 TextOut(pDC, (horDots*2.5)-(strWidth/2), verDots*3.25,

 sideAStrgs.cassTitle, strlen(sideAStrgs.cassTitle));

 // Restore the device context.

 SelectObject(pDC, oldFont);

 DeleteObject(newFont);

}

Here, a new, larger font is created for the main title and selected into the DC.
Then GetTextExtent() is called to determine the size of the title string. This
function returns a long integer with the height of the string in the high word
and the width of the string in the low word. Because the title string should be
centered on the label, the program must extract the value of the low word; this
is done by invoking the LOWORD macro. Then, using strWidth, horDots, and
verDots (all scaled appropriately), the program calls TextOut() to print the
title centered on the label. Finally, the old font is selected into the DC, and the
new font is deleted.

Part II ■ Windows Topics

442

SAMS Borland C++ Power Programming 172-7 Jay 2-12-93 Ch 11 Lp#3

Ending a Print Job
N ow that the label is printed, the program has to close the print job. The

StopPrinting() function takes care of this:

void TWCWnd::StopPrinting()

{

 EndPage(pDC); // Escape(pDC, NEWFRAME, 0, NULL, NULL);

 EndDoc(pDC); // Escape(pDC, ENDDOC, 0, NULL, NULL);

 SetCursor(LoadCursor(0, IDC_ARROW));

 DeleteDC(pDC);

}

First, EndPage() is called, which ejects the finished page from the printer. Then
a call to EndDoc() ends the print job. (These are two of the new Windows 3.1
functions that replace an Escape() call.) Finally, the program sets the cursor
back to the arrow and deletes the printer DC.

That’s it. The user’s cassette label is now printed, and the user can exit the
program by clicking the Cancel button or selecting the Close entry in the
System menu. You do not have to provide a message-response function for the
Cancel button, because OWL handles it for you.

Conclusion
Although handling printer output in Windows is a meticulous process, you

should have little difficulty producing device-independent programs if
you follow the rules and assume nothing about the active printer.

This chapter presented the basics of handling and scaling printer output.
However, dealing with printers in Windows is a complex topic, one that can
fill a book of its own. If you plan to write applications that use printers
extensively, you should research this topic further. Besides the Borland C++
manuals, you should pick up a copy of Programming in Windows 3.1, Sec-
ond Edition, published by Que Corporation, and Charles Petzold’s book,
Programming Windows 3.1, published by Microsoft Press.

Chapter 12 ■ The Windows Clipboard

443

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

The Windows
Clipboard

12

haring data is more than a convenience in Windows—it’s a
way of life. Because it’s so important, Windows provides
several ways of sharing data between applications, each of
varying complexity. These methods of sharing data in-
clude the following:

• the Windows Clipboard

• Dynamic Data Exchange (DDE)

• Object Linking and Embedding (OLE)

• Dynamic Link Libraries (DLLs)

DDE and OLE require that applications process messages not only from
Windows, but also messages that originate from other applications. The
message-passing and response can become fairly complex. In fact, entire
books have been written on these topics.

The Clipboard, on the other hand, provides a simple mechanism for transfer-
ring data between applications. Although it is limited in some respects, it still

S

Part II ■ Windows Topics

444

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

offers a great deal of flexibility, allowing applications to exchange not only text,
but even bitmaps, metafiles, spreadsheet data, .TIFF files, color palettes, and
user-defined (or private) data formats.

Anything placed on the Clipboard is instantly available to any application that
supports the Clipboard. And virtually any application that provides standard
editing features such as cut and paste supports the Clipboard.

In this chapter, you learn how to copy data to the Clipboard, as well as how to
extract data that other applications have placed there. Along the way, you
learn to keep menu items current, based on the format of data in the Clipboard.
Chapter 13 discusses Dynamic Link Libraries in detail.

Introducing the Clipboard
T he Windows Clipboard is not some magical software wonder that only a

computer scientist can understand. It’s really nothing more than a buffer
manager. You’ve worked with buffers before, right? In order to use a buffer, a
program needs a way to place information into the buffer, to extract informa-
tion from the buffer, and to determine the type of information stored in the
buffer. In traditional applications, the actual program creates the buffer and
decides how to handle it.

One big difference between the Clipboard and other buffers is that the
Clipboard doesn’t go away when a program ends. Moreover, Windows, rather
than an application program, determines, by a set of predefined rules, how the
buffer must be handled. The fine folks who designed Windows developed these
rules, which are represented by a group of functions and messages. To access
the Clipboard, a program must call Windows functions.

Because the Clipboard is a resource that’s shared by all Windows applications,
programs must have permission to use it. When a program is finished with the
Clipboard, the program must then make the Clipboard available to other
applications. This is not unlike the way a program gets and releases device
contexts, which are also a shared resource (although, unlike the Clipboard,
you can have more than one device context). Using the Clipboard in an
application requires following the rules. In the sections that follow, you learn
not only how to use the Clipboard, but also how to ensure that other
applications have their fair share of Clipboard access.

Chapter 12 ■ The Windows Clipboard

445

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Clipboard Formats
T he Clipboard can hold many types of data. Because of this flexibility,

programs can easily transfer text, graphics, spreadsheet data, and more,
all the while retaining the data’s original formatting information. All told, the
Clipboard supports nine data formats, with other private, user-defined formats
available. The supported Clipboard formats are listed in Table 12.1.

Table 12.1. Clipboard data formats.

Format Description

CF_TEXT NULL-terminated ANSI text, including carriage
returns and linefeeds.

CF_BITMAP Device-dependent bitmaps.

CF_METAFILEPICT Metafile pictures.

CF_SYLK Microsoft Symbolic Link data, used by
Multiplan, Chart, and Excel.

CF_DIF Data Interchange Format data used by VisiCalc.

CF_TIFF Tag Image File Format data for bitmaps.

CF_OEMTEXT Text using the OEM (standard IBM) character
set.

CF_DIB Device-independent bitmaps.

CF_PALETTE A color palette handle.

As you can see, the Clipboard is a versatile beast. But because most programs
need only the CF_TEXT and CF_BITMAP formats, it is these formats that you learn
to handle in this chapter.

Part II ■ Windows Topics

446

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Handling Text with the Clipboard
T he simplest Clipboard data is CF_TEXT, which is plain vanilla ANSI text.

The only special characters recognized by this format are carriage
returns, linefeeds, and NULLs. Carriage returns and linefeeds mark the end of
lines, of course, whereas a NULL marks the end of the text. This type of data
is usually transferred to the Clipboard when a user cuts or copies text from a
text editor of some type. The Borland IDE editor, for example, transfers text
in this format.

When an application transfers text to the Clipboard, the text no longer belongs
to the application. For this reason, the application must create in global
memory a copy of the item being transferred, then hand this copy over to the
Clipboard. If the application needs the data again, it must extract the data from
the Clipboard in the same way any application does.

Listings 12.1 through 12.5 are the files needed to create CLIPBRD1, a simple
text-editing program that provides Clipboard support. When you run the
program, the window shown in Figure 12.1 appears. You can type text in the
window, as well as copy and paste text. To copy text to the Clipboard, highlight
the text by dragging the mouse pointer over it, then select the Copy entry of
the Edit menu. To paste the text back to the Window, select the Edit menu’s
Paste entry.

Figure 12.1. An example Clipboard application—version 1.

The program’s Edit menu is smart enough to know when the Clipboard
contains the correct type of data—that is, if the data in the Clipboard is not of

Chapter 12 ■ The Windows Clipboard

447

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

format CF_TEXT, the Paste entry is disabled. To check this out, run Windows
Paintbrush and copy a bitmap to the Clipboard (simply use the scissors tool to
copy part of the Paintbrush window). Then switch back to the text editor and
look at the Edit menu. The Paste option should be disabled, as shown in Figure
12.2. Now, switch to another text-editing program and copy some text to the
Clipboard. Return to CLIPBRD1 and note that the Paste entry is again enabled.

Figure 12.2. The Paste option is disabled when copied data is not of
format CF_TEXT.

Look now at the main window’s declaration, found in CLIPWND1.H:

_CLASSDEF(TClipWnd)

class TClipWnd: public TEditWindow

{

public:

 TClipWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMSetFocus(RTMessage msg)

 = [WM_FIRST + WM_SETFOCUS];

 virtual void CMCopy()

 = [CM_FIRST + CM_COPY];

 virtual void CMPaste()

 = [CM_FIRST + CM_PASTE];

};

As you can see, the main window is an OWL edit window, which is a special
window that offers full text-editing functions. By using a window of this class,
you can type text, select text with the mouse, and copy and paste text (and
more) without providing code for these functions in the program. In addition,

Part II ■ Windows Topics

448

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

the TClipWnd window class provides message-response functions for the Copy
and Paste menu items, as well as for the Windows message WM_SETFOCUS.

The edit window, like any object, is created by its constructor:

TClipWnd::TClipWnd(PTWindowsObject AParent, LPSTR ATitle):

 TEditWindow(AParent, ATitle)

{

 // Add menu to window.

 AssignMenu(“CLIP1MENU”);

 // Set the size and position of the window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

Here, after calling the ancestor class’ constructor, TEditWindow(), the program
assigns a menu to the window and sets the window’s position and size. You’ve
seen similar constructors in this book before, but there’s something special
about this program’s edit menu, as you see in the next section.

Enabling and Disabling Paste
In this text-editing demonstration, the program enables Paste when the
Clipboard contains CF_TEXT data and disables Paste when the Clipboard
contains another type of data. Strangely, you can’t fool the menu, even by
switching to another program and changing the contents of the Clipboard. By
some miracle of Windows magic, when you switch back to the editor, the Paste
menu is changed to reflect the new contents of the Clipboard. This so-called
miracle is possible due to the WM_SETFOCUS message.

Windows sends the WM_SETFOCUS message to a window whenever the window
is activated, either by switching to the window from another application or by
running the program that creates the window. By responding to this message,
a program can immediately check the contents of the Clipboard and update the
Paste menu appropriately. This is all done before the user has a chance to reach
for her keyboard, let alone select the Edit menu.

The edit window responds to a WM_SETFOCUS message with the function
WMSetFocus():

Chapter 12 ■ The Windows Clipboard

449

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

void TClipWnd::WMSetFocus(RTMessage msg)

{

 // Perform normal WM_SETFOCUS processing.

 TEditWindow::WMSetFocus(msg);

 // Get handle to the menu.

 HMENU hMenu = GetMenu(HWindow);

 // Check for text in Clipboard.

 if (!IsClipboardFormatAvailable(CF_TEXT))

 {

 // If there’s no text in the Clipboard,

 // turn off the Paste menu item.

 EnableMenuItem(hMenu, CM_PASTE, MF_GRAYED);

 }

 else

 // If text is available, turn on Paste.

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

}

In this function, the program first calls TEditWindow::WMSetFocus(), because
the TEditWindow base class must also process the WM_SETFOCUS message. A call
to the function IsClipboardFormatAvailable() with a parameter of CF_TEXT
then checks whether the Clipboard contains text. (To check for other types of
data, you need only replace CF_TEXT with a format from Table 12.1.) If this
function returns a true, the Clipboard contains text, so the program enables
the Paste menu item by calling the Windows function EnableMenuItem().
Otherwise, the program disables the Paste menu item.

Surprisingly easy, no?

Copying Text to the Clipboard
If the program receives a CM_COPY message (defined in CLIPWND1.H), the user
has selected the Edit menu’s Copy item and wants to copy data from the main
window to the Clipboard. This message is handled by the message-response
function CMCopy():

void TClipWnd::CMCopy()

{

 int startPos, endPos;

Part II ■ Windows Topics

450

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Get starting and ending positions of the

 // selected text.

 Editor->GetSelection(startPos, endPos);

 // Get a handle to a block of memory big enough

 // to hold the selected text.

 HANDLE hMem = GlobalAlloc(GHND, endPos-startPos+1);

 // Get a pointer to the block and lock the

 // block in memory.

 LPSTR s = GlobalLock(hMem);

 // Copy the selected text and unlock the memory block.

 Editor->GetSubText(s, startPos, endPos);

 GlobalUnlock(hMem);

 // Open and clear the Clipboard.

 OpenClipboard(HWindow);

 EmptyClipboard();

 // Give the selected text to the Clipboard.

 SetClipboardData(CF_TEXT, hMem);

 // Close the Clipboard.

 CloseClipboard();

 // Turn on Paste menu item.

 HMENU hMenu = GetMenu(HWindow);

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

}

Normally, a TEditWindow handles all the cut, copy, and paste functions auto-
matically, transferring data to and from the Clipboard as needed. However, to
demonstrate how the Clipboard works, CLIPBRD1 takes over some of these
functions. First, it retrieves the starting and ending character positions of the
selected text by calling the edit control’s GetSelection() function. The text
indicated by startPos and endPos is the text that must be copied to the
Clipboard.

The program next calls GlobalAlloc(), requesting enough memory to hold the
text. (This function’s GHND parameter requests a moveable memory block that’s
initialized to zeros. The function’s second parameter is the size of the block.)
When the block is allocated, the program receives a handle to the memory

Chapter 12 ■ The Windows Clipboard

451

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

block, rather than an address. A NULL handle means memory cannot be
allocated. Although CLIPBRD1 doesn’t check for a NULL handle, you should
do so in your own programs.

In order to use RAM as efficiently as possible, Windows does a lot of memory
shuffling. This means that a program must never assume that an object will stay
at one address. Therefore, before copying the selected text into the allocated
memory block, CLIPBRD1 must inform Windows not to move the block until
it’s through with it.

CLIPBRD1 does this by calling the function GlobalLock() with the block’s
handle. GlobalLock() nails the object in memory and returns a pointer to it.
After this call, the program can safely call the edit control’s GetSubText()
function to copy the selected text into the memory block. Then, a call to
GlobalUnlock() informs Windows that the program is finished with the block.
After unlocking the block, the pointer s is no longer valid. CLIPBRD1 must now
refer to the memory block only by its handle.

Now that the selected text has been copied into memory, the program can give
the text to the Clipboard. First, the program calls OpenClipboard() with its
window’s handle. This action prevents other applications from accessing the
Clipboard while CLIPBRD1 is using it. When the program has the Clipboard, its
first task is to empty the Clipboard by calling the Windows function
EmptyClipboard().

This function actually does more than empty the Clipboard. It also makes the
calling program the Clipboard’s owner and releases from memory whatever
data the Clipboard contained. The Clipboard’s owner is the last application to
place data into the Clipboard. Being the Clipboard’s owner doesn’t actually
mean a program owns the Clipboard, but rather that it was the source of the
data presently in the Clipboard.

After emptying the Clipboard, CLIPBRD1 calls the Windows function
SetClipboardData(), which gives the text to the Clipboard. This function’s first
parameter is the type of data being placed into the Clipboard (from Table 12.1).
The second parameter is an unlocked handle to the data. After copying the text
into the Clipboard, the program calls CloseClipboard() to release the Clip-
board so other applications can access it.

Note: When a program empties the Clipboard, it becomes the Clipboard’s
owner and remains the owner even after the program closes the Clipboard.
A program loses ownership when another application empties the Clipboard.

Part II ■ Windows Topics

452

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

The last thing CMCopy() does is enable the Paste entry of the Edit menu, so the
user can paste the text she just copied. In this case, the program has no need
to check the data format of the Clipboard, because it placed the data there
itself.

Extracting Text from the Clipboard
Copying data into the Clipboard is only half the battle. An application that
supports the Clipboard also has to retrieve data. In a text-editing program, the
signal to perform this operation is sent when the user selects the Edit menu’s
Paste item. In CLIPBRD1, this generates a CM_PASTE message (defined in
CLIPWND1.H), which is handled by the function CMPaste():

void TClipWnd::CMPaste()

{

 // Check that there is text in the Clipboard.

 if (IsClipboardFormatAvailable(CF_TEXT))

 {

 // Open Clipboard and get a handle to its text.

 OpenClipboard(HWindow);

 HANDLE hMem = GetClipboardData(CF_TEXT);

 // Check for valid handle.

 if (hMem)

 {

 // Get a pointer to the text.

 LPSTR s = GlobalLock(hMem);

 // Add text to edit window.

 Editor->Insert(s);

 // Unlock the memory block holding the text.

 GlobalUnlock(hMem);

 }

 // Close the Clipboard.

 CloseClipboard();

 }

}

Chapter 12 ■ The Windows Clipboard

453

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Before copying the contents of the Clipboard to its window, the program must
ensure that the data is in the correct format. This is done, as before, with a call
to IsClipboardFormatAvailable(). If this function returns a false, CMPaste()
does nothing. Of course, in CLIPBRD1, this call should never fail, because each
time the window gets the focus, the program checks the Clipboard’s data
format. Thus, the Paste menu is never accessible when the Clipboard contains
something other than CF_TEXT.

After validating the data format, the program opens the Clipboard and obtains
a handle to the Clipboard’s data by calling GetClipboardData(). This function’s
parameter is the data format the program needs. If this type of data is not in
the Clipboard, the function returns a NULL handle.

Once CLIPBRD1 has a handle to the Clipboard’s contents, it has to determine
the data’s address. It does this by calling GlobalLock(), which not only returns
a pointer to the data, but also locks the data in memory so Windows can’t move
it. Next, the program displays the Clipboard’s text by calling the edit control’s
Insert() function. Finally, it unlocks the memory block and closes the
Clipboard.

Listings 12.1 through 12.5, which follow, are the complete code listings for this
program. Study them carefully until you’re sure you understand what’s going
on. In the next section, you learn to use the Clipboard with bitmapped
graphics.

Listing 12.1. CLIPBRD1.CPP—version 1 of the Clipboard demo application.

// CLIPBRD1.CPP -- Implementation for Clipboard Demo 1.

#include <owl.h>

#include “clipwnd1.h”

// Application Class.

class TClip1App: public TApplication

{

public:

 TClip1App(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

continues

Part II ■ Windows Topics

454

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Listing 12.1. Continued

//

// TWCApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TClip1App::InitMainWindow()

{

 MainWindow = new TClipWnd(NULL, “Clipboard Demo 1”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TClip1App Clip1App(“Clipbrd1”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 Clip1App.Run();
 return Clip1App.Status;

}

Listing 12.2. CLIPWND1.H—Clipboard demo 1 main window header file.

// CLIPWND1.H -- Main Window Declaration.

#ifndef _CLIPWND1_H

#define _CLIPWND1_H

#include <editwnd.h>

#define CM_COPY 101

#define CM_PASTE 102

_CLASSDEF(TClipWnd)

class TClipWnd: public TEditWindow

Chapter 12 ■ The Windows Clipboard

455

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

{

public:

 TClipWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMSetFocus(RTMessage msg)

 = [WM_FIRST + WM_SETFOCUS];

 virtual void CMCopy()

 = [CM_FIRST + CM_COPY];

 virtual void CMPaste()

 = [CM_FIRST + CM_PASTE];

};

#endif

Listing 12.3. CLIPWND1.CPP— Clipboard demo 1 main window implementation.

// CLIPWND1.CPP -- Main Window Implementation.

#include “clipwnd1.h”

//
// TClipWnd::TClipWnd()

//

// This is the main window’s constructor.

//

TClipWnd::TClipWnd(PTWindowsObject AParent, LPSTR ATitle):

 TEditWindow(AParent, ATitle)

{

 // Add menu to window.

 AssignMenu(“CLIP1MENU”);

 // Set the size and position of the window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

//

// TClipWnd::WMSetFocus()

//

continues

Part II ■ Windows Topics

456

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

// This function is called when the program’s main

// window receives the focus.

//

void TClipWnd::WMSetFocus(RTMessage msg)

{

 // Perform normal WM_SETFOCUS processing.

 TEditWindow::WMSetFocus(msg);

 // Get handle to the menu.

 HMENU hMenu = GetMenu(HWindow);

 // Check for bitmap in Clipboard.

 if (!IsClipboardFormatAvailable(CF_TEXT))

 {

 // If there’s no text in the Clipboard,

 // turn off the Paste menu item.

 EnableMenuItem(hMenu, CM_PASTE, MF_GRAYED);

 }

 else

 // If text is available, turn on Paste.

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

}

//

// TClipWnd::CMCopy()

//

// This function is called when the user clicks the Copy

// entry of the Edit menu.

//

void TClipWnd::CMCopy()

{

 int startPos, endPos;

 // Get starting and ending positions of the

 // selected text.

 Editor->GetSelection(startPos, endPos);

Listing 12.3. Continued

Chapter 12 ■ The Windows Clipboard

457

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Get a handle to a block of memory big enough

 // to hold the selected text.

 HANDLE hMem = GlobalAlloc(GHND, endPos-startPos+1);

 // Get a pointer to the block and lock the

 // block in memory.

 LPSTR s = GlobalLock(hMem);

 // Copy the selected text and unlock the memory block.

 Editor->GetSubText(s, startPos, endPos);

 GlobalUnlock(hMem);

 // Open and clear the Clipboard.

 OpenClipboard(HWindow);

 EmptyClipboard();

 // Give the selected text to the Clipboard.

 SetClipboardData(CF_TEXT, hMem);

 // Close the Clipboard.

 CloseClipboard();

 // Turn on Paste menu item.

 HMENU hMenu = GetMenu(HWindow);

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

}

//

// TClipWnd::CMPaste()

//

// This function is called when the user clicks the

// Paste entry of the Edit menu.

//

void TClipWnd::CMPaste()

{

 // Check that there is text in the Clipboard.

 if (IsClipboardFormatAvailable(CF_TEXT))

 {

 // Open Clipboard and get a handle to its text.

 OpenClipboard(HWindow);

continues

Part II ■ Windows Topics

458

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 HANDLE hMem = GetClipboardData(CF_TEXT);

 // Check for valid handle.

 if (hMem)

 {

 // Get a pointer to the text.

 LPSTR s = GlobalLock(hMem);

 // Add text to edit window.

 Editor->Insert(s);

 // Unlock the memory block holding the text.

 GlobalUnlock(hMem);

 }

 // Close the Clipboard.

 CloseClipboard();

 }

}

Listing 12.4. CLIPBRD1.RC—Clipboard demo 1 resource file.

CLIP1MENU MENU

BEGIN

 POPUP “&Edit”

 BEGIN

 MENUITEM “&Copy”, 101

 MENUITEM “&Paste”, 102

 END

END

Listing 12.5. CLIPBRD.DEF—Clipboard demo 1 definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Listing 12.3. Continued

Chapter 12 ■ The Windows Clipboard

459

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Handling Bitmaps with the Clipboard
A lthough most data transferred to and from the Clipboard is in CF_TEXT

format, bitmaps, which are data format CF_BITMAP, are also handy objects
to cut and paste. And, believe it or not, handling bitmaps with the Clipboard
is not much more difficult than handling text. The basics are the same. You
simply have to understand how to manipulate bitmaps in memory.

Listings 12.6 through 12.10 are the files needed to create CLIPBRD2, a version
of the editor program that handles bitmaps. This program, which is based on
the drawing program developed in Chapter 10, enables you to draw shapes on-
screen, then cut parts of the screen to the Clipboard.

Listing 12.6. CLIPBRD2.CPP—version 2 of the Clipboard demo application.

// CLIPBRD2.CPP -- Implementation for Clipboard Demo 2.

#include <owl.h>

#include “clipwnd2.h”

// Application Class.

class TClip2App: public TApplication

{

public:

 TClip2App(LPSTR AName, HINSTANCE hInstance,

 HINSTANCE hPrevInstance, LPSTR lpCmdLine,

 int nCmdShow): TApplication(AName, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow) {};

 virtual void InitMainWindow();

};

//

// TWCApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TClip2App::InitMainWindow()

{

 MainWindow = new TClipWnd(NULL, “Clipboard Demo 2”);

}

continues

Part II ■ Windows Topics

460

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 TClip2App Clip2App(“Clipbrd2”, hInstance,

 hPrevInstance, lpCmdLine, nCmdShow);

 Clip2App.Run();

 return Clip2App.Status;

}

Listing 12.7. CLIPWND2.H—Clipboard demo 2 main window header file.

// CLIPWND2.H -- Header file for main window.

#ifndef _CLIPWND2_H
#define _CLIPWND2_H

#include <owl.h>

#define CM_PASTE 101

_CLASSDEF(TClipWnd)

class TClipWnd: public TWindow

{

 int lButton, // Mouse-button flags.

 rButton,

 paste, // Paste mode flag.

 newPen, // Handle for drawing pen.

 oldPen; // Handle for old pen.

 HDC lineDC, // Device context handles.

 rectDC;

 RECT rect; // Rectangle for defining block.

public:

 TClipWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMSetFocus(RTMessage msg)

 = [WM_FIRST + WM_SETFOCUS];

Listing 12.6. Continued

Chapter 12 ■ The Windows Clipboard

461

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 virtual void WMLButtonDown(RTMessage msg)

 = [WM_FIRST + WM_LBUTTONDOWN];

 virtual void WMLButtonUp()

 = [WM_FIRST + WM_LBUTTONUP];

 virtual void WMMouseMove(RTMessage msg)

 = [WM_FIRST + WM_MOUSEMOVE];

 virtual void WMRButtonDown(RTMessage msg)

 = [WM_FIRST + WM_RBUTTONDOWN];

 virtual void WMRButtonUp()

 = [WM_FIRST + WM_RBUTTONUP];

 virtual void CMPaste()

 = [CM_FIRST + CM_PASTE];

private:

 void PasteBitmap(RTMessage msg);

};

#endif

Listing 12.8. CLIPWND2.CPP—Clipboard demo 2 main window implementation.

// CLIPWND2.CPP -- Implementation for main window.

#include “clipwnd2.h”

//

// TClipWnd::TClipWnd()

//

// This is the main window’s constructor.

//

TClipWnd::TClipWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Add a menu to the window.

 AssignMenu(“CLIP2MENU”);

 // Set the size and position of the window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

continues

Part II ■ Windows Topics

462

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Initialize variables.

 lButton = FALSE;

 rButton = FALSE;

 paste = FALSE;

 SetRectEmpty(&rect);

}

//

// TClipWnd::WMSetFocus()

//

// This function is called when the program’s main

// window receives the focus.

//

void TClipWnd::WMSetFocus(RTMessage msg)

{

 // Perform normal WM_SETFOCUS processing.

 TWindow::DefWndProc(msg);

 // Get a handle to the menu.

 HMENU hMenu = GetMenu(HWindow);

 // Check for a bitmap in the Clipboard.

 if (!IsClipboardFormatAvailable(CF_BITMAP))

 {

 // If there’s not a bitmap in the Clipboard,

 // turn off the Paste menu item.

 EnableMenuItem(hMenu, CM_PASTE, MF_GRAYED);

 }

 else

 // If there is a bitmap available, turn on

 // the Paste menu item.

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

}

//

// TClipWnd::WMLButtonDown()

//

// This function responds to a WM_LBUTTONDOWN message.

//

Listing 12.8. Continued

Chapter 12 ■ The Windows Clipboard

463

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

void TClipWnd::WMLButtonDown(RTMessage msg)

{

 // If the program is in paste mode...

 if (paste)

 PasteBitmap(msg);

 // If this is a new left button press...

 else if (!lButton)

 {

 // Get device context and pen.

 lineDC = GetDC(HWindow);

 newPen = CreatePen(PS_SOLID, 2, BLACK_PEN);

 oldPen = SelectObject(lineDC, newPen);

 // Direct all mouse input to this window.

 SetCapture(HWindow);

 // Set line start to the mouse coords.

 MoveTo(lineDC, msg.LP.Lo, msg.LP.Hi);

 // Set mouse-button flag.

 lButton = TRUE;

 }

}

//

// TClipWnd::WMLButtonUp()

//

// This function responds to a WM_LBUTTONUP message.

//

void TClipWnd::WMLButtonUp()

{

 if (lButton)

 {

 // Restore and release device context.

 SelectObject(lineDC, oldPen);

 ReleaseDC(HWindow, lineDC);

 // Delete custom pen object.

 DeleteObject(newPen);

 // Turn off button flag.

 lButton = FALSE;

continues

Part II ■ Windows Topics

464

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Release mouse capture.

 ReleaseCapture();

 }

}

//

// TClipWnd::WMMouseMove()

//

// This function responds to a WM_MOUSEMOVE message.

//

void TClipWnd::WMMouseMove(RTMessage msg)

{

 // If the left button is down, draw a line.

 if (lButton)

 LineTo(lineDC, msg.LP.Lo, msg.LP.Hi);

 // If the right button is down...

 else if (rButton)

 {

 // Set the drawing mode to XOR.

 SetROP2(rectDC, R2_XORPEN);

 // Erase the old rectangle.

 DrawFocusRect(rectDC, &rect);

 // Set new rectangle to new coords.

 SetRect(&rect, rect.left, rect.top,

 msg.LP.Lo, msg.LP.Hi);

 // Draw the new rectangle.

 DrawFocusRect(rectDC, &rect);

 }

}

//

// TClipWnd::WMRButtonDown()

//

// This function responds to a WM_RBUTTONDOWN message.

//

void TClipWnd::WMRButtonDown(RTMessage msg)

Listing 12.8. Continued

Chapter 12 ■ The Windows Clipboard

465

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

{

 if (!rButton)

 {

 rButton = TRUE;

 // Get device context and set starting rectangle

 // to the mouse’s coordinates.

 rectDC = GetDC(HWindow);

 SetRect(&rect, msg.LP.Lo, msg.LP.Hi,

 msg.LP.Lo, msg.LP.Hi);

 // Direct all mouse input to this window.

 SetCapture(HWindow);

 }

}

//

// TClipWnd::WMRButtonUp()

//

// This function responds to a WM_RBUTTONUP message.

//

void TClipWnd::WMRButtonUp()

{

 rButton = FALSE;

 // Erase the outline rectangle.

 SetROP2(rectDC, R2_XORPEN);

 DrawFocusRect(rectDC, &rect);

 // Release DC and mouse capture.

 ReleaseDC(HWindow, rectDC);

 ReleaseCapture();

 // Calculate the width and height of block.

 int width = rect.right - rect.left;

 int height = rect.bottom - rect.top;

 // If the bitmap is not empty...

 if ((width > 0) && (height > 0))

 {

 // Get a window and memory DC.

 HDC hDC = GetDC(HWindow);

continues

Part II ■ Windows Topics

466

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 HDC hMemDC = CreateCompatibleDC(hDC);

 // Create the bitmap.

 HBITMAP hBitmap = CreateCompatibleBitmap(hDC,

 width, height);

 // If the bitmap was created okay...

 if (hBitmap)

 {

 // Select the bitmap into the memory DC.

 SelectObject(hMemDC, hBitmap);

 // Copy the bitmap into the memory DC.

 BitBlt(hMemDC, 0, 0, width, height,

 hDC, rect.left, rect.top, SRCCOPY);

 // Give the bitmap to the Clipboard.

 OpenClipboard(HWindow);

 EmptyClipboard();

 SetClipboardData(CF_BITMAP, hBitmap);

 CloseClipboard();

 // Notify user all went well.

 MessageBox(HWindow,”Bitmap captured”, “Copy”, MB_OK);

 // Turn on the Paste menu item.

 HMENU hMenu = GetMenu(HWindow);

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

 }

 // Release the window and memory DCs.

 ReleaseDC(HWindow, hDC);

 DeleteDC(hMemDC);

 }

}

//

// TClipWnd::CMPaste()

//

// This function is called when the user clicks the

// Paste entry of the Edit menu.

//

Listing 12.8. Continued

Chapter 12 ■ The Windows Clipboard

467

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

void TClipWnd::CMPaste()

{

 // Set paste mode and change cursor.

 paste = TRUE;

 SetClassWord(HWindow, GCW_HCURSOR,

 LoadCursor(NULL, IDC_CROSS));

}

//

// TClipWnd::PasteBitmap()

//

// This function pastes a bitmap from the Clipboard to

// the screen.

//

void TClipWnd::PasteBitmap(RTMessage msg)

{

 BITMAP bitmap;

 // Get window DC.

 HDC hDC = GetDC(HWindow);

 // Open the Clipboard and get a handle to the data.

 OpenClipboard(HWindow);

 HBITMAP hBitmap = GetClipboardData(CF_BITMAP);

 // If the Clipboard contains a bitmap...

 if (hBitmap)

 {

 // Create memory DC and select bitmap into it.

 HDC hMemDC = CreateCompatibleDC(hDC);

 SelectObject(hMemDC, hBitmap);

 // Fill in bitmap structure.

 GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bitmap);

 // Copy the bitmap to the screen.

 BitBlt(hDC, msg.LP.Lo, msg.LP.Hi, bitmap.bmWidth,

 bitmap.bmHeight, hMemDC, 0, 0, SRCCOPY);

 // Delete the memory DC.

 DeleteDC(hMemDC);

 }

continues

Part II ■ Windows Topics

468

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Release the window DC.

 ReleaseDC(HWindow, hDC);

 // Close the Clipboard and turn off paste mode.

 CloseClipboard();

 paste = FALSE;

 // Restore cursor to Arrow.

 SetClassWord(HWindow, GCW_HCURSOR,

 LoadCursor(NULL, IDC_ARROW));

}

Listing 12.9. CLIPBRD2.RC— Clipboard demo 2 resource file.

CLIP2MENU MENU

BEGIN

 POPUP “&Edit”

 BEGIN
 MENUITEM “&Paste”, 101

 END

END

Listing 12.10. CLIPBRD.DEF— Clipboard demo 2 definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

When you run the program, you see the window shown in Figure 12.3.

Listing 12.8. Continued

Chapter 12 ■ The Windows Clipboard

469

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Figure 12.3. Version 2 of the Clipboard application—handling bitmaps.

To use the program, first place your mouse pointer in the window’s client area,
hold down the left button, and draw a shape. Then, place the mouse cursor on
the upper-left corner of the shape you want to capture, hold down the right
mouse button, and drag the mouse pointer to the lower-right corner of the
shape. A dotted rectangle follows the mouse pointer, outlining the shape
you’re selecting, as shown in Figure 12.4. To copy the contents of the rectangle,
release the right mouse button. A message box appears, informing you that the
shape has been captured.

Figure 12.4. Copying a bitmap object to the Clipboard.

To paste the captured image, select the Paste entry of the Edit menu. The
mouse cursor changes to a cross. Place the cross where you want to paste the

Part II ■ Windows Topics

470

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

shape and press the left mouse button. Finally, to prove that the Clipboard is
functioning properly, run Windows Paintbrush and select its Paste menu item.
The shape you selected appears on Paintbrush’s client area. (You can also view
the bitmap using Windows Clipboard Viewer.)

Copying a Bitmap to the Clipboard
As mentioned previously, copying a bitmap to the Clipboard is not much more
complicated than copying text. The main difference is in the way the data is
prepared—that is, whereas text needs only to be copied into memory, a bitmap
requires obtaining device contexts, creating device compatible bitmaps in
memory, and blitting a bitmap from one device context to another. (Blitting
is the process of quickly transferring data between sections of memory, usually
from RAM to screen memory.)

Look at the main window’s declaration, which is found in the file
CLIPWND2.CPP:

_CLASSDEF(TClipWnd)

class TClipWnd: public TWindow

{

 int lButton, // Mouse-button flags.

 rButton,

 paste, // Paste mode flag.

 newPen, // Handle for drawing pen.

 oldPen; // Handle for old pen.

 HDC lineDC, // Device context handles.

 rectDC;

 RECT rect; // Rectangle for defining block.

public:

 TClipWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMSetFocus(RTMessage msg)

 = [WM_FIRST + WM_SETFOCUS];

 virtual void WMLButtonDown(RTMessage msg)

 = [WM_FIRST + WM_LBUTTONDOWN];

 virtual void WMLButtonUp()

 = [WM_FIRST + WM_LBUTTONUP];

 virtual void WMMouseMove(RTMessage msg)

 = [WM_FIRST + WM_MOUSEMOVE];

Chapter 12 ■ The Windows Clipboard

471

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 virtual void WMRButtonDown(RTMessage msg)

 = [WM_FIRST + WM_RBUTTONDOWN];

 virtual void WMRButtonUp()

 = [WM_FIRST + WM_RBUTTONUP];

 virtual void CMPaste()

 = [CM_FIRST + CM_PASTE];

private:

 void PasteBitmap(RTMessage msg);

};

This class is obviously much more complicated than CLIPBRD1’s edit-window
class. This is because OWL has no graphics-editing window class, so the
program must provide its own graphics-editing services. This new TClipWnd
class includes a number of private data members, all of which are commented.
(You see how the program uses these variables later in this section.) The
functions WMLButtonDown(), WMLButtonUp(), WMMouseMove(), WMRButtonDown(),
and WMRButtonUp() provide CLIPBRD2 with its graphics-editing features.
(Some code in these functions is borrowed from Chapter 10’s toolbox demo
program.) The function WMSetFocus() provides the same service it did in
CLIPBRD1, except that it now checks the Clipboard for CF_BITMAP data rather
than for CF_TEXT data. Finally, the private member function PasteBitmap()
copies a bitmap from the Clipboard to the screen.

Look now at the class’ constructor:

TClipWnd::TClipWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Add a menu to the window.

 AssignMenu(“CLIP2MENU”);

 // Set the size and position of the window.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

 // Initialize variables.

 lButton = FALS;

 rButton = FALSE;

 paste = FALSE;

 SetRectEmpty(&rect);

}

Part II ■ Windows Topics

472

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Here, as in CLIPBRD1, the program assigns a menu to its window and then sets
the window’s position and size. Next, it initializes a few important variables.
The Boolean lButton indicates whether the left mouse button is pressed. The
Boolean rButton does the same for the right mouse button. The Boolean paste
indicates whether the program is currently in paste mode. The RECT rect
contains the coordinates of the rectangle the user outlines on-screen. Finally,
the function SetRectEmpty() sets the rectangle’s coordinates to zero.

CLIPBRD2 kicks into action when the user presses her left mouse button in
the window’s client area, generating a WM_LBUTTONDOWN message. The pro-
gram handles this message with the function WMLButtonDown():

void TClipWnd::WMLButtonDown(RTMessage msg)

{

 // If the program is in paste mode...

 if (paste)

 PasteBitmap(msg);

 // If this is a new left button press...

 else if (!lButton)

 {

 // Get device context and pen.
 lineDC = GetDC(HWindow);

 newPen = CreatePen(PS_SOLID, 2, BLACK_PEN);

 oldPen = SelectObject(lineDC, newPen);

 // Direct all mouse input to this window.

 SetCapture(HWindow);

 // Set line start to the mouse coords.

 MoveTo(lineDC, msg.LP.Lo, msg.LP.Hi);

 // Set mouse-button flag.

 lButton = TRUE;

 }

}

This function is almost identical to its counterpart in Chapter 10’s toolbox
program. The biggest difference is where the program checks the Boolean
variable paste. If paste is true, the program is in paste mode, which means the
user is not trying to draw a line. Rather, she is trying to paste the contents of
the Clipboard to the screen. If paste is false, the program starts the drawing
operation.

Chapter 12 ■ The Windows Clipboard

473

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

The drawing concludes when the user releases the left mouse button, gener-
ating a WM_LBUTTONUP message. This message is handled by WMLButtonUp() just
as before, so there’s no need to discuss it here.

When the user presses the right mouse button, he’s informing the program
that he wants to select a new bitmap. The message-response function
WMRButtonDown() starts this process:

void TClipWnd::WMRButtonDown(RTMessage msg)

{

 if (!rButton)

 {

 rButton = TRUE;

 // Get device context and set starting rectangle

 // to the mouse’s coordinates.

 rectDC = GetDC(HWindow);

 SetRect(&rect, msg.LP.Lo, msg.LP.Hi,

 msg.LP.Lo, msg.LP.Hi);

 // Direct all mouse input to this window.

 SetCapture(HWindow);

 }

}

Here, the program checks that the right button is not already down, after which
it sets rButton to true. Then, as when starting a drawing operation, the
program obtains a DC for the window. Because a right-button click marks the
upper-left corner of the rectangle the user wants to capture, the program uses
the mouse’s current coordinates in a call to SetRect(), which sets rect to these
coordinates.

By setting the left and right rectangle coordinates to the same value and the
top and bottom rectangle coordinates to the same value, the program creates
a rectangle with a width and height of zero. Finally, after initializing the
rectangle, the program calls SetCapture() to direct all mouse input to its
window, regardless of where the mouse is located.

When the user moves the mouse, he generates a series of WM_MOUSEMOVE
messages, which are handled by the function WMMouseMove():

void TClipWnd::WMMouseMove(RTMessage msg)

{

 // If the left button is down, draw a line.

Part II ■ Windows Topics

474

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 if (lButton)

 LineTo(lineDC, msg.LP.Lo, msg.LP.Hi);

 // If the right button is down...

 else if (rButton)

 {

 // Set the drawing mode to XOR.

 SetROP2(rectDC, R2_XORPEN);

 // Erase the old rectangle.

 DrawFocusRect(rectDC, &rect);

 // Set new rectangle to new coords.

 SetRect(&rect, rect.left, rect.top,

 msg.LP.Lo, msg.LP.Hi);

 // Draw the new rectangle.

 DrawFocusRect(rectDC, &rect);

 }

}

If the user doesn’t have the left or right mouse buttons pressed, this function
does nothing. If the user has the left button pressed, this function draws a new
line, as it did in the toolbox program. However, if the right button is pressed,
the user is outlining a rectangle on-screen, which means CLIPBRD2 has a bit
of work to do.

First, the program calls SetROP2() to change the drawing mode to XOR
(exclusive OR). This drawing mode is perfect for outlining a rectangle, because
it allows the program to draw a rectangle on-screen without disturbing the
screen’s display. This is accomplished by drawing exactly the same shape
twice, at exactly the same coordinates. The first time the program draws the
shape, it highlights the pixels over which it is drawn. The second time it draws
the shape, the pixels are unhighlighted, leaving the screen as it was before the
rectangle was drawn.

After setting the drawing mode, CLIPBRD2 erases the old rectangle by
redrawing it in XOR mode. (The first time through this function, rect has a width
and height of zero, so nothing is drawn.) The Windows function DrawFocusRect()
provides the perfect shape and line style for drawing an outlining rectangle,
without the program’s having to create and select custom pens into the device
context. After erasing the old rectangle, CLIPBRD2 calls SetRect() to copy the
new rectangle’s coordinates into rect. The coordinates of the upper-left part

Chapter 12 ■ The Windows Clipboard

475

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

of the rectangle are always the same coordinates that are originally stored in
the left and top members of rect. The right and bottom coordinates, however,
are the new position of the mouse. Finally, the program draws the new
rectangle with another call to DrawFocusRect(). Because the program is still in
XOR drawing mode, the rectangle highlights the pixels over which it is drawn.

As long as the user holds down the right mouse button while she moves the
mouse, she continues to generate WM_MOUSEMOVE messages that result in the
erasing and drawing of rectangles. This gives the illusion of an expanding and
contracting outline. When the user finally releases the button, the program
must create the selected bitmap. It does this in the function WMRButtonUp():

void TClipWnd::WMRButtonUp()

{

 rButton = FALSE;

 // Erase the outline rectangle.

 SetROP2(rectDC, R2_XORPEN);

 DrawFocusRect(rectDC, &rect);

 // Release DC and mouse capture.

 ReleaseDC(HWindow, rectDC);

 ReleaseCapture();

 // Calculate the width and height of block.

 int width = rect.right - rect.left;

 int height = rect.bottom - rect.top;

 // If the bitmap is not empty...

 if ((width > 0) && (height > 0))

 {

 // Get a window and memory DC.

 HDC hDC = GetDC(HWindow);

 HDC hMemDC = CreateCompatibleDC(hDC);

 // Create the bitmap.

 HBITMAP hBitmap = CreateCompatibleBitmap(hDC,

 width, height);

 // If the bitmap was created okay...

 if (hBitmap)

 {

Part II ■ Windows Topics

476

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Select the bitmap into the memory DC.

 SelectObject(hMemDC, hBitmap);

 // Copy the bitmap into the memory DC.

 BitBlt(hMemDC, 0, 0, width, height,

 hDC, rect.left, rect.top, SRCCOPY);

 // Give the bitmap to the Clipboard.

 OpenClipboard(HWindow);

 EmptyClipboard();

 SetClipboardData(CF_BITMAP, hBitmap);

 CloseClipboard();

 // Notify user all went well.

 MessageBox(HWindow,”Bitmap captured”, “Copy”, MB_OK);

 // Turn on the Paste menu item.

 HMENU hMenu = GetMenu(HWindow);

 EnableMenuItem(hMenu, CM_PASTE, MF_ENABLED);

 }

 // Release the window and memory DCs.

 ReleaseDC(HWindow, hDC);

 DeleteDC(hMemDC);

 }

}

Here, the program sets rButton to false, indicating that the button is no longer
down. Then, it erases the rectangle and releases the device context and the
mouse capture. To calculate the size of the selected bitmap, the program
subtracts the rectangle’s left coordinate from its right coordinate to determine
its width, and subtracts the top from the bottom to determine its height.

If the width and height are greater than zero, the user selected a valid
rectangle, so the program receives a new DC for the window and creates a
memory DC that’s compatible with it. A call to CreateCompatibleBitmap()
creates an empty bitmap that’s compatible with the window DC (and thus, the
memory DC). If this function returns a valid bitmap handle, the program
selects that bitmap into the memory DC by calling SelectObject(). It then calls
BitBlt() to copy the outlined screen area into the bitmap.

At this point, there is a copy of the selected bitmap in memory. Because the
program has a handle to this bitmap, it can now pass the bitmap to the

Chapter 12 ■ The Windows Clipboard

477

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

Clipboard by first opening and emptying the Clipboard, and then calling
SetClipboardData() with the parameters CF_BITMAP and hBitmap. Finally, the
program closes the Clipboard and displays a message box to inform the user
that the bitmap was copied. The program’s last tasks are to update the Paste
menu item and release the device contexts.

Pasting a Bitmap from the Clipboard
Now, the bitmap belongs to the Clipboard, where it can be accessed by any
program that supports the CF_BITMAP format. CLIPBRD2, of course, can access
it as well, which it must do when the user wants to paste the image. The user
selects the Paste entry of the Edit menu, which generates a CM_PASTE message.
This message is handled by the message-response function CMPaste():

void TClipWnd::CMPaste()

{

 // Set paste mode and change cursor.

 paste = TRUE;

 SetClassWord(HWindow, GCW_HCURSOR,

 LoadCursor(NULL, IDC_CROSS));

}

Here, the program sets the variable paste to true, indicating that it is now in
paste mode. Then, it calls the Windows function SetClassWord() to change the
window’s cursor style to the crosshair. Why not call SetCursor()? When
Windows returns from processing the menu and the user brings the mouse
pointer over the window’s client area, Windows changes the cursor to the one
defined in the window class. If the program changes the cursor in CMPaste()
with a SetCursor() call, Windows sets the cursor back to the arrow. To get
around this stubborn bit of behavior on Windows’ part, the program simply
changes the default cursor for the window class.

Now that the user is in the paste mode, he moves the crosshair cursor where
he wants to paste the bitmap and presses the left mouse button. This generates
a WM_LBUTTONDOWN message, which calls WMLButtonDown(). As seen before, when
in the paste mode, WMLButtonDown() calls PasteBitmap() to fulfill the user’s
request:

void TClipWnd::PasteBitmap(RTMessage msg)

{

 BITMAP bitmap;

Part II ■ Windows Topics

478

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

 // Get window DC.

 HDC hDC = GetDC(HWindow);

 // Open the Clipboard and get a handle to the data.

 OpenClipboard(HWindow);

 HBITMAP hBitmap = GetClipboardData(CF_BITMAP);

 // If the Clipboard contains a bitmap...

 if (hBitmap)

 {

 // Create memory DC and select bitmap into it.

 HDC hMemDC = CreateCompatibleDC(hDC);

 SelectObject(hMemDC, hBitmap);

 // Fill in bitmap structure.

 GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bitmap);

 // Copy the bitmap to the screen.

 BitBlt(hDC, msg.LP.Lo, msg.LP.Hi, bitmap.bmWidth,

 bitmap.bmHeight, hMemDC, 0, 0, SRCCOPY);

 // Delete the memory DC.

 DeleteDC(hMemDC);

 }

 // Release the window DC.

 ReleaseDC(HWindow, hDC);

 // Close the Clipboard and turn off paste mode.

 CloseClipboard();

 paste = FALSE;

 // Restore cursor to Arrow.

 SetClassWord(HWindow, GCW_HCURSOR,

 LoadCursor(NULL, IDC_ARROW));

}

This function first declares a BITMAP structure to hold the information needed
to define a bitmap. Then, it obtains a device context for the window, opens the
Clipboard, and retrieves a handle to the bitmap in the Clipboard. If the
Clipboard doesn’t contain a bitmap, the handle returned is NULL.

Next, the program creates a memory device context and selects the bitmap
into it. Then, it calls GetObject(), which fills in the BITMAP structure bitmap,
after which bitmap.bmWidth and bitmap.bmHeight contain the bitmap’s width

Chapter 12 ■ The Windows Clipboard

479

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

and height, respectively. A call to BitBlt() displays the bitmap in the window,
and a call to DeleteDC() deletes the memory device context. Finally, the
program releases the window’s device context, closes the Clipboard, sets the
paste mode to false, and restores the mouse cursor to the arrow form.

Clipboard Etiquette
Because the Clipboard is a resource that is shared by every application in a
Windows session, it is imperative that you abide by the rules set forth for its
use. Failure to do so could cause every other application in the current
Windows session to misbehave. For example, if you forget to close the
Clipboard, Windows assumes that you are still using it. This prevents other
applications from opening it for as long as your application is active. (Luckily,
Windows takes back the Clipboard when an application closes.)

Note: Close the Clipboard as soon as possible after opening it. Don’t retain
control of it any longer than absolutely necessary. Other applications cannot
access the Clipboard as long as you have control over it.

Conclusion
I n this chapter, you learned the basics of handling the Windows’ Clipboard.

What you learned here will serve you well in just about any programming
project. However, the Clipboard is capable of much more than is described in
this intermediate text.

For example, it is possible to use data formats of your own design with the
Clipboard. These data formats (called private data formats) are specified by
the CF_OWNERDISPLAY constant. When using private data formats with the
Clipboard, it is up to your application to display the data whenever its
requested to do so. This means handling several extra Windows messages,
including WM_ASKCBFORMATNAME, WM_SIZECLIPBOARD, and WM_PAINTCLIPBOARD.

In addition, the three Windows functions SetClipboardViewer() ,
ChangeClipboardChain(), and GetClipboardViewer() allow your application to
become a Clipboard viewer, which is an application that receives messages

Part II ■ Windows Topics

480

SAMSQ3 Borland C++ Power Programming 172-7 Paula 2-17-93 Ch 12 Lp#4 (Folio, LAC)

about the Clipboard from Windows. For example, whenever the contents of the
Clipboard change, Windows sends a WM_DRAWCLIPBOARD message to all applica-
tions registered as Clipboard viewers, so they can update their displays.

The details of using private data formats and creating Clipboard viewers, while
not difficult to learn, are beyond the scope of this book. If you’re interested in
these topics, you should refer to your Windows programming references for
further information. In Chapter 13, you learn yet another way Windows can
share resources between programs— Dynamic Link Libraries.

Chapter 13 ■ Writing Dynamic Link Libraries

481

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

13
Writing Dynamic

Link Libraries

I
Windows fonts, for example, are stored in DLLs (although they don’t have the
file extension .DLL), which means all programs can use them. However, DLLs
provide an even more important service. They enable the programmer to
create libraries of functions which, like data in a DLL, can be shared between
applications.

In this chapter, you learn to create DLLs and use them in your applications. The
simple DLL you will develop enables your programs to draw different types of
shapes on-screen—shapes that are not included in the Windows GDI. This
shape library can be the starting point for a children’s drawing program, or you
can extend the idea to provide shapes for electronics programs, flow-charting
programs, or any other type of application that requires unique shapes.

n Chapter 12, you learned ways that Windows applications can share
data. The methods mentioned were the Clipboard, Dynamic Data
Exchange, and Object Linking and Embedding. Dynamic Link

Libraries (DLLs) are another way to share data among applications.
By placing data into a DLL, that data is available to every application
that uses the DLL.

Part II ■ Windows Topics

482

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Sharing Functions Among Applications
S haring code among applications using DLLs is extremely important to

Windows. In fact, without DLLs, Windows would be a crippled system,
indeed. Windows comprises many DLLs. By placing most of the Windows API
into DLLs, for example, an application doesn’t have to have the Windows API
functions linked into its executable file. Instead, the necessary libraries are
loaded into memory as they’re requested. If all the functions required by a
Windows application had to be linked into the application, .EXE files would be
huge. Moreover, each application would require its own copy of the functions.

The functions or data in a DLL can be shared by as many applications as can
run at once. Yet, only one copy of the DLL is necessary in memory. The first
time an application needs a DLL, Windows loads the DLL providing the DLL’s
file has the .DLL extension. (A DLL with a different extension must be loaded
explicitly by your program). Subsequent applications also can call functions
in the DLL without loading another copy. When the last application that uses
the DLL closes, Windows unloads the DLL from memory, freeing the memory
for other uses.

Because the functions and data in a DLL can be shared by every application
running in the system, in a way, you can think of DLLs as an extension to the
Windows API—they add functions that the original Windows designers omit-
ted. Just like the regular Windows DLLs, your DLL can be distributed to many
users—users who can then write programs with the functions or data con-
tained in the DLL.

Note: When Windows loads a DLL, it uses dynamic linking to link function
calls in your program to the appropriate functions in the DLL (thus, the
words “dynamic link” in the term “dynamic link library”). Unlike static

linking, which occurs when you link a program with Borland C++’s linker, dynamic
linking occurs at runtime.

DLLs Versus Programs
A lthough DLLs may contain functions your programs can call, a DLL alone

is not an executable file. Not even changing the file’s extension to .EXE

Chapter 13 ■ Writing Dynamic Link Libraries

483

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

fools Windows into running a DLL. (In fact, many of Windows’ DLLs do have
the .EXE extension, including USER.EXE and GDI.EXE. A DLL can have any
file extension. However, Windows automatically loads only DLLs with the
.DLL extension.) If you want to use the functions contained in a DLL, the DLL
must be loaded by Windows or by your program with the LoadLibrary() call.

Because a DLL is not an executable program, you are right to assume that there
are some major differences in the ways you create a DLL and an executable file.
One difference is the type of definition file used for a DLL. Here’s an example
DLL definition file:

LIBRARY SHAPELIB

DESCRIPTION ‘Shape DLL for Windows’

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE SINGLE

HEAPSIZE 1024

A definition file for an executable program includes a NAME field, but a DLL’s
definition file requires a LIBRARY field instead. The LIBRARY line identifies the
module as a library, as well as supplies the library’s name. The EXETYPE and CODE
lines are used the same way for executable programs or DLLs. However,
there’s an important difference in the DATA line. The word SINGLE means that
the DLL has only one data segment. Because a DLL can never have more than
one instance loaded into Windows, it never needs more than one data segment.
Executable files can have multiple data segments because each instance of the
program requires its own segment. You can have a DLL with no data segment
by using the line DATA NONE.

The final line in the previous definition file indicates the starting size of the
DLL’s heap. If this value proves to be too small, Windows can increase its size
when needed. Notice that the definition file has no STACKSIZE line. This is
because a DLL always shares the stack of the program that called it, so it
doesn’t need one of its own. This difference between DLLs and programs,
however, leads to a sticky situation known in the industry as DS != SS. Luckily,
the Borland IDE knows how to handle these problems and doesn’t, if properly
set up, assume that DS == SS for a DLL. If you’re interested in knowing more
about this situation, please refer to the accompanying note box.

Part II ■ Windows Topics

484

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Note: In C, all global and static variables are stored in static memory (on
the heap) and all parameters to functions and local variables are stored
on the stack. Static memory is addressed as an offset from the DS (data

segment) register. Similarly, the stack is addressed as an offset from the SS (stack
segment) register. Unfortunately, for reasons beyond the scope of this discussion, a C
compiler has no way of knowing whether a near pointer represents an offset from DS
or SS. To solve this problem, C (and C++) programs set the data segment and the stack
segment to the same address. In other words, DS == SS. In regular Windows
programs, which have their own data and stack segments, this represents no problem.

A DLL, however, has its own data segment, yet uses the stack of the calling program,
which means DS != SS. In this case, functions in the DLL that use near pointers to
address the stack segment are not able to find their data. When using the Borland C++
IDE to develop your DLL, however, you don’t have to worry too much about this
problem, because you can set the compiler so it knows, in a DLL, that DS never
equals SS.

A Simple DLL: SHAPELIB.DLL
Other differences between a DLL and an executable program show up in

the DLL’s source code. But before looking at that code, run the sample
test program with the sample DLL, which are both shown in Listings 13.1
through 13.7. You don’t have to compile the DLL, because it’s already on this
book’s disk. However, you should load the DLL’s project file (SHAPELIB.PRJ)
and examine the compiler options that are set for the DLL.

Notice in particular the settings in the Application Options dialog box
(Figure 13.1), the Code Generation dialog box (Figure 13.2), the Entry/Exit
Code Generation dialog box (Figure 13.3), and the Linker Settings dialog
box (Figure 13.4). The important settings in these dialog boxes are discussed
next.

The Applications Options dialog box is where you choose whether you’re
compiling a Windows application or a DLL. By choosing one of these compila-
tion options, you set many of the compiler’s default settings appropriately for
the type of module you are producing. For example, you can see in Figure 13.1
that when you select a DLL, the compiler automatically assumes that DS never
equals SS.

Chapter 13 ■ Writing Dynamic Link Libraries

485

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Figure 13.2. The Code Generation Options dialog box for a DLL.

In the Code Generation Options dialog box (Figure 13.2), checking the Large
Model option ensures that all addresses are treated as FAR. (You can use the
Small Model, if you like. However, if you do, you have to construct the library
module for that model [TCLASSC.LIB], because, to save space, Borland
doesn’t include that library on your Borland C++ disks. You also must be sure
that all the .DLL’s functions use the FAR keyword in their declarations.) Notice
also that “Assume SS Equals DS” is set to Never.

In the Entry/Exit Code Generation dialog box (Figure 13.3), setting “Windows
DLL all functions exportable” informs the compiler that you want all functions
in your DLL to be accessible to other modules (specifically, other applications
using the DLL). If you use the “Windows DLL explicit functions exported,” it’s
up to you to inform the compiler which functions to export by using the export

Figure 13.1. The Applications Options dialog box for a DLL.

Part II ■ Windows Topics

486

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

keyword when declaring a function. The calling convention can be set to C or
Pascal. For a DLL, it doesn’t matter much which you use, although the Pascal
calling convention is more efficient. You can also specify the Pascal calling
convention by using the PASCAL keyword when declaring a function.

Figure 13.3. The Entry/Exit Code Generation dialog box for a DLL.

Figure 13.4. The Linker Settings dialog box for a DLL.

In the Linker Settings dialog box (Figure 13.4), the linker’s output is set to
Windows DLL. This setting, like many of the other compiler options, is
automatically selected when you choose Windows DLL from the Applications
Options dialog box.

Getting back to the example DLL, when you run the test program, place your
mouse pointer over the window and click any button. If you click the left
button, a face shape appears at the location of your click (that’s Fred). If you

Chapter 13 ■ Writing Dynamic Link Libraries

487

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

click the right button, you get a triangle. And, finally, if you click the middle
button, you get the squiggle shape. The program’s main window is shown in
Figure 13.5.

Figure 13.5. The DLL test application’s main window.

Now that you know what the program does, look at the function declarations
in the header file for the shapes DLL, SHAPELIB.H:

extern “C”

{

 void _export FAR PASCAL

 Triangle(HDC hDC, int x, int y);

 void _export FAR PASCAL

 Squiggle(HDC hDC, int x, int y);

 void _export FAR PASCAL

 Fred(HDC hDC, int x, int y);

}

All the functions in the DLL are declared as extern “C”. This declar-
ation protects against an infamous C++ compiler convention called name-

mangling. What’s name-mangling? When you compile a C++ program, the
compiler changes function names by adding information about the function’s
parameters and return value. Unfortunately, it is this changed name that your
program must use when calling functions.

You wouldn’t have noticed this name change until now because the compiler
takes care of all the name matching for you. However, keep in mind that DLLs
can be called from many other programs, programs that may or may not have
been written in the same language or with the same compiler as the DLL—
that’s where the trouble appears.

Part II ■ Windows Topics

488

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

If you allow name-mangling to occur, the DLL can be called only by programs
that were compiled on the same compiler as the DLL. It doesn’t even matter
if the programs were written with the same language, because, although all
C++ compilers incorporate name-mangling, no two do it the same way. So, if
you compile your DLL on Borland’s C++ compiler, you can’t call the DLL’s
functions with programs written with the Microsoft C++ compiler. The way
around this problem is to use the extern “C” declaration and not allow name-
mangling.

Caution: Don’t forget—if you want any application written with any
programming language to be able to call your DLLs—you must not allow
C++’s infamous name-mangling to occur. Use the extern “C” declaration

to avoid name-mangling in a DLL.

The listing in the header file SHAPELIB.H declares the functions that draw the
shapes. The _extern keyword informs the linker to export these functions for
use in other modules. If you fail to export these functions and try to compile
the program that calls them, you receive a linker error.

Now look at the implementation code for the DLL, starting with the LibMain()
function:

int FAR PASCAL LibMain(HINSTANCE hInstance,

 WORD wDataSeg, WORD cbHeapSize,

 LPSTR lpstrCmdLine)

{

 // Unlock data segment.

 if (cbHeapSize)

 UnlockData(0);

 return TRUE;

}

Just as every executable Windows program must have a WinMain() function,
every DLL must have a LibMain() function, which is where execution of the
DLL begins. It is in LibMain() that you perform whatever initialization your
DLL requires. The LibMain() function takes four parameters, as listed:

• the DLL’s instance handle

• the DLL’s data segment address

Chapter 13 ■ Writing Dynamic Link Libraries

489

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

• the size of the DLL’s heap

• a command line

In the previous code example, LibMain() unlocks its data segment, which is
always locked by the DLL’s start-up code. LibMain() then returns true, which
indicates that the DLL initialized properly. If LibMain() returns false, Windows
unloads the DLL.

DLLs also must have a deinitialization function called WEP() (Windows Exit

Procedure), which Windows automatically calls when it unloads the DLL:

int FAR PASCAL WEP(int nParam)

{

 return TRUE;

}

This is where you can do any necessary cleanup. The parameter nParam is
passed to the procedure by Windows and can be one of two values. A value
of WEP_FREE_DLL is sent to WEP() when Windows is unloading the DLL, and
WEP_SYSTEMEXIT is sent when Windows shuts down completely. Like LibMain(),
WEP() must return true if all went well. In the previous example, there is no
cleanup to be done, so the function simply returns true.

Note: All functions in a DLL that will be called from other modules must be
exported and declared as FAR. By exporting a function, you make it visible
to other modules, rather than visible only to the module in which it’s

declared. The functions must be declared as FAR because they will be called from a
different code segment.

Except that every exported function must be declared as FAR, there’s nothing
unusual about the functions that make up the body of a DLL. You write these
functions the same way as any other functions, as you can see with Fred(),
which draws the face shape:

void FAR PASCAL _export Fred(HDC hDC, int x, int y)

{

 Ellipse(hDC, x, y, x+20, y+30);

 Ellipse(hDC, x+3, y+10, x+8, y+16);

 Ellipse(hDC, x+12, y+10, x+17, y+16);

 Ellipse(hDC, x+7, y+16, x+13, y+20);

Part II ■ Windows Topics

490

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

 Ellipse(hDC, x+4, y+22, x+16, y+25);

 Ellipse(hDC, x-3, y+10, x, y+18);

 Ellipse(hDC, x+20, y+10, x+23, y+18);

}

In the previous code, the function calls the Windows GDI function Ellipse()
to draw the component’s of Fred’s face. Fred()’s parameters are the handle to
the window’s DC and Fred’s x- and y-coordinates. The other shape functions,
Triangle() and Squiggle(), work similarly, so there’s no point in discussing
them here. You can see them in Listings 13.1 through 13.3, which include the
header file, implementation, and definition file for the shape DLL.

Listing 13.1. SHAPELIB.H—header file for the shape DLL.

// SHAPELIB.H -- Header file for the shape DLL.

#ifndef _SHAPELIB_H

#define _SHAPELIB_H

// Use extern “C” to prevent C++ name mangling.

extern “C”

{

 void FAR PASCAL _export

 Triangle(HDC hDC, int x, int y);

 void FAR PASCAL _export

 Squiggle(HDC hDC, int x, int y);

 void FAR PASCAL _export

 Fred(HDC hDC, int x, int y);

}

#endif

Listing 13.2. SHAPELIB.CPP—implementation for the shape DLL.

// SHAPELIB.CPP -- Implementation for the shape DLL.

#include <windows.h>

#include “shapelib.h”

Chapter 13 ■ Writing Dynamic Link Libraries

491

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

// Prevent name mangling.

extern “C”

{

 int FAR PASCAL WEP(int nParam);

}

#pragma argsused

//

// LibMain()

//

// This function is the DLL’s entry point.

//

int FAR PASCAL LibMain(HINSTANCE hInstance,

 WORD wDataSeg, WORD cbHeapSize,

 LPSTR lpstrCmdLine)

{

 // Unlock data segment.

 if (cbHeapSize)

 UnlockData(0);

 return TRUE;

}

#pragma argsused

//

// WEP()

//

// The DLL exits here. WEP = Windows Exit Procedure.

//

int FAR PASCAL WEP(int nParam)

{

 return TRUE;

}

//

// Fred()

//

// This function draws Fred.

//

continues

Part II ■ Windows Topics

492

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Listing 13.2. Continued

void FAR PASCAL _export Fred(HDC hDC, int x, int y)

{

 Ellipse(hDC, x, y, x+20, y+30);

 Ellipse(hDC, x+3, y+10, x+8, y+16);

 Ellipse(hDC, x+12, y+10, x+17, y+16);

 Ellipse(hDC, x+7, y+16, x+13, y+20);

 Ellipse(hDC, x+4, y+22, x+16, y+25);

 Ellipse(hDC, x-3, y+10, x, y+18);

 Ellipse(hDC, x+20, y+10, x+23, y+18);

}

//

// Triangle()

//

// This function draws a triangle.

//

void FAR PASCAL _export Triangle(HDC hDC, int x, int y)

{

 MoveTo(hDC, x, y);

 LineTo(hDC, x-10, y+20);

 LineTo(hDC, x+10, y+20);

 LineTo(hDC, x, y);

}

//

// Squiggle()

//

// This function draws a squiggle.

//

void FAR PASCAL _export Squiggle(HDC hDC, int x, int y)

{

 MoveTo(hDC, x, y);

 for (int i=1; i<6; ++i)

 {

 LineTo(hDC, x+(i*10), y-10);

 LineTo(hDC, x+(i*10), y+10);

 }

}

Chapter 13 ■ Writing Dynamic Link Libraries

493

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Listing 13.3. SHAPELIB.DEF—definition file for shape DLL.

LIBRARY SHAPELIB

DESCRIPTION ‘Shape DLL for Windows’

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE SINGLE

HEAPSIZE 1024

Calling Functions in a DLL
N ow that you know how to write a DLL, you might wonder how you can

call that DLL from another program. First, before compiling the pro-
gram, you must supply the linker with the names of the functions your program
is importing from the DLL. If you fail to do this, the linker generates undefined
symbol errors for each imported function. There are three ways of informing
the linker about imported functions:

• Add an IMPORTS section to the program’s definition file, listing the
names of the functions to be imported.

• Add an EXPORTS section to the DLL’s definition file that assigns ordinal
values to each exported function. Then, add an IMPORTS section to
your application’s definition file that equates the function names with
the ordinal values.

• Create an import library.

Caution: You must supply the linker with the names of the functions your
program is importing from the DLL. If you fail to do this, the linker
generates undefined symbol errors for each imported function.

You add an IMPORTS section to the program’s definition file like this:

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Part II ■ Windows Topics

494

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

IMPORTS SHAPELIB.Fred

 SHAPELIB.Triangle

 SHAPELIB.Squiggle

This method is adequate for programs that import only a few functions.
However, listing all the functions imported from a large DLL can be a long and
tedious process.

A twist on the previous technique is to assign ordinal values to each of the
functions that your DLL exports. This is done by adding an EXPORTS section
to the DLL’s definition file, as shown here:

EXPORTS Fred @1

 Triangle @2

 Squiggle @3

These ordinal values, preceded by the @ symbol, can be any unique positive
integers.

Now, in the IMPORT section of your application’s definition file, you can assign
appropriate function names to the ordinal values, like this:

IMPORTS Fred = SHAPELIB.1

 Triangle = SHAPELIB.2
 Squiggle = SHAPELIB.3

By storing ordinal values rather than function names, your program’s execut-
able file will be a bit smaller. But listing all the functions included in a large DLL
can be a tedious chore.

Creating an import library is an easier way to inform the linker about imported
DLL functions. After creating your DLL, run Borland’s IMPLIBW.EXE program
(called Import Lib in the Borland C++ 3.1 group window). Then, give IMPLIBW
the name of the DLL that it should convert to an import library.

When the import library is created, it has the extension .LIB. Add this new
library file to your application’s project file list, and then compile the applica-
tion. That’s all there is to it. You don’t have to list all the functions manually;
the import library does this for you.

When writing your program, you can now call the DLL’s functions as if they
were part of your program, as you see as you examine the program’s main
window class, starting with the class’ definition:

_CLASSDEF(TDLLWnd)

class TDLLWnd: public TWindow

{

public:

Chapter 13 ■ Writing Dynamic Link Libraries

495

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

 TDLLWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMLButtonDown(RTMessage msg)

 = [WM_FIRST + WM_LBUTTONDOWN];

 virtual void WMRButtonDown(RTMessage msg)

 = [WM_FIRST + WM_RBUTTONDOWN];

 virtual void WMMButtonDown(RTMessage msg)

 = [WM_FIRST + WM_MBUTTONDOWN];

};

In this example, the main window is derived from the TWindow class. The main
window’s only functions, besides the constructor, are message-response
functions for all three mouse buttons. When the user presses a mouse button,
the appropriate function is called to draw the required shape in the window.
For example, the function WMLButtonDown() draws Fred:

void TDLLWnd::WMLButtonDown(RTMessage msg)

{

 HDC hDC = GetDC(HWindow);

 Fred(hDC, msg.LP.Lo, msg.LP.Hi);

 ReleaseDC(HWindow, hDC);

}

In this example, the function obtains a device context for the window and calls
the function Fred() to draw the shape. Although Fred() is in the DLL,
WMLButtonDown() calls it exactly as it does any other function in the program.
Then, after the shape is drawn, WMLButtonDown() releases the DC and exits.
The WMRButtonDown() and WMMButtonDown() functions work similarly.

Listings 13.4 through 13.7 include the header file, the implementation, and
the definition file for the DLL test application.

Listing 13.4. DLLAPP.CPP—DLL test application.

// DLLAPP.CPP -- Application that uses shape DLL.

#include <owl.h>

#include “dllwnd.h”

// Application class declaration.

class TDLLApp: public TApplication {

public:

 TDLLApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

continues

Part II ■ Windows Topics

496

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Listing 13.4. Continued

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {};

 virtual void InitMainWindow();

};

//

// TDLLApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TDLLApp::InitMainWindow()

{

 MainWindow = new TDLLWnd(NULL, “DLL Test Window”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 TDLLApp DLLApp(“DLLApp”, hInstance,

 hPrevInstance, lpszCmdLine, nCmdShow);

 DLLApp.Run();

 return DLLApp.Status;

}

Listing 13.5. DLLWND.H—header file for main window.

#ifndef _DLLWND_H

#define _DLLWND_H

_CLASSDEF(TDLLWnd)

class TDLLWnd: public TWindow

{

public:

Chapter 13 ■ Writing Dynamic Link Libraries

497

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

 TDLLWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void WMLButtonDown(RTMessage msg)

 = [WM_FIRST + WM_LBUTTONDOWN];

 virtual void WMRButtonDown(RTMessage msg)

 = [WM_FIRST + WM_RBUTTONDOWN];

 virtual void WMMButtonDown(RTMessage msg)

 = [WM_FIRST + WM_MBUTTONDOWN];

};

#endif

Listing 13.6. DLLWND.CPP—implementation for main window.

// DLLWND.CPP -- Implementation for main window.

#include <owl.h>

#include “dllwnd.h”

#include “shapelib.h”

//
// TDLLWnd::TDLLWnd()

//

// This is the main window’s constructor.

//

TDLLWnd::TDLLWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s size.

 Attr.X = 40;

 Attr.Y = 40;

 Attr.H = GetSystemMetrics(SM_CYSCREEN) / 1.5;

 Attr.W = GetSystemMetrics(SM_CXSCREEN) / 1.5;

}

//

// TDLLWnd::WMLButtonDown()

//

// This function responds to a WM_LBUTTONDOWN message.

//

void TDLLWnd::WMLButtonDown(RTMessage msg)

continues

Part II ■ Windows Topics

498

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Listing 13.6. Continued

{

 HDC hDC = GetDC(HWindow);

 Fred(hDC, msg.LP.Lo, msg.LP.Hi);

 ReleaseDC(HWindow, hDC);

}

//

// TDLLWnd::WMMButtonDown()

//

// This function responds to a WM_MBUTTONDOWN message.

//

void TDLLWnd::WMMButtonDown(RTMessage msg)

{

 HDC hDC = GetDC(HWindow);

 Squiggle(hDC, msg.LP.Lo, msg.LP.Hi);

 ReleaseDC(HWindow, hDC);

}

//

// TDLLWnd::WMRButtonDown()

//

// This function responds to a WM_RBUTTONDOWN message.

//

void TDLLWnd::WMRButtonDown(RTMessage msg)

{

 HDC hDC = GetDC(HWindow);

 Triangle(hDC, msg.LP.Lo, msg.LP.Hi);

 ReleaseDC(HWindow, hDC);

}

Listing 13.7. DLLAPP.DEF—the DLL test application’s definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Chapter 13 ■ Writing Dynamic Link Libraries

499

AC) SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

DLL Caveats and Points of Interest
A s you can see, writing a simple DLL is easy. However, there are several

things that you should keep in mind as you write your own DLLs, as
follow:

• Unlike a program, which has its own code, data, and stack segments, a
DLL can have only a code and a data segment. It uses the stack of the
calling program, which leads to the DS != SS condition.

• All functions in a DLL must be declared as FAR and all pointer param-
eters passed to or from a DLL must also be FAR.

• DLL’s do not have a message loop and, therefore, do not receive
window messages. A DLL can, however, call GetMessage() or
PeekMessage() to examine messages targeted for the program
that called the DLL.

• Static data in a DLL is accessible by any program that calls the DLL.

• You can use modal dialog boxes in a DLL. When creating the dialog,
use the DLL’s instance handle and set the dialog’s parent to NULL.

• You can register and create windows within a DLL. However, mes-
sages for these windows are sent to the calling program instance, not
to the DLL.

• The normal start-up code that’s added to a Windows program during
linking is not added to a DLL. This means you can’t use the getenv()
or putenv() functions in a DLL.

• A DLL can allocate global memory for the program instance that
called it. The allocated memory is released when the program in-
stance terminates.

• A DLL can load resources either from its own file or from the file of
the calling program instance. The file from which the resources are
loaded depends on the instance handle used with the resource-
loading function.

Part II ■ Windows Topics

500

SAMS/Q6 Borland C++ Power Prog #172-7 Ch 13 Brook 2-18-93 Lp#5 (Folio, LAC)

Conclusion
As you now know, DLLs allow many concurrently running programs to call

a library of functions while having only a single instance of the library
loaded in memory. This promotes efficient memory use and smaller executable
files.

DLLs can be used in other ways, too. You might, for example, consider using
DLLs for program modules that your application needs only infrequently.
Using DLLs this way, you can keep the size of your main program small, loading
the additional data or functions only when they are needed. In this case, use
the LoadLibrary() and FreeLibrary() functions in your program to explicitly
load and unload DLLs, rather than having Windows handle them for you.

Now that all the serious business is out of the way, it’s time to have some fun.
In Chapter 14, you learn to add multimedia sound to your programs. In Chapter
15, the concluding chapter, you create a Windows screen saver.

Chapter 14 ■ Using Multimedia Sound with Windows

501

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Using Multimedia Sound
with Windows

N

14

can handle many types of sound devices, including CD players, sound cards,
and MIDI-compatible synthesizers.

Perhaps the most popular source of sound for Windows programs is a
waveform file, which stores sampled sounds that can be played back by
Windows. These sound files, which are identified by their .WAV filename
extension, are responsible for most of the sounds you hear when running a
Windows session with a multimedia-capable sound card installed.

In this chapter, you learn not only to play waveform sounds, but also to add
such sound functions as pause and resume to your programs. Along the way,

othing, outside of graphics, adds as much pizzazz to
a program as the judicial use of sound. Not only can
sound add pleasing effects to your software, but it can
also alert the user to situations that warrant immedi-
ate attention.

In previous versions of Windows, there was only
limited support for sound; but in Windows 3.1, you

Part II ■ Windows Topics

502

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

you are introduced to Windows 3.1’s Media Control Interface (MCI), which
provides a wealth of functions for controlling multimedia devices.

Note: To receive the best results from the sound programs included in this
chapter, you should have a multimedia-capable sound board, such as
Sound Blaster, installed in your system. However, if you don’t have a sound

card, you might be able to use the programs by installing the PC speaker driver
included on this book’s disk. (Microsoft does not guarantee that this driver works on
all systems.)

The Media Control Interface
T he Media Control Interface is part of the Multimedia Extensions to

Windows, which controls multimedia devices. This high-level interface
gives you control over such devices as CD players, VCRs, videodisc players,
MIDI synthesizers, and more.

Unfortunately, if you scan through the printed Windows documentation that
came with your Borland C++ compiler, you’ll find nary a mention of the MCI.
In fact, if you check most Windows programming books, you’ll find this
important information missing there, too. You’re not out of luck, though. In
your Borland C++ main window, you will find on-disk documentation for the
MCI. This documentation can be tough to figure out, though, so this chapter
is designed to give you a head start.

You can control the MCI in two ways, as explained:

• By using the command-message interface. This method enables you
to program the MCI using Windows messages and commands, much
as you do with any part of the Windows API.

• By using the command-string interface. This method provides a
scripting language for the MCI, enabling you to provide commands in
string form that Windows then translates into the commands neces-
sary to control the multimedia devices.

In this chapter, you learn about the command-message interface. Once you see
how this works, you should be able to use the on-disk documentation (in the
MCI reference) to figure out the command-string interface.

Chapter 14 ■ Using Multimedia Sound with Windows

503

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Playing a Waveform File
I f you’ve set up your PC for multimedia audio, you’ve undoubtedly seen

waveform files, which are stored on your disk with various names, but all
with the .WAV file extension. These files represent digitally sampled sounds
that Windows can easily reproduce through the MCI. Sounds such as the
famous Windows “ta-da” (heard on some systems when Windows boots) and
the pleasant “ding!” used for the system bell are stored in .WAV files. You might
think that playing digitized sounds in Windows is a headache and a half. If so,
you are wrong.

By simply calling the MCI sndPlaySound() function, you can play any wave-
form file that fits in memory. Give the function the name of the file you want
to play, add the sound-play options, and presto, you have digitized sound!

Is it really that easy? You bet! Listings 14.1 through 14.4 compose a simple
sound application that plays a wave file named BOING.WAV. (This wave file is
on this book’s disk, along with the listings.) When you compile and run the
program, you see the window in Figure 14.1. Click the Press Me button to hear
the “boing” sound.

Figure 14.1. Sound application, version 1.

Now, look at the program, starting with the main window’s declaration found
in SNDWND1.H:

_CLASSDEF(TSndWnd)

class TSndWnd: public TWindow

{

public:

 TSndWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void IDPressMe(RTMessage msg)

 = [ID_FIRST + ID_PRESSME];

};

The main window class is derived from TWindow and has only two member
functions, the constructor and a message-response function for the window’s

Part II ■ Windows Topics

504

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

single button. The constructor, found in the class’ implementation file,
SNDWND1.CPP, sets the main window so it can’t be resized:

TSndWnd::TSndWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s style.

 Attr.Style = WS_POPUP | WS_SYSMENU |

 WS_BORDER | WS_CAPTION;

 // Set the window’s size.

 Attr.X = 100;

 Attr.Y = 100;

 Attr.H = 100;

 Attr.W = 200;

 // Add a button to the window.

 new TButton(this, ID_PRESSME, “Press Me”,

 16, 10, 165, 55, FALSE);

}

Besides changing the window’s style so it has no thick frame for sizing the
window (in other words, no WS_THICKFRAME) and setting its position and size,
this function creates a single button for the window, giving it the ID that is
defined in SNDWND1.H. This button is handled by the message-response
function IDPressMe():

void TSndWnd::IDPressMe(RTMessage)

{

 if (!sndPlaySound(“BOING.WAV”,

 SND_SYNC | SND_NODEFAULT))

 MessageBox(HWindow, “Couldn’t find WAV file.”,

 “SOUND”, MB_OK | MB_ICONEXCLAMATION);

}

IDPressMe() does little more than call sndPlaySound() to generate the “boing”
contained in the file BOING.WAV. The sndPlaySound() function returns a false
if there’s an error and a true if the sound played accurately. The if statement,
therefore, checks the return value and, if it detects an error, a message box is
displayed.

The sndPlaySound() function requires two parameters. The first is the name
of the file you want to play. The function first searches the [sounds] section of

Chapter 14 ■ Using Multimedia Sound with Windows

505

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

the WIN.INI file for the sound. The sound names found there are not the names
of waveform files, but rather names assigned to specific Windows events. A
typical WIN.INI [sounds] section looks like this:

[sounds]

SystemAsterisk=chord.wav,Asterisk

SystemHand=chord.wav,Critical Stop

SystemDefault=C:\WINDOWS\DING.WAV,Default Beep

SystemExclamation=chord.wav,Exclamation

SystemQuestion=chord.wav,Question

SystemExit=chimes.wav,Windows Exit

SystemStart=tada.wav,Windows Start

To play the SystemAsterisk sound, you provide sndPlaySound() with the string
“SystemAsterisk” as its first parameter. If sndPlaySound() can’t find the sound
represented by the string in WIN.INI, the function assumes that the sound
string is the name of a waveform file. sndPlaySound() then searches for the file
in the current directory, the main Windows directory, the Windows system
directory, or directories included in the user’s PATH environment variable. If the
function can’t find the file, it tries to play the SystemDefault sound, as defined
in WIN.INI. Finally, if it can’t find this sound, it returns an error.

The second parameter for sndPlaySound() is the sound-play option, which
can be one or more of the following:

• SND_SYNC—The sound is played synchronously and the function
returns only when the sound ends.

• SND_ASYNC—The sound is played asynchronously and the function
returns immediately after the sound begins. You must call
sndPlaySound() with a first parameter of NULL to end the sound.

• SND_NODEFAULT—If the sound specified in the first parameter can’t be
found, the function returns without playing the default sound.

• SND_MEMORY—Indicates that the first parameter in the sndPlaySound()
call points to a waveform sound in memory.

• SND_LOOP—The sound plays repeatedly. To stop the loop, you must
call sndPlaySound() with a first parameter of NULL. (You must also
include the SND_ASYNC flag along with SND_LOOP.)

• SND_NOSTOP—The function does not play the requested sound if a
sound is already playing. In this case, sndPlaySound() returns false.

Part II ■ Windows Topics

506

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Note: The constants used with the multimedia functions are defined in
MMSYSTEM.H. Therefore, you must include MMSYSTEM.H in files that
use these constants.

Listings 14.1 through 14.4 include the complete code for this simple sound
application. You might want to enhance the program to a full waveform player
by adding the functions necessary to choose any sound file on the disk. As
written, this application plays only the BOING.WAV file.

Listing 14.1. SNDAPP1.CPP—sound application, version 1.

// SNDAPP1.CPP -- Sound Application, version 1.

#include <owl.h>

#include “sndwnd1.h”

// Application class declaration.

class TSndApp: public TApplication

{

public:

 TSndApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {};

 virtual void InitMainWindow();

};

//

// TSndApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TSndApp::InitMainWindow()

{

 MainWindow = new TSndWnd(NULL, “Sound Window 1”);

}

Chapter 14 ■ Using Multimedia Sound with Windows

507

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 TSndApp SndApp(“SndApp1”, hInstance,

 hPrevInstance, lpszCmdLine, nCmdShow);

 SndApp.Run();

 return SndApp.Status;

}

Listing 14.2. SNDWND1.H—main window header file.

// SNDWND1.H -- Header file for main window.

#ifndef _SNDWND1_H

#define _SNDWND1_H

#define ID_PRESSME 100

_CLASSDEF(TSndWnd)

class TSndWnd: public TWindow

{

public:

 TSndWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void IDPressMe(RTMessage msg)

 = [ID_FIRST + ID_PRESSME];

};

#endif

Listing 14.3. SNDWND1.CPP—main window implementation.

// SNDWND1.CPP -- Implementation for main window.

#include <owl.h>

#include <mmsystem.h>

continues

Part II ■ Windows Topics

508

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

#include <button.h>

#include “sndwnd1.h”

//

// TSndWnd::TSndWnd()

//

// This is the main window’s constructor.

//

TSndWnd::TSndWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s style.

 Attr.Style = WS_POPUP | WS_SYSMENU |

 WS_BORDER | WS_CAPTION;

 // Set the window’s size.

 Attr.X = 100;

 Attr.Y = 100;

 Attr.H = 100;

 Attr.W = 200;

 // Add a button to the window.

 new TButton(this, ID_PRESSME, “Press Me”,

 16, 10, 165, 55, FALSE);

}

//

// TSndWnd::IDPressMe()

//

// This function responds when the Press Me button is

// clicked.

//

void TSndWnd::IDPressMe(RTMessage)

{

 if (!sndPlaySound(“BOING.WAV”,

 SND_SYNC | SND_NODEFAULT))

 MessageBox(HWindow, “Couldn’t find WAV file.”,

 “SOUND”, MB_OK | MB_ICONEXCLAMATION);

}

Listing 14.3. Continued

Chapter 14 ■ Using Multimedia Sound with Windows

509

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Listing 14.4. SNDAPP.DEF—sound application’s definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Having More Control Over Sound
T he function sndPlaySound() is the highest level function available for

playing waveform files in Windows 3.1. As such, it allows only a few
options and always plays a sound from beginning to end. What if you want more
control over the sounds in your programs? Then, you must step down one level
and use the mciSendCommand() function to send specific commands to your
sound device.

Although using mciSendCommand() requires learning a new list of Windows
messages specially designed for multimedia applications, it is still a straight-
forward process. In this process, devices are treated much like tape recorders
with features like play, stop, pause, and resume. By using these different
functions, you can stop a waveform file from playing at any point or pause the
waveform file and resume playing exactly where it paused. You can, as you see
in the next program, even hand control of the sounds over to the user.

Listings 14.5 through 14.8 compose a sound application that plays a sound-
effect waveform and enables the user to manipulate the sound with the
program’s buttons.

When you compile and run the program, you see the window in Figure 14.2. To
begin playing the sound, click the Play button. To stop the sound, click the Stop
button. You can pause and resume the sound effect by clicking the Pause and
Resume buttons, respectively.

Figure 14.2. Sound application, version 2.

Part II ■ Windows Topics

510

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Now that you’ve had a little fun with the program (recognize the sound
effect?), look at the program code, starting with the main window’s class
definition, found in SNDWND2.H:

_CLASSDEF(TSndWnd)

class TSndWnd: public TWindow

{

 int deviceID;

public:

 TSndWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void SetupWindow();

 virtual void IDPlay()

 = [ID_FIRST + ID_PLAY];

 virtual void IDStop()

 = [ID_FIRST + ID_STOP];

 virtual void IDPause()

 = [ID_FIRST + ID_PAUSE];

 virtual void IDResume()

 = [ID_FIRST + ID_RESUME];

 virtual void MMMCINotify(RTMessage msg)

 = [WM_FIRST + MM_MCINOTIFY];

private:

 void SetButtons(BOOL b1, BOOL b2, BOOL b3, BOOL b4);

 void StopSound();

};

This main window class is a bit more complicated than the previous one. First,
the data member deviceID holds the ID for the currently open sound device.
Because the ID is needed by most MCI functions, it is accessible to all member
functions in the class. Following this single data member are the member
functions for the class, including the constructor and four message-response
functions, one for each of the window’s four buttons. Finally, two private
member functions, SetButtons() and StopSound(), provide services needed
by more than one message-response function.

The fun begins in the main window’s constructor, found in SNDWND1.CPP:

TSndWnd::TSndWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s style.

Chapter 14 ■ Using Multimedia Sound with Windows

511

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 Attr.Style = WS_POPUP | WS_SYSMENU |

 WS_BORDER | WS_CAPTION;

 // Set the window’s size.

 Attr.X = 100;

 Attr.Y = 100;

 Attr.H = 90;

 Attr.W = 372;

 // Add buttons to the window.

 new TButton(this, ID_PLAY, “Play”,

 10, 10, 80, 50, FALSE);

 new TButton(this, ID_STOP, “Stop”,

 100, 10, 80, 50, FALSE);

 new TButton(this, ID_PAUSE, “Pause”,

 190, 10, 80, 50, FALSE);

 new TButton(this, ID_RESUME, “Resume”,

 280, 10, 80, 50, FALSE);

}

This constructor is similar to the one for the first sound application, except four
buttons are added to the window rather than only one. Also, the window is
sized differently so it has room for all four buttons.

Before the main window is displayed, its buttons must be set so only the Play
button is enabled. A good place to handle this task is in the window’s
SetupWindow() function:

void TSndWnd::SetupWindow()

{

 // Perform regular setup.

 TWindow::SetupWindow();

 // Enable and disable buttons.

 SetButtons(TRUE, FALSE, FALSE, FALSE);

}

In this function, TWindow::SetupWindow() is called first because it provides
required services for the class. Then, the function SetButtons() is called:

void TSndWnd::SetButtons(BOOL b1, BOOL b2, BOOL b3, BOOL b4)

{

 HWND h = GetDlgItem(HWindow, ID_PLAY);

Part II ■ Windows Topics

512

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 EnableWindow(h, b1);

 h = GetDlgItem(HWindow, ID_STOP);

 EnableWindow(h, b2);

 h = GetDlgItem(HWindow, ID_PAUSE);

 EnableWindow(h, b3);

 h = GetDlgItem(HWindow, ID_RESUME);

 EnableWindow(h, b4);

}

This function enables or disables the window’s buttons based on the Boolean
values supplied as its parameters. To enable or disable a button, the function
has simply to obtain each button’s handle with a call to GetDlgItem() and then
to call EnableWindow(), passing the requested button state as the second
parameter.

Once the main window is constructed and displayed, the program waits for the
user to click the Play button. When she does, the message-response function
IDPlay() takes over:

void TSndWnd::IDPlay()

{

 char str[161];

 char elementName[81] = “BEAMUP.WAV”;

 MCI_OPEN_PARMS mciOpen;

 MCI_PLAY_PARMS mciPlay;

 // Set up the MCI open parameters.

 mciOpen.dwCallback = 0L;

 mciOpen.wDeviceID = 0;

 mciOpen.wReserved0 = 0;

 mciOpen.lpstrDeviceType = NULL;

 mciOpen.lpstrElementName = elementName;

 mciOpen.lpstrAlias = NULL;

 // Open the waveform audio device.

 DWORD error = mciSendCommand(0, MCI_OPEN,

 MCI_WAIT | MCI_OPEN_ELEMENT,

 (DWORD) (LPMCI_OPEN_PARMS) &mciOpen);

 // Report an error, if one occurred.

 if (error != 0L)

 {

 // Get the error string.

Chapter 14 ■ Using Multimedia Sound with Windows

513

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 mciGetErrorString(error, str, sizeof(str));

 // Use the error string in a message box.

 MessageBox(HWindow, str, “SOUND”,

 MB_OK | MB_ICONEXCLAMATION);

 }

 else

 {

 // Save the audio device’s ID.

 deviceID = mciOpen.wDeviceID;

 // Update the buttons.

 SetButtons(FALSE, TRUE, TRUE, FALSE);

 // Set up the MCI play parameters.

 mciPlay.dwCallback = HWindow;

 mciPlay.dwFrom = 0;

 mciPlay.dwTo = 0;

 // Play the sound.

 mciSendCommand(deviceID, MCI_PLAY, MCI_NOTIFY,

 (DWORD) (LPMCI_PLAY_PARMS) &mciPlay);

 }

}

As you can see, producing sounds without sndPlaySound() is a bit more
complicated. Most of the work, though, is accomplished by a single function,
mciSendCommand(). It is this function’s parameters that determine the com-
mand being sent to the device.

At the top of the function, the MCI_OPEN_PARMS and MCI_PLAY_PARMS structures
are defined. These structures hold many of the parameters necessary to open
and play a sound device. Remember when you defined a LOGFONT structure for
creating fonts in Chapter 11? These structures work similarly, providing a
handy container for the many parameters needed by the MCI functions.

To play a sound from the beginning using the default sound device, simply fill
in the MCI_OPEN_PARMS structure mciOpen as shown in the program. The
lpstrElementName is a complete path string to the sound you want to play. In
this program, elementName is always BEAMUP.WAV. However, you can make this
program more flexible by allowing the user to select any waveform file.

Part II ■ Windows Topics

514

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Note: Be sure the file BEAMUP.WAV is in the directory from which you run
SNDAPP2. Otherwise, the program is unable to find the file and gives you
an error message. If you want your .WAV files in a different directory, you

must change elementName in IDPlay() to that directory.

After setting up the MCI_OPEN_PARMS structure, the function calls
mciSendCommand() to open the sound device. The first parameter is the ID of the
device to open. By using a zero, the first available device is chosen. The second
parameter is the command message to be sent, in this case, MCI_OPEN. The third
parameter includes the command flags for the options to be set. There are
many, many of these flags, depending on the device being opened. (Refer to
Borland’s on-disk MCI documentation for a list of all the flags.)

In the function IDPlay(), two flags are used: MCI_WAIT and MCI_OPEN_ELEMENT.
The first instructs the MCI to complete the open function before returning
control to the program. The second instructs the MCI that elementName is a
filename for the sound to open. Because this file has a .WAV extension, the MCI
opens a waveform device. Finally, the fourth parameter is the address of the
MCI_OPEN_PARMS structure. After calling mciSendCommand() with these param-
eters, the device ID—if the device was successfully opened—is in the wDeviceID
field of the structure.

If mciSendCommand() manages to do its job, it returns a value of zero. If,
however, there’s an error, mciSendCommand() returns an error code. To display
an error message, IDPlay() first calls mciGetErrorString(), which fills str
with an appropriate error message. (A terrifically handy function, no? If only
all error messages could be so easily constructed.)

The parameters for this function call are the error code received from
mciSendMessage(), the address of the character array into which the error
message should be stored, and the length of the character array. To display the
message, the program simply uses str in a message box.

To play the sound once the device is opened, IDPlay() first fills the
MCI_PLAY_PARMS structure, mciPlay, with appropriate values. The dwFrom and
dwTo fields of this structure indicate where in the file to start the playing and
where to end. To play the entire sound, these values are set at zero. The
dwCallback field must contain the handle of the window to which MM_MCINOTIFY
messages should be sent, which is, of course, the main window. The MM_MCINOTIFY
message, as you soon see, informs the program when the sound is finished
playing, among other things.

Chapter 14 ■ Using Multimedia Sound with Windows

515

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

When the MCI_PLAY_PARMS structure is initialized, the program calls
mciSendCommand() with a command value of MCI_PLAY to play the sound. This
time the call’s parameters include the device ID; the MCI_NOTIFY flag, which
instructs the MCI to send MM_MCINOTIFY messages to the window with a handle
stored in the dwCallback field of the MCI_PLAY_PARMS structure; and the address
of the MCI_PLAY_PARMS structure.

If the user allows the entire sound to play, a MM_MCINOTIFY message is sent to
the main window. This message is handled by the message-response function
MMMCINotify():

void TSndWnd::MMMCINotify(RTMessage msg)

{

 // If the sound is done playing, close the device.

 if (msg.WParam == MCI_NOTIFY_SUCCESSFUL)

 {

 StopSound();

 }

}

When the MM_MCINOTIFY message’s WParam is set to MCI_NOTIFY_SUCCESSFUL, the
sound has played to the end. In this case, the sound must be stopped and the
device closed, tasks handled by the function StopSound():

void TSndWnd::StopSound()

{

 MCI_GENERIC_PARMS mciGeneric;

 // Set up the MCI stop and close parameters.

 mciGeneric.dwCallback = 0L;

 // Stop the device from playing.

 mciSendCommand(deviceID, MCI_STOP, MCI_WAIT,

 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric);

 // Close the device.

 mciSendCommand(deviceID, MCI_CLOSE, MCI_WAIT,

 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric);

 // Update the buttons.

 SetButtons(TRUE, FALSE, FALSE, FALSE);

}

Part II ■ Windows Topics

516

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Here, the function first initializes an MCI_GENERIC_PARMS structure by setting
the dwCallback field to zero, which is the only field in the structure. (The
program no longer has to intercept MM_MCINOTIFY messages.) It then calls
mciSendMessage() to close the device. Finally, the buttons are set appropri-
ately with a call to SetButtons().

All this work is basically equivalent to the single sndPlaySound() function used
in the first program. Seems like a lot of work? Sure, but keep in mind that, by
using mciSendMessage(), the program has greater control over sound. For
example, the user can pause the sound by clicking the Pause button, which
calls the message-response function IDPause():

void TSndWnd::IDPause()

{

 MCI_GENERIC_PARMS mciGeneric;

 // Set up the MCI pause parameters.

 mciGeneric.dwCallback = 0L;

 // Pause the sound.

 mciSendCommand (deviceID, MCI_PAUSE, MCI_WAIT,

 (DWORD)(LPMCI_GENERIC_PARMS) &mciGeneric);

 // Update the buttons.

 SetButtons(FALSE, TRUE, FALSE, TRUE);

}

This function isn’t much different from StopSound(), which you already looked
at, except that here the function calls mciSendMessage() with a command value
of MCI_PAUSE. This causes the current sound to stop playing, yet retain its
current position. The function to resume play, called when the user clicks the
Resume button, also follows the same form as IDPause(), except it sends the
MCI_RESUME command:

void TSndWnd::IDResume()

{

 MCI_GENERIC_PARMS mciGeneric;

 // Set up the MCI resume parameters.

 mciGeneric.dwCallback = 0L;

 // Resume the sound.

Chapter 14 ■ Using Multimedia Sound with Windows

517

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 mciSendCommand (deviceID, MCI_RESUME, MCI_WAIT,

 (DWORD)(LPMCI_GENERIC_PARMS) &mciGeneric);

 // Update the buttons.

 SetButtons(FALSE, TRUE, TRUE, FALSE);

}

This second version of the sound application is much like a CD or tape player
because the user can do more than simply play a sound. He can stop the sound
at any time, as well as pause the sound and continue play where it left off. Of
course, these functions are more valuable for a device such as a CD player.
Waveform files are usually too short to warrant anything more than a play
command. Using what you’ve learned here, you should be able to extend your
programs to handle other audio devices.

The full listings for the second sound application appear in Listings 14.5
through 14.8.

Listing 14.5. SNDAPP2.CPP—sound application, version 2.

// SNDAPP2.CPP -- Sound Application, version 2.

#include <owl.h>

#include “sndwnd2.h”

// Application class declaration.

class TSndApp: public TApplication

{

public:

 TSndApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {};

 virtual void InitMainWindow();

};

//

// TSndApp::InitMainWindow()

//

// This function creates the application’s main window.

//

continues

Part II ■ Windows Topics

518

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

void TSndApp::InitMainWindow()

{

 MainWindow = new TSndWnd(NULL, “Sound Window 2”);

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 TSndApp SndApp(“SndApp2”, hInstance,

 hPrevInstance, lpszCmdLine, nCmdShow);

 SndApp.Run();

 return SndApp.Status;

}

Listing 14.6. SNDWND2.H—the main window’s header file.

// SNDWND2.H -- Header file for main window.

#ifndef _SNDWND2_H

#define _SNDWND2_H

#include <mmsystem.h>

#define ID_PLAY 100

#define ID_STOP 101

#define ID_PAUSE 102

#define ID_RESUME 103

_CLASSDEF(TSndWnd)

class TSndWnd: public TWindow

{

 int deviceID;

public:

 TSndWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void SetupWindow();

 virtual void IDPlay()

 = [ID_FIRST + ID_PLAY];

Listing 14.5. Continued

Chapter 14 ■ Using Multimedia Sound with Windows

519

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 virtual void IDStop()

 = [ID_FIRST + ID_STOP];

 virtual void IDPause()

 = [ID_FIRST + ID_PAUSE];

 virtual void IDResume()

 = [ID_FIRST + ID_RESUME];

 virtual void MMMCINotify(RTMessage msg)

 = [WM_FIRST + MM_MCINOTIFY];

private:

 void SetButtons(BOOL b1, BOOL b2, BOOL b3, BOOL b4);

 void StopSound();

};

#endif

Listing 14.7. SNDWND2.CPP—the main window’s implementation.

// SNDWND2.CPP -- Implementation for main window.

#include <owl.h>

#include <mmsystem.h>

#include <button.h>

#include “sndwnd2.h”

//

// TSndWnd::TSndWnd()

//

// This is the main window’s constructor.

//

TSndWnd::TSndWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Set the window’s style.

 Attr.Style = WS_POPUP | WS_SYSMENU |

 WS_BORDER | WS_CAPTION;

 // Set the window’s size.

 Attr.X = 100;

 Attr.Y = 100;

continues

Part II ■ Windows Topics

520

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 Attr.H = 90;

 Attr.W = 372;

 // Add buttons to the window.

 new TButton(this, ID_PLAY, “Play”,

 10, 10, 80, 50, FALSE);

 new TButton(this, ID_STOP, “Stop”,

 100, 10, 80, 50, FALSE);

 new TButton(this, ID_PAUSE, “Pause”,

 190, 10, 80, 50, FALSE);

 new TButton(this, ID_RESUME, “Resume”,

 280, 10, 80, 50, FALSE);

}

//

// TSndWnd::SetupWindow()

//

// This function disables the buttons that should not

// be functional at the start of the program.

//

void TSndWnd::SetupWindow()

{

 // Perform regular setup.

 TWindow::SetupWindow();

 // Enable and disable buttons.

 SetButtons(TRUE, FALSE, FALSE, FALSE);

}

//

// TSndWnd::IDPlay()

//

// This function responds when the Play button is

// clicked.

//

void TSndWnd::IDPlay()

{

 char str[161];

 char elementName[81] = “C:\\BORLANDC\\BEAMUP.WAV”;

 MCI_OPEN_PARMS mciOpen;

 MCI_PLAY_PARMS mciPlay;

Listing 14.7. Continued

Chapter 14 ■ Using Multimedia Sound with Windows

521

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 // Set up the MCI open parameters.

 mciOpen.dwCallback = 0L;

 mciOpen.wDeviceID = 0;

 mciOpen.wReserved0 = 0;

 mciOpen.lpstrDeviceType = NULL;

 mciOpen.lpstrElementName = elementName;

 mciOpen.lpstrAlias = NULL;

 // Open the waveform audio device.

 DWORD error = mciSendCommand(0, MCI_OPEN,

 MCI_WAIT | MCI_OPEN_ELEMENT,

 (DWORD) (LPMCI_OPEN_PARMS) &mciOpen);

 // Report an error, if one occurred.

 if (error != 0L)

 {

 // Get the error string.

 mciGetErrorString(error, str, sizeof(str));

 // Use the error string in a message box.

 MessageBox(HWindow, str, “SOUND”,

 MB_OK | MB_ICONEXCLAMATION);

 }

 else

 {

 // Save the audio device’s ID.

 deviceID = mciOpen.wDeviceID;

 // Update the buttons.

 SetButtons(FALSE, TRUE, TRUE, FALSE);

 // Set up the MCI play parameters.

 mciPlay.dwCallback = HWindow;

 mciPlay.dwFrom = 0;

 mciPlay.dwTo = 0;

 // Play the sound.

 mciSendCommand(deviceID, MCI_PLAY, MCI_NOTIFY,

 (DWORD) (LPMCI_PLAY_PARMS) &mciPlay);

 }

}

continues

Part II ■ Windows Topics

522

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

//

// TSndWnd::IDStop()

//

// This function responds when the Stop button is

// clicked.

//

void TSndWnd::IDStop()

{

 StopSound();

}

//

// TSndWnd::IDPause()

//

// This function responds when the Pause button is

// clicked.

//

void TSndWnd::IDPause()

{

 MCI_GENERIC_PARMS mciGeneric;

 // Set up the MCI pause parameters.

 mciGeneric.dwCallback = 0L;

 // Pause the sound.

 mciSendCommand (deviceID, MCI_PAUSE, MCI_WAIT,

 (DWORD)(LPMCI_GENERIC_PARMS) &mciGeneric);

 // Update the buttons.

 SetButtons(FALSE, TRUE, FALSE, TRUE);

}

//

// TSndWnd::IDResume()

//

// This function responds when the Resume button is

// clicked.

//

void TSndWnd::IDResume()

{

 MCI_GENERIC_PARMS mciGeneric;

Listing 14.7. Continued

Chapter 14 ■ Using Multimedia Sound with Windows

523

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

 // Set up the MCI resume parameters.

 mciGeneric.dwCallback = 0L;

 // Resume the sound.

 mciSendCommand (deviceID, MCI_RESUME, MCI_WAIT,

 (DWORD)(LPMCI_GENERIC_PARMS) &mciGeneric);

 // Update the buttons.

 SetButtons(FALSE, TRUE, TRUE, FALSE);

}

//

// TSndWnd::MMMCINotify()

//

// This function responds to the MM_MCINOTIFY message.

//

void TSndWnd::MMMCINotify(RTMessage msg)

{

 // If the sound is done playing, close the device.

 if (msg.WParam == MCI_NOTIFY_SUCCESSFUL)

 {

 StopSound();

 }

}

//

// TSndWnd::SetButtons()

//

// This function enables or disables the buttons per the

// Boolean parameters b1, b2, b3, and b4.

//

void TSndWnd::SetButtons(BOOL b1, BOOL b2, BOOL b3, BOOL b4)

{

 HWND h = GetDlgItem(HWindow, ID_PLAY);

 EnableWindow(h, b1);

 h = GetDlgItem(HWindow, ID_STOP);

 EnableWindow(h, b2);

 h = GetDlgItem(HWindow, ID_PAUSE);

 EnableWindow(h, b3);

 h = GetDlgItem(HWindow, ID_RESUME);

 EnableWindow(h, b4);

}

continues

Part II ■ Windows Topics

524

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

//

// TSndWnd::StopSound()

//

// This function stops the sound and closes the device.

//

void TSndWnd::StopSound()

{

 MCI_GENERIC_PARMS mciGeneric;

 // Set up the MCI stop and close parameters.

 mciGeneric.dwCallback = 0L;

 // Stop the device from playing.

 mciSendCommand(deviceID, MCI_STOP, MCI_WAIT,

 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric);

 // Close the device.

 mciSendCommand(deviceID, MCI_CLOSE, MCI_WAIT,

 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric);

 // Update the buttons.

 SetButtons(TRUE, FALSE, FALSE, FALSE);

}

Listing 14.8. SNDAPP.DEF—sound application’s definition file.

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Caution: Although adding sound to your programs can make them more
interesting, you should use sound sparingly. Too many beeps, boops, and
zings are bound to annoy your users.

Listing 14.7. Continued

Chapter 14 ■ Using Multimedia Sound with Windows

525

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Conclusion
A lthough using the Media Control Interface is complicated at times, it adds

a great deal of sound control to your programs. In this chapter, you
studied the basics of dealing with sound in Windows. Using the mciSendMessage()
function, you can also:

• Determine the capabilities of a device (command message
MCI_GETDEVCAPS).

• Determine the status of a device (MCI_STATUS).

• Set a device’s parameters (MCI_SET).

• Record sound (MCI_RECORD).

All these MCI functions (and many others not listed) work similarly to the ones
you looked at here, so you should have little trouble incorporating them into
your programs.

If you’d like to pursue multimedia sound, you should read the two Borland on-
line documentation files, Multimedia Reference and MCI Reference. In fact,
because this documentation is not included in Borland’s printed manuals, it’s
a good idea to print the Help files and organize them into a binder for quick and
easy reference. When you examine this documentation, you’ll see the kind of
power that Windows 3.1’s Multimedia Extensions provide for applications
programmers. Don’t be afraid to tap into that power.

Part II ■ Windows Topics

526

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-17-93 CH 14 Lp #3 (Folio, LAC)

Chapter 15 ■ Writing Screen Savers for Windows 3.1

527

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Writing Screen Savers
for Windows 3.1

A

15

willing to spend big bucks for silly programs that are little more than glorified
graphics demos? Who knows? But, one thing’s for sure: If you want to catch a
computer user’s eye, write a clever screen saver.

In this chapter, you learn to write screen savers for Windows 3.1, a task that
is much easier than you might believe because Windows 3.1 handles much of

lthough computer monitors are no longer prone to
screen burn-in (caused by displaying the same
image for an extended time), screen savers are
more popular than ever—so popular, in fact, that
these once shareware-type or public-domain-type
programs have graduated into full commercial pack-
ages such as Berkeley’s After Dark. Why are people

Part II ■ Windows Topics

528

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

the work for you. The sample screen saver included here shows you how to
perform these tricks:

• Blanking out a screen.

• Turning a screen saver off when the user touches a key or moves the
mouse.

• Writing the code that is compatible with the Windows 3.1 screen-
saver routines.

Where Is SCRNSAVE.LIB?
I f you’ve ever tried to write a screen saver for Windows 3.1, you probably

discovered that Microsoft’s Software Development Kit (SDK) includes a
library of screen-saver routines named SCRNSAVE.LIB—a library not in-
cluded in Borland C++. Books and magazine articles that show how to write
screen savers usually base their programs on this library, which leaves Borland
C++ users out in the cold.

Does that mean you can’t write a screen saver in Borland C++? Of course not.
(You are reading a chapter on screen savers, after all.) The fact is, writing a
screen saver with Borland C++ might actually be easier than writing one using
SCRNSAVE.LIB, because you don’t have to deal with the clumsy code conven-
tions needed to take advantage of Microsoft’s screen saver library.

So, chuck out all those old screen-saver tutorials written for Microsoft SDK
users. Here, you learn to write Borland C++ screen savers—and you won’t even
miss SCRNSAVE.LIB.

The Bubbles Screen Saver
L istings 15.1 through 15.7 are the files needed to create Bubbles, a screen

saver for Windows 3.1. To create the screen saver, follow these steps:

1. Compile the program, creating a file named BUBBLES.EXE.

2. Transfer BUBBLES.EXE to your Windows directory and rename it
BUBBLES.SCR.

Chapter 15 ■ Writing Screen Savers for Windows 3.1

529

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

3. Bring up the Windows Control Panel and double-click the Desktop
icon. The dialog box shown in Figure 15.1 appears on-screen.

4. In the Screen saver box in Figure 15.1, select the Bubbles screen
saver, installing it in Windows.

Figure 15.1. The Desktop dialog box.

To see the screen saver in action, you can either wait the amount of time shown
in the Desktop dialog’s Delay edit field, or you can simply click the Test button.
If you want to configure Bubbles, click the Setup button, which displays the
dialog box shown in Figure 15.2. Use the listbox to set the number of bubbles
that the screen saver must draw before changing colors. A value of 1,000 or
2,000 seems to work best, but experiment and come up with something you
like.

Figure 15.2. The Bubbles configuration dialog box.

Part II ■ Windows Topics

530

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Once you have selected Bubbles and closed the Control Panel, Bubbles
automatically kicks into action after your system has been idle for the time you
set. After the screen saver has been running, you must only move your mouse,
click one of the mouse buttons, or touch a key on your keyboard to turn the
screen saver off.

The Screen Saver’s Application Class
A screen saver is nothing more mysterious than a Windows application. As

such, like the other programs you’ve developed in this book’s Windows
section, Bubbles has an application class. It is the implementation of this class
that makes Bubbles compatible with Windows 3.1 screen savers.

Specifically, to take advantage of Windows’ built-in screen saver support, a
screen saver has to respond to the command-line switches /c (or -c) and /s
(or -s). The /c command-line switch informs a screen saver that the user
wants to see the configuration dialog box. The /s switch instructs the screen
saver to run.

The user doesn’t actually type these command lines (although he could if he
wanted to). Windows automatically runs the screen saver with the /s or /c
command-line switch when the user clicks the Test or Setup buttons, respec-
tively, in the Desktop dialog. Windows also runs the screen saver with the /s
switch when the system has been idle for the selected delay time. Because
Bubbles must create its main window based on the /c and /s switches, the
command line must be checked in the application class’ InitMainWindow()
function:

void TBubbleApp::InitMainWindow()

{

 // No screen saver window yet.

 pBubWnd = NULL;

 // If the user wants to configure the screen saver,

 // make the configuration dialog the main window.

 if (((lpCmdLine[0] == ‘/’) || (lpCmdLine[0] == ‘-’)) &&

 ((lpCmdLine[1] == ‘c’) || (lpCmdLine[1] == ‘C’)))

 MainWindow = new TBubDlg(NULL, “DIALOG_1”);

 // If the user isn’t requesting the configuration

 // dialog, it must be time to start the screen saver.

Chapter 15 ■ Writing Screen Savers for Windows 3.1

531

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 else

 {

 pBubWnd = new TBubWnd(NULL, “BUBBLES”);

 MainWindow = pBubWnd;

 }

}

Here, the function first sets the pointer pBubWnd to null, indicating that there
is not yet a screen saver window. Then it checks the command line (which is
found in the TModule data member lpCmdLine) to see whether it is /c. If it is,
the program creates a TBubDlg dialog box and makes it the application’s main
window. If the command line is not /c, the program creates a screen saver
window of the class TBubWnd and makes it the application’s main window. The
program saves a pointer to this window in pBubWnd, so the application can call
the window’s DoSaver() function (described in the section entitled “The Case
of the Invisible Window”).

Windows automatically runs a screen saver when the user is inactive for the
time set in the Desktop dialog box’s Delay edit field (assuming, of course, that
screen savers are not disabled).

Because a user is idle, though, doesn’t mean that all applications are also idle.
Suppose, for example, that you’re downloading a large file from a BBS.
Although you may not have touched the mouse or keyboard during the
download, the system is anything but idle. Your telecommunications program
is gathering data as fast as it can and storing it on your disk. This activity must
not be interrupted. When a screen saver runs, then, it must allow any
applications also running to continue unhampered in the background.

In short, a screen saver should draw on-screen only when the system is idle.
And, in Windows, idle means that there are currently no messages for any
applications in the message queue.

Thanks to ObjectWindows, detecting this idle time is simply a matter of
overriding the function IdleAction() in the application:

void TBubbleApp::IdleAction()

{

 // If the screen saver window has been created,

 // draw the next shape on the screen.

 if (pBubWnd)

 pBubWnd->DoSaver();

}

The function IdleAction(), a member of the TApplication class, is called
whenever there are no messages for any application. Here, the function first

Part II ■ Windows Topics

532

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

checks that pBubWnd is not NULL, which indicates that the application’s main
window is indeed the screen-saver window and not the configuration dialog.
(IdleAction() is called when the screen saver’s configuration dialog is on-
screen, too. In this case, the program doesn’t want to call DoSaver().) If
pBubWnd is a valid pointer, the window’s DoSaver() function is called, drawing
a single bubble on-screen.

You learn about DoSaver() in a later section. But first, you have to know how
to handle a screen saver’s configuration dialog box.

The Configuration Dialog
Every Windows 3.1 screen saver must provide a configuration dialog box

that can be displayed when the user clicks the Setup button. The options
offered in this dialog are up to you, as the creator. It is also up to you to see that
the configuration selected by the user is properly saved to the CONTROL.INI
file, so when the screen saver is activated, it can find this data.

As you have seen, Bubbles’ configuration dialog contains a listbox for selecting
a bubble count, as well as two buttons—OK and Cancel. This dialog box is
defined in the resource file BUBBLES.RC and is implemented in the TBubDlg
class:

_CLASSDEF(TBubDlg)

class TBubDlg: public TDialog

{

 char LBStrg[10];

public:

 TBubDlg(PTWindowsObject AParent, LPSTR AName):

 TDialog(AParent, AName) {}

 virtual void SetupWindow();

 virtual void Ok(RTMessage msg)

 = [ID_FIRST + IDOK];

 virtual void IDListBox(RTMessage msg)

 = [ID_FIRST + ID_LISTBOX];

};

This class’ private data member LBStrg is a character array that holds the string
the user selects from the dialog’s listbox. In addition, this class has a construc-
tor and three member functions that set up the dialog window and respond to
its controls. The first of these, TBubDlg::SetupWindow(), initializes the listbox
control:

Chapter 15 ■ Writing Screen Savers for Windows 3.1

533

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

void TBubDlg::SetupWindow()

{

 // Do the basic window setup.

 TDialog::SetupWindow();

 // Add strings to the list box.

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “1”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “10”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “100”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “200”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “400”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “1000”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “2000”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “4000”);

 // Set the string to the default value.

 strcpy(LBStrg, “1000”);

}

This function first calls TWindow::SetupWindow() to perform the setup for the
basic window. It then calls SendDlgItemMsg(), a member function of the
ObjectWindows TDialog class, for each string that has to be displayed in the
dialog’s listbox. Finally, the data member LBStrg is initialized to its default
value.

After TBubDlg::SetupWindow() exits, Windows displays the configuration
dialog box, and the user can manipulate its controls. If the user clicks the
Cancel button, the TDialog class’ Cancel() function closes the dialog. If the
user manipulates the listbox (other than scrolling it, which is handled by
Windows), the dialog box receives a message with the same ID as the listbox—
in this case, ID_LISTBOX, which is defined in the dialog’s header file BUBDLG.H.
This message is handled by the function IDListBox():

void TBubDlg::IDListBox(RTMessage msg)

{

 // Did the user change the selection?

Part II ■ Windows Topics

534

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 if (msg.LP.Hi == LBN_SELCHANGE)

 {

 // Get the index of the selected item.

 DWORD index =

 SendDlgItemMsg(ID_LISTBOX, LB_GETCURSEL, 0, 0L);

 // If the index is valid, get the string the user

 // selected in the list box.

 if (index != LB_ERR)

 SendDlgItemMsg(ID_LISTBOX, LB_GETTEXT,

 index, (DWORD) LBStrg);

 }

}

If the user clicks one of the listbox’s items, the high word of the message’s
LParam contains the value LBN_SELCHANGE. (Other possible values include
LBN_DBLCLK, LBN_ERRSPACE, LBN_KILLFOCUS, and LBN_SETFOCUS. You can find
the descriptions of these messages in the Borland Windows API Reference

Guide, Volume I, which is included with Borland C++.)

In this case, the program retrieves the selection’s index by sending a
LB_GETCURSEL message to the listbox. A call to SendDlgItemMsg(), a member
function of the TDialog class, sends this message. The value returned is LB_ERR
if no item is currently selected. Otherwise, this value is the zero-based index
of the selected item. That is, a value of 0 means that the first item was selected,
1 means the second item was selected, and so on.

If index is not equal to LB_ERR, the function can send an LB_GETTEXT message
to the listbox to retrieve the selected string. For this message, the WParam
(SendDlgItemMsg()’s third parameter) is the index of the item to retrieve, and
the LParam (SendDlgItemMsg()’s fourth parameter) is the address of a charac-
ter array in which to store the selected string.

If the user clicks the OK button to exit, the dialog must save the user’s chosen
configuration to the Windows Control Panel’s CONTROL.INI file. This is
accomplished by the class’ Ok() message-response function:

void TBubDlg::Ok(RTMessage msg)

{

 WritePrivateProfileString(“Screen Saver.Bubbles”, “Count”,

 LBStrg, “CONTROL.INI”);

 TDialog::Ok(msg);

}

Chapter 15 ■ Writing Screen Savers for Windows 3.1

535

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Saving information to an .INI file is much easier than you might think, because
Windows handles most of the file details for you. You need only call the
Windows function, WritePrivateProfileString() for each value you want to
save.

This function’s first parameter is the section of the .INI file to which you want
the value saved. In the previous example, this section is “Screen Saver.Bubbles.”.
If the section doesn’t yet exist in the file, Windows creates it. The second
parameter is the label you want used for this value, which, in this function, is
“Count”. The third parameter is the string that contains the value to be saved
(LBStrg). Finally, the fourth parameter is the name of the .INI file to which you
want the value saved. As stated before, in the case of a screen saver, this is
usually the Control Panel’s CONTROL.INI file.

After the previous function exits, the user’s CONTROL.INI file includes a
section that looks something like this:

[Screen Saver.Bubbles]

Count=1000

If you look at your CONTROL.INI file, you can find similar sections for each
screen saver you have configured. For example, a section for the Flying
Windows screen saver might look like this:

[Screen Saver.Flying Windows]

Density=25

WarpSpeed=5

PWProtected=0

The Case of the Invisible Window
N ow that you know how to configure a screen saver, it’s time to learn how

to run one. This job is handled by the screen saver’s main window class,
TBubWnd:

_CLASSDEF(TBubWnd)

class TBubWnd: public TWindow

{

 POINT mouseXY;

 int count;

public:

 TBubWnd(PTWindowsObject AParent, LPSTR ATitle);

Part II ■ Windows Topics

536

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual LPSTR GetClassName();

 virtual void DefWndProc(RTMessage msg);

 virtual void WMSysCommand(RTMessage msg)

 = [WM_FIRST + WM_SYSCOMMAND];

 virtual void WMDestroy(RTMessage msg)

 = [WM_FIRST + WM_DESTROY];

 virtual void DoSaver();

};

This class includes two private data members. The first, mouseXY, holds the
location of the mouse pointer when the screen saver is activated. The second,
count, is the variable that holds the configuration value stored in the screen
saver’s CONTROL.INI section. Besides the usual constructor, this class in-
cludes functions to set up the window’s class, to handle all the messages to
which a screen saver must respond, and a function that produces the screen
saver’s display. The fun starts in the class’ constructor:

TBubWnd::TBubWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Save the mouse pointer’s position, and

 // turn the mouse off.

 GetCursorPos(&mouseXY);

 ShowCursor(FALSE);

 // Set the window’s style, position, and size.

 Attr.Style = WS_POPUP;

 Attr.X = 0;

 Attr.Y = 0;

 Attr.W = GetSystemMetrics(SM_CXFULLSCREEN);

 Attr.H = GetSystemMetrics(SM_CYFULLSCREEN) +

 GetSystemMetrics(SM_CYCAPTION);

 // Read in the user’s count setting.

 count = GetPrivateProfileInt(“Screen Saver.Bubbles”,

 “Count”, 1000, “CONTROL.INI”);

 // Seed random-number generator.

 randomize();

}

Chapter 15 ■ Writing Screen Savers for Windows 3.1

537

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Here, the program first calls the Windows function GetCursorPos() to get the
current position of the mouse pointer, which is saved in mouseXY. Then, the
mouse cursor is turned off by another Windows function, ShowCursor().
(When calling this function, a parameter of false turns off the mouse pointer
and a value of true turns on the mouse pointer.)

After handling the mouse pointer, the function sets the window’s style to
WS_POPUP. A window with only this style bit set is no more than a large blank
rectangle. In other words, it has no controls or any other graphical element; it’s
an invisible window.

After the function sets the window’s style, it sets the window’s size to the full
screen. You can determine the width of a window by calling GetSystemMetrics()
with a parameter of SM_CXFULLSCREEN, which returns the maximum width of a
window’s client area. To calculate the height of the window, you must call
GetSystemMetrics() twice, once with a parameter of SM_CYFULLSCREEN, which
returns the maximum height of a window’s client area, and once with a value
of SM_CYCAPTION, which returns the height of a window’s caption bar. You must
sum these two values to get the full height of the screen.

After sizing the window, the constructor reads the user’s configuration
settings from CONTROL.INI. This is accomplished with a call to the Windows
function GetPrivateProfileInt(), which reads an integer value from an .INI
file.

The function’s first parameter is the section of the file that contains the value.
The second parameter is the value’s label. The third parameter is the default
value to use if the requested value can’t be found. Finally, the fourth parameter
is the name of the .INI file. After this call, count contains the value the user
saved when she configured the screen saver (or the default value of 1,000).

The last action this class’ constructor takes is to seed the random-number
generator by calling randomize().

Note: Be sure to call randomize() in any program that uses random
numbers. If you fail to do so, the sequence of numbers you receive from
random-number functions is always the same.

When you run the Bubbles screen saver, you see that the screen turns black
before the saver starts drawing bubbles. This happens because the window’s

Part II ■ Windows Topics

538

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

background color is set to black, rather than the usual white, in the class’
GetWindowClass() function:

void TBubWnd::GetWindowClass(WNDCLASS & AWndClass)

{

 TWindow::GetWindowClass(AWndClass);

 AWndClass.hbrBackground = GetStockObject(BLACK_BRUSH);

}

A window can have any background color you like. In this function, the
background is set to black, which means the screen saver window isn’t
invisible, after all. Although it has no controls, this window’s background color
fills the screen.

Note: If you like, you can make the screen saver window truly invisible by
changing its background color to NULL_BRUSH. When you do this, the
screen saver’s window does not hide whatever was on-screen when it

started. It seems, instead, to draw its graphics directly on top of your Windows
desktop. This, of course, is only an illusion, because the screen saver still has its own
client area, even though that client area has no background color. When the screen
saver window closes, the old desktop is restored whether or not the screen saver
window happened to have a background color.

As you saw when looking at the application class, whenever the system is idle,
the screen saver’s DoSaver() function is called:

void TBubWnd::DoSaver()

{

 static int cnt = 0;

 static COLORREF color = RND_RGB;

 LOGBRUSH lb;

 // Increment the draw count, and change

 // colors if it’s time to change.

 ++cnt;

 if (cnt == count)

 {

 color = RND_RGB;

 cnt = 0;

 }

 // Create and select a new brush for drawing shapes.

Chapter 15 ■ Writing Screen Savers for Windows 3.1

539

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 lb.lbColor = color;

 lb.lbStyle = BS_SOLID;

 lb.lbHatch = 0;

 HDC hDC = GetDC(HWindow);

 HBRUSH newBrush = CreateBrushIndirect(&lb);

 HBRUSH oldBrush = SelectObject(hDC, newBrush);

 // Get a random location for the next circle,

 // and draw the circle.

 int x = random(GetSystemMetrics(SM_CXFULLSCREEN));

 int y = random(GetSystemMetrics(SM_CYFULLSCREEN) +

 GetSystemMetrics(SM_CYCAPTION));

 Ellipse(hDC, x-5, y-5, x+15, y+15);

 // Restore the DC and delete the custom brush.

 SelectObject(hDC, oldBrush);

 DeleteObject(newBrush);

 ReleaseDC(HWindow, hDC);

}

There’s nothing too fancy here. This function simply draws circles of random
colors on-screen. First, the static variable cnt is incremented and checked to
determine whether it is equal to count, which, if you remember, is the value
read from the user’s configuration. If the values are equal, it’s time to change
the bubbles’ color. This is accomplished by invoking the RND_RGB macro, which
is defined at the top of the file as:

#define RND_RGB RGB(random(256),random(256),random(256))

This macro calls the Windows function RGB() to get a new color. The function’s
three parameters are the intensity of the red, green, and blue color elements,
respectively. In this case, these three values are calculated by calling random()
to get a random value.

Following the new color’s calculation, cnt is set back to zero.

After checking cnt, the program creates a new solid brush of the current color,
gets a DC for the window, selects the brush into the DC, and draws a circle at
a random screen coordinate. Finally, the old brush is selected back into the DC,
the custom brush is deleted, and the DC is released.

As you can see, this is a relatively simple screen saver. But you can add bells
and whistles to it by adding code to the DoSaver() function, which is the heart
of the screen saver’s graphical display. In fact, you’ll probably want to

Part II ■ Windows Topics

540

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

completely rewrite DoSaver() when you create your own screen savers. Let
your imagination run wild. The crazier your screen saver is, the more people
will like it.

Note: The Bubbles screen saver draws one bubble on-screen each time the
DoSaver() function is called by the application object. DoSaver() is
called only when the system is idle. Still, even when there are applications

running in the background, bubbles appear on-screen at an amazing rate. This shows
how much free time Windows actually has, even when it’s supposedly busy.

Avoiding Multiple Screen Savers
A screen saver is little more to Windows than another application. This

means that, even when a screen saver is running, Windows keeps
counting down its screen-saver delay clock. When the time expires, Windows
tries to run the selected screen saver.

To avoid multiple instances of a screen saver, the program’s main window must
watch for WM_SYSCOMMAND messages, which signal several system activities,
including the starting of screen savers. In Bubbles, this message is captured by
the function WMSysCommand():

void TBubWnd::WMSysCommand(RTMessage msg)

{

 // If Windows is trying to start the screen saver

 // again, don’t let it.

 if ((msg.WParam & 0xFFF0) == SC_SCREENSAVE)

 {

 msg.Result = 0;

 }

 else

 DefWndProc(msg);

}

Here, the function checks the message’s WParam field to see whether it’s set to
SC_SCREENSAVE—the message that Windows sends when it wants to start a
screen saver. (According to the Windows documentation, the WParam of the
WM_SYSCOMMAND message must be ANDed with the mask 0xFFF0 before it’s
checked, because Windows sometimes uses the lowest four bits of WParam to

Chapter 15 ■ Writing Screen Savers for Windows 3.1

541

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

store additional information.) If this function detects a SC_SCREENSAVE mes-
sage, it returns a value of zero in the message’s Result field, informing Windows
that the program has handled this message and Windows can ignore it. Any
other WM_SYSCOMMAND messages must be passed back to Windows by the
TWindowsObject class’ DefWndProc() function.

If you want to see what happens when a screen saver doesn’t capture the
SC_SCREENSAVE message, comment out all the lines in the previous function
except the call to DefWndProc() and recompile the program. Install the new
version of the screen saver, setting the screen saver’s delay (in the Desktop
dialog box, accessed by the Control Panel) to one minute. Watch the screen.
After a minute, Windows starts the screen saver. Each following minute,
Windows starts the screen saver again. Ouch!

Caution: In order to prevent Windows from running multiple instances
of your screen saver, you must process WM_SYSCOMMAND messages in
your program. When a WM_SYSCOMMAND message with a WParam of

SC_SCREENSAVE is sent to your program, you should return a false to Windows,
instead of passing the message back to Windows for processing.

Closing a Screen Saver
A s you probably already know, every screen saver should automatically

close when the user moves her mouse, types with her keyboard, or when
another application tries to open a window. In a Windows screen saver, closing
the screen saver is accomplished easily by watching messages. To watch for
the appropriate types of messages, the screen saver’s main window class must
override TWindowsObject’s DefWndProc() function:

void TBubWnd::DefWndProc(RTMessage msg)

{

 switch(msg.Message)

 {

 // Check whether mouse has actually moved.

 // If not, do nothing.

 case WM_MOUSEMOVE:

 if (msg.LP.Lo == mouseXY.x &&

 msg.LP.Hi == mouseXY.y)

 break;

Part II ■ Windows Topics

542

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 // If another window wants to be activated,

 // shut down the screen saver.

 case WM_ACTIVATE:

 case WM_ACTIVATEAPP:

 if (msg.WParam != 0)

 break;

 // If any user input is received,

 // close the screen saver window.

 case WM_KEYDOWN:

 case WM_SYSKEYDOWN:

 case WM_LBUTTONDOWN:

 case WM_MBUTTONDOWN:

 case WM_RBUTTONDOWN:

 PostMessage(HWindow, WM_CLOSE, 0, 0L);

 default:

 break;

 }

 // Send messages for default processing.

 TWindow::DefWndProc(msg);

}

If the user moves her mouse, this function receives a WM_MOUSEMOVE message.
Before acting on this message, however, the function first checks whether the
current mouse location is the same as the mouse’s location when the screen
saver started. If it is, the mouse wasn’t really moved. Rather, the screen saver
window simply had a WM_MOUSEMOVE message in its message queue when the
screen saver started. In this case, TBubWnd::DefWndProc() does nothing.

On the other hand, if the two sets of coordinates are not the same, the mouse
has been moved and program execution falls through the other case state-
ments to the call to PostMessage(), which closes the screen saver window by
sending a WM_CLOSE message to Windows. If you fail to process the WM_MOUSEMOVE
message this way in a screen saver application, the screen saver closes
immediately after starting, just as if the user had moved the mouse.

This function must also check for WM_ACTIVATE and WM_ACTIVATEAPP messages,
because these messages indicate that another application is trying to open a
window. When another window is opening, the screen saver must yield the
right of way, as it were, closing its window and letting the other application
have the screen. If the WParam for these messages is non-zero, a window is
trying to open.

Chapter 15 ■ Writing Screen Savers for Windows 3.1

543

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

The case statement reaches the break and program execution drops down to
the call to DefWndProc(), which processes the message. If the message’s WParam
field is zero, Windows is informing the program that it wants to close the screen
saver window. In this case, the program drops through the case statements and
reaches the call to PostMessage(), which closes the window. Closing the
window prevents the screen saver window from running behind another
application’s window.

Similarly, if this function receives a WM_KEYDOWN, WM_SYSKEYDOWN, WM_LBUTTONDOWN,
WM_MBUTTONDOWN, or WM_RBUTTONDOWN message, this means the user has pressed
either a keyboard key or a mouse button, in either case the screen saver must
also be closed by calling PostMessage(). In any case, all messages are eventu-
ally passed back to Windows by TWindow::DefWndProc() for default handling.

The last action the screen saver must take before closing is to restore the
mouse pointer. In Bubbles, this is accomplished by responding to the WM_DESTROY
message, which Windows sends immediately before a window is destroyed:

void TBubWnd::WMDestroy(RTMessage msg)

{

 // Make the mouse pointer visible again.

 ShowCursor(TRUE);

 // Continue with normal WM_DESTROY processing.

 TWindow::WMDestroy(msg);

}

This function simply restores the mouse pointer, then passes the WM_DESTROY
message to TWindow::WMDestroy() so the window can close.

Registering a Screen Saver with the Desktop
W hen the user opens the Desktop dialog box, Windows searches for

screen savers and reads their names into the Name listbox of the Screen
Saver’s dialog box. (To be recognized as a screen saver by Windows, a program
must have an .SCR file extension.)

Where does Windows find the screen savers’ names? They are part of each
executable file, placed there by the linker. You pass this name to the linker by
placing it in the application’s definition file, as so:

Part II ■ Windows Topics

544

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

NAME BUBBLES

DESCRIPTION ‘SCRNSAVE :Bubbles’

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

In this definition file, the DESCRIPTION line provides the name. You must include
the string ‘SCRNSAVE :’ followed by the name you want to appear in the
Desktop dialog. In this case, the name that appears is “Bubbles”.

Listing 15.1. BUBBLES.CPP—the screen saver application.

// BUBBLES.CPP -- Screen Saver Application.

#include <owl.h>

#include “bubwnd.h”

#include “bubdlg.h”

// Application class declaration.

class TBubbleApp: public TApplication

{

 PTBubWnd pBubWnd;

public:

 TBubbleApp(LPSTR AName, HINSTANCE AnInstance,

 HINSTANCE APrevInstance, LPSTR ACmdLine,

 int ACmdShow): TApplication(AName,

 AnInstance, APrevInstance, ACmdLine,

 ACmdShow) {}

 virtual void InitMainWindow();

 virtual void IdleAction();

};

//

// TBubbleApp::InitMainWindow()

//

// This function creates the application’s main window.

//

void TBubbleApp::InitMainWindow()

{

 // No screen saver window yet.

 pBubWnd = NULL;

Chapter 15 ■ Writing Screen Savers for Windows 3.1

545

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 // If the user wants to configure the screen saver,

 // make the configuration dialog the main window.

 if (((lpCmdLine[0] == ‘/’) || (lpCmdLine[0] == ‘-’)) &&

 ((lpCmdLine[1] == ‘c’) || (lpCmdLine[1] == ‘C’)))

 MainWindow = new TBubDlg(NULL, “DIALOG_1”);

 // If the user isn’t requesting the configuration

 // dialog, it must be time to start the screen saver.

 else

 {

 pBubWnd = new TBubWnd(NULL, “BUBBLES”);

 MainWindow = pBubWnd;

 }

}

//

// TBubbleApp::IdleAction()

//

// This function is called whenever there are no

// messages in the message queue for any application.

//

void TBubbleApp::IdleAction()

{

 // If the screen saver window has been created,

 // draw the next shape on the screen.

 if (pBubWnd)

 pBubWnd->DoSaver();

}

//

// WinMain()

//

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 TBubbleApp BubbleApp(“Screen Saver.Bubbles”, hInstance,

 hPrevInstance, lpszCmdLine, nCmdShow);

 BubbleApp.Run();

 return BubbleApp.Status;

}

Part II ■ Windows Topics

546

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Listing 15.2. BUBWND.H—the main window header file.

// BUBWND.H -- Main window header file.

#ifndef _BUBWND_H

#define _BUBWND_H

#include <owl.h>

_CLASSDEF(TBubWnd)

class TBubWnd: public TWindow

{

 POINT mouseXY;

 int count;

public:

 TBubWnd(PTWindowsObject AParent, LPSTR ATitle);

 virtual void GetWindowClass(WNDCLASS &AWndClass);

 virtual LPSTR GetClassName();

 virtual void DefWndProc(RTMessage msg);

 virtual void WMSysCommand(RTMessage msg)

 = [WM_FIRST + WM_SYSCOMMAND];

 virtual void WMDestroy(RTMessage msg)

 = [WM_FIRST + WM_DESTROY];

 virtual void DoSaver();

};

#endif

Listing 15.3. BUBWND.CPP—the main window implementation.

// BUBWND.CPP -- Main window implementation.

#include <stdlib.h>

#include <time.h>

#include “bubwnd.h”

#define RND_RGB RGB(random(256),random(256),random(256))

//

// TBubWnd::TBubWnd()

//

Chapter 15 ■ Writing Screen Savers for Windows 3.1

547

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

// This is the main window’s constructor.

//

TBubWnd::TBubWnd(PTWindowsObject AParent,

 LPSTR ATitle): TWindow(AParent, ATitle)

{

 // Save the mouse pointer’s position, and

 // turn the mouse off.

 GetCursorPos(&mouseXY);

 ShowCursor(FALSE);

 // Set the window’s style, position, and size.

 Attr.Style = WS_POPUP;

 Attr.X = 0;

 Attr.Y = 0;

 Attr.W = GetSystemMetrics(SM_CXFULLSCREEN);

 Attr.H = GetSystemMetrics(SM_CYFULLSCREEN) +

 GetSystemMetrics(SM_CYCAPTION);

 // Read in the user’s count setting.

 count = GetPrivateProfileInt(“Screen Saver.Bubbles”,

 “Count”, 1000, “CONTROL.INI”);

 // Seed random-number generator.

 randomize();

}

//

// TBubWnd::GetWindowClass()

//

// This function sets up the new window class.

//

void TBubWnd::GetWindowClass(WNDCLASS & AWndClass)

{

 TWindow::GetWindowClass(AWndClass);

 AWndClass.hbrBackground = GetStockObject(BLACK_BRUSH);

}

//

// TBubWnd::GetClassName()

//

// This function returns the new class’ name.

//

continues

Part II ■ Windows Topics

548

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

LPSTR TBubWnd::GetClassName()

{

 return “BubblesWnd”;

}

//

// TBubWnd::DefWndProc()

//

// This function receives all the messages for this

// window. Messages that are not needed by the window

// are passed on for default processing.

//

void TBubWnd::DefWndProc(RTMessage msg)

{

 switch(msg.Message)

 {

 // Check whether mouse has actually moved.

 // If not, do nothing.

 case WM_MOUSEMOVE:

 if (msg.LP.Lo == mouseXY.x &&

 msg.LP.Hi == mouseXY.y)

 break;

 // If another window wants to be activated,

 // shut down the screen saver.

 case WM_ACTIVATE:

 case WM_ACTIVATEAPP:

 if (msg.WParam != 0)

 break;

 // If any user input is received,

 // close the screen saver window.

 case WM_KEYDOWN:

 case WM_SYSKEYDOWN:

 case WM_LBUTTONDOWN:

 case WM_MBUTTONDOWN:

 case WM_RBUTTONDOWN:

 PostMessage(HWindow, WM_CLOSE, 0, 0L);

 default:

 break;

 }

Listing 15.3. Continued

Chapter 15 ■ Writing Screen Savers for Windows 3.1

549

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 // Send messages for default processing.

 TWindow::DefWndProc(msg);

}

//

// TBubWnd::WMSysCommand()

//

// This function responds to the WM_SYSCOMMAND message,

// checking whether the screen saver is trying to

// start up while it’s already active.

//

void TBubWnd::WMSysCommand(RTMessage msg)

{

 // If Windows is trying to start the screen saver

 // again, don’t let it.

 if ((msg.WParam & 0xFFF0) == SC_SCREENSAVE)

 {

 msg.Result = 0;

 }

 else

 DefWndProc(msg);

}

//

// TBubWnd::WMDestroy()

//

// This function is called just before the window is

// destroyed.

//

void TBubWnd::WMDestroy(RTMessage msg)

{

 // Make the mouse pointer visible again.

 ShowCursor(TRUE);

 // Continue with normal WM_DESTROY processing.

 TWindow::WMDestroy(msg);

}

//

// TBubWnd::DoSaver()

//

continues

Part II ■ Windows Topics

550

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

// This function draws the screen saver graphics. It is

// called by the screen saver’s application object

// whenever the message queue is idle.

//

void TBubWnd::DoSaver()

{

 static int cnt = 0;

 static COLORREF color = RND_RGB;

 LOGBRUSH lb;

 // Increment the draw count, and change

 // colors if it’s time to change.

 ++cnt;

 if (cnt == count)

 {

 color = RND_RGB;

 cnt = 0;

 }

 // Create and select a new brush for drawing shapes.

 lb.lbColor = color;

 lb.lbStyle = BS_SOLID;

 lb.lbHatch = 0;

 HDC hDC = GetDC(HWindow);

 HBRUSH newBrush = CreateBrushIndirect(&lb);

 HBRUSH oldBrush = SelectObject(hDC, newBrush);

 // Get a random location for the next circle,

 // and draw the circle.

 int x = random(GetSystemMetrics(SM_CXFULLSCREEN));

 int y = random(GetSystemMetrics(SM_CYFULLSCREEN) +

 GetSystemMetrics(SM_CYCAPTION));

 Ellipse(hDC, x-5, y-5, x+15, y+15);

 // Restore the DC and delete the custom brush.

 SelectObject(hDC, oldBrush);

 DeleteObject(newBrush);

 ReleaseDC(HWindow, hDC);

}

Listing 15.3. Continued

Chapter 15 ■ Writing Screen Savers for Windows 3.1

551

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Listing 15.4. BUBDLG.H—the configuration dialog header file.

// BUBDLG.H -- Dialog header file.

#ifndef _BUBDLG_H

#define _BUBDLG_H

#include <owl.h>

#define ID_LISTBOX 101

_CLASSDEF(TBubDlg)

class TBubDlg: public TDialog

{

 char LBStrg[10];

public:

 TBubDlg(PTWindowsObject AParent, LPSTR AName):

 TDialog(AParent, AName) {}

 virtual void SetupWindow();

 virtual void Ok(RTMessage msg)

 = [ID_FIRST + IDOK];

 virtual void IDListBox(RTMessage msg)

 = [ID_FIRST + ID_LISTBOX];

};

#endif

Listing 15.5. BUBDLG.CPP—the configuration dialog implementation.

// BUBDLG.CPP -- Settings dialog implementation.

#include <string.h>

#include “bubdlg.h”

//

// TBubDlg::SetupWindow()

//

// This function does last-minute window setup,

// including adding strings to the dialog’s list box

// and initializing the string that will contain the

continues

Part II ■ Windows Topics

552

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

// user’s selection from the list box.

//

void TBubDlg::SetupWindow()

{

 // Do the basic window setup.

 TDialog::SetupWindow();

 // Add strings to the list box.

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “1”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “10”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “100”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “200”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “400”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “1000”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “2000”);

 SendDlgItemMsg(ID_LISTBOX, LB_ADDSTRING,

 NULL, (DWORD) “4000”);

 // Set the string to the default value.

 strcpy(LBStrg, “1000”);

}

//

// TBubDlg::IDListBox()

//

// This function responds to the ID_LISTBOX message,

// which is generated whenever the user does something

// with the list box.

//

void TBubDlg::IDListBox(RTMessage msg)

{

 // Did the user change the selection?

 if (msg.LP.Hi == LBN_SELCHANGE)

 {

 // Get the index of the selected item.

Listing 15.5. Continued

Chapter 15 ■ Writing Screen Savers for Windows 3.1

553

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

 DWORD index =

 SendDlgItemMsg(ID_LISTBOX, LB_GETCURSEL, 0, 0L);

 // If the index is valid, get the string the user

 // selected in the list box.

 if (index != LB_ERR)

 SendDlgItemMsg(ID_LISTBOX, LB_GETTEXT,

 index, (DWORD) LBStrg);

 }

}

//

// TBubDlg::Ok()

//

// This function responds when the user selects the

// dialog’s OK button. It writes the new count setting

// out to the CONTROL.INI file.

//

void TBubDlg::Ok(RTMessage msg)

{

 WritePrivateProfileString(“Screen Saver.Bubbles”, “Count”,

 LBStrg, “CONTROL.INI”);

 TDialog::Ok(msg);

}

Listing 15.6. BUBBLES.RC—the application’s resource file.

DIALOG_1 DIALOG 100, 80, 92, 86

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION “Bubbles Setup”

BEGIN

 PUSHBUTTON “OK”, 1, 4, 68, 40, 14,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

 PUSHBUTTON “Cancel”, 2, 49, 68, 39, 14,

 WS_CHILD | WS_VISIBLE | WS_TABSTOP

 CONTROL “”, 101, “LISTBOX”,

 LBS_NOTIFY | WS_CHILD | WS_VISIBLE |

 WS_BORDER | WS_VSCROLL, 31, 28, 31, 33

 LTEXT “Set number of bubbles before color change:”,

 -1, 9, 4, 77, 18,

 WS_CHILD | WS_VISIBLE | WS_GROUP

END

Part II ■ Windows Topics

554

SAMS/Q6 Borland C++ Power Prog #172-7 Brook 2-18-93 CH 15 Lp #4 (Folio, LAC)

Listing 15.7. BUBBLES.DEF—the application’s definition file.

NAME BUBBLES

DESCRIPTION ‘SCRNSAVE :Bubbles’

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 4096

STACKSIZE 5120

Conclusion
T hat’s all there is to writing Windows 3.1 screen savers. They may be trivial

when compared with applications like Microsoft Word for Windows and
the Borland C++ compiler, but, hey, they’re fun to write and even more fun to
watch. Who ever said you couldn’t have fun with Windows?

Over the course of the last 15 chapters, you’ve learned a great deal about
programming in DOS and Windows. This book has only hinted, however, at the
power you have to create attractive, useful, and easy-to-use applications. To
take advantage of that power, spend as much time programming as you can,
and never be afraid to experiment. Practice and experimentation are the keys
to becoming a masterful programmer.

III

References

SAMS/Q6 Borland C++ Power Programming #172-7 Part 3 Brook 2-11-93 LP#1

Appendix A ■ DOS Window Library Quick Reference

557

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

A
DOS Window Library

Quick Reference

Class Windw
This is a blank window with or without a border or screen-image buffering.

Data Members
int *buffer Private

This is the pointer to the buffer containing the screen image to be restored
when the window is erased. This buffer is active only when the window is
created with buf = 1.

int border Protected

A value of 1 means the window has a border. A value of 0 means the window
has no border.

int buffered Protected

A value of 1 means that the screen image behind the window has been buffered
and should be redrawn when the window is erased. A value of 0 means there
is no image buffering.

Part III ■ References

558

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

int wx, wy, ww, wh Protected

These are the window’s x,y position, width, and height.

Evntmsg evntmsg Protected

The event-message structure for interactive windows.

Member Functions
Windw(int x, int y, int w, int h,

 int brd, int buf) Public

This is the basic window’s constructor. When constructing a Windw, you must
supply the x,y coordinate of its upper-left corner, the width and height in
pixels, and Boolean values indicating whether the window should have a
border and whether the screen image behind the window should be buffered
for redrawing.

~Windw(void) Public

This is the basic window’s destructor. If a window has image buffering turned
on, the destructor restores the image to the screen and deletes the buffer.
Otherwise, the destructor does nothing.

virtual void DrawWindow(void) Public

Call this function to draw a window on-screen. In addition to drawing the
window’s image, this function saves the screen image behind the window (if
buffering is on, which is indicated by the value of buffered). Each derived
window class should include its own virtual DrawWindow() function.

virtual void RunWindow(void) Public

Call this function to turn control over to an interactive window. Control returns
to your program only after the user exits the window. In the case of the basic
Windw, the user can exit the window by clicking the mouse or pressing any key.
Each window class has its own virtual RunWindow() function.

void WindwError(char *s) Private

This function reports the error message pointed to by s, then aborts the
program. It is used for fatal errors, such as the incapability to create a new
window.

Inherited Data Members
None.

Appendix A ■ DOS Window Library Quick Reference

559

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

Inherited Member Functions
None.

Class CapWindw <- Windw
This is a window with a caption bar at the top.

Data Members
char label[61] Protected

This character array holds the caption to be displayed at the top of the window.

Member Functions
CapWindw(int x, int y, int w, int h,

 int brd, int buf, char *s) Public

This is the captioned window’s constructor. When constructing CapWindw, you
must supply the x,y coordinate of its upper-left corner, its width and height in
pixels, and Boolean values indicating whether the window should have a
border and whether the screen image behind the window should be buffered
for redrawing. You should also supply the text for the label to be displayed.

virtual void DrawWindow(void) Public

Call this function to draw a captioned window on-screen. This function first
calls Windw::DrawWindow() to draw the basic window.

void SetCaption(char *s) Public

This function changes the label displayed at the top of the window. The new
label is in the character array pointed to by s.

void DrawCapBar(void) Private

This function draws the caption bar on the window.

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

Part III ■ References

560

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

Inherited Member Functions
Windw -> RunWindow(void)

Class CapTWindw <- CapWindw <- Windw
This is a captioned window that can display two lines of text in the window’s
work area. The width of a captioned text window is determined by the width
of the longest text line it must display. The height is set to 150 pixels. This type
of window is automatically displayed in the center of the screen.

Data Members
char *line1, *line2 Protected

These are pointers to the two text lines to be displayed in the labeled text
window.

int button Protected

This is the value of the last pressed button. This field is not used in this class,
but rather in classes derived from this class.

Member Functions
CapTWindw(char *s1, char *s2, char *s3) Public

This is the captioned text window’s constructor. It first calls the CapWindw
constructor. When constructing a captioned text window, you should supply
the text for the label (*s1) and the text for the work area of the window (*s2
and *s3).

virtual void DrawWindow(void) Public

Call this function to draw a labeled text window on-screen. This function first
calls CapWindw::DrawWindow() to draw the labeled window. It then draws its
text in the window’s work area.

int GetButton(void) Public

Call this function to retrieve the value of the button data member, which holds
the value of the last button pressed. This function is not used in this class, but
rather in classes derived from this class.

Appendix A ■ DOS Window Library Quick Reference

561

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

CapWindw -> char label[61]

Inherited Member Functions
CapWindw -> SetCaption(char *s)

Windw -> RunWindow(void);

Class OKWindw <- CapTWindw <- CapWindw <- Windw
This is a message box that can display two lines of text in the window’s work
area, along with an OK button at the bottom of the window. The width of an OK
window is determined by the width of the longest text line it must display. The
height is set to 150 pixels. This type of window is automatically displayed in the
center of the screen.

Data Members
Button *butn Private

This is a pointer to the OK window’s button.

Member Functions
OKWindw(char *s1, char *s2, char *s3) Public

This is the OK window’s constructor. It first calls the CapTWindw constructor.
When constructing an OK window, you should supply the text for the label
(*s1) and the text message for the work area of the window (*s2 and *s3).

~OKWindw(void) Public

This is the OK window’s destructor. It deletes the window’s button object from
memory before the OK window is deleted.

Part III ■ References

562

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

virtual void DrawWindow(void) Public

Call this function to draw an OK window on-screen. This function first calls
CapTWindw::DrawWindow() to draw the captioned text window. It then draws
the window’s OK button.

virtual void RunWindow(void) Public

This function turns control of the program over to the OK window and returns
only when the user closes the OK window, either by selecting its OK button or
pressing the Esc key to cancel the dialog.

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

CapWindw -> char label[61]

CapTWindw -> int button

 char *line1, *line2

Inherited Member Functions
CapWindw -> SetCaption(char *s)

CapTWindw -> GetButton(void)

Class YesNoWindw <- CapTWindw
<- CapWindw <- Windw
This is a message box that can display two lines of text in the window’s work
area, along with Yes and No buttons at the bottom of the window. The width
of a Yes/No window is determined by the width of the longest text line it must
display. The height is set to 150 pixels. This type of window is automatically
displayed in the center of the screen.

Data Members
Button *butn1, *butn2 Private

These are pointers to the Yes/No window’s buttons.

Member Functions
YesNoWindw(char *s1, char *s2, char *s3) Public

Appendix A ■ DOS Window Library Quick Reference

563

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

This is the Yes/No window’s constructor, which first calls the CapTWindw
constructor. When constructing a Yes/No window, you should supply the text
for the label (*s1) and the text message for the work area of the window (*s2
and *s3).

~YesNoWindw(void) Public

This is the Yes/No window’s destructor. It deletes the window’s button objects
from memory before the window is deleted.

virtual void DrawWindow(void) Public

Call this function to draw a Yes/No window on-screen. This function first calls
CapTWindw::DrawWindow() to draw the captioned text window. It then draws
the window’s Yes and No buttons.

virtual void RunWindow(void) Public

This function turns control of the program over to the Yes/No Window and
returns only when the user closes the Window, either by selecting one of its
buttons or by pressing the Esc key to cancel the dialog.

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

CapWindw -> char label[61]

CapTWindw -> int button

 char *line1, *line2

Inherited Member Functions
CapWindw -> SetCaption(char *s)

CapTWindw -> GetButton(void)

Class YesNoCanWindw <- CapTWindw
<- CapWindw <- Windw
This is a message box that can display two lines of text in the window’s work
area, along with Yes, No, and Cancel buttons at the bottom of the window. The
width of the Yes/No/Cancel window is determined by the width of the longest
text line it must display. The height is set to 150 pixels. This type of window
is automatically displayed in the center of the screen.

Part III ■ References

564

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

Data Members
Button *butn1, *butn2, *butn3 Private

These are pointers to the Yes/No/Cancel window’s buttons.

Member Functions
YesNoCanWindw(char *s1, char *s2, char *s3 Public

This is the Yes/No/Cancel window’s constructor, which first calls the CapTWindw
constructor. When constructing a Yes/No/Cancel window, you should supply
the text for the label (*s1) and the text message for the work area of the
window (*s2 and *s3).

~YesNoCanWindw(void) Public

This is the Yes/No/Cancel window’s destructor. It deletes the window’s button
objects from memory before the window is deleted.

virtual void DrawWindow(void) Public

Call this function to draw a Yes/No/Cancel window on-screen. This function
first calls CapTWindw::DrawWindow() to draw the captioned text window. It then
draws the window’s Yes, No, and Cancel buttons.

virtual void RunWindow(void) Public

This function turns control of the program over to the Yes/No/Cancel window
and returns only when the user closes the window, either by selecting one of
its buttons or by pressing Esc to cancel the dialog.

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

CapWindw -> char label[61]

CapTWindw -> int button

 char *line1, *line2

Inherited Member Functions
CapWindw -> SetCaption(char *s)

CapTWindw -> GetButton(void)

Appendix A ■ DOS Window Library Quick Reference

565

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

Class InputWindw <- CapTWindw
<- CapWindw <- Windw
This is an input dialog that can display two lines of text in the window’s work
area, along with OK and Cancel buttons at the bottom of the window. The width
of an input window is determined by the width of the longest text line it must
display. The height is set to 150 pixels. This type of window is automatically
displayed in the center of the screen. Use this window to accept single-line text
strings from the user. Up to 80 characters can be entered into the window’s
scrolling text-entry field.

Data Members
Button *butn1, *butn2 Private

These are pointers to the input window’s buttons.

char input[81] Private

This character array holds the user’s input line.

Member Functions
InputWindw(char *s1, char *s2, char *s3) Public

This is the input window’s constructor, which first calls the CapTWindw con-
structor. When constructing an input window, you should supply the text for
the label (*s1) and the text message for the work area of the window (*s2
and *s3).

~InputWindw(void) Public

This is the input window’s destructor. It deletes the window’s button objects
from memory before the window is deleted.

virtual void DrawWindow(void) Public

Call this function to draw an input window on-screen. This function first calls
CapTWindw::DrawWindow() to draw the captioned text window. It then draws
the window’s OK and Cancel buttons, as well as the text-entry field.

Part III ■ References

566

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

virtual void RunWindow(void) Public

This function turns control of the program over to the input window and
returns only when the user closes the window, either by selecting one of its
buttons or by pressing Esc to cancel the dialog.

void GetInput(char *s) Public

Call this function to retrieve the string input by the user. Its single parameter
is a pointer to an 81-element character array.

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

CapWindw -> char label[61]

CapTWindw -> int button

 char *line1, *line2

Inherited Member Functions
CapWindw -> SetCaption(char *s)

CapTWindw -> GetButton(void)

Class Button <- Windw
This is an animated button control that contains a single-word label. The
button’s size is preset by the class.

Data Members
char label[20] Private

This character array holds the button’s label. The character in the label that
represents the button’s hot key must be preceded by a caret (^), for example,
^Quit.

unsigned hotkey Private

This is the Ctrl-key that selects the button from the keyboard.

Appendix A ■ DOS Window Library Quick Reference

567

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

int altkey Private

This is the button’s alternate hot key. This field is valid only with an OK button
or a Cancel button, in which case it contains the raw key value of the Enter or
Esc key, respectively.

Member Functions
Button(int x, int y, char *s) Public

This is the button control’s constructor, which first calls the Windw constructor.
When constructing Button, you must supply the button’s x,y coordinates
and the button’s label text.

virtual void DrawWindow(void) Public

Call this function to draw a button on-screen. This function first calls
Windw::DrawWindow() to draw the basic window shape. It then draws the
button’s label, with the hot key underlined.

void SetButtonText(char *s) Public

Call this function to change the label displayed in a button control.

int Clicked(EvntMsg evntmsg) Public

This function returns true if the button has been selected or false if it hasn’t
been selected. If the button has been selected, this function also animates the
button image.

int ClickButton(void) Public

This function animates the button control and is normally called by Clicked().

Inherited Data Members
Windw -> int wx, wy, ww, wh

 int border, buffered

 EvntMsg evntmsg

Inherited Member Functions
Windw -> RunWindow(void)

Part III ■ References

568

SAMS/q3 Borland C++ Power Prog. 172-7 2-17-93 Brook AppA LP#4 (Folio, LAC)

Appendix B ■ Detecting Whether a TSR Is Loaded

569

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

O

B
Detecting Whether a TSR

Is Loaded

ne thing you might have noticed about the clock
TSR discussed in Chapter 8 is that it has no way of
knowing whether it’s already loaded. Because of
this, you can accidentally load the TSR repeatedly,
which eats up memory that can be used for other
programs. To avoid this problem, the clock TSR
needs some way of checking its status. But how?

You can’t use a flag in the main program, because each time you run the TSR,
a new instance of the TSR is created, and each instance has it own data. The
answer to this dilemma, as you may have guessed, is an interrupt handler.

The interrupt 0x2F is traditionally used for communicating between TSR
programs. In fact, an entire standard for the use of this interrupt with TSR
programs has been developed (the TesSeRact standard, information about
which is provided at the end of this Appendix). There are many commands
implemented in the standard, one of which, CHECK_INSTALL, is demonstrated
in the third version of the clock TSR program from Chapter 8, shown here in

Part III ■ References

570

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

Listing B.1. This version of the program does not enable you to load the TSR
if it’s already in memory. If you try, you get the message “The clock TSR is
already installed.”.

Listing B.1. CLOCK3.CPP—on-screen clock TSR program, version 3.

///

// ON-SCREEN CLOCK TSR, VERSION 3

// by Clayton Walnum

// Written with Borland C++ 3.1

//

#include <dos.h>

#include <iostream.h>

#define CLOCK 0x1c

#define ATTR 0x7900

#define FALSE 0

#define TRUE 1

#define CLOCK_ID 0xEB

#define CHECK_INSTALL 0x00

// Declare pointers to hold old vectors.

void interrupt (*old2f)(...);

void interrupt (*oldclock)(...);

// Declare a pointer to screen memory.

unsigned int (far *screen);

// Declare some global data.

struct time t; // Struct for gettime().

int tick, // Interrupt counter.

 colon; // Flag for colon visibility.

char clockstr[] = {“00:00”}; // Clock display string.

// Declare pointers to InDOS and CritErr flags.

char far *indos;

char far *criterr;

// Function prototypes.

void FormatClockStr();

void HandleColon();

Appendix B ■ Detecting Whether a TSR Is Loaded

571

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

void interrupt ClockIntr(...);

void interrupt New2f(unsigned, unsigned, unsigned, unsigned,

 unsigned, unsigned, unsigned, unsigned,

 unsigned, unsigned, unsigned, unsigned);

#pragma argsused

//

// New2f()

//

// This is the interrupt handler used for communicating

// between TSRs. In this case, the handler notifies the

// caller that the CLOCK_ID TSR is loaded.

//

void interrupt New2f(unsigned bp, unsigned di, unsigned si,

 unsigned ds, unsigned es, unsigned dx,

 unsigned cx, unsigned bx, unsigned ax,

 unsigned ip, unsigned cs, unsigned flags)

{

 // Check for the TSR’s ID. If this request is not

 // for this clock TSR, chain to the old 2f.

 if (_AH != CLOCK_ID)

 _chain_intr(old2f);

 // If the caller is requesting whether the

 // clock TSR is loaded, tell it yes.

 if (_AL == CHECK_INSTALL)

 {

 ax = 0xFFFF;

 bx = _psp;

 }

}

//

// FormatClockStr()

//

// This function uses the hour and minute counters to

// construct the clock’s display.

//

void FormatClockStr()

{

 // Format hour portion of string.

 if (t.ti_hour < 10)

continues

Part III ■ References

572

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

Listing B.1. Continued

 {

 clockstr[0] = ‘0’;

 clockstr[1] = t.ti_hour + ‘0’;

 }

 else

 {

 clockstr[0] = t.ti_hour / 10 + ‘0’;

 clockstr[1] = t.ti_hour % 10 + ‘0’;

 }

 // Format minute portion of string.

 if (t.ti_min < 10)

 {

 clockstr[3] = ‘0’;

 clockstr[4] = t.ti_min + ‘0’;

 }

 else

 {

 clockstr[3] = t.ti_min / 10 + ‘0’;

 clockstr[4] = t.ti_min % 10 + ‘0’;

 }

}

//

// HandleColon()

//

// This function is responsible for the blinking colon

// in the clock display. Every 9 ticks (1/2 second),

// the colon is added or deleted from the string, which

// causes the colon to blink in one second intervals.

//

void HandleColon()

{

 // Increment counter.

 ++tick;

 // If a half second has passed, set counter back

 // to zero, and then add or remove the colon.

 if (tick == 9)

 {

 tick = 0;

 // If colon is in string, remove it.

Appendix B ■ Detecting Whether a TSR Is Loaded

573

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

 if (colon)

 {

 clockstr[2] = ‘ ‘;

 colon = FALSE;

 }

 // If colon is not in string, add it.

 else

 {

 clockstr[2] = ‘:’;

 colon = TRUE;

 }

 }

}

//

// ClockIntr()

//

// This is the interrupt handler. It displays the

// current clock string, checks the counters, and

// finally chains to the old interrupt.

//

void interrupt ClockIntr(...)

{

 // Handle the blinking colon.

 HandleColon();

 // Is it safe to call MS-DOS?

 if (!*indos && !*criterr)

 {

 // Use MS-DOS to get current time.

 gettime(&t);

 // Build clock display string.

 FormatClockStr();

 // Get the screen address.

 screen = (unsigned int far *) MK_FP(0xb800,0);

 // Get address of clock position on first screen line.

 screen += 75;

 // Write clock display string directly to screen memory.

 for (int x= 0; x<5; ++x)

continues

Part III ■ References

574

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

Listing B.1. Continued

 *screen++ = clockstr[x] + ATTR;

 }

 // Chain to old handler.

 _chain_intr(oldclock);

}

//

// Main program.

//

void main(void)

{

 _AH = CLOCK_ID;

 _AL = CHECK_INSTALL;

 geninterrupt(0x2f);

 if (_AL == 0xff)

 cout << “The clock TSR is already installed.\n”;

 else

 {

 // Get address of inDOS flag.

 _AH = 0x34;

 geninterrupt(0x21);

 // Initialize InDOS and CritErr pointers.

 unsigned int seg = _ES;

 unsigned int off = _BX;

 indos = (char far *) MK_FP(seg, off);

 criterr = indos - 1;

 // Get old vectors and set new vectors.

 oldclock = getvect(CLOCK);

 setvect(CLOCK, ClockIntr);

 old2f = getvect(0x2f);

 setvect(0x2f, (void interrupt(*)(...)) New2f);

 // Initialize time counters and colon flag.

 tick = 0;

 colon = FALSE;

 // Go TSR.

 keep(0, (_SS + (_SP/16) - _psp));

 }

}

Appendix B ■ Detecting Whether a TSR Is Loaded

575

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

Look at main() first, because it’s in main() that the program generates the
request to check whether the TSR is already loaded:

void main(void)

{

 _AH = CLOCK_ID;

 _AL = CHECK_INSTALL;

 geninterrupt(0x2f);

 if (_AL == 0xff)

 cout << “The clock TSR is already installed.\n”;

 else

 {

 // Get address of inDOS flag.

 _AH = 0x34;

 geninterrupt(0x21);

 // Initialize InDOS and CritErr pointers.

 unsigned int seg = _ES;

 unsigned int off = _BX;

 indos = (char far *) MK_FP(seg, off);

 criterr = indos - 1;

 // Get old vectors and set new vectors.

 oldclock = getvect(CLOCK);

 setvect(CLOCK, ClockIntr);

 old2f = getvect(0x2f);

 setvect(0x2f, (void interrupt(*)(...)) New2f);

 // Initialize time counters and colon flag.

 tick = 0;

 colon = FALSE;

 // Go TSR.

 keep(0, (_SS + (_SP/16) - _psp));

 }

}

Here, the program first sends a CHECK_INSTALL request to the 0x2f interrupt.
This is accomplished by placing the TSR program’s ID in AH, placing the
command value (0x00 for CHECK_INSTALL) in AL, and then generating a 0x2f
interrupt. The results of the request are returned in AL. If the clock TSR is
already loaded, the value in AL is –1. In this case, the program must do nothing
more than report that the TSR is already loaded, then exit. Otherwise, the
program can install the TSR.

Part III ■ References

576

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

In order for the CHECK_INSTALL request to work properly, the TSR must install
its own 0x2f interrupt handler:

void interrupt New2f(unsigned bp, unsigned di, unsigned si,

 unsigned ds, unsigned es, unsigned dx,

 unsigned cx, unsigned bx, unsigned ax,

 unsigned ip, unsigned cs, unsigned flags)

{

 // Check for the TSR’s ID. If this request is not

 // for this clock TSR, chain to the old 2f.

 if (_AH != CLOCK_ID)

 _chain_intr(old2f);

 // If the caller is requesting whether the

 // clock TSR is loaded, tell it yes.

 if (_AL == CHECK_INSTALL)

 {

 ax = 0xFFFF;

 bx = _psp;

 }

}

When the clock TSR is not loaded, this interrupt handler is not active. The 0x2f
interrupt generated in main(), then, is handled by whatever handler is installed
at that time. It can be the system’s default handler, or it might be a handler
installed by another TSR. In any case, that handler doesn’t recognize (hope-
fully) the clock TSR’s ID and so does not respond with a –1 to the CHECK_INSTALL
request.

Caution: Because it’s possible for two TSR programs to use the same ID,
it’s also possible for the CHECK_INSTALL request (and other commands)
to return erroneous information. For example, if you try to load a TSR with

the same ID as your clock TSR, the clock TSR might capture that TSR’s
CHECK_INSTALL request and not allow it to load. To help you avoid this type of
problem, Microsoft Corporation keeps a list of registered TSR programs to which you
can refer when choosing your TSR’s ID number. When your TSR is complete, you can
then register it with Microsoft so other developers are aware of your TSR’s ID.

When the clock TSR is installed, however, its 0x2f interrupt handler can
respond to main()’s CHECK_INSTALL request. First, this function checks the ID
in AH. If AH doesn’t contain the clock TSR’s ID, the handler passes the buck,

Appendix B ■ Detecting Whether a TSR Is Loaded

577

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

as it were, by chaining to the old 0x2f handler. If AH does contain the TSR’s ID,
the handler checks AL for the CHECK_INSTALL command value. If it finds this
value, the program loads AX with –1 and loads BX with the TSR’s PSP, which
is found in the global variable _psp. (To comply with the TesSeRact standard,
you must return the PSP in BX.)

Note: PSP stands for program segment prefix. The PSP is built by DOS
when you run an executable file, and it contains the 256 bytes of data
necessary for DOS to run your program. A complete discussion of the PSP

is beyond the scope of this book, but it’s helpful to know that the beginning of the PSP
marks the beginning of your program in memory.

As you’ve already seen, the return values from the handler are easily checked
by the program that generated the request, allowing any TSR to determine
whether the clock TSR is loaded. In this way, you can make sure your TSR
programs aren’t loaded more than once, as well as communicate with other
TSR programs with known IDs.

Note: Notice that, in some instructions, the 0x2f handler uses the register
pseudovariables (_AH and _AL), and in others (where values are changed),
it uses the register variables passed to the handler. It does this because,

when the handler exits, the values in the register parameters are the ones used to
restore the registers. If you try to make a change to a register using the pseudo-
variables, your change is overwritten by the values in the register parameters.

Caution: It’s imperative that your 0x2f interrupt handlers chain to the old
handler if the ID passed in AH does not belong to your TSR. This is the way
you pass requests targeted for other TSR programs. If you fail to do this,

other TSR programs loaded into the system might not function properly.

Part III ■ References

578

SAMS/Q6 Borland C++ Power Prog. 172-7 Brook APP B 2/18/93 LP#5 (Folio, LAC)

Index

579

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

Index

Symbols
() parentheses, 230
* (multiplication) operator, 231
+ (addition) operator, 231
- (subtraction) operator, 231
-> (indirect component selector), 101
/ (division) operator, 231
@ symbol (ordinal values), 494
^ (caret character), 109-110
3-D

graphics, 300
outline (status bar), 301

A
ABS built-in function, 231
addition (+) operator, 231
AddNodes() function, 223
AddOp() function, 250-251
addresses

CritErr flag, 284
InDos flag, 284
interrupt handlers, 263
interrupt vector tables, 260
saving in buffers, 97
stack, 266, 484
static memory, 484

allocation
dynamic

string classes, 42
windows, 100

global memory, DLLs, 499
nodes, 152

ancestor classes, 23
animation (buttons), 218
ANSI text, 446
API (Application Program

Interface), 293
AppendMenu() function, 373
application class screen savers,

530-532
Application Options dialog box,

484-485
applications, MDI (Multiple Docu-

ment Interface), see MDI applica-
tions

arguments
default vs. overloading, 36-37
maximum, 254

arrays
character, 42, 50
converting to String object, 52
copying, 48
passing, 199
pointers, 425
strings, inserting, 52

ASCII code, 70
assigning

menus, 393, 448
strings, assignment operator, 48

assignment operators, string
constants, 48

Borland C++ Power Programming

580

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

attributes
buttons, 109
Windows class, 311

AUTOEXEC.BAT file, 72
AVG function, 231

B
background

color, 537-538
mode, status bar, 301

Backus-Naur Form, see BNF
BarRec object, 33
base class pointers, 27
basic windows, 93-101
binary tree, 220-222
BIOS, calling, 69
bioskey() function, 69
BitBlt() function, 404, 479
bitmap editor, 372, 398
BITMAP structure, declaring, 478
bitmapped buttons, 403-405
bitmaps, 372

blitting, 470
buttons, 401
Clipboard, 459-479
copying, 404, 471
creating, 398, 476
disk, 371
displaying, 404, 479
handles, hBitmap, 372
inserting in menus, 374
loading to memory, 373
pasting from Clipboard, 477-479
selecting to memory DC, 476
size, calculating, 476

black-box routines, 12
blank windows, 92
.BMP (bitmap) file extension, 372
BNF (Backus-Naur Form), 232-233
BOING.WAV wave file, 503
brushes, 300, 365, 539
BS_OWNERDRAW button style, 347, 361
Bubbles screen saver, 528-530

BUBBLES.EXE file, 528
BUBBLES.SCR file, 528
BUBDLG.H header file, 533
buffers

addresses, saving, 97
clearing, 428
dialog data, transferring, 426
initializing, NULL, 428
pointer, saving addresses, 97
size, 97
transfer, 425
windows, 97
see also Clipboard

building classes (inheritance), 92
built-in functions, 231
built-in screen saver support, 530
Butn class

constructor, 216
header file (Listing 6.8), 216
implementation file (Listing 6.9),

219-220
inheritance, 216

Button class, 108-115, 566-567
constructor, 109
custom, 401-403
data members, 566-567
declaration, 108
DrawWindow() function, 109-111
header files, toolbox (Listing

10.20), 385-386
implementation files, toolbox

(Listing 10.21), 386-390
inherited data members, 567
inherited member functions, 567
member functions, 567
owner-draw button

header file (Listing 10.6), 355
implementation file (Listing

10.7), 355-358
TCustmBut, 361

button objects, creating, 398
button presses, CapTWindw class, 107
ButtonMsg() message-response

function, 343

Index

581

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

buttons, 346-366
animation, 218
attributes, 109
bitmapped, drawing, 403-405
bitmaps, deleting, 401
BS_OWNERDRAW style, 347, 361
child windows, creating, 346
clicking, Clicked() function,

111-115
creating, 217
custom, 346-366
deriving, 108
drawing, 363-364
drop-throughs, 169
enabling/disabling, 512
filling, 365
focus rectangles, 403
graphics, 402
labels, 109, 111
owner-draw, 346-361
pressing, recording, 219
redrawing, 403
sizing, 217
states, 362-365
toolbar, 341
Trap Hunt game, 215
window classes, 115-118

ButtonUp() function, 79

C
C++ functions, converting from

grammar, 249
calculations

bitmap size, 476
values, random() function, 539
window height/width, 537

calling
BIOS, 69
destructors, 100
DOS from TSR, 276
functions, 309, 493-498

see also recursion
interrupts, 75

CanClose() virtual function, 373
captioned windows, 101-107
capturing

mouse to window, 394
shapes with mouse, 469

CapTWindw class, 104, 560-561
constructors, 105-106
data members, 560-561
member functions, 560

CapWindw class, 102, 559-560
data members, 559
declaration, 102
member functions, 559-560

CapWindw() function, 103
caret (^) character, 109-110
cells (Life simulation)

coordinates, 170
grid, seeding, 161
nodes, retrieving, 157
placing, 161
setting status, 166

CF_BITMAP Clipboard data format, 459
CF_TEXT Clipboard data format, 446
chaining interrupts, 261, 265, 267
character arrays, 42, 50, 54
Check4Blank() function, 224
child nodes, 220, 223
child windows

creating, 321, 346
maximizing, 342
MDI applications, 314
MDI frame window, 313
opening, Create option (Window

menu), 320
status bar, header file (Listing

9.13), 318-319
tiling, 320

classes, 20
ancestor classes, 23
application, screen savers, 530-532
base, pointers, 27
building (inheritance), 92
Button, 108-115, 401-403, 566-567
CapTWindw, 104, 560-561

Borland C++ Power Programming

582

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

CapWindw, 102, 559-560
creating, 23-25

see also inheritance
data types, 20-21
definitions, header files, 21
designing, 29-34
dialog window, 424-426
files, 21
frame-window, 372-375
InputWindw, 120, 565-566
libraries, see ObjectWindows
linked-list, 151
Mouse, 72-74, 80-87
OjbectWindows

OWLWindow, 311
TWindow, 299

OKWindw, 115, 561-562
Point, 30
Rectngle, 32
Shape, 29-31
single-instance, 34-35
status bar

header file, 305
implementation file (Listing

9.19), 328-330
implementation file (Listing

9.9), 306-307
TStatbar, 310

string, see string classes
TBubDlg, 532
toolbox, 397-401
TStatbar, 302
TToolBar, 360
TWCWnd, 424-426
Windows, 310-311
windows

buttons, 115-118
custom, 299
header file (WINDW.H, Listing

4.4), 125-128
hierarchy, 93
TStatbarWnd, 299
WINDW.CPP implementation

file, 129-141
Windw, 93-94
Wndw, 557-559

YesNoCanWindw, 119, 563-564
YesNoWindw, 562-563
see also individual listings

clearing
buffers, 428
Clipboard, 451
linked lists, 169

ClearList() function, 157
ClearWorld() function (Life

simulation), 176
ClickButton() function, 112
Clicked() function, 111, 218
clicking buttons, 111-115
client windows, 314-315, 319, 323
Clipboard, 443-444, 479

bitmaps, 459-479
clearing, 451
data formats, 445

CF_BITMAP, 459
CF_TEXT, 446
validation, 453

demonstration
definition file (Listing 12.5), 458
(Listing 12.1), 453-454
main window header file,

454-455
main window implementation

file, 455-458
resource file (Listing 12.4), 458

demonstration version 2
definition file (Listing 12.10),

468
(Listing 12.6), 459-460
(Listing 12.9), 468
main window header file

(Listing 12.7), 460-461
main window implementation

(Listing 12.8), 461-468
disabling, 447
opening, 451
text, 446-452
viewer, 479

CList class, 155-159
header file (Listing 5.5), 155-156
implementation file (Listing 5.6),

158-159

Index

583

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

clock, 269-283, 570-574
closing

dialog boxes, transferring data
to buffer, 426

screen savers, 541-543
toolbox, 401

CM_COPY message, 449
CM_CREATECHILD message, 344
CM_PASTE message, 452, 477
CMCopy() message-response

function, 449-450
CMPaste() function, 452
code

DLLs, 499
parser, writing, 237
see also spaghetti code

Code Generation dialog box, 484-485
color, 537-539
command-message interface (MCI),

502
command-string interface (MCI), 502
comparing

character arrays, 50
strings, 50-51
structured/object-oriented

programming, 14-20
compatibility of device context, 404
concatenation, strings, 49-50
conditional statements, recursive

functions, 193, 198
CONFIG.SYS file, 72
configuring dialog boxes, 532-535,

551-553
constants, 88
constructors

Butn class, 216
Button class, 109
captioned windows, 102-103
CapTWindw class, 105-106
dialog boxes, 424
List class, 152
OKWindw class, 116
passing parameters, 31
string classes, 47-48
TApplication class, 298
TClipWnd class, 448, 471

TCustmBut class, 361
toolbar, 360
toolbox class, 397-398
Windw class, 94-95

control-break interrupt, 261-262
controls, 345-366, 427

see also buttons; menus;
toolboxes

converting
arrays to String object, 52
grammar to C++ functions, 249
input to integers, 175
strings to character array, 54

coordinates
Life cells, 147, 170
mouse, 79
pixels, 434
printers, 434
screens, limits, 75-76
windows, 97, 100

Copy command (Edit menu), 446
copying

arrays, 48
bitmaps, 404, 470-477
dialog data, transfer buffers, 430
text, 446, 449-452

.CPP (implementation files)
extension, 21

Create option (Window menu), 320
CreateCassFont() function, 436
CreateChild() function, 322
CreateCompatibleDC() function, 404
CreateDC() function, 433
CreateLists() function, 169
CreatePen() function, 394
CreateSolidBrush() function, 365
creating

binary trees, TREE.CPP program
(Listing 6.10), 221-222

bitmaps
bitmap editor, 372
empty, 476
Resource Workshop, 398

brushes, 539
buttons, 217, 347
captioned text windows, 106

Borland C++ Power Programming

584

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

child windows, 321, 346
classes, 23-25, 29-30, 310

see also inheritance
device contexts, 404, 433
dialogs, 393, 397-398
edit window, 448
event handler, 65
event-drive programs, 64-65
fonts, 436
graphics, 300
input boxes (Life simulation), 175
libraries, import, 494
linked lists, 147-151
modal dialog boxes, 393
objects, button, 398
pointers, 284
screen savers, Bubbles, 528-530
status bars, 294-302
strings, 250
text windows, captioned, 106
toolboxes, 375-384
windows, 99

dynamic allocation, 100
heap, 299
in DLLs, 499
in memory, 100
main, 298

CritErr flag, 279, 284
critical error handler, 279
crosshair cursor style, 477
cursor

crosshair, 477
hourglass, 433

custom
buttons, 346-366
classes

button, 361, 401-403
window, 299

controls, 346-366
see also menus; toolboxes

menus, 366-374

D
data formats

Clipboard, 445
CF_BITMAP, 459
CF_TEXT, 446
validation, 453

private, 479
data members

Button class, 566-567
CapTWindw class, 560
CapWindw class, 559
inherited

Button class, 567
CapTWindw class, 561
CapWindw class, 559
InputWindw class, 566
OKWindw class, 562
YesNoCanWindw class, 564
YesNoWindw class, 563

InputWindw class, 565
OKWindw class, 561
Wndw class, 557-558
YesNoCanWindw class, 564
YesNoWindw class, 562

data segment (DS) register, 484
data types

classes, 20-21
user-defined, see classes

DDE (Dynamic Data Exchange), 443
declarations

Button class, 108
CapWindw class, 102
frame-window class, 372-375
InputWindw class, 120
main window

CLIPWND1.H header file, 447
TClipWnd class, 470-471

OKWindw class, 115
toolbox class, 397
Windw class, 94
YesNoCanWindw class, 119

Index

585

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

declaring
functions

DLLs, 499
shape drawing, 488

prototypes, Life simulation
functions, 163-164

structures, 478
default

arguments vs. overloading, 36-37
mouse state, 75

#define statements (Life
simulation), 162

defining
constants, 88
expressions (grammar), 233-234
factors (grammar), 235-236
messages, user-defined, 396
terms (grammar), 234
transfer buffers, 426

definition files
Clipboard demo (Listing 12.5), 458
Clipboard demo version 2 (Listing

12.10), 468
custom controls, owner-draw

button (Listing 10.9), 359
DLLs, 483, 493-494, 498
screen savers (Listing 15.7), 554
sound application, 509, 524
status bar (STATTOOL.DEF,

Listing 9.4), 297
toolbar (TOOLBAPP.DEF, Listing

10.23), 390
WinCassette (Listing 11.6),

423-442
definitions, classes, header files, 21
deinitialization functions, 489
delay() function, 113, 171
Delete() function, 53
DeleteDC() function, 479
deleting

bitmaps, buttons, 401
device contexts, 395, 479
nodes, linked lists, 157
pens, 395
strings, 53
windows, dynamic allocation, 101

deriving buttons, 108
designing

classes, 29-34
libraries, windows, 92
string classes, 42-43
windows, 92-93

Desktop, 543-554
destination-list pointer, 156
destructors

calling, 100
erasing windows, 100
List class, 153
OKWindw class, 116-117
Windw class, 95

device context
bitmaps, 470, 476
brush, 300
creating, compatibility, 404
deleting, 395, 479
GDI calls, 432
pen, 300
printer, 431-433
restoring, 395

device independence, 407-442
devices

input, retrieving, 66
polling, 66, 68
sound, opening, 514

dialogs, 92
Application Options, 484-485
closing, transferring data to buffer,

426
Code Generation, 484-485
configuration, 532-535
constructors, 424
controls, OWL controls, 427
Desktop, 543
displaying, 424
Entry/Exit Code Generation, 484
Generations, 161
Libraries, 160
Linker Settings, 486
modal, DLLs, 499
Simulation Speed, 161
toolbox, 381, 397-398
transfer buffer, 425, 430
WinCassette, 424-431

Borland C++ Power Programming

586

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

dialog window class, 424-426
Dialog() function, 393
Die() function (Life simulation), 173
directory management, recursion,

197
disabling

buttons, 512
pasting, 447-449

disk bitmaps, 371
DispatchEvent() function, 66
DispatchMessage() function, 66, 217
displaying

bitmaps, 404, 479
captioned windows, 103-104
clock, printing, 275
dialog boxes, 424
error messages, 514
graphics, 164, 294
Life simulation, 163
lists, 152-153
pointers, 76-78
scroll bars, MDI, 320
strings, 301
text

Clipboard, 453
windows, 104

window, 100-101
DisplayList() function, 152
division (/) operator, 231
dlgStrgs transfer buffer, 425
.DLL file extension, 482
DLLs (dynamic link libraries), 481-

484
code, 499
definition files, 483

EXPORTS section, 493
IMPORTS section, 493-494
LIBRARY field, 483
test application (Listing 13.7),

498
functions, 483, 485, 489, 493-499
global memory, allocating, 499
header files, SHAPELIB.H, 490
heap, starting size, 483
implementation files, shape

(Listing 13.2), 490-492

LibMain() function, 488
libraries, imports, 493
message loops, 499
modal dialog boxes, 499
resources, loading, 499
sample test program, 484-493
segments, 483-484, 499
stacks, sharing, 483
windows, 499

DLLWND.H header file, main window
(Listing 13.5), 496-497

DoBlanks() function, 224
document windows (MDI), 313
DOS, 276-286
DoSaver() function, 532
dot coordinates, printers, 434
DrawCapBar() function, 103
DrawFocusRect() function, 365, 474
drawing

brushes, device context, 300
buttons, 362-364, 403-405
caption bars, 104
in windows, 393-397
labels, 435
lines, 400, 474
modes, XOR (exclusive OR), 474
objects, 360
on-screen, mouse pointer, 77
pens, 300, 394
rectangles, 300
status bar, 294

3-D outline, 301
header file (Listing 9.2), 295-

296
implementation file, 296
STATAPP1.CPP (Listing 9.1),

294-295
toolbox, line thickness, 391
see also painting

DrawLine() function, 402, 405
DrawScreen() function (Life

simulation), 166
DrawSelected() function, 364-365
DrawShape() virtual function, 29
DrawTitleText() function, 441
DrawUnselected() function, 403-404

Index

587

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

DrawWindow() function
Button class, 109-111
CapTWindw class, 107
CapWindw class, 103-105
InputWindw class, 121
OKWindw class, 117
Windw class, 95-97

drivers
accessing, 72
graphics

EGAVGA.BGI, 99
registering, 165

mouse, 72
functions, 84-87
initializing, 75
installation, checking, 75
status check, 79

speakers, 502
drop-throughs, buttons, 169
DS (data segment) register, 484
dynamic allocation, 42, 100-101
dynamic link libraries, see DLLs
dynamic linking, 482

E
edit window

creating, 448
message-response functions,

448-449
OWL, 447

editing text, 430, 446-447
editors, bitmap, 372
EGAVGA.BGI graphics driver, 99
ejecting paper (printer), 442
Ellipse() function, 490
empty bitmaps, 476
EmptyClipboard() function, 451
emptying, see clearing
enabling buttons, 512
encapsulation, 14-20
Entry/Exit Code Generation dialog

box, 484
erasing windows, destructors, 100

error checking, 246, 257
error handlers, critical errors, 279
error messages, displaying, 514
errors, 256-258
Evaluate() function, 249
evaluating formulas (Expr()

function), 237
event handler, 65, 88-90
Event() function, 78
event-driven programs, 64-65
events

keyboard, 66, 68-71
loops, 64, 167
messages, 66
mouse, 71-80, 112
mouse-button, 66
polling, 65-80

ExecDialog() function, modal dialog
boxes, 393

exiting
parser, 256
Trap Hunt game, 215

exporting functions, 485, 493-494
EXPORTS section, DLL definition file,

493
Expr() function, 237, 249
expressions, 231, 233-234
extensions (filenames)

.BMP (bitmap), 372

.CPP (implementation files), 21

.DLL (dynamic link library), 482

.H (header files), 21

.LIB (library), 494

.SCR (screen saver), 543

.WAV (waveform file), 501
extracting

strings, 54
text, Clipboard, 452-458

F
Factor() function, 251, 257
factors (grammar), defining, 235-236
far pointers, 284

Borland C++ Power Programming

588

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

filename extensions
.BMP (bitmap), 372
.CPP (implementation files), 21
.DLL (dynamic link libraries), 482
.H (header files), 21
.LIB (library file), 494
.SCR (screen saver), 543
.WAV (waveform file), 501

files, 21
see also header files; implementa-

tion files; sound files, waveform
files

filling buttons, 365
FindValue() function, 253
flags, 279, 284
focus rectangles (buttons), 403
focused state (buttons), 363
fonts, 436-441
for loops, 149
FormatClockStr() function, 278
formats, data, 445

see also data formats
formulas

evaluating, 237
expressions, 231
functions, nested, 230
grammar, 230-231
operations, nested, 230
parsing, 237-248
syntax, 230
see also expressions

FORTRAN, 12
frame window (MDI), 313

child windows, 313
class, declaration, 372-375
header files

menus (Listing 10.11), 367-368
owner-draw button (Listing

10.2), 348-349
status bar (Listing, 9.11),

316-317
toolbar (Listing 9.21), 335-336
toolbox (Listing, 10.16), 376-

377
implementation files

menu (Listing 10.12), 368-370

owner-draw buttons (Listing
10.3), 349-351

status bar (Listings 9.17, 9.12),
317-318, 326-327

toolbar (Listing, 9.22), 336-337
toolbox (Listing 10.17), 377-380

invisible client window, 314
menu bar, 313
status bar, 315-327
toolbar, 334-337

Func() function, 253
function numbers, registers,

loading, 76
functions

ABS, 231
AddNodes(), 223
AddOp(), 250-251
AppendMenu(), 373
AVG, 231
bioskey(), 69
BitBlt(), 404, 479
black-box routines, 12
built-in, 231
ButtonUp(), 79
C++, converting from

grammar, 249
calling

functions, see recursion
with pointer, 309

CapWindw(), 103
changing names, 487
Check4Blank(), 224
ClearList(), 157
ClickButton(), 112
Clicked(), 111, 218
CMPaste(), 452
CreateCassFont(), 436
CreateChild(), 322
CreateCompatibleDC(), 404
CreateDC(), 433
CreateLists(), 169
CreatePen(), 394
CreateSolidBrush(), 365
delay(), 113, 171
Delete(), 53
DeleteDC(), 479

Index

589

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

Dialog(), 393
DispatchEvent(), 66
DispatchMessage(), 66, 217
DisplayList(), 152
DLLs, 485, 493-499
DoBlanks(), 224
DoSaver(), 532
DrawCapBar(), 103
DrawFocusRect(), 365, 474
DrawLine(), 402, 405
DrawSelected(), 364-365
DrawTitleText(), 441
DrawUnselected(), 403-404
DrawWindow(), 95-97, 103-111,

117, 121
Ellipse(), 490
EmptyClipboard(), 451
Evaluate(), 249
Event(), 78
exporting, 494
Expr(), 237, 249
Factor(), 251, 257
FindValue(), 253
FormatClockStr(), 278
Func(), 253
geninterrupt(), 75
GetButton(), 79, 107
GetClientRect(), 300
GetClipboardData(), 453
GetEvent(), 66-80
GetFuncName(), 255
getimage(), 97
GetMenu(), 373
GetNode(), 157
GetProfileString(), 433
GetStr(), 54
GetSubMenu(), 373
GetSubStr(), 54
GetSystemMetrics(), 299
GetTextMetrics(), 439
gettime(), 274
getvect(), 75, 263
GetXY(), 79
GlobalAlloc(), 450
GlobalLock(), 451
GotMouse(), 79

HandleColon(), 276-277
HandleInput(), 122-123
HandleTime(), 276, 277
HasNode(), 157
HideMouse(), 77
IdleAction(), 531
IDPlay(), 514
imagesize(), 97
InitChild(), 321
Insert(), 52, 453
interrupt pointers, 263
interrupt handlers, 264
IsClipboardFormatAvailable(),

449
keep(), 266
KeyEvent(), 68
LibMain(), 488
lineto(), 113
LoadBitmap(), 373
loading in DLLs, 483
LoadLibrary(), 483
LoadStrings(), 430
main(), 16
MakeWindow(), 393
MarkedButton(), 218-219
mciSendCommand(), 509
memset(), 428
message-response

ButtonMsg(), 343
CMCopy(), 449-450
IDPause(), 516
IDPressMe(), 504
IDPrint(), 431
IDSide(), 428
MMMCINotify(), 515
WMMouseMove(), 394
WMSetFocus(), 448-449

mouse drivers, 84-87
MouseIntr(), 77
moveto(), 113
MultOp(), 251
nested, 230
nosound(), 113
NumChar(), 253
OpenClipboard(), 451
outtextxy(), 104

Borland C++ Power Programming

590

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

overloading, 36
Paint(), 294, 299-300
PasteBitmap(), 471, 477-478
PlaceCell(), 167
Pos(), 51
PressButton(), 218
Pressed(), 218
PrintLabel(), 431
prototypes, Life simulation,

163-164
random(), 539
randomize(), 16
recursive, 193-199
Recursive(), 192, 198
registerbgidriver(), 165
RGB(), 539
RunWindow(), 122
SendMessage(), 343
SetBkMode(), 301
SetButtons(), 510
SetCaption(), 104
SetCursor(), 433
SetFlags(), 332
SetLimits(), 76
SetupWindow(), 322, 373
shape drawing, 488
sharing, 482

see also DLLs
ShowMouse(), 77
sizeof(), 55
sndPlaySound(), 503
Sound(), 113
SQRT, 231
StartPage(), 433
StartPrinting(), 431-433
StopPrinting(), 431, 442
StopSound(), 510
strcomp(), 50
strcopy(), 48
string classes, 45-47
Term(), 251
TextOut(), 301, 440
TransferList(), 156
TraverseTree(), 223-224
TStatbarApp(), 298
virtual, 39-40

CanClose(), 373
DrawShape(), 29
DrawWindow(), 95-97
RunWindow(), 97

WEP(), 489
WMLButtonDown(), 472
WMMouseMove(), 473-474
WMRButtonUp(), 475-476
WMSize(), 309
WMSysCommand(), 540
WritePrivateProfileString(),

535
see also member functions

G
games, Trap Hunt, 200-228
GDI (Graphics Device Interface), 294

calls, sending to device contexts,
432

TextOut() function, 301, 440
generating interrupts, 75
generations (Life), counting, 161
Generations dialog box, 161
geninterrupt() function, 75
GetButton() function, 79, 107
GetClientRect() function, 300
GetClipboardData() function, 453
GetEvent() function, 66-80
GetFuncName() function, 255
GetGens() function (Life

simulation), 174
getimage() function, 97
GetMenu() function, 373
GetNode() function, 157
GetProfileString() function, 433
GetStr() function, 54
GetSubMenu() function, 373
GetSubStr() function, 54
GetSystemMetrics() function, 299
GetTextMetrics() function, 439
gettime() function, 274
getvect() function, 75, 263
GetWindowClass() function, 310
GetXY() function, 79

Index

591

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

global memory, allocating with DLL,
499

global variables, 19, 484
GlobalAlloc() function, 450
GlobalLock() function, 451
GotMouse() function, 79
grammar

BNF symbols, 233
converting to C++ functions, 249
example, 236
expressions, defining, 233-234
factors, defining, 235-236
formulas, 230-231
nonterminal symbols, 232
rules, describing, 232-233
symbols, BNF, 233
syntax, 231-236
terminal symbols, 232
terms, defining, 234

graphics
display, initializing, 164
displaying, 294
drivers, 99
lines, buttons, 402

Graphics Device Interface, see GDI
graphics driver (Life simulation), 165
grid cells (Life simulation)

coordinates, 147
seeding, 144, 161

H
.H (header files) extension, 21
HandleColon() function, 276-277
HandleInput() function, 122-123
handlers

control-break interrupt, 262
reinstalling, 263
see also error handlers; interrupt

handlers
handles

bitmaps, hBitmap, 372
client windows, 323
menus, 373

HandleTime() function, 276-277
HasNode() function, 157

hBitmap handle, 372
head

pointer, 148
windows, 299

header files, 21-23
BARREC.H (BarRec object, Listing

1.17), 33
BUBDLG.H (configuration dialog

box), 533, 551
Butn class (Listing 6.8), 216
button class

owner-draw button (Listing
10.6), 355

toolbox (Listing 10.20), 385-386
Car class (Listing 1.3), 21-22
classes

definitions, 21
mouse, 72-73

CLIST.H (CList class, Listing 5.5),
155-156

dialogs
toolbox (Listing 10.18), 381

EVENT.H (event handler, Listing
3.6), 88

FASTCAR.H (FastCar class,
Listing 1.8), 26

frame window
menu (Listing 10.11), 367-368
owner-draw button (Listing

10.2), 348-349
toolbox (Listing 10.16), 376-377
status bar (Listings 9.11, 9.16),

316-317, 325
LIST.H (List class, Listing 5.2),

151-152
main window

Clipboard demo (Listing 12.2),
454-455

Clipboard demo version 2
(Listing 12.8), 460-461

DLLWND.H (Listing, 13.5),
496-497

screen saver (Listing, 15.2), 546
SNDWND1.H (Listing 14.2), 507
SNDWND2.H (Listing, 14.6),

518-519

Borland C++ Power Programming

592

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

MOUS.H (Mouse class, Listing 3.3),
72

PASSCAR.H (PassingCar class,
Listing 1.5), 24

POINT.H (Point class,
Listing 1.12), 30

RECTNGLE.H (Rectngle class,
Listing 1.15), 32

SHAPE.H (Shape class,
Listing 1.11), 29-30

SHAPELIB.H (Listing 13.1), 487,
490

STATBAR2.H (Listing, 9.8), 305
STATWND2.H (Listing 9.6), 304
status bar

child window(Listing 9.13),
318-319

windows (Listing 9.2), 295-296
STRNG.H (string class,

Listing 2.1), 44-45
toolbar class, 338

frame window (Listing 9.21),
335-336

owner-draw button
(Listing 10.4), 351

toolbox application
(Listing 10.14), 375

user-defined messages, defining,
396

WinCassette, 408-411
WINDW.H, 110, 125-128

heap
DLLs, starting size, 483
nodes, allocating, 152
static memory, 484

HideMouse() function, 77
hiding pointers, 76-78
hooking interrupts, 261, 267
horizontal screen limits, setting, 76
hourglass mouse cursor, 433

I
IdleAction() function, 531
IDPause() message-response

function, 516
IDPlay() function, 514

IDPressMe() message-ressonse
function, 504

IDPrint() message-response
function, 431

IDSide() message-response
function, 428

imagesize() function, 97
implementation files, 21-23

BarRec object (BARREC.CPP,
Listing 1.18), 34

Butn class (BUTN.CPP,
Listing 6.9), 219-220

button class
owner-draw button

(Listing 10.7), 355-358
toolbox (Listing 10.21), 386-390

Car class (CAR.CPP, Listing 1.4),
22-23

CList class (CLIST.CPP,
Listing 5.6), 158-159

event handler (EVENT.CPP,
Listing 3.7), 89

FastCar class, (FASTCAR.CPP,
Listing 1.9), 27

frame window
menu (Listing 10.12), 368-370
owner-draw button

(Listing 10.3), 349-351
status bar (Listings 9.12, 9.17),

317-318, 326-327
toobar (Listing, 9.22), 336-337
toolbox (Listing 10.17), 377-380

List class (LIST.CPP, Listing 5.3),
153-154

main window
Clipboard demo (Listing 12.3),

455-458
Clipboard demo version 2

(Listing 12.8), 461-468
screen saver (Listing 15.3),

546-550
sound (Listing 14.3), 507-508
sound application

(Listing 14.7), 519-524
status bar (Listings 9.3, 9.7),

296-297, 304-305
WinCassette (Listing 11.4),

411-420

Index

593

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

Mouse class (MOUS.CPP,
Listing 3.4), 80-82

PassingCar class
(PASSCAR.CPP,Listing 1.6), 24

Point class (POINT.CPP,
Listing 1.13), 30

Rectngle class (RECTNGLE.CPP,
Listing 1.16), 32

screen saver configuration dialog
(Listing 15.5), 551-553

shape DLL (Listing 13.2), 490-492
status bar class, 306-307, 328-330
String class (STRNG.CPP,

Listing 2.2), 55-60
toolbar class, 338-341

owner-draw button
(Listing 10.5), 352-354

toolbox class, 381-384, 397-398
WinCassette, 408-409
window classes (WINDW.CPP,

Listing 4.5), 129-141
IMPLIBW.EXE program, 494
Import Lib program, 494
import library, 493-494
importing functions, 493
IMPORTS section, DLL definition file,

493-494
include files, status bar

application, 308
#include statements (Life

simulation), 162
indexes, 52, 262
indirect component selector (->), 101
InDos flag, 279, 284
inheritance, 23-25, 92, 215-220
inherited data members

Button class, 567
CapTWindw class, 561
CapWindw class, 559
InputWindw class, 566
OKWindw class, 562
YesNoCanWindw class, 564
YesNoWindw class, 563

inherited member functions
Button class, 567
CapWindw class, 560

InputWindw class, 566
OKWindw class, 562
YesNoCanWindw class, 564
YesNoWindw class, 563

InitChild() function, 321
initializing

buffers, NULL, 428
display, graphics, 164
drivers, mouse, 75
graphics driver (Life program),

165
linked lists, 171
lists, 152
mouse, 72, 75, 166
parser data, 249
random-number generator, 16
screen, VGA graphics, 99
strings, 47
TSRs, 265

input
converting to integers, 175
retrieving, devices, 66

input windows, 101, 120-125
InputWindw class, 565-566

data members, 565
declaration, 120
DrawWindow() function, 121
inherited data members, 566
inherited member functions, 566
member functions, 565-566
RunWindow() function, 122

Insert() function, 52, 453
inserting

bitmaps in menus, 374
strings

in arrays, 52
in strings, 52-53

installation, interrupt handlers in
TSRs, 576

integers
input, converting, 175
parameters, 54

interrupt handlers, 260-264
addresses, 263
chaining to keyboard interrupt,

Borland C++ Power Programming

594

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

265
control-break, 261
functions, 264
numbers, 262
timer interrupts, response, 284
TSRs, 569, 576

interrupt keyword, 264
interrupt vector tables, 262, 266
interrupts, 259-261

calling, 75
chaining to, 261, 267
control-break, 262
CTRL.CPP, Control-C interrupt

program (Listing 8.1), 261-262
functions, pointers, 263
generating, 75
handlers, see interrupt handlers
hooking, 261, 267
numbers, 260
registers, 264
timers, 260
vector table, 260

invisible client window, 314, 319
IRET (return from interrupt)

instruction, 262
IsClipboardFormatAvailable()

function, 449

K– L
keep() function, 266
key constants, 88
keyboard events, 66, 68-71
keyboard interrupt, interrupt

handlers, 265
KeyEvent() function, 68

labels, 109-111, 435
languages

Assembly language, 12
FORTRAN, 12
scripting (MCI), 502

.LIB (library) filename extension, 494
LibMain() function, 488

libraries
classes, see ObjectWindows
DLLs, imports, 493
import, creating, 494
ObjectWindows, 293
SCRNSAVE.LIB, 528
windows, 125-141

designing, 92
YesNoCanWindw, 119

see also window libraries
Libraries dialog box, 160
LIBRARY field, DLL definition file, 483
Life simulation, 144-162

cells
calculating neighbors, 145
CList class, 155-159
killing, 145, 173

display, 163-164
#define statements, 162
event loop, 167
functions

ClearWorld(), 176
declaring prototypes, 163-164
Die(), 173
DrawScreen(), 166
GetGens(), 174
Live(), 172
PlaceCell(), 167

generations
counting, 161
input box, 175

graphics driver, 165
grid, 144, 161
#include statements, 162
LIFE.CPP (Listing 5.7), 176-189
linked lists, 147-151
main screen, 160
quitting, 162
recalculation, 146-147
rules, 144-145
screen, updating, 145
speed, 175
stopping, 161
viewing speed, 161

LIFE.CPP (Life simulation,

Index

595

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

Listing 5.7), 176-189
limits, screen coordinates, 75-76
line styles, 474
lines

graphics, buttons, 402
styles, 474

lineto() function, 113
linked lists, 125, 147-151

clearing, 169
creating, 147-151
displaying, 152-153
emptying, 158
GetNode() function, 157
initializing, 152, 171
nodes, 147, 149, 157
pointers, 148, 156
program listing, 148-149
scanning, 149, 157
transferring contents, 156

linked-list class, 151
Linker Settings dialog box, 486
linking, 482
List class

constructor, 152
destructor, 153
header file (Listing 5.2), 151-152
implementation file (Listing 5.3),

153-154
testing (Listing 5.4), 154-155

listings, programs, see program
listings

lists
building structures, 147
displaying, 152-153
initializing, 152
linked, see linked lists
nodes, 147
object-oriented, see object

oriented lists
transferring contents, 156

Live() function (Life simulation),
172

LoadBitmap() function, 373
loading

bitmaps to memory, 373
functions to DLLs, 483
registers to function numbers, 76
resources with DLLs, 499

LoadLibrary() function, 483

LoadStrings() function, 430
LOGFONT structure, 437
loops

event (Life simulation), 167
for loop, 149
message, DLLs, 499
while, 16, 149

M
macros, 539
main window

creating, 298
DLL test, 487
header files

Clipboard demo (Listing 12.2),
454-455

Clipboard demo version 2
(Listing 12.8), 460-461

DLLWND.H (Listing 13.5),
496-497

screen saver (Listing 15.2), 546
SNDWND1.H (Listing 14.2), 507
SNDWND2.H (Listing 14.6),

518-519
implementation files

Clipboard demo (Listing 12.3),
455-458

Clipboard demo version 2
(Listing 12.8), 461-468

DLLWND.CPP (Listing 13.6),
497-498

screen saver (Listing 15.3),
546-550

sound (Listing 14.3), 507-508
sound application

(Listing 14.7), 519-524
WinCassette, 424-431

main() function, 16
MainWindow pointer, 299
MakeWindow() function, 393
mapping modes, MM_TEXT, 434
MarkedButton() function, 218-219
mathematical expressions, 197
maximizing child windows, 342
MCI (Media Control Interface),

502-503

Borland C++ Power Programming

596

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

MCI_RESUME command, 516
mciSendCommand() function, 509
MDI applications, 313-347
Media Control Interface, see MDI
member functions

Button class, 567
CapTWindw class, 560
CapWindw class, 559
inheritance, 23
inherited

Button class, 567
CapWindw class, 560
InputWindw class, 566
OKWindw class, 562
YesNoCanWindw class, 564
YesNoWindw class, 563

InputWindw class, 565-566
OKWindw class, 561-562
Wndw class, 558
YesNoCanWindw class, 564
YesNoWindw class, 563

memory
blocks, 451
screen, printing to, 275
static, 484
windows, creating, 100

memset() function, 428
menu bar, frame window (MDI), 313
menus

adding images, 372-374
application (Listing 10.10), 366-

367
assigning, 393
bitmaps, inserting, 374
custom, 366-374
frame window, 367-370
handles, 373
windows, assigning, 448

message boxes, 118-120
message loops, DLLs, 499
messages

CM_COPY, 449
CM_CREATECHILD, 344
CM_PASTE, 452, 477
events, 66
user-defined, 396-397

defining, 396
PM_CHANGELINE, 395, 400
PM_CLOSETOOLS, 396

windows
routing, 294
WM_DESTROY, 397
WM_DRAWITEM, 360, 397
WM_HSCROLL, 301
WM_LBUTTONDOWN, 393
WM_LBUTTONUP, 395
WM_MDIMAXIMIZE, 343
WM_MOUSEMOVE, 473
WM_PAINT, 294
WM_SIZE, 309
WM_VSCROLL, 301

metrics (fonts), 439
Microsoft Windows, see Windows
minimum window, 92
MM_TEXT mapping mode, 434
MMMCINotify() message-response

function, 515
modal dialog boxes

creating, 393
DLLs, 499

modeless dialog boxes, 393
modes

drawing, 474
mapping, 434

mouse
capturing to window, 394
class, header file, 72-73
coordinates, 79
cursor, 433
default state, 75
drivers, 72, 75, 79, 84-87
events, 71-80, 112
initializing, 72, 75, 166
input, directing to windows, 394
location, 72
movement, limiting, 76
pointer, 72, 76-78, 537, 543
screen, coordinate limits, 75-76
shapes, capturing, 469
support, 72

Mouse class, 73-74, 80-87
mouse-button events, 66
MouseIntr() function, 77
moveto() function, 113

Index

597

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

MS-DOS, see DOS
multimedia, 501-509
Multimedia Extensions, 502
multiple screen savers, 540-541
multiplication (*) operator, 231
multitasking, 259
MultOp() function, 251

N
name-mangling, 487-488
names, functions, changing, 487
nesting, 230
nodes

allocation, heap, 152
child node, 220
linked lists, 149, 157
lists, 147
pointers, 147

child nodes, 223
saving, 150
temporary, 149

retrieving, 157
trees, 220

nonterminal symbols (grammar), 232
nosound() function, 113
numbers, interrupts, 260-262
NumChar() function, 253

O
object class, 310
object-oriented lists, 151-155
object-oriented programming, 13-28
objects

BarRec, 33
buttons

creating, 398
Trap Hunt game, 215

drawing, 360
locking in memory, 451
polymorphism, 26
status bar, 302-312

TButton, 360
ObjectWindows, 291-292

classes
OWLWindow, 311
TWindow, 299

library, 293
messages, routing, 294
status bar, painting, 294-302
Windows, 292-294

OK window, 115-118
OKWindw class, 561-562

constructor, 116
data members, 561-562
declaration, 115
destructors, 116-117
DrawWindow() function, 117
member functions, 561-562

OLE (Object Linking and Embed-
ding), 443

OpenClipboard() function, 451
opening

child windows, 320
Clipboard, 451
sound device, 514

operators
* (multiplication), 231
+ (addition), 231
- (subtraction), 231
/ (division), 231
assignment, 48
overloading, 36-39
precedence, 234
storing in strings, 250

ordinal values, 494
output, 434-436
outtextxy() function, 104
overflow, stack, 197-199
overlapping windows, 99
overloading, 36-39
OWL edit window, 447
OWL controls, 427
OWLWindow class, 311
owner-draw buttons, 346-361

application file (Listing 10.1),
347-348

creating, 347
definition file (Listing 10.9), 359
header files

Borland C++ Power Programming

598

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

button class (Listing 10.6), 355
frame window (Listing 10.2),

348-349
toolbar class (Listing 10.4), 351

implementation files
button class (Listing 10.70,

355-358
frame window (Listing 10.3),

349-351
toolbar class (Listing 10.5),

352-354
resource file (Listing 10.8), 359

P
Paint() function, 294

status bar, 311-312
WM_PAINT message, 299-300

painting status bar, 294-302
see also drawing

parameters
integer, 54
passing, constructors, 31
recursive functions, 199

parentheses (), 230
PARSER.CPP (Listing 7.1), 237
parsers

error-checking, 246
exiting early, 256
initializing data, 249
PARSER.CPP (Listing 7.1),

237-246
recursive-descent, 237
writing code, 237

parsing, 229
formulas, 247-248
recursion, 197
starting process, 249

Pascal calling convention, 486
passing

arrays, 199
parameters, 31

Paste command (Edit menu), 446
PasteBitmap() function, 471,

477-478

pasting
bitmaps from Clipboard, 477-479
captured images, 469
text, 446-449

pens, 300, 394-395
pixel coordinates, 434
PlaceCell() function, 167
PM_CHANGELINE user-defined message,

395, 400
PM_CLOSETOOLS user-defined message,

396
Point class, 30
pointers

arrays, 425
base classes, 27
buffer, saving addresses, 97
calling functions, 309
child nodes, 223
far, 284
head, 148
interrupt functions, 263
interrupt vector tables, 266
linked lists, 156
MainWindow, 299
mouse, 72, 76-78
nodes (linked lists), 147-150
polymorphism, 28
tail, 148

polling, 65-80
polymorphism, 26-28
Pos() function, 51
position

client windows, 323
mouse, 72
mouse pointer, 537
status bar, 312
status window, 332
substrings, locating, 51
text, Clipboard, 450
windows, 299

precedence, operators, 234
PressButton() function, 218
Pressed() function, 218
printers

coordinates, 434
device context, 431-433

Index

599

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

ejecting pages, 442
output, 434-436
resolution, 435
settings, WIN.INI file, 433

printing
clock display, 275
fonts, 436-441
labels, buttons, 111
nodes (linked lists), 149
screen memory, 275
stopping, 442
WinCassette, 431

PrintLabel() function, 431
private data formats, 479
program listings

1.1 CAR1.CPP-car trip simulation,
14-16

1.2 CAR2.CPP-object-oriented
version of 1.1, 18-19

1.3 CAR.H-Car class header file,
21-22

1.4 CAR.CPP-Car class implemen-
tation file, 22-23

1.5 PASSCAR.H-PassingCar class
header file, 24

1.6 PASSCAR.CPP-PassingCar
class implementation file, 24

1.7 CAR3.CPP-PassingCar test
drive, 25

1.8 FASTCAR.H-FastCar class
header file, 26

1.9 FASTCAR.CPP-FastCar class
implementation file, 27

1.10 CAR4.CPP-car simulation
main program, 27-28

1.11 SHAPE.H-Shape class header
file, 29-30

1.12 POINT.H-Point class header
file, 30

1.13 POINT.CPP-Point class
implementation file, 30

1.14 TSTSHAPE.CPP-Shape
classes test program, 31

1.15 RECTNGLE.H-Rectngle class
header file, 32

1.16 RECTNGLE.CPP-Rectngle
class implementation file, 32

1.17 BARREC.H-BarRec object
header file, 33

1.18 BARREC.CPP-BarRec object
implementation file, 34

1.19 OVERLOAD.CPP-summing
array elements with + operator,
38-39

2.1 STRNG.H-string class header
file, 44-45

2.2 STRNG.CPP-String class
implementation file, 55-60

2.3 TSTSTRNG.CPP-class testing,
60-61

3.1 KEY1.CPP-demonstration of
KeyEvent(), 69-70

3.2 KEY2.CPP-Listing 3.1 refined,
70-71

3.3 MOUS.H-Mouse class header
file, 72-73

3.4 MOUSE.CPP-Mouse class
implementation file, 80-82

3.5 MDEMO.CPP-Mouse class
demonstration, 82-83

3.6 EVENT.H-event handler
header file, 88

3.7 EVENT.CPP-event handler
implementation file, 89

4.1 WNDW1.CPP-displaying Windw
window, 98-99

4.2 WNDW2.CPP-button class
demonstration, 114-115

4.3 WNDW3.CPP-programming
input window, 124-125

4.4 WINDW.H-window classes
header file, 125-128

4.5 WINDW.CPP-window class
implementation file, 129-141

5.1 LIST1.CPP-linked list
demonstration, 148-149

5.2 LIST.H-List class header file,
151-152

5.3 LIST.CPP-List class imple-
mentation file, 153-154

5.4 LIST2.CPP-testing List class,
154-155

5.5 CLIST.H-CList class header
file, 155-156

5.6 CLIST.CPP-CList class imple-

Borland C++ Power Programming

600

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

mentation file, 158-159
5.7 LIFE.CPP-Life simulation,

176-189
6.1-BARRELS.CPP-bunny-in-

barrels, 193-194
6.2 POWER.CPP-recursive expo-

nentiation, 195
6.3 STACK1.CPP-stack-overflow

version 1, 197
6.4 STACK2.CPP-stack-overflow

version 2, 198
6.5 STACK3.CPP-stack-overflow

version 3, 198-199
6.6 STACK4.CPP-stack-overflow

version 4, 199
6.7 TRAPHUNT.CPP-Trap Hunt

program, 200-215
6.8 BUTN.H-Butn class header file,

216
6.9 BUTN.CPP-Butn class imple-

mentation file, 219-220
6.10 TREE.CPP-binary tree

creation, 221-222
7.1 PARSER.CPP-parser for

mathematical formulas, 237-246
8.1 CTRL.CPP-Control-C interrupt

program, 261-262
8.2 TSR1.CPP-key beep program,

version 1, 265-266
8.3 TSR2.CPP-key beep program,

version 2, 268-269
8.4 CLOCK1.CPP-on-screen clock

TSR, 269-274
8.5 CLOCK2.CPP-on-screen clock

TSR version 2, 279-283
9.1 STATAPP1.CPP-status bar

application version 1, 294-295
9.2 STATWND1.H-main window

header file, 295-296
9.3 STATWND1.CPP-main window

implementation file, 296-297
9.4 STATTOOL.DEF-status bar

definition file, 297
9.5 STATAPP2.CPP-status bar

applications version 2, 303
9.6 STATWND2.H-main window

header file, 304
9.7 STATWND2.CPP-main window

implementation file, 304-305
9.8 STATBAR2.H-status bar class’

header file, 305
9.9 STATBAR2.CPP-status bar

class’ implementation, 306-307
9.10 STATAPP3.CPP-status bar

application version 3, 315-316
9.11 STATWND3.H-frame window

header file, 316-317
9.12 STATWND3.CPP-frame

window implementation file,
317-318

9.13 CHILDWND.H-child window
header file, 318-319

9.14 STATTOOL.RC-MDI status
bar resource file, 319

9.15 STATAPP4.CPP-status bar
application version 4, 324-325

9.16 STATWND4.H-frame window
header file, 325

9.17 STATWND4.CPP-frame
window implementation file,
326-327

9.18 STATBAR4.H-status bar
header file, 327-328

9.19 STATBAR4.CPP-status bar
class implementation, 328-330

9.20 TOOLAPP.CPP-toolbar
application, 334-335

9.21 TOOLWND.H-frame window
header file, 335-336

9.22 TOOLWND.CPP-frame
window implementation file,
336-337

9.23 TOOLBAR.H-toolbar class
header file, 338

9.24 TOOLBAR.CPP-toolbar class
implementation file, 338-341

10.1 CUSCTL1.CPP-custom
control application version 1,
347-348

10.2 CUSCTLW1.H-frame window
header file, 348-349

10.3 CUSCTLW1.CPP-frame
window implementation file,

Index

601

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

349-351
10.4 TOOLBAR2.H-toolbar class

header file, 351
10.5 TOOLBAR2.CPP-toolbar class

implementation file, 352-354
10.6 CUSTMBUT.H-button class

header file, 355
10.7 CUSTMBUT.CPP-button class

implementation file, 355-358
10.8 CUSCTL1.RC-owner-draw

button application resource file,
359

10.9 CUSTMCTL.DEF-owner-draw
button definition file, 359

10.10 CUSCTL2.CPP-custom
control version 2, 366-367

10.11 CUSCTLW2.H-frame window
header file, 367-368

10.12 CUSCTLW2.CPP-frame
window implementation file,
368-370

10.13 CUSCTL2.RC-application
resource file, 371

10.14 TOOLBAPP.H-toolbox
header file, 375

10.15 TOOLBAPP.CPP-toolbox
application, 375-376

10.16 TOOLBXW.H-frame window
header file, 376-377

10.17 TOOLBXW.CPP-frame
window implementation file,
377-380

10.18 TOOLDLG.H-toolbox dialog
header file, 381

10.19 TOOLDLG.CPP-toolbox
implementation file, 381-384

10.20 TOOLBUTN.H-button class
header file, 385-386

10.21 TOOLBUTN.CPP-button
class implementation file,
386-390

10.22 TOOLBAPP.RC-toolbox
resource file, 390

10.23 TOOLBAPP.DEF-definition
file, 390

11.1 WINCASS.H-WinCassette
header file, 408

11.2 WINCASS.CPP-WinCassete
implementation file, 408-409

11.3 TWCWND.H-WinCassette
main window header file, 409-411

11.4 TWCWND.CPP-WinCassette
main window implementation
file, 411-420

11.5 WINCASS.RC-WinCassette
resource file, 420

11.6 WINCASS.DEF-WinCassette
definition file, 423-442

12.1 CLIPBRD1.CPP-Clipboard
demonstration, 453-454

12.2 CLIPWND1.H-Clipboard
demo main window header file,
454-455

12.3 CLIPWND1.CPP-Clipboard
demo main window implementa-
tion file, 455-458

12.4 CLIPBRD1.RC-Clipboard
demo resource file, 458

12.5 CLIPBRD.DEF-Clipboard
demo definition file, 458

12.6 CLIPBRD2.CPP-Clipboard
demo version 2, 459-460

12.7 CLIPWND2.H-Clipboard
demo 2 main window header file,
460-461

12.8 CLIPWND2.CPP-Clipboard
demo version 2 main window
implementation file, 461-468

12.9 CLIPBRD2.RC-Clipboard
demo version 2 resource file, 468

12.10 CLIPBRD.DEF-Clipboard
demo version 2 definition file,
468

13.1 SHAPELIB.H-shape DLL
header file, 490

13.2 SHAPELIB.CPP-shape DLL
implementation file, 490-492

13.3 SHAPELIB.DEF-shape DLL
definition file, 493

13.4 DLLAPP.CPP-DLL test
application, 495-496

13.5 DLLWND.H-main window
header file, 496-497

13.6 DLLWND.CPP-main window

Borland C++ Power Programming

602

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

implementation file, 497-498
13.7 DLLAPP.DEF-DLL test

application definition file, 498
14.1 SNDAPP1.CPP-sound appli-

cation, version 1, 506-507
14.2 SNDWND1.H-main window

header file, 507
14.3 SNDWND1.CPP-main window

implementation file, 507-508
14.4 SNDAPP.DEF-sound applica-

tion definition file, 509
14.5 SNDAPP2.CPP-sound appli-

cation version 2, 517-518
14.6 SNDWND2.H-main window

header file, 518-519
14.7 SNDWND2.CPP-main window

implementation file, 519-524
14.8 SNDAPP.DEF-sound applica-

tion definition file, 524
15.1 BUBBLES.CPP-screen saver

application, 544-545
15.2 BUBWND.H-main window

header file, 546
15.3 BUBWND.CPP-main window

implemenation file, 546-550
15.4 BUBDLG.H-configuration

dialog box header file, 551
15.5 BUBDLG.CPP-configuration

dialog implementation file,
551-553

15.6 BUBBLES.RC-screen saver
resource file, 553

15.7 BUBBLES.DEF-screen saver
definition file, 554

B.1 CLOCK3.CPP-on-screen clock
TSR version 3, 570-574

program segment prefix (PSP), 577
programming

basic windows, 98-101
black-box routines, 12
object-oriented, see object-

oriented programming
structures, 12
switches, manual, 12

prototypes, functions, 163-164
pseudo-variables, 266

PSP (program segment prefix), 577

Q–R
quitting Life simulation, 162

random() function, 539
random-numbers, 16
randomize() function, 16
recalculation speed (Life simulation),

146
recording button press, 219
rectangles

buttons, focus, 403
drawing, 3-D graphics, 300
windows, 92

Rectngle class, 32
recursion, 191-194

backing out, 256
breaking out, 197
directory management, 197
ending, 198
mathematical expressions, 197
parsing, 197
routines, 197, 221
stack, 197-199

recursive functions, 195-196
arrays, passing, 199
conditional statements, 193, 198
parameters, 199
stack frames, 197

recursive routines, 234
Recursive() function, 192
recursive-descent parser, 237
redrawing

buttons, 403
windows, 294

registerbgidriver() function, 165
registering

graphics driver, 165
screen savers, 543-554
windows in DLLs, 499

registers
DS (data segment), 484
interrupts, 264
loading, function numbers, 76

Index

603

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

SS (stack segment), 484
stack-pointer, 266
stack-segment, 266

repositioning
client windows, 323
status bar, parent window, 312
status window, 332

resolution, printers, 435
Resource Workshop, 372, 398
resources, loading with DLLs, 499
restoring

device context, 395
mouse pointer, screen savers, 543

resuming sound play, 516
retrieving

events, mouse, 78-79
input devices, 66
strings, 54-55, 124

return from interrupt (IRET)
instruction, 262

returning values, bioskey()
function, 70

RGB() function, 539
RND_RGB macro, 539
root node, 220
routines

black-box routines, 12
recursive, 234

sorting, 197
tree-traversal, 197, 221

routing messages, 294
rules, grammar, 232-233
running

input windows, 121-125
screen savers, 535-540

RunWindow() function, 97, 122

S
saving

addresses, buffers, 97
pointers, nodes, 150
values, .INI files, 535

scaling printer output, 434-435
scan code, 70
scanning linked lists, 157

.SCR file extension, 543
screen

bitmaps, 404
coordinates, limits, 75-76
drawing, 77
grids (Life simulation), 144
initializing, VGA graphics, 99
memory, printing to, 275
updating, speed, 145

screen savers, 527-528, 535-540
application class, 530-532
application definition file

(Listing 15.7), 554
application file

(Listing 15.1), 544-545
built-in support, 530
closing, 541-543
configuration dialog, 532-535

header file (Listing, 15.4), 551
implementation file

(Listing 15.5), 551-553
creating (Bubbles), 528-530
implementation file

(Listing 15.3), 546-550
main window header file

(Listing 15.2), 546
multiple, 540-541
registering with Desktop, 543-554
resource file (Listing 15.6), 553
restoring mouse pointer, 543
testing, 529

scripting languages (MCI), 502
SCRNSAVE.LIB library, 528
scroll bars, 301, 320
searches, 51-52
seeding grid (Life simulation), 161
segments (DLLs), 483-484, 499
selected state (buttons), 363
selecting

bitmaps to memory DC, 476
tree roots, 224

SendMessage() API function, 343
SetBkMode() function, 301
SetButtons() function, 510
SetCaption() function, 104
SetCursor() function, 433
SetFlags() function, 332

Borland C++ Power Programming

604

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

SetLimits() function, 76
settings

coordinates, windows, 100
horizontal screen limits, 76
printers, WIN.INI file, 433
system, 299
vertical screen limits, 76

SetupWindow() function, 322, 373
Shape class, 29-31
SHAPELIB.H header file, 487, 490
shapes, capturing with mouse, 469
ShowMouse() function, 77
sideAStrgs transfer buffer, 425
sideBStrgs transfer buffer, 425
Simulation Speed dialog box, 161
single-instance classes, 34-35
size

bitmaps, calculating, 476
buffers, 97
windows, 299

sizeof() function, 55
sizing

buttons, 217
client windows, 323
windows, 106

sndPlaySound() function, 503
Software Development Kit, 528
solid brushes, 539
sorting routines, recursion, 197
sound, 501-502, 509, 514, 516
sound application

Listing 14.1 SNDAPP1.CPP,
506-507

Listing 14.5 SNDAPP2.CPP,
517-518

Listing 14.8 SNDAPP.DEF, 524
Sound Blaster sound board, 502
sound cards, 501-502
sound devices, opening, 514
sound files, 501

see also waveform files
Sound() function, 113
sound-play option, 505
[sounds] section (WIN.INI file), 505
source-list pointer, 156
SP pseudo-variable, 266
spaghetti code, 12

speaker driver, 502
speed

Life simulation, 175
recalculation, 146-147
screen update, 145

SQRT function, 231
SS

stack segment register, 484
pseudo-variable, 266

stack
addresses, 266, 484
frame, 197
overflow, 197-199
recursion, 197-199
sharing, DLLs, 483

stack segment (SS) register, 266, 484
stack-pointer register, 266
StartPage() function, 433
StartPrinting() function, 431-433
statements, conditional, 193, 198
states, buttons, 362-365
static

linking, 482
memory, 484
variables, 484

status, TSRs, 569-577
status bar

background mode, 301
child window header file, 318-319
class

header file, 305
implementation files, 306-307,

328-330
TStatbar, 310

creating, 294-302
definition file, 297
display string, 301
drawing, 294

3-D outline, 301
header file, 295-296
implementation file, 296
STATAPP1.CPP (Listing 9.1),

294-295
filling with data, 311-312
frame window

header files (Listings 9.11,
9.16), 316-317, 325

Index

605

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

implementation files (Listings
9.12, 9.17), 317-318, 326-327

reserving space, 315-324
header file, 327-328
include files, 308
MDI applications, 312-344,

324-333
objects, 302-312
repositioning, parent window, 312
resource file, 319
updating, 302
windows, scroll bars, 301

status window, 332
STATWND2.H-main window header

file (Listing 9.6), 304
stopping

Life simulation, 161
printing, 442
sound, 509

StopPrinting() function, 431, 442
StopSound() function, 510
storing

operators in strings, 250
variables, 484

strcomp() function, 50
strcopy() function, 48
stream I/O, 275
string classes, 42-55
string constants, 48
String object, 42, 52
strings

arrays, inserting, 52
assigning, assignment operator, 48
button labels, deleting caret (^),

110
comparing, 50-51
concatenation, 49-50
converting to character array, 54
deleting, 53
displaying, 301
extraction, 54
initializing, 47
inserting in strings, 52-53
operators, storing, 250
retrieving, 54-55, 124
searches, 51-52

substrings, 51
text, editing, 430
transfer buffers, accessing, 425

structured programming, object-
oriented comparison, 14-20

structures
building lists, 147
dynamically allocated, 101
nodes, 148

styles
buttons, 347, 361
cursor, 477
windows, 310, 537

substrings, 51-53
subtraction (-) operator, 231
switches, manual, 12
symbols (grammar), 232-233
syntax

errors, 256-258
formulas, 230
grammar, 231-236

system settings, 299

T
tables, see interrupt vector table
tail pointer, 148
TApplication class, 298
TBubDlg class, 532
TButton object, 360
TClipWnd class, 448, 470-471
TCustmBut button class, 361
temporary pointers, 149
Term() function, 251
terminal symbols (grammar), 232
terminate-and-stay resident pro-

grams, see TSRs
terms (grammar), defining, 234
testing screen savers, 529
text

ANSI, 446
Clipboard, 450-458
copying, 446, 449-452
displaying in windows, 104
editing, 446-447
labels, buttons, 109

Borland C++ Power Programming

606

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

mode, clock, 269
pasting, 446, 448-449
printing, 436-441
strings, editing, 430
transferring to Clipboard, 446
windows, 104-107

TEXTMETRIC structure, 439-440
TextOut() GDI function, 301, 440
Tile option (Window menu), 320
tiling windows, 320
timer interrrupts, 260, 284
Tool Box (File menu) command, 393
TOOLBAPP.DEF (Listing 10.23), 390
toolbar, 334-335

buttons, 342
class

header file (Listing 9.23), 338
implementation file

(Listing 9.24), 338-341
constructor, 360
frame window

header file (Listing 9.21),
335-336

implementation file
(Listing 9.22), 336-337

reserving space, 334
MDI applications, 333-344
owner-draw button, 347

header file (Listing 10.4), 351
implementation file

(Listing 10.5), 352-354
toolbox, 375-376, 406

class, 397-398
closing, 401
creating, 375-384
dialog, 397-398
drawing, 391
header files, 375

button class (Listing 10.20),
385-386

dialog (Listing 10.18), 381
frame window (Listing 10.16),

376-377
implementation files, 381-384

button class (Listing 10.21),
386-390

frame window (Listing 10.17),
377-380

resource file (Listing 10.22), 390
top-down programming, 12
transfer buffers, 425-426, 430
TransferList() function, 156
transferring

dialog data to buffer, 426
text to Clipboard, 446

Trap Hunt game, 200-228
TraverseTree() function, 223-224
tree-traversal routines, 197, 221,

223-228
trees, 220-228

see also tree-traversal
TSRs (Terminate-and-Stay Resident

programs), 260, 265-276, 569-577
TStatbar class, 302, 310
TStatbar object, 309
TStatbarApp() function, 298
TStatbarWnd window class, 299
TToolBar class, 360
TWCWnd class, 424-426
TWindow class, 299
TWindow constructor, 424

U–V
updating

screen, speed, 145
status bar, 302
windows, 294

user input, 101
user-defined data types, see classes
user-defined messages, 396-400
values

arrays, passing, 199
calculating, 539
returning, 70
saving, .INI files, 535

variables
global, 19, 484
mouse coordinates, 79
pseudo, 266
static, 484

Index

607

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

vertical screen limits, 76
viewers, Clipboard, 479
viewing Life simulation, 161
virtual functions, 39-40

CanClose(), 373
DrawShape(), 29
DrawWindow(), 95-97
RunWindow(), 97

W
.WAV file extension, 501
waveform files, 501-509
WEP() function, 489
while loop, 16, 149
WIN.INI file

settings, printers, 433
[sounds] section, 505

WinCassette, 408-423
definition file (Listing 11.6),

423-442
dialog, 426-431
header files, 408-411
implementation files, 408-409,

411-420
main window, 424-431
printing labels, 431
resource file (Listing 11.5),

420-422
transfer buffer, defining, 426

window classes, 299
window library

Button class, 566-567
CapTWindw class, 560-561
CapWindw class, 559-560
InputWindw class, 565-566
OKWindw class, 561-562
Wndw class, 557-559
YesNoCanWindw class, 563-564
YesNoWindw, 562-563
see also individual listings

Windows
Multimedia Extensions, 502

ObjectWindows, 292-294
windows

basic, 93-101
bitmaps, displaying, 479
blank, 92
buffers, 97
captioned, 101-106
child

maximizing, 342
MDI applications, 314

classes
buttons, 115-118
header file (WINDW.H, Listing

4.4), 125-128
WINDW.CPP implementation

file, 129-141
client, MDI applications, 314-315
color, background, 537-538
coordinates

graphics elements, 97
setting, 100

creating, 99
dynamic allocation, 100
heap, 299
in DLLs, 499
in memory, 100

deleting, dynamic allocation, 101
designing, 92-93
displaying, 100-101, 104
document, see document windows
drawing in, 393-397
dynamic allocation, 100
erasing destructors, 100
frame, see frame window
height/width, 299, 537
hierarchies, base classes, 93
input, 101, 120-125
labels, see captioned windows
libraries, 125-141

designing, 92
YesNoCanWindw, 119

main, creating, 298
menus, assigning, 393, 448
messages

routing, 294

Borland C++ Power Programming

608

SAMS/Q3 Borland C++ Power Prog Paula 172-7 2-19-93 LP#2

WM_DESTROY, 397
WM_DRAWITEM, 360, 397
WM_HSCROLL, 301
WM_LBUTTONDOWN, 393
WM_LBUTTONUP, 395
WM_MDIMAXIMIZE, 343
WM_MOUSEMOVE, 473
WM_PAINT, 294
WM_SIZE, 309
WM_VSCROLL, 301

minimum, 92
mouse, capturing, 394
OK, 115-118
overlapping, 99
position, 299
redrawing, 294
registering in DLLs, 499
restoring screen, 93
scroll bars, status bar, 301
size, 106, 299
status bar, implementation file,

296
styles, 310
text, captioned, 104-107
updating, 294
width, calculating, 537
Yes/No message box, 118-120
Yes/No/Cancel message box,

118-120
Windows class, 310-311
Windows Clipboard, see Clipboard
Windw class, 93-97
WINDW.H header file, 110
WMLButtonDown() function, 472
WMMouseMove() function, 473-474
WMMouseMove() message-response

function, 394
WMRButtonUp() function, 475-476
WMSetFocus() message-response

function, 448-449
WMSize() function, 309

WMSysCommand() function, 540
Wndw class, 557-559
WritePrivateProfileString()

function, 535
writing

code, parser, 237
TSRs, 265-269

WS_POPUP window style, 537

X–Y–Z
XOR (exclusive OR) drawing mode, 474

Yes/No message boxes, 118-120
Yes/No/Cancel message box, 118-120
YesNoCanWindw class, 119, 563-564
YesNoWindw class, 562-563

SAMS/Q3 Borland C++ Power Programming 172-7 Paula Disk Ex. 2/11/93 LP#3

SAMS/Q3 Borland C++ Power Programming 172-7 Paula Disk Ex. 2/11/93 LP#3

If your computer uses
5 1/4-inch disks...

If your computer uses 5 1/4-inch disks, you can return this form to Que to obtain a
5 1/4-inch disk to use with this book. Complete the remainder of this form and mail to:

FORMATTED

for IB
M PC AT's

and other 1.2 MB systems

Borland C++ Power Programming
Disk Exchange
Que
11711 N. College Ave., Suite 140
Carmel, IN 46032

We will then send you, free of charge, the 5 1/4-inch version of the book’s
software.

Name ____________________________ Phone _______________________

Company _________________________ Title _________________________

Address___

City ________________ State ___ ZIP_____________________

• Advanced C

• Borland C++ Tips, Tricks, and Traps

• Borland C++ Power Programming

• C Programming Just the FAQ's

• C++ Interactive Course

• Crash Course in Borland C++ 4

• Killer Borland C++ 4

• Programming Windows Games with

Borland C++

• Secrets of the Borland C++ Masters

• Teach Yourself ANSI C++ in 21 Days

• Teach Yourself Advanced C in 21

Days

• Special Edition Using Borland C++

	KIT CONTENTS

