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WILLIAM DEMOPOULOS

PREFACE

Jeff and I met when I was a graduate student at the University of Minnesota and he was
a post doctoral fellow, first in the Chemistry Department, and then in the Center for
Philosophy of Science. Later we were colleagues at Western Ontario. Our friendship
and collaboration owe a great deal to both these institutions.

In the mid-1960s the Center enjoyed great success under Feigl’s directorship.
The history of the Center has been only very partially documented. Feyerabend’s
recollections, reported in his Autobiography, and some years earlier in his remarks for
Feigl’s Festschrift, possess an immediacy that makes them particularly noteworthy,
even if all too brief. The Center was the first American institution of its kind and
a bastion of positivist and neo-positivist thought. At the time Jeff and I were there,
the staff included, in addition to Feigl and Maxwell, Paul Meehl, Roger Steuwer and
Keith Gunderson. There were many enthusiastic graduate students, and there was
participation, on occasion, from the members of the Philosophy Department, as well
as the departments of physics, psychology, mathematics and chemistry. The extent
to which this (to us ideal) environment was held together by the force of Feigl’s
personality became evident only many years later.

The political liberalism of the Viennese Positivists was very much reflected in the
philosophical atmosphere Feigl created, an atmosphere that was marked by openness,
collegiality and intellectual freedom. Combined with its excellent permanent faculty
and steady stream of distinguished visitors, the Center was especially well-suited
to Jeff’s and my early friendship, our analytic and speculative interests, and our
early collaboration. This collaboration was continued when we were members of the
Philosophy Department at Western Ontario.

Jeff arrived at Western first and I followed two years later, initially as his one-year
replacement. History and philosophy of science in Canada received a decisive impetus
from the efforts of Bob Butts when, in the late 1960s, he assumed the chairmanship
of Western’s Philosophy Department. Western’s graduate program in philosophy of
science was distinguished by a succession of highly gifted students and a sense of
cooperative purpose and achievement that—especially during its first 15 years—was
truly exceptional.

Philosophy of science at Western derived much of its inspiration from the
emerging community of philosophers, mathematicians and physicists working in the
foundations of physics. This largely mathematical orientation toward the discipline
represented a divergence from the general epistemological goals of the positivist
and neo-positivist movements which characterized the philosophical context and
orientation of the Minnesota Center. Under Jeff’s tutelage, I acquired this orientation;

vii



viii PREFACE

it was an exhilarating change, which I avidly embraced. However I have since come to
recognize the necessity of following the long path back to a considered appreciation of
the earlier, positivist tradition, both for itself, and for its value in orienting foundational
research.

Anyone who knows Jeff knows as well that differences in professional status are
invisible to him, that he is unstinting in the time and energy he will give his friends,
and that he is untiring in his determination to understand the nature of the reality
quantum mechanics seeks to describe. Both Itamar and I owe a large debt to Jeff
as a teacher, friend and colleague. It is gratifying to have the opportunity to repay
his long-standing personal and intellectual friendship with the presentation of this
collection of essays.

For this Festschrift we solicited papers from philosophers and scientists we knew
Jeff to have especially profited from as interlocutors in the course of his research. We
are sure to have overlooked potential contributors, and to them we apologize. By way
of explanation, let me say that we wished the presentation of the news of the volume
to coincide with Jeff’s 63rd birthday and we wished it to be a surprise. The natural
remedy for preventing errors of omission would have been to have consulted with Jeff
himself or to have consulted much more widely than we did. Both of these strategies
ran the risk of interfering with our desire that the volume, when announced, should
be unanticipated. The initial preparation of the volume, putting it into definite form
and securing abstracts, papers and promises of papers took the better part of a year.
Our authors were remarkable in their discretion; we thank them whole-heartedly both
for their contributions and for their personal commitment to the success of this token
of appreciation of Jeff’s scientific and philosophical legacy.
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JOSEPH BERKOVITZ∗ AND MEIR HEMMO†

1. A NEW MODAL INTERPRETATION OF
QUANTUM MECHANICS IN TERMS OF

RELATIONAL PROPERTIES

ABSTRACT

In this paper we propose a new modal interpretation of quantum mechanics, wherein
quantum states assign to systems relational rather than intrinsic properties. We argue
that this relational modal interpretation overcomes the major problems encountered
by current modal interpretations. In particular, we explain how this new interpretation
addresses the measurement problem and accounts for our experience of the classical-
like behavior of macroscopic systems. We further provide an outline for the dynamics
of relational properties, and demonstrate how this dynamics circumvents all the no-go
theorems for relativistic modal interpretations. Finally, we discuss the difficulties and
the prospects of providing a genuinely relativistic modal interpretation.

1 INTRODUCTION

Two of the most central problems at the foundations of quantum mechanics are the
so-called measurement problem and the question of reconciling quantum mechanics
with relativity. The measurement problem arises in orthodox no-collapse quantum
mechanics from the conjunction of its two principal postulates: The unitary and lin-
ear dynamics of quantum states – the Schrödinger equation in the non-relativistic
case; and the so-called ‘eigenstate-eigenvalue link,’ according to which a system has
a property corresponding to a definite value of an observable just in case its quantum
state is an eigenstate of that observable. Although these postulates are very successful
in accounting for the behavior of microscopic systems, they yield anomalous predic-
tions, which are inconsistent with our experience of the classical-like behavior of
macroscopic systems. For example, the Schrödinger equation entails that at the end
of a z-spin measurement on a particle in a superposition of z-spin ‘up’ and z-spin
‘down,’ a macroscopic pointer will be in a superposition of distinguishable states of
pointing to ‘up’ and pointing to ‘down.’ Thus, according to the eigenstate-eigenvalue
link, the pointer will display no definite outcome.

The question of the compatibility of quantum mechanics with special relativ-
ity arises in different ways in collapse and no-collapse interpretations of quantum
mechanics. In collapse interpretations, where collapses of quantum states are real

∗ Department of Philosophy, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore,
MD 21250, USA; Email: jberkov@umbc.edu

† Department of Philosophy, University of Haifa, Haifa 31905, Israel; Email: meir@research.haifa.ac.il

1
W. Demopoulos and I. Pitowsky (eds.), Physical Theory and its Interpretation, 1–28.
© 2006 Springer.



2 JOSEPH BERKOVITZ AND MEIR HEMMO

physical processes, it has been very difficult to make the collapse dynamics Lorentz
covariant without singling out a preferred inertial reference frame. In no-collapse
interpretations, like Bohm’s theory and modal interpretations, this problem does not
arise because the unitary dynamics of quantum states of isolated systems is Lorentz
covariant. But such interpretations postulate the existence of additional definite prop-
erties (the so-called ‘hidden-variables’), and the problem is to supply these additional
properties with a genuinely relativistic dynamics.

Modal interpretations of quantum mechanics are no-collapse (typically) inde-
terministic interpretations that were design to solve the measurement problem and
reconcile quantum mechanics with special relativity. The dynamics of quantum states
of isolated systems is assumed to obey linear and unitary equations of motion, and
accordingly quantum states never ‘collapse.’ But, orthodox no-collapse quantum
mechanics is supplemented with rules for assigning additional properties, so that
systems in superposition states may sometimes possess properties that correspond to
one of the superposed properties. The idea is that the set of the additional properties
will be rich enough to account for the occurrence of definite macroscopic events,
including measurement outcomes, but sufficiently restricted so as to avoid the no-
hidden-variables theorems; and the dynamics of these properties will reproduce the
familiar classical-like behavior of macroscopic systems.

However, the mainstream modal interpretations fail to reproduce the classical-
like behavior of macroscopic systems (Section 4). Moreover, as no-go theorems by
Dickson and Clifton (1998), Arntzenius (1998) and Myrvold (2002) demonstrate, all
the current modal interpretations are not genuinely relativistic. Our main aim in this
paper is to consider the prospects of a relativistic modal interpretation that solves
the measurement problem. In the course of our consideration, we review the meas-
urement problem in orthodox no-collapse quantum mechanics (Section 2). We then
sketch the basic interpretational rules of the mainstream versions of the modal inter-
pretation (Section 3), and consider the measurement problem in the context of these
interpretations (Section 4). Next, we introduce a new modal interpretation where
the property assignment is of relational rather than intrinsic properties (Section 5),
and explain how this interpretation addresses the measurement problem and more
generally the problem of recovering our experience of the classical-like behavior of
macroscopic systems in non-relativistic framework (Section 6). We then modify the
dynamics of properties (Section 7) and show how due to its highly non-local nature the
modified dynamics circumvents the no-go theorems for relativistic modal interpret-
ations (Section 8). Further, we explain why this nonlocal character is unobservable
(Section 9). Next, we consider the prospects of a relativistic relational modal inter-
pretation (Section 10). In particular, we explore two strategies: One is to interpret
the nature of the properties assigned by modal interpretations not only as related to
other systems but also to spacelike hypersurfaces (Section 10.2). The other strategy
is to interpret quantum states as a source of information about systems’ properties
in certain circumstances, which obtain when the degree of entanglement between
the relevant systems is approximately zero (Section 10.3). We conclude by briefly
discussing an anticipated objection to the relational modal interpretation (Section 11).
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Although we focus on modal interpretations, our discussion is also relevant to
other no-collapse interpretations of quantum mechanics. For the main idea of the
no-go theorems for relativistic modal interpretations is similarly applicable to other
no-collapse interpretations that satisfy very natural assumptions about the physical
realm.

2 THE MEASUREMENT PROBLEM

In its basic form, the measurement problem may be presented in the following scheme
of generic (impulsive) ideal measurement of a spin one-half observable. Let S be a
measured system, M a measuring apparatus and O an observer, initially in the state:

|�0〉 = (λ1|ϕ1〉S + λ2|ϕ2〉S)|ψ0〉M |�0〉O, (1)

where λ1, λ2 �= 0 and |λ1|2 + |λ2|2 = 1, |ϕi〉S are the eigenstates of the z-spin of S,
|ψ0〉M is some ready state of M and |�0〉O is some suitable state of O’s brain (and
possibly sensory mechanisms) ready to read the measurement outcome. According to
orthodox no-collapse quantum mechanics, during the interactions between S and M
and between M and O the quantum state |�0〉 obeys the unitary and linear Schrödinger
dynamics. In ideal measurements, this dynamics perfectly correlates the eigenstates
of the measured observable with the eigenstates of the apparatus pointer. That is, the
state (1) evolves into the state

|�1〉 = (λ1|ϕ1〉S |ψ1〉M + λ2|ϕ2〉S |ψ2〉M )|�0〉O, (2)

where the z-spin eigenstates |ϕ1〉S and |ϕ2〉S are perfectly correlated with the eigen-
states of the pointer observable |ψ1〉M and |ψ2〉M . As a result, S and M get entangled,
and accordingly their state become non-separable. Similarly, in the interaction
between M and O, O becomes entangled with M :

|�2〉 = λ1|ϕ1〉S |ψ1〉M |�1〉O + λ2|ϕ2〉S |ψ2〉M |�2〉O, (3)

where |�1〉O and |�2〉O are the eigenstates of a brain observable O, associated with a
perception of z-spin measurement outcome: |�1〉O and |�2〉O are associated with O’s
perception of pointer pointing to ‘up’ and pointer pointing to ‘down,’ respectively.1

The eigenstate-eigenvalue link implies that the pointer observable of M and the cor-
responding brain observable of O have no definite values. And since the entanglement
in (2) and (3) is basis-independent (these states cannot be rewritten as product states
by a change of basis), the reduced states of M and O are ‘improper mixtures’: On pain
of inconsistency, they cannot be (straightforwardly) interpreted as classical mixtures
(i.e. states that assign ignorance probabilities to the various possible possessed prop-
erties). Thus, according to orthodox no-collapse quantum mechanics O fails to have
a perception of a definite measurement outcome, in contradiction to our experience.2



4 JOSEPH BERKOVITZ AND MEIR HEMMO

It is important to bear in mind that decoherence theory (either of open systems, as
in the theory of environmental decoherence3, or of open and closed systems as in the
decohering histories approach4) does not by itself solve the measurement problem.5

Since the dynamics of the quantum state of isolated systems (including the environ-
ment) is linear, measurement interactions map initial product states of the form (1)
into final entangled states of the form (3), no matter whether decoherence conditions
are satisfied by M or O. In particular, even if the orthogonal environment states are
coupled to the pointer states |ψi〉M , the reduced state of M obtained by partial tracing
cannot simply be given an ignorance interpretation; and similarly, mutatis mutandis,
for O’s reduced state. Thus, it follows from the eigenstate-eigenvalue link that M
does not point to any definite pointer outcome and O does not possess any property
that is associated with the perception of such outcome.

There are three main strategies for addressing the measurement problem. One
strategy, applied in Everett-like interpretations is to bite the bullet and maintain that
at the end of measurements, pointers of measurement apparatuses display definite out-
comes, and are perceived as such, only relative to the so-called Everett ‘branches,’
where the latter are associated with the components (with non-zero amplitudes) of
the Quantum superposition when written in some or other preferred way. A second
strategy is to replace the unitary and linear dynamics of quantum states by a suitable
collapse dynamics, as in the dynamical models for spontaneous localization (see, for
example, Ghirardi, Rimini and Weber 1986 and Ghirardi, Pearle and Rimini 1990). A
third strategy, applied in hidden-variables interpretations (such as Bohm’s (1952) the-
ory), is to leave intact the unitary and linear dynamics and modify the property assign-
ment of the orthodox theory, so that at the end of measurements pointers will display
definite outcomes in the entangled states (2) and (3), and the relevant brain observables
have definite values that are associated with states of mind of perceiving definite out-
comes in the entangled state (3). Modal interpretations belong to this latter approach.

3 MODAL INTERPRETATIONS: AN OVERVIEW

3.1 The property assignment

Modal interpretations of quantum mechanics and orthodox collapse quantum mech-
anics differ in three important respects. First, modal interpretations are no-collapse
interpretations: They postulate that the dynamics of quantum-mechanical states of
an isolated system is linear and unitary (as in the Schrödinger equation in non-
relativistic framework). Second, while in the orthodox interpretation quantum states
of systems assign their actual properties, in modal interpretations they assign the
range of their possible properties and the probabilities of these properties. Third,
modal interpretations postulate that systems generally possess more properties than
the orthodox interpretation assigns. For example, in contrast to the orthodox inter-
pretation in modal interpretations the systems S, M and O have definite properties in
the post-measurement state (3) (for more details, see below).

Different versions of the modal interpretation postulate different property
assignments.6 In the modal interpretations by Kochen (1985), Healey (1989) and
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Dieks (1989) (henceforth, the KHD interpretations), the property and probability
assignments are based on the biorthogonal (Schmidt) decomposition theorem:

KHD Rule Let Hγ = Hα⊗Hβ be a factorization of the Hilbert space of a composite
system γ into the Hilbert spaces of the systems α and β, let |�〉 be the state of γ , and
let the unique biorthogonal decomposition of |�〉 be:

|�〉 =
∑

i

λi|ϕi〉 ⊗ |ψi〉, (4)

where λi > 0. Then, α has the property corresponding to the projection |ϕi〉〈ϕi| and
β has the property corresponding to |ψi〉〈ψi| with the probability |λi|2.

If the biorthogonal decomposition of |�〉 is not unique (i.e. if some of the
λi’s are degenerate), the possessed properties are given by the corresponding
multi-dimensional projections Pi with probabilities |λi|2 dimPi.7

The KHD rule only applies to pure states. But, quantum states of systems can
also be represented by reduced density operators (obtained by partial tracing). In
general, such reduced states are mixed states that have no straightforward ignorance
interpretation, i.e. they are not proper mixtures. Van Fraassen (1991) proposed to
interpret the projections that appear in any resolution of a reduced state of a system
as representing a subset of its possible properties, one of which is actually possesses.
Vermaas and Dieks (1995) make a more restricted choice that relies on the spectral
decomposition theorem. Their property and probability assignments are given by the
following rule.

Basic Modal Rule Let the reduced state of a system α, associated with the Hilbert
space Hα , be W and let the spectral resolution of W be:

W =
∑

i

|λi|2 Pi, (5)

where Pi are the eigenprojections of W .8 Then α possesses a property corresponding
to Pi with probability |λi|2 dim(Pi).

The Basic Modal Rule selects as definite properties and their probabilities the
on-diagonal elements of W . If the spectral resolution of W at some time t is not
given in terms of one-dimensional projections, the set of definite properties is still
unique, but the definite properties will be non-maximal. The Basic Modal Rule is
a generalization of the KHD rule, in that both rules prescribe the same range of
properties and their probabilities to any pair of distinct systems (i.e. systems that are
associated with non-overlapping Hilbert spaces) in a pure state. Like the KHD rule, the
Basic Modal Rule can also be applied to subsystems of composite systems. However,
unlike the KHD Rule, the Basic Modal Rule does not assign joint probabilities to
the properties of subsystems. In order to assign such probabilities and to account for
correlations between properties of different systems, Vermaas and Dieks proposed



6 JOSEPH BERKOVITZ AND MEIR HEMMO

the following rule:

Joint Probabilities Let H1 ⊗ . . . ⊗ HN be a factorization of the Hilbert state of a
composite system α into the Hilbert spaces of distinct systems 1, 2, . . . , N . Let W
be α’s reduced state, and let the systems 1, . . . , N have reduced states W 1, . . . , W N ,
with eigenprojections {P1

i1
}, . . . , {PN

iN
}, respectively. Then, the joint probability that

1,2, . . . ,N possess the properties P1
i1

, . . . , PN
iN

, respectively, is given by

Prob(P1
i1 , . . . , PN

iN ) = Tr(WP1
i1 . . .P

N
iN ). (6)

Note that Joint Probabilities only assigns probabilities to the properties of distinct
systems. Note also that this rule returns the single-time probabilities prescribed
by the Basic Modal Rule, the one-to-one correlations implied by the KHD rule
and the predictions prescribed by the Born rule for outcomes of joint ideal
measurements.

In both the KHD and the Vermaas-Dieks interpretations, the preferred bases are
determined by the initial quantum state and the Schrödinger evolution, and therefore
they change deterministically over time (i.e. with the evolution of the quantum state).
But this is not necessary. Indeed, in Bub’s (1992,1997) modal interpretation the
preferred bases are time-independent. The definite properties of a system are given
by the nonzero projections of its quantum-mechanical state onto the eigenspaces of
preferred observables. These observables are distinguished from other observables in
that their behavior is stable under decoherence interactions of macroscopic systems
with their environment.

3.2 The challenges

Current modal interpretations face three main challenges. First, the property and
probability assignments of all current modal interpretations are based on preferred
bases. In the KHD and the Vermaas-Dieks interpretations, these are respectively
the Schmidt bases and the bases singled out by the spectral resolution. While these
bases are selected naturally on mathematical grounds, the question is whether it is
possible to justify this selection on physical or metaphysical grounds. Furthermore, as
it turns out, these preferred bases are highly unstable in decoherence circumstances,
and accordingly the KHD and the Vermaas-Dieks interpretations fail to account for
the apparent classical-like behavior of macroscopic systems in such circumstances
(see Section 4). And while in Bub’s interpretation the choice of the preferred bases
is motivated by physical considerations, namely by the stability of the values of
observables in experimental circumstances, this choice seems ad hoc in that it achieves
stability by brute force.

Second, the Basic Modal Rule and the KHD Rule both violate the following con-
ditions concerning the relations between properties of composite systems and the
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properties of their subsystems:

Let Hα and Hβ be the Hilbert spaces of two distinct systems, α and β.
Let P be a projection operator in Hα and let I be the identity operator for
Hβ . Then:

Property Composition. If α has the property (associated with) P, then
α + β has the property (associated with) P ⊗ I .

Property Decomposition. Ifα+β has the property (associated with) P⊗I ,
then α has the property (associated with) P.

In the KHD and Vermaas-Dieks interpretations, the violation of Prop-
erty Composition and Property Decomposition is necessary for circumventing
Kochen&Specker-like no-go theorems (see Bacciagaluppi 1995 and Clifton 1996).
Yet, with the exception of Kochen’s perspectivalist interpretation, this violation seems
inexplicable9: While the properties assigned in these interpretations are intrinsic, the
violation of Property Composition and Property Decomposition suggests the opposite.

Finally, as the no-go theorems by Dickson and Clifton (1998), Arntzenius (1998)
and Myrvold (2002) demonstrate, all current modal interpretations are not genuinely
relativistic.

4 THE MEASUREMENT PROBLEM IN MODAL

INTERPRETATIONS

The KHD and Vermaas-Dieks interpretations fail to solve the measurement problem.
Let us briefly reiterate why. (For the sake of brevity, we shall focus on the Vermaas-
Dieks interpretation. But, as is easily shown, a similar analysis holds for the KHD
interpretations.)

Consider, again, the final state (3) in the simple measurement scheme presented in
Section 2:

|�2〉 = λ1|ϕ1〉S |ψ1〉M |�1〉O + λ2|ϕ2〉S |ψ2〉M |�2〉O, (7)

where, as before, S, M and O denote respectively the measured system, the measur-
ing apparatus and the observer’s perception mechanism; |ϕ1〉S and |ϕ2〉S are z-spin
eigenstates; |ψ1〉M and |ψ2〉M are the apparatus pointer eigenstates, corresponding
to z-spin ‘up’ and z-spin ‘down’ outcomes, respectively; and |�1〉O and |�2〉O are
eigenstates of a brain observable O, associated with the perception of z-spin ‘up’ and
the perception of z-spin ‘down’ outcome, respectively. The reduced state of M , WM ,
obtained by partial tracing is diagonal in the pointer basis. Accordingly, (assuming
that (7) is not a degenerate state) in the Vermaas-Dieks interpretation M points to
either ‘up’ or ‘down’ with the probabilities |λ1|2 and |λ2|2, respectively. Similarly,
the reduced state of O, obtained by partial tracing, is diagonal in the basis of O’s
eigenstates, and accordingly O has a brain property corresponding to either perceiv-
ing ‘up’ or perceiving ‘down’. Furthermore, it follows from Joint Probabilities that
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the actual properties of M and O are perfectly correlated. Thus, the Vermaas-Dieks
interpretation seems to solve the measurement problem in its basic formulation.

However, the above measurement scheme is highly restricted. More general and
realistic models of measurement ought to take into account disturbances and imper-
fections in the coupling between S and M , and the decoherence interaction of M with
its environment E. In such models, the post-measurement state of S + M + O + E,
expressed in the pointer basis, has generally the form:

|�∗(t)〉 =
∑

j

λj(t)|ϕ∗
j (t)〉S |ψj〉M |�∗

j (t)〉O|Ej(t)〉E , (8)

where {|ϕ∗
j (t)〉S}, {|�∗

j (t)〉O} and {|Ej(t)〉E} are generally sets of non-orthogonal
states. According to the standard models of decoherence, the |Ej(t)〉E become in
extremely short times approximately orthogonal. Let WM (t) be the reduced state of
M , i.e. the density operator of M obtained by partial tracing from |�∗(t)〉. In the
pointer basis ({|ψj〉M }), WM (t) has on-diagonal elements of the form |λn(t)|2 and
non-zero off-diagonal elements of the form:

λij(t) := λj(t)λi(t)〈ϕ∗
j (t)|ϕ∗

i (t)〉S〈�∗
j (t)|�∗

i (t)〉O〈Ej(t)|Ei(t)〉E . (9)

Thus, the reduced state of M is not exactly diagonal in the pointer basis, and the
properties of M selected by the Basic Modal Rule do not generally correspond to
projections onto the pointer eigenstates. Indeed, it has been shown by Bacciagaluppi
and Hemmo (1996) that in some cases, e.g. discrete and low-dimensional models of
measurement (see Zurek 1991), the properties of M correspond to projections onto
states that are pairwise close in Hilbert space norm to the pointer eigenstates if |�∗(t)〉
is far enough from degeneracy. Bacciagaluppi and Hemmo argue that these properties
may naturally be interpreted as genuinely close to the properties corresponding to def-
inite pointer readings. But, in other cases, e.g. in continuous models of measurement
with position being the pointer observable, the reduced state of M , WM (t), becomes
extremely degenerate as a result of its decoherence interaction with the environment.
Consequently, the on-diagonal elements of WM (t) are projections that correspond to
highly delocalized wavefunctions (see Joos and Zeh 1985, Bacciagaluppi and Hemmo
1996 and Bacciagaluppi 2000). Thus, in these general models of measurement, point-
ers have no definite positions, and even worse the Bacciagaluppi-Hemmo strategy
fails; for the distance between the projections that appear in the spectral resolution
of WM (t) and the projections onto definite positions turns out to be very substan-
tial. And so the KHD and the Vermaas-Dieks modal interpretations fail to solve the
measurement problem in these more general and realistic models of measurement.

In addition to the measurement problem, the KHD and the Vermaas-Dieks inter-
pretations also face another challenge in accounting for our perception of, and beliefs
about the classical-like behavior of macroscopic systems. Recall (Section 3.2) that
these interpretations violate Property Composition and Property Decomposition. This
means that while properties are assigned to systems in every partition of the universe
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into subsystems, properties that are assigned in different partitions are generally unre-
lated to each other. Thus, similarly to any other system, the observables of observers’
brains may be assigned different values in different partitions. The question is then:
How are all these different properties related to our beliefs about the physical systems
that appear in our experience? It may be tempting to postulate Property Composition
and Property Decomposition. But, recalling (Section 3.2) the Kochen&Specker-like
theorems by Bacciagaluppi (1995) and Clifton (1996), such postulation will lead to
inconsistency.

5 THE RELATIONAL MODAL INTERPRETATION

In the next three sections we introduce the basic ideas and postulates of the relational
modal interpretation. In this section, we introduce a non-relativistic version of it. This
version provides an explanation for the failure of Property Composition and Property
Decomposition, abolishes the preferred-basis property assignment of current modal
interpretations, and addresses the problems that the KHD and Vermaas-Dieks inter-
pretations encounter in non-ideal measurements and realistic models of decoherence.
In Section 6, we discuss the way the relational modal interpretation accounts for
our perception of the classical-like behavior of macroscopic systems. In Section 7,
we revise the dynamics of properties and in Section 8 we demonstrate how due to
the radical nonlocal nature of this revised dynamics the relational interpretation cir-
cumvents the no-go theorems for relativistic modal interpretations. In Section 9, we
explain how the relational modal interpretation accounts for our failure to perceive
this radical type of nonlocality. Finally, in Section 10 we consider the prospects of
reconciling this interpretation with special relativity.

5.1 The property assignment

In the relational modal interpretation, the general idea of the property assignment
is that reduced states of systems do not assign the range of their possible intrinsic
properties but rather the range of their possible relational properties. That is, let α
and β be any partition of the universe into two distinct systems. Then, at any time t
the on-diagonal elements of the reduced state of α in every orthonormal resolution
provides a set of (mutually exclusive) properties that α may have relative to β and the
single-time probabilities of these properties at t. The basic postulates of this property
and probability assignments are as follows.

Relational Property Rule Let H = Hα ⊗Hβ be a factorization of the Hilbert space
of the universe into the Hilbert spaces of two distinct systems, α and β. Let the
reduced state of α (obtained by tracing the state of α + β over Hβ ) be Wα , and let
{Qi} be any orthonormal basis of Hα . Then, the set of non-zero projections

{WαQi} (10)
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corresponds to a set of (mutually exclusive) properties that α may have relative to
β in the state W , and the single-time probabilities of these properties are given by
Tr(WαQi).

Note that here the properties that α has relative to β are related to β simpliciter
rather than to β’s particular properties. This type of relational properties is in a sense
‘thinner’ than the relational properties postulated by Everett-type theories, where the
properties of α are related to particular properties of β.

Properties that are related to the same systems (context) have joint probabilities in
accordance with the following decomposition rule.

Relational Decomposition Rule Let H = Hα⊗Hβ be a factorization of the Hilbert
space of the universe into the Hilbert spaces of two distinct systems, α and β, and let
Hα = Hα1 ⊗ Hα2

be a factorization of the Hilbert space of α into the Hilbert spaces
of two distinct systems, α1 and α2. Let the reduced state of α be Wα , and let {Pi} and
{Qi} be respectively orthonormal bases in the Hilbert spaces Hα1

and Hα2
, such that

the on-diagonal elements of Wα correspond to projections that have the product form:

Pi ⊗ Qi. (11)

Then, as subsystems of α, the single-time probability that α1 has a property Pi relative
to β is Tr(WαPi), the single-time probability that α2 has a property Qi relative to β
is Tr(WαQi), and the single-time joint probability of these properties is Tr(WαPiQi).

The properties that α1 and α2 have relative to β are different from, and cannot be
identified with the properties that α1 has relative to α2+β and α2 has relative to α1+β.
Thus, it follows from the Relational Property Rule and the Relational Decomposition
Rule that there is no way to assign joint single-time probabilities to properties that
are related to different contexts (systems) on the basis of quantum-mechanical states.
For according to these rules, there are no reduced states to provide joint single-time
probabilities for properties that are related to different contexts. The reasoning is as
follows. Consider, for instance, the probability that α1 has the property P relative to
α2 + β, the probability that α2 has the property Q relative to α1 + β and the joint
probability of these properties. The probability that α1 has the property P relative to
α2 +β is given by the reduced state of α1, and the probability that α2 has the property
Q relative to α1 + β is given by the reduced state of α2. But, the joint probability of
these properties is not given by the reduced state of α (α1 +α2) or any other reduced
state. According to the Relational Decomposition Rule, the reduced state of α only
gives the joint probability of the properties that α1 and α2 each has relative to β, and
these probabilities need not be the same as the joint probabilities that α1 has relative
to α2+β and α2 has relative to α1+β. Thus, assuming that single-time probabilities
can only be assigned on the basis of quantum-mechanical states, properties that are
related to different contexts have no joint probabilities and accordingly are unrelated
to each other.

Similarly, based on this assumption and the assumption that properties that
are assigned in different resolutions of a reduced state (i.e. in different bases)
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do not constrain each other (an assumption that is required for circumventing
Kochen&Specker-like no-go theorems), properties that are assigned in different bases
have no joint probabilities and accordingly are uncorrelated with each other. For gran-
ted the above assignment rules, there is no way to assign joint probabilities for such
properties on the basis of quantum-mechanical states.

As is not difficult to see, the above property assignment does not single out any
preferred bases. Further, the failure of Property Composition and Property Decom-
position is naturally explained. For this property assignment only provides the range
of systems’ possible relational properties, and due to their nature properties that a
system has relative to different contexts need not be the same.

5.2 The non-relativistic dynamics

We now turn to introduce an outline of the dynamics of relational properties in non-
relativistic framework. Let U be a unitary transformation on the state of the composite
system α+β. The range of possible properties that α and its subsystems have relative
to β and the single-time probabilities of these properties at any time t, are determ-
ined by α’s reduced state at t, Wα(t). The dynamics of these properties and their
probabilities satisfies the following conditions:

D1 If Wα(t) does not change under U , the range of the possible properties of α (and
its subsystems) relative to β and the single-time probabilities of these properties
do not change. Further, the actual properties of α (and its subsystems) relative
to β also remain unchanged.

D2 If Wα(t) changes under U , the evolution of the properties that α and its subsys-
tems have relative to β depends on U in the following way. (i) Properties of α
(and its subsystems) relative to β associated with projections that commute with
U evolve deterministically, so as to return the single-time Born probabilities.
(ii) Properties of α (and its subsystems) relative to β associated with projec-
tions that don’t commute with U evolve indeterministically, so as to return the
single-time Born probabilities.

D3 Let α1 be a subsystem of α, and let Prob(Q(t2)|P(t1)) be the transition probab-
ility that α1 has, as a subsystem of α, the property Q relative to β at t2 given that
it has, as a subsystem of α, the property P relative to β at time t1. In general,
Prob(Q(t2)|P(t1)) depends not only on the properties that α1 has relative to β
but rather on the properties that α has relative to β.

Four remarks about the above outlines of dynamics: First, as is easily seen, D3
implies that the dynamics of properties is holistic in nature. Second, note that D1-D3
do not pick out a unique dynamics; rather, they are compatible with a class of possible
dynamics. Third, each of the dynamics in this class reproduces the single-time prob-
abilities obtained by a sequential application of the Born rule in collapse theories,
and accordingly recovers all the predictions of standard collapse quantum mechan-
ics. Fourth, as we shall see, these dynamics are special cases of a more universal
dynamics we develop in Section 7 – namely, they are dynamics that would surface
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when the relevant degree of entanglement is zero, as the case is in states of perfect
decoherence.

6 EXPERIENCE IN THE RELATIONAL MODAL

INTERPRETATION

We now turn to consider how the relational modal interpretation addresses the meas-
urement problem and, more generally, accounts for our classical-like experience. Let
SI consist of a measured system S, a measuring apparatus M , and two observers O1

and O2, and let SII consists of the environment of these systems and the rest of the
universe. Suppose that M carries out an ideal z-spin measurement on S, and O1 and O2

both observe the measurement outcome. The post-measurement quantum-mechanical
state of SI (S + M + O1 + O2) and SII has the general form:

|�〉 =
∑

i,j,k ,l,m

λi,j,k ,l,m|ϕi〉S |ψj〉M |�1
k〉O1 |�2

l 〉O2 |ξm〉SII , (12)

where |ϕi〉S ranges over |z+〉 (z-spin ‘up’) and |z−〉 (z-spin ‘down’), |ψj〉M ranges
over |up〉 (pointer pointing to ‘up’) and |down〉 (pointer pointing to ‘down’), and
|�1

k〉O1 and |�2
l 〉O2 each ranges over ‘b−up’ (the brain state associated with the state

of mind of believing ‘up’) and ‘b−down’(the brain state associated with the state of
mind of believing ‘down’). There always exists a normalized basis {|r1〉, |r2〉} in the
Hilbert space associated with SII , such that the state (12) can be rewritten as follows:

|�〉 = λ1(|z+〉S |up〉M|b − up〉O1 |b − up〉O2)|r1〉SII+
+ λ2(|z−〉S |down〉M|b − down〉O1 |b − down〉O2)S1 |r2〉SII (13)

where |r1〉SII and |r2〉SII are not necessarily orthogonal. Since the properties of SI (i.e.
of S + M + O1 + O2) relative to SII are given by SI ’s reduced state, it follows that
S, M , O1 and O2 have definite relational properties that are appropriately correlated
with each other. Suppose, for example, that relative to SII the system S has (as a
subsystem of SI ) the property z-spin ‘up’. Then, relative to SII the position of the
apparatus’s pointer (as a subsystem of SI ) is ‘up’ and the brain properties of both
observers (as subsystems of SI ) are those of ‘b−up’ (i.e. the brain state associated
with believing pointer ‘up’).

This analysis of experience can be generalized to any number of systems and
observers. Further, this schematic analysis of ideal measurements can easily be gen-
eralized to account for models of non-ideal measurements. For even in non-ideal
measurements, where pointer observables do not get perfectly correlated with the
measured observables, there are always bases in which the properties of S, M , O1 and
O2 relative to SII (assigned by SI ’s reduced state in the post-measurement state (13))
correspond to our classical-like experience, regardless of any decoherence interac-
tion of SI (or some of its subsystems) with the environment in SII . For example,
the projections onto the pointer states, |up〉M and |down〉M in state (13) correspond
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to definite properties of M relative to SII with the respective probabilities |λ1|2 and
|λ2|2, regardless of the size of the off-diagonal elements of the reduced state of M
in the pointer basis. Thus, there always exist subsets of relational properties that
may correspond to our perception of definite pointer readings; and this is true even
when decoherence is not sufficiently effective to diagonalize the reduced state of SI

in (13). Further, one can show that in approximate decoherence the behavior of these
properties is stable.

The above analysis may also account for our belief in the existence of systematic
correlations between the properties of physical systems and our beliefs about them. It
is commonly assumed that there exist systematic correlations between certain brain
properties and states of mind. If we assume by analogy that such correlations exist
between observers’ brain properties that are related to a certain context and their states
of mind, then it is possible to show that there exist systematic correlations between
subsets of relational properties of physical systems and observers’ beliefs about these
systems. Yet, since subsets of properties that are related to different contexts (and
likewise subsets of properties that are assigned in different bases) are unrelated, the
question arises as to which subsets of relational properties are correlated with our
beliefs about, and our experience of the physical world.

We believe that the question of the exact nature of the brain properties that are
related to observers’ experience and beliefs is not unique to the relational modal
interpretation. It also arises in other interpretations. But, since the relational inter-
pretation postulates the existence of many uncorrelated subsets of definite properties,
this question seems to be more acute in the context of this interpretation. In the context
of the current interpretation, it is plausible to assume that experience is associated
with a subset of relational properties that are related to a single context.10 Further,
it seems also plausible to assume that the identity of this subset of physical proper-
ties (partially) depends on decoherence interactions with the environment. Yet, we
believe that in the state of current knowledge about the relationships between our
experience and the teachings of contemporary physics, the best one could do is to
give schematic models in the context of which it is possible to tell an intelligible
story about how our experience of the physical world may be reconciled with a given
interpretation of quantum mechanics. In particular, one may be able to demonstrate in
such models that there exist systematic correlations between some subsets of physical
properties of systems, physical properties of observers’ brains and our mental states
and beliefs about the physical world. As we have argued above, the relational modal
interpretation may well have such an intelligible story to tell.

7 THE UNIVERSAL DYNAMICS

The dynamics outlined in D1-D3 of Section 5 is subjected to several no-go theor-
ems for relativistic modal interpretations (for a discussion of these theorems, see
Section 8). In this section, we propose that this dynamics is a special case of a more
universal dynamics that circumvents these theorems. This universal dynamics may
be introduced as a sum average over two extreme cases: (i) the dynamics in case of
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no entanglement; and (ii) the dynamics in case of maximal entanglement. We shall
define below the relevant notion of entanglement and its measure. But first we turn
to introduce the dynamics in these extreme cases.

The dynamics in case of no entanglement is similar to the dynamics outlined in
Section 5. That is, it is the dynamics outlined in D1-D3 with the required modifications
for a relativistic framework. Instead of being formulated with reference to states at
different times, transition probabilities are now formulated with reference to states
on different spacelike hypersurfaces: The probability that a system has a relational
property Q on a spacelike hypersurface σ2 (i.e. in the state that obtains on σ2) given
that it has a relational property P on a spacelike hypersurface σ1 (i.e. in the state that
obtains on σ1).

The dynamics in the case of maximal entanglement can be expressed by the
following condition.

D4 Let α + β be a partition of the universe into two subsystems; let Wα(σ1) and
Wα(σ2) be the reduced states of α on the spacelike hypersurfaces σ1 and σ2,
respectively; and let Q and P be any two properties thatαmay have relative toβ.
Then, if Wα(σ2) �= Wα(σ1), the transitional probability Probme(Q|P), namely
the probability that α has the property Q relative to β in the state Wα(σ2) given
that it has the property P relative to β in the state Wα(σ1), is equal to the
single-time Born probability that α has the property Q relative to β in the state
Wα(σ2):

Probme(Q|P) = Tr(Wα(σ2)Q). (14)

If Wα(σ2) = Wα(σ1), then the properties that α has relative to β do not change.

The notion of entanglement we shall work with is bipartite, i.e. it applies to
the entanglement between two systems. The measure of entanglement between two
systems, α and β, in a state |ψ〉 may be defined as the minimal (normalized) distance,
in Hilbert space norm, between |ψ〉 and all the possible product states in the Hilbert
space Hα ⊗ Hβ (see, for example, Shimony 1995). But other measures of entangle-
ment may also be applicable. This geometrical measure of entanglement may easily
be generalized to mixed states. In that case, the measure of entanglement is defined
as the minimal (normalized) distance between the mixed state of systems and the set
of all their product states, as follows. Let W be any mixed state in Hα ⊗ Hβ , and
let C be the convex set of all the mixed product states of α and β. The degree of
entanglement between α and β is defined as the normalized distance between W and
any state Wi ∈ C, such that Tr(W ⊗ Wi) ≤ Tr(W ⊗ Wj) for all states Wj ∈ C.11

In the context of the relational modal interpretation, the relevant measure of
entanglement depends on the relational properties under consideration and the trans-
formations of the quantum state. Let α and β be a partition of the universe, α1 and α2

be a partition of α, and β1 be a subsystem of β. Let U (σ1, σ2) be any (non-identity)
unitary transformation of the quantum state of α1+β1 and the identity transformation
of the state of all the other systems of the universe from a spacelike hypersurface σ1
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to a spacelike hypersurface σ2. Then, if neither α1 nor α2 is the ‘null’ system, the
transition probabilities of the properties of α and its subsystems relative to β under
the transformation U (σ1, σ2) depend on the degree of entanglement between α2 and
α1 + β1 in the (reduced) state of α1 + α2 + β1 (i.e. α + β1) on σ1. If α1 or α2 is the
‘null’ system, the degree of entanglement is postulated to be zero. This measure of
entanglement is supposed to reflect the extent to which the properties of α relative to
β have to be redistributed, so as to reproduce the Born probabilities on every spacelike
hypersurface without picking out any preferred foliation of spacetime.

The universal dynamics is a weighted average of the dynamics in the two extreme
cases of no entanglement and of maximal entanglement. That is, let (as before)
U (σ1, σ2) be any unitary (non-identity) transformation on the state of α1 +β1 and the
identity transformation on the state of all other subsystems of α+β from a spacelike
hypersurface σ1 to a spacelike hypersurface σ2, and let |ψ(σ1)〉 be the state of α+ β

on σ1. Then, the conditional probability that α has the property Q relative to β in the
state |ψ(σ2)〉 (= U (σ1, σ2)|ψ(σ1)〉) given that it has the property P relative to β in
the state |ψ(σ1)〉, ProbU (Q|P), is given by:

ProbU (Q|P) = d(e) · Probme(Q|P)+ (15)

+ (1 − d(e)) · Probne(Q|P);
where Probme(Q|P) and Probne(Q|P) are the conditional probabilities of Q given P
according to the dynamics in case of maximal entanglement and the dynamics in case
of no entanglement respectively, and d(e) is the degree of entanglement between
α1 + β1 and α2 in the state |ψ(σ1)〉. If the distribution of properties of α relative to
β is given by the single-time Born-like probabilities on any spacelike hypersurface,
then (by construction) the transition probabilities in both maximal entanglement and
no entanglement reproduce the single-time Born probabilities on any other spacelike
hypersurface. Since the universal dynamics is a weighted average of the dynamics in
these extreme cases, it similarly reproduces the Born probabilities.12

8 THE NO-GO THEOREMS FOR RELATIVISTIC MODAL

INTERPRETATIONS

Bell’s theorem suggests that given natural assumptions, any adequate quantum the-
ory will have to postulate some non-local influences.13 In contrast to a popular view,
not all non-local influences imply incompatibility with special relativity.14 Special
relativity requires that the dynamical laws of properties do not select any preferred
inertial reference frame (i.e. preferred foliation of spacetime into parallel spacelike
hyperplanes) and that the description of systems’ properties and their probabilities in
different frames are compatible with each other. Thus, the question of the compatib-
ility of an interpretation of quantum mechanics with relativity turns on whether the
dynamics of properties satisfies these constraints and reproduces Born-like probabilit-
ies for the possessed properties of systems for arbitrary initial state along every inertial
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FIGURE 1.1. The spacelike hypersurfaces involved in Myrvold’s theorem.

reference frame. The no go theorems by Dickson and Clifton (1998), Arntzenius
(1998) and Myrvold (2002) demonstrate that current modal interpretations fail to do
so, and accordingly a common view has it that these interpretations cannot be made
genuinely relativistic. In the next two subsections, we shall consider Myrvold’s and
Dickson and Clifton’s theorems and show why they do not apply to the relational
modal interpretation. For want of space, we shall not be able to discuss Arntzenius’s
theorem. But based on the discussion of Myrvold’s theorem, it is not difficult to show
that Arntzenius’s theorem also fails to apply to this interpretation.

8.1 Myrvold’s theorem

Myrvold’s (2002) theorem asserts that in the property assignments of current modal
interpretations (see Section 3.1), the probabilities of local possessed properties cannot
be given by the Born probabilities along every foliation of spacetime for arbitrary
initial quantum state, irrespectively of their dynamics.15

Myrvold considers the following set up (see Figure 1.1). σ1 and σ2 are two hyper-
planes of simultaneity in some reference frame. xi (yi) is a small region on σ1 (σ2)
in which a system Si is located. x1 is spacelike separated from y2 and x2 is spacelike
separated from y1. σ3 is a spacelike hypersurface containing y1 and x2, and σ4 is a
spacelike hypersurface containing x1 and y2. R1 and R2 are observables of the systems
S1 and S2 respectively, coupled to measuring devices A1 and A2 respectively, which
record the values of R1 and R2 on σ1 − σ4. The states of S1 + S2 + A1 + A2 on these
hypersurfaces are:

|ϕ(σ1)〉 = 1/2
√

3(|p1+〉|r1+〉|r2+〉|p2+〉 − |p1+〉|r1+〉|r2−〉|p2−〉−
− |p1−〉|r1−〉|r2+〉|p2+〉 − 3|p1−〉|r1−〉|r2−〉|p2−〉); (16)

|ϕ(σ2)〉 = 1/
√

3(|p1+〉|r1+〉|r2−〉|p2−〉 + |p1−〉|r1−〉|r2+〉|p2+〉−
− |p1+〉|r1+〉|r2+〉|p2+〉); (17)



NEW MODAL INTERPRETATION OF QUANTUM MECHANICS 17

|ϕ(σ3)〉 = 1/
√

6(|p1−〉|r1−〉|r2+〉|p2+〉 + |p1−〉|r1−〉|r2−〉|p2−〉−
− 2|p1+〉|r1+〉|r2−〉|p2−〉); (18)

|ϕ(σ4)〉 = 1/
√

6(|p1+〉|r1+〉|r2−〉|p2−〉 + |p1−〉|r1−〉|r2−〉|p2−〉−
− 2|p1−〉|r1−〉|r2+〉|p2+〉); (19)

where for each i, |ri+〉 and |ri−〉 are distinct eigenstates of the observable Ri; and
|pi+〉 and |pi−〉 are distinct eigenstates of Pi, a pointer observable of the measuring
device Ai. As is easily seen, |ϕ(σ2)〉, |ϕ(σ3)〉 and |ϕ(σ4)〉 are obtained from |ϕ(σ1)〉
by applying the following Hadamard transformation to the eigenstates of Ri ⊗ Pi:

Ui|ri+〉|pi+〉 = 1/
√

2(|pi+〉|ri+〉 + |pi−〉|ri−〉); (20)

Ui|ri−〉|pi−〉 = 1/
√

2(|pi+〉|ri+〉 − |pi−〉|ri−〉).
That is, |ϕ(σ2)〉 = U1 ⊗ U2|ϕ(σ1)〉, |ϕ(σ3)〉 = U1 ⊗ I2|ϕ(α)〉 and |ϕ(σ4)〉 =
I1 ⊗ U2|ϕ(α)〉; where I is the identity transformation.

The main idea of Myrvold’s theorem is as follows. In the Schmidt-decomposition
and the spectral-resolution modal interpretations, R1 and R2 have definite values on
σ1−σ4. Suppose that the same is true for Bub’s modal interpretation. Further, suppose
that the values of Ri correspond to local properties. Then, these values are the same
on any two space-like hypersurfaces that intersect the spacetime region in which Si

is located. Moreover, if the probabilities of these values were to satisfy the Born rule
for single-time probabilities on the hypersurfaces σ1 − σ4, there would have to be
a joint probability distribution over these values that yields as marginals their Born
probabilities on all the four hypersurfaces. But, such joint probability distribution
would satisfy certain Bell-type inequalities, which are violated in states |ϕ(σ1)〉 −
|ϕ(σ4)〉 and various other states (for more details, see Myrvold 2002 and Berkovitz
and Hemmo 2005a). This means that the probabilities of such local properties cannot
be given by the Born probabilities along every foliation of spacetime into parallel
spacelike hyperplanes for an arbitrary initial quantum state.

Consider, for example, the values that R1 and R2 have on the hypersurfaces σ1 -
σ4 in the set up of Myrvold’s theorem, i.e. in the states (16)-(19).16 Suppose that on
σ1 R1 and R2 have the values r1+ and r2+, respectively. By assumption, R1 is a local
property of S1, and R2 is a local property of S2. Thus, R1 must have the same value on
the hypersurface σ4, and accordingly it follows from the Born rule that the probability
that R1 and R2 have, respectively, the values r1+ and r2− on σ4 is one. Further, the
value of R2 on σ2 is the same as its value on σ4. Accordingly, the probability that
R2 has the value r2− on σ2 given that R1 and R2 have the values r1+ and r2+ on σ1

is one. A parallel argument leads to the conclusion that if R1 and R2 have the values
r1+ and r2+ on σ1, the probability that R1 has the value r1− on σ2 is also one. Thus,
if R1 and R2 have the values r1+ and r2+ on σ1, the probability they have the values
r1− and r2− on σ2 is one. But, by the Born rule |ϕ(σ2)〉 assigns zero probability to
these values.
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Myrvold’s theorem rests on the following three premises:
(i) Local Properties. There exist local observables, Ri (i = 1, 2), the value of which

is the same on any two spacelike hypersurfaces that intersect the region in which
the system they pertain to, Si, is located.

(ii) Joint Probabilities. There exist joint probabilities for the values of R1 and R2 on
the hypersurfaces σ1 - σ4, which yield as marginals the Born probabilities for
the values of R1 and R2 on all these four hypersurfaces.

(iii) Relativistic Born Rule. The joint probabilities of local properties on every space-
like hypersurface are given by the Born probabilities. That is, let q and r be any
possible values of the observables Q1 and R2 respectively, and let Q1 = q and
R2 = r be local definite properties of the systems S1 and S2, respectively. For
any spacelike hypersurface σ , if the quantum-mechanical state of the composite
system S1 +S2 on σ is |ψ(σ)〉, then the probability of Q1 = q and R2 = r on σ is
equal to Tr[PQ1(q)PR2(r)|ψ(σ)〉]; where PQ1(q) and PR2(r) are the projections
onto the eigenspaces Q1 = q and R2 = r, respectively.17

But the relational modal interpretation violates these conditions. Here is why.
Consider the value that R1 has, as a property of S1, relative to S2 + A1 + A2 and the
value that R2 has, as a property of S2, relative to S1 + A1 + A2. These values are
related to different contexts. Thus, it follows from the property assignment of this
interpretation that they have no definite joint probabilities, and accordingly Myrvold’s
theorem does not apply to them.

Consider now the values that R1 and R2 have, as properties of S1 + S2, relative to
A1+A2. In the relational modal interpretation, these values are definite on σ1−σ4 (i.e.
in the states that obtain on these spacelike hypersurfaces). Further, it follows from
the Relational Decomposition Rule that they have joint probabilities on all the four
hypersurfaces. But, by the universal dynamics, Local Properties cannot be assumed:
The probability that the value of R1 (R2), as a property of S1 + S2, relative to A1 + A2

on σ1 will be different from its value on σ4 (σ3) is proportional to the degree of
entanglement between S1 and S2 + A2 (S2 and S1 + A1) on σ1. The higher the degree
of entanglement is, the higher is the probability that this value of R1 (R2) will not be
the same on σ1 and σ4 (σ3). Similarly, the probability that the value that R1 (R2) has,
as a property of S1 + S2, relative to A1 + A2 will not be the same on σ3 and σ2 (σ4

and σ2) is proportional to the degree of entanglement between S1 and S2 + A2 (S2

and S1 + A1) on σ3 (σ4). Since these degrees of entanglement are substantial, Local
Properties cannot be assumed. Accordingly Myrvold’s theorem is inapplicable to the
values that R1 and R2 have, as properties of S1 + S2, relative to A1 + A2.

Note that the dependence of the universal dynamics on the degree of entangle-
ment is desirable. It circumvents Myrvold’s theorem by yielding radical non-locality
in non-experimental circumstances, where the (relevant) degree of entanglement is
significant. Yet, as we shall see in Section 9, this non-locality is unobservable in
experimental circumstances, where the (relevant) degree of entanglement is virtually
zero. Note also that it is not the relational nature of the values of R1 and R2 per se that
are ‘responsible’ for circumventing Myrvold’s theorem. Indeed, by their very nature
the properties postulated by the relational modal interpretation are nonlocal: They are



NEW MODAL INTERPRETATION OF QUANTUM MECHANICS 19

relations between distant systems. But this nonlocality is not sufficient for circum-
venting Myrvold’s theorem, as some relational properties behave like local properties.
For example, the value that R1 has, as a property of S1, relative to S2 + A1 + A2 is
highly nonlocal by its very nature. Yet, as the relevant degree of entanglement for the
dynamics of this value is zero, the universal dynamics dictates that it is the same on
σ1 and σ4; and similarly, mutatis mutandis, for the value of R2, as a property of S2,
relative to S1 + A1 + A2 on σ1 and σ3. Accordingly, these values behave like local
properties, and Myrvold’s theorem is inapplicable to them because of the failure of
Joint Probabilities rather than their nonlocal nature. By contrast, the relevant degrees
of entanglement for the dynamics of the values that R1 and R2 have, as properties of
S1 +S2, relative to A1 +A2 on σ1 are significant, and accordingly the probability that
these relational values are not the same on σ1 and σ4 (σ3) is substantial. This further
type of nonlocality (henceforth, e-nonlocality) is what renders Myrvold’s theorem
inapplicable to these relational values of R1 and R2.

Generalizing the above reasoning, it is not difficult to show that Myrvold’s theorem
is also inapplicable to other relational values of R1 and R2 and, more generally, any
other relational properties postulated by the relational modal interpretation.

8.2 Dickson and Clifton’s theorem

In their theorem, Dickson and Clifton (1998) demonstrate that granted certain
premises motivated by relativistic and dynamical considerations, the KHD and the
Vermaas-Dieks modal interpretations fail to be genuinely relativistic. In reference
to the Einstein-Podolsky-Rosen/Bohm (EPR/B) experiment, they consider the prob-
abilities that the particles possess certain spin properties before and after the spin
measurements in three different foliations of spacetime, which can be associated
with three different inertial reference frames: The reference frame S in which the
measurements occur simultaneously; the reference frame L in which the left-hand-
side measurement occurs first; and the reference frame R in which the right-hand-side
measurement occurs first.

Dickson and Clifton’s theorem relies on four main premises. The first two premises
are motivated by relativistic considerations.
(i) Fundamental Lorentz Invariance. When a system undergoes a free evolution,

its definite properties in different inertial frames are related by the Lorentz
transformations.

(ii) Invariant Transition Probabilities. When a system undergoes a free evolution,
the transition probabilities of its properties in different inertial frames are related
by the Lorentz transformations.

The third premise is motivated by dynamical considerations.
(iii) Stability. In any frame of reference, if no measurement is made on a system in

the time interval [t1, t2] (t1 < t2), the probability that the system has the property
P at time t2 given that it has that property at t1 is one.18

Finally, Dickson and Clifton also presuppose:
(iv) Joint Probabilities. The spin properties of the particles in the EPR/B experiment

have definite joint probabilities.



20 JOSEPH BERKOVITZ AND MEIR HEMMO

Dickson and Clifton demonstrate that modal interpretations that satisfy the above
four conditions cannot reproduce the predictions of orthodox quantum mechanics in
the reference frames S, L and R. In the relational modal interpretation, the correspond-
ing properties are the properties that the L-particle has relative to the R-particle, the
measurement apparatuses and the rest of the universe and the spin properties that the
R-particle has relative to the L-particle, the measurement apparatuses and the rest of
the universe. For these relational properties, the relevant degrees of entanglement are
zero. Thus, their dynamics is in effect the dynamics in case of no entanglement, where
Fundamental Lorentz Invariance, Invariant Transition Probabilities and Stability hold.
But, since the properties of the L-particle and the R-particle are related to different
contexts, they do not have joint probabilities. Accordingly, Joint probabilities fails
and Dickson and Clifton’s theorem does not apply to these properties.

9 WHY E-NONLOCALITY IS UNOBSERVABLE

In the relational modal interpretation, the nature of nonlocality depends on entan-
glement. When the relevant degree of entanglement is nonzero, the dynamics of
apparently local quantities, such as the value of R1 as a property of S1 +S2 relative to
A1 +A2, may involve e-nonlocality (see Section 8.1): This value of R1 may not be the
same on two spacelike hypersurfaces that intersect the region in which S1 is located.
Yet, our experience seems to suggest that this type of non-locality never occurs. So
the question is why it is unobservable.

To answer this question, let us consider again Myrvold’s set up (see Section 8.1), but
now suppose that the measuring apparatuses A1 and A2 are subjected to decoherence
interactions with their local environment E. In the ideal case, the state of S1 + S2 +
A1 + A2 + E will be

|ϕ(σ1)〉 = 1/2
√

3(|p1+〉|r1+〉|r2+〉|p2+〉|E + +〉−
− |p1+〉|r1+〉|r2−〉|p2−〉|E + −〉−
− |p1−〉|r1−〉|r2+〉|p2+〉|E − +〉−
− 3|p1−〉|r1−〉|r2−〉|p2−〉|E − −〉, (21)

where the |E + +〉, |E + −〉, |E − +〉 and |E − −〉 are the orthogonal states of the
environment.

Due to the perfect decoherence with the environment, the degree of entanglement
between S1 and S2+A2 (S2 and S1+A1) in the state (21) is zero. Thus, the evolution of
the properties that S1 (S2) has relative to A1+A2+E is according to the dynamics of no
entanglement, where e-nonlocality cannot occur. In more realistic models, the states
of the environment are only approximately orthogonal relative to the pointer basis.
This means that the degree of entanglement between S1 and S2 +A2 (S2 and S1 +A1)
is virtually zero: The ‘effective collapse’ onto the pointer eigenstates induced by
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decoherence reduces the degree of entanglement to approximately zero. Thus, given
decoherence the universal dynamics of the properties of S1 (S2), as a subsystem of
S1+S2, relative to A1+A2+E effectively reduces to the dynamics that these properties
have in no entanglement. Accordingly, the probability of e-nonlocality in the value of
R1 (R2) relative to A1 + A2 + E, e.g. the probability that these values will be different
on the hypersurfaces σ1 and σ4 (σ3) is virtually zero. More generally, based on
these considerations, it is not difficult to show that the probability of e-nonlocality in
experimental circumstances is virtually zero. (Note that while decoherence influences
the dynamics of properties and accordingly plays a central role in accounting for
our experience of the classical-like behavior of macroscopic systems, in contrast to
some Everett-like interpretations, the decoherence-histories approach, Bub’s modal
interpretation and some other interpretations of quantum mechanics, it does not play
any role in the property assignment.)

In fact, e-nonlocality would be unobservable even if the systems S1, S2, A1, A2

and observers of the pointer observables of A1 and A2, P1 and P2 respectively, were
completely isolated from their environment. To see why, consider for example an
observer O1, who perceives the value of the pointer observable P1 on the hypersurface
σ1 and compares this value with the value of P1 on the hypersurface σ4; where
(as before) by ‘the value of P1 (O1) on a hypersurface,’ we mean the value that
this observable has in the state that obtains on that hypersurface.19 (To simplify
terminology, in what follows O1 will refer to both a physical system and an agent.
Context will distinguish between these different uses.) Let B1 be a brain observable
associated with O1’s beliefs about the value of P1, and let Mσ1 be a brain observable
associated with O1’s memory of the value that P1 has on σ1. Suppose that S1 + S2 +
A1 + A2 + O1 is completely isolated from the environment. Then, according to the
universal dynamics, some (relational) values of P1 (e.g. the value that P1 has, as a
property of S1 + A1 + O1, relative to A2 + S2) may not be the same on σ1 and σ4.
In order to observe such e-nonlocality, O1 will have to reliably monitor and compare
these values of P1 on both σ1 and σ4. To monitor and remember the values of P1 on σ1,
the value of B1 and Mσ1 on σ1 have to get correlated with the value of P1 on σ1. But,
due to the lack of interaction with the environment, the relevant degree of entaglement
will be substantive. Thus, if these values are correlated on σ1, the universal dynamics
dictates that they will also be correlated on σ4. So O1 will not be able to notice that
the value of P1 on σ1 is different from its value on σ4, and accordingly will not be
able to observe the e-nonlocality in this value (for more details, see Berkovitz and
Hemmo 2005a, pp. 392–4).

10 TOWARD A RELATIVISTIC MODAL INTERPRETATION

10.1 On the relativistic constraints

According to the standard understanding of special relativity, there is no foliation of
spacetime into parallel spacelike hyperplanes that is preferred by the laws of physics:
All foliations of spacetime are on equal footing. Moreover, special relativity also
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requires that the descriptions of physical reality in different coordinate systems will
be consistent with each other. In the special relativistic spacetime – the Minkowski
spacetime – this requirement is satisfied when the descriptions of physical reality
in different foliations of spacetime into parallel spacelike hyperplanes (and accord-
ingly in different inertial frames of reference) are related to each other by the Lorentz
transformations. Any adequate special-relativistic interpretation of quantum mech-
anics will have to satisfy these requirements and reproduce the empirical predictions
of orthodox quantum mechanics (which has long been considered to be the basic
standard of empirical adequacy).

In Myrvold’s no-go theorem for relativistic modal interpretations, the constraints
imposed by special relativity and quantum mechanics are expressed by the Relativistic
Born Rule: The distribution of local properties of systems, i.e. properties that these
systems have irrespective of the rest of the universe, on every spacelike hypersurface
should be according to the Born Rule for arbitrary initial quantum state. The relational
modal interpretation trivially satisfies the Relativistic Born Rule, as it postulates no
such properties (see Section 8.1). All the properties assigned by this interpretation are
relational and accordingly nonlocal: They are relations between distant systems. Yet,
Myrvold’s theorem may easily be modified to apply to relational quantities which
have the same value on any two hypersurfaces intersecting the region in which the
system they pertain to is located. Thus, the nonlocal nature of relational properties
per se is insufficient for circumventing this theorem. The relational modal interpret-
ation involves a more radical type of nonlocality, the so-called ‘e-nonlocality’: The
dynamics postulated by this interpretation dictates that when the degree of entan-
glement between the relevant systems is nonzero, the value of an apparently local
quantity may be different on spacelike hypersurfaces that intersect the region in which
the system it pertains to is located. In the set up of Myrvold’s theorem, where the
relevant degrees of entanglement are significant, the probability that the value of e.g.
R1 relative to A1 + A2 is not the same on σ1 and σ4 (σ3 and σ4), is substantial (see
Sections 7 and 8.1). Accordingly, Myrvold’s theorem fails to apply to the relational
modal interpretation.

In their theorem, Dickson and Clifton consider the spin properties that each of
the particles in the EPR/B experiment has, and the dictates of special relativity are
expressed by two conditions: Fundamental Lorentz-Invariance and Invariant Trans-
ition Probabilities. In this set up, the relational modal interpretation we outlined above
(see Sections 5-8) satisfies these conditions. Yet, Fundamental Lorentz-Invariance
and Invariant Transition Probabilities do not always hold. For example, in the set
up of Myrvold’s theorem the values of R1 and R2 (as properties of S1 + S2) relative
to A1 + A2 are not Lorentz covariant and accordingly do not satisfy Fundamental
Lorentz Invariance. For while the transition probabilities of these values are Lorentz
covariant, due to the indeterministic dynamics the values themselves are not. In the
next two subsections, we shall suggest two strategies for addressing this problem.
The first strategy is to relate properties not only to other systems but also to space-
like hypersurfaces. And the second strategy is to regard the property assignment of
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the relational modal interpretation as a source of information for Lorentz-covariant
properties only under certain conditions.

10.2 Relativity and hypersurface dependence

One way to render the properties assigned by the relational modal interpretation
Lorentz invariant is to postulate that properties of systems are not only relational to
other systems but also to spacelike hypersurfaces. The idea is that for any partition of
the universe into two distinct systems, α and β, the reduced state of α on any spacelike
hypersurface σ prescribes the properties that the system α (and its subsystems) have
relative to both the system β and the hypersurface σ . These properties are invari-
ant across all inertial reference frames. For relativizing to spacelike hypersurfaces,
properties are in essence properties of spacetime, and accordingly are by their very
nature Lorentz invariant. Thus, although in the set up of Myrvold’s theorem the
value that R1 has (as a property of S1 + S2) relative to A1 + A2 and the hypersur-
face σ1 may be different from the value it has (as a property of S1 + S2) relative to
A1 + A2 and the hypersurface σ4, these relational values are not frame dependent:
Relative to A1 + A2 and any spacelike hypersurface σi, R1 has the same value in
all inertial reference frames. Indeed, any family of parallel spacelike hyperplanes
may be associated with an inertial reference frame, and thus it may be tempting
to identify hyperplane dependence with frame dependence. But, there is a con-
ceptual difference between frame-dependent and hyperplane-dependent properties:
Properties that are hyperplane dependent may be frame independent (see Aharonov
and Albert 1981, Fleming 1995 and Maudlin 1994 and 1996). Furthermore, in gen-
eral hypersurface-dependent properties cannot be associated with certain inertial
frames.

The arguments in Section 9 may easily be modified so as to show that this hyper-
surface dependence is unobservable in experimental circumstances, where due to
environmentally-induced decoherence the degree of entanglement between the rel-
evant systems is virtually zero. For it follows from the dynamics of the relational
modal interpretation that in such circumstances, the probability that the apparent
local properties of a system on any two spacelike hypersurfaces that intersect the
region in which the system is located will not be the same, is virtually zero.20

Relativizing properties to spacelike hypersurfaces is in a sense a step in the dir-
ection of transforming quantum mechanics into a spacetime theory. Indeed, such
properties are in need of explication. (For example, one may wonder what does
it mean to be at position x relative to hypersurface σ1 and at position y relat-
ive to σ2?) Yet, given the universal dynamics of properties (see Section 7), the
hypersurface-dependent properties postulated by the relational modal interpreta-
tion are related to classical-like, hypersurface-independent properties: When the
(relevant) degree of entanglement is (virtually) zero, such hypersurface-dependent
properties evolve like the corresponding classical-like, hypersurface-independent
properties.
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10.3 Relativity and entanglement

Another way to try to reconcile the relational modal interpretation with special
relativity is to restrict the property assignment to circumstances in which the degree
of entanglement between the relevant systems is zero. In these circumstances, the
properties assigned by the relational interpretation appear to be Lorentz covariant.
The problem with this approach is that, in general, environmentally-induced deco-
herence does not totally suppress entanglement. And as is not difficult to see from our
discussion in Section 10.1, when the degree of entanglement is not zero the properties
assigned by the relational modal interpretation (as presented in Sections 5-9) may not
be Lorentz covariant, no matter how small the entanglement is.

This may suggest that the relationship between the quantum state of a system and
the range of its possible properties should be less direct. The reasoning is as fol-
lows. In the relational modal interpretation, the dynamics of properties depends on
the degree of entanglement between the relevant systems (which are determined by
the relational properties and the transformations under consideration). The violation
of Fundamental Lorentz Invariance can only occur when the degree of entangle-
ment is nonzero, and the likelihood of such violation is proportional to the degree
of entanglement. If the relevant degree of entanglement is approximately zero, the
probability that the relational value of an observable of a system will not be the same
on any two spacelike hypersurfaces that intersect the region in which the system
is located, is virtually zero. That is, in such cases the probability that the proper-
ties assigned by the relational modal interpretation will violate Fundamental Lorentz
Invariance is virtually zero. While it is inappropriate to assign to a system in a state
that approaches a (relevant) zero degree of entanglement the properties that the rela-
tional modal interpretation assigns in state of no entanglement, it is plausible to have
a very high degree of belief (which for all intents and purposes is indistinguishable
from one) in the occurrence of these properties. In particular, while it is inappropri-
ate to assign to systems in states of approximate decoherence the properties that the
relational modal interpretation assigns in states of perfect decoherence, it is plausible
to have a very high degree of belief in the occurrence of such properties. In short,
here the idea is to adopt an epistemic interpretation wherein quantum-mechanical
states provide information about objective properties of systems only under certain
conditions. These conditions are fulfilled when the relevant degree of entanglement
is virtually zero, as the case is when macroscopic systems undergo decoherence
interactions with their environment.21

11 CONCLUSIONS

In this paper we proposed a new modal interpretation of quantum mechanics in
terms of relational properties. We argued that this relational interpretation has several
important merits. It offers a solution to the measurement problem that the mainstream
modal interpretations encounter in non-ideal measurements and various decoherence
circumstances, and explanation to the failure of the so-called ‘property composition’
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and ‘property decomposition’ in these interpretations. Also, in contrast to all current
modal interpretations, the relational modal interpretation does not postulate any
preferred basis, and it circumvents all the no-go theorems for a relativistic modal inter-
pretation. Furthermore, the relational interpretation seems to provide better prospects
for developing a genuinely relativistic version of the modal interpretation.

It may be objected that the relational modal interpretation is quite radical. We do
not find this objection compelling. Indeed, the picture of physical reality portrayed
by this interpretation is very different from those portrayed by the non-relational
interpretations of quantum mechanics. Yet, in the history of physics the conception
of physical reality has undergone a number of radical changes. In fact, orthodox
quantum mechanics and its mainstream interpretations themselves mark a radical
shift from classical physics. We think that the merits of any interpretation of quantum
mechanics have to be judged mainly on the basis of its consistency, its empirical
adequacy, its explanatory power and its compatibility with other major theories of
the physical realm. The relational modal interpretation seems to fare well on all
these accounts. As far as we can see, it is consistent, it is empirically adequate, it
is explanatory and it provides reasons to believe that quantum mechanics could be
reconciled with special relativity. Further, a survey of other attempts to develop a
relativistic interpretation of quantum mechanics may demonstrate that they similarly
involve radical assumptions about the nature of physical reality.

Finally, we believe that our study may also be relevant for other major attempts to
reconcile quantum mechanics with special relativity. But, this is a subject for a future
study.
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NOTES

1 Here, in presenting the measurement problem, we followed the common assumption that perception
of definite pointer reading is correlated with the value of some brain observable.

2 Of course, in standard quantum mechanics there are observables in the Hilbert space of S + M + O
that possess definite values in states (2) and (3), but these observables do not correspond to definite
pointer outcomes. Further, given the assumption that perception of definite pointer reading is correlated
with the value of some brain observable, these observables do not correspond to any brain observables
associated with experiences of such outcomes.

3 See, for example, Zurek 1991, Giulini et al. 1996 and references therein.
4 See, for example, Griffiths 1984 and Gell-Mann and Hartle 1993.
5 For a review and analysis of the role of decoherence in quantum theory, see Bacciagaluppi 2005 and

references therein.
6 For reviews and analyses of modal interpretations, see Bacciagaluppi 1996, Dieks and Vermaas 1998,

Dickson 2002 and references therein. In our review, we shall only focus on the property assignments
of these interpretations. For as we shall see in Section 8, the particular details of their dynamics are
irrelevant to the no-go theorems for relativistic modal interpretations. Some of these theorems make
very general presuppositions about the dynamics, whereas other make no presuppositions at all.

7 Bacciagaluppi, Donald and Vermaas (1995) propose alternatively that in degeneracy points the definite
properties are the limits of the definite properties around these points.

8 For the sake of simplicity and brevity, here and henceforth by P we shall denote both projections and
properties that correspond to these projections. Context will distinguish between these different uses.

9 Bene and Dieks (2002) propose a new perspectivalist version of the modal interpretation which also
provides an explanation for this violation.

10 One can show that our experience of the physical world may be accounted for even if there are various
uncorrelated subsets of physical properties that are associated with our experience. For example, one
can show that the experiences of different observers will be compatible with each other even if they
are related to different contexts (see Berkovitz and Hemmo 2005a). But for want of space we shall not
pursue this issue here.

11 We thank Itamar Pitowsky for discussions of these measures.
12 In Berkovitz and Hemmo (2006), we propose that the above dynamics can also be applied to modal

interpretations wherein properties of composite systems are interpreted as holistic (non-relational)
properties that are not decomposable into the properties of their subsystems.

13 For a recent review of the implications of Bell’s theorem for the nature of quantum non-locality, see
Berkovitz (2006) and references therein.

14 For a discussion of various types of non-locality that are compatible with relativity, see Maudlin 1994.
15 For the sake of brevity, by ‘Born rule’ we mean a Born-like rule that applies to properties in general

rather than only to measurement outcomes.
16 Note that these values of R1 and R2 are not meant to be hypersurface-dependent properties, but rather

the values that these observables have in the states that obtain on the hypersurfaces σ1 − σ4.
17 In fact, Local Properties and the Relativistic Born Rule jointly imply Joint Probabilities. Yet, for the

sake of clarifying the way the relational modal interpretation circumvents Myrvold’s theorem, it is
important to make Joint Probabilities an explicit assumption.

18 Artnzenius (1998) analyzes Dickson and Clifton’s argument. He proposes a theorem that relies on the
assumption of the existence of joint probability distribution over the local possessed properties on the
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spacelike hypersurfaces σ1 − σ4. In that respect, it is similar to Myrvold’s theorem, which may be
regarded as a generalization of it.

19 The exact set up that would allow for the observations of these values of P1 (O1) need not concern us
below. Here, all we need to assume is that such observations can be made.

20 Again, note that in contrast to some other no-collapse interpretations, decoherence per se does not play
any role in the property assignment.

21 This is not to say that definite properties obtain only in states of environmentally-induced decoherence,
as in Bub’s modal interpretation, though such a view is consistent with the above reading of the relational
modal interpretation. Rather, the idea here is that quantum-mechanical states are reliable sources of
information about Lorentz covariant properties only when the relevant degrees of entanglement are
virtually zero.
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2. WHY SPECIAL RELATIVITY SHOULD
NOT BE A TEMPLATE FOR A FUNDAMENTAL
REFORMULATION OF QUANTUM MECHANICS

The principle of relativity is a principle that narrows the possibilities; it is not a
model, just as the second law of thermodynamics is not a model. Albert Einstein1

ABSTRACT

In a comparison of the principles of special relativity and of quantum mechanics, the
former theory is marked by its relative economy and apparent explanatory simplicity.
A number of theorists have thus been led to search for a small number of postulates—
essentially information theoretic in nature—that would play the role in quantum
mechanics that the relativity principle and the light postulate jointly play in Einstein’s
1905 special relativity theory. The purpose of the present paper is to resist this idea, at
least in so far as it is supposed to reveal the fundamental form of the theory. It is argued
that the methodology of Einstein’s 1905 theory represents a victory of pragmatism
over explanatory depth, that its adoption only made sense in the context of the chaotic
state state of physics at the start of the 20th century—as Einstein well knew.

1 QUANTUM MECHANICS: THE CBH THEOREM

In an important recent development in quantum mechanics, Clifton, Bub and Halvor-
son (henceforth CBH) have shown that the observables and state space of a physical
theory must be quantum mechanical if three ‘information-theoretic’ constraints hold.2

The constraints are:
1. no superluminal information transmission between two systems by measurement

on one of them,
2. no broadcasting of information contained in an unknown physical state, and
3. no unconditionally secure bit-commitment.

The CBH theorem states that these constraints force any theory formulated in C∗-
algebraic terms to incorporate a non-commuting algebra of observables for individual
systems, kinematic independence for the algebras of space-like separated systems and
the possibility of entanglement between space-like separated systems. (Conversely,
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any C∗-algebraic theory with these distinctively quantum properties will satisfy at
least the three information-theoretic constraints.3)

This result is not only of great interest in itself, but it appeared at a time when
attention to the putatively fundamental role that the notion of information plays in
understanding quantum theory has been growing significantly. It is not our aim in this
paper to examine in detail either the scope of the theorem4, or the contentious issue of
the role of information in modern physics5. We are concerned with the methodological
issues at stake. At the start of their paper, CBH wrote:

The fact that one can characterize quantum theory . . . in terms of just
a few simple information-theoretic principles . . . lends credence to the
idea that an information-theoretic point of view is the right perspective
to adopt in relation to quantum theory. Notice, in particular, that our
derivation links information-theoretic principles directly to the very fea-
tures of quantum theory—noncommutativity and nonlocality—that are
so conceptually problematic from a purely physical/mechanical point of
view. We therefore suggest substituting for the conceptually problematic
mechanical perspective on quantum theory an information-theoretic per-
spective. That is, we are suggesting that quantum theory be viewed, not as
first and foremost a mechanical theory of waves and particles …but as a
theory about the possibilities and impossibilities of information transfer.6

Even more significantly for our purposes, at the end of their paper CBH sugges-
ted an analogy between their characterization of quantum mechanics and Albert
Einstein’s special theory of relativity (henceforth SR). The “foundational signific-
ance” of the CBH derivation is, according to these authors, that quantum mechanics
should be interpreted as a principle theory, in the sense of the term that Einstein used
to describe his 1905 formulation of SR.7 CBH saw their constraints as analogous to
the principles—the relativity principle and the light postulate—used by Einstein to
derive the nature of relativistic kinematics.

There can be no doubt that Einstein’s 1905 treatment of relativistic kinematics was
a triumph of economy in relation to the corresponding treatment of moving rods and
(to the extent it existed, as we see below) clocks provided by the leading fin de siècle
ether theorists. But it is still not sufficiently appreciated that by his own admission,
Einstein’s principle theory route was based on a policy of despair, and represented
a strategic retreat from the more desirable but, in his view, temporarily unavailable
constructive approach. It is worth dwelling a little on this historical episode, to see
what implications it might have for the CBH program.8

2 SPECIAL RELATIVITY AS A “PRINCIPLE THEORY”

It is well known that the principle/constructive theory distinction was articulated
by Einstein in a popular article on his theory of relativity published in 1919 in the
London Times9. But it was a theme that appeared sporadically throughout his life-long
writings.
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In January 1908, roughly two and a half years after publishing his celebrated paper
on special relativity10, Einstein wrote in a letter to Arnold Sommerfeld:

So, first to the question of whether I consider the relativistic treatment of,
e.g., the mechanics of electrons as definitive. No, certainly not. It seems
to me too that a physical theory can be satisfactory only when it builds
up its structures from elementary foundations. The theory of relativity
is not more conclusively and absolutely satisfactory than, for example,
classical thermodynamics was before Boltzmann had interpreted entropy
as probability. If the Michelson-Morley experiment had not put us in the
worst predicament, no one would have perceived the relativity theory as
a (half) salvation.11

Einstein is repeating here an analogy between SR and thermodynamics that he had
mentioned in a published note addressed to Ehrenfest already in 1907, in which he
compared SR with “the second law of the theory of heat.”12 In both cases, Einstein
was emphasizing the limitations of SR, not its strengths.

In order to see why SR is only a ‘half’ salvation, consider for a minute the analogy
with thermodynamics.

Think of an idealized single-piston heat engine undergoing a Carnot cycle, and
consider the theoretical limits of its efficiency. Such limits can in principle be estab-
lished by exploiting knowledge of the micro-structure of the working substance of the
engine, and in particular by using the principles of statistical mechanics that apply to
the molecular structure of the gas in the piston. A much easier approach, however, is
to fall back on the laws of classical thermodynamics to shed light on the performance
of the engine—phenomenological laws which stipulate nothing about the deep struc-
ture of the working substance. According to this approach, the efficiency of the heat
engine must depend in a certain way on the ratio of the temperatures of the two heat
reservoirs simply because, whatever the gas in the piston is made up of, if it did not it
would be possible for the engine to act as a perpetual motion machine of ‘the second
kind’. And this possibility is simply ruled out by hypothesis in thermodynamics.

Yet it is hard to not to wonder why, after all, such a perpetual motion cannot
exist. Indeed, it is widely held that statistical mechanics in principle explains why
(even if the details involved are controversial). But thermodynamics cannot. The
impossibility of perpetual motion machines of various kinds is the very starting point
of thermodynamics. What this theory gains in practicality and in the evident empirical
solidity of its premisses, it loses in providing physical insight.

Einstein considered thermodynamics as the archetypical example of what he would
call in 1919 a principle theory in physics, one which is based on well verified, but
unexplained observable regularities. On the other hand, statistical mechanics, or
more specifically the kinetic theory of gases, was for Einstein the prime example of a
constructive theory, one built on the “elementary foundations” mentioned in his 1908
letter. These foundations involve hypotheses about unseen fundamental processes—
normally involving the microstructure of bodies and its mechanical principles.
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The distinction has been the subject of increasing attention in recent years13, but it is
easily misunderstood. First, it is clearly not categorical: all theories have principles,
it is just that some are more phenomenological than others. Thermodynamics and
statistical mechanics are on opposite ends of a spectrum of possible theories, and
there are indeed respectable theories—as we shall see below—which lie somewhere
in between.

Principle theories are typically employed when constructive theories are either
unavailable, too difficult to build, or relatively unwieldy. For according to Einstein,
“when we say we have succeeded in understanding a group of natural processes,
we invariably mean that a constructive theory has been found which covers the pro-
cesses in question.”14 Yet, Einstein stressed that SR is a principle theory. Why then
did he feel it necessary to sacrifice explanatory content in developing his theory of
relativity?

3 RODS, CLOCKS, AND THE QUANTUM

Recall the title of Einstein’s 1905 relativity paper: “On the electrodynamics of moving
bodies”. One of the great challenges of late nineteenth century electrodynamics and
optics was to predict the outcome of experiments involving electromagnetic phenom-
ena being performed in a laboratory moving with respect to the luminiferous ether.
After all, the earth is in motion relative to the centre of mass of the solar system, and
at least some of the time must be moving relative to the ether—the invisible seat of
electromagnetic phenomena. But by the turn of the century, the ether had become in
the minds of some experts a very shadowy entity indeed. Made of an obscure kind
of “imponderable matter”, its main role was increasingly just that of providing the
inertial frame of reference relative to which the fundamental electromagnetic field
equations of Maxwell were postulated to hold. The question was now: what form
do the field equations have in earth-bound frames that are moving relative to this
fundamental frame?

Einstein is famous for claiming in 1905, on the basis of his relativity principle,
that all laws of physics, including those of electrodynamics, take the same form
in all inertial reference frames, so happily Maxwell’s equations can be used just
as well in the moving laboratory frame. But this conclusion, or something very
close to it, had already been anticipated by several great ether theorists, including
H. A. Lorentz, Joseph Larmor and particularly Henri Poincaré. This was largely
because there had been from the middle of the nineteenth century all the way to
1905 a series of experiments involving optical and electromagnetic effects that failed
to show any sign of the ether wind rushing through the laboratory: it was indeed
as if the earth was always at rest relative to the ether. (The most famous of these,
and the most surprising, was of course the 1887 Michelson-Morley experiment.)
Like the above-mentioned ether theorists, Einstein realized that the covariance of
Maxwell’s equations—the form invariance of the equations—is achieved when the
relevant coordinate transformations take a very special form, but Einstein was unique
in his understanding that these transformations, properly understood, encode new
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predictions as to the behaviour of rigid bodies and clocks in motion. That is why, in
Einstein’s mind, a new understanding of space and time themselves was in the offing.

Both the mathematical form of the transformations, and at least the non-classical
distortion of moving rigid bodies were already known to Lorentz, Larmor and
Poincaré—indeed a family of possible deformation effects was originally sugges-
ted independently by Lorentz and G. F. FitzGerald to explain the Michelson-Morley
result.15 It was the connection between them, i.e. between the coordinate transform-
ations and motion-induced deformation, that had not been fully appreciated before
Einstein. In the first (“kinematical”) part of his 1905 relativity paper, Einstein estab-
lished the operational meaning of the so-called Lorentz coordinate transformations
and showed that they lead not just to a special case of FitzGerald-Lorentz deformation
(longitudinal contraction), but also to the “slowing down” of clocks in motion—the
phenomenon of time dilation. Now it is still not well known that Larmor and Lorentz
had come tantalizingly close to predicting this phenomenon; they had independently
seen just before the turn of the century how it must hold in certain very special cases.
But as a general effect that does not depend on the constitution of a clock, its discovery
was Einstein’s own.

Einstein did something else that was new and important in the kinematical part of
his paper. He derived the Lorentz transformations not from the symmetry properties
of Maxwell’s equations, but by using an argument inspired by thermodynamics. The
reason lies in his earlier investigations of the properties of black-body radiation.

Several months before he wrote his paper on SR, Einstein had written a revolu-
tionary paper claiming that electromagnetic radiation has a granular structure. The
suggestion that radiation was made of quanta—or photons as they would later be
dubbed—was the basis of Einstein’s extraordinary treatment of the photoelectric effect
in the same paper. But the immediate consequence of Einstein’s commitment to the
photon was to destabilize in his mind all the previous work on the electrodynamics
of moving bodies.

All the work of the ether theorists was based on the assumption that Maxwellian
electrodynamics is strictly true, and not just true on average. In the work of Lorentz,
Larmor and Poincaré, the Lorentz transformations make their appearance as symmetry
transformations (whether considered approximate or otherwise) of these equations.
But Maxwell’s equations are incompatible with the existence of the photon.

In his 1949 Autobiographical Notes, published when he was 67, Einstein was clear
about the seismic implications of this conundrum.

Reflections of this type [on the dual wave-particle nature of radiation]
made it clear to me as long ago as shortly after 1900, i.e., shortly after
Planck’s trailblazing work, that neither mechanics nor electrodynamics
could (except in limiting cases) claim exact validity. By and by I despaired
of the possibility of discovering the true laws by means of constructive
efforts based on known facts.16

Already in the Notes, Einstein had pointed out that the general validity of Newtonian
mechanics came to grief with the success of the electrodynamics of Faraday and
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Maxwell, which led to Hertz’s detection of electromagnetic waves—“phenomena
which by their very nature are detached from every ponderable matter”.17 Later,
he summarized the nature of Planck’s 1900 derivation of his celebrated black-body
radiation formula, in which quantization of absorption and emission of energy by the
mechanical resonators is presupposed. Einstein noted that although this contradicted
the received view, it was not immediately clear that electrodynamics—as opposed
to mechanics—was violated. But now with the emergence of the light quantum, not
even electrodynamics was sacrosanct.

All my attempts . . . to adapt the theoretical foundation of physics to this
[new type of] knowledge failed completely. It was if the ground had been
pulled out from under one, with no firm foundation to be seen anywhere,
upon which one could have built.18

Earlier in the Notes, Einstein had sung the praises of classical thermodynamics, “the
only physical theory of universal content concerning which I am convinced that,
within the framework of the applicability of its basic concepts, it will never be over-
thrown”. Now, he explains how the very structure of the theory was influential in the
search for a way out of the turn-of-the-century crisis in physics.

The longer and more despairingly I tried, the more I came to the conviction
that only the discovery of a universal formal principle could lead us to
assured results. The example I saw before me was thermodynamics. The
general principle was there given in the theorem19: the laws of nature are
such that it is impossible to construct a perpetuum mobile (of the first and
second kind). How, then, could such a universal principle be found?20

4 EINSTEIN’S DOUBTS

It is well-known that Einstein’s based his derivation of the Lorentz transformations
on a combination of the relativity principle (essentially the same as that defended by
Newton) and his so-called light postulate. (The latter was the claim that relative to a
certain inertial frame, the speed of light is independent of the speed of the source and
isotropic—something every ether theorist took for granted when the frame in question
is taken to be the fundamental ether rest frame21 and something which remarkably
Einstein felt would survive whatever the eventual quantum theory of radiation would
reveal.) He showed that length contraction for rigid rods and time dilation for ideal
clocks are consequences of these phenomenological assumptions, in the same way
that, say, the existence of entropy and its non-decreasing behaviour over time for
adiabatic systems are a consequence of the laws of thermodynamics. Of course, the
precise form of the phenomena of contraction and dilation depended on Einstein’s
choice of a convention for spreading time through space in both the resting and moving
frames—a choice Poincaré had already advocated.

Einstein would have preferred a constructive account of these relativistic effects,
presumably based on the nature of the non-gravitational forces that hold the constitu-
ent parts of rods and clocks together. But as we have seen, for Einstein the elements
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of such an account were not to be had in 1905. The price to be paid for the resulting
strategic retreat to a principle theory approach was not just loss of insight; Einstein
became increasingly uneasy about the role played by rods and clocks in this approach.
This unease is seen in a paper entitled “Geometry and Experience” he published in
192122, and in particular in his 1949 Autobiographical Notes:

One is struck [by the fact] that the theory [of special relativity] . . . intro-
duces two kinds of physical things, i.e., (1) measuring rods and clocks,
(2) all other things, e.g., the electromagnetic field, the material point,
etc. This, in a certain sense, is inconsistent; strictly speaking measuring
rods and clocks would have to be represented as solutions of the basic
equations (objects consisting of moving atomic configurations), not, as
it were, as theoretically self-sufficient entities. However, the procedure
justifies itself because it was clear from the very beginning that the postu-
lates of the theory are not strong enough to deduce from them sufficiently
complete equations . . . in order to base upon such a foundation a theory of
measuring rods and clocks. . . . But one must not legalize the mentioned
sin so far as to imagine that intervals are physical entities of a special
type, intrinsically different from other variables (‘reducing physics to
geometry’, etc.).23

These remarks are noteworthy for several reasons.
First, there is the issue of justifying the “sin” of treating rods and clocks as primitive,

or unstructured entities in SR. Einstein does not say in 1949, as he did in 1908 and
1921, that the “elementary” foundations of a constructive theory of matter are still
unavailable; rather he simply reminds us of the limits built into the very form of
the 1905 theory. It is hardly any justification at all. Considerable progress in the
relativistic quantum theory of matter had been made between 1905 and 1949. Was
it Einstein’s long-standing distrust of the quantum theory that held him back from
recognizing this progress and its implications for his formulation of SR?

Second, consider the criticism Abraham Pais made of H. A. Lorentz in his
acclaimed 1982 biography of Einstein: “Lorentz never fully made the transition from
the old dynamics to the new kinematics.”24 As late as 1915 Lorentz thought that the
relativistic contraction of bodies in motion can be explained if the known property of
distortion of the electrostatic field surrounding a moving charge is supposed to obtain
for all the other forces that are involved in the cohesion of matter. In other words,
Lorentz viewed such kinematical effects as length contraction as having a dynamical
origin, and it is this notion that Pais found reprehensible. Yet, when Einstein appeals
to the nature of rods and clocks as “moving atomic configurations”, it seems that not
even he ever fully accepted the distinction between dynamics and kinematics. For to
say that length contraction is intrinsically kinematical would be like saying that energy
or entropy are intrinsically thermodynamical, not mechanical—something Einstein
would never have accepted.25

The limitations of Einstein’s principle-theory approach to SR have been noted by a
number of commentators since 1905, including Wolfgang Pauli and Arthur Eddington
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in the 20s, W. F. G. Swann in the 40s, and Lajos Jánossy and John S. Bell in the 70s,
and Dennis Dieks in the 80s.26 All of these authors called for a more constructive
version of SR. It was perhaps Bell who made the point in the clearest fashion.

If you are, for example, quite convinced of the second law of thermody-
namics, of the increase of entropy, there are many things that you can get
directly from the second law which are very difficult to get directly from
a detailed study of the kinetic theory of gases, but you have no excuse
for not looking at the kinetic theory of gases to see how the increase
of entropy actually comes about. In the same way, although Einstein’s
theory of special relativity would lead you to expect the FitzGerald con-
traction, you are not excused from seeing how the detailed dynamics of
the system also leads to the FitzGerald contraction.27

What is remarkable is that Bell himself seemed to be unaware of Einstein’s own
distinction between principle and constructive theory, and his repeated references to
the analogy between SR and thermodynamics. At any rate, Bell stressed that he had
no “reservation whatever about the power and precision of Einstein’s approach”; his
main point was that “the longer road [a dynamical account of contraction and dilation]
sometimes gives more familiarity with the country”.28

5 THE CBH HISTORICAL FABLE

Let us return to the CBH argument. These authors offered a thought-provoking his-
torical fable wherein SR began with Minkowski, who proposed a non-Newtonian
geometry of space-time, and only later did Einstein come up with his principle theory
approach. CHS regarded Minkowski as providing an “algorithm for relativistic kin-
ematics”, presumably based on the group of isometries of the postulated space-time
structure, whereas in their fable they saw Einstein as furnishing an interpretation for
SR: “a description of the conditions under which the [Minkowski] theory would be
true, in terms of certain principles that constrain the law-like behaviour of physical
systems”. Analogously, it was argued, the CBH theorem could be viewed as provid-
ing an interpretation of quantum theory, based on information-theoretic constraints.
It is clear from the CBH article that the authors regarded such an interpretation as
having much in common with a position widely attributed to Niels Bohr, to the effect
that quantum mechanics is not about micro-physical reality per se but rather the way
we talk about it.

In attempting to evaluate CBH’s neo-Bohrian stance, it is worth recalling first
that the dominant viewpoint in the philosophy of space-time physics over the last
few decades puts a very different gloss on Minkowski’s contribution to SR. Far
from being the basis of a mere algorithm for SR, the current orthodoxy seems to be
that Minkowskian geometry provides a constructive dimension to SR (though it is
not always put in these terms), and thereby significantly enhances its explanatory
power. According to this view, it is the structure of the Minkowski space-time in
which they are immersed that ultimately explains why rods and clocks in motion
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contract and dilate respectively.29 But it is also worth bearing in mind that this was
not entirely Minkowski’s own interpretation of the four-dimensional geometry that
bears his name. Minkowski’s original position was much more like Poincaré’s (who
indeed by 1906 had anticipated core features of Minkowski’s work). It was that
the Lorentz coordinate transformations can be seen as orthogonal transformations
preserving the metrical properties of space-time, but the physical significance of these
transformations derives from the fact that they are elements of the newly-discovered,
or rather postulated, covariance group of all the non-gravitational interactions. The
geometry does not come first—it is the dynamical symmetries that are fundamental,
and susceptible to geometrical codification.30 In short, on either of these two views
of the significance of Minkowski’s contribution, it amounts to a great deal more than
a mere algorithm.

It is arguable that Minkowski’s own reasoning is not at root incompatible with
the currently unorthodox dynamical interpretation of relativistic kinematics outlined
in the previous section. The starting point of this account is indeed the Lorentz
covariance of the equations governing all the non-gravitational forces—which in turn
account for the cohesive properties of rigid bodies and clocks. We are not dealing
here with a fully-fledged constructive theory, because the full details of the quantum
theory of such interactions (and quantum theory it must be) are not required in the
story. But such a theory would go a long way to avoid Einstein’s self-confessed “sin”
of treating rods and clocks as structureless, primitive entities, and the treating of
space-time intervals as entities of a special type in the explanatory scheme of things.

It is not our purpose here to defend this dynamical, semi-constructive approach to
relativistic kinematics.31 It is rather to point out that Einstein’s original 1905 formu-
lation of SR has its limitations, as Einstein himself knew full well and did not seek
to hide. It is far from clear that he would have encouraged the use of SR—his 1905
SR—as a template for an ‘interpretation’ of quantum theory. Or rather, for a funda-
mental interpretation. It is a remarkable thing that what might be called the kinematic
structure of quantum theory, the nature of its observables and state space structure,
can it seems be given a principle-theory, or ‘thermodynamic’ underpinning. As Bell
stressed, the beauty of thermodynamics is in its economy of reason, but the insight it
provides is limited in relation to the messier story told in statistical mechanics.

In assessing the import of the CBH theorem, Jeffrey Bub wrote:

Assuming the information-theoretic constrainsts are in fact satisfied in
our world, no mechanical theory of quantum phenomena that includes an
account of measurement interactions can be acceptable, and the appro-
priate aim of physics at the fundamental level becomes the representation
and manipulation of information.32

The reasoning behind this remarkable conclusion that no mechanical account of the
measurement process in quantum mechanics is viable, seems at first sight to be the
analogue of the argument in SR that because Einstein treated rods and clocks as prim-
itive entities in 1905, no analysis of their behaviour qua moving atomic configurations
is appropriate. An argument flatly rejected by Einstein himself.
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However, it should be noted that a key part of Bub’s 2004 argument is that the
historical success of statistical mechanics, and in particular recognition that the
molecular-kinetic theory is more than a ‘useful fiction’, came about because of Ein-
stein’s theory of Brownian motion. This theory not only allowed molecules to be
counted, but demonstrated the limits of validity of thermodynamics. Where, Bub
effectively asks, is the analogue of such superiority of constructive thought—the
analogue of fluctuation phenomena—in quantum mechanics?

The methodological moral I draw from the thermodynamics case is simply
that a mechanical theory that purports to solve the measurement problem
is not acceptable if it can be shown that, in principle, the theory can
have no excess empirical content over a quantum theory. By the CBH
theorem, given the information-theoretic constraints any extension of a
quantum theory, like Bohmian mechanics, must be empirically equival-
ent to a quantum theory, so no such theory can be acceptable as a deeper
mechanical explanation of why quantum phenomena are such subject
to the information-theoretic constraints. To be acceptable, a mechanical
theory that includes an account of our measuring instruments as well as
the quantum phenomena they reveal (and so purports to solve the meas-
urement problem) must violate one or more of the information-theoretic
constraints.33

Yet it is very doubtful whether Einstein advocated recognition of boosted rods and
clocks as “moving atomic configurations” in SR because he thought such a view might
ultimately lead to a violation of one or more of this 1905 postulates. It is more plausible
that he did so because it made sense conceptually.34 Likewise, disillusionment with
the crude instrumentalistic nature of key aspects of Bohr’s philosophy is justifiably
one of the motivations for alternative interpretations of quantum theory—whether
they involve an “extension” to the quantum formalism (such as the de Broglie-Bohm
trajectories, or the collapse mechanism of GRW-type theories) or not (such as the
Everett interpretation).35
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25 Joseph Larmor commented in relation to Einstein’s 1905 relativity paper that it actually contained

dynamical reasoning “masquerading in the language of kinematics”; Larmor (1929), p. 644.
26 See Pauli (1981); Eddington (1928), p. 7; Swann (1941); Jánossy (1971); Bell (1976, 1992); and Dieks

(1984).
27 Bell (1992).
28 Bell (1976). For a discussion of Bell’s 1976 treatment of SR by way of a “Lorentzian pedagogy”, see

Brown and Pooley (2001) and Brown (2005b).
29 See Balashov and Janssen (2003) and Brown and Pooley (2006).
30 See Brown (2005b), ch 8.
31 For such a defense, see Brown and Pooley (2001, 2006) and Brown (2005b).
32 Bub (2004), p. 242.
33 Bub (2004), p. 261.
34 It is however interesting to ask whether there actually is an analogue of Brownian motion in the

dynamical interpretation of SR. A positive answer, which appeals to certain phenomena in quantum
field theory such as the Scharnhorst effect, is defended in Brown (2005b), ch. 9.

35 For further arguments in this vein, in particular defending the de Broglie-Bohm theory from Bub’s
2004 criticism, see Timpson (2004), pp. 218–222.
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JEREMY BUTTERFIELD∗

3. ON SYMMETRY AND CONSERVED
QUANTITIES IN CLASSICAL MECHANICS

ABSTRACT

This paper expounds the relations between continuous symmetries and conserved
quantities, i.e. Noether’s “first theorem”, in both the Lagrangian and Hamiltonian
frameworks for classical mechanics. This illustrates one of mechanics’ grand themes:
exploiting a symmetry so as to reduce the number of variables needed to treat a
problem.

For both frameworks, I emphasise that the theorem is underpinned by the idea
of cyclic coordinates. In the Lagrangian framework, the main extra “ingredient” is
the rectification of vector fields afforded by the local existence and uniqueness of
solutions to ordinary differential equations. In the Hamiltonian framework, the main
extra ingredients are the asymmetry of the Poisson bracket, and the fact that a vector
field generates canonical transformations iff it is Hamiltonian.

1 INTRODUCTION

The strategy of simplifying a mechanical problem by exploiting a symmetry so as
to reduce the number of variables is one of classical mechanics’ grand themes. It
is theoretically deep, practically important, and recurrent in the history of the sub-
ject. Indeed, it occurs already in 1687, in Newton’s solution of the Kepler problem;
(or more generally, the problem of two bodies exerting equal and opposite forces
along the line between them). The symmetries are translations and rotations, and the
corresponding conserved quantities are the linear and angular momenta.

This paper will expound one central aspect of this large subject. Namely, the rela-
tions between continuous symmetries and conserved quantities—in effect, Noether’s
“first theorem”: which I expound in both the Lagrangian and Hamiltonian frame-
works, though confining myself to finite-dimensional systems. As we shall see, this

∗ All Souls College, Oxford OX1 4AL, email: jb56@cus.cam.ac.uk. It is a pleasure to dedicate this paper
to Jeff Bub, who has made such profound contributions to the philosophy of quantum theory. Though
the paper is about classical, not quantum, mechanics, I hope that with his love of geometry, he enjoys
symplectic forms as much as inner products!
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topic is underpinned by the theorems in elementary Lagrangian and Hamiltonian
mechanics about cyclic (ignorable) coordinates and their corresponding conserved
momenta. (Again, there is a glorious history: these theorems were of course
clear to these subjects’ founders.) Broadly speaking, my discussion will make
increasing use, as it proceeds, of the language of modern geometry. It will also
emphasise Hamiltonian, rather than Lagrangian, mechanics: apart from mention
of the Legendre transformation, the Lagrangian framework drops out wholly after
Section 3.4.1.1

There are several motivations for studying this topic. As regards physics, many of
the ideas and results can be generalized to infinite-dimensional classical systems; and
in either the original or the generalized form, they underpin developments in quantum
theories. The topic also leads into another important subject, the modern theory of
symplectic reduction: (for a philosopher’s introduction, cf. Butterfield (2006)). As
regards philosophy, the topic is a central focus for the discussion of symmetry, which
is both a long-established philosophical field and a currently active one: cf. Brading
and Castellani (2003). (Some of the current interest relates to symplectic reduction,
whose philosophical significance has been stressed recently, especially by Belot:
Butterfield (2006) gives references.)

The plan of the paper is as follows. In Section 2, I review the elements of the
Lagrangian framework, emphasising the elementary theorem that cyclic coordin-
ates yield conserved momenta, and introducing the modern geometric language in
which mechanics is often cast. Then I review Noether’s theorem in the Lagrangian
framework (Section 3). I emphasise how the theorem depends on two others: the ele-
mentary theorem about cyclic coordinates, and the local existence and uniqueness of
solutions of ordinary differential equations. Then I introduce Hamiltonian mechanics,
again emphasising how cyclic coordinates yield conserved momenta; and approach-
ing canonical transformations through the symplectic form (Section 4). This leads to
Section 5’s discussion of Poisson brackets; and thereby, of the Hamiltonian version
of Noether’s theorem. In particular, we see what it would take to prove that this ver-
sion is more powerful than (encompasses) the Lagrangian version. By the end of the
Section, it only remains to show that a vector field generates a one-parameter family
of canonical transformations iff it is a Hamiltonian vector field. It turns out that we
can show this without having to develop much of the theory of canonical transforma-
tions. We do so in the course of the final Section’s account of the geometric structure
of Hamiltonian mechanics, especially the symplectic structure of a cotangent bundle
(Section 6). Finally, we end the paper by mentioning a generalized framework for
Hamiltonian mechanics which is crucial for symplectic reduction. This framework
takes the Poisson bracket, rather than the symplectic form, as the basic notion; with
the result that the state-space is, instead of a cotangent bundle, a generalization called
a ‘Poisson manifold’.
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2 LAGRANGIAN MECHANICS

2.1 Lagrange’s equations

We consider a mechanical system with n configurational degrees of freedom (for short:
n freedoms), described by the usual Lagrange’s equations. These are n second-order
ordinary differential equations:

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n; (2.1)

where the Lagrangian L is the difference of the kinetic and potential energies: L :=
K − V . (We use K for the kinetic energy, not the traditional T ; for in differential
geometry, we will use T a lot, both for ‘tangent space’ and ‘derivative map’.)

I should emphasise at the outset that several special assumptions are needed in order
to deduce eq. 2.1 from Newton’s second law, as applied to the system’s component
parts: (assumptions that tend to get forgotten in the geometric formulations that will
dominate later Sections!) But I will not go into many details about this, since:
(i) there is no single set of assumptions of minimum logical strength (nor a single

“best package-deal” combining simplicity and minimum logical strength);
(ii) full discussions are available in many textbooks (or, from a philosophical

viewpoint, in Butterfield 2004a: Section 3).
I will just indicate a simple and commonly used sufficient set of assumptions. But

owing to (i) and (ii), the details here will not be cited in later Sections.
Note first that if the system consists of N point-particles (or bodies small enough

to be treated as point-particles), so that a configuration is fixed by 3N cartesian
coordinates, we may yet have n < 3N . For the system may be subject to constraints
and we will require the qi to be independently variable. More specifically, let us
assume that any constraints on the system are holonomic; i.e. each is expressible as
an equation f (r1, . . . , rm) = 0 among the coordinates rk of the system’s component
parts; (here the rk could be the 3N cartesian coordinates of N point-particles, in
which case m := 3N ). A set of c such constraints can in principle be solved, defining
a (m − c)-dimensional hypersurface Q in the m-dimensional space of the rs; so that
on the configuration space Q we can define n := m − c independent coordinates
qi, i = 1, . . . , n.

Let us also assume that any constraints on the system are: (i) scleronomous, i.e.
independent of time, so that Q is identified once and for all; (ii) ideal, i.e. the forces that
maintain the constraints would do no work in any possible displacement consistent
with the constraints and applied forces (a ‘virtual displacement’). Let us also assume
that the forces applied to the system are monogenic: i.e. the total work δw done in an
infinitesimal virtual displacement is integrable; its integral is the work function U .
(The term ‘monogenic’ is due to Lanczos (1986, p. 30), but followed by others e.g.
Goldstein et al. (2002, p. 34).) And let us assume that the system is conservative: i.e.
the work function U is independent of both the time and the generalized velocities
q̇i, and depends only on the qi: U = U (q1, . . . , qn).
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So to sum up: let us assume that the constraints are holonomic, scleronomous and
ideal, and that the system is monogenic with a velocity-independent work-function.
Now let us define K to be the kinetic energy; i.e. in cartesian coordinates, with k now
labelling particles, K := �k

1
2mkv2

k . Let us also define V := −U to be the potential
energy, and set L := K − V . Then the above assumptions imply eq. 2.1.2

To solve mechanical problems, we need to integrate Lagrange’s equations. Recall
the idea from elementary calculus that n second-order ordinary differential equations
have a (locally) unique solution, once we are given 2n arbitrary constants.Broadly
speaking, this idea holds good for Lagrange’s equations; and the 2n arbitrary constants
can be given just as one would expect—as the initial configuration and generalized
velocities qi(t0), q̇i(t0) at time t0. More precisely: expanding the time derivatives in
eq. 2.1, we get

∂2L

∂ q̇j∂ q̇i
q̈j = − ∂2L

∂qj∂ q̇i
q̇j − ∂2L

∂t∂ q̇i
+ ∂L

∂ q̇i
(2.2)

so that the condition for being able to solve these equations to find the accelerations

at some initial time t0, q̈i(t0), in terms of qi(t0), q̇i(t0) is that the Hessian matrix ∂2L
∂ q̇i∂ q̇j

be nonsingular. Writing the determinant as | |, and partial derivatives as subscripts,
the condition is that:

∣∣∣∣
∂2L

∂ q̇j∂ q̇i

∣∣∣∣ ≡ | Lq̇j q̇i | �= 0. (2.3)

This Hessian condition holds in very many mechanical problems; and henceforth,
we assume it. (If it fails, we enter the territory of constrained dynamics; for which
cf. e.g. Henneaux and Teitelboim (1992, Chapters 1–5).) It underpins most of what
follows: for it is needed to define the Legendre transformation, by which we pass
from Lagrangian to Hamiltonian mechanics.

Of course, even with eq. 2.3, it is still in general hard in practice to solve for the
q̈i(t0): they are buried in the lhs of eq. 2.2. In (5) of Section 2.2.2, this will motivate
the move to Hamiltonian mechanics.3

Given eq. 2.3, and so the accelerations at the initial time t0, the basic theorem on the
(local) existence and uniqueness of solutions of ordinary differential equations can
be applied. (We will state this theorem in Section 3.4 in connection with Noether’s
theorem.)

By way of indicating the rich theory that can be built from eq. 2.1 and 2.3, I
mention one main aspect: the power of variational formulations. Eq. 2.1 are the
Euler-Lagrange equations for the variational problem δ

∫
L dt = 0; i.e. they are

necessary and sufficient for the action integral I = ∫
L dt to be stationary. But

variational principles will play no further role in this paper; (Butterfield 2004 is a
philosophical discussion).

But our main concern, here and throughout this paper, is how symmetries yield
conserved quantities, and thereby reduce the number of variables that need to be
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considered in solving a problem. In fact, we are already in a position to prove Noether’s
theorem, to the effect that any (continuous) symmetry of the Lagrangian L yields a
conserved quantity. But we postpone this to Section 3, until we have developed some
more notions, especially geometric ones.

We begin with the idea of generalized momenta, and the result that the general-
ized momentum of any cyclic coordinate is a constant of the motion: though very
simple, this result is the basis of Noether’s theorem. Elementary examples prompt the
definition of the generalized, or canonical, momentum, pi, conjugate to a coordinate
qi as: ∂L

∂ q̇i ; (this was first done by Poisson in 1809). Note that pi need not have the

dimensions of momentum: it will not if qi does not have the dimension length. So
Lagrange’s equations can be written:

d

dt
pi = ∂L

∂qi
; (2.4)

We say a coordinate qi is cyclic if L does not depend on qi. (The term comes from the
example of an angular coordinate of a particle subject to a central force. Another term
is: ignorable.) Then the Lagrange equation for a cyclic coordinate, qn say,becomes
ṗn = 0, implying

pn = constant, cn say. (2.5)

So: the generalized momentum conjugate to a cyclic coordinate is a constant of the
motion.

It is straightforward to show that this simple result encompasses the elementary
theorems of the conservation of momentum, angular momentum and energy: this
last corresponding to time’s being a cyclic coordinate. As a simple example, con-
sider the angular momentum of a free particle. The Lagrangian is, in spherical polar
coordinates,

L = 1

2
m
(
ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

)
(2.6)

so that ∂L/∂φ = 0. So the conjugate momentum

∂L

∂φ̇
= mr2φ̇ sin2 θ , (2.7)

which is the angular momentum about the z-axis, is conserved.

2.2 Geometrical perspective

2.2.1 Some restrictions of scope I turn to give a brief description of the elements
of Lagrangian mechanics in terms of modern differential geometry. Here ‘brief’
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indicates that:
(i) I will assume without explanation various geometric notions, in particular:

manifold, vector, 1-form (covector), metric, Lie derivative and tangent bundle.
(ii) I will disregard issues about degrees of smoothness: all manifolds, scalars,

vectors etc. will be assumed to be as smooth as needed for the context.
(iii) I will also simplify by speaking “globally, not locally”. I will speak as if the

scalars, vector fields etc. are defined on a whole manifold; when in fact all that
we can claim in application to most systems is a corresponding local statement—
because for example, differential equations are guaranteed the existence and
uniqueness only of a local solution.4

We begin by assuming that the configuration space (i.e. the constraint surface) Q
is a manifold. The physical state of the system, taken as a pair of configuration and
generalized velocities, is represented by a point in the tangent bundle TQ (also known
as ‘velocity phase space’). That is, writing Tx for the tangent space at x ∈ Q, TQ has
points (x, τ), x ∈ Q, τ ∈ Tx. We will of course often work with the natural coordinate
systems on TQ induced by coordinate systems q on Q; i.e. with the 2n coordinates
(q, q̇) ≡ (qi, q̇i).

The main idea of the geometric perspective is that this tangent bundle is the arena for
Lagrangian mechanics. So various previous notions and results are now expressed
in terms of the tangent bundle. In particular, the Lagrangian is a scalar function
L : TQ → IR which “determines everything”. And the conservation of the generalized
momentum pn conjugate to a cyclic coordinate qn, pn ≡ pn(q, q̇) = cn, means that
the motion of the system is confined to a level set p−1

n (cn): where this level set is a
(2n − 1)-dimensional sub-manifold of TQ.

But I must admit at the outset that working with TQ involves limiting our dis-
cussion to (a) time-independent Lagrangians and (b) time-independent coordinate
transformations.
(a) Recall Section 2.1’s assumptions that secured eq. 2.1. Velocity-dependent poten-

tials and-or rheonomous constraints would prompt one to use what is often called
the‘extended configuration space’ Q × IR, and-or the ‘extended velocity phase
space’ TQ × IR.

(b) So would time-dependent coordinate transformations. This is a considerable lim-
itation from a philosophical viewpoint, since it excludes boosts, which are central
to the philosophical discussion of spacetime symmetry groups, and especially of
relativity principles. To give the simplest example: the Lagrangian of a free
particle is just its kinetic energy, which can be made zero by transforming to the
particle’s rest frame; i.e. it is not invariant under boosts.

2.2.2 The tangent bundle With these limitations admitted, we now describe
Lagrangian mechanics on TQ, in five extended comments.

(1) 2n first-order equations; the Hessian again
The Lagrangian equations of motion are now 2n first-order equations for the functions
qi(t), q̇i(t), falling in to two groups:
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(a) the n equations eq. 2.2, with the q̈i taken as the time derivatives of q̇i with respect
to t; i.e. we envisage using the Hessian condition eq. 2.3 to solve eq. 2.2 for the
q̈i, hard though this usually is to do in practice;

(b) the n equations q̇i = dqi

dt .

(2) Vector fields and solutions
(a) These 2n first-order equations are equivalent to a vector field on TQ: the ‘dynam-

ical vector field’, or for short the ‘dynamics’. I write it as D (to distinguish it from
the generic vector field X , Y , . . .).

(b) In the natural coordinates (qi, q̇i), the vector field D is expressed as

D = q̇i ∂

∂qi
+ q̈i ∂

∂ q̇i
; (2.8)

and the rate of change of any dynamical variable f , taken as a scalar function on
TQ, f (q, q̇) ∈ IR, is given by

df

dt
= q̇i ∂f

∂qi
+ q̈i ∂f

∂ q̇i
= D(f ). (2.9)

(c) So the Lagrangian L determines the dynamical vector field D, and so (for given
initial q, q̇) a (locally unique) solution: an integral curve of D, 2n functions of
time q(t), q̇(t) (with the first n functions determining the latter). This separation
of solutions/trajectories within TQ is important for the visual and qualitative
understanding of solutions.

(3) Canonical momenta are 1-forms
Any point transformation, or any coordinate transformation (qi) → (q′i), in the
configuration manifold Q, induces a basis-change in the tangent space Tq at q ∈ Q.
Consider any vector τ ∈ Tq with components q̇i in coordinate system (qi) on Q, i.e.
τ = d

dt = q̇i ∂
∂qi ; (think of a motion through configuration q with generalized velocity

τ ). Its components q̇′i in the coordinate system (q′i) (i.e. τ = q̇′i ∂
∂q′i ) are given by

applying the chain rule to q′i = q′i(qk):

q̇′i ≡ ∂q′i

∂qk
q̇k . (2.10)

so that we can “drop the dots”:

∂ q̇′i

∂ q̇j
= ∂q′i

∂qj
. (2.11)

One easily checks, using eq. 2.11, that for any L, the canonical momenta pi := ∂L
∂ q̇i

form a 1-form on Q, transforming under (qi) → (q′i) by:

p′
i := ∂L′

∂ q̇′i = ∂qk

∂q′i
∂L

∂ q̇k
≡ ∂qk

∂q′i pk (2.12)
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That is, the canonical momenta defined by L form a 1-form field on Q. (We will later
describe this as a cross-section of the cotangent bundle.)

(4) Geometric formulation of Lagrange’s equations
We can formulate Lagrange’s equations in a coordinate-independent way, by using
three ingredients, namely:
(i) L itself (a scalar, so coordinate-independent);
(ii) the vector field D that L defines; and
(iii) the 1-form on TQ defined locally, in terms of the natural coordinates (qi, q̇i), by

θL := ∂L

∂ q̇i
dqi. (2.13)

(So the coefficients of θL for the other n elements of the dual basis, the dq̇i,
are defined to be zero.) This 1-form is called the canonical 1-form. We shall
see that it plays a role in Noether’s theorem, and is centre-stage in Hamiltonian
mechanics.

We combine these three ingredients using the idea of the Lie derivative of a 1-form
along a vector field.

We will write the Lie derivative of θL along the vector field D on TQ, as LDθL. (It
is sometimes written as L; but we need the symbol L for the Lagrangian—and later
on, for left translation.) By the Leibniz rule, LDθL is:

LDθL =
(

LD
∂L

∂ q̇i

)
dqi + ∂L

∂ q̇i
LD(dqi). (2.14)

But the Lie derivative of any scalar function f : TQ → IR along any vector field X
is just X (f ); and for the dynamical vector field D, this is just ḟ = ∂f

∂qi q̇
i + ∂f

∂ q̇i q̈
i. So

we have

LDθL =
(

d

dt

∂L

∂ q̇i

)
dqi + ∂L

∂ q̇i
dq̇i. (2.15)

Rewriting the first term by the Lagrange equations, we get

LDθL =
(
∂L

∂qi

)
dqi + ∂L

∂ q̇i
dq̇i ≡ dL. (2.16)

We can conversely deduce the familiar Lagrange equations from eq. 2.16, by tak-
ing coordinates. So we conclude that these equations’ coordinate-independent form is:

LDθL = dL. (2.17)

(5) Towards the Hamiltonian framework
Finally, a comment about the Lagrangian framework’s limitations as regards solving
problems, and how they prompt the transition to Hamiltonian mechanics.
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Recall the remark at the end of Section 2.1, that the n equations eq. 2.2 are in
general hard to solve for the q̈i(t0): they lie buried in the left hand side of eq. 2.2.

On the other hand, the n equations q̇i = dqi

dt (the second group of n equations in (1)
above) are as simple as can be.

This makes it natural to seek another 2n-dimensional space of variables, ξα say
(α = 1, . . . , 2n), in which:
(i) a motion is described by first-order equations, so that we have the same advantage

as in TQ that a unique trajectory passes through each point of the space; but in
which

(ii) all 2n equations have the simple form dξα

dt = fα(ξ1, . . . , ξ2n) for some set of
functions fα(α = 1, . . . , 2n).

Indeed, Hamiltonian mechanics provides exactly such a space: it is usually the
cotangent bundle of the configuration manifold, instead of its tangent bundle. But
before turning to that, we expound Noether’s theorem in the current Lagrangian
framework.

3 NOETHER’S THEOREM IN LAGRANGIAN MECHANICS

3.1 Preamble: a modest plan

Any discussion of symmetry in Lagrangian mechanics must include a treatment of
“Noether’s theorem”. The scare quotes are to indicate that there is more than one
Noether’s theorem. Quite apart from Noether’s work in other branches of mathemat-
ics, her paper (1918) on symmetries and conserved quantities in Lagrangian theories
has several theorems. I will be concerned only with applying her first theorem to
finite-dimensional systems. In short: it provides, for any continuous symmetry of a
system’s Lagrangian, a conserved quantity called the ‘momentum conjugate to the
symmetry’.

I stress at the outset that the great majority of subsequent applications and comment-
aries (also for her other theorems, besides her first) are concerned with versions of the
theorems for infinite (i.e. continuous) systems. In fact, the context of Noether’s invest-
igation was contemporary debate about how to understand conservation principles
and symmetries in the “ultimate classical continuous system”, viz. gravitating matter
as described by Einstein’s general relativity. This theory can be given a Lagrangian
formulation: that is, the equations of motion, i.e. Einstein’s field equations, can
be deduced from a Hamilton’s Principle with an appropriate Lagrangian. The con-
temporary debate was especially about the conservation of energy and the principle
of general covariance (also known as: diffeomorphism invariance). General covari-
ance prompts one to consider how a variational principle transforms under spacetime
coordinate transformations that are arbitrary, in the sense of varying from point to
point. This leads to the idea of “local” symmetries, which since Noether’s time
has been immensely fruitful in both classical and quantum physics, and in both a
Lagrangian and Hamiltonian framework.5
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So I agree that from the perspective of Noether’s work, and its enormous later devel-
opment, this Section’s application of the first theorem to finite-dimensional systems
is, as they say, “trivial”. Furthermore, this application is easily understood, without
having to adopt that perspective, or even having to consider infinite systems. In other
words: its statement and proof are natural, and simple, enough that the nineteenth
century masters of mechanics, like Hamilton, Jacobi and Poincaré, would certainly
recognize it in their own work—allowing of course for adjustments to modern lan-
guage. In fact, versions of it for the Galilei group of Newtonian mechanics and the
Lorentz group of special relativity were published a few years before Noether’s paper;
(Brading and Brown (2003, p. 90); for details, cf. Kastrup (1987)).6

Nevertheless, it is worth expounding the finite-system version of Noether’s first
theorem. For:
(i) It generalizes Section 2.1’s result about cyclic coordinates, and thereby the ele-

mentary theorems of the conservation of momentum, angular momentum and
energy which that result encompasses. The main generalization is that the the-
orem does not assume we have identified a cyclic coordinate. But on the other
hand: every symmetry in the Noether sense will arise from a cyclic coordinate in
some system q of generalized coordinates. (As we will see, this follows from the
local existence and uniqueness of solutions of ordinary differential equations.)

(ii) This exposition will also prepare the way for our discussion of symmetry and
conserved quantities in Hamiltonian mechanics.7

In this exposition, I will also discuss en passant the distinction between:
(i) the notion of symmetry at work in Noether’s theorem, i.e. a symmetry of L, often

called a variational symmetry; and
(ii) the notion of a symmetry of the set of solutions of a differential equation: often

called a dynamical symmetry. This notion applies to all sorts of differential
equations, and systems of them; not just to those with the form of Lagrange’s
equations (i.e. derivable from an variational principle). In short, this sort of sym-
metry is a map that sends any solution of the given equation(s) (in effect: a
dynamically possible history of the system—a curve in the state-space) to some
other solution. Finding such symmetries, and groups of them, is a central part
of the modern theory of integration of differential equations (both ordinary and
partial).

Broadly speaking, this notion is more general than that of a symmetry of L. Not
only does it apply to many other sorts of differential equation. Also, for Lagrange’s
equations: a symmetry of L is (with one caveat) a symmetry of the solutions, i.e. a
dynamical symmetry—but the converse is false.8

In this Section, the plan is as follows. We define:
(i) a (continuous) symmetry as a vector field (on the configuration manifold Q)

that generates a family of transformations under which the Lagrangian is
invariant;(Section 3.2);

(ii) the momentum conjugate to a vector field, as (roughly) the rate of change of the
Lagrangian with respect to the q̇s in the direction of the vector field; (Section 3.3).
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These two definitions lead directly to Noether’s theorem (Section 3.4): after all the
stage-setting, the proof will be a one-liner application of Lagrange’s equations.

3.2 Vector fields and symmetries—variational and dynamical

I need to expound three topics:
(1) the idea of a vector field on the configuration manifold Q; and how to lift it to TQ;
(2) the definition of a variational symmetry;
(3) the contrast between (2) and the idea of dynamical symmetry.

Note that, as in previous Sections, I will often speak, for simplicity, “globally, not
locally”, i.e. as if the relevant scalar functions, vector fields etc. are defined on all of
Q or TQ. Of course, they need not be.

3.2.1 Vector fields on TQ; lifting fields from Q to TQ We recall first that a differ-
entiable vector field on Q is represented in a coordinate system q = (q1, . . . , qn) by
n first-order ordinary differential equations

dqi

dε
= f i(q1, . . . , qn). (3.1)

A vector field generates a one-parameter family of active transformations: viz. pas-
sage along the vector field’s integral curves, by a varying parameter-difference ε. The
vector field is called the infinitesimal generator of the family. It is common to write
the parameter as τ , but in this Section we use ε to avoid confusion with t, which often
represents the time.

Similarly, a vector field defined on TQ corresponds to a system of 2n ordinary dif-
ferential equations, and generates an active transformation of TQ. But I will consider
only vector fields on TQ that mesh with the structure of TQ as a tangent bundle, in
the sense that they are induced by vector fields on Q, in the following natural way.

This induction has two ingredient ideas.
First, any curve in Q (representing a possible state of motion) defines a cor-

responding curve in TQ, because the functions qi(t) define the functions q̇i(t).
(Here t is the parameter of the curve.) More formally: given any curve in con-
figuration space, φ : I ⊂ IR → Q, with coordinate expression in the q-system
t ∈ I �→ q(φ(t)) ≡ q(t) = qi(t), we define its extension to TQ to be the curve

 : I ⊂ IR → TQ given in the corresponding coordinates by qi(t), q̇i(t).

Second, any vector field X on Q generates displacements in any possible state of
motion, represented by a curve in Q with coordinate expression qi = qi(t). Namely:
for a given value of the parameter ε, the displaced state of motion is represented by
the curve in Q

qi(t)+ εX i(qi(t)). (3.2)

Putting these ingredients together: we first displace a curve within Q, and then
extend the result to TQ. Namely, the extension to TQ of the (curve representing)
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the displaced state of motion is given by the 2n functions, in two groups each of n
functions, for the (q, q̇) coordinate system

qi(t)+ εX i(qi(t)) and q̇i(t)+ εY i(qi(t), q̇i); (3.3)

where Y is defined to be the vector field on TQ that is the derivative along the original
state of motion of X . That is:

Y i(q, q̇) := dX i

dt
= �j

∂X i

∂qj
q̇j . (3.4)

Thus displacements by a vector field within Q are lifted to TQ. The vector field X on
Q lifts to TQ as (X , dX

dt ); i.e. it lifts to the vector field that sends a point (qi, q̇i) ∈ TQ

to
(
qi + εX i, q̇i + ε dX i

dt

)
.9

3.2.2 The definition of variational symmetry To define variational symmetry, I
begin with the integral notion and then give the differential notion. The idea is that
the Lagrangian L, a scalar L : TQ → IR, should be invariant under all the elements
of a one-parameter family of active transformations θε : ε ∈ I ⊂ IR: at least in a
neighbourhood of the identity map corresponding to ε = 0, θ0 ≡ idU . (Here U is
some open subset of TQ, maybe not all of it.)

That is, we define the family θε : ε ∈ I ⊂ IR to be a variational symmetry of L if L
is invariant under the transformations: L = L ◦ θε , at least around ε = 0. (We could
use the correspondence between active and passive transformations to recast this
definition, and what follows, in terms of a passive notion of symmetry as sameness
of L’s functional form in different coordinate systems. I leave this as an exercise! Or
cf. Butterfield (2004a: Section 4.7.2).)

For the differential notion of variational symmetry, we of course use the idea of a
vector field. But we also impose Section 3.2.1’s restriction to vector fields on TQ that
are induced by vector fields on Q. So we define a vector field X on Q that generates
a family of active transformations θε on TQ to be a variational symmetry of L if the
first derivative of L with respect to ε is zero, at least around ε = 0. More precisely:
writing

L ◦ θε = L(qi + εX i, q̇i + εY i) with Y i = �j
∂X i

∂qj
q̇j , (3.5)

we say X is a variational symmetry iff the first derivative of L with respect to ε is
zero (at least around ε = 0). That is: X is a variational symmetry iff

�i X i ∂L

∂qi
+ �i Y i ∂L

∂ q̇i
= 0 with Y i = �j

∂X i

∂qj
q̇j . (3.6)
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3.2.3 A contrast with dynamical symmetries The general notion of a dynamical
symmetry, i.e. a symmetry of some equations of motion (whether Euler-Lagrange
or not), is not needed for Section 3.4’s presentation of Noether’s theorem. But the
notion is so important that I must mention it, though only to contrast it with variational
symmetries.

The general definition is roughly as follows. Given any system of differential
equations, E say, a dynamical symmetry of the system is an active transformation ζ
on the system E’s space of both independent variables, xj say, and dependent variables
yi say, such that any solution of E , yi = f i(xj) say, is carried to another solution. For
a precise definition, cf. Olver (2000: Def. 2.23, p. 93), and his ensuing discussion of
the induced action (called ‘prolongation’) of the transformation ζ on the spaces of
(in general, partial) derivatives of the y’s with respect to the x’s (i.e. jet spaces).

As I said in Section 3.1, groups of symmetries in this sense play a central role
in the modern theory of differential equations: not just in finding new solutions,
once given a solution, but also in integrating the equations. For some main theorems
stating criteria (in terms of prolongations) for groups of symmetries, cf. Olver (2000:
Theorem 2.27, p. 100, Theorem 2.36, p. 110, Theorem 2.71, p. 161).

But for present purposes, it is enough to state the rough idea of a one-parameter
group of dynamical symmetries (without details about prolongations!) for Lagrange’s
equations in the familiar form, eq. 2.1.

In this simple case, there is just one independent variable x := t, so that:
(a) we are considering ordinary, not partial, differential equations, with n dependent

variables yi := qi(t).
(b) prolongations correspond to lifts of maps on Q to maps on TQ; cf. Section 3.2.1.

Furthermore, in line with the discussion following Lagrange’s equations eq. 2.1,
the time-independence of the Lagrangian (time being a cyclic coordinate) means we
can define dynamical symmetries ζ in terms of active transformations on the tangent
bundle, θ : TQ → TQ, that are lifted from active transformations on Q. In effect, we
define such a map ζ by just adjoining to any such θ : TQ → TQ the identity map
on the time variable id : t ∈ IR �→ t. (More formally: ζ : (q, q̇, t) ∈ TQ × IR �→
(θ(q, q̇), t) ∈ TQ × IR.)

Then we define in the usual way what it is for a one-parameter family of such maps
ζs : s ∈ I ⊂ IR to be a (local) one-parameter group of dynamical symmetries (for
Lagrange’s equations eq. 2.1): namely, if any solution curve q(t) (equivalently: its
extension q(t), q̇(t) to TQ) of the Lagrange equations is carried by each ζs to another
solution curve, with the ζs for different s composing in the obvious way, for s close
enough to 0 ∈ I .

And finally: we also define (in a manner corresponding to the discussion at the end
of Section 3.2.2) a differential, as against integral, notion of dynamical symmetry.
Namely, we say a vector field X on Q is a dynamical symmetry if its lift to TQ
(more precisely: its lift, with the identity map on the time variable adjoined) is the
infinitesimal generator of such a one-parameter family ζs.

For us, the important point is that this notion of a dynamical symmetry is different
from Section 3.2.2’s notion of a variational symmetry.10 As I announced in Section 3.1,
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a variational symmetry is (with one caveat) a dynamical symmetry—but the converse
is false. Fortunately, the same simple example will serve both to show the subtlety
about the first implication, and as a counterexample to the converse implication. This
example is the two-dimensional harmonic oscillator.11

The usual Lagrangian is, with cartesian coordinates written as qs, and the
contravariant indices written for clarity as subscripts:

L1 = 1

2

[
q̇2

1 + q̇2
2 − ω2(q2

1 + q2
2)
]

; (3.7)

giving as Lagrange equations:

q̈i + ω2qi = 0, i = 1, 2. (3.8)

But these Lagrange equations, i.e. the same dynamics, are also given by

L2 = q̇1q̇2 − ω2q1q2. (3.9)

The rotations in the plane are of course a variational symmetry of L1, and a dynamical
symmetry of eq. 3.8. But they are not a variational symmetry of L2. So a dynamical
symmetry need not be a variational one. Besides, these equations contain another
example to the same effect. Namely, the “squeeze” transformations

q′
1 := eηq1, q′

2 := e−ηq2 (3.10)

are a dynamical symmetry of eq. 3.8, but not a variational symmetry of L1. So again:
a dynamical symmetry need not be a variational one.12

I turn to the first implication: that every variational symmetry is a dynamical
symmetry. This is true: general and abstract proofs (applying also to continuous
systems i.e. field theories) can be found in Olver (2000: theorem 4.14, p. 255; theorem
4.34, p. 278; theorem 5.53, p. 332).

But beware of a condition of the theorem. (This is the caveat mentioned at the end of
Section 3.1.) The theorem requires that all the variables q (for continuous systems: all
the fields φ) be subject to Hamilton’s Principle. The need for this condition is shown
by rotations in the plane, which are a variational symmetry of the familiar Lagrangian
L1 above. But it is easy to show that such a rotation is a dynamical symmetry of one
of the Lagrange equations, say the equation for the variable q1

q̈1 + ω2q1 = 0, (3.11)

only if the corresponding Lagrange equation holds for q2.

3.3 The conjugate momentum of a vector field

Now we define the momentum conjugate to a vector field X to be the scalar function
on TQ:

pX : TQ → IR ; pX = �i X i ∂L

∂ q̇i
(3.12)
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(For a time-dependent Lagrangian, pX would be a scalar function on TQ × IR, with
IR representing time.)

We shall see in the next Subsection’s examples that this definition generalizes in an
appropriate way Section 2.1’s definition of the momentum conjugate to a coordinate q.

But first note that it is an improvement in the sense that, while the momentum
conjugate to a coordinate q depends on the choice made for the other coordinates,
the momentum pX conjugate to a vector field X is independent of the coordinates
chosen. Though this point is not needed in order to prove Noether’s theorem, here is
the proof.

We first apply the chain-rule to L = L(q′(q), q̇′(q, q̇)) and eq. 2.11 (“cancellation
of the dots”), to get

∂L

∂ q̇i
= �j

∂L

∂ q̇′j
∂ q̇′j

∂ q̇i
= �j

∂L

∂ q̇′j
∂q′j

∂qi
. (3.13)

Then using the transformation law for components of a vector field

X ′i = �j
∂q′i

∂qj
X j . (3.14)

and relabelling i and j, we deduce:

p′
X = �i X ′i ∂L

∂ q̇′i

= �ij X j ∂q′i

∂qj

∂L

∂ q̇′i = �ij X i ∂q′j

∂qi

∂L

∂ q̇′j = �i X i ∂L

∂ q̇i
≡ pX . (3.15)

Finally, I remark incidentally that in the geometric formulation of Lagrangian mech-
anics (Section 2.2) , the coordinate-independence of pX becomes, unsurprisingly,
a triviality. Namely: pX is obviously the contraction of X as lifted to TQ with the
canonical1-form on TQ that we defined in eq. 2.13:

θL := ∂L

∂ q̇i
dqi. (3.16)

We will return to this at the end of Section 3.4.1.

3.4 Noether’s theorem; and examples

Given just the definition of conjugate momentum, eq. 3.12, the proof of Noether’s
theorem isimmediate. (The interpretation and properties of this momentum, discussed
in the last Subsection, are not needed.) The theorem says:

Noether’s theorem for Lagrangian mechanics If X is a (variational) symmetry of a
system with Lagrangian L(q, q̇, t), then X ’s conjugate momentum is a constant of the
motion.
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Proof: We just calculate the derivative of the momentum eq. 3.12 along the
solution curves in TQ, and apply Lagrange’s equations and the definitions of Y i, and
of symmetry eq. 3.6:

dp

dt
= �i

dX i

dt

∂L

∂ q̇i
+ �i X i d

dt

(
∂L

∂ q̇i

)
(3.17)

= �i Y i ∂L

∂ q̇i
+ �i X i ∂L

∂qi
= 0. QED.

Examples: This proof, though neat, is a bit abstract! So here are two examples, both
of which return us to examples we have already seen.

(1) The first example is a shift in a cyclic coordinate qn: i.e. the case with which
our discussion of Noether’s theorem began at the end of Section 2.1. So suppose qn

is cyclic, and define a vector field X by

X 1 = 0, . . . , X n−1 = 0, X n = 1. (3.18)

So the displacements generated by X are translations by an amount ε in the

qn-direction. Then Y i := dX i

dt vanishes, and the definition of (variational) symmetry
eq. 3.6 reduces to

∂L

∂qn
= 0. (3.19)

So since qn is assumed to be cyclic, X is a symmetry. And the momentum conjugate
to X , which Noether’s theorem tells us is a constant of the motion, is the familiar one:

pX := �i X i ∂L

∂ q̇i
= ∂L

∂ q̇n
. (3.20)

As mentioned in Section 3.1, this example is universal, in that every symmetry
X arises, around any point where X is non-zero, from a cyclic coordinate in some
local system of coordinates. This follows from the basic theorem about the local
existence and uniqueness of solutions of ordinary differential equations. We can state
the theorem as follows; (cf. e.g. Arnold (1973: 48–49, 77–78, 249–250), Olver (2000:
Prop 1.29)).

Consider a system of n first-order ordinary differential equations on an open subset
U of an n-dimensional manifold

q̇i = X i(q) ≡ X i(q1, . . . , qn), q ∈ U ; (3.21)

equivalently, a vector field X on U . Let q0 be a non-singular point of the vector
field, i.e. X (q0) �= 0. Then in a sufficiently small neighbourhood V of q0, there is a
coordinate system (formally, a diffeomorphism f : V → W ⊂ IRn) such that, writing
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yi : IRn → IR for the standard coordinates on W and ei for the ith standard basis
vector of IRn, eq. 3.21 goes into the very simple form

ẏ = en; i.e. ẏn = 1, ẏ1 = ẏ2 = · · · = ẏn−1 = 0 in W . (3.22)

(In terms of the tangent map (also known as: push-forward) f∗ on tangent vectors that
is induced by f : f∗(X ) = en in W .) On account of eq. 3.22’s simple form, Arnold
suggests the theorem might well be called the ‘rectification theorem’.

We should note two points about the theorem:
(i) The rectifying coordinate system f may of course be very hard to find. So the

theorem by no means makes all problems “trivially soluble”; cf. again footnote 4.
(ii) The theorem has an immediate corollary about local constants of the motion.

Namely: n first-order ordinary differential equations have, locally, n − 1 func-
tionally independent constants of the motion (also known as: first integrals). They
are given, in the above notation, by y1, . . . , yn−1.

We now apply the rectification theorem, so as to reverse the reasoning in the above
example of qn cyclic. That is: assuming X is a symmetry, let us rectify it—i.e. let us

pass to a coordinate system (q) such that eq. 3.18 holds. Then, as above, Y i := dX i

dt
vanishes; and X ’s being a (variational) symmetry, eq. 3.6, reduces to qn being cyclic;
and the momentum conjugate to X , pX reduces to the familiar conjugate momentum
pn = ∂L

∂ q̇n . Thus every symmetry X arises locally from a cyclic coordinate qn and the
corresponding conserved momentum is pn. (But note that this may hold only “very
locally”: the domain V of the coordinate system f in which X generates displacements
in the direction of the cyclic coordinate qn can be smaller than the set U on which X
is a symmetry.)

In Section 5.3, the fact that every symmetry arises locally from a cyclic coordinate
will be important for understanding the Hamiltonian version of Noether’s theorem.

(2) Let us now look at our previous example, the angular momentum of a free
particle (eq. 2.6), in the cartesian coordinate system, i.e. a coordinate system without
cyclic coordinates. So let q1 := x, q2 := y, q3 := z. (In this example, subscripts will
again be a bit clearer.) Then a small rotation about the x-axis

δx = 0, δy = −εz, δz = εy (3.23)

corresponds to a vector field X with components

X1 = 0, X2 = −q3, X3 = q2 (3.24)

so that the Yi are

Y1 = 0, Y2 = −q̇3, X3 = q̇2. (3.25)

For the Lagrangian

L = 1

2
m
(
q̇2

1 + q̇2
2 + q̇2

3

)
(3.26)
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X is a (variational) symmetry since the definition of symmetry eq. 3.6 now reduces to

�i Xi
∂L

∂qi
+ �i Yi

∂L

∂ q̇i
= −q̇3

∂L

∂ q̇2
+ q̇2

∂L

∂ q̇3
= 0. (3.27)

So Noether’s theorem then tells us that X ’s conjugate momentum is

pX := �i Xi
∂L

∂ q̇i
= X2

∂L

∂ q̇2
+ X3

∂L

∂ q̇3
= −mzẏ + myż (3.28)

which is indeed the x-component of angular momentum.

3.4.1 A geometrical formulation We can give a geometric formulation of
Noether’s theorem by using the vanishing of the Lie derivative to express constancy
along the integral curves of a vector field. There are two vector fields on TQ to con-
sider: the dynamical vector field D (cf. eq. 2.8), and the lift to TQ of the vector field
X that is the variational symmetry.

I will now write X̄ for this lift. So given the vector field X on Q

X = X i(q)
∂

∂qi
, (3.29)

the lift X̄ of X to TQ is, by eq. 3.4,

X̄ = X i(q)
∂

∂qi
+ ∂X i(q)

∂qj
q̇j ∂

∂ q̇i
, (3.30)

where the q argument of X i emphasises that the X i do not depend on q̇.
That X is a variational symmetry means that in TQ, the Lie derivative of L along

the lift X̄ vanishes: LX̄ L = 0. On the other hand, we know from eq. 3.16 that the
momentum pX conjugate to X is the contraction<;> of X̄ with the canonical 1-form
θL := ∂L

∂ q̇i dqi on TQ:

pX := X i ∂L

∂ q̇i
≡ < X̄ ; θL > . (3.31)

So Noether’s theorem says:

If LX̄ L = 0, then LD < X̄ ; θL >= 0.

Note finally that eq. 3.31 shows that the theorem has no converse. That is: given
that a dynamical variable p : TQ → IR is a constant of the motion, LDp = 0, there
is no single vector field X̄ on TQ such that p =< X̄ ; θL >. For given such a X̄ ,
one could get another by adding any field Ȳ for which < Ȳ ; θL >= 0. However, we
will see in Section 5.2 that in Hamiltonian mechanics a constant of the motion does
determine a corresponding vector field on the state space.
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4 HAMILTONIAN MECHANICS INTRODUCED

4.1 Preamble

From now on this paper adopts the Hamiltonian framework. As we shall see,
its description of symmetry and conserved quantities is in various ways more
straightforward and powerful than that of the Lagrangian framework.

The main idea is to replace the q̇s by the canonical momenta, the ps. More generally,
the state-space is no longer the tangent bundle TQ but a phase space �, which we take
to be the cotangent bundle T ∗Q. (Here, the phrase ‘we take to be’ just signals the fact
that eventually, in Section 6.8, we will glimpse a more general kind of Hamiltonian
state-space, viz. Poisson manifolds.)

Admittedly, the theory on TQ given by Lagrange’s equations eq. 2.1 is equivalent to
the Hamiltonian theory on T ∗Q given by eq. 4.5 below, once we assume the Hessian
condition eq. 2.3.

But of course, theories can be formally equivalent, but different as regards their
power for solving problems, their heuristic value and even their interpretation. In
our case, two advantages of Hamiltonian mechanics over Lagrangian mechanics
are commonly emphasised. (i) The first concerns its greater power or flexibility for
describing a given system, that Lagrangian methods can also describe (and so its
greater power for solving problems about such a system). (ii) The second concerns
the broader idea of describing other systems. In more detail:
(i) Hamiltonian mechanics replaces the group of point transformations, q → q′ on

Q, together with their lifts to TQ, by a “corresponding larger” group of trans-
formations on �, the group of canonical transformations (also known as, for the
standard case where � = T ∗Q: the symplectic group).

This group “corresponds” to the point transformations (and their lifts) in that while
for any Lagrangian L, Lagrange’s equations eq. 2.1 are covariant under all the point
transformations, Hamilton’s equations eq. 4.5 below are (for any Hamiltonian H )
covariant under all canonical transformations. And it is a “larger” group because:
(a) any point transformation together with its lift to TQ is a canonical transformation:

(more precisely: it naturally defines a canonical transformation on T ∗Q);
(b) not every canonical transformation is thus induced by a point transformation;

for a canonical transformation can “mix” the qs and ps in a way that point
transformations and their lifts cannot.

There is a rich and multi-faceted theory of canonical transformations, to which there
are three main approaches—generating functions, integral invariants and symplectic
geometry. I will adopt the symplectic approach, but not need many details about it. In
particular, we will need only a few details about how the “larger” group of canonical
transformations makes for a more powerful version of Noether’s theorem.
(ii) The Hamiltonian framework connects analytical mechanics with other fields of

physics, especially statistical mechanics and optics. The first connection goes
via canonical transformations, especially using the integral invariants approach.
The second connection goes via Hamilton-Jacobi theory; (for a philosopher’s
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exposition, with an eye on quantum theory, cf. Butterfield (2004b: especially
Sections 7–9)).13

With its theme of symmetry and conservation, this paper will illustrate (i), greater
power in describing a given system, rather than (ii), describing other systems. As to
(i), we will see two main ways in which the Hamiltonian framework is more powerful
than the Lagrangian one. First, cyclic coordinates will “do more work for us” (Section
4.2). Second, the Hamiltonian version of Noether’s theorem is both: more powerful,
thanks to the use of the “larger” group of canonical transformations; and more easily
proven, thanks to the use of Poisson brackets (Section 5).

So from now on, the broad plan is as follows. After Section 4.2’s deduction of
Hamilton’s equations, Section 4.3 introduces symplectic structure, starting from the
“naive” form of the symplectic matrix. Section 5 presents Poisson brackets, and
the Hamiltonian version of Noether’s theorem. Finally, Section 6 gives a geometric
perspective, corresponding to Section 2.2’s geometric perspective on the Lagrangian
framework.

4.2 Hamilton’s equations

4.2.1 The equations introduced Recall the vision in (5) of Section 2.2.2: that we
seek 2n new variables, ξα say, α = 1, . . . , 2n in which Lagrange’s equations take the
simple form

dξα

dt
= fα(ξ

1, . . . ξ2n). (4.1)

We can find the desired variables ξα by using the canonical momenta

pi := ∂L

∂ q̇i
=: Lq̇i , (4.2)

to write the 2n Lagrange equations as

dpi

dt
= ∂L

dqi
;

dqi

dt
= q̇i. (4.3)

These are of the desired simple form, except that the right hand sides need to be written
as functions of (q, p, t) rather than (q, q̇, t). (Here and in the next two paragraphs,
we temporarily allow time-dependence, since the deduction is unaffected: the time
variable is “carried along unaffected”. In the terms of Section 2.1, this means allowing
non-scleronomous constraints and a time-dependent work-function U .)

For the second group of n equations, this is in principle straightforward, given
our assumption of a non-zero Hessian, eq. 2.3. This implies that we can invert eq.
4.2 so as to get the n q̇i as functions of (q, p, t). We can then apply this to the first
group of equations; i.e. we substitute q̇i(q, p, t)wherever q̇i appears in any right hand
side ∂L

dqi .
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But we need to be careful: the partial derivative of L(q, q̇, t)with respect to qi is not
the same as the partial derivative of L̂(q, p, t) := L(q, q̇(q, p, t), t) with respect to qi,
since the first holds fixed the q̇s, while the second holds fixed the ps. A comparison
of these partial derivatives leads, with algebra, to the result that if we define the
Hamiltonian function by

H (q, p, t) := piq̇
i(q, p, t)− L̂(q, p, t) (4.4)

then the 2n equations eq. 4.3 go over to Hamilton’s equations

dpi

dt
= −∂H

∂qi
;

dqi

dt
= ∂H

∂pi
. (4.5)

So we have cast our 2n equations in the simple form, dξα

dt = fα(ξ1, . . . ξ2n), requested
in (5) of Section 2.2. More explicitly: defining

ξα = qα , α = 1, . . . , n; ξα = pα−n, α = n + 1, . . . , 2n (4.6)

Hamilton’s equations become

ξ̇ α = ∂H

∂ξα+n
, α = 1, . . . , n; ξ̇ α = − ∂H

∂ξα−n
, α = n + 1, . . . , 2n.

(4.7)

To sum up: a single function H determines, through its partial derivatives, the
evolution of all the qs and ps—and so, the evolution of the state of the system.

4.2.2 Cyclic coordinates in the Hamiltonian framework Just from the form of
Hamilton’s equations, we can immediately see a result that is significant for our
theme of how symmetries and conserved quantities reduce the number of vari-
ables involved in a problem. In short, we can see that with Hamilton’s equations
in hand, cyclic coordinates will “do more work for us” than they do in the Lagrangian
framework.

More specifically, recall the basic Lagrangian result from the end of Section 2.1,
that the generalized momentum pn := ∂L

∂ q̇n is conserved if, indeed iff, its conjug-

ate coordinate qn is cyclic, ∂L
∂qn = 0. And recall from Section 3.4 that this result

underpinned Noether’s theorem in the precise sense of being “universal” for it. Cor-
responding results hold in the Hamiltonian framework—but are in certain ways more
powerful.

Thus we first observe that the transformation “from the q̇s to the ps”, i.e. the
transition between Lagrangian and Hamiltonian frameworks, does not involve the
dependence on the qs. More precisely: partially differentiating eq. 4.4 with respect
to qn, we obtain

∂H

∂qn
≡ ∂H

∂qn
|p;qi ,i �=n = − ∂L

∂qn
≡ − ∂L

∂qn
|q̇;qi ,i �=n . (4.8)
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(The other two terms are plus and minus pi
∂ q̇i

∂qn , and so cancel.) So a coordinate qn

that is cyclic in the Lagrangian sense is also cyclic in the obvious Hamiltonian sense,
viz. that ∂H

∂qn = 0. But by Hamilton’s equations, this is equivalent to ṗn = 0. So we
have the result corresponding to the Lagrangian one: pn is conserved iff qn is cyclic
(in the Hamiltonian sense).

We will see in Section 5.3 that this result underpins the Hamiltonian version of
Noether’s theorem; just as the corresponding Lagrangian result underpinned the
Lagrangian version of Noether’s theorem (cf. discussion after eq. 3.20).

But we can already see that this result gives the Hamiltonian formalism an advant-
age over the Lagrangian. In the latter, the generalized velocity corresponding to a
cyclic coordinate, qn will in general still occur in the Lagrangian. The Lagrangian
will be L(q1, . . . , qn−1, q̇1, . . . , q̇n, t), so that we still face a problem in n variables.

But in the Hamiltonian formalism, pn will be a constant of the motion, α say, so
that the Hamiltonian will be H (q1, . . . , qn−1, p1, . . . , pn−1,α, t). So we now face a
problem in n − 1 variables, α being simply determined by the initial conditions. That
is: after solving the problem in n − 1 variables, qn is determined just by quadrature:
i.e. just by integrating (perhaps numerically) the equation

q̇n = ∂H

∂α
, (4.9)

where, thanks to having solved the problem in n − 1 variables, the right-hand side is
now an explicit function of t.

This result is very simple. But it is an important illustration of the power of the
Hamiltonian framework. Indeed, Arnold remarks (1989: 68) that ‘almost all the
solved problems in mechanics have been solved by means of’ it!

No doubt his point is, at least in part, that this result underpins the Hamiltonian
version of Noether’s theorem. But I should add that the result also motivates the study
of various notions related to the idea of cyclic coordinates, such as constants of the
motion being in involution (i.e. having zero Poisson bracket with each other), and a
system being completely integrable (in the sense of Liouville). These notions have
played a large part in the way that Hamiltonian mechanics has developed, especially
in its theory of canonical transformations. And they play a large part in the way
Hamiltonian mechanics has solved countless problems. But as announced in Section
4.1, this paper will not go into these aspects of Hamiltonian mechanics, since they
are not needed for our theme of symmetry and conservation; (for a philosophical
discussion of these aspects, cf. Butterfield 2005).

4.2.3 The Legendre transformation and variational principles To end this Sub-
section, I note two aspects of this transition from Lagrange’s equations to Hamilton’s.
For, although I shall not need details about them, they each lead to a rich theory:
(i) The transformation “from the q̇s to the ps” is the Legendre transformation. It has a

striking geometric interpretation. In the simplest case, it concerns the fact that one
can describe a smooth convex real function y = f (x), f ′′(x) > 0, not by the pairs
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of its arguments and values (x, y), but by the pairs of its gradients at points (x, y)
and the intercepts of its tangent lines with the y-axis. Given the non-zero Hessian
(eq. 2.3), one readily proves various results: e.g. that the geometric interpretation
extends to higher dimensions, and that the transformation is self-inverse, i.e. its
square is the identity. For details, cf. e.g.: Arnold (1989: Chapters 3.14, 9.45.C),
Courant and Hilbert (1953: Chapter IV.9.3; 1962, Chapter I.6), José and Saletan
(1998: 212–217), Lanczos (1986: Chapter VI.1-4). The Legendre transformation
is also described using modern geometry’s idea of a fibre derivative; as we will
see briefly in Section 6.7.

(ii) The transition to Hamilton’s equations has achieved more than we initially sought
with our eq. 4.1. Namely: all the fα , all the right hand sides in Hamilton’s
equations, are up to a sign, partial derivatives of a single function H . In the
Hamiltonian framework, it is precisely this feature that underpins the possibility
of expressing the equations of motion by variational principles; (of course, the
Lagrangian framework has a corresponding feature). But as I mentioned, this
paper does not discuss variational principles; for details cf. e.g. Lanczos (1986:
Chapter VI.4) and Butterfield (2004: especially Section 5.2).

To sum up this introduction to Hamilton’s equations:— Even once we set aside
(i) and (ii), these equations mark the beginning of a rich and multi-faceted theory.
At the centre lies the 2n-dimensional phase space � coordinatized by the qs and ps:
or more precisely, as we shall see later, the cotangent bundle T ∗Q. The structure of
Hamiltonian mechanics is encoded in the structure of�, and thereby in the coordinate
transformations on � that preserve this structure, especially the form of Hamilton’s
equations: the canonical transformations. As I mentioned in Section 4.1, these trans-
formations can be studied from three main perspectives: generating functions, integral
invariants and symplectic structure—but I shall only need the last.

4.3 Symplectic forms on vector spaces

I shall introduce symplectic structure by giving Hamilton’s equations a yet more
symmetric appearance. This will lead to some elementary ideas about area in IRm and
symplectic forms on vector spaces: ideas which will later be “made local” by taking
the relevant copy of IRm to be the tangent space at a point of a manifold. (As usually
formulated, Hamiltonian mechanics is especially concerned with the case m = 2n.)

4.3.1 Time-evolution from the gradient of H Writing 1 and 0 for the n×n identity
and zero matrices respectively, we define the 2n × 2n symplectic matrix ω by

ω :=
(

0 1
−1 0

)
. (4.10)

ω is antisymmetric, and has the properties, writing ˜ for the transpose of a matrix,
that

ω̃ = −ω = ω−1 so that ω2 = −1; also det ω = 1. (4.11)
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Usingω, Hamilton’s equations eq. 4.7 get the more symmetric form, in matrix notation

ξ̇ = ω
∂H

∂ξ
. (4.12)

In terms of components, writing ωαβ for the matrix elements of ω, and defining
∂α := ∂/∂ξα , eq. 4.7 become

ξ̇ α = ωαβ∂βH . (4.13)

Eq. 4.12 and 4.13 show how ω forms, from the naive gradient (column vector) ∇H
of H on the phase space � of qs and ps, the vector field on � that gives the system’s
evolution: the Hamiltonian vector field, often written XH . At a point z = (q, p) ∈ �,
eq. 4.12 can be written

XH (z) = ω∇H (z). (4.14)

The vector field XH is also written as D (for ‘dynamics’), on analogy with the
Lagrangian framework’s vector field D of eq. 2.8 in Section 2.2.

In Section 6, we will see how this definition of a vector field from a gradient, i.e. a
covector or 1-form field, arises from�’s being a cotangent bundle. More precisely, we
will see that any cotangent bundle has an intrinsic symplectic structure that provides,
at each point of the base-manifold, a natural i.e. basis-independent isomorphism
between the tangent space and the cotangent space. For the moment, we:
(i) note a geometric interpretation of ω in terms of area (Section 4.3.2); and then
(ii) generalize the above discussion of ω into the definition of a symplectic form for

a fixed vector space (Section 4.3.3).

4.3.2 Interpretation in terms of areas Let us begin with the simplest possible case:
IR2 � (q, p), representing the phase space of a particle constrained to one spatial
dimension. Here, the 2 × 2 matrix

ω :=
(

0 1
−1 0

)
(4.15)

defines the antisymmetric bilinear form on IR2:

A : ((q1, p1), (q
2, p2)) ∈ IR2 × IR2 �→ q1p2 − q2p1 ∈ IR (4.16)

since

q1p2 − q2p1 = (
q1 p1

) ( 0 1
−1 0

) (
q2

p2

)
= det

(
q1 q2

p1 p2

)
.

(4.17)
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It is easy to prove that A((q1, p1), (q2, p2)) ≡ q1p2 − q2p1 is the signed area of the
parallelogram spanned by (q1, p1), (q2, p2), where the sign is positive (negative) if
the shortest rotation from (q1, p1) to (q2, p2) is anti-clockwise (clockwise).

Similarly in IR2n: the matrix ω of eq. 4.10 defines an antisymmetric bilinear
form on IR2n whose value on a pair (q, p) ≡ (q1, . . . qn; p1, . . . , pn), (q′, p′) ≡
(q′1, . . . q′n; p′

1, . . . , p′
n) is the sum of the signed areas of the n parallelograms formed

by the projections of the vectors (q, p), (q′, p′) onto the n pairs of coordinate planes
labelled 1, . . . , n. That is to say, the value is:

n∑

i=1

qip′
i − q′ipi. (4.18)

This induction of bilinear forms from antisymmetric matrices can be generalized:
there is a one-to-one correspondence between forms and matrices. In more detail:
there is a one-to-one correspondence between antisymmetric bilinear forms on IR2

and antisymmetric 2×2 matrices. It is easy to check that any such form,ω say, is given,
for any basis v, w of IR2, by the matrix

( 0
−ω(v,w)

ω(v,w)
0

)
. Similarly for any integer

n: one easily shows that there is a one-to-one correspondence between antisymmetric
bilinear forms on IRn and antisymmetric n × n matrices. (In Hamiltonian mechanics
as usually formulated, we consider the case where n is even and the matrix is non-
singular, as in eq. 4.10. But when one generalizes to Poisson manifolds (cf. Section
6.8) one allows n to be odd, and the matrix to be singular.)

This geometric interpretation of ω is important for two reasons.
(i) The first reason is that the idea of an antisymmetric bilinear form on a copy

of IR2n is the main part of the definition of a symplectic form, which is the central
notion in the usual geometric formulation of Hamiltonian mechanics. More details in
Section 4.3.3, for a fixed copy of IR2n; and in Section 6, where the form is defined
on many copies of IR2n, each copy being the tangent space at a point in the cotangent
bundle T ∗Q.

(ii) The second reason is that the idea of (signed) area underpins the theory of
forms (1-forms, 2-forms etc.): i.e. antisymmetric multilinear functions on products of
copies of IRn. And when these copies of IRn are copies of the tangent space at (one and
the same) point in a manifold, these forms lead to the whole theory of integration on
manifolds. One needs this theory in order to make rigorous sense of any integration on
a manifold beyond the most elementary (i.e. line-integrals); so it is crucial for almost
any mathematical or physical theory using manifolds. In particular, it is crucial for
Hamiltonian mechanics. So no wonder the maestro says that ‘Hamiltonian mechanics
cannot be understood without differential forms’ (Arnold 1989, p. 163).

However, it turns out that this paper will not need many details about forms and the
theory of integration. This is essentially because we focus only on solving mechanical
problems, and simplifying them by appeals to symmetry. This means we will focus on
line-integrals: viz. integrating with respect to time the equations of motion; or equi-
valently, integrating the dynamical vector field on the state space. We have already
seen this vector field as XH in eq. 4.14; and we will see it again, for example in terms
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of Poisson brackets (eq. 5.14), and in geometric terms (Section 6). But throughout,
the main idea will be as suggested by eq. 4.14: the vector field is determined by the
symplectic matrix, “at” each point in the manifold �, acting on the gradient of the
Hamiltonian function H .

So in short: focussing on line-integrals enables us to side-step most of the theory
of forms.14

4.3.3 Bilinear forms and associated linear maps We now generalize from the
symplectic matrix ω to a symplectic form; in five extended comments.

(1) Preliminaries:
Let V be a (real finite-dimensional) vector space, with basis e1, . . . , ei, . . . en. We
write V ∗ for the dual space, and e1, . . . , ei, . . . en for the dual basis: ei(ej) := δi

j .

We recall that the isomorphism ei �→ ei is basis-dependent: for a different basis,
the corresponding isomorphism would be a different map. Only with the provision
of appropriate extra structure would this isomorphism be basis-independent.

For physicists, the most familiar example of such a structure is the spacetime metric
g in relativity theory. In terms of components, this basis-independence shows up in
the way that g and its inverse lower and raise indices. As we will see in a moment,
the underlying mathematical point is that because g is a bilinear form on a vector
space V , i.e. g : V × V → IR, and is non-degenerate, any v ∈ V defines, inde-
pendently of any choice of basis, an element of V ∗: viz. the map u ∈ V �→ g(u, v).
(In fact, V is the tangent space at a spacetime point; but this physical interpreta-
tion is irrelevant to the mathematical argument.) We will also see that Hamiltonian
mechanics has a non-degenerate bilinear form, viz. a symplectic form, that similarly
gives a basis-independent isomorphism between a vector space and its dual. (Roughly
speaking, this vector space will be the 2n-dimensional space of the qs and ps.)

On the other hand: for any vector space V , the isomorphism between V and V ∗∗
given by

ei �→ [ei] ∈ V ∗∗ : ej ∈ V ∗ �→ ej(ei) = δ
j
i (4.19)

is basis-independent, and so we identify ei with [ei], and V with V ∗∗. We will write
< ; > (also written < , >) for the natural pairing (in either order) of V and V ∗: e.g.
< ei ; ej > = < ej ; ei > = δ

j
i .

A linear map A : V → W induces (basis-independently) a transpose (aka: dual),
written Ã (or AT or A∗), Ã : W ∗ → V ∗ by

∀α ∈ W ∗, ∀v ∈ V : Ã(α)(v) ≡ < Ã(α) ; v > := α(A(v)) ≡ (α◦A)(v).

(4.20)

If A : V → W is a linear map between real finite-dimensional vector spaces, its
matrix with respect to bases e1, . . . , ei, . . . en and f1, . . . , fj , . . . fm of V and W is given
by:

A(ei) = Aj
ifj; i.e. with v = viei, (A(v))j = Aj

iv
i. (4.21)



ON SYMMETRY AND CONSERVED QUANTITIES 69

So the upper index labels rows, and the lower index labels columns. Similarly, if
A : V × W → IR is a bilinear form, its matrix for these bases is defined as

Aij := A(ei, fj) (4.22)

so that on vectors v = viei, w = wjfj , we have: A(v, w) = viAijwj .

(2) Associated maps and forms:
Given a bilinear form A : V × W → IR, we define the associated linear map
A� : V → W ∗ by

A�(v)(w) := A(v, w). (4.23)

Then A�(ei) = Aijf j: for both sides send any w = wjfj to Aijwj . That is: the matrix of
A� in the bases ei, f j of V and W ∗ is Aij:

[A�]ij = Aij . (4.24)

On the other hand, we can proceed from linear maps to associated bilinear forms.
Given a linear map B : V → W ∗, we define the associated bilinear form B� on
V × W ∗∗ ∼= V × W by

B�(v, w) = < B(v) ; w > . (4.25)

If we put A� for B in eq. 4.25, its associated bilinear form, acting on vectors v =
viei, w = wjfj , yields, by eq. 4.23:

(A�)�(v, w) = < A�(v); w > = A(v, w). (4.26)

One similarly shows that if B : V → W ∗, then ∀w ∈ W :

(B�)�(v)(w) ≡< (B�)�(v); w > = B(v)(w)

≡< B(v); w > so that (B�)� = B. (4.27)

So the flat and sharp operations, � and �, are inverses.

(3) Tensor products:
It will sometimes be helpful to put the above ideas in terms of tensor products. If
v ∈ V , w ∈ W , we can think of v and w as elements of V ∗∗, W ∗∗ respectively. So
we define their tensor product as a bilinear form on V ∗ × W ∗ by requiring for all
α ∈ V ∗,β ∈ W ∗:

(v ⊗ w)(α,β) := v(α)w(β) ≡ < v ; α >< w ; β > . (4.28)

Similarly for other choices of vector spaces or their duals. Given α ∈ V ∗,β ∈ W ∗,
their tensor product is a bilinear form on V × W :

(α ⊗ β)(v, w) := α(v)β(w) ≡ < v ; α >< w ; β > . (4.29)
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Similarly, we can think of α ∈ V ∗, w ∈ W as elements of V ∗ and W ∗∗ respectively,
and so define their tensor product as a bilinear form on V × W ∗:

(α ⊗ w)(v,β) := α(v)w(β) ≡ < v ; α >< w ; β > . (4.30)

In this way we can express the linear map A : V → W in terms of tensor products.
Since

A(ei) = Aj
ifj iff < A(ei); f j > = Aj

i (4.31)

eq. 4.30 implies that

A = Aj
i ei ⊗ fj . (4.32)

Similarly, a bilinear form A : V ×W → IR with matrix Aij := A(ei, fj) (cf. eq. 4.22) is:

A = Aij ei ⊗ f j (4.33)

The definitions of tensor product eq. 4.28, 4.29 and 4.30 generalize to higher-rank
tensors (i.e. multilinear maps whose domains have more than two factors). But we
will not need these generalizations.

(4) Antisymmetric and non-degenerate forms:
We now specialize to the forms and maps of central interest in Hamiltonian mechanics.
We take W = V , dim(V )=n, and define a bilinear form ω : V × V → IR to be:
(i) antisymmetric iff: ω(v, v′) = −ω(v, v′);
(ii) non-degenerate iff: if ω(v, v′) = 0 ∀v′ ∈ V , then v = 0.
The form ω and its associated linear map ω� : V → V ∗ now have a square matrix
ωij (cf. eq. 4.24). We define the rank of ω to be the rank of this matrix: equivalently,
the dimension of the range ω�(V ).

We will also need the antisymmetrized version of eq. 4.29 that is definable when
W = V . Namely, we define the wedge-product of α,β ∈ V ∗ to be the antisymmetric
bilinear form on V , given by

α ∧ β : (v, w) ∈ V × V �→ (α(v))(β(w))− (α(w))(β(v)) ∈ IR . (4.34)

(The connection with Section 4.3.2, especially eq. 4.18, will become clear in a
moment; and will be developed in Section 6.2.1.)

It is easy to show that for any bilinear form ω : V × V → IR: ω is non-degenerate
iff the matrix ωij is non-singular iff ω� : V → V ∗ is an isomorphism.

So a non-degenerate bilinear form establishes a basis-independent isomorphism
between V and V ∗; cf. the discussion of the spacetime metric g in (1) at the start of
this Subsection.

Besides, this isomorphism ω� has an inverse, suggesting another use of the sharp
notation, viz. ω� is defined to be (ω�)−1 : V ∗ → V . The isomorphism ω� : V ∗ → V
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corresponds to ω’s role, emphasised in Section 4.3.1, of defining a vector field XH

from dH . (But we will see in a moment that the space V implicitly considered in
Section 4.3.1 had more structure than being just any finite-dimensional real vector
space: viz. it was of the form W × W ∗.)

NB: This definition of � is of course not equivalent to our previous definition, in
eq. 4.25, since:
(i) on our previous definition, � carried a linear map to a bilinear form, which

reversed the passage by � from bilinear form to linear map, in the sense that for
a bilinear form ω, we had (ω�)� = ω; cf. eq. 4.26;

(ii) on the present definition, � carries a bilinear form ω : V × V → IR to a linear
map ω� : V ∗ → V , which inverts � in the sense (different from (i)) that

ω� ◦ ω� = idV and ω� ◦ ω� = idV ∗ . (4.35)

So beware: though not equivalent, both definitions are used! But it is a natural

ambiguity, in so far as the definitions “mesh”. For example, one easily shows that
our second definition, i.e. eq. 4.35, is equivalent to a natural expression:

∀α,β ∈ V ∗ : < ω�(α),β > := ω((ω�)−1(α), (ω�)−1(β)). (4.36)

It is also straightforward to show that for any bilinear form ω : V × V → IR: if
ω is antisymmetric of rank r ≤ n ≡ dim(V ), then r is even. That is: r = 2s for
some integer s, and there is a basis e1, . . . , ei, . . . , en of V for which ω has a simple
expansion as wedge-products

ω =
s∑

i=1

ei ∧ ei+s; (4.37)

equivalently, ω has the n × n matrix

ω =
⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ (4.38)

where 1 is the s×s identity matrix, and similarly for the zero matrices of various sizes.
This normal form of antisymmetric bilinear forms is an analogue of the Gram-Schmidt
theorem that an inner product space has an orthonormal basis, and is proved by an
analogous argument.

(5) Symplectic forms:
As usually formulated, Hamiltonian mechanics uses a non-degenerate antisymmetric
bilinear form: i.e. r = n. So eq. 4.38 loses its bottom row and right column consisting
of zero matrices, and reduces to the form of Section 4.3.1’s naive symplectic matrix,
eq. 4.10. Equivalently: eq. 4.37 reduces to eq. 4.18.

Accordingly, we define: a symplectic form on a (real finite-dimensional) vec-
tor space Z is a non-degenerate antisymmetric bilinear form ω on Z : ω : Z ×
Z → IR. Z is then called a symplectic vector space. It follows that Z is of even
dimension.
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Besides, in Hamiltonian mechanics (as usually formulated) the vector space Z is a
product V ×V ∗ of a vector space and its dual. Indeed, this was already suggested by:
(i) the fact in (3) of Section 2.2.2, that the canonical momenta pi := ∂L

∂ q̇i transform

as a 1-form, and
(ii) Section 4.3.1’s discussion of the one-form field ∇H determining a vector

field XH .
Thus we define the canonical symplectic form ω on Z := V × V ∗ by

ω((v1,α1), (v2,α2)) := α2(v1)− α1(v2). (4.39)

So defined, ω is by construction a symplectic form, and so has the normal form given
by eq. 4.10.

Given a symplectic vector space (Z ,ω), the natural question arises which linear
maps A : Z → Z preserve the normal form given by eq. 4.10. It is straightforward
to show that this is equivalent to A preserving the form of Hamilton’s equations
(for any Hamiltonian); so that these maps A are called canonical (or symplectic, or
Poisson). But since (as I announced) this paper does not need details about the theory
of canonical transformations, I will not go into details about this. Suffice it to say
here the following.

A : Z → Z is symplectic iff, writing ˜ for the transpose (eq. 4.20) and using the
second definition eq. 4.35 of �, the following maps (both from Z∗ to Z) are equal:

A ◦ ω� ◦ Ã = ω�; (4.40)

or in matrix notation, with the matrix ω given by eq. 4.10, and again writing ˜ for
the transpose of a matrix

AωÃ = ω. (4.41)

(Equivalent formulas are got by taking inverses. We get, respectively: Ã◦ω�◦A = ω�

and ÃωA = ω.)
The set of all such linear symplectic maps A : Z → Z form a group, the symplectic

group, written Sp(Z ,ω).
To sum up this Subsection: We have, for a vector space V , dim(V ) = n, and

Z := V × V ∗:
(i) the canonical symplectic form ω : Z × Z → IR; with normal form given by eq.

4.10;
(ii) the associated linear map ω� : Z → Z∗; which is an isomorphism, since ω is

non-degenerate;
(iii) the associated linear map ω� : Z∗ → Z ; which is an isomorphism, since ω is

non-degenerate; and is the inverse of ω�; (cf. eq. 4.35).
We will see shortly that Hamiltonian mechanics takes V to be the tangent space Tq

at a point q ∈ Q, so that Z is Tq × T ∗
q , i.e. the tangent space to the space � of the qs

and ps.
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5 POISSON BRACKETS AND NOETHER’S THEOREM

We have seen how a single scalar function H on phase space � determines the evolu-
tion of the system via a combination of partial differentiation (the gradient of H ) with
the symplectic matrix. We now express these ideas in terms of Poisson brackets.

For our purposes, Poisson brackets will have three main advantages; which will
be discussed in the following order in the Subsections below. Poisson brackets:
(i) give a neat expression for the rate of change of any dynamical variable;
(ii) give a version of Noether’s theorem which is more simple and powerful (and

even easier to prove!) than the Lagrangian version; and
(iii) lead to the generalized Hamiltonian framework mentioned in Section 6.8.

All three advantages arise from the way the Poisson bracket encodes the way that
a scalar function determines a (certain kind of) vector field.

5.1 Poisson brackets introduced

The rate of change of any dynamical variable f , taken as a scalar function on phase
space �, f (q, p) ∈ IR, is given (with summation convention) by

df

dt
= q̇i ∂f

∂qi
+ ṗi

∂f

∂pi
. (5.1)

(If f is time-dependent, f : (q, p, t) ∈ � × IR �→ f (q, p, t) ∈ IR, the right-hand-side
includes a term ∂f

∂t . But on analogy with how our discussion of Lagrangian mechanics
imposed scleronomic constraints, a time-independent work-function etc., we here set
aside the time-dependent case.) Applying Hamilton’s equations, this is

df

dt
= ∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
. (5.2)

This suggests that we define the Poisson bracket of any two such functions
f (q, p), g(q, p) by

{f , g} := ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
; (5.3)

so that the rate of change of f is given by

df

dt
= {f , H }. (5.4)

In terms of the 2n coordinates ξα (eq. 4.6) and the matrix elements ωαβ of ω
(eq. 4.13), we can write eq. 5.2 as

df

dt
= (∂αf )ξ̇ α = (∂αf )ωαβ(∂βH ); (5.5)
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and so we can define the Poisson bracket by

{f , g} := (∂αf )ωαβ(∂βg) ≡ ∂f

∂ξα
ωαβ

∂g

∂ξβ
. (5.6)

In matrix notation: writing the naive gradients of f and of g as column vectors ∇f
and ∇g, and writing ˜ for transpose, we have at any point z = (q, p) ∈ �:

{f , g}(z) = ∇̃f (z) · ω · ∇g(z). (5.7)

With these definitions of the Poisson bracket, we readily infer the following five
results. (Later discussion will bring out the significance of some of these; in particular,
Section 6.8 will take some of them to jointly define a primitive Poisson bracket for a
generalized Hamiltonian mechanics.)

(1) Since the Poisson bracket is antisymmetric, H itself is a constant of the motion:

dH

dt
= {H , H } ≡ 0. (5.8)

(2) The Poisson bracket of a product is given by “Leibniz’s rule”: i.e. for any three
functions f , g, h, we have

{f , h · g} = {f , h} · g + h · {f , g}. (5.9)

(3) Taking the Poisson bracket as itself a dynamical variable, its time-derivative is
given by a “Leibniz rule”; i.e. the Poisson bracket behaves like a product:

d

dt
{f , g} =

{
df

dt
, g

}
+
{

f ,
dg

dt

}
. (5.10)

(4) The Jacobi identity (easily deduced from (3)):

{{f , h}, g} + {{g, f }, h} + {{h, g}, f } = 0. (5.11)

(5) The Poisson brackets for the qs, ps and ξs are:

{ξα , ξβ} = ωαβ ; i.e. (5.12)

{qi, pj} = δi
j , {qi, qj} = {pi, pj} = 0. (5.13)

Eq. 5.13 is very important, both for general theory and for problem-solving. The
reason is that preservation of these Poisson brackets, by a smooth transformation of
the 2n variables (q, p) → (Q(q, p), P(q, p)), is necessary and sufficient for the trans-
formation being canonical. Besides, in this equivalence ‘canonical’ can be understood
both in the usual elementary sense of preserving the form of Hamilton’s equations,
for any Hamiltonian function, and in the geometric sense of preserving the symplectic
form (explained in (5) of Section 4.3.3, and for manifolds in Section 6).
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Note here that, as the phrase ‘for any Hamiltonian function’ brings out, the notion
of a canonical transformation is independent of the forces on the system as encoded
in the Hamiltonian. That is: the notion is a matter of �’s geometry—as we will
emphasise in Section 6.

But (as I announced in Section 4.1) I will not need to go into many details about
canonical transformations, essentially because this paper does not aim to survey the
whole of Hamiltonian mechanics, or even all that can be said about reducing problems,
e.g. by finding simplifying canonical transformations. It aims only to survey the way
that symmetries and conserved quantities effect such reductions. In the rest of this
Subsection, I begin describing Poisson brackets’ role in this, in particular Noether’s
theorem. But the description can only be completed once we have the geometric
perspective on Hamiltonian mechanics, i.e. in Section 6.5.

5.2 Hamiltonian vector fields

Section 4.3.1 described how the symplectic matrix enabled the scalar function H on
� to determine a vector field XH . The previous Subsection showed how the Poisson
bracket expressed any dynamical variable’s rate of change along XH . We now bring
these ideas together, and generalize.

Recall that a vector X at a point x of a manifold M can be identified with a
directional derivative operator at x assigning to each smooth function f defined on a
neighbourhood of x its directional derivative along any curve that has X as its tangent
vector. Thus recall the Lagrangian definition of the dynamical vector field, eq. 2.8
in Section 2.2. Similarly here: the dynamical vector field XH =: D is a derivative
operator on scalar functions, which can be written in terms the Poisson bracket:

D := XH = d

dt
= q̇i ∂

∂qi
+ ṗi

∂

∂pi
= ∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
= {·, H }. (5.14)

But this point applies to any smooth scalar, f say, on �. That is: although we think
of H as the energy that determines the real physical evolution, the mathematics is of
course the same for such an f . So any such function determines a vector field, Xf
say, on � that generates what the evolution “would be if f was the Hamiltonian”.
Thinking of the integral curves as parametrized by s, we have

Xf = d

ds
= {·, f }. (5.15)

Xf is called the Hamiltonian vector field of (for) f ; just as, for the physical
Hamiltonian, f ≡ H , Section 4.3.1 called XH ‘the Hamiltonian vector field’.

The notion of a Hamiltonian vector field will be crucial for what follows, not least
for Noether’s theorem in the very next Subsection. For the moment, we just make
two remarks which we will need later.

So every scalar f determines a Hamiltonian vector field Xf . But note that the
converse is false: not every vector field X on � is the Hamiltonian vector field of
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some scalar. For a vector field (equations of motion) X , with components X α in the
coordinates ξα defined by eq. 4.6

ξ̇ α = X α(ξ), (5.16)

there need be no scalar H : � → IR such that, as required by eq. 4.13,

X α = ωαβ∂βH . (5.17)

This is the same point as in (ii) of Section 4.2.3: that Hamilton’s equations have the
special feature that all the right hand sides are, up to a sign, partial derivatives of a
single function H—a feature that underpins the possibility of expressing the equations
of motion by variational principles.

We also need to note under what condition is a vector field X Hamiltonian; (this
will bear on Noether’s theorem). The answer is: X is locally Hamiltonian, i.e. there
is locally a scalar f such that X = Xf , iff X generates a one-parameter family of
canonical transformations. We will give a modern geometric proof of this in Section
6.5. For the moment, we only need to note, as at the end of Section 5.1, that here
‘canonical transformation’ can be understood in the usual elementary sense as a trans-
formation of� that preserves the form of Hamilton’s equations (for any Hamiltonian);
or equivalently, as preserving the Poisson bracket; or equivalently, as preserving the
symplectic form (to be defined for manifolds, in Section 6).

5.3 Noether’s theorem

5.3.1 An apparent “one-liner”, and three claims In the Hamiltonian framework,
the core of the proof of Noether’s theorem is very simple; as follows. The Poisson
bracket is obviously antisymmetric. So for any scalar functions f and H , we have

Xf (H ) ≡ dH

ds
≡ {H , f } = 0 iff 0 = {f , H } = XH (f ) ≡ D(f ).

(5.18)

In words: H is constant under the flow of the vector field Xf (i.e. under what the
evolution would be if f was the Hamiltonian) iff f is constant under the dynamical
flow XH ≡ D.

This “one-liner” is the Hamiltonian version of Noether’s theorem! There are three
claims here. The first two relate back to the Lagrangian version of the theorem. The
third is about the definition of a (continuous) symmetry for a Hamiltonian system,
and so about how we should formulate the Hamiltonian version of Noether’s theorem.
I will state all three claims, but in this Subsection justify only the first two. For it
will be convenient to postpone the third till after we have introduced some modern
geometry (Section 6.5).

First, for eq. 5.18 to deserve the name ‘Noether’s theorem’, I need to show that
it encompasses Section 3’s Lagrangian version of Noether’s theorem (despite the
trivial proof!).
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Second, in order to justify my claim that the Hamiltonian version of Noether’s
theorem is more powerful than the Lagrangian version, I need to show that eq. 5.18
says more than that version, i.e. that it covers more symmetries.

To state the third claim, note first that we expect a Hamiltonian version of Noether’s
theorem to say something like: to every continuous symmetry of a Hamiltonian system,
there corresponds a conserved quantity. Here, we expect a ‘continuous symmetry’ to
be defined by a vector field on� (or by its flow). Indeed, a symmetry of a Hamiltonian
system is usually defined as a transformation of � that:
(1) is canonical; (a condition independent of the forces on the system as encoded in

the Hamiltonian: a matter of �’s intrinsic geometry); and also
(2) preserves the Hamiltonian function; (a condition obviously dependent on the

Hamiltonian).
Accordingly, a continuous symmetry is defined as a vector field on� that generates

a one-parameter family of such transformations; (or as such a field’s flow, i.e. as the
family itself).

But with this definition of ‘continuous symmetry’ (of a Hamiltonian system),
eq. 5.18 seems to suffer from two lacunae, if taken to express Noether’s theorem, that
to every continuous symmetry there corresponds a conserved quantity. Agreed, the
rightward implication of eq. 5.18 provides, for a vector field Xf with property
(2), the conserved quantity f . But there seem to be two lacunae:
(a) eq. 5.18 is silent about whether Xf has property (1), i.e. generates canonical

transformations.
(b) eq. 5.18 considers only Hamiltonian vector fields, i.e. vector fields X induced

by some f , X = Xf . But as noted at the end of Section 5.2, there are countless
vector fields on � that are not Hamiltonian. If such a field could be a continuous
symmetry, eq. 5.18’s rightward implication would fall short of saying that to
every continuous symmetry, there corresponds a conserved quantity.

So the third claim I need is that these lacunae are illusory. In fact, a single result
will deal with both (a) and (b). Namely, it will suffice to show that a vector field X on
� has property (1), i.e. generates canonical transformations, iff it is Hamiltonian, i.e.
induced by some f , X = Xf . But I postpone showing this till we have more modern
geometry in hand; cf. Section 6.5.

5.3.2 The relation to the Lagrangian version On the other hand, we can establish
the first two claims with the elementary apparatus so far developed. I will concentrate
on justifying the first claim; that will also make the second claim clear.

For the first claim, we need to show that:
(i) to any variational symmetry of the Lagrangian L, i.e. a vector field X on Q

obeying eq. 3.6, there corresponds a vector field Xf on � for which Xf (H ) = 0;
and

(ii) the correspondence in (i) is such that the scalar f can be taken to be (the Hamilto-
nian version of) the momentum pX conjugate to X , defined by eq. 3.12 (or
geometrically, by 3.31).
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It will be clearest to proceed in two stages.
(A) First, I will show (i) and (ii).
(B) Then I will discuss how (A) relates to the usual definition of a symmetry of a

Hamiltonian system.
(A) The easiest way to show (i) and (ii) is to use the fact discussed after eq. 3.20,

that every variational symmetry X arises, around a point where it is non-zero, from
a cyclic coordinate in some local system of coordinates. (Recall that this follows
from the basic “rectification” theorem securing the local existence and uniqueness of
solutions of ordinary differential equations.) That is, there is some coordinate system
(q) on some open subset of X ’s domain of definition on Q such that
(a) X being a variational symmetry is equivalent to qn being cyclic, i.e. ∂L

∂qn = 0;
(b) the momentum pX , which the Lagrangian theorem says is conserved, is the

elementary generalized momentum pn := ∂L
∂ q̇n .

So suppose given a variational symmetry X , and a coordinate system (q) satisfying
(a)–(b). Now we recall that the Legendre transformation, i.e. the transition between
Lagrangian and Hamiltonian frameworks, does not “involve the dependence on the
qs”. More precisely, we recall eq. 4.8, ∂H

∂qn = − ∂L
∂qn . Now consider pn : � → IR.

This pn will do as the function f required in (i) and (ii) above, since

Xpn(H ) ≡ {H , pn} = ∂H

∂qn
= − ∂L

∂qn
= 0. (5.19)

Applying eq. 5.18 to eq. 5.19, we deduce that pn, i.e. the pX of the Lagrangian
theorem, is conserved.

(Hence my remark after eq. 4.8, that the elementary result that pn is conserved
iff qn is cyclic, underpins the Hamiltonian version of Noether’s theorem; just as
the corresponding Lagrangian result underpins the Lagrangian version of Noether’s
theorem: cf. discussion after eq. 3.20.)

(B): I agree that this simple proof seems suspiciously simple. Besides, the sus-
picion grows when you notice that my argument in (A) has not used a definition
of a symmetry, in particular a continuous symmetry, of a Hamiltonian system (con-
trast Section 3.2). As discussed in Section 5.3.1, we expect a Hamiltonian version of
Noether’s theorem to say ‘to every continuous symmetry of a Hamiltonian system
there corresponds a conserved quantity’; where a continuous symmetry is a vector
field that (1) generates canonical transformations and (2) preserves the Hamiltonian.
So the argument in (A) is suspicious since, although eq. 5.19, or the left hand side
of eq. 5.18, obviously expresses property (2), i.e. preserving the Hamiltonian, the
argument in (A) seems to nowhere use property (1), i.e. the symmetry generating
canonical transformations.

But in fact, all is well. The reason why lies in the fact mentioned in (i), (a) of
Section 4.1: that every point transformation (together with its lift to TQ) defines
a corresponding canonical transformation on T ∗Q. That is to say: property (1) is
secured by the fact that the Lagrangian Noether’s theorem of Section 3 is restricted
to symmetries induced by point transformations.
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In other words, in terms of the vector field (variational symmetry) X given us by
(a) in (A) above: one can check that X defines a vector field on � (equivalently:
a one-parameter family of transformations on �) that is canonical, i.e. preserves
Hamilton’s equations or equivalently the symplectic form. Indeed, one can easily
check that, once we rectify the Lagrangian variational symmetry X , so that it generates
the rectified one-parameter family of point transformations: qi = const, i �= n; qn �→
qn + ε, the vector field that X defines on � is precisely the field Xpn chosen above.15

Finally, the discussion in (B) also vindicates the second claim in Section 5.3.1:
that the Hamiltonian version of Noether’s theorem, eq. 5.18, says more than the Lag-
rangian version, i.e. covers more symmetries. This follows from the fact (announced
in (i) (b) of Section 4.1) that there are canonical transformations not induced by a
point transformation (together with its lift).

In elementary discussions, this is often expressed in terms of canonical transform-
ations being allowed to “mix” the qs and ps. But a more precise, and geometric,
statement is the result announced at the end of Section 5.2 (whose proof is postponed
to Section 6.5): that the condition for a vector field on � to generate a one-parameter
family of canonical transformations is merely that it be a Hamiltonian vector field.
That is: for any scalar f : � → IR, the vector field Xf generates such a family.

In this sense, canonical transformations are two a penny (also known as: a dime a
dozen!). So it is little wonder that most discussions emphasise the other condition,
i.e. property (2): that Xf preserve the Hamiltonian, Xf (H ) = 0. Only very special f s
will satisfy Xf (H ) = 0; and if we are given H (in certain coordinates q, p), it can be
very hard to find (the coordinate expression of) such an f .

Indeed, when Jacobi first propounded the theory of canonical transformations, in
his Lectures on Dynamics (1842), he was of course aware of this. Accordingly, he
pointed out that in theoretical mechanics, it was often more fruitful to first consider an
f (equivalently: a canonical transformation), and then cast about for a Hamiltonian
that it preserved. He wrote: ‘The main difficulty in integrating a given differen-
tial equation lies in introducing convenient variables, which there is no rule for
finding. Therefore we must travel the reverse path and after finding some notable
substitution, look for problems to which it can be successfully applied’; (quoted
in Arnold (1989, p. 266)). The fact that Jacobi solved many previously intractable
problems bears witness to the power of this strategy, and of his theory of canonical
transformations.

We can sum up this Subsection in two comments:
(1) In Hamiltonian mechanics, Noether’s theorem is a biconditional, an ‘iff’ state-

ment. Not only does a Hamiltonian symmetry—i.e. a vector field X on �

that generates canonical transformations (equivalently: preserves the symplectic
form, or the Poisson bracket) and preserves the Hamiltonian, X (H ) = 0—provide
a constant of the motion. Also, given a constant of the motion f : � → IR, there
is a symmetry of the Hamiltonian, viz. the vector field Xf . (Or if one prefers the
integral notion of symmetry: the flow of Xf ). This converse implication, from
constant to symmetry, contrasts with the Lagrangian framework; cf. the end of
Section 3.4.1.
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(2) In elementary Hamiltonian mechanics, Noether’s theorem has a very simple
one-line proof, viz. eq. 5.18.

Later, we will return to Noether’s theorem. Section 6.5 will justify the third claim
of Section 5.3.1, by showing that a vector field generates a one-parameter family
of canonical transformations iff it is a Hamiltonian vector field. Meanwhile, we end
Section 5 with a comment about “iterating” Noether’s theorem, and the distinction
between such an iteration and the idea of complete integrability.

5.4 Glimpsing the “complete solution”

Suppose we “iterate” Noether’s theorem. That is: suppose there are several (continu-
ous) symmetries of the Hamiltonian and so several constants of the motion. Each
will confine the system’s time-evolution to a (2n − 1)-dimensional hypersurface of
�. In general, the intersection of k such surfaces will be a hypersurface of dimen-
sion 2n − k (i.e. of co-dimension k); to which the motion is therefore confined. The
theory of symplectic reduction (Butterfield 2006) describes how to do a “quotiented
dynamics” in this general situation. Here, I just remark on one aspect; which will not
be developed in the sequel.

Locally, the rectification theorem secures, for any system, not just several constants
of the motion, but “all you could ask for”. Applying the theorem (eq. 3.21 and 3.22)
to the Hamiltonian vector field XH on�, we infer that locally there are coordinates ξα

(maybe very hard to find!) in which XH has 2n−1 components that vanish throughout
the neighbourhood, while the other component is 1:

X α
H = 0 for α = 1, 2, . . . , 2n − 1; X 2n

H = 1. (5.20)

So the coordinates ξα ,α = 1, . . . , 2n − 1, form 2n − 1 constants of the motion. They
are functionally independent, and all other constants of the motion are functions of
them; (cf. point (ii) after eq. 3.22). So the motion is confined to the one-dimensional
intersection of the 2n − 1 hypersurfaces, each of co-dimension 1. That is to say, it is
confined to the curve given by: ξα = const,α = 1, . . . , 2n − 1, ξ2n = t.

To this, Noether’s theorem eq. 5.18 adds the physical idea that each such con-
stant of the motion defines a vector field Xξα that generates a symmetry of the
Hamiltonian:

Xξα (H ) = 0, for α = 1, 2, . . . , 2n − 1. (5.21)

In this local sense, the “complete solution” of any Hamiltonian system lies in
the local constants of the motion, or equivalently the local symmetries of its
Hamiltonian H .

To sum up: locally, any Hamiltonian system is “completely integrable”. But the
scare-quotes here are a reminder that these phrases are usually used with other,
stronger, meanings: either that there are 2n − 1 global constants of the motion or
that the system is completely integrable in the sense of Liouville’s theorem.
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6 A GEOMETRICAL PERSPECTIVE

In this final Section, we develop the modern geometric description of Hamiltonian
mechanics. We will build especially on Sections 4.3; one main aim will of course be
to complete the discussion of Noether’s theorem, begun in Section 5.3.

There will be eight Subsections. First, we introduce the cotangent bundle T ∗Q.
Then we collect what we will need about forms. Then we can show that any cotan-
gent bundle is a symplectic manifold. This enables us to formulate Hamilton’s
equations geometrically; and to complete the discussion of Noether’s theorem. Then
we report Darboux’s theorem, and its relation to reduction of problems. Then we
return to the Lagrangian framework, by sketching the geometric formulation of
the Legendre transformation. Finally, we “glimpse the landscape ahead” by men-
tioning the more general framework for Hamiltonian mechanics that uses Poisson
manifolds.

6.1 Canonical momenta are one-forms: � as T ∗Q

So far we have treated the phase space � informally: saying just that it is a
2n-dimensional space coordinatized by the qs, a smooth coordinate system on the
configuration manifold Q, and the ps, which are canonical momenta ∂L

∂ q̇i . But we also

saw in (3) of Section 2.2.2 that at each point q ∈ Q, the pi transform as a 1-form
(eq. 2.12). Accordingly we now take the physical state of the system to be a point in
the cotangent bundle T ∗Q, the 2n-dimensional manifold whose points are pairs (q, p)
with q ∈ Q, p ∈ T ∗

q .
I stress that from now on, the symbol p has a (fruitful!) ambiguity, between

“dynamics” and “kinematics/geometry”. For p represents both:
(A) the conjugate momentum ∂L

∂ q̇ , which of course depends on the choice
of L; and

(B) a point in a fibre T ∗
q of the cotangent bundle T ∗Q (i.e. a 1-form or covector); or

relatedly: the components pi of such a 1-form: notions that are independent of
any choice of a Lagrangian or Hamiltonian.

In more detail:
(A) Recall that in the Lagrangian framework, the basic equations (eq. 2.1, or

Newton’s second law!) being second-order in time prompts us to take the initial
q and q̇ as chosen independently, with L (encoding the forces on the system) then
determining the evolution (the Lagrangian dynamical vector field D)—and so also
determining the actual “realized” value of q̇ at other times as a function of q, and
so ultimately, of t. Similarly here: Newton’s second law being second-order in time
prompts us to take the initial q and p as independent, with H (encoding the forces on
the system) then determining the evolution (the Hamiltonian dynamical vector field
D)—and so also determining the actual value of p at other times as a function of q, and
so ultimately, of t. Besides, by passing via the Legendre transformation back to the
Lagrangian framework, one can check that the later actual value of p is determined
to equal ∂L

∂ q̇ .
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(B) But p also represents any 1-form (so that pi represents the 1-form’s coordinates).
Here, we need to recall three points:—
(i) A local coordinate system (a chart) on Q defines a basis in the tangent space

Tq at any point q in the chart’s domain. As usual, I write the chart’s coordinate
functions as qi. So I shall temporarily denote the chart by [q], so that there are
coordinate functions qi : dom([q]) → IR. I write elements of the coordinate
basis as usual, as ∂

∂qi .

(ii) The chart [q] thereby also defines a dual basis dqi in the cotangent space T ∗
q at

any q ∈ dom([q]).
(Here I recall, en passant, that the isomorphism at each q between Tq and T ∗

q ,

that maps the basis element ∂
∂qi ∈ Tq to the one-form dqi in the dual basis, is

basis-dependent. A different basis ∂
∂q′i would give a different isomorphism. Cf. the

discussion in (1) of Section 4.3.3.)
(iii) Putting (i) and (ii) together: the chart [q] thereby also induces a local coordinate

system on a neighbourhood of the cotangent bundle around any point (q, p) ∈
T ∗Q with q ∈ dom([q]) and p ∈ T ∗

q .
Putting (i)–(iii) together: the coordinates of any point (q, p) in T ∗Q in such a

coordinate system are usually also written as (q, p). That is: p is used for the com-
ponents of any 1-form, in the basis dqi dual to a coordinate basis ∂

∂qi . So, similarly

to (i) above: I will write this induced chart on T ∗Q as [q, p].
(C) Taken together, points (A) and (B) prompt a question:

Why should an evolution from an arbitrary initial state ∈ T ∗Q have the
property that:
if we choose to express
(i) its configuration, q0 say, in terms of an arbitrary initial coordinate
system [q] on Q, and
(ii) its momenta ∂L

∂ q̇ in terms of the basis dq dual to the coordinate basis
∂
∂q at q0:
then
the states at a later time t have their momenta—which the Lagrangian
framework tells us must be ∂L

∂ q̇ (cf. (A))—equal to their components in

the dual basis to the later coordinate basis, i.e. the coordinate basis ∂
∂q at

the later configuration qt?

In short: why should the state’s components in the dual basis of any
coordinate basis continue to be equal, as dynamical evolution goes on, to
the values of canonical momenta i.e. ∂L

∂ q̇ ?

A good question. The short answer lies in combining Hamilton’s equations for the
time-derivative of the pi (eq. 4.5) with Lagrange’s equations, and with the fact that
the partial derivatives with respect to qi of the Hamiltonian and Lagrangian, H and
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L, are negatives of each other (eq. 4.8). Thus we have:

ṗi = −∂H

∂qi
= ∂L

∂qi
= d

dt

(
∂L

∂ q̇i

)
. (6.1)

From this it is clear that for any coordinate system, if at t0, pi is chosen to equal
∂L
∂ q̇i , then this will be so at later times. For eq. 6.1 forces their time-derivatives to be

equal—and so also, their later values must be equal.
So much for the short answer. We will also get more insight into the relations

between the Lagrangian and Hamiltonian frameworks in
(i) the fact, expounded in Section 6.3 below, that any cotangent bundle has a nat-

ural symplectic structure, independent of the specification of any Lagrangian or
Hamiltonian function; and

(ii) some further details about the Legendre transformation, which is further
discussed in Section 6.7.

6.2 Forms, wedge-products and exterior derivatives

As I said at the end of Section 4.3.2, this paper can largely avoid the theory of forms.
For what follows (especially Section 6.5), I need to recall only:
(i) the idea of forms of various degrees, together comprising the exterior algebra,

and equipped with operations of wedge-product and contraction (Section 6.2.1);
(ii) the ideas of differential forms, the exterior derivative, and of exact and closed

forms (Section 6.2.2).

6.2.1 The exterior algebra; wedge-products and contractions We begin by recall-
ing some ideas of Sections 4.3.2 and 4.3.3. Let us again begin with the simplest
possible case, IR2, considered as a vector space: not as a manifold with a copy of
itself as tangent space at each point.

If α,β are covectors, i.e. elements of (IR2)∗, we define their wedge-product, an
antisymmetric bilinear form on IR2, by

α ∧ β : (v, w) ∈ IR2 × IR2 �→ (α(v))(β(w))− (α(w))(β(v)) ∈ IR. (6.2)

Let us write the standard basis elements of IR2 as ∂
∂q and ∂

∂p , with elements of IR2

having components (q, p) in this basis; and let us write the elements of the dual basis
as dq, dp. Recalling the definition of the area form A, eq. 4.16, we deduce that A is
dq ∧ dp.

Similarly for IR2n. Recall that the symplectic matrix defines an antisym-
metric bilinear form on IR2n by eq. 4.18. The value on a pair (q, p) ≡
(q1, . . . , qn; p1, . . . , pn), (q′, p′) ≡ (q′1, . . . , q′n; p′

1, . . . , p′
n) is the sum of the signed

areas of the n parallelograms formed by the projections of the vectors (q, p), (q′, p′)
onto the n pairs of coordinate planes. This is a sum of n wedge-products. That is to say:
if we write the standard basis elements as ∂

∂qi and ∂
∂pi

, this form is ω := �i dqi ∧ dpi.
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It has the action on IRn × IRn:

(
qi ∂

∂qi
+ pi

∂

∂pi
, q′i ∂

∂qi
+ p′

i
∂

∂pi

)
�→

n∑

i=1

qip′
i − q′ipi. (6.3)

In general, if V , W are two (real finite-dimensional) vector spaces, we define:
L(V , W ) to be the vector space of linear maps from V to W ; Lk(V , W ) to be the vector
space of k-multilinear maps from V × V × · · · × V (k copies) to W ; and Lk

a(V , W )

to be the subspace of Lk(V , W ) consisting of (wholly) antisymmetric maps.
We then define �k(V ) := Lk

a(V , IR) for k = 1, 2, . . . , dim(V ), so that �1(V ) =
V ∗. We also set �0(V ) := IR. �k(V ) is called the space of (exterior) k-forms on V .
If dim(V ) = n, then dim(�k(V )) = ( n

k

)
.

The wedge-product, as defined above, can be extended to be an operation that
defines, for α ∈ �k(V ),β ∈ �l(V ), an element α ∧ β ∈ �k+l(V ). We can skip the
details: suffice it to say that the idea is to take tensor products as in (3) of Section
4.3.3, and anti-symmetrize.

But to complete our discussion of Noether’s theorem (in Section 6.5), we will
need the definition of the contraction, (also known as: interior product), of a k-form
α ∈ �k(V ) with a vector v ∈ V . We shall write this as ivα. (It is also written with a
hook notation.) We define the contraction ivα to be the (k − 1)-form given by:

ivα(v2, . . . , vk) := α(v, v2, . . . , vk). (6.4)

It follows, for example, that contraction distributes over the wedge-product modulo
a sign, in the following sense. If α is a k-form, and β a 1-form, then

iv(α ∧ β) = (ivα) ∧ β + (−1)kα ∧ (ivβ) . (6.5)

The direct sum of the vector spaces �k(V ), k = 0, 1, 2, . . . , dim(V ) =: n, has
dimension 2n. When this direct sum is considered as equipped with the wedge-product
∧ and contraction i, it is called the exterior algebra of V , written �(V ).

6.2.2 Differential forms; the exterior derivative; the Poincaré Lemma We extend
the discussion given in Section 6.2.1 to a manifold M of dimension n, taking all the
tangent spaces Tx at x ∈ M as copies of the vector space V , and requiring fields of
forms to be suitably smooth.

We begin by saying that a (smooth) scalar function f : M → IR is a 0-form field.
Its differential or gradient, df , as defined by its action on all vector fields X , viz.
mapping them to f ’s directional derivative along X

df (X ) := X (f ) (6.6)

is a 1-form (covector) field, called a differential 1-form.
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The set F(M ) of all smooth scalar functions forms an (infinite-dimensional) vector
space, indeed a ring, under pointwise operations. We write the set of vector fields on
M as X (M ), or as T 1

0 (M ); and the set of covector fields, i.e. differential 1-forms,
on M as X ∗(M ), or as T 0

1 (M ). (So superscripts indicate the contravariant order, and
subscripts the covariant order.)

Accordingly, we define:�0(M ) := F(M );�1(M ) = T 0
1 (M ); and so on. In short:

�k(M ) is the set of smooth fields of exterior k-forms on the tangent spaces of M .
The wedge-product, as defined in Section 6.2.1, can be extended to the vari-

ous �k(M ). We form the direct sum of the (infinite-dimensional) vector spaces
�k(M ), k = 0, 1, 2, . . . , dim(V ) =: n, and consider it as equipped with this extended
wedge-product. We call it the algebra of exterior differential forms on M , written
�(M ).

Similarly, contraction, as defined in Section 6.2.1, can be extended to �(M ). On
analogy with eq. 6.4, we define, for α a k-form field on M , and X a vector field on
M , the contraction iX α to be the (k − 1)-form given, at each point x ∈ M , by:

iX α(x) : (v2, . . . , vk) �→ α(x)(X (x), v2, . . . , vk) ∈ IR . (6.7)

The exterior derivative is a differential operator on�(M ) that maps a k-form field
to a (k + 1)-form field. In particular, it maps a scalar f to its differential (gradient)
df . Indeed, it is the unique map from the k-form fields to the (k + 1)-form fields
(k = 1, 2, . . . , n) that generalizes the elementary notion of gradient f �→ df , subject
to certain natural conditions.

To be precise: one can show that there is a unique family of maps dk : �k(M ) →
�k+1(M ), all of which, for simplicity, we write as d, such that:
(a) If f ∈ F(M ), d(f ) = df .
(b) d is IR-linear; and distributes across the wedge-product, modulo a sign. That is:

for α ∈ �k(M ),β ∈ �l(M ), d(α∧β) = (dα)∧β+(−1)kα∧(dβ). (Cf. eq. 6.5.)
(c) d2 := d ◦ d ≡ 0; i.e. for all α ∈ �k(M ) dk+1 ◦ dk(α) ≡ 0. (This condition looks

strong, but is in fact natural. For its motivation, it must here suffice to say that it
generalizes the fact in elementary vector calculus, that the curl of any gradient is
zero: ∇ ∧ (∇f ) ≡ 0.)

(d) d is a local operator; i.e. for any x ∈ M and any k-form α, dα(x) depends only
on α’s restriction to any open neighbourhood of x; more precisely, we define for
any open set U of M , the vector space �k(U ) of k-form fields on U , and then
require that

d(α |U ) = (dα) |U . (6.8)

To express d in terms of coordinates: if α ∈ �k(M ), i.e. α is a k-form on M , given
in coordinates by

α = αi1...ik dxi1 ∧ · · · ∧ dxik (sum on i1 < i2 < · · · < ik), (6.9)
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then one proves that the exterior derivative is

dα = ∂αi1...ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik (sum on all j and i1, · · · < ik),

(6.10)

We define α ∈ �k(M ) to be:
exact if there is a β ∈ �k−1(M ) such that α = dβ; (cf. the elementary definition

of an exact differential);
closed if dα = 0.
It is immediate from condition (c) above, d2 = 0, that every exact form is closed.

The converse is “locally true”. This important result is the Poincaré Lemma; (and we
will use it in Section 6.5’s closing discussion of Noether’s theorem).

To be precise: for any open set U of M , we define (as in condition (d) above) the
vector space �k(U ) of k-form fields on U . Then the Poincaré Lemma states that if
α ∈ �k(M ) is closed, then at every x ∈ M there is a neighbourhood U such that
α |U ∈ �k(U ) is exact.

We will also need (again, for Section 6.5’s discussion of Noether’s theorem) a
useful formula relating the Lie derivative, contraction and the exterior derivative.
Namely: Cartan’s magic formula, which says that if X is a vector field and α a k-
form on a manifold M , then the Lie derivative of α with respect to X (i.e. along the
flow of X ) is

LX α = diX α + iX dα. (6.11)

This is proved by straightforward calculation.

6.3 Symplectic manifolds; the cotangent bundle
as a symplectic manifold

Any cotangent bundle T ∗Q has a natural symplectic structure, which is the geomet-
ric structure on manifolds corresponding to the symplectic matrix ω introduced by
eq. 4.10, and to the symplectic forms on vector spaces defined at the end of Section
4.3.3. (Here ‘natural’ means intrinsic, and in particular, independent of a choice of
coordinates or bases.) It is this structure that enables a scalar function to determ-
ine a dynamics. That is: the symplectic structure implies that any scalar function
H : T ∗Q → IR defines a vector field XH on T ∗Q.

I first describe this structure (Section 6.3.1), and then show that any cotangent
bundle has it (Section 6.3.2). Later subsections will develop the consequences.

6.3.1 Symplectic manifolds A symplectic structure or symplectic form on a mani-
fold M is defined to be a differential 2-form ω on M that is closed (i.e. dω = 0) and
non-degenerate. That is: for any x ∈ M , and any two tangent vectors at x, σ , τ ∈ Tx:

dω = 0 and ∀ τ �= 0, ∃σ : ω(τ , σ) �= 0. (6.12)

Such a pair (M ,ω) is called a symplectic manifold.
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There is a rich theory of symplectic manifolds; but we shall only need a small
fragment of it, building on our discussion in Section 4.3.3. (In particular, the fact that
we mostly avoid the theory of canonical transformations means we will not need the
theory of Lagrangian sub-manifolds.)

First, it follows from the non-degeneracy of ω that M is even-dimensional;
(cf. eq. 4.38).

It also follows that at any x ∈ M , there is a basis-independent isomorphism ω�

from the tangent space Tx to its dual T ∗
x . We saw this in (2) and (4) of Section 4.3.3,

especially eq. 4.23. Namely: for any x ∈ M and τ ∈ Tx, the value of the 1-form
ω�(τ) ∈ T ∗

x is defined by

ω�(τ)(σ ) := ω(σ , τ) ∀σ ∈ Tx. (6.13)

Here we return to the main idea emphasised already in Section 4.3.1: that symplectic
structure enables a covector field, i.e. a differential one-form, to determine a vector
field. Thus for any function H : M → IR, so that dH is a differential 1-form on M ,
the inverse of ω� (which we might write as ω�), carries dH to a vector field on M ,
written XH . Cf. eq. 4.14.

So far, we have noted some implications of ω being non-degenerate. The other
part of the definition of a symplectic form (for a manifold), viz. ω being closed,
dω = 0, is also important. We shall see in Section 6.5 that it implies that a vector
field X on a symplectic manifold M preserves the symplectic form ω (i.e. in more
physical jargon: generates (a one-parameter family of) canonical transformations) iff
X is Hamiltonian in the sense of Section 5.2; i.e. there is a scalar function f such
that X = Xf ≡ ω�(df ). Or in terms of the Poisson bracket, with · representing the
argument place for a scalar function: X (·) = Xf (·) ≡ {·, f }.

So much by way of introducing symplectic manifolds. I turn to showing that any
cotangent bundle T ∗Q is such a manifold.

6.3.2 The cotangent bundle Choose any local coordinates q on Q (dim(Q)=n), and
the natural local coordinates q, p thereby induced on T ∗Q; (cf. (B) of Section 6.1).
We define the 2-form

dp ∧ dq := dpi ∧ dqi := �n
i=1dpi ∧ dqi. (6.14)

To show that eq. 6.14 defines the same 2-form, whatever choice we make of the chart
q on Q, it suffices to show that dp ∧ dq is the exterior derivative of a 1-form on
T ∗Q which is defined naturally (i.e. independently of coordinates or bases) from the
derivative (also known as: tangent) map of the projection

π : (q, p) ∈ T ∗Q �→ q ∈ Q. (6.15)

Thus consider a tangent vector τ (not to Q, but) to the cotangent bundle T ∗Q at a
point η = (q, p) ∈ T ∗Q, i.e. q ∈ Q and p ∈ T ∗

q . Let us write this as: τ ∈ Tη(T ∗Q) ≡
T(q,p)(T ∗Q). The derivative map, Dπ say, of the natural projection π applies to τ :

Dπ : τ ∈ T(q,p)(T
∗Q) �→ (Dπ(τ)) ∈ Tq. (6.16)
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Now define a 1-form θH on T ∗Q by

θH : τ ∈ T(q,p)(T
∗Q) �→ p(Dπ(τ)) ∈ IR; (6.17)

where in this definition of θH , p is defined to be the second component of τ ’s base-point
(q, p) ∈ T ∗Q; i.e. τ ∈ T(q,p)(T ∗Q) and p ∈ T ∗

q .
This 1-form is called the canonical 1-form on T ∗Q. It is the “Hamiltonian version”

of the 1-form θL defined by eq. 2.13; and also there called the ‘canonical 1-form’.
But Section 6.1’s discussion of the “fruitful ambiguity” of the symbol p brings out
a contrast. While θL as defined by eq. 2.13 clearly depends on L, the definition of
θH , eq. 6.17, does not depend on any function H . θH is given just by the cotangent
bundle structure. Hence the subscript H here just indicates “Hamiltonian (as against
Lagrangian) version”, not dependence on a function H .

So much by way of a natural definition of a 1-form. One now checks that in any
natural local coordinates q, p, θH is given by

θH = pidqi. (6.18)

Finally, we define a 2-form by taking the exterior derivative of θH :

d(θH ) := d(pidqi) ≡ dpi ∧ dqi. (6.19)

where the last equation follows immediately from eq. 6.10. One checks that this 2-
form is closed (since d2 = 0) and non-degenerate. So (T ∗Q, d(θH )) is a symplectic
manifold.

Referring to eq. 4.18 of Section 4.3, or eq. 4.39 of Section 4.3.3, or eq. 6.3 of
Section 6.2, we see that at each point (q, p) ∈ T ∗Q, this symplectic form is, upto a
sign, our familiar “sum of signed areas”—first seen as induced by the matrix ω of
eq. 4.10.

Accordingly, Section 4.3.3’s definition of a canonical symplectic form is extended
to the present case: d(θH ), or its negative −d(θH ), is called the canonical symplectic
form, or canonical 2-form. (The difference from Section 4.3.3’s definition is that on
a manifold, the symplectic form is required to be closed.)

(The difference by a sign is of course conventional: it arises from our taking the
qs, not the ps, as the first n out of the 2n coordinates. For if we had instead taken the
ps, the matrix occurring in eq. 4.12 would have been −ω ≡ ω−1: exactly matching
the cotangent bundle’s intrinsic 2-form d(θH ).)

We will see, in Section 6.6, a theorem (Darboux’s theorem) to the effect that
locally, any symplectic manifold “looks like” a cotangent bundle: or in other words, a
cotangent bundle is locally a “universal” example of symplectic structure. But first we
return, in the next two Subsections, to Hamilton’s equations, and Noether’s theorem.

6.4 Geometric formulations of Hamilton’s equations

We already emphasised in Sections 4.3 and 5 the main geometric idea behind
Hamilton’s equations: that a gradient, i.e. covector, field dH determines a vector
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field XH . We first saw this determination via the symplectic matrix, in eq. 4.14 of
Section 4.3.1, viz.

XH (z) = ω∇H (z); (6.20)

and then via the Poisson bracket, in eq. 5.14 of Section 5.2, viz.

D := XH = d

dt
= q̇i ∂

∂qi
+ ṗi

∂

∂pi
= ∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
= {·, H } . (6.21)

The symplectic structure and Poisson bracket were related by eq. 5.7, viz.

{f , g}(z) = ∇̃f (z).ω.∇g(z). (6.22)

And to this earlier discussion, the last Subsection, Section 6.3, added the identification
of the canonical symplectic form of a cotangent bundle, eq. 6.19.

Let us sum up these discussions by giving some geometric formulations of
Hamilton’s equations at a point z = (q, p) in a cotangent bundle T ∗Q. Let us write
ω� for the (basis-independent) isomorphism from the cotangent space to the tangent
space, T ∗

z → Tz , induced by ω := −d(θH ) = dqi ∧ dpi (cf. eq. 4.35 and 6.13). Then
Hamilton’s equations, eq. 4.14 or 6.20, may be written as:

ż = XH (z) = ω�(dH (z)) = ω�(dH (z)). (6.23)

Applying ω�, the inverse isomorphism Tz → T ∗
z , to both sides, we get

ω�XH (z) = dH (z). (6.24)

In terms of the symplectic form ω at z, this is (cf. eq. 4.23): for all vectors τ ∈ Tz

ω(XH (z), τ) = dH (z) · τ ; (6.25)

or in terms of the contraction defined by eq. 6.4, with · marking the argument place
of τ ∈ Tz:

iXHω := ω(XH (z), ·) = dH (z)(·). (6.26)

More briefly, and now for any function f , it is:

iXf ω = df . (6.27)

Here is a final example. Recall the relation between the Poisson bracket and the
directional derivative (or the Lie derivative L) of a function, eq. 5.15 and 6.21: viz.

LXf g = dg(Xf ) = Xf (g) = {g, f }. (6.28)

Combining this with eq. 6.27, we can reformulate the relation between the symplectic
form and Poisson bracket, eq. 6.22, in the form:

{g, f } = dg(Xf ) = iXf dg = iXf (iXgω) = ω(Xg , Xf ). (6.29)
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6.5 Noether’s theorem completed

The discussion of Noether’s theorem in Section 5.3 left unfinished business: to prove
that a vector field generates a one-parameter family of canonical transformations iff it
is a Hamiltonian vector field (and so justify the third claim of Section 5.3.1). Cartan’s
magic formula and the Poincaré Lemma, both from Section 6.2, make it easy to
prove this, for a vector field on any symplectic manifold (M ,ω). ((M ,ω) need not be
a cotangent bundle.)

We define a vector field X on a symplectic manifold (M ,ω) to be symplectic (also
known as: canonical) iff the Lie-derivative along X of the symplectic form vanishes,
i.e. LXω = 0.16

Since ω is closed, i.e. dω = 0, Cartan’s magic formula, eq. 6.11, applied to ω
becomes

LXω ≡ diXω + iX dω = diXω. (6.30)

So for X to be symplectic is for iXω to be closed. But by the Poincaré Lemma, if iXω
is closed, it is locally exact. That is: there locally exists a scalar function f : M → IR
such that

iXω = df i.e. X = Xf . (6.31)

So for X to be symplectic is equivalent to X being locally Hamiltonian.
So we can sum up Noether’s theorem from a geometric perspective, as follows.

We define a Hamilton system to be a triple (M ,ω, H ) where (M ,ω) is a symplectic
manifold and H : M → IR, i.e. M ∈ F(M ). We define a (continuous) symmetry of
a Hamiltonian system to be a vector field X on M that preserves both the symplectic
form, LXω = 0, and the Hamiltonian function, LX H = 0. As we have just seen:
for any symmetry so defined, there locally exists an f such that X = Xf . So we can
apply the “one-liner”, eq. 5.18, i.e. the antisymmetry of the Poisson bracket,

Xf (H ) ≡ {H , f } = 0 iff XH (f ) ≡ {f , H } = 0, (6.32)

to conclude that f is a first integral (constant of the motion). Thus we have

Noether’s theorem for a Hamilton system If X is a symmetry of a Hamiltonian system
(M ,ω, H ), then locally X = Xf and f is a constant of the motion. And conversely:
if f : M → IR is a constant of the motion, then Xf is a symmetry. Besides,
this result encompasses the Lagrangian version of the theorem; cf. Sections 3.4
and 5.3.

Example:— For most Hamiltonian systems in euclidean space IR3, spatial
translations and rotations are (continuous) symmetries. For example, consider N
point-particles interacting by Newtonian gravity. The Hamiltonian is a sum of two
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terms, which are each individually invariant under these euclidean motions:
(i) a kinetic energy term K ; though I will not go into details, it is in fact defined

by the euclidean metric of IR3 (cf. footnote 2 in Section 2.1), and is thereby
invariant; and

(ii) a potential energy term V ; it depends only on the particles’ relative distances,
and is thereby invariant.

The corresponding conserved quantities are the total linear and angular
momentum.17

Finally, an incidental remark which relates to the “rectification theorem”, that on
any manifold any vector field X can be “straightened out” in a neighbourhood around
any point at which X is non-zero, so as to have all but one component vanish and
the last component equal to 1; cf. eq. 3.22. Using this theorem, it is easy to see that
on any even-dimensional manifold any vector field X is locally Hamiltonian, with
respect to some symplectic form, around a point where X is non-zero. (One defines
the symplectic form by Lie-dragging from a surface transverse to X ’s integral curves.)

6.6 Darboux’s theorem, and its role in reduction

Darboux’s theorem states that cotangent bundles are, locally, a “universal form”
of symplectic manifold. That is: Not only is any symplectic manifold (M ,ω)
even-dimensional. Also, it “looks locally like” a cotangent bundle, in that around
any x in M , there is a local coordinate system (q1, . . . , qn; p1, . . . , pn)—where the
use of both upper and lower indices is now just conventional, with no meaning about
dual bases!—in which:
(i) ω takes the form dqi ∧ dpi; and so
(ii) the Poisson brackets of the qs and ps take the fundamental form in eq. 5.13.
(The theorem generalizes to the Poisson manifolds mentioned in Section 6.8.)

Besides, the proof of Darboux’s theorem yields further information: information
which is important for reducing problems. It arises from the beginning of the proof;
and will return us to Section 4.2’s point that the elementary connection between cyclic
coordinates and conserved conjugate momenta underpins the role of symmetries and
conserved quantities in reductions on symplectic manifolds.

(In fact, Darboux’s theorem also yields two other broad implications about reducing
problems; but I will not develop the details here. The second implication concerns
the way that a Hamiltonian structure is preserved in the reduced problem. The third
implication concerns the requirement that constants of the motion be in involution,
i.e. have vanishing Poisson bracket with each other; so it leads to the idea of complete
integrability—a topic this paper foreswears.)

Namely, the proof implies that “almost” any scalar function f ∈ F(M ) can be taken
as the first “momentum” coordinate p1; or as the first configurational coordinate q1.
Here “almost” is not meant in a measure-theoretic sense; it is just that f is subject to
a mild restriction, that df �= 0 at the point x ∈ M .

In a bit more detail: The proof of Darboux’s theorem starts by taking any such f
to be our p1, and then constructs the canonically conjugate generalized coordinate
q1, i.e. the coordinate such that {q1, p1} = 1: so that p1 generates translation in
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the direction of increasing q1. Indeed the construction is geometrically clear. The
symplectic structure means that any such f defines a Hamiltonian vector field Xf , and
a flow φf . We choose a (2n − 1)-dimensional local submanifold N passing through
the given point x, and transverse to all the integral curves of Xf in a neighbourhood of
x; and we set the parameter λ of the flow φf to be zero at all points y ∈ N . Then for
any z in a suitably small neighbourhood of the given point x, we define the function
q1(z) to be the parameter-value at z of the integral curve of Xf that passes through z.
So by construction, (i) f generates translation in the direction of increasing q1, and
(ii) defining p1 := f , we have {q1, p1} = 1.

This is just the beginning of the proof. But I will not need details of how it goes
on to establish the local existence of canonical coordinates, i.e. coordinates such that
analogues of (i) and (ii), also for i �= 1, hold. In short, the strategy is to use induction
on the dimension of the manifold; for details, cf. e.g. Arnold (1989: 230–232).

To see the significance of this for reducing problems, suppose that there is a constant
of the motion, and that we take it as our f , i.e. as the first momentum coordinate p1.
So the system evolves on a (2n − 1)-dimensional manifold given by an equation f =
constant. So writing H in the canonical coordinate system secured by Darboux’s the-
orem, we conclude that 0 = ḟ ≡ − ∂H

∂q1 . That is, q1 is cyclic. So as discussed in Section

4.2, we need only solve the problem in the 2n − 2 variables q2, . . . , qn; p2, . . . , pn.
Having done so, we can find q1 as a function of time, by solving eq. 4.9 by quadrature.

To put the point in geometric terms:—
(i) The system is confined to a (2n − 1)-dimensional manifold p1 = α = constant,

Mα say.
(ii) Mα is foliated by a local one-parameter family of (2n−2)-dimensional manifolds

labelled by values of q1 ∈ I ⊂ IR, Mα = ∪q1∈I Mα,q1 .
(iii) Of course, the dynamical vector field is transverse to the leaves of this foliation;

i.e. q1 is not a constant of the motion, q̇1 �= 0. But since q1 is ignorable, ∂H
∂q1 = 0,

the problem to be solved is “the same” at points x1, x2 that differ only in their
values of q1.

6.7 Geometric formulation of the Legendre transformation

Let us round off our development of both Lagrangian and Hamiltonian mechanics,
by formulating the Legendre transformation as a map from the tangent bundle TQ to
the cotangent bundle T ∗Q. In this formulation, the Legendre transformation is often
called the fibre derivative.

Again, there is a rich theory to be had here. In part, it relates to the topics mentioned
in Section 4.2.3: (i) the description of a function (in the simplest case f : IR → IR)
by its gradients and axis-intercepts, rather than by its arguments and values; (ii)
variational principles. But I shall not go into details about this theory: since this paper
emphasises the Hamiltonian framework, a mere glimpse of this theory must suffice.
(References, additional to those in Section 4.2.3, include: Abraham and Marsden
(1978: Sections 3.6–3.8) and Marsden and Ratiu (1999: Sections 7.2–7.5, 8.1–8.3).)
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Let us return to the Lagrangian framework. We stressed in Section 2.2 that a scalar
on the tangent bundle, the Lagrangian L : TQ → IR, “determines everything”: the
dynamical vector field D =: DL; and so for given initial q and q̇, L determines
a solution, a trajectory in TQ, i.e. 2n functions of time q(t), q̇(t) with the first n
functions determining the latter.

For the Legendre transformation, the fundamental points are that:
(1) L also determines at any point q ∈ Q, a preferred map FLq from the tangent space

Tq to its dual space T ∗
q . Besides this preferred map:

(2) extends trivially to a preferred map from all of TQ to T ∗Q; this is the Legendre
transformation, understood geometrically;

(3) extends, under some technical conditions (about certain kinds of uniqueness,
invertibility and smoothness), so as to carry geometric objects of various sorts
defined on TQ to corresponding objects defined on T ∗Q, and vice versa.

So under these conditions, the Legendre transformation (together with its inverse)
transfers the entire description of the system’s motion between the Lagrangian and
Hamiltonian frameworks.

I will explain (1) and (2), but just gesture at (3).
(1) Intuitively, the preferred map FLq from each tangent space Tq to its dual space

T ∗
q is the transition q̇ �→ p. More precisely: since L is a scalar on TQ, any choice of

local coordinates q on a patch of Q, together with the induced local coordinates q, q̇
on a patch of TQ, defines the partial derivatives ∂L

∂ q̇ . At any point q in the domain of
the local coordinates, this defines a preferred map FLq from the tangent space Tq to
the dual space T ∗

q : FLq : Tq → T ∗
q . Namely, a vector τ ∈ Tq with components q̇i in

the coordinate system qi on Q, i.e. τ = q̇i ∂
∂qi (think of a motion through configuration

q with generalized velocity τ ) is mapped to the 1-form whose components in the dual
basis dqi are ∂L

∂ q̇i . That is

FLq : τ = q̇i ∂

∂qi
∈ Tq �→ ∂L

∂ q̇i
dqi ∈ T ∗

q . (6.33)

One easily checks that because the canonical momenta are a 1-form, this definition
is, despite appearances, coordinate-independent.

(2) An equivalent definition, manifestly coordinate-independent and given for all
q ∈ Q, is as follows. Given L : TQ → IR, define FL : TQ → T ∗Q, the fibre
derivative, by

∀q ∈ Q, ∀σ , τ ∈ Tq : FL(σ ) · τ = d

ds
|s=0 L(σ + sτ) (6.34)

(We here take σ , τ to encode the identity of the base-point q, so that we make notation
simpler, writing FL(σ ) rather than FL((q, σ)) etc.) That is: FL(σ ) · τ is the derivative
of L at σ , along the fibre Tq of the fibre bundle TQ, in the direction τ . So FL is fibre-
preserving: i.e. it maps the fibre Tq of TQ to the fibre T ∗

q of T ∗Q. In local coordinates
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q, q̇ on TQ, FL is given by:

FL(qi, q̇i) =
(

qi,
∂L

∂ q̇i

)
; i.e. pi = ∂L

∂ q̇i
. (6.35)

An important special case involves a free system (i.e. no potential term in the
Lagrangian) and a configuration manifold Q with a metric g = gij defined by the
kinetic energy. (Cf. footnote 2 for the definition of this metric: in short, the constraints
being scleronomous (i.e. time-independent, cf. Section 2.1), implies that for any
coordinate system on Q, the kinetic energy is a homogeneous quadratic form in the
generalized velocities.) The Lagrangian is then just the kinetic energy of the metric,

L(q, q̇) ≡ L(q̇) := 1

2
gijq̇

iq̇j (6.36)

so that the fibre derivative is given by

FL(σ ) · τ = g(σ , τ) = gijσ
iτ j , i.e. pi = gijq̇

j . (6.37)

(3) We can use FL to pull-back to TQ the canonical 1-form θ ≡ θH and symplectic
form ω from T ∗Q (eq. 6.17 and 6.18 with ω = −dθ , from Section 6.3.B). That is,
we can define

θL := (FL)∗θH and ωL := (FL)∗ω. (6.38)

Since exterior differentiation d commutes with pull-backs, ωL = −dθL. Further-
more:
(i) As one would hope, θL, so defined, is Lagrangian mechanics’ canonical 1-form,

which we already defined in eq. 2.13 (and which played a central role in the
Lagrangian version of Noether’s theorem).

(ii) One can show thatωL is non-degenerate iff the Hessian condition eq. 2.3 holds. So
under this condition, we can analyse Lagrangian mechanics in terms of symplectic
structure.

Given L, we define its energy function E : TQ → IR by

∀ v ≡ (q, τ) ∈ TQ, E(v) := FL(v) · v − L(v); (6.39)

or in coordinates

E(qi, q̇i) := ∂L

∂ q̇i
q̇i − L(qi, q̇i) (6.40)

If FL is a diffeomorphism, we find that E ◦ (FL)−1 is, as one would hope, the
Hamiltonian function H : T ∗Q → IR which we already defined in eq. 4.4.



ON SYMMETRY AND CONSERVED QUANTITIES 95

And accordingly, if FL is a diffeomorphism, then the derivative of FL carries the
dynamical vector field d

dt in the Lagrangian description, as defined in eq. 2.8 (Section
2.2, (2)), viz.

DL := q̇i ∂

∂qi
+ q̈i ∂

∂ q̇i
, (6.41)

to the Hamiltonian dynamical vector field, viz.

DH := q̇i ∂

∂qi
+ ṗi

∂

∂pi
. (6.42)

More generally, one can show if FL is a diffeomorphism, there is a bijective
correspondence between the various geometric structures used in the Lagrangian and
Hamiltonian descriptions. For precise statements of this idea, cf. e.g. Abraham and
Marsden (1978: Theorem 3.6.9) and Marsden and Ratiu (1999: Theorem 7.4.3.), and
their preceding discussions.

6.8 Glimpsing the more general framework of Poisson manifolds

Recall that Section 5.1 listed several properties of the Poisson bracket, as defined by
eq. 5.3 or 5.6. We end by briefly describing how the postulation of a bracket that acts
on the scalar functions F : M → IR defined on any manifold M , and possesses four
of Section 5.1’s listed properties, provides a sufficient framework for mechanics in
Hamiltonian style. The bracket is again called a ‘Poisson bracket’, and the manifold
M equipped with such a bracket is called a Poisson manifold.

Namely, we require the following four properties. The Poisson bracket is to be bilin-
ear; antisymmetric; and to obey the Jacobi identity (eq. 5.11) for any real functions
F , G, H on M , i.e.

{{F , H }, G} + {{G, F}, H } + {{H , G}, F} = 0; (6.43)

and to obey Leibniz’ rule for products (eq. 5.9), i.e.

{F , H · G} = {F , H } · G + H · {F , G}. (6.44)

This generalizes Hamiltonian mechanics: in particular, a Poisson manifold need
not be a symplectic manifold. The main idea of the extra generality is that the antisym-
metric bilinear map that gives the geometry of the state space (the analogue of Section
4.3’s symplectic formω) can be degenerate. So this map can “have extra zeroes”, as in
eq. 4.37 and 4.38. (This map is induced by the generalized Poisson bracket, via an ana-
logue of eq. 5.7.) This means that a Poisson manifold can have odd dimension; while
we saw in Section 4.3.3 that any symplectic vector space is even-dimensional—and
so, therefore, is any symplectic manifold (Section 6.3.1 and 6.6).

On the other hand, the generalized framework has strong connections with the
usual one.18 One main connection is the result that any Poisson manifold M is a
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disjoint union of even-dimensional manifolds, on each of which M ’s degenerate
antisymmetric bilinear form (induced by the generalized Poisson bracket) restricts to
be non-degenerate; so that there is an orthodox Hamiltonian mechanics on each such
‘symplectic leaf’. Another main connection is that Section 5.3’s “one-liner” version
of Noether’s theorem, eq. 5.18, underpins versions of Noether’s theorem for the more
general framework.

This generalized framework is important for various reasons; I will just men-
tion two.
(i) For a system whose orthodox Hamiltonian mechanics on a symplectic manifold

(dimension 2n, say) depends on s real parameters, it is sometimes natural to
consider the corresponding (2n + s)-dimensional space. This is often a Pois-
son manifold; viz., one foliated into an s-dimensional family of 2n-dimensional
symplectic manifolds. This scenario occurs even for some very familiar systems,
such as the pivoted rigid body described by Euler’s equations.

(ii) Poisson manifolds often arise in the theory of symplectic reduction. For when
you quotient a symplectic manifold by the action of a group (e.g. a group of
symmetries of a Hamiltonian system in the sense of Section 6.5), you often get
a Poisson manifold, rather than a symplectic one. Indeed, the pivoted rigid body
is itself an example of this.

But this generalized framework is a large topic, which we cannot go into: as
mentioned, Butterfield (2006) is a philosopher’s introduction.

For now, we end with a historical point.19 It is humbling, but also I hope inspiring,
reflection about one of classical mechanics’ monumental figures. Namely: a consid-
erable part of the modern theory of Poisson manifolds, including their uses for the
rigid body and for symplectic reduction, was already contained in Lie (1890)!
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NOTES

1 It is worth noting the point, though I shall not exploit it,that symplectic structure can be seen in the
classical solution space of the Lagrangian framework; cf. (3) of Section 6.7.

2 Though I shall not develop any details, there is of course a rich theory about these and related assump-
tions. One example, chosen with an eye to our later use of geometry, is that assuming scleronomous
constraints, K is readily shown to be a homogeneous quadratic form in the generalized velocities, i.e.
of the form K = �n

i,jaij q̇
i q̇j ; and so K defines a metric on the configuration space.

3 This is not to say that Hamiltonian mechanics makes all problems “explicitly soluble”: if only! For
a philosophical discussion of the various meanings of ‘explicit solution’, cf. Butterfield (2004a:
Section 2.1).
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4 A note for afficionados. Of the three main pillars of elementary differential geometry—the implicit
function theorem, the local existence and uniqueness of solutions of ordinary differential equations,
and Frobenius’ theorem—this paper will use the first only implicitly (!), and the second explicitly in
Sections 3 and 4. The third will not be used.

5 Cf. Brading and Castellani (2003). Apart from papers specifically about Noether’s theorem,
this anthology’s papers by Wallace, Belot and Earman (all 2003) are closest to this paper’s
concerns.

6 Here again, ‘versions of it’ needs scare-quotes. For in what follows, I shall be more limited than these
proofs, in two ways. (1): I limit myself, as I did in Section 2.2.1, both to time-independent Lagrangians
and to time-independent transformations: so my discussion does not encompass boosts. (2): I will take
a symmetry of L to require that L be the very same; whereas some treatments allow the addition to L
of the time-derivative of a function G(q) of the coordinates q—since such a time-derivative makes no
difference to the Lagrange equations.

7 Other expositions of Noether’s theorem for finite-dimensional Lagrangian mechanics include: Arnold
(1989: 88–89), Desloge (1982: 581–586), Lanczos (1986: 401–405: emphasizing the variational per-
spective) and Johns (2005: Chapter 13). Butterfield (2004a, Section 4.7) is a more detailed version of
this Section. Beware: though many textbooks of Hamiltonian mechanics cover the Hamiltonian version
of Noether’s theorem (which, as we will see, is stronger), they often do not label it as such; and if they
do label it, they often do not relate it clearly to the Lagrangian version.

8 An excellent account of this modern integration theory, covering both ordinary and partial differential
equations, is given by Olver (2000). He also covers the Lagrangian case (Chapter 5 onwards), and
gives many historical details especially about Lie’s pioneering contributions.

9 I have discussed this in terms of some system (q, q̇) of coordinates. But the definitions of extensions
and displacements are in fact coordinate-independent. Besides, one can show that the operations of
displacing a curve within Q, and extending it to TQ, commute to first order in ε: the result is the same
for either order of the operations.

10 Since the Lagrangian L is especially associated with variational principles, while the dynamics is
given by equations of motion, calling Section 3.2.2’s notion ‘variational symmetry’, and this notion
‘dynamical symmetry’ is a good and widespread usage. But beware: it is not universal.

11 All the material to the end of this Subsection is drawn from Brown and Holland (2004a); cf. also
their (2004). The present use of the harmonic oscillator example also occurs in Morandi et al. (1990:
203–204).

12 In the light of this, you might ask about a more restricted implication: viz. must every dynamical
symmetry of a set of equations of motion be a variational symmetry of some or other Lagrangian that
yields the given equations as the Euler-Lagrange equations of Hamilton’s Principle? Again, the answer
is No for the simple reason that there are many (sets of) equations of motion that are not Euler-Lagrange
equations of any Lagrangian, and yet have dynamical symmetries.

Wigner (1954) gives an example. The general question of under what conditions is a set of ordinary
differential equations the Euler-Lagrange equations of some Hamilton’s Principle is the inverse problem
of Lagrangian mechanics. It is a large subject with a long history; cf. e.g. Santilli (1979), Lopuszanski
(1999).

13 Of course, some aspects of Hamiltonian mechanics illustrate both (i) and (ii). For example, Liouville’s
theorem on the preservation of phase space volume illustrates both (i)’s integral invariants approach to
canonical transformations and (ii)’s connection to statistical mechanics.

14 But forms are essential for understanding integration over surfaces of dimension two or more: which
one needs for the integral invariants approach to Hamiltonian mechanics, and its deep connection with
Stokes’ theorem.

15 Details about point transformations on Q defining a canonical transformation on T∗Q, and lifting the
vector field X to �, can be found: (i) using traditional terms, in Goldstein et al. (2002: 375–376)
and Lanczos (1986: Chapter VII.2); (ii) using modern geometric terms (as developed in Section 6),
in Abraham and Marsden (1978: Sections 3.2.10–3.2.12) and Marsden and Ratiu (1999: Sections
6.3–6.4).
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16 As announced in Section 2.2.1, I assume the notion of the Lie-derivative, in particular the Lie-derivative
of a 2-form. Suffice it to say, as a sketch, that the flow of X defines a map on M which induces a
map on curves, and so on vectors, and so on co-vectors, and so on 2-forms such as ω. Nor will I go
into details about the equivalence between this definition of X ’s being symplectic, and X ’s generating
(active) canonical transformations, or preserving the Poisson bracket. For as I have emphasised, I will
not need to develop the theory of canonical transformations.

17 By the way, this Hamiltonian is not invariant under boosts. But as I said in Section 2.2.1 and footnote
8, I restrict myself to time-independent transformations; the treatment of symmetries that “represent
the relativity of motion” needs separate discussion.

18 Because of these connections, it is natural to still call the more general framework ‘Hamiltonian’ as is
usually done. But of course this is just a verbal matter.

19 As mentioned in footnote 10, Olver (2000) gives many details especially about Lie. Cf. in particular
Olver (2000: 374–379, 427–428); cf. also Marsden and Ratiu (1999: 336–338, 430–432), and for a
full history, Hawkins (2000).
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4. ON THE NOTION OF A PHYSICAL THEORY
OF AN INCOMPLETELY KNOWABLE DOMAIN

For Jeffrey Bub on the occasion of his 63rd birthday

ABSTRACT

How might a physical theory have the consequence that facts about some of the things
it seeks to describe cannot, as a matter of principle, be completely known? The paper
articulates the components of the conceptual structure of a theory that is capable of
exhibiting such “inherent incompleteness.” Although the framework of the discussion
is indebted to axiomatic quantum logic, the analysis is at variance with the quantum
logical interpretation of quantum mechanics.

1 INTRODUCTION

How might we conceptualize a physical theory, one of whose principal consequences
is that our knowledge of the objects with which it deals is necessarily incomplete?
What is the nature of such incompleteness, and would it allow for a sense in which
the theory of an incompletely knowable domain is itself complete? To address these
questions, it is necessary to explore various components of the conceptual structure
of a theory that might exhibit such “inherent incompleteness.” In particular, we will
want to know what, for such a theory, constitutes a representation of the facts that
are incompletely known, and what constitutes a representation of the knowledge of
them that is theoretically possible; we will require an account of the sense in which
this knowledge fails to be complete, and an explanation of the basis for the failure of
completeness.

My approach to these issues would hardly have suggested itself without the founda-
tional investigations of the 1960s, especially those of Kochen and Specker (1967) and
their reconsideration of von Neumann’s (1932) proof that quantum mechanics can-
not be supplemented with hidden variables. Although the framework of the present
paper is taken from these highly specific foundational studies, the issues with which
it deals should be of broader interest—especially if it can be shown that there are
actual examples of fundamental theories that are empirically successful but inherently
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incomplete. The notion that a fundamental science like physics cannot take for granted
our epistemic relation to the world and that it must therefore define it—articulate a
framework within which it is coherently expressed—underlies the preeminent posi-
tion of the analysis of space and time in Newtonian mechanics and relativity.1 The
epistemological analysis of the general character of measurement plays a comparable
role in quantum mechanics and the analysis of inherent incompleteness.

The following paper extends my (2004) in several respects. Here, as in the earlier
paper, elementary propositions are central to the analysis and are taken to comprise
a physical theory’s basic representational apparatus; all its other representational
devices are, in a way I will soon explain, derivative from them. The present paper’s
distinction between basic and derived structures of propositions replaces an earlier
and less precise terminology, and this has made possible a sharper formulation of
inherent incompleteness. The connection with the quantum mechanical description
of spin has also been explicitly drawn.

I owe Jeffrey Bub an enormous debt, first for introducing me to the subject almost
40 years ago, and secondly, for sustaining my interest in it over the course of a long and
rewarding friendship. The discussion which follows has been influenced throughout
by the recent work of my friend and co-editor Itamar Pitowsky.

2 THE REPRESENTATION OF ELEMENTARITY

I will be almost exclusively concerned with a special class of physical propositions,
namely propositions that ascribe direction-dependent properties to physical systems;
in the simplest case, such propositions form a class P of propositions Px, for x a
direction (or ray) through a point of ordinary physical space. It is clear that, except
for the choice of rays in E3 as an index set, this notion of proposition is a highly
abstract and formal one. It is, nevertheless, suggestive of the applications I will be
considering, and it is sufficiently complex to allow the formulation of issues that will
be among our main concerns.

In order to speak of the elements of P as propositions, there are certain minimal
conditions which the system they comprise—the “logical space” in which they lie—
must satisfy: First, complements must be defined, and this means that there must
be maximum and minimum propositions—0 and 1, respectively—such that Px ∨
¬Px = 1 and Px ∧ ¬Px = 0. Secondly, for the Px to belong to a common space of
propositions, 0 and 1 must be unique, so that Px ∨ ¬Px = Py ∨ ¬Py = . . . 1 and
Px ∧ ¬Px = Py ∧ ¬Py = . . . 0. We will assume that this is the case. These appear
to be the minimal logical-combinatorial assumptions—existence of complements,
maximum and minimum elements—one might impose on P if it is to form a class of
objects that may plausibly be regarded as propositions.

Since the elements of P are not only propositions, but propositions of an empirical
theory, we will assume that there is an ideal operational or measurement proced-
ure (these terms are used interchangeably) associated with each Px in P. Such a
procedure is ideal in the sense that it constitutes a theoretically, if not practically,
feasible criterion of application for the property contained in Px. The measurement
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procedure is criterial in the sense that, should its application fail to find that Px holds,
we may conclude that ¬Px holds. Thus, excluded middle holds for such propositions
and measurement procedures, in contrast with the case of constructive proofs and
mathematical propositions where it may happen that there is neither a constructive
proof of p nor a constructive proof that every proof of p can be transformed into a
proof of the falsum ⊥—which is why excluded middle is rejected as a principle of
intuitionist logic.

Our focus is on an abstract aspect of measurement, namely on the simultaneous
measurability of directional properties that are constituents of elementary physical
propositions. What can we say of the simultaneous measurability of such properties—
and derivatively, of the propositions in which they occur—without prejudging
empirical issues regarding the character of this relation?

Since every measurement must “find” 1 and “exclude” 0, the propositions, Px, ¬Px,
0, 1 must be simultaneously measurable, or, as I will say, comeasurable. This much
seems to follow from our understanding of the comeasurability of elementary propos-
itions with an empirical content, however comeasurability is spelled out in physical
detail. Whenever a pair of propositions is comeasurable, lattice operations of meet
and join are defined for them, since, if the same ideal measurement decides both
propositions, it also decides their conjunction (meet) and disjunction (join).

In a general or abstract consideration of propositions, the existence of meets and
joins is always naturally assumed as a matter of course. We however are consider-
ing a special class of propositions, those for which it is intuitively natural to inquire
about their comeasurability and, perhaps, to discover that there is no theoretically
specifiable operational procedure which simultaneously decides their constituent
properties. Recall that a pair of propositions is comeasurable when there is a single
theoretically specifiable ideal measurement procedure which is criterial for the prop-
erties that are constituent in both of them. Since the conjunction and disjunction of
noncomeasurable propositions cannot be associated with a single ideal measurement
procedure, they are excluded from our study, and the lattice operations of meet and join
are treated as partial operations, defined only for comeasurable pairs of propositions.

From a classical or Boolean algebraic point of view, the totalness of the lattice oper-
ations is taken for granted. This is perhaps because the notion of proposition from
which the classical perspective begins is an abstract or general one which, unlike the
special case of elementary physical propositions, is not necessarily tied to the notion
of an operational procedure. But once the association of elementary propositions
with ideal measurement procedures has been made, and comeasurability explicitly
recognized, it is evidently possible that the only sets of comeasurable propositions
are those of the form {Px, ¬Px, 0, 1} or {0, 1}—in which case lattice operations of
meet and join need not be defined on subsets of P larger than {Px, ¬Px, 0, 1}. When
the existence of meets and joins is inferred from the assumption that they are defined
for comeasurable propositions, the Boolean framework presents itself as one that is
distinguished by the fact that it is maximally committal regarding the extension of the
comeasurability relation, taking it in fact to be the universal relation. This is certainly
one way of proceeding, but it is by no means the only one. And indeed, there is a
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minimally committal alternative, namely one that assumes not a Boolean algebra,
but the partial Boolean algebra whose family of Boolean subalgebras consists of just
the two element Boolean algebra and algebras of the form {Px, ¬Px, 0, 1}. A priori,
these are the two extreme cases that present themselves: either the comeasurability
relation is the universal relation on elementary propositions or it is “smallest pos-
sible.” Without additional considerations pertaining to the specific character of the
propositions under investigation, it is difficult to see how one might motivate a choice
of domain of definition for meet and join that lies between the largest and smallest
comeasurability relations. Later we will see how empirical considerations may be
brought to bear on the structure of comeasurability.

When the comeasurability relation is assumed to have the smallest possible exten-
sion, the logical structure of the family P of elementary propositions is extremely
simple and is represented by the free partial Boolean algebra B(E2)—the so-called
“2-dimensional case” comprised of subspaces of the Euclidean plane, with x ∧ y the
intersection of subspaces and x ∨ y their span, x⊥ the orthogonal complement of x, 0
and 1 (respectively) the empty subspace and the whole plane. The maximal Boolean
subalgebras of P are composed of elements, Px, their complements, ¬Px, and 0 and
1. The algebra is freely generated by the Px in the sense that any map from them
to a partial Boolean algebra can be extended to a homomorphism. More precisely,
for each x in E3, let P∗

x be either Px or ¬Px. Then {P∗
x : x in E3} is an independent

set of elements in the sense that every map from {P∗
x : x in E3} to a partial Boolean

algebra can be extended to a homomorphism. Notice that the property by which we
have defined the notion of an independent set of elements is usually derived as a the-
orem from a definition expressed in terms of meets and complements; this shows
that although such a definition is not available to us because of the partialness of
the algebra, the concept of independence remains a meaningful one in the present
context.

3 THE TRACTARIAN NOTION OF ELEMENTARITY

It is a curious consequence of our analysis that the elementary propositions of P fulfill
all the requirements that, in the Tractatus, Wittgenstein appears to have demanded of
the notion of an elementary proposition. As we will see, Wittgenstein’s requirements
are unsatisfiable in all but the simplest classical logical examples, a situation that
has prevented even the appearance of there being an interesting application of the
Tractarian notion of elementarity.

In developing his account of an elementary proposition, Wittgenstein’s goal was to
give a completely “combinatorial” analysis of the notions of logical possibility and
necessity. On such an analysis, the compatibility and incompatibility of propositions
would be discoverable on the basis of their constituent logical forms. Now algebraic
atoms are minimal non-zero elements. In a Boolean algebra, the conjunction of two
atoms is always defined and is the zero of the algebra; hence any two atoms are
logical contraries of one another. It follows that in a Boolean algebra elementary
propositions cannot, in general, be algebraic atoms and form an independent set of
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generators of the algebra. The exception is the four element Boolean algebra, where
{p} and {¬p} are independent sets of generators, both p and ¬p are atoms, and p
and ¬p can be held to exclude one another on the basis of their logical form. In
every larger Boolean algebra there will exist atoms which, though they are logical
contraries, are not logical complements. It is clear, in this case, why p excludes ¬p, but
it is evident that in general if p and q are elementary they cannot exclude one another
since there is nothing about them to which logic might appeal in order to explain the
fact that they cannot be true together—if indeed they cannot be true together. But it
seems equally clear that if there are to be actual examples of elementary propositions,
they must sometimes be logical contraries of one another. This was the impasse
that ultimately led Wittgenstein in his (1929) to abandon the Tractarian theory of
elementary propositions.

Considered in isolation, the requirement that elementary propositions should be
algebraic atoms has little intrinsic plausibility. It does however fall out as a con-
sequence of the present analysis of elementarity that elementary propositions are also
algebraic atoms. This is made possible by the presence in the analysis of the rela-
tion of comeasurability. The propositions we have described are elementary in the
sense that each is directly associated with an ideal operational procedure specifying
the criterion of application for the property it contains. Operational procedures bring
with them the relation of comeasurability. And since we require of every proposition
that it be associated with a measurement procedure that simultaneously decides the
properties it contains, only comeasurable propositions have a lattice meet and join.
The argument that B(E2) correctly represents the logical structure of the element-
ary propositions is based on the premise that the comeasurability relation should be
the minimal comeasurability relation: since we cannot be held to know a priori how
extensive comeasurability is, we should make the weakest assumption about its exten-
sion that is compatible with P being a family of propositions. But the propositions
of B(E2) are elementary in two respects: They freely generate the algebra and thus
exhibit elementarity in the sense of comprising independent sets of building blocks
out of which the whole algebra is constructed. In addition, they are elementary in the
sense that they are algebraic atoms, i.e., minimal non-zero elements of the algebra.
The partialness of the algebra thus allows for elementary atomic generators that are
also independent sets of generators, a situation that can arise in the classical context
only in the case of a four-element Boolean algebra. The possibility of algebras of
propositions that contain atoms which do not exclude one another, and are therefore
not orthogonal, is arguably the central conceptual innovation that the foundations of
quantum mechanics holds for the study of elementary propositions.

4 STATISTICAL STATES AND THE GEOMETRY OF

OPERATIONAL PROCEDURES

P is an algebra of propositions isomorphic to B(E2) in which (i) knowledge of
one proposition Px implies literally nothing about knowledge of another proposition
Py, x �= y, and (ii) unlike the Boolean case, states of complete information regarding
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all the Px do not occur in the algebra. The information given by the relatively
impoverished logical-combinatorial structure must be supplemented in two important
ways: first, we require the inclusion of a class S of statistical statesψ and an algorithm
probψ for assigning probabilities to the Px on their basis, and secondly, we require a
more fine-grained analysis of the nature of the possible ideal measurement proced-
ures for the constituent properties of elementary propositions. Let us first consider
the effect of introducing a set of statistical states.

Given S and probψ we can, following the approach to axiomatic foundations of
Mackey (1963) and others, define a partial order relation ≤ on the Px by putting
Px ≤ Py if for every statistical state ψ , probψ(Px) ≤ probψ(Py). The complement
¬Px of Px is defined by the condition that for all ψ , probψ(¬Px) = 1 − probψ(Px).
Once the comeasurability relation has been specified, we can define partial lattice
operations of meet and join in terms of this ordering—or, more accurately, in terms of
the ordering it induces on equivalence classes of elementary propositions, equivalent
with respect to the relation Px ≈S Py iff Px ≤ Py and Py ≤ Px.

A very simple example—essentially, the quantum mechanical description of a
spin-1/2 system—illustrates this idea. Given two opposite directions x = x+ and
x− along a ray x in E3, together with associated elementary propositions Px and
Px−, suppose that for every statistical state ψ , probψ(Px) = 1 − probψ(Px−), so that
¬Px = Px−. The information which the states in S tell us one proposition yields
regarding another is represented by B(H2)—the partial Boolean algebra of subspaces
of a complex Hilbert space of two dimensions—which, as a partial Boolean algebra,
is isomorphic to B(E2). In this example it is assumed that the operational procedure
associated with a pair Px and Px− of elementary propositions is one whose geometric
characterization depends on a specification of the orientation of the apparatus along
a direction in E3. In this simplest case all that changes when we pass from the purely
logical-combinatorial representation given by B(E2) to one that is informed by the
probability algorithm and set of statistical states is the identification of ¬Px as Px−.
The algebraic structure of the representation is unchanged.

The following terminological conventions will be useful: Let us call the partial
Boolean algebra P of elementary propositions the basic structure; the quotient struc-
ture P/≈S, with ≤, ¬, ∧ and ∨ defined in terms of probψ and S, we will call a
derived structure of elementary propositions or the derived structure based on S. By
a convenient extension of terminology, elements of the basic structure are basic ele-
mentary propositions, those of a derived structure, derived elementary propositions.
The “properly” elementary propositions are the elements of the basic structure; the
elements of a derived structure are abstractions from basic elementary propositions
to equivalence classes of them.

The basic structure is always assumed to be isomorphic to B(E2). There is noth-
ing to exclude the possibility that the basic and derived structures are algebraically
the same, but it can also happen that they are very different, in which case, a con-
sequence of combining P with a family of statistical states is that the character of the
comeasurability relation on the associated derived structure changes from the min-
imal comeasurability relation of B(E2) to something more complex. This brings us to
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our second example and an important refinement in the analysis of ideal operational
procedures.

All the propositions we are considering involve the ascription of direction-
dependent properties that are accessible to us only through their associated criteria
of application—by their ideal operational procedures. The case described earlier was
especially simple, involving criteria of application that distinguish between positive
and negative directions along a ray. We want now to consider the case of propositions
involving properties whose attribution requires ideal measurement procedures that
involve decompositions of the rays of E3 into orthogonal triples.

It is evident that the identity of a ray in physical space does not depend on whether
the plane to which it is orthogonal is represented as the span of one or another pair of
mutually orthogonal rays. Our conception of the geometry of the rays through a point
of space is such that the identity of a ray is independent of the choice of basis to which
it belongs. But in the case of the algebra of propositions, it is an open question to what
extent the independence of a ray from a basis is inherited by the direction-dependent
properties and propositions of P. To address this question we need to consider a
more complex example and a correspondingly more complex notation since we must
indicate both the ray associated with the constituent property of the proposition and
the decomposition that characterizes the property’s criterion of application.

We will begin with a purely abstract description. Let (x, y, z) be a decomposition
of E3 into an orthogonal triple of rays. Let xθ = xθ(x, y, z) = (x, θy, θz) be the
decomposition that results from a rotation about x through an angle θ sending y to
θy and z to θz. Clearly, for 0 ≤ θ < 90 the decompositions of E3 are all distinct
and contain the ray x, and for θ = 0, xθ = (x, y, z). For θ �= θ ′, the propositions Pxθ

and Pxθ ′ are associated with the same ray in E3, but with measurement procedures
that are distinguished by the different decompositions in terms of which they are
characterized. The distinctness of the measurement procedures means that Pxθ and
Pxθ ′ may involve distinct properties, making them distinct as propositions. This is
in contrast to the case we considered first, where the distinctness of propositions is
exhausted by the distinctness of the rays with which they are associated or by the
difference of direction along a ray.

In the present example, we have a family of propositions Pxθ whose associated
direction-dependent properties have as their criteria of application ideal measure-
ment procedures. Each measurement procedure involves a decomposition of E3 into
an orthogonal basis. Although it may seem artificial to distinguish Pxθ and Pxθ ′ it is
important to bear in mind that we are seeking to isolate the minimal initial assump-
tions that are required in order for the Pxθ to count as a class of propositions. These
assumptions may later be supplemented on the basis of further empirical considera-
tions in a way we have yet to explore, but that will not affect their status as a starting
point; they represent the minimal logical and empirical assumptions we require in
order to have a family of propositions at all.

Thus, in the case of basic propositions, the initial constraints on the relation of
comeasurability are determined purely by what the analysis of the notion requires: if
comeasurability is understood in terms of ideal measurements that are criterial for the
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property mentioned in Px, then the constraints that preanalytic intuition imposes on
the relation can be satisfied if it is identified with the smallest comeasurability rela-
tion. But what should the relation be based upon in the case of a derived structure? For
a class of basic propositions associated with a spin-1 particle, it is an empirical fact
that there is a distinguished family of ideal operational procedures, each of which is
specified by an orthogonal decomposition of E3, representing the axes of the coordin-
ate frame associated with the measurement apparatus of the operational procedure. It
is also an empirical fact that for triples of directional properties in each of three mutu-
ally orthogonal directions of E3 there is a single ideal operational procedure which
simultaneously measures all three properties. The associated propositions, Px, Py, Pz ,
are therefore comeasurable. The derived structure of interest to us arises from the
empirical fact that the probability assignments determined by the ψ in S are inde-
pendent of the “measurement context,” where a difference in measurement context
is produced by a rotation in E3 of the coordinate frame of the measurement apparatus
about one of its principal axes. More specifically, let (x, y, z) be an orthogonal triple
of rays in E3 and let Pxθ , Pyθ , Pzθ , 0 ≤ θ < 90 be elementary propositions associated
with x, y and z, respectively. There are three classes of ideal measurement procedures
for the constituent properties: {(x, θy, θz) : 0 ≤ θ < 90}, {(θx, y, θz) : 0 ≤ θ < 90},
and {(θx, θy, z) : 0 ≤ θ < 90}. The statistical states ψ in S are such that for every
choice of θ , the propositions Pxθ are ≈S-equivalent, as are the propositions Pyθ , and
the propositions Pzθ . This holds independently of the initial choice of (x, y, z). Hence
the correspondence from E3 to P/≈S which sends each ray x to its derived proposition
[Pxθ ] is one-one. This justifies dropping the more complex notation and writing Px

for the derived proposition [Pxθ ] of P/≈S; i.e., we see that in this example, the derived
propositions are merely direction-dependent.

If ideal operational procedures are parameterized by orthogonal decompositions
of E3 and the probability assignments determined by the states ψ in S exhibit the
rotational symmetry we have described, then the statistical states ψ in S are such that
for every choice of θ , the propositions Pxθ are ≈S-equivalent, as are the propositions
Pyθ , and the propositions Pzθ . In this example, {Px, Py, Pz} is a comeasurable family
of propositions whenever (x, y, z) is an orthogonal triple of rays, and with respect to
the ordering ≤ given by probψ , the partial operations ∧ and ∨ are such that ¬Px =
Py ∨Pz , ¬Py = Px ∨Pz and ¬Pz = Px ∨Py, and dually, i.e. after interchange of ∨ for
∧ and complemented for uncomplemented propositions. The derived algebra gener-
ated by all such triples is isomorphic to the partial Boolean algebra of subspaces of E3,
where the Boolean subalgebras generated by the sets {Px, Py, Pz} are maximal comeas-
urable subsets of P/≈S. This is the structure that, as a partial Boolean algebra, is shared
by the derived structure P/≈S of our example. This is a much more complex object
than B(E2), and as we will soon see, this complexity is reflected in the representation
of how knowledge of one proposition bears on knowledge of another. The character of
the derived structure of this example is thus a consequence of the rotational symmetry
of the states in S. The invariance of probability under rotation of the measurement
apparatus about an axis is the central principle on which our analysis is based, a
principle that has the epistemic status of a broadly confirmed empirical hypothesis.
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Although the quantum mechanical description of a spin-1/2 system is easily read
off our first example, locating the spin-1 description in our second example is some-
what less straight-forward. The canonical measurement procedure associated with
the property of spin is a Stern-Gerlach apparatus. In the case of a spin-1 system, there
are three possible outcomes to a measurement of spin in a particular direction. The
outcomes are associated with propositions of the form:

The spin in the direction x is i (i = 1, 0, −1).

For i = 0, the propositions

Qx The spin in the direction x is zero

are statistically equivalent to the propositions Px of our example. This justifies the
interpretation of the propositions Px as

Px The square of the spinxis zero.

More precisely, the basic elementary propositions of the example are of the form

Pxθ The square of the spinxθ is zero,

where θ specifies the orientation of the measurement apparatus which simultaneously
measures Pxθ , Pθy and Pθz . What one finds is that for all statistical states ψ of the
quantum mechanical description of such a system, and for all θ and θ ′, probψ(Pxθ =
probψ(Pxθ ′) = probψ(Qx)—a fact which we represent by dropping the reference to
a particular decomposition and writing

Px The square of the spinx is zero

for the derived propositions based on S.
The initial or basic structure consists of propositions whose constituent properties

have associated with them measurement procedures that are maximal with respect to
the number of square of the spinx properties they simultaneously decide. The specific-
ation of such a procedure necessarily involves a decomposition of E3 into orthogonal
triples of directions. In the case of some properties, the canonical measurement pro-
cedure is such that it suffices to mention just the direction itself. This is illustrated
by the example of spinx in the example of a spin-1/2 system, and it holds as well for
spinx for a spin-1 system (the Qx above). But in other cases—and in particular, in the
case of interest to us, namely, square of the spinx for a spin-1 particle—this is not
true, and different decompositions, corresponding to different maximal measurement
procedures, must be included in the designation of the propositions. The salient differ-
ence among different ideal operational procedures is therefore captured by different
choices of θ . The context-independence of probability is expressed by the invariance
of the statistical distribution under change of θ . The probabilities—and therefore the
derived propositions—exhibit a rotational symmetry that the basic propositions do not
share. The differences among operational procedures that we have isolated therefore
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have a special character since they depend only on the orthogonal decompositions
of E3 with which they are associated. This is to be contrasted with the more general
case, where differences among ideal measurement procedures may not be susceptible
of a simple and unitary theoretical—let alone geometrical—characterization.

On the present reconstruction of the framework of the non-relativistic theory, the
source of the Hilbert space formalism is located in an invariance principle that con-
cerns the statistical equivalenceof the elementsof a canonical classofbasic elementary
propositions, their ideal operational procedures, and the geometry of ordinary space.
The classical or macroscopic level enters the analysis and representation of measure-
ment through the rotation group of E3, which parametrizes measurement procedures
for the class of directional properties of interest. The dependence of probability on the
geometry of space is the prototype for the general case: the Hilbert space formalism
abstracts from the dependence of probability on the Euclidian angle between the dir-
ections involved in directional properties of the sort considered here to the dependence
on the angle in Hilbert space that relates the subspaces by which basic elementary
propositions—of whatever character—are represented.

5 INHERENT INCOMPLETENESS

Recall that in order for a theory to exhibit the essential or inherent incompleteness
we are attempting to elucidate, it must contain (i) a representation of the facts which
are incompletely known, (ii) a representation of the knowledge of them that is the-
oretically possible, (iii) an account of the sense in which this knowledge fails to
be complete, and (iv) an explanation of the basis for the failure of completeness. For
the special class of elementary propositions we are considering, facts correspond to
true elementary propositions drawn from the basic structure. Since our knowledge
of the propositions of the basic structure must be compatible with our available stat-
istical information, what can be known of these propositions is constrained by the
appropriate derived structure, which is itself determined by a set of statistical states
and probability algorithm.

I will say that a derived structure is an encoding of the information a set of stat-
istical states contains about the basic elementary propositions of P if the ψ in S
together with probψ yield exactly the generalized probability measures definable on
P/≈S.2 A derived structure is the appropriate vehicle for addressing the question of
completeness if, and only if, it encodes the available statistical information.

Our knowledge of P is inherently incomplete when the statistical information con-
tained in the set of statistical states and probability algorithm are encoded by a derived
structure for which there are no generalized 2-valued measures, where a generalized
2-valued measure is a generalized probability measure taking values in {0, 1}.

It is a consequence of a celebrated theorem of Gleason (1957) that the partial
Boolean algebras B(Hn)n≥3 encode the statistical states of quantum mechanics, a fact
that is often understood to mean that the theory is “complete” in the sense that its
probability algorithm probψ generates all possible generalized probability measures
on the appropriate structure. But what is of special importance to us is that it is a
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feature of the propositions of our second example that knowledge of them—even of a
finite subset of them—is inherently incomplete. The force of inherent incompleteness
emerges as follows: To say that P/≈S has no 2-valued measure is not merely to claim
that there are no such states in S; rather, the point is that the states that are in S are such
that the structure they force for P/≈S is logically incompatible with the existence of
a generalized 2-valued measure on P/≈S.

The nature of the notion of incompleteness we have uncovered is well illustrated
by a theorem of Pitowsky (1998): Given any two noncomeasurable propositions Px

and Py represented by rays in B(H3), we can always find a finite set � of rays of
B(H3) which contains Px and Py and has an orthogonality structure that forces any
2-valued measure on � to assign them both 0. More generally (see Pitowsky 2005),
when the derived structure of propositions has the character of our more elaborate
example, either the probability of any two noncomeasurable Px and Py is zero, or
at least one has a probability strictly between zero and one.3 Hence, the inherent
incompleteness of our knowledge of the propositions in P does not depend on there
being a continuum—or even a countably infinite—number of them.

Notice that the sense of incompleteness with which we are concerned is one that
is internal to a theory: incompleteness is relative to a theory’s specification of a
family of elementary propositions and its characterization of the available statistical
information regarding them. In particular, the internal character of incompleteness
means that it does not involve a claim which quantifies over all possible theories of
the properties belonging to the propositions of P. This stands in marked contrast to
Heisenberg’s early views (1927) concerning the ineradicable disturbance a measure-
ment of a quantum mechanical system produces.4 Heisenberg treats such systems
as incompletely knowable, but the notion of incompleteness to which his account
appeals is not an internal one precisely because it does quantify over all possible
theories of the measurement process. In other respects, the present view has a certain
affinity with Heisenberg’s account, especially if we see it as an attempt to articulate
a theory that is minimalist in its nonempirical commitments concerning the scope of
the comeasurability relation. There is another connection with Heisenberg that we
are not yet in a position to address, but which we will come to shortly.

It is solely a consequence of the empiricism of the framework we are articulating
that it distinguishes between Pxθ and Pxθ ′ when the decompositions of E3 effected by
their associated criteria of application differ. An economy arises when, under pressure
of experience, distinctions among propositions are collapsed by placing statistically
equivalent propositions into the same equivalence class. For the present analysis, the
fact that the result of dividing P by ≈S is typically an object of very different form
from P is of far greater interest than the economy effected by the “identification” of
statistically equivalent basic propositions. The difference in form has the consequence
that statistically equivalent propositions must sometimes differ in truth value, so that
our best statistical information can be logically incompatible with knowing the truth
values of all elementary propositions. This brings out a fundamental difference in
perspective between the present, epistemic, approach and modal interpretations of
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quantum mechanics (see e.g. (Bub 1997)). A modal interpretation seeks to charac-
terize certain maximal but proper subsets of propositions of B(H3)—and hence, of
P—for which there exist 2-valued measures. Such subsets can include noncomeasur-
able propositions without contradicting Pitowsky’s theorem because it is not required
that all the propositions in the set � of the theorem belong to one of the maximal
subsets of a modal interpretation. For a modal interpretation, facts correspond to the
true propositions of such a maximal subset, but many propositions are neither true
nor false. In modal interpretations, there is therefore nothing corresponding to the
incompleteness of our knowledge of what is and what is not the case because there
is simply nothing to know.

6 QUANTUM LOGIC AND HIDDEN VARIABLES

Although the free partial Boolean algebra on a continuum of generators has many
strikingly non-classical features—it is, for example, irreducible in the sense that only
0 and 1 are comeasurable with every element of the algebra—it violates no law of
classical logic. The character of its departure from classical ideas is, therefore, one
that does not carry with it a new conception of truth. The present approach is able
to preserve the determinacy of truth value for elementary propositions because the
basic structure in which they lie, though not a Boolean algebra, is embeddable into a
Boolean algebra, and therefore has a plethora of 2-valued homomorphisms. It follows
from this that all classical tautologies hold in B(E2) under a suitably generalized sense
of propositional validity (cf. Kochen and Specker (1967) Theorem 4). It can therefore
be maintained that the notion of truth on which the account relies is the classical one
since both it and the classical notion obey the same “laws of truth.”

The quantum logical interpretation of quantum mechanics of Bub (1974), Demo-
poulos (1977) and Friedman and Putnam (1978) is based on the idea that every
elementary proposition is determinately true or false in a much broader range of cases
than when the basic structure which contains them is B(E2). Even when the logical
structure of elementarypropositions is representedbyB(E3), it followson thequantum
logical interpretation that every proposition is determinately true or false, since for
every proposition P, P ∨ ¬P is always the unit of B(E3), and is therefore true. If this
interpretation could be sustained, it would have the advantage of securing determin-
acy of truth value without the context-dependence of basic propositions: propositions
that are merely statistically equivalent on the view we have been developing would
actually be the same proposition, despite the association of their constituent properties
with diverse criteria of application. The difficulty, however, is that it is unclear how to
explain the notion of truth the interpretation requires. Consider, for example, Kochen
and Specker’s proof that there is a finite family of propositions that have no 2-valued
measure. Theorthogonalitygraphof the raysusedbyKochenandSpecker in theirproof
can be represented by a propositional formula, ϕ = ϕ(x1, . . . , x86); when interpreted
over the rays employed in the proof, ϕ assumes the value 1, i.e., ϕ is identical with the
unit of the algebra and is, therefore, “true” in the quantum logical sense of ‘true.’ But
by the equivalence of 2-valued measures and 2-valued homomorphisms, ϕ is a clas-
sical contradiction. Hence, the very same notion of truth that, for the quantum logical
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interpretation, validates excluded middle also validates classical contradictions. Thus,
whatever the sense in which, on the quantum logical interpretation, every proposition
is determinately true or false, it cannot be the classical one since it counts as true a
proposition that is false under every classically possible truth value assignment to its
propositional constituents. It remains an open problem for the interpretation to explain
the notion of truth that it employs.

The intuitive picture that emerges on the view developed here takes the following
form in the spin-1 case. For every orthogonal triple (x, y, z) of directions in physical
space, a spin-1 particle carries with it an “instruction-set” for each of the three families
of basic propositions Pxθ , Pyθ , Pzθ . The instruction sets determine how the particle
will answer any question regarding a proposition belonging to any such family. The
sets are so constrained that properties mentioned in the basic propositions Pxθ and
Pxθ ′ , θ �= θ ′, occur with the same frequency. The classical or macroscopic level enters
the analysis through the dependence of probability on the geometry of physical space.
This is expressed by the broad empirical fact that the properties whose criteria of
application sustain the simple geometrical relationship exhibited by Pxθ and Pxθ ′ , θ �=
θ ′ are statistically equivalent. The abstract representation of this situation is precisely
what is given by the structure of the derived propositions.

The conceptually difficult step that the Hilbert space formalism embodies is the
nature of its separation of the truth of distinct propositions such as Pxθ and Pxθ ′ from
their probability. The novelty of the representation of the fact that such propositions
can be statistically equivalent while differing in truth value consists in the inherent
incompleteness the representation expresses. The interpretative difficulty the physical
situation presents arises from the expectation—not fulfilled by spin-1 systems—that
the properties that are constituent in basic propositions such as Pxθ and Pxθ ′ must be
the same property, one which is merely indicated by different operational procedures.

The system P of basic propositions is a structure internal to the quantum theory
itself, one that emerges as the basis for the theory’s own hidden variable interpretation
of its significance. What remains unusual from a pre-quantum mechanical perspect-
ive is the way in which properties are coupled with their measurement procedures;
they—or rather, they and the propositions containing them—are detachable from
their criteria of application only probabilistically. In answer to a question that was
posed at the beginning of this study we can say that the probability of a proposition
involving a directional property is independent of the orthogonal basis in E3 which
is selected by its associated ideal measurement procedure, but the proposition itself
is not independent of such a basis. This may capture Pauli’s (1994) contention that
quantum mechanics rejects the idea of a “detached observer,” since measurement
remains opaque in the sense that the separation between a property and its criterion of
application—familiar from our experience with classical physics—has been all but
eliminated. We can achieve a separation of properties and their criteria of application
only at the probabilistic level. This is the residual affinity with Heisenberg alluded
to earlier in the context of his claim that the measurement process is intractable. But
the affinity with Heisenberg is not being inexplicable by any possible theory, but
is rather an internal analogue of intractability: Relative to the theoretical represent-
ation of basic elementary propositions, ideal operational procedures, and available
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statistical information, our knowledge of basic propositions lacks a component that,
like a classical mechanical state, is interpretable as knowledge of their truth value;
what is expressible theoretically is knowledge only of their probability.
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NOTES

1 See DiSalle (2005) for an elaboration of this observation.
2 The notion of a generalized probability measure was introduced by Gleason (1957) in the context of his

characterization of the measures definable on the closed linear subspaces of Hilbert space. The analysis
of the three-dimensional case proved to be fundamental. For this case, a generalized probability measure
is a map f from the closed linear subspaces of H3 to the closed unit interval satisfying the conditions

fa + fb ≤ 1

for a⊥b, and

fa + fb + fc = 1

for any three rays a, b, c which are mutually orthogonal. The derived structure on which we have
focused, namely that associated with the square of the spinx , was specifically chosen for its isomorphic
representation by a substructure of B(H3)

3 It was observed by Hultgren and Shimony (1977) that the spin propositions of a spin-1 system do not
exhaust B(H3), so that the propositions of the derived structure form a substructure of the full three
dimensional Hilbert space. This is in contrast with spin-1/2 propositions and B(H2). Shimony and
Hultgren raised the question whether it is possible to give an operational motivation for the whole of
B(H3). The question is answered positively in (Reck et al. 1994). Thanks to Pitowsky for bringing this
to my attention and for the references just cited.

4 For an extended discussion of Heisenberg see Frappier (2005).
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5. MARKOV PROPERTIES AND QUANTUM
EXPERIMENTS

Few people have thought so hard about the nature of the quantum theory as has
Jeff Bub, and so it seems appropriate to offer in his honor some reflections on that
theory. My topic is an old one, the consistency of our microscopic theories with our
macroscopic theories, my example, the Aspect experiments (Aspect et al., 1981, 1982,
1982a; Clauser and Shimony, 1978; Duncan and Kleinpoppen, 1998) is familiar, and
my simplification of it is borrowed. All that is new here is a kind of diagonalization: an
argument that the fundamental principles found to be violated by the quantum theory
must be assumed to be true of the experimental apparatus used in the experiments
that show the violation.

The chief principle I have in mind is essential in causal inference in macroscopic
problems, and is used almost without notice in experimental and observational stud-
ies in economics, epidemiology, biology, physics, everywhere. The Causal Markov
Condition (CMC) is the following property:

Consider any system S = 〈G, Pr〉, including a set V of variables whose causal
relations are represented by a directed acyclic graph G having members of V as
vertices. A directed edge, V1 → V2 in G represents the proposition that there exists
a set A of values for V \{V1, V2} such that V1 covaries with V2 upon an intervention
fixing V \{V1, V2} and randomizing V1.: Let V be causally sufficient : there is no
variable X not in V such that if G were expanded to include X , there would be two
vertices in V with edges from X directed into them. For any variable V in V, let Par
(V ) be the set of vertices in V that have edges directed into V , and let Des (V ) be the
set of edges that are endpoints of directed paths from V . Let Pr be a joint probability
distribution on all possible assignments of values to variables in V such that for all
vertices V1, V2 in V, and for all such assignments of values, if V2 is not a member of
Des(V1), then V1 is independent (in measure Pr) of V2 conditional on Par(V1). Then
S satisfies the Causal Markov Condition.

Abstract as it may be, the condition is merely a reasonably rigorous generaliza-
tion of Hans Reichenbach’s “(1956) screening off” conditions for causal relations.
Causally sufficient, feed-forward deterministic systems satisfy the condition if their
exogenous causes are independent in probability.

∗ Dept. of Philosophy, Carnegie Mellon University, Pittsburgh PA 1521-3890, USA and Florida Institute
for Human and Machine Cognition, University of West Florida, Pensacola, FL 32052, USA; E-mail:
cg09@andrew.cmu.edu
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A second principle is Faithfulness : All conditional independence relations in a
system satisfying the Causal Markov Condition are consequences of that condition
applied to the graph of the system.

One way to view the experiments that demonstrate the inconsistency of quantum
theory with the Bell inequalities is that they show that one or both of these conditions
must fail as universal causal principles: feed-forward systems exist that cannot be
made causally sufficient consistent with CMC and Faithfulness. There are many
diagnoses in different terms. David Bohm, Bub’s teacher, would perhaps have said
that that is because no system is causally sufficient; other commentators might locate
the problem with the assumption of a joint probability distribution, and so on. I wish
merely to point to the curiously valid, almost Wittgensteinian logic, that gets us to
the inconsistency.

Instances of assumptions of the CMC and of Faithfulness could be traced through
the details of the experimental set up, runs and data analyses of the Aspect exper-
iments, But it has been a long time since I was any kind of physicist, and I would
inevitably misrepresent details and confuse even the readers of clearest mind, and
there are details of sensor behavior and sensitivity that complicate without clarifying.
So I will pass on the details and consider instead a very simple idealization of the
phenomenon, due to N. David Mermin (1985, 1990).

Consider two detectors I and II that are spatially separated. Each detector has three
settings, S = 1, 2 or 3. Further each detector has a red bulb R and a green bulb G.
Pairs of particles are emitted from a source and enter the two detectors. There is no
other physical connection of any kind we know of between the detectors (Figure 5.1).

The detectors behave this way: (1) when both detectors are set to same value, no
matter which, they both show red or they both show green. Red and green occur with
equal frequency; (2) when the two detectors are set to any two different values, they
show the same color, both red or both green, 1/4 of the time—again, red and green
occur with equal frequency in this case, and different colors 3/4 of the time—each

1 2 3

R G R G

1 2 3

FIGURE 5.1.
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Table 5.1

Left indicator
setting

Left indicator
light color

Right indicator
setting

Right indicator
light color

Probability of the two
light colors given the

settings

1 Red 1 Red 1
1 Green 1 Green 1
2 Red 2 Red 1
2 Green 2 Green 1
3 Red 3 Red 1
3 Green 3 Green 1
1 Red 2 Red 1/8
1 Green 2 Green 1/8
1 Red 2 Green 3/8
1 Green 2 Red 3/8
2 Red 1 Red 1/8
2 Green 1 Green 1/8
2 Red 1 Green 3/8
2 Green 1 Red 3/8
1 Red 3 Red 1/8
1 Green 3 Green 1/8
1 Red 3 Green 3/8
1 Green 3 Red 3/8
3 Red 1 Red 1/8
3 Green 1 Green 1/8
3 Red 1 Green 3/8
3 Green 1 Red 3/8
2 Red 3 Red 1/8
2 Green 3 Green 1/8
2 Red 3 Green 3/8
2 Green 3 Red 3/8
3 Red 2 Red 1/8
3 Green 2 Green 1/8
3 Red 2 Green 3/8
3 Green 2 Red 3/8

combination of colors (I green, II red; I red, II green) equally often. We can show the
whole story about the probabilities with a tedious but clear table (Table 5.1).

The thing to notice immediately is that, no matter how we set the two detectors, the
colors the detectors show will not be independent in probability. If both detectors are
set at the same value, the probability that Detector II is red is 1 conditional on Detector I
being red, and vice versa. If both detectors are set at different values, the probability
that Detector II is green given that Detector I is red is three times the probability, on
that same condition, that Detector II is red. Notice further, that someone at Detector I
cannot use his settings of the detector to send signals or communications to someone
at Detector II via the color that shows up at Detector II. For despite the fact that no
matter how the detectors are set, the colors are correlated, the color at Detector II is
independent in probability of the setting at Detector I.
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Table 5.2

State 1,2 2,1 1,3 3,1 2,3 3,2

RRR Same Same Same Same Same Same
RRG Same Same Differ Differ Differ Differ
RGR Differ Differ Same Same Differ Differ
GRR Differ Differ Differ Differ Same Same
RGG Differ Differ Differ Differ Same Same
GRG Differ Differ Same Same Differ Differ
GGR Same Same Differ Differ Differ Differ
GGG Same Same Same Same Same Same

Mermin puts the problem this way. The only explanation (he says) for the first six
rows of the probability table is that the particles each have internal states that specify
their response to each state of a detector. The internal states of each particle specify
what color it will activate for each of the three settings of the detector. Since there
are 2 possible colors for each detector setting, and three settings, there are 8 possible
internal states for each particle. If and only if (Mermin says) both particles have the
same internal states will the colors of the two detectors agree when they have the same
setting, for all 3 possible settings. So the states of the particles have to be perfectly
correlated, the same. If one particle will make a detector go red on setting 1, red on
setting 2, and green on setting 3, so will the other. So the question becomes: is there
a probability distribution over these possible internal states of the two particles that,
consistent with their perfect correlation, agrees with probability table? There is not.
In particular, there is no way to assign probabilities to the particle states so that when
the settings of the detectors are different, the detector colors agree less than 1/3 of
the time. Let’s do another table (Table 5.2). The columns indicate the settings of the
two detectors when they are different, and the entries indicate for each state and pair
of settings whether the colors of the detectors are the same or different.

In each row the fraction of cases in which the colors are the same is 1/3 or more.
No matter what the relative frequency of the various particle states may be, if the
detectors are set at any pair of distinct settings, the colors must be the same at least
1/3 of the time, but in the data for the experiment, for such settings the colors are the
same only 1/4 of the time.

So what does this have to do with Markov Assumption and so forth? Two things.
On the one hand, the conclusion of the example, while not inconsistent with the
Markov Assumption, is inconsistent with the conjunction of the Markov Assumption
and the claim that the state of the particle is the only causal connection between the
detectors. On the other hand, while Mirmin’s reasoning is perfectly correct, his argu-
ment depends on using the Markov Assumption. I will represent Mirmin’s account
of his experiment as a causal graph, like this (Figure 5.2).

The causal diagram and the Markov Assumption explain why the setting of
Detector I cannot be used to send a signal to Detector II via the color that appears
at Detector II—there is no causal pathway from Setting of Detector I to Color for
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Particle state

Color for Detector I

Setting of Detector I

Intervention Intervention

Setting of Detector II

Color for Detector II

FIGURE 5.2.

Detector II, or vice-versa, so the two variables must be independent. And the causal
diagram explains why the colors at the two detectors are correlated: they have a com-
mon cause. Nonetheless, there is something very wrong. There is no causal pathway
from Color for Detector I to Color for Detector II, or in the other direction. There is no
common cause of detector colors other than Particle State. Since Color for Detector
II is not an effect of Color for Detector I, and vice versa, the Markov Assumption
says they if the causal graph above is correct, the detector colors should be inde-
pendent of one another conditional on Particle State. Indeed, that is exactly what
Mermin’s particle states do imply. For example, given that the particle state is RRR,
then Detector I is red and Detector II is red: no matter the settings and neither detector
provides any information about the other detector not already entailed by the particle
state. If the particle state is RGR, then no matter how Detector I is set, the color in
Detector I gives no further information about color that will appear at Detector II.
(The setting chosen for Detector II provides further information about the color that
will show up for Detector II when the particle is in the RGR state, but that is beside
the point.) But Mirmin’s argument shows that these particle states cannot be made
consistent with the assumed observed frequencies of colors in each combination of
settings shown in Table 5.1. So there are logically just three alternatives (1) Mirmin
has sneaked in some extra assumption somewhere, or (2) the Markov Assumption
is false for this case, or (3) there is no causal explanation of the correlations of the
detector colors. Perhaps more than one of these alternatives is true.

Mirmin has certainly sneaked in some assumptions—all of them instances of the
Markov Assumption–and the fact that he does not make them explicit may indicate
that the Markov Assumption is so fundamental to our reasoning about experiments
that we use it automatically, without notice. For there is a common cause explanation
of the probabilities in Table 5.1. Here is the idea, first noted by Suppes and Zanotti
(1981) in a more general case: Change the particle states so that they no longer just
specify a color for each of the three settings of a detector. Now they specify a color
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Particle state

Color for Detector I

Setting of Detector I

Intervention Intervention

Setting of Detector II

Color for Detector II

FIGURE 5.3.

for each detector setting and a setting for each detector. Instead of 8 internal states
of the particle, we now have 48 internal states of the particle. The particle state now
uniquely determines the color at each detector. Given the (new) particle state, the
color at either detector provides no further information about the color at the other
detector, because there is no more information to provide. We can give another causal
diagram (Figure 5.3).

The Markov Assumption is satisfied. (Alternatively, the particle states can influ-
ence the interventions, which influence the detector settings.) Why doesn’t Mirmin
allow this? Because he thinks, quite reasonably, that the particle states do not cause
the detector settings. Why not? Because he thinks the human act of setting the detect-
ors (or a machine act of randomly setting the detectors is an intervention, a cause that
is not influenced by any feature of the system and that fixes the value of the Detector
setting while leaving all of the conditional probabilities of other variables unchanged.
(Similar reasoning applies to the idea that the detector settings influence the particle
state.)

Ok, take out the causal influence of the particle states on the detector settings, but
leave the 48 states of the particle and their probabilities just as before:

Now we can still account for the correlations in Table 5.1, and the particle state is
still a common cause of the detector colors, condition on which the detector colors
are independent—the Markov Assumption is satisfied. Why doesn’t Mirmin allow
that? Because the causal diagram in Figure 5.4 and the probabilities assumed for
the particle states are jointly inconsistent with the Markov assumption in another
way—each detector setting is dependent in probability on the particle state (and vice-
versa), but there is no causal pathway or common cause relating the detector setting
variables to the particle state. Supposing there is another common cause beside the
particle state that also influences the colors won’t help things—the same argument
goes through, its just more complicated. However, we do things, we do not have a
causal explanation of the experiment consistent all the way through with the Markov
assumption.
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Particle state

Color for Detector I

Setting of Detector I

Intervention Intervention

Setting of Detector II

Color for Detector II

FIGURE 5.4.

Mirmin—and we—reason about his imaginary experiment using the Markov
Assumption and the notion of an intervention, and yet the experiment allows of no
causal explanation consistent with the Markov Assumption. The example is a sim-
plification of what goes on in real experiments to test remote correlations predicted
by a consequence of the quantum theory, Bell’s theorem. In quantum experiments,
we pull ourselves down by our bootstraps.

Now there is an obvious solution to the problem: the color at one or both of the
detectors influences the color at the other detector.

This is a popular solution, and the reason why the problem is often said to be about
“locality” or the phenomenon is said to exhibit “non-locality.” Often the non-locality
solution is implicitly motivated by the idea that the correlations between the colors
must have a causal explanation.

Since the detectors can be far enough apart, and the color measurements close
enough in time that the theory of relativity prohibits a signal from being sent from
one detector to another, the solution has a problem. The problem is this: Suppose
before the experiment, the guy at Detector II tells the guy at Detector I how Detector
II will be set. Then, if the causal story above is correct, by adjusting the settings of
Detector I the first guy can send signals to the second guy, who will figure them out
from the color that shows up at Detector II. It works this way. There is in Figure 5.5
a causal pathway from setting of Detector I to the color at Detector II. The pathway
must create an association between the two, and associations are all that is needed for
communication, for sending a signal. The Faithfulness assumption says a direct causal
connection creates an association—and the very point of the non-locality hypothesis
is to create such an association between the colors. (Consistently with the Markov
Assumption the association cannot be the effect of a common cause—for reasons we
have already reviewed.) The setting of Detector I influences the color at Detector I,
so we have a sequence of causal links—and correlations or associations—between
Detector 1 and the color at Detector II. Now; a causal linkage of one variable with
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Particle state

Color for Detector I

Setting of Detector I

Intervention Intervention

Setting of Detector II

Color for Detector II

FIGURE 5.5.

a second linked with a third need not always create an association between the two
variables, even if it is the only pathway connecting the variables (as in this case
between Detector I and the color at Detector II). For example, suppose variable A has
three values and variable B has three values (say, b1, b2 and b3) and variable C has
two values, and the probabilities for two of the values (b1 and b2) of B depend on the
value of A, (but the third value, b3, of B does not depend on the value of A) and the
probability of values of C depends on whether B has value b3 or one of the values b1,
b2, but doesn’t depend on which of the values b1 or b2 B has. Then interventions that
vary A will not create any association with C. Despite the fact that A influences B,
and B influences C, A does not influence C: causation is not transitive. But if B has
only two values, the causal relations must be transitive, and A must be associated with
C. That is exactly the situation in the Mermin’s thought experiment. Hence relativity
can be violated. Having the influence go in both ways doesn’t help; the argument still
works.

The argument doesn’t depend on any philosophical niceties about what “causa-
tion” means, and it doesn’t depend on any details of the physics. It depends on the
assumption that the settings of the Detectors are interventions, and the hypothesis that
the “non-locality” relation creates an influence between the colors. So, if relativity
is true and the statistics drawn from the Aspect and similar experiments are sound,
causal non-locality is a non-starter.

The upshot is this: real experiments with associations analogous to those of
Mermin’s thought experiment create associations that have no causal explanation
consistent with the Markov Assumption, and the Markov assumption must be applied,
implicitly or explicitly, to obtain that conclusion. You can say that there is no causal
explanation of the phenomenon, or that there is a causal explanation but it doesn’t
satisfy the Markov Assumption. I have no trouble with either alternative. It is not a
truth of logic that all experimental associations have a causal explanation, and it is
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not a truth of logic that all causal relations satisfy the Markov Assumption. That’s up
to Nature. But I do have this problem: why, then, does the Markov Assumption work
with our experiments on middle sized dry and wet goods, with climate, and rats and
drugs, and so much else?

I have no definite answer. I would suggest looking in these banal directions. First,
among properties of middle sized objects, Aspect-like associations are extremely
small, so the properties of systems are nearly deterministically related, or would
be if all significant causes of variation were accounted for; second, when system
are not causally sufficient, we make them nearly so when we can by redefining
variables, by conditioning on variables with unexplained associations, and other
devices; third, insofar as macroscopic frequencies are generated as “strike ratios”
from deterministic processes, as proposed long ago by Hans Reichenbach in his
doctoral thesis and more recently by Michael Strevens (2003), we should expect the
Causal Markov Condition to hold necessarily. And finally, there are proofs that under
continuous measures on the parameters of various families of probability distributions,
the Markov Condition implies that the Faithfulness condition holds almost always
(Spirtes et al., 2000).
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6. QUANTUM ENTROPY

The entropy concept has proved to be very useful in the fields of information theory
and the statistics of data processing [1, 2]. Entropy in conjunction with information –
theoretic and combinatorial methods has also been applied to derive many well-known
inequalities [3]. More recently quantum entropy has become important in quantum
information theory [2, 4]. The derived concept of relative entropy is also useful
because it provides a measure of the distance between two probability distributions
or between two quantum states. Our main concerns here will be the proofs of two
basic properties of quantum relative entropy, namely positivity and monotonicity. It
turns out that the proof of positivity is easy while the proof of monotonicity is difficult.
For an arbitrary Hilbert space, monotonicity and the closely related property of strong
subadditivity were open problems for a number of years until they were solved by
Uhlmann [5] and by Lieb and Ruskai [6]. If the Hilbert space is finite-dimensional then
a much simpler approach due to Petz [2, 4] can be taken. Our main contribution will
be some clarification of this approach. The finite-dimensional case is still important
because it is the basic arena for quantum computation and information theory [2, 7].
We believe that this work provides a beautiful application of the techniques of linear
algebra.

1 CLASSICAL ENTROPY

Before we tackle quantum entropy, let us warm up with a brief discussion of classical
entropy. Let � = {ω1, . . . ,ωn} be a finite sample space and let P(ωi) = pi be a
probability distribution on �. Then pi is the probability that the outcome ωi occurs
and we have that pi ≥ 0,

∑
pi = 1. The Shannon entropy S(P) is defined by

S(P) = −
∑

pi ln pi (1.1)

For (1.1) to make sense when pi = 0 we define 0 ln 0 = 0. Now S(P) ≥ 0 provides the
lack of information (or ignorance or uncertainty) about our statistical system given by
the distribution P. In other words, S(P) is a measure of the unpredictability encoded
in P that a particular outcome will occur. In the case of maximal ignorance we cannot
predict at all which outcome will occur so we have the uniform distribution pi = 1/n,
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i = 1, . . . , n. In this case

S(P) = −
n∑

i=1

1

n
ln

1

n
= − ln

1

n
= ln n

We shall show shortly that the value S(P) = ln n is the maximal entropy for�. At the
other extreme, if we have complete information about the system, then we can predict
exactly which outcome will occur. We then have that pi = 1 for some 1 ≤ i ≤ n.
Hence, S(P) = 0 which is the minimal value for the entropy. It is clear that these are
the only kinds of distributions that attain the minimal value.

Now suppose we have two probability distributions P(ωi)=pi and Q(ωi)= qi on
the sample space � = {ω1, . . . ,ωn}. We say that P is absolutely continuous relative
to Q and write P ≺ Q if qi = 0 implies that pi = 0, i = 1, . . . , n. The relative entropy
of P with respect to Q is defined by

S(P | Q) =
∑

(pi ln pi − pi ln qi) = −S(P)−
∑

pi ln qi

if P ≺ Q and S(P | Q) = ∞ otherwise. We may think of S(P | Q) as a measure of
the distance between P and Q. Unfortunately, S(P | Q) �= S(Q | P) in general. For
example, if Q is the uniform distribution on� and P is the exact distribution P(ωi) = 1
then P ≺ Q and S(P | Q) = ln n but Q �≺ P so that S(Q | P) = ∞. However, our
first theorem shows that relative entropy possesses the important property of distance
called strict positivity.

Theorem 1.1 Relative entropy satisfies S(P | Q) ≥ 0 with S(P | Q) = 0 if and only
if P = Q.

Proof. We may assume without loss of generality that pi > 0, i = 1, . . . , n. If P �≺ Q,
then S(P | Q) = ∞ > 0 so assume that P ≺ Q in which case qi > 0, i = 1, . . . , n.
Applying the well-known calculus inequality ln x ≤ x − 1 for x > 0 we have that

S(P | Q) = −
∑

pi ln
qi

pi
≥
∑

pi

(
1 − qi

pi

)
=
∑

(pi − qi) = 0

This proves positivity and we now prove strictness. It is clear that P = Q implies
that S(P | Q) = 0 so suppose that P �= Q. Then there exist pj , qj such that pj �= qj .
Again, if P �≺ Q then S(P | Q) = ∞ �= 0 so assume that P ≺ Q. Now we see from
the graphs that ln x = x − 1 only at the point x = 1. It follows that

−pj ln
qj

pj
> pj

(
1 − qj

pj

)

Hence,

S(P, Q) >
∑

pi

(
1 − qi

pi

)
= 0
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As an application of Theorem 1.1, let Q be the uniform distribution on �. Then
for any distribution P on � we have that

0 ≤ S(P | Q) = −S(P)−
∑

pi ln
1

n
= −S(P)+ ln n

Hence, S(P) ≤ ln n so the uniform distribution has maximal entropy and is the unique
distribution with this property.

We now discuss another important property of relative entropy called monotonicity.
Suppose we have two finite sample spaces �1 = {

ω1
1, . . . ,ω1

m

}
, �2 = {

ω2
1, . . . ,ω2

n

}

and we form the joint sample space

�1 ×�2 =
{
(ω1

i ,ω2
j ) : i = 1, . . . , m, j = 1, . . . n

}

Let P12(ω
1
i ,ω2

j ) = pij be a joint probability distribution so that pij ≥ 0,
∑

pij = 1.

Then pij gives the probability that outcome ω1
i occurs in the first system and outcome

ω2
j occurs in the second system. The marginal distributions are given by P1(ω

1
i ) = p1

i

where p1
i = ∑

j pij and P2(ω
2
j ) = p2

j where p2
j = ∑

i pij . We interpret P1 as the
distribution on system 1 when system 2 is disregarded and a similar interpretation
is given for P2. Monotonicity says that if P12 and Q12 are joint distributions on
�1 ×�2 then

S(P1 | Q1) ≤ S(P12 | Q12) (1.2)

Thus, if we disregard system 2 the relative entropy cannot increase. In other words,
a joint system can distinguish two distributions better than a single system can
distinguish their marginal distributions.

Theorem 1.2 The monotonicity property (1.2) holds.

Proof. If P12 �≺ Q12 we are finished so assume that P12 ≺ Q12. It easily follows that
P1 ≺ Q1. We can then assume without loss of generality that pi,j , qij , p1

i , q1
i are all

positive. To prove (1.2) we first write it as
∑

j

p1
j (ln p1

j − ln q1
j ) ≤

∑

j,k

pjk(ln pjk − ln qjk) (1.3)

Now (1.3) is equivalent to

∑

j,k

pjk ln
p1

j

q1
j

≤
∑

j,k

pjk ln
pjk

qjk

which can be rewritten as

∑

j,k

pjk ln
p1

j qjk

q1
j pjk

≤ 0 (1.4)
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To prove (1.4) apply the inequality ln x ≤ x − 1 to obtain

∑

j,k

pjk ln
p1

j qjk

q1
j pjk

≤
∑

j,k

pjk

(
p1

j qjk

q1
j pjk

− 1

)
=
∑

j,k

(
p1

j qjk

q1
j

− pjk

)

=
∑

j,k

p1
j qjk

q1
j

− 1 =
∑

j

p1
j − 1 = 0

2 OPERATOR CONVEXITY

Before we can study quantum entropy we need some background in linear algebra, in
particular matrix theory. For n ∈ N, let V be an n-dimensional complex inner product
space with inner product 〈ψ ,φ〉. Now V is isomorphic to the inner product space C

n

with the usual inner product

〈ψ ,φ〉 =
n∑

i=1

αiβ i

where ψ = (α1, . . . ,αn), φ = (β1, . . . ,βn). For this reason we shall usually assume
that V = C

n. Denoting the set of linear operators on V by L(V ), any A ∈ L(V )
can be represented by a matrix operator on C

n. Again, we shall usually assume that
A ∈ Mn where Mn is the set of n × n complex matrices.

Let Sn be the set of hermitian n × n complex matrices and let In be the identity
matrix. The spectral theorem states that any A ∈ Sn has the form A = ∑n

i=1 λiPi where
λi ∈ R are the eigenvalues of A and Pi are one-dimensional orthogonal projections
satisfying PiPj = 0, i �= j, and

∑
Pi = In. Equivalently, there exists a diagonal

matrix D = diag(λ1, . . . , λn), λi ∈ R, and a unitary matrix U such that A = UDU ∗.
If f : R → R and A ∈ Sn we define f (A) by

f (A) =
n∑

i=1

f (λi)Pi

or equivalently f (A) = Uf (D)U ∗ where f (D) = diag (f (λ1), . . . , f (λn)). Notice that
if g(λ) = f (λ) for all λ ∈ σ(A) = {λi : 1 ≤ i ≤ n}, then g(A) = f (A). In particular,
there exists a polynomial p(x) = ∑

cixi such that p(A) = f (A). Hence, we can write

f (A) = p(A) =
∑

ciA
i (2.1)

We can apply (2.1) to obtain a result that we shall find useful. Suppose A, B ∈ Sn

with AB = 0. By taking adjoints of both sides we obtain BA = 0. If f satisfies
f (0) = 0, then c0 = 0 and (2.1) gives

f (A + B) =
∑

ci(A + B)i =
∑

ci(A
i + Bi) = f (A)+ f (B) (2.2)
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We say that A ∈ Sn is positive and write A ≥ 0 if 〈Aψ ,ψ〉 ≥ 0 for allψ ∈ C
n. Also,

A ∈ Sn is strictly positive and we write A > 0 if 〈Aψ ,ψ〉 > 0 for all ψ ∈ C
n with

ψ �= 0. It is easy to show that A ∈ Sn is (strictly) positive if and only if (λ > 0)λ ≥ 0
for all λ ∈ σ(A). Also, A ∈ Sn is strictly positive if and only if A is invertible and
A ≥ 0. We denote the set of positive matrices in Mn by S+

n . For A, B ∈ Sn we define
A ≤ B if B − A ≥ 0.

We say that a function f : (0, ∞) → R is operator convex [8] if for every λ ∈ [0, 1]
and every A > 0, B > 0 we have

f (λA + (1 − λ)B) ≤ λf (A)+ (1 − λ)f (B)

This notion generalizes the concept of convex functions in the ordinary sense. In
calculus courses, convex functions are called concave upward and twice differentiable
concave upward functions are characterized by f ′′(x) ≥ 0. Two examples of convex
functions are f (x) = 1/x and g(x) = − ln x. It turns out that a convex function
need not be operator convex [8]. However, we shall show that f (x) = 1/x and
g(x) = − ln x are operator convex. But first, let us look at some examples. The
following computation shows that f (x) = x2 is operator convex. Letting λ ∈ [0, 1],
A, B > 0 we have that

λA2 + (1 − λ)B2 − [λA + (1 − λ)B]2 = λ(1 − λ)(A2 + B2 − AB − BA)

= λ(1 − λ)(A − B)2 ≥ 0

Although this result is not very surprising, surprising things can happen even with a
simple function like f (x) = x2. Even though f (x) = x2 is increasing on (0, ∞), f is
not operator increasing. That is, 0 ≤ A ≤ B does not imply that A2 ≤ B2. To show
this we use the well-known fact that A ∈ M2 is positive if and only if the diagonal
elements and determinant of A are nonnegative. Letting

A =
[
2 1
1 1

]
, B =

[
3 1
1 1

]

it follows that 0 < A ≤ B. However,

B2 − A2 =
[
5 1
1 0

]
�≥ 0

so that A2 �≤ B2. We next show that f (x) = x3 is not operator convex. Letting
A, B ∈ M2 be defined as before, we have

1

2
(A3 + B3)− 1

8
(A + B)3 =

[
1.875 0.25
0.25 0

]
�≥ 0
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Lemma 2.1 The function g(x) = − ln x is operator convex.

Proof. We first show that f (x) = 1/x is operator convex. Note that if A ≤ B then
CAC∗ ≤ CBC∗ for every C ∈ Mn. Indeed, we have that

〈
CAC∗ψ ,ψ

〉 = 〈
AC∗ψ , C∗ψ

〉 ≤ 〈
BC∗ψ , C∗ψ

〉 = 〈
CBC∗ψ ,ψ

〉

for every ψ ∈ C
n. Since f (x) = 1/x is a convex function we have that

[λx + (1 − λ)y]−1 ≤ λx−1 + (1 − λ)y−1

for every x, y ∈ (0, ∞), λ ∈ [0, 1]. Now let A > 0 and B > 0. Since I and A commute,
they are simultaneously diagonalizable. It follows that

[λI + (1 − λ)A]−1 ≤ λI + (1 − λ)A−1 (2.3)

Applying (2.3) we have that

[
λI + (1 − λ)A−1/2BA−1/2

]−1 ≤ λI + (1 − λ)(A−1/2BA−1/2)−1

= λI + (1 − λ)A1/2B−1A1/2

Hence,

[λA + (1 − λ)B]−1 =
[
A1/2

(
λI + (1 − λ)A−1/2BA−1/2

)
A1/2

]−1

= A−1/2
[
λI + (1 − λ)A−1/2BA−1/2

]−1
A−1/2

≤ A−1/2
[
λI + (1 − λ)A1/2B−1A1/2

]
A−1/2

= λA−1 + (1 − λ)B−1

To show that g(x) = − ln x is operator convex we employ the representation

− ln x =
∫ ∞

0

(
1

x + t
− 1

1 + t

)
dt

from which we obtain for A > 0 that

− ln A =
∫ ∞

0

[
(A + tI)−1 − (1 − t)−1I

]
dt (2.4)

By the operation convexity of f (x) = 1/x we have that

[λA + (1 − λ)B + tI ]−1 = [λ(A + tI)+ (1 − λ)(B + tI)]−1

≤ λ(A + tI)−1 + (1 − λ)(B + λI)−1 (2.5)



QUANTUM ENTROPY 133

Applying (2.4) and (2.5) gives

− ln (λA + (1 − λ)B)

=
∫ ∞

0

[
(λA + (1 − λ)B + tI)−1 − (1 + t)−1I

]
dt

≤
∫ ∞

0

[
λ(A + tI)−1 + (1 − λ)(B + tI)−1 − (1 + t)−1I

]
dt

=
∫ ∞

0

[
λ(A + tI)−1 = λ(1 + t)−1I

]
dt

+
∫ ∞

0

[
(1 − λ)(B + tI)−1 − (1 − λ)(1t)

−1I
]

dt

= −λ ln A − (1 − λ) ln B �

A linear transformation U : C
n → C

m is called an isometry if U ∗U = In. It follows
from a linear algebra result that if an isometry U is surjective, then U is unitary, that is,
UU ∗ = Im. Notice that if U is unitary and f : R → R then f (U ∗AU ) = U ∗f (A)U for
every A ∈ Sn. Indeed, applying the spectral representation A = ∑

λiPi we have that

f (U ∗AU ) = f
(∑

λiU
∗PiU

)
=
∑

f (λi)U
∗PiU

= U ∗∑ f (λi)PiU = U ∗f (A)U

Lemma 2.2 If f : (0, ∞) → R is operator convex and U : C
n → C

m is an isometry,
then f (U ∗AU ) ≤ U ∗f (A)U for all A ∈ Sm with A > 0.

Proof. Since U ∗AU > 0 when A > 0 we can extend f to [0, ∞) with f (0) = 0 and
nothing will change. To simplify the notation let V = C

n, W = C
m and let W ′ be the

range of U which is a subspace of W . Let P : W → W ′ be the projection onto W ′
and let Q = I −P be the projection onto the orthocomplement of W ′. Since PU = U
is a unitary transformation from V to W ′ and since PAP may be regarded as a matrix
acting on W ′ we have that

f (U ∗AU ) = f
(
U ∗P(PAP)PU

) = U ∗Pf (PAP)PU

= U ∗f (PAP)U (2.6)

If we can show that

f (PAP) ≤ Pf (A)P (2.7)

then it would follow that

f (U ∗AU ) ≤ U ∗Pf (A)PU = U ∗f (A)U
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which is our result. To prove (2.7) note that by (2.2) we have

f (PAP + QAQ) = f (PAP)+ f (QAQ)

and Pf (QAQ)P = 0. It follows that

f (PAP) = Pf (PAP)P = Pf (PAP + QAQ)P (2.8)

Defining the operator

S = P − Q = 2P − I

on W we see that SS∗ = S∗S = I so S is unitary. Now

A + S∗AS

2
= (P + Q)A(P + Q)+ (P − Q)A(P − Q)

2

= PAP + QAQ (2.9)

Applying the operator convexity of f and using (2.9) twice we have that

f (PAP + QAQ) ≤ 1

2

[
f (A)+ f (S∗AS)

] = 1

2

[
f (A)+ S∗f (A)S

]

= Pf (A)P + Qf (A)Q (2.10)

Finally, by (2.8) and (2.10) we have that

f (PAP) = Pf (PAP + QAQ)P ≤ Pf (A)P

which is (2.7).

Finally, we need to recall that the trace of a square matrix A = [aij] is given by
tr(A) = ∑

aii, that is, the sum of the diagonal terms. Equivalently, if A ∈ Mn and ψi

is an orthonormal basis for C
n then

tr(A) =
∑

〈Aψi,ψi〉

A standard property of the trace is that tr(AB) = tr(BA) for all A, B ∈ Mn.

3 QUANTUM ENTROPY

We now consider the quantum generalizations of entropy and relative entropy. The
quantum counterpart of a probability distribution is a density matrix (or statistical
matrix) ρ ∈ S+

n with tr(ρ) = 1. One reason for this correspondence is that the
density matrices are precisely the elements of Sn whose eigenvalues form a probability
distribution. We call a density matrix a state and denote the set of states on C

n by Dn.
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The von Neumann entropy of ρ ∈ Dn is defined by S(ρ) = −tr(ρ ln ρ). Analogous
to the classical situation S(ρ) ≥ 0, S has its minimal value S(P) = 0 if P is a
one-dimensional projection (these are called pure states) and S has its maximal value
S(In/n) = ln n on the completely mixed state I/n.

For ρ, σ ∈ Dn we write ρ ≺ σ if their null spaces satisfy Null(σ ) ⊆ Null(ρ). The
quantum relative entropy of ρ with respect to σ is defined by

S(ρ | σ) = tr(ρ ln ρ − ρ ln σ) = −S(ρ)− tr(ρ ln σ)

if ρ ≺ σ and S(ρ | σ) = ∞ otherwise. The next result is the quantum counterpart of
Theorem 1.1.

Theorem 3.1 The quantum relative entropy satisfies S(ρ | σ) ≥ 0 with equality if
and only if ρ = σ .

Proof. As in the proof of Theorem 1.1 we can assume that ρ > 0 and ρ ≺ σ . Let
ρ = ∑

piPi and σ = ∑
qjQj be the spectral representations of ρ and σ where

pi, qi > 0 with
∑

pi = ∑
qj = 1. Evaluating the trace using an orthonormal basis of

eigenvectors for ρ gives

S(ρ | σ) =
∑

〈(ρ ln ρ − ρ ln σ)ψi,ψi〉
=
∑

pi ln pi −
∑

〈ρ ln σψi,ψi〉
=
∑

pi ln pi −
∑

pi〈ln σψi,ψi〉
Now

〈ln σψi,ψi〉 =
〈
∑

j

(ln qj)Qjψi,ψi

〉
=
∑

j

pij ln qj

where pij = 〈
Qjψi,ψi

〉 ≥ 0. Hence,

S(ρ | σ) =
∑

i

pi

⎛

⎝ln pi −
∑

j

pij ln qj

⎞

⎠

Notice that
∑

i

pij = tr(Qj) = 1

and

∑

j

pij =
〈
∑

j

Qjψi,ψi

〉
= 〈ψi,ψi〉 = 1
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so [pij] is a doubly stochastic matrix. Letting ri = ∑
j pijqj , by the convexity of − ln x

we have that

∑

j

pij ln qj ≤ ln

⎛

⎝
∑

j

pijqj

⎞

⎠ = ln ri

with equality if and only if there exists a j such that pij = 1. Hence,

S(ρ | σ) ≥
∑

pi(ln pi − ln ri) =
∑

pi ln
pi

ri
(3.1)

with equality if and only if for every i there exists a j such that pij = 1; that is, if
and only if [pij] is a permutation matrix. Now the right hand side of (3.1) has the
form of a classical relative entropy. It follows from Theorem 1.1 that S(ρ | σ) ≥ 0
with equality if and only if pi = ri for every i and [pij] is a permutation matrix. If
S(ρ | σ) = 0, we can relabel the basis of eigenvectors of ρ if necessary so that [pij]
is the identity matrix. It follows that Qi = Pi, i = 1, . . . , n. Moreover, pi = ri = qi,
i = 1, . . . , n, so that ρ = σ .

We would now like to obtain a monotonicity inequality analogous to (1.2) for
quantum relative entropy. But first we need to understand the concept of a joint
quantum system under a joint state. If V and W are finite-dimensional inner product
spaces, their tensor product V ⊗ W can be thought of as the set of elements of the
form

∑n
i,j=1 vi ⊗ wj , vi ∈ V , wj ∈ W where v ⊗ w satisfies

(1) v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(2) (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w
(3) α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw) for all α ∈ C.
Then V ⊗ W becomes an inner product space if we define

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉〈w1, w2〉
and extend by linearity. The linear operators on V ⊗W all have the form

∑n
i,j=1 Ai⊗Bj ,

Ai ∈ L(V ), Bj ∈ L(W ) where

(A ⊗ B)(v ⊗ w) = Av ⊗ Bw

and again we extend by linearity. It is easy to show that if vi, wj are orthonormal bases
for V and W , respectively, then vi ⊗ wj , i = 1, . . . , n, j = 1, . . . , m is an orthonormal
basis for V ⊗ W . It follows that C

n ⊗ C
m is isomorphic to C

nm and L(Cn ⊗ C
m) is

isomorphic to Mnm.
If V1 and V2 correspond to two quantum systems, then the joint (or compound or

composite) system for the two corresponds to V1 ⊗ V2. Moreover, the joint states of
the compound system are represented by density operators on V1⊗V2. We can assume
that V1 = C

n, V2 = C
m so that the joint system corresponds to C

n ⊗ C
m ≈ C

nm

and the set of joint states corresponds to Dnm. Let M be a matrix for the compound
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system so that M is a nm × nm matrix. If M has the form A ⊗ B we define the partial
trace over the second system tr2 by

tr2(M ) = tr2(A ⊗ B) = tr(B)A

We then extend this definition by linearity. That is,

tr2

(∑
Ai ⊗ Bj

)
=
∑

tr(Bj)Ai

We define the partial trace over the first system tr1 in a similar way. Notice that for
M = A ⊗ B and orthonormal bases vi, wj we have that

tr(M ) =
∑〈

A ⊗ B(vi ⊗ wj), vi ⊗ wj
〉 =

∑〈
Avi ⊗ Bwj , vi ⊗ wj

〉

=
∑

〈Avi, vi〉
〈
Bwj , wj

〉

= tr(A)tr(B) = tr1 [tr2(A ⊗ B)]

= tr1 (tr2(M ))

It follows by linearity that tr1 (tr2(M )) = tr(M ) holds for any nm × nm matrix. If
ρ12 ∈ Dnm is a joint density operator we define the corresponding marginal states by
ρ1 = tr2(ρ12) and ρ2 = tr1(ρ12).

In order to prove the monotonicity inequality for quantum relative entropy we con-
sider Mn as a linear space with inner product 〈A, B〉 = tr(AB∗). Since the dimension
of Mn as an inner product space is n2, Mn is isomorphic to C

n2
. For σ ∈ Dn σ > 0,

we define the superoperators (linear operators on matrices) Lσ , Rσ by Lσ (A) = σA,
Rσ (A) = Aσ−1. It is easy to show that Lσ ≥ 0. Indeed for every A ∈ Mn since
A∗σA ≥ 0 we have that

〈Lσ (A), A〉 = 〈σA, A〉 = tr(σAA∗) = tr(A∗σA) ≥ 0

In a similar way, Rσ ≥ 0. For σ , ρ ∈ Dn we define the relative modular operator

(σ , ρ) by
(σ , ρ) = LσRρ . Since Lσ and Rρ commute, it follows that
(σ , ρ) ≥ 0.

For σ ∈ Dn, σ > 0 there exists a polynomial p(x) = ∑
cixi such that p(σ ) = ln σ

and p(Lσ ) = ln Lσ . Hence, for any A ∈ Mn we have that

ln(Lσ )(A) =
∑

ciL
i
σ (A) =

∑
ciσ

iA = ln(σ )A

In a similar way we have that ln(Rσ )(A) = −A ln(σ ). Moreover, since Lσ and Rρ
commute it follows that

ln
(σ , ρ) = ln Lσ + ln Rρ (3.2)
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Applying (3.2) we obtain

S(ρ | σ) = tr (ρ(ln ρ − ln σ)) = −tr
(
ρ1/2(ln σ)ρ1/2 − ρ1/2(ln ρ)ρ1/2

)

= −tr
[
ρ1/2

(
ln(Lσ )(ρ

1/2)+ ln(Rρ)(ρ
1/2)

)]

= −tr
[
ρ1/2 ln (
(σ , ρ)) (ρ1/2)

]

=
〈
− ln (
(σ , ρ)) (ρ1/2), ρ1/2

〉
(3.3)

In (3.3) we have written S(ρ | σ) in terms of a single operator logarithm instead of
two noncommuting operator logarithms and this is the key to our proof. We are now
in position to prove the monotonicity inequality for quantum relative entropy. This
inequality says that discarding a component of a compound quantum system can only
decrease the relative entropy.

Theorem 3.2 If ρ12, σ12 ∈ Dnm with ρ12, σ12 > 0 are joint density operators and
ρ1, σ1 > 0 are corresponding marginal states, then

S(ρ1 | σ1) ≤ S(ρ12 | σ12) (3.4)

Proof. Applying (3.3) we can rewrite (3.4) in the form

〈
− ln (
(σ1, ρ2)) (ρ

1/2
1 ), ρ1/2

1

〉
≤
〈
− ln (
(σ12, ρ12)) (ρ

1/2
12 ), ρ

1/2
12

〉
(3.5)

We now define the linear transformation U : Mn → Mnm by

U (A) = (Aρ−1/2
1 ⊗ Im)ρ

1/2
12

We next show that U ∗ : Mnm → Mn is given by

U ∗(B) = tr2

[
Bρ1/2

12 (ρ
−1/2
1 ⊗ Im)

]
(3.6)

To prove (3.6) we have that

〈U (A), B〉 = tr
[
(Aρ−1/2

1 ⊗ Im)ρ
1/2
12 B∗]

= tr1

[
Atr2

(
(ρ

−1/2
1 ⊗ Im)ρ

1/2
12 B∗)]

=
〈
A, tr2

[
Bρ1/2

12 (ρ
−1/2
1 ⊗ Im)

]〉
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It is now demonstrated that U has the following properties:

(1) U ∗
(σ12, ρ12)U = 
(σ1, ρ1)

(2) U (ρ1/2
1 ) = ρ

1/2
12

(3) U : Mn → Mnm is an isometry.

To prove (1) we have that

[
U ∗
(σ12, ρ12)U

]
(A) = U ∗σ12(Aρ

−1/2
1 ⊗ Im)ρ

1/2
12 ρ

−1
12

= tr2

[
σ12(Aρ

−1/2
1 ⊗ Im)ρ

−1/2
12 ρ

1/2
12 (ρ

−1/2
1 ⊗ Im)

]

= tr2

[
σ12(Aρ

−1
1 ⊗ Im)

]
= σ1Aρ−1

1

= 
(σ1, ρ1)A

To prove (2) we have that

U (ρ1/2
1 ) = (ρ

1/2
1 ρ

−1/2
1 ⊗ Im)ρ

1/2
12 = (In ⊗ Im)ρ

1/2
12 = ρ

1/2
12

Finally, (3) can be proved as follows

U ∗U (A) = U ∗ [(Aρ−1/2
1 ⊗ Im)ρ

1/2
12

]

= tr2

[
(Aρ−1/2

1 ⊗ Im)ρ
1/2
12 ρ

1/2
12 (ρ

−1/2
1 ⊗ Im)

]

= tr2

[
(Aρ−1/2

1 ⊗ Im)ρ12(ρ
−1/2
1 ⊗ Im)

]

= Aρ−1/2
1 ρ1ρ

−1/2
1 = A

Hence, U ∗U = In so U is an isometry. We can now write (3.5) in the form

〈
− ln

(
U ∗
(σ12, ρ12)U

)
(ρ

1/2
1 ), ρ1/2

1

〉

≤
〈
− ln (
(σ12, ρ12)) (ρ

1/2
12 ), ρ

1/2
12

〉
(3.7)

Applying Lemmas 2.1 and 2.2 we have that

− ln
(
U ∗
(σ12, ρ12)U

) ≤ −U ∗ ln (
(σ12, ρ12))U
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Hence,
〈
− ln

(
U ∗
(σ12, ρ12)U

)
(ρ

1/2
1 ), ρ1/2

1

〉

≤
〈
−U ∗ ln (
(σ12, ρ12))U (ρ1/2

1 ), ρ1/2
1

〉

=
〈
− ln (
(σ12, ρ12))U (ρ1/2

1 ), Uρ1/2
1

〉

=
〈
− ln (
(σ12, ρ12)) (ρ

1/2
12 ), ρ

1/2
12

〉

which is (3.7).

In Theorem 3.2 we assumed that all the density matrices were strictly positive.
However, any density matrix can be approximated arbitrarily closely by a strictly
positive density matrix. Since it is easy to show that S(ρ | σ) is a continuous function
of ρ and σ , we conclude that Theorem 3.2 holds for any ρ12, σ12 ∈ Dnm. Finally,
we apply Theorem 3.2 to obtain an important inequality called strong subadditivity
[2, 4, 6, 9].

Corollary 3.3 If ρ123 is a joint density matrix for a composite of three quantum
systems and ρ2, ρ12, ρ23 are corresponding marginal states, then

S(ρ123)+ S(ρ2) ≤ S(ρ12)+ S(ρ23) (3.8)

Proof. By the monotonicity inequality (3.4) we have that

S

(
ρ12 | I

d
⊗ ρ2

)
≤ S

(
ρ123 | I

d
⊗ ρ23

)
(3.9)

where I is the identity and d is the dimension of the first system. Writing (3.9) in terms
of the definition of relative entropy and employing the appropriate partial traces gives

−S(ρ12)+ S(ρ2) = tr(ρ12 ln ρ12)− tr(ρ2 ln ρ2)

= tr

(
ρ12 ln ρ12 − ρ12 ln

(
I

d
⊗ ρ1

))

= S

(
ρ12 | I

d
⊗ ρ2

)
≤ S

(
ρ123 | I

d
⊗ ρ23

)

= tr

(
ρ123 ln ρ123)− ρ123 ln

(
I

d
⊗ ρ23

))

= tr(ρ123 ln ρ123)− tr(ρ23 ln ρ23)

= −S(ρ123)+ S(ρ23)

Which is equivalent to (3.8).
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RICHARD HEALEY∗

7. SYMMETRY AND THE SCOPE OF
SCIENTIFIC REALISM

ABSTRACT

Scientific realism characteristically encompasses semantic as well as epistemolo-
gical claims. When a theory of modern physics is empirically successful, the realist
considers this a reason to believe that it is approximately true, and that terms of
the theory (including those it newly introduces) typically refer to or represent real
physical structures—irrespective of whether these are accessible to our senses or
independently measurable. But suppose every model of a theory may be mapped into
a distinct model by a transformation that preserves all measurable structures. Then
the empirical success of the theory fails to support realist claims about purportedly
distinct structures related by such a symmetry. Assuming there are such structures,
the theory’s success provides no reason to believe that terms it introduces determ-
inately refer to or represent them, and no basis for any specific belief about them.
Even a scientific realist then has no grounds for thinking there are any such struc-
tures. These include Newtonian absolute space and the gauge potentials of classical
electromagnetism acting on classical or quantum charged particles.

1 INTRODUCTION

Suppose a scientific theory T is newly proposed for some domain D, in part by
exhibiting a class of mathematical structures (“models”) regarded as appropriate for
representing what happens in D. Prior to this proposal, D was described using a
language LO. It may be that some elements of models of Tpurport to represent physical
structures that are referred to by no term of LO. A term referring to such a structure
may still be explicitly definable in LO. But typically no definition will be to hand
when models of T represent physical structures T newly posits as “lying behind”
the phenomena in D. Examples are familiar from fundamental physics in which new
terms are introduced into the language, or existing terms are deliberately used in new
ways (‘quark’, ‘Higgs field’, ‘color charge’), precisely in order to refer to such novel
structures.

This situation raises two worries, one semantic, the other epistemological. How
does an undefined term, newly introduced with a theory, get its meaning? Why believe
that there is anything in the world to which such a term refers?
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Holism attempts to address these worries. According to semantic holism, the
primary vehicle of meaning is not the individual theoretical term, nor even state-
ments containing such terms, but the entire theory that introduces them. As long as
the theory itself is meaningful, there can be no residual doubt as to the meaningful-
ness of its constituent terms: their meaning accrues to them by virtue of their role
in the theory. The theory derives its meaning from its empirical content—from the
testable claims it makes about its domain. But according to confirmational holism, it
is the whole theory, rather than individual theoretical claims, that “faces the tribunal
of sense experience” (in Quine’s (1951, [1953, p. 41]) famous phrase). If the theory
is favorably judged by this tribunal, then each of its theoretical claims is worthy of
belief, for none is testable in isolation from the rest of the theory. Given the success of
quantum chromodynamics, we should accept that theory, and believe there are quarks
with the features it attributes to them, including their color charges. ‘Quark’ simply
refers to quarks, and ‘color charge’ to their color charges. According to semantic
holism, one comes to understand what such terms mean just by learning the theory of
quantum chromodynamics in which they figure, including the successful applications
that warrant its acceptance. No definitions in pre-existing language are needed.

But holism fails to quiet the worries. It is now widely acknowledged that the models
of a theory may contain surplus structure (Redhead (1975))—structure that may be
eliminated without loss to the theory’s empirical content or super-empirical virtues.

It is easy to construct fanciful examples by adding elements to the models of an
existing theory—elements that add nothing to the theory’s empirical content while
purporting to represent structures that would be epistemically inaccessible even if
they existed. For instance, one can add a scalar field to models of Maxwell’s electro-
magnetism that has no interactions with particles (charged or neutral) or other fields,
and carries no energy or momentum. No measurement could probe the values of any
such field, and its presence would have no empirical consequences.

Real examples are more interesting if they can be found. But it is often difficult to
determine that theoretical models contain surplus structure. Moreover, such determ-
inations remain hostage to further scientific developments that may connect such
“idly turning wheels” to other theoretical mechanisms, rendering what they repres-
ent epistemically accessible by providing theory-mediated links to observation. Two
theories whose models have often been thought to contain surplus structures are New-
tonian mechanics (with its absolute space) and electromagnetism (in a formulation
that takes potentials rather than fields as basic). Each of these theories has distinctive
features that merit the individual treatment offered in a later section of this paper (§6,
§7 respectively). But each is also arguably an instance of a general class of theories
in which surplus structure is identifiable by appeal to a symmetry of a theory—a
mapping that takes one model of the theory into another that differs from it only with
respect to the structure in question. Ismael and van Fraassen (2003) argue that surplus
structure can often be detected in a theory precisely by identifying such symmetries.

Whatever its merits, holism does not provide the necessary tools for an adequate
analysis of the epistemological role of surplus structures, or of the semantics of terms
purporting to refer to what these structures represent. If present in theoretical models,
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surplus structure cries out for special treatment precisely because its lack of integration
with other model structures naturally breaks up the content of a theory so that it is
no longer adequate to treat it as an undivided whole. If a term newly introduced with
a theory purports to refer to what is represented by surplus structure in that theory’s
models, then holism cannot quiet our two worries. How, if at all, does such a term
get its meaning? And can the success of the theory provide any reason to believe that
it has a reference?

An influential paper by David Lewis (1970) may seem to contain an answer to the
first, semantic, question. In that paper Lewis outlines a general procedure for generat-
ing definitions in a pre-existing language LO for terms newly introduced by a theory T .
After a brief review of the application of this procedure to the present issue in section 2,
section 3 explains why Lewisian definitions fail to specify determinate meanings for
newly introduced terms in the presence of just the kinds of theoretical symmetries
that are the mark of surplus structure. Section 4 generalizes a subsequent suggestion
of Lewis that demonstration may secure determinate meanings in such a case. But
for certain theories even demonstration may fail to remove residual indeterminacies.
Section 5 argues that this failure is not a vice but a virtue of Lewis’s procedure. Its
application here exhibits the semantic indeterminacy of newly introduced theoretical
terms purporting to refer to anything such surplus structures represent. This semantic
indeterminacy is a symptom of an epistemological defect in the introducing theory.
Even if there were something in the world corresponding to surplus structure in its
models, a proponent of the theory could neither say just what it was nor form determ-
inate beliefs about it. As long as this situation persists, no amount of empirical success
of the theory could warrant belief that there is anything represented by such surplus
structure. These general lessons are then applied to specific theories. Section 6 argues
that there is an important sense in which Newton did not know what he was talking
about when discussing absolute space. Section 7 shows why a realist who accepts
classical electromagnetism would still have no reason to believe that any localized
properties are represented by electromagnetic potentials, and no way even to entertain
suggestions as to just which properties are localized where.

2 HOW LEWIS PROPOSED TO DEFINE THEORETICAL TERMS

Lewis (1970) outlined a procedure for using the Ramsey sentence of a theory T to
construct explicit definitions for terms newly introduced by T in a previously under-
stood “O-language” LO. It may seem surprising that anything like this is possible,
given the perceived failure of attempts by the logical positivists to define theoretical
terms in (what they called) an observation language, and work of Suppes (1957) and
others establishing (against claims of Mach) the indefinability of a term like ‘mass’
within classical particle mechanics. The success of Lewis’s method depends not only
on a liberal understanding of the logical and linguistic resources available to provide
the required definitions, but also on a certain substantive assumption that the theory
be uniquely realized. It is essentially this assumption that is called in question when
symmetries of T manifest surplus structure in its models. If it fails, then so does
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Lewis’s method for defining theoretical terms. To understand why, it is necessary to
explain Lewis’s procedure and to say just what the assumption of unique realization
amounts to in this context.

Lewis begins by assuming that, given a successful new theory T , it is possible to
formulate it by means of a single (finite or infinite) postulate of the form ‘T [τ1 . . . τn]’,
where τ1 . . . τn are all the terms newly introduced by T , while all the other terms
appearing in the postulate are assumed to be already understood, with determinate
sense and reference. In defense of this assumption, he argues that if new terms appear
in the theory as predicates, functors, etc. one can replace them in these occurrences
by names of corresponding properties, functions, etc. by making use of already
understood copulas. For example, a new monadic predicate ‘�−’ could be replaced
by a term ‘− has the property φ’ where ‘φ’ purports to name the property (necessarily)
shared by all and only objects of which ‘�’ is true, and ‘− has −’ is a previously
understood relational predicate. He calls the result ‘T [x1 . . . xn]’ of replacing the terms
τ1 . . . τn by distinct variables x1 . . . xn that do not already occur in T the realization
formula for T , so that any n-tuple of entities that satisfies it (keeping the interpretation
of all other terms in T fixed) realizes or is a realization of T . So the postulate T says
that T is realized by the n-tuple of entities denoted (respectively) by τ1 . . . τn. The
Ramsey sentence R, i.e. ‘∃x1 . . . ∃xnT [x1 . . . xn]’ , on the other hand, merely says that
T is realized by at least one n-tuple of entities. But any consequence of T in the
language LO available before the introduction of the new terms τ1 . . . τn by T is still
a consequence of R, and so the logically weaker R shares all the same predictions,
and therefore predictive success, as T , while containing none of its new terms. But
of course, R is still committed to the existence of entities corresponding to these new
terms, since it will not be true unless some n-tuple of entities realizes T .

If a theory is uniquely realized, then the following identities will serve to define
its newly introduced terms in previously understood language,

τ1 = ι y1∃y2 . . . ∃yn∀x1 . . .∀xn(T [x1 . . . xn] ≡ (y1 = x1)& . . .&(yn = xn))

.....................................................................................................................

τn = ι yn∃y1 . . . ∃yn−1∀x1 . . .∀xn(T [x1 . . . xn] ≡ (y1 = x1)& . . .&(yn = xn))

where the symbol ‘ι’ is the description operator: ‘ι x’ stands for ‘the object x such
that’. The identities fix the references of the newly introduced terms by saying what
they actually denote: and they specify their senses by saying what they would denote
if T were uniquely realized by some other n-tuple of entities. Lewis (1970,433) says
this about the assumption of unique realization.

A uniquely realized theory is, other things being equal, certainly more
satisfactory than a multiply realized theory. We should insist on unique
realization as a standard of correctness unless it is a standard too high to be
met. Is there any reason to think that we must settle for multiply realized
theories? I know of nothing in the way scientists propose theories which
suggests that they do not hope for unique realization. And I know of no
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good reason why they should not hope for unique realization. Therefore
I contend that we ought to say that the theoretical terms of a multiply
realized theories (sic) are denotationless.

Lewis’s proposal applies directly only to theories formulated as a single theoretical
postulate. But a physical theory is rarely, if ever, formulated in this way—as a sentence
in some definite language that can be regarded as a (possibly infinite) conjunction of
its laws or basic principles. Indeed a historian seeking any definitive statement of a
physical theory is rapidly struck by the diversity of languages, mathematical structures
and basic principles that scientists have used in formulating what they consider the
same theory. A philosopher wishing to understand the structure and function of a
physical theory must idealize.

A degree of consensus has emerged in contemporary philosophy of science that an
illuminating idealization is to be found in some version of the semantic conception of
scientific theories. On this conception, a physical theory may be idealized as present-
ing a collection of models intended to represent structures in its intended domain
of application. A model in this sense can be thought of as a mathematical structure
satisfying certain conditions: it will be convenient to take it to have the canonical
form of an n-tuple < D, Q1, Q2, . . . , Qn >, where D is a domain of objects (abstract,
concrete, or both) and each Qi is a magnitude, i.e. a function from some subset of
Dm into the real numbers, or some other mathematical space. For example, models
of the general theory of relativity are often given in the form of triples < M , g, T >,
where M is a differentiable manifold, g is a metric tensor field on M , and T is a stress
energy tensor field. This does not have the canonical form as it stands, but it could
be brought into that form with a little work.

While a collection of such models makes no assertions by itself, it does provide
resources for a scientist to make theoretical claims. Just what form these should take,
and what is the appropriate epistemic attitude to adopt toward them, are still to be
decided. The general idea is to claim that the world, or some part(s) or aspect(s) of it,
has(have) more or less the same structure as some model(s), or part(s) thereof; and
to propose adoption of a suitably favorable epistemic attitude to such claims just in
case they are well enough supported by observation and experiment. Of course, this
vagueness covers a host of contentious issues in the philosophy of science that cannot
and need not be resolved here.

For present purposes it is necessary only to note that for the scientific realist, the
claim of similarity of structure of model to world extends beyond similarity to those
features that are observable or measurable independently of the theory. The realist
maintains that observation and experiment may warrant further belief, to the effect
that entities and/or magnitudes newly introduced into some of the theory’s models
represent physical structures that were neither known nor knowable prior to formu-
lation of the theory. If this belief is true, then we should expect to be able to entertain
specific beliefs and to formulate testable claims about these structures. The expecta-
tion can be met only if there is some way of determinately referring to them. This is
how Lewis’s concerns arise within the semantic conception of scientific theories.



148 RICHARD HEALEY

Consider the claim that some aspect of reality has the same structure as a model
m =< D, Q1, Q2, . . . , Qr > of a physical theory. For example, one might claim that
Mercury’s orbit around the sun has the same structure as the trajectory of a massive
particle in the Schwarzschild solution to the field equations of general relativity. Or
one might make the completely general claim that the theory of general relativity
is true, in the sense that the universe has the structure of some model of general
relativity. Any such claim C may be made precise by formulating it as the assertion
of an isomorphism of a certain kind between a model m and a real-world structure
< W1, W2, . . . , Wr >. The claim C is the analog of Lewis’s postulate T , and (after
reordering) the terms W1, W2, . . . , Wn(n ≤ r) purporting to name hitherto unknown
physical structures are the analogs of Lewis’s terms τ1 . . . τn. We can now formulate
the Ramsey sentence of C[W1, W2, . . . , Wn] as the claim ‘∃x1 . . . ∃xnC[x1 . . . xn]’.
C is uniquely realized just in case a unique sequence of physical structures satisfies
this Ramsey sentence, in which case W1, W2, . . . , Wn succeeds in naming this unique
sequence. Given a collection of models associated with a theory, one can now ask
whether a particular theoretical claim based on these models is uniquely realized. If it
is, then Lewisian definitions of the associated theoretical terms W1, W2, . . . , Wn will
be forthcoming. Note however, that unless the theoretical claim is completely general
these can only partially specify their extensions and intensions.

3 SYMMETRY AND MULTIPLE REALIZATION

Lewis’s uniqueness assumption fails for an important class of theories with the right
kinds of symmetries. It is therefore worth noting that after his (1970) Lewis changed
his attitude toward this assumption. For example, in his (1994, [1999,301]) he con-
siders the possibility of multiple realizations of a folk-psychological theory of mind
containing a term M . He says

I used to think that in this case the name M had no referent. But now I
think it might be better, sometimes or always, to say that the name turns
out to be ambiguous in reference. That follows the lead of Field (1973)

Field (1973) considered a case in which there are no grounds for concluding that a
theoretical term in a superseded theory (say Newton’s term ‘mass’) denotes one thing
rather than another denoted by distinct terms of a replacing theory (say Einsteinian
‘rest mass’ and ‘relativistic mass’). He argued that one should then say that the
offending term partially denotes each of the rival candidates: and that theoretical
sentences containing the term should count as true if and only if they came out true
under each partial denotation (essentially following van Fraassen’s (1966) method of
supervaluations). In his (1994, 1997) Lewis contemplates the possibility of multiple
realizations of a theory only in cases in which some ‘deeper’ theory is available to
describe such alternative partial denotations.

In a more recent (posthumous) paper, he again deploys the same basic mechanism
for defining theoretical terms for a different purpose, namely to argue that
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Quite generally, to the extent that we know of the properties of things
only as role-occupants, we have not yet identified those properties. No
amount of knowledge about what roles are occupied will tell us which
properties occupy which roles.

This time the mechanism is applied not just to a particular scientific theory, but
rather to a “true and complete ‘final theory”’ capable of delivering “a true and com-
plete inventory of those fundamental properties that play an active role in the actual
workings of nature”. My concern is limited to particular scientific theories, which
are presumably neither true nor complete. But there is still a certain commonality
of argumentative strategy here, since I wish to argue that a proponent of a theory
in which symmetries are a mark of surplus structure is caught in the very similar
predicament of being unable to say which such structures occupy which roles in any
actual situation.

In contrast to his earlier papers, Lewis (1999) now thinks that he can secure unique
realization for his true and complete “final theory” by a simple move. His new thesis
is that there is no way to distinguish this from its multiple possible realizations.

Though our theory T has a unique actual realization, I shall argue shortly
that it has multiple possible realizations. Suppose it does indeed have
multiple possible realizations, but only one of them is the actual real-
ization. Then no possible observations can tell us which one is actual,
because whichever one is actual, the Ramsey sentence will be true. There
is indeed a true contingent proposition about which of the possible real-
izations is actual, but we can never gain evidence for this proposition,
and so can never know it.

The new thesis and Lewis’s argument for it are not my concern, which is the
possibility of multiple actual realizations of a theory whose models contain surplus
structure. But this makes it important to consider Lewis’s (1999) new reason for
dismissing such a possibility. Here is what he says

We have assumed that a true and complete final theory implicitly defines
its theoretical terms. That means it must have a unique actual realization.
Should we worry about symmetries, for instance the symmetry between
positive and negative charge? No: even if positive and negative charge
were exactly alike in their nomological roles, it would still be true that
negative charge is found in the outlying parts of atoms hereabouts, and
positive charge is found in the central parts. O-language has the resources
to say so, and we may assume that the postulate mentions whatever it
takes to break such symmetries. Thus the theoretical roles of positive
and negative charge are not purely nomological roles; they are locational
roles as well.

The idea seems to be to secure unique realization for the terms ‘positively charged’
and ‘negatively charged’ in face of the assumed symmetry of the fundamental theory
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in which they figure by adding one or more sentences stating what might be thought
of as “initial conditions” to the laws of that theory. These sentences S would be
formulated almost exclusively in what Lewis calls the O-language—i.e. the language
LO that is available to us without benefit of the term-introducing theory T . But they
would also use one or more of the terms ‘positively charged’ and ‘negatively charged’
to break the symmetry of how these terms figure in T . They would do this by applying
further constraints that must be met by the denotations of these terms in order that
S&T be true. Those constraints would then fix the actual denotations of ‘positively
charged’ and ‘negatively charged’ in T so that, subject to these further constraints, T
is indeed uniquely realized.

Lewis expresses an important insight here. While a fundamental theory in physics
is concerned to capture universal laws governing the workings of the world, to apply
this theory to a particular situation it must be possible to use the theory to describe
or represent that situation. If this were not possible, the theory would be useless.
Moreover, we could have no reason to believe it, since observations of particular
situations could provide no evidence for the theory. Applications of the theory provide
the resources to set further constraints on the denotations of its newly introduced
terms—constraints that may suffice to break the symmetries of its laws and so secure
its unique realization. Note that such constraints need not involve descriptions in
LO, though they typically will. But they will involve demonstration or ostension, as
does Lewis’s own suggestion when it includes the term ‘hereabouts’. One could, for
example, simply point to a cathode and say “That is negatively charged”.

Essentially the same point may be made within the semantic conception of sci-
entific theories, in which the theory T is true just in case the physical world has the
structure of one of a specified collection of models. For it may be that T is symmetric
under exchange of positive with negative charge, i.e. that the object mN that results
from systematically interchanging magnitudes of positive and negative charges in
any model m in this collection is also in the collection. Assume that some claim is
warranted to the effect that an actual physical structure s is isomorphic to a particular
model m via the map i (s = i(m) for short), and that the image of m under a system-
atic interchange of positive with negative charge is m ′ = h(m) �= m. Then m is also
isomorphic to s via the map i ′ = i ◦ h, and so the claim is multiply realized. But now
we can stipulate that the magnitude in m that i rather than i ′ maps into a uniquely
individuated physical quantity of one or more objects in s has negative charge. Again,
the symmetry is broken by demonstration of a particular physical structure. And again
this permits one to define newly introduced terms such as positive and negative charge
in such a way as to secure determinate denotations for these terms.

4 DEMONSTRATION AND ITS LIMITS

There is an important general lesson to be drawn from Lewis’s example of electric
charge in a theory with charge symmetry. The available resources for specifying the
denotations of newly introduced terms are not purely descriptive. Even when the
purely descriptive claims of a new theory are multiply realized, it may be possible to
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fix on a unique realization of that theory by demonstration.1 It may: but then again,
it may not. Demonstration has its limits.

Consider, for example, the following toy theory.2 Suppose that physicists in a
possible world not too different from our own try to account for the properties of
the strong nuclear force in their world. They arrive at a classical (not quantum)
theory modeled on classical electrodynamics, but resembling chromodynamics in
that it postulates three different “color” charges (along with their opposites). The
physicists postulate that the building blocks of matter are quarks, each of which bears
a smallest unit of color charge. They formulate detailed dynamical laws governing
the behavior of particles under the strong force. These laws are completely symmetric
under permutations of color charge, and also imply that quarks will always be confined
within color-neutral combinations. Nucleons are taken to consist of three confined
quarks, each of a different “color”, while mesons are composed of an oppositely
colored quark and antiquark pair. Confinement is very strong in this theory. For
example, the three quarks in a nucleon are point particles that always occupy exactly
the same point of space as each other. The theory can model the dynamics of free
quarks, including how appropriate combinations would “collapse” into color-neutral
point combinations. But in fact there have never been any free quarks; and, because
of strong confinement, there never will be.

This theory could be applied to explain detailed properties of nuclei in this world,
as well as predicting cross-sections for various scattering processes, such as the
production of pi-mesons in proton-proton collisions. It could prove very successful
in such applications, and could come to be believed on the basis of that success. But
because of its color symmetry, the theory would not have a unique realization in that
world. Moreover, because of permanent, strong confinement, there would be no way
in that world to say or demonstrate which quarks in a nucleon are “green”, which
“blue” and which “red”, even though (for example) every nucleon was known to
consist of precisely one quark of each color. So Lewis’s move would be to no avail:
multiple realization would be unavoidable.

In this example, demonstration cannot constrain realizations of a theory that is
symmetric under permutations of color charge. But the example is a little delicate.
It depends upon the fact that, in this case, demonstration is itself indeterminate.
Add just two temporarily isolated and differently color-charged quarks to the world
(or even two mesons, known to be composed of quark antiquark pairs of different
color-charges), and demonstration may secure a unique realization. It will do so as
long as any realization fixes the (same) denotation for the relation has the same
color charge as. This provides an illuminating contrast with the case of classical
electromagnetism to be considered later (in section 7).

But feasible demonstrations can eliminate some candidates for realizing a newly
introduced theory with a certain symmetry, while still failing to secure a unique
realization. Whether feasible or not, the number of independent demonstrations that
would be required to single out just one realization will depend on the structure of
the theory. It is here that an important connection to measurability manifests itself.
When part of the denotation of a newly introduced theoretical term is fixed by a
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demonstration, there can be no question of a measurement revealing that the term
does not apply to the demonstrated item. In Lewis’s example, for a theory that is
symmetric under exchange of newly introduced terms referring to positive and neg-
ative charges, the demonstrative act “That cathode is negatively charged” functions
as a stipulative definition. Nothing could count as a measurement as to whether that
cathode is positively or negatively charged while the theory and the stipulation remain
sacrosanct.

Measurements of whether other objects have positive or negative charge is possible,
given the theory. For example, if the theory is true, then bringing a similarly charged
object near the cathode will have detectable effects that are different from those that
ensue when an oppositely charged object is brought near. For certain objects, those
effects may be directly observable. Detection of differential effects in the case of
other objects will be more indirect, and may rely not only on observation, but also on
other theories that were in place before the charge-introducing theory was proposed.
But whether direct or indirect, the possibility of measuring whether the charge of a
second object is positive or negative depends on two assumptions. The first assump-
tion is that the charge of that object was not also fixed by stipulation. The second
assumption is that the denotation of the term ‘negatively charged’, secured (in part)
by stipulating that a particular cathode was negatively charged, extended to objects
distinct from that cathode, including this second object. It is the term-introducing
theory that effects this extension, if anything does, by determining the denotation of
‘similarly charged’ by a Lewisian definition. And because this determination is given
by a uniquely satisfied Ramsey sentence, a measurement of whether the second object
is positively or negatively charged is possible: one just has to determine whether or
not the conditions specified in Lo are met by the chosen cathode and the second object.

In the toy color-charge theory, a stipulation to the effect that a single isolated quark
(or the quark in a quark-antiquark pair composing a pi meson) is red would not suffice
to secure a unique realization in a world containing non-red quarks. This stipulation
would fix the denotation of ‘red quark’ and thereby ground contingent claims about
whether other demonstrable quarks are red. But without further stipulation the denota-
tions of ‘blue quark’ and ‘green quark’ would remain indeterminate. No measurement
could reveal whether a particular demonstrated quark was blue rather than green—
not because of the epistemic inaccessibility of these color charges, but because no
assertion or belief about its result has been given the required determinate content. If
you can’t say it, you can’t measure it either.

5 MULTIPLE REALIZATION AS A GUIDE TO SURPLUS

THEORETICAL STRUCTURE

The examples of theories introducing electric or color charge showed how it is pos-
sible for a theoretical claim or postulate to be multiply realized because of symmetries
that map a model representing one realization into a distinct model representing a dif-
ferent realization while preserving all measurable magnitudes. In such a case, Lewis’s
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original (1970) proposal will fail to assign a determinate denotation to some theoret-
ical term(s) introduced with that theory. Section 4 generalized Lewis’s (forthcoming)
subsequent suggestion to describe how demonstrative stipulation may render their
denotations more determinate. In some cases this can help to answer the semantic
question as to how these terms get their meanings. But demonstration can succeed
only if the theory is in fact realized; and even when demonstration is successful, the
need for it points to a residual epistemological problem for the theory. The prob-
lem arises whenever multiple realization consequent upon theoretical symmetries
threatens semantic indeterminacy, whether or not that threat may be averted by stipu-
lative demonstration. In this way Lewis’s (1970) proposal becomes a diagnostic tool
for locating epistemological defects in a theory.

Consider Lewis’s example of a charge-symmetric theory T that newly introduces
the terms ‘positively charged’ and ‘negatively charged’. Assume that the Ramsey
sentence of T is true, and that at least one n-tuple of entities realizes T , some of which
are charged. A global switching of positive with negative charge results in a distinct
n-tuple of entities that realizes T . So T is multiply realized. We can settle on a unique
realization by making a stipulative demonstration to the effect that this or these entities
are negatively charged, and this will resolve any semantic indeterminacy in the terms
‘positively charged’ and ‘negatively charged’. But the need to do so highlights the
fact that T contains surplus structure. T has no need to postulate two distinct intrinsic
properties corresponding to positive and negative charge. Given its charge symmetry,
there is a “leaner” theory T ′ that postulates only an external relation ‘being oppositely
charged to’3. Unlike T , T ′ will be uniquely realized. The stipulative demonstration
that served within T to fix certain intrinsic properties as the denotations of the terms
‘positively charged’ and ‘negatively charged’ serves within T ′ merely to introduce
convenient labels for classes of oppositely charged entities. T ′ itself has no need of
such terms, for it postulates no intrinsic properties for them to denote.

The example generalizes. Any theory with symmetries that preserve all measur-
able structures will be multiply realized. Stipulative demonstrations may eliminate
some realizations, or even all but one, thereby reducing the semantic indetermin-
ateness of newly introduced theoretical terms. But this need for them is a symptom
of an epistemological defect in the theory. Its models contain surplus structure—
elements purporting to represent real structures but that play no role in contributing
to the theory’s success. It may be difficult or practically impossible to eliminate such
structures, and it may be convenient to retain them as an aid to calculation or as a
fruitful heuristic guide to new theory construction. But as long as the theory retains
the symmetries in question, the continued success of the theory will provide no reason
to believe that there is anything in the domain of the theory for these structures to
represent.

There is an objection that must be addressed at this point. The objection is that
Lewis’s (1970) proposal cannot constitute a complete account of the meanings of
newly introduced theoretical terms. For if no constraints are placed on the denota-
tions of newly introduced theoretical terms other than that T be consistent, then
Twill always be trivially multiply realized in any domain of the right cardinality.4
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But T was a scientific theory, capable of being false if T is not realized. Therefore
there must be additional constraints on its newly introduced terms that Lewis’s (1970)
proposal fails to reveal.

There are at least two responses to this objection. Lewis (1984, [1999,65–68])
attempts to address the acknowledged incompleteness of his account of the meanings
of newly introduced theoretical terms by restricting their denotations to “natural”
classes or properties. While Cruse (2005) points out that the consistency of T is not
the only relevant constraint if the denotation of “old” terms is taken to be fixed even
on a domain of “unobservable” entities that T purports to describe.

But whatever its merits in general, this is not a good objection to the present use
of Lewis’s (1970) proposal. To use that proposal as a diagnostic tool for probing for
epistemological weaknesses in a theory, it is not necessary to defend Lewis’s (1984) or
any other any account of the nature and origin of whatever further constraints render
non-trivial the claim that a theory introducing new terms is realized. All that matters
is that whatever these constraints may be, and however many trivial unintended
realizations they exclude, they still fail to rule out the multiple realizations of a
theory consequent upon symmetries that preserve all measurable structures.

6 NEWTON’S ABSOLUTE SPACE

Newton set his theory of mechanics and gravitation within a framework of an
unobservable, 3-dimensional Euclidean space that endured through a 1-dimensional
Euclidean time and in which bodies were located. This framework grounded the basic
concepts of straight line, distance, rest, uniform velocity, and acceleration apparently
required by his theory. As Newton was the first to admit, his enduring absolute space
presented epistemological difficulties.

It is indeed a matter of great difficulty to discover and effectually to dis-
tinguish the true motions of particular bodies from the apparent; because
the parts of that immovable space in which those motions are performed
do by no means come under the observation of our senses. Yet the thing
is not altogether desperate5

It has long been recognized that a framework with less structure suffices to for-
mulate Newton’s theory,6 and that this removes at least some of the epistemological
difficulties. The framework incorporates no distinguished state of rest, among all
states of uniform motion. That such a rest state constitutes surplus structure in New-
ton’s theory follows from the symmetries of the theory—mappings that preserve all
measurable structures while varying the state of rest. The theory is therefore multiply
realized, if true, giving rise to just the expected kinds of semantic indeterminacy.
While these may be removed by stipulative demonstration, this would likely not have
been acceptable to Newton himself. It follows that, even if his theory had been true,
there is an important sense in which Newton would not have known what he was
talking about when referring to an enduring absolute space.
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Following Friedman (1983, 113), I take a model of Newtonian kinematics to be
a sextuple < M , D, dt, hab, V a, Tσ>, where M is a 4-dimensional differentiable
manifold, and D is a flat affine connection on M that is compatible with the co-vector
field dt (defining intervals of absolute time elapsed between point-events represented
by points of M ), the symmetric tensor field hab (defining a Euclidean metric on space
at each instant) and the vector field V a that defines the state of rest by specifying
which point of M represents any given point of absolute space at each instant: Tσ are
the tangent vectors to the curves σ in M representing where each particle is at each
instant. If < M , D, dt, hab, V a, Tσ > is a model, then so is < M , D, dt, hab, V ′a,
Tσ >, where V ′a = f (V a), and f is a Galilean transformation (a combination of a
velocity boost, a spatio-temporal translation, and a spatial rotation). If the velocity
boost is non-zero, then Newton would take these models to represent particles in
different states of true (but not apparent) motion: if a particle is at rest according to
the first, then it is moving with constant velocity according to the second, and vice
versa.

But according to the theory these states are indistinguishable—there is no mag-
nitude whose measurement could discriminate between them. If one is dynamically
possible, then so is the other (assuming that all forces are, like Newtonian grav-
ity, invariant under Galilean transformations). They have the same geometry and
chronometry. And they agree on the relative motions of all particles. Only a direct
determination of the state of rest could distinguish them, but that is impossible since
points of space are not themselves observable. It follows that if Newton’s theory is
true, then it is multiply realized. The attempt to use Lewis’s (1970) procedure to define
the term is at rest will leave its denotation indeterminate, no matter what particles and
forces there are. This pinpoints the epistemic deficiency of the theory: the structure
V a in its models is surplus, and should not be taken to represent anything real to which
that term corresponds, no matter how successful the theory may be. It can and should
be simply omitted from the models, resulting in a ‘trimmed down’ theory that no
longer postulates an enduring 3-dimensional space, even though it still incorporates
a distinction between accelerated motion and motion with constant velocity.

Within this “trimmed down” theory one may choose to privilege some particular
state of uniform motion and call it a state of rest by a stipulative demonstration. But
this adds no additional content to the theory: it is not a contingent claim that some
particular unaccelerated object is at rest.

This is not apparently how Newton understood his own theory. In Book III of
the Principia he introduces what he calls a hypothesis “acknowledged by all”—
that the center of the system of the world is immovable, and quickly qualifies this
consistent with his theory to mean that the center of gravity of the solar system is
immovable. But if this is indeed intended as a contingent hypothesis, then it cannot be
functioning as a stipulative demonstration of the state of rest. Newton seems to have
assumed that the term is at rest has a determinate denotation independently of any
such stipulative definition. The assumption seems plausible if one restricts attention to
cases in which it corresponds to a relation between bodies or other observable items.
Assuming they are uniformly moving, these items are relatively at rest just in case
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they maintain a constant distance from one another. But the plausibility evaporates
if one of the relata is a point of space. Even if there are enduring points of space,
they are admittedly unobservable, and Newton’s theory endows them with no causal
powers. I conclude that Newton could not determinately have referred to an enduring,
immovable, absolute space even if his theory had been true. For, given that theory,
there can be no descriptive, causal or any other mechanism by which such determinate
reference could be secured. Newton’s hypothesis—that the center of gravity of the
solar system is immovable—along with many of his other assertions and beliefs about
absolute rest and absolute space would have had no determinate content even if his
theory had been true.7

7 ELECTROMAGNETIC POTENTIALS

Classical electromagnetic theory presents another example of surplus structure when
formulated in terms of potentials. Here the multiple realization consequent upon
gauge symmetry is even more extreme. This leads to radical indeterminateness in
denotation even assuming the truth of the theory. Moreover, such indeterminateness
cannot be rectified by stipulative demonstration without emptying specific assertions
or beliefs about the values of magnitudes of empirical content.

A model of classical electromagnetic theory applicable to phenomena in a vacuum
specifies the values of two vector fields, E and B, representing electric and magnetic
field strengths respectively, together with a scalar field ρ representing charge dens-
ity, and a vector field j representing current density, at each point in Minkowski
space-time. The values of these magnitudes are required to satisfy Maxwell’s
equations. The relativistic covariance of the theory is made manifest by defining
ρ, j to be the components of a Lorentz 4-vector jµ, and E and B to be components of
an antisymmetric electromagnetic field tensor Fµν . In a formulation that takes elec-
tromagnetic potentials rather than fields as basic magnitudes, the electromagnetic
field strength is defined in terms of a 4-vector electromagnetic potential Aµ by the
equation

Fµv = ∂µAv − ∂vAµ (7.1)

It is invariant under the gauge transformation

A′µ(x) = Aµ(x)+ ∂µ	(x) (7.2)

where 	(x, t) is an arbitrary, but suitably differentiable, scalar function.
Classically, the effects of electromagnetism become manifest only through the

action of electromagnetic fields on charged particles. A model of the theory specifies
their trajectories by means of time-like curves in the manifold representing space-time:
their velocities v are required to satisfy the Lorentz force law.

m
dv

dt
= q(E + v × B) (7.3)
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Since this involves the 4-vector potential Aµ only through the gauge invariant
field strength Fµν , the trajectories of charged particles are invariant under gauge
transformations. If < M , η, Aµ, Jµ, Tσ > is a model of classical electromagnetism
with sources Jµ producing an electromagnetic potential that acts on charged particles
of charge q with trajectories Tσ in otherwise empty space-time < M , η > with
Minkowski metric η, then so is < M , η, A′µ, Jµ, Tσ >, where Aµ and A′µ are related
by an arbitrary gauge transformation of the form (7.2).

Assume that some model of this theory exactly matches all trajectories of charged
particles. Then so does any of a continuous infinity of other models related by (7.2).
This gauge symmetry of the theory preserves all measurable magnitudes. It is therefore
multiply realized. This a symptom of surplus theoretical structure. Understood real-
istically, the theory is epistemologically defective, because it postulates a theoretical
structure that is not measurable even if the theory is true. The gauge-related mod-
els < M , η, Aµ, Jµ, Tσ > and < M , η, A′µ, Jµ, Tσ >, should therefore be regarded
as representing the same physical situation, which may be uniquely represented by
the model < M , η, Fµν , Jµ, Tσ > of a “stripped down” theory in which only the
fields Fµν are taken to represent genuine physical magnitudes, while any compatible
4-vector potential Aµ that is introduced is regarded as simply a mathematical con-
venience, with no further representative role. Moving to the “stripped down” theory
removes the epistemological defect, and gauge symmetry no longer presents a threat
to unique realization of the new theory.

Nevertheless, the original theory could have been true, despite this epistemological
defect. If it had been true, then it is interesting to ask how far stipulative demonstration
could have secured determinate denotations for newly introduced terms purporting
to refer to electromagnetic properties represented by a potential Aµ. The answer is
“Not at all without trivializing theoretical descriptions”. The easiest way to see this
is to suppose that one were to stipulate that the value of a particular function Aµ(x, t)
at point (x, t) is to count as denoting the actual potential properties associated with
that point. No matter for how many points one made such stipulations, the denotation
would remain indeterminate for every other point. Only a stipulative demonstration
for every point could secure determinate denotations for terms purporting to refer
to electromagnetic properties represented by a potential Aµ. But if the denotation
is rendered determinate in this way, then there will be no room for any empirical
statements or thoughts about what properties are associated with what points. The
claim that the electromagnetic potential properties associated with a point (x, t) are
represented by Aµ(x, t) would either be trivially true or trivially false. Either way, one
could neither have made contingent claims about, nor entertained contentful thoughts
about, such properties even if they had existed. It is therefore fortunate for the scientific
realist that the empirical success of a classical theory of electromagnetism acting on
charged particles provides no reason to believe that there are any such properties.

With the advent of quantum theory, it became clear that electromagnetism mani-
fested its effects not simply by altering the dynamics of charged particles, but
rather by affecting the relative phases of different components of their associ-
ated wave-functions. Aharonov and Bohm (1959) drew attention to the quantum
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mechanical prediction that an interference pattern due to a beam of charged particles
could be produced or altered by the presence of a constant magnetic field only in a
region from which the particles were excluded. The classical force law (7.3) cannot
explain this phenomenon: it restricts the dynamic action of electric and magnetic
fields to regions where these are nonzero. Classical electromagnetism can explain
the effect when combined with quantum mechanics rather than classical mechanics,
but the standard explanation appeals not to the field strength Fµν , but directly to the
potential Aµ.8

The measurable magnitudes, including now the fringe displacements in interference
patterns, are invariant under the gauge transformation (7.2). This is because substitu-
tion of A′µ for Aµ in the quantum dynamical equation (the Schrödinger equation) with
solution ψ results in an equation whose solution is a wave function for the particles
with charge q of the form

ψ ′ = exp [−(iq/�)	(x, t)]ψ (7.4)

But no measurable magnitude discriminates between the wave functionsψ andψ ′.
So a model of the theory incorporating the pair< ψ , Aµ > and an otherwise identical
model incorporating instead the pair < ψ ′, A′µ > are related by a gauge symmetry
that preserves all measurable magnitudes. The lesson is just as in the purely classical
case. Formulated in terms of < ψ , Aµ >, the theory is multiply realized. This is
a symptom of surplus theoretical structure. Understood realistically, the theory is
epistemologically defective, because it postulates a theoretical structure that is not
measurable even if the theory is true. Models related by a gauge transformation should
therefore be taken to represent the same physical situation.

One cannot reformulate this theory of classical electromagnetism in the quantum
mechanical context simply by dropping the surplus structure. But that does not affect
the central epistemological moral. Even when a realist cannot immediately see how
to eliminate surplus structure from the models of a theory which is symmetric under
transformations that preserve all measurable structures, (s)he should not take the
success of the theory to warrant belief that models related by such a transformation
represent distinct situations. The appropriate belief is rather that each equivalence
class of models under the relevant symmetry transformations represents the structure
of a different situation.

As the present case illustrates, it is not always easy to give an independent descrip-
tion of these situations. The first step is to arrive at a characterization of the structure
of models of the reformulated theory that makes it clear what properties and relations
are attributed to elements of its domain when it is claimed that a model faithfully rep-
resents them. For the realist, the success of the original, epistemologically defective,
theory warrants belief in just that structure, however it is described. I have argued
elsewhere (Healey (2001)) that the appropriate description of electromagnetic proper-
ties in this context is in terms of what I call holonomy properties—intrinsic properties
of/at closed loops in space(-time) that fail to supervene on intrinsic properties of/at
their constituent points. Even if this is correct, it offers little guidance to the realist
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on what properties it is reasonable to associate with the charged particles on which
these act. But that is just one perspective on the time-honored problem of interpreting
quantum mechanics, to whose solution Jeffrey Bub has contributed so much in so
many ways.

NOTES

1 Here there are echoes of the broader issues highlighted by Putnam’s Paradox (named and discussed
by Lewis in his (1984)), though the “saving constraint” here is provided not by nature but by our
demonstrative acts.

2 Here I am indebted to Tim Maudlin, who suggested a theory like this in correspondence, though I have
modified his example for my own purposes.

3 Indeed, Lewis (1986, 77–78) himself entertained the possibility of such a theory.
4 Demopoulos and Friedman (1985) take this as an important moral of Newman’s (1928) objection to

Russell’s (1927) structuralism.
5 Scholium to the Principia, Newton (1686, [1934, 12]).
6 See, for example, Friedman (1983) paper III. Sklar (1974) calls the framework neo-Newtonian

space-time: Geroch (1978) refers to Galilean space-time.
7 I have not considered one possible objection to this line of argument suggested by Lewis’s (1984)

proposed solution to Putnam’s Paradox. The idea would be to restrict eligible realizations of a theory to
those that “cut Nature at its joints”, so that it is Nature itself rather than our causal or intentional links
to it, that fixes the reference of our terms—in this case, of the term is at rest. Newton might have been
sympathetic to such a suggestion, given his own metaphysical views. Or he might have preferred to
appeal to God to effect the referential connection, along with his other tasks in constituting space as his
sensorium, and periodically restoring the equilibrium of the solar system. I find appeals to metaphysics
here no more credible than appeals to theology.

8 I have discussed this more fully elsewhere (1997, 1999).
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8. IS IT TRUE; OR IS IT FALSE;
OR SOMEWHERE IN BETWEEN?

THE LOGIC OF QUANTUM THEORY

ABSTRACT

The paper contains a relatively non-technical summary of some recent work by the
author and Jeremy Butterfield. The goal is to find a way of assigning meaningful
truth values to propositions in quantum theory: something that is not possible in the
normal, instrumentalist interpretation. The key mathematical tool is presheaf theory
where multi-valued, contextual truth values arise naturally. We show how this can be
applied to quantum theory, with the ‘contexts’ chosen to be Boolean subalgebras of
the set of all projection operators.

1 WHAT IS QUANTUM THEORY ABOUT?

Consider the following two statements concerning a physical quantity A and a real
number a. The critical words are italicised.

‘If a measurement of A is made, the probability that the result will be
a is p.’

‘The quantity A has a value, and the probability that this value is a is p.’

The first statement is an instrumentalist way of talking about physics: it does not
concern itself with what ‘is the case’ but only with the results of measurements.
The essential counterfactuality is captured by the opening ‘If’: the statement asserts
what would happen (or, more precisely, the probability of what would happen) if
a certain action is taken. It is silent about the situation in which no measurement
is made.

The second statement is very different. It reflects a typical realist view of the
world in which, at any moment of time, any physical quantity is deemed to possess
a value, even if we do not know what that value is. Concomitantly, any proposition
asserted about the values of physical quantities is either true or false: a nice, simple,
black-or-white view of the world.

In classical physics (and, indeed, in the normal, ‘commonsense’ world) no funda-
mental distinction between these statements need be made. If someone asks ‘Why
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did the measurement of the physical quantity A give the particular result that it did?’,
the obvious answer is that A possessed that value at the time the measurement was
made. A good measurement simply reveals ‘what is the case’.

However, the situation in quantum physics is radically different. The standard
interpretation of the theory is unashamedly instrumentalist: indeed, many proponents
would insist that it is generally meaningless to even talk about the values of physical
quantities other than in the counterfactual language of measurement results.

Quantum theory is usually taught in this way and, of course, within its own lim-
itations the interpretation works extremely well. The rapid growth of the solid-state
industries is a striking demonstration of this, as are the activities of the particle physi-
cists at CERN, and those of a host of other scientists and engineers who use quantum
theory on a daily basis. However, many scientists (and non-scientists too) feel com-
pelled to seek a deeper reality that lies beneath such an instrumentalist veneer; and
even in a strict instrumentalist framework there is still the infamous ‘measurement
problem’ that arises when one probes more deeply into the question of what type of
interaction should count as a ‘measurement’.

The desire to develop a more realist interpretation of quantum theory reaches an
apotheosis in the context of quantum cosmology: the application of quantum theory
to the universe itself. However finding such an interpretation is not an easy task, not
least because of the difficulty in specifying what is really meant by ‘realism’ and a
‘realist’ interpretation. This is, of course, a huge philosophical issue, but in the context
of the physical sciences one can tentatively say that a realist interpretation is one in
which (i) propositions about the physical world are handled using standard Boolean
logic; and (ii) at any moment of time, each such proposition is either true or false.
The underlying assumption is that, at any time, every physical quantity possesses a
definite value. Propositions about the system are then statements that each member
of some set of physical quantities has a value that lies in a specific range.

In classical physics, the collection of all propositions about a physical system does
indeed form a Boolean algebra (see Section 2); and, for each state of the system, any
proposition about the system is indeed either true or false. Of course, all this is in
accord with our ordinary, commonsense view of the world.

However, in quantum theory the situation is very different. For example, consider
a simple system with a two-dimensional vector space of states, and with the state
vector |ψ〉 shown in Figure 8.1. This could represent the spin degrees of freedom of
an electron, with the ‘↑, ↓’ symbols corresponding to the z-component of spin, Sz ,
being + 1

2� and − 1
2� respectively.

In the conventional interpretation of quantum theory, all that can be said about the
value of Sz is that if a measurement is made of the z component of spin, then the
probabilities of getting the results − 1

2� (‘down’) and + 1
2� (‘up’) are cos2 θ and sin2 θ

respectively (for simplicity I have taken a real, rather than complex, vector space).
However, unless θ = 00 or 900 (so that |ψ〉 is then an eigenvector of Ŝz) nothing can
be said about the value of the spin: i.e. it cannot be asserted meaningfully that the
spin has/possesses any specific value. In particular, the proposition ‘the electron has
spin down’ (or spin up) cannot be assigned a meaningful truth value.
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Spin 1

Spin 1

�

FIGURE 8.1. The quantum state |ψ〉 is a non-trivial superposition of the two eigenstates (‘spin up’
and ‘spin down’) of Ŝz . As a consequence, the proposition ‘the electron has spin down’ has

no meaningful truth value.

This inability to sustain a simple realist interpretation of the theory is not just
some whimsical psychological preference of the quantum physicist. Rather, it is an
inevitable consequence of the famous Kochen–Specker theorem [2]. This asserts the
nonexistence1 of valuations2 in quantum theory, subject only to the rather plausible
requirement that the value of a function of a physical quantity should be the result of
applying that function to the value of the quantity. In symbols, if V is a putative value
function, and if f is a real-valued function of real numbers then, if A is any physical
quantity, the requirement is

V (f (A)) = f (V (A)). (1)

For example, the value of the quantity ‘energy-squared’ could reasonably be expected
to be the square of the value of the energy.

The Kochen–Specker is a major result in quantum theory, and is the motivational
force behind the present paper. When applied to propositions, the theorem asserts the
non-existence of any consistent assignment of true-false values to the propositions in
quantum theory.

One common response to the Kochen–Specker theorem is to note that although it
forbids any absolute assignment of truth values, it does not exclude ones that are con-
textual. Here, ‘contextual’ means that the truth value given to a proposition depends
on which other compatible (meaning ‘simultaneously measurable’) propositions are
given values at the same time. Of course, this does not say how such a contextual
valuation might be obtained, or what properties it should possess. The aim of the
present paper is to show how one particular such scheme is already contained within
the existing formalism of quantum theory, without the need to add hidden variables,
or the like. However this scheme has the feature that, as well as being contextual, the
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truth values are also multi-valued. We shall refer to truth values that are multi-valued
and/or contextual as generalized truth values.

The idea of multi-valued logic has cropped up from time to time before in the
history of quantum theory: for example, Reichenbach introduced the idea of a three-
valued logic, so that a proposition could be true, false, or ‘in between’ [1]. However,
a major problem in such proposed logics has always been how to define the logical
operations ‘and’, ‘or’ and ‘not’; in practice, the procedures have tended to be rather
hit or miss. A few years ago, Jeremy Butterfield and I introduced a novel form of
multi-valued logic in quantum theory that was based on the use of topos theory; or,
more precisely, on the use of the special case of presheaf theory. One advantage of this
new approach is that the logical operations are defined unambiguously by the basic
mathematical structure of the relevant presheaf. It is this scheme that is described in
the present paper: hopefully, in a relatively non-technical way.

The structure of the paper is as follows. In Section 2 there is a short introduction to
the way logic arises in classical physics and in normal quantum theory. This includes
a demonstration of how a certain type of multi-valued logic is already present in
classical physics. In Section 3 we extend this idea to quantum theory. This involves
constructing a special presheaf that can be used to assign truth values that are both
contextual and multi-valued. Nevertheless, the underlying logic is sufficiently like
that of a Boolean algebra to enable statements about the world to be asserted and
manipulated in a logical way.

2 THE LOGIC OF PHYSICS

2.1 The logic of classical physics

A key feature of classical physics is that, at any given time, the system has a definite
state, and this state determines—and is uniquely determined by—the values of all the
physical quantities associated with the system. The set of possible states of a system
is called the ‘space of states’, or ‘state space’. This notion of a state captures well the
realist philosophy underlying classical physics.

As an example, consider a point particle moving along a line according to the laws
of Newtonian physics. The state of such a system is completely determined by the
values of the position, x, and momentum, p, of the particle. Thus the state space is a
two-dimensional space with coordinates x and p, as shown in Figure 8.2.

Of course, a point particle has physical properties other than the values of position
and momentum; for example, it will have a certain energy, E. However, the energy
of the particle is completely determined by its state, i.e. by the values of position
and momentum. For example, for a simple harmonic oscillator we have E(x, p) =
(p2/2m)+ kx2, where m is the mass of the particle and k is some positive constant.

It is clear that different states can give the same value of the energy. For example,
for the harmonic oscillator the set of states (x, p) for which the energy has a value E1 is
represented by the inner ellipse in Figure 8.2. Similarly, the outer ellipse represents the
set of states for which the energy has a value E2, with E1 < E2. Then the proposition
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p

x

E2

E1

FIGURE 8.2. The classical state space of a particle moving in one dimension.
The shaded area represents the set of states for a simple harmonic oscillator for which the energy E

satisfies E1 < E < E2.

‘the energy of the system lies between E1 and E2’ is represented by the yellow subset
between the two ellipses.

This idea can be generalized to any classical system. Specifically, if S is the state
space, then every proposition P about the system can be represented by an associated
subset, SP , of S: namely, the set of states for which P is true. Conversely, every subset
of S represents a proposition. More precisely, every subset represents many proposi-
tions about the values of physical quantities. One sometimes says that two propositions
are ‘physically equivalent’ if they are represented by the same subset of S.

It is easy to see how the logical calculus of propositions arises in this picture. For
suppose that P and Q are a pair of propositions, represented by the subsets SP and SQ

respectively, and consider the proposition ‘P and Q’. This is true if, and only if, both
P and Q are true, and hence the subset of states representing this logical conjunction
consists of those states that lie in both SP and SQ—i.e. the set-theoretic intersection
SP ∩ SQ. Thus ‘P and Q’ is represented by SP ∩ SQ. Similarly, the proposition ‘P
or Q’ is true if either P or Q (or both) are true, and hence this logical disjunction
is represented by those states that lie in SP plus those states that lie in SQ—i.e. the
set-theoretic union SP ∪ SQ. Finally, the logical negation ‘not P’ is represented by
all those points in S that do not lie in SP—i.e. the set-theoretic complement S/SP .

In this way, a fundamental relation is established between the logical calculus of
propositions about a physical system, and the Boolean algebra of subsets of the state
space. Thus the mathematical structure of classical physics is such that, of necessity,
it reflects a realist philosophy.

2.2 The standard logic of quantum theory

In quantum theory, a proposition is represented [3] by a projection operator3 on
the vector space, H, states. Equivalently, a proposition is represented by the linear
subspace, HP̂ (known as the range of P̂), of H upon which the projection operator

P̂ projects. Analogous to the situation in classical physics, many propositions can be
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represented by the same projection operator. As we shall see in Section 3, this has
important ramifications for what we are trying to do.

If P̂ and Q̂ are a pair of projection operators, with corresponding subspaces HP̂
and HQ̂ respectively, then the subspace that represents the proposition4 ‘P and Q’
is simply the intersection HP̂ ∩ HQ̂: we shall denote the corresponding projection
operator by P̂ ∧ Q̂. Similarly, the subspace that represents the proposition ‘not P’
is the orthogonal complement5 of the subspace HP̂ . The corresponding projection
operator is 1̂ − P̂, where 1̂ is the unit operator.

The situation in regard to the logical ‘or’ operation is more complicated. Given a
pair of propositions P, Q, the obvious choice to represent ‘P or Q’ might seem to
be the union HP̂ ∪ HQ̂. However, this is not a linear subspace of the vector space
H, and hence cannot represent any proposition. Instead, the proposition ‘P or Q’ is
represented by the linear span of the vectors in HP̂ ∪ HP̂—i.e. the collection of all
possible sums of vectors in HP̂ ∪ HP̂; the corresponding projection operator will be

denoted by P̂∨Q̂. This choice has the desirable property of associativity: for any three
projectors P̂, Q̂ and R̂ we have P̂ ∨ (Q̂∨ R̂) = (P̂ ∨ Q̂)∨ R̂. This is consonant with the
logic of daily life where it is taken for granted that if P, Q, R are any three propositions,
then ‘(P or Q) or R’ = ‘P or (Q or R)’. It is easy to see that the ‘and’ operation is also
associative: for any three projectors P̂, Q̂, R̂, we have P̂ ∧ (Q̂ ∧ R̂) = (P̂ ∧ Q̂) ∧ R̂.

However, this ‘quantum logic’ of projection operators differs from Boolean logic
in one critical feature: it fails to be distributive. Thus, given three projectors P̂, Q̂, R̂,
we will generally have

P̂ ∧ (Q̂ ∨ R̂) 	= (P̂ ∧ Q) ∨ (P̂ ∧ R). (2)

To see how bizarre non-distributive thinking would be in daily life suppose that
I was staying at a hotel and, at breakfast, the waiter said ‘Would you like eggs and
sausage or bacon?’. If I parsed this phrase as ‘eggs and (sausage or bacon)’, I would
assume that I was being offered a choice between eggs and sausage, or eggs and
bacon. In other words, I would invoke the distributive law

E and (S or B) = (E and S) or (E and B). (3)

However, it is easy to construct a simple quantum model in which if I respond
‘eggs and sausage, please’ I get nothing, and similarly for eggs and bacon. In fact, in
this particular example, the only sensible reply to ‘Would you like eggs and sausage
or bacon?’ is ‘Yes please’, in which case my plate would arrive with eggs plus a
quantum superposition of sausage and bacon.

As applied to this non-distributive quantum logic, the Kochen–Specker theorem
asserts the impossibility of assigning consistent true-false values to projection operat-
ors. Thus the corresponding properties cannot be said to be ‘possessed’ by the system.
However, the Kochen–Specker theorem does not preclude the existence of truth
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values that are contextual and/or multi-valued, provided an appropriate mathematical
structure can be found. It is to this task that we now turn.

2.3 A role for multi-valued logic in classical physics

Consider first a classical system with state space S. Each physical quantity A is
represented by a real-valued function (denoted A) on S with the interpretation that if
s in S is a state of the system, then the value of the physical quantity A in that state is
the real number A(s). As explained in Section 2.1, a proposition of the form ‘A ∈ �’
(meaning that the value of A lies in the set� of real numbers) is then represented by
the subset SA∈� of S consisting of all those states s for which A(s) belongs to� (see
Figure 8.3). Of course, this structure is consistent with the philosophical view that
each physical quantity has a value for any given state of the system. In particular,
any proposition asserted about the system is either true or false. Thus the proposition
‘A ∈ �’ is true if s belongs to SA∈�, and it is false if it does not.

All this seems clear-cut—but is it really so? For suppose s is a state that does
not belong to SA∈� but which, nevertheless, is ‘almost’ in this subset (so that A(s)
‘almost’ belongs to �): is there not some sense in which the proposition ‘A ∈ �’ is
then ‘almost true’? Contrariwise, suppose s is such that A(s) belongs to �, but only
just so (i.e. A(s) is ‘close’ to the edges of �): then is ‘A ∈ �’ not ‘almost false’,
or ‘only just true’? Such grey-scale judgements are frequently made in daily life,
but there seems to be no role for them in the harsh, black-and-white mathematics of
classical physics.

The situation becomes even more piquant if, rather than being given a specific
(micro)-state s, we know only that s lies in some subset M (a macro-state) of S.6

What truth value, if any, can then be ascribed to the proposition ‘A ∈ �’? If M is a
subset of SA∈�, it does seem correct to say that the proposition is true (perhaps even
‘totally true’?), since for each state s in the macro-state M , the real number A(s) does
belong to �.7

S

SAc1

M
S

A

∆

Real numbers

FIGURE 8.3. A diagram to aid discussing a multi-valued logic for classical macrostates.
Here S is the state-space for the system; M ⊂ S is a macrostate; A is the real-valued function on S

that represents a physical quantity A; and SA∈� is the subset of states s such that A(s) belongs to� ⊂ IR.
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However, suppose M is such that there are some states s in M for which A(s)
belongs to�, and some states for which it does not (see Figure 8.3). In this situation,
what truth value can be given to the proposition ‘A ∈ �’? Is there some sense in
which it is ‘partially true’?

As things stand, if ‘A ∈ �’ is interpreted as asserting that, for all s in M , the real
number A(s) belongs to �, then the proposition is clearly false. But suppose M is
‘almost’ a subset of SA∈�: are we not then tempted to say that the proposition ‘A ∈ �’
is ‘almost true’? At the very least, in such circumstances it seems misleading to assert
that the proposition is unequivocally false. And even if none of the states in M belong
to SA∈� we can still imagine situations in which M is ‘close’ to this subset, so that
it might appropriate to say that ‘A ∈ �’ is ‘almost true’ (or, perhaps, ‘almost not
false’).

The difficulty in succumbing to such temptations is that the word ‘almost’ has no
well-defined meaning in the standard mathematics that is used in physics. But what
is strongly suggested by the discussion above is the need to introduce multiple truth
values that can interpolate between ‘true’ and ‘false’.

2.4 The use of coarse-graining

One way of introducing multi-valued logic into classical physics is to use a certain
coarse-graining operation. The basic idea is rather simple. Namely, if we are in
the type of situation envisaged above, where we feel reluctant to assign a simple
true-false value to a proposition ‘A ∈ �’, then perhaps we can find a real-valued
function f of the real numbers such that the proposition8 ‘f (A) ∈ f (�)’ definitely
is true. This possibility arises because the proposition ‘f (A) ∈ f (�)’ is weaker than
the proposition ‘A ∈ �’: thus ‘A ∈ �’ implies ‘f (A) ∈ f (�)’ but the converse is
generally not true. For example from the knowledge that a physical quantity A has the
value 2, the quantity A2 can be deduced to have the value 4. On the other hand, from
the knowledge that A2 = 4 all that can be deduced about the value of A is that it is
equal to +2 or −2. This weakening of propositions can occur whenever the function
f is not one-to-one.

The question now is if such weakening operations can be used to give a truth value
to a proposition ‘A ∈ �’ in a macro-state M when M is not simply a subset of SA∈�—
i.e. A(M ) is not a subset of �. As discussed in Section 2.3, in this situation we may
be reluctant to say that ‘A ∈ �’ is just false.

Our, at first rather implausible looking, suggestion is that the generalized truth
value of the proposition ‘A ∈ �’ in the macro-state M is to be related to the set
of all functions f such that f (A(M )) is a subset of f (�). This condition can be
rewritten as f ◦ A(M ) ⊂ f (�), where f ◦ A is the function from S to IR defined
by f ◦ A(s) := f (A(s)) for all s in S. We shall denote by f (A) the physical quantity
corresponding to the function f ◦A, and say that f (A) is a coarse-graining of A. Then
the precise form of our suggestion is that the generalized truth value, V M (A ∈ �) of
the proposition ‘A ∈ �’ is to be defined as the set of all coarse-grainings, f (A), of A
for which the weaker proposition ‘f (A) ∈ f (�)’ is true, in the usual sense of ‘true’!
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In symbols, we define the generalized valuation

V M (A ∈ �) := {f | f (A(M )) ⊂ f (�)}. (4)

Of course, it is not obvious that truth values defined in this way have a logical
structure; but they do! The proof involves presheaf theory: a subject which we will
introduce shortly in the context of finding generalized truth values in quantum the-
ory. Understandably, this involves coarse-graining operators, since it is these that
represent physical quantities in quantum theory. The use of presheaf ideas in classical
physics is discussed in [4].

3 THE PRESHEAF LOGIC OF QUANTUM THEORY

3.1 Coarse-graining in a quantum context

The standard, instrumentalist interpretation of quantum theory gives the probability
that a proposition ‘A ∈ �’ will be found to be true if measurements9 are made of the
physical quantity A. Specifically, if |ψ〉 is a normalized state, the probability that the
results will lie in the subset � of real numbers is

Prob(A ∈ �; |ψ〉) = 〈ψ | Ê[ A ∈ � ] |ψ〉, (5)

where Ê[ A ∈ � ] denotes the projection operator onto the subspace of eigenvectors
of Â whose eigenvalues lie in �. The operator Ê[ A ∈ � ] is known as a spectral
projector of the operator Â that represents the physical quantity A.

A more realist interpretation might aspire to give a truth value to the proposition
‘A ∈ �’ without invoking external measurements. If the quantum state |ψ〉 is such
that Prob(A ∈ �; |ψ〉) = 1, it is arguably meaningful to assert that ‘A ∈ �’ is true.
Contrariwise, if Prob(A ∈ �; |ψ〉) = 0 it might seem natural to say that ‘A ∈ �’ is
false, although—motivated by the discussion in Section 2.3 of classical macrostates—
one might want to think about situations in which |ψ〉 is ‘close’ to a state for which
the probability of ‘A ∈ �’ is greater than zero10. In any event, in the cases where
0 ≤ Prob(A ∈ �; |ψ〉) < 1 it is certainly not the case that ‘A ∈ �’ is simply true.

One approach would be to define the truth value of ‘A ∈ �’ to be the probability
Prob(A ∈ �; |ψ〉). This involves the use of fuzzy logic in which the truth values
of propositions are real numbers in the interval [0, 1]. However, we shall adopt a
different tack by invoking an operator analogue of the coarse-graining operations
used in Section 2.4 in the context of classical physics.

One of the basic structural assumptions in quantum theory is that for any function
f , the operator that represents the coarse-grained physical quantity f (A) is f (Â): in
this sense, f (Â) is a ‘coarse-graining’ of the operator Â. Additionally, it is easy to
show that the spectral projectors Ê[ A ∈ � ] and Ê[ f (A) ∈ f (�) ] satisfy Ê[ A ∈
� ] � Ê[ f (A) ∈ f (�) ], where P̂1 � P̂2 denotes that P̂1 projects onto a subspace of
the range of P̂2 (i.e. HP1 is a subspace of HP2 ). In this sense, the projection operator
Ê[ f (A) ∈ f (�) ] is a coarse-graining of Ê[ A ∈ � ].
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Guided by the discussion of classical physics in Section 2.4, one suggestion might
be that, for any given quantum state |ψ〉, the generalized truth value of the pro-
position ‘A ∈ �’ is the collection of coarse-grainings, f (Â), of Â such that the
weaker proposition ‘f (A) ∈ f (�)’ is true—i.e. it is true with probability one, so
that 〈ψ | Ê[ f (A) ∈ f (�) ] |ψ〉 = 1. In other words, we could try the definition
(cf. equation (4))

Vψ(A ∈ �) := {f | 〈ψ | Ê[ f (A) ∈ f (�) ] |ψ〉 = 1}. (6)

This possibility arises since Ê[ A ∈ � ] � Ê[ f (A) ∈ f (�) ] implies that, for any f ,

〈ψ | Ê[ A ∈ � ] |ψ〉 ≤ 〈ψ | Ê[ f (A) ∈ f (�) ] |ψ〉 (7)

for all quantum states |ψ〉. Hence, even if 〈ψ | Ê[ A ∈ � ] |ψ〉 < 1, there can be
functions f such that 〈ψ | Ê[ f (A) ∈ f (�) ] |ψ〉 = 1.

The use of equation (6) is perfectly viable, and is discussed in detail in [4]. This
includes the construction of the appropriate presheaf needed to show that collections
of functions of the type in the right-hand side of equation (6) do have a logical
structure.

However, we shall proceed here in a somewhat different way in order to bring out
the connection with standard quantum logic. In particular, as explained in Section
2.2, the logical operations ‘and’, ‘or’ and ‘not’, are defined on projection operators,
not on the underlying propositions. Similarly, the Kochen–Specker theorem deals
with the existence of true-false valuations on projectors, not propositions per se. This
suggests that we should work ab initio with projection operators, and hence consider
the generalized valuation

Vψ(Ê[ A ∈ � ]) := {f | 〈ψ | Ê[ f (A) ∈ f (�) ] |ψ〉 = 1}. (8)

At this point an important subtlety arises. Namely, it is possible for a pair of
propositions ‘A ∈ �’ and ‘B ∈ �′’ to be represented by the same projection operator:

Ê[ A ∈ � ] = Ê[ B ∈ �′ ] (9)

even if the corresponding operators Â and B̂ do not commute11. But then, letting P̂
denote Ê[ A ∈ � ] = Ê[ B ∈ �′ ], equation (8) gives the two generalized valuations

Vψ(P̂) := {f | 〈ψ | Ê[ f (A) ∈ f (�) ] |ψ〉 = 1}, (10)

Vψ(P̂) := {g | 〈ψ | Ê[ g(B) ∈ g(�′) ] |ψ〉 = 1} (11)

and there is no reason why equation (10) and equation (11) should be equal.
Propositions of this type arise when an operator Ô has vanishing commutators with

a pair of operators Ĉ, D̂ with [ Ĉ, D̂ ] 	= 0. For example, let Ô be the Hamiltonian Ĥ of
the hydrogen atom, and let Ĉ and D̂ be L̂x and L̂y—the x and y components of angular
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momentum respectively. Then [ Ĥ , L̂x ] = 0 = [ Ĥ , L̂y ], and [ L̂x, L̂y ] = i�L̂z 	= 0.
Now, the spectral theorem for commuting operators asserts the existence of hermitian
operators Â and B̂ such that Ĥ and L̂x are functions of Â, and Ĥ and L̂y are functions
of B̂. Thus, for some set of functions f , g, h, k we have

Ĥ = f (Â), L̂x = g(Â), (12)

Ĥ = h(B̂), L̂y = k(B̂). (13)

Then, for any12 subset J of the real numbers, we have13 Ê[ H ∈ J ] = Ê[ f (A) ∈
J ] = Ê[ A ∈ f −1(J ) ], and similarly Ê[ H ∈ J ] = Ê[ h(B) ∈ J ] = Ê[ B ∈ h−1(J ) ].
Thus Ê[ A ∈ f −1(J ) ] = Ê[ B ∈ h−1(J ) ], and of course [ Â, B̂ ] 	= 0 since [ L̂x, L̂y ] 	=
0. Hence this provides an example of the situation envisaged above in regard to
equation (9), with � and �′ chosen to be f −1(J ) and h−1(J ) respectively.

What this discussion implies is that the truth value assigned to a projection operator
P̂ should be contextual, i.e. it depends on the physical quantity with which one thinks
of P̂ as being associated. In the example above of the hydrogen atom, with P̂ chosen
as Ê[ H ∈ J ], the choice is between thinking of this projector as being associated
with Â, or with B̂. Equivalently, the truth value assigned to the proposition ‘H ∈ J ’
depends on whether H is thought of in the context of simultaneously ascribing a truth
value to propositions about Lx, or to propositions about Ly.

That such ideas should enter at this point is not surprising since, as remarked earlier,
discussions of the physical implications of the Kochen–Specker theorem frequently
introduce the notion of contextuality. The important question now is to decide on the
most appropriate mathematical framework in which to explore the implications of
equation (10) and equation (11). There are, in fact, several different (but mathemat-
ically equivalent) approaches to this issue, depending on what one decides to call a
‘context’.

As indicated above, one choice is to define a context for a projection operator P̂ as
one of the operators for which it is a spectral projector: this means using the definition
in equation (6) for all physical quantities A and subsets� for which Ê[ A ∈ � ] = P̂.
The mathematical development of this idea involves re-expressing equation (8) in the
language of presheaf theory and is discussed in [5].

Another possibility is to define a context as an algebra of simultaneously com-
muting operators to which P̂ belongs. In the example of the hydrogen atom, if
P̂ = Ê[ H ∈ J ], then two such algebras are those generated by Ĥ and L̂x, and
by Ĥ and L̂y, respectively. This approach is discussed in [6]. However, since the
focus of the present paper is logic, we shall use a third possibility, which is to define
a context for a projector P̂ as a Boolean algebra to which P̂ belongs. The details are
as follows.

3.2 Windows on reality

For each hermitian operator Â, let WA denote the collection of all projection oper-
ators of the form Ê[ A ∈ � ], as � ranges over the subsets of the real numbers.
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This forms a Boolean subalgebra of the non-distributive algebra L of all projection
operators. In addition, for any function f , we have Ê[ f (A) ∈ f (�) ] = Ê[ A ∈
f −1(f (�)) ], and hence Ê[ f (A) ∈ f (�) ] belongs to WA. In this sense, equation (10)
and equation (11) can be said to assign truth values to the projection operator
P̂ = Ê[ A ∈ � ] = Ê[ B ∈ �′ ] in the context of WA and WB respectively. In the
example of the hydrogen atom, WA will include the spectral projectors of Ĥ and
L̂x, and WB will include the spectral projectors of Ĥ and L̂y.14

These remarks suggest that the set, W , of all Boolean sub-algebras of L is a possible
space of contexts in which to assert generalized truth values of projection operators.
I shall refer to each such Boolean sub-algebra as a window since it gives a partial,
Boolean view of the quantum world: a Boolean sub-algebra provides a ‘window on
reality’.

The next step is to explore the mathematical structure of W . A key property is that
it is a partially-ordered set if an ordering (denoted <) between windows W1, W2 is
defined by15

W1 < W2 if W2 ⊂ W1, (14)

where the right-hand side is to be read as saying that W2 is a Boolean sub-algebra
of W1 (not just a subset). That this is a partial-ordering16 is easy to check. From
a logical perspective, if W2 ⊂ W1 then every element in W2 can be written as the
logical ‘or’ of disjoint elements in W1, and hence if W1 < W2, one can say that W2

is a coarse-graining of W1. This is represented in Figure 8.4 where the subsets of the

FIGURE 8.4. Representation of a situation in which two windows W1, W2 satisfy W1 < W2.
The thin lines symbolically enclose elements of the Boolean algebra W1; the thick lines

enclose elements of W2 that are coarse-grainings of the elements of W1.
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plane bounded by the red and green lines represent the disjoint projectors in W1 and
W2 respectively.

This ordering on windows is consistent with the �-ordering on projection operators
in the sense that, for any coarse-graining f (Â) of Â, we have (i) Ê[ A ∈ � ] �
Ê[ f (A) ∈ f (�) ]; and (ii) Wf (A) ⊂ WA, i.e. WA < Wf (A).

3.3 The presheaf of local truth values

Because of the Kochen–Specker theorem, binary truth values cannot be assigned
consistently to L. However they can be assigned to any of its Boolean sub-algebras,
W . Such a valuation is a homomorphism from W to the simplest Boolean algebra
{0, 1}, with 0 and 1 being interpreted as ‘false’ and ‘true’ respectively.

The next step is to associate with each window W the set, DW , of all valuations
on W . A crucial observation is that if W1 < W2, there is a map kW1W2 from DW1 to
DW2 . Specifically, let χ be a valuation on W1: then, since W2 is a subalgebra of W1,
we can define χ on W2 by using the values it assign to elements of W2 considered as
members of W1. These maps kW1W2 have the property that if W1 < W2 < W3 then

kW1W3 = kW2W3 ◦ kW1W2 . (15)

This means we have an example of a presheaf on the partially-ordered set (‘poset’)
W of windows. We shall call it the ‘presheaf of local truth values’.

To introduce the definition of a presheaf it may be helpful to contrast it with the
simpler concept of a fibre bundle—something that is much used in modern theoretical
physics. A fibre bundle with base space17 B is an association to each point b in B of
a space Fb (the ‘fibre over b’) with the property that these fibres are all copies of a
single space F , known as ‘the fibre’ of the bundle. The ‘bundle space’ is then defined
to be the union of all the fibres Fb, b in B.

The simplest example of a fibre bundle is a product bundle, defined to be the set
of all pairs (b, v) where b is in B, and v in F . Bundles of this type are called ‘trivial’.
An example is given in Figure 8.5 where the base space is a circle, S1, and the fibre
has just two points. Figure 8.6 is an example of a non-trivial bundle with the same
fibre and base space. This can be thought of as a Möbius strip with everything but the
edges of the strip removed. We see that the fibres ‘twist’ around as we move round
the base space.

An important idea in fibre-bundle theory is that of a cross-section. This is defined to
be a continuous function from the base space B to the bundle space, with the property
that each point b in B is mapped to some point in the fibre Fb over b18. For the trivial
bundle in Figure 8.5 there are just two cross-sections, corresponding to mapping the
base space circle into the lower, and upper, circles in the bundle space respectively.

For non-product bundles the situation is different, and there may be no cross-
sections at all. For example, this is true of the bundle in Figure 8.6: any attempt to
construct a continuous cross-section inevitably leads to a discontinuity as one works
around the base space and comes back to the starting point.

After this preamble, we can return to the idea of a presheaf. A presheaf 19 X over
a poset P is defined to be (i) an association to each p in P of a space Xp (known as
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p

S9

FIGURE 8.5. A trivial fibre bundle whose base space is a circle, and whose fibre over each point is a
set with two elements.

p

S9

FIGURE 8.6. A non-trivial fibre bundle with the same base space as in Figure 8.5. Each fibre is again a
set with two elements, but the bundle has a non-trivial ‘twist’ and is not the same as the bundle space in.

the stalk over p); and (ii) an association to each pair p, q such that p < q, of a map
Xpq from Xp to Xq that satisfies the ‘coherence’ condition that if p < q < r then (c.f.
equation (15))20

Xpr = Xqr ◦ Xpq. (16)
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Xp
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Xq
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FIGURE 8.7. A presheaf X on a partially ordered set P . This is an association of (i) to each point p in
P , a set Xp; and (ii) to each pair of points p, q in P such that p < q, a map Xpq from Xp to Xq. These

maps satisfy the coherence condition that if p < q < r then Xpr = Xqr ◦ Xpq. The diagram also illustrates
a sub-presheaf K of X .

This is illustrated in Figure 8.7, where the letters p, q, r, s denote elements in P ,
and the notation p −→ q means that p < q. Thus a presheaf resembles a fibre bundle
except that (i) the stalks at different points in P need not be copies of a single space
(unlike the fibres in a fibre bundle); and (ii) the maps Xpq exist when p < q.

There is much more to this structure than meets the eye. In particular, presheaf
theory can be viewed as a generalization of set theory itself! Specifically, a single
set gets replaced by a parameterised family of sets Xp, p in P , that are related by the
maps Xpq from Xp to Xq; this is why a presheaf is sometimes known as a ‘varying set’.
This generalization of set theory is very important and is an important part of topos
theory [7]. As we shall see, a presheaf embodies a generalization of the Boolean logic
of normal set theory.

Various standard ideas in set theory can be extended to this new context. For
example, the analogue of an element x of a set X is a global element x of a presheaf
X . This is defined to be an association to each p in P of a point xp in Xp such that
if p < q then xq = Xpq(xp). A related idea is a ‘partial’ element, where the points
xp are defined over only some sub-poset of P . Thus a global element of a presheaf
resembles a cross-section of a fibre bundle, and a partial element resembles a bundle
section defined on some subset of the base space.
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It is not difficult to show that the Kochen–Specker theorem is equivalent to the
statement that the presheaf of local truth values has no global elements (although
there are partial elements). This is reminiscent of the result that a certain type of fibre
bundle has no cross-sections if the bundle is non-trivial; an example is the bundle
in Figure 8.6. Thus we can think of the Kochen–Specker theorem as saying that the
presheaf of local truth values is ‘twisted’ as we move around the space W of all
windows, rather as in Figure 8.6 the fibres twist around the circle S1!

3.4 The presheaf origin of contextual truth values

Another crucial set-theoretic concept with a presheaf analogue is that of a subset. A
sub-presheaf (the analogue of a subset) is defined to be an assignment to each p in
P of a subset Kp of Xp with the property that if p < q then Xpq(Kp) ⊂ Kq (cf. Figure
8.7). As we shall see, this concept leads to a powerful mathematical way of encoding
the idea of ‘contextual truth’.

The connection with logic arises in the following way. First consider normal set
theory. Then any subset K of a set X is uniquely specified by its characteristic function
χK on X , defined by

χK (x) =
{

1 if x is in K ,
0 otherwise

(17)

for all x in X . To each subset K , and to each point x in X , there is an associated
proposition ‘x ∈ K’, and we can think of χK as a valuation of these propositions.
Then equation (17) asserts that the proposition ‘x ∈ K’ is true if and only if x belongs
to K : not a terribly surprising result!

However, the presheaf analogue is more subtle, with truth values now being both
contextual and multi-valued. This is reflected in the presheaf analogue of a charac-
teristic function. First we need to define the appropriate analogue of the simple set
{0, 1} of truth values in standard set theory. This involves introducing the concept of
a ‘sieve at a point p’ in P . This is defined to be a subset S of P such that (i) p < q for
all q in S; and (ii) if q belongs to S and q < q′, then q′ belongs to S. In the quantum
case, a sieve on a window W is a collection of coarse-grainings of W such that if
some W

′
belongs to the collection, then so does any coarse-graining of W

′
.

One of the fundamental results of presheaf theory is that the collection of all sieves
at a point p has the structure of a logic. Specifically: the operations of ‘and’ and
‘or’ on a pair of sieves S1, S2 on p are defined to be the intersection S1 ∩ S2 and the
union S1 ∪ S2, respectively. These operations are associative and distributive. The
operation of negation is more complicated since, if S is a sieve on p, the obvious
guess for ¬S—the complement of S—is not itself a sieve. Instead, ¬S is the subset
of P defined by

¬S := {q | p < q and for all r with q < r, r does not belong to S} (18)
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which is a sieve. With this definition, the collection of all sieves on a point p in P
has the structure of a logic that is almost Boolean, where ‘almost’ is understood in
the following sense.

A Boolean algebra satisfies the famous principle of the excluded middle: namely,
a proposition P is always either true or false—in mathematical terms, P ∨ ¬ P = 1,
where 1 denotes the proposition that is identically true. For sieves, however, P ∨¬ P
is not identically true. Logics of this type are known as Heyting algebras and have
been much studied in the topos literature. They can be used to form deductive systems,
and are hence a bona fide alternative to the familiar logic of daily life.

The relation between sieves and a sub-presheaf is as follows. Let a collection of sets
Kp ⊂ Xp, p in P , be a sub-presheaf K of the presheaf X . Then there is an associated
characteristic ‘arrow’, which, for each p in P , is a map χK

p from Xp to the set of sieves
on p, defined by

χK
p (x) := {q | p < q and Xpq(x) is in Kq} (19)

for all x in Xp (Figure 8.7 may help at this point). Thus, at p in P , the characteristic
arrow assigns to any element x in Xp the set of all points q in P for which the
transformed point Xpq(x) does belong to the subset Kq of Xq. The definition of a
sub-presheaf then implies that the right-hand side of equation (19) is a sieve on p.

3.5 The coarse-graining presheaf

When X is a classical state space S, the definition of a characteristic function in
equation (17) provides another way of understanding why the logic of classical physics
is Boolean, and with each proposition being either true or false. For, as discussed in
Section 2.1, a proposition of the form ‘A ∈ �’ is represented by the subset SA∈� of
S. Then the characteristic function of SA∈� assigns to a state s the values 1 (‘true’) if
A(s) is in �, and 0 (‘false’) if A(s) is not in �.

On the other hand, as explained in Section 3.1, our suggestion in quantum theory
is that the truth value associated with a projection operator P̂ should be contextual,
in the sense that it depends on the window to which one thinks of P̂ as belonging.
The discussion surrounding equation (19) then suggests that we might try to define
the generalized truth value of a projector P̂ in the context of a window W (where P̂
belongs to W ) to be a sieve of windows on W associated with a sub-presheaf of some
presheaf on W .

We might anticipate that this construction should be connected in some way with
the type of coarse-graining operation discussed in Section 3.1 in which a projector
Ê[A ∈ �] is replaced with Ê[f (A) ∈ f (�)]. However, at the moment, the only
presheaf we have is the presheaf of local truth values, which, since it does not involve
coarse-graining, cannot serve for our present purposes.

To proceed further, we return to the ordering operation on W , in which W1 < W2

means that W2 ⊂ W1, and ask how coarse-graining might enter here. More precisely,
if P̂ is a projection operator in W1, can it be associated with a projection operator, to
be denoted GW1W2(P̂), that belongs to W2 and is such that P̂ � GW1W2(P̂)?
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In fact, typically there are many such projectors in W2 (Figure 8.4 may help here),
and it is natural to choose the one that is the ‘best approximation’ to P̂, meaning the
‘smallest’ (the infinum with respect to the �-ordering) projector Q̂ in W2 such that
P̂ � Q̂. Hence we define, for all P̂ in W1,

GW1W2(P̂) := inf {Q̂ in W2 | P̂ � Q̂}. (20)

Thus GW1W2 is a map from the Boolean algebra W1 to the Boolean algebra W2, and
it can be shown that, if W1 < W2 < W3, then (cf. equation (15) and equation (16))

GW2W3 ◦ GW1W2 = GW1W3 . (21)

It follows that we have constructed a presheaf, denoted G, over W in which (i) the
stalk associated with each window W is a copy of this Boolean algebra, i.e. GW := W ;
and (ii) the map GW1W2 from GW1 = W1 to GW2 = W2 is defined by equation (20).

We shall call G the coarse-graining presheaf, and use it to assign contextual, multi-
valued truth values to quantum propositions. The intention is to exploit the notion of
a characteristic arrow defined in equation (19), and, in particular, the fundamental
result that the right-hand side of this equation is a sieve. Thus the final step is to
find the appropriate sub-presheaf of G and, inspired by equation (8), we proceed as
follows.

For each quantum state |ψ〉, and each context W , we define the set of ‘totally true’
projectors in W to be the subset, TψW , of projectors Q̂ in the Boolean algebra W such

that 〈ψ | Q̂ |ψ〉 = 1: i.e. the elements of W to which the quantum formalism assigns
a probability of 1.

Next, note that if 〈ψ | Q̂ |ψ〉 = 1 then this is true for any coarse-graining of Q̂,
i.e. 〈ψ | Q̂ |ψ〉 = 1 implies 〈ψ | Q̂′ |ψ〉 = 1 for all Q̂′ such that Q̂ � Q̂′. This means
that the collection of subsets TψW of GW , W in W , forms a sub-presheaf , Tψ , of
G. Therefore, there is an associated characteristic arrow, defined in equation (19),
and then the theory of presheafs says that the associated (contextual) truth values are
sieves and hence belong to a Heyting algebra.

Rewriting equation (19) for the special case of the sub-object Tψ of G we finally
arrive at the following definition of a generalized valuation associated with a quantum
state |ψ〉21. The generalized truth value of a projector P̂, in the context of the window
W to which P̂ belongs, is the sieve on W defined by

χ
ψ
W (P̂) := {W ′ | W ′ ⊂ W and 〈ψ | GWW ′(P̂) |ψ〉 = 1}. (22)

Thus the truth value, χψW (P̂), associated with a projector P̂ is (i) contextual: it depends

on the window to we which we think of P̂ as belonging; and (ii) multi-valued: χψW (P̂)
is a sieve on W and these form a Heyting algebra.

Note that if the state |ψ〉 is an eigenvector of Â with an eigenvalue that lies in �,
then 〈ψ | Ê[ A ∈ � ] |ψ〉 = 1, and equation (22) gives the generalized truth value to
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be the set of all coarse-grainings of W . This is knows as the principal sieve on W ,
and is the unit element of the Heyting algebra of sieves on W 22.

En passant, we remark that the discussion in Section 2.4 about macro-states in
classical physics can be re-expressed in presheaf language, thereby providing a proof
that the truth values are sieves, and hence form a Heyting algebra. The reader is
referred to the original papers for further details on these, and related, matters [4–6].

4 CONCLUSION

We started by showing how, in classical physics, the idea of coarse-graining can
be used to associate a generalized truth value with the proposition ‘A ∈ �’ for a
macrostate M even if there are some states s in M for which A(s) does not belong to�.

Motivated by these ideas we turned to quantum theory, with the aim of using
presheaf theory as a natural mathematical framework in which to discuss contex-
tual, multi-valued, truth values. As the space of contexts we chose the set W of all
Boolean subalgebras of the non-distributive logic of all projection operators. We then
constructed two natural presheafs over this space of windows: the presheaf of local
truth values and the coarse-graining presheaf G. For each quantum state |ψ〉 we con-
structed a special sub-object, Tψ of G, and used this to define the quantum valuation
in equation (22).

In short, we have shown that, notwithstanding the Kochen–Specker theorem, it is
possible to assign truth-values to the projection operators in a quantum theory, but
these truth values are both contextual and multi-valued. It is important to emphas-
ise that the logical connectives (‘and’, ‘or’, ‘not’) are uniquely specified by the
mathematics of topos theory as applied to presheafs.

However, in addition to being contextual, the presheaf logic differs from a simple
Boolean algebra in that it is a Heyting algebra, and the principle of excluded middle,
P ∨ ¬ P = 1, no longer holds. Equivalently, although it is still true that P implies
¬¬P it is no longer the case that ¬¬P implies P. In particular, this means that proofs
by contradiction are no longer valid. This is a characteristic feature of, so-called,
‘intuitionistic’ logic, and (unlike non-distributivity) is easy to live with once one has
got used to it.

Does all this mean that, after all, quantum theory can be interpreted in a realist
way? Clearly the answer is ‘no’, if ‘realist’ is understood in the sense used in the
Introduction—i.e. propositions about the world are handled using standard Boolean
logic. For our truth values are contextual and multi-valued. On the other hand, the
presheaf logic is distributive (unlike quantum logic proper) and can therefore be
used as the basis for a deductive system for reasoning about the world. In this sense,
our generalized truth values are closer to classical logic than quantum logic. Jeremy
Butterfield and I have referred to the corresponding philosophical position as ‘neo-
realism’.

At this point, any physicist reader who has courageously slogged through the
paper might well say ‘Well done lads, but is it useful?’—a justified, but frequently
embarrassing, question that is routinely addressed to any one claiming to have arrived
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at a new result in the foundations of quantum theory. One response might be ‘Well:
our way of looking at things gives a better picture, or ‘tells a better story’, of what
quantum theory is saying about the world. And this is valid in its own right’.

Personally, I think that this is true (but then I would, wouldn’t I?) but nevertheless
it would be good to be able to put the scheme to work in some concrete way. The
obvious subject area is quantum cosmology, particularly cosmogenesis where the
scheme could be used to handle statements about ‘how thing are’ in that very extreme
stage of the universe. In this context it is worth remarking that our scheme can be
viewed as a type of ‘many-worlds’ interpretation of quantum theory, with a ‘world’
being understood as a ‘window on reality’: i.e. a Boolean subalgebra of the non-
distributive logic of all projectors. The actual working through of this structure in
the context of a specific quantum cosmological model remains high on my list of
research topics.
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NOTES

1 Actually, the theorem only holds if the dimension of the vector space of states is greater than two,
whereas in the example under discussion the dimension is equal to two. However, this does not alter
the general thrust of the argument being developed here.

2 A valuation is a function that assigns a value (a real number) to each physical quantity. When applied
to propositions, a valuation assigns a truth value: 1 for ‘true’, and 0 for ‘false’.

3 Recall that a projection operator is a Hermitian operator P̂ that satisfies P̂2 = P̂.
4 This is a rather loose way of speaking: the subspace HP̂ ∩HQ̂ really represents all of the propositions

‘P and Q’ as P and Q range over the propositions represented by P̂ and Q̂ respectively. Similar remarks
apply to the logical ‘or’ and ‘not’ operations.

5 The orthogonal complement of a subspace, W , of H is the set of all vectors that are orthogonal to every
vector in W .

6 In statistical physics, the macro-state M would be given some probability by the theory. Of course, an
assignment of probabilities to macro-states is not incompatible with a realist view in which the system
has a definite state (and each physical quantity has a definite value) but we happen not to know what
this state is, only that it lies in the subset M of S.

7 Although one might want to handle the situations in which M is ‘only just’ a subset of SA∈�, so that
‘A ∈ �’ is ‘almost not totally true’.

8 Here, f (�) denotes the set of all real numbers of the form f (s) where s belongs to �.
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9 The plural ‘measurements’ arises in the relative frequency interpretation of probability. This is the
interpretation normally used in instrumentalist approaches to quantum theory.

10 If Prob(A�; |ψ〉) = 1, might we also want to consider the possibility that |ψ〉 is ‘close’ to a state for
which the probability is less than 1?

11 Of course, something similar happens in classical physics, where many different propositions are
represented by the same subset of the state space S. However, the singular feature of quantum theory
is that equation (9) can hold even if [ Â, B̂ ] 	= 0. The equality in equation (9) means that Â and B̂ have
some simultaneous eigenvectors, but they are not a complete set if [ Â, B̂ ] 	= 0.

12 Strictly speaking, only Borel subsets should be considered, but we will ignore such niceties.
13 In general, Ê[ f (A) ∈ J ] = Ê[ A ∈ f −1(J ) ] for any Hermitian operator Â and (Borel) subset J of real

numbers. Here f −1(J ) denotes the set of all real numbers s such that f (s) belongs to J .
14 Equivalently, WA contains the projectors onto the simultaneous eigenstates of Ĥ and L̂x , and ditto for

WB with Ĥ and L̂y .
15 The notation W1 < W2 includes the possibility W1 = W2.
16 This means that (i) for all W we have W < W ; (ii) W1 < W2 and W2 < W1 implies W1 = W2; and

(iii) W1 < W2 and W2 < W3 implies W1 < W3.
17 The various spaces introduced at this point are all required to be topological spaces. In most applications

in theoretical physics they are also differentiable manifolds.
18 For a product bundle, there is a one-to-one correspondence between cross-sections and maps from B

to the fibre F . A cross-section is then analogous to the, so-called, graph of a function as discussed in
elementary, school-level mathematics.

19 Actually, this is a very special type of presheaf. In general, a presheaf is defined over a category, and
a poset is a particularly simple example of a category.

20 It is also required that, for each p in P , the map Xpp is the identity map from Xp to itself.
21 These ideas can be trivially extended to a density matrix state, ρ̂, using the fact that Prob(P; ρ̂) = tr(ρ̂P̂)

is the probability associated with the proposition P in the state ρ̂.
22 The null element is the empty set of sieves.
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HERBERT KORTÉ∗

9. EINSTEIN’S HOLE ARGUMENT AND WEYL’S
FIELD-BODY RELATIONALISM†

ABSTRACT

Einstein’s hole problem concerns the nature of causality in the General Theory of
Relativity (GTR). This paper introduces a number of formal concepts and distinc-
tions which are necessary for a clear understanding of the nature of causality in GTR.
In particular, the distinctions between formal, theoretic and physical coordinates
are introduced as well as the distinction between model and symmetry transform-
ations. Utilizing the notion of local diffeomorphisms which are globally defined
locally invertible maps, it is made explicit that model diffeomorphisms and passive
coordinate transformations are mathematically equivalent. This, it is argued, decis-
ively undercuts the claims by Earman and Norton that a spacetime substantivalist view
is faced with ‘radical local indeterminism’ for a range of modern spacetime theor-
ies, including GTR. Additional epistemic and ontological difficulties in Earman’s and
Norton’s accounts of Einstein’s hole argument are discussed, and it is argued that these
difficulties underscore the need to adopt the ontological position called ‘field-body
relationalism’, a position forcefully advanced by Hermann Weyl. The paper concludes
with a discussion of Weyl’s critique of body-relationalism, Weyl’s argument for the
necessity of the inertial field (guiding field), and a modern re-formulation of New-
ton’s laws of motion that explicitly takes account of Weyl’s field-body-relationalist
ontology.

1 INTRODUCTION

Several years prior to the completion of the final version of GTR, Einstein was
very much concerned with the question whether a law of gravitation that satisfies
the principle of general covariance can also satisfy the principle of causality. At
that time Einstein arrived by means of his hole argument at the conviction that the
spacetime metric field equations could not be generally covariant and also satisfy
the principle of causality.1 Einstein’s final version of the hole argument is as fol-
lows. Consider a solution gij(x) with respect to a given coordinate system x for given
initial conditions on an initial surface S. Suppose that there is a matter-free region
� (a hole) that is future-related to S. Apply an active diffeomorphism which is the
identity outside the region �. Then the dragged-along metric tensor g̃ij(x) is also a
solution of the field equations and differs from gij(x) only inside�. Thus with respect
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to the same coordinate system, one has two distinct solutions of the field equations
both of which satisfy the same initial value conditions. Einstein repeatedly returned
to this problem and later concluded on the basis of another argument (his ‘coincid-
ence argument’)2 that general covariance is compatible with physical determinism
after all.

Einstein’s hole argument is strikingly similar in content to the modern formulation
of the Cauchy or Initial Value problem, which may briefly be characterized as follows.
Assuming that spacetime 〈M , g〉 is globally hyperbolic, there exists a one parameter
foliation of spacetime the leaves of which are Cauchy hypersurfaces. For a given
choice of an initial Cauchy hypersurface S, the appropriate initial data consists of
the Riemannian metric h induced on S by the spacetime metric g and the extrinsic
curvature tensor K for the embedding of 〈S, h〉 in 〈M , g〉. If g satisfies the Einstein
field equations, then the tensors h and K are not independent but satisfy certain
constraint equations. Moreover, the spacetime 〈M , g〉 is determined by 〈S, h, K〉 up to
an isometry; that is, if 〈M , g̃〉 is any other spacetime for which S is a Cauchy surface,
h is obtained by restricting g̃ to S and K is the extrinsic curvature tensor for the
embedding of 〈S, h〉 in 〈M , g̃〉, then there exists a diffeomorphism f : M → M such
that g = f ∗g̃. If material bodies are included, whether sources or test-bodies, the initial
data includes the points at which the world line of each body pierces S and the vector
that represents the spatial component of the unit four velocity of the body at that point.
Although the presence of sources greatly increases the mathematical difficulties, the
spacetime and the world lines of the material bodies are again determined up to a
diffeomorphism.

One important feature of the Cauchy problem for GTR is that the initial data
determines the solution of Einstein’s field equations only up to a diffeomorphism.
What implication does this feature of the Cauchy problem have for the principle of
causation and for the measurement of the spacetime metric? Prima facie the following
claims are incompatible:
1. The spacetime metric coefficients gij(xi) can be uniquely determined empirically.
2. The solutions to Einstein’s equations are unique only up to an active diffeomorph-

ism, given an initial data set on a portion of a Cauchy hypersurface.
There is general agreement that GTR satisfies the requirements of physical causal-

ity. However, the reasons advanced for holding this view are varied and far from coher-
ent. In the physics literature, the fact that the solution in the domain of dependency
of the initial data is determined only up to a local diffeomorphism in any local neigh-
bourhood of this domain is explained away in a variety of ways: diffeomorphically
equivalent models are asserted to be physically equivalent; the active diffeomorphism
is asserted to be equivalent to a passive coordinate transformation and hence the lack
of uniqueness comes down to the necessity of making a coordinate choice; the lack of
uniqueness is similar to the need for a choice of gauge in electromagnetism.3 While
these explanations are not false in any straight-forward sense, they are unsatisfactory
for a number of reasons. Moreover, Einstein’s coincidence argument is sometimes
advanced as the basis for asserting the physical equivalence of diffeomorphically
equivalent models. However, the set of coincidences of material bodies would not
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suffice to establish physical equivalence because the data base would not be suffi-
ciently rich. It is also not clear how an active diffeomorphism can be equivalent to
a passive transformation and yet be intimately associated with symmetry transform-
ations. Moreover, to remark that the manifold diffeomorphism group is the gauge
group of GTR is nothing but an appeal to a loose analogy.

The organization of the paper is as follows: In the first part of the paper, additional
concepts and distinctions are introduced which are necessary for a clear understanding
of the nature of causality in GTR. In particular, we emphasize the necessity of dis-
tinguishing between formal, theoretic, and physical coordinates, as well as between
model and symmetry diffeomorphisms. We clarify the relationship between model
diffeomorphisms and passive coordinate transformations, and discuss the importance
and physical significance of a number of other types of transformations that are rel-
evant to the Initial Value problem in GTR. In particular, utilizing the notion of local
diffeomorphisms which are globally defined locally invertible maps, we make explicit
that model diffeomorphisms and passive coordinate transformations, though concep-
tually quite different, are mathematically equivalent. This undercuts the arguments
of Earman (1986, 1989), Norton (1987, 1988, 1989, 1992) and Earman and Norton
(1987) which attempt to establish that a spacetime substantivalist view is faced with
‘radical local indeterminism’ for a range of modern spacetime theories, including
GTR. For it shows that their sense of an active transformation in the context of their
discussion of Leibniz equivalence of spacetime models is mathematically equival-
ent to a passive reading. Moreover, additional difficulties of an epistemological and
ontological nature in Earman’s and Norton’s accounts underscore the need to adopt
what we call ‘field-body relationalism’, an ontological position forcefully advanced
by Hermann Weyl. Though compatible with a spacetime substantivalist view, Weyl’s
position strongly suggests that the spacetime manifold M should be viewed merely as
a conceptual scaffolding, a mental construct necessary only at the initial stages of the
modeling process. The paper concludes with a brief discussion of Weyl’s critique of
body-relationalism championed by Leibniz, Mach and Einstein, Weyl’s argument for
the necessity of the inertial field (guiding field) and a modern re-formulation of New-
ton’s laws of motion that explicitly takes account of Weyl’s field-body relationalist
ontology.

2 FORMAL, EPISTEMOLOGICAL AND ONTOLOGICAL

CONSIDERATIONS

The term ‘active’ is usually construed to include both model and symmetry diffeo-
morphisms. But this is very misleading for the following reasons: When one speaks
of a model-diffeomorphism one has in mind an active transformation such that the
bodies and fields are actually moved either physically or conceptually; that is, the
diffeomorphisms are in some sense ‘actually carried out’ or ‘executed’. In contrast, a
symmetry transformation does not involve any such actual movement or execution
at all, but instead involves a comparison of a computed image of some portion of the
world with the original state. Therefore, the notion of ‘diffeomorphism’ used in the
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Table 9.1 Typology of transformations

Basic types of transformations

Active Passive Symmetry

Coordinate type Formal Formal-active Formal-passive Formal-symmetry
Theoretic Theoretic-active Theoretic-passive Theoretic-symmetry
Physical Physical-active Physical-passive Physical-symmetry

context of ‘symmetry’ must clearly be distinct from the one used in the context of
‘diffeomorphically equivalent models’. However, the language currently used in the
literature does not support the distinction between these two radically different con-
cepts of a diffeomorphism. To bring out these distinctions explicitly we shall add to the
basic active and passive transformations a third, namely symmetry transformations.

2.1 Types of Coordinate Systems

There are three, qualitatively different kinds of coordinate systems that are required
for the construction of an adequate model of the physical world. These types of
coordinates, will be distinguished by the labels formal, theoretic and physical. The
basic active, passive and symmetry transformations are each subdivided according
to the kind (formal, theoretic or physical) of coordinate system(s) used to describe it.
Table 9.1 summarizes the results.

Remark 2.1 There are seven kinds of passive transformations that are of interest:
the three simple passive transformations listed in table 9.1 and four mixed-passive
transformations. We will briefly describe some of the mixed-passive transformations
in remark 2.4.

Formal coordinates are purely abstract, mathematical coordinates that are used by
the theorist to model the contents of the world, the dynamics and interactions of the
various physical entities of the world and the physical procedures used to survey
the world. Typically, it is stated that an n-dimensional, differentiable manifold M is
a Hausdorff, topological space equipped with an atlas, that is, a family {(Uα , xα)}
of charts, such that the open neighbourhoods Uα cover M . The maps4 xα : Uα →
xα�(Uα) ⊆ R

n are homeomorphisms, and whenever Uα ∩ Uβ �= ∅, the coordinate
transformation maps

xβ ◦ x−1
α : xα�(Uα ∩ Uβ) → xβ�(Uα ∩ Uβ)

are Ck for 1 < k < ∞, C∞ or Cω. The coordinate charts (Uα , xα) are formal.
Even in purely mathematical accounts of certain geometric structures, special

coordinate systems, called adapted coordinate systems, are introduced that are
determined by the geometric structure in question. Such coordinate systems provide
an internal description of the particular geometric structure, a description that is more
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faithful in various respects. We call such coordinates theoretic coordinates because
theoretical coordinates are determined by some fundamental entity, typically the
geometric structure of the world, that is postulated by the theory. Whereas a formal
coordinate description is completely arbitrary, a priori and ‘external-to-the-structure’,
a theoretic coordinate description, by contrast, is ‘internal-to-the-structure’ and is, in
the case of geometry, determined possibly up to a Lie group of symmetry transform-
ations of the geometry. For example, in Galilean models of spacetime, the spatial
geometry is typically introduced by stipulating the existence of a system of spatial
coordinates (x, y, z)with respect to which the metric is given by ds2 = dx2+dy2+dz2.
These coordinates are determined up to a Euclidean transformation by a fundamental
element of the theory, the spatial metric, and are hence linked to the metrical structure
postulated by the theory. Similarly in the Special Theory of Relativity, it is assumed
that a system of coordinates (t, x, y, z) exists with respect to which the spacetime
metric is given by ds2 = −dt2 + d�r · d�r. These coordinates are likewise theoretic
and are determined up to a Poincaré transformation by the fact that they are adapted
to a fundamental element of the theory, the spacetime metric.

A physical coordinate system is one that makes use of various physical entities,
bodies and fields, to assign coordinates to physical events. It is this kind of coordinate
system that is used by a physical observer to track material bodies and to measure
various physical fields such as the electromagnetic field and the spacetime-metric
field. An example of a physical coordinate chart is the radar tracking system that may
be found at every major airport. A physical atlas for a region surrounding the earth is
provided by the Global Positioning System.

2.2 Active transformations

2.2.1 Physical-active transformations The physical-active transformation is the
classical case that underlies our intuitions regarding diffeomorphisms. It is this type
of transformation that arises in the mechanics of continua when an elastic or a fluid
body is subjected to forces which cause it to deform smoothly from an initial state
to a final state. In general, the initial state is destroyed in the process of creating the
final state.

It should be noted that a physical-active transformation can actually be executed
only because material of limited spatial extent is acted on and there exists an additional
dimension, time, through which the transformation can be effected. In addition, a
physical-active transformation has a straight-forward interpretation only if the space-
time curvature in the region considered is small with respect to the spatial extension
and temporal duration of the physical-active transformation. In such a region, one can
set up a system of physical coordinates that are macroscopically adapted to the essen-
tially flat local spacetime geometry. With respect to such a system of coordinates,
the physical-active transformation can be characterized as a one parameter family of
local diffeomorphisms, a flow in the spatial region under consideration.

2.2.2 Formal-active transformations The formal-active transformation occurs
in discussions about diffeomorphically equivalent models of spacetime theories;
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moreover, it is this sense of the term ‘diffeomorphism’ that is employed in statements
asserting that the solution of the Initial Value problem in GTR is unique up to a diffeo-
morphism. In terms of the modeling process, a formal-active transformation re-locates
the entire physical content of the world—everything, the spacetime metric, electro-
magnetic and other physical fields as well as material bodies—in its ‘container’5, the
spacetime manifold M . Since everything that is needed for the specification of either
physical coordinates or theoretic coordinates is affected by a formal-active transform-
ation, it is clear that such a transformation can only be described with respect to an
atlas of coordinate charts that are purely formal.

There is some similarity here with the indiscernible transformation considered
by Leibniz who considered re-locating the entire physical content of the world. If
one allows for the existence of a homogeneous, absolute metric of space, then such
a re-location of the physical content other than the metric, constitutes a Euclidean
motion which can be described with respect to a theoretic coordinate system adapted
to the spatial Euclidean metric. The formal-active and theoretic-active transforma-
tions are then both physically indiscernible. The re-location associated with a formal
(theoretic)-active transformation occurs only in the mind of the theorist who now
plays the role assigned to God by Leibniz.

2.2.3 Symmetry transformations Although the formal, theoretic and physical
viewpoints significantly modify the content and description of a symmetry trans-
formation, the existence or non-existence of a symmetry is coordinate independent.
The following characterization applies equally to all three coordinate types of
symmetry-transformations.

One has a description of the world (or of a portion of the world or a model thereof)
with respect to a fixed atlas, and considers a diffeomorphism f described for example
as in proposition 2.2 below. An image of what the physical content of the world would
be if the physical fields and material bodies were dragged along by the diffeomorphism
is computed; that is, for each µ, under the image provided by fµ : Uµ → Vµ, the
contents of the region Uµ are mapped onto the region Vµ. The diffeomorphism f is
a symmetry of some physical entity if and only if for every µ, the descriptors of that
physical entity in Vµ are the same as the descriptors of the image under fµ of the
corresponding physical entity in Uµ, where the term ‘descriptors’ denotes the set of
components that describe the physical entity with respect to the relevant coordinate
chart.

In contrast with a formal-active transformation, the image under a symmetry trans-
formation is computed as if it were carried out, but it is not regarded as actually carried
out. The counterfactual, pseudo, simulated or computed nature of symmetry trans-
formations is not really made explicit in the literature although some presentations
(e.g. Wald, 1984, 438) employ scare quotes. Another notable contrast is that a compar-
ison is made in the case of a symmetry transformation. On the other hand, no particular
agreement is expected to exist between the initial and final states related by a formal-
active transformation. In addition, a formal-active transformation always applies to
every physical entity; however, a symmetry transformation may be applied selectively.
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One could, for example, look for the symmetries of just the electromagnetic field or
of just some aspect of the geometry such as the projective or conformal structure.

2.2.4 Representation of Model and Symmetry Diffeomorphisms The following
proposition about the representation of diffeomorphisms will be used below. The
proposition applies to both symmetry and model diffeomorphisms.

Proposition 2.2 Given any atlas for M and any diffeomorphism f : M → M, one
can construct atlases {(Uµ, xµ)} and {(Vµ, yµ)} such that for any µ,

f�(Uµ) = Vµ,

where f is determined by local diffeomorphisms fµ : Uµ → Vµ which satisfy

fµ|Uµ∩Uν = fν |Uµ∩Uν

whenever Uµ ∩ Uν �= ∅; moreover, the fµ are represented in R
n by the local

diffeomorphisms Fµ = yµ ◦ fµ ◦ x−1
µ .

Proof. Let f : M → M be an arbitrary diffeomorphism and {(Bα , sα)} be an arbitrary
atlas. For each α, define the open sets Aα and Cα by

Aα = f 
(Bα) and f�(Bα) = Cα .

Then

f�(Aα ∩ Bβ) = f�(Aα) ∩ f�(Bβ) = Bα ∩ Cβ .

Since
⋃

αβ

Aα ∩ Bβ = M =
⋃

αβ

Bα ∩ Cβ ,

both of the collections {Aα ∩ Bβ} and {Bα ∩ Cβ} are open covers of M ; consequently,
f : M → M is determined by a collection of local diffeomorphisms

fαβ : Aα ∩ Bβ → Bα ∩ Cβ

that satisfy

fαβ |(Aα∩Bβ)∩(Aγ∩Bδ) = fγ δ|(Aα∩Bβ)∩(Aγ∩Bδ)

whenever (Aα ∩ Bβ) ∩ (Aγ ∩ Bδ) �= ∅.
Let sα : Bα → Sα ⊆ R

n be the coordinate maps of the original atlas. Define
the coordinate map rαβ : Aα ∩ Bβ → Rαβ by restricting the map sβ and define the
coordinate map tαβ : Bα ∩ Cβ → Tαβ by restricting the map sα . Then each of the
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collections {(Aα ∩ Bβ , rαβ)} and {(Bα ∩ Cβ , tαβ)} is an atlas for M . The functions fαβ
are represented by the functions

Fαβ = tαβ ◦ fαβ ◦ r−1
αβ : Rαβ → Tαβ .

The result is obtained in the form stated in the proposition by making the following
substitutions: (Aα ∩ Bβ , rαβ) → (Uµ, xµ), (Bα ∩ Cβ , tαβ) → (Vµ, yµ), fαβ → fµ and
Fαβ → Fµ.

2.3 Passive transformations

From a purely mathematical point of view, all passive transformations (formal, phys-
ical, theoretic) are described in the same way. Let (U , x) and (Ū , x̄) be two coordinate
charts belonging to an atlas for M , and suppose that Ū ∩ U �= ∅. The coordinate
transformation from (U , x) to (Ū , x̄) is determined by the local diffeomorphism of
the coordinate space given by

X̄ i = x̄i ◦ x−1 : x�(Ū ∩ U ) → x̄�(Ū ∩ U ). (1)

The inverse of this map is denoted by X i = xi ◦ x̄−1.
A geometric object at a point p ∈ M is determined by its components with respect

to a local coordinate chart. If p ∈ Ū ∩U , the geometric object has a set of components
or descriptors with respect to each of the charts (Ū , x̄) and (U , x). The map X̄ i(xi)

and its inverse X i(x̄i) determine the functional relations that express each set of
components in terms of the other set. Consider, for example, a pseudo-Riemannian
metric represented by

ḡ(p) = ḡij(x̄
i(p))dpx̄i ⊗ dpx̄j

in Ū and by

g(p) = gij(x
i(p))dpxi ⊗ dpxj

in U . 
If p ∈ Ū ∩ U , these forms must be identical, and since

dpxi = X i
j (x̄

i(p))dpx̄j ,

where X i
j (x̄

i) is the partial derivative of X i(x̄i) at x̄i(p), the transformation law is
given by

ḡij(x̄
i(p)) = grs(X

i(x̄i(p)))X r
i (x̄

i(p))X s
j (x̄

i(p)). (2)

If both of the coordinate charts (U , x) and (Ū , x̄) are formal, then (1) is a
formal-passive transformation and the transformation law (2) defines a constraint
on the otherwise free choice of the metric component functions. On the other hand,
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if both charts are physical, then (1) is a physical-passive transformation and the law
has empirical content insofar as Ehlers et al. (1972) Constructive Axiomatics sup-
plemented by Coleman and Korté’s (1980, 1982, 1987, 1989, 1990, 1991, 1992ab)
measurement procedure for directing fields provides a noncircular procedure for the
unique, empirical determination of the metric coefficients gij(xi(p)) and ḡij(x̄i(p)).
Moreover, it is possible to carry out measurements to determine empirically the
transformation functions X i(x̄i(p)), albeit with great difficulty in the general case.
Since the various factors in the transformation law (2) can be empirically determined
independently, the transformation law (2) can be used to verify that the empirically
determined coefficients gij(xi(p)) and ḡij(x̄i(p)) actually do satisfy the transformation
law for the coefficients of a second order covariant tensor field.

The following proposition provides a slightly more general description of passive
transformations. Such a generalized description is needed both to explain the notion
of a mixed-passive transformation and to show that each formal-active transformation
(model diffeomorphism) corresponds to a formal-passive transformation. The pro-
position provides a standard representation of a passive transformation for the case
in which two entire atlases are involved.

Proposition 2.3 Let {(Aα , rα)} and {(Bβ , sβ)} be two atlases for M which determine
the same differentiable structure on M. Then, there exists a refinement {(Uµ, xµ)} of
{(Aα , rα)} and a refinement {(Uµ, zµ)} of {(Bβ , sβ)} such that the maps

Zi
µ = zi

µ ◦ x−1
µ : xµ�(Uµ) → zµ�(Uµ)

and their inverses X i
µ = xi

µ ◦ z−1
µ determine the transformation from {(Aα , rα)} to

{(Bβ , sβ)}.
Proof. Define the enrichment of {(Aα , rα)} to be {(Aα ∩ Bβ , rαβ)}, where rαβ
is the restriction of rα . Similarly, the enrichment of {(Bβ , sβ)} is defined to be
{(Aα ∩ Bβ , sαβ)}, where sαβ is the restriction of sβ . Now, re-label the doubly indexed
quantities; so that, Uµ is Aα ∩ Bβ , xµ is rαβ and zµ is sαβ .

Remark 2.4 Of course, this generalized description of a passive transformation may
be used for the three cases in which both atlases are formal, theoretic or physical.
Rather more interesting, however, are two cases of mixed-passive transformations.
Consider a coordinate transformation between a description of the world with respect
to a formal system of coordinates and one with respect to a physical system of coordin-
ates. This type of mixed-passive transformation is a necessary component of the
ADM-formulation6 of the physical Cauchy problem for GTR which is discussed
in Coleman and Korté (1992b). Briefly, after carrying out a survey of a portion of
spacetime and computing the physical initial data on a chosen Cauchy surface, one
abandons the physical radar-station coordinate systems used in the surveying process
in favour of a system of formal coordinates that are defined by stipulating the so called
lapse and shift functions. The solution obtained provides a purely formal image of the
world; however, this image includes the motions of the bases of the original physical
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radar-station coordinate systems along with the motions of other bodies and fields
with the consequence that one can compute from the formal description precisely
what any one of the physical observers will observe in the future domain of depend-
ency of the Cauchy surface chosen in the originally surveyed region of spacetime.
In particular, one can compute what physical coordinates a given physical observer
would assign to a point designated by a particular set of formal coordinates; that is,
one can compute the physical-formal-passive transformation.

Hilbert had another approach to the physical Cauchy problem. Instead of abandon-
ing the physical radar coordinate charts in favour of a purely formal system of
coordinates as in the ADM approach, one solves the equations of motion with respect
to a theoretic system of coordinates determined in terms of the spacetime metric, by
imposing, for example, coordinate conditions on the metric such as the conditions
for harmonic coordinates. The solution then provides a theoretic description of the
world and one must compute the relevant physical-theoretic-passive transformation
in order to know what a given physical observer will observe.

2.4 The equivalence of formal-active and
formal-passive transformations

In the process of working through the difficulties associated with his hole prob-
lem, Einstein came to realize that a formal-active transformation is equivalent to a
formal-passive transformation at least in the case of a region that can be covered by
a single coordinate chart7.

For the case of a single coordinate neighbourhood it is easy to show that to
each formal-active transformation there corresponds a formal-passive transforma-
tion and conversely. Consider a local diffeomorphism f : U → U . Then in the
most general case, one may consider two different coordinate charts (U , x) and
(U , y) for the neighbourhood U and describe the local diffeomorphism f by the
local diffeomorphism in R

n

F = y ◦ f ◦ x−1 : x�(U ) → y�(U ).

Clearly, one can define another local chart (U , z) where z = y ◦ f . The components
that describe a geometric entity in U with respect to (U , z) are the same as the
components that describe the entity transformed by f with respect to the chart (U , y).
The situation is illustrated in Figure 9.1.

On the other hand, consider a formal-passive transformation from the coordinate
chart (U , x) to the coordinate chart (U , z) with the transition function Z = z ◦ x−1.
To recover the previous active picture relative to the two charts (U , x) and (U , y) one
need only set f = y−1 ◦ z : U → U . The situation is illustrated in Figure 9.2.

Note that if (U , y) is chosen to be the same as (U , x), then the relationship between
the active and passive descriptions is unique up to the choice of the chart (U , x).
There is, however, no necessity to use the same chart ‘before’ and ‘after’ the local
diffeomorphism f . Moreover, there is no similar canonical choice that may be used
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FIGURE 9.1. Simple active to passive.
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FIGURE 9.2. Simple passive to active.

to eliminate the corresponding freedom in the more general case which we shall now
discuss.

The next proposition says that the equivalence of formal-active and formal-passive
transformations holds even when such transformations are globally defined.

Proposition 2.5 (Equivalence of formal-active/passive) Let f : M → M denote a
formal-active transformation described with respect to some atlas for M, then there
exists an infinite number of formal-passive transformations that are equivalent to the
formal-active transformation f . Conversely, given the formal-passive transformation
between any two atlases for M, there exists an infinite number of equivalent formal-
active transformations.

Proof. Let f : M → M be a formal-active transformation described with respect
to some atlas. Then by proposition 2.3, there exist enrichments of this atlas,
{(Uµ, xµ)} and {(Vµ, yµ)} such that f is described by local diffeomorphisms
fµ : Uµ → Vµ. Define an atlas {(Uµ, zµ)} by setting zµ = yµ ◦ fµ. Then, the
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FIGURE 9.3. Active to passive.

formal-passive-transformation from the atlas {(Uµ, xµ)} to the atlas {(Uµ, zµ)} has the
form stated in proposition 2.3 and is equivalent to f . Note that there exist an infinite
number of formal-passive transformations that are equivalent to f because one gets
a different one for each atlas with respect to which f may be described. Figure 9.3
illustrates the situation.

By proposition 2.3, given any two atlases for M , they may be refined to yield atlases
{(Uµ, xµ)} and {(Uµ, zµ)}, such that, the intra atlas transformation functions are given
by Zµ = zµ ◦ x−1

µ and Xµ = xµ ◦ z−1
µ . Any diffeomorphism f : M → M , however

described, determines the image sets Vµ = f�(Uµ) and the local diffeomorphisms
fµ : Uµ → Vµ. If one defines the atlas {(Vµ, yµ)} by setting yµ = zµ ◦ f −1

µ , then
the formal-active transformation f is described as in proposition 2.2 and is clearly
equivalent to the given formal-passive transformation. Clearly, there are an infinite
number of formal-active transformations that are equivalent to a given formal-passive
transformation. Figure 9.4 illustrates the situation.

In the case of GTR the metric is not an absolute structure with convenient global
symmetries; rather, it is a dynamical physical entity that is coupled to the energy-
momentum density of matter and other fields. In almost all cases, the spacetime
metric does not have any symmetries at all8. The theory tells us that the best we can
do is to adapt to a microneighbourhood by employing a normal coordinate system at
a given point. In the absence of symmetry, extended bodies adapted to the geometry
cannot exist. In such circumstances, neither theoretic nor physical coordinate systems
can be introduced early in the presentation of the theory even with the aid of ad hoc
assumptions, because the circumstances that permitted ad hoc assumptions in the
pre-GTR case simply do not obtain in the context of GTR.9

A proper theoretical account of the epistemology of geometry requires an ana-
lysis of the physical measurement process itself, in particular an analysis of physical
coordinate systems. In contrast with the geometric structures of classical mechanics,
the geometric structure of GTR is not given a priori, rather, it is part of the dynamical
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FIGURE 9.4. Passive to active.

problem, and hence theoretic and physical coordinates are also part of the dynamical
problem.10 In particular, the description of physical coordinate systems in GTR is
really an advanced topic in the sense that many other physical entities, including the
spacetime metric, the electromagnetic field, the world lines of material bodies and
their equation-of-motion structures, have to be introduced and analyzed first. Clearly,
the description and analysis of these physical entities must be carried out with respect
to a purely mathematical or formal system of coordinates because theoretic and phys-
ical coordinates are not yet part of the model. In a little book entitled Riemanns
geometrische Ideen, ihre Auswirkung und ihre Verknüpfung mit der Gruppentheorie,
published posthumously in 1988, (Weyl, 1988, 4–5) makes this interesting comment:

Coordinates are introduced on the Mf [manifold] in the most direct way
through the mapping onto the number space, in such a way, that all
coordinates, which arise through one-to-one continuous transformations,
are equally possible. With this the coordinate concept breaks loose from
all special constructions to which it was bound earlier in geometry. In
the language of relativity this means: The coordinates are not measured,
their values are not read off from real measuring rods which react in
a definite way to physical fields and the metrical structure, rather they
are a priori placed in the world arbitrarily, in order to characterize those
physical fields including the metric structure numerically. The metric
structure becomes through this, so to speak, freed from space; it becomes
an existing field within the remaining structure-less space. Through this,
space as form of appearance contrasts more clearly with its real content:
The content is measured after the form is arbitrarily related to coordinates.

Weyl’s statement that the “metric structure becomes through this, so to speak,
freed from space; it becomes an existing field within the remaining structure-less
space” and Weyl (1929) statement that “the metric field has been freed from the
manifold” may both be understood mathematically in the following way: In his
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Erlanger Programme, Felix Klein provided a unified approach to the various ‘global’
geometries by showing that each of the geometries is characterized by a particular
group of transformations. As Weyl (1929) noted, it was E. Cartan who first adapted
Klein’s Erlanger Programme to infinitesimal geometry by applying Klein’s notions
to the tangent (or co-tangent) plane, rather than to the manifold itself and thereby
founded the theory of G-structures. A first order G-structure, where G is a subgroup
of the general linear group GL(Rn), is determined by specifying in a smooth manner
an equivalence class of privileged frames or co-frames for the tangent or co-tangent
spaces at every point of the manifold. At a given point p, any two equivalent frames
or co-frames are related by an element of the group G in question which characterizes
the infinitesimal geometry.

The more general geometries of GTR, such as the projective, conformal, affine and
metric structures, are characterized as geometric fields over a manifold M . Typic-
ally, such geometric fields are mathematically represented as cross sections of a fiber
bundle. A geometric object at a point p ∈ M , where M denotes the spacetime man-
ifold, is typically a ‘Taylor series’ approximation of some finite degree k at p ∈ M
of a map either into or out of M . The dimension n of M is usually 4. In general,
the geometric objects at p of a given type form a differentiable manifold F(Mp) of
some finite dimension � called the fiber over p ∈ M . Each of these manifolds is
diffeomorphic to a manifold F called the typical fiber. The disjoint union of the fibers
F(Mp) form a differential manifold F(M ) of dimension n + �. The structure

F(M ) = 〈F(M ),π , M , F〉 ,

is called a fiber bundle over the base space M , whereπ : F(M ) → M is the projection
map which maps every geometric object in F(Mp) into p ∈ M . A cross section F(M )

is a map σ : M → F(M ) such that π ◦ σ = idM . A geometric-object field11 of type
F is a cross section of F(M ).

To repeat, in the case of GTR, physical or theoretic coordinate systems cannot
be introduced in the initial stages of the modeling process even with the aid of ad
hoc assumptions, because the circumstances that permitted such assumptions in the
pre-GTR case do not obtain. At the initial stage of the modeling process, therefore,
only the manifold M has been introduced. Nothing that represents a physical entity
has been postulated. There are neither physical fields nor material bodies. It follows
that the charts {(Uα , xα)} cannot be either theoretic or physical charts; consequently,
they must be purely formal. Because the manifold M does not represent anything that
is physical, in particular, its points do not represent the events of physical spacetime,
and because the only requirement on its differentiable structure is that it be smoother
than the differentiable structure of physical spacetime, one is free to assume that the
differentiable structure of M is C∞.

The same geometric field structure, represented by means of a cross section, can
be placed over M in many ways. One precisely describes this situation by means
of a formal-active transformation. A formal-active transformation is determined by
a diffeomorphism f : M → M . Consider an arbitrary point p ∈ M and suppose
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FIGURE 9.5. Active to passive.

f (p) = q ∈ M . Then, geometric objects at p ∈ M are mapped into corresponding
geometric objects at q ∈ M by the ‘drag-along’ process. For example, a tangent
vector Vp ∈ T (Mp) is ‘pushed forward’ to a vector f∗Vp ∈ T (Mf (p)). This operation
can be extended to geometric-object fields.

Under a formal-active transformation, the points of M remain fixed but the geomet-
ric field is actually moved or ‘dragged along’ to another location of the manifold. In
the context of a model for spacetime, the fields that represent the geometric structure
of the physical world are represented as cross sections of various bundles over M .
Two models of the geometry that are determined by different cross sections σa and σb
are regarded as equivalent provided that there is a diffeomorphism of the manifold M
that carries σa into σb; that is, just in case the models are related by a formal-active
transformation (model diffeomorphism). The placing of the same geometric struc-
ture in two different locations with respect to the base manifold M by means of a
formal-active transformation, is illustrated in Figure 9.5. By proposition 2.5 a formal-
active transformation is equivalent to a formal-passive transformation. According to
the equivalent, albeit conceptually quite different passive point of view, nothing is
actually being moved; instead a mere formal re-labeling of coordinates of the base
manifold M has taken place. As a consequence, a formal-active transformation, that
is, a model diffeomorphism, has no physical consequences whatsoever; the physics
of the situation remains entirely unchanged.

2.5 Earman and Norton on the hole argument

Someone who believes in the doctrine of spacetime or manifold substantivalism
asserts, broadly speaking, that the spacetime manifold, together with its points, is a
physically real entity which is endowed with physically real differential-topological
relations between its points. Sentences like ‘Denote by M the 4-dimensional
differentiable manifold of spacetime’ occur frequently in the literature and they seem
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to support a manifold substantivalist conception for they suggest that there exists
a physical entity that is an aspect of spacetime, a sort of container, with specific
physical properties. Of course, as was discussed earlier, the notion of a spacetime
manifold endowed with a differentiable structure is, in the first instance of the model-
ing process, a conceptual and/or semantic necessity; for without such a concept, one
would be unable to introduce the bundle of non-degenerate, symmetric, second order
tensors and one could therefore not introduce the metric tensor as a cross section of
this bundle. Moreover, one would also be unable to discuss the world paths of mater-
ial bodies and their equations of motion. The question to be raised here is whether
manifold substantivalism leads to ‘radical local indeterminism’, as was suggested
by Earman and Norton, and to what extent it is or is not necessary to accept the
substantivalist position. Earman (1986, 1989), Norton (1987, 1988, 1989, 1992) and
Earman and Norton (1987) have argued in the context of their discussion of Einstein’s
hole argument12 that a spacetime-manifold substantivalist is faced with radical local
indeterminism. In his book World enough and Spacetime, Earman (1989, 190) sug-
gests that on an active construal of the hole argument “there are in the offing many
different metrics that, according to manifold substantivalism, predict objectively dif-
ferent properties of space-time points.” For example, Earman suggests that under one
diffeomorphism of the metric “points p and q are relatively lightlike,” while under
another diffeomorphism “they are relatively spacelike, which leads to the conflicting
prediction that p and q can and cannot be connected by a nonbroken light ray.”

The first difficulty with Earman and Norton’s account is a purely formal one. The
kind of diffeomorphism involved in their active construal of the hole construction
is a purely formal diffeomorphism which occurs in discussions about diffeomorph-
ically equivalent models of spacetime theories and statements about the uniqueness
of the solution of the Initial Value problem for GTR up to a diffeomorphism. Such a
formal-active transformation is described with respect to a purely formal system of
coordinates. Earman and Norton evidently think that the passive viewpoint is sub-
stantively different from the active viewpoint in this context, in the sense that an
active, as opposed to a passive construal, will lead to conflicting predictions. But as
was shown earlier, a formal-active transformation, that is, a model diffeomorphism,
is equivalent to a formal-passive transformation. Therefore, the situation that Earman
describes, cannot even arise on purely formal grounds: an equivalent formal-passive
transformation results in a mere formal re-labeling of the coordinate descriptions of
the manifold points and therefore cannot have any effect on lightlike, spacelike or
timelike relations.

The second difficulty concerns their conception of manifold substantivalism
according to which the points of M represent the actual or possible events of physical
spacetime and constitute the relata of lightlike, spacelike or timelike relations which
also reside in M . However, the events of physical spacetime and the relations between
them do not lie in the base manifold M ; they lie elsewhere. They must be regarded as
aspects of the cross section in the bundle space F(M ) that represent the geometry of
physical spacetime. Spacetime points representing events of physical spacetime and
the timelike, lightlike and spacelike relations between them, exist at the field-body
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level of reality which is mathematically represented in terms of cross sections in the
bundle space F(M ). We shall call such points field-body points in order to distinguish
them from the base-manifold points of M .

An example might clarify the situation. Suppose a physical radar coordinate chart
based on some observer A has been set up. Then a point P in its domain can be
physically designated by referring to its coordinates xi

A(P). Suppose that the spacetime

metric gAij(xi
A)dxi

A⊗dxj
A has been measured in at least a portion of the chart’s domain.

Suppose further that P2 is in the future of P1. Then one can physically designate a
double cone open set of points, namely, all those points that are both in the future of P1

and in the past of P2. It is clear that the collection of all possible physically designated
open double cone sets is a topology that is isomorphic to the manifold topology. The
physically designated spacetime points are singled out by their relations to physical
fields and bodies. Such spacetime points exist, therefore, at the field-body level of
reality and are the field-body points. It should also be noted that the field-body points
have topological relations in addition to those they share with the base-manifold points
of M . In particular, field-body points are also timelike, lightlike or spacelike related.

With regard to the issue of spacetime substantivalism, one may adopt one of two
points of view:

Field-Body Relationalism: Only fields, material bodies and their world paths, and
relations between these entities are physically real. On the other hand, the spacetime
manifold, its points and the differential-topological relations between them do not
exist physically but only conceptually; they merely provide a semantic framework
that is necessary for the theoretical activity of modeling the world.

Spacetime Substantivalism: In addition to the field-body level of reality, there exists
a ‘container’, the spacetime manifold, and this manifold, its points and the manifold
differential-topological relations are physically real.

Recall Weyl’s remark, that the metric becomes “freed from space; it becomes an
existing field within the remaining structure-less space. Through this, space as form
of appearance contrasts more clearly with its real content: the content is measured
after the form is arbitrarily related to coordinates.” Weyl’s description is compatible
with both field-body relationalism and spacetime substantivalism.

It describes field-body relationalism if the remaining structure-less space or the
space as form of appearance does not denote a physically real container but merely
denotes, as it were, a conceptual scaffolding that is used by the theorist to model the
contents of the world. The contents of the world reside at the field-body relationalist
level, and include such things as the dynamics and interactions of the various physical
entities of the world including the physical procedures, such as physical coordinates
used to survey the world.

It describes spacetime substantivalism if the remaining structure-less space does
denote a physically real container. However, as form of appearances it cannot then
itself be among the appearances. That is, the substantivalist must accept the fact that,
although this manifold, its points and the manifold differential-topological relations
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are physically real, the spacetime manifold plays no role other than to constrain
the topology at the field-body relationalist level to be compatible with the manifold
topology. The manifold points have no causal efficacy whatsoever since the relations
of timelikeness, spacelikeness and lightlikeness occur only at the field-body rela-
tionalist level. We have no direct epistemic access to the manifold points and their
topological relations. We have knowledge of the manifold differential-topological
structure only because the structure is duplicated at the field-body relationalist level.
Furthermore, any formal executed model diffeomorphism merely re-positions the
physical fields and bodies in the container without changing any of the field-body
relations and hence without changing any physical causal relations.

Whether or not one adopts the field-body relationalist or the spacetime substantival-
ist position, there is no incompatibility between the fact that the solutions to Einstein’s
field equations are unique only up to an active diffeomorphism and the statement
that the spacetime metric can be uniquely determined empirically. Geometric-object
fields are locally described by a system of components (descriptors) with respect to
a local coordinate chart. In the context of pure mathematics the local coordinates are
merely stipulated or assumed and the corresponding components are called formal
descriptors. On the other hand, the measurement of a physical geometric-object
field is the empirical determination of its physical descriptors, that is, its system
of components with respect to a local physical radar-station coordinate chart. Phys-
ical descriptors are covariant with respect to a change from one physical coordinate
system to another physical coordinate system. The measurement situation can, of
course, be described with respect to various local, formal coordinate charts. It should
be clear that under a formal-passive transformation, the physical descriptors of the
geometric-object field being measured, are invariants. Since a formal-passive trans-
formation is equivalent to a formal-active transformation the physical descriptors
are also invariant from an active point of view. Since a formal-active transforma-
tion merely re-positions everything, including the local physical coordinate systems
and the geometric-object fields, none of the field-body relations (such as physical
descriptors) are changed by a formal-active transformation that relates two formal
solutions in the context of Einstein’s hole argument. Any formal-active transforma-
tion f that transforms a geometric field � into another geometric field �f will also
transform the chosen physical coordinate system � into another coordinate system
�f such that �f will have the same field-body relation with respect to �f as � has
to �; that is, the physical descriptors of the geometric field with respect to some
physical coordinate system are invariants under formal-active transformations.

These and earlier considerations make it clear that a spacetime-manifold substant-
ivalist is not faced with ‘radical local indeterminism’. The points of the container,
though physically real according to the spacetime substantivalist, have no causal
efficacy and we have no direct epistemic access to them. The relations ‘timelike’,
‘spacelike’ or ‘lightlike’ occur only at the field-body relationalist level and not at
the container level. Earman’s (1986, 182) suggestion that “…[p]hysics has accom-
plished what Leibniz’ Principle of Sufficient Reason could not” does not seem correct.
It would seem that in arguing against the substantivalist view we can essentially do
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no better than Leibniz. We can point out that the manifold differential-topological
relations are duplicated at the field-body relationalist level and that since one has dir-
ect epistemic access only to the field-body relations, the postulation of the physical
existence of the manifold is ontologically gratuitous.

It is interesting to note in this context that the use of G-structures for the charac-
terization of geometric fields such as the metric field, may lead to important insights
with respect to these fields. For example, a G-structure may be flat or non-flat; but
it can never vanish. Consequently, fields characterizable as G-structures do not van-
ish. The reason is that the nk -co-frames are geometric objects that cannot vanish at
any point p ∈ M because the first order part of the approximation must be invert-
ible since the nk -co-frame is the Taylor approximation of a local diffeomorphism
h : U → R

n which satisfies h(p) = �0; consequently, no unoccupied spacetime
points can exist. This, it would seem, undercuts a version of Leibnizian relationalism
which, as (Friedman, 1983, 217) describes, “places constraints on the ontology of our
space-time theories” and which “wishes to limit the domain over which the quanti-
fiers of our theories range to the set of physical events, that is, the set of space-time
points that are actually occupied”.

In light of this one might adopt the following attitude: The fact that the metric field
has been, to use Weyl’s terminology, freed from the manifold, and the fact that the
metric field cannot be removed (that is, does not vanish anywhere), and finally the fact
that the manifold, postulated by the substantivalist, plays no essential physical role
other than to constrain the topology at the field-body relationalist level, suggests that
we reject manifold substantivalism and adopt instead a pure field-body relationalist
position which regards the manifold as a mere mental construct or conceptual scaffold-
ing. That is, the true locations and differential-topological relations (as well as other
relations) between them are inherent features of the geometric structure itself and not
that of the base manifold M . This leads to the question of how to correctly characterize
these true relations as opposed to a purely formal, and somewhat misleading, charac-
terization in terms of the purely formal differential structure of the base manifold M .
We will not answer this question here but merely point out that it can be shown that
certain geometric structures, such as, for example, the affine structure or symmetric
linear connection, are so rich that they ‘carry’ their own differentiable-manifold struc-
ture; that is, these geometries determine a complete atlas of coordinate charts with
respect to which the geometry itself can be described in a self-referential manner.

3 FIELD - BODY RELATIONALISM: THE NECESSITY OF

GEOMETRIC FIELDS

Those who argue for the conventional character of the law of inertia from ontolo-
gical considerations concerning the nature of spacetime structure and/or for their
relationalist character from a Leibnizian-Machian view of motion — in which rel-
ative motion must be understood as relative motion of bodies with respect to each
other — advance the theses that what counts as a standard of no-acceleration or free
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motion is not dictated by a physically real and causally efficacious inertial structure
of spacetime.

Weyl was a vigorous opponent of such an ontological view and argued that inertial
effects are a consequence of the inertial structural field which he called the guiding
field and that pure body relationalism is incoherent within the context of GTR.13 To
emphasize the necessity for a physically real and causally efficacious inertial structure
of spacetime, a structure Weyl called the guiding field, Weyl (1924, 1949) devised
the following paradox:

Incidentally, without a world structure the concept of relative motion of
several bodies has, as the postulate of general relativity shows, no more
foundation than the concept of absolute motion of a single body. Let us
imagine the four-dimensional world as a mass of plasticine traversed by
individual fibers, the world lines of material particles. Except for the con-
dition that no two world lines intersect, their pattern may be arbitrarily
given. The plasticine can then be continuously deformed so that not only
one but all fibers become vertical straight lines. Thus no solution of the
problem is possible as long as in adherence to the tendencies of Huyghen
and Mach one disregards the structure of the world. But once the inertial
structure of the world is accepted as the cause for the dynamical inequi-
valence of motions, we recognize clearly why the situation appeared so
unsatisfactory …. Hence the solution is attained as soon as we dare to
acknowledge the inertial structure as a real thing that not only exerts
effects upon matter but in turn suffers such effects.14

Let us analyze this example using the concept of the microsymmetry group15 of a
geometric structure at an event p ∈ M . A microsymmetry of an acceleration field or of
a directing field (or other structural fields) at an event p ∈ M is a local diffeomorphism
of a neighbourhood of p ∈ M which leaves p fixed and preserves the field at the event
p ∈ M . The set of microsymmetries at p ∈ M form the microsymmetry group at
p ∈ M . Consider a spacetime manifold equipped only with a differentiable structure,
the plasticine of Weyl’s example. Our spacetime does not have a connection defined
on it. In such a world it is possible to define curves and paths and their elements.
However, there are no preferred curves or paths. Since there is only the differentiable
structure, one may apply any diffeomorphism; consequently, the microsymmetry
group at any event p is an infinite-parameter group isomorphic to the group of all
invertible formal power series in four variables. If there is no post-differentiable
topological geometric field in the neighbourhood of the event p ∈ M , then all of
these infinite parameters may be chosen freely within rather broad limits. Clearly
then, given an infinite number of parameters, one can straighten out an arbitrary
pattern of world lines (fibers) in the neighbourhood of any event. Now suppose that
there exists a post-differentiable topological geometric field, namely, the projective
structure, or geodesic directing field. Then the microsymmetry group that preserves
that structure is a 20-parameter Lie group. Thus instead of an infinity of degrees
of freedom, only twenty degrees of freedom may be used to actively deform the
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neighbouring region of spacetime. The fact that only a finite number of parameters
are available prevents an arbitrary realignment of the worldlines of material bodies
in the neighbourhood of any given event.

Other post-differential topological geometric field are similarly restrictive. For
example, the microsymmetry group of the conformal structure which determines the
causal structure of spacetime permits 7 degrees of freedom (6 Lorentz transformations
and a dilatation) and permits four more degrees of freedom in second order.

Weyl’s plasticine example shows that the Leibnizian view of relative motion,
namely the view according to which all motion must be defined as motion relat-
ive to bodies, is self-defeating in GTR. The fact that a stationary, homogeneous
elastic sphere will, when set in rotation, bulge at the equator and flatten at the poles
is well known. According to Weyl, this phenomenon is to be accounted for in the
following way. The complete physical system consisting of both the body and the
local inertial-gravitational field is not the same in the two situations. The cause of
the effect is the state of motion of the body with respect to the local gravitational
field and is not, indeed as Weyl’s plasticine example shows, cannot be the state of
motion of the body relative to other bodies. To attribute the effect, as Einstein and
Mach did, to the rotation of the body with respect to other bodies in the universe, is to
endorse a remnant of the unjustified monopoly of the older body ontology, namely,
the sovereign right of material bodies to play the role of physically real and acceptable
causal agents. Our ontology must be extended to include, according to Weyl, causally
efficacious geometrical structural fields (geometrische Strukturfelder) and this leads
to the following modern reformulation of Newton’s laws of motion.

First consider the inhomogeneous character of the transformation laws for
4-acceleration and 3-acceleration. Furthermore, for the sake of simplicity consider
the case of linear acceleration only. Denote by M the n-dimensional, C∞ spacetime
manifold. A curve in M is a map γ : R → M and a path in M is an equivalence
class ξ = [γ ] of such maps any two of which are related by an invertible parameter
transformation µ : R → R. For convenience, in the discussion of curve and path
elements16 at some particular point p ∈ M , attention is restricted to those curves which
satisfy γ (0) = p and to those parameter transformations which satisfy µ(0) = 0.

A curve element of order k at p ∈ M is an equivalence class jk0γ of curves through
p which have the same Taylor expansion with respect to some (and hence every)
coordinate chart (U , x)p up to and including order k at 0 ∈ R. A path element of order
k at p ∈ M is an equivalence class of paths jkpξ consisting of all paths corresponding

to curves in jk0γ , where γ ∈ ξ .
A second-order curve element j20γ has local coordinates γ i

1 and γ i
2 called 4-velocity

and 4-acceleration, respectively, and given by

γ i
1 = d

dλ
xi ◦ γ (0),

γ i
2 = d2

dλ2
xi ◦ γ (0).
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A second-order path element j2pξ has local coordinates ξα1 and ξα2 called 3-velocity
and 3-acceleration, respectively, and given by

ξα1 = dxα ◦ γ
dx0 ◦ γ

∣∣∣∣
p

,

ξα2 = d2xα ◦ γ
(dx0 ◦ γ )2

∣∣∣∣
p

.

The transformation laws of the coordinates γ i
1 (4-velocity) and γ i

2 (4-acceleration)
under a change of coordinate chart from (U , x)p to (Ū , x̄)p, follow from the pointwise
definition of γ i

1 and γ i
2. From

γ̄ i(λ) = x̄i(γ (λ)) = X̄ i(x(γ (λ))) = X̄ i(γ i(λ)),

where X̄ i = x̄i ◦ x−1, one obtains

γ̄ i
1 = X̄ i

j γ
j
1

and

γ̄ i
2 = X̄ i

j γ
j
2 + X̄ i

jkγ
j
1γ

k
1 , (3)

where X̄ i
j and X̄ i

jk are the first and second partial derivatives of X̄ i(xi) at xi(p).

Under a change of coordinate chart from (U , x)p to (Ū , x̄)p, the transformation
laws for the coordinates ξα1 (3-velocity) and ξα2 (3-acceleration), are given by

ξ̄ α1 = X̄ α
0 + X̄ α

β ξ
β

1

X̄ 0
0 + X̄ 0

γ ξ
γ

1

,

and

ξ̄ α2 = X̄ α
β ξ

β

2 + X̄ α
ρσ ξ

ρ
1 ξ

σ
1 + 2X̄ α

0ρξ
ρ
1 + X̄ α

00

(X̄ 0
0 + X̄ 0

γ ξ
γ

1 )
2

− X̄ 0
β ξ

β

2 + X̄ 0
ρσ ξ

ρ
1 ξ

σ
1 + 2X̄ 0

0ρξ
ρ
1 + X̄ 0

00

(X̄ 0
0 + X̄ 0

γ ξ
γ

1 )
2

ξ̄ α1 .

(4)

The transformation laws (3) and (4) for the 4-acceleration and 3-acceleration are
linear in the acceleration variables but they are not homogeneous. The inhomogen-
eity of the transformation laws entails that an acceleration that is zero with respect
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to one coordinate system is not zero with respect to another coordinate system. It
follows that given only a differential-topological structure, there is no standard for
zero acceleration. Since the terms that are independent of the acceleration depend
on both the spacetime location and on the corresponding velocity, it is necessary to
specify a standard for zero acceleration that depends on those variables, namely,
position and velocity. That is, it is necessary to specify fields, either a second
order geodesic acceleration field �i

2(x
i, γ i

1) or a second order geodesic directing
field �α2 (x

i, ξα1 ).
The transformation law for an acceleration field can be obtained from (3) by

replacing γ̄ i
2 by Āi

2(x̄
i, γ̄ i

1) and γ j
2 by Aj

2(x
i, γ i

1) to yield

Āi
2(x̄

i, γ̄ i
1) = X̄ i

j Aj
2(x

i, γ i
1)+ X̄ i

jkγ
j
1γ

k
1 .

The important special case for which Ai
2(x

i, γ i
1) is a geodesic acceleration field corres-

ponds to a G-structure, namely, the affine structure. For this special case the function
Ai

2(x
i, γ i

1) is denoted by �i
2(x

i, γ i
1) and is given by

�i
2(x

i, γ i
1) = −�i

jk(x
i, γ i

1)γ
j
1γ

k
1 .

The transformation law for the affine structure is given by

�̄i
2(x̄

1, γ̄ i
1) = X̄ i

j �
j
2(x

i, γ i
1)+ X̄ i

jkγ
j
1γ

k
1 .

The transformation law for a directing field�α2 (x
i, ξα1 ) can be obtained from (4) by

replacing ξ̄ α2 by �̄α2 (x̄
i, ξ̄ α1 ) and ξβ2 by�β2 (x

i, ξα1 ). The important special case for which
�α2 (x

i, ξα1 ) is cubic in the (3)-velocity variables ξα1 corresponds to a G-structure,
namely, the projective structure. For this special case, the function �α2 (x

i, ξα1 ) is
denoted by �α2 (x

i, ξα1 ) and is given by

�α2 (x
i, ξα1 ) = ξα1 [�0

ρσ (x
i, ξα1 )ξ

ρ
1 ξ

σ
1 + 2�0

0ρ(x
i, ξα1 )ξ

ρ
1 +�0

00(x
i, ξα1 )]

− [�αρσ (xi, ξα1 )ξ
ρ
1 ξ

σ
1 + 2�α0ρ(x

i, ξα1 )ξ
ρ
1 +�α00(x

i, ξα1 )],
(5)

where the projective coefficients satisfy�i
jk = �i

kj and�j
jk = 0. The transformation

law for the projective structure is given by

�̄α2 (x̄
i, ξ̄ α1 ) = X̄ α

β �
β

2 (x
i, ξα1 )+ X̄ α

ρσ ξ
ρ
1 ξ

σ
1 + 2X̄ α

0ρξ
ρ
1 + X̄ α

00

(X̄ 0
0 + X̄ 0

γ ξ
γ

1 )
2

− X̄ 0
β�

β

2 (x
i, ξα1 )+ X̄ 0

ρσ ξ
ρ
1 ξ

σ
1 + 2X̄ 0

0ρξ
ρ
1 + X̄ 0

00

(X̄ 0
0 + X̄ 0

γ ξ
γ

1 )
2

ξ̄ α1 .

(6)
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The differences

γ i
2 − �i

2(x
i, γ i

1) (7)

and

ξα2 −�α2 (x
i, ξα1 ) (8)

then transform linearly and homogeneously; consequently, the vanishing or non-
vanishing of these relative accelerations is coordinate independent.17

According to the modern re-formulation of the laws of motion, the law of inertia
asserts the existence of a unique projective structure:

The Law of Inertia: There exists on spacetime a unique projective structure �2 or
equivalently, a unique geodesic directing field �2.

Thus formulated, the law of inertia is an empirical law. It is falsifiable, for if there
exist at least two sets of particles each of which is governed by a distinct geodesic
directing field �2 and �

′
2, then particles belonging to the two distinct directing-

field sets may be identified and in turn may be used to measure in any chosen local
neighbourhood of spacetime the two distinct projective structures. This discovery
procedure is a non-circular, coordinate and frame independent epistemically effective
procedure which makes use of a purely local differential topological criterion for
geodesicity.18 Free motion is defined with reference to the projective structure �2

as follows:

Definition of Free Motion: A possible or actual material body is in a state of free
motion during any part of its history just in case the corresponding segment of its
world path is a solution path of the differential equation determined by the unique
projective structure of spacetime

The law of inertia and the definition of free motion together constitute a modern
reformulation of Newton’s first law of motion. Newton’s second law of motion may
be reformulated as follows:

The Law of Motion: With respect to any coordinate system, the world line path of a
possible or actual material body satisfies an equation of the form

m(ξα2 −�α2 (x
i, ξα1 )) = Fα(xi, ξα1 ),

where m is a scalar constant characteristic of the material body called its inertial mass
and Fα(xi, ξα1 ) is the 3-force acting on the body.

The components ξα2 of the 3-acceleration can be thought of as the kinematic descriptors
of a material body. On the other hand, the components of the geodesic directing
field �α2 (x

i, ξα1 ) are field quantities. The difference (ξα2 − �α2 (x
i, ξα1 )) denotes the
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components of a coordinate independent field-body relation. The transformation law
for 3-forces is linear and homogeneous since the inhomogeneous terms cancel for the
transformation law of the difference (ξα2 −�α2 (x

i, ξα1 )).
19

Note that the law of motion makes explicit use of the unique projective structure
�2 on spacetime. The law of motion, therefore, depends ontologically on the law
of inertia; consequently, it is impossible to derive the law of inertia from the law of
motion. Specifically, it is not the case that the first law is derivable from the second
law as a special instance, a claim that is made even in excellent textbooks.

It is also the case that 3-forces are directly measurable since the directing fields
and the projective structure are directly measurable; consequently, 3-forces are
physically real.

It is interesting to note in this context a theorem proved by Coleman and Korté
(1989) which says: If a second order directing field �2(xi, ξα1 ) is a polynomial with
respect to its 3-velocity variables ξα1 in every coordinate chart, then it is necessarily
geodesic.

This result establishes that forces are necessarily non-polynomial with respect to
the 3-velocity variables. Recently Coleman and Korté (1999) have shown how this
result makes explicit and clarifies an essential difference between pre-relativistic
and relativistic theories: In contrast with the relativistic case for which the pro-
jective structure is unique, in pre-relativistic physics, all of the physical directing
fields then known were, in present terminology, geodesic; that is, they all cor-
responded to projective structures and hence were geometrizable. It is essentially
because of this circumstance that it was not possible in pre-relativistic theories to
demarcate by means of a local criterion the boundary between forces and geometry
in a non-stipulative manner, and hence to formulate Newton’s laws of motion in a
non-circular way.

NOTES

1 (Einstein, 1954, 289) remarks:

Moreover I believed that I could show on general considerations that a law of gravitation
invariant with respect to arbitrary transformations of coordinates was inconsistent with
the principle of causality. These were errors of thought which cost me two years of
excessively hard work, until I finally recognized them as such at the end of 1915, and
after having ruefully returned to the Riemannian curvature, succeeded in linking the
theory with the facts of astronomical experience.

See also Stachel (1986, 1987) and Lanczos (1972) for further historical comments and related issues.
2 In the final analysis of his hole problem, Einstein tried to cope with the need to secure physical

determinism by claiming that all physical observations reduce to the observation of coincidences and
that such coincidences are invariant under the (formal) diffeomorphisms under consideration.

3 See for example, (Bergmann and Komar, 1980, 230), (Wald, 1984, 438), Adler et al. (1975, 279),
Hawking and Ellis (1974, 230), D’Inverno (1998, 178).

4 If f is a map, then the maps f� and f 
 respectively denote the image map and inverse image map
determined by f . A good account of this somewhat nonstandard notation may be found in Porteous
(1969).
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5 This container need not be accorded the status of a physically real entity, rather it may be regarded as
a mere formal scaffolding that is required for the modeling process. See the discussion of field-body
relationalism presented below.

6 See Arnowitt et al. (1962).
7 An account of this local formulation of the equivalence may also be found in the text

by Wald (1984, 439).
8 Of course, most of the known exact solutions of the field equations exhibit considerable symmetry

precisely because such solutions are easier to find.
9 In the case of pre-GTR, the Galilean theories, the use of purely formal coordinates is not necessary

because of the assumption pertaining to the flatness of the geometric structures. This assumption then
permits the use of theoretic and physical coordinates that are adapted to the flat geometric structures.
Nevertheless, even in the context of pre-GTR, a proper theoretical account of the epistemology of
geometry still requires an analysis of the physical measurement process including an analysis of physical
coordinates with respect to these theoretic coordinates. (See, Coleman and Korté (1995a,b))

10 The relation between the physical coordinates and the geometric structure in GTR is described by
a complicated system of functions gij(x

i). The corresponding relationship in classical mechanics is
described by a small number of constants; for example, gαβ(x

α) = δαβ for the spatial metric.
11 The usage of the terms ‘geometric-object field’ and ‘geometric field’ is such that the first includes

the second. By a ‘geometric field’, we mean a G-structure, such as a Riemannian, conformal, affine
or projective structure. Besides these structures, the term ‘geometric-object field’ also includes such
fields as equation-of-motion structures for massive monopoles and the electromagnetic field.

12 For other discussions on the topic of the hole argument see Butterfield (1989), Maudlin (1988, 1990),
Nerlich (1991, 1994), Stachel (1989).

13 For a discussion of Weyl’s philosophy of spacetime see Korté (1981) and Coleman and Korté (2001).
14 Weyl’s emphasis.
15 For a treatment of the concept of microsymmetry see Coleman and Korté (1984); for an analysis of

G-structures see Coleman and Korté (1981), Coleman and Korté (1993).
16 For a treatment of curve elements and path elements and equation-of-motion structures in terms of the

jet-formalism and for a new formulation of the laws of motion, see Coleman and Korté (1980, 1981,
1982, 1984).

17 In (7) and (8) we have assumed that the field that determines the zero acceleration is geodesic; however,
the universality of free fall motion could in principle be determined by a non-geodesic acceleration or
directing field. (See Coleman and Korté (1984).)

18 See Coleman and Korté (1980, 1982, 1984, 1987, 1989, 1990).
19 Sklar (1974, 229–233) has suggested that the problem of absolute acceleration arises because we

tend to think of acceleration as a dyadic relation: something accelerates either with respect to some
observable or unobservable entity. Sklar suggests that there is an alternative way to think of absolute
acceleration, which, if adopted by the relationalist, will avoid the traditional relationalist difficulties
concerning absolute acceleration. He proposes that we think of acceleration as a monadic relation so
that “the expression ‘A is absolutely accelerated’ is a complete assertion, as is, for example, ‘A is
red’. . ..” It should be clear from the foregoing, however, that Sklar’s suggestion is incoherent within
the context of GTR. The inhomogeneity of the transformation law of the 3-acceleration entails that
an acceleration that is zero with respect to one coordinate system is not zero with respect to another
coordinate system. Consequently, absolute nonacceleration conceived of as a monadic property is not
a well defined concept because it is not a coordinate independent notion. A monadic property which
can be transformed away by means of a passive coordinate transformation can hardly represent a
brute, inexplicable fact about the world. However, the difference ξα2 −�α2 (x

i , ξα1 ) transforms linearly
and homogeneously; consequently, the vanishing or non-vanishing of these field-body relations is
coordinate independent.

In theories prior to the advent of GTR, the affine and projective structures were flat. Moreover, the
habit of using coordinates adapted to these structures made it difficult to appreciate the important role
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these structures have, since the components that describe them, vanish in an adapted coordinate system;
consequently these structures were inconspicuous. In such a context, one could perhaps be seduced
into thinking that acceleration could be understood as a monadic relation.
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ITAMAR PITOWSKY∗

10. QUANTUM MECHANICS AS A THEORY
OF PROBABILITY

ABSTRACT

We develop and defend the thesis that the Hilbert space formalism of quantum mech-
anics is a new theory of probability. The theory, like its classical counterpart, consists
of an algebra of events, and the probability measures defined on it. The construction
proceeds in the following steps: (a) Axioms for the algebra of events are introduced
following Birkhoff and von Neumann. All axioms, except the one that expresses the
uncertainty principle, are shared with the classical event space. The only models for
the set of axioms are lattices of subspaces of inner product spaces over a field K .
(b) Another axiom due to Solèr forces K to be the field of real, or complex numbers,
or the quaternions. We suggest a probabilistic reading of Solèr’s axiom. (c) Gleason’s
theorem fully characterizes the probability measures on the algebra of events, so that
Born’s rule is derived. (d) Gleason’s theorem is equivalent to the existence of a certain
finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently,
all aspects of quantum probability can be derived from rational probability assign-
ments to finite “quantum gambles”. (e) All experimental aspects of entanglement- the
violation of Bell’s inequality in particular- are explained as natural outcomes of the
probabilistic structure. (f) We hypothesize that even in the absence of decoherence,
macroscopic entanglement can very rarely be observed, and provide a precise conjec-
ture to that effect. We discuss the relation of the present approach to quantum logic,
realism and truth, and the measurement problem.

1 INTRODUCTION

Discussions of the foundations of quantum mechanics have been largely concerned
with three related foundational questions which are often intermingled, but which I
believe should be kept apart:
1. A semi-empirical question: Is quantum mechanics complete? In other words, do

we have to supplement or restrict the formalism by some additional assumptions?
2. A mathematical-logical question: What are the constraints imposed by

quantum mechanics on its possible alternatives? This is where all the famous
“no-hidden-variables” theorems belong.

3. A philosophical question: Assuming that quantum mechanics is complete, what
then does it say about reality?
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By quantum mechanics I mean the Hilbert space formalism, including the
dynamical rule for the quantum state given by Schrödinger’s equation, Born’s rule
for calculating probabilities, and the association of measurements with Hermitian
operators. These elements seem to me to be the core of the (nonrelativistic) theory.

I shall be concerned mainly with the philosophical question. Consequently, for the
purpose of this paper the validity and completeness of the Hilbert space formalism
is assumed. By making this assumption I do not wish to prejudge the answer to the
first question. It seems to me dogmatic to accept the completeness claim, since no
one can predict what future theories will look like. At the same time I think it is also
dogmatic to reject completeness. Present day alternatives to quantum mechanics, be
they collapse theories like GRW [1], or non-collapse theories like Bohm’s [2], all
suffer from very serious shortcomings.

However, one cannot ignore the strong philosophical motivation behind the search
for alternatives. These are, in particular, two conceptual assumptions, or perhaps
dogmas that propel this search: The first is J. S. Bell’s dictum that the concept of
measurement should not be taken as fundamental, but should rather be defined in
terms of more basic processes [3]. The second assumption is that the quantum state
is a real physical entity, and that denying its reality turns quantum theory into a mere
instrument for predictions. This last assumption runs very quickly into the measure-
ment problem. Hence, one is forced either to adopt an essentially non-relativistic
alternative to quantum mechanics (e.g. Bohm without collapse, GRW with it); or to
adopt the baroque many worlds interpretation which has no collapse and assumes that
all measurement outcomes are realized.

In addition, the first assumption delegates secondary importance to measurements,
with the result that the uncertainty relations are all but forgotten. They are accepted as
empirical facts, of course; but after everything is said and done we still do not know
why it is impossible to measure position and momentum at the same time. In Bohm’s
theory, for example, the commutation relations are adopted by fiat even on the level
of individual processes, but are denied any fundamental role in the theory.

My approach is traditional and goes back to Heisenberg, Bohr and von Neumann. It
takes the uncertainty relations as the centerpiece that demarcates between the classical
and quantum domain. This position is mathematically expressed by taking the Hil-
bert space, or more precisely, the lattice of its closed subspaces, as the structure that
represents the “elements of reality” in quantum theory. The quantum state is a derived
entity, it is a device for the bookkeeping of probabilities. The general outlook presen-
ted here is thus related to the school of quantum information theory, and can be seen as
an attempt to tie it to the broader questions of interpretation. I strive to explain in what
way quantum information is different from classical information, and, perhaps why.

The main point is that the Hilbert space formalism is a “logic of partial belief” in
the sense of Frank Ramsey [4]. In such a logic one usually distinguishes between
possible “states of the world” (in Savage’s terminology [5]), and the probability
function. The former represent an objective reality and the latter our uncertainty about
it. In the quantum context possible states of the world are represented by the closed
subspaces of the Hilbert space while the probability is derived from the |ψ〉 function
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by Born’s rule. In order to avoid confusion between the objective sense of possible
state (subspace), and |ψ〉- which is also traditionally called the state- we shall refer
to the subspaces as events, or possible events, or possible outcomes (of experiments).
To repeat, my purpose is to defend the position that the Hilbert space formalism is
essentially a new theory of probability, and to try to grasp the implications of this
structure for reality.

The initial plausibility of this approach stems from the observation that quantum
mechanics uses a method for calculating probabilities which is different from that
of classical probability theory1. Moreover, in order to force quantum probability
to conform to the classical mold we have to add objects (variables, events) and
dynamical laws over and above those of quantum theory. This state of affairs calls
for a philosophical analysis because the theory of probability is a theory of inference
and, as such, is a guide to the formation of rational expectations.

The relation between the above stated purpose and the completeness assumption
should be stressed again. We can always avoid the radical view of probability by
adopting a non-local, contextual hidden variables theory such as Bohm’s. But then I
believe, the philosophical point is missed. It is like taking Steven Weinberg’s position
on space-time in general relativity: There is no non-flat Riemannian geometry, only
a gravitational field defined on a flat space-time that appears as if it gives rise to
geometry [9–11]. I think that Weinberg’s point and also Bohm’s theory are justified
only to the extent that they yield new discoveries in physics (as Weinberg certainly
hoped). So far they haven’t.

Jeffrey Bub was my thesis supervisor over a quarter of a century ago, and from
him I have Iearnt the mysteries of quantum mechanics and quantum logic [12]. For
quite a while our attempts to grasp the meaning of the theory diverged, but now seem
to converge again [13]. It is a great pleasure for me to contribute to this volume in
honor of a teacher and a dear friend.

2 THE EVENT STRUCTURE

2.1 Impossibility, certainty, identity, and the
non contextuality of probability

Traditionally a theory of probability distinguishes between the set of possible events
(called the algebra of events, or the set of states of Nature, or the set of possible
outcomes) and the probability measure defined on them. In the Bayesian approach
what constitutes a possible event is dictated by Nature, and the probability of the
event represents the degree of belief we attach to its occurrence. This distinction,
however, is not sharp; what is possible is also a matter of judgment in the sense that
an event is judged impossible if it gets probability zero in all circumstances. In the
present case we deal with physical events, and what is impossible is therefore dictated
by the best available physical theory. Hence, probability considerations enter into the
structure of the set of possible events. We represent by 0 the equivalence class of all
events which our physical theory declares to be utterly impossible (never occur, and
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therefore always get probability zero) and by 1 what is certain (always occur, and
therefore get probability one).

Similarly, the identity of events which is encoded by the structure also involves
judgments of probability in the sense that identical events always have the same
probability. This is the meaning of accepting a structure as an algebra of events in
a probability space. An important example is the following: Consider two measure-
ments A, B, which can be performed together, so that [A, B] = 0; and suppose that A
has the possible outcomes a1, a2, . . . , ak , and B the possible outcomes b1, b2, . . . , br .
Denote by {A = ai} the event “the outcome of the measurement of A is ai”, and
similarly for {B = bj}. Now consider the identity:

{B = bj} =
k⋃

i=1

({B = bj} ∩ {A = ai}) (1)

This is the distributivity rule which holds in this case as it also holds in all classical
cases. This means, for instance, that if A represents the roll of a die with six possible
outcomes and B the flip of a coin with two possible outcomes, then Eq (1) is trivial.
Consequently the probability of the left hand side of Eq (1) equals the probability of
the right hand side, for every probability measure.

In the quantum mechanical context this observation has further implications. If A,
B, C, are observables such that [A, B] = 0, and [B, C] = 0 but [A, C] �= 0. Then the
identity

k⋃

i=1

({B = bj} ∩ {A = ai}) = {B = bj} =
l⋃

i=1

({B = bj} ∩ {C = ci}) (2)

holds, where c1, c2, . . . , cl are the possible outcomes of C. By the rule Identical
events always have the same probability we conclude that the probabilities of all
three expressions in Eq (2) are equal. This is the principle of the non-contextuality of
probability. There is a large body of literature which attempts to justify this principle2.
For why should we apply the same probability to {B = bj} in the A, B context as in the
B, C context? If this is a good question in the quantum domain it should be an equally
good question in the classical regime. For consider Eq (1) with A representing the
throw of a die, and B the flip of a coin. Now think of two contexts: In one we just flip
the coin without rolling the die; in the other we do both. Why should the probability
of {B = bj} be the same in both contexts? (regardless of our judgment about the
dependence, or independence of the events). By the very act of putting the outcomes
of the two procedures “coin flipping” and “die throwing” in the same probability
space (the product space) we are ipso facto assuming Eq (1) as an identity in a
probability space which implies equality of probabilities. Although routinely made,
this assumption ultimately represents an empirical judgment. Counterexamples are
hard to come by, and are usually quite contrived.

My proposal to take the Hilbert space formalism as a Ramsey type logic of partial
belief involves the same commitment. Hence, in the following I assume that the 0
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of the algebra of subspaces represents impossibility (zero probability in all circum-
stances) 1 represents certainty (probability one in all circumstances), and the identities
such as Eq (1) and Eq (2) represent identity of probability in all circumstances. This
is the sense in which the lattice of closed subspaces of the Hilbert space is taken as
an algebra of events. I take these judgments to be natural extensions of the classical
case; a posteriori, they are all justified empirically.

2.2 The axioms

In their 1936 seminal paper “The logic of quantum mechanics” Garrett Birkhoff and
John von Neumann [19] formulated the quantum logical program. Their strategy was
to take the following steps:
1. Identify the quantum structure which is the analogue of the event structure of

classical statistical mechanics.
2. Distill a set of principles underlying this structure and formulate them as axioms.
3. Show that the quantum structure is, in some sense, THE model of the axioms.

Birkhoff and von Neumann identified the quantum event structure (which they
called “quantum logic”) as the algebra of closed subspaces of a Hilbert space. In
the rest of this section I shall review the efforts to accomplish steps 2 and 3 of their
program, that is, begin with the axioms and generate the structure. The elements in the
structure we shall refer to as “events” , or “outcomes” (meaning outcomes of gambles
or of measurements) or sometimes loosely as “propositions” (meaning propositions
that describe the events). Notice that the axioms below are shared by both classical
and quantum systems, with the exception of the last axiom. It should also be noted that
I do not claim that this structure is logic in the same sense that the predicate calculus
or intuitionistic logic are. (Nor do I think that Birkhoff and von Neumann made such
a claim).3 A proposition that describes a possible event in a probability space is of a
rather special kind. It is constrained by the requirement that there should be a viable
procedure to determine whether the event occurs, so that a gamble that involves
it can be unambiguously decided. This means that we exclude many propositions.
For example, propositions that describe past events of which we have only a partial
record, or no record at all. We also exclude undecidable mathematical propositions
such as the continuum hypothesis, and many other propositions that form a part of the
standard conception of logic. Our structure is “logic” only insofar as it is the event
component of a “logic of partial belief”.

We use small Latin letters x, y, . . . , to designate events, and denote by L the totality
of events. ∩ stands for intersection, ∪ for union, and implication is denoted by ≤.
Finally, x⊥ denotes the complement of x. The certain event is denoted by 1 and the
null event by 0.

These are the axioms:
S1 x ≤ x.
S2 If x ≤ y and y ≤ z then x ≤ z.
S3 If x ≤ y and y ≤ x then x = y.
S4 0 ≤ x ≤ 1
S5 x ∩ y ≤ x, and x ∩ y ≤ y, and if z ≤ x and z ≤ y then z ≤ x ∩ y.
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S6 x ≤ x ∪ y, and y ≤ x ∪ y, and if x ≤ z and y ≤ z then x ∪ y ≤ z.
O1 (x⊥)⊥ = x
O2 x ∩ x⊥ = 0 and x ∪ x⊥ = 1
O3 x ≤ y implies y⊥ ≤ x⊥.
O4 Orthomodularity if x ≤ y then y = x ∪ (y ∩ x⊥).
Axiom O4 is sometimes replaced by a stronger axiom:
O4∗ Modularity if x ≤ z then x ∪ (y ∩ z) = (x ∪ y) ∩ z.
The axioms S1-S6, O1-O4 are true in the classical system of propositional logic or,

more precisely, in the Lindenbaum-Tarski algebra of such a logic, when we interpret
the operations as logical connectives. The rest of the axioms are more specific to the
physical context.

H1 Atomism: If x � y then there is an atom p such that p ≤ y and p � x. Here by
an atom we mean an element 0 �= p ∈ L such that x ≤ p entails x = 0 or x = p.

H2 Covering property: For all atoms p and all elements x if x ∩ p = 0 then
x ≤ y ≤ x ∪ p entails y = x or y = x ∪ p.

Atomism and the covering property are introduced to ensure that every element of
the lattice is a union of atoms. The atoms, whose existence is guaranteed by H1, are
maximally informative propositions. In the classical case they correspond to points
in the phase space (or rather, singleton subsets of phase space); in the quantum case
they correspond to one dimensional subspaces of the Hilbert space.4

H3 Completeness: if S ⊂ L then ∪a∈Sa and ∩a∈Sa exist.
Usually we do not assume such a strong axiom in the classical physical case.

There, the algebra of possible events is the σ -algebra of Lebesgue measurable subsets
of phase space, which is assumed to be closed only under countable unions and
intersections. However, axiom H3 is consistent with the classical physical event
space. It is known that in some models of set theory every set of reals is Lebesgue
measurable [24]. In such models H3 will automatically be satisfied for the Lebesgue
algebra in phase space. This means that no substantial difference between the classical
and quantum case arises from H3.

The one single axiom that separates the quantum from the classical domain is
H4 Irreducibility: If z satisfies for all x ∈ L x = (x ∩ z) ∪ (x ∩ z⊥) then z = 0 or

z = 1.
This last axiom is non-classical in the following sense: there is only one Boolean

algebra which is irreducible, the trivial algebra {0, 1}. In classical physics the set of
events is a large Boolean algebra. In fact, it is totally reducible: for all x and all z we
have x = (x ∩ z) ∪ (x ∩ z⊥).

So consider the case

x �= (x ∩ z) ∪ (x ∩ z⊥) (3)

The intuitive meaning of Eq (3) is that the events x and z are incompatible, that
is, cannot be the outcomes of a single experiment. Thus, axiom H4 is the formal
expression of indeterminacy. Later we shall see how Eq (3) entails a more familiar
uncertainty relation between the probabilities of x and z. For the sake of illustration,



QUANTUM MECHANICS AS A THEORY OF PROBABILITY 219

at this stage, consider the case in which x and z are atoms. One implication of Eq (3)
is that there are non orthogonal atoms. So consider some measurement in which x is
the actual outcome, and the other possible outcomes are x′, x′′,…etc., all orthogonal
to x, so that z is not among them. This means that after the measurement is performed
we gain no knowledge as to whether z is the case or not. This state of affairs would
not be very surprising were it not for the fact that x and z are atomic events; but
in this case it seems to imply that there is no fact of the matter as to whether z is
the case or not. In other words, no certain record about the possible outcome z is
obtainable, in principle, while we perform the x measurement. By “fact” I mean here,
and throughout, a recorded fact, an actual outcome of a measurement. Restricting the
notion of “fact” in this way should not be understood, at this stage, as a metaphysical
thesis about reality. It is simply the concept of “fact” that is analytically related to
our notion of “event”, in the sense that only a recordable event can potentially be the
object of a gamble. Later, in section 4.1 and in the last section we shall come back to
this issue, when we discuss the implications of the theory to the structure of reality.

2.3 Representations and the gap

In the classical case we assume that for all x and z the following holds x = (x ∩ z)∪
(x ∩ z⊥). This makes the lattice L an atomic Boolean algebra. More specifically
(L, 0, 1, ≤, ∩, ∪, ⊥) is isomorphic to the Boolean algebra of the subsets of the set of
all atoms, with the usual Boolean operators, with 1 the set of all atoms and 0 the null
set.

The representation theorem for quantum systems is more complicated, in this case
(L, 0, 1, ≤, ∩, ∪, ⊥) is isomorphic to the lattice of subspaces of a vector space with a
scalar product, more specifically:
1. There is a division ring K (field whose product is not necessarily commutative),

with involutional automorphism ∗ : K → K , that is, for all α,β ∈ K α∗∗ = α,
(α + β)∗ = α∗ + β∗ , (αβ)∗ = β∗α∗.

2. There’s a (left) vector space V over K .
3. There’s a Hermitian form <,>: V × V → K satisfying for all u, v, w ∈ V , and
α,β ∈ K
< αu + βv, w >= α < u, v > +β < v, w >,
< u,αv + βw >=< u, v > α∗+ < u, w > β∗,
< u, v >=< v, u >∗,
< u, u >= 0 if and only if u = 0.
Let X ⊂ V be a subspace, let X ⊥ = {v ∈ V ;< u, v >= 0 ∀u ∈ X } then X ⊥ is also

a subspace. If X = X ⊥⊥ we shall say that X is closed, then we have V = X ⊕X ⊥. The
representation theorem asserts that L is isomorphic to the lattice of closed subspaces
of V , in other words L � {X ⊂ V ; X = X ⊥⊥}. The operation ∩ is just subspace
intersection, and X ∪ Y = (X ⊥ ∩ Y ⊥)⊥.

The proof of this representation theorem has essentially two parts. The first is the
classical representation theorem for projective geometries which goes back to the
middle of the 19th century.5 An irreducible, atomic, complete, lattice with a comple-
mentation ⊥ that satisfies O2, and which is modular (O4*) is a projective geometry.
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The traditional result on the coordinatization of projective geometries yields the field
K and the vector space V over it. Adding the stronger conditions on ⊥, in particular
O4, enabled Birkhoff and von Neumann to derive the inner product structure on V .
Note that so far we have not introduced any explicit physical assumption, or even a
probabilistic assumption, save perhaps the indeterminacy implicit in H4. Neverthe-
less, we see that the principle of superposition (that is, the fact that V is a linear space)
already presents itself.

In both the classical and the quantum cases some additional assumptions are needed
to obtain the actual models. In the quantum case the construction will be completed
if we are able to infer that K = C (the field of complex numbers) on the basis of
a probabilistic or a physically intuitive axiom. At least we would like to force K to
be either the field of real numbers, or the complex numbers, or the quaternions. In
these cases the inner product of a non-zero vector by itself < u, u > is a positive
real number, and Gleason’s theorem describes the probabilistic structure. This is a
gap in the argument which has been closed to a certain extent (in the case of infinite
dimensional Hilbert spaces) by the work of Solèr [27, 28]. It is hoped that a reasonable
more straightforward probabilistic or information theoretic axiom (such as a constraint
on tensor-like products) will close the gap even more tightly.

2.4 Solèr’s axiom and theorem

The best result known in this direction involves a geometric axiom. It is the celebrated
theorem of Maria Pia Solèr which applies in case the lattice is infinite dimensional. The
extra axiom connects a projective geometric concept (harmonic conjugation) to the
orthogonality structure. Recall that a projective geometry is associated with the lattice
in the following way: Every atom is a point every pair of atoms generates a projective
line and every triple of atoms which are not colinear determine a projective plane. Let
x and y be two atoms then the line through them is x∪y. Suppose that z is another atom
on this line, z ≤ x ∪ y, then we construct a fourth point w ≤ x ∪ y on the line which is
called the harmonic conjugate of z relative to x and y -denoted by w = H(z; x, y)- as
follows (Figure 10.1): Let u � x∪y be arbitrary and let v ≤ x∪u, v �= x, u. Denote by

v

u

y

s

t

w z
x

FIGURE 10.1. Harmonic conjugation.



QUANTUM MECHANICS AS A THEORY OF PROBABILITY 221

s = (z ∪ u)∩ (y ∪ v) and t = (x ∪ s)∩ (z ∪ v) then w � H(z; x, y) � (u∪ t)∩ (x ∪y).
The harmonic conjugate is unique (that is, independent of the choice of u and v). It
is a basic construction in projective geometry, closely related to the definitions of the
algebraic operations in the field K (realized as the projective line).

Soler’s axiom may be phrased as follows:
SO If x and y are orthogonal atoms then there is z ≤ x ∪ y such that w = H(z; x, y)

is orthogonal to z. In other words, H(z; x, y) = z⊥ ∩ (x ∪ y).
Intuitively, such a z bisects the angle between x and y, that is, defines

√
2 in the

field K . Soler’s proved

Theorem 1 If L is infinite dimensional and satisfies SO then K is R or C or the qua-
ternions.

In fact she proved a stronger result, assuming only that there is an infinite sequence
of orthogonal atoms {xi}i∈N such that x = xi and y = xi+1 satisfy SO for every
i = 1, 2, . . . The axiom SO may be given a probabilistic interpretation in the spirit
Ramsey as we shall see subsequently.

3 PROBABILITY MEASURES: GLEASON’S THEOREM,

WONDERGRAPH AND SOLÈR’S AXIOM.

3.1 Gleason’s theorem

Assume that the set of possible events (or possible measurement outcomes, or pro-
positions) is the lattice L = L(H) of subspaces of a real or complex Hilbert space
H. For simplicity, we shall concentrate on the finite dimensional case. Our aim is to
tie this structure to probabilities, and by doing so to provide further evidence that the
elements of L can be seen as representing quantum events. Moreover, we shall see
how the traditional features and “paradoxes” of quantum mechanics are expressed
and resolved in the quantum probabilistic language.

First a few words to connect measurements and outcomes in the more traditional
view with the present notations. Here we shall be concerned with measurements that
have a finite set of possible outcomes. Let A be an observable (a Hermitian operator)
with n distinct possible numerical real values (the eigenvalues of A) α1,α2, . . . ,αn.
With each value corresponds an event xi = {A = αi} meaning “the outcome of a
measurement of A is αi” We identify this event with the subspace of H spanned by
the eigenvectors of A having the eigenvalue αi. The events xi are pair-wise orthogonal
elements of L. The sub lattice that x1, x2, . . . , xn generate is a finite Boolean algebra
which we shall denote by B = 〈x1, x2, . . . , xn〉. In case n is the dimension of the space
H each one of the events xi is an atom and the observable A is said to be maximal.

Subsequently we shall identify any observable A with the Boolean algebra
〈x1, x2, . . . , xn〉 generated by its outcomes. Note that this is an unusual identifica-
tion. It means that we equate the observables A and f (A), whenever f is a one-one
function defined on the eigenvalues of A. This step is justified since we are interested
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in outcomes and not their labels, and hence in such a “scale free” concept of observ-
able. (It is like replacing the numbers 1, 2, . . . , 6 on the face of a die by the numbers
2, 3, . . . , 7 respectively.) The converse is also true, with each orthogonal set of ele-
ments x1, x2, . . . , xn of L there corresponds an observable whose eigenspaces include
these elements.

Probability measures which are definable on L were characterized many years
ago in case n = dim H ≥3. Since every set of n orthogonal atoms represents the
outcomes of a possible measurement, and since they are all the possible outcomes we
are motivated to introduce

Definition 1 Suppose that H is of a finite dimension n over the complex or real field.
A real function P defined on the atoms in L is called a state (or alternatively, a
probability function) on H if the following conditions hold

1. P(0) = 0, and P(y) ≥ 0 for every element y ∈ L.
2. If x1, x2, . . . , xn is an orthogonal set of atoms then

∑n
j=1 P(xj) = 1.

The probability of every lattice element y ∈ L is then fixed since it is a union of a
set of orthogonal atoms y = x1 ∪ . . . ∪ xr , so that P(y) = ∑r

j=1 P(xj). A complete
description of the possible states is given by Gleason’s theorem [29]:

Theorem 2 Given a state P on a space of dimension ≥ 3 there is an Hermitian, non

negative operator W on H, whose trace is unity, such that P(x) =< →
x , W

→
x > for

all atoms x ∈ L, where <,> is the inner product, and
→
x is a unit vector along x.

In particular, if some x0 ∈ L satisfies P(x0) = 1 then P(x) =
∣∣∣<

→
x 0,

→
x >

∣∣∣
2

for all

x ∈ L (Born’s rule).

With the obvious conditions on convergence the above definition and theorem gen-
eralize to the infinite dimensional case. The remarkable feature exposed by Gleason’s
theorem is that the event structure dictates the quantum mechanical probability rule.
It is one of the strongest pieces of evidence in support of the claim that the Hilbert
space formalism is just a new kind of probability theory. The quantum structure is
in this sense much more constrained than the classical formalism. The structure of
the phase space of a classical system does not gratly restrict the type of probability
measures that can be defined on it. The probability measures which are actually used
in classical statistical mechanics are introduced mostly by fiat or, in any case, are
very hard to justify.

Gödel [30] said in a different context : “A probable decision about the truth
[of a new axiom] is possible . . . inductively by studying its “success” . Success
here means fruitfulness in consequences in particular “verifiable” consequences, i.e.,
consequences demonstrable without the axiom”. Importing this insight from the math-
ematical domain to the present physical domain we can see how the set of axioms
for the structure, most of which are shared with classical probability, give rise to the
quantum mechanical probabilistic structure which is otherwise left a mystery.
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3.2 Finite gambles and uncertainty

So far we have dealt with the lattice L in its entirety, and with everywhere defined
probability functions. The standard conceptions of Bayesian probability theory make
do, initially at least, of finite probability spaces. A canonical situation handled by
this theory is that of a gamble. In the words of Ramsey: “The old-established way
of measuring a person’s belief” by proposing a bet, and seeing what are the lowest
odds which he will accept, is “fundamentally sound” [4]. Our gambles will likewise
be finite and consist of four steps
1. A single physical system is prepared by a method known to everybody.
2. A finite setMof incompatible measurements, each with a finite number of possible

outcomes, is announced by the bookie. The agent is asked to place bets on the
possible outcomes of each one of them.

3. One of the measurements in the set M is chosen by the bookie and the money
placed on all other measurements is promptly returned to the agent.

4. The chosen measurement is performed and the agent gains or looses in accordance
with his bet on that measurement.
There are two reasons to concentrate on finite gambles of this kind. First, to avoid

over idealization; for it is hard to imagine someone betting on the outcomes of all
possible measurements (perhaps writing an IOU for each one of them). Secondly, and
more importantly, the infinite idealization blurs the important fact that indeterminacy,
and all other “strange” results associated with quantum theory, are fundamentally
combinatorial. The non-classical behavior of the probabilities is already forced by a
finite number of events and the relations among them.

Recall that each measurement is identified with the Boolean algebra generated by
its possible outcomes in L: B = 〈x1, x2, . . . , xm〉 (the xi’s may not be atomic in case
B is not a maximal measurement). So a gamble M is just a set of such algebras
M = {B1, B2, . . . , Bk}. We do not assume that the gambler knows quantum theory.
All she is aware of is the logical structure which consists of these sets of outcomes. In
particular, she recognizes identities, and the cases where the same outcome is shared
by more than one experiment. By acting according to the standards of rationality the
gambler will assign probabilities to the outcomes. To see this, assume that P(x | B)
is the probability assigned by the agent to the outcome x in measurement B, where
B ∈ M and x ∈ B.

RULE 1: For each measurement B ∈ M the function P(· | B) is a probability
distribution on B.

This follows directly from classical probability theory. Recall that after the third
stage in the quantum gamble the agent faces a bet on the outcome of a single meas-
urement. The situation at this stage is essentially the same as a tossing of a coin or a
casting of a die. Hence, the probability values assigned to the possible outcomes of
the chosen measurement should be coherent.

RULE 2: If B1, B2 ∈ M, and y ∈ B1 ∩ B2 then P(y | B1) = P(y | B2).
The rule asserts the non contextuality of probability, discussed in section 2.1.

Suppose that B1 = 〈x1, x2, . . . , xm〉 and B2 = 〈z1, z2, . . . , zr〉 then y ∈ B1 ∩ B2
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implies that (x1 ∩ y)∪ . . .∪ (xm ∩ y) = y = (z1 ∩ y)∪ . . .∪ (zr ∩ y). Rule 2, therefore,
follows from this identity between events, and the principle that identical events in a
probability space have equal probabilities.

To take the discussion closer to the lattice theoretic conception consider finite
subsets of events, � ⊂ L.

Definition 2 Two propositions x and y of � are compatible if x = (x ∩ y)∪ (x ∩ y⊥)
and y = (y ∩ x)∪ (y ∩ x⊥). A state (or probability function) � is a real function P on
� such that

a. P(x) ≥ 0 for all x ∈ �
b. P(x⊥) = 1 − P(x) whenever x, x⊥ ∈ �
c. P(x∪y)+P(x∩y) = P(x)+P(y) whenever x and y are compatible and x, y ∈ �.

Such probability functions defined over finite subsets of events in the lattice are the
subject of our study. Note that we do not put any requirements on such P’s apart from
the three conditions a, b, c, in the definition. In particular, probability functions on �
are not constrained to be induced by quantum mechanical states. The relation between
this definition and the gambles introduced previously is clear. Given any gamble M
as above the set of events is � = B1 ∪ B2 ∪ . . .∪ Bk ⊂ L. Every probability function
which follows RULE 1 and RULE 2 satisfy the conditions a, b, c, in definition 2.

As a simple example which demonstrates an uncertainty relation consider the fol-
lowing quantum gamble M consisting of seven incompatible measurements (Boolean
algebras), each generated by its three possible atomic outcomes:

〈x1, x2, y2〉 , 〈x1, x3, y3〉 , 〈x2, x4, x6〉 , 〈x3, x5, x7〉 ,

〈x6, x7, y〉 , 〈x4, x8, y4〉 , 〈x5, x8, y5〉

Note that some of the outcomes are shared by two measurements, these are denoted
by the letter x. The other outcomes each belong to a single algebra, and are denoted
by a y. The orthogonality relations among the generators are depicted in the ortho-
gonality graph in Figure 10.2, which is a part of Kochen and Specker’s famous “cat’s
cradle”[31]. Each node in the graph represents an outcome, two nodes are connected
by an edge if, and only if the corresponding outcomes belong to a common Boolean
algebra (measurement); each triangle represents the generators of one of the Boolean
algebras.

The probabilities of each triple of outcomes of each measurement should sum to 1,
for example, P(x4)+P(x8)+P(y4) = 1. There are altogether seven equations of this
kind. Combining them with the fact that probability is non-negative it is easy to prove
that the probabilities assigned by our rational agent should satisfy P(x1)+P(x8) ≤ 3

2
[15]. This is an example of an uncertainty relation, a constraint on the probabilities
assigned to the outcomes of incompatible measurements. In particular, if the system
is prepared in such a way that it is rational to assign P(x1) = 1 then the rules of
quantum gambles force P(x8) ≤ 1

2 .
This result is a special case of a more general principle given by [32, 33].
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FIGURE 10.2. Cat’s cradle.

Theorem 3 (logical indeterminacy principle) Assuming dim H ≥ 3, let x and y be
two incompatible atoms in the lattice L = L(H), that is, x �= (x ∩ y) ∪ (x ∩ y⊥).
Then there is a finite set � ⊂ L(H) with x, y ∈ � such that every state P on �
satisfies P(x) + P(y) < 2. In fact we have more: P(x), P(y) ∈ {0, 1} if and only if
P(x) = P(y) = 0.

This theorem explains the sense in which axiom H4-the axiom of irreducibility-
expresses indeterminacy. This axiom asserts that for every non trivial x there is a y
such that x �= (x∩y)∪(x∩y⊥). By the logical indeterminacy principle the probability
value of at least one of the events x or y must be strictly between zero and one, unless
they both have probability zero. Moreover, this fact is already forced by the relation
between x, y and finitely many other events. Remember also that H4 is the only axiom
(except SO) that distinguishes between the classical and quantum structures.

3.3 Wondergraph

The previous theorem is typical in the sense that all features of quantum probability,
even the quantitative features, can be forced by the logical relations among finitely
many events. This follows from a construction of a particular finite set of atoms in
R

3 which, together with the orthogonality relations among its elements will be called
the Wondergraph.

Let us introduce first the notion of a frame function which generalizes the concept
of a state.

Definition 3 Let� ⊆ L(H) be a set of atoms of L(H)where dim H = n. A frame func-
tion on � is a real function f on � such that all orthogonal sets of atoms x1, x2, . . . , xn

in � satisfy
∑n

j=1 f (xj) = C; where C is a constant.

Consider the case of R
3 the smallest space to which Gleason’s theorem applies.

Let −→e1 = (1, 0, 0), −→e2 = (0, 1, 0) and −→e3 = (0, 0, 1) be the standard basis in R
3

and
−→
bij = 1√

2
(−→ei + −→ej ), 1 ≤ i < j ≤ 3. Denote by ei and bij the one dimensional

subspaces along these vectors. The following theorem turns out to be equivalent to
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Gleason’s theorem [33]:

Theorem 4 (Wondergraph theorem) For every atom z ∈ L(R3) there is a finite set
of atoms�(z) ⊂ L(R3) such that ei, bij , z ∈ �(z) and such that every frame function
f on �(z) which satisfies f (ei) = f (bij) = 0, and |f (x)| ≤ 1 for all x ∈ �(z)
necessarily also satisfies |f (z)| ≤ 1

2 . Moreover, |�(z)|, the number of elements of
�(z), is the same for all z.

Note that the condition f (ei) = 0, 1 ≤ i ≤ 3 for the frame function f on �(z)
entails that f (x) + f (x′) + f (x′′) = 0 for all orthogonal triples x, x′, x′′ ∈ �(z). To
see why Wondergraph theorem entails Gleason’s theorem consider first

Lemma 5 Gleason’s theorem for R
3 is true if and only if every bounded frame func-

tion f defined on the atoms of L(R3) which satisfies f (ei) = f (bij) = 0 is identically
zero.

The proof of the lemma is straightforward. It follows from the fact that the quadric
form

〈−→x , A−→x 〉 induced by a self adjoint operator A on R
3 is uniquely determined by

the six numbers
〈−→ei , A−→ei

〉
,
〈−→
bij , A

−→
bij

〉
. Now, to see how Gleason’s theorem follows

from Wondergraph let f be a bounded frame function defined on the atoms of L(R3)

which satisfies f (ei) = f (bij) = 0. Normalize f so that |f (x)| ≤ 1 for all x. Take
z to be arbitrary, then the restriction of f to �(z) is a frame function on �(z) and
therefore |f (z)| ≤ 1

2 . Suppose the atoms of �(z) are x1, . . . , xs and consider the set
�1(z) = ⋃s

j=1�(xj). The restriction of f to �1(z) is a frame function on each one

of the�(xj)’s. Hence,
∣∣f (xj)

∣∣ ≤ 1
2 for all xj ∈ �(z) and therefore |f (z)| ≤ 1

4 . Iterating
this process we get that |f (z)| becomes as small as we wish. Since z is arbitrary the
theorem follows. Gleason’s theorem for any Hilbert space follows from the case of
R

3, as Gleason himself showed. Another way to extend the theorem from R
3 to higher

real or complex dimensions is to construct Wondergraphs in every (finite) dimension;
which can be done once the three dimensional real case is given.

The proof that Gleason’s theorem entails the existence of Wondergraph is based on
model theory. As a part of the proof one also concludes that there is a known algorithm
to construct Wondergraph. The setback is that this algorithm runs very slowly (it is,
in fact, the decision algorithm for the theory of real closed fields, which in the worst
case runs in doubly exponential time). Thus we pose a

Problem 1 Construct Wondergraph explicitly.

Wondergraph allows one to reduce all the interesting quantum phenomena to
relations among finitely many events. This follows from:

Corollary 6 Given a finite set of atomic events �0 and a real number ε > 0 there is
a finite set of atoms � such that



QUANTUM MECHANICS AS A THEORY OF PROBABILITY 227

a. �0 ⊂ �, the number of elements |�| of � depends on ε and on |�0| but not on
the elements of �0.

b. If P is a state on � then there is a quantum state W (non negative Hermitian
operator with trace 1) such that

∣∣∣P(x)− <
→
x , W

→
x >

∣∣∣ < ε for all x ∈ �0

c. There is an algorithm to generate � given �0 and ε.
For many of the famous “paradoxes” of quantum mechanics explicit constructions

of the required finite set � exist [15, 32, 33]. These include the EPR-Bell argument,
the Kochen and Specker theorem, and also generalizations of Kochen and Specker to
any given finite number of colors.

On a more fundamental level the importance of these results lies in the way prob-
abilities are associated with L, the algebra of all the possible outcomes of all possible
measurements. Remember that in the epistemic conception of probability a “funda-
mentally sound” method of measuring a person’s belief is “by proposing a bet and
seeing what are the lowest odds he will accept” . In order to fit the infinite structure L
into this view of probability (or any other of the standard Bayesian accounts) we con-
sider only finite segments of L and the probability functions definable on them. These
are the quantum gambles considered above. They are the equivalents of classical
gambles with dice, roulettes and cards. Some real experiments involve arrangements
which are like our gambles: A laboratory device is prepared in such a way that it
can perform either one of a few incompatible measurements. Then, the experiment
which is actually performed is chosen at random. This gives quantum probability an
“operational” flavour and, hopefully removes some of the mystery connected with it,
typically expressed by words like “interference” and “superposition”.

Another way to see this point is to think about the classical propositional calcu-
lus. The Lindenbaum-Tarski algebra on countably many generators gives us all the
expressive power we need as far as the propositional connectives are concerned. How-
ever, in practice we interpret (assign truth values) only to finite subsets. By analogy, if
we take L as representing a “syntax” encompassing symbols for all possible outcomes
of all possible measurements, then the “semantics” is the assignment of probability
values to finite sections of L. Gleason’s theorem, in its Wondergraph version, implies
that this “semantics” is, in fact, complete:

Corollary 7 (Completeness) Suppose that an agent assigns probability values P(x)
to the elements x of a finite �0 ⊂ L, in a way that contradicts all possible quantum
assignments. Then there is a finite � ⊃ �0, such that P cannot be extended from �0

to �. Hence, in a larger gamble the agent can be shown to be irrational.

3.4 Solèr’s axiom revisited

Let us return to our axiomatic system and the axiom that closes the gap. Recall
that Solèr’s axiom asserts that for every pair of orthogonal atoms x and y there is
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another atom z in the plane they span, which bisects the angle between x and y.
More formally: H(z; x, y), the harmonic conjugate of z with respect to x and y, is
orthogonal to z.

Assume that L is infinite dimensional. In this case Solèr’s theorem, when coupled
with Gleason’s theorem, implies that for any (globally defined) state P on L and
atoms x, y ∈ L, if P(x) = 1 and P(y) = 0 then necessarily x⊥y, and there is an atom
z ≤ x ∪ y such that P(z) = 1

2 . In other words, there is a precise interpolation between
probabilities zero and one.

The axiomatic systems of Bayesian probability theory typically include axioms
which imply interpolation of probability values. The most famous (or infamous) one
is Ramsey’s axiom on the existence of an “ethically neutral” proposition whose prob-
ability is one half (axiom 1 in Ramsey’s system [4]). The axiom allows Ramsey to
construct his theory of utilities (or “values”, in his terminology). Savage [5], who
wanted to avoid notions like “ethical neutrality”, nevertheless also needs an inter-
polation principle for probabilities, and assumes the existence of arbitrarily refined
partitions. This implies that one can obtain propositions with probabilities arbitrarily
close to any rational in the interval [0, 1].

I propose to read Solèr’s axiom as a probability interpolation axiom; or at any rate to
reformulate or replace it by a direct axiom about probabilities. This, however, cannot
be straightforward. We are not even guaranteed that a globally defined state exists on L
in the first place. However, we can use the fact that certain finite orthogonality graphs
such as� of theorem 3 force any state defined on them to interpolate probability values
between zero and one. This is our logical indeterminacy principle which expresses
probabilistically the basic principle that differentiates the quantum event structure
from the classical one. Now, we can turn the tables and assert axiomatically that
orthogonality relations like those in � are realizable in L. This assertion indirectly
expresses the indeterminacy relations in their probabilistic sense. Here, for example,
is how this can be done:

Consider L(R3) and the rays x, z through the vectors:−→x = (1, 0, 0), and −→z =
(1, 1, 0) respectively. Let � = �(x, z) ⊂ L(R3) be the finite subset of rays guaranteed
in theorem 3 (and explicitly constructed in [31, 32]). This means that if P is a state
on � with P(x) = 1 then 0 < P(z) < 1. Now, consider the rays in � and their
orthogonality relations abstractly, that is, as a graph, which we shall also denote �.
A candidate to replace Solèr’s axiom can then be formulated as :

SO∗ Let x, y, x′ ∈ L be three orthogonal atoms then there is z ≤ x ∪ y, such that
the graph �(x, z) is realizable in x ∪ y ∪ x′.

There is a way to construct the graph � which will make SO∗ obviously stronger
than the original SO. To do this simply add to � the rays (and orthogonality rela-
tions) which force the relation H(z; x, y) ⊥ z. In the notations of section 2.4, this
means adding rays u, v, s, t and also the rays which, in the space x ∪ y ∪ x′, are
orthogonal to the planes x ∪ u, z ∪ u, y ∪ v, x ∪ s, z ∪ v, u ∪ t . But this is
cheating, all it shows is that there is a finite graph that forces Solèr’s axiom sim-
ultaneously with uncertainty. In order to make the axiom more acceptable one has to
solve
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Problem 2 Find the minimal � that forces logical indeterminacy and that allows the
proof of Solèr’s theorem (and even, perhaps, improves it to include finite dimensional
cases).

Another possible candidate—analogous to Savage’s axiom on the existence of
arbitrarily fine partitions—is the following:

SO∗∗ Let z ∈ L; then the Wondergraph�(z) is realizable in any three dimensional
subspace of L that includes z.

The restriction of the graphs we have used to those realizable in R
3 is not essential.

It may very well be that a more natural candidate for our � or � exists, e.g., in C
4.

4 PROBABILITY: RANGE AND CLASSICAL LIMIT

We turn now to the explanatory power of our analysis. The “logic of partial belief”
provides straightforward probabilistic, or even combinatorial derivations of a variety
of phenomena for which alternative approaches require complicated ad-hoc dynam-
ical explanations. We shall consider two central examples: the first is the EPR paradox
and the violation of Bell inequality, and the second is the measurement problem.
In particular, we shall discuss the way macroscopic objects can be handled in this
framework.

4.1 Bell inequalities

The phenomenological difference between classical and quantum probability is most
dramatic when quantum correlations associated with entangled states are concerned.
Let us recall what the classical probabilistic analysis of the situation is: A pair of
objects is sent from the source, one in Alice’s direction, one in Bob’s direction. Alice
can perform either one of two measurements on her object; she can decide to detect the
event x1 or its absence (which means detecting the event x⊥

1 ). Alternatively, she can
decide to check the event x2 or x⊥

2 . So each of these measurements has two possible
outcomes. Similarly, Bob can test for y1 or use a different test to detect y2. Assuming
nothing about the physics of the situation, and just considering the outcomes we get
the following possible logical combinations expressed in the truth table:

x1 x2 y1 y2 x1 ∩ y1 x1 ∩ y2 x2 ∩ y1 x2 ∩ y2

0 0 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

1 1 0 1 0 1 0 1
. . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 1 1 1 1 1

It is the truth table of four propositional variables x1, x2, y1, y2 and four (out of
the six) pair conjunctions, so it has 16 rows, three of them shown explicitly. Each
row represents a possible state of affairs regarding the possible outcomes where 1
indicates that the event occurs. Now, suppose that we were to bet on the outcomes.
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FIGURE 10.3. Correlation polytope.

There are, of course many ways to do this, but they all have to conform with the
canons of rationality. The only constraint here is that each one of the 16 possibilities
will be assigned a non-negative probability, and the sum of these probabilities be 1.
To give this fact a geometric interpretation consider each one of the 16 rows in the
truth table as a vector in an 8 dimensional real space, then the vector of probabilities
(writing xiyj for xi ∩ yj)

P = (P(x1), P(x2), P(y1), P(y2), P(x1y1), P(x1y2), P(x2y1), P(x2y2))

lies in the convex hull of these 16 vectors, which is a correlation polytope in R
8 with

the 16 truth values as vertices shown schematically in Figure 10.3.
The facets of the polytope, are given by linear inequalities in the probabilities, in

this case the non-trivial inequalities have the form

−1 ≤ P(x1y1)+ P(x1y2)+ P(x2y2)− P(x2y1)− P(x1)− P(y2) ≤ 0
(4)

They are called Clauser-Horne inequalities6, they are among what is generally known
as Bell inequalities. Remarkably, in the mid nineteenth century George Boole con-
sidered the most general form of the constraints on the values of probabilities of events
that can be derived from the logical relations among them. He proved that these con-
straints have the form of linear inequalities in the probabilities. Paraphrasing Kant he
called such constraints Conditions of Possible Experience7.

So far we have been concentrating on the classical picture. What is the quantum
mechanical analysis? Again, we shall make no physical assumptions beyond those
which are given by the axioms of the event structure. With the two particles we
associate a Hilbert space of the form H ⊗ H , where in case the objects are spin- 1

2
particles, dim H = 2. The relevant lattice is thus L = L(H ⊗ H ). The element of
L corresponding to the event x1 is a two dimensional subspace of the form a1 ⊗ 1
where a1 ∈ L(H ) and 1 is the unit in L(H ). Similarly, the event corresponding to
the outcome y1 on Bob’s side is 1 ⊗ b1, and likewise for the other cases. The event
corresponding to the measurement of x1 on Alice’s side and y1 on Bob’s side is just
the intersection:

(a1 ⊗ 1) ∩ (1 ⊗ b1) = a1 ⊗ b1
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Note also that ai ⊗ 1, and 1 ⊗ bj are compatible. Now, to the eight outcomes

a1 ⊗ 1, a2 ⊗ 1, 1 ⊗ b1, 1 ⊗ b2, a1 ⊗ b1, a1 ⊗ b2, a2 ⊗ b1, a2 ⊗ b2,

correspond an 8 dimensional vectors of probability values

P = (P(a1 ⊗ 1), P(a2 ⊗ 1), P(1 ⊗ b1), P(1 ⊗ b2), P(a1 ⊗ b1),

P(a1 ⊗ b2), P(a2 ⊗ b1), P(a2 ⊗ b2)),

where P is any probability assignment to the elements of L(H ⊗ H ). When we vary
P and the subspaces ai, bj , we see that the quantum range is larger than the classical
one, and some points lie outside the classical polytope (Figure 10.3), that is, they
violate one of the facet inequalities of Clauser and Horne.

From the point of view developed so far this consequence is natural and follows
from the event structure of quantum mechanics via Gleason’s theorem. We also know
from corollary 10 that a violation of a Clauser-Horne inequality can already be depic-
ted in a finite gamble (an explicit construction can be found in [15]). Altogether, in
our approach there is no problem with locality and the analysis remains intact no
matter what the kinematic or the dynamic situation is; the violation of the inequality
is a purely probabilistic effect. Notice that we are just using the quantum event space
notion of intersection between (compatible) outcomes: (a1 ⊗1)∩ (1⊗b1) = a1 ⊗b1,
as we have used the intersection in the classical event space. The derivation of
Clauser-Horne inequalities, indeed of many of Boole’s conditions, is blocked since
it is based on the Boolean view of probabilities as weighted averages of truth values.
This, in turn, involves the metaphysical assumption that there is, simultaneously,
a matter of fact concerning the truth values of incompatible propositions such as
x1 = a1 ⊗ 1 and x2 = a2 ⊗ 1.

Recall that in section 2.2 we restricted “matters of fact” to include only observable
records. Our notion of “fact” is analytically related to that of “event” in the sense
that a bet can be placed on x1 only if its occurrence, or failure to occur, can be
unambiguously recorded. However, this leaves open a metaphysical question: Given
that x1 occurred, what is the status of x2 for which no observable record can exist?
Our axioms are not designed to rule out the possibility that x2 has a truth value which
we do not know. Initially our approach was agnostic with respect to facts which
leave no trace. However, as the above analysis shows, assigning truth values to x2

and x1 simultaneously is untenable. In other words, it is prohibited by the axioms
a posteriori.8 I believe that Bohr deserves the credit for this insight, although his
arguments fall short of establishing it.

We should also recall that there are alternatives to quantum mechanics in which
the violations of the Clauser-Horne inequalities have non-local dynamical origins.
However, from our perspective the commotion about locality can only come from
one who sincerely believes that Boole’s conditions are really conditions of possible
experience. Since these conditions are just properties of the classical intersection of
events, their violation must indicate that something is not kosher with the measure-
ments, that is, the choice of a measurement on one side may be correlated with the
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outcome on the other. But if one accepts that one is simply dealing with a different
notion of probability, then all space-time considerations become irrelevant.

4.2 The BIG measurement problem, the small one,
and the classical limit

There are two “measurement problems” The BIG problem, which is illusory, and the
small problem which is real and concerns the quantum mechanics of macroscopic
systems. The BIG problem concerns those who believe that the quantum state is a
real physical state which obeys Schrödinger’s equation in all circumstances. In this
picture a physical state in which my desk is in a superposition of being in Chicago and
in Jerusalem is a real possibility; and similarly a superposed alive-dead cat. In fact
the linearity of Schrödinger’s equation implies that (decoherence notwithstanding)
it is easy to produce states of macroscopic objects in superposition, which seems to
contradict our experience, and sometimes, as in the cat case, does not even make
much sense.

In our scheme quantum states are just assignments of probabilities to possible
events, that is, possible measurement outcomes. This means that the updating of
the probabilities during a measurement follows the Von Neumann-Lüders projection
postulate and not Schrödinger’s dynamics. Indeed, the projection postulate is just the
formula for conditional probability that follows from Gleason’s theorem. So the BIG
measurement problem does not arise. In particular, the cat in the Schrödinger thought
experiment is not superposed, but is rather cast in the unlikely role of a particle spin
detector. Schrödinger’s equation governs the dynamics between measurements; it
dictates the way probability assignments should change over time in the absence of
a measurement. The general shape of the Schrödinger’s equation is not a mystery
either; the unitarity of the dynamics follows from the structure of L(H) via a the-
orem of Wigner [39], in its lattice theoretic form [40]. However, these remarks do
not completely eliminate the measurement problem because in our scheme quantum
mechanics is also applicable to macroscopic objects.

So suppose that x is one of the rays in the cat’s Hilbert space corresponding to a
living cat. Let y be one of the atoms corresponding to a dead cat so that x⊥y. By
Solèr’s axiom there is an atom z ≤ x ∪ y which bisects the angle between x and y.
Does this mean that we are back with the BIG measurement problem? The answer
is ‘No’; remember that z is not a state of the system, it is a possible measurement
outcome. It is a mistake to think that by merely following Schrödinger’s experiment
we are “observing” the event z, or something like it. Obviously we are not, we either
see an x-like event, a live cat, or a y-like dead cat event. In order to “see” z we have to
devise and perform a measurement such that z is one of its eigenspaces. For reasons
that will be explained below, with all probability this is impossible.

But even agreeing that performing such a measurement is impossible, we can
surely think about operators for which z is an eigenspace, say the projection on z. So
let us imagine what one will see when one performs this measurement; what does the
event z look like? Presumably, the imagined measuring device is a huge piece of very
complicated equipment, because in all likelihood the measurement of the projection
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on z involves manipulating individual cat particles. In the end, however, there is a
dial with two possible readings 0 and 1, and z is just the event that the dial reads 1.
By Lüders’ rule the state of the cat after the measurement—assuming that z was the
outcome—is the projection on z. The quantum state is not a physical object, it is a
representation of our state of knowledge, or belief. The projection on z represents
an extremely complex assignment of probabilities to all possible events in a Hilbert
space of �1025 particles, an intractable business. One thing is clear, though, there
is complete uncertainty about the cat being dead or alive P(x) = P(y) = 1

2 , and of
course P(x ∪ y) = 1.

Ignorance aside, is it not the case that now, after the measurement, there is a matter
of fact about the cat being dead or alive? Well, No! As in all such circumstances
we cannot say that there is a fact regarding this matter. It is impossible in principle
to obtain a record concerning the cat being alive or dead simultaneously with the
z-measurement. There is no fundamental difference between the present case and
EPR, meaning that we cannot consistently maintain that the proposition “ the cat is
alive” has a truth value. But the devil is in the details; there is no way to tell from our
completely schematic description what is going on in the laboratory. Consequently,
there is no way to tell what is the biological state of the cat. It is only after we have
mastered the details of the measuring process that we can understand the exact sense
in which no record of x or of y is obtainable.

4.3 The weak entanglement conjecture

The small measurement problem is the question why we do not routinely observe
events like z for macroscopic objects. More precisely why is it hard to observe mac-
roscopic entanglement, and what are the conditions in which it might be possible? One
answer which is certainly valid is decoherence—meaning that it is extremely hard to
isolate large pieces of matter and equipment from environmental noise. Decoherence
is a dynamical process and its exact character depends on the physics of the situation.
I would like to point a possible more fundamental, purely combinatorial reason which
is an outcome of the probabilistic structure: The entanglement of an average ray in
a multiparticle Hilbert space is very weak. To make this intuition precise we have to
quantify entanglement, and define what we mean by “average ray”.

To make the discussion simpler we shall concentrate on qbits. So our Hilbert space
is composed of n copies of the two dimensional complex Hilbert space Hn= C

2 ⊗
C

2 ⊗· · ·⊗ C
2, and dim Hn = 2n. An atom s ∈ L(Hn) is called separable if it has the

form s = x1 ⊗ x2 ⊗ · · · ⊗ xn with xi ∈ L(C2), otherwise an atom is called entangled.
Also, we shall call the projections on separable (entangled) rays, separable (entangled,
respectively) pure states. We keep the letter s to designate separable atoms, and denote
by S ⊂ L(Hn) the set of all separable atoms. As usual if x ∈ L(Hn) is a ray (atom),
we shall denote by −→x a unit vector along it.

Now, suppose that we want to observe an entangled atom x. More precisely, we
want to obtain a positive proof that it is indeed entangled. To do this we have to design
a measurement that will distinguish the ray x from all the separable atoms s ∈ S. A
Hermitian operator that does this always exists, and will be called an entanglement
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witness for x, or in short, a witness. The normalization of witnesses is a matter of
convention and for our purpose we shall use the following:

Definition 4 An Hermitian operator W on Hn= C
2 ⊗ C

2 ⊗ · · · ⊗ C
2 (n copies) is

called an entanglement witness if it satisfies

sup{∣∣〈−→s , W−→s 〉∣∣ ; s ∈ S} = 1

while

‖W‖ = sup{∣∣〈−→x , W−→x 〉∣∣ ; x ∈ L(Hn)} > 1.

So a witness is an observable whose expectation on every separable state is bounded
between −1 and 1, while it has an eigenvalue that is larger than 1 in absolute value.
Any one-dimensional eigenspace x corresponding to this eigenvalue is obviously
entangled. Denote by Wn the set of all entanglement witnesses on Hn. One way to
estimate how much a given x ∈ L(Hn) is entangled is to calculate

E(x) = sup{∣∣〈−→x , W−→x 〉∣∣ ; W ∈ Wn} (5)

A witness W at which the value E(x) obtains is the best witness for the entanglement of
x. If we allow that every measurement involves errors then the larger E(x) is, the more
likely we are to actually observe it. The good news is that there are rays x ∈ L(Hn)

such that E(x) = √
2n. These correspond to the the maximally entangled states, the

so-called generalized GHZ states9. However, it seems that such rays become more
and more rare as n increases. To formulate this intuition precisely, let µn be the
normalized uniform (Lebesgue) measure on the unit sphere of Hn. Then we

Conjecture 1 There is a universal constant C > 0 such that

µn

{−→x ; E(x) > C
√

n log n
}

→ 0 as n → ∞ (6)

A similar result has been established for a large family of witnesses that for each n
contains 22n

witnesses, and which include those that give the best estimation for the
GHZ states [44]; hence the conjecture.

I think the conjecture, if true, concerns our ability to observe macroscopic entan-
glement. There are two types of macroscopic or mesoscopic rays whose entanglement
might be witnessed, and the conjecture concerns the second case:
1. There may be relatively rare cases in which the entanglement witness happens to

be a thermodynamic observable, that is, an observable whose measurement does
not require manipulation of individual particles but only the observation of some
global property of the system. There are some indications that this may be the case
for some spin chains and lattices [45].

2. Cases of very strong entanglement, like GHZ, which do require many manipula-
tions of individual particles to be observed; however, the value of E(x) is large
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enough to give significant results that rise above the measurement errors. If we
assume that the measurement errors are independent, then the total expected error
grows exponentially with the number of particles that are manipulated. So, in
general, one expects that only x’s for which E(x) is exponential in the number of
manipulated particles could yield a significant outcome. The conjecture proposes
that the proportion of such x ’s is low.

To sum up: the answer to the question “why don’t I see chairs in superposition”
is twofold, decoherence surely, but even if we could turn it off, there is the com-
binatorial possibility that “seeing” something like this is nearly impossible. All
this, luckily, does not prevent the existence of exotic macroscopic superpositions
that can be recorded.

5 MEASUREMENTS

In this paper, all we have discussed is the Hilbert space formalism. I have argued that
it is a new kind of probability theory that is quite devoid of physical content, save
perhaps the indeterminacy principle which is built into axiom H4. Within this formal
context there is no explication of what a measurement is, only the identification of
“observables” as Hermitian operators. In this respect the Hilbert space formalism is
really just a syntax which represents the set of all possible outcomes, of all possible
measurements. It is analogous to the mathematical concept of a probability space, in
which certain subsets are identified as events. However, the mathematical theory of
probability itself does not tell us the nature of the connection between these formal
creatures and real events in the world.

But even before a connection is made between the formal and physical sense of
measurement I think there is an interesting philosophical problem here. Our formalism
seems to be consistent: there is a possible world where measurements and their out-
comes behave in the way described above. This would not have been a serious problem
if the classical theory of probability were not conceived as a priori in some sense. But
the theory of probability is a part of what we take as our theory of inference, hence the
term ‘logic of partial belief’. As such it is also a ground for the formation of rational
expectations. Therefore, the fact that there is a consistent alternative poses a problem
similar to the problem that non-Euclidean geometry raised even before general relativ-
ity. What should we make of a world in which Boole’s conditions of possible experi-
ence are violated for no reason other than the structure of probabilities described here?

What is real in the quantum world? Firstly, there are objects—particles about
which the theory speaks—which are identified by a set of parameters that involve
no uncertainty, and can be recorded in all circumstances and thus persist through
time and context [46]. Among them are the rest mass, electric charge, baryonic
number, etc. The other part of quantum reality consists of events, that is, recordings
of measurements in a very broad sense of the word. Now, one has to distinguish
between measurements on the one hand and interactions between material objects
on the other. The latter are best described in the Heisenberg picture: There is a time
dependent interaction Hamiltonian H (t) which, like any other observable, defines
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at every moment t a set of possible outcomes, one of the outcomes would obtain if
H (t) were measured. If, in addition, we have formed a belief about the state of the
system at time t = 0 (as a result of a previous measurement, say) we automatically
have a probability distribution over the set of all possible outcomes of all possible
measurements at each t. So each interaction constrains the set of possible outcomes in
a certain specific way, and the question which interactions can actually be executed is
an empirical question, to be tested by observing the outcomes and their distributions.
Measurements are not interactions in this sense; although in the broad description of
an experiment there is usually an interaction leading to the measurement.

It is impossible to give a precise definition of all the physical processes that deserve
the name measurement; just as it is not possible to define the term event to which the
theory of probability can be applied. Even a non-contextual definition of a singular
concrete measurement is hard to provide; in this sense measurement outcomes are
events “under a description”, as philosophers say. Broadly speaking, a measurement
is a process in which a material system M , prepared in a specific way, records some
aspect of another system S, a recording that effects a permanent change in M , or at
least one that lasts long enough. The outcomes to which we have referred throughout
the paper are such recordings. Probably the best way to describe measurements is in
informational terms. The information recorded by a measurement is systematic in the
sense that a repeated conjunction of M and S yields the same set of results, and the
frequency distribution over the set of results stabilizes in the long run. Of the same
importance is the information that is lost during a measurement, the outcome that we
could have obtained if any other measurement M ′ were performed instead of M [47].

This description is broad enough to include the change that photons imprint on the
receptors of the retina; it also includes the change caused by a proton hitting a rock on
the dark side of the moon. There is nothing specifically human about measurements,
nor does M have to be associated with a macroscopic system. What constitutes a
“measuring device” cannot be determined beyond this broad description. However,
there is a structure to the set of events. Not only does each and every type of meas-
urement yield a systematic outcome; but also the set of all possible outcomes of all
measurements—including those that have been realized by an actual recording—hang
together tightly in the structure of L(H). This is the quantum mechanical structure of
reality.
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NOTES

1 This position has been expressed often by Feynman [6, 7] . For more references, and an analysis of this
point see [8].

2 The terminology was introduced in [14]. See also [15], and the criticism by Stairs [16]. In case no
commitment is made regarding the lattice of subspaces as an event structure, the non contextuality of
probability requires a special justification. For example, in the many worlds interpretation [17, 18].

3 The strong operational approach of Finkelstein [20], and Putnam [21] regarding the logical connectives
is -in the most charitable interpretation- a hidden variables theory in disguise, see [22].

4 At a later stage von Neumann gave up the atomicity assumption. The reason has to do with the absence
of a uniform probability distribution over the closed subspaces of an infinite dimensional Hilbert space.
The non-atomic structures that resulted are his famous continuous geometries, see [23].

5 By Möbius and von Staudt. For the standard geometric construction see [25]. A modern account which
stresses the algebraic aspects is in Artin’s classic [26].

6 The inequalities were derived in [34]. The sufficiency of the inequalities is due to Fine [35]. The
polyhedral structure, its relation to logic, and its generalizations are discussed in [22, 36].

7 In [37], see also [8]. The parody of Kant is intended, I think. In his classic The Laws of Thought
Boole writes: “Now what has been said,…, is equally applicable to many other of the debated points
in philosophy; such, for instance, as the external reality of space and time. We have no warrant for
resolving these into mere forms of the understanding, though they unquestionably determine the present
sphere of our knowledge” ([38], page 418, my emphasis). So, in the end the joke is on Boole.

8 This also follows from the logical indeterminacy principle (theorem 3) or the (weaker) Kochen and
Specker’s theorem [33].

9 See Mermin [41]. The witnesses that provide the maximum value have a close relation to the facets of
the correlation polytope for this case, see [42, 43].
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11. JOHN VON NEUMANN ON
QUANTUM CORRELATIONS

ABSTRACT

In an (unpublished) letter by von Neumann to Schrödinger (dated April 11, 1936)
von Neumann replies to Schrödinger’s two famous 1935 papers, in which the notion
of entanglement between spatially separated quantum systems is introduced and the
probabilistic correlations arising from entanglement is discussed from the perspective
of a possible clash between quantum mechanics and the principle of physical locality.
By quoting extensively from von Neumann’s letter it will be seen that von Neumann
position concerning such correlations is that they are unproblematic as long as (i) one
can (at least in principle) assume that the correlations are explainable by common
causes, or (ii) probabilities are interpreted subjectively. It will be argued that while a
subjective interpretation of quantum probabilities is difficult to accept in a quantum
context, a common cause type explanation of quantum correlations might be possible
under a suitable specification of common cause.

1 THE HISTORICAL CONTEXT

In 1935 Einstein, B. Podolsky and N. Rosen published the famous “EPR paper” [1].
The paper’s aim was to prove that one should consider the quantum mechanical
description of physical reality incomplete – provided that one accepts the principle
of locality: that the physical state of a subsystem S1 of a joint system (S1 + S2)

cannot be changed instantaneously by performing a measurement on subsystem S2

spatially separated from subsystem S1. The discussions between Einstein, Rosen
and Podolsky that led to the EPR paper were taking place in Einstein’s office at the
Institute for Advanced Study in Princeton in the spring of 1935 [2]. Von Neumann
was Einstein’s colleague at the Institute for Advanced Study and, given that the EPR
paper concerned the completeness of quantum mechanics, in which von Neumann
was very much interested (it is well known that he discussed completeness of quantum
mechanics at length in his book [3], concluding, on the basis of the famous “no-hidden
variable proof”, that quantum mechanics is complete), one would expect that Einstein
and von Neumann exchanged ideas on this issue. Surprisingly, this does not seem to
be the case; to be more precise: the only record I know of that indicates an exchange
between von Neuman and Einstein on this subject is von Neumann’s unpublished
letter to Schrödinger (April 11, 1936). This hand written letter is in the Archive for
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the History of Quantum Mechanics and it will be published in full in [4]. The letter
starts with this sentence:

Einstein has kindly shown me your letter as well as a copy of the
Pr.Cambr.Phil.Soc. manuscript. I feel rather more over-quoted than
under-quoted and I feel that my merits in the subject are over-emphasized.
(Von Neumann to Schrödinger, April 11, 1936), [5]

So Einstein did talk to von Neumann about quantum mechanics after all and tried to
raise von Neumann’s interest in Schrödinger’s paper: “Probability relations between
separated systems”, Proceedings of the Cambridge Philosophical Society, 32 (1936)
446–452, [6]. This paper is the second of the two famous papers Schrödinger wrote
in 1935 [7] and [6]. We know that Einstein and Schrödinger corresponded about
the EPR paper in the summer of 1935. Schrödinger’s above mentioned two papers
were motivated by the EPR paper and by his correspondence with Einstein. Von
Neumann’s letter to Schrödinger (April 11, 1936) is a direct reply to Schrödinger’s
second paper [6].

2 SUMMARY OF SCHRÖDINGER’S TREATMENT AND

INTERPRETATION OF ENTANGLEMENT

Schrödinger argues in both [7] and [6] that the presence of correlations between
spatially separated quantum subsystems of a joint quantum system threatens the prin-
ciple of locality and thereby might be in contradiction with the theory of relativity.
Specifically, Schrödinger considers a composite quantum system described by the
tensor product Hilbert space H1 ⊗H2, where H1 and H2 are assumed to be identical
copies of an L2 function space describing system S1 and S2, respectively. Schrödiner
shows in [7] that any state vector �(x, y) ∈ H1 ⊗ H2 of the composite system can
be written as

�(x, y) =
∑

k

akgk(x)⊗ fk(y) gk ∈ H1 fk ∈ H2, ak ∈ IC (1)

with {gk} and {fk} being complete sets of orthogonal (unit) vectors in the respective
spaces (not all ak necessarily nonzero). The decomposition (1) is called the biortho-
gonal decomposition and it is unique (up to re-labelling of the elements gk and fk
respectively).

Vectors fk and gk can be viewed as eigenvectors (with eigenvalues λF
k , λG

k ) of
some observables F and G of system S1 and S2, respectively. If we carry out a
measurement of G on S2 and find eigenvalue λG

k then “…we have to assign to the
first system the wave function gk(x).” [6][p. 450]. From the perspective of system
S1, the state of the joint system (S1 +S2) given by�(x, y) differs from its state given
by gk because the state of S1 given by gk is a pure state on S1, whereas the state given
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by vector �(x, y) is a mixed state given by the density matrix

ρ1 =
∑

k

|ak |2Pgk (2)

here Pgk denotes the one dimensional projection in H1 that projects to the one dimen-
sional subspace spanned by element gk and Tr1 is the trace in H1. The range rng(ρ1)

of the density matrix ρ1 is spanned by those gk for which ak �= 0.
Schrödinger finds such instantaneous change in system S1’s state as a result of

measurement on the spatially distant system S2 already troublesome enough; yet, in
[6] he goes even further by showing that if hi is another set of orthogonal unit vectors
in H2 corresponding to eigenvectors of observable H with eigenvalues λH

i , then the
state �(x, y) can be re-written as

�(x, y) =
∑

i

wi

[∑

k

αikgk(x)
]

⊗ hi(y) (3)

with constants wi and αik depending on the set {hi} and such that the functions g′
i =∑

k αikgk(x) are normalized (but not orthogonal) and belong to rng(ρ1). Schrödinger
points out that by a suitable choice of hi every unit vector in rng(ρ1) can be obtained
as a g′

i ; on the other hand, if one carries out a measurement of H on S2 and finds
eigenvalueλH

i then one has to assign state g′
i to systemS1. This means that by choosing

an appropriate observable H to measure on system S2 one can transform the state of
system S2 into any state of S1 that lies in the range of ρ1 (this transformation occurs
with probability |wi|2). Therefore, if � is such that none of the ak is equal to zero,
and, consequently, rng(ρ1) = H1, then

… in general a sophisticated experimenter can, by a suitable device
which does not involve measuring non-commuting variables, produce a
non-vanishing probability of driving the system [S1] into any state he
chooses … [6][p. 446]

4. Indubitably the situation described here is, in present quantum mechan-
ics, a necessary and indispensable feature. The question arises, whether it
is so in Nature too. I am not satisfied about there being sufficient experi-
mental evidence for that. Years ago I pointed out [Schrödinger’s footnote:
Annalen der Physik (4), 83 (1927), 961. Collected Papers (Blackie and
Son, 1928), p. 141.] that when two systems separate far enough to make it
possible to experiment on one of them without interfering with the other,
they are bound to pass, during the process of separation, through stages
which were beyond the range of quantum mechanics as it stood then. For
it seems hard to imagine a complete separation, whilst the systems are
still so close to each other, that, from the classical point of view, their
interaction could still be described as an unretarded actio in distans. And
ordinary quantum mechanics, on account of its thoroughly unrelativistic
character, really only deals with the actio in distans case. The whole
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system (comprising in our case both systems) has to be small enough to
be able to neglect the time that light takes to travel across the system,
compared with such periods of the system as are essentially involved in
the changes that take place.
Though in the mean time some progress seemed to have been made in
the way of coping with this condition (quantum electrodynamics), there
now appears to be a strong probability (as P. A. M. Dirac [Schrödinger’s
footnote: P.A.M. Dirac, Nature. 137 (1936), 298] has recently pointed
out on a special occasion) that this progress is futile. [6] [p. 451]

3 VON NEUMANN’S REPLY TO SCHRÖDINGER

In his letter to Schrödinger (April 11, 1936) von Neumann reacts to the above passage
in Schrödinger’s paper:

I cannot accept your § 4. completely. I think that the difficulties you
hint at are “pseudo-problems”. The “action at distance” in the case under
consideration says only that even if there is no dynamical interaction
between two systems (e.g. because they are far removed from each other),
the systems can display statistical correlations. This is not at all specific
for quantum mechanics, it happens classically as well.
(von Neumann to Schrödinger, April 11, 1936) [5]

To illustrate his point, von Neumann gives the following simple example in the letter:

Let S1 and S2 be two boxes. One knows that 1,000,000 years ago either
a white ball had been put into each or a black ball had been placed into
each but one does not know which color the balls were. Subsequently
one of the boxes (S1) was buried on Earth, the other (S2) on Sirius. So
one has this probability distribution:

S1 white S1 black

S2 white 1
2 0

S2 black 0 1
2

Or for S2 only:

S2 white 1
2

S2 black 1
2

Now one digs S1 on Earth out, opens it and sees: the ball is white. This
action on Earth changes instantaneously the S2 statistic on Sirius to

S2 white 1

S2 black 0
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(The situation reminds one of the well-known joke: “Au moment
même [Von Neumann’s insertion: “Als mit seiner Frau etwas in Paris
geschah.”] mon Colonel était cocu á Madascar.”
(von Neumann to Schrödinger, April 11, 1936), [5]

Together with von Neumann’s insertion the French sentence reads something like
The moment something happened to his wife in Paris the colonel was cuckolded in
Madagascar.

Von Neumann also reacts to Schrödinger’s skeptical remark about the prospects of
relativistic quantum field theory:

And of course quantum electrodynamics proves that quantum mechanics
and the special theory of relativity are compatible “philosophically” –
quantum electrodynamic fails only because of the concrete form of Max-
well’s equations in the vicinity of a charge.
(von Neumann to Schrödinger, April 11, 1936), [5]

4 COMMENTS ON VON NEUMANN’S REPLY

There are two different ideas in von Neumann’s reply to Schrödinger by which von
Neumann avoids a potential clash between presence of distant correlations and the
principle of “no action at a distance”: One is to interpret probabilities subjectively as
measures of lack of knowledge. If the probabilities are just measures of our ignor-
ance then no real, physical change takes place when the probability distribution
on S2 changes as a result of manipulation on S2. (This idea is displayed nicely
by the joke von Neumann recalls: the real physical change occurs only in Mada-
gascar; the colonel’s getting cuckolded is just a “semantic change”.) It is difficult
however to accept a subjective interpretation of probability in physics because it is
a fact that probability statements are verified in quantum mechanics by counting
frequencies.

The other idea is that presence of correlations between spatially separated quantum
systems is not, in and by itself, reason for concern as long as one has an acceptable
explanation of those correlations. In the example the explanation is the action of
putting the white balls into the boxes. This action – together with the subsequent
observations on Earth and Syrius – can be translated into probabilistic terms in the
following way: Let A, A⊥, B, B⊥ and C, C⊥ be the following events:

A white ball observed in box upon opening box on Earth
A⊥ black ball observed in box upon opening box on Earth
B white ball observed in box upon opening box on Syrius
B⊥ black ball observed in box upon opening box on Syrius
C placing white balls in both boxes on Earth
C⊥ placing black balls in both boxes on Earth



246 MIKLÓS RÉDEI

If p(A) = p(B) = 1/2 and p(A⊥) = p(B⊥) = 1/2 are the initial probabilities of the
respective events, then A and B are positively correlated:

1

2
= p(AB) > p(A)p(B) = 1

2
× 1

2
= 1

4
(4)

Furthermore we have

p(AB|C) = p(A|C) = p(B|C) = 1 (5)

p(AB|C⊥) = p(A|C⊥) = p(B|C⊥) = 0 (6)

Consequently, the following conditions hold:

p(AB|C) = p(A|C)p(B|C) (7)

p(AB|C⊥) = p(A|C⊥)p(B|C⊥) (8)

p(A|C) > p(A|C⊥) (9)

p(B|C) > p(B|C⊥) (10)

Definition 1 Given a positive correlation

p(AB) > p(A)p(B) (11)

between events A and B in a probability space (S, p)with Boolean algebraS and prob-
ability measure p on S, an event C ∈ S is called a common cause of the correlation
(11) if it satisfies conditions (7)–(10).

This definition of common cause is due to H. Reichenbach [8], the event C having
the properties (7)-(10) is called a (Reichenbachian) common cause. Reichenbach
also seems to have embraced what came to be called the Common Cause Principle:
If events A, B are correlated then the correlation is either due to a causal influence
between the correlated events or there exists a common cause of the correlation.
(Reichenbach himself never formulated the principle explicitly, this was articulated
later, especially by W. Salmon [9]).

The intuitive reason why one does not regard the correlation in von Neumann’s
example problematic is thus that in the example the act of placing the white balls
into the boxes serves as a natural “common cause” of the correlation, and such a
common cause “explains” the correlation in the sense of entailing it. Viewed from
this perspective, the intended message of von Neumann’s example seems to be that
in the case of quantum correlations Schrödinger is considering the same should be
the case; that is to say, von Neumann seems to take the position that the correlations
entailed by entanglement also might have an explanation in terms of (Reichenbachian)
common causes.
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Problem is that, unlike in von Neumann’s simple example, in the case of correl-
ations arising from entanglement, there are no obvious candidates for events that
could qualify as common causes. Lack of common cause candidate events has led
to the suspicion that such events cannot exist at all. Indeed, there exist a number
of “proofs” in the literature to the effect that common cause events of correlations
entailed by entanglement cannot exist: Van Fraassen was the first to link Reichen-
bach’s notion of common cause to the EPR correlations [10] and he concluded that
no common cause explanation of EPR correlations is possible. Since Fraassen’s
work it has become generally accepted that the quantum correlations violate the
Common Cause Principle. A careful look at the problem shows however that it
is more difficult to rule out common causes of correlations than one would have
thought.

Let (S, p) be a classical probability space and A, B ∈ S two events that are correl-
ated in p. The Common Cause Principle says that if A and B are causally independent,
then there has to exist a common cause of the correlation. The crucial observation
that makes an attempt to falsify the Common Cause Principle very difficult is that the
Principle does not require the common cause to be part of the event structure S: it may
very well be the case that there is no event C in S that qualifies as a common cause
of the correlation between A and B but this fact in and by itself does not entail any
violation of the Common Cause Principle, for it may very well be the case that S is
just too small, and there might exist “hidden” common causes of the given correlation
– “hidden” in the sense of belonging to an event structure S ′ which is larger than S.
It turns out that such a defence of the Common Cause Principle is always possible,
for one has the following result [11]:

Proposition 1 Given any classical probability space (S, p) and a correlation
Corrp(A, B) = p(AB) − p(A)p(B) > 0 in it, there exists an extension (S ′, p′) of
(S, p) such that there exists an event C in S ′ which is the common cause of the
correlation Corrp(A, B) > 0.

(Note that (S ′, p′) is an extension of (S, p) if there exists a Boolean algebra
homomorphism h : S → S ′ such that p′(h(X )) = p(X ) for every X ∈ S.)

Proposition 1 entails that one can only hope to be able to falsify the Common Cause
Principle if one requires of the common cause to satisfy some additional conditions
that are not part of the definition of common cause. The additional conditions are typic-
ally “locality conditions”: probabilistic independence conditions intended to express
in probabilistic terms consequences of relativistic locality (causality) principles. As
can be expected, the question of whether local common cause type explanations of
EPR correlations are possible, depends very sensitively on how the locality conditions
are formulated: It turns out that under some formulations of those additional locality
conditions hidden common causes still cannot be ruled out [12]. If one formulates
more stringent locality conditions, then it is an open problem whether such strongly
local hidden common causes can exist (see the review [13]). Recently, new locality
conditions have been suggested that seem to exclude common cause explanations of



248 MIKLÓS RÉDEI

EPR correlations (see [14]), a critical evaluation of these locality conditions is yet to
be carried out, however.

Once one starts talking about notions of relativity theory in connection with the dis-
cussion of quantum correlations, the proper framework in which one should deal with
the problem of distant quantum correlations is relativistic quantum field theory. A
specific approach to quantum filed theory is local, algebraic relativistic quantum
field theory (ARQFT), axioms of which were worked out during the late fifties
(see Haag’s book [15] for a comprehensive presentation of the theory). It turned
out that correlations between spacelike separated observables is even more endemic
in local quantum field theory than in non-relativistic quantum mechanics (see the
review paper [16] and [17] for a more recent result). Presence of those spacelike
correlations in relativistic quantum field theory raises the problem of the status of
the Common Cause Principle in physics in an even more dramatic way because
relativistic quantum field theory is a physical theory which, by its very construc-
tion, is supposed to be complying with locality and causality principles as these
are understood in the spirit of the special theory of relativity. To formulate pre-
cisely the question of whether quantum field theory satisfies the Common Cause
Principle and to recall the only result known in this connection, we need some
definitions:

Let N be a von Neumann algebra, P(N ) its projection lattice and φ a normal state
on N . Recall that two elements A, B ∈ P(N ) are called compatible if there exists a
distributive sublattice of P(N ) containing both A and B.

Definition 2 Let A, B ∈ P(N ) be two compatible elements that are correlated in φ:

φ(A ∧ B) > φ(A)φ(B) (12)

C ∈ P(N ) is a common cause of the correlation (12) if C is compatible with both A
and B and the following conditions (completely analogous to (7)-(10)) hold

φ(A ∧ B ∧ C)

φ(C)
= φ(A ∧ C)

φ(C)

φ(B ∧ C)

φ(C)
(13)

φ(A ∧ B ∧ C⊥)
φ(C⊥)

= φ(A ∧ C⊥)
φ(C⊥)

φ(B ∧ C⊥)
φ(C⊥)

(14)

φ(A ∧ C)

φ(C)
>
φ(A ∧ C⊥)
φ(C⊥)

(15)

φ(B ∧ C)

φ(C)
>
φ(B ∧ C⊥)
φ(C⊥)

(16)

For a point x in the Minkowski space M let BLC(x) denote the backward light cone
of x; furthermore for an arbitrary spacetime region V let BLC(V ) ≡ ∪x∈V BLC(x).
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For spacelike separated spacetime regions V1 and V2 let us define the following
regions

wpast(V1, V2) ≡ (BLC(V1) \ V1) ∪ (BLC(V2) \ V2) (17)

cpast(V1, V2) ≡ (BLC(V1) \ V1) ∩ (BLC(V2) \ V2) (18)

spast(V1, V2) ≡ ∩x∈V1∪V2BLC(x) (19)

Obviously it holds that

spast(V1, V2) ⊆ cpast(V1, V2) ⊆ wpast(V1, V2) (20)

Definition 3 Let {N (V )} be a net of local von Neumann algebras over Minkowski
space satisfying the standard axioms of ARQFT (isotony, Einstein locality, Poincaré
covariance, weak additivity, spectrum condition). Let V1 and V2 be two spacelike
separated spacetime regions, and let φ be a locally normal state on the quasilocal
algebra A. If for any pair of projections A ∈ N (V1) and B ∈ A(V2) it holds
that if

φ(A ∧ B) > φ(A)φ(B) (21)

then there exists a projection C in the von Neumann algebra N (V )which is a common
cause of the correlation (21) in the sense of Definition 2, then the local system is said
to satisfy

Weak Common Cause Principle: if V ⊆ wpast(V1, V2)

Common Cause Principle: if V ⊆ cpast(V1, V2)

Strong Common Cause Principle: if V ⊆ spast(V1, V2)

We say that Reichenbach’s Common Cause Principle holds for the net (respectively
holds in the weak or strong sense) iff for every pair of spacelike separated spacetime
regions V1, V2 and every normal state φ, the Common Cause Principle holds for the
local system (N (V1), N (V2),φ) (respectively in the weak or strong sense).

Problem: Does any of the above Common Cause Principles hold in quantum field
theory ?

If V1 and V2 are complementary wedges then spast(V1, V2) = ∅. Since the local
von Neumann algebras pertaining to complementary wedges are known to contain
correlated projections (see [16]), the Strong Reichenbach’s Common Cause Principle
trivially fails in AQFT.

The question of whether Reichenbach’s Common Cause Principle holds in AQFT
was first formulated in [18] (see also [19]) and the answer to it is not known. What
is known is that the Weak Reichenbach’s Common Cause Principle typically holds
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under mild assumptions on the local net {N (V )}:

Proposition 2 If a net {N (V )} with the standard conditions (isotony, Einstein loc-
ality, Poincaré covariance, weak additivity, spectrum condition) is such that it also
satisfies the local primitive causality condition and the algebras pertaining to double
cones are type III , then every local system (N (V1), N (V2),φ) with V1, V2 contained
in a pair of spacelike separated double cones and with a locally normal and locally
faithful state φ satisfies Weak Reichenbach’s Common Cause Principle.

(See [20] for the proof of the above proposition and for additional analysis of the
status of Reichenbach’s Common Cause Principle in quantum field theory.)

Local primitive causality is a condition that expresses the hyperbolic character of
time evolution in AQFT. For a spacetime region V let V ′′ = (V ′)′ denote the causal
completion (also called causal closure and causal hull) of V , where V ′ is the set of
points that are spacelike form every point in V . The net {N (V )} is said to satisfy the
local primitive causality condition if N (V ′′) = N (V ) for every nonempty convex
region V .

5 CONCLUDING REMARKS

Von Neumann’s letter to Schrödinger is probably the first formulation of
Reichenbcah’s Common Cause Principle in connection with quantum correlations
– but an implicit formulation only since the technically explicit notion of common
cause does not appear in the letter. It also is worth pointing out that, apparently, von
Neumann did not see a major difference between quantum and classical correlations
from the perspective of the Common Cause Principle.

Once however the notion of common cause is specified in the sense of
Reichenbach’s definition, the concept of common cause and the status of the associ-
ated Common Cause Principle can be subjected to a rigorous analysis. The analysis
has led to a number of precise problems, some of which are still open. Specifically, it
is not known whether relativistic quantum field theory is causally rich enough to be
able to give a local common cause explanation of the spacelike correlations it pre-
dicts. Nor has it been proven in full generality that local common causes of standard
EPR correlations cannot exist.

The difficulty with proving precise theorems concerning the Common Cause Prin-
ciple is that the notion of (Reichenbachian) common cause is rather subtle, hence prob-
lems relevant for the status of the Principle are non-trivial. It is difficult even to decide
whether a given probability space (S, p) is causally closed in the sense that it contains
a common cause of every correlation between correlated events A, B that are causally
independent, Rind(A, B). It turns out that causal closedness of (S, p) with respect to
a causal independence relation Rind depends sensitively on both (S, p) and Rind , and,
while causal closedness is not impossible – it is possible even if the event structure
S contains a finite number of elements [21] – it does not always hold. There does
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not seem to exist a canonical procedure by which causal closedness could be verified,
and there are a number of open questions concerning causal closedness (see [21]).
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12. KRISKE, TUPMAN AND QUANTUM LOGIC:
THE QUANTUM LOGICIAN’S CONUNDRUM

ABSTRACT

Almost thirty years ago, Saul Kripke gave a talk in which he offered an extended
critique of quantum logic. Neither that talk nor any commentary on it appear in
the published literature. Today, there is much less interest in quantum logic as an
interpretive program in the foundations of quantum mechanics. Nonetheless, Kripke’s
critique raises interesting issues about what it might mean to contemplate a change in
logic. Set against the larger background of the literature at that time, the lecture also
provides an interesting springboard for exploring a number of issues about realism and
quantum mechanics of the sort that Jeff Bub has wrestled with over his career. This
paper will present an extended summary of a related critique by one P. Kriske, and
will proceed from there to a discussion of the larger questions that must be addressed
in order to provide an adequate reply to Kriske.

I’ve known Jeff Bub for over thirty years as a teacher, colleague and friend, and
I’m delighted to be able to contribute to this volume in his honor. What I plan to
do, however, is start with some unpublished material from a dissertation that I wrote
almost 30 years ago and that I had not even held in my hands for almost that long.
It’s a bit like talking to a ghost. As it turns out, that may be appropriate; ultimately,
the problem I want to worry is the peculiarly elusive nature of the attempt to interpret
quantum theory. We’ll begin, however, with a quasi-mythical episode in the history
of quantum logic. The episode has its own interest, but it will also serve as a segue
into a broader discussion.

1 QUANTUM LOGIC AND REALIST DREAMS

When I wrote my dissertation in 1978, some of us at Western Ontario saw quantum
logic as the key to a realist interpretation of quantum mechanics. One important part
of what we meant by “realist” was that in the ideal case, measurement should merely
reveal the pre-existing values of physical quantities: if the measuring instrument said
that the y-spin was +1/2, that was supposed to be because it really had that value
before the measurement was made. But since we can perform any measurement we
like, that implied that all quantities would have to have simultaneous values – whether
we could measure the quantities simultaneously or not.
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Whether or not this was a reasonable understanding of realism, the difficulty is
clear: results such as Kochen and Specker’s1 apparently show that the physical quant-
ities couldn’t possibly all have values at once. If two quantities Q and Q′ share an
eigenspace S, the K&S theorem assumes that the values of the quantities are accord-
ingly related: either both have a value that goes with S or neither does. If “Q = q”
and “Q′ = q′” represent the same proposition when they are associated with the
same subspace, claiming that the finite set of K&S quantities all have values at once
amounts to a classical contradiction.

One way to provide for definite values is to reject the K&S constraints and adopt
a contextual hidden variable theory. Unfortunately, this comes at a price: what we’re
measuring “here” must either be influenced or partly constituted by what’s being
measured “there”; otherwise, we run afoul of Bell’s theorem. Quantum logic pro-
posed a way around this problem: identify propositions as the Hilbert space suggests.
Since propositions are identified in a context-free way, local quantities are locally con-
stituted. If a quantity Q has possible values q1, q2, . . . , qn then the quantum logical
disjunction

Q = q1 ∨ Q = q2 ∨ · · · ∨ Q = qn

is true. The conjunction of all these disjunctions yields a classical contradiction, but
logic isn’t classical and properties don’t mesh as classical logic says they do.2 That
would allow the serpentine Kochen and Specker “contradiction” to be a truth – a
truth that supposedly says of each quantity that it takes one of its possible values. If
we add the claim that measurement simply reveals pre-existing values, then not only
are quantities locally defined, but local measurement results don’t depend for their
outcomes on distant measurements.

2 INTRODUCING PROFESSORS KRISKE AND TUPMAN

There are two thoughts here. One is that quantum logic allows us to say that all
quantities have value, revealed by measurement. The other is that changes in physics
might rightly induce us to accept changes in logic. In 1974, Saul Kripke gave a
lecture at the University of Pittsburgh in which he offered a critique of quantum
logical value-definiteness, the thesis that all quantum mechanical quantities have
values, which measurement simply reveals. He also called into question the very idea
that logic might change in response to empirical discoveries. That lecture was the
subject of rumors, myths and much conversation in corridors. It was also the topic
of the first two papers of my dissertation. I’d like to discuss what Kripke said, but
this presents a problem. He never published his talk, which is why I never published
the relevant portions of the dissertation. Worse still, the tape I once possessed is long
since lost. All I have are the quotes and paraphrases in the dissertation. There’s also
the matter of propriety. Since Kripke’s talk never appeared in print, it isn’t part of the
public record of positions he’s committed himself to. He might well object to being
saddled with what he said back then.
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I propose the following solution. I’ll discuss a position that wouldn’t have occurred
to me if I had never heard the tape of Kripke’s talk, but I won’t promise that the position
is Kripke’s. I’ll attribute it to the fictitious philosopher Paul Kriske – Kriske for short.
If I attribute something to Kriske, you may assume that I didn’t think of it myself.
But you may not assume that it’s an accurate reflection of Kripke’s view. It may, for
all I’m willing to claim, be based on a complete misunderstanding of what Kripke
actually said. Since my tape no longer exists, and since I have nothing close to a full
transcript of it, you should take this possibility very seriously.

The paper that Kriske singles out for his critique is Putnam’s 1968 essay “Is Logic
Empirical?”3 But just as fairness led to the introduction of Kriske into our discussion,
it’s also fair to ask if what this Kriske has to say about Putnam is true to the real-life
Putnam. Since Putnam exegesis is not my concern, I will introduce another character
into our drama, Prof. Tupman, who is the subject of Kriske’s criticism.

3 KRISKE ON TUPMAN

Suppose that A and B are two non-commuting operators, each with eigenvalues 1
and 2. Tupman wants to say that both of these statements are true as ordinarily
understood, and before any measurements are made:

(1) A = 1 or A = 2 (that is, A = 1 ∨ A = 2)
(2) B = 1 or B = 2 (that is, B = 1 ∨ B = 2)

Nonetheless, Tupman also wants to say that all of these are true as well:

(3) ∼ (A = 1 ∧ B = 1)
(4) ∼ (A = 1 ∧ B = 2)
(5) ∼ (A = 2 ∧ B = 1)
(6) ∼ (A = 2 ∧ B = 2)

You might have thought that for A and B to have values, one of the following would
have to be true:

(3′) A = 1 ∧ B = 1
(4′) A = 1 ∧ B = 2
(5′) A = 2 ∧ B = 1
(6′) A = 2 ∧ B = 2

Tupman’s claim is that so long as (1) and (2) are true, we have all we need for value-
definiteness. He frames the issue in terms of the distributive law. In classical logic,

(W ∨ X) ∧ (Y ∨ Z)

implies

(W ∧ Y) ∨ (W ∧ Z) ∨ (X ∧ Y) ∨ (X ∧ Z)

by the distributive law. But the distributive law doesn’t hold in the lattice of sub-
spaces of a vector space, and according to Tupman, that lattice reflects the correct
logic. Hence, we can’t move from the conjunction of (1) and (2) to (3) through (6).
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To make this more palatable, Tupman offers an analogy with geometry. Before
relativity and non-Euclidean geometry, the idea that two straight lines might be a
constant distance apart over some interval but intersect further along would be an
intuitive contradiction. As it turns out, however, this “contradiction” about space
might well be true. The moral? Don’t trust intuition – not even in cases where ignoring
it feels like a contradiction.

As Kriske reads Tupman, the distributive law amounts to an axiom of classical
logic, and is up for grabs once rival systems are on the table. With the right sorts of
empirical pressures, we might abandon one formal system for another. In the case of
quantum mechanics, Tupman sees this as the smoothest course to follow. Give up the
distributive law and adopt quantum logic; the payoff for the intuitive pain is a realist
interpretation of quantum theory.

Kriske points out that we seem to be able to knock this view down with a simple
argument. Tupman says that A and B have values that show up when we make a
measurement. Suppose we measure A and find that

(7) A = 1.

Tupman says that B has one of the two values 1 or 2; that’s what (2) above tells us. But
now reason by cases. If B has the value 1, then A = 1 and B = 1, and that contradicts
(3) above; if B has the value 2, then A = 1 and B = 2, which contradicts (4). Since
there aren’t any more cases, there’s no way for A and B both to have values.

Kriske thinks that’s as complete a refutation of Tupman as we could hope for, but
he assumes that he’ll be accused of begging the question. His refutation of Tupman,
so his opponent will say, called on the distributive law, which is what the reasoning
by cases amounts to here. But the distributive law is exactly what’s at issue.

Kriske’s reply reveals the heart of his position. His refutation depended on
reasoning from

(7) A = 1

and

(2) B = 1 or B = 2

to the conclusion

C: (A = 1 and B = 1) or (A = 1 and B = 2).

However, that conclusion is just what Tupman rejects when he says that

(3) ∼ (A = 1 ∧ B = 1)

and

(4) ∼ (A = 1 ∧ B = 2)

are both true. Apparently, then, Tupman doesn’t think that C follows from (7) and (2).
Apparently Tupman thinks that to get C from (1) and (2), we need an extra premise,
the distributive law, which is what Kriske has begged.
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Kriske disagrees. He doesn’t think he needs an extra premise to get from (7) and
(2) to C. The reasoning by cases helps us see that the argument is valid, but it doesn’t
add anything to its validity. If you say otherwise, Kriske thinks, you are begging the
question against him.

4 CAN LOGIC BE CHANGED?

In fact, Kriske argues, the very idea of “adopting” a logic is incoherent. Tupman thinks
of “logics” as systems of axioms that can be treated as hypotheses to be accepted or
rejected on the basis of empirical considerations. However, Kriske maintains that we
couldn’t possibly adopt the logic we already have. The inspiration for his argument
comes from Quine’s “Truth by Convention”4 and from Lewis Carroll’s famous dis-
cussion of Achilles and the Tortoise.5 One way to put Lewis Carroll’s point is that if
someone didn’t already reason according to modus ponens, adding it as an explicit
axiom wouldn’t help. Suppose someone accepts

A

and also accepts

If A then B

but for some reason doesn’t see that B follows. Imagine offering him the following
as an explicit principle:

MP: If “A” is true and “If A then B” is true, then “B” is true.

Unless the person already grasps modus ponens, this won’t do any good. He accepts
that “A” is true and he also accepts that “If A then B” is true. Let’s add, although it’s
not as trivial as it seems in this context, that he also accepts “‘A’ is true and ‘if A
then B’ is true.” Suppose he also agrees, perhaps accepting your authority, that MP
is correct. The problem is that MP is a conditional. To conclude that “B” is true, he’ll
have to reason by modus ponens, which is precisely what he wasn’t able to do in the
first place.

Kriske points out, following Quine, that the same difficulty comes up for universal
instantiation. If someone didn’t already see, for example, that “All ravens are black”
commits her to “Jake (a particular raven) is black,” then adding that “All universal
statements imply their instances” wouldn’t help. The principle itself is a universal
statement, and to apply it to a particular case, we would have to infer an instance
of it. We run into the same trouble with the rule of conjunction and the principle of
non-contradiction; details are left as exercises.

So much for treating logical laws as hypotheses that we might adopt or reject based
on the fecundity of their consequences. If by “logic” we mean what we use when we
reason, then there’s no neutral ground outside logic where we can stand and make
judgments about how to draw those consequences.
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Kriske briefly discusses two cases in which it might seem that we have allowed or
at least considered changes in logic. One is intuitionism. The other is the rejection
of the Aristotelian principle that “All P are Q” implies “Some P are Q.” In the case
of intuitionism, Kriske maintains that the intuitionists didn’t reject the rules that
applied to the old connectives but rather introduced new connectives. The classical
negation of a mathematical statement, in the intuitionists’ view, is not guaranteed
to be a mathematical statement. Intuitionistic negation can be explained by way of
notions we already understand, and it keeps us within mathematics when we reason
mathematically. As for Aristotelian logic, modern logicians say that we can get from
“All P are Q” to “Some P are Q” if and only if we assume that there are P’s. But there
are cases where “All P are Q” is true even though there aren’t any P’s. Seeing this
isn’t “changing logic”; it’s recognizing a mistake simply by using ordinary reasoning.

5 KRISKE CONSIDERED

So far, Kriske has argued that

(1) Tupman treats logic as though it were just another theory – just another set of
propositions that we accept or reject on the basis of their consequences. However,

(2) that can’t be right because it suggests that logic is “up for grabs,” when in fact
we couldn’t consider the consequences of the supposed theory unless we already
had logic to do it with – that is, unless we already could reason. Furthermore,

(3) looking at cases like modus ponens and universal instantiation makes clear that the
very idea of adopting a logic makes no sense. These principles aren’t hypotheses;
we couldn’t adopt them unless we already grasped them. Finally,

(4) there are no good examples of changing logic. In particular, the rejection of
Aristotelian logic doesn’t count. It’s a case of using intuitive reasoning to spot a
fallacy.

There are two issues before us. One is whether Kriske is right to think that Tupman’s
defense of value-definiteness is unsustainable. I think he is, and I will simply assume
that from now on. The second issue is whether Kriske has really shown that empirical
discoveries couldn’t rightly lead us to revise our logical opinions.

5.1 Logic and doxastic practices

If by “logic” we mean something like “correct reasoning,” then it would make no
sense to think of logic as “just another theory.” We need to be able to reason in order
to think about anything at all. That said, one suspects that Kriske and the quantum
logician may be talking past one another. When Kriske talks about logic, he is talking
about a doxastic practice in William Alston’s sense6 – a socially established practice
of forming and criticizing beliefs. Kriske points out that we don’t have a choice
about engaging in the practice, and that we have to use logic to justify or criticize
logical beliefs. However, Alston reminds us that this is so of other important doxastic
practices. We can’t avoid using sense experience to form beliefs about the world,
but any attempt to justify or criticize either the practice itself or the results of using
it will call for relying on things that we learned from the senses – from using the
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very practice at issue. In spite of that, specific claims based on sense experience can
be treated as hypotheses that could be revised, even though we have to use sense
experience to justify the revisions.

This suggests a way to think about challenging logical claims. We need to distin-
guish between reasoning – a doxastic practice – and the theory or discipline in which
we attempt to state logical truths and spell out correct forms of inference explicitly.
Let’s call the output of this discipline “Logic” with a capital “L.” Logic in this sense
isn’t a substitute for the practice of reasoning, but the claims of Logic can be true
or false, correct or incorrect and even, perhaps, fecund or barren. Perhaps Tupman
could say: we can’t put the whole doxastic practice of reasoning up for grabs at once.
Nonetheless, we can call some of the basic deliverances of reasoning into question,
even if we have to reason to do so.

We’ve already abandoned the hope that we can defend value-definiteness by appeal
to Tupman-style quantum logic, but for what comes later it will be helpful to bracket
that concession and reconsider the exchange that Kriske imagines himself having
with Tupman. Kriske argues, reasoning by cases, that A and B can’t both have values.
He imagines Tupman accusing him of begging the question – of omitting a premise
(the distributive law) that he needs for his argument to be valid. Kriske replies that
Tupman would be begging the question against him; as Kriske sees it, he doesn’t
need the extra premise. But consider the case of Aristotelian logic. Suppose we insist
that that the principle of subalternation is false – that from “All dogs are mammals,”
it doesn’t follow that some dogs are mammals. We insist that the conclusion calls for
an extra premise: dogs exist. Imagine the Aristotelian replying that he needs no such
premise and hasn’t begged any question. Subalternation is valid, he claims, and we
modern logicians are begging the question against him if we claim the he needs an
extra premise. How would the debate proceed?

The first point is that it actually could proceed. The Aristotelian might insist that
in cases where “P” is empty, “All P are Q” isn’t true. After all, both “All Martians are
Americans” and “All Martians are non-Americans” sound odd, even though modern
logicians say that both are true. Of course “All Jedi Knights have superhuman powers”
seems to be true, but so does “Some Jedi Knights turned to the dark side of the Force.”
Since the latter hardly entails that there really are Jedi Knights, the Aristotelian could
argue that “All Jedi Knights have superhuman powers” was never literally true in the
first place. If so, it doesn’t count against the claim that universal categoricals are false
if their subject terms are empty.

The debate could continue. We could point out to the Aristotelian that if “Some
P are Q” entails the existence of Ps, as he presumably would agree, then he will
have to give up either the principle of conversion for universal negatives or the
principle of obversion. (Hint: start with the banal truth “No Canadians are Mar-
tians.” Then convert, obvert and take the subaltern). Modern logicians have decided
that things go more smoothly if we adopt the Boolean interpretation of categor-
ical statements. Nonetheless, no matter what solution we settle on, it will make for
some intuitive strain. If there’s something to negotiate in the case of the principle
of subalternation, Tupman might insist that we can also negotiate in the case of the
distributive law.
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5.2 Self-presupposing principles

There’s a particular difficulty with this reply that we’ll get to below. Meanwhile,
we come up against the third of Kriske’s four points: we seem to be assuming that
the distributive law is a hypothesis that can be adopted or rejected based on its con-
sequences. But the discussion of modus ponens, universal instantiation and so on was
meant to show that the idea of adopting a logical law or logical axiom makes no sense
to begin with.

The self-presupposing quality of these principles is striking. However, Tupman
could point out that the distributive law doesn’t have this peculiarity. It’s hard to see
that no one could adopt it unless he already grasped it. Furthermore, even if it weren’t
possible to adopt the distributive law, rejecting it might still be possible. Though the
examples are controversial, it has been argued (most famously by Van McGee7) that
modus ponens doesn’t hold in all cases. Whatever one makes of the examples, it’s no
reply to point out that no one could adopt modus ponens if he didn’t already grasp it.
Likewise, for all the Carroll/Quine/Kriske examples show, the distributive law may
be a principle that we could reject. Tupman would say that empirical discoveries have
uncovered exceptions to what had looked like a logical truth.

5.3 Internal vs. external

Kriske would insist that we’ve missed the point. The issue over subalternation is
entirely an in-house squabble that never takes us outside the doxastic practice of
reasoning. Tupman’s case against the distributive law is extramural. He isn’t arguing
that there’s an intuitive objection to the distributive law. He’s claiming that if we
give it up, we gain a certain extra-logical benefit: a realist interpretation of quantum
mechanics. That, Kriske would insist, misses the point that logic is all about reasoning.

6 QUANTUM LOGIC?

Kriske’s view of logic is something that we might call Intuitivism: claims about
logical truth and logical consequence must be grounded in intuitive reasoning. And
though just what might count as an intuitive consideration isn’t easy to say, appeals
to contingent empirical facts don’t make the grade.

There’s a related point. If Kriske is insisting that by its nature, logic is a priori
(a matter of “reasoning” and “intuition”) then quantum logic seems excluded from
the start. Quantum logicians are making claims about physical reality, but they don’t
claim that the structure of physical reality is something we can know a priori.

That’s surely right; we can’t figure out the structure of the world just by reasoning.
Nonetheless, I think it still may be possible to meet Kriske on his own terms. Inter-
estingly enough, his discussion of Aristotelian logic provides a hint. According to
Kriske, the Aristotelian’s mistake was to overlook something: the possibility that a
universal categorical might be true even though its subject term is empty. What the
quantum logician must say is that the classical logician has also overlooked some
possibility.
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6.1 Minimal Quantum Logic

Consider the following three theses:

I The propositions of Quantum Logic (call them Q-propositions) are
ascriptions of values to quantum mechanical quantities or logical
constructions of such propositions.
II Not every quantum mechanical quantity has a value
III When a quantum mechanical quantity lacks a value, there are true
disjunctive Q-propositions whose disjuncts are not true.

I is a stipulation. It says that this is what Quantum Logic, as understood here, will
be constructed from. II is widely accepted even by people who want nothing to do
with Quantum Logic. III is the most contentious of the three theses. Though we’ll
need to say more, we can use an example to provide some motivation. Suppose that
a spin-one particle is in the state |Sz = 0〉. In that case, Sx doesn’t have a value; none
of the propositions

Sx = +1, Sx = 0, Sx = −1

is true – or so it’s reasonable to believe. However, there’s a case to be made for saying
that (Sx)2 does have a value – a value of 1 – even though neither “Sx = +1” nor
“Sx = −1” is true. On the view we’re considering, the fact that (Sx)2 = +1 will be
the same fact as the one expressed by the disjunction

Sx = +1 ∨ Sx = −1.

If one is true, so is the other.

6.1.1 The distributive law revisited Our theses I through III don’t give us full-
blown Quantum Logic, but they’re enough to make sense of how someone might
think that the distributive law could fail. Suppose that P is a true Q-proposition.
Suppose that Q ∨ R is also a true Q-proposition, but with disjuncts that aren’t true
(whether or not we say that they’re false is another matter; more on that below.) In
this case, the conjunction

P ∧ (Q ∨ R)

will be true, but neither of the propositions

P ∧ Q, P ∧ R

will be. (We’ll leave aside for the moment the question of whether these “propositions”
are even well-defined.) The “intuitive” explanation is that the Kriske-style classical
logician has overlooked something: the possibility of a true disjunction with disjuncts
that aren’t true.
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It’s worth stressing that this account of how the distributive law fails isn’t what
Tupman, let alone Putnam, had in mind. The value-definiteness thesis is gone. That
means that some of Kriske’s criticisms of Tupman are no longer relevant. However,
Kriske might still insist that

(P ∧ Q) ∨ (P ∧ R)

simply follows from

P ∧ (Q ∨ R)

He might also say that the “possibility” he’s accused of overlooking – that a dis-
junction might be true when neither of its disjuncts is – doesn’t deserve to be taken
seriously. Given the sketchiness of the defense we’ve offered for III, this wouldn’t
be unreasonable, though we’ll have more to say later. But I through III are not the
central claims of Quantum Logic. What’s really at stake lies a little deeper.

6.2 The deeper level

Quantum mechanics represents physical quantities in a striking way. The particular
feature of structure that Quantum Logic focuses on is the family of relations of
necessary equivalence, necessary exclusion, and entailment that quantum mechanics
seems to embody. We can illustrate with a familiar example from Kochen and Specker:
a spin-one particle and the components of spin in three orthogonal directions x, y
and z. Each of the spin matrices Sx, Sy, Sz has three eigenvalues, −1, 0 and +1,
corresponding to the three possible results of a measurement of the spin component.
The squares of each of these matrices, (Sx)2, (Sy)2 and (Sz)2, each have eigenvalues
0 and 1. The distinctive part of the story begins when we introduce the operator

HS = a(Sx)2 + b(Sy)2 + c(Sz)2

whose eigenvalues are x0 = b + c, y0 = a + c, and z0 = a + b. Here the vector |x0〉
is also an eigenvector of Sx and of (Sx)2, with eigenvalue 0. Corresponding remarks
apply to |y0〉 and |z0〉. A contextualist would say that

HS = x0, Sx = 0, (Sx)2 = 0

represent distinct propositions that might differ in truth value. Quantum Logic treats
these propositions as necessarily equivalent – as picking out the same possible state
of affairs. As for necessary exclusion, the vectors

|x0〉, |y0〉, |z0〉
are mutually orthogonal. The contextualist would say that in spite of this, it’s possible
for Hs to take the value x0 and Sy to take the value 0 at the same time. Once again,
Quantum Logic treats these propositions as necessarily excluding one another – as
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denoting states of affairs such that if it’s true that one obtains, it’s false that the
other does. Finally, the vector |z0〉, for example, is a superposition of |x+〉 and |x−〉.
That means that the subspace corresponding to “Sz = 0” lies within the subspace
corresponding to “Sx = +1∨Sx = −1”. Quantum Logic take the truth of “Sz = 0〉”
to necessitate the truth of “Sx = +1 ∨ Sx = −1.”

Putting all this together gives us a fourth thesis:

IV Each Q-proposition is associated with a subspace of a Hilbert space.
(i) If two propositions are associated with the same subspace, the propos-
itions are necessarily equivalent. (ii) If two propositions are associated
with orthogonal subspaces, then the truth of one proposition entails the
falsity of the other. (iii) If the subspace associated with a Q-proposition
Q lies within the subspace associated with the subspace associated with
Q′, then the truth of Q entails the truth of Q′.

This is the heart of Quantum Logic. The algebraic structure of the theory suggests a
particular network of relations among quantum mechanical properties. According to
Quantum Logic, these relations are reflected in logical relations among propositions
that ascribe properties to the system. Taken in small handfuls, the relations don’t
lead to any conflict with classical logic. For example, we could describe a classical
structure that exhibits the relations of equivalence and exclusion among Hs, Sx, Sy,
Sz, (Sx)2, (Sy)2 and (Sz)2. However, as the network grows, we reach a point where
a classical structure can’t make room for the relations. If we held onto the view that
every quantity always has one of its values, this tipping point would be a collapse
into incoherence. Quantum Logic tells another story.

7 GLEASON’S THEOREM

Consider a finite algebra B of propositions that obey classical logic. The algebra will
be Boolean, and it will contain atoms – maximally informative non-contradictory
elements. If we assign the value 1 (i.e., true) to an atom, then the truth value of
every other proposition in the algebra is determined. Furthermore, these truth values
amount to a measure on the algebra B, with values in the interval [0,1].

Talking about the whole interval [0,1] is a bit coy, but the reason is probably obvious.
Suppose that A is an algebra of Q-propositions associated with a finite-dimensional
Hilbert space of dimension 3 or greater. Then A also has atoms, and if we assign
the truth value 1 to one of these atoms, there is a unique measure on A that assigns
each proposition a value in the interval [0,1].8 This is a consequence of Gleason’s
theorem9, and we’ll call such values the Gleason measures of the propositions. The
difference, however, is that in the classical case, all the values are in the set {0,1}; in
the quantum case, they fill up the whole interval [0,1].

Let H be a Hilbert space of dimension 3 or greater, and let A be the associated
algebra of propositions. (Whether A is a lattice or a partial Boolean algebra is some-
thing we don’t need to decide at this point.) Suppose that R is a ray in H, and that
R is the associated proposition. Now suppose that R is true and let S be a sphere
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containing R. By IV (iii), the proposition S associated with S is true, but S has many
representations. In particular, there are infinitely many disjunctions S1 ∨ S2 ∨ S3,
where the Si correspond to orthogonal rays, and where S1 ∨ S2 ∨ S3 is equivalent to
S. By IV (ii), if one of the disjuncts is true, then the others are false. Could each such
disjunction be true by virtue of the truth of one of its disjuncts?

It’s an immediate consequence of Gleason’s theorem – or of Kochen and Specker’s –
that the answer is no. But since R implies each of these disjunctions, this tells us that
if Quantum Logic is correct, there must be true disjunctions without true disjuncts.

This need not mean that all the disjuncts are false. Consider

V There are Q-propositions that are neither true nor false.

It seems wrong to say that the propositions corresponding to the components of a
superposition are true. However, interference effects are real; the possibilities that cor-
respond to the components of a superposition seem to have an influence on the actual
that would be strange if these propositions were simply false. The thought behind V
is not that we need to make room for vagueness or linguistic indecision, but for the
strange way in which the components of a quantum superposition bear on the world.

In any case, if we say that some propositions are neither true nor false, we avoid an
unpleasant consequence: true disjunctions all of whose disjuncts are false. But if not
true and also not false, then what? Perhaps we don’t need a firm answer, but here is
one possibility. We could take the Gleason measures induced by the truth of an atom to
be truth-values. When a proposition’s Gleason measure is close to 1, its contribution
to the superposition all but swamps the contributions of the other components; when
its Gleason measure is close to 0, it makes all but no contribution – and so on. And
of course, if the Gleason measures are truth-values, then we can say more about the
truth of disjunction. In classical logic, the truth value of an exclusive disjunction is
the sum of the truth values of its components. The same would be true for Gleason-
measure truth values. In particular, if P ∨ Q is a true quantum disjunction with
mutually exclusive disjuncts, then the “Gleason truth-values” of the disjuncts will
sum to 1. Also, the more complicated rules that apply to non-exclusive disjunctions
will be borne out as well, provided the components of the disjunction all belong to
a common Boolean algebra. (This, by the way, seems like a reason for preferring
partial Boolean algebras to lattices.)

We will remain agnostic about whether Gleason measures are truth values; the
issues would take us too far afield. Nonetheless, Gleason measures do encode real
features of the system. We’ll say more about this later.

8 ANSWERING KRISKE

We have the materials for answering Kriske on his own terms. The claim is that
if we rest with classical logic, we’ve overlooked something. We described it as the
possibility that disjunctions might be true even though their disjuncts aren’t. The more
basic notion is incompatibility or, as I prefer, incommensurability. Two propositions
are incommensurable if they don’t belong to a common Boolean algebra. This general
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notion applies in principle to a broader class of situations than the purely quantum
mechanical. If we concentrate on quantum mechanics, and if we agree that some
Q-propositions are neither true nor false, then incommensurability amounts to this:
two Q-propositions are incommensurable if (a) neither implies the other, and (b) the
truth of one rules out the falsity of the other. Notice that (b) isn’t possible classically
unless (a) is false; in classical logic, if a proposition X rules out the falsity of a
proposition Y , then X implies Y .

For Q-propositions, (a) and (b) can be restated in terms of Gleason measures: P
and Q are incommensurable if (a) there are Gleason measures that assign 1 to P but
not to Q and vice-versa, and (b) every Gleason measure that assigns 1 to P assigns Q
a value strictly greater than 0 and vice-versa.

The claim, then, is that the classical logician has overlooked the possibility that
propositions can be incommensurable. However, Kriske’s model of a case in which a
logician has overlooked something is the rejection of Aristotelian logic, where what
was overlooked could be uncovered simply by reasoning. Is this notion of incommen-
surability likewise something that we could have come up with simply by reasoning?

Perhaps. We can imagine a story like the one in Paper Four of Interpreting the
Quantum World.10 There, Jeff imagines a bright student who invents quantum mech-
anics as a thought experiment while thinking about Hilbert space. We could tell a
similar tale for the interpretation we’re offering here. On such a story, the empirical
discovery relevant to Quantum Logic would not be the discovery that incommensur-
ability is a coherent notion, but rather the discovery that there actually are empirically
significant incommensurable propositions. This is something that couldn’t have been
known a priori, and so it couldn’t have been known a priori that Classical Logic is
inadequate for describing physical reality. But just as it could be and arguably was
known a priori that geometry didn’t have to be Euclidean, so it could have been,
though wasn’t, known a priori that I through V could all be true. Or so the quantum
logician would say.

In actual fact, the idea that Classical Logic might be inadequate wasn’t dreamt up as
an exercise in abstract mathematics. It was a response to empirical discoveries rather
than a speculation that guided them. However, the relevant question for answering
Kriske is whether the quantum logician’s proposal amounts to a coherent thesis. This is
a conceptual question, even though it almost certainly would never have arisen but for
certain scientific developments. Given Tupman’s understanding of Quantum Logic,
Kriske was right to accuse him of incoherence. However, Kriske’s specific criticisms
were directed at the claim that whenever a disjunctive Q-proposition is true, one of
its disjuncts is true. Those criticisms have no force here. His more general line of
attack was that the idea of “adopting a logic” is incoherent and that logic is ultimately
a matter of reasoning or “intuition.” The reply is that there is an issue for “reasoning”
or “intuition,” or perhaps better, philosophical reflection here: whether the quantum
logical proposal is coherent. Perhaps it’s not. But it won’t do, for instance, to insist
that from P ∧ (Q ∨ R) it follows that one of (P ∧ Q), (P ∧ R) is true. The quantum
logician claims that this overlooks a real possibility: the possibility that the pairs of
propositions (P, Q) and (P, R) might be incommensurable.
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8.1 Disjunction defined?

Some may think (Tim Maudlin, for example11) that disjunction is defined by the
requirement that for a disjunction to be true, at least one of its disjuncts must be
true. However, this definition operates against the background assumption that all
propositions have truth values. When that assumption falls away, it’s no longer so
clear that this is the best understanding of disjunction. Notice that there will be a
“truth-maker” for a quantum disjunction. It will be the truth of the proposition that
implies it. Also, there will be a true disjunction that is true by virtue of the truth of one
of its disjuncts, and that is equivalent to the anomalous disjunction with its non-true
disjuncts. Furthermore, if either disjunct of our anomalous disjunction were true, then
that disjunct would be a truth-maker for this disjunction. In other words, the quantum
disjunction can be made true by one of its disjuncts; in the right circumstances, it
behaves like a classical disjunction. What the quantum logician adds is that there are
also circumstances not hitherto dreamt of in our philosophies.

9 FROM LOGIC TO THE LAB

What’s been said so far about the coherence of Quantum Logic is at best a sketch of
a defense. However, suppose the sketch could be filled in. We come now to a harder
question. Suppose we allow that the logical relationships among properties could be
as the quantum logician says. How could we know – or at least reasonably believe –
that there really are systems with that sort of structure?

The answer to that question surely turns at least in part on another: what would
we expect to see if we encountered a system whose property structure fit Quantum
Logic? Even if it’s possible for propositions to be incommensurable, it’s not neces-
sary that any actually are; the non-classical features of Quantum Logic could fail
to fit the real world. To have reason to believe that the world has quantum-logical
features, we would have to have reason to think that those features would make a
detectable difference to the way things behave. And so we need to ask: what would
that difference be?

At this level of generality, there is no clear answer. To find out anything about a
system, we have to interact with it, and unless we know something about the sorts
of interactions that can take place, we have no basis for any expectations. What
would we need to assume about systems supposedly described by Quantum Logic
for empirical questions about them to have any content? I will take it for granted that
we assume each Boolean subalgebra to correspond to an observable. We would also
need to assume that we can prepare systems in such a way that certain Q-propositions
are true of them – that we can prepare states, in effect. And to have any assurance
of that, we would also have to assume that if a system is prepared with a certain
property, there are reliable ways of making it display the property. All of this needs
more spelling out. For the sake of brevity, I will gesture to the assumptions that Simon
Saunders makes use of in the first three sections of his “Derivation of the Born Rule
from Operational Assumptions.”12 However, a tricky issue remains.
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9.1 Two kinds of contextualism

A Q-proposition will typically belong to many Boolean subalgebras. Quantum logic
is non-contextual in that it counts the proposition as picking out the same state of
affairs regardless of which Boolean subalgebra we associate it with. This is, as it
were, ontological non-contextualism. However, there is a further empirical issue
about contextualism.

Suppose Q is a quantity with distinct values q1, q2 . . . qn and that R is another
quantity with values r1, r2, . . . rn. Suppose that none of the propositions “Q = qi”,
“R = ri” are true and none are false. (On the standard picture, this would amount to
supposing that the state vector is given by

|ψ〉 = �ici|qi〉 = �idi|ri〉
where none of the coefficients are zero.) Finally, suppose that |q1〉〈q1| = |r1〉〈r1|.

First, consider a measurement of Q. What should we expect?
We know what to expect in fact: repeated measurements of Q in state |ψ〉 should

yield distributions of results that accord with the Born rule. However, the question is
what we should expect if we look at things with an eye to figuring out what a quantum
logical world would be like.

Suppose we can expect to get some result or other – a macroscopic event that
betokens one of the eigenvalues qi. And suppose we want to assign probabilities to
such results. How should we do it?

It won’t do simply to appeal to the Born Rule. Our assumption is that the various
Q-propositions are related as Quantum Logic says they are. But Quantum Logic
is an account of relations of equivalence, exclusion and implication. That doesn’t
immediately tell us anything about experimental probability.

It might seem that we can easily bridge the gap. As we have already pointed out,
the quantum logical structure , together with the assumption that the proposition asso-
ciated with |ψ〉〈ψ | is true (call it P), yields a Gleason measure on all the propositions.
This measure is unique; there is no other way to assign numbers in [0,1] simultan-
eously to all the Q-propositions in such a way that the numbers yield measures on
each of the Boolean subalgebras. Moreover, the Gleason measure of a proposition
will be the very number given by the Born Rule. In this case, the Gleason measure
of proposition Q = q1 will be |〈ψ |q1〉|2, and since |q1〉 = |r1〉, this will also be
the Gleason measure of R = r1. Can’t the quantum logician simply treat this as a
probability?

Not without further assumptions. Let’s grant that when P is true, the system has
some feature represented by the fact that Q = q1 has Gleason measure |〈ψ |q1〉|2
– in this case, the same feature as the one represented by the fact that R = r1 has
the Gleason measure |〈ψ |r1〉|2. The question, however, is what understanding of this
feature Quantum Logic is entitled to. It’s not hard to see how it might fail to be a
probability.

A measurement of Q might elicit the property associated with Q = q1. Furthermore,
since this is the same property as the one associated with R = r1, that would also
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count as eliciting the property associated with R = r1. Parallel comments apply to a
measurement of R. But even though Quantum Logic is ontologically non-contextual,
two different probabilistic ways of eliciting one and the same property could yield two
different probabilities. Put another way, even though Quantum Logic treats quantum
quantities as ontologically non-contextual, it doesn’t rule out the possibility that they
are empirically contextual.14 Given that we’ve rejected the value-definiteness thesis,
Quantum Logic will have to say that a measurement typically doesn’t just reveal
something; it induces a change in the system. There’s nothing incoherent in the
thought that the way in which the change is induced might affect the probabilities for
one and the same micro-event to occur.

9.2 Trimming the context tree

In order to know what to expect if Quantum Logic is correct, we need to assume
more than that quantum mechanical propositions are related as Quantum Logic says
they are. One obvious additional assumption is that for ideal measurements, the only
properties that bear on the empirical probabilities are the ones encoded in the Quantum
Logical algebra of propositions – that those are what ideal measuring instruments
respond to. This is hardly an ad hoc move. Making such an assumption amounts to
assuming that the relations embodied in the Quantum Logical algebra of propositions
are fundamental for determining how quantum systems will behave; there are no
further “hidden variables.” This fits with the idea that quantum theory is a principle
theory whose fundamental constraints are given by the Quantum Logical algebra of
propositions – an idea that has long been part of Quantum Logic.14 If we make this
assumption, then Gleason’s theorem guarantees that the only possible assignments of
probabilities are the ones that accord with the Born rule. Though more needs to be
said, Quantum Logic at least offers the promise of a coherent, attractive foundation
for thinking about quantum probability. The probabilities emerge from the most basic
features of the quantum quantities: their logical relationships to one another.

10 THE QUANTUM LOGICIAN’S CONUNDRUM

We’ve described a version of Quantum Logic that avoids the incoherence of Tupman’s
approach but still counts as realist: it sees Quantum Logic as an hypothesis about the
way the world is structured. It also takes seriously Kriske’s challenge that logic must
be grounded in reasoning. It meets the challenge by claiming that classical logic has
overlooked a coherent possibility: a disjunction could be true even though none of
its disjuncts are. As a mere abstract claim, this would have little to recommend it.
However, we pursued the idea that at its heart, Quantum Logic is a view about the
way in which quantum-mechanical properties are related to one another. The thesis
about disjunction is grounded in this deeper picture. Furthermore, Quantum Logic
offers the beginnings of an appealing treatment of probabilities.

All of this seems to add up to an answer to the question “How would things behave
if Quantum Logic were correct?” The answer seems to be: they would behave the
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way that quantum theory, as usually understood, says they would. In fact, this answer
is problematic.

10.1 How Quantum Mechanical is a Quantum Logical world?

What has been said so far leaves some large questions. For one thing, nothing has
been said about dynamics. Measurement aside, dynamical transformations are usu-
ally thought of in Quantum Logic as automorphisms on the algebra of propositions;
every unitary transformation on a Hilbert space induces such an automorphism. How-
ever, we can’t leave measurement aside, and Quantum Logic as presented here can’t
avoid the measurement problem. Measurements are stochastic changes in the prop-
erties of the systems, and they can’t be modeled by automorphisms on the algebra.
Quantum Logic has nothing to say about what induces those changes. Worse still, if
the explanation for non-unitary change is some additional variable, it will no longer
be clear that empirical probabilities should depend only on which Q-propositions are
true before the measurement and on what’s encoded in the algebra of propositions.
This puts Quantum Logic’s account of quantum probability at risk.

Of course, it’s not clear that quantum mechanics itself has much to say about
what why measurements have results. The measurement problem, after all, is the
problem of explaining how quantum mechanics can provide a satisfactory account
of measurement. Perhaps the Quantum Logician can punt on this issue. It’s not clear
that in order to be viable, Quantum Logic has to answer all interpretive questions.
All the quantum logician need claim is that the structures Quantum Logic posits are
part of the story of why quantum systems behave as they do.

There’s an obvious related issue. Since Quantum Logic posits indefinite values,
the problem of Schrödinger’s cat looms on the horizon. Once again, the difficulty
isn’t peculiar to Quantum Logic, but the rejection of value-definiteness means that
Quantum Logic can’t dodge the problem in any easy or obvious way. Still, we might
say, although Quantum Logic must be consistent with some acceptable solution to
these problems, it needn’t contain the solution itself.

And then there’s locality. If a pair of electrons is in the singlet state, then the
quantum logician is committed to saying that none of the local spin quantities have
values. However, after a spin measurement on one of the systems, what was once
indefinite on the distant system will become definite. Something has changed “there”
because of something that happened “here.” Quantum Logic may be able to avoid
ontological non-locality, but it’s hard to see how it can steer clear of non-local causal
influences. Furthermore, we have the familiar problem of selecting the hyperplane
on which the change occurs.

Once again, we have a difficulty that’s hardly unique to Quantum Logic. But that
excuse may be wearing thin. Quantum Logic appears to have nothing to contribute to
the problem of explaining why measurements have results; it practically ensures that
we will face the problem of Schrödinger’s cat; and it seems to be on a collision course
with special relativity. But measurements do have results, superposed cats appear to
be mythical beasts, and conflict with special relativity is to be avoided where possible.
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Although we pointed out that there are lingering issues about contextualism, the
area where Quantum Logic seems to show the most promise is in understanding
quantum probability. However, it’s not clear that Quantum Logic has any real advant-
age here. Recent work by Deutsch15 and Wallace16 on probability in the Everett
interpretation has been extended by Simon Saunders17 to all interpretations that treat
different ways of performing measurements as equivalent whenever they are unitarily
equivalent. Saunders shows, generalizing Deutsch’s result, that with this assumption,
we can derive the Born rule from what he refers to as operational assumptions. The
proof is compact and elegant; no need for Gleason’s theorem.

We’ve arrived at the conundrum. For it to be plausible that Quantum Logic is a
coherent thesis, there has to be a good answer to the question of what the world would
be like if it were quantum logical. We know that the world acts the way that quantum
mechanics says it does, and we know that Quantum Logic fits neatly into the standard
mathematical apparatus that quantum mechanics uses. But quantum mechanics is not
just its mathematics; it’s also a set of techniques and practices for applying the math.
We know that trying to think of that mathematical apparatus as a depiction of the world
leads to the frustratingly hard problems of interpretation that have kept workers in the
foundations of physics employed for decades. It may be that the usual mathematical
apparatus is nothing but the guts of a highly successful prediction machine that can’t
be taken at face value. And it may be that Quantum Logic is the purest expression of
what makes the standard theory so hard to interpret!

11 INCONCLUSIVE CONCLUDING THOUGHTS

The version of Quantum Logic under consideration here is an attempt to follow the
realist instinct that motivated Western Ontario-style quantum logic thirty odd years
ago. What’s gone are the twin commitments to definite values and to the thesis that
measurements simply reveal. The realism that remains consists in two things: first, the
claim that quantum properties really embody the logical relations that Quantum Logic
says they do, and second the claim that this fact helps explain why quantum systems
behave as they do. And while bivalence is gone, this version of Quantum Logic takes
the Gleason measures of propositions to be real features of the system. If we were to
take Gleason measures as truth values, then even though bivalence itself would be
gone, we would have a definite though non-standard realist understanding of truth.

This is by no means the only approach to quantum logic (lower-case to indicate
the generic.) Much work done under the heading “quantum logic” is frankly opera-
tional and makes no radical claims about the structure of properties.18 More recently,
William Demopoulos has offered an understanding of quantum logic according to
which the logical relations among quantum propositions aren’t represented by the
structure referred to here as Quantum Logic, but by a much less constraining struc-
ture that allows every quantum mechanical proposition to be determinately true or
false. However, on Demopoulos’s view complete knowledge of a quantum system is
impossible in principle; the structure that we have been calling Quantum Logic has
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epistemic rather than alethic significance. It represents constraints on our knowledge
of the quantum world.19

Quantum mechanics is strange business and whatever the true story of the quantum
world may be, it’s safe to say it’s weird. Wildly different interpretations abound; none
can claim wide allegiance. Worse still, it’s far from clear how we should even go about
deciding among the competitors. Bohmian mechanics is consistent, far as I know. Is it
true? How would we decide? The Everett interpretation is probably consistent. It may
even be able to make sense of the probabilities, though I have my doubts.20 But even
if such doubts can be resolved, many of us find it hard to imagine actually believing
that the picture is correct. However – and not helpfully for getting at the truth – all
of this may be a matter of taste. Quantum Logic invokes its own incredulous and
irrefutable stares.21

So there we are. Perhaps for purely sentimental reasons, I’d like to think that
Quantum Logic, understood in a realist way, is a coherent conjecture, and that it
can make some genuine explanatory contribution to our understanding of quantum
systems. I’d like to think this; I’m not quite ready to say it isn’t so. But if the True
Believers were asked to stand, I fear I’d be huddled in the corner with those of
flickering faith.
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pieces by Deutsch and Wallace cited above.) I do, however, harbor grave doubts about whether a
rational agent is in any way constrained to treat possibilities that have very different consequences for
how the branching will unfold as though they were equivalent for purposes of probability.

21 With apologies to David Lewis, who famously remarked, when confronted with certain critics of his
modal realism, that it’s hard to refute an incredulous stare. For Lewis’s methodological discussion of
the incredulous stare, see Lewis, David K., On the Plurality of Worlds. New York: Blackwell (1986)
p. 133 ff.
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