

Table of Contents
VBScript Programmer's Reference...1

Introduction...6
 Who is this Book For?..6
 How to Use this Book...6
 What is VBScript?..7
 What Can You Do With VBScript?..11
 What Tools Do You Need to Use VBScript?...14
 What's New in VBScript 5?..15
 Code Conventions...17
 Tell Us What You Think...17
 Customer Support...18

 Chapter 1: A (Very) Short Introduction to Programming..19
 Overview...19
 Variables and Data Types...19
 Control of Flow...23
 Operators...31
 Organizing and Reusing Code..32
 Top−Down vs. Event Driven..35
 Some Guidelines to Keep in Mind..37
 Suggestions for Further Reading..39

 Chapter 2: Variables and Data Types..40
 The Visual Basic Data Types..40
 The Variant: VBScript's Only Data Type...42
 Variables in VBScript...60
 Literals and Named Constants..65
 Complex Data Types...69

 Chapter 3: Control of Flow...77
 Branching Constructs..77
 Loop Constructs..81

 Chapter 4: Error Handling, Prevention and Debugging...93
 Overview...93
 Introduction...93
 Seeing the Error of your Ways..94
 Different Types of Errors..98
 What Can We Do About Errors?..105
 Debugging...120
 Common Errors and How To Avoid Them..127
 Summary...128

 Chapter 5: Using COM Components and Objects...129
 Overview...129
 Introduction to COM components and Objects..129
 Object and Object Interfaces...131
 What COM Components and Objects are Available?..137
 Objects and the Variant data type...138

i

Table of Contents
 Chapter 5: Using COM Components and Objects

 Properties and Methods...139
 Object Scope, Lifetime and References..141
 Using the With Statement with Objects..145
 Create your own COM Objects...146
 Summary...146

 Chapter 6: Using COM Components with MTS...147
 Overview...147
 A Quick Introduction to MTS...147
 Advantages of using MTS..149
 Next Step: COM+...158
 Summary...160

 Chapter 7: The Built−In and Scripting Runtime Objects..162
 Overview...162
 Runtime vs. Built−In − What's the Difference?..162
 Built−In Objects..162
 Regular Expressions..163
 Scripting Runtime Objects..173
 Summary...182

 Chapter 8: Classes in VBScript (Writing Your Own COM Objects)...183
 Classes vs. Objects vs. Components...183

 Chapter 9: Windows Script Components..204
 What Are Windows Script Components?...204
 What Tools Do You Need?...204
 The Script Component Runtime...205
 Script Component Files..206
 Exposing Properties, Methods, and Events...211
 Creating Registration Information..214
 Creating the Script Component Type Library..216
 Interface Handlers...218
 Compile−time Error Checking..220
 Using VBScript Classes in Script Components..220
 Summary...227

 Chapter 10: The Windows Script Host..228
 Overview...228
 What Tools Do You Need?...228
 What is the Windows Script Host?...229
 Running Scripts with Windows Script Host...230
 Using .WSH Files to Launch Scripts..232
 Windows Script Host Intrinsic Objects...232
 Summary...263
 Additional Resources..263

ii

Table of Contents
 Chapter 11: General Client−Side Web Scripting...265

 What Tools Do You Need?...265
 How Browser Scripting Works...265
 The Various Scripting Languages − What's Best for the Browser...266
 Responding to Browser Events...268
 Validating Forms..272
 The Document Object Model..276
 Summary...280

 Chapter 12: High−Powered Client Scripting..282
 Technology Requirements..282
 Importance of Browser Security Settings...282
 Scriptlets − Ancestors of Behaviors..282
 Managing Events..288
 Behaviors..292
 HTML Components..295
 Remote Scripting..304
 Summary...310

 Chapter 13: HTML Applications (HTAs)...311
 What Tools Do You Need?...311
 What is an HTML Application?...311
 How to Create a Basic HTA...312
 The <HTA:APPLICATION> Tag..314
 HTAs and Security..320
 HTA Deployment Models...324
 What Isn't Supported With HTAs?...326
 Summary...327

 Chapter 14: Server−Side Web Scripting With ASP...328
 Overview...328
 The Anatomy of the HTTP Protocol...328
 Introducing Active Server Pages..333
 The Active Server Pages Object Model..336
 Using Active Server Pages Effectively...352
 Summary...358

 Chapter 15: Talking to Databases: ActiveX Data Objects...359
 What Tools Do You Need?...359
 The Evolution of ADO..359
 What Are ActiveX Data Objects?...360
 The ADO Objects...361
 Summary...374

 Chapter 16: Microsoft Script Control..375
 Why Script your Application?..375
 What tools do you need?...376
 Adding Script Control to VB Application..377
 Macro and Scripting Concepts..380
 The Script Control Object Model...381

iii

Table of Contents
 Chapter 16: Microsoft Script Control

 Other Scripting Elements..396
 Error Trapping with Script Control...397
 Sample Applications...399
 Summary...408

 Appendix A: Visual Basic Functions and Keywords..409
 Overview...409
 Operators...409
 Math Functions...417
 Date and Time Functions and Statements...422
 Unsupported Array Functions and Statements...435
 Unsupported String Functions, Statements and Constructs..449
 String Constants..451
 Conversion Functions...451
 Unsupported conversion functions...456
 Miscellaneous Functions, Statements and Keywords...457

 Appendix B: Differences between VB/VBA and VBScript5..471

 Appendix C: Code Conventions...474
 Variable Naming Conventions..474
 Procedure Naming..475
 Indentation..475
 Commenting..476

 Appendix D: Visual Basic Constants Supported in VBScript...477
 Color Constants...477
 Date and Time Constants..477
 Date Format Constants..478
 Miscellaneous Constants...478
 MsgBox Constants..478
 String Constants..479
 Tristate Constants...479
 VarType Constants..479

 Appendix E: VBScript Error Codes and the Err Object...481
 Runtime Errors..481
 Syntax Errors..482
 Err Object and On Err statement...484

 Appendix F: The Scripting Runtime Library Objects Reference...494
 The Scripting.Dictionary Object...494
 The Scripting.FileSystemObject Object...495
 The Scripting.TextStream Object...500

 Appendix G: Windows Script Host 2.0..502

iv

Table of Contents
 Appendix H: The Browser Object Model IE4..514

 The Object Model In Outline..514
 HTML and Form Controls Cross Reference...530

 Appendix I: The Browser Object Model IE5...533
 The Object Model In Outline..533
 HTML and Form Controls Cross Reference...545

 Appendix J: The Integral ASP Objects...548
 The ASP Object Model...548
 The Application Object...549
 The ASPError Object..550
 The Request Object...550
 The Response Object..551
 The Server Object...553
 The Session Object...554

 Appendix K: ADO Object Summary, Constants, and Data Types...557
 Microsoft ActiveX Data Objects 2.5 Library Reference..557
 ADO Constants...571
 ADO Data Types...605

 Appendix L: The Microsoft Script Encoder..611

v

VBScript Programmer's Reference
Susanne Clark,
Antonio De Donatis,
Adrian Kingsley−Hughes,
Kathie Kingsley−Hughes,
Brian Matsik,
Erick Nelson,
Piotr Prussak
Daniel Read,
Carsten Thomsen,
Stuart Updegrave,
Paul Wilton

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
Library of Congress Card Number:

ISBN: 0−7645−4367−9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QZ/QW/QT/1N

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per−copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750−8400, fax (978) 646−8700. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572−3447, fax (317) 572−4447, E−Mail:
permcoordinator@wiley.com

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

1

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762−2974, outside the U.S. at (317) 572−3993 or fax
(317) 572−4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, the Wrox Programmer to Programmer
logo and related trade dress are trademarks or registered trademarks of Wiley in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this
book

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products mentioned in
this book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this
information.

Credits

Authors
Daniel Read
Susanne Clark
Antonio De Donatis
Adrian Kingsley−Hughes
Kathie Kingsley−Hughes
Brian Matsik
Erick Nelson
Piotr Prussak
Carsten Thomsen
Stuart Updegrave
Paul Wilton

Technical Reviewers
Chris Behrens
Steve Danielson
John Granade
Michael Harris
Richard Harrison
Dan Pfeffer
Nic Roche

Design / Layout
Tom Bartlett
Mark Burdett
William Fallon
Jonathan Jones
John McNulty

VBScript Programmer's Reference

2

Additional Material
Jerry Ablan
Jeff Hart
Alex Homer
David Sussman
Chris Ullman

Illustrations
William Fallon
Jonathan Jones

Editors
Gregory Beekman
Lums Thevathasan
Robert Shaw
Devin Lunsford

Cover Design
Chris Morris

Project Manager
Chandima Nethisinghe

Managing Editor
Victoria Hudgson

Index
Martin Brooks

Development Editor
Peter Morgan

About the Authors

Daniel Read

Daniel Read is Senior Developer at Compass, Inc. in Atlanta, GA, where he and fellow team members build
IIS/ASP/VB/MTS e−commerce web sites, as well as client/server and distributed systems. Daniel sometimes
longs for his simpler, statically linked days as an X−Base developer and DOS command line junkie, but today
enjoys the power afforded by the arsenal of Microsoft's Windows DNA tools and technologies. His other
interests include camping, crime fiction, listening to music of all sorts, and going to as many concerts as he
can. He's not sure if co−authoring a programming book will help him meet the woman of his dreams, but it
sure would be nice.

Carsten Thomsen

Carsten Thomsen is a Microsoft Certified Systems Engineer, who started programming in Visual Basic back
in 1993, when it was version 3.0. Presently he is pursuing Microsoft Certified Systems Developer certification
and was recently awarded the MVP title for his contributions to the Microsoft Visual Basic newgroups. For
the last 4 years he has been developing 2−tier and 3−tier client/server solutions based on MS SQL Server,
MTS and MSMQ, but has more recently been moving towards browser−based development, based on MS IIS,

VBScript Programmer's Reference

3

using ASP/VBScript, COM/ActiveX components and Visual Basic WebClasses.

In whatever spare time he has, he enjoys traveling and spending time with his two daughters, Nicole and
Caroline, and his girlfriend Mia. He works out at a local gym and (at spectator−level) enjoys ice hockey and
soccer. He is generally considered a computer freak, and spends too much time at the computer.

Piotr Prussak

Piotr Prussak works for ACEN in Buffalo, NY as a developer (although he is originally from Poland). He
creates ASP, VB and Java Applications for the company and its clients. He also spends some time working
with the SQL server and ColdFusion, probably more than he should. When he's not programming and
mentoring, he either writes stuff, or edits stuff written by others. Sometimes he sleeps, eats and relaxes like
any other human being. In a past life he used to be a photographer, but that was just too relaxing.

Piotr (or Peter, as some might call him) is married to lovely Joanne, who is an MIS student at a local
University. Sometimes they travel all over the world and are disconnected from the world of computers and
24 hour news.

Brian Matsik

Brian Matsik is the President and Senior Consultant at OOCS in Charlotte, NC. He is MCSD certified and has
been working with Visual Basic, VBScript, and VBA for over six years. He currently specializes in ASP, SQL
Server, and VB COM. Brian can be reached at brianmat@oocs.com.

Brian would like to thank Tracy for her support, Mike Dunner for keeping him on his toes when it comes to
ADO and MTS, and Mark Harris for taking care of the books while he stays glued to the PC.

Paul Wilton

After an initial start as a Visual Basic applications programmer, Paul found himself pulled into the net and has
spent the last 18 months helping create internet and intranet solutions.

Currently he is developing web−based systems, primarily using Visual Basic 6 and SQL Server 7, along with
numerous other technologies.

Paul would like to wish lots of love to his fiancée Catherine, who ensures his sanity chip remains plugged in.

Antonio De Donatis

Antonio De Donatis (adedonatis@yahoo.com) began programming in 1984, using a mixture of Basic and
assembler on a Commodore 64. Since then, he has designed software the object−oriented way, employing
more programming languages and technologies than he can count. He finds programming to be one of the best
activities to exercise creativity and to be intellectually active. He has worked for many of the major firms in
IT either as employee or as freelance. His current interests include all the technologies involved in the design
and implementation of e−commerce solutions. Antonio holds a BS degree in Computer Science from Pisa
University (Italy) and he is a Microsoft Certified Professional.

Susanne Clark

Susanne has worked with the latest internet technologies, including DHTML, XML, XSL, IE5 programming
and scripting, and has contributed chapters on these subjects to the recently published Professional Visual

VBScript Programmer's Reference

4

InterDev 6 Programming from Wrox Press. She is currently working as a user interfaces developer in Seattle,
USA. When not dealing with computers, she enjoys spending time with her cats, and reading mystery books.
Susanne would like to thank Luca for all of his patience and help. Ti amo.

Adrian Kingsley−Hughes

Adrian Kingsley−Hughes is Technical Director of Kingsley−Hughes Development Ltd., a UK−based training
and development firm, where he is a consultant in Internet Development and Windows platform
programming. He has co−authored 8 books for Active Path and Wrox Press. His abiding passion is the Search
for Extra Terrestrial Intelligence and he is the Welsh Regional Coordinator for SETILeague Inc. In his spare
time he writes horror novels, plays the didgeridoo and is currently building a radio telescope in his back yard.

Kathie Kingsley−Hughes

In addition to writing web development books for Active Path and Wrox Press, Kathie Kingsley−Hughes is
the Managing Director of UK−based Kingsley−Hughes Development Ltd., where she specializes primarily in
the development and delivery of training courses in web development skills. She began teaching in 1985 and
has lectured at several UK colleges and other training establishments and she is currently teaching at ZDU.
Any spare time is taken up with astronomy, photography and hiking in the mountains.

Eric Nelson

Erick Nelson is an 18 year old Internet developer and programmer, and creator of the award winning website
cues.com. about which he spoke at both the 1998 and 1999 Professional ASP Developer's Conference. Erick
began his programming career at age 16, and now has experience using ASP, VBScript and Visual Basic to
design sites.

Erick enjoys playing computer games and working on his online RPG system. His outdoor activities include
mountain biking, swimming, cliff jumping, playing tennis and snow skiing. He can be reached at
erick@ericknelson.com.

Erick would like to thank his Mom, Cindy Cashman, for helping him start his business, and his Dad, Mark
Nelson, for teaching him how to build things and raising him better than anyone could under the
circumstances. Thanks must also go to Bill Stroud and Charlie Bass.

VBScript Programmer's Reference

5

Introduction
The aim of this book is to provide an introduction to, overview of, and reference for:

The VBScript 5 language•
The many 'contexts' in which the VBScript language can exist and be useful•

Our first goal probably seems pretty straightforward: we're going to cover what you need to know to write
VBScript code. We'll go over general syntax, functions, keywords, style, error handling, and similar
language−specific topics. However, VBScript the language is of limited use without something to do. That's
where the scripting contexts (or hosts) come in.

Microsoft has done an excellent job over the last couple of years in building robust support for scripting into
the Windows operating systems (Windows 95/98, Windows NT, and now, Windows 2000). Support for
scripting is an important aspect of a mature operating system environment. 'support for scripting' simply
means that the operating system provides a mechanism through which users can write programs in a scripting
language, such as VBScript. A scripting language differs from 'normal' programming languages in some key
ways, which we will discuss in this introduction. Scripting allows you to extend the capabilities of an existing
computer environment. This book will provide you with the knowledge you need to leverage all of this
dormant power.

Who is this Book For?

VBScript, and this Programmer's Reference book, can be extremely useful to all sorts of information
technology professionals, and even for the casual user who wants to automate some common tasks or learn a
little bit about the art and science of programming. For example:

Network administrators can use VBScript with the Windows Script Host to write powerful login
scripts and automate formerly time−consuming and error−prone tasks all without using clumsy DOS
batch files

•

Application developers can use VBScript to extend their Windows applications with powerful macro
and customization features

•

Web developers and designers can use VBScript with DHTML to create amazing browser−based and
stand−alone HTML Applications

•

Web application developers can use VBScript to create dynamic, high−performance web sites with
Internet Information Server and Active Server Pages

•

These are just examples the full range of people and tasks for which VBScript can be useful cannot be
expressed in a single paragraph. If you're not sure if this book is for you, or if VBScript can help you, please
read on because VBScript can do a lot more than you might think.

How to Use this Book

This book is divided up into three parts. Part 1 covers the VBScript language the keywords, functions, syntax,
etc. For those who are new to writing code, Part 1 also includes a very short introduction to programming.
Advanced readers might not need to read Part 1 straight through, but should probably read the chapters on
VBScript's new support for classes and Windows Script Components, a very exciting new technology.

6

Part 2 covers what we call 'VBScript in Context.' Although powerful in its own right, the VBScript language
derives its real power from:

The hosts that support it such as the Windows Script Host (formerly known as the Windows
Scripting Host) and Active Server Pages

•

The objects that are made available to it, such as the Scripting Runtime Objects and Active Data
Objects

•

You'll learn, among lots of other things, how to create an HTML Application and how to write a scriptlet and
attach it to a DHTML behavior.

At the end of the book there is a large set of appendices, which cover things such as naming conventions, the
syntactic differences between Visual Basic and VBScript, and the object models that are important to
VBScript developers. Although the chapters will cover these object collections in detail, the object diagrams
provide a very helpful high level view of the objects and their properties and methods. Appendix A also
contains a complete reference to the functions, keywords, and operators of the VBScript 5 language.

Finally, don't forget that we, at Wrox, offer comprehensive on−line support and references.
www.webdev.wrox.co.uk has an HTML listing and www.asptoday.com is a dedicated ASP resource center.

Important Advanced readers who are already familiar with VBScript and the concept of a scripting
language might want to skip these introductory sections. However, if you are not yet
familiar with all of the new features of VBScript 5 and with the new types of solutions
supported by Microsoft's latest scripting hosts, you might want to take a look at the
What Can You Do With VBScript? and What's New in VBScript 5 sections of this
Introduction.

What is VBScript?

As its name suggests, VBScript is what's known as a scripting language. How is a scripting language
different from other types of programming languages? One big difference is the point at which the code you
have written is 'compiled'.

A Little Background

All programming languages are compiled at some point otherwise the computer would not be able to respond
to their commands. As you undoubtedly know, at the lowest level, the language of a computer is broken down
into a series of 1's and 0's. This ones−and−zeroes language is also known as binary or machine language.
Different combinations of 1's and 0's mean different things to the low−level hardware of the computer. One
binary arrangement of 1's and 0's might mean add these two numbers together. Another might mean, store this
value in such−and−such a memory address. This is an oversimplification, but hopefully you get the idea. It's
pretty amazing, but all of the different things you can ask a computer to do are ultimately broken down into a
fairly small set of machine language commands.

There was once a time when programmers had to write computer programs in binary as you might imagine,
this is pretty difficult. Over time, more advanced programming languages were developed, each of which
added ever−higher levels of abstraction, so that programmers could use syntax that was a little closer to the
English language. However, even as programming languages have become increasingly abstract, the computer
hardware has continued to understand only machine language.

 What is VBScript?

7

Scripting Languages are Compiled Later than Other Languages

Compilation is the process of turning the higher−level language into the binary that the computer
understands. The difference with 'normal' languages and scripting languages is not whether they are compiled
but when. Languages like C and C++ are commonly known as compiled languages. This may seem a bit
confusing since we just said that all languages are ultimately compiled, but they are called this because they
are compiled down to machine code at design time. That is, the programmer writes the code, then issues a
command to a special program called a compiler to compile the code down to machine language.

A scripting language, on the other hand, is 'compiled' (or more precisely, 'interpreted') at runtime, which
means that until it is executed, the script remains a plain text file. If you looked at a compiled C program, it
would not make any sense, because it's been broken down into machine language. However, a script is always
stored as a plain text file. You can write and read the script in plain text, change it at will, and just tell a script
engine to run it. You do not have to go through a separate design−time step to compile the program. Certainly,
there are special formatting conventions that you must follow when you write a script, but the code itself
always remains plain text that you can read and edit in any text editor (such as the Notepad application that is
included with all Windows versions).

A script is compiled at runtime by a scripting engine, which is a special program that knows how to interpret
the text you type into the script and turn it into commands that the computer can understand. In this respect, it
is not unlike the C programmer's design−time compiler.

Compiling a program at design time affords three major advantages, which, conversely, translate into
disadvantages for a scripting language such as VBScript:

A compiled program will run much faster when executed. This is because it has already been
translated into machine language. Since the translation step does not need to take place every time the
program is executed, it will run faster than a script that must be compiled at runtime, every single time
it is run.

•

Once translated into machine language, a compiled program cannot be changed. This protects the
intellectual property of the developer or company that owns the program because it is compiled into a
form that is unreadable. A curious user or malicious hacker cannot read the code and see how the
developer achieved their results, or 'borrow' parts of the code for their own. Since a script is plain text,
anyone who can gain access to the text file can read it. Some scripts, such as those embedded in
Active Server Pages (which are a combination of HTML and script), are not normally available to the
user to see because they reside on the server, and the web server prevents them from being
downloaded directly. However, other kinds of scripts, such as those embedded in a client−side web
page or a Windows Script Host file that a network administrator places on everyone's machine, can be
opened, read, and easily copied.

Important Ironically, this apparent transparency disadvantage has helped scripting achieve huge
gains in popularity in recent years. Since you can find script code all over the web, it's
relatively easy for people to find it, read it, copy it, and learn from it. Microsoft has
developed a new technology for Internet Explorer 5, called script encoding, that helps
web script developers protect their intellectual property.

•

A compiler catches syntax errors at design time but syntax errors in a script cannot be caught until
runtime. Even expert programmers make syntax mistakes when they write code. Both a design−time
compiler and a runtime script engine expect the code you write to follow certain rules of syntax. For
example, if you call a function that displays a message to the user, you must use the proper name for
the function, and pass the parameters that the function expects in the proper order. If you don't do this,
the compiler or script engine will complain at you. With a compiled language, such inevitable

•

What is VBScript?

8

mistakes are caught at design time, and the compiler won't compile the program until the programmer
fixes them. However, since a scripting language is not compiled until runtime, syntax errors might
slip through for your users to see.

Script languages have the following advantages over compiled languages:

Script code can be embedded as plain text with other types of code, such as HTML, XML, and scripts
written in different languages. The classic example of this is web scripting, in which you can mix
scripts in different languages (which provide functionality) with HTML (a 'markup' language which
handles presentation) and XML (another markup languages that handles data structure) all in the same
file. This mixture of plain−text script code, HTML, and XML can be downloaded very quickly into a
web browser, at which time it is executed. While you can do this with a compiled language, such
solutions are usually proprietary in nature and don't work in different brands of browsers.

•

Script code is very good for quick, ad−hoc solutions. You can whip out a simple script to solve a
simple problem in no time. For example, if you wanted to backup several groups of files stored in
different directories on different drives, you could write a simple script that would find these files and
compress them into an archive file. You could, of course, also do this by hand. However, if this were
a task that you needed to repeat on a regular basis, writing a script to perform the task for you would
probably make repetitions of the task faster and more reliable.

•

Since scripting does not require a complicated Integrated Development Environment (IDE), such
as those used by Visual Basic and C++ programmers, a scripting language is generally easier to learn.
For a person new to software construction, scripting can be a great entryway into the vast world of
programming. Scripting languages are generally more forgiving than compiled languages, and, as
we've mentioned, they're ideal for automating simple tasks. VBScript, with its roots in the BASIC
programming language, is especially easy for a non−programmer to learn.

•

VBScript, Visual Basic, and Visual Basic for Applications

Microsoft is famous for unleashing myriad acronyms and often confusing terms and phrases onto the world,
and you'll encounter plenty of these in this book. This includes the alphabet soup of VBScript (VBS), Visual
Basic (VB), and Visual Basic for Applications (VBA). The distinction between these three can be somewhat
confusing. Hopefully, we can make things a little clearer.

We'll start with Visual Basic of which both VBA and VBScript are subsets. Visual Basic is a stand−alone,
compiled language, with its own Integrated Development Environment (IDE), which includes a language
editor, debugger, form designer, project manager, source code control integration, wizards, and other features
that facilitate application development. Visual Basic is typically used to develop stand−alone, compiled
applications and components. VB provides a full set of language features, including the ability to access the
Windows API, which is a set of low−level functions that allow an application to directly access the
functionality of the Windows operating system.

Important It is not exactly correct to call Visual Basic a 'compiled' language. It is more like a hybrid
between a compiled language and an interpreted language. VB applications are compiled, but
rely on a large 'runtime library', which is a set of DLLs that must be installed in order for the
compiled VB application to run. VB applications can also be compiled to interpreted 'P−Code',
which is a kind of intermediate compilation step that still requires some compilation at runtime
(and is therefore slower). However, since version 5 of Visual Basic brought 'real' compilation to
VB, few VB developers compile to P−Code any longer.

Finally, to add to the confusion, although VBA is, in terms of functionality, considered a sub−set
of Visual Basic, VB actually uses VBA as its core. The VBA library defines the Visual Basic

What is VBScript?

9

language itself and allows other applications (such as Word and Excel) to add (or host) Visual
Basic capabilities. In a sense, the VB IDE is simply another one of these hosting applications.

Visual Basic for Applications is an 'embedded' version of Visual Basic. VBA can be integrated with an
existing application to provide a facility for customization and extension of the application that hosts VBA.
The best example of this is the Microsoft Office family of applications. Microsoft Word, Excel, and Access
(among others) all support VBA, and even provide a full−blown VBA Integrated Development Environment
similar to VB's stand−alone IDE. Using the VBA IDE, you can write Visual Basic code to provide rich
functionality that goes well beyond the basic word processing, spreadsheet, and database features provided by
these applications. Many of the same powerful language features of VB are available in VBA, the difference
being that VBA code can only live in the context of the hosting application. VBA can be compiled to
'P−Code' within the hosting application, which makes it faster than VBScript, but not as fast as fully compiled
VB applications and components.

Although VBScript is similar syntactically to VB and VBA, it is quite a different animal. Like VBA,
VBScript is also an embedded language and cannot be compiled into a stand−alone application or executable.
However, VBScript depends on a scripting host, which is a special application that knows how to compile and
execute plain−text VBScript code at runtime. Originally, Microsoft created VBScript as an alternative to
Netscape's JavaScript. Besides a simple desire to beat Netscape at their own game, Microsoft wanted to
provide a way for Visual Basic developers to embed script code in plain−text HTML pages, which can't be
done with design−time−compiled VB and VBA. Over time, Microsoft expanded support for VBScript beyond
simple client−side HTML scripting in Microsoft's Internet Explorer web browser. VBScript still requires a
'host', however, and we're going to learn about these hosts in this book.

Is VBScript a 'Real' Programming Language?

Professional software developers who are masters of full−blown, stand−alone, compiled languages such as
C++, Visual Basic, and Delphi often look down their noses at VBScript, and at scripting languages in general.
'Scripting is not real programming,' they'll say. This point of view is understandable, and in a sense correct,
since a scripting language generally does not provide the kind of flexibility, control, power, and speed that a
'real' programming language does. However, this point of view fails to account for the fact that a scripting
language like VBScript exists in order to solve a different set of problems. Microsoft did not create VBScript
to compete with languages such as VB and C++, but rather to supplement them, to solve problems that they
are either not capable of handling, or for which they would be overkill.

In many ways, a canoe cannot compare to a much larger, more powerful, and faster speed boat. Speed boats
have comfortable seats, are much less susceptible to tipping over, have powerful engines, can tow water
skiers, and are ideal for large, treacherous bodies of water that would swallow a canoe in a matter of minutes.
A canoe, however, can go through narrow channels and shallow water that a larger boat never could, is much
more nimble, can easily navigate through rocky whitewater rapids, and, if it hits a dry spot, can easily be
picked up and carried to the water on the other side. Different tools are better for different problems.

VBScript is a worthy, and in some cases crucial, addition to any developers toolbox. Haven't you ever seen a
speed boat towing a canoe behind it?

Other Languages, Other Platforms

As you've surely guessed by now, VBScript is not alone in the world of scripting languages. It's not even
alone in the smaller world of scripting languages produced by Microsoft. Microsoft also produces and fully
supports JScript, which can be used just about anywhere that VBScript can be used. Before VBScript version

What is VBScript?

10

5, JScript provided more features than VBScript. Awhile back, Microsoft pledged to keep VBScript on a par
with JScript when it comes to features and capabilities. They will always remain separate languages, with
different syntax and different ways of accomplishing the same thing, but Microsoft's goal is to make the
choice of which Microsoft scripting language to use a matter of preference, not necessity.

JScript is closer in the nature of its syntax to C, and therefore C and C++ programmers might be more
comfortable using JScript. JScript is also compatible with the ECMAScript standard. ECMAScript is a
web−scripting standard that was developed by the European Computer Manufacturers Association (ECMA).
The intent of ECMAScript is to provide a standard cross−platform scripting language, especially in the
context of web scripting. The latest versions of Netscape's JavaScript and Microsoft's JScript are ECMAScript
compatible, and in fact, both of these languages were used in the creation of the ECMAScript standard. You
can download a description of the ECMAScript standard (ECMA−262) from
http://www.ecma.ch/stand/ecma−262.htm.

VBScript is not ECMAScript compatible, and therefore cannot generally be used in non−Microsoft operating
systems (such as the many UNIX variants) or non−Microsoft web browsers (such as Netscape Navigator or
Opera Software's Opera). That said, third party companies have developed tools that enable VBScript support
in Netscape Navigator and in non−Windows operating systems. For example, NCompass Labs produces
scriptactive, which is a 'plug−in' for Netscape Navigator that allows that browser to host VBScript code and
ActiveX controls, which are not natively supported. You can reach NCompass Labs at
http://www.ncompasslabs.com/default.htm.

On the Active Server Pages front (see Chapter 14), two companies offer products that allow you to develop
VBScript ASP applications on several non−Windows platforms. The most well−known of these is Chili!Soft
(http://www.chilisoft.com/), which produces Chili!Soft ASP. According to the Chili!Soft marketing literature
'Chili!Soft ASP provides full ASP support for Web servers from Apache, Lotus, Netscape, O'Reilly and
Microsoft, running on Windows NT, Sun Solaris and IBM AIX, with other Web servers and Operating
Systems coming soon.' Another player in this market is Halcyon Software (http://www.halcyonsoft.com/),
which produces Instant ASP. According to the Halcyon marketing literature 'Halcyon's Instant ASP (iASP)
provides Microsoft−compatible Active Server Pages (ASP) functionality and capability on all Web server,
application server, and operating system platforms − from NT to Sun, Novell, AIX, AS/400, S/390, Apple,
OS/2 and Linux to Apache, Netscape, Websphere, and more.'

What Can You Do With VBScript?

VBScript by itself is a powerful language, but you really can't do anything with it without a host. A host is an
application that allows scripts written in VBScript to run within its context. Since VBScript cannot be
compiled like a normal application and run on its own, it must have a host to read the script and compile it.
This section contains a high level discussion of the many different ways you can use VBScript, and you'll find
that these different capabilities are intrinsically tied to a particular host. Each of these subjects will be
discussed in detail throughout the book.

The Windows Script Host

This Windows Script Host (WSH formerly known as the Windows Scripting Host) is a scripting host that
allows you to run scripts within the Windows operating system. This idea is very similar to UNIX Shell
scripting and DOS batch files. These scripts can be run from the command line (in a DOS command shell
window) or within native Windows. WSH is ideal for automating common tasks, writing network login
scripts, and administering an NT network. Besides just executing the scripts you write, the WSH also includes
and installs a set of objects that make it easy to access the Windows file system and environment. WSH

 What Can You Do With VBScript?

11

scripts are not limited to those written in VBScript. It can execute scripts written in any language that
conforms to the ActiveX Scripting specification, including JScript, Perl, and Python.

After covering the details of the VBScript language, this book will cover the Windows Script Host. The WSH
is a great way to try out many of the sample scripts and code snippets that appear throughout the book.
However, many of these examples will be dependent on a certain host. For instance, in order to try out some
Active Server Pages scripts, you'll need to install Microsoft's Internet Information Server or Personal Web
Server.

We will cover the Windows Script Host in Chapter 10.

Windows Script Components

A Windows Script Component (WSC) is a COM component that is written in a combination of script code
and XML. They can be used on the server to execute business logic, read and write to databases, and even
participate in Microsoft Transaction Server (MTS) transactions. You can even define events in a WSC. This
is all functionality that was previously only available to C++, Visual Basic, and Delphi programmers, and is
an exciting development.

In Chapters 5 and 6, you'll learn how, from VBScript, to use COM components and objects that are available
from Microsoft and other companies. In Chapter 8 you'll learn how to create classes in VBScript. Then, in
Chapter 9, we'll show how to group together one or more VBScript−based classes together into a Windows
Script Component. Since a WSC is just like any other COM component, you can even use them from other
COM−enabled languages such as Visual Basic and Delphi.

Client−Side Web Scripting

Client−side web scripting is something you probably encounter every day, and may not even know it. Even
the simplest HTML pages on the web today often contain script code. Client−side web scripts are downloaded
into the browser along with the HTML code that defines the layout of the web page. In fact, these scripts are
embedded in (and are a part of) the HTML code.

Client−side web scripting is a fairly large subject, with many books dedicated to it, and we're going to cover
as much of it as we can in this book. In Chapter 11, we'll talk about what we call 'general' client−side web
scripting. This includes simple things like adding dynamic effects with MouseOver events, as well as
validating and submitting forms to a web server. We use the term 'general' only because this type of scripting
has been around awhile and become commonplace. Web browsers from Microsoft and Netscape going several
versions back support general web scripting.

In Chapter 12, we'll introduce you to what we call 'high−powered' client side scripting. This includes subjects
such as Dynamic HTML (DHMTL), Behaviors, and HTML Components (HTCs). These are powerful
techniques and tools with which you can build rich web−based user interfaces that, besides looking great, help
maximize server resources and network bandwidth. We'll also discuss the trade−offs of using VBScript and
Microsoft's high−powered client−side scripting options, since these technologies are only supported by the
latest versions of Microsoft's Internet Explorer (IE) web browser. (The IE−only limitation used to be a major
drawback for someone considering writing a DHTML application, but HTML Applications now open up a
whole world of possibilities for script authors.)

What Can You Do With VBScript?

12

Server−Side Web Scripting

Server−side web scripting is accomplished with Microsoft's Internet Information Server (IIS) and Active
Server Pages (ASP). Internet Information Server is the sophisticated web server that Microsoft ships with the
Windows NT Option Pack, a free add−on for licensed users of Windows NT Version 4. Active Server Pages
are essentially HTML pages with embedded script code. ASPs can include client−side web scripts that will be
downloaded to the browser with the rest of the HTML, but also include scripts that are executed only in the
web server. These embedded server−side scripts are executed before the page is released by the web server to
be downloaded to the client's web browser. Using ASP scripts, you can dynamically change the content of the
page as it is being built. For instance, you could store a user's profile and preferences in a database, and use
these preferences to customize the content and appearance of the web page whenever the user requests it.

Don't dismay, though, if you are not lucky enough to have a dedicated NT Server with Internet Information
Server installed on it. For no cost, you can download Microsoft's Personal Web Server (PWS), which runs on
Windows 95 and Windows 98. Using Personal Web Server, you can develop your own Active Server Pages,
and open them in any web browser. We'll cover ASP in Chapter 14.

Client−Server Web Scripting (Remote Scripting)

Remote Scripting is a cool new technology from Microsoft that allows you to treat ASP pages as if they were
COM objects. From the client, you can 'call' the scripts embedded in an ASP page that's sitting on the server.
This is important, because it means you can keep complicated, lengthy, and/or proprietary business logic on
the server it won't be downloaded to the browser, but client−side scripts in the browser can execute it as if it
were. This also means less round trips to the server to reload entire pages. We'll discuss Remote Scripting in
Chapter 12.

HTML Applications

An HTML Application (HTA) is one of the most exciting script−related technologies to come from Microsoft
yet. Introduced with Internet Explorer Version 5, an HTML Application is a web page that runs in its own
window outside of the browser. The implications of this are significant. You can now use VBScript, HTML,
DHTML, Cascading Style Sheets (CSS), HTML Components, Windows Script Components, and all the rest
to build stand−alone graphical applications that do not require a web server or even a web or network
connection to run. Also, since HTAs run outside the browser, they are considered 'trusted,' which means they
are free of the security restrictions imposed by the browser. We predict that you will soon start seeing HTAs
everywhere.

As Internet Explorer 5 becomes as ubiquitous as previous versions of Internet Explorer have become, script
authors everywhere will be able to build and distribute non−web−dependent HTML Applications to users.
This should be especially popular with the Windows Script Host authors who have previously been limited to
lightweight popup dialog boxes for communicating with users. We'll cover HTAs in detail in Chapter 13.

Talking to Databases

Updating and reading information to and from databases is one of the most common needs of any developer,
regardless of language or platform. Certainly, most applications written for business use depend on databases.
VBScript developers are definitely not left out in the cold here. Microsoft's Active Data Objects (ADO)
provide VBScript authors with full access to just about any data storage mechanism available, including
relational databases (such as Access, SQL Server, and Oracle), object databases, flat files, and e−mail and
groupware repositories. In Chapter 15, we'll introduce you to ADO and show you the basics of reading from

What Can You Do With VBScript?

13

and updating database tables, calling stored procedures, and more.

Adding Scripting to your Windows Applications

Adding scripting and 'macro' capability to a Windows application written in C++, Visual Basic, Delphi, and
other languages used to be a complicated, often home−grown affair no more. Using the free Microsoft Script
Control, Windows developers can now extend their applications by adding support for VBScript, JScript,
Perl, and other ActiveX−enabled scripting languages. Applications can expose objects to the scripting engine
and allow end users and field implementers to customize the application, all with just a few extra lines of
code. We'll show you how in Chapter 16.

What Tools Do You Need to Use VBScript?

In it's simplest form, all you need to create and run simple VBScript programs is a plain text editor (such as
Windows Notepad) and the Windows Script Host. However, each of the many scripting hosts and components
that we'll cover in this book require that you install certain applications and components on your PC or
network. In order to keep you from having to jump all around the book to figure out what needs to be
installed, each chapter will start with a section called What Tools Do You Need?

That said, one of the first questions most people ask is 'What editor should I use?' This is a matter of personal
preference, and part of the decision hinges on whether or not you want to spend any money on an editor.
There are commercial and shareware products available that provide sophisticated features that are especially
useful for script developers. These features include color−coded syntax highlighting, automatic indenting,
automatic backups, branch collapsing, super−charged clipboards, and macros. Some people prefer to use the
simplest Windows text editor of them all, Notepad, which is usually installed automatically with Windows.

We do not endorse any particular editor (and this book will not use any examples that require you to use a
certain editor), but here is a list of some 'free' and commercial products that you might want to consider. Most
of the products have time or functionality limited demos that you can try for free. This is by no means a
complete list (there are dozens of text editors on the market), and you might want to explore the Internet for
more options. If you decide to use a shareware editor, we encourage you to register it and purchase a license.

These products are often a 'labor of love' for a programmer just like you, and registrations help keep the
product alive:

PC Editor Freeware Kazu Soft http://www.kazusoft.pair.com•
Programmer's File Editor Freeware Alan Phillips
http://www.lancs.ac.uk/people/cpaap/pfe/default.htm

•

Edit Pad 'Postcardware' JGSoft − http://www.jgsoft.com•
GNU Emacs for Windows Open Source (freeware) GNU
http://www.cs.washington.edu/homes/voelker/ntemacs.html

•

Codewhiz Shareware Incatec http://www.incatec.com•
TextPad Shareware − Helios Software Solutions http://www.textpad.com•
UltraEdit−32 Shareware IDM Computer Services http://www.idmcomp.com•
Codewright Commercial Premia Corporation http://www.premia.com•
HomeSite Commercial Allaire http://www.allaire.com•
Multi−Edit Commercial American Cybernetics http://www.amcyber.com•
PrimalScript Commercial Sapien Technologies http://www.sapien.com•

Web scripters can also use two well−known products from Microsoft: Visual Interdev and FrontPage.

What Can You Do With VBScript?

14

What's New in VBScript 5?

VBScript version 5 contains some significant new language features that should be most welcome to users of
previous versions of VBScript. For the record, the last version of VBScript to receive general distribution was
VBScript 3.1. Most people upgrading to version 5 will be coming from version 3.1. Version 4 of VBScript
was distributed with Microsoft Visual Studio version 6, but did not contain any new language features. The
changes between version 3.1 and 4 all had to do with IntelliSense and debugging features in Visual InterDev
version 6.

If you're new to VBScript and not familiar with what we're talking about here don't worry, we'll cover all of
this later in the book.

Regular Expressions

VBScript now supports regular expressions through a new intrinsic VBScript object: RegExp. VBScript 5
developers can instantiate a RegExp object and use it to evaluate string data against a pattern, which is a kind
of shorthand description of how a string of data might look. For example, the pattern "\w+\@[.\w]+" checks to
see if a string looks like an e−mail address. Regular expression patterns are obviously rather strange looking,
and can take some getting used to. However, regular expressions are a powerful way to check the validity of
data (for instance, to see if your user entered a properly formatted e−mail address), or to search for all kinds of
strings in text files or other text−based data.

The pattern syntax in the VBScript RegExp object is exactly the same as in JScript, which is in turn based on
Perl regular expressions. JScript has supported regular expressions for a while, and adding this powerful
feature to VBScript is Microsoft's fulfillment of a promise to keep VBScript and JScript 'in synch'
feature−for−feature. We'll cover the RegExp object in Chapter 7.

Classes

The ability to define a class natively in VBScript is a welcome addition to VBScript 5. Classes are a great way
to organize you code for readability, maintainability, and reusability. A class is a self−contained unit of code
that acts as a template for an object. Classes are the building blocks of components.

Since scripts are generally self−contained units (with all of the code that makes up a script embedded in a
single text file), and since, in languages such as VB and C++, classes are defined in their own separate text
files, the VBScript development team had a bit of a challenge to give VBScript developers the ability to
define a class. They solved the problem with the Class statement, which allows you to define a class within a
script. You define the properties and methods (public and private) for a class between Class and End Class
statements. You can then instantiate this class into an object variable and use it just like any other object.
Writing classes is very straightforward. If you've had any experience writing classes in Visual Basic, you
won't have any trouble. We'll show you the ins and outs of VBScript classes in Chapter 8.

With Statement

Visual Basic developers know how much coding time and processing time the With statement can save, but
VBScript developers have, until now, been unable to take advantage of this great feature. The With statement
is a shorthand, code blocking statement. Between With <<object name>> and End With statements, you don't
have to repeat the name of an object every time you refer to one of its properties and methods. This saves you
typing, and saves the compiler and runtime engine from having to resolve the reference to that object every
time your code refers to it and that makes your script run faster. Here's a quick example (we'll cover the With

 What's New in VBScript 5?

15

statement in Chapters 5 and 6):

Instead of typing this:

oCustomer.Name = "Mary Smith"
oCustomer.Address = "1234 Some Street"
oCustomer.ZipCode = "12345"
oCustomer.Update

You can type this:

With oCustomer
 .Name = "Mary Smith"
 .Address = "1234 Some Street"
 .ZipCode = "12345"
 .Update
End With

Eval, Execute, and ExecuteGlobal

These three new VBScript functions are included in version 5 to create compatibility with the JScript Eval
method. They each do about the same thing, but which one you use depends on the scope of what it is your
trying to do. The idea is to provide a way to evaluate and execute code 'on the fly' at runtime. For instance,
your user could type in x = (2 + 2) * 8, which you would then send to the Eval function. Eval would tell you
that this formula results in the number 32.

Execute and ExecuteGlobal are for executing blocks of script code on the fly, whereas Eval is for executing
single expressions such as the example we just used. Deciding whether to use Execute or ExecuteGlobal
depends on the namespace that the script code you're executing needs to have access to, but we're not going
to get into that here. We'll discuss these three new functions in Appendix A.

Function Pointers

The new GetRef function allows you to 'bind' a script procedure to any available object event in a DHTML
page. Previously, this had to be accomplished through the ObjectName_EventName syntax or through an
HTML tag. When the event occurs, the procedure name passed to the GetRef function will be executed. For
example:

Set Window.OnLoad = GetRef("MyFunction")

When the Window.OnLoad event fires, MyFunction will be executed. We'll cover the GetRef function in
Appendix A.

DCOM Support

Distributed COM (or DCOM) allows you to create and communicate with objects that live on another
computer. Then, that computer's memory and processor handle the load of running that object. This is known
as 'distributed processing'. Once a distributed object has been instantiated in your script, your code has no idea
(nor does it care) that the object lives on another computer somewhere on your network. Microsoft added
DCOM support to VBScript 5 by adding an additional optional argument to the CreateObject function. You
pass the name of the computer on which the object is registered as the second argument to the CreateObject
function. For example:

What's New in VBScript 5?

16

Set oCustomer = CreateObject("MyComponent.Customer", \\MyRemoteServer)

Code Conventions

We have used a number of different styles of text and layout in the book to help differentiate between the
different kinds of information. Here are examples of the styles we use, and an explanation of what they mean:

Advice, hints, and background information comes in this type of font.

Important Important pieces of information come in boxes like
this.

Important words are in a bold type font.

Words that appear on the screen in menus, like File or Window, are in a similar font to the one that you see on
the screen.

Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Code comes in a number of different styles. If it's something we're talking about in the text when we're
discussing the MsgBox, for example it's in a fixed−width font. If it's a block of code from a program, then it's
also in a gray box:

Dim varTest
varTest = "Hello There"
MsgBox TypeName(varTest)

Sometimes you'll see code in a mixture of styles like this:

Sub window_onload()
 On Error Resume Next
 x = 3/0
 Msgbox x
End Sub

The code with a white background is something that we've already looked at and don't wish to examine
further.

These formats are designed to make sure that you know exactly what you're looking at. We hope that they
make life easier.

Tell Us What You Think

We've worked hard on this book to make it enjoyable and useful. Our best reward would be to hear from you
that you liked it and that it was worth the money you paid for it. We've done our best to try to understand and
match your expectations.

Please let us know what you think about it. Tell us what you liked best and what we could have done better. If
you think this is just a marketing gimmick, then test us out drop us a line! We'll answer, and we'll take
whatever you say on board for future editions. The easiest way is to use e−mail:feedback@wrox.com

You can also find more details about Wrox Press on our web site. There you'll find the code from our latest

 Code Conventions

17

books, sneak previews of forthcoming titles, and information about the authors and the editors. You can order
Wrox titles directly from the site, or find out where your nearest local bookstore with Wrox titles is located.
The address of out site is:

http://www.wrox.com

Customer Support

If you find a mistake in the book, your first port of call should be the errata page on our web site. If you can't
find an answer there, send an e−mail to support@wrox.com telling us about the problem. We'll do everything
we can to answer promptly. Please remember to let us know the book your query relates to, and if possible the
page number as well. This will help us to get a reply to you more quickly.

 Customer Support

18

Chapter 1: A (Very) Short Introduction to
Programming

Overview

In trying to squeeze the basics of writing computer programs into one chapter, we may be attempting the
impossible, but we're going to do our best. The reason for including this chapter is that many people come to a
scripting language, like VBScript, as their first language. Perhaps you're a network systems expert who wants
to use VBScript and the Windows Script Host to write login scripts and automate administration tasks. Or
perhaps you're a web designer who feels the need to branch out from the visual aspects of creating web pages
and into writing scripts to drive content. Or perhaps you're just a person who wants to learn a programming
language for the fun of it. Either way, you've come to the right place.

Programming or "writing code," as some people like to call it is a huge subject. Many volumes have been
written about it. During this chapter, in a single paragraph, we might introduce multiple unfamiliar concepts.
We're going to move pretty fast, but if you read along closely and try out the examples, you'll probably be just
fine.

Keep in mind that even an in−depth discussion of how to write computer programs might not even begin to
touch on subjects such as architecture, systems design, database design, testing, documentation, and all the
rest of the subjects that an accomplished software developer must master. But don't let all that discourage you.
Everyone starts somewhere, and this is a great place for you to start learning the art and science of making a
computer sing. Consider this chapter a brief introduction to the important building blocks. It won't make you
an expert overnight, but hopefully it will give you a the know−how you'll need in order to get the most out of
the rest of the book.

Variables and Data Types

In this section, we're going to be moving quickly through some of the most basic concepts of programming:
variables, comments, using built−in VBScript functions, and other syntax issues.

The first concept we're going to touch on is that of variables. Simply put, a variable is a place in memory
where your script holds a piece (or a set) of information (we'll use the term data in place of "information"
throughout most of this discussion). The data stored in a variable might be very simple, like the number
10,000, or very complex, such as a whole series of numbers, ranging from 1 to 10,000.

Behind the scenes, a variable is a reserved section of the computer's memory. Just to make sure we're clear,
memory is temporary working space for the computer. Memory is transient that is, things that are placed in
memory are not stored there permanently. That's what the hard drive is for. Since memory is transient, and
since variables are stored in the computer's memory, variables are by extension transient as well. Your script
will use variables to temporarily store a piece of information that the script needs to keep track of. (If your
script needs to store that information permanently, it would store it in a file on the hard disk, or in a database,
which is also stored permanently on the hard drive.)

In order to make it easier for the computer to keep track of all the millions of pieces of information that might
be stored in memory at any given moment, memory is broken up into chunks. Each chunk is exactly the same
size, and each chunk is given an address. You don't need to worry about memory addresses, but it's useful to
know that a variable is a reserved set of one or more chunks. Different types of variables take up different

19

amounts of memory. In your VBScript program, you will declare (or "dimension") variables before you use
them, and you will give them a name in the process. Here's an example of a variable declaration in VBScript:

Dim CustomerName

When you declare a variable like this, you are basically telling the computer "Reserve some memory for me,
and please give that memory the name CustomerName." The computer (or, more precisely, the VBScript
engine) keeps track of that memory for you, and whenever you use the variable name CustomerName, it will
know what you're talking about.

Important Note: it is not strictly required that you declare all of the variables you use. VBScript by default
allows you to use undeclared variables. However, we strongly recommend that you declare all of
the variables you use in your scripts. We'll cover this topic in more depth in Chapter 2.

Variables are essential to the activity of writing a VBScript program (or any program, for that matter).
Without variables, you'd have no way of keeping track of all of the pieces of information your script is going
to be manipulating, adding up, and displaying on the screen. Picture yourself at your desk keeping track of
your household income and expenses in a paper−based ledger.

This process entails adding up and keeping track of multiple pieces of information: paychecks and other kinds
of income, grocery expenses, automobile expenses, medical expenses, debt service, and so on. You'd keep
each of these running totals in a separate column, and later you'd probably add them all up to create a view
into your financial situation. If you were writing a computer program to keep up with all this information
instead of using your paper−based ledger, you would probably store the permanent data in a database, but
while your program was accepting input of the numbers and keeping track of the totals, it would use different
variables to keep up with each different piece of information.

In VBScript, whenever you have a piece of information that you need to work with, you would declare a
variable using the syntax we demonstrated a moment ago. At some point in your script, you're going to need
to place a value in that variable otherwise, what would be the point of declaring it? Placing a value in a
variable for the first time is called initializing the variable. Sometimes you initialize a variable with a default
value. Other times, you might ask the user for some information, and initialize the variable with whatever the
user types in. Or you might open a database and use a previously−stored value to initialize the variable.

Initializing the variable gives you a starting point. After its been initialized, you can use the variable in
calculations, store it in a database, or display it back to the user in another form. Here's a simple VBScript
example:

Dim DateToday
'Initialize the variable
DateToday = Date
MsgBox "Today's date is " & DateToday & "."

Now we've opened up a bit of a can of worms. What's all that other stuff in this code? We'll look at it
line−by−line. The first line is the variable declaration. We've asked the computer to reserve some memory for
us, and to please remember the variable name DateToday for us.

Important All of the examples in this chapter are tailored so that they can be run
by the Windows Script Host. The Windows Script Host is a scripting
host that allows you to run VBScript programs within Windows. WSH
will allow you to try these example programs out for yourself. You may
already have WSH installed. To find out, type the above example script

 Chapter 1: A (Very) Short Introduction to Programming

20

into a text editor, save the file as TEST.VBS, and double click the file in
Windows Explorer. If the script runs, then you're all set. If Windows
does not recognize the file, then you'll need to download and install
WSH from http://msdn.microsoft.com/scripting.

If you like, you can skip ahead briefly and check out the beginning
sections of Chapter 10. You don't need to read the whole chapter, just
the first sections, which describe how to install the Windows Script
Host, and how to use WSH to run scripts.

Let's get back to the code extract shown above. The second line is a comment. In VBScript, any text that
follows the single quote character (') is treated as a comment. This means that the VBScript engine will
ignore this text. This introduces an interesting point: if the script engine is going to ignore this text, why type
it in at all? It doesn't contribute to the execution of the script, right? This is correct, but it excludes one of the
most important principles of programming: it is equally important to write a script with human readers in
mind as it is to write with the computer in mind.

Of course, when we are writing a script, we must write it with the computer (or, more specifically, the script
engine) in mind, because if we don't type it in correctly (that is, if we don't use the correct syntax), the script
engine won't execute the script. However, programming is an inherently human−involved activity. Once
you've written some useful scripts, you're probably going to have to go back to make changes to a script you
wrote six months ago. If you did not write that code with human readers in mind, it might be difficult to figure
out what in the world you were thinking at the time you wrote the script. Worse yet, what happens when one
of your co−workers has to go in and make changes to a script you wrote six months ago? If you did not write
that script to be readable and maintainable, your co−worker will probably curse you as they try to decipher
every line of your code.

Adding good comments to your code is only one aspect of writing readable, maintainable programs. We'll
touch on some other principles later, such as choosing good variable names, indenting properly, using white
space in a helpful way, and organizing your code clearly and logically. That said, keep in mind that adding too
many comments, or adding comments that are not useful, can make a script almost as bad as one with no
comments at all. Also, if you are scripting for a web page that must be downloaded to a user's browser, too
many comments can affect the time that it takes to download the page.

We'll discuss some good commenting principles later in this chapter, but suffice it to say now that the
comment in line two of our script is not really a good comment for everyday use. This is because, to any
semi−experienced programmer, it is painfully obvious that what we are doing is initializing the DateToday
variable. Throughout this book, you will often see the code commented this way. This is because the point of
our code is to instruct you, the reader, in how a particular aspect of VBScript programming works.

Back to our example script. It should now be clear that what we're doing in line three is initializing the
variable DateToday. To do this, we are using a built−in VBScript function called Date. A function is a piece
of code that returns a value. VBScript comes with a lot of built−in functions. These functions are part of the
language, and they're always available for your use. You can find a full listing of all of VBScript's built−in
functions in Appendix A. The Date function is one such function that returns the current date according to the
computer's internal clock. (In a few minutes, we'll get into the idea of writing your own functions.) In line
three, we are telling the script engine, "Take the value returned by the Date function, and store it in the
variable called DateToday." (Notice that we did not name the variable Date, but rather DateToday. This is
necessary because, since Date is a built−in VBScript function, "date" is a reserved word. You cannot name
your variables with the same name as a reserved word.)

 Chapter 1: A (Very) Short Introduction to Programming

21

In line four, now that we've initialized this variable, we're going to do something useful with it. MsgBox is
another built−in VBScript function that you will use quite a bit. The MsgBox function is a good time to
introduce the concept of passing function parameters (a.k.a. arguments). Some functions, such as the Date
function, do not require you to pass parameters to them. This is because the Date function does not need any
additional information from you in order to do its job. All it needs to know how to do is read the computer's
clock and return the current date. The MsgBox function, on the other hand, displays a piece of information to
the user in the form of a dialog box, like this:

You have to pass MsgBox a parameterotherwise, it would not have anything to display. The MsgBox function
actually has several parameters, but we only used the first one. This is because the remaining parameters are
optional parameters. You probably also noticed the ampersand (&) symbols in line four. The ampersand is a
VBScript operator, and is used to concatenate text together. To concatenate means to "string together." This
text can either take the form of a literal, or a variable. A literal is the opposite of a variable: a variable is so
named because it can change throughout the lifetime of the script (a script's lifetime is the time from when it
starts executing, to the time it stops executing). Unlike a variable, a literal cannot change during the lifetime
of the script. Here is line four of the script again:

MsgBox "Today's date is " & DateToday & "."

The parts in bold are the literals. Notice how the concatenation of the DateToday variable results in the text
"Today's date is 8/2/1999." in the resulting dialog box. An operator is a symbol or word that you use within
your code, usually to change or test a value. Other operators include the standard mathematical operators (+,
−, /, *), and the equals sign (=), which can actually be used in either a comparison or an assignment. Thus
far, we've been using the equals sign as an assignment operator. We'll find out more about operators later on
in this chapter.

Important Here's something to confuse you: did you notice how we've been describing MsgBox as a
function? Didn't we say that a function returns a value? What value is the MsgBox "function"
returning? Good questions. Programming, and computing in general, is full of strange
contradictions such as this. Without getting into too many details, the MsgBox function does
return a value we're just ignoring it in this case. By not capturing its return value into a variable,
or otherwise doing something with it, we can ignore the return value. If you want to learn more
about the various ways to use the MsgBox function, see Appendix A.

Let's take a closer look at variables. Remember that we said that a variable is a piece of reserved memory?
Well, how does the computer know how large to make that piece of memory? Luckily, this is something that's
handled automatically by the VBScript engine. You don't really have to worry too much about it. However,
it's useful to know that the VBScript engine will dynamically change and reallocate the actual memory
addresses that are used up by a variable. For example, take a quick look at this VBScript program:

'Declare the variable
Dim SomeText

'Initialize the variable
SomeText = "Hello there."

 Chapter 1: A (Very) Short Introduction to Programming

22

MsgBox SomeText

'Change the value of the variable
SomeText = "This is longer text which takes up more space in memory."
MsgBox SomeText

'Change it again
SomeText = "Shorter this time."
MsgBox SomeText

This is a bit of an oversimplification, but what happens here is that when we declare the variable, the script
engine that is executing the script allocates a very minimal amount of memory. Since there's nothing stored in
the variable yet, it doesn't require much space. When we initialize the variable with the simple text "Hello
There," the script engine asks the computer for a little more space in memory to store this new value but just
enough to hold this short phrase. Then, when we assign the much longer text to the same variable, the script
engine must allocate even more memory. Finally, when we assign the shorter string of text, the script engine
can reduce the size of the variable in memory.

One final note about variables: once you've assigned a value to a variable, you don't have to throw it away in
order to assign something else to the variable as well. Take a look at this script:

Dim SomeText

SomeText = "Hello There."
MsgBox SomeText

SomeText = SomeText & " I hope you're doing well today."
MsgBox SomeText

Notice how in this script, we're keeping the original value of the variable and adding some additional text to it.
We told the script engine that this is what we wanted to do by also using the name of the SomeText variable
on the right side of the equals sign, and then concatenating its existing value with an additional value using
the ampersand (&) operator. Adding on to the original value works with numbers too, but we use the +
operator instead:

Dim AnyNumber

AnyNumber = 100
MsgBox AnyNumber

AnyNumber = AnyNumber + 2
MsgBox AnyNumber

We're not going to get into it in this chapter, but variables can store all kinds of values in them, and be used in
several different ways. We'll cover variables, data types, and object variables in Chapter 2.

Control of Flow

When you run a script that you have written, the code executes in a certain order. This order of execution is
also known as flow. In simple scripts such as the ones we have been writing thus far, the statements execute
from the top down that is, the first statement in the script is executed first, then the next one, then the next
one, and on and on until the script reaches the end. The execution occurs this way because the simple
programs we've written so far do not contain any branching or looping code.

 Control of Flow

23

Branching

Take another look at this example script, which we were just using in the previous section:

Dim SomeText

SomeText = "Hello There."
MsgBox SomeText

SomeText = SomeText & " I hope you're doing well today."
MsgBox SomeText

If you save this script in a .vbs file, then execute it using the Windows Script Host, all of the statements will
be executed in order from the first statement to the last. Note that we say that all of the statements will be
executed. However, there are techniques that we can use to cause some statements to be executed, and some
not, depending on certain conditions. This technique is called branching. VBScript supports a few different
branching constructs, and we will cover all of them in detail in Chapter 3, but we're only going to cover the
simplest and most common one here: the IfElseEnd If construct.

Take a look at this modified version of our example script:

Dim Greeting
Dim UserName

UserName = InputBox("Please enter your name:")

UserName = Trim(UserName)
If UserName = "" Then
 Greeting = "Why won't you tell me your name? That's not very nice."
Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
End If

MsgBox Greeting

We've introduced a couple of built−in VB functions in this script (namely InputBox and Trim), but what is
most important to this discussion is the IfElseEnd If block of code. For the record, though, InputBox is a
simple function that allows you to ask the user for some basic piece of information, such as her name, the
location of a file, or just about anything else your script might need. The function expects one required
parameter, the prompt text, and also accepts several optional parameters. We've only used the one required
parameter. When this script is executed, the InputBox code will cause a dialog box like this to pop up:

Note that the parameter text that we passed, "Please enter your name:", is displayed as a prompt for the dialog
box. The InputBox function returns the value that the user types in, if any. If the user does not type anything
in, or clicks the Cancel button, then InputBox will return a zero−length string, which is a strange kind of
programming concept that basically means "text with no actual text in it." Our script stores the result of the
InputBox function in the UserName variable.

Control of Flow

24

This is where the branching comes in. Branching is very common when you are dealing with input to your
script. Most programs take some sort of input, do something with it, and then produce an output. In our
script, the input is the user's name, and the output is the greeting message that we display. The thing is that
input is usually very unpredictable. We don't know what the user's going to do when they see this dialog box
asking for his name. Will they enter their real name? Will they enter their name at all? Will they be offended
and just click the Cancel button? Will they try and be cute and just hit the spacebar a few times before
clicking the OK button? You just don't know.

So what your script must do is test the input, and then execute different code, depending on the result of that
test. Hence the term branching depending on our test of the input, the flow of execution is either going to go
this way, or that way. Our script must adapt to the unpredictable nature of the input. For instance, wouldn't our
script look pretty stupid if it looked like this:

Dim Greeting
Dim UserName

UserName = InputBox("Please enter your name:")
Greeting = "Hello, " & Trim(UserName) & ", it's a pleasure to meet you."

MsgBox Greeting

and produced this output:

This script does not contain any branching logic to test the input, so when the user does something
unpredictable, like pressing the Cancel button, or not entering any name at all, the script does not have the
ability to adapt. Our non−stupid script adapts to the unpredictability of input by testing it with IfElseEnd If
branching. Here's the branching code again:

UserName = Trim(UserName)
If UserName = "" Then
 Greeting = "Why won't you tell me your name? That's not very nice."
Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
End If

We use the Trim() function here to further insulate our script from unpredictability. The Trim() function takes
any kind of text as a parameter, and returns the same text, but with any leading or trailing spaces removed. For
example, the text " Hello " passed to the Trim() function would come back as just "Hello". We do this just in
case the user enters a sequence of one or more spaces, which, for the purpose of our script, is equivalent to not
having entered anything. Also, notice the double quotation marks ("") in the line If Trim(UserName) = ""
Then. This is the way to express the "zero−length string" that we talked about earlier.

So if the user enters nothing (or a string of spaces), then the script will execute this line of code:

Greeting = "Why won't you tell me your name? That's not very nice."

Otherwise, it will execute this line of code:

Control of Flow

25

Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."

Notice that both lines of code assign a value to the Greeting variable. However, only one of these lines will
actually execute. That's because our IfElseEnd If block makes an either/or decision. Either a given condition
is True, or it is False. It can't be both. If it is True, then we'll execute the code between the If and Else
statements. If it is False, then we'll execute the code between the Else and End If statements.

Before we move on to looping, let's mention a couple other things about IfElseEnd If.

First, the IfElseEnd If construct is what's known as a block of code. A block is a section of code that has a
beginning and an end, and usually contains keywords or statements at the beginning and the end. In the case
of IfElseEnd If, the If statements marks the beginning of the block, and the End If marks the end of the block.
The script engine requires these beginning and ending statements, and if you omit them, the engine will not
allow your script to execute. You will encounter lots of different code blocks in VBScript. That said, to
confuse matters, the term "block of code" is often used informally to describe any group of lines of code.

Second, notice also that the lines of code inside the block are indented four spaces. This is an extremely
important concept. It's not important for the script engine that these lines be indented, but for humans who are
reading your code, proper indentation is essential. The script engine does not care whether your code has a
pleasing appearance, or even that the visual presentation make any sense at all. For example, the following
script is completely legal and will execute just fine:

Dim Greeting
 Dim UserName

 UserName = InputBox("Please enter your name:")

 If Trim(UserName) = "" Then
Greeting = "Why won't you tell me your name? That's not very nice."
 Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
 End If

 MsgBox Greeting

This might be fine for the script engine, but it's a nightmare for you and your fellow programmers to make
sense of. Generally, you need to indent your code whenever a line or series of lines is subordinate to the lines
above and below it. For example, the lines after the If clause and the Else clause belong inside the IfElseEnd
If block, so we indent them to visually suggest this.

This points up a very important programming principle: the presentation of your code should visually suggest
its logical structure. In other words, without even reading it, we can look at the code and, consciously or
unconsciously, get a sense for how it is organized and how it works. By detecting the indentations inside the
IfElseEnd If block, we can "see" the branching logic at that point in the code. Indenting is only one element of
programming style, but learning and following proper style and layout is essential for any programmer who
wants to be taken seriously.

Third, the Else part of the block is optional. Sometimes you want to test for a certain condition, and if that
condition is True, execute some code but if it's False, there's no code to execute. For example, we could add
another IfEnd If block to our script:

Dim Greeting
Dim UserName

Control of Flow

26

UserName = InputBox("Please enter your name:")

UserName = Trim(UserName)
If UserName = "" Then
 Greeting = "Why won't you tell me your name? That's not very nice."
Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
End If

If UserName = "Mike" Then
 Greeting = Greeting & " I like the name Mike."
End If

MsgBox Greeting

Fourth, IfElseEnd If can be extended through the use of the ElseIf clause, and through nesting. Nesting is the
technique of placing a block of code inside of another block of code of the same type. The following variation
on our script illustrates both concepts:

Dim Greeting
Dim UserName

UserName = InputBox("Please enter your name:")

UserName = Trim(UserName)
If UserName = "" Then
 Greeting = "Why won't you tell me your name? That's not very nice."
ElseIf UserName = "go away" Then
 Greeting = "That's not very nice."
ElseIf UserName = "who's asking?" Then
 Greeting = "I asked you first."
Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."

 If UserName = "Mike" Then
 Greeting = Greeting & " I like the name Mike."
 End If
End If

MsgBox Greeting

Once again, notice how the indenting identifies which lines of code are subordinate to the lines above them.

Finally (and this may seem obvious by now), even though branching logic tells the script to execute some
lines of code and not others, the code that's not executed must still be interpreted by the script engine. If the
code not executed contains syntax errors, the script engine will still produce a syntax error.

Looping

Branching allows you to tell the script to execute some lines of code, but not others. Looping, on the other
hand, allows you to tell the script to execute some lines of code over and over again. This is useful in two
situations: when you want to repeat a block of code until a condition is True or False, and when you want to
repeat a block of code a defined number of times. In Chapter 3, we'll cover several different kinds of looping
constructs, but here we're going to focus on only two: the basic DoLoop While loop, and the basic ForNext
loop.

Control of Flow

27

First we're going to use the DoLoop While construct to repeatedly execute a block of code until a certain
condition is met. Take a look at this modification of out example script:

Dim Greeting
Dim UserName
Dim TryAgain

Do
 TryAgain = "No"

 UserName = InputBox("Please enter your name:")

 If Trim(UserName) = "" Then
 MsgBox "You must enter your name."
 TryAgain = "Yes"
 Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
 End If

Loop While TryAgain = "Yes"

MsgBox Greeting

Notice the block of code that starts with the word Do and ends with the line that starts with the word Loop.
The indentation should make this code block easy to identify. This is the definition of our loop. The code
inside the loop will keep executing until at the end of the loop, the TryAgain variable equals "No".

We are using the TryAgain variable to control the loop. The loop starts at the word Do. At the end of the loop,
if the TryAgain variable equals "Yes", then the code starting at the word Do will execute again. Notice that at
the top of the loop we initialize the TryAgain variable to "No". It is essential that this initialization take place
inside the loop (that is, between the Do and Loop statements). This way, the variable is re−initialized every
time a loop occurs. If we did not do this, we would end up with what's called an infinite loop.

Infinite loops are undesirable, and whenever you code any kind of loop, you need to take measures to make
sure they do not produce an infinite loop. As the term suggests, an infinite loop is one that never stops.
Remember that the computer will only do what your script tells it to do. If you tell it to keep looping forever,
it will. As long as the loop keeps looping, the code that comes after the loop never gets executed. Let's take a
look at why the TryAgain = "No" line is essential to preventing an infinite loop. We'll go through the script
line by line.

Do

This starts the loop. This tells the script engine that we are starting a block of code that will define a loop. The
script engine will expect to find a Loop statement somewhere further down in the script. This is similar to the
IfEnd If code block: the script engine expects the block to be defined with beginning and ending statements.
We'll get more into this in Chapter 3, but take note that the Do statement on a line all by itself means that the
loop will execute at least once. Even if the Loop While statement at the end of the block does not result in a
loop−around back to the Do line, the code inside this block is going to execute at least one time.

Do
 TryAgain = "No"

Here we are initializing our "control" variable. We call it the "control" variable because this variable will
ultimately control whether or not the loop loops around again. We want to initialize this variable to "No" so

Control of Flow

28

that, by default, the loop will not loop around again. Only if a certain something occurs inside the loop will we
set TryAgain to "Yes". This is yet another strategy in our ever−vigilant desire to expect the unexpected.

Do
 TryAgain = "No"

 UserName = InputBox("Please enter your name:")

This should look familiar. We are using the InputBox function to ask the user for their name. We store the
return value from the function in the UserName variable. Whatever the user types in, if anything, will be
stored in this variable. Put another way, our script is receiving some external input and remember that we said
input is always unpredictable.

Do
 TryAgain = "No"

 UserName = InputBox("Please enter your name:")

 If Trim(UserName) = "" Then
 MsgBox "You must enter your name."
 TryAgain = "Yes"
 Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
 End If

Now we are testing our input. The line If Trim(UserName) = "" Then tests to see if the user typed in their
name. If they typed something in, the code immediately after the Else line will execute. If they did not (or if
they clicked the Cancel button), then the UserName variable will be empty, and the code after the If line will
execute instead. If the user did not type in their name, we display a message informing them that they have
done something our script did not like. Then we set the TryAgain variable (our "control" variable) to "Yes".
This ensures that the loop will go around again, and then we'll ask the user for their name again.

If the user did type in their name, then we initialize our familiar Greeting variable. Note that in this case, we
do not change the value of the TryAgain variable. This is because there is no need to loop around again the
user has obliged us and entered their name. The value of TryAgain is already equal to "No", so there's no need
to change it.

Do
 TryAgain = "No"

 UserName = InputBox("Please enter your name:")

 If Trim(UserName) = "" Then
 MsgBox "You must enter your name."
 TryAgain = "Yes"
 Else
 Greeting = "Hello, " & UserName & ", it's a pleasure to meet you."
 End If

Loop While TryAgain = "Yes"

MsgBox Greeting

Now we encounter the end of our loop block. What this Loop line is essentially telling the script engine is "If
the TryAgain variable equals "Yes" at this point, then go back up to the Do line and execute all that code over
again." If the user entered their name, then the TryAgain variable will be equal to "No". Therefore, the code

Control of Flow

29

will not loop again, and will continue on to the last line: MsgBox Greeting, which we've seen before.

If the user did not enter their name, then TryAgain would be equal to "Yes", which would mean that the code
would jump back up to the Do line again. This is where the re−initialization of the TryAgain variable to "No"
is essential. If we don't reset the value of TryAgain, then there's no way for TryAgain to ever equal anything
but "Yes". If TryAgain always equals "Yes", then the loop keeps going around and around forever. This is
disaster for your script, and for your user.

Next we'll take a quick look at another kind of loop: the ForNext loop. In this kind of loop, we don't need to
worry about infinite loops. This is because the loop is predefined to only execute a certain number of times.
Here's a simple (if not exactly useful) example:

Dim Index

MsgBox "Let's count to five. Ready?"

For Index = 1 to 5
 MsgBox Index
Next

MsgBox "Wasn't that fun?"

The beginning loop block is defined by the For statement, and the end is defined by the Next statement. This
loop will go around exactly five times. The line For Index = 1 to 5 essentially tells the script engine, "Execute
this block of code as many times as it takes to count from 1 to 5, and use the Index variable to keep track of
your counting. When we've gone through this code five times, stop looping and move on." Notice that every
time the loop goes around (including the first time through), the Index variable holds the value of the current
count. The first time through, Index equals 1, the second time through it equals 2, and so on up to 5. It's
important to note that after the loop is finished, the value of the Index variable will be 6, one number higher
than the highest value in our For statement. This occurs because the Index variable is incremented at the end
of the loop, after which the For statement tests the value of Index to see if it is necessary to loop again.

It's difficult to express the real−world usefulness of the ForNext loop without opening a can of worms on a lot
of other subjects, but keep in mind that it is often used to traverse some sort of finite piece of data, such as a
word, or a text file. For example, the word "elephant" has exactly eight letters. If you first calculated the
number of letters in the word "elephant", you could use that number to drive a ForNext loop. Below is a
simple example that uses the VBScript Len() function to calculate the length of the word "elephant." Inside
the loop, it uses the Mid() function to pull one letter out of the word "elephant" at a time.

Dim Index
Dim WordLength

WordLength = Len("elephant")

For Index = 1 to WordLength
 MsgBox Mid("elephant", Index, 1)
Next

MsgBox "elephant"

Control of Flow

30

Operators

An operator acts on one or more operands when comparing, assigning, concatenating, calculating, and
performing logical operations.

Say, you want to calculate the difference between two variables A and B and save the result in variable C.
These variables are the operands and to find the difference you use the subtraction operator like this:

C = A B

Here we used the assignment operator (=) to assign the difference between A and B, which was found by
using the subtraction operator (−).

Operators are one of the single−most important parts of any programming language. Without them, you would
not be able to assign values to variables or perform calculations and comparisons! It would be a bit like a
bicycle without pedals...

There are different types of operators and they each serve a specific purpose:

The assignment (=) operator is the most obvious and is simply used for assigning a value to a
variable or property.

•

The arithmetic operators are all used to calculate a numeric value, and are normally used in
conjunction with the assignment operator and/or one of the comparison operators.

•

The concatenation operators are used to concatenate ("join together") expressions.•
The comparison operators are used for comparing variables and expressions against other variables,
constants, or expressions.

•

The logical operators are used for performing logical operations on expressions; all logical operators
can also be used as bitwise operators.

•

The bitwise operators are used for comparing binary values bit−by−bit; all bitwise operators can also
be used as logical operators.

•

A comprehensive list of all operators, their full syntax for usage, an explanation, notes, sample codes, and
exceptions can be found in Appendix A.

Operator Precedence

When more than one operation occurs in an expression they are normally performed from left to right.
However, there are several rules.

Operators from the arithmetic group are evaluated first, then concatenation, comparison and finally logical
operators.

This is the set order in which operations occur (operators in brackets have the same precedence):

^, −, (*, /), \, Mod, (+, −),

&,

=, <>, <, >, <=, >=, Is,

 Operators

31

Not, And, Or, Xor, Eqv, Imp

This order can be overridden by using parentheses. Operations in parentheses are evaluated before operations
outside the parentheses, but inside the parentheses, the normal precedence rules apply.

If we look at two statements:

A = 5 + 6 * 7 + 8
A = (5 + 6) * (7 + 8)

According to operator precedence, multiplication is performed before addition, so the top line gives A the
value 55. By adding parentheses, we force additions to be evaluated first and A becomes equal to 165.

Organizing and Reusing Code

So far, the scripts we have been working with have been fairly simple in structure. The code has been all
together in one unit. We haven't been doing anything all that complicated, so it has been easy to see all the
code right there in front of you, all in a few lines. The execution of the code starts at the top, with the first line,
and then continues downward until it reaches the last line. At some points, we have redirected the code using
branching, or repeated sections of code using loops. Pretty straightforward.

However, when you actually sit down to write a script that will do something useful, chances are your code is
going to get a bit more complex. As you add more and more code, it becomes harder and harder to read it all
in one chunk. If printed on paper, your scripts would probably stretch across multiple pages. As the code gets
more and more complex, it becomes easier and easier for bugs to creep in, which makes it harder and harder
to find and fix those bugs. The most common technique that programmers use to manage complexity is called
modularization. That's a big, fancy word, but the concept is simple really.

Modularization is the process of organizing your code into modules, which we can also think of as building
blocks. You can apply the principles of modularity to create your own personal set of programming building
blocks, which you can then use to build programs that are more powerful, more reliable, and easier for you
and your fellow programmers to maintain. When you divide your code into modules, your goal is to create
what are known as black boxes. A black box is any kind of device that has a simple, well defined interface
and that performs some discrete, well defined function. A black box is so called because you don't need to see
what is going on inside of it. All you need to know is what it does, what its inputs are, and (sometimes) what
its outputs are.

We encounter black boxes every day. A wrist watch is a good example. A typical watch has some buttons or
dials with which you can set the time (the inputs), and a face that you can read to determine the time at any
given moment (the outputs). You don't need to know or care how all the gears and gizmos inside the watch are
put together in order for the watch to be useful to you. Unless you're an aficionado or collector of watches,
you don't really care if it has quartz movement or if there's a small rodent running around inside to keep the
watch ticking. It's a black box. All that's important to you are that it works, and that you understand its inputs
and outputs.

The most basic kind of black box programmers use to achieve modularity is the procedure. A procedure is a
set of code that (ideally) performs a single function. We have been using procedures throughout this chapter,
but they have been procedures that VBScript provides for us. Some of these procedures require input, some
don't. Some of these procedures return a value, some don't. But all of the procedures we have used so far
(MsgBox(), Trim(), InputBox(), etc.) are black boxes. They perform one single well defined function, and
they perform it without your having to worry about how they perform their respective functions. In just a

 Organizing and Reusing Code

32

moment, we're going to learn how to extend the VBScript language by writing our own procedures.

First, though, let's get some terminology straight. "Procedure" is a generic term that can be used to describe
either a function or a subprocedure. We touched on some of this confusing terminology earlier, but a
function is a procedure that returns a value. Trim() is a function. You pass it some text, and it returns the same
text back to you, but with the leading and trailing spaces stripped off. Functions do not always require input,
but they often do.

A subprocedure is a procedure that does not return a value. We have been using MsgBox() as a subprocedure.
We pass it some text, and it displays a message on the screen. It does not return any kind of value to our code.
All we need to know is that it did what we asked it to do. Like functions, procedure may or may not require
input.

Important More confusing terminology: the term "module" is often used generically to describe any set of
code that is set off as its own black box. However, the term "module" has a specific meaning in
some programming languages. For instance, in Visual Basic, a module is a set of related
procedures that are all stored in one file with the extension .BAS. You have to determine the
exact meaning from the context in which the term is used.

Let's take some familiar code and turn it into a function.

Function GetUserName
 'Prompts the user for his name. If the user refuses to provide
 'his name five times, we give up and return a zero−length string.

 Dim UserName
 Dim TryAgain
 Dim LoopCount

 LoopCount = 1
 Do
 TryAgain = "No"

 UserName = InputBox("Please enter your name:")

 UserName = Trim(UserName)
 If UserName = "" Then
 If LoopCount > 5 Then
 UserName = ""
 TryAgain = "No"
 Else
 MsgBox "You must enter your name."
 TryAgain = "Yes"
 End If
 End If

 LoopCount = LoopCount + 1

 Loop While TryAgain = "Yes"

 GetUserName = UserName

End Function

The first thing to take note of here are the first and last lines. The first line defines the beginning of the
function and gives it a name. The last line defines the end of the function. Based on our earlier discussion of

 Organizing and Reusing Code

33

code blocks, this should be a familiar convention by now. In a sense, a procedure is nothing but a special kind
of code block. We have to tell the script engine where it begins, and where it ends. Notice that we have given
the function a clear, useful name that precisely describes what this function does. Giving your procedures
good names is a key to writing programs that are easy to read and maintain.

The code inside the function is very similar to the code we used in the discussion of loops. We have
introduced one new element, though: the LoopCount variable. We are using this variable to count the number
of times we go through the loop. Before we start the loop, we initialize LoopCount with the numeric value of
one. Then, at the beginning of each loop, we increment the value of LoopCount by 1. If we go through the
loop more than five times without the user entering his name, we stop asking and set the user name to a blank
string (represented by "").

The reason we added the loop counter to the code is that our goal is to create a perfect black box. A perfect
black box is very predictable. When we write a procedure, we want it to be as predictable as possible. The
more predictable it is, the less the code that calls the procedure has to worry about it. If the user is being
difficult and does not want to enter his name, we don't want to keep looping around forever, asking again and
again. So after asking five times, the function gives up and returns a zero−length string.

We also added a comment to the beginning of the procedure to describe what it does. Notice that the comment
does not describe how the function does what it does, only what it does. The code that uses this function does
not care how the function accomplishes its task it only cares about inputs, outputs, and predictability. It is
very important that you add comments such as this to the beginning of your procedures, since they make it
easy to determine what the function does. This comment also performs one other valuable service to you and
any other developer who wants to call this function: it mentions that the function may return an zero−length
string if the user is does not enter his name. It is important that a programmer knows the possible range of
return values so they can write code to deal with those contingencies.

Finally, notice how, in the second to last line, we treat the function name GetUserName as if it were a
variable. When using functions (as opposed to subprocedures, which do not return a value), this is how you
give the function its return value. In a sense, the function name itself is a variable within the procedure.

Let's take a look at some code that uses the GetUserName function.

Dim Greeting
Dim AnyName

AnyName = GetUserName

If Trim(AnyName) <> "" Then
 Greeting = "Hello, " & AnyName & ". Glad to meet you."
Else
 Greeting = "I'm glad to meet you, but I wish I knew your name."
End If

MsgBox Greeting

If you are using the Windows Script Host to execute this code, keep in mind that the above code and the
GetUserName function itself must be in the same .vbs file. As you can see, calling the GetUserName function
is pretty straightforward. Once you have written a procedure, calling it is no different than calling a built−in
VBScript procedure.

Breaking your code into modular procedures is a very good habit to pick up. Even though moving code to a
procedure is not mandatory, it's seldom a bad idea. According to Steve McConnell (as stated in his landmark

 Organizing and Reusing Code

34

book, Code Complete see the Suggestions for Further Reading section at the end of this chapter):

"Aside from the computer itself, the routine is the single greatest invention in computer
science. The routine makes programs easier to read and easier to understand than any other
feature of any programming languageThe routine makes modern programming possible."

(You can mentally insert the word "procedure" wherever he uses the word "routine." They are the same thing.)
Procedures afford several key advantages which are beyond the scope of this discussion. However, here are a
few of the most important ones:

Code such as the code we put in the GetUserName function can be thought of as "generic," meaning
that it can be applied to a variety of uses. Once you have a discreet, well defined, generic function
such as GetUserName, you can reuse it any time you wish to prompt the user for their name. Once
you've written a well−tested procedure, you never have to write that code again. Any time you need it,
you just call the procedure. This is known as code reuse.

•

When you call a procedure to perform a task rather than writing the code "in−line," it makes that code
easier to read and maintain. Increasing the readability, and therefore the maintainability, of your
code is a good enough reason by itself to break a block of code out into its own procedure. Not
including the comments and blank lines, the GetUserName function contains 19 lines of code. By
taking those 19 lines and moving them to their own procedure, we reduced the code from which we
moved it by 19 lines. Less code + good procedure name = easier to read. If ever you're writing some
code that is getting rather long, consider breaking one or more sections of it out into their own
functions or subprocedures.

•

When code is isolated into its own procedure, it greatly reduces the effects of changes to that code.
This goes back to the idea of the black box. As long as the procedure itself maintains its predictable
inputs and outputs, changes to the code inside of a procedure are insulated from harming the code that
calls the procedure. If we decide we don't want to use a loop anymore in the GetUserName function,
we can change the code to only ask the user his name once instead of five times. The code that calls
the GetUserName function won't care.

•

Writing procedures in VBScript is a big subject that we will discuss further in Chapter 3.

Top−Down vs. Event Driven

Before we wrap up this fast−paced introduction to programming, it will be helpful to shed light on the fact
that you will encounter two different "models" of programming in this book: top−down programs and
event−driven programs. The differences between top−down and event−driven have to do with both the way
you organize your code and how and when that code gets executed at runtime. As you get deeper into
programming in general, and VBScript in particular, this will become more clear, so don't be alarmed if it
does not completely sink in right now.

What we have been doing so far in this chapter is writing very simple top−down style programs. We write
some code, save it in a script file, and use the Windows Script Host to execute the script. The Script Host
starts executing at the first line and continues to the last line. If a script file contains some procedure
definitions (such as our GetUserName function), then the Script Host will only execute those procedures if
some other code calls them. Once the Script Host reaches the last line of code, the lifetime of the script ends.

Top−down programs are very useful for task−oriented scripts. For example, you might write a script to search
your hard drive for all the files with the extension .DOC and copy them to a backup directory. Or you might
write a script that gets executed every time Windows starts that randomly chooses a different desktop

 Top−Down vs. Event Driven

35

wallpaper bitmap file for that session of Windows. Top−down programming is perfect for these kinds of
scripts.

Event driven code is different, and is useful in different contexts. As the name implies, event−driven code
only gets executed when a certain "event" occurs. Until that event occurs, the code won't get executed. If a
given event does not occur during the lifetime of the script, the code associated with that event won't get
executed at all. If an event occurs, and there's no code associated with the event at all, the event is essentially
ignored.

Event driven programming is the predominant paradigm in Windows programming. Most Windows programs
that you use every day were written in the event driven model. This is because of the graphical nature of
Windows programs. In a graphical user interface (GUI), you have all sorts of buttons, drop−down lists,
fields in which to type text, etc. Every time a user clicks a button, chooses an item in a list, or types some text
into a field, an event is "raised" within the script. The person who wrote that program may or may not have
decided to write code in response to that event.

When a GUI−based program starts, there is almost always some top−down style code that executes first. This
code would do things like connect to a database, prompt the user for a name and password, load some settings
from a file or the Windows registry, etc. Then a "form" typically comes up. The form contains the menus,
buttons, lists, and fields that make up the user interface of the program. At that point, the top−down style code
is done, and the program enters what is known as a wait state. No code is executing at this point. The
program is just sitting there, waiting for the user to do something. From here on in, it's all about events.

Lets say the user clicks on a button. Now the program comes to life again. The program raises the "Click"
event for the button that the user clicked. The code that is attached to that event starts to execute, performs
some operations, and when it's finished, the program returns to its wait state. Until another event occurs, the
program just sits there.

As far as VBScript, the event driven model is used heavily in scripting for the World Wide Web. The scripts
that run inside of HTML pages are all based on events. One script might execute when the page is loaded.
Another script might execute when the user clicks on a button or graphic. These "mini scripts" are embedded
in the HTML file, and are blocked out in a syntax very similar to the one we used to define the GetUserName
function in the previous section of this chapter.

As you progress through the second half of this book, the finer points of event driven programming will
become much clearer to you. However, just so you can see an example at this point, type the code below into
your text editor, save the file with a .HTM extension, and then select Open from the File menu in Internet
Explorer 4.0 or higher to open the file.

<HTML>
<HEAD>
<Script language="vbscript">
 Sub ButtonClicked
 window.alert("You clicked the button.")
 End Sub
</Script>
</HEAD>
<BODY>
 <BUTTON name="SomeButton" type=BUTTON onclick="ButtonClicked">
 Click Me
 </BUTTON>
</BODY>
</HTML>

 Top−Down vs. Event Driven

36

Some Guidelines to Keep in Mind

It's a really good idea to start adopting good habits right from the beginning. Down the road, as you continue
to hone your programming skills and even learn multiple languages, these habits will serve you well. Your
programs will be easier for you and your fellow programmers to read, understand, and modify, and they will
have fewer bugs. When you first get started writing code, you have to concentrate so hard on getting the
syntax correct for the computer that its easy to lose sight of the things you need to do to make sure your
programs are human friendly as well. However, diligence in this area will pay big dividends.

Expect the unexpected

Always remember that anything can and will happen. Code defensively. You don't need to obsess over
contingencies and remote possibilities, but you can't ignore them either. You especially have to worry about
the unexpected when receiving input from the user, from a database, or from a file. Whenever you're about to
perform an action on something, ask yourself, "What could go wrong here? What happens if the file is flagged
Read Only? What happens if the database table does not have any records? What happens if the registry keys I
was expecting aren't there?" If you don't know what might go wrong with a given operation, find out through
research or trial and error. Don't leave it up to your users to discover how gracefully your script reacts to the
unexpected. A huge part of properly preparing for the unexpected is the implementation of proper error
handling, which we discuss in detail in Chapter 4.

Always favor the explicit over the implicit

When you are writing code, constantly ask yourself, "Is my intent clear to someone reading this code? Does
the code speak for itself? Is there anything mysterious here? Are there any hidden meanings?" Even though
something is obvious in your mind at the moment you are typing in the code, that does not mean that it will be
obvious to you six months from now, or to someone else tomorrow. Strive to make your code
self−documenting, and where you fall short of that goal (which even the best programmers do
self−documenting code can be an elusive goal), use good comments to make things more clear.

Modularize your code into procedures, modules, classes, and components

When you are writing code, you should constantly evaluate whether any given block of code might be better
if you moved it to its own function or subprocedure. Is the code you're working on rather complex? Break it
into procedures. Are you using lots of And's and Or's in an IfEnd If statement? Consider moving the
evaluation to its own procedure. Are you writing a block of code that you think you might need again in some
other part of the script, or in another script? Move it to its own procedure. Are you writing some code that you
think someone else might find useful? Move it.

Give variables and procedures a descriptive name

Giving the elements of your programs good names is one of the most important things you can do to ensure
that your code will be readable and easily understood. Primarily, this applies to the names you give to
variables and procedures.

When naming a variable, use a name that will make it clear what that variable is used for. Be careful using
abbreviations, especially if you think programmers from other countries might need to read your code. Don't
make variable names too short, but don't make them too long either (studies have shown that 10 to 16
characters is a good length, but ideal length is largely a matter of preference). Even though VBScript is not

 Some Guidelines to Keep in Mind

37

case−sensitive, use mixed case (for example, UserName) to make it easier to distinguish multiple words
within the variable name.

When naming procedures, try to choose a name that describes exactly what the procedure does. If the
procedure is a function that returns a value, indicate what the return value is in the function name (for
example, GetUserName). Try to use good verb−noun combinations to describe firstly, what action the
procedure performs, and secondly, what the action is performed on (for example SearchDirectory,
MakeUniqueFileName, or LoadSettings). Studies show that, since procedures are generally more complicated
than variables, good procedure names tend to be longer than good variable names. Don't go out of your way to
make them longer, but don't be afraid to either. 15 to 30 characters for a procedure name is perfectly
acceptable (they can be a bit longer since you generally don't type them nearly as much). If you are having
trouble giving your procedure a good name, that might be an indication that the procedure is not narrow
enough a good procedure does one thing, and does it well.

That said, if you are writing scripts for web pages that will be downloaded to a user's browser, it is sometimes
necessary to use shorter variable and procedure names. Longer names mean larger files to download. Even if
you sacrifice some readability in order to make the file smaller, you can still make an effort to make the
names as descriptive as possible.

Use the "Hungarian" variable naming convention

This is a bit out of scope of this introductory discussion, but it bears mentioning nonetheless. The concepts of
variable data types and scope will be discussed in Chapter 2. The Hungarian naming convention involves
giving variable names a prefix that indicates what the scope and data type of the variable are intended to be.
So as not to confuse matters, we have not been using the Hungarian convention in this chapter, but you will
find that most programmers prefer this convention. Properly used, it makes your programs more clear and
easier to read and write. We list the standard prefixes for scope and data type in Appendix B.

Don't use one variable for multiple purposes

This is a common mistake of beginner and experienced programmers alike, but the fact that experienced
programmers might have a bad habit does not make it any less bad. Each variable in your script should have
exactly one purpose. It may be tempting to just declare a couple of generic variables with fuzzy names, and
then use them for multiple purposes throughout your script but don't do it! This is one of the best ways to
introduce very strange, hard to track down bugs into your scripts. Giving a variable a good name that clearly
defines its purpose will help prevent you from using it for multiple purposes.

Always indent your code properly, and use white space to make your code
easier to read and understand

Keep in mind the power that the visual layout of your code has on its clarity. Without reading a single word,
you should be able to look at the indentations of the lines to see which ones are subordinate to others. Keep
related code together by keeping them on consecutive lines. Separate blocks of unrelated code by putting a
blank line between them. Even though the script engine will let you, avoid putting multiple statements on the
same line.

Use the line continuation character (_) to break long lines into multiple shorter lines. The importance of a
clean layout that visually suggests the logic of the code cannot be overemphasized.

Some Guidelines to Keep in Mind

38

Use comments to make your code more clear and readable, but don't
overuse them

When writing code, strive to make it self documenting. You can do this by following the guidelines above.
However, self documenting code is elusive quarry. Like the pot of gold at the end of the rainbow, you can
never quite reach it, even though it seems so close. The remedy for this is good comments. What separates a
good comment from a bad comment?

Generally speaking, a good comment operates at the level of intent. A good comment answers the questions,
"What was the programmer trying to do with this code? Where does this code fit in with the overall scheme of
the script? Why does this code exist?" The answers to these questions fill in the blanks that can never be filled
by even the best self−documenting code. Good comments are also generally "paragraph−level" comments.
Your code should be clear enough that you do not need a comment for every line, but a comment that quickly
and clearly describes the purpose for a block of code allows a reader to scan through the comments rather than
reading every line of code. The idea is to keep the person who might be reading your code from having to
pore over every line to try and figure out why the code exists.

Bad comments are generally redundant comments, meaning they repeat what the code itself already tells you.
Try to make your code as clear as possible so that you don't need to repeat yourself with comments.
Redundant comments tend to add clutter and do more harm then good. Reading the code tells you the how;
reading the comments should tell you the why.

Finally, it's a good idea to get into the habit of adding "tombstone" or "flower box" comments at the top of
each script file, module, class, and procedure. These comments typically describe the purpose of the code, the
date it was created , the original author, and a log of modifications.

Suggestions for Further Reading

There are two areas you must concentrate on in order to become a great programmer: mastering the
fundamentals of the art and science of programming, and mastering the particulars of the language and
platform with which you are working. The goal of this book is to take care of the latter. We hope that this
book will be a valuable tool for you as you learn VBScript, as well as an essential reference when you need to
look up a specific piece of information.

However, the general art and science of software development is outside the scope of this book. These are the
skills that stay with you no matter what language you are working with. We hope that this short chapter will
enable you to get the most out of this book, VBScript, and Microsoft's awesome scripting technologies.
However, if you crave more knowledge on the skills that separate the professionals from the pretenders, these
sources should be of help. All of these resources are well worth your time, but if you only read one of them,
make sure it's Code Complete.

Code Complete, by Steve McConnell, Microsoft Press, 1993•
Rapid Development, by Steve McConnell, Microsoft Press, 1996•
Programming Pearls, by Jon Louis Bentley, Addison−Wesley, 1985•
The Psychology of Computer Programming, by Gerald Weinberg, Dorset House, "Silver
Anniversary" edition released 1998

•

The Mythical Man−Month, by Frederick Brooks, Addison−Wesley, "Anniversary Edition" released
1995

•

Peopleware, by Tom DeMarco, Dorset House, 2nd edition released 1999•

Some Guidelines to Keep in Mind

39

Chapter 2: Variables and Data Types
This chapter will introduce VBScript variables and data types. If you feel you might need a primer on how
programming in general is done, you might want to read Chapter 1 before starting here. Chapters 2 and 3
cover many of the same topics that Chapter 1 does, but in Chapters 2 and 3, we cover the specific VBScript
elements that support variables, data types, and control of flow the most basic building blocks of
programming. Chapter 1 covers these topics in a more general way, with the aim of initiating someone who
has never written any computer programs or scripts before. If you are already experienced with programming
in another language, but have never used VBScript, you can probably skip Chapter 1, but Chapters 2 and 3
will cover essential VBScript−specific topics.

The Visual Basic Data Types

Strictly speaking, VBScript only has one data type: the Variant. The Variant is a special data type that can
store many different subtypes. We're going to get to the Variant data type in the next section, but first we
need to discuss the data types of VBScript's parent language, Visual Basic. You may be wondering why we
need to discuss another language's data types when VBScript only supports the Variant. This is certainly a
legitimate question.

The reason is that in order to fully understand the behavior of the Variant, it is essential that you understand
that the Variant is merely a "container" for several different data types. Each of the Visual Basic data types
listed below can be stored inside of the Variant as a subtype. A Variant's subtype changes automatically
depending on what kind of value is stored in it, or you can manually set the subtype with one of the VBScript
conversion functions. This becomes especially important when your VBScript programs need to interact with
COM components that may have been written in VB or another COM−enabled language, such as C++ or
Delphi. (We will cover VBScript interaction with COM objects in Chapters 5 and 6; and in Chapters 8 and 9,
we'll show you how to build your own COM classes and components using VBScript and XML.)

The first question that needs answering is why a data type is important. Under the hood, data types are
important because different data types are stored in different amounts of memory. As a VBScript programmer,
you don't need to be concerned with this sort of detail, but it's useful to know that one data type might take
more or less memory than another, which is one of the reasons Visual Basic developers will choose one data
type over another the less memory taken up, the better. Choosing a specific data type is also important to a
Visual Basic developer because it helps make the program easier to understand. When you know what data
type a variable or parameter is, you also know the limitations on what kind of data is meant to be stored in that
variable.

A Visual Basic variable declared with one of the numeric data types would take up either one, two, or four
bytes of memory, depending on whether it had the Byte, Integer, or Long data type, respectively. A Long
variable with a value of 1 takes up the exact same four bytes of memory that a Long variable with a value of
2,000,000 does. What's different is the range of numeric values that each of the numeric types can support.
Because a Long variable takes up more memory than an Integer variable, larger (and smaller, in the case of
negative numbers) can be stored in a Long. The Visual Basic String data type, on the other hand, takes up a
different amount of memory depending on how much text is stored in it. A small amount of text (such as the
word "Hello") stored in a String variable would only take up a small amount of memory, whereas the a String
variable with all of Shakespeare's sonnets stored in it would take up considerably more memory.

The data type is also important for another reason: certain types of operations can only be performed on
certain data types. For example, before you can perform addition, subtraction, or multiplication on a variable,
it must be a numeric data type. This allows the compiler and runtime engine to treat the variable as a number

40

and perform mathematical operations on it. By declaring a variable with one of the numeric data types, you
ensure that only numbers will be stored in it, and you can perform mathematical operations on that variable
without having to worry about whether the variable actually has a numeric value.

So without further ado, here are the standard Visual Basic data types.

Data Type Storage
Required

Range of Allowable Values Comments

Byte 1 Byte 0 to 255 Often used to store binary data in the
form of a "Byte array"

Integer 2 Bytes −32,768 to 32,767 None
Long 4 Bytes −2,147,483,648 to

2,147,483,647
The most commonly used numeric
data type

Single 4 Bytes Negative values:

3.402823E38 to 1.401298E 45;

Positive values:

1.401298E 45 to 3.402823E38

For storing IEEE 32−bit single
precision floating point numbers (in
other words, numbers with decimals)

Double 8 Bytes Negative values:

1.79769313486232E308 to
4.94065645, 841247E 324;

Positive values:

4.94065645841247E 324 to
1.79769
313486232E308

For storing IEEE 64−bit double
precision floating point numbers;
offers greater precision than the
Single

Currency 8 Bytes 922,337,203,685,
477.5808 to 922,337
,203,685,477.5807

Automatically rounds to four decimal
places

Decimal 14 Bytes with no decimal point:

+/−79,228,162,514,
264,337,593,543,
950,335;

with 28 decimal places:

+/−7.9228162514264
337593543950335;

smallest non−zero number:

+/−0.000000000000
0000000000000001

Can only be stored in a variant; use
when maximum floating point
accuracy is needed

Boolean 2 Bytes True or False

 Chapter 2: Variables and Data Types

41

Only has two possible values; False
can also be represented as zero (0),
and True can also be represented as 1
(or, really, any non−zero value; Often
used as a Success/Failure return value
for functions; Also very common for
routine parameters

String 10 Bytes +
String Length

0 to approximately 2 billion Can be used to store any kind of text
characters, numbers, or symbols

Date 8 Bytes January 1, 100 to December 31,
9999

When displayed, by default uses the
Windows "Short Date" format setting

Object 4 Bytes Any Object Reference A generic data type that can hold a
"late bound" reference to any COM
object.

Variant 16 or 22 Bytes Any data within the range of any
of the above data types

Takes up 16 bytes when storing
numeric data, 22 bytes when storing
string data. Can have a different
"subtype" depending on the type of
value stored within it; also takes up a
little more space when storing an
array.

Note that the Object data type is generic and can hold a reference to any kind of object. Object references
stored in a variable of the Object data type are said to be late bound, meaning that the object's interface
cannot be resolved until runtime. Variables and routine parameters can also be declared as a specific object
type. Variables of this sort are said to be early bound, meaning that the interface of the object was known at
compile time. A late−bound Variant object variable can be passed to a VBScript procedure that uses an early
bound parameter. That said, we are not going to be discussing objects in this chapter.

Also, if you are already familiar with the Visual Basic data types, you may have noticed that we did not
include the "fixed length" String data type in our list. This is because fixed length strings cannot be stored in a
Variant, and we are primarily interested in the data types that can be used as Variant subtypes.

In the next section you will see how these Visual Basic data types map to the subtypes of the Variant. Even
though VBScript does not directly support declaring variables with these specific data types, you can use the
Variant subtypes to simulate this feature.

The Variant: VBScript's Only Data Type

As we said in the previous section, the Variant is the only data type supported in VBScript. Programmers in
another language who are accustomed to using a language that offers a wide range of data types might find
this disconcerting. However, the good news is that the Variant is also very flexible. Because of the Variant's
ability to store many different data types, your scripts can handle just about any kind of data you need:
numbers, strings (text), and dates, plus other more complex data types such as objects and arrays.

This flexibility comes at a price, however. One downside of the Variant is that takes up more memory than
many of the specific Visual Basic data types. For this reason, Visual Basic developers will normally only
choose to declare a variable as a Variant when they specifically want that variable to be able to handle more
than one data type. After all, why take up more memory than you have to?

 The Variant: VBScript's Only Data Type

42

Another downside of Variant variables is that you as a programmer must sometimes pay close attention to
what the Variant subtype is at any given moment. This is because of something called implicit type coercion,
which is what happens when a Variant variable changes its subtype automatically. Implicit type coercion
occurs when you assign a new value to a Variant variable that is different than the value currently stored
within it. The Variant variable "coerces" the subtype into another subtype based on the type of data assigned
to it. Before we get into how and when Variant subtypes change, lets take a look at the possible subtypes a
Variant can have.

Subtype Visual Basic
Data Type
Equivalent

Conversion
Function to
Force the
Subtype

Test Function
(other than
VarType and
TypeName)

VarType() Function
Return Value (with
Named Constant
Equivalent)

TypeName()
Function Return
Value

Empty N/A N/A IsEmpty() 0 (vbEmpty) Empty

Null N/A N/A IsNull() 1 (vbNull) Null

Long Long CLng() IsNumeric() 2 (vbLong) Long

Integer Integer CInt() IsNumeric() 3 (vbInteger) Integer

Single Single CSng() IsNumeric() 4 (vbSingle) Single

Double Double CDbl() IsNumeric() 5 (vbDouble) Double

Currency Currency CCur() IsNumeric() 6 (vbCurrency) Currency

Date Date CDate() IsDate() 7 (vbDate) Date

String String CStr() None 8 (vbString) String

Object Object N/A IsObject() 9 (vbObject) Object

Error N/A * None 10 (vbError) Error

Boolean Boolean CBool() None 11 (vbBoolean) Boolean

Variant Variant CVar() None 12 (vbVariant) Variant

Decimal N/A * IsNumeric() 14 (vbDecimal) Decimal$

Byte Byte CByte() IsNumeric() 17 (vbByte) Byte

Array N/A N/A IsArray() 8192 (vbArray)# Array

* − Visual Basic supports conversion functions for the Error and Decimal subtypes called CVErr() and
CDec(), respectively. VBScript, however, does not support these conversion functions. See the sidebar later in
this section for more information.

$ − Because of a bug in VBScript, the TypeName() function does not support the Decimal subtype (although
VarType() does). See the sidebar later in this section for more information.

− This value is actually returned from the VarType() function in combination with the value for Variant
(12). See the section on arrays at the end of this chapter.

We filled this table up with a whole bunch of information so that it will be available for your future reference,
but for the moment, focus on just the first two columns. As you can see, there are sixteen subtypes that are
supported by the VBScript Variant. Most of these correspond exactly to the Visual Basic data types that we
looked at in the previous section. This is good news for you, because it means that if your VBScript code has
to pass or receive values to or from a component written in Visual Basic (or another COM−enabled language),
the Variant subtypes will be able to accommodate you.

 The Variant: VBScript's Only Data Type

43

Testing For and Coercing Subtypes

There are two built−in VBScript functions that allow you to check what the subtype is for any Variant
variable. These functions are VarType() and TypeName(). These two functions do pretty much the same
thing, but VarType() returns a numeric representation of the subtype and TypeName() returns a string
representation. Take a look at the last two columns of this table and you'll see the different values that
VarType() and TypeName() will return for each of the subtypes. Notice also that there are named constant
equivalents for each of the values that VarType() returns.

Important A named constant is similar to a variable, in that it represents a certain value, but
constants cannot be changed at runtime like variables can. You can use a named
constant in place of an actual value, which improves the understandability of your
code. For example, it's much clearer to write

If VarType(MyVariable) = vbString Then

rather than

If VarType(MyVariable) = 8 Then

VBScript comes with some built−in named constants, and you can also declare
your own. We cover constants later in this chapter.

As you can see in the third column of the table, VBScript also provides some functions that you can use to
force (or "coerce") the Variant to have a specific subtype. These conversion functions are especially useful
when you need to pass data of a certain data type to a VB/COM object that expects data of a specific data
type. This is also useful when you want to ensure that the value stored in a Variant variable is treated in a
certain way. For example, the value 12 can be stored in a Variant variable with either a String subtype or one
of the numeric subtypes. If you want to make sure that the number 12 is treated as a number, and not a string,
you can use the CLng() conversion function to make sure that the subtype is Long and not String.

A Variant variable automatically chooses its subtype whenever you place a new value into it. It does this by
examining the value placed into and making its best guess as to what the appropriate subtype is. Sometimes,
though, the Variant's "best guess" is not quite what you expect. However, you can control this by being
careful and explicit in your code. Let's look at some code examples that will demonstrate the principles that
we have been talking about here.

Important All of the examples in this chapter are tailored so that they can be run
by the Windows Script Host. The Windows Script Host is a scripting
host that allows you to run VBScript programs within Windows. WSH
will allow you to try these example programs out for yourself. You may
already have WSH installed. To find out, type the example script shown
below into a text editor, save the file as TEST.VBS, and double click
the file in Windows Explorer. If the script runs, then you're all set. If
Windows does not recognize the file, then you'll need to download and
install WSH from http://msdn.microsoft.com/scripting.

If you like, you can skip ahead briefly and check out the beginning
sections of Chapter 10. You don't need to read the whole chapter, just
the first sections, which describe how to install the Windows Script
Host, and how to use WSH to run scripts.

The Variant: VBScript's Only Data Type

44

Dim varTest
varTest = "Hello There"
MsgBox TypeName(varTest)

Running this code results in the following dialog box:

This makes sense. We placed a text (a.k.a. "string") value into the variable varTest, and VBScript
appropriately decided that that the variable should have the String subtype.

You may have noticed that we named the variable in the above code example varTest. This might look strange
if you have not seen "Hungarian Notation" before. Hungarian Notation defines the practice of placing prefixes
in front of variable names in order to convey the data type of the variable, as well as its "scope". (We will
discuss scope later in this chapter.) It might seem unnecessary to include a data type prefix since VBScript
only supports one data type, the Variant. However, data type prefixes for Variant variables are just as useful
and important, or even more so, as they are for languages that support specific data types. This is because
Variant variables can hold virtually any kind of data.

Therefore, a data type prefix can tell you the programmer (and other programmers who are reading or
modifying your code) what type of data you intend for a variable to hold. In other words, Variant variables
can hold any kind of data, but in practice, any given variable should generally only hold one kind of data. This
is not an absolute, as there are certainly legitimate circumstances under which you would intend for a variable
to be able to hold multiple data types. By placing a data type prefix in front of your variable name, you make
it absolutely clear what type of data you intend for that variable to hold, even if you intend for it to, or expect
that it might need to, hold multiple types of data. Here is a short list of data type prefixes that are commonly
used (see Appendix C):

var − Variant
str − String
int − Integer
lng − Long
byt − Byte
sng − Single
dbl − Double
cur − Currency
obj − Object
bool − Boolean

The var prefix is best used when you don't know exactly what type of data might end up in the variable, or
when you intend for that variable to hold all kinds of data. This is why we're using the var prefix often in this
chapter where we're doing all sorts of playing around with data types.

Dealing with string values such as "Hello There" is generally straightforward − unless your string value looks
like a number, as in the following examples.

Dim varTest
varTest = "12"

The Variant: VBScript's Only Data Type

45

MsgBox TypeName(varTest)

Running this code results in the exact same dialog box:

Why does the TypeName() function return "String" when we clearly passed it a numeric value of 12? This is
because we placed the value 12 in quotes. By placing it in quotes, we told VBScript to treat the value as a
string, not a number. Here are three variations that will tell VBScript that we mean for the value to be treated
as a number:

Dim varTest
varTest = 12
MsgBox TypeName(varTest)

Dim varTest
varTest = CInt("12")
MsgBox TypeName(varTest)

Dim varTest
varTest = "12"
varTest = CInt(varTest)
MsgBox TypeName(varTest)

All three of these examples result in the same dialog box:

All three of these examples achieve the same thing: coercing the varTest variable to have the Integer subtype.
The first example results in the Integer subtype because we did not enclose the value 12 in quotes, as we did
in the first example. This tells VBScript that we want the number to be treated as a number, not as text. The
second example uses the CInt() conversion function to transform the string value "12" into an integer value
before placing it in the variable. This tells the VBScript that we want the subtype to be Integer right from the
start. The third example does the conversion after the fact. Any of these is a valid way to make sure that the
value we are placing in the variable is treated as a numeric Integer value. However, the first example is might
be better because it is theoretically faster because we're not making the extra call to the CInt() function.

Note that this code would be redundant:

Dim varTest
varTest = CInt(12)

Because we do not have quotes around the 12, it will subtype will automatically be Integer. However, this
code has a different effect:

The Variant: VBScript's Only Data Type

46

Dim varTest
varTest = CLng(12)

This tells VBScript to make sure that the subtype of the variable is Long. The same numeric value of 12 is
stored in the variable, but instead of being classified as an Integer, it is classified as a Long. This would be
significant if you were passing the value to a VB/COM function that required a Long.

Important By default, the Variant subtype will be Integer when a whole number within the Integer range is
placed in the variable. However, if you place a whole number outside of this range into the
variable, it will choose the Long subtype, which has a much larger range (−2,147,483,648 to
2,147,483,647). You will find that the Long data type is used far more often than the Integer in
VB/COM components and ActiveX controls, so you may need to use the CLng() function often
to coerce your Variant subtypes to match, although this is not always necessary − when you are
passing Variant variables to a COM/VB function, VBScript often takes care of the type coercion
for you implicitly (more on this later in the chapter).

Given that VBScript chooses the Integer subtype by default instead of the Long, you would also
expect it to choose the Single by default instead of the Double when placing floating point
numbers into a Variant variable, since the Single takes up less resources than the Double.
However, this is not the case. When floating point numbers (that is, numbers with decimal
places) are assigned to a Variant variable, the default subtype is Double.

Also, as we'll see later, in the section called "Implicit Type Coercion", when you are placing the
result of a mathematical expression into an uninitialized Variant variable, VBScript will choose
the Double subtype.

Let's look at a similar example, this time using date/time values.

Dim varTest
varTest = "5/16/99 12:30 PM"
MsgBox TypeName(varTest)

Running this code results in the following dialog box:

The variable assignment results in a subtype of String, although you might expect it to be Date. We get the
String subtype because we put the date/time value in quotes. We saw this principle in action in the previous
set of examples when we put the number 12 in quotes in the variable assignment. Once again, there are
different ways that we can force the subtype to be Date instead of String:

 Dim varTest
 varTest = #5/16/99 12:30 PM#
 MsgBox TypeName(varTest)

Or:

The Variant: VBScript's Only Data Type

47

 Dim varTest
 varTest = CDate("5/16/99 12:30 PM")
 MsgBox TypeName(varTest)

Running either of these examples produces the following dialog box:

The first example surrounds the date/time value in # signs instead of quotes. This is the VBScript way of
identifying a date literal (VB/VBA uses this convention as well). A literal is any value that's expressed directly
in your code, as opposed to being expressed via a variable or named constant. The number 12 and the string
"Hello There" that we used in previous examples are also literals. By enclosing the date/time in # signs rather
than quotes, we are telling VBScript to treat the value as a date, not as a string. As a result, when the date
literal gets stored in the variant variable, the subtype comes out as Date. The second example uses the CDate()
conversion function to achieve the same thing. Once again, the first version is theoretically faster since it does
not require an extra function call.

Often you are not exactly sure what type of data a variable might hold initially, and you need to be sure of
what type of data it is before you try to use a conversion function on it. This is because using a conversion
function on the wrong type of data can cause a runtime error. For example, try this code:

Dim varTest
varTest = "Hello"
varTest = CLng(varTest)

This code will cause a runtime error on line 3: "Type Mismatch". Not a nice thing to happen when your code
is trying to accomplish something. Obviously, this little code sample is pretty silly, because we knew that the
variable contained a String when we tried to convert it to a Long. However, you often do not have control
over what value ends up in a variable. This is especially true when you are:

accepting input from the user•
reading data from a database•
reading data from a file•

You can often get around these Type Mismatch errors by using one of the "Is" functions that are listed in the
fourth column of the variant subtypes table from a few pages back. For example, here is some code that asks
the user his age. Since we don't have any control over what the user types in, we need to verify that he
actually typed in a number:

Dim lngAge
lngAge = InputBox("Please enter your age in years.")
If IsNumeric(lngAge) Then
 lngAge = CLng(lngAge)
 lngAge = lngAge + 50
 MsgBox "In 50 years, you will be " & CStr(lngAge) & " years old."
Else
 MsgBox "Sorry, but you did not enter a valid number."
End If

The Variant: VBScript's Only Data Type

48

Notice how we use the IsNumeric() function to test whether or not the user actually entered a valid number.
Since we're planning to use the CLng() function to coerce the subtype, we want to avoid a Type Mismatch
error. What we have not stated explicitly is that the subtype of the variable does not have to be numeric in
order for IsNumeric() to return True. IsNumeric() examines the actual value of the variable, rather than its
subtype. The subtype of the variable and the value of the variable are two different things. This behavior is
actually what allows us to use IsNumeric() to avoid a Type Mismatch error. If IsNumeric() examined the
subtype, it would not work as we have been using it. In line three of the above example, the subtype of the
lngAge variable is String, yet IsNumeric() returns True if the variable has a number in it. That's because
IsNumeric() is considering the value of lngAge, not the subtype. We can test the value before trying to convert
the variable's subtype to a different subtype. The function IsDate() works in exactly the same way:

Dim datBirth
datBirth = InputBox("Please enter the date on which you were born.")
If IsDate(datBirth) Then
 datBirth = CDate(datBirth)
 MsgBox "You were born on day " & Day(datBirth) & _
 " of month " & Month(datBirth) & " in the year " & _
 Year(datBirth) & "."
Else
 MsgBox "Sorry, but you did not enter a valid date."
End If

Day(), Month(), and Year() are built−in VBScript functions that you can use to return the different parts of a
date. These functions are covered in detail in Appendix A.

Note, however, that not all of the "Is" functions work strictly on the value, as IsNumeric() and IsDate() do.
The functions IsEmpty(), IsNull(), and IsObject() examine the subtype of the variable, not the value. We will
cover these three functions later in the chapter.

Please note that this line of code:

If IsNumeric(lngAge) Then

Is functionally equivalent to this line:

If IsNumeric(lngAge) = True Then

Likewise, this line:

If Not IsNumeric(lngAge) Then

Is functionally equivalent to this line:

If IsNumeric(lngAge) = False Then

However, when using the Not operator, you want to be sure you are only using it in combination with
expressions that return the Boolean values True or False (such as the IsNumeric() function). This is because
the Not operator can also be used as a "bitwise" operator (see Appendix A) when used with numeric
(non−Boolean) values.

The Variant: VBScript's Only Data Type

49

Implicit Type Coercion

So far, we have been discussing explicit type coercion using conversion functions. We have not yet discussed
a phenomenon called implicit type coercion. Implicit type coercion is when a Variant variable changes its
subtype automatically. Sometimes, this can work in your favor, and sometimes it can present a problem.

Remember the example code that asks the user for his age that we used in the previous section? Here it is
again:

Dim lngAge
lngAge = InputBox("Please enter your age in years.")
If IsNumeric(lngAge) Then
 lngAge = CLng(lngAge)
 lngAge = lngAge + 50
 MsgBox "In 50 years, you will be " & CStr(lngAge) & " years old."
Else
 MsgBox "Sorry, but you did not enter a valid number."
End If

Notice how we use the CLng() and CStr() functions to explicitly coerce the subtypes. Well, in the case of this
particular code, these functions are not strictly necessary. The reason is that VBScript's implicit type coercion
would have done approximately the same thing for us. Here's the code again, without the conversion
functions.

Dim lngAge
lngAge = InputBox("Please enter your age in years.")
If IsNumeric(lngAge) Then
 lngAge = lngAge + 50
 MsgBox "In 50 years, you will be " & lngAge & " years old."
Else
 MsgBox "Sorry, but you did not enter a valid number."
End If

Because of implicit type coercion, this code works the same way as the original code. Take a look at the fifth
line. We did not explicitly coerce the subtype to Long, but the math still works as you'd expect. Let's run this
same code, but with some TypeName() functions thrown in so that we can watch the subtypes change:

Dim lngAge
lngAge = InputBox("Please enter your age in years.")
MsgBox "TypeName After InputBox: " & TypeName(lngAge)
If IsNumeric(lngAge) Then
 lngAge = lngAge + 50
 MsgBox "TypeName After Adding 50: " & TypeName(lngAge)
 MsgBox "In 50 years, you will be " & lngAge & " years old."
Else
 MsgBox "Sorry, but you did not enter a valid number."
End If

Is the user enters, for example, the number 30, this code will result in the following dialog boxes (in this
order):

The Variant: VBScript's Only Data Type

50

The first call to the TypeName() function shows that the subtype is String. That's because data coming back
from the InputBox function is always treated as String data, even when the user types in a number. Remember
that the String subtype can hold just about any kind of data. However, when numbers and dates and Boolean
True/False values are stored in a variable with the String subtype, they are not treated as numbers or dates or
as Boolean values − they are treated simply as strings of text with no special meaning. This is why, when our
code tries to do math on the String value, VBScript must first coerce the subtype to a numeric one.

The second call to the TypeName() function comes after we add 50 to it, and shows that the subtype is
Double. Wait a minute − Double? Why Double? Why not one of the whole number subtypes, such as Integer
or Long? We didn't introduce any decimal places in this math? Why would VBScript implicitly coerce the
subtype into Double? The answer is because VBScript determined that this was the best thing to do. Since we
did not use a conversion function to explicitly tell VBScript to change the variable to one subtype or another,
it evaluated the situation and chose the subtype that it thought was best. You have to be careful, because it can
be tricky to predict exactly which subtype VBScript will choose.

However, does it really matter that VBScript coerced the variable into a Double instead of a Long? These are
both numeric subtypes, and the math has exactly the same result. Why care? Well, it's not the end of the
world, except that the Double subtype theoretically takes a little bit more processing power than the Long,
because the Double is a floating point numeric subtype (floating point numbers require a greater degree of
accuracy, and therefore the processor has to work a little harder to ensure that accuracy). If you were
explicitly coercing the subtype, as in the code we started with, you might not choose the Double, because the
Double is generally only used for very large or very small numbers. You might choose Integer, or Long, or
even Byte. (That said, sometimes you need to care what the subtype is because you are planning to pass the
variable to a method of a COM object that expects an explicit subtype.)

The point of this little exercise is not to debate whether one numeric subtype is better than another, rather to
illustrate implicit type coercion. VBScript automatically knew that we wanted the value in the variable to be a
number. It knew this because our code added 50 to the variable. VBScript says, "Oh, we're doing some math. I
better change the subtype to a numeric one before I do the math, because I can't do math on strings." This is
pretty straightforward. What isn't so straightforward is that it chose the Double subtype instead of Long or
Integer or Byte.

We may never know the exact reason why VBScript chooses a Double in this situation, but it is probably a
preventative measure. Other than the Decimal subtype, which is rarely used and only then for extremely large

The Variant: VBScript's Only Data Type

51

or extremely small numbers, the Double subtype is the most capable of holding large numbers. Rather than go
to the trouble of figuring out the result of the math first, and then deciding on a subtype, VBScript just picks
the most accommodating subtype, Double, so that it can be reasonably sure that the result of the math will fit
in the variable. In other words, VBScript makes the safest choice.

Important Before we move one, let's note that there is one other instance of implicit type coercion
in our current example. The coercion is incidental, but useful to be aware of. It occurs
on this line:

MsgBox "In 50 years, you will be " & lngAge & " years old."

At the time this line executes, we have just finished adding the number 50 to our
variable, and the subtype is numeric. When we use the concatenation operator (&) to
insert the value of the variable into the sentence, VBScript implicitly changes the
subtype to String. This is similar to the way in which is changed the subtype from
String to Double when we performed a mathematical operation on it. However, this
coercion is not permanent. Since we did not assign a new value to the variable, the
subtype does not change.

While you have to be aware of implicit type coercion, there is no reason to fear it. VBScript is not going to
arbitrarily go around changing subtypes on you. Implicit type coercion only happens when you assign a new
value to a variable that does not fit the current subtype. Generally, once a Variant variable has a subtype
(based on the value first placed within it, or based on a subtype that your code explicitly coerced), it will keep
that subtype as you place new values in the variable.

Where you do need to watch out for implicit type coercion is when you're dealing with a mixture of data
types. We saw this in our example: when the data came back from the InputBox() function, it was a string.
Then we did some math on it, which turned it into a number. Give this code a try:

Dim lngTest
lngTest = CLng(100)
MsgBox "TypeName after initialization: " & TypeName(lngTest)
lngTest = lngTest + 1000
MsgBox "TypeName after adding 1000: " & TypeName(lngTest)
lngTest = lngTest * 50
MsgBox "TypeName after multiplying by 50: " & TypeName(lngTest)
lngTest = "Hello"
MsgBox "TypeName after assigning value of 'Hello': " & TypeName(lngTest)

If you run this code, you'll see that the first three calls to the TypeName() function reveal that the subtype is
Long. Then, after we change the value of the variable to "Hello", the subtype is automatically coerced into
String. What this code illustrates is that, once the subtype is established as Long, it stays Long as long as we
keep changing the value to other numbers. VBScript has no reason to change it, because the values we put in
it remain in the range of the Long subtype. However, when we place text in the variable, VBScript sees that
the new value is not appropriate for the Long subtype, so it changes it to String.

Important This example reinforces the reason that we use the Hungarian subtype prefix in the variable
name. By placing that lng prefix on the variable name, we indicate that we intend for this
variable to hold Long numeric values only. The code at the end of our example violates this by
changing the value to something non−numeric. VBScript allows this, but that's not the point. On
the contrary, the fact the VBScript allows us to store any type of data we please in any variable
increases the need for subtype prefixes. The point is to protect our code from strange errors

The Variant: VBScript's Only Data Type

52

creeping in. Six months from now, if we or someone else were modifying this code, the lng
prefix would make it clear that the original intent was for the variable to hold Long numeric
values.

Now give this code a try:

Dim intTest

intTest = CInt(100)
MsgBox "TypeName after initialization to 100: " & _
 TypeName(intTest)

intTest = intTest + 1000000
MsgBox "TypeName after adding 1,000,000: " & _
 TypeName(intTest)

intTest = intTest + 10000000000
MsgBox "TypeName after adding another 10,000,000,000: " & _
 TypeName(intTest)

Running this code results in the following three dialog boxes:

Notice that we initialize the variable with a value of 100, and use the CInt() function to coerce the subtype
into Integer. The first call to the TypeName() function reflects this. Then we add 1,000,000 to the variable.
The next call to the TypeName() function reveals that VBScript coerced the subtype to Long. Why did it do
this? Because we exceeded the upper limit of the Integer subtype, which is 32,767. VBScript will promote
numeric subtypes when the value exceeds the upper or lower limits of the current numeric subtype. Finally,
we add another ten billion to the variable. This exceeds the upper limit of the Long subtype, so VBScript
upgrades the subtype to Double.

Throughout this chapter you have seen example code that uses the & operator to "concatenate" strings
together. This is a very common operation in VBScript code. VBScript also allows you to use the + operator
to concatenate strings. However, this usage of the + operator should be avoided. This is because the +
operator, when used to concatenate strings, can cause unwanted implicit type coercion. Try this code:

Dim strFirst
Dim lngSecond

The Variant: VBScript's Only Data Type

53

strFirst = CStr(50)
lngSecond = CLng(100)
MsgBox strFirst + lngSecond

The resulting dialog box will display the number 150, which means that it added the two numbers
mathematically rather than concatenating them. Now, this is admittedly a very silly example, but it illustrates
that the + operator has different effects when you are not using it in a strictly mathematical context. The +
operator uses the following rules when deciding what to do:

If both variables have the String subtype, then VBScript will concatenate them.•
If both variables have any of the numeric subtypes, then VBScript will add them.•
If one of the variables has a numeric subtype, and the other has the String subtype, then VBScript will
attempt to add them. If the variable with the String subtype does not contain a number, then a "Type
Mismatch" error will occur.

•

Your best bet is to not worry about these rules and remember only these:

Use the + operator only when you explicitly want to perform math on numeric values.•
Always use the & operator to concatenate strings.•
Never use the + operator to concatenate strings.•

Empty and Null

You may have noticed that we have not mentioned the first two subtypes in our table of subtypes: Empty and
Null. These two subtypes are special in that they do not have a corresponding specific Visual Basic data type.
In fact, it's a bit of a misnomer to call these subtypes, because they are actually special values that a Variant
variable can hold. When the subtype of a variable is Empty or Null, its value is also either Empty or Null.
This is different than the other subtypes, which only describe the type of value that the variable holds, not the
value itself. For example, when the subtype of a variable is Long, the value of the variable can be 0, or 15, or
2,876,456, or one of about 4.3 billion other numbers (2,147,483,648 to 2,147,483,647). However, when the
subtype of a variable is Empty, it's value is also always a special value called Empty. In the same fashion,
when the subtype of a variable is Null, the value is always a special value called Null.

Empty is a special value that can only be held in a Variant variable. In Visual Basic, variables declared as any
of the specific data types cannot hold the value of Empty − only variables declared as Variant. In VBScript, of
course, all variables are Variant variables. A Variant variable is "empty", and has the Empty subtype, after it
has been declared, but before any value has been placed within it. In other words, Empty is the equivalent of
"not initialized". Once any type of value has been placed into the variable, it will take on one of the other
subtypes, depending on what the value is. Let's take a look at some examples:

Dim varTest
MsgBox TypeName(varTest)

This simple example results in the following dialog box:

The Variant: VBScript's Only Data Type

54

The subtype is Empty because we have not yet placed any value in it. Empty is both the initial subtype and the
initial value of the variable. However, Empty is not a value that you can really do anything with. You can't
display it on the screen or print it on paper. It only exists to represent the condition of the variable not having
had any value placed in it. Try this code:

Dim varTest
MsgBox CLng(varTest)
MsgBox CStr(varTest)

The code will produce the following two dialog boxes in succession:

The first box displays a 0 because Empty is 0 when represented as a number. The second box displays nothing
because Empty is an "empty" or "zero length" string when represented as a String.

Once you place a value in a Variant variable, it is no longer empty. It will take on another subtype, depending
on what type of value you place in it. This is also true when you use a conversion function to coerce the
subtype. However, if you need to, you can force the variable to become empty again by using the Empty
keyword directly:

varTest = Empty

You can also test for whether a variable is empty in either of two ways:

If varTest = Empty Then
 MsgBox "The variable is empty."
End If

Or:

If IsEmpty(varTest) Then
 MsgBox "The variable is empty."
End If

The IsEmpty() function returns a Variant value of the Boolean subtype with the value of True if the variable is
empty, False if not.

The value/subtype of Null, in a confusing way, is similar to the value/subtype of Empty. The distinction may
seem esoteric, but Empty indicates that a variable is uninitialized, whereas Null indicates the absence of valid
data. Empty means that no value has been placed into a variable, whereas a Variant variable can only have the
value/subtype of Null after the value of Null has been placed into it. In other words, a variable can only be
Null if the Null value has explicitly been placed into it. Null is a special value that is most often encountered
in database tables. A column in a database is Null when there is no data in it, and if you're code is going to

The Variant: VBScript's Only Data Type

55

read data from a database, you have to be ready for Null values.

Another way to think about it is that Empty generally happens by default − it is implicit, because a variable is
Empty until you place something in it. Null, on the other hand, is explicit − a variable can only be Null if
some code made it that way.

The syntax for assigning and testing for Null values is similar to the way the Empty value/subtype works.
Here is some code that assigns a Null value to a variable:

varTest = Null

However, you cannot directly test for the value of Null in the same way that you can with Empty − you must
use only the IsNull() function to test for a Null value. This is because Null represents invalid data, and when
you try to make a direct comparison using invalid data, the result is always invalid data. Try running this
code:

'This code does not work like you might expect
Dim varTest
VarTest = Null
If varTest = Null Then
 MsgBox "The variable has a Null value."
End If

You did not see any dialog box pop up did you? That's because the expression If varTest = Null always
returns False. If you want to know if a variable contains a Null value, you must use the IsNull() function:

If IsNull(varTest) = True Then
 MsgBox "The variable has a Null value."
End If

As mentioned, often your code has to be concerned with receiving Null values from a database. The reason we
say that you need to be concerned is that, since Null is an indicator of invalid data, Null can cause troubles for
you if you pass it to certain functions or try and use it to perform mathematical operations. We saw this just a
moment ago when we tried to use the expression If varTest = Null. This unpleasantness occurs in many
contexts where you try to mix Null in with valid data. For example, try this code:

Dim varTest
varTest = Null
varTest = CLng(varTest)

Running this code produces an error on line 3: "Invalid Use of Null". This is a common error with many
VBScript functions that don't like Null values to be passed into them. Take a look at the odd behavior that
results from this code:

Dim varTest
Dim lngTest
varTest = Null
lngTest = 2 + varTest
MsgBox TypeName(lngTest)

Running this code results in the following dialog box:

The Variant: VBScript's Only Data Type

56

Did you see what happened here? When we added the number 2 to the value Null, the result was Null. Once
again when you mix invalid data (Null) with valid data (the number 2, in this case), you always end up with
invalid data.

The following code uses some ADO syntax that you might not be familiar with (see Chapter 15), but here's an
example of the type of thing you want to do when you're concerned that a database column might return a
Null value:

strCustomerName = rsCustomers.Fields("Name").Value
If IsNull(strCustomerName) Then
 strCustomerName = ""
End If

Here we are assigning the value of the "Name" column in a database table to the variable strCustomerName.
If the Name column in the database allows Null values, then we need to be concerned that we might end up
with a Null value in our variable. So we use IsNull() to test the value. If IsNull() returns True, then we assign
an empty string to the variable instead. Empty strings are much more friendly than Nulls. Here's a handy
shortcut that achieves the same exact thing as the above code:

strCustomerName = "" & rsCustomers.Fields("Name").Value

Here we are appending an empty string to the value coming from the database. This takes advantage of
VBScript's implicit type coercion behavior. Concatenating an empty string with a Null value transforms that
value into an empty string, and concatenating an empty string to a valid string has not effect at all, so it's a
win−win situation: if the value is Null, it gets fixed, and if it's not Null, it's left alone.

Important Here's a caution for you Visual Basic programmers who are accustomed to being able to use the
Trim$() function to transform Null database values into empty strings. VBScript does not support
the "$" versions of functions such as Trim(), Format(), and Left(). As you know, when you don't
use the "$" versions of these functions in Visual Basic, they return a Variant value. This behavior
is the same in VBScript, since all functions return Variant values. Therefore Trim(Null) always
returns Null. If you still want to be able to trim database values as you read them in, you need to
both append an empty string and use Trim(), like so:

strName = Trim("" & rsCustomers.Field("Name").Value)

The Object Subtype

So far, we have not discussed the Object subtype. As the name suggests, a variable will have the Object
subtype when it contains a reference to an object. An object is a special construct that contains properties and
methods. A property is analogous to a variable, and a method is analogous to a function or procedure. An
object is essentially a convenient way of encompassing both data (in the form of properties) and functionality
(in the form of methods). Objects are always created at runtime from a class, which is a template from which
objects are created (or instantiated).

The Variant: VBScript's Only Data Type

57

For example, you could create a class called "Dog". This Dog class could have properties called "Color",
"Breed", and "Name", and it could have methods called "Bark" and "Sit". The class definition would have
code to implement these properties and methods. Objects created at runtime from the Dog class would be able
to set and read the properties and call the methods. A class typically exists as part of a component. For
example, you might have a component called "Animals" that contains a bunch of different classes like "Dog",
"Elephant", and "Rhino". The code to create and use a Dog object would look something like this:

Dim objMyDog
Set objMyDog = WScript.CreateObject("Animals.Dog")
objDog.Name = "Buddy"
objDog.Breed = "Poodle"
objDog.Color = "Brown"
objDog.Bark
objDog.Sit

Don't worry if this is going over your head at this point. We discuss objects classes and objects in much
greater detail throughout the book, starting in Chapter 5. Our point in this section is simply to illustrate how
variables with the object subtype behave. Let's look at some code that actually uses a real object, in this case
the FileSystemObject, which is part of a collection of objects that allow your VBScript code to interact with
the Windows file system. (We discuss FileSystemObject and its cousins in detail in Chapter 7, and we'll meet
the WScript.CreateObject method in Chapter 10.)

Dim objFSO
Dim boolExists
Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
boolExists = objFSO.FileExists("C:\autoexec.bat")
MsgBox boolExists

In this code, we create a FileSystemObject object and store it in the variable called objFSO. We then use the
FileExists method of the object to test for the existence of the autoexec.bat file. Then we display the result of
this test in a dialog box. Note the use of the Set keyword. When changing the value of an object variable, you
must use Set.

Now that you've seen an object in action, let's take a look at two concepts that are germane to this chapter: the
IsObject() function, and the special value of Nothing.

Dim objFSO
Dim boolExists
Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
If IsObject(objFSO) Then
 boolExists = objFSO.FileExists("C:\autoexec.bat")
 MsgBox boolExists
End If

This illustrates the use of the IsObject() function, which is similar to the IsNumeric() and IsDate() functions
that we met earlier in the chapter. If the variable holds a reference to an object, then the function will return
True. Otherwise, it will return False.

Nothing is a special value that applies only to variables with the Object subtype. An object variable is equal to
the value Nothing when the subtype is Object, but the object in the variable has either been destroyed or has
not yet been instantiated. When testing for whether an object variable is equal to the value Nothing, you do
not use the = operator, as you normally would to test for a specific value. Instead, you have to use the special
operator Is. However, when you want to destroy an object, you have to use the Set keyword in combination
with the = operator. If that sounds confusing, don't worry, because it is confusing. Let's look at an example:

The Variant: VBScript's Only Data Type

58

Dim objFSO
Dim boolExists
Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
If IsObject(objFSO) Then
 boolExists = objFSO.FileExists("C:\autoexec.bat")
 MsgBox boolExists
 Set objFSO = Nothing
 If objFSO Is Nothing Then
 MsgBox "The object has been destroyed"
 End If
End If

Why would you want to destroy an object using the Set <variable> = Nothing syntax? It's a good idea to do
this when you are done using an object, because destroying the object frees up the memory it was taking up.
Objects take up a great deal more memory than normal variables. Also, for reasons too complex to go into
here, keeping object variables around longer than necessary can cause fatal memory errors. It's a good idea to
develop a habit of setting all object variables equal to Nothing immediately after you are done with them.

The Error Subtype

We left the Error subtype for last because it is seldom used. However, there's a remote chance that you might
end up coming across a component or function that uses the Error subtype to indicate that an error occurred in
the function. We are not necessarily endorsing this methodology, but what you might encounter is a function
that returns a Variant value that will either contain the result of the function, or an error number. Let's say it's
a fictional function called GetAge() that returns a person's age in years. This function would take a date as a
parameter, and return to you the person's age, based on the computer's current system date. If an error
occurred in the function, then the return value would instead contain an error number indicating what went
wrong. For example:

Dim datBirth
Dim lngAge
datBirth = InputBox("Please enter the date on which you were born.")
If IsDate(datBirth) Then
 lngAge = GetAge(datBirth)
 If Not IsError(lngAge) Then
 MsgBox "You are " & lngAge & " years old."
 Else
 If lngAge = 1000 Then
 'This error means that the date was greater
 'than the current system date.
 MsgBox "That date was greater than the current system date."
 Else
 'An unknown error occurred.
 MsgBox "The error " & lngAge & " occurred in the GetAge()"_
 & "function"
 End If
 End If
Else
 MsgBox "You did not enter a valid date."
End If

Keep in mind that GetAge() is a totally fictional function, and you cannot actually run this code. The point
here is only to illustrate how someone might use the Error subtype, and how your code might have to respond
to it. You could not easily implement the use of the Error subtype yourself in VBScript because the VBScript
does not support the CVErr() conversion function, as Visual Basic does. Therefore, without the aid of Visual
Basic, you could never coerce the subtype of a variable to be Error.

The Variant: VBScript's Only Data Type

59

Important VBScript does not fully support the Error and Decimal subtypes. In short, you can use them, but
because conversion functions for them do not exist in VBScript, you cannot coerce the subtype
of a variable to be either Error or Decimal. If you are dealing with a VB/COM component that
returns a variable with either of these subtypes, you can use those variables with no problem.
You just cannot create variables with these subtypes yourself, or coerce variables to have these
subtypes.

Visual Basic has two conversion functions for coercing the subtype of a variable to be either
Error or Decimal: CVErr() and CDec(), respectively. These functions do not exist in VBScript.
You can, though, use the VarType() function to test whether a variable's subtype is either Error
or Decimal. At the time of this writing, however, there is what appears to be a bug in the
TypeName() function which prevents it from working with the Decimal subtype. If you try to use
TypeName() on a variable with the Decimal subtype, you will get the following error:

Variable uses an Automation type not supported in VBScript: 'TypeName'

Variables in VBScript

So far, we have been using a lot of variables in our sample code, but there are some topics which we have not
explicitly discussed. These topics include rules for naming and declaring variables, as well as variable scope
and lifetime.

Option Explicit

You might not be able to guess it based on the code examples we've presented so far, but declaring variables
in VBScript is optional. That's right, you can just start using a new variable anywhere in your code without
having declared it first. There is no absolute requirement that says that you must declare the variable first. As
soon as VBScript encounters a new non−declared variable in your code, it just allocates memory for it and
keeps going. Here's an example:

lngFirst = 1
lngSecond = 2
lngThird = lngFirst + lngSecond
MsgBox lngThird

You can type this code as−is into a script editor and run it with the Windows Script Host. Even though we did
not explicitly declare any of the three variables, VBScript does not care. The code runs as you'd expect, and a
dialog box comes up at the end displaying the number 3. Sounds pretty convenient, doesn't it. Well, maybe.
This convenience comes at a very high price. Take a look at this code:

lngFirst = 1
lngSecond = 2
lngThird = lngFirst + lgnSecond
MsgBox lngThird

Isn't this the same code we just looked at? Look again. Do you notice the misspelling in the third line? An
easy mistake to make while you're typing in line after line of script code. The trouble is that this misspelling
does not cause VBScript any trouble at all. It just thinks the misspelling is yet another new variable, so it
allocates memory for it and gives it the initial subtype of Empty. When you ask VBScript to do math on an
empty variable, it just treats the variable as a zero. So when this code runs, the dialog box displays the number
1, rather than the number 3 we were expecting.

 Variables in VBScript

60

Easy enough to find the error and fix it in this simple do−nothing script, but what if this script contained
dozens, or even hundreds of lines of code? What if instead of adding 1 to 2 to get 3, we were adding
78523.6778262 to 2349.25385 and then dividing the result by 4.97432? Would you be able to notice a math
error by looking at the result? If you were storing these numbers in variables, and you accidentally misspelled
one of the variables in your code, you could end up with a math error that you (or worse yet, your boss) might
not notice for weeks.

So what can we do to prevent this? The answer is a statement called Option Explicit. What you do is place the
statement Option Explicit at the top of your script file, before any other statements appear. This tells VBScript
that our code requires that all variables be explicitly declared before they can be used. Now VBScript will no
longer let you introduce a new variable right in the middle of your code without declaring it first. Here's an
example:

Option Explicit

Dim lngFirst
Dim lngSecond
Dim lngThird

lngFirst = 1
lngSecond = 2
lngThird = lngFirst + lgnSecond
MsgBox lngThird

Notice that we have added the Option Explicit statement to the top of our code. Since we have added Option
Explicit, we must now declare all of our variables before we use them, which is what you see on the three
lines following Option Explicit. Finally, notice that we have left our misspelling on the second−to−last line.
We did this in order to illustrate what happens when you try to use an undeclared variable. If we try and run
this code, VBScript will halt the execution with the following error: Variable is undefined: 'lgnSecond'. This
is a good thing. As long as we use Option Explicit, VBScript will catch our variable−related typing errors.

One thing that's very nice about Option Explicit is that it applies to the entire script file in which it resides. We
have not discussed this too much so far in the book, but a single script file can contain multiple procedures,
functions, and class definitions, and each class definition can itself contain multiple procedures and functions
(we cover VBScript classes in Chapter 8). As long as you place Option Explicit at the top of the script file, all
of this code is covered.

Start a good habit today: every single time you start a new script file, before you do anything else, type the
words Option Explicit at the top of the file. This will prevent silly typing errors for seriously messing up your
code, and your fellow script developers will appreciate it.

Naming Variables

VBScript has a few rules for what names you can give to a variable. The rules are pretty simple, and leave
you plenty of room to come up with clear, useful, understandable variable names.

Important VBScript variable names must begin with an alpha
character

An "alpha character" is any character between "a" and "z" (capital or lowercase). Non−alpha characters are
pretty much everything else: numbers, punctuation marks, mathematical operators, and other special
characters. For example, these are legal variable names:

Variables in VBScript

61

strName•
Some_Thing•
Fruit•

And these are illegal variable names:

+strName•
99RedBalloons•
@Test

Important Numbers and the underscore ("_") character can be used within the variable
name, but all other non−alphanumeric characters are illegal.

•

VBScript does not like variable names that contain characters that are anything but numbers and letters. The
lone exception to this is the underscore ("_") character. (Some programmers find the underscore character to
be useful for separating distinct words within a variable name (e.g. Customer_Name), while other
programmers prefer to accomplish this by letting the mixed upper and lower case letters accomplish the same
thing (e.g. CustomerName).) For example, these are legal variable names:

lngPosition99•
Word1_Word2_•
bool2ndTime•

And these are illegal variable names:

str&Name•
SomeThing@•
First*Name•

VBScript variable names cannot exceed 255 characters

Hopefully your variable names will not exceed twenty characters or so, but VBScript allows them to be as
long as 255 characters.

These rules for variable naming should be pretty easy to follow, but it is important to make a distinction
between coming up with variable names that are legal, and coming up with variable names that are clear,
useful, and understandable. The fact that VBScript will allow you to use a variable name such as
X99B2F012345 does not necessarily mean that it's a good idea to do so. A variable name should make the
purpose of the variable clear. If you're going to store the user's name in a variable, a name like strUserName is
a good one because it removes any doubt as to what the programmer intended the variable to be used for.
Good variable names not only decrease the chances of errors creeping into your code, but they make the code
itself easier for humans to read and understand.

The other principle that a large percentage of programmers have found useful is the "Hungarian naming
convention," which we have mentioned a couple times before, and which we have been using throughout this
chapter. This convention simply involves using a prefix on the variable name to indicate what type of data the
programmer intends for that variable to store. For example, the variable name strUserName indicates not only
that the variable should hold the user's name, but also that the subtype of the variable should be String.
Similarly, the variable name lngFileCount indicates not only that the variable should hold a count of the
number of files, but also that the subtype of the variable should be Long.

Variables in VBScript

62

Appendix C of this book contains additional guidelines for naming variables, including a list of suggested data
type prefixes.

Variable Declaration, Scope, and Lifetime

The issue of variable scope and lifetime are closely tied to the rules and guidelines that you should follow
when declaring variables. A variable's scope is a boundary within which a variable is valid and accessible.
The boundaries within which a variable is declared is directly related to the lifetime of that variable. Script
code that is executing outside of a variable's scope cannot access that variable. There are three types of scope
that a VBScript variable can have:

Script−level scope − Script−level scope means that the variable is available to all of the scripts
within a script file. Variables that are declared outside of the boundaries of a VBScript procedure,
function, or class automatically have script−level scope.

•

Procedure−level scope − Procedure−level scope (also known as "local" scope) means that the
variable is only available within the procedure or function in which it is declared. Other code outside
of the procedure, even if that code resides within the same script file, cannot access a procedure−level
variable.

•

Class−level scope − A Class is a special construct that contains a logic grouping of Properties and
Methods. In VBScript, classes are defined within a script using the ClassEnd Class block definition
statements. A variable that is declared using the Private statement within the class definition, but
outside of any of the procedures or functions within the class, has class−level scope. This means that
other code within the class can access the variable, but code outside of the class definition, even if that
code resides in the same script file, cannot access the variable. (We cover VBScript classes in detail in
Chapter 8.)

•

There are three statements that you can use to declare variables: Dim, Private, and Public. (ReDim also falls
into this category of statements, but it is specifically used for the "re−dimensioning" of already declared array
variables, and we'll cover it in the last section of this chapter, "Complex Data Types".) These declaration
statements are used in different situations, depending on the scope of the variable being declared:

Dim − This statement is generally used to declare variables at either the script−level or the
procedure−level. Any variable declared at the script−level is automatically available to the entire
script file, regardless of whether Dim, Private, or Public was used to declare it. In order to declare a
variable inside of a procedure, you must use Dim. Public and Private are not valid inside of a
procedure. If used at the class−level, then Dim has the exact same effect as Public.

•

Private − The Private statement can be used at either the script−level or at the class level, but not
inside of procedures or functions. If used at the script level, it has the exact same effect as using Dim
or Public. Any variable declared at the script−level is automatically available to the entire script file,
regardless of whether Dim, Private, or Public was used to declare it. Although VBScript does not
require it, many programmers prefer to use the Private statement to declare variables at the script
level, and to reserve Dim for use within procedures and functions. In order to declare a private
class−level variable, you must use Private. Any variable declared at the class level with either Dim or
Public is automatically available as a public property of the class.

•

Public − The Public statement can be used to declare variables with script−level scope, but it has the
exact same effect as either Dim or Private. The only place that Public is really meaningful is at the
class level. A variable declared at the class level with Public is made available as a public property of
the class. The reason that Public is not meaningful at the script level is that, with the exception of
"script components" (see Chapters 9 and 12), variables within a script are not available outside the
script file in which they reside. Therefore, the only place you will really use Public to declare
variables is to create public properties for a class. However, note that many VBScript programmers

•

Variables in VBScript

63

discourage the use of Public variables in a class and prefer instead to use a combination of a Private
class−level variable and Property Let, Set and Get procedures (see Chapter 8).

We packed a lot of rules into those three bullet items, so these guidelines might make it easier to keep track of
when to use Dim, Private, and Public.

Use Dim at the procedure level to declare variables that are local to that procedure. Even though Dim
is legal at the script and class level, limiting its use to the procedure level can increase the clarity of
your code.

•

Use Private at the script level to declare variables that will be available to the whole script. Also use
Private at the class level to declare variables that are only available within the class.

•

Use Public only to declare public properties for a class, but consider also the option of using a Private
variable in combination with Property Let/Set and Get procedures. Even though Dim has the same
effect as Public at the class level, it is more explicit, and therefore preferable, to not use Dim at the
class level.

•

Finally, a variable's lifetime is closely tied the variable's scope. Lifetime, as the term suggests, refers to the
time that a variable is in memory and available for use. A variable with procedure−level scope is only alive as
long as that procedure is executing. A variable with script level scope is alive as long as the script is running.
A variable with class−level scope is only alive while some other code is using an object based on that class.

This points to an important principle: you should limit a variable's lifetime, and therefore its scope, as much as
you can. Since a variable takes up memory, and therefore operating system and script engine resources, you
should only keep it alive as long as you need it. By limiting a variable's scope, you also limit its lifetime. By
declaring a variable within the procedure in which it will be used, you keep the variable from taking up
resources when the procedure in which it resides is not being executed. If you had a script file that contained
ten procedures and functions, and you declared all of your variables at the script level, you would not only
create some pretty confusing code, but you would cause your script to take up more resources than necessary.

Let's look at an example:

Option Explicit

Private datToday

datToday = Date
MsgBox "Tommorrow's date will be " & AddOneDay(datToday) & "."

Function AddOneDay(datAny)

 Dim datResult

 datResult = DateAdd("d", 1, datAny)
 AddOneDay = datResult

End Function

This script contains a function called AddOneDay(). The variable datResult is declared with Dim inside the
function and has procedure−level scope. The variable datToday is declared with Private and has script−level
scope. The variable datResult will only be in memory while the AddOneDay() function is executing, whereas
the datToday variable will be in memory for the entire lifetime of the script.

Important Just for the sake of clarity, please note that the above code example, like many code examples in

Variables in VBScript

64

this book, has some unnecessary variable declarations. These declarations are included in order
to illustrate the concepts of declaring variables. Here is a much more compact version of the
same script from the last example:

Option Explicit
MsgBox "Tommorrow's date will be " & AddOneDay(Date()) & "."
Function AddOneDay(datAny)
 AddOneDay = DateAdd("d", 1, datAny)
End Function

Let's finish off with some additional notes about variable declarations.

VBScript allows you to put more than one variable declaration on the same line. From a style standpoint, it is
generally preferable to limit variable declarations to one−per−line, as our example scripts have, but this is not
an absolute rule. Script programmers who are writing scripts that will be downloaded over the web as part of
an HTML file often prefer to put multiple declarations on a single line since it makes the file a little smaller.
Here is some examples:

Dim strUserName, strPassword, lngAge
Private strUserName, strPassword, lngAge

Note however, that, you cannot mix declarations of differing scope on the same line. If you wanted to declare
some Private and Public variables within a class, for instance, you would have to have two separate lines:

Private strUserName, strPassword
Public lngAge, datBirthday, boolLikesPresents

Finally, VBScript does have limitations on the number of variables you can have within a script or procedure.
You cannot have more than 127 procedure−level variables in any given procedure, and you cannot have any
more that 127 script−level variables in any given script file. This should not cause you any trouble, however.
If you are using this many variables within a script or procedure, you might want to rethink your design and
break that giant procedure up into multiple procedures.

Literals and Named Constants

What is a Literal?

A literal is any piece of static data that appears in your code that is not stored in a variable or named constant.
Literals can be strings of text, numbers, dates, or Boolean values. For example, the word "Hello" in the
following code is a literal:

Dim strMessage

strMessage = "Hello"
MsgBox strMessage

The date 08/31/69 in the following code is also a literal:

Dim datBirthday

datBirthday = #08/31/69#
MsgBox "My birthday is " & datBirthday & "."

 Literals and Named Constants

65

The string "My birthday is" is also a literal in this code. Literals do not need to be stored in a variable to be
considered a literal. And for one more example, the value True in the following code is also a literal:

Dim boolCanShowMsg

boolCanShowMsg = True
If boolCanShowMsg Then
 MsgBox "Hello there."
End If

Many times, literals are just fine in your code. Programmers use them all the time. However, there are many
instances when the use of a named constant is preferable to using a literal.

What is a Named Constant?

A named constant is similar to a variable, except that its value cannot be changed at runtime. A variable is
transient. While the code is running, any code within a variable's scope can change the value of it to
something else. A named constant, on the other hand, is static. Once defined, it cannot be changed by any
code during runtime − hence the name "constant."

You define a constant in your code using the Const statement. Here's an example:

Const GREETING = "Hello there, "

Dim strUserName

strUserName = InputBox("Please enter your name.")
If Trim(strUserName) <> "" Then
 MsgBox GREETING & strUserName & "."
End If

If the user types in the name "William," then this code results in the following dialog box:

The Const statement defines the named constant called GREETING. The name of the constant is in all capital
letters because this is the generally accepted convention for named constants. Defining constant names in all
capital letters makes them easy to differentiate from variables, which are generally typed in either all lower
case or mixed case. (Note however, that VBScript is not case sensitive. There is nothing in VBScript that
enforces any capitalization standard. These are stylistic conventions only, adopted to make the code easier to
read, understand, and maintain.) Additionally, since constants are usually written in all capital letters, distinct
words within the constant's name are usually separated by the underscore ("_") character, as in this example:

Const RESPONSE_YES = "YES"
Const RESPONSE_NO = "NO"

Dim strResponse

strResponse = InputBox("Is today a Tuesday? Please answer Yes or No.")
strResponse = UCase(strResponse)
If strResponse = RESPONSE_YES Then

Literals and Named Constants

66

 MsgBox "I love Tuesdays."
ElseIf strResponse = RESPONSE_NO Then
 MsgBox "I will gladly pay you Tuesday for a hamburger today."
Else
 MsgBox "Invalid response."
End If

Constants also have scope, just like variables. While you cannot use the Dim statement to declare a constant,
you can use Private and Public in front of the Const statement. However, these scope qualifications are
optional. A constant declared at the script level automatically has script−level scope (meaning it is available to
all procedures, functions, and classes within the script file.) A constant declared inside of procedure or
function automatically has procedure−level scope (meaning that other code outside of the procedure cannot
use the constant).

You can also declare multiple constants on one line, like so:

Const RESPONSE_YES = "YES", RESPONSE_NO = "No"

Finally, you cannot use variables or functions to define a constant. The value of a constant must be defined as
a literal, as in the above examples.

When Should You Use Named Constants in Place of Literals?

Some programmers will answer this question with "always". There is a school of thought that says that your
code should never contain any literals. Other programmers never use named constants, either out of a lack of
knowledge of their benefits, or out of just plain laziness. However, there is a reasonable middle ground. In a
moment, we will look at some guidelines that might help us find this middle ground. However, first, let's
examine some of the benefits that named constants can afford your code:

Named constants can decrease bugs. If you are repeating the same literal value many times
throughout your code, the probability of misspelling that literal goes up every time you type it. If you
type the constant's name in place of the literal throughout your code, you could just as easily misspell
that, but the script engine would catch this error at runtime, whereas a misspelling of the literal itself
might go unnoticed for quite some time.

•

Named constants can increase clarity. Some of the literals we used in our previous examples were
mostly clear all by themselves, and adding a constant did not really make their meaning more clear.
However, using a literal in your code can often hide meaning when the purpose of the literal is not
immediately apparent from reading the code. This is especially true with literals that are numbers. A
number by itself does not suggest its purpose for being in the code, and using a constant in its place
can make that meaning clear.

•

If the literal being replaced by the constant is especially long, or otherwise cumbersome to type, then
using the constant makes it a lot easier to type in your code. For example, if you needed to insert a
large multi−paragraph legal disclaimer at various points in your scripts, it would be a good idea to
replace that large block of text with a short named constant that's much easier to type.

•

Important If you are only using a literal once, it's probably okay to use it instead of creating a named
constant.

This statement is especially true when you consider constants used in HTML−embedded script code, which
must be downloaded over the web. If you always used named constants in place of literals in client−side web
scripting, you could easily increase the size of the file that the user has to download to a point that is
noticeable. And even in a server−side web scripting scenario (where the script code is not downloaded to the
user's browser), using constants everywhere can slow the script execution down considerably. This is because

Literals and Named Constants

67

the script engine has to process all the constants before it can execute the code that uses them.

However, if you are using the same literal over and over throughout the script, then replacing it with a named
constant can really increase the readability of the code, and reduce mistakes from misspellings of the literal. A
great technique in server−side web ASP scripting (see Chapter 14) is to put named constants in an "include"
file that can be re−used in multiple scripts. Named constants are important, but sometimes you have to weigh
the trade−off.

Important If using the constant in place of a literal makes the meaning of the code more clear, use the
constant.

As we mentioned, this is especially true for literals that are numbers. If you are working with arrays with
multiple dimensions (see the last section of this chapter), then using named constants in place of the array
subscripts is a really good idea. If you are checking numeric codes that have different meanings based on the
number, it's a great idea to use constants in place of the numbers, because the meaning of the numbers by
themselves will probably not be clear. The same principle holds true of dates with a special meaning, or odd
strings of characters whose meaning is not clear just from looking at them.

Built−In VBScript Constants

Many VBScript hosts, such as the Windows Script Host and Active Server Pages, support the use of
constants that are built into VBScript. These are especially helpful for two reasons: first, it can be hard to
remember a lot of the seemingly arbitrary numbers the many of the VBScript functions and procedures use as
parameters and return values; and second, using these named constants makes your code a lot easier to read.
We saw some examples of built−in named constants when we looked at the VarType() function earlier in this
chapter.

Appendix D of this book contains a list of many of the named constants that VBScript provides for you for
free. You'll notice that many of these constants are easy to identify by the prefix vb. Also, you'll notice that
these constants are usually written in mixed case, rather than all upper case. By way of example, lets take a
look at some constants you can use in an optional parameter of the MsgBox() function (see Appendix A for
details of the MsgBox() function).

We have used the first parameter of MsgBox() multiple times throughout the book thus far. This first
parameter is the message that we want displayed in the dialog box. The MsgBox() function also takes several
optional parameters, the second of which is the "buttons" parameter, which lets you define different buttons
and icons to appear on the dialog box. Here's an example:

MsgBox "The sky is falling!", 48

This code produces the following dialog box:

By passing the number 48 to the second parameter of MsgBox(), we told it that we wanted the exclamation
point to appear on the dialog box. Instead of using the not−so−clear number 48, we could have used the

Literals and Named Constants

68

vbExclamation named constant instead:

MsgBox "The sky is falling!", vbExclamation

This code results in the same exact dialog box, but it's much more clear from reading the code what we're
trying to do.

Complex Data Types

Other than our brief discussion of objects in the previous section, we have so far been dealing only with very
simple variables. The variables in our example code so far have held only one−dimensional values: a single
number, a single date, a single string, etc. However, VBScript can work with two other types of data that are
more complex than anything we've looked at so far: objects and arrays. We are not going to discuss objects
here, since they are covered throughout the book, beginning in Chapter 5. However, we are going to take a
detailed look at arrays.

What is an Array?

An array, as the name suggests, is a matrix of data. While a normal variable has one "compartment" in which
to store one piece of information, an array has multiple compartments in which to store multiple pieces of
information. As you can imagine, this comes in very handy. Even though you might not know it, you are
probably already very familiar, outside the context of VBScript, with all sorts of matrices. A spreadsheet is a
matrix. It has rows and columns, and you can identify a single "cell" in the spreadsheet by referring to the row
number and column letter where that cell resides. A Bingo game card is also a matrix. It has rows of numbers
that span five columns, which are headed by the letters B−I−N−G−O. A database table is a matrix − once
again, rows and columns.

An array can be a very simple matrix, with a single column (which is called a dimension), or it can be much
more complex, with up to 60 dimensions. Arrays are typically used to store repeating instances of the same
type of information. For example, suppose your script needs to work with a list of names and phone numbers.
An array is perfect for this. Rather than trying to declare separate variables for each of the names and phone
numbers in your list (which would be especially challenging if you did not know in advance how many names
were going to be in the list), you can store the entire list in one variable.

Arrays Have Dimensions

A VBScript array can have up to 60 dimensions. Most arrays have either one or two dimensions. A
one−dimensional array is best thought of as a list of rows with only one column. A two−dimensional array is a
straightforward list of values, with multiple columns (the first dimension) and rows (the second dimension).
Beyond two dimensions, however, the grid analogy starts to break down, and the array turns into something
much more complex. We're not going to discuss multi dimensional arrays much here. Luckily, for the needs
of your average script, a two−dimensional array is absolutely sufficient.

Note that a two−dimensional array does not mean that you are limited to two columns. It only means that the
array is limited to an x and a y axis. A one−dimensional array really does have two dimensions, but it is
limited to a single column. A two−dimensional array can have as many columns and rows as the memory of
your computer will allow. For example, here is graphical representation of a one−dimensional array, in the
form of a list of colors:

Red

 Complex Data Types

69

Green

Blue

Yellow

Orange

Black
And here is a two−dimensional array, in the form of a list of names and phone numbers:

Williams Tony 404−985−6328

Carter Ron 305−781−2514

Davis Miles 212−963−5314

HancockHerbie 616−752−6943

Shorter Wayne 853−238−0060
An array with three dimensions is more difficult to represent graphically. Picture a three−dimensional cube,
divided up into sections. After three dimensions, it becomes even more difficult to hold a picture of the array's
structure in your mind.

Array Bounds and Declaring Arrays

0 1 2

0 Williams Tony 404−985−6328

1 Carter Ron 305−781−2514

2 Davis Miles 212−963−5314

3 Hancock Herbie 616−752−6943

4 Shorter Wayne 853−238−0060
The lower bound of the first dimension (the columns) is 0, and the upper bound is 2. The lower bound of the
second dimension (the rows) is once again 0, and the upper bound is 4. The lower bound of an array in
VBScript is always 0 (unlike Visual Basic arrays, which can have any lower bound that you wish to declare).
Arrays with a lower bound of 0 are said to be zero−based. This can become a bit confusing, because when you
are accessing elements in the array, you have to always remember to start counting at 0, which is not always
natural for people. So even though there are three columns in the first dimension, the upper bound is
expressed as 2 − because we started numbering them at 0. Likewise, even though the there are five rows in the
second dimension, the upper bound is expressed as 4.

When you declare (or "dimension") an array, you can tell VBScript how many dimensions you want, and
what the upper bound of each dimension is. For example, here is a declaration for an array variable for the list
of colors that we showed a picture of in the previous section:

Dim astrColors(5)

The list of colors was one dimensional (that is, it had only one column) and it had six elements. So the upper
bound of the array is 5 − remember that we start counting at 0. Notice the Hungarian prefix (see Appendix C)
that we used in our variable name: astr. For a normal string variable name, we would just use the str prefix.
We add the additional a in order to convey that this variable is an array. For another example, an array of
Long numbers would have this prefix: alng. For more information on subtypes and arrays, see the last section
of this chapter.

Here is a declaration for an array variable for our phone list:

Complex Data Types

70

Dim astrPhoneList(2,4)

When we add another dimension, we add a comma and another upper bound definition to the declaration.
Since our phone list has three columns, the upper bound of the first dimension is 2. And since it has five rows,
the upper bound of the second dimension is 4. Note that you are not limited to using Dim to declare your
array. You can use the Private and Public statements just as you would with any other variable.

But what happens when we don't know in advance how many elements we're going to need in our array? This
is where the dynamic array comes in. A dynamic array is one that is not pre−constrained to have certain
upper bounds, or even a certain number of dimensions. You can declare the array variable once at design time,
then change the number of dimensions and the upper bound of those dimensions dynamically at runtime. In
order to declare a variable as a dynamic array, you just use the parentheses without putting any dimensions in
them:

Dim astrPhoneList()

This tells VBScript that we want this variable to be an array, we just don't know at design time how many
elements we're going to need to store in it. This is a very common occurrence − perhaps more common than
knowing in advance how many elements you're going to need. If you're going to open a file or database table
and feed the contents into an array, how can you know at design time how many items will be in the file or
database table? You can't know that. So the dynamic array solves that dilemma by allowing us to resize the
array at runtime.

In order to change the number of dimensions, or the upper bounds of those dimensions, you have to use the
ReDim statement. You can use the ReDim statement anywhere in any code that is in the same scope as the
dynamic array variable. Here's an example:

Option Explicit

Private astrPhoneList()

FillPhoneList
AddToPhoneList "Ellington", "Duke", "856−963−7854"

Sub FillPhoneList
 ReDim astrPhoneList(2,4)
 <other code goes here to populate the array>
End Sub

Sub AddToPhoneList(strLast, strFirst, strPhone)

 Dim lngUBound
 lngUBound = UBound(astrPhoneList, 2) + 1
 ReDim Preserve astrPhoneList(2, lngUBound)
 astrPhoneList(0, lngUBound) = strLast
 astrPhoneList(1, lngUBound) = strFirst
 astrPhoneList(2, lngUBound) = strPhone

End Sub

Please note that this example has the exact same effect as our previous example, since we are still
hard−coding the upper bound of the elements. In the real world, the whole point of using ReDim is that you
have no idea at design time how many elements you would need, so you would use a variable to determine
how many elements to declare. Later in the chapter, we'll have an example that uses ReDim inside of a loop to
add the contents of a Recordset to a dynamic array.

Complex Data Types

71

Using ReDim all by itself completely resizes and clears out the array. If you stored some data in the array, and
then used ReDim to resize it, all the data you previously stored in the array would be lost. That's where the
Preserve keyword comes in. Using the Preserve keyword ensures that the data you've already stored in the
variable stays there when you resize it. However, if you make the array smaller than it already was, you will
of course lose the data that was in the elements you chopped off. Here's the syntax for the Preserve keyword:

ReDim Preserve astrPhoneList(2,5)

There is one caveat when using the Preserve keyword: you can only resize the last dimension in the array. If
you attempt to resize any dimension other than the last dimension, VBScript will generate a runtime error.
That's why, when working with two−dimensional arrays, it's best to think of the first dimension as the
columns, and the second dimension as the rows. You will generally know how many columns you need in an
array at design time, so you won't have to resize the columns dimension. It's the number of rows that you
generally won't be sure about. For example, in our phone list array, we know that we need three columns: one
for the last name, one for the first name, and one for the phone number. So we can hard code these at design
time and dynamically resize the rows dimension at runtime. Regardless, make sure that the dimension you
want to resize with ReDim Preserve is the last dimension in your array.

Important Note that when you declare a variable with the parentheses at the end of the variable name − e.g.
varTest() − that variable can only be used as an array. However, you can declare a variable
without the parentheses at the end, and still use the ReDim statement later to turn it into a
dynamic array. Then you can assign a normal number to the variable again to stop it from being
an array. However, using a variable for multiple purposes in this manner can be confusing and
might allow bugs to creep into your code. If you need a variable to be both an array and not an
array, you might consider declaring two separate variables instead of using one variable for two
purposes.

Accessing Arrays with Subscripts

0 1 2

0 Williams Tony 404−985−6328

1 Carter Ron 305−781−2514

2 Davis Miles 212−963−5314

3 Hancock Herbie 616−752−6943

4 Shorter Wayne 853−238−0060
The last name "Williams" is stored in subscript 0,0. The first name "Miles" is stored in subscript 1,2. The
phone number "305−781−2514" is stored in subscript 2,1. You get the idea. When reading or writing from or
to a subscript, you would use this syntax:

astrPhoneList(0,0) = "Williams"
astrPhoneList(1,0) = "Tony"
astrPhoneList(2,0) = "404−985−6328"
MsgBox "The Last Name is: " & astrPhoneList(0,0)
MsgBox "The First Name is: " & astrPhoneList(1,0)
MsgBox "The Phone Number is: " & astrPhoneList(2,0)

Erasing Arrays

You can totally empty out an array using the Erase statement. The Erase statement has slightly different
effects with fixed size and dynamic arrays. With a fixed size array, the information in the array elements is

Complex Data Types

72

deleted, but the elements themselves stay there − they're just empty. With a dynamic array, the Erase
statement completely releases the memory the array was taking up. The data in the array is deleted, and the
elements themselves are destroyed. To get them back, you would have to use the ReDim statement on the
array variable again. Here's an example:

Erase astrPhoneList

Populating and Looping Through Arrays

Let's look at an example script that declares a dynamic array variable, resizes it using the ReDim statement,
populates the array with data, then loops through the array to retrieve all the information out of it:

Option Explicit

Private Const LAST_NAME = 0
Private Const FIRST_NAME = 1
Private Const PHONE = 2

Private astrPhoneList()

FillPhoneList
DisplayPhoneList

Sub FillPhoneList

 ReDim astrPhoneList(PHONE,4)

 astrPhoneList(LAST_NAME, 0) = "Williams"
 astrPhoneList(FIRST_NAME, 0) = "Tony"
 astrPhoneList(PHONE, 0) = "404−985−6328"

 astrPhoneList(LAST_NAME, 1) = "Carter"
 astrPhoneList(FIRST_NAME, 1) = "Ron"
 astrPhoneList(PHONE, 1) = "305−781−2514"

 astrPhoneList(LAST_NAME, 2) = "Davis"
 astrPhoneList(FIRST_NAME, 2) = "Miles"
 astrPhoneList(PHONE, 2) = "212−963−5314"

 astrPhoneList(LAST_NAME, 3) = "Hancock"
 astrPhoneList(FIRST_NAME, 3) = "Herbie"
 astrPhoneList(PHONE, 3) = "616−752−6943"

 astrPhoneList(LAST_NAME, 4) = "Shorter"
 astrPhoneList(FIRST_NAME, 4) = "Wayne"
 astrPhoneList(PHONE, 4) = "853−238−0060"

End Sub

Sub DisplayPhoneList

 Dim strMsg
 Dim lngIndex
 Dim lngUBound

 lngUBound = UBound(astrPhoneList, 2)
 strMsg = "The phone list is:" & vbNewLine & vbNewLine
 For lngIndex = 0 to lngUBound
 strMsg = strMsg & astrPhoneList(LAST_NAME, lngIndex) & ", "

Complex Data Types

73

 strMsg = strMsg & astrPhoneList(FIRST_NAME, lngIndex) & " − "
 strMsg = strMsg & astrPhoneList(PHONE, lngIndex) & vbNewLine
 Next

 MsgBox strMsg

End Sub

Running this script results in the following dialog box:

First, notice that we are using named constants for the subscripts of the columns of our phone list. These
script−level constants are declared at the top of the script. This technique makes the code that accesses the
array a lot more clear. Second, notice the use of the VBScript UBound() function in the DisplayPhoneList()
procedure:

lngUBound = UBound(astrPhoneList, 2)

The first parameter of the UBound() function is an array variable. The second parameter is optional, and it is
the number of the dimension that you want the upper bound of. The UBound() function returns the subscript
of the upper bound of the dimension specified in the second parameter. If you do not provide the second
parameter, it is assumed that you want the upper bound of the first dimension. Note that this second parameter
is one−based, not zero−based. Use 1 for the first dimension, 2 for the second, and so on.

The DisplayPhoneList() procedure uses UBound() to determine how many times it needs to loop around in
order to touch all the rows in the array. This is a very common technique since you usually won't know how
many rows are in your array. Inside the For loop, DisplayPhoneList() uses the named constants and the
lngIndex loop counter variable to access the elements in the array.

The example script still has one flaw, however: the FillPhoneList() procedure is hard coded to add five
hard−coded items into the phone list. This is not very realistic, since the phone list would probably be stored
in a file or a database table. So lets look at some code that uses the ActiveX Data Objects (ADO) Recordset
object to populate the array. This technique uses the Preserve keyword with the ReDim statement. Try not to
worry about the details of the ADO syntax if you are not familiar with it. We cover ADO in Chapter 15.

Sub FillPhoneList

 Dim lngCounter
 Dim rsList

 <code goes here to create and open the Recordset object>

 ReDim astrPhoneList(PHONE,0)
 lngCounter = 0
 Do While Not rsList.EOF

Complex Data Types

74

 ReDim Preserve astrPhoneList(PHONE, lngCounter)

 astrPhoneList(LAST_NAME, lngCounter) = rsList.Fields("LastName").Value
 astrPhoneList(FIRST_NAME, lngCounter) = rsList.Fields("FirstName").Value
 astrPhoneList(PHONE, lngCounter) = rsList.Fields("Phone").Value

 lngCounter = lngCounter + 1
 rsList.MoveNext
 Loop

End Sub

The ReDim Preserve code inside the loop, using the lngCounter variable, makes the array successively larger
as the loop goes around and around.

Important Note: you can also use the ADO Recordset.GetRows() method to achieve the
same thing that the above example does. Using GetRows() would be much faster
as well.

Using VarType() with Arrays

The Microsoft VBScript documentation has an error in its description of the VarType() function in regards to
arrays. It states that when you use the VarType() function to determine the subtype of an array variable, the
number returned will be a combination of the number 8192 and the normal VarType() return value for the
subtype (see the table earlier in this chapter for a list of all the subtype return values and their named constant
equivalents). The named constant equivalent for 8192 is vbArray. You can subtract 8192 from the VarType()
return value to determine that actual subtype. This is only partially correct. The VarType() function does
indeed return 8192 (vbArray) plus another subtype number − but that other subtype number will always be 12
(vbVariant). The subtype of a VBScript array can never be anything but Variant.

Give this code a try and you'll see that, no matter what types of values you try to place in the array (String,
Date, Long, Integer, Boolean, etc.), you'll never get the message box in the Else clause to display:

Dim strTest(1)
Dim lngSubType

strTest(0) = CLng(12)
strTest(1) = "Hello"

lngSubType = VarType(strTest) − vbArray

If lngSubType = vbVariant Then
 MsgBox "The Subtype is Variant."
Else
 MsgBox "The subtype is: " & lngSubType
End If

Important Since we are discussing complex data types, Visual Basic developers take note that User Defined
Types (UDTs) are not supported in VBScript. You cannot define UDTs with the Type statement,
nor can you work with UDT variables exposed by VB components.

Summary

In this chapter we covered the ins and outs of VBScript variables and data types. VBScript supports only one
data type, the Variant, but the Variant data type supports many "subtypes." Declaring and using VBScript

Complex Data Types

75

variables properly requires a full understanding the multi−faceted Variant data type. In this chapter, we also
discussed more complex data types, including objects and arrays.

Complex Data Types

76

Chapter 3: Control of Flow
This chapter will pick up where Chapter 2 left off. Chapter 2 introduced VBScript variables and data types.
This chapter will cover "control of flow", which involves the techniques of "branching" and "looping" in your
VBScript code. If you feel you might need a primer on how programming in general is done, you might want
to read Chapter 1 before starting here. Chapters 2 and 3 cover many of the same topics that Chapter 1 does,
but in Chapters 2 and 3, we cover the specific VBScript elements that support variables, data types, and
control of flow − the most basic building blocks of programming. Chapter 1 covers these topics in a more
general way, with the aim of initiating someone who has never written any computer programs or scripts
before. If you are already experienced with programming in another language, but have never used VBScript,
you can probably skip Chapter 1, but Chapters 2 and 3 will cover essential VBScript−specific topics.

Branching Constructs

"Branching" is the process of making a decision in your code and then, based on that decision, executing one
block of code, but not others. We will see the most common branching construct, IfEnd If, many times
throughout this chapter, and we introduced it in Chapter 1. In this section, we will cover the IfEnd If construct
in detail, as well as another branching construct, SelectEnd Select.

Important In Chapter 1, we also introduced the idea of a code block, which is a section of code that is
delimited by beginning and ending statements. In the case of an If block, the beginning of it is
defined by an If statement, and the end is defined by an End If statement. VBScript requires that
both the beginning and the ending statements be there. If you forget to include the ending
statement, VBScript will produce a syntax error at runtime. It's a good idea to get in the habit of
typing both the beginning and ending statements first, before you type the code that goes
between them. This ensures that you will not forget to type the ending statement, especially if the
code that goes between the statements is rather involved. This is also especially helpful if you're
going to be nesting multiple code blocks within each other.

The "If" Branch

The IfEnd If construct can be very simple, or it can become fairly complicated. In its simplest form, it
requires this syntax:

If <expression> Then
 <other code goes here>
End If

In place of <expression> you can use anything that results in a True or False answer (also known as a Boolean
expression). This can be a mathematical equation:

If 2 + 2 = 4 Then
 <other code goes here>
End If

Or it can be a function that returns True or False:

If IsNumeric(varAny) Then
 <other code goes here>
End If

77

Or it can use more complicated Boolean logic:

If strMagicWord = "Please" And (strName = "Hank" Or strName = "Bill") Then
 <other code goes here>
End If

You can also use the Not statement to reverse the True or False result of the expression:

If Not IsNumeric(varAny) Then
 <other code goes here>
End If

We can add another dimension to the If construct by adding an Else block. The Else block will be executed if
the result of the If expression is False:

If IsNumeric(varAny) Then
 <other code goes here>
Else
 <some other code goes here>
End If

Many times, however, the decision you are trying to make does not involve a simple either/or evaluation. In
that case, you can add as many ElseIf blocks as you like:

If IsNumeric(varAny) Then
 <other code goes here>
ElseIf IsDate(varAny) Then
 <some other code goes here>
ElseIf IsEmpty(varAny) Then
 <some other code goes here>
Else
 <some other code goes here>
End If

If the first expression returns False, then the execution moves to the first ElseIf evaluation. If that returns
False, then the execution moves on to the second ElseIf evaluation. If that returns False, then the execution
falls into the code in the Else block. Note that the ElseIf line must end with the word Then, just as the initial If
line must. Keep in mind that the Else block is always optional:

If IsNumeric(varAny) Then
 <other code goes here>
ElseIf IsDate(varAny) Then
 <some other code goes here>
ElseIf IsEmpty(varAny) Then
 <some other code goes here>
End If

You can also nest IfEnd If blocks within each other:

If IsNumeric(varAny) Then
 If varAny > 0 Then
 <code goes here>
 ElseIf varAny < 0 Then
 <code goes here>
 Else
 <code goes here>
 End If

 Chapter 3: Control of Flow

78

Else
 <some other code goes here>
End If

You can nest as deeply as you like, but beware of nesting too deeply, because the code can become
unmanageable and hard to follow.

Keep in mind that a SelectEnd Select block (which we introduce in the next section) is often an alternative to
an IfEnd If block with a lot of ElseIf blocks in the middle. However, the ElseIf construct is more flexible,
because each different ElseIf line can evaluate something totally different, whereas a SelectEnd Select block
must consider different possible results to the same expression. Because the IfElseIfEnd If is more flexible,
you can always use it in place of SelectEnd Select. However, the reverse is not true. SelectEnd Select can only
be used to evaluate different variations of the same expression.

Here is a sequence of ElseIf blocks that evaluate totally different expressions:

If boolFirst Then
 <other code goes here>
ElseIf boolSecond Then
 <some other code goes here>
ElseIf boolThird Then
 <some other code goes here>
ElseIf lngTest = 1 Then
 <some other code goes here>
ElseIf strName = "Bill" Then
 <some other code goes here>
End If

The "Select Case" Branch

As we mentioned in the previous section, the SelectEnd Select construct is useful when you are evaluating
different possible results to the same expression. SelectEnd Select has the following syntax:

Select Case <expression>
 Case <possibility 1>
 <code goes here>
 Case <possibility 2>
 <other code goes here>
 Case <possibility 3>
 <other code goes here>
 Case <possibility n>
 <other code goes here>
 Case Else
 <other code goes here>
End Select

Notice that we are evaluating the same expression multiple times, whereas the IfElseIfEnd If block allows you
to evaluate different expressions. Notice also that after all of the tests are made, we can include an optional
Case Else block that will be executed if none of the other possibilities return True. Let's look at a real
example:

Select Case VarType(varAny)
 Case vbString
 <code goes here>
 Case vbLong
 <code goes here>

Branching Constructs

79

 Case vbBoolean
 <code goes here>
 Case Else
 <code goes here>
End Select

The first line evaluates the expression VarType(varAny), then each subsequent Case statement checks for
each of many possible results. Finally, if none of the Case statements evaluates to True, then the Case Else
block will be executed. Note that we could accomplish this same thing with an IfElseIfEnd If block:

If VarType(varAny) = vbString Then
 <code goes here>
ElseIf VarType(varAny) = vbLong Then
 <code goes here>
ElseIf VarType(varAny) = vbBoolean Then
 <code goes here>
Else
 <code goes here>
End If

However, this has the disadvantage that the expression VarType(varAny) will be executed for every ElseIf
block, whereas with the SelectEnd Select, it is only evaluated once.

It is a good idea to always consider including a Case Else block in your Select Case blocks − even if you
cannot conceive of a situation where the Case Else would be executed. This is a good idea for two reasons:

If something somewhere changes unexpectedly, and the Case Else block does suddenly start
executing, your code will catch it − whereas without the Case Else block you might never catch it .

•

Including a Case Else block can add documentation to the code as to why the Case Else block is never
intended to be executed.

•

It's a common convention to include a Case Else block that contains nothing other than a comment stipulating
why the programmer expects the Else condition to never exist. Here's an example:

Select Case lngColor
 Case vbRed
 <code goes here>
 Case vbGreen
 <code goes here>
 Case vbBlue
 <code goes here>
 Case Else
 'We never use anything but Red, Green, and Blue
 MsgBox "Illegal color encountered: " & lngColor, _
 vbExclamation
End Select

You can also nest SelectEnd Select blocks within one another, and you can nest IfEnd If blocks (or any other
kind of code) inside the SelectEnd Select as well:

Select Case VarType(varAny)
 Case vbString
 Select Case varAny
 Case "Test1"
 If Trim(strUserName) = "" Then
 <code goes here>

Branching Constructs

80

 Else
 <code goes here>
 End If
 Case "Test2"
 <code goes here>
 Case "Test3"
 <code goes here>
 End Select
 Case vbLong
 <code goes here>
 Case vbBoolean
 <code goes here>
 Case Else
 <code goes here>
End Select

Loop Constructs

Whereas branching is the process of making a decision on whether to execute one block of code or another,
looping is the process of repeating the same block of code over and over. VBScript provides four looping
constructs that you can use in different situations. In most programmer's minds, however, one of these loop
constructs, the WhileWend loop, has been supplanted by the more intuitive, powerful, and flexible DoLoop
loop. For this reason, in this chapter we will emphasize the remaining three loops. However, in the interest of
completeness, we will cover the syntax for the WhileWend loop at the end of the chapter.

Once you remove WhileWend from consideration, each of the remaining three loop constructs is ideal for a
different type of loop. Each of the following sections will explain the syntax for these loops, as well as when
you would use one loop or another.

ForNext

The ForNext loop is ideal for two situations:

When you want to execute a block of code repeatedly a known, finite number of times.•
When you want to execute a block of code once for each element in a structure (other than a
collection, which is what the For EachNext loop is for).

•

Let's first look at how to use the ForNext loop to execute a block of code a known number of times.

Dim lngIndex

For lngIndex = 1 To 5
 MsgBox "Loop Index: " & lngIndex
Next

Running this code produces the following five dialog boxes, in succession:

 Loop Constructs

81

This is pretty straightforward. The first thing you'll notice is that, in order to use the ForNext loop, you need a
loop variable − also known as a loop index. The variable lngIndex serves this purpose. The statement For
lngIndex = 1 to 5 means that this loop will execute five times. As you can see from the dialog boxes that pop
up, the value of lngIndex matches each step in the traversal from the number 1 to the number 5. After looping
for the fifth time, the loop stops and moves on. Note that you don't need to start at one in order to loop five
times:

Dim lngIndex

For lngIndex = 10 To 14
 MsgBox "Loop Index: " & lngIndex
Next

This will still loop five times, but instead of starting at 1, it will start at 10. Each time around, lngIndex will
have a value of 10, then 11, then 12, and so on to 14. You can also use the Step keyword to skip numbers:

Dim lngIndex

For lngIndex = 10 To 18 Step 2
 MsgBox "Loop Index: " & lngIndex
Next

Once again, this will still loop five times, but, because we specified Step 2, it will skip every other number.
On the first loop, lngIndex will have a value of 10, then 12, then 14, and so on to 18. You can use any
increment you like with the Step keyword:

Dim lngIndex

For lngIndex = 100 To 500 Step 100
 MsgBox "Loop Index: " & lngIndex
Next

 Loop Constructs

82

You can also use the Step keyword to cause the loop to go backwards:

Dim lngIndex

For lngIndex = 5 To 1 Step −1
 MsgBox "Loop Index: " & lngIndex
Next

Because we used a negative number with the Step keyword, the loop goes downward through the numbers.
Notice that in order for this to work, the increment range must specify the larger number first.

You are not limited to using negative numbers with the Step keyword. The loop itself can loop through
negative numbers, like this:

Dim lngIndex

For lngIndex = −10 To −1
 MsgBox "Loop Index: " & lngIndex
Next

Or like this:

Dim lngIndex

For lngIndex = −10 To −20 Step −2
 MsgBox "Loop Index: " & lngIndex
Next

You can also nest loops inside one another:

Dim lngOuter
Dim lngInner

For lngOuter = 1 to 5
 MsgBox "Outer loop index: " & lngOuter

 For lngInner = 10 to 18 Step 2
 MsgBox "Inner loop index: " & lngInner
 Next
Next

So what do you do when you don't know exactly how many times you want to loop? This is a common
situation. It often comes up when you need to traverse an array (see the next section, "Complex Data Types"),
a string, or any other kind of structure. Let's look at an example:

Dim lngIndex
Dim lngStrLen
Dim strFullPath
Dim strFileName

'This code will extract the filename from a path

strFullPath = "C:\Windows\Temp\Test\myfile.txt"
lngStrLen = Len(strFullPath)

For lngIndex = lngStrLen To 1 Step −1
 If Mid(strFullPath, lngIndex, 1) = "\" Then

 Loop Constructs

83

 strFileName = Right(strFullPath, lngStrLen − lngIndex)
 Exit For
 End If
Next

MsgBox "The filename is: " & strFileName

Running this code produces the following dialog box:

We've added some new elements in this example. The Len() function is a built−in VBScript function that
returns the number of characters in a string. The Mid() function extracts one or more bytes from the middle of
a string. The first parameter is the string to extract from; the second parameter is the character at which to start
the extraction; the third parameter is how many characters to extract. The Right() function is similar to Mid(),
except that it extracts a certain number of the rightmost characters in a string. Finally, the Exit For statement
breaks you out of a loop. This is very handy when you know that you don't need to loop anymore.

Notice how we use the length of the strFullPath variable to drive how many times we need to loop. When we
started, we did not know how many times we needed to loop, so we used the length of the structure we needed
to traverse (in the case, a string) to tell us how many times to loop. Notice also how we loop backwards so that
we can search for the last backslash character ("\") in the strFullPath variable. Once we've found the
backslash, we know where the filename begins. Once we've used the Right() function to extract the filename
into the strFileName variable, we don't need the loop anymore, so we use Exit For to break out of the loop.
Exit For jumps the execution of the code to the very next line after the Next statement.

In the next section, "Complex Data Types", we'll show you how to use the ForNext loop to traverse an array.

Important Note: the above example was provided for the purpose of
demonstrating how to use a ForNext loop to move through a data
structure of a size that is unknown at design time. This is not
necessarily the best way to extract a filename from a full
pathname. This, for example, would be much faster:

Dim strFileName
Dim strFullPath

strFullPath = "C:\MyStuff\Documents\Personal\resume.doc"

strFileName = Right(strFullPath, Len(strFullPath) −
InStrRev(strFullPath,"\"))

MsgBox "The filename is: " & strFileName

For EachNext

The For EachNext loop is a special kind of loop that is specifically used for traversing Collections. A
Collection, as the name suggests, is a collection of data, almost like an array. A Collection is most often a

Loop Constructs

84

collection of objects of the same type (even though Collections can be collections of virtually any kind of
data). For example, the scripting Folder object has a Files Collection, which is exposed as a property on the
Folder object. Inside the Folder.Files Collection are zero or more File objects. You can use a For EachNext
loop to move through each of the File objects in the Folder.Files Collection.

With the For EachNext loop, you cannot directly control how many times the loop will go around. This is
dependent upon how many objects are in the Collection you are traversing. However, you can still use the Exit
For statement to break out of the loop at any time. You can figure out when to use Exit For by testing for
some condition, or using an extra counter variable to count how many times you've gone through the loop.
Let's look at an example that uses the FileSystemObject and related objects, which we introduce formally in
Chapter 7. In this example, we will attempt to locate the AUTOEXEC.BAT file on our system. (Don't worry −
it's safe to try out this code − there is no danger of harming your AUTOEXEC.BAT file.)

Dim objFSO
Dim objRootFolder
Dim objFileLoop
Dim boolFoundIt

Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
Set objRootFolder = objFSO.GetFolder("C:\")
Set objFSO = Nothing

boolFoundIt = False
For Each objFileLoop In objRootFolder.Files

 If UCase(objFileLoop.Name) = "AUTOEXEC.BAT" Then
 boolFoundIt = True
 Exit For
 End If

Next
Set objFileLoop = Nothing
Set objRootFolder = Nothing

If boolFoundIt Then
 MsgBox "We found your AUTOEXEC.BAT file in the C:\ directory."
Else
 MsgBox "We could not find AUTOEXEC.BAT in the C:\ directory."
End If

Try not to worry about the syntax that may be unfamiliar to you. Concentrate instead on the syntax of the For
EachNext loop block. The objRootFolder variable holds a reference to a Folder object. A Folder object has a
Files collection. The Files collection is a collection of File objects. So what telling VBScript to do is "take a
look at each File object in the Files Collection". Each time the loop goes around, the loop variable,
objFileLoop, will hold a reference to a different File object in the Files collection. If the Files collection is
empty, then the loop will not go around at all. Notice how we use the Exit For statement to break out of the
loop once we've found the file we're looking for.

Important Note: the above script example is intended to demonstrate the use of the For EachNext loop to
traverse a Collection of objects. This is not necessarily the best way to see if a file exists. For
example, this is much faster and more compact:

Dim objFSO

Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")

Loop Constructs

85

If objFSO.FileExists("C:\AUTOEXEC.BAT") Then

MsgBox "We found your AUTOEXEC.BAT file in the " _
"C:\ directory."

End If

Set objFSO = Nothing

Before we move on to the Do loop, please note that even though the For EachNext loop is most often used to
loop through Collections, it can also be used to loop through all of the elements of an array. No matter how
many elements or dimensions the array has, the For EachNext loop will touch each and every one of them.
Here is an example of using the For EachNext loop to traverse a single dimension array:

Dim astrColors(3)
Dim strElement

astrColors(0) = "Red"
astrColors(1) = "Green"
astrColors(2) = "Blue"
astrColors(3) = "Yellow"

For Each strElement In astrColors
 MsgBox strElement
Next

DoLoop

The DoLoop is the most versatile of all of the loop constructs. This is because you can easily make it loop as
many times as you like based on any criteria you like. (However, you'd have to jump through a few hoops to
use it to traverse a collection − For EachNext is much better for that.) The power of the Do loop is in the use
of the While and Until keywords. You can use While or Until at either the beginning of the loop or the end of
the loop to control whether the loop will go around again. Let's look at a simple script that uses a Do loop.

Dim boolLoopAgain
Dim lngLoopCount
Dim strResponse

boolLoopAgain = False
lngLoopCount = 0
Do
 boolLoopAgain = False
 lngLoopCount = lngLoopCount + 1

 If lngLoopCount > 5 Then
 MsgBox "Okay, the word we wanted was 'Please.'"
 Else
 strResponse = InputBox("What is the magic word?")
 If UCase(Trim(strResponse)) = "PLEASE" Then
 MsgBox "Correct! Congratulations!"
 Else
 MsgBox "Sorry, try again."
 boolLoopAgain = True
 End If
 End If

Loop Constructs

86

Loop While boolLoopAgain

Notice how the Do statement marks the beginning of the loop block, and how the Loop statement defines the
end of the block. The While statement, however, places a condition on the Loop statement. The loop will only
go around again if the expression following the While statement is True. In this case, our expression is a
variable called boolLoopAgain, which has the Boolean subtype, but it could be any expression that evaluates
to or returns a True or False response.

Notice also how we initialize the boolLoopAgain variable to False before the loop starts. This accomplishes
two things: it establishes the subtype of the variable as Boolean, and it guarantees that the loop will only go
around again if some piece of code inside the loop explicitly sets the variable to True. If the user guesses
wrong, then we set boolLoopAgain to True, guaranteeing that the loop will go around at least one more time
so we can ask the user to guess again. Finally, notice how we use a loop counter variable, lngLoopCount, to
make sure that the loop does not go around forever and drive the user crazy if he can't guess the magic word.
Using a loop counter variable is optional, and not part of the DoLoop syntax, but it's a good idea if there's a
chance that the loop might go around indefinitely.

Using this particular loop structure − with the Do statement by−itself at the beginning, and the While
condition attached to the Loop statement at the end − has an important implication: because we did not place a
condition on the Do statement, the code inside the loop is guaranteed to execute at least once. This is what we
want in this case, because if we did not execute the code at least one time, the user would never get asked the
question, "What is the magic word?"

Sometimes, though, you only want the code inside the loop to execute if some precondition is True; if that
precondition is False, then you don't want the loop to execute at all. In that case, we can place the While
statement at the beginning of the loop. If the Do While condition is False, then the loop will not go around
even once.

In the following example, we are going to use the FileSystemObject to open a text file. We will access the text
file using a TextStream object. When you open a file in the form of a TextStream object, the TextStream
object uses a "pointer" to keep track of it's place in the file as you move through it. When you first open the
file, the pointer is at the beginning of the file. (The pointer is not physically placed in the file − it exists only
in the TextStream object.) You can move through the file line−by−line using the TextStream.ReadLine
method.

Each time you call ReadLine, the pointer moves one line down in the file. When the pointer moves past the
last line in the file, the TextStream.AtEndOfStream property will have a value of True. That's when we know
we are done reading the file. There is an issue though, that when we open a text file, we're not sure if it
actually contains any data. It might be empty. If it is, then we don't want to call ReadLine, because this will
cause an error. However, we'll know that the file is empty if the AtEndOfStream property is True right after
opening the file. We can handle this nicely by placing the calls to ReadLine inside of a Do loop:

If you want to try out this code yourself, just create a text file and put the following lines in it:

Line 1
Line 2
Line 3
Line 4
Line 5

Loop Constructs

87

Save the file somewhere on your drive and make sure that the argument to the OpenTextFile method points to
the file you created. The code for this is shown below (don't worry if you're not familiar with the particulars of
the FileSystemObject and TextStream objects. They are covered in detail in Chapter 7):

Dim objFSO
Dim objStream
Dim strText

Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
Set objStream = objFSO.OpenTextFile("C:\temp\testfile.txt")
Set objFSO = Nothing

strText = ""
Do While Not objStream.AtEndOfStream
 strText = strText & objStream.ReadLine & vbNewLine
Loop
Set objStream = Nothing

If strText <> "" Then
 MsgBox strText
Else
 MsgBox "The file is empty."
End If

Running this code results in the following dialog box:

You can see that, by placing the While condition at the beginning of our loop, we can decide whether or not
we want the loop to go around even once. If the file is empty, then we don't want to try reading any lines.
Since there is no condition on the Loop statement, though, when the loop reaches the end, the code will jump
back up to the Do line. However, if the Do While expression returns False, the loop will not execute again,
and the code will jump back down to the line immediately following the Loop line.

For the record, note that we could have put the While statement with the Do in our first example and
accomplished the same thing:

Dim boolLoopAgain
Dim lngLoopCount
Dim strResponse

boolLoopAgain = True
lngLoopCount = 0
Do While boolLoopAgain
 boolLoopAgain = False
 lngLoopCount = lngLoopCount + 1
 If lngLoopCount > 5 Then
 MsgBox "Okay, the word we wanted was 'Please.'"
 Else
 strResponse = InputBox("What is the magic word?")

Loop Constructs

88

 If UCase(strResponse) = "PLEASE" Then
 MsgBox "Correct! Congratulations!"
 Else
 MsgBox "Sorry, try again."
 boolLoopAgain = True
 End If
 End If

Loop

Compare our first Do loop example with this one. Both examples accomplish exactly the same thing: the loop
executes at least once, and it will only loop again if the code inside the loop says that we should. The
difference with this second technique is that we started off by initializing boolLoopAgain to True, which
guarantees that the loop will execute at least once. As you can see, the Do loop is quite versatile, and how you
accomplish one thing or another is largely a matter of preference. That said, one could make a pretty good
argument that the first version of this code is preferable because the Do statement all by itself makes it
obvious that the loop is going to execute at least once, whereas this second example is a little bit tricky.

Important All else being equal, if there are two ways of coding something, the more explicit method is
almost always preferable.

So the first question you need to answer when considering the use of the Do loop is, do I want the code to
execute at least once, no matter what? If the answer to that question is Yes, then it's best to place your
condition at the end of the loop. Otherwise, put the condition at the beginning of the loop.

However, there is a second question: should you use the While statement for the condition, or its cousin, the
Until statement? The answer to this second question is also largely a matter of preference. Although the While
and Until statements are slightly different, they pretty much do the same thing. The main difference is one of
semantics, and people generally fall into the habit of using one or the other, based on which syntax makes the
most intuitive sense to them. However, one will usually tend to be more clear than another in a given
situation.

Here's how Microsoft's VBScript documentation describes the Do loop (we added the bold emphasis):

"Repeats a block of statements while a condition is True or until a condition becomes True."

As you can see, the distinction between While and Until is rather fuzzy. The easiest way to explain the
difference is to look at our previous two examples, but using Until instead of While. You'll see that the
consideration of whether to execute the loop at least once remains the same. However, the implementation is
slightly different. Here's our first example, modified to use Until:

Dim boolLoopAgain
Dim lngLoopCount
Dim strResponse

boolLoopAgain = False
lngLoopCount = 0
Do
 boolLoopAgain = False
 lngLoopCount = lngLoopCount + 1

 If lngLoopCount > 5 Then
 MsgBox "Okay, the word we wanted was 'Please.'"
 Else
 strResponse = InputBox("What is the magic word?")

Loop Constructs

89

 If UCase(strResponse) = "PLEASE" Then
 MsgBox "Correct! Congratulations!"
 Else
 MsgBox "Sorry, try again."
 boolLoopAgain = True
 End If
 End If

Loop Until boolLoopAgain = False

Looks like the same thing, no? The difference is that we must test for a False value in our Until clause,
whereas we tested for a True value in our While clause. When you read the line Loop While boolLoopAgain,
does it make more sense than Loop Until boolLoopAgain = False? If the While syntax makes more sense to
you, maybe we can fix that by changing the name of our variable:

Dim boolStopLooping
Dim lngLoopCount
Dim strResponse
boolStopLooping = True
lngLoopCount = 0
Do
 boolStopLooping = True
 lngLoopCount = lngLoopCount + 1

 If lngLoopCount > 5 Then
 MsgBox "Okay, the word we wanted was 'Please.'"
 Else
 strResponse = InputBox("What is the magic word?")
 If UCase(strResponse) = "PLEASE" Then
 MsgBox "Correct! Congratulations!"
 Else
 MsgBox "Sorry, try again."
 boolStopLooping = False
 End If
 End If

Loop Until boolStopLooping

Does the Until syntax make a little more sense now? The point is, you can use either While or Until to
accomplish what you need to, it's just a matter of what makes more sense in a given situation. Let's look at our
second example again, this time using Until:

Dim objFSO
Dim objStream
Dim strText

Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
Set objStream = objFSO.OpenTextFile("C:\temp\testfile.txt")
Set objFSO = Nothing

strText = ""
Do Until objStream.AtEndOfStream
 strText = strText & objStream.ReadLine & vbNewLine
Loop
Set objStream = Nothing

If strText <> "" Then
 MsgBox strText
Else

Loop Constructs

90

 MsgBox "The file is empty."
End If

What do you think? Does the Until syntax make this more clear? It just might. People sometimes have an
easier time thinking in terms of positives, and the syntax Do While Not objStream.AtEndOfStream may be
more or less clear to you than Do Until objStream.AtEndOfStream. It's up to you, though. VBScript doesn't
care.

Before we move on to WhileWend, we need to mention the Exit Do statement. Like Exit For, you can use
Exit Do to break out of a Do loop at any point. You can have as many Exit Do statements inside your loop as
you like. Here's an example, yet another spin on our first example:

Dim boolStopLooping
Dim lngLoopCount
Dim strResponse

boolStopLooping = True
lngLoopCount = 0
Do
 lngLoopCount = lngLoopCount + 1

 If lngLoopCount > 5 Then
 MsgBox "Okay, the word we wanted was 'Please.'"
 Exit Do
 End If

 strResponse = InputBox("What is the magic word?")
 If UCase(strResponse) = "PLEASE" Then
 MsgBox "Correct! Congratulations!"
 boolStopLooping = True
 Else
 MsgBox "Sorry, try again."
 boolStopLooping = False
 End If

Loop Until boolStopLooping

Instead of setting boolStopLooping to True, we just execute an Exit Do, which has the same effect. When the
Exit Do statement executes, the code jumps out of the loop, to the line of code immediately following the last
line of the loop block (in our example, there is not any code after our loop, so the script ends). Note that if you
are working with nested loops, an Exit Do executed in the inner loop does not break out of the outer loop as
well − only from the loop in which the Exit Do was executed.

WhileWend

As we mentioned at the beginning of the chapter, the WhileWend loop is an older loop syntax from early
versions of BASIC and Visual Basic. The Do loop (see previous section) is almost universally preferred over
the WhileWend loop, which is not nearly as versatile. This is not to say that it is not perfectly valid to use it. It
works fine, it's simple, and Microsoft certainly has not given any indication that they plan to remove support
for it. It has simply fallen out of vogue. In the interest of completeness, here's an example of the WhileWend
syntax:

Dim lngCounter

lngCounter = 0
While lngCounter <= 20

Loop Constructs

91

 lngCounter = lngCounter + 1
 <other code goes here>
Wend

Unlike the Do loop, you do not have the option of using either While or Until, nor can you place the condition
at the end of the loop. The condition for whether to loop again can only be placed at the beginning of the loop,
as you see here. Finally, to put the nail in the coffin of the WhileWend loop, there is no equivalent to Exit For
or Exit Do, meaning you cannot forcibly break out of the loop.

Summary

In this chapter we covered the topic of "control of flow", which involves branching and looping. Branching is
the technique of checking conditions, making a decision, and executing (or not executing) a block of code
based on that decision. Looping is the technique of repeating the same block of code over again.

Loop Constructs

92

Chapter 4: Error Handling, Prevention and
Debugging

Overview

Error handling, unlike some other features, has been one of the selling points of VBScript. In fact, until
Version 5.0 of JScript had been released, VBScript held tremendous edge over JScript because of its error
handling capabilities (at least on the server side of scripting). By now, you would expect volumes of literature
on error handling to exist, but this couldn't be further from the truth. As the scripting hosts grow in their
complexity, so do the general capabilities of scripted applications, and the end user's expectations. At the
same time, however, the schedules get tighter and the workloads get bigger, making even ordinary bugs more
difficult to catch. It seems that proper testing and error handling ends up on the back burner, and unjustifiably
so, because simple error handling is not that difficult, as this chapter will show.

In this chapter, we will cover:

How minute differences in hosts can affect runtime errors•
Different types of errors, and error display•
Basic handling of errors•
Strategies for handling errors in different situations•
Defensive coding strategies•
Debugging with Script Debugger and Visual InterDev•
Common errors and how to avoid them•

Introduction

No matter how simple a VBScript project you are developing, there is always a need for effective error
handling and debugging. If a project worked just fine the last time you tested it, it can be hard to see how error
handling and debugging are at all relevant. In reality, script execution will depend on a variety of factors,
starting with the user, and ending with the physical environment in which the project runs. To understand
what the problems are, let's first consider the user.

Important Users rarely do what we expect them
to do.

While many problems can be avoided by giving the user precise instructions and a clear interface in the first
place, often the user does not take time to read the instructions, or does not understand them. So you
understanding the way your project works might make it more difficult for you to anticipate the sort of
mistakes a user might make. Thorough testing is therefore essential, especially when considering issues such
as what happens if the user enters text when you are expecting numerical input? Does the script validate the
data? Does the browser generate an error if the user clicks in the web page before a sub−procedure is
completed? Even if all the user entered data is valid, there still exist possibilities that the user entered data
may not work with other parts of the script − for instance, the data may represent a duplicate record, which
will not be accepted by the database. Will the server script generate the error?

Next, the dynamically generated scripts which often depend on each other, are another common source of
errors. What if one of the procedures does not perform exactly as in the test case or if the list box, containing
an array of choices, is not present, or empty? Similarly, scripts depending on some components may not be

93

able to access them. Perhaps the user has different security preferences than you anticipated, or does not have
an appropriate component loaded on the system, or appropriate permissions to run it. What does your program
do? Will your script attempt to log the error, or ask the user to file a report?

Finally, hardware issues may be responsible for serious deviations in script executions. The servers can be
down, the client computer may be low on memory, or the disk that the script is trying to access may simply
crash. Will an operator be alerted about a major malfunction?

In order to handle the error, you must anticipate it before it happens. Although defensive programming goes
hand in hand with error handling, you'll have to figure out the trade offs, and choose the best technique for the
situation.

Is there a part of the script that doesn't work exactly the way you expected it to and, while the user will quite
probably discover it, you might not have noticed? These are all good reasons for emphasizing the following:

Important Thorough testing, debugging and error handling are vital for a project of any size.

Undeniably, it is a chore to plan for errors before they happen, but in the long term, it is well worth the effort
and is a valuable habit to get into. Note that there is more to error handling than the glorified On Error
statement (dealt with later in this chapter). Before you rush out to use it, you should realize that it is as often
used to handle errors as it is to cover up bugs and sloppy coding. Error handling is therefore also about good
programming practices and testing methods, as well as using the On Error statement to handle the true
exceptions.

Errors are not the evil we are led to believe and they can happen for bad or good reasons. As long as they are
caught and handled properly (sometimes, you will not be able to correct an error), your programs will run
smoothly. Understanding the differences in the types of errors, the situations in which they occur, and the
simple error−handling techniques available, is paramount to graceful error handling. The environment that
your script feeds from, the complexity and your own understanding of the language and the language's
facilities, all combine to produce a vast source of possible errors.

Important Note that error handling associated with the Script Control (Chapter 16) is slightly different than
with other hosts. Although error handling within the Script Control works similarly to other
scripting hosts, there is also the possibility of handling errors via the host (e.g. the VB
application itself), with a distinction between compilation and run−time errors. For more specific
information, consult the above chapter on Script Control.

Error handling and debugging can also give a much more professional finish to a project, as well as a sense of
security that it will be able to stand up to at least some of what the users are going to throw at it. However, it
is not only the user that can make mistakes: the errors can lurk in the script itself. Let's look at some other
types of errors that can afflict your code.

Seeing the Error of your Ways

Error messages that are displayed by the host identify the line number and the nature of the error (see the
figure below). Depending on the host, and on the nature of the error, the error code may be displayed as a
decimal number (such as 1024) , a hexadecimal one (such as 800a0400), or simply as the text message
identifying the error. If the error code is hexadecimal, and begins with 800A, it is thrown by the scripting
engine, and the remaining four digits can be converted to its decimal representation. (They are covered in
Appendix E, and are additionally listed in VBScript's help files, but without the hexadecimal representations.)

 Seeing the Error of your Ways

94

Errors thrown by COM components and Windows are usually shown using hexadecimal codes.

Now, to make things more complex for the beginner, sometimes these error messages will not show up, or
will show up in a disguised format. These problems can be caused by the configuration of the host and, at
least in the debugging stage of the project, the host ought to be configured to handle errors in the way you
want it to behave. Only two of the hosts can change the way in which errors are displayed: the ASP engine
(the IIS server) and IE5.

Enabling Error Display in IIS

Error handling in IIS is done on a Web application level (note: this does not apply to PWS). Generally, each
Web application will have an application initialization file − the global.asa file − in its directory (see Chapter
14 for a description of this file and of ASP in general). If you are working with a newly installed server, there
is no need to override any of the settings. If you are inheriting a server, or just an IIS application, and errors
messages are not being displayed, you should edit the application's properties through the IIS' MMC
(Microsoft Management Console) as shown in the figure below. In Windows 2000 it is called Internet
Information Services. Other errors (especially HTTP) can also be configured using the Custom Errors tab (for
more information you should consult an IIS reference available with installation of the Option Pack, or with
Windows 2000).

Unfortunately, the error settings are hidden within the many options of the directory or file, or of the
application, and to change the error options you have to locate the appropriate application, and then hit the
Configuration button to set the options available on the figure below. Obviously, in order to see the messages,
the Send detailed ASP error messages to client option should be selected. Once your application is debugged

Seeing the Error of your Ways

95

and in production mode, the other option is preferred as occasionally an error may expose critical information
about your system to the end user (e.g. critical variables, or a database name of the application), especially in
a situation when custom error handlers are not available. Debugging flags, as seen on the screenshot, do not
need to be modified as they are usually handled by Visual InterDev. If you are using the free debugger
(downloadable from the Microsoft Scripting site), you must set the flags by yourself, and start the debugger
before calling any of the ASP pages.

Enabling Error Display in IE 5.0

Although Internet Explorer 5.0 has an improved error display over previous versions, it has introduced
several options that may cause some confusion. Essentially, there are two modes − 'debug' and 'run' − in
which Internet Explorer can operate, each of which has certain quirks. The preferred mode of error display
and debugging (at least, for developers in development mode) is the 'debug' mode with the use of the Script
Debugger. However, when in 'production' and 'testing' modes, debugging should be disabled (see the note
below). The standard (and free) script debugger may be downloaded from the Microsoft Scripting site:

http://msdn.microsoft.com/scripting/debugger/default.htm.

An alternative to the script debugger is the Visual InterDev application environment (which includes the script
debugger), as well as the Microsoft Office 2000 element, the Microsoft Script Editor. Script debugger is also
installed with Windows 2000. After the script debugger has been installed on the system, IE can display two
different types of error messages, and allow the option of entering the debugger once the error has been found.

Important With IE 4, similar steps can be taken to disable and enable debugging. There is no option
to hide error display as in IE 5.

Internet Explorer error settings are neatly kept away from the end users and sometimes can be frustrating to
locate. From the Tools menu you have to choose Internet Options and then the Advanced tab to see the
advanced IE settings as seen in the figure:

Seeing the Error of your Ways

96

There are two options of interest to us: Disable script debugging and Display a notification about every script
error.

With the first option selected, the debugger is disabled, and depending on the selection of the second option,
either the so−called 'user friendly' error dialog box is set for the browser, or the error icon in the lower−left
corner of the Internet Explorer. Although the dialog box shown below may be more user friendly, it may not
be programmer friendly. The error code is not displayed (only the text of the error code − which forces you to
dig through error code tables in case you would want to handle the error in code), but the line number is
displayed correctly. The dialog box displayed below is for the same snippet of code as the dialog window
shown in the following figure, but the line number in there is wrong (although after going into the debug
mode the correct error is highlighted).

The disable script debugging option works only when the script debugger is installed on the system; and
additionally the browser has to be restarted before changes to this option can take effect. Since this chapter
will strictly work in developer mode, all of the IE errors will be presented in the 'debug' mode, as displayed in
the figure below − do not check the Disable Script Debugging option:

The second option of interest − Display a notification about every script error − works when the debug option
is de−selected (Disable script debugging), and it enables suppression of errors. When this option is cleared, an
icon appears on the status bar to inform the user that an error has occurred; the error is then displayed by
clicking on the icon. The yellow sign with an exclamation mark indicates that there was an error on the page,
as seen in the snapshot below.

Obviously, this is the least desirable setup from the developer's point of view. However, it might be the
default setup on your client's browser, which may prevent your client from reporting any unhandled errors
back to you. When the Display Notification About Every Error option is checked, or the user clicks on the

Seeing the Error of your Ways

97

error icon (from the snapshot above), the following dialog will appear.

You should be aware of these subtle differences in error display, especially since this setting is in your end
users' control. Your error handling mechanism may be disabled because of it, or the end user may not be able
to see that an error has occurred, and be surprised that the page does not work.

Important Note that when not 'debugging' scripts, the Disable Script Debugging option should be selected at
all times. When in debug mode, the scripting engine, upon interception of an error, automatically
invokes the debugger, and prompts the user if the debugger should be opened. Although this is
nice, the standard client error handlers are ignored. Even if there is an error handler capable of
correcting the error it will not be invoked. It would be nice if the debugger would start only as
the last resort, but this is not the case. This problem does not apply to ASP's Visual InterDev
debugging options.

Other hosts are 'dumber', in a sense that errors are always displayed (with the exception of WSH 2.0 − now in
beta), and debugging is not possible. Different coding and debugging strategies are discussed later in this
chapter.

Different Types of Errors

There are three types of errors that can burrow their way into your lovingly crafted VBScript (or any other
scripting or programming language for that matter). The three types are not equally severe, the syntax errors
will halt the execution of the script, run−time errors will invoke an error handler, and logical errors will most
commonly contaminate data in your application, and often cause other run−time errors to occur.

Syntax Errors

VBScript, like all other programming or scripting languages, follows set rules for construction of statements.
Before the script is run, the scripting engine parses all of the code, converting it into tokens. When an
unrecognizable structure or an expression is encountered (for example, if you mistype a keyword or forget to
close a loop), a syntax error is generated. Luckily, syntax errors can usually be caught during development
phase, with minimal testing of the code.

Important In some programming environments, syntax errors are called pre−processor, compilation, or
compile−time errors. If your script includes a syntax error, the script will not execute and the
host immediately informs the user of an error.

Those of you who are used to writing applications using Visual Basic will be used to having syntax errors
highlighted by the interpreter in the IDE as soon as you move from the line containing the syntax error. This is
a very useful feature that unfortunately is not available when using VBScript since the script is not interpreted
until it is executed. What happens depends on what you are doing. If the syntax error is in a script being run at

 Different Types of Errors

98

the server (as in an ASP−based application − see Chapter 14) then the error text is simply passed through and
displayed in the client browser instead of the requested page, as shown in the figure below:

If the syntax error is in a client side script being run at the browser, the document loads but the script that
contains the error prevents it from running properly.

What exactly happens depends on where in the script the error occurs. However, each time the script is run,
the error message will be displayed. Here is the error message in Internet Explorer 4.0:

Here is the same error as seen by Internet Explorer 5.0. Notice how the syntax error is confusingly referred to
as a run−time error:

Syntax, and run−time errors are easier to spot than logic errors (which we will look at shortly) because they
always result in an error message being generated. Needless to say, with proper understanding of VBScript,
syntax errors are not a major concern.

Syntax errors tend to pop−up in several circumstances:

When something is missing from the code − parentheses, keywords (especially in blocks), statement
elements, or when the keywords are simply out of place.

•

 Different Types of Errors

99

When a keyword is misspelled or used incorrectly.•
When you try to use a VB or VBA keyword that is not implemented by VBScript.•
When you use keywords that are not supported by the scripting engine (certain keywords may be
phased out, and others added).

•

Important Unfortunately, VBScript does not support conditional compilation (the ability to run different
code depending on environment settings). Hence, when writing code for different versions of
browsers, or scripting engines, you may either have to 'know−the−version', or use JScript.

As you may expect, code executed as part of Eval() or Execute and ExecuteGlobalstatements is not parsed
before the script is run, and can generate runtime errors (but are exempt from the Option Explicit rules).
Special attention has to be paid when generating dynamic code. Appendix E shows all 53 of VBScript's
Syntax Errors and their codes. All of these errors, with an exception of the first two − Out Of Memory and
Syntax Error − are relatively easy to diagnose and correct, but all of these errors (such as Expected '(' or
Expected 'If') should really be caught when the program is run the first time.

Runtime Errors

The second, and most common type of error (at least to the general public), is the runtime error. A runtime
error occurs when a command attempts to perform an action that is invalid. For example, a runtime error
occurs if you try to divide by zero:

Sub window_onload()
Ans = 200/0
Msgbox Ans
End Sub

The various conditions that can result in runtime error depend on the language you are scripting with. A
condition that might cause a runtime error in VBScript might not cause an error in JScript (for example,
attempting to divide by zero in JScript doesn't generate an error). The result of a runtime error is similar to
that of a syntax error − the script is halted and an error message is displayed.

Unlike the syntax errors, which pop−up when the script is loaded, runtime errors show up during script
execution by the scripting engine. Runtime errors can occur as a result of bad coding (which should really be
caught during the debugging and testing stage of the project), and as a result of unusual circumstances that
may or may not be prevented. There are many factors that can contribute to a runtime error, all depending on
the conditions under which the script is run.

The main reasons for these 'unusual circumstances' are:

Certain security options may be turned on or off. For example, your script may try to access a
component that has not been marked as "safe for scripting". In the tests you've carried out the Internet
Explorer has been set to trust the component; however, during final release, the script crashes because
of different security settings on client browsers.

•

Different Types of Errors

100

Components may or may not be available. Here, you might assume that a component is readily
available on the client system, and not provide installation information when referencing the
component. When the component is not available, the script will cause a run−time error.

•

Platform differences. VBScript may be available on many platforms (including Unix, or Alpha) but
the features supported by each platform may vary, especially when using external components.

•

Configuration may be totally different (you should not expect an HTA based script to run 100% as an
HTML based script).

•

Finally, the computer might be under unusual stress. Scripts that use unusual amount of system
resources (memory or CPU time, for example) may behave unexpectedly, especially when other
scripts and applications contend for the same resources. Applications can often time out, and raise an
error directly to the script, or, in other cases, terminate a script.

•

Technically, when the runtime error occurs, the script execution is stopped and the VBScript engine invokes
an exception handler (it is considerably weaker in its functionality than the VB or VBA exception handler).
There are several options at this point, but we will defer them to a later section − What can we do about
errors?. The most essential error handler in question is the On Error Resume Next statement, which
unfortunately requires a little foreknowledge into the possibility of an error occurring at the right time and at
the right line of code (as you have to perform error testing immediately after the error occurs) in order to be
able to use it. Internet Explorer additionally provides window.onerror and element.onerror events that can be
bound to functions, which is covered in Appendix E. If no error handler is present, the error is reported back
to the client.

Thus, runtime errors provide us with the possibility of taking some action. In order to correct the error in
VBScript, you will need to know the decimal version of the error number (which is also provided as a
hexadecimal code, for cases when VBScript throws an error, and passes it to the host): a full listing of
VBScript runtime errors is provided in Appendix E. The majority of these errors (such as Division by zero or
Variable is undefined), however, are simply a result of poor programming, and really should be caught during
the debugging and testing stage of the project, rather than corrected by some overly complex error handler.

Non VBScript Runtime Errors

Usage of outside components and files (Automation Objects) can also be a cause of runtime errors. Although
some of the errors listed below will be thrown in reference to improper usage of other components and files,
you can also expect to see a lot of errors that may either be raised by the component or the operation system.
For instance, the ADODB.Recordset component may raise the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80004005'
[Microsoft][ODBC Driver Manager] Data source name not found and no default driver specified

This is probably the most common COM failure error (which, in this case, actually has a useful description).
This particular error − 80004005 (called SCODE) − is raised by a number of COM components, and
sometimes contains useful information, as in the case above. Most of the time, though, you will end up
scratching your head, wondering what the error message might mean. Good sources of information about
errors are the appropriate documentation and Microsoft's Personal Online Support Site at
http://support.microsoft.com/support/search/.

When trying to find out the meanings of error messages (after you realize it is not an error based in your
VBScript), you may use the following list as a rule of thumb to identify a potential source of error:

8007xxxx Windows errors (you may convert the xxxx hex code to decimal and use net helpmsg

Different Types of Errors

101

dddd in DOS window to find out the meaning of the error)

800Axxxx ADO errors

80005xxx ADSI errors
Knowledge of error codes thrown by components and windows is essential in the development of error
handling functions, as the majority of error handling functions often rely on outside components.

Important Additionally, some components, such as ADO, contain their own Errors collection, which may
expose more than a single error that occurred. In case of ADO, the Errors collection contains
information pertaining to a single operation involving a given provider. You should research a
given component not only for the errors it might raise through automation, but also about its
internal error handling capabilities.

Problems with Option Explicit

Important If you come to VBScript with a good VB or VBA background, you are probably
accustomed to the usage of Option Explicit statement as the very first line in your
program. Kudos to you, but you should not expect the same behavior in VBScript.
Expect a lot more work on your behalf. From now on this is a runtime error.

The Option Explicit statement is one of the many statements transplanted from VB into VBScript. It is
particularly useful in identifying undeclared and misspelled variables, or variables that are being used beyond
their scope. When a script contains the Option Explicit statement before any other statements, the scripting
engine expects all variables to be declared explicitly by using any of the Dim, Private, Public, or ReDim
statements, and only to be used within their scope (except for dynamically executed code associated with
Eval, Execute and ExecuteGlobal). Unfortunately, unlike in VB or VBA, using Option Explicit causes the
runtime error 500 Undeclared Variable; as you can imagine, this severely limits its usefulness when used in
combination with the On Error Resume Next statement.

Let us demonstrate this with an example. The following code contains two undeclared variables, one that has
global scope, and one within the scope of the GetLucky() function. The power of Option Explicit is easily
identifiable:

<SCRIPT LANGUAGE=vbscript>
<!−−
Option Explicit

Dim intMyNumber, intResult ' Declare variables
intLucky = 10 ' Undeclared variable generates syntax error
intMyNumber = 10 ' Declared variable does not generate error
intResult = GetLucky()

Function GetLucky()
 Dim intMyNumber ' Declare variable local in scope
 intLuck = 3 ' Undeclared variable: wanted to change
 ' intLucky − error
 intMyNumber = 4 + intLucky ' Now have 14 instead of 7 like we wanted
 GetLucky = intMyNumber
End Function
−−>
</SCRIPT>

After the first run, we see that intLucky is not declared, and we proceed to fix the error:

Dim intMyNumber, intResult, intLucky ' Declare variables

Different Types of Errors

102

Now, as the screenshot below shows, we find another error (an undeclared or misspelled variable), which is
easy to correct. Clearly, we wanted to change the global variable, intLucky, and the Option Explicit statement
helps us to identify our mistake. Without the Option Explicit statement at the start of the script, various
mistakes of this nature are likely to pass unnoticed, causing odd or unwanted results at runtime.

With the obvious usefulness of the Option Explicit statement, why should we be unhappy with it? Well,
because it is a runtime error, and consequently, undeclared variables will not show up during parse stage, and
its detection may even be negated by the use of On Error statement (with either Error being overwritten, or
cleared) − something that is the opposite in the VB environment.

If the GetLucky() function had not been executed (some functions will not be called each time the script is
run, depending on user responses), the undefined variable error would never have materialized. Secondly, it
creates complications when you are creating error−handling functions. Essentially, when handling exceptions,
you are expecting something more significant than an undeclared variable, in other words you are expecting a
true exception, and not just a simple programming mistake.

Rarely will you try to correct this mistake, and you will probably have to consider an undeclared variable as a
critical error, which should be caught early in the development stage. Unfortunately, this will throw you off
because of the manner in which it will be introduced − the error may exist in a rarely accessed procedure, and
the error reporting procedure may not be prepared to identify this type of error. Although error handling is
discussed in more detail later in the chapter, consider a simple illustration of what might go wrong. Let us add
On Error Resume Next − a footstep of error handling immediately after Option Explicit to the code above, as
following:

Option Explicit
On Error Resume Next

Now, when running the script, Option Explicit is essentially neutralized, and the error is not easily caught. If a
generic error handler were available, it would inform us that an error has occurred, but it would not tell us the
line where the error occurred.

When writing an error handler, remember to provide reporting functionality for generic errors, including
undefined variables. A callout label in such a handler may prove invaluable. Although you may not know the
exact line number where the error occurred, at least you will be aware of its proximity.

In any way, when combining Option Explicit with On Error Resume Next you have to be extremely careful in
the way you test for errors, create a scope for an exception handler, override the default exception handler,
and, finally, clear the exception handler (via On Error Goto 0). More on Error Handling specifics is available
in the Appendix E.

Different Types of Errors

103

Logic Errors

Logic errors, or bugs, are the most difficult of all the errors to catch and track down. By their nature, these
errors are caused when a valid script (no syntax, or runtime errors) produces undesirable results. For example,
a script that asks for the user's password before letting them proceed, but which still allows them to proceed
whether the password is correct or not, would have a logic error. Likewise a script that totaled−up an order
form but which did not handle the tax right would be a logic error. A script might be designed to convert
measurements from one unit to another (Fahrenheit to Celsius, for example) but if the formula is wrong, you
have a logic error. In other words, VBScript will always do what you tell it to do, not what you thought or
meant to tell it to do. The scripting engine will not generate an error message − your script will simply
produce unexpected output; however, logic errors' side effects often include creation of other errors as well.

As always though, there are exceptions to the no−error−message rule for logic errors. This is in relation to
infinite loops. For example:

Sub window_onload()
 Dim intX
 Do Until(intX)
 If intX < 10 Then
 inX = intX − 1
 'the above line has a mistake in the variable name
 End If
 Loop
End Sub

If your script contains a script that takes a long time to process then the VBScript DLL will eventually time
out and display the following error message:

This allows you to stop the script before the system becomes unstable. However, it does not provide you with
any clues as to what or where the error is.

Identification of logic errors is beyond the scope of this chapter. The most common types of errors will
include bad calculation formulas, incorrect usage of operators, improper rounding, and generally problems
with conditional statements, loops, and general lack of validation of data. The only way to reduce the
occurrence of these is through full testing of borderline outcomes. There are testing tools, such as Visual Test,
which will simplify repetitive testing processes (including regression testing), and the debugger (available
with IE, or Visual InterDev), which will help you step through the code, look at the contents of variables, and
the calling stack. In a proper test you will be required to feed the script a lot of data (good, borderline, and
bad) and compare the output against the output you have calculated (or figured out) manually. Some tips on
testing are:

Check, double check, then recheck again any formulae you have used in your script, to make sure that
they return the correct results.

•

Work out the results that you expect − try out all the different combinations.•
Consider how the user might impact a calculation by, for example, entering zero or a negative number
− does the script cope with this?

•

Check that the knock−on effects of any actions are there − for example, if a customer deletes an item
from their order, be sure to check that the item is removed AND the order total changed.

•

Different Types of Errors

104

Do not just check things to see if they work, also check what happens under circumstances where you
know they should not work.

•

Important Only careful testing can help you spot logic errors in your projects.
Unfortunately, there are no other good techniques for catching logic errors. VBScript does not support
anything like Debug.Assert which is found in its parent languages, and even though you might create an
object with similar functionality on your own, you will also have to remove the additional code during the
release stage on your own (this is not the case with VB and VBA). There are some guidelines we can follow:

Testing (as mentioned above) is essential to eliminate logic and runtime errors.•
Use encapsulation within VBScript classes to reduce the chances of logic errors occurring.•
Whenever you can, re−use old code that has been thoroughly tested and that you know from
experience works (one may say that the only good code is old code, which is crazy considering that
the Internet reinvents itself every few months).

•

Always adhere to coding conventions − these increase the overall clarity of your code.•
Adoption of good programming practices, particularly at design time, dramatically reduces the
complexity of your code.

•

The only marginally practical technique is to treat possible logic errors as runtime errors, by raising an error.
By testing and validating the critical values internally in the key subroutines and functions (at least, checking
the input parameters), you may be able to find areas in which your code is producing an undesirable output.
When you find that data is not valid within a certain predefined range, you may raise an error, and break
execution within that procedure. This will, unfortunately, only cover a small percentage of logic errors; we
re−emphasize that only a stringent testing method can identify all of the logic errors within your script.

Finally, logic errors are sometimes a by−product of a high degree of complexity. Proper encapsulation,
variable scoping, and use of VBScript classes will undoubtedly reduce the likelihood of logic errors occurring.
Following this to the extreme, the best approach is to simply re−use old and trusted code, whether by use of
includes (in HTML and ASP) or through the use of various components (.wsc, .htc, .dll, .ocx).

What Can We Do About Errors?

There are two things we can do with an error:

Get rid of it completely•
Handle it•

Because it isn't possible to make a script completely bomb−proof (since errors can be caused not only by
mistakes in the script itself but also by actions taken by the user), there is a real need to implement a method
by which errors are dealt with more effectively than simply flashing the error message dialog box at the user.

Important Remember that to most users the error messages will be incomprehensible.

We will look at how we get rid of errors later in this chapter, when we come to debugging, but for now let us
look at what is meant by handling errors and how we go about doing it. Also take a look at Appendix E,
which includes complete syntax, and many examples of error handling.

 What Can We Do About Errors?

105

Handling Errors

The process of error handling involves detecting the error as it occurs and dealing with it effectively. How we
choose to deal with errors depends on the type of error, what caused it and the consequences resulting from it.
The simplest thing we can do with an error is ignore it and to do this we use the On Error Resume Next
statement.

On Error Resume Next

The On Error statement enables error handling in the script that we are writing. The only thing that we can do
with the On Error statement in VBScript is to Resume Next. What this means is that an error in the script in
any procedure, instead of being fatal and causing the script execution to stop, is overlooked and the execution
continues with the next statement following the error or with the statement following the most recent call out
of the procedure containing the On Error Resume Next statement. In other words:

Important On Error Resume Next is the VBScript equivalent of telling the interpreter to ignore any
errors and carry on regardless!

The On Error Resume Next statement must come before any statements in the procedure you want it to
protect. So for instance the following snippet of script, where we divide by zero, will not generate an error:

Sub window_onload()
On Error Resume Next
 x = 3/0
 Msgbox x
End Sub

It will simply resume execution of the script, in this case, by displaying a message box with a meaningless
result:

However, if we place the statement after the error, we lose all the protection that it offers us:

Sub window_onload()
 x = 3/0
 Msgbox x
On Error Resume Next
End Sub

This time the error is handled by the host, and the message is generated as normal:

What Can We Do About Errors?

106

This statement might seem to be all we need to know for effective error handling − it isn't. This is because it is
really the error−handling equivalent of brushing dirt underneath the carpet − sure, you don't see it, but the
result isn't really ideal. Using it can lead to some odd results, as the divide by zero example above shows.
There are few scripts that can be expected to function properly after one line has been ignored because of an
error: usually, this will cause another error further down the line.

Remember that when using the On Error Resume Next statement that the error has still occurred. All it has
done is hidden the standard error message response. While it is useful at times to include the On Error Resume
Next statement in code, a much better way of dealing with errors is to actually handle them. To do that we use
the Err object.

Err Object

The Err object holds information about the last error that occurred. It is a feature that is available for use at all
levels of your script and there is no need to create an instance of it in your code as it is an intrinsic object with
global scope (see Appendix E for a more detailed description). This object has five properties and two
methods.

Err Object Properties

Property Comment
Description Sets or returns a descriptive string associated with an error.
HelpContext Sets or returns a context ID for a topic in a help file.
HelpFile Sets or returns a fully qualified path to a help file.
Number Sets or returns a numeric value specifying an error − this is the Err

object's default property. It can be used by automation objects
(ActiveX) to return a SCODE (status code).

Source Sets or returns the name of the object or application that originally
generated the error.

Err Object Methods

Method Comment
Clear Clears all property settings of the Err object.
Raise Used to generate a runtime error.

Using the Err Object

Let's look at how we can use the Description, Number and Source properties, and the Clear and Raise
methods of the Err object. The other properties refer to custom help files that can be created for specific errors
that the user might come across.

What Can We Do About Errors?

107

The first thing to remember about using Err to handle errors is that you need to have On Error Resume Next
set before hand; otherwise, the script execution will be cut short and your error handling script will be wasted!

On Error Resume Next

Now we can set to work handling the error our way. The first thing to do is to generate an error, and to do this
we could simply write a script with a deliberate error in it. However, we have no need as VBScript provides a
way to generate errors on demand − the Raise method. Using this method we can generate any error we want,
with just one line. All we need to know is the number of the error (given in Appendix E) that we wish to
create.

So, if we want to generate an overflow error, for example, we raise error number 6:

On Error Resume Next
Err.Raise 6

Or, for a custom error, we can use vbObjectError constant. The programmer can define error numbers above
this constant to create and handle errors specific to the script.

On Error Resume Next
Err.Raise vbObjectError + 1, "something is wrong", "Custom Error"

If you want to see the error messages generated by these, simply comment out the On Error Resume Next
statement, or create a procedure to display the error.

Now we have our error, let's look at how we can handle it. The property to use is the Description property.
This is used to set or return a textual description of the error. If we use the default description, we simply get
the standard error message. For example, here is our error−handled divide by zero:

On Error Resume Next
Err.Raise 11
MsgBox (Err.Description)

Here is how it would be unhandled:

Not much of an improvement, is it? However, we can create a message that is a little more meaningful:

On Error Resume Next

What Can We Do About Errors?

108

Err.Raise 11
Err.Description = "You have attempted to divide by zero " _
 & "− please try another number"
MsgBox (Err.Description)

This example is preferable because it gives the user a clear and unambiguous explanation of what has
happened and what they need to do next.

We can do the same thing with the error number, this time using the Number property:

On Error Resume Next
Err.Raise 11
Err.Description = "You have attempted to divide by zero " _
 & "− please try another number"
MsgBox (Err.Number & " " & Err.Description)

This property also allows us to set or return our own number to an error (setting your own number might be
useful if you want to include an easy to use guide with your VBScript project). This is not the best way in
which user−defined errors can be created, it is more advisable to use the vbObjectError constant, this is
explained in Appendix E:

On Error Resume Next
Err.Raise 11
Err.Number = 1
Err.Description = "You have attempted to divide by zero " _
 & "− please try another number"
MsgBox (Err.Number & " " & Err.Description)

If we want to know what generated the error we can use the Source property:

On Error Resume Next
Err.Raise 11
Err.Number = 1
Err.Description = "You have attempted to divide by zero " _
 & "− please try another number"
MsgBox (Err.Number & " " & Err.Description & " − " & Err.Source)

What Can We Do About Errors?

109

Using Source is helpful in tracking down errors when using VBScript to automate Microsoft Office tasks. For
example, if using script to access Microsoft Excel, and it generates a division−by−zero error, Microsoft Excel
sets Err.Number to its own error code for that error, and sets Source to Excel.Application. Note that if the
error is generated in another object called by Microsoft Excel, Excel intercepts that error and re−sets
Err.Number to its own code for division by zero. It does, however, leave the other Err object properties
(including Source) as set by the object that generated the error.

Once the error is handled, we want to get rid of it completely. To do this, we use the Clear method:

On Error Resume Next
Err.Raise 11
Err.Number = 1
Err.Description = "That one happens all the time!" & _
 "You have attempted to divide by zero − please try another number"
MsgBox (Err.Number & " " & Err.Description & " − " & Err.Source)
Err.Clear

Clear is used explicitly to clear the Err object after an error has been handled. VBScript calls the Clear method
automatically whenever any of the following statements are executed:

On Error Resume Next•
On Error Goto 0•
Exit Sub•
Exit Function•

Important Remember to remove any lines in your script that raise errors when you have finished
testing your error−handling code!

Remember that errors are like aches and pains − they point to something being wrong, either with the script
itself or with the way it is being used. There is a tendency to think that, given all the power that VBScript has
to offer, we should try to fix these problems 'on the fly'. So if someone divides by zero, it's easy to think that
you could simply use VBScript to put another number into the sum. The danger here is that you create more
problems in trying to 'fix' it, and this can lull the user into the false sense of security that everything is OK
when it isn't. Only attempt this kind of error handling when you can be absolutely sure you know what the
problem is.

A good alternative to using message boxes is to create custom help files and refer to these using the Err object
properties HelpContext and HelpFile. These allow us to point to specific entries in a custom help file created
for the project in question − giving the whole project a professional and polished feel.

For a project of any size, it is useful to log any errors that occur so that they can be studied later. This is
particularly useful for large ASP−based projects, where the error might lurk otherwise undetected − although
aggravated users can often points these out to you!

Handling Errors

So far we have identified the syntax and the simple techniques associated with error handling. Obviously, we
cannot ever hope that errors "will just not happen", and even if it were possible to eliminate all of the errors
from the code (through very defensive programming), the cost of developing such software would probably be
quite prohibitive.

Important Thou shall not underestimate the importance of error handling. Something will go
wrong−will your program handle it gracefully when it does? A program can never be

What Can We Do About Errors?

110

considered professionally done without a well thought−out and consistent
error−handling scheme.

By now, based on the examples shown previously, we know that we can handle errors in three different ways:

Ignore the errors altogether (the script stops), and allow the default error handler provided by the host
to deal with the error.

•

Try to intercept errors in−line, immediately after a suspect operation that could create an error.•
Push the error up the call stack, and create either generic error handlers, or procedure specific
handlers that can anticipate the problems arising from the procedure.

•

If you are not familiar with the term 'call stack', imagine that as each function or sub is called, it is placed on
top of a stack. When a procedure calls another procedure (or even itself), the second procedure is placed on
top of the stack. If the second procedure does not have an error handler and an error occurs (or Err.Raise is
used), the error is pushed 'up the call stack'. The remaining piece of the second procedure is ignored, and the
first procedure has a chance to handle the error. Since procedures are often nested, you can easily control
errors by placing error handling routines in key procedures. You have to be aware that certain statements will
reset the Err object, and your error handling has to come before that. Please see Appendix E for examples of
using the calling stack to handle errors.

Important Note that it is also a good idea to have a bottom−line, generic error handler available at all times.
More often then not, the error handler will be written with a specific purpose in mind − checking
whether a file exists, or whether an SQL string executed correctly. In such circumstances, there
can be other errors that we have not accounted for − undeclared variables, bad parameters, etc.
These should be either passed on up the call stack, by raising a custom error, or passed on to
another, more generic procedure.

So, what can be done, after an error is intercepted? Perhaps the sky is the limit, and only creativity and limited
time budget will prevent you from treating the error the way you want it treated − in other words fixed. There
are no out−of−the box solutions here, only loose guidelines. The simplest thing to do is obviously to display
the error in the most meaningful way. As you go on, you should try to log the problem (if script is running
unattended), or at least provide a simple facility for the end user to report the problem. Going further, you may
try to fix the problem on the fly − perhaps it is just a simple exception (such as an out−of−bound array call),
or a user error that can be retried. Then, if you can't fix it, gracefully fall back on the user−friendly error
message, and log the error. More often than not, errors that cannot be easily handled will expose the weakness
of your program, rather than a configuration problem that prevents the program from executing. Make the first
few users your test subjects if you cannot test all of the exceptional permutations personally.

When writing an error handler, make sure it is bug proof. Test it more than any other procedure, preferably
with the use of home−built test suites in order to see how it behaves with different data (either raise errors, or
call it with simulated data), and in under different circumstances. Errors that are not found in development
(computer low on memory, lack of appropriate permissions, etc) will unfortunately rear their ugly heads in
production. Cross−application interactions as well as an increased user load on an IIS server may effectively
disable some of the poorly written error handling procedures. It is also a good idea (or even standard practice)
to get someone else to test it as thoroughly as possible as well.

Step #1: Diagnose What Went Wrong

Error diagnosis is obviously a large part of error handling and, unfortunately, there is no easy way to jump
into error handling without making sacrifices. There are just too many error codes in VBScript alone for us to
write code that will anticipate all of the possible errors, never mind writing code for all of the possible errors

What Can We Do About Errors?

111

caused by outside components. The common technique is to debug early for the most common errors (bad
parameters, undeclared variables, etc.) and write your error handling function around only those errors that
you are anticipating.

For instance, working with ADSI (one of the common components automated by VBScript), we can pull out
the most prevalent ADSI errors and put them into a common error handler, which may be invoked whenever
an error is diagnosed. This may even happen when your script is executing correctly. For instance, if we want
to add a new user to a domain, with a username that already exists, it will be less expensive in terms of
programming and computer resources to check for an error when adding a new user rather than attempt to find
out if the user exists.

The code below performs a select case against the Number property of the Err object, allowing the
programmer to decide what happens when a given error occurs. Due to the number of possible errors, the
listing is edited for brevity's sake; the snippet also adjusts for the poor error descriptions of ADSI:

<%
Sub adsiErr()
 Dim blnIsErrorFixed
 blnIsErrorFixed = False
 Select case Err.Number
 case &H80005000: ' Invalid ADSI pathname
 blnIsErrorFixed = fixErrorPath()
 case &H80005001: ' Unknown Domain Object
 call logError("Unknown Domain Object")
 call displayError("Unknown Domain Object")
 Err.Clear
' Bunch of case statements deleted, see real file
 case &H80004005: ' now the ambiguous COM Error
 call logError()
 call displayError()
 Err.Clear
 case &H800708B0: ' Unable to add, User Exists
 blnIsErrorFixed = fixUserExistsError()
 case else: ' unaccounted error, log it,
 ' display it
 call logError()
 call displayError()
 Err.Clear
 End Select
 If Not blnIsErrorFixed Then Response.End
End Sub
%>

This semi−generic error−handling procedure is sufficient to cover the majority of errors that can be attributed
to ADSI. It can be called in−line, as well as after a procedure call − the code below is slightly edited:

Option Explicit
Dim objComputer, objGroup, strGroupName
On Error Resume Next

' Get object for computer, call error handler inline
Set objComputer = GetObject("WinNT://" & Request.Form("DomainName"))
If Err Then adsiErr()

strGroupName = Request.Form("GroupName")

' Create the New Group, call error handler afterwards

What Can We Do About Errors?

112

Call createNewGroup(objComputer, objGroup, "group", strGroupName)
If Err Then adsiErr()

Regardless of whether or not the error handling routine is generic, the same principles will always apply,
except when we're only interested in displaying and logging the error (where we would just use case else:
from the previous code). The error identification template will always be the same, but with a specific error
the template may be slightly smaller − and you may use a less generic function. For instance, because − after
the call to the createNewGroup() subroutine − we were only expecting an Unable to Add, User Exists error
(because we were already able to establish a connection with the domain) we could have automatically called
fixUserExistsError() as it was the most likely error to occur.

Step #2: Attempt to Correct the Error

After you have identified the error, you should obviously attempt to fix it, if possible, if not, you may just
follow the next two steps. In some circumstances, the error will be a result of a user action, or input. Since
VBScript is commonly found in ASP type applications, the most common errors lie in the database or file
handling, as a direct response to user interaction. We'll look at a detailed database and a COM object example
at the end of the section. Here, this code allows the user to correct the error. In case of potential user errors,
the best approach is to validate the data that will be used by the other components.

The code below tests if a string entered into an HTML form is a date. If the string entered is not a date, the
procedure throws an error, and for practical purposes, invalidates the form, and displays a simple error
message:

<%@ Language=VBScript %>
<%
Option Explicit
Dim strDate, strError, datDate, blnError, blnCanContinue
blnError = False
blnCanContinue = False
strDate = ""
strError = ""

Sub HandleError() ' this will handle Error string
 strError = "" & Err.description & ""
 blnError = True
End Sub

Sub CheckDate ' Sub that checks the date
 strDate = Request.Form("strDate")
 If Not IsDate(strDate) Then Err.Raise vbObjectError + 1, , _
 "Not a Date
"
 datDate = CDate(strDate)
 blnCanContinue = True
End Sub

If Request.Form("strDate").Count = 1 Then ' form was entered
 On Error Resume Next
 CheckDate
 If (Err.Number > vbObjectError) Then HandleError
End If

%>
<HTML>
<HEAD>
<TITLE>Try Again</title>
</HEAD>

What Can We Do About Errors?

113

<BODY>
<% If blnCanContinue = False Then
 If blnError = True Then Response.Write strError
%>
<form action="tryagain.asp" method="POST">
Enter a date: <INPUT type="text" id=strDate name=strDate value="<% = strDate %>">

</form>
<% Else %>
Date is OK: <% = strDate %>
<% End If %>
<P> </P>

</BODY>
</HTML>

Correction of run−time errors can be extremely difficult and is not really recommended − perhaps it is some
other part of the script creating the error, and attempts at correcting it will cause more problems. As a rule of
thumb, you should establish default values for critical variables, and check the validity of the variables used
by procedures. When the variable is out of valid range, substitute it with the default value.

When attempting to correct the error you should think hard whether you can indeed fix it. Chances are that if
you can anticipate it, you should be able to fix it. Perhaps a database server may be down, and you may be
able to 'switch' to a backup server, maybe user entered backward slashes '\' in a URL textbox instead of
forward slashes '/', or simply an array is too small, and you might have to ReDim it. Usually, it is the
unanticipated error that cannot be fixed with a backup plan.

Step #3: Come Up with a User−Friendly Error Message

A user−friendly error message goes a long way to show that you at least care a little bit. There is nothing
more annoying than the default error message provided by the host. Not only is it more confusing to the user,
but also offers no recourse of action. A user−friendly error message can contain some of the following
information:

An apology•
A plea to report the error, along with some nifty report form (or log the error, if possible)•
A more understandable explanation of the error•
Steps that the user can take to recover from the error•

Obviously, the error message, as well as, any reporting utility will depend on the host and the nature of the
error. With IE, it is fairly easy to create a new window with a form that would include an error reporting
mechanism (shown in the code below). Other errors will require similar techniques, and may even include
auto reporting via a logging mechanism.

<script language=VBScript>
Function onErrorHandler(message,url,line)
 dim strHTML, objWindow
 strHTML = "<HTML><HEAD>" & vbCrLf
 strHTML = strHTML & "<TITLE>An error has occurred!</TITLE></HEAD><BODY>" _
 & vbCrLf
 strHTML = strHTML & "" _
 & "" & vbCrLf
 strHTML = strHTML & "We are sorry!" & vbCrLf
 strHTML = strHTML & "
Something went wrong " _
 & "while processing this page."
 strHTML = strHTML & "<P>To help the web administrator " _

What Can We Do About Errors?

114

 & "identify the problem," & vbCrLf
 strHTML = strHTML & "please provide a brief explanation of " _
 & "how the error occurred,"
 strHTML = strHTML & "and press the submit error button below. " _
 & "This will help us"
 strHTML = strHTML & "identify and fix the error." & vbCrLf
 strHTML = strHTML & "<FORM ACTION=""mailto:bugs@wrox.com"">" & vbCrLf
 strHTML = strHTML & "<Error Description:
<TEXTAREA NAME=desc ROWS=5"
 strHTML = strHTML & " COLS=30></TEXTAREA>" & vbCrLf
 strHTML = strHTML & "<INPUT TYPE=hidden name=error VALUE=""" _
 & message & """>" & vbCrLf
 strHTML = strHTML & "<INPUT TYPE=hidden name=file VALUE=""" _
 & url & """>" & vbCrLf
 strHTML = strHTML & "<INPUT TYPE=hidden name=line VALUE=""" _
 & line & """>" & vbCrLf
 strHTML = strHTML & "<P><INPUT TYPE=SUBMIT " _
 & "VALUE=""Submit Error Information"">" & vbCrLf
 strHTML = strHTML & "</FORM></BODY></HTML>"
 set objWindow = window.open("")
 objWindow.document.body.innerHTML= strHTML
 onErrorHandler = true
End Function

Set window.onerror = GetRef("onErrorHandler")
</script>

The code listing above is essentially suited to a fatal DHTML error, where script continuation may prove
impossible. Other hosts will use a little variation on the theme above. A similar approach should be used in
ASP, with an exception of automatic logging of the error, a few changes in an error message, and changes in
the last few lines:

 Response.Clear
 Response.Write strHTML
 Response.End

Other hosts may require a simple use of a MsgBox function, and logging of the error. The baseline attempt at
displaying the error should contain the vital information. The following code function can be used to return
information for errors that do not have a custom display. It can be used with practically any host, as the
returning string can either be sent to the browser or another text handler.

Const cHTML = 1
Const cString = 2

Function UnknownError(intOutputConst)
 If Err = 0 Then UnknownError = ""
 Dim strOutput
 strOutput = ""
 If intOutputConstant = cHTML Then
 strOutput = strOutput & ""
 strOutput = strOutput & "An Error Has Occurred
"
 strOutput = strOutput & "Error Number= #" & Err.number & "
"
 strOutput = strOutput & "Error Descr: " & Err.description & "
"
 strOutput = strOutput & "Error Source: " & Err.source & "
"
 strOutput = strOutput & "" & vbCrLf
 Else
 strOutput = strOutput & "An Error Has Occurred" & vbCrLf & vbCrLf
 strOutput = strOutput & "Error Number= #" & Err.number & vbCrLf
 strOutput = strOutput & "Error Descr: " & Err.description & vbCrLf
 strOutput = strOutput & "Error Source: " & Err.source & vbCrLf

What Can We Do About Errors?

115

 strOutput = strOutput & vbCrLf
 End If
 Err.Clear
 UnknownError = strOutput
End Function

Step #4: Attempt to Log the Error

Contrary to popular opinion, error logging is actually easy to accomplish. There are several different ways in
which it can be achieved and you may log to: the Windows log, a database, a file, or in some circumstances,
via email. When the severity of an error is high (say, a hard drive failure), you should not just log the error
(hoping that some day, someone will read it), but forward it to the operator or system administrator − email,
SMS page, and netsend are just few of the possibilities. Under best circumstances, you could simply log the
error, and the log monitoring software could decide about the severity of error, and appropriately relay the
message to an available human operator.

When logging an error to a database, file or an e−mail, you can choose what information to include in the
error log on top of the default information about the standard error information. Common information entities,
which can be included, are:

Date and time of the error•
File or application that created the error•
Scripting Engine information•
Account under which user is executing the script•
Key variables used by the script (a mini core dump)•

Obviously, with the number of additional variables, you might end up building a fully−fledged help desk
system, along with the tools to analyze the wealth of errors.

Instead of duplicating the article, you can download the source code for the logging component, compile it,
and use it, simply by looking at the WroxLogGroup.vbg Visual Basic project group in the support files for
Chapter 4. Usage of the component is fairly simple:

Const cError = 1 ' define log constants
Const cWarning = 2
Const cInformation = 4

Sub LogError(intErrorType)
 Dim oEvent
 Set oEvent = Server.CreateObject("WroxLog.Event")
 oEvent.Application = "My ASP Script Name"
 oEvent.Description = Err.Description
 oEvent.EventID = Err.Number
 oEvent.LogType = intErrorType
 oEvent.WriteEvent
 Set oEvent = Nothing
 Err.Clear
End Sub

' Now Fake a call to the Sub
On Error Resume Next
Err.Raise 6
If Err Then Call LogError(cError)

What Can We Do About Errors?

116

Windows NT Log provides a neat summary of all errors that occurred on the computer, and include date,
time, application name (source) and error ID. When the user double−clicks on the error, more detailed
information, including error description (string insertion in our primitive case) is presented (although for a
full, user friendly description, error IDs and their descriptions would have to be added to the registry).

The last option is to use the Windows Script Host LogEvent method of the WshShell object. Error logging via
WHS 2.0 (covered in Chapter 10) is simple (it can be done from any host except for IE), with the only
drawback being the inability to change the source of the error, and the event ID (error number) − all of this
data has to be included in the error description itself. Here is an ASP based sample, which can be used with
the UnknownError function shown in the last snippet of code in Step #3:

Set WshShell = Server.CreateObject("WScript.Shell")
WshShell.LogEvent 1, UnknownError(cString)

The LogEvent method will use the same constants as shown in the code above. They are standard constants
for writing to the NT log. Depending on the constant used, you will be able to identify errors through the NT
log either visually (different icons), or by searching for particular errors:

Value Description

0 Success

1 Error

2 Warning

4 Information

8 Audit Success

16 Audit Failure
Be More Aggressive with Reporting and Testing

Script debugging is an increasingly popular testing technique thanks to a fairly robust debugger included with
Microsoft Visual InterDev, IE and Office 2000. Still, the process of starting the debugger (without even
mentioning the horrors of installation), and stepping through the code may take the joy out of identifying
errors. Often, you might create your own reporting functions, in order to speed up the process of testing.

General Environment Check−Up

The environment on which the script is deployed may be different from the development environment.
Therefore, before you attempt to test the waters in real life, you should ensure that everything works, based on
your own development platform. The following function checks the basics for you:

Function EnvironmentTest(sPad, blnShowServer)
 Dim strReport, oConn
 strReport = "Environment Report" & sPad
 strReport = strReport & "Scripting engine=" & ScriptEngine() & sPad

What Can We Do About Errors?

117

 strReport = strReport & "Buildversion = " & ScriptEngineBuildVersion() _
 & sPad
 strReport = strReport & "Majorversion = " & ScriptEngineMajorVersion() _
 & sPad
 strReport = strReport & "Minorversion = " & ScriptEngineMinorVersion() _
 & sPad

 strReport = strReport & sPad
 set oConn = Server.Createobject("ADODB.Connection")
 strReport = strReport & "ADO version = "
 strReport = strReport & oConn.version & sPad
 set oConn = Nothing
 If blnShowServer Then
 strReport = strReport & sPad
 strReport = strReport & "Server Software ="
 strReport = strReport & Request.Servervariables("server_software") _
 & sPad

 strReport = strReport &"Script Timeout = " & Server.ScriptTimeout _
 & " seconds" & sPad
 strReport = strReport & "Session Timeout = " & Session.Timeout _
 & " minutes" & sPad
 End If
 EnvironmentTest = strReport
End Function

Response.Write EnvironmentTest("
", True)

ADO Error Report

ADO always seems to create odd errors whenever you least expect it, perhaps because there are so many
differences between providers. The function below alleviates the problem of trying to figure out what went
wrong. This is probably the most useful reporting function, especially when working with a database
application. As you attempt to carry out some dynamic SQL building, more often than not you discover that
something is seriously wrong. The following function produces a neat report:

Function ErrorADOReport(strMsg, oConn, strSQL, sPad)
 ' produce a meaningful error report for an ADO connection object
 ' display title − strMsg, sql used − strSQL, and use different pad sPad
 Dim intErrors, i, strError
 strError = "Report for: " & strMsg & sPad & sPad
 intErrors = oConn.Errors.Count
 If intErrors = 0 Then
 ErrorADOReport = strError & "− no Errors" & sPad
 Exit Function
 End If
 strError = strError & "ADO Reports these Database Error(s) executing:" _
 & sPad
 strError = strError & strSQL & sPad
 For i = 0 To intErrors− 1
 strError = strError & "Err #" & oConn.errors(i).number
 strError = strError & " Descr:" & oConn.errors(i).description & sPad
 Next
 strError = strError & sPad
 ErrorADOReport = strError
End Function

This function simply looks at the errors collection of the ADO connection object to enumerate through all of
the errors in the collection. The function can be used from other hosts, by passing a different line terminator,

What Can We Do About Errors?

118

or 'pad', as one of the arguments in order to achieve the appropriate formatting.

To continue with the listing, the following snippet of code shows how the function is called, and displays the
results, by simulating an error in the SQL statement:

On Error Resume Next
Set objConn = Server.CreateObject("ADODB.Connection")
objConn.Open "DSN=pubs;uid=sa;pwd="
strSQL = "select * from authors where fafa < a"
Set objRS = Server.CreateObject("ADODB.Recordset")
objRS.Open strSQL, objConn

Response.Write ErrorADOReport("open authors table", objConn, strSQL, "
")

The results of the function clearly show what went wrong, displaying the SQL statement in question, as well
as all of the errors associated with it (some people attempt to debug SQL statements without even dumping
the SQL statement):

Report for: open authors table

ADO Reports these Database Error(s) executing:
select * from authors where fafa < a
Err #−2147217900 Descr:[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid column name 'fafa'.
Err #−2147217900 Descr:[Microsoft][ODBC SQL Server Driver][SQL Server]Invalid column name 'a'.

COM Components

Another common script breaker is the failure of COM components referenced in the script. In order to test
whether the components can be opened, you may create a mini−test studio that will attempt to create
components, and if the component cannot be created, display the error. Changes in server configuration and
installation of other components are frequent culprits of these errors. Your application may be working one
day, but all of a sudden, it throws a number of errors:

Dim oDict, oTmp, strItem
Set oDict = Server.CreateObject("Scripting.Dictionary")
oDict.Add 1, "adodb.recordset"
oDict.Add 2, "adodb.connection"
oDict.Add 3, "adodb.command"
oDict.Add 4, "SoftArtisans.FileUp"
oDict.Add 5, "SoftArtisans.SACheck"
oDict.Add 6, "scripting.filesystemobject"
oDict.Add 7, "cdonts.newmail"

For Each strItem In oDict.Items
 On Error Resume Next
 Set oTmp = Server.CreateObject(strItem)
 If Err Then
 Response.Write strItem & " − failed. Error #" & Err.number _
 & " − " & Err.description & "
"
 Else
 Response.Write strItem & " − success
"
 End If
 Err.Clear
 oTmp = Nothing
Next

What Can We Do About Errors?

119

Similar component testing script can be developed for WSH by changing line breaks, output mechanism, and
by changing Server.CreateObject to Wscript.CreateObject. Here is a sample output created by the script:

adodb.recordset − success
adodb.connection − success
adodb.command − success
SoftArtisans.FileUp − failed. Error #−2147319779 − 006~ASP 0177~Server.CreateObject Failed~Library not
registered.
SoftArtisans.SACheck − success
scripting.filesystemobject − success
cdonts.newmail − success

Defensive Programming

Probably the best way to prevent bugs is though defensive programming, combined with proper testing.
Errors tend to occur as the complexity of the program increases. Unfortunately, full coverage of defensive
programming is a topic for an entire book, not a sub−section of the chapter (see Code Complete by Steve
McConnell, Microsoft Press, 1993 or Bug Proofing Visual Basic by Rod Stephens, John Wiley and Sons,
1998), or just stick to the following rules of thumb:

Stick to a proper naming scheme.•
Validate data types using IsXXXX functions, such as IsDate, IsNumeric or IsObject, and create your
own data validation functions such as IsEmail, IsCCNumber to make sure your procedures can
actually handle the data.

•

Use constants, not magic variables.•
Limit the scope of variables, objects and errors.•
Don't use clever programming when something obvious might suffice, even if it takes more
programming.

•

Reuse as much 'stable' code as possible through includes, and components.•
Use parenthesis with complex expressions.•
Watch out for use of & and +.•
Watch out for variable scope.•
Watch out for array size.•
Declare and initialize your variables and objects.•
Watch out for endless loops.•
Encapsulate as much code as possible in VBScript Classes (covered in Chapter 8).•
Start with minimal functionality, and avoid optimization until later.•

Debugging

Important The term debugging has been wrongly attributed to the pioneer programmer, Grace
Hopper. In 1944, Hopper, a young Naval Reserve officer, went to work on the Mark I
computer at Harvard, becoming one of the first people to write programs for it. As
Admiral Hopper, she later described an incident in which a technician is said to have
pulled an actual bug (a moth, in fact) from between two electrical relays in the Mark II
computer. In his book, The New Hacker's Dictionary, Eric Raymond reports that the
moth was displayed for many years by the Navy and is now the property of the
Smithsonian. Raymond also notes that Admiral Hopper was already aware of the term
when she told the moth story.

What Can We Do About Errors?

120

The word bug was used prior to modern computers to mean an industrial or electrical
defect.

For a long time now, debugging has been the sore point of scripting languages. Even though the script
debugger has been available for quite some time, it has been difficult to install and use. Needless to say, it has
not gained too much popularity. Still, successful installation of ASP script debugging on your development
server will pay for itself tenfold. There are two debuggers available, one that can be downloaded with Internet
Explorer, and another that can be installed with Visual InterDev, or MS Office 2000. The freely downloadable
script debugger is actually integrated into InterDev, however, the InterDev interface offers more choices, and
it allows for smooth debugging of ASP scripts. In this section we will discuss the concepts behind the
InterDev debugger, as it is more robust (includes the easiest ASP debugging) and more intuitive to use.
Depending on your needs, you may use the MS Script Editor (which is similar in its functionality to
InterDev), and its debugger, or the Script Debugger (which has only some of the options of InterDev)
downloadable from the Microsoft Scripting site (http://msdn.microsoft.com/scripting/).

Important To launch the free script debugger from Microsoft Internet Explorer, use the View
menu, choose Script Debugger. Script Debugger starts, and then opens the current
HTML source file.

If you want to start the script editor from within Office 2000 applications, use the Tools
menu, choose Macro, and then Microsoft Script Editor.

If you are interested in switching debuggers, you can manipulate the registry to do so:

HKEY_CLASSES_ROOT\CLSID\{834128A2−51F4−11D0−8F20−00805F2CD064}\LocalServer32

The default registry entry contains the path to the debugger, in case of the InterDev setup on my computer it
is: C:\WINNT\System32\mdm.exe , to change it to the script debugger, I could enter <path>\msscrdbg.exe
instead. In the registry, you can look for MDM Debug Session Provider Class.

Debugging with InterDev

In order to set up the debugging you have to follow the directions included in the set−up instructions,
including those for the InterDev server components that are available later on during the set up of Visual
Studio. The best conditions for the set−up are a local development Windows NT Server with IIS that doubles
as your InterDev workstation. The applications set−up is fairly fast, and the debugging process is a lot
smoother (as well as easier to set up) than if the server and client were set up separately. In order to enable
ASP debugging, you must also choose the Automatically Enable ASP server−side debugging on launch,
which is available in the Launch pad of the Project's Properties window. When you quit your debugging
session, Visual InterDev restores the server debugging settings and out−of−process setting to their previous
values.

Additionally, InterDev offers just−in−time debugging, and can go automatically into debug mode whenever
an error is encountered when executing a client script.

Important Do NOT install a debugger, or debug, on a production machine. The InterDev Debugger
uses incredible resources on the system, and runs the application out of process on a
single thread. Essentially, changes are made to IIS and MTS that make them run very
slow.

Script debugging allows you to identify syntax, runtime and logic errors by inspection of both the script code
and the contents of its variables during the execution of the script. Once your code is at a stage when it can be

Debugging

121

debugged, you'll be interested in setting up breakpoints (in order to pause the execution, or 'play', of the
script), stepping through lines of script one by one, and inspecting the values of variables and objects.

There are several different ways in which these things can be accomplished. The two main ways are with the
Debug Menu, which should switch on automatically once you start 'playing' the script, or can be switched on
manually; and with the Code Window (or its shortcut menu). Let's take a look at the Debug Menu first:

The tables below contain a description of each group of buttons on the Visual InterDev Debug Menu shown
above. Since the debug menu is also shared with Visual J++, some of the elements, related to threading etc.
are not used when debugging with InterDev:

Group I

Start Begins debugging of the project by starting the script selected from the Project
shortcut menu; this button can also be used to continue the running of the
script.

Start Without Debugging Project is executed, but the debugger is not started.

Pause Allows you to pause a running script at any time in order to start debugging it
and/or to inspect the values of its variables.

Stop Stops the debugging session altogether.

Detach All Processes Used with J++

Restart Restarts the application after any type of interruption.

Run To Cursor After the execution has been paused, this allows you to set the point within
your script where the execution will continue up to.

Group II

Step Into Allows you to execute the next line of code.

Step Over Executes the next procedure as if it were a single line of code.

Step Out Executes the remaining lines within a procedure.

Group III

Insert Breakpoint Inserts a breakpoint at the current line.

Enable/Disable Breakpoint Toggles breakpoint status, allowing breakpoints to be turned 'on' or 'off'.

Clear All Breakpoints Erases all of the breakpoints.

Breakpoints Shows all of the breakpoints and their advanced properties within the Advanced
Window.

Group IV

Immediate Opens the Immediate Window.

Autos Opens the Autos Window.

Locals Opens the Locals Window.

Watch Opens the Watch Window.

Threads Opens the Threads Window (only used with J++).

Call Stack Opens the Call Stack Window.

Running Documents Opens the Running Documents Window.

Output Opens the Output Window.

Group V

Processes Used with J++

Debugging

122

Java Exceptions Used with J++
The Code Window within Visual InterDev debugger (with some sample code) is shown below, this is the
sample file created previously:

To get your program to pause automatically during a debug run, you have to set breakpoints. These can either
be based on certain conditions (e.g. breakpoint reached 5 times, or a certain expression changes), or on a
particular line of code. You may either click the mouse in the left−margin area of the window to toggle a
breakpoint, or you can use either the Debug Menu or the Code Window shortcut menu:

When you right−mouse click in the Code Window, the shortcut menu shown in the screenshot above pops up.
There are four interesting items here:

Insert Breakpoint By clicking Insert Breakpoint, it automatically adds a breakpoint at the line where
your cursor is located, unless the line is empty, a declaration, or a comment.

Add Watch By clicking Add Watch over a variable, or an object, it automatically adds it to the
Watch Window. It is a very useful feature, as it allows you to concentrate on the few
variables that you are actually interested in examining, rather than looking at the
entire stack of variables in the Locals Window.

Run To Cursor The Run To Cursor option allows you to execute a number of lines of code between
the current location and the line that the cursor is pointing to. This is similar to placing
a temporary breakpoint, and then continuing execution of the code until that

Debugging

123

breakpoint. This is useful when you are tangled in a long, complex loop and simply
want to get out of the loop as fast as possible.

Set Next Statement The Set Next Statement option allows you to execute an arbitrary line of code.
In order to start debugging an individual page, a start page needs to be set in the project explorer window. If
your script depends on other pages (e.g. you are testing a page that requires values from a form), set it to the
first page that is needed for the script to run properly. First go to the project window, and select a file:

Afterwards, you can right−mouse click on the file for the pop−up menu to appear:

In order to start debugging, you should select the file as a Start Page. This is similar to VB's concept of a
particular form (or code) being executed when the Start button is pressed.

Debugging

124

During the actual debugging process, the Code Window (above) comes alive. The majority of the features on
the Debug Menu are available, and you can hover the mouse over variables to see their current values.
Additionally, you may use some of the windows to perform specific actions. At this stage you may freely step
though the code. Code stepping, like a dance, is a certain skill that needs to be acquired. First, you need to
place your breakpoints in critical areas (or use the advanced breakpoints that can be set programmatically),
and then test different 'stepping' possibilities − especially stepping over long routines, running to cursor, and
finally, continuing the script to the next breakpoint (by pressing Start).

The Locals Window (above) is the most complex of all the windows and, in the long run, the least useful. It
contains all the objects, variables, and object collections − along with their names, values and subtypes − that
are currently within scope of reach (global and local variables), depending on your position in the script.
Because some objects, such as the Connection object shown, may have many collections and properties, this
window simply becomes too small for its own good. What normally happens is that you end up frantically
chasing a few variables around with the use of the scrollbar. On the other hand, if you have only a few local
variables, then it is very friendly and easy to use.

The Immediate Window (above) is the internal hacking tool for your script. With this window, you can
inspect and change the values of variables within your script (if you'd rather not do this with either the Locals
or Watch Windows), or run related or unrelated code. This window also provides a good opportunity to
thoroughly test your scripts by feeding the procedures illegal values (by changing the value in the Value
column), and then testing how the error handler will be able to cope with the problem. The Immediate
Window can also give you a deeper insight into some of the interactions that occur between different variables
that would otherwise be impossible, considering that many of the variables will only have values at runtime.

The Watch Window (above) is the user−friendlier version of the Locals Window, and has many of the same
features. For example, you are able to inspect the types, names and values of specific variables, chosen by
you, currently within scope. This has some benefits over the Locals Window, such as being able to observe
when a particular variable comes into scope, as opposed to all of the variables that are displayed in locals
window. Additionally, you may watch a particular property of a variable, which allows you to cut through the
maze of + and − signs that would otherwise be displayed in the object model within the locals window. Watch

Debugging

125

Window can list a collection or a property of an object directly within the Watch Window, by specifying the
member directly in the Name column. In the example above, the oConn.Errors collection is specified, as
opposed to the entire oConn object. Entries within the Watch Window can be added directly from the Code
Window's shortcut menu, and the values manipulated.

Advanced Breakpoints

The final interesting feature of the debugger is the ability to set smart breakpoints, by choosing Breakpoint
Properties from the pop−up menu, available when your mouse is set over a breakpoint:

This is the same menu as seen previously, but based on the context, you have the capability of removing the
breakpoint, disabling it, or setting some advanced properties, as seen in the screen below:

Although the location property is disabled in InterDev debugging, the other two properties make debugging
smoother. You can:

Define a conditional expression for the breakpoint. And pause execution when expression is true, or it
changes.

•

Specify the number of times a breakpoint should be hit before pausing code execution, using a variety
of conditions. This property can also be changed when the script is paused, and the actual number of

•

Debugging

126

hits monitored.

Some other aspects of debugging not described here in detail are:

Autos Window − displays variables within scope of the current line of execution.•
Output Window − displays status messages at runtime, not used.•
Call Stack − displays all procedures within the current thread of execution; useful when you want to
jump between procedures, or stack frames.

•

Threads Window − displays threads used by the application (for J++ debugging only).•

Common Errors and How To Avoid Them

No matter what language you use or what you are doing, there are some errors that just keep on cropping up.
Here are some of the more common ones, along with some good tips for avoiding them:

Problem Suggestion for avoiding

Wrong data type in a variable, such as expecting a
text value from a property instead of a number.

Explicitly declare variables, even if not required. In
VBScript, use the Dim statement.

Use naming conventions to help you remember variable
types, such as txtUserName for a string, fEnd for a flag,
and intCounter for an integer, etc.

Not understanding what objects are available in a
given context, such as attempting to use the
Internet Explorer object model in a script running
on a different browser.

Be aware what objects your scripts have access to and
what the scope or context is of an object. Be aware that
objects (such as browser built−in objects) are not an
inherent part of a language such as VBScript.

Not understanding a function or procedure or
calling the incorrect function.

Double−check that the function you are calling performs
the task you want it to.

Incorrect arguments for functions or arguments
passed in the wrong order or not understanding
what values a function or procedure returns.

Check syntax for functions whenever using them.

Avoid relying on default argument values.

Not understanding a data structure, such as the
object model for a browser, or trivial
misunderstandings such as assuming that an array
index begins with 1 instead of 0.

Check documentation for information about structure.

Typographic errors, such as misspelling a variable
name or keyword, or forgetting to close a bracket.

Use consistent names to help avoid confusion.

Type the closing portion of a statement as soon as you
type the opening portion.

Unexpected data, such as a user typing in a string
when prompted for a number.

Anticipate errors introduced by users and create
error−handling routines.

Not understanding language conventions, such as
using the wrong type of quotation marks to enclose
literals. This is a really easy mistake to make when
switching between languages.

Familiarize yourself with the operators and conventions
of the language you are using.

 Common Errors and How To Avoid Them

127

Summary

In this chapter we looked at the process of handling errors and debugging VBScript code.

After configuring the host to display errors appropriately, we began by looking at the three types of error
possible and how they are caused:

Syntax errors.•
Runtime errors.•
Logic errors.•

Having looked at the errors we then looked at how we can handle them. First, we looked at how we use the
On Error Resume Next statement and then the Err object and its five properties and two methods. These
methods and properties allow us to create a custom response to errors and also to Raise and Clear errors. We
then briefly looked at other ways to handle errors, such as by creating custom help files to aid the user.

We then looked in more detail at the steps involved in dealing with errors:

Diagnose what went wrong.•
Attempt to correct the error.•
Come up with a user friendly error message.•
Attempt to log the error.•

We then covered some points on defensive programming before looking at the process of debugging VBScript
code and how the InterDev debugger can help to make this vital process easier. Finally, we gave a list of some
common errors to be aware of, and how to avoid them.

It is impossible to cover the whole topic of error handling and debugging in one chapter, or even in one book.
Every script is different and so are the errors associated with it. This chapter's aim was to provide you with the
basic strategies for finding and eliminating errors, and handling the remainder that the user might come
across.

 Summary

128

Chapter 5: Using COM Components and Objects

Overview

In this chapter, we will introduce Microsoft's Component Object Model (COM). This will include a brief
description of components, classes, and objects, how they 'interact' and how we use them. We'll also take a
look under the surface of COM, which should help us to gain a better understanding when using them, but
don't worry though − unless you plan to build your own COM components you won't need to remember all
the fine details.

COM components are a great way of organizing functionality into logical units (or objects) so that you can
'component−ize' your code and allow objects to interact with each other. COM components are both language
and tool independent, so you can have a Visual C++ component work with a Visual Basic component that
works with a Script component. COM allows all of these objects to work together even though they are very
different in the way that they are created and developed. This means, for example, that a super fast C++
component can be incorporated into a web page and manipulated using VBScript.

COM components also give you the possibility of placing the workload on more than one machine, thus
freeing up system resources where you need to − this is known as load balancing. They can also be used to
break up the functionality of an application so that you have your database code in one object, the business
logic of the application in another object, and then the user interface components in a third object. This is a
useful technique, and is known as three−tier development.

After reading this chapter, you will understand some of the overall benefits of using COM components, but
we will not be going into too much detail, as it is beyond the scope of this book.

If you want to find out more about COM, you should check out some of the material published on the
Microsoft website such as http://www.microsoft.com/com or some of the many articles and whitepapers at the
MSDN Online site at http://msdn.microsoft.com. You can find extensive coverage of COM programming in
VB COM, from Wrox Press (ISBN 1861002130), which is an excellent resource for those new to COM from
Visual Basic and VBScript.

Introduction to COM components and Objects

A COM component is a library most commonly used to organize functionality into logical objects. For
instance, you may have a lot of functions that are used for calculations and complex mathematical functions.
You could group these functions into a Math object that encapsulates all the functionality that you use. You
could then use this common math object for all of you calculation needs. The advantage of this is that not only
can your application then utilize this functionality, but all other COM compliant applications can also use
your object seamlessly.

You may be wondering why this is relevant to you, as someone writing VBScript code, but these concepts are
important in two ways:

By understanding how COM works you can better utilize the technology. If you do not understand
how COM works then you will spend a lot of time trying to figure out why some things work and
others do not.

•

In Chapter 9, you will see how you can build COM components though VBScript. Knowing the key
concepts and terminology behind COM will help you understand the 'method in the madness' of COM

•

129

components.

Important There is one important concept to remember about COM: it is a specification for creating
components and allowing components to interact, not a language or an implementation.
Throughout this section remember that you are not 'programming COM' or 'adding
COM', but you are complying with the COM specification.

Organizing functions into COM components particularly makes sense when you are planning to reuse code
that you have created. If you have written some function in VBScript then you can include the code into other
VBScript files, but what if you want to use the same code with a JScript module or in Visual Basic? What
about that really cool function written in Visual C++ that you want to use? COM allows you to reuse all of
this code regardless of what the code was created in and how the items are coded. You cannot use low−level
items such as pointers in VBScript, but you could write a C++ component that does this for you.

Another common reason why COM components are used is that you can place the components on different
machines from the one where the calling application resides. This is the case with most three−tier
client−server solutions these days.

Although the developer has complete flexibility when creating COM objects, it is considered good design to
logically organize the functions into groups. You should not need to call three different objects to get similar
functions. A database object should not contain your function for generating an amortization schedule and the
registry functions that you have created should not reside with your graphics routines. Imagine if you had to
use Access to implement thesaurus functionality! Well−organized functions increase code reuse and allow
developers to use your objects (and let you use other developer's objects) with a much lower degree of
difficulty.

A component can be thought of as a container that holds one or more classes of functions. These classes
encapsulate all the functionality, and you can use a class by instantiating it into an object. You can think of the
class as the template or blueprint for the object. This object can then be referred to in your script code, thus
enabling the language's functionality or the host environment to be easily extended. The set up for this is
illustrated in the diagram below:

Before you can use a class you must create an object based on it and set a variable to reference or point to it, a
process called instantiation. Once you have created an instance of a class object in your code, you can then
set the properties and execute the methods on the object. The following code sample shows you how to do
this. Please note that you must have Microsoft Word installed on your machine for this sample to work
properly.

 'Create the variables used for the code
 Dim objWord
 Dim objDocument

 Chapter 5: Using COM Components and Objects

130

 'Get an instance of the Word applicaiton and a document
 Set objWord = CreateObject("Word.Application")
 Set objDocument = CreateObject("Word.Document")

 'Display Word
 objWord.Visible = True

 'Add a new document
 Set objDocument = objWord.Documents.Add

 'Set the text of the new Word document
 objDocument.Content = "This iss a samplee document" & _
 " with some errrors."

 'Call the spell checker
 objDocument.CheckSpelling

 'Save the document
 objDocument.SaveAs "c:\temp\VBSDoc.doc"

 'Clean up the memory used by the objects
 Set objDocument = Nothing
 Set objWord = Nothing

The new Word document you have just created will appear and you will see the spell check dialog. Once you
finish the spell check, the code saves the file to C:\temp. The Microsoft Word application icon will be
displayed in the Task Bar.

Object and Object Interfaces

All objects have one or more interfaces, which you use to establish communication between the object and
your application. The interface defines the methods, properties and events that the component exposes and
which you as a VBScripter can make use of.

An interface is a contract (or specification) that spells out how and what you can do with this object in a
standard (COM) way. Standard is the keyword here, because it means that if two or more objects support the
same interface, you can use these objects through this interface in the very same manner.

This is what an object interface contract specifies:

The functions•
The parameter(s) the functions take•
The return value(s) from the functions•
A GUID (Globally Unique IDentifier)•

The GUID is (as the name suggests) a globally unique ID used for identifying the interface.

As you can see from the interface contract, it does not specify how a function is implemented. Nor does it
specify in what programming language it has been developed. This means that COM components can be
developed in literally any programming language, and the functions can be implemented any way you like −
as long as the objects within the component expose an interface in a standard way.

 Object and Object Interfaces

131

Registration of Components

All COM components must be registered within the Windows registry, before you can use them. When a
component is registered, entries about the component are made in the Windows registry that helps
applications find the component. Normally, a Setup program takes care of this for you when you buy your
COM components from a vendor, but if you create them yourself or if something has screwed up one or more
of the registry entries, you can register the component yourself.

In the Windows System folder, there is an executable file called RegSvr32.exe, which can be used from the
command line (or from Start|Run) to register and unregister a COM component.

The command RegSvr32 MyComponent.DLL will register all the classes and their corresponding interfaces
contained in MyComponent.DLL in the registry. The registry is the only place your application can get the
information about a component from, so if is not in there, you will not be able to use it. If you need to
unregister a component then you still use the RegSvr32.exe file, but you use the /U parameter to remove the
data from the registry.

So, to register a component:

regsvr32 <component>.dll

And to unregister a component:

Regsvr32 /u <component>.dll

Keep in mind that not all COM components come in DLL files. COM components can also run in EXE files.
We will cover what the differences are later in this chapter, but it is important to note that you cannot use the
RegSvr32 file with EXE components.

Note that we refer to a COM object residing in a DLL as an in−process server (or in−proc
server) because the DLL is loaded into the same memory space as the client that calls it −
that is, it shares the same process. A COM object that runs in an EXE is called an
out−of−process server, because it runs in a separate process.

In order to register an EXE you can simply run the EXE by double−clicking the file in the Windows Explorer
or, using the more appropriate method you use to execute the file, with the /regserver parameter appended to
it. If you want to unregister the EXE file, then you need to run the EXE with the /unregserver parameter. Both
of these parameters operate in the same fashion as the RegSvr32 file.

IUnknown, IDispatch and Dual Interfaces

Before we get into the details of this section, it is important to note that although all of this information is
really useful to know, is not required. This is very low−level COM information that is done for you by
VBScript. Even using Visual Basic, you are shielded from implementing these interfaces or even being
required to know that they exist! So, don't worry − this information will not be on the test.

The IUnknown interface is the most important interface in COM − it exists for all COM objects and it is used
to find out if the object supports any other specific interface using the QueryInterface method. If it does, a
pointer to the interface is returned.

Object and Object Interfaces

132

IUnknown also has two other functions (AddRef and Release) that are used for reference counting. Every time
you add a reference to an object (instantiate an object using the Set statement), a reference counter within the
object is incremented, and when you destroy the reference (destroy the instantiated object using the Set
<object> = Nothing syntax), the reference counter is decremented. This way the object can keep track of how
many clients that are referencing it. When the reference count hits zero, the object unloads itself from
memory. The IUnknown interface must be supported by all other interfaces that an object exposes and the
functionality that is provided by IUnknown must be implemented. This is one of the rules of COM.
Remember, though, that in VB and VBScript, all this is going on 'under the hood', so you don't need to worry
about it.

To create objects in VBScript using the CreateObject function, the classes in the COM component must also
support/expose the IDispatch (Automation) interface. Without this interface, the component is not accessible
from VBScript (or any other scripting language). The IDispatch interface contains the following
functions/methods:

Invoke•
GetIDsOfNames•
GetTypeInfo•
GetTypeInfoCount•

The GetTypeInfo and GetTypeInfoCount functions are used for browsing the properties and methods that the
interface exposes. The other two functions are the ones needed for invoking a method and setting or retrieving
a property.

Summarized below is how the IDispatch interface works when you need to invoke a function:

Call GetIDsOfNames with the name of the function/method to get the dispatch ID•
The methods parameters/arguments are arranged in an array of variants•
Execute the function/method by using the Invoke function•

Binding

When you instantiate a component you use a method called binding. Binding defines how and when you
connect to an object. There are two types of binding: early and late.

Early binding declares a variable as an object type. For instance, you can early bind to Word by using the
following syntax:

dim objWord as Word.Application
set objWord = new Word.Application

When this code is executed, a reference to the Word object is immediately set up. If we never use the objWord
variable we still have the object. Early binding to an object is faster for accessing the properties and methods
of the object. The reason why this is faster is due to the fact that early binding knows about the object ahead
of time and the application stores information about the object. Once we cover the next type of binding you
will see why this can be a good and a bad thing.

One very important thing you should note is that we cannot early bind in VBScript. The reason why we cannot
early bind is because VBScript treats every variable as a variant data type. In order to work with early
binding, we need to use a language such as Visual Basic that allows for strong typed variables. In VBScript,
on the other hand, we need to call the CreateObject function to get a reference to our object.

Object and Object Interfaces

133

That brings us to late binding. When we call CreateObject in VBScript, we are finding the object and getting
the information about it. We would late bind to Word in VBScript using this code:

dim objWord
set objWord = CreateObject("Word.Application")

The major advantage of late binding is that we do not get a connection to the object until the Set statement is
executed. If we were in an If..Then loop then we may never need this object, so we can conserve resources
since we are using objects only as we need them.

The major disadvantage of using late bound objects is that we must do a lookup within the object on every
call to the object. Early bound objects know more about the object because the application stores the structure
of the object and other important information such as the GUIDs. Late bound objects are slower since they
must access each method and property of an interface via IDispatch, using calls to the GetIDsOfNames and
Invoke methods.

On the other hand, the way that early bound objects tie into the actual structure of the object means that we
can easily break our applications. As such applications use the identifiers that uniquely identify an interface,
our information about the object is no longer valid if we make changes to an interface and give it a new
identifier. Late bound objects do not have these problems since they determine this information when the
object is created and are tied to an item called the ClassID (discussed in more detail later) that is the
programmatic name of the object.

So, let's look at the key advantages and disadvantages of early bound and late bound objects.

Early bound:

Faster to use since they know the structure of the object•
Can easily be broken by modifying the object•
Requires more resources since the object must be created whether it is used or not•

Late bound:

Slower to use since the calls to the object must query the object first•
Use fewer resources since objects are created on demand and variables can be reused to create
references to other objects

•

Do not tie directly to the structure and unique identifiers within the objects, so the connections remain
fairly stable even when the object changes

•

It may appear that VBScript actually does support early binding with internal classes. You can use a Set obj =
new internalclass declaration to get a reference to an internal VBScript class. However, even though this may
appear to be using early binding, it is actually using late binding. This call is the equivalent of calling
CreateObject for an external object. This sometimes confuses developers that are new to COM and VBScript.

Since compile time and runtime is the same in VBScript, it will not help you discover invalid object
references until runtime and thus result in a runtime error, but it will help you in the editors that support
intellitype.

Object and Object Interfaces

134

Dual Interfaces

Dual interfaces are mechanisms that allow us to take advantage of both early and late binding − giving us the
best of both worlds; for example, a component that supports early interface binding, but also allows scripting
languages (like VBScript) to access it using the slower IDispatch Automation interface. Dual interfaces are
supported by most COM components and are supported by all COM components developed and compiled
with Visual Basic.

New Component Version

In this section, we'll look at how we deal with versioning in COM. Note that when we are using VBScript, the
versioning of our objects is not important since late binding is not affected by versioning issues. But, if you
decide to move into Visual Basic for more of your component creation then this will be a bigger issue. I
recommended that you look over this section and keep it in the back of your mind for later use.

The idea of interfaces is all very fine, but what happens when a new version of the component is released?
Does this mean that we get a new interface? Well, yes and no. You see, in order for the component to be
backwards compatible, an interface cannot be changed. Now, if you only change the implementation of the
classes in the component, you don't need to change the interface, as it still uses the same methods and
properties with the same arguments/parameters.

However, if you change the interface − by changing the parameters or adding/deleting a method or property −
you are creating a new version of the interface. A second version, so to speak. The good thing about this is
that a version of the 'old' interface is kept in the component as well as the new one. This means that existing
applications relying on the old interface will continue to work, and new applications can take advantage of the
new and hopefully improved interface (and implementation).

Compilers like VB will point out to you, if you are about to break backwards compatibility, and give you the
options of reversing the changes or creating a new version of the interface. If you look at the ProgIDs in the
Registry under \HKEY_CLASSES_ROOT\, you will find that many ProgIDs are entered a number of times,
and some of them with a version number, like Word.Document.8
(\HKEY_CLASSES_ROOT\Word.Document.8).

If you look closer, you will see that the CLSID for all these ProgIDs are the same, which means that they
point to the same component. I realize that if you follow the example with the Word.Document ProgID, you
will need to have installed more than one version of Microsoft Word on your system. If you haven't done that,
just trust me on this one. Why not just use the ProgID with the version number then? Well, you can, but that
would defeat the idea of versioning. If an application can run using version 1, it will also be able to use
version 2 of the component. If you specified version 1 (Word.Document.1) as your ProgID, and you ran your
application on a machine with only version 2, you would get an error.

So, leave out the version number from the ProgID, unless you need to make sure that a certain method or
property, which only exists in this version or later, is supported. Under the Word.Document ProgID there is a
CurVer subkey, which points to the very latest version of the component. So when you don't specify the
version as part of the ProgID, the value of the CurVer subkey is used as a lookup value for finding the latest
version.

Object and Object Interfaces

135

Object Identifiers

A number of different ID's are used, when you instantiate an object in VBScript.

ProgID

You use a program Id (ProgID) when you call the CreateObject function. A ProgID consists of servername
and typename, CreateObject(servername.typename). (See Appendix A for more information on this funtion.)
You can find the ProgID in the registry under the \HKEY_CLASSES_ROOT hive.

\HKEY_CLASSES_ROOT\<ProgID> is the full path, where <ProgID> is the ProgID of the class you want.
Word.Document is an example of a ProgID you can use to instantiate the Document class of the Microsoft
Word COM component/server.

ClassID

Now, because COM classes can only be created from class Ids (CLSIDs), VBScript must use the ProgID to
look up the class Id (CLSID) in the registry. This is done by calling the function CLSIDFromProgID, which is
part of the COM library. This is a good example of a function name that actually says what it does.

If you want to perform this operation manually, you can look up the
\HKEY_CLASSES_ROOT\Word.Document key in the Registry, where you will find a subkey called CLSID.
Yes, you guessed it; that is our class ID.

GUID

A CLSID is a GUID (Globally Unique IDentifier), which means a 16−byte value that is globally unique. The
reason why a GUID is globally unique is the way it is generated. The first part of the value is based on the
MAC address of your network adapter, and MAC addresses are unique. The second part is generated by the
compiler that compiles the COM component or a tool such at GUIDGen that generates a GUID for a
developer.

Registry

Open up the Registry Editor (run the RegEdit executable, which is located in the main Windows folder. You
can select the Run command from the Start menu in the Task Bar and type in regedit.), and select the CLSID
subkey under the Word.Document ProgID key − you will see the Default value name on the right side of the
tree view. It is of type REG_SZ, which means it is a string, and under the Data column, you can see the actual
CLSID, which is 00020906−0000−0000−C000−000000000046.

Important ALWAYS back up the registry before you attempt to make any changes. Incorrectly modifying
the registry can render your system inoperable. Deleting or modifying data can have

Object and Object Interfaces

136

unpredictable results.

This ID is used to find the actual file on disk that holds the object and this is done by looking up the CLS ID
in the registry under the key \HKEY_CLASSES_ROOT\CLSID. VBScript does it by calling the
CoCreateInstance COM API with the CLSID as the only argument. When the CLSID has been found, the
function looks for the InProcServer32 or LocalServer32 subkey in that order.

To do it manually, look up the Word.Document class, for which the full registry path is
\HKEY_CLASSES_ROOT\CLSID\00020906−0000−0000−C000−000000000046. Under this key, you will
find the subkey LocalServer32 that indicates the location of the out−of−process (EXE file) server for this
class. By location, I mean the full path, including the filename and even the server if you are using DCOM.
The subkey InprocServer32 will indicate the location of the in−process server (DLL file) for this class. If both
are present, the InprocServer32 will be chosen. If the server is out of process then the LocalServer32 key
indicates the location of the component.

Launch COM Component

Now that the location of the COM component server has been found, the server is launched. Depending on the
server type, in−process or out−of−process, the server is loaded into the applications address space or launched
with a call to the CreateProcess Windows API. Once this has been completed, COM will request an instance
of the class and return a pointer to the IUnknown interface.

Default Interface

With the pointer to the IUnknown interface, VBScript queries for the default interface, which is the only
interface VBScript can use. This interface is then assigned to the variable that you have specified on the left
side of the assignment operator (=):

Set objDocument = CreateObject("Word.Document")

Set Statement

So, the Set statement is used for assigning class interfaces to an object variable. To the VBScript programmer
this is easy, but try being a C++ programmer and doing all these steps yourself, plus a few more. COM is a
very complex architecture, but it is extremely easy to use in VBScript, VB, and VBA. Actually, the Set
statement can also be used to create an instance of an internal VBScript class as well, using the New keyword,
like this:

Set objDocument = New clsDocument

This assumes you have declared a class named clsDocument in your script code.

What COM Components and Objects are Available?

In VBScript, we don't have a lot of information about what components we can use, besides the ones that
come with VBScript. In other programming tools, such as Visual Basic, we can browse the components and
objects that have been registered on our system, and find information about all the methods and properties as
well as the arguments that they take. (Remember, however, we you can only use those COM components that
support Automation from VBScript.)

Object and Object Interfaces

137

You can of course always look in the registry yourself, but that is slow and painful process. You really need a
tool for this. If you have Visual Basic installed on your system, I can recommend using the built−in Object
Browser as well as the OLE View tool for checking out registered COM components. (To run OLEView
select the Windows start menu, Run and type OLEView.exe. You can consult the Visual Basic help files for
more information.)

As part of installations such as Internet Explorer, you get the Scripting Runtime Library, which is in fact a
COM component. It is installed and registered when you setup VBScript. The following classes exist in this
library:

Dictionary•
FileSystemObject•

There are also some built−in objects:

Err•
RegExp•

See Chapter 7 The Built−In and Scripting Runtime Objects for a detailed description of these classes.

Objects and the Variant data type

Normally the Variant data type is very forgiving when it comes to conversion to and from various Variant
data subtypes, but when dealing with objects, you need to be careful. The problems can occur when we pass
arguments to an object that is instantiated from a class in a COM component.

The only data type in VBScript is the Variant and as we saw earlier, type coercion is normally applied
automatically. An object's methods may be defined as having parameters passed by reference (ByRef) or by
value (ByVal). If a parameter of an object's method is ByVal then VBScript will automatically handle any
type conversions necessary. If the parameter has been defined as ByRef then VBScript won't do the
conversion automatically and expects you as a VBScripter to know what the type is and convert (or Cast) to
that type. Most components, if they have been written with scripting in mind, will be ByVal or use a Variant
data type that VBScript understands.

Lets look at an example of a component method defined in Visual Basic.

First let's define one using ByVal parameters:

Public Function ToUpperCase(ByVal sString As String) As String
 ToUpperCase = Ucase(sString)
End Function

To use this component's method in VBScript:

Dim oMyObject
Set oMyObject = CreateObject("MyComponet.MyObject")

Dim sMyString
sMyString = "hello"
sMyString = oMyObject.ToUpperCase(sString)

 Objects and the Variant data type

138

Now let's look at the same method defined as ByRef. You'll see that there is no ByVal − the default in Visual
Basic is ByRef unless we specify ByVal:

Public Function ToUpperCase(sString As String) As String
 ToUpperCase = Ucase(sString)
End Function

Now if we use the component with exactly the same script we'll get a type mismatch error. Why? Because our
function is expecting a string but is being passed a Variant data type. VBScript has not performed the type
conversion automatically as it does with ByVal parameter passing.

If we want to make this work then we have a number of choices. If we are the component developer then we
could redefine our method so that it is 'script friendly' by making it ByVal. If we must use ByRef then we
could define it as a Variant data type in our method.

If we are using someone else's component and are unable to change the parameter, then we need to do the type
conversion ourselves by using VBScript's built in functions such as CStr, Cint, Clng and so on (see Appendix
A for their details).

So our script would need to be re−written as:

Dim oMyObject
Set oMyObject = CreateObject("MyComponet.MyObject")

Dim sMyString
sMyString = "hello"
sMyString = oMyObject.ToUpperCase(CStr(sString))

Now it will work fine.

Properties and Methods

Nearly all classes in a COM component have public properties and/or methods. Without these, you wouldn't
be able to access the functionality of the class. Some classes have private properties and methods and they are
always inaccessible to the client. They are only used internally by the class itself.

There are two kinds of methods:

The Sub procedure that performs a certain action•
The Function procedure that performs an action and then returns a value•

They are not necessarily called Sub and Function procedures in the programming languages they were
developed, but to keep things in Visual Basic terms, that is what we will call them here.

The examples in this section can be loaded into Internet Explorer 4 or 5, or you can just cut−and−paste the
script part and use it in WSH. You'll need your browser settings at low, and when you load the page click Yes
to the dialog box warning you about security.

The code below creates a FileSystemObject and sets oFileSys to reference it. Having checked that the folder
exists using the FileSystemObject's FolderExists function, we then use the GetFolders function to return a
Folder object. We pass the name of the folder we want the object to reflect as a parameter in the GetFolder
method. I have used the C:\Temp directory as most Windows users have one − if you're the exception then

 Properties and Methods

139

change it to an alternative directory. We have set oFolder to reference our folder object.

Next, we need to get a list of files in the folder so that we can display their names and types in the page's text
area. The Folder object's Files function returns a Files object − this is a collection of File objects, with each
file object containing lots of useful information (such as name and type) about each file in the folder.

Rather than set oFile to reference each File object by using the Files collection object's Item property, the For
Each...Next technique has been used. This does the hard work for us and is faster than accessing each item in
the collection by its Index. It sets oFile to the first File object in the Files collection then, each time we loop,
the oFile variable is set to the next File object until we have gone through the whole collection.

Finally, we make use of the Folder object's read−only ParentDirectory property to find out the parent
directory's name and show it in a message box:

<HTML>
<BODY>
<SCRIPT LANGUAGE="VBScript">
Sub Window_OnLoad

 ' Declare variable to reference FileSystemObject
 Dim oFileSys

 ' Create a FileSystemObject and Set oFileSys to point to it
 Set oFileSys = CreateObject("Scripting.FileSystemObject")

 Dim oFolder
 Dim oFiles

 ' The folder we will create a list of files in
 Dim sFolder
 sFolder = "C:\temp"

 ' Use FolderExists method of FileSystemObject to check its a valid folder
 If oFileSys.FolderExists(sFolder) Then
 ' GetFolder method of FileSystemObject returns a Folder Object,
 ' Set oFolder
 ' to point to it
 Set oFolder = oFileSys.GetFolder(sFolder)

 ' Folder Object's Files method returns a Files Object which is a
 ' collection of File Objects
 ' set oFiles to reference it
 Set oFiles = oFolder.Files

 ' For each allows us to loop through an array or collection
 For Each oFile in oFiles
 txtFiles.value = txtFiles.value & oFile.Name & " " & oFile.Type
 txtFiles.value = txtFiles.value & " " & oFile.Type & vbCrLf
 Next

 ' Use Folder Object's parentFolder property to find out name of
 ' parent directory
 MsgBox oFolder.ParentFolder

 Else
 txtFiles.value = sFolder & " does not exist"
 End If
End Sub

 Properties and Methods

140

</SCRIPT>
<TEXTAREA rows=30 cols=80 id=txtFiles name=txtFiles>
</TEXTAREA>

</BODY>
</HTML>

Properties can be read−only, write−only or allow both read and write operations. A runtime error occurs if
you try to read (Get) from a write−only property or write (Set) to a read−only property. For example the
ParentFolder property of our Folder object is read−only.

COM components also have default properties and methods and this is valuable information, because it could
improve the speed of your code or it could lead to unwanted errors. A default property is the property used if
you fail to supply one when you reference the object. An example of this is the Number property of the
built−in Err object.

MsgBox Err
MsgBox Err.Number

The above lines of code both display the same thing in a MsgBox: the last error. This is because they
essentially reference the same property. There can actually be a substantial performance gain to be won by
using default properties but at the cost of 'breaking' the readability of the code, especially for new
programmers. For example, if we use objTest = Err, forgetting to put Set in front of it, and then try and use the
variable as if it pointed to the Err object, then we will get difficult−to−track runtime errors. The code where it
fails will, of course, be valid and this can cause confusion. You'll often have to backtrack to where the
variable is assigned to check that the error is not there.

Object Scope, Lifetime and References

Scope

All variables have a scope, including variables used to reference objects. Scope defines which parts of your
code can access the variable. All variables, including objects, in VBScript have one of the following scopes:

Procedure−level, where the object is declared within a procedure, be it an Event procedure, or a
Function or Sub procedure.

•

Global−level, where the object is declared outside any procedure.•

Objects with procedure−level scope can only be accessed within the procedure it is declared. The object goes
out of scope when there are no longer any references to it, for example by using Set object = Nothing, or when
the procedure exits.

Objects with script−level scope can be accessed within all the procedure in your script. The object goes out of
scope when it is explicitly destroyed, by Set object = Nothing, or when your script ends.

Lifetime

The lifetime of an object depends on when it is instantiated and when it is destroyed. Unlike other variables,
object variables must be instantiated using the Set statement before they can be used. The objects life begins
when you instantiate it and ends when all references to the object have been released. References to an object
are released when:

 Object Scope, Lifetime and References

141

You explicitly release it, using the Set object = Nothing statement•
It's a local variable inside a procedure and the procedure ends•
Your script ends (objects with script−level scope only)•

Let's take a look at some examples of scope and lifetime.

The code below is an HTML page with four buttons and some VBScript:

<HTML>
<HEAD>
<META name=VI60_defaultClientScript content=VBScript>
<SCRIPT LANGUAGE="VBScript">
' Define a global (or page level) variable
Dim moGlobalDictionary

Sub Window_OnLoad()
 ' set our global or page level variable to reference a new instance of a dictionary object
 Set moGlobalDictionary = CreateObject("Scripting.Dictionary")
End Sub

Sub cmdAccessGlobal_onclick
 ' Access the global variable's methods and properties
 moGlobalDictionary.Add CStr(moGlobalDictionary.Count + 1),"Another Item"
 MsgBox moGlobalDictionary.Count
End Sub

Sub cmdSetGlobalToNothing_onclick
 Set moGlobalDictionary = Nothing
End Sub

Sub cmdDefineAndSetLocal_onclick
 ' define a local variable
 Dim loLocalDictionary
 ' Set the local variable to reference a newly
 ' instantiated dictionary object

 Set loLocalDictionary = CreateObject("Scripting.Dictionary")
 loLocalDictionary.Add CStr(loLocalDictionary.Count + 1),"Another Item"
End Sub

Sub cmdAccessExternalLocal_onclick
 ' Try and access the local variable defined in button3_onclick
 loLocalDictionary.Add CStr(loLocalDictionary.Count + 1),"Another Item"
 MsgBox loLocalDictionary.Count
End Sub

Function ReturnADictionary()
 ' Define local variable
 Dim loLocalDictionary
 ' create dictionary object
 Set loLocalDictionary = CreateObject("Scripting.Dictionary")
 ' assign ReturnADictionary to return a reference to our local object
 Set ReturnADictionary = loLocalDictionary
End Function

Sub cmdSetGlobal_onclick
 ' Set global variable
 Set moGlobalDictionary = ReturnADictionary()
 MsgBox "Global Set"

 Object Scope, Lifetime and References

142

End Sub

</SCRIPT>
</HEAD>

<BODY>
<INPUT type="button" value="Access Global Variable" name=cmdAccessGlobal>
<INPUT type="button" value="Set Global to Nothing" name=cmdSetGlobalToNothing>
<INPUT type="button" value="Define variable and create local object" name=cmdDefineAndSetLocal>
<INPUT type="button" value="Access externally defined local object" name=cmdAccessExternalLocal>
<INPUT type="button" value="Set Global Using function" name=cmdSetGlobal>
</BODY>
</HTML>

Let's examine how it works in some detail, paying particular attention to scope and lifetime.

We first define a global or page−level variable, moGlobalDictionary, which we will set to reference a
Dictionary object. We create the Dictionary object in the Window_Onload() event that fires when we first
browse the page. Note that moGlobalDictionary is a global variable because it has been defined outside of any
sub or function procedure − and because it's global any Sub or Function can access it in the page.

If we click the button Access Global variable then the code in Sub cmdAccessGlobal_onclick fires. This
makes use of the methods of the dictionary object to add a new item to it, and also displays the count property.
Click on this a few times and we'll see the count go up. Note that even when the Sub ends, the global variable
continues to reference the dictionary object we instantiated in the Window_OnLoad() event.

Now we click the Set Global to Nothing button − this will cause the Sub cmdSetGlobalToNothing_onclick to
fire. This subprocedure de−references the global variable moGlobalDictionary by telling it to stop pointing to
the Dictionary object that we created in Window_OnLoad() and, instead, point to nothing (the line Set
moGlobalDictionary = Nothing). With no references to it, the Dictionary object's lifetime has come to an end.
If we now click the Access Global Variable button, we'll see the following error message:

Although the variable still exists and is still valid, it no longer points to anything.

Next we click the Define variable and create local object button − this fires Sub
cmdDefineAndSetLocal_onclick. This defines a variable, loLocalDictionary, and sets it to reference a new
instance of the Dictionary object. However when the Sub ends the variable goes out of scope and, because it is
local, no other references to the dictionary object exist and so its lifetime comes to an end. If we click the
Access externally defined local object button, we are trying to access the local variable from another
subprocedure and so we get the following error message:

 Object Scope, Lifetime and References

143

To show the importance of references and the effect they, in terms of un−freed resources, can have if we don't
de−reference objects, let's look at the final button: Set Global Using Function. When this is clicked the code in
Sub cmdSetGlobal_onclick fires. This calls the function ReturnADictionary() which defines a local variable
(loLocalDictionary), sets it to reference a newly instantiated dictionary object, then sets the return value of the
function to reference the local variable and the dictionary object it contains.

When the function finishes, the local variable loLocalDictionary goes out of scope and is no longer accessible.
However, the Dictionary object is still referenced as it forms the return value of the function, so it's lifetime
continues. Back in cmdSetGlobal_onclick, where we called the function, we set moGlobalDictionary to
reference the Dictionary object returned and so its lifetime still continues. We can click the Access Global
variable button again without error as the global variable now points to a dictionary object. The dictionary
object won't die unless we set it to nothing or the global variable goes out of scope, which will happen only
when we leave the page.

References

When you instantiate an object, you effectively create a pointer, or a reference to an instance of a class in a
COM component. This causes the COM component to be loaded into memory, if it hasn't already been
loaded. The COM component keeps track of how many times it has been referenced, and if the reference
counter hits zero, the component unloads itself from memory. This is something to keep in mind if you have
more than one object variable referring to the same class. For example:

Dim objFirstDocument
Dim objSecondDocument

 ' Instantiate the Document class from the Word COM
 ' component/server on the local machine
 Set objFirstDocument = CreateObject("Word.Document")
 ' Let the second document reference the first document
 Set objSecondDocument = objFirstDocument
 ' Show the instance of Word
 objSecondDocument.ActiveWindow.Visible = True

 ' Destroy the first document after use
 objFirstDocument.Close
 Set objFirstDocument = Nothing

The Microsoft Word COM component is not unloaded after the last statement (Set objFirstDocument =
Nothing) because another object variable is still referencing it. If you don't believe this, look at the Processes
tab in the Task Manager (Windows NT only). It will list the out−of−process server for the Word.Document
class, which is Winword.exe, until you explicitly destroy the second document or it goes out of scope.

Object Scope, Lifetime and References

144

Using the With Statement with Objects

Sometimes you refer to the same object many times within just a small piece of code:

Dim objDocument
Dim lngStatistics
Dim blnAutoHyphenate

 ' Instantiate the Document class from the Word COM
 ' component/server on the local machine
 Set objDocument = CreateObject("Word.Document")
 ' Show the Print preview window
 objDocument.PrintPreview
 ' Get the number of characters in the document
 lngStatistics = objDocument.ComputeStatistics(_
 wdStatisticCharacters)
 ' Get the object's AutoHyphenation property
 blnAutoHyphenate = objDocument.AutoHyphenation
 ' Set the object's AutoHyphenation property
 objDocument.AutoHyphenation = True

 ' Destroy the object after use
 Set objDocument = Nothing

In this sample code the objDocument object variable is referenced five times after it has been instantiated.
Now, this doesn't look too bad, but imagine that you needed to set 50 or perhaps 100 variables from your
code. This is where the With statement comes in handy. The same piece of code can now look like this:

Dim objDocument
Dim lngStatistics
Dim blnAutoHyphenate

 ' Instantiate the Document class from the Word COM
 ' component/server on the local machine
 Set objDocument = CreateObject("Word.Document")

 With objDocument
 ' Show the Print preview window
 .PrintPreview
 ' Get the number characters in the document
 lngStatistics = _
 .ComputeStatistics(wdStatisticCharacters)
 ' Get the object's AutoHyphenation property
 blnAutoHyphenate =.AutoHyphenation
 ' Set the object's AutoHyphenation property
 .AutoHyphenation = True
 objDocument.Close
 End With

 ' Destroy the object after use
 Set objDocument = Nothing

Apart from saving you some typing, the With statement also adds to the readability of the code. The best
thing, though, about using the With statement is the performance gain: the more times you access the object,
the more you gain from using the With statement.

 Using the With Statement with Objects

145

Create your own COM Objects

Even though you can do most things from your own script code, there are times when you should consider
moving some of the code into a COM component. Since we already know VBScript, Visual Basic is a very
good tool for this purpose.

Two advantages of placing your code in a COM component are the increase in performance, and the much
better error handling. We get better performance from a VB COM component because the code is compiled,
rather than interpreted as is the case with VBScript. When we place the code in a COM component, we can
also use this component from various pieces of script code, without duplicating the code that's in the
component. The fact that the code is placed in the component also makes it very hard to get at, which thus
means better protection of proprietary code.

There are also things we cannot do in VBScript, but by moving the code to a component, we can overcome
this limitation. One example is Windows API calls − these are not possible in VBScript because the Declare
statement is 'missing'. Another example is workload on the machine. If you place the code in a component,
you have the option of placing the component on a different machine and run it there. This might make sense
if you can separate business logic into COM components and place them on a separate server as a middle−tier.

Note that with the advent of Windows Script Components, it is now possible to create COM components in
VBScript! This is discussed in detail in Chapter 9.

Summary

In this chapter, we have looked at how we use COM components in our application. We took a closer look at
interfaces (contracts/agreements), object identifiers (GUIDs, ClassIDs, ProgIDs), and different binding
methods (early and late).

The Variant data type was discussed in regards to objects instantiated from classes in COM components, and
we looked at default properties and methods and how they can cause problems if you are not aware of them.
The use of the very powerful With statement was also discussed.

We also looked at object scope, lifetime, and references.

Last, but not least, we discussed why and when to create your own COM components. The why's includes
greater speed, better error handling, reusability, and best of all; much better protection of your source code.

 Create your own COM Objects

146

Chapter 6: Using COM Components with MTS

Overview

In this chapter, we will introduce MTS (Microsoft Transaction Server) and how we place components in it.
The advantages you can obtain by using MTS instead of just using DCOM on its own will be explained. We
shall also look into what security models there are, and show an example on how to use a COM component in
MTS from VBScript.

At the end of the chapter, there is a brief overview of COM+, the next generation of COM.

If you are new to COM components, I suggest you read chapter 5 Using COM Components and Objects prior
to this chapter.

A Quick Introduction to MTS

What is MTS (Microsoft Transaction Server)? Well, that's a very good question, and to cut a long story short:
MTS is a distributed application server.

Perhaps that was too short! Well, MTS is a middle−tier product that facilitates moving your business logic off
the machine where you run your applications, and placing it instead in a distributed three−tier application
model. This means that the front−end applications run on the user's machines and, instead of having all the
business logic duplicated on all the user machines, it is now placed in MTS where all the front−end
applications can access it.

This is illustrated in the diagram below:

The First Tier contains the front−end applications (which are usually placed on the user's machines)
− they are primarily used for retrieving input from the user and presenting output to the user as
requested

•

The Middle Tier is where you place your business logic (sometimes called application logic) − this is
normally a separate machine used as an application server

•

The Third Tier is where you place you data services − the data services take care of manipulating
and maintaining your data

•

This can also be done with the help of DCOM, but MTS brings a lot more than DCOM ever did. DCOM
enables stand−alone COM objects to be part of a distributed application, but MTS also brings you the context,

147

distributed transactions, role−based security, and synchronized concurrency. Now developers no longer have
to spend time working on the application infrastructure under which the applications will run.

The context is an object, which is created for each instance of an object in MTS. It provides information about
the environment in which the object executes, such as whether or not the object is part of a transaction and the
identity of the object's creator. It also holds the object's security credentials, which can be checked when the
object creates other MTS objects. When an object instance is part of a transaction, the corresponding context
object collaborates with all other context objects within the same transaction to either commit or abort the
transaction.

There are a number of things that you need to change when you move from either a single−user application
(or a traditional two−tier) client−server solution to a multi−tier enterprise solution (like most web solutions).
The application needs to be scalable and, at the same time, as robust as a single user application. Most
single−user applications run on a single PC and are therefore not normally influenced by network
breakdowns, etc.

Now, this is where MTS can help and make the transition a lot easier, especially if you are already using
COM components, because MTS is a "component/object request broker with transactional capabilities" for the
server part of your client−server application.

If you are currently using DCOM for your distributed applications, you will also gain from using MTS
instead.

MTS provides a simple concurrency model for developing distributed applications that takes care of the
synchronization between multiple threads on multiple machines. It is provided through activities, which are
paths of execution that start when a client creates an object and end when that object is released. Within such
an activity, the object might create other MTS objects and it is the responsibility of the activity to make sure
that the objects don't run in parallel. So, an activity should be seen as a single logical thread of execution.

This frees you as a developer from dealing with the synchronization and leaves more time for developing the
code (more often than not, this code is the business logic part of the three−tier model) your boss asked you to
do.

MTS also takes care of managing resources (as in it maintains the durable state of an application), such as
database connections and memory, for you. This is done through what is called Resource Managers. We saw
earlier that MTS is a "component/object request broker with transactional capabilities", which means that if
one of your components fails, then none of the work done in the activity will be committed. It is the
all−or−nothing work management approach. Mind you, you can also place non−database and
non−transactional components in MTS!

Packages

Components in MTS are grouped into packages of one or more components. This can be done using the MTS
Explorer, and normally you group components that perform related functions because all components in a
package run in the same MTS server process.

This is important because a package is the trust boundary, meaning that security authorization is checked
whenever you pass the boundary of a package. This is when the client instantiates a class, or when one
package calls another:

A Quick Introduction to MTS

148

The dashed lines between the components indicate that no security check is performed, and the full lines
indicate that security authorization is checked.

When you need to deploy your components, it is done by deploying a package file. This file is created using
the export function in MTS Explorer.

In−Process Components Only

You should be aware that MTS only allows in−process components (DLL's) to run. You cannot register an
out−of−process COM component (an EXE) with the MTS explorer. However, this does not mean that you
cannot run the components as out−of−process servers. MTS enables the registered components to run in a
separate process space by loading them into surrogate server processes. This is a neat little trick on behalf of
MTS.

Advantages of using MTS

There are a number of advantages of using MTS when compared to using just DCOM. Below, we'll give you
an overview of some of these.

Role−Based Security

In MTS, you can define roles. A role represents a logical group of users that are allowed to invoke the various
interfaces on the classes in the components. The Windows NT user and group accounts are used for this
purpose. Please be aware that because the security features are based on the Windows NT security model,
these features are not available when you run MTS on Windows 9x.

You define a role by opening up the Microsoft Transaction Server Explorer and selecting the Roles icon under
the components you want to define the role(s) for:

A Quick Introduction to MTS

149

Right click on the Roles icon and select New|Role. Then enter the name of the role in the New Role dialog
and click OK:

Once you have defined a role, and added the users, you can then map it to one or more classes or even a
specific interface on a class, by adding the Role to the class/interface's Role Membership. Once this is done,
MTS will take care of the security for you.

Can be Changed by an Administrator

Role−based security is much easier to manage than doing it from code, because when the security needs to be
changed (an employee has left the company, and another one has taken his or her place), a System
Administrator can deal with setting up the new employee.

If you base your roles entirely on Windows NT groups, so only NT groups and not individuals are added to a
role, all that needs to be done when employees come and go is to add/delete Windows NT user accounts, and
make sure new user accounts are added to the appropriate groups. Because the component(s) is already set up
to use specific roles, no further setup is required on your part.

Declarative vs. Programmatic Security

What is described above is called declarative security because you declare or rather, define, who can invoke
what interfaces. Declarative security is configured with MTS explorer.

Programmatic security is provided by the component itself. This means that the developer of a component
must code the security into the component. Although this is much harder to maintain, it gives you the
advantage of securing individual parts of your code. One example is if you want a manager to be able to

Advantages of using MTS

150

authorize a higher amount than a normal user. This is done by using the IsCallerInRole method of the object
context, which determines if the direct caller (the client/process that is currently accessing your component) is
part of a specific role. Alternatively, you can use the GetDirectCallerName method of the SecurityProperty
object.

It means that you can check the security credentials even when calling components within the same package.

What security model you should choose really depends on what kind of system you are building and how
good you are at packaging the components.

Package Identity

Components traditionally use the identity of the calling client, but with MTS you can set the identity of a
package and thus the identity of all components in the package. If the user/client Gregory calls component A,
then component A impersonates Gregory when calling the object components, accessing files on disk, or
updating data in SQL Server, and so on. This is not a good idea because this means that the Windows NT user
account Gregory must have the proper access rights to all of this.

Maybe it is OK to give Gregory access rights to do this, but what happens when another user needs to perform
the same tasks as Gregory from his/her machine? Well, you obviously need to grant him/her the same rights.

This is where package identity comes in handy when you set the identity of the package in which component
A resides, all the calls component A makes take on the identity of the package. So, now you grant the proper
access rights to the Windows NT user/group that you will use as the package identity. This means that all the
user/group accounts that can access component A can also perform the external tasks performed by this
component, without having the proper access rights themselves.

Pooling

Pooling is a way of recycling resources like database connections, and thus saving valuable resources. Object
pooling was supposed to have been in MTS 2.0, but it never made it.

Connection Pooling

However, with the ODBC Driver Manager version 3.0 and later, you can pool your database connections.
Database connections are scarce and expensive resources, and the creation and destruction of these uses up
valuable time and network resources.

The ODBC Driver Manager maintains a pool of available (ODBC) database connections, and when your
application opens a connection, this pool is searched for an available connection. If the connection meets your
application's requirements, such as server name, cursor type etc., it is assigned to your application. Because an
existing connection was used, you were saved the cost of establishing a new connection. Once your
application releases the connection, it is returned to the pool.

The size of a pool grows dynamically, but it also shrinks when an inactivity timeout occurs for a connection.

JIT (Just−In−Time) Activation

Just−in−time activation is a feature of MTS to help reduce system resources consumption. This is done by
activating objects only when you call them. When you create an instance of the class in your application, you

Advantages of using MTS

151

are given a pointer to this object.

However, the object hasn't actually been created yet. This won't happen until the first time you call a property
or method of the object. This means that the object doesn't take up any resources before you actually use it.

When the object finishes, it should call either the SetComplete or SetAbort method of the context object. This
tells MTS to deactivate the object and free the resources used by it. When the object is deactivated, the object
is destroyed but because MTS manages the pointer to the client application, the client won't know anything
about what goes on.

This can lead to problems, because when the object is deactivated, its local state is lost. This means that all
local variables and properties are reset. Therefore you should write stateless components if you want them to
run in MTS.

This is one thing to keep in mind when you develop your components because if they are stateless, you cannot
store instance data in the object. However, you can still store the state outside of the object, by using the
Shared Property Manager.

The Shared Property Manager is used for sharing data between objects in the same server process and is called
a Resource Dispenser, because it manages non−durable, shared−state data for the components in the same
server process.

Easier Deployment

When you are ready to deploy your components, they can be deployed as packages. A package is a unit of
deployment and you create your packages in the MTS Explorer, from where you also export them for
deployment. It is easier to deploy a package consisting of several components than to manually deploy each
component.

You might be forgiven for thinking that this could be a disadvantage, because a package cannot be split across
multiple servers. Actually, this is not a problem, because you can deploy the same package to multiple servers
and thus reap the benefits of load balancing.

When you export a package, MTS Explorer creates a package file that contains information about the
components and, optionally, the roles (Windows NT user/group ID's) from the source package. To export a
package, select the package in the MTS Explorer, right click on the package and select Export:

If you select the Save Windows NT user ids associated with roles checkbox, you will not have to set up the
security on the deployment server. Please note, however, that this is only feasible if the deployment server is
part of the same Windows NT domain and, thus, has the same user and group accounts. When you are ready

Advantages of using MTS

152

to deploy the package on another server, you simply use the Package Wizard to import it, by right clicking on
the Packages Installed node in MTS Explorer, and clicking on New|Package. In the Package Wizard dialog
you click on the Install pre−built packages button:

In the Select Package Files dialog, you add the packages you want to import, and then click on the Next >
button:

In the Set Package Identity dialog, you select the user ID you want to use when the components in the
package are run:

Advantages of using MTS

153

Finally, you enter the installation directory in the Installation Options dialog, and then click on the Finish
button:

All this can even be automated using the scriptable administration objects that MTS provides. Check out the
sample VBScript files (*.vbs) that come with Microsoft Transaction Server. They are located in the \Program
Files\MTS\Samples folder.

Transaction Based (All−or−Nothing)

When you start an activity, which is what a set of objects executing on behalf of a base client application is
called, everything is done in memory, i.e. it is not committed to disk. MTS automatically creates transactions
for your components when you activate them.

This means that if one of your objects fails, regardless of what functions it performed, none of the changes
made, by any of the objects in the activity, are committed. Actually, that is how it looks, but in fact MTS
handles cleanup and rollbacks whenever necessary. MTS uses the MSDTC (Distributed Transaction
Coordinator) for this task.

Only if all the objects in an activity complete successfully are the changes committed. This is the
"all−or−nothing" approach and gives you better consistency, without writing any transactional code.

Advantages of using MTS

154

Sample

The first thing you need to do when you want to run your component in MTS is to open up the MTS Explorer
(see figure below). Note that this is the MTS Explorer running in the Microsoft Management Console (MMC)
on Windows NT. It looks quite similar on Windows 9x though.

As you can see from this figure, we have expanded the Packages Installed node under My Computer. Here
you can see all the packages installed on the selected machine.

Now you need to register your component as a package with the MTS Explorer. Right−click on the Packages
Installed node, and click on New|Package in the context menu.

When the Package Wizard appears, click on the Create an empty package button, and then you give the new
package the name Test. Click OK and then you should see your package on the list. Expand the Test package
and right−click on the Components node. Then select New|Component from the context menu.

This brings up the Component Wizard, where you click on the Install new component(s) button. Click on Add
Files... and add your component by browsing your system and selecting the component's DLL, which includes
the Type Library. In the example below, we have added an EventLog component, which contains only one
class, the clsEventLog.

If you expand the Components node, the MTS Explorer should look something like the figure below,
depending on how many classes your component holds:

Advantages of using MTS

155

Because we want to use declarative security, we need to add a role to the component, so expand the
component node, right−click on the Roles node, and click New|Role.

Give the new role the name Admin. Expand the new Admin role, right−click on the Users tab and click
New|User. Add the group from the Add Users and Groups to Role dialog and click OK. We added the Admin
group for the local machine.

All you need to do now is to add the new role to the component. Right−click on the Role Membership node
and click on New| Role. Then add the new Admin role and click OK.

Now the MTS Explorer should look like the figure below. Just leave all properties and settings at their default
values. They are OK for now:

Run the VBScript code shown below to see how easy it is to communicate with a component in MTS.
Remember that you'll need to change the names in the code to correspond to the names of your own
component and class.

' Holds the transaction context
Dim objTxCtx
' Holds the MTS object
 Dim objMTxAs
' Holds the event log object
Dim objEventLog
' Holds the error handler object

Advantages of using MTS

156

Dim objErrorHandler

 ' Get the reference to MTS
 Set objMTxAs = CreateObject("MTxAS.AppServer.1")
 ' Get the MTS Transaction context
 Set objTxCtx = objMTxAs.GetObjectContext

 ' Create an instance of the event log class
 Set objEventLog = objTxCtx.CreateInstance("EventLog.clsEventLog")
 ' Create an instance of the error handler class
 Set objErrorHandler = objTxCtx.CreateInstance(_
 "ErrorHandler.clsErrorHandler")

 ' Write an information event to the event log
 objEventLog.WriteEvent "VBScript", "VBScript", _
 INFORMATION_TYPE, 1003, "MYPC", 5

 ' Log an error message
 objErrorHandler.LogError "modTest.Test", "This error occured", _
 PU_LNG_ERR_SHOW_MESSAGE

 ' ... Do all your other stuff here

 ' Abort the transaction
 objTxCtx.SetAbort

Please be aware that there are many other things you need to consider when you place components in MTS.
This is merely a quick example on how to do it:

Create a context in which your component(s) must run1.
Instantiate your objects using the context2.

The example below shows how to use MTS from within Active Server Pages (ASP) running on Microsoft
Internet Information Server 4.0:

<%@ TRANSACTION=Required LANGUAGE="VBScript" %>

<HTML>
 <HEAD>
 <TITLE>Transactional Web Page</TITLE>
 </HEAD>

 Transactional Web Page

 <HR>

This ASP page demonstrates how you can use the
transactional features of ASP to abort the
changes made to the Northwind database on a SQL
Server called DKTSNTS−1, using the Server and
the ObjectContext objects.

<%
Dim cnTest ' ADODB.Connection

 ' Create an instance of the ADODB.Connection
 Set cnTest = Server.CreateObject("ADODB.Connection")

Advantages of using MTS

157

 ' Open the connection
 cnTest.Open "Provider=SQLOLEDB.1;" & _
 "Persist Security Info=True;" & _
 "User ID=sa;Initial Catalog=Northwind;" & _
 "Data Source=DKTSNTS−1"

 cnTest.Execute "INSERT INTO Categories " & _
 "(CategoryName, Description) VALUES " & _
 "('Test', 'Test description')"

 ' Close the connection
 cnTest.Close

 ' Indicate to MTS that we need to rollback
 ' Comment out the next line to commit the changes
 ObjectContext.SetAbort
 ' Indicate to MTS that all transactions went ok
 ' Uncomment the next line to commit the changes
 'ObjectContext.SetComplete
%>

 </BODY>
</HTML>

For more information about MTS, check out Visual Basic 6 MTS Programming, from Wrox
Press (ISBN 1861002440).

Next Step: COM+

MTS has only been on the market a few years and already it is being replaced. Well, that is not quite true,
because all of the functionality is being built into COM.

MTS + COM = COM+ ?

COM+, which is the new buzzword in town, is essentially the OLE 32 subsystem enhanced with the Context
Concurrency Transactions features of MTS. In short, MTS COM, OLE DB and MSMQ (Microsoft Message
Queue, used for asynchronous communication), plus some more, is what make up COM+!

MTS has been tightly integrated into the COM runtime, but it isn't just a simple merger. Everything has been
improved and streamlined; for example, the COM API calls are now context aware, which means that you as a
developer can forget about MTS.

Goodbye Middle−Tier Software

Up until now, you had to deploy some sort of middle−tier server software, like MTS, to get transaction−based
features, but no longer. COM+ gives MTS and MSMQ a much needed improvement and integrates all of the
functionality into COM+.

When

COM+ will hit the streets with the arrival of Windows 2000, as it is an integrated part of this new Operating
System. Although Windows 2000 will be the first platform with COM+, it is unlikely to be the only. It will
most likely be ported to various UNIX platforms, as Microsoft and its partners have done with previous
versions of COM.

 Next Step: COM+

158

New Names

Not only have they changed the way they name the operating system from Windows NT to Windows 2000,
but they have also changed many of the names you know from MTS. An MTS package is now called a
COM+ Application; the different services provided by MTS are now as a whole called COM+ Services and
configured components is the wording used about objects that use these services.

Extended Services

COM+ introduces some extra services that can be requested by a class at runtime using declarative attributes.
The most important of these new services are summarized below.

Load Balancing

Unlike MTS that provides only basic load−balancing capabilities, COM+ comes with built−in dynamic
application load balancing that can be split across servers. When a request, such as instantiating a class, comes
in, it is redirected to a Component Load Balancing server that decides which system has the least load and
then routes the request to that server.

COM+ acts as an object request broker, which makes COM+ components truly scalable.

Queued Components

This service (Queued Component) is an expansion of the capabilities we already know from MSMQ. This
means that we are guaranteed delivery of information between two application components. This is true even
when there is no network connection readily available. So now you can operate in a disconnected state and,
when a connection is available, send the data asynchronously to the remote component. This is ideal for
people who work in the field. The central database is offsite, which means that the transaction is created and
queued, and then later it will be processed, when the system is online.

Object Pooling

This technique, which MTS never implemented, allows a certain number of objects to be created at the start of
an application, and then they are recycled, all depending on the applications requirements. This is especially
helpful if the startup time for an object is very long., If you are a VB COM component developer, you should
be aware that components created in VB5 and VB6 cannot be recycled. This is because the current VB
components have thread affinity due to TLS (Thread Local Storage) use. This will probably be resolved in the
future versions of Visual Basic.

How to Make an Application COM+ "Compliant"

What about existing COM components, do they have to be rewritten? No, is the short answer to that question.

In order to manage these non−COM+ components, a new registration database has been added. This database
− called RegDB − stores the metadata that describes the components. This database is used instead of the
system Registry and it is optimized for the information COM+ needs to activate the components. Every
COM+ object stores metadata to describe the object itself, much the same way type libraries do today. The
metadata is a superset of type libraries and it provides a more consistent definition across all types of COM+
objects.

Next Step: COM+

159

COM+ is compatible with COM, as we know it, but if you want to make true COM+ components you will
have to wait until the new developer tools, like the next Microsoft Visual Studio, hit the street. This will
probably happen a short while after Windows 2000 has been released.

COM+ Uses Interception

Instead of trivial API calls, COM+ uses the concept of interception. Actually, MTS did this as well but with
COM+ it is now integrated, which means no more calls to the infamous SafeRef function (used by an object
to obtain a reference to itself). This is needed when the object needs to pass a safe reference to itself to another
object or client outside the context.

What this means is that instead of coding some platform−dependent API calls into the component, you can
describe the components requirements − such as transactions and resource pooling − by using declarative
attributes. Remember that the declarative attributes are set after you have compiled your component, which
means that it will be easy to change the requirements of a component once it has been compiled.

At activation time, COM+ retrieves information about the attribute values of a specific class. The Catalog
Manager is responsible for looking up this information in the Catalog (which only holds information about
COM+ components) and in the RegDB and Registry (where information about "normal" COM components
can be found).

So, at activation time, COM+ looks in the Catalog to see if your class needs any extended services, and makes
sure that the resulting object receives the requested services.

In other words, these interceptors exist to ensure a proper runtime environment, based on the class attributes
in the Catalog. The runtime environment is also called a context.

Summary

In this chapter, we have looked at how we use COM components in MTS. We saw how MTS gave us a lot of
extra features, such as:

Transactions in an all−or−nothing framework•
Just−in−time activation for recycling of objects•
Easier deployment of components•
Declarative and programmatic security•

This chapter is meant as a general overview, as an appetizer for getting started with MTS or COM+, there is a
lot more to both than the coverage we have been able to provide here, so we can only suggest that you do
some serious reading if you want to be at the forefront of the "Windows evolution".

Check out these web addresses; they are packed with more information about these subjects:

http://www.microsoft.com/com/tech/COMPlus.asp − contains COM+ specific information, and a list
of other websites that offer information about COM+

•

http://www.microsoft.com/com − contains COM specific information, and a list of other websites that
offer information about COM

•

http://www.microsoft.com/com/tech/MTS.asp − contains MTS specific information, and a list of
other websites that offer information about MTS

•

Next Step: COM+

160

http://www.comdeveloper.com − contains information about COM, DCOM, COM+ and other
interesting material for "COM devotees"

•

Next Step: COM+

161

Chapter 7: The Built−In and Scripting Runtime
Objects

Overview

In this chapter, we will be looking at two types of object available to VBScript: the built−in and runtime
VBScript objects. We'll begin by looking at the differences between them, and then we'll take a tour through
some of the objects available (with their various methods, properties and events), all the while concentrating
on how we can utilize them in our scripts.

By the end of this chapter you'll know:

The two kinds of objects that are included with all VBScript installations.•
How to use regular expressions to parse text strings and do powerful search−and−replace operations.
Regular expressions are one of the major additions to VBScript 5.0.

•

A way to create associative data structures, ones where you can store data by name, rather than by
number as you do in an array. The Dictionary object does this for you and it can be used to maintain
very flexible data structures.

•

How to do all kinds of file manipulations with the FSO objects. If you're using VBScript with WSH to
automate 'batch file' type operations, this is your chapter. If you're not using WSH to automate your
computer functions, you should be!

•

Runtime vs. Built−In − What's the Difference?

The distinction between these two is subtle, especially because in current Microsoft products you always get
both. But since Microsoft's documentation makes a distinction, we'll try to make the differences clear. Put
simply, built−in objects are a part of the VBScript interpreter while runtime objects are supplied by an
external DLL.

VBScript is designed to be a small and lightweight interpreted language, so it does not use strict data types
(only Variants). In addition, because VBScript is intended to be a safe subset of Visual Basic, it does not
include file I/O or direct access to the underlying operating system. This bare−bones VBScript functionality is
provided by the VBScript engine DLL file (vbscript.dll).

However, the default scripting engines installed with current Microsoft products including Office 2000,
Windows 98 and 2000, WSH and ASP 3.0 also provide a scripting runtime library in scrrun.dll. This library
allows the VBScript programmer to reference a series of objects that provide file I/O, directory manipulation
and an associative data structure that is much like a collection. This object library contains objects that are
useful in VBA and any script language, which is why they are provided in a separate library.

We'll look at Scripting Runtime Objects later in the chapter; first, let's look at the Built−In Objects.

Built−In Objects

VBScript comes equipped with the following objects:

Err Object•
RegExp Object•

162

Match Objects•
Matches Collection − a collection of regular expression Match objects•

The final three objects − RegExp, Match and the Matches collection − all form part of the regular expressions
feature new to the VBScript 5 engine. We'll look at regular expressions in detail later.

The Err Object

The first of the built−in objects that we are going to look at is the Err object. This object contains information
about runtime errors that occur in VBScript code during runtime.

The Err object is an intrinsic object with global scope − there is no need to create an instance of it in your
code. The properties of the Err object are set by the generator of an error − Visual Basic, an Automation
object, or the VBScript programmer.

This last point is important because you can explicitly force an error (called raising it). Before you raise an
error, you can set some or all of Err 's properties. The resulting error then appears (to the user, or another
scriptwriter's code) to be very similar to 'normal' errors raised by the system.

This object has five properties (Description, HelpContext, HelpFile, Number and Source) and two methods
(Clear and Raise).

Important The Err object, its properties and methods are discussed in detail in Chapter 4 Error Handling,
Prevention and Debugging, and in Appendix E VBScript Error Codes and the Err Object, and
are thus not discussed any further in this chapter.

Regular Expressions

Since the next three objects − RegExp, Match and the Matches collection − all relate to regular expressions,
we first need to look at what regular expressions are and why they are so important to us.

Regular Expressions − what are they?

The first thing to know is that regular expressions are new to the VBScript 5.0 engine − up until then
VBScript had been sorely lacking this facility.

So what are regular expressions? Well, Perl, awk, and even JavaScript developers already know that regular
expressions provide powerful facilities for character pattern−matching and replacing. Before the addition of
regular expressions, performing a search−and−replace task throughout a string required a fair amount of code
full of looping, InStr, and Mid functions. Now we can do it with one line of code using a regular expression.

But first a note to those experienced with regular expressions from other languages. VBScript does not
support regular expression constants (like /a pattern/). Instead it uses text strings assigned to the pattern
property of a RegExp object. In many ways this is superior to the traditional method because there is no new
syntax to learn. But if you are used to regular expressions from other languages, especially client−side
JavaScript, this can throw you.

Built−In Objects

163

Introduction to Regular Expressions

So let's look at a simple example of what you can do with regular expressions. The central concept in regular
expressions is the text pattern. Regular expressions use text patterns in both searching and replacing. In
VBScript we use a text string to represent a text pattern. For example, the following code uses the Replace
method that we'll learn about in detail later.

Dim re, s
Set re = New RegExp
re.Pattern = "na"
s = "Spelling bana is easy, if you know when to stop."
MsgBox re.Replace(s, "nana")

In this example we first create a new regular expression object:

Set re = New RegExp

We then set the key property on that object, the pattern that it will match:

re.Pattern = "na"

The next line simply assigns a text sting and then the last line does the real work. It asks our regular
expression object to find the first occurrence of 'na' (the pattern) within s and replace it with 'nana'. Once
we've done that, we use a message box to show off our great spelling skills:

MsgBox re.Replace(s, "nana")

Obviously this is a very simple example, one we could probably do just as easily using VBScript's string
manipulation functions. But what if we wanted to replace all occurrences of 'na'? Or what if we wanted to
replace all occurrences of 'na' but only when they appear at the end of a word? Before looking at how we do
this with regular expressions, take a minute to think about the code you'd need to handle this last case using
string functions.

Would your solution handle both the occurrences in the string below?

Dim re, s
Set re = New RegExp
re.Pattern = "na\b"
re.Global = True
s = "May is National Bana Month. Eat a bana, everyday!"
MsgBox re.Replace(s, "nana")

This version has two key differences. First it uses a special sequence (\b) to match a word boundary (we'll
explore all the special sequences available in the section , below). Without this, the word 'National' would be
changed to 'Nanational'. Second, by setting the Global property we ensure that we match all the occurrences of
'na' that we want.

Regular expressions provide a very powerful language for expressing complicated patterns like these so let's
get on with learning the objects we need that allow us to use them within VBScript.

Regular Expressions

164

The RegExp Object

The RegExp object provides simple regular expression support in VBScript:

Dim regEx
Set regEx = New RegExp

This object has three properties and three methods.

RegExp Properties

Let's take a look at the three properties associated with the RegExp object. These are:

Global•
IgnoreCase•
Pattern•

Global Property

The Global property is responsible for setting or returning a Boolean value that indicates whether or not a
pattern is to match all occurrences in an entire search string or just the first occurrence.

object.Global [= value]

object Always a RegExp object.
value There are two possible values, True or False.

If the value of the Global property is True then the search applies to the entire string; if it is
False then it does not. Default is False−not True as documented in some Microsoft sources.

Our example above used the Global property to ensure all occurrences of 'bana' were corrected.

Dim re, s
Set re = New RegExp
re.Pattern = "na\b"
re.Global = True
s = "May is National Bana Month. Eat a bana, everyday!"
MsgBox re.Replace(s, "nana")

IgnoreCase Property

The IgnoreCase property sets or returns a Boolean value that indicates whether or not the pattern search is
case−sensitive.

object.IgnoreCase [= value]

object Always a RegExp object
value There are two possible values − True or False.

If the value of the IgnoreCase property is False then the search is case sensitive, if it is True
then it is case insensitive. Default is False−not True as documented in some Microsoft
sources.

Regular Expressions

165

Continuing our example above, if the string we want to match has 'BANA' capitalized, we need to tell
VBScript to ignore case when it does the matching:

Dim re, s
Set re = New RegExp
re.Pattern = "na\b"
re.Global = True
re.IgnoreCase = True
s = "May is National BANA Month. Eat a bana, everyday!"
MsgBox re.Replace(s, "nana")

Pattern Property

The Pattern property sets or returns the regular expression pattern being searched.

object.Pattern [= "searchstring"]

object Always a RegExp object
searchstring Regular string expression being searched for. May include any of the regular

expression characters − optional
We used the Pattern property in all of our examples above. In fact, you can't do very much with regular
expressions without setting this property. But the real power of regular expressions comes from using special
characters in the pattern so let's look at those next.

Regular Expression Characters

Character Description

\ Marks the next character as either a special character or a literal.

^ Matches the beginning of input.

$ Matches the end of input.

* Matches the preceding character zero or more times.

+ Matches the preceding character one or more times.

? Matches the preceding character zero or one time.

. Matches any single character except a newline character.

(pattern) Matches pattern and remembers the match. The matched substring can be retrieved from
the resulting Matches collection, using Item [0]...[n]. To match the parentheses
characters themselves, precede with slash − use "\(" or "\)".

x|y Matches either x or y.

{n} Matches exactly n times (n is a nonnegative integer).

{n,} Matches at least n times (n is a nonnegative integer − note the terminating comma).

{n,m} Matches at least n and at most m times (m and n are nonnegative integers).

[xyz] Matches any one of the enclosed characters (xyz represents a character set).

[^xyz] Matches any character not enclosed (^xyz represents a negative character set).

[a−z] Matches any character in the specified range (a−z represents a range of characters).

[^m−z] Matches any character not in the specified range (^m−z represents a negative range of
characters).

\b Matches a word boundary, that is, the position between a word and a space.

Regular Expressions

166

\B Matches a non−word boundary.

\d Matches a digit character. Equivalent to [0−9].

\D Matches a non−digit character. Equivalent to [^0−9].

\f Matches a form−feed character.

\n Matches a newline character.

\r Matches a carriage return character.

\s Matches any white space including space, tab, form−feed, etc. Equivalent to
"[\f\n\r\t\v]".

\S Matches any nonwhite space character. Equivalent to "[^ \f\n\r\t\v]".

\t Matches a tab character.

\v Matches a vertical tab character.

\w Matches any word character including underscore. Equivalent to "[A−Za−z0−9_]".

\W Matches any non−word character. Equivalent to "[^A−Za−z0−9_]".

$num Matches num, where num is a positive integer. A reference back to remembered matches
(note the $ symbol − differs from Microsoft documentation).

\n Matches n, where n is an octal escape value. Octal escape values must be 1, 2, or 3 digits
long.

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal escape values must be
exactly two digits long.

Many of these codes are self explanatory, but some examples would probably help with others. We've already
seen a simple pattern:

re.Pattern = "na" 'most characters match themselves

Often it's useful to match any one of a whole class of characters. We do this by enclosing the characters that
we want to match in square brackets. For example, the following will replace any single digit with a more
generic term:

Dim re, s
Set re = New RegExp
re.Pattern = "[0123456789]"
s = "May is National Banana Month. Eat 2 bananas, everyday!"
MsgBox re.Replace(s, "lots of")

In this case, the number '2' is replaced with the text 'lots of'. As you might hope, we can shorten this class by
using a range. This pattern does the same as the one above but saves some typing.

Dim re, s
Set re = New RegExp
re.Pattern = "[0−9]"
s = "May is National Banana Month. Eat 2 bananas, everyday!"
MsgBox re.Replace(s, "lots of")

In fact, this pattern is used so often that there is a shortcut for it: \d is equivalent to [0−9]. But what if you
wanted to match anything except a digit? Then we can use negation, which is indicated by a circumflex (^)
used within the class square brackets. (Note that using ^ outside the square brackets has a totally different
meaning and is discussed after the next example.) Thus to match any character other than a digit we can use
any of the following patterns:

re.Pattern = "[^0−9]" 'the hard way

Regular Expressions

167

re.Pattern = "[^\d]" 'a little shorter
re.Pattern = "[\D]" 'another of those special characters

The last option above used another of the dozen or so special characters. In most cases these characters just
save you some typing but a few, like matching tabs and other non−printable characters, can be very useful.

There are three special characters that anchor a pattern. They don't match any characters themselves but force
another pattern to appear at the beginning of the input (^ used outside of []), the end of the input ($) or at a
word boundary (we've already seen \b).

Another way we can shorten our patterns is using repeat counts. The basic idea is to place the repeat after the
character or class. For example, the following pattern matches both digits and replaces them:

Dim re, s
Set re = New RegExp
re.Pattern = "\d{2}"
s = "May is National Banana Month. Eat 19 bananas, everyday!"
MsgBox re.Replace(s, "lots of")

Without the repeat count, we'd leave the 9. Note we can't just set re.Global=True because we'd end up with
two 'lots of' phrases in the result. As the table above shows, we can also specify a minimum number of
matches {min,} or a range {min, max}. Again there are a few repeat patterns that are used so often that they
have special short cuts:

re.Pattern = "\d+" 'one or more digits, \d{1, }
re.Pattern = "\d*" 'zero or more digits, \d{0, }
re.Pattern = "\d?" 'optional: zero or one, \d{0,1}

The last special characters we should discuss are remembered matches. These are useful when we want to use
some or all of the text that matched our pattern as part of the replacement text − see the Replace method
below for an example of using remembered matches.

To illustrate this, and bring all this discussion of special characters together, let's do something more useful.
We want to search an arbitrary text string and locate any URLs within it. To keep this example reasonable in
size, we'll only search for http: protocols but we will handle most of the vulgarities of DNS names including
an unlimited number of domain layers. Don't worry if you 'don't speak DNS,' just what you probably know
from typing URLs into your browser will suffice.

Our code uses another of RegExp object's methods that we'll meet in more detail in the next section. For now,
we just need to know that Execute simply performs the pattern match and returns each match via a collection.
Here's the code:

Dim re, s
Set re = New RegExp
re.Global = True
re.Pattern = "http://(\w+[\w−]*\w+\.)*\w+"
s = "http://www.junk.com is a valid web address. And so is "
s = s & vbCrLf & "http://www.pc.ibm.com−even with 4 levels."
Set colMatches = re.Execute(s)
For Each match In colMatches
 MsgBox "Found URL: " & match.Value
Next

Regular Expressions

168

As we'd expect, the real work is done in the line that sets the pattern. It looks a little wild at first, but let's
break it down. Our pattern begins with the fixed string http://. We then use parentheses to group the real
workhorse of this pattern. The highlighted pattern below will match one level of a DNS name, including a
trailing dot:

re.Pattern = "http://(\w[\w−]*\w\.)*\w+"

This pattern begins with one of the special characters, \w, which matches [a−zA−Z0−9] or in English, the
alphanumeric characters. We next use the class brackets to match either an alphanumeric character or a dash.
That's because DNS names can include dashes. Why didn't we use the same pattern before? Because DNS
names can't begin or end with a dash. We allow zero or more characters from this expanded class by using the
* repeat count:

re.Pattern = "http://(\w[\w−]*\w\.)*\w+"

After that, we again want strictly an alphanumeric character so our domain name doesn't end in a dash. The
last pattern in the parentheses matches the dots (.) used to separate DNS levels. Note that we can't use the dot
alone because that is a special character that normally matches any single character except a newline. Thus we
'escape' this character, by preceding it with a slash (\).

After wrapping all that in parentheses, just to keep our grouping straight, we again use the * repeat count. So
the highlighted pattern below will match any valid domain name followed by a dot; in effect, one level of a
fully qualified DNS name:

re.Pattern = "http://(\w[\w−]*\w\.)*\w+"

We end the pattern by requiring one or more alphanumeric characters for the top−level domain name (e.g., the
com, org, edu, etc.):

re.Pattern = "http://(\w[\w−]*\w\.)*\w+"

Note this pattern doesn't allow dashes in the last level, which could, in theory, be there. Fortunately, none of
the top−level domains we're interested in today use a dash. More seriously, in our zeal to avoid dashes as the
first or last character of a domain name, we've excluded the possibility of a single character name. This is
easily remedied using the 'or' operator (|). We'll leave it as the proverbial exercise for the reader to make this
improvement.

RegExp Methods

Let's now look at the three methods associated with the RegExp object:

Execute•
Replace•
Test•

Execute Method

This executes a regular expression search against a specified string and returns a Matches collection..

object.Execute(string)

Regular Expressions

169

object Always a RegExp object
string The text string which is searched for − required
The actual pattern for the regular expression search is set using the Pattern property of the RegExp object:

Dim re, s
Set re = New RegExp
re.Global = True
re.Pattern = "http://(\w+[\w−]*\w+\.)*\w+"
s = "http://www.junk.com is a valid web address. And so is "
s = s & vbCrLf & "http://www.pc.ibm.com−even with 4 levels."
Set colMatches = re.Execute(s)
For Each match In colMatches
 MsgBox "Found URL: " & match.Value
Next

Note the difference with other languages that support regular expressions that treat the results of Execute as a
Boolean to determine whether or not the pattern was found. As a result, you'll often see examples that are
converted from other languages that simply don't work in VBScript − for example, in Microsoft's own
documentation. Remember the result of Execute is always a collection (possibly empty) − you can use a test
like if re.Execute(s).count = 0, or better yet use the Test method, which is designed for this purpose.

Replace Method

This method replaces text found in a regular expression search.

object.Replace(string1, string2)

object Always a RegExp object
string1 This is the text string in which the text replacement is to occur

− required
string2 This is the replacement text string − required
The Replace method returns a copy of string1 with the text of RegExp.Pattern replaced with string2. If no
match is found, a copy of string1 is returned unchanged:

Dim re, s
Set re = New RegExp
re.Pattern = "http://(\w[\w−]*\w\.)*\w+"
s = "http://www.junk.com is a valid web address. And so is "
s = s & vbCrLf & "http://www.pc.ibm.com−even with 4 levels."
MsgBox re.Replace(s, "**Censored**")

The Replace method can replace sub−expressions in the pattern. For this we use the special characters $1, $2,
etc. in the replace text. These 'parameters' refer to remembered matches. A remembered match is simply part
of a pattern. We designate which parts we want to remember by enclosing them in parentheses, and refer to
them sequentially as $1, $2, etc. In the following example we remember the first three words and then reverse
two of them in the replacement text:

Dim re, s
Set re = New RegExp
re.Pattern = "(\S+)\s+(\S+)\s+(\S+)"
s = "The quick brown fox jumped over the lazy dog."
MsgBox re.Replace(s, "$1 $3 $2")

Regular Expressions

170

Test Method

The Test method executes a regular expression search against a specified string and returns a Boolean value
that indicates whether or not a pattern match was found.

object.Test(string)

object Always a RegExp object
string The text string upon which the regular expression is executed

− required
The Test method returns True if a pattern match is found and False if no match is found. This is the preferred
way to determine if a string contains a pattern. Note we often must make patterns case insensitive as in the
example below:

Dim re, s
Set re = New RegExp
re.IgnoreCase = True
re.Pattern = "http://(\w+[\w−]*\w+\.)*\w+"
s = "Some long string with HTTP://www.junk.com in it."
If re.Test(s) Then
 MsgBox "Found a URL."
Else
 MsgBox "Missing in action."
End If

The Matches Collection

The Matches collection is a collection of regular expression Match objects.

A Matches collection contains individual Match objects. The only way to create this collection is using the
Execute method of the RegExp object. The Matches collection property is read−only, as are the individual
Match objects.

When a regular expression is executed, zero or more Match objects result. Each Match object provides access
to the string found by the regular expression, the length of the string, and an index to where the match was
found. Remember to set the Global property to True or your Matches collection will never contain more than
one member. This is an easy way to create a very subtle bug!

Dim re, objMatch, colMatches, sMsg
Set re = New RegExp
re.Global = True
re.Pattern = "http://(\w+[\w−]*\w+\.)*\w+"
s = "http://www.junk.com is a valid web address. And so is "
s = s & vbCrLf & "http://www.pc.ibm.com−even with 4 levels."
Set colMatches = re.Execute(s)
sMsg = ""
For Each objMatch in colMatches 'loop over matches
 sMsg = sMsg & "Match of " & objMatch.Value
 sMsg = sMsg & ", found at position " & objMatch.FirstIndex
 sMsg = sMsg & ". The length matched is "
 sMsg = sMsg & objMatch.Length & "'." & vbCrLf
Next
MsgBox sMsg

Regular Expressions

171

Matches Properties

Matches is a simple collection and as such supports the standard two properties:

Count•
Item•

Count returns the number of items in the collection, and Item returns an item based on the specified key.

These two properties are self−explanatory and need no further discussion.

The Match Object

Match objects are the 'things' (more formally the members) in a Matches collection. The only way to create a
Match object is by using the Execute method of the RegExp object. When a regular expression is executed,
zero or more Match objects can result. Each Match object provides the following:

Access to the string found by the regular expression•
The length of the string•
An index to where the match was found•

See section above for an example of using the Match object and its properties.

Match Properties

The match object has three properties, all of which are read−only:

FirstIndex•
Length•
Value•

FirstIndex Property

The FirstIndex property returns the position in a search string where a match occurs.

object.FirstIndex

object Always a Match object
The FirstIndex property uses a zero−based offset from the beginning of the search string. In other words, the
first character in the string is identified as character zero (0).

Length Property

This property returns the length of a match found in a search string.

object.Length

object Always a Match object

Regular Expressions

172

Value Property

This property returns the value or text of a match found in a search string.

object.Value

object Always a Match object

Scripting Runtime Objects

Now it's time to look at how the other half lives. You'll remember the objects in the scripting runtime library
are made available to us by the Scripting Runtime Object Library scrrun.dll. As such these objects are
available from any language that supports COM including JScript and Visual Basic for Applications and
Windows.

Important A complete listing of all the objects, properties and methods can be found in Appendix F
− The Scripting Runtime Library Objects Reference.

The top−level objects in the Scripting Runtime Object library are the Dictionary object and the
FileSystemObject object. We can use CreateObject to instantiate these two kinds of objects. There are seven
other types of objects that we access via the FileSystemObject.

The following are the objects contained within the Scripting Runtime Object Library:

Object Collection Description

Dictionary A top−level object. Similar to the VBA Collection
object

Drive Drives Refers to a drive or collection of drives on the system

File Files Refers to a file or collection of files in the file system

FileSystemObject A top−level object. Use this object to access drives,
folders, and files in the file system

Folder Folders Refers to a folder or collection of folders in the file
system

TextStream Refers to a stream of text that is read from, written to, or
appended to a text file

Let's take a closer look at how we can use the top−level objects, starting with the Dictionary object.

Dictionary Object

The Dictionary object provides an associative array, that is, a way to store key/item pairs. The item can be
any type of data and the key can be any type except an array, although it is usually an integer or a string.
When we store an item in a dictionary we must provide a unique key value with it. We can then look up the
items by the key.

At first glance, a dictionary sounds like a collection, and they can often be used interchangeably but there are
some differences:

The Exists method returns whether or not a key exists in a dictionary. In fact, with a dictionary you
can access a key that doesn't exist without raising an error. The corresponding entry is quietly added
to the dictionary.

•

Regular Expressions

173

A dictionary supports the CompareMode property to control whether a binary or text comparison is
performed.

•

A dictionary's Items and Keys methods return the data and key values, respectively, as an array. You
can even use the Keys array to change the value of a key.

•

The syntax is just different enough to take some getting used to. One advantage of the dictionary
syntax is that you can retrieve the key value. With a collection, however, your retrieval is based on a
key value and, given a member, there's no way to access what the key is (e.g. when iterating through
the collection).

•

You can't control the order of dictionary elements. In fact, there is no such thing as the concept of an
'order' as there is with a collection.

Important Note: a Dictionary object is the equivalent of a PERL
associative array.

•

There are several ways to add elements to a dictionary as the following example shows:

Dim dict
Set dict = CreateObject("Scripting.Dictionary")
dict.Add "1", "cat" 'Add keys and items.
dict.Add "Spot", "dog"
dict.Add 3, "goldfish" 'Note different key than "3"
dict.Item("Felix") = "cat"
dict("Flicka") = Array("Horse", 15, "15 hands, 3 in")
MsgBox "Do we have Spot here? " & dict.Exists("Spot")

The first three elements are added using the Add method (syntax: Add key, item). The thing to notice here is
that the key does not have to be a specific type. In fact, the key 3 (the integer) is different from the key "3"
(the text string). As noted above if we access a key that doesn't exist, the dictionary will quietly add one for
us, as illustrated by the following two lines of code:

MsgBox dict("3") & " is different than " & dict(3)
MsgBox "But this created an entry for 3 (the string): " _
 & dict.Exists("3")

The second message box tells us that an entry for "3" now exists. If we examined it, we'd discover dict("3") is
empty. This can be a subtle source of bugs.

Usually we don't bother with the Add method, we simply set the Item property. And because Item is the
default property we can use the natural syntax of the second line below:

dict.Item("Felix") = "cat"
dict("Flicka") = Array("Horse", 15, "15 hands, 3 in")

This line also illustrates that the element we place in our dictionary can be of any type. When we retrieve the
value of 'Flicka,' we get an array. We can then index into that array. The following line illustrates doing this
'on the fly':

MsgBox "How tall is Flicka? " & dict("Flicka")(2)

The properties of the Dictionary object are:

CompareMode − used to set whether a dictionary uses binary or text comparisons•
Count − the total number of elements in the dictionary•

Regular Expressions

174

Item − is an indexed property, as illustrated above. This is the default property.•
Key − is an indexed property, like Item but it is 'write only'. That is, use this property to change a
key, rather than return it. For example:

dict.Key("Flicka") = "Man o' War"
MsgBox "How old is Man o' War? " & dict("Man o' War")(1)

•

The methods of the Dictionary object are:

Add − to add a key, item pair to the dictionary•
Exists − tests whether or not a key exists in the dictionary•
Items − returns an array of the values in the dictionary•
Keys − returns an array of the keys in the dictionary•
Remove − removes one element (using its key) from the dictionary•
RemoveAll − removes all the elements from the dictionary

Important See Appendix E for their syntax
details.

•

FileSystemObject Object

When writing scripts for Active Server Pages, the Windows Script Host, or other applications where
VBScript can be used, it's sometimes important to be able to add, move, change, create, or delete folders
(directories) and files. In addition, it may be desirable to get access to information drives attached to the
system and have the ability to manipulate them on the fly.

The other runtime system object allows such access to drives, folders, and files using the FileSystemObject
(FSO) object model.

When using VBScript on a web page, there are security issues concerning potentially unwelcome access to a
client's local file system. Therefore Internet Explorer's default security settings do not allow client−side use of
the FileSystemObject object. By overriding those defaults you are potentially allowing unwelcome access to
the file system, which could result in the loss of file system's integrity, data loss or worse. The security issues
are not as serious when FSO is used to manipulate the file system on a web server or via the WSH.

The FSO object model gives your server−side applications the ability to create, alter, move, and delete
folders, or to find out if particular folders exist, and if so, where on the drive. You can also find out
information about the folders, such as names, creation date or the last modified date.

The FSO object model also makes it easy to read and write text files via the TextStream object, which in
simple cases may remove the need to use Access or SQL Server.

The FSO object model consists of the following objects and collections:

Object or Collection Description

FileSystemObject Main object.

This contains methods and properties that allow you to create, delete, gain
information about, and manipulate drives, folders, and files

Drive Object.

Scripting Runtime Objects

175

Contains methods and properties that allow you to access information
about a drive attached to the system, such as share name and the amount of
free space available.

A drive can also be a CD−ROM drive or a RAM disk and doesn't need to
be physically attached to the system but can be logically connected through
a network

Drives Collection.

Provides a list of the drives attached to the system, either physically or
logically.

All drives are included, regardless of type. Removable−media drives do not
need to have media inserted to appear

File Object.

Contains methods and properties that allow you to create, delete, move a
file, return a file name, path, and various other properties

Files Collection.

Provides a list of all files contained in a folder.

Folder Object.

Contains methods and properties that allow you to create, delete, move a
folder, return a folder, path, and various other properties.

Folders Collection.

Provides a list of all the folders inside a folder.

TextStream Object.

Allows you to read and create text files.
Important See Appendix E for a complete listing of the properties and methods, their required and

optional parameters, for each object.
Using the FileSystemObject

To use the FSO object model you must:

Use the CreateObject method to create a FileSystemObject object•
Use the appropriate method on the newly created object•
Access the appropriate properties on the object•

Creating a FileSystemObject Object

The first thing we need to do is create an FSO by using the CreateObject method as follows:

Dim fso
Set fso = CreateObject("Scripting.FileSystemObject")

Scripting is the name of the type library and FileSystemObject is the name of the object that you want to
create.

Scripting Runtime Objects

176

Use the Appropriate Method

Now you need to use the appropriate method of the FSO. If you want to create a new object, you can use
either CreateTextFile or CreateFolder. To delete objects, use the DeleteFile and DeleteFolder methods of the
FSO. Still other methods let you copy and move files and folders or 'walk' the file system starting with a drive
letter.

Important The FSO object model provides some redundancy. That is, there is often more than one way to
do something. For example, you can copy a single file using the CopyFile method of the FSO or
using the Copy method of the File object. Be aware that in some cases the differing ways of
doing things have some subtle distinctions. In this example, CopyFile supports wildcards and
copying of more than one file while Copy does not.

Accessing Existing Files, Folder and Drives

One of the simplest ways to access an existing file, folder or drive, is to use the appropriate get* method of
the FileSystemObject object:

GetDrive•
GetFolder•
GetFile•

For example, if you wanted to gain access to a file called text.txt in the root of the C:\ drive, you could use
something like the following:

Dim fso, file1
Set fso = CreateObject("Scripting.FileSystemObject")
Set file1 = fso.GetFile("c:\text.txt")

You do not need to use the get* methods for objects that have just been created since these functions already
return an object reference. Therefore, if you create a new folder using the CreateFolder method, you don't use
the GetFolder method to access its properties. You simply set a variable to the CreateFolder method and then
access its properties and methods. So if wanted to create text.txt in the root you would use:

Dim fso, file1
Set fso = CreateObject("Scripting.FileSystemObject")
Set file1 = fso.CreateFile("C:\text.txt")

You can also gain access to any drive, folder or file by 'walking the file system'. This begins with FSO's
Drives collection. Each Drive object has a RootFolder property. And each Folder object has both a SubFolders
and Files collection. The following example will get an object reference to the same file as the one above, but
on every drive on the system:

Dim fso, drive, folder, file
Set fso = CreateObject("Scripting.FileSystemObject")
For Each drive in fso.Drives
 If drive.IsReady Then
 Set folder = drive.RootFolder
 Set file = folder.Files("text.txt")
 'Do something here...
 'Be sure to handle file not found errors...
 End If
Next

Scripting Runtime Objects

177

Accessing the Object's Properties

Once you have a reference to an object, you can access its properties; e.g. last time the file was modified:

Dim fso, file1
Set fso = CreateObject("Scripting.FileSystemObject")
Set file1 = fso.GetFile("c:\text.txt")
MsgBox "This file was last modified at " _
 & file1.DateLastModified

The FSO Object Model

The FSO exposes a variety of objects for working with drives, folders and files. These all start from an FSO
object.

FSO Objects

An FSO object has just one property:

Property Information

Drives Returns the collection of drives. As noted above this can be a starting point for 'walking'
the file system.

In contrast, an FSO object exposes a rich selection of methods so we'll look at them in three groups. The
methods in the first group are fairly self−explanatory and are similar across drives, folders, and files:

Drives Folders Files
DriveExists FolderExists FileExists

GetDrive GetFolder GetFile

GetDriveName GetFileName (Note, not GetFolderName!) GetFileName

CopyFolder CopyFile

CreateFolder CreateTextFile

DeleteFolder DeleteFile

MoveFolder MoveFile

The next set provides methods to parse paths:

Method Information

BuildPath Helps build a path by adding one level of folder or file name.
BuildPath adds a path delimiter (\) if needed.

GetAbsolutePathName Returns an unambiguous, fully qualified path name.

GetBaseName Gets just the file/folder name, without any path or extension.

GetExtensionName Gets the file/folder's extension, if any.
The final set provides miscellaneous methods:

Method Information

GetParentFolderName Given a path, returns its parent folder. See also the ParentFolder
property of the File and Folder objects, below.

GetSpecialFolder Returns the Windows, System or Temp folders. Note WSH provides
much more powerful access to all the special folders if you are

Scripting Runtime Objects

178

writing batch files.

GetTempName Returns a randomly generated file or folder name.

OpenTextFile Returns a TextStream object for doing file I/O. See , below.
Drive Objects

A wealth of information is available about the various drives attached to the system. The properties make
available the following information (note that Drive objects have no methods):

Property Information

TotalSize Total drive space in bytes. Read only.

AvailableSpace, FreeSpace Available space on drive in bytes. Read only.

DriveLetter Letter assigned to the drive. Read only.

DriveType Type of drive − such as removable, fixed, CD−ROM etc.
Read only.

SerialNumber Drive's serial number. Read only.

FileSystem Type of file system, such as FAT, FAT32, NTFS etc. Read
only.

IsReady Whether or not the drive is available. Read only.

ShareName The share name. If the drive is not a mapped network drive or
UNC, this property is the empty string. Read only.

VolumeName The drive's volume name. Read or write.

Path, RootFolder The path or root folder of the drive. Read only.
Working with Folders and Files

Folder and File objects provide ways to directly manipulate these elements of the file system. In many cases,
their properties and method are similar:

Property Information

Name Sets or returns the folder's or file's name. Note this can be
used to rename a folder or file. Read or write.

Path Returns the full path. Read only.

Type The file or folder's type (i.e. file extension).

ShortName, ShortPath The 8.3 'DOS' name and path for the file or folder. Read
only.

Drive, ParentFolder The drive or parent folder that contains the object. Note,
ParentFolder is undefined for a root folder (e.g. C:\). Read
only.

DateCreated, DateLastAccessed,
DateLastModified, Size

Set or returns the folder's or file's attributes. Read or write.

Files, Subfolders Returns a collection of the files or subfolders in the folder.
Only applies to Folder objects. Read only.

IsRootFolder Returns True if the folder is the root of the drive. Returns
False otherwise. Only applies to Folder objects. Read only.

Method Information

Copy Copies a folder or file. See also FSO.CopyFolder and

Scripting Runtime Objects

179

FSO.CopyFile.

Delete Deletes a folder or file. See also FSO.DeleteFolder and
FSO.DeleteFile.

Move Moves a folder or file. See also FSO.MoveFolder and
FSO.MoveFile.

CreateTextFile (Folder object only) Creates a new text file. See also FSO.CreateTextFile.

OpenTextFile (Folder object only) Opens an existing file for I/O, which is detailed below. See
also FSO.OpenTextFile.

File I/O

Now we are really getting down to the nitty−gritty, actually reading and writing the contents of a file. FSO
only gives us access to text files (ADO 2.5 has more advanced facilities − see Chapter 15).

The object we use to actually read or write to a file is called a text stream. Note that a text stream is not the
same thing as a file. More precisely, a text stream object is not a file object. They have very different
properties and methods. Unfortunately some FSO methods blur this distinction; for example, OpenTextFile
and CreateTextFile, both of which actually return a text stream object! Many examples in Microsoft's own
documentation use variable names like file1 when the object is actually a text stream.

The properties of a TextStream object are straightforward:

Property Information

AtEndOfLine, AtEndOfStream True if the current position is at the end of a line (just before a
end−of−line marker) or at the end of the file, respectively.
Read only.

Column, Line Returns the column or line number of the current position,
respectively.

The methods of a TextStream object break down naturally into three groups plus Close:

Reading Skipping Writing Information

Read Skip Write Process as many bytes as in the
method's argument. Doesn't add/strip
any end−of−file markers.

ReadLine SkipLine WriteLine Process one line, stripping the
end−of−line marker on input and
adding it on output.

ReadAll Read the remainder of the stream
(file).

WriteBlankLines Write the specified number of lines.
The Close method, as you might expect, will close a TextStream. Trying to do any I/O to a stream after it is
closed will raise an error.

Creating Files

There are two ways that we can create an empty text file using the FSO:

We can use the FSO or Folder.CreateTextFile method:•

Scripting Runtime Objects

180

Dim fso, ts
Set fso = CreateObject("Scripting.FileSystemObject")
Set ts = fso.CreateTextFile("c:\text.txt", True)

We can use the FSO.OpenTextFile method with the ForWriting flag set:

Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim fso, ts
Set fso = CreateObject("Scripting. FileSystemObject")
Set ts = fso.OpenTextFile("c:\text.txt", ForWriting, True)

•

Note that in both cases we've set the last parameter, OverWrite, to True. This ensures we'll create a new file if
one already exists.

Important See Appendix F − The Scripting Runtime Library Objects Reference for information on
ForWriting and OverWrite

Opening Files

Similarly there are two ways we can open an existing file using the FSO:

Again we can use the FSO.OpenTextFile method, this time with OverWrite = False:

Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim fso, ts
Set fso = CreateObject("Scripting. FileSystemObject")
Set ts = fso.OpenTextFile("c:\text.txt", ForWriting, False)

•

We can use File.OpenAsTextStream method with the ForWriting flag set:

Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim fso, ts
Set fso = CreateObject("Scripting. FileSystemObject")
Set ts = fso.OpenAsTextStream("c:\text.txt", ForWriting, False)

•

In both these cases, if we want to read the file we use ForReading as the second parameter.

Adding Data to the File

Now that we have opened our text file, we can add data to it.

To write data to an open text stream, use the Write, WriteLine, or WriteBlankLines methods, depending on
the action we want to carry out.

When you're done, don't forget to Close the TextStream object.

Here is an example that opens a file, uses all three write methods and closes the file:

Dim fso, ts
Set fso = CreateObject("Scripting.FileSystemObject")
Set ts = fso.CreateTextFile("c:\text.txt", True)
ts.WriteLine("Calling the Doc") 'write a line incl. newline
ts.WriteBlankLines(5) 'write 5 newlines
ts.Write ("This is a test.") 'writes w/o newline
ts.Write(" And this is on the same line")
ts.Close

Scripting Runtime Objects

181

Reading Files

To read data from a text file, we use the Read, ReadLine, or ReadAll methods of the TextStream object. The
resulting text of the read methods is stored in a string, which can then be used as required.

If you use the Read or ReadLine method and want to skip to a particular part of the data, you can use the Skip
or SkipLine method.

Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim fso, ts, strg
Set fso = CreateObject("Scripting.FileSystemObject")
Set ts = fso.OpenTextFile("c:\text.txt", ForReading)
strg = ts.ReadAll
MsgBox "File data is: '" & strg & "'"
ts.Close

Note this technique reads the entire file into a single variable. Often you want to work line by line. ReadLine
works fine for this but you can only move forward through a TextStream object. If you need to work back and
forth, it may be easier to read the file into an array. While you can do this with a loop, it's faster to use:

arLines = Split(ts.ReadAll, vbCrLf)

Summary

This chapter has covered a lot of objects, their methods and properties. All the objects are included with every
(current) VBScript installation, although technically some are built−in and some are provided by the separate
Scripting Runtime file.

Of the built−in objects, the three that implement regular expressions are probably the most flexible, and hence
difficult to completely master. But hopefully this introduction to regular expressions has shown that you don't
have to be an 'RE guru' to save yourself a lot of coding whenever you need to search or replace text strings.

The Scripting Runtime library exposes two very different top−level objects. The Dictionary object provides an
easy way to create 'super collections.' You can use these objects to store all kinds of data and access it
flexibly. Many scripting applications need a little 'database power' and Dictionary is often the way to provide
an in−memory database with all the searching you could want.

The other top−level object in the Scripting Runtime is the FileSystemObject, universally abbreviated as FSO.
FSO is actually a gateway to four other objects (three of which have corresponding collections). These other
objects are Drive, Folder, File and TextStream. All together these objects let us perform basic file
manipulation, read and write text files, and automate many tasks that previously required a 'real' programming
language. For system administrators who need to automate setup and maintenance procedures − or anyone
tired of 1980's−era batch files − the FSO objects along with WSH are a major improvement.

Scripting Runtime Objects

182

Chapter 8: Classes in VBScript (Writing Your Own
COM Objects)
One of the most exciting features added to the VBScript Version 5 is the ability to write classes. This is
functionality that was previously reserved for programmers of full−blown compiled languages like Visual
Basic, C++, Java, Visual FoxPro, and Delphi. Before we get too far into how to write your own classes in
VBScript, and where you can make use of them, let's detour for a moment to cover some terminology. (By the
way, if you've skipped previous chapters and are not familiar with how to use COM objects from VBScript,
then you might benefit from reading Chapter 5 before tackling this one. This chapter will assume that you are
familiar with the basics of instantiating objects and calling their properties and methods.)

Classes vs. Objects vs. Components

Few terms have been misused, obscured, and confused more than "class", "object", and "component". Mainly
what has happened is that the term "object" has become a generic term to mean all three of these. This drives
object−oriented purists crazy. Let's clear the fog a little bit:

A class is a template for an object. A class is something that you work with at design time: if you want to be
able to use an object at runtime, you have to first define a class at design time. Objects are created at runtime
based on templates provided by classes. An object is a temporary construct that lives in memory while your
application or script is using it, whereas a class is a persistent template for an object. If you create a thousand
separate customer objects during the lifetime of your script, each of those separate objects has its origins in a
single class definition.

One of the reasons that the term "class" has been overrun by the term "object" is that a large percentage of the
"objects" that people use were not written by themselves. Instead, they are binary "objects" distributed in the
form of components. So they do not think of them as classes. On the other hand, when you are coding your
own "objects", you are actually writing "classes", so people find it easier to think of the "objects" that they
wrote themselves as "classes", but tend to think of other people's "objects" as just that − objects. Is this
confusing? Don't worry. Just remember that when you are writing code to define an object, you are writing a
class. And when you use a class at runtime, you are using it in the form of an object.

A component is nothing more than a packaging mechanism. When you write some classes, and you want
people to be able to use them as objects at runtime, you package them in a component. A component is a way
of compiling one or more related classes into a binary file that can be distributed to one or more computers.
Components are not the only way to make use of classes, however. In a Visual Basic application, for example,
you can write classes that are compiled within the application itself, and are never exposed to the outside
world. The classes exist only inside that application, and the sole purpose is to serve the needs of that
application. However, people are finding that it is often much more productive and forward−thinking to
package their classes into a component that can exist outside of the application. The thinking is that you might
find a use for one or more of those classes later, and having them in a more portable component makes them
much easier to reuse.

When you are writing VBScript code to instantiate (see Chapter 5) an object − be it the scripting
FileSystemObject object (Chapter 7) or the ADO Recordset object (Chapter 15) − that object is available to
your script because it was packaged in the form of a component.

183

The Class Statement

The key to creating VBScript classes is the Class statement. Similar to the way the FunctionEnd Function or
SubEnd Sub statement pairs are used to block off the boundaries of a procedure, the Class statement, and its
companion End Class statement, are used to block off the boundaries of a class. You can use multiple blocks
of ClassEnd Class blocks in a single script file to define multiple classes. If you are coming to VBScript from
another language, such as Visual Basic, you are probably accustomed to classes being stored in their own
separate files. However, this is not the case with VBScript classes. In general, a VBScript class must be
defined in the same script file as the script code that creates an instance of it.

This may seem like a pretty big limitation − since part of the purpose of creating a class is easy code
portability and centralized reuse − but there are some other options. First, you can package one or more
VBScript classes in a Windows Script Component (WSC), which we discuss in detail in Chapter 9. Second,
you can use the Active Server Pages (ASP) #INCLUDE directive to include VBScript classes in your ASP
scripts, which we discuss in Chapter 14. Third, when the 2.0 version of the Windows Script Host (WSH) ships
with Windows 2000, you will also be able to include external script files in your WSH scripts. In this chapter,
however, we are going to limit ourselves to the discussion of classes that are defined within the same
Windows Script Host script file as the script code that uses the class.

Other than this same−script−file difference, Visual Basic programmers will not have any trouble adjusting to
VBScript classes. Except for the differences between the VB and VBScript languages, the structure and
techniques for VBScript classes are pretty much the same as for VB.

Here is the syntax for the Class statement:

Class MyClass

 <rest of the class code will go here>

End Class

You would, of course, replace MyClass with the name of the class you are defining. This class name must be
unique within the script file, as well as within any classes that are brought into the same scope through
"include" directives (see Chapters 9 and 14). The class name must also not be the same as any of the VBScript
reserved words.

Defining Properties

When a script creates an object based on a class, properties are the mechanisms through which data is:

passed into the object•
read from the object•

Private Property Variables

The best way to store the value of a property is in a private property variable. This is a variable that is defined
at the class level (at the beginning of the class). This variable is private (that is, it is not directly accessible to
code outside of the class) and holds the actual value of the property. Code that is using a class will use
Property Let, Set, and Get procedures to interact with the property, but these procedures are merely
gatekeepers for the private property variable.

Classes vs. Objects vs. Components

184

You define a private property variable like so:

Class Customer

 Private mstrName

 <rest of the class code will go here>

End Class

In order for the variable to have private, class−level scope, it must be declared with the Private statement. The
m prefix is the "Hungarian" notation to indicate that the scope of the variable is "module level", which is
another way of saying "class level". Some texts will advocate the use of the c prefix (as in cstrName) to
indicate class level scope. However, we do not recommend this approach as it is easily confused with the
prefix that Visual Basic programmers often use for the Currency data type.

Property Let

A Property Let procedure is a special kind of procedure that allows code outside of a class to place a value in
a private property variable. A Property Let procedure is similar to a VBScript Sub procedure in that it does not
return a value. Here is the syntax:

Class Customer

 Private mstrName

 Public Property Let CustomerName(strName)

 mstrName = strName

 End Property

End Class

Notice that instead of using the Sub or Function statements to define the procedure, Property Let is used
instead. A Property Let procedure must accept at least one parameter. To leave this parameter out would
defeat the whole purpose of the Property Let procedure, which is to allow outside code to store a value in the
private property variable. Notice how the code inside the property procedure saves that strName value passed
into the procedure in the private property variable mstrName. You are not required to have any code at all
inside the procedure, but not storing the value passed into the procedure in some sort of class−level variable or
object would tend to, once again, defeat the whole purpose of the Property Let procedure.

Conversely, you can have as much additional code in the procedure as you like. In some cases, you might
wish to do some sort of validation before actually assigning the passed−in value in the private property
variable. For example, if the length of the customer name value was not allowed to exceed 50 characters, you
could verify that the strName parameter value does not exceed 50 characters, and, if it did, use the Err.Raise
method (see Chapter 4/Appendix E) to inform the calling code of this violation.

Finally, a property procedure must end with the End Property statement (just as a Function procedure ends
with End Function, and a Sub procedure ends with End Sub). If you wished to break out of a property
procedure, you would use the Exit Property statement (just as you would use Exit Function to break out of a
Function, and Exit Sub to break out of a Sub).

Classes vs. Objects vs. Components

185

Property Get

A Property Get procedure is the inverse of a Property Let procedure. While a Property Let procedure allows
code outside of your class to write a value to a private property variable, a Property Get procedure allows code
outside of your class to read the value of a private property variable. A Property Get procedure is similar to a
VBScript Function procedure in that it returns a value. Here is the syntax:

Class Customer

 Private mstrName

 Public Property Let CustomerName(strName)

 mstrName = strName

 End Property

 Public Property Get CustomerName()

 CustomerName = mstrName

 End Property

End Class

Like a VBScript Function procedure, a Property Get procedure returns a value to the calling code. This value
will typically be the value of a private property variable. Notice how the name of the Property Get procedure
is the same as the corresponding Property Let procedure. The Property Let procedure stores a value in the
private property variable, and the Property Get procedure reads it back out.

The Property Get procedure does not accept any parameters. VBScript will allow you to add a parameter, but
if you are tempted to do this, then you will also have to add an additional parameter to the property's
corresponding Property Let or Property Set procedure (if there is one). This is because a Property Let/Set
procedure must always have exactly one more parameter than its corresponding Property Get procedure.
Adding an extra parameter to a Property Let/Set procedure is extremely awkward, and asking the code that
uses your class to accommodate more than one parameter in a Property Let procedure is very bad form. If you
feel you have a need for a Property Get procedure to accept a parameter, you are much better off adding an
additional property to fulfill whatever need the Property Get parameter would have fulfilled.

If your Property Get procedure returns a reference to an object variable, then you may wish to use the Set
statement to return the value. For example:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Public Property Get FSO()

 Set FSO = mobjFSO

 End Property

End Class

Classes vs. Objects vs. Components

186

However, since all VBScript variables are Variant variables, the Set syntax is not strictly required. This syntax
would work just as well:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Public Property Get FSO()

 FSO = mobjFSO

 End Property

End Class

It's a good idea to use the Set syntax, though, since it makes it clearer that the Property Get procedure is
returning a reference to an object variable.

Property Set

A Property Set procedure is very similar to a Property Let procedure, but the Property Set procedure is used
exclusively for object based properties. When the property needs to store an object (as opposed to a variable
with a numeric, Date, Boolean, or String subtype), you can provide a Property Set procedure instead of a
Property Let procedure. Here is the syntax for a Property Set procedure:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Public Property Set FSO(objFSO)

 Set mobjFSO = objFSO

 End Property

End Class

Functionally, Property Let and Property Set procedures do the same thing. However, the Property Set
procedure has two differences:

it makes it clearer that the property is an object−based property (more explicit = good)•
code outside of your class must use the Set Object.Property = Object syntax in order to write to the
property (also a good thing, since this is the typical way of doing things)

•

For example, here is what code that is using an object based on the above class might look like:

Dim objFileHelper
Dim objFSO

Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
Set objFileHelper = New FileHelper
Set objFileHelper.FSO = objFSO

Classes vs. Objects vs. Components

187

Notice that when the last line writes to the FSO property, it uses the Set statement. This is required because
the FileHelper class used a Property Set procedure for the FSO property. Without the Set statement at the
beginning of the last line, VBScript would produce an error. When a property on a class is object−based, it is
typical to use a Property Set procedure. Most programmers using your class will expect this. That said, since
all VBScript variables are Variant variables, it is perfectly legal to use a Property Let procedure instead.
However, if you provide a Property Let procedure instead of a Property Set procedure, code that is using your
class will not be able to use the Set statement to write to the property (VBScript will produce an error if they
do), and this will be a trip−up for programmers who are accustomed to using the Set syntax. If you want to be
very thorough, and cover both bases, you can provide both a Property Let and a Property Set for the same
property, like so:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Public Property Set FSO(objFSO)

 Set mobjFSO = objFSO

 End Property

 Public Property Let FSO(objFSO)

 Set mobjFSO = objFSO

 End Property

End Class

The Set syntax inside of the Property Set and Let is optional. Since you are writing directly to the Variant
private property variable, you can use either. This example is the functional equivalent of the previous
example:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Public Property Set FSO(objFSO)

 mobjFSO = objFSO

 End Property

 Public Property Let FSO(objFSO)
 mobjFSO = objFSO

 End Property

End Class

Making a Property Read−Only

You can make a property on a class read−only in one of two ways:

by providing only a Property Get procedure for the property•

Classes vs. Objects vs. Components

188

by declaring the Property Get procedure Public and the Property Let procedure Private•

Here is the first method:

Class Customer

 Private mstrName

 Public Property Get CustomerName()

 CustomerName = mstrName

 End Property

End Class

Notice the absence of a Property Let procedure. Since we have not provided a Property Let procedure, code
outside of the class cannot write to the CustomerName property.

Here is the second method:

Class Customer

 Private mstrName

 Private Property Let CustomerName(strName)

 mstrName = strName

 End Property

 Public Property Get CustomerName()

 CustomerName = mstrName

 End Property

End Class

The Property Get procedure is declared with the Public statement, and the Property Let procedure is declared
with the Private statement. By declaring the Property Let as Private, we have effectively hidden it from code
outside of the class. Code inside of the class can still write to the property through the Property Let procedure,
but in our simple example, this is of limited usefulness. This is because code inside of the class can write
directly to the private property variable, so there is little need for the private Property Let procedure. The
exception to this would be when there is code inside of the Property Let procedure that is performing
validations and/or transformations on the value being placed in the property. If this were the case, then there
might be a benefit in code inside the class using the private Property Let procedure rather than writing directly
to the private property variable.

The first method (providing only a Property Get) is the more typical method of creating a read−only property.

Classes vs. Objects vs. Components

189

Making a Property Write−Only

The two techniques for making a property write−only are the exact reverse of the two techniques for making
a property read−only (see previous section):

you can omit the Property Get procedure and provide only a Property Let procedure•
you can declare the Property Let procedure with the Public statement, and declare the Property Get
with the Private statement

•

Public Properties without Property Procedures

You can provide properties for your class without using Property Let, Set, and Get procedures at all. This is
accomplished through the use of public class−level variables. For example, this:

Class Customer

 Private mstrName

 Public Property Let CustomerName(strName)

 mstrName = strName

 End Property

 Public Property Get CustomerName()

 CustomerName = mstrName

 End Property

End Class

is the functional equivalent of this:

Class Customer

 Public Name

End Class

The second option looks a lot more attractive, doesn't it? It's a lot less code. From a functionality and syntax
standpoint, the second option is perfectly legal. However, many VBScript programmers strongly prefer using
private property variables in combination with Property Let, Set, and Get procedures, as we have discussed in
the previous sections. Other programmers prefer to use public class−level variables instead of Property Let,
Set, and Get procedures. The main advantage to using public class−level variables to create class properties is
that this method takes a lot less code. However, not using Property Let, Set, and Get procedures also has some
serious disadvantages that you should consider:

Unless you want the code that uses your class to use awkward syntax like objCustomer.mstrName =
"ACME Inc.", you cannot use Hungarian scope or subtype prefixes on your class−level variables. If
you agree with the theory that Hungarian prefixes (see Appendix C) add value to your code, this tends
to make the code less readable and understandable.

•

You cannot use the techniques described in previous sections of this chapter for making properties
read−only or write−only.

•

Classes vs. Objects vs. Components

190

Code outside of your class can write to any property at any time. If there are certain circumstances
where it is valid to write to a certain property, and other circumstances where it is invalid to write to a
certain property, the only way you can enforce this is through Property Let procedures that have code
in them to check for these valid and invalid circumstances. You never know when code outside the
class might be changing the values of properties.

•

Without Property Let procedures, you cannot write code to validate or transform the value being
written to a property.

•

Without Property Get procedures, you cannot write code to validate or transform the value being read
from a property.

•

That said, if you can live with the first disadvantage in this list, you certainly can declare your properties as
public class−level variables and change them to use Property Let, Set, and Get procedures later if the need
arises. However, one could make an argument that it's better to do it the "right" way from the start. This is one
of those issues where good programmers will simply have a difference of opinion, but we think you'll find
more programmers who prefer Property Let, Set, and Get procedures over public class−level variables.

Defining Methods

How do you declare methods for your classes and what scope will they have? Read on.

Function and Sub

A method on a class is nothing more than a normal Function or Sub procedure. If you know how to write
Function and Sub procedures (see Chapter 3), then you know how to write methods for a class. There is no
special syntax for methods, as there is for properties. Your primary consideration is whether to declare a
Function or Sub in a class as Public or Private.

Public and Private

Simply put, a class method that is declared with the Public statement will be available to code outside or
inside the class, and a method that is declared with the Private statement will be available only to code inside
the class. Here is a sample class with both public and private methods:

Class Greeting

 Private mstrName

 Public Property Let Name(strName)
 mstrName = strName
 End Property

 Public Sub ShowGreeting(strType)
 MsgBox MakeGreeting(strType) & mstrName & "."
 End Sub

 Private Function MakeGreeting(strType)
 Select Case strType
 Case "Formal"
 MakeGreeting = "Greetings, "
 Case "Informal"
 MakeGreeting = "Hello there, "
 Case "Casual"
 MakeGreeting = "Hey, "
 End Select

Classes vs. Objects vs. Components

191

 End Function

End Class

Code that is outside of this class can call the ShowGreeting method, which is public, but cannot call the
MakeGreeting method, which is private for internal use only. Here is some example code that makes use of
this class:

Dim objGreet
Set objGreet = New Greeting

With objGreet
 .Name = "Dan"
 .ShowGreeting "Informal"
 .ShowGreeting "Formal"
 .ShowGreeting "Casual"
End With
Set objGreet = Nothing

Important Note to Visual Basic programmers: VBScript does not support the Friend statement.

Class Events

Any VBScript class that you write automatically supports two events: Class_Initialize and Class_Terminate.
Implementing these events is optional. The sample classes we have been using so far have not contained code
to implement these events.

The Class_Initialize Event

The Class_Initialize event "fires" in your class when some code instantiates an object that is based on your
class. It will always fire when an object based on your class is instantiated, but whether your class contains
any code to respond to it is up to you. If you do not wish to respond to this event, then you can simply choose
to omit an "event handler" for the event. An event handler is a Sub procedure that is called automatically
whenever the event that it is tied to fires. Here is an example class that contains a Class_Initialize event
handler:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Private Sub Class_Initialize

 Set mobjFSO = WScript.CreateObject("Scripting.FileSystemObject")

 End Sub

 '<rest of the class goes here>

End Class

As in this example, initializing class−level variables is a fairly typical use for a Class_Initialize event handler.
If you have a variable that you want to make sure has a certain value when your class first starts, you can
initialize it in the Class_Initialize event handler. You might also use the Class_Initialize event to do other
preliminary things such as opening a database connection, or opening a file.

Classes vs. Objects vs. Components

192

The syntax for blocking off the beginning and ending of the Class_Initialize event handler must be exactly as
you see it in this example. Your code can do just about whatever you please inside the event handler, but you
do not have the flexibility of giving the procedure a different name. The first line of the handler must be
Private Sub Class_Initialize, and the last line must be End Sub. Really, the event handler is a normal VBScript
Sub procedure, but with a special name. (Technically, the event handler could also be declared with the Public
statement (as opposed to Private), but event handlers are generally private. If you were to make it public, then
code outside of the class could call it like any other method any time it liked.)

There can only be exactly one Class_Initialize event handler in a given class. You can omit it if you don't need
it, but you can't have more than one.

The Class_Terminate Event

The Class_Terminate event is the inverse of the Class_Initialize event (see previous section). Whereas the
Class_Initialize event fires whenever an object based on your class is instantiated, the Class_Terminate event
fires whenever an object based on your class is destroyed. An object can be destroyed in either of two ways:

when some code explicitly sets the object variable equal to the special value Nothing•
when the object variable goes out of scope•

When either of these things occurs, the Class_Terminate event will fire right before the object is actually
destroyed. Here is the example FileHelper class that we saw in the previous section, this time with a
Class_Terminate event handler added:

Class FileHelper

 'Private FileSystemObject object
 Private mobjFSO

 Private Sub Class_Initialize

 Set mobjFSO = WScript.CreateObject("Scripting.FileSystemObject")

 End Sub

 Private Sub Class_Terminate

 Set mobjFSO = Nothing

 End Sub

 '<rest of the class goes here>

End Class

In this example, we are using the Class_Terminate event handler to destroy the object that we instantiated in
the Class_Initialize event. This is not strictly necessary, since when the FileHelper object is destroyed, the
private mobjFSO variable will go out of scope and the script engine will destroy it for us. However, some
programmers prefer to explicitly destroy all objects that they instantiate. You might also use the
Class_Terminate event to close a database connection, close a file, or save some information in the class to a
database or file. The same syntactical restrictions that apply to Class_Initialize event handlers apply to
Class_Terminate event handlers.

Important

Classes vs. Objects vs. Components

193

Note: do not be confused by earlier versions of the Microsoft HTML−based VBScript
documentation that misspelled the names of the Class_Initialize and Class_Terminate events.
Class_Initialize and Class_Terminate are the correct spellings. The VBScript documentation on
the Microsoft site (http://msdn.microsoft.com/scripting) appears to now be corrected.

Regarding Class−Level Constants and Arrays

VBScript Version 5 (as well as the forthcoming Version 5.1) has two "behaviors" that may throw you for a
loop. The first is that any constants declared at the class level are ignored by the VBScript engine. The engine
does not produce a compile or runtime error − it simply ignores the value of the constant. It is unclear if this is
a bug or a designed behavior. Here is an example:

Option Explicit

Dim objTest

Set objTest = new ConstTest
objTest.SayHello
Set objTest = Nothing

Class ConstTest

 Private Const TEST_CONST = "Hello there."

 Public Sub SayHello
 MsgBox TEST_CONST
 End Sub

End Class

Running this code with the Windows Script Host will not produce an error, but the message box that the
SayHello method displays will be empty. You can work around this "behavior" with the following trick:

Option Explicit

Dim objTest

set objTest = new ConstTest
objTest.SayHello

Class ConstTest

 Private TEST_CONST

 Private Sub Class_Initialize
 TEST_CONST = "Hello there."
 End Sub
 Public Sub SayHello
 MsgBox TEST_CONST
 End Sub

End Class

This work−around creates a pseudo−constant. Instead of declaring TEST_CONST with the Const statement,
we declare it as a normal, private class−level variable. Then in the Class_Initialize event handler, we give the
TEST_CONST variable the "constant" value that we want. There is a danger in this, however, because code
inside your class can still change the value of the TEST_CONST variable, but using the all−caps naming

Classes vs. Objects vs. Components

194

convention might help prevent this from happening (most programmers are accustomed to equating all−caps
with a constant). You'll just have to make sure the code inside the class behaves itself.

Class−level arrays are also ignored by the VBScript engine. The variables themselves are not ignored, but the
fact that you have declared them as arrays is. This occurs with variables declared as fixed or dynamic arrays.
Take a look at this code:

Option Explicit

Dim objTest
Set objTest = New ArrayTest
objTest.ShowGreeting 1

Class ArrayTest

 Private mastrGreetings(3)

 Private Sub Class_Initialize

 'Populate the greetings
 mastrGreetings(0) = "Hello"
 mastrGreetings(1) = "Hey"
 mastrGreetings(2) = "Yo"
 mastrGreetings(3) = "What's up?"

 End Sub

 Public Sub ShowGreeting(intGreetingID)

 MsgBox mastrGreetings(intGreetingID)

 End Sub

End Class

Attempting to run this code will produce the runtime error Type mismatch: 'mastrGreetings' on the line
mastrGreetings(0) = "Hello" in the Class_Initialize subprocedure. The type mismatch occurs because the
VBScript engine fails to recognize that you have declared the variable mastrGreetings as an array. This is a
pretty serious limitation. There is a way to get around it, however:

Option Explicit

Dim objTest
Set objTest = New ArrayTest
objTest.ShowGreeting 1

Class ArrayTest

 Private mastrGreetings

 Private Sub Class_Initialize

 'Make the variable an array
 ReDim mastrGreetings(3)

 'Populate the greetings
 mastrGreetings(0) = "Hello"

Classes vs. Objects vs. Components

195

 mastrGreetings(1) = "Hey"
 mastrGreetings(2) = "Yo"
 mastrGreetings(3) = "What's up?"

 End Sub

 Public Sub ShowGreeting(intGreetingID)

 MsgBox mastrGreetings(intGreetingID)

 End Sub

End Class

This code works as expected. In this workaround, we do not declare mastrGreetings as an array variable. We
just declare it as a normal variable. Then, in the Class_Initialize event handler procedure, we use the ReDim
statement to turn the variable into an array. Once again, not ideal, but it works.

Note that local constants and arrays (that is, those declared inside of class methods or property procedures)
work fine. It's only class−level arrays and constants that will cause these problems for you. If you are using a
version of VBScript higher than 5.1 (5.0 was the highest version available at the time of writing), you might
try and see if this behavior has changed.

Building and Using a Sample VBScript Class

In this section will we will develop a VBScript class called FolderSummary. The purpose of this class will be
to summarize the contents of any folder (a.k.a. "directory") on your system. The class will make use of the
Scripting Runtime FileSystemObject (and some of its related objects) which we covered in detail in Chapter
7. You will need to feed the class a FileSystemObject and a folder name, and the Summarize method of the
class will provide some statistics for that folder: how many files there are, the date of the oldest and newest
files, whether there are any hidden files, etc. The real−world usefulness of this class is debatable, but it should
give us a context in which to illustrate the thought process and syntax of building a VBScript class.

Let's start out by defining the skeleton for our class. (Keep in mind that we will be operating under the
assumption that this class and the example code that uses it are all in the same .VBS script file. We will be
using the Windows Script Host for our example, but you should be able to adapt this to other hosts quite
easily.)

Class FolderSummary

 <rest of the class code will go here>

End Class

This is the basic block structure for a VBScript class. All of the code in our class will go between the Class
and End Class statements. You need to give your class a name after the Class statement. The name of our
class is FolderSummary. It's a good idea to pick a name that is not the same as any of the built−in VBScript
classes, or the classes provided by any of the common scripting hosts, such as the Scripting Runtime, the
Windows Script Host, Active Server Pages, or Active Data Objects. Note also that there is an alternative
naming convention that some programmers like to use. It involves placing the letter C in front of the class
name, like so:

Class CFolderSummary

Classes vs. Objects vs. Components

196

 <rest of the class code will go here>

End Class

Another common convention is the cls prefix, which is closer to the three−letter Hungarian prefixes that this
book advocates in Appendix C.

Giving a class name a prefix is optional, and we will not be using the class name prefix convention in this
chapter.

Let's define the first property for our class:

Class FolderSummary

 'Private property variables
 Private mstrFolderPath

 Public Property Let FolderPath(strFolderPath)
 mstrFolderPath = strFolderPath
 End Property

 Public Property Get FolderPath
 FolderPath = mstrFolderPath
 End Property

End Class

We have added a property called FolderPath to our class. There are two elements that make this property
work.

The first element is the private variable called mstrFolderPath. Because we used the Private statement to
define this variable, it will be available to all of the code within the class, but no code outside of the class will
be able to read from or write to this variable directly. (Another way to say this would be to say that the
variable has "private class−level scope".) In order to achieve private class−level scope for this variable, we
must use the Private statement to declare it. Class−level variables declared with the Dim statement will have
public scope, meaning the all of the code in the script will be able to access the variable directly.

The second element of the property are the Property Let and Property Get procedures. These procedures are
how we give outside code access to our private property variable mstrFolderPath. The key here is that, by
using a private property variable and Property Let and Property Get procedures, we control access to the
property variable. If we want to put extra code in the Property Let and Get procedures, we can. For example,
we might want to put some code in the Property Let procedure to make sure that a valid value is being sent to
the property. Also, we can choose to omit either the Property Let or Property Get procedure. (In a minute we'll
see how we can selectively use the Property Let and Get procedures to make a property either write−only or
read−only.)

The Property Let and Get procedures act as a gatekeeper between outside code and the actual property
variable. When outside code passes a folder pathname to our Property Let procedure, the value is stored in the
private class−level variable mstrFolderPath. Then, when outside code wants to read this property, the Property
Get procedure passes the value back out.

Important There is an alternative to using Property Let and Get procedures to allow outside code to have
access to our class property. That alternative is to use public variables. If a class−level variable is
public, then code that is using our class can access that variable as a property. However, we then

Classes vs. Objects vs. Components

197

give up the control over how, what, and when outside code can read from or write to our
property. Using Property Let and Get procedures is generally preferable, but here is an example
of this alternate syntax:

Class FolderSummary

'Using a public variable for our property.
'It is preferable to make this Private and
'use Property Let and Get procedures instead.
Public FolderPath

End Class

Let's add another property to our class.

Class FolderSummary

 'Private property variables
 Private mstrFolderPath
 Private mobjFSO
 Public Property Let FolderPath(strFolderPath)
 mstrFolderPath = strFolderPath
 End Property

 Public Property Get FolderPath
 FolderPath = mstrFolderPath
 End Property

 Private Sub Class_Initialize

 'This forces the subtype of this variable
 'To be "Object".
 Set objFSO = Nothing

 End Sub

 Public Property Set FSO(objFSO)

 If objFSO Is Nothing Then
 Err.Raise 32000, "FolderSummary", _
 "The objFSO parameter of the FileSystemObject class " & _
 "may not be Nothing."
 End If
 If TypeName(objFSO) <> "FileSystemObject" Then
 Err.Raise 32000, "FolderSummary", _
 "The objFSO parameter of the FileSystemObject class " & _
 "may not be Nothing."
 End If

 Set mobjFSO = objFSO

 End Property

End Class

We still have our FolderPath property, but now we've added another property called FSO, which is short for
FileSystemObject. This is the object we're going to use to access the folder specified by the FolderPath

Classes vs. Objects vs. Components

198

property. We implemented this new property a little bit differently than the FolderPath property, however. The
first difference is that we used a Property Set procedure instead of a Property Let procedure. This is because
this property holds an object variable, and whenever you have an object−based property, you should (in
general − see the "Property Set" section earlier in this chapter) use Property Set instead of Property Let. The
second difference is that we did not include a Property Get procedure. We did this so that the property would
be write−only. Since the code that uses this class will be providing the FileSystemObject for us, there's
probably not a reason for that code to need to read this property back, so we make it write−only. It becomes
write−only by virtue of the fact that there is no Property Get procedure.

The third difference is that we've put some extra code in the Property Set procedure. This type of validation
code is very common in Property Let and Set procedures. The purpose of the validation code is to allow the
rest of the class to operate under the assumption that the properties are valid. As you'll see later, though, we're
still going to need to test the properties again in the Summarize method. This is because we can't guarantee
that the outside code is going to set the properties before it calls the Summarize method.

Basically what we're doing is enforcing proper use of the class and attempting to provide the outside code
with helpful error messages when they deviate from this proper use. You'll see more of this as we continue to
build the class. (If you are not familiar with the Err.Raise code that we're using, you might want to review
Chapter 4 and Appendix E.)

Finally, notice that we added a Class_Initialize event handler to the class. The purpose of the code in this
procedure is to coerce the subtype of the objFSO variable to be object. We do this so that we can legitimately
use the Is Nothing check later, in the Property Set FSO procedure. Trying to use the Is Nothing test on a
non−object variable will cause a runtime error.

Now let's add the rest of the properties that we'll need for the results of the Summarize method:

Class FolderSummary

 'Private property variables
 Private mstrFolderPath
 Private mobjFSO
 Private mlngFileCount
 Private mlngSubFolderCount
 Private mboolHasHiddenFiles
 Private mdatOldestFile
 Private mdatNewestFile

 Public Property Let FolderPath(strFolderPath)
 mstrFolderPath = strFolderPath
 End Property
 Public Property Get FolderPath
 FolderPath = mstrFolderPath
 End Property

 Public Property Set FSO(objFSO)
 If objFSO Is Nothing Then
 Err.Raise 32000, "FolderSummary", _
 "The objFSO parameter of the FileSystemObject class " & _
 "may not be Nothing."
 End If
 If TypeName(objFSO) <> "FileSystemObject" Then
 Err.Raise 32000, "FolderSummary", _
 "The objFSO parameter of the FileSystemObject class " & _
 "may not be Nothing."
 End If

Classes vs. Objects vs. Components

199

 Set mobjFSO = objFSO

 End Property

 Public Property Get FileCount
 FileCount = mlngFileCount
 End Property
 Public Property Get SubFolderCount
 SubFolderCount = mlngSubFolderCount
 End Property
 Public Property Get HasHiddenFiles
 HasHiddenFiles = mboolHasHiddenFiles
 End Property
 Public Property Get OldestFileDate
 OldestFileDate = mdatOldestFile
 End Property
 Public Property Get NewestFileDate
 NewestFileDate = mdatNewestFile
 End Property

End Class

We added five new properties, which represent statistics for this folder that we're going to gather with the
Summarize method: FileCount, SubFolderCount, HasHiddenFiles, OldestFileDate, and NewestFileDate. Each
of these properties has a corresponding private property variable, just like our other properties. This time,
however, we only added Property Get procedures for these properties. This makes the properties read−only.
There is no reason to provide Property Let procedures for these properties since the Summarize method
populates them internally.

Now let's tie it all together with the Summarize method (For the sake of brevity, the code below only includes
the Summarize method. If we were to show the whole class, this code would go right after the property
procedures, but before the End Class statement − although technically it could go anywhere in the class after
the variable declarations section.):

Public Sub Summarize

 Const ERR_INVALID_PATH = 76
 Const ATTR_HIDDEN = 2

 Dim objFolder
 Dim objFiles
 Dim objFileLoop

 If mobjFSO Is Nothing Then
 Err.Raise 32001, "FolderSummary.Summarize", _
 "You cannot call the Summarize method without first " & _
 "setting the FSO property to a valid FileSystemObject."
 End If
 If Len(Trim(mstrFolderPath)) = 0 Then
 Err.Raise 32002, "FolderSummary.Summarize", _
 "You cannot call the Summarize method without first " & _
 "setting the FolderPath property to a valid path."
 End If

 On Error Resume Next
 Set objFolder = mobjFSO.GetFolder(mstrFolderPath)
 If Err.Number = ERR_INVALID_PATH Then
 Err.Raise 32003, "FolderSummary.Summarize", _

Classes vs. Objects vs. Components

200

 "The '" & mstrFolderPath & "' path does not appear to be " & _
 "valid. The Summarize method failed."
 ElseIf Err.Number <> 0 Then
 Err.Raise 32004, "FolderSummary.Summarize", _
 "There was an error accessing the folder '" & mstrFolderPath & _
 "': " & Err.Number & " − " & Err.Description & vbNewLine & _
 vbNewLine & "The Summarize method failed."
 Else
 On Error GoTo 0
 End If

 'Now that we know that all is well with the Folder, let's summarize.

 'Initialize the stats
 mlngFileCount = 0
 mlngSubFolderCount = 0
 mboolHasHiddenFiles = False
 mdatOldestFile = #12/31/2999#
 mdatNewestFile = #01/01/1900#

 'First get the file and subfolders counts
 mlngFileCount = objFolder.Files.Count
 mlngSubFolderCount = objFolder.SubFolders.Count

 'Next process the files
 Set objFiles = objFolder.Files
 For Each objFileLoop In objFiles
 With objFileLoop
 If .DateCreated < mdatOldestFile Then
 mdatOldestFile = .DateCreated
 End If
 If .DateCreated > mdatNewestFile Then
 mdatNewestFile = .DateCreated
 End If
 If .Attributes And ATTR_HIDDEN Then
 mboolHasHiddenFiles = True
 End If
 End With
 Next
 Set objFileLoop = Nothing
 Set objFiles = Nothing
 Set objFolder = Nothing

 End Sub

As you can see, a method is nothing more than a normal procedure. The procedure can be either a Function or
a Sub. As long as the procedure is declared with the Public statement, it becomes a method that is available to
outside code. (You can also declare procedures within a class with the Private statement, which means that
outside code will not be able to call the procedure.) We won't go into describing all of the code within in this
method, but here are a couple things to take note of:

At the beginning of the procedure, we do some checking to make sure that it's valid for someone to be
calling the Summarize method. In order for the Summarize method to work, we need two things: a
FileSystemObject object and a valid folder path. So before we get into the meat of the procedure, we
test these two things. It's not absolutely required for us to do this, but it's a good idea because it
provides the calling code with useful error messages in case the class is being used improperly.

•

Throughout the procedure, we read from and write directly to the private property variables. Since we
are inside the class, we can do this. Code inside the class is not required to use the Property Let, Set,

•

Classes vs. Objects vs. Components

201

and Get procedures. However, it is perfectly valid to do so, but usually unnecessary. One exception to
this is when the Property Let, Set, or Get procedure is doing something to validate or transform the
value of the property. In this case, it might be advantageous to use the property procedures so that this
validation/transformation code would get executed. To access the property procedures from within the
class, you can either call them directly, just like any other procedure, or use the Me keyword in front
of the procedure name, as in Me.FSO or Me.FileCount. Using the Me keyword within a class refers to
the object itself.

More facts about the Me keyword:

It can be used to pass the current object itself to another procedure as a parameter. For example, if we
were to develop another class that required a FolderSummary class as a property, we could have code
like this within the class: Set objWhatever.FoldSumm = Me.

•

It can also be used in regular (non−class) VBScript code to refer to the currently running script.•

Now that we've built our class, how about some code to make use of it:

Option Explicit

Dim objFSO
Dim objFoldSumm
Dim strSummary

Set objFoldSumm = New FolderSummary
Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")
Set objFoldSumm.FSO = objFSO
Set objFSO = Nothing

With objFoldSumm
 .FolderPath = "C:\bin"
 .Summarize

 strSummary = "Summary for " & .FolderPath & ":" & vbNewLine & vbNewLine
 strSummary = strSummary & "Number of Files: " & .FileCount & vbNewLine
 strSummary = strSummary & "Number of SubFolders: " & _
 .SubFolderCount & vbNewLine
 strSummary = strSummary & "Has Hidden Files: " & .HasHiddenFiles & _
 vbNewLine
 strSummary = strSummary & "Oldest File Date: " & .OldestFileDate & _
 vbNewLine
 strSummary = strSummary & "Newest File Date: " & .NewestFileDate & _
 vbNewLine
End With
Set objFoldSumm = Nothing

MsgBox strSummary

Running this code produces a dialog box similar to this:

Classes vs. Objects vs. Components

202

Important Design Note:

The design decisions for the FolderSummary class were made primarily to illustrate the elements
of the creating a VBScript class. One could easily make an argument for alternative design
strategies.

For example, instead of making the FolderPath and FSO properties, we could have made them
parameters of the Summarize method instead. We implemented them as properties in order to
demonstrate the Property Let, Set, and Get techniques and syntax.

Also, there is no real reason to ask the outside code to provide a FileSystemObject for us. The
Summarize method could just as easily create one for itself. We implemented it the way we did
so that we could illustrate object−based properties and the Property Set statement.

Also, the code that generates the summary message to display the folder summary in a message
box would have been better implemented as a method of the class, but we wanted to demonstrate
how to read properties from outside the class.

Finally, if you were going to implement this class over the web, through Distributed COM, or in
Microsoft Transaction Server (in which case you would also want to convert the class to the
"stateless" paradigm), you might decide to return the statistics as elements of an array, which
would greatly reduce the number of times the outside code would need to access the class,
thereby trading some ease of use for an increase in performance. When designing a class, there
are usually multiple ways of formulating the design, and you have to consider the benefits and
tradeoffs of designing it one way or another.

Summary

In this chapter we explained how to develop classes in native VBScript. We covered the use of

the Class statement•
Property Let, Set, and Get procedures•
the Class_Initialize and Class_Terminate events•
and class methods•

We also developed a working sample class called FolderSummary, which makes use of all the VBScript class
features we discussed.

Classes vs. Objects vs. Components

203

Chapter 9: Windows Script Components
In this chapter, we'll be looking at Windows Script Components. We'll examine their structure and see how to
create and register them. Later in the chapter, we'll see how we can use classes in our components. Our first
job is to see just what Windows Script Components are.

What Are Windows Script Components?

Windows Script Components are interpreted COM components. Structurally, they're XML−based files that
contain script code. Within them, you can use VBScript, JScript, Python, PERLScript, or any other scripting
language. We will focus on using VBScript in this chapter (for obvious reasons), but you can actually use the
script language of your choice.

The script components are interpreted by the Script Component Runtime which exposes the internal
properties and methods, fires the events, and makes the component look like a compiled COM component to
the calling application. We will look at the Script Component Runtime in more detail in the next section.

Script components are full COM components, and have the ability to call other COM components. Script
components have some built−in interfaces into the Active Server Pages library and Internet Explorer DHTML
behaviors that make it very easy to build these components for the Web.

Important Script components are not designed for use as early bound objects. If you reference a script
component as an early bound component then your application will generate a runtime error.
This is a common issue with using script components − so keep them late bound and you will
have fewer problems with implementing them.

So, why would you want to use these when you could use Visual Basic to build a standard COM component
instead? Well, Windows Script Components don't require a compiler. Basically all you need to build script
components is Notepad. Script components are also an easy way to encapsulate some of the functions and
routines that you write in VBScript − this gives you a way to create a library of your source code. Finally, the
ASP interfaces allow you to directly access the Active Server Pages library for quick and easy integration
with your Internet or intranet sites.

If you're not familiar with ASP, don't worry − Chapter 14 is an introduction to that subject.

What Tools Do You Need?

You can create Windows Script Components with nothing more than Notepad and your imagination, but you
may find that it's a bit tedious to do it by hand. Microsoft provides the Script Component Wizard (which you
can find at http://msdn.microsoft.com/scripting/scriptlets/wz10en.exe) to help speed up the creation of the
script component framework. You need to have the VBScript 5.0 libraries on your machine to run script
components properly. Script components use the Windows Script Host when they run, so you'll also need that.
Luckily, it comes with the scripting libraries.

Here's a list of items that you must have to create script components.

VBScript 5.0 libraries (http://msdn.microsoft.com/scripting/vbscript/download/x86/sce10en.exe)•
Internet Explorer 5.0 (http://www.microsoft.com/ie)•

204

The next items are optional but will make the process of creating script components much easier:

The Script Component Wizard (http://msdn.microsoft.com/scripting/scriptlets/wz10en.exe)•
A copy of the Script Component documentation
(http://msdn.microsoft.com/scripting/scriptlets/serverdocs.htm)

•

The Script Component Runtime

The Script Component Runtime (scrobj.dll) is the interpreter used to marshal calls between clients and script
components. The runtime implements the basic COM interfaces for the component (IUnknown) and handles
some of the basic COM methods (QueryInterface, AddRef) in the same way that the Visual Basic runtime
handles the low−level COM routines of Visual Basic components.

Since we are running though an interpreter, our script components will look different from other COM
components in the registry. Let's examine this in a bit more detail.

We will assume that our object is called "Math.WSC" and that we are calling this object through script:

Set objMath = CreateObject("Math.WSC")

The first thing that happens is that the registry will be searched for the Math.WSC entry under
HKEY_CLASSES_ROOT:

If we look up the GUID (Globally Unique IDentifier) under HKEY_CLASSES_ROOT\CLSID then it brings
us to our information for our COM component. Notice that the InprocServer32 key is actually scrobj.dll, not
the script component file itself. We are actually creating the scrobj.dll component when we call our
CreateObject statement.

The scrobj.dll file knows to look at the ScriptletURL key for the location of our component. It now knows that
we need to look at that path for the actual object for the method calls.

 The Script Component Runtime

205

Notice that the key is named ScriptletURL. This implies that these can be called over the Internet. Don't get
too excited about this just yet, because we don't cover this little tidbit of information until later in the chapter.
There is a bit more to know about script components first.

Script Component Files

Now let's see how to create script components. You can build script files by hand, but Microsoft ships a free
wizard for building a script component file. What this essentially does is to build the XML framework that
defines your component. There's nothing at all to stop you creating this yourself if you know how it's done. Of
course, the best way to find out how it's done is to use the wizard first, so let's do that.

The Script Component Wizard

We invoke the wizard from the Start > Programs > Microsoft Windows Script > Windows Script Component
Wizard shortcut. First we will tell the wizard the name of the component along with the ProgID of the
component. One thing to note is that script components use a special ProgID that defines the component. By
default, the ProgID of the component will be componentname.WSC. This can be changed in this step or after
the component file has been created. Script components can also maintain version information just like any
other COM component, as you can see in the Version field.

Note that the Location in this dialog is simply the location of the source files that the wizard produces. The
location of the source files will not be important to Windows until you register the component.

Once you are satisfied with the settings, select the Next button to go to the second step of the wizard.

 Script Component Files

206

Windows Script Components can use VBScript or JScript natively, but other scripting platforms such as
Python and PERL can be used as well if the proper interpreter is installed on the computer. There are two
options under the implements section that need a little extra background information: DHTML behaviors and
Active Server Pages.

DHTML behaviors are simple, lightweight components that interface with some of the DHTML objects and
events of Internet Explorer. DHTML components are beyond the scope of this chapter, but for more
information you can refer to the Microsoft Scripting site and the MSDN Web Workshop
(http://msdn.microsoft.com/workshop).

Active Server Pages support will be covered in more detail in this chapter, and ASP itself will be covered in
Chapter 14. Basically, ASP support allows a script component to gain direct access to the ASP object model.
The ASP object model exposes the vast ASP Request, Response, Application, Session, and Server objects.

Finally, error checking and debugging can be selected as options. If you select debugging, you'll be allowed to
use the script debugger. The script debugger can be found at
http://msdn.microsoft.com/scripting/debugger/dbdown.htm, and it's one of the only ways to debug a script
component. It gives you the ability to check variables and view data, in a similar way to the Visual Basic
debugging tools.

When you have selected the options that you want, select the Next button to move to step 3 of the wizard.

This screen allows you to define the properties of your object. You are able to define the name, type, and
default values for the component. The Type setting is not the data type, but the property type, which can be
one of the following:

 Script Component Files

207

Read/Write•
Read−Only•
Write−Only•

The Default entry allows you to specify a default value for the property. The code listing below shows a
read/write property with a default value of 5:

Dim ReadWriteProperty
ReadWriteProperty = 5

Note that this is how the wizard declares a variable that will be accessed by a property. This should be
changed to read:

Private ReadWriteProperty
ReadWriteProperty = 5

This will make sure that the variable is private to the script component. Otherwise the variable will be public,
as will the property that is accessing it.

Press the Next button to proceed to the next step in the wizard.

The fourth step of the wizard brings us to the methods of our component. You can specify the name of the
method as well as the parameters list. When adding parameters, be sure to separate them with a comma, so
that the parameter list looks like the following:

param1, param2, param3, ...

Again, remember that VBScript uses only variants, so you don't need to specify a type. Actually, if you try to
specify a type you'll get an error. For similar reasons, you can't specify a return type. The use of variant data
types does reduce overall performance somewhat because variants are the largest data type that can be used,
and are designed to represent any other data type, so each time a variant is called the application must decide
what format the variable should be in. But there's nothing we can do about that.

We will add a few methods here for our Math component. The Script Component Wizard will generate all
methods as functions, but you can manually change these to subprocedures later if you don't need return
values.

 Script Component Files

208

The fifth step of the wizard allows us to specify the events for our component. This is one of the most exciting
areas of script components. We will see a little more on events in script components later in this section. Our
Math component won't actually use events as such.

If you do want to have any events in your objects, enter one event name per line. Once you are satisfied with
the layout of the events, press the Next button to move to the final step of the wizard.

Important The current version of the Script Component Wizard has a bug that ignores any entries in this
section. You will need to add events in manually once the component has been created. We will
go into more detail later in this chapter.

The final step of the wizard gives us some information about our component and some of the settings that we
have selected. If you find any errors or omissions at this point then you can press the Back button to return to
the previous steps and make the necessary changes.

Once we click Finish, the wizard will create a skeleton component like that in the code sample below:

<?xml version="1.0"?>
<component>

<registration
 description="Math"
 progid="Math.WSC"
 version="1.00"
 classid="{87ea3720−7ca8−11d3−8ecc−00104bdc2e9c}"
>

 Script Component Files

209

</registration>
<public>
 <property name="ReadOnlyProperty">
 <get/>
 </property>
 <property name="WriteOnlyProperty">
 <put/>
 </property>
 <property name="ReadWriteProperty">
 <get/>
 <put/>
 </property>
 <method name="Add">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
 <method name="Subtract">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
 <method name="Multiply">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
 <method name="Divide">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

dim ReadOnlyProperty
dim WriteOnlyProperty
dim ReadWriteProperty

function get_ReadOnlyProperty()
 get_ReadOnlyProperty = ReadOnlyProperty
end function

function put_WriteOnlyProperty(newValue)
 WriteOnlyProperty = newValue
end function

function get_ReadWriteProperty()
 get_ReadWriteProperty = ReadWriteProperty
end function

function put_ReadWriteProperty(newValue)
 ReadWriteProperty = newValue
end function

function Add(X, Y)
 Add = "Temporary Value"
end function

function Subtract(X, Y)
 Subtract = "Temporary Value"
end function
function Multiply(X, Y)

 Script Component Files

210

 Multiply = "Temporary Value"
end function

function Divide(X, Y)
 Divide = "Temporary Value"
end function

]]>
</script>

</component>

Great! You have now created a Windows Script COM Component. Now let's take a look at it in a little more
detail.

Exposing Properties, Methods, and Events

The next thing to do is to actually define the properties, methods, and events that your component needs to
contain.

Properties

Properties within script components can be read/write, read−only, or write−only. They are implemented
within the script file using <property></property> tags. Within these tags you set the get and put options for
the property. Gets are used for reading the values and puts are for writing to the properties. The code sample
below lists the structure that's created to first 'declare' the three types of properties:

<property name="PropReadOnly">
 <get/>
</property>
<property name="PropReadWrite">
 <get/>
 <put/>
</property>
<property name="PropWriteOnly">
 <put/>
</property>

The properties are then actually defined within script code later in the script file:

<script language="VBScript">
<![CDATA[

Private PropReadOnly
Private PropReadWrite
Private PropWriteOnly

Function get_PropReadOnly()
 get_PropReadOnly = PropReadOnly
End Function

Function get_PropReadWrite()
 get_PropReadWrite = PropReadWrite
End Function

Function put_PropReadWrite(newValue)
 PropReadWrite = newValue

 Exposing Properties, Methods, and Events

211

End Function

Function put_PropWriteOnly(newValue)
 PropWriteOnly = newValue
End Function

]]>
</script>

You can script any additional logic within the get and put functions of the properties. For this example, we
haven't included any real properties. Later on, when we look at classes, we'll actually see an example that does
use properties.

Remember that script components can implement other COM objects, so you can create an ADO component,
access LDAP and Exchange, or even call Excel and Word. The sky is the limit with script components!

Methods

Methods in script components are defined in <method></method> tags in the object definition section of the
script file. Parameters for a method use a <parameter> definition for the values, as you can see in the
following code sample:

<public>
 <method name="mNoParameters">
 </method>
 <method name="mWithParameters">
 <PARAMETER name="var1"/>
 <PARAMETER name="var2"/>
 </method>
</public>

The <parameter> tag simply defines the name of the input parameters. Remember that everything from the
Script Component Wizard is a function by default within the script components and no return type is specified
since all variables are of the variant data type. We can also use subprocedures as our methods in place of
functions.

The actual method code is within the script tags of the script component:

<script language="VBScript">
<![CDATA[

Function mNoParameters()
 mNoParameters = "Temporary Value"
End Function

Function mWithParameters(var1, var2)
 mWithParameters = "Temporary Value"
End Function

]]>
</script>

Note that all methods that are created though the Windows Script Component Wizard return the value
"Temporary Value". You will probably want to change this (unless you really need a function that returns
"Temporary Value"...). You will also want to declare any temporary variables before the function definitions.

Exposing Properties, Methods, and Events

212

While we're here, let's add our real methods to our Math component.

<script language="VBScript">
<![CDATA[

function Add(X,Y)
 Add = X + Y
end function

function Subtract(X,Y)
 Subtract = X − Y
end function

function Multiply(X,Y)
 Multiply = X * Y
end function

function Divide(X,Y)
 Divide = X / Y
end function

]]>
</script>

Something that is not documented in the WSC documentation (because it's specific to the scripting language
you use) is that you can use the byval (by value) and byref (by reference) keywords within the parameter
declaration of the method. By default in VBScript all values are passed byref, so any changes to the variables
in the method will change the underlying value in the calling function.

Just by the way, JScript variables are all passed byval since JScript cannot pass a variable
byref.

Events

Events are defined within <event></event> tags within the object definition of the script file. There is a bug
in the current Windows Script Component Wizard which means that it does not create the events you specify.
All event declarations must be created manually within a script file.

<public>
 <method name="mNoParameters">
 </method>
 <event name="MethodCalled">
 </event>
</public>

The event is actually fired through the FireEvent() method. FireEvent() is called within the script of the script
component. The event itself should be described here as well, using the form ComponentName_EventName:

<script language="VBScript">
<![CDATA[

function mNoParameters()
 FireEvent("MethodCalled")
 mNoParameters = "Temporary Value"
end function

sub MyComponent_MethodCalled()

Exposing Properties, Methods, and Events

213

 'some event handling code
end sub

]]>
</script>

Script components can also handle events using an <implements> tag within the script definition. The syntax
for capturing events in a script component is defined as:

<implements type="COMHandlerName" [id="internalName"] [default=fAssumed]>
 handler−specific information here
</implements>

The COMHandlerName is the name of the handler (ASP or behavior) or the COM object that is being
handled. InternalName is an optional parameter that allows you to define a variable name for the COM
handler. The fAssumed property is a Boolean flag (default = True) that indicates InternalName is assumed in
scripts. You would set this to False to hide some members in the <implements> tag.

There are two built−in COM handlers: ASP and behaviors. We will look at the ASP COM handler later in this
section.

Creating Registration Information

In order to register a Windows Script Component you need to have the Script Component Runtime
(scrobj.dll) on your machine and have it properly registered. This file is automatically registered when you
download and install the VBScript or JScript libraries.

Once you have the scripting runtime and a valid script component (.wsc) file then you can register the
component. There are three methods available for properly registering a WSC file.

The easiest way to register and unregister a script component is to right−click the component file in Windows
Explorer and select Register or Unregister from the popup menu.

In the event that you need to manually register and unregister a file you can still use the old standby of
regsvr32.exe. If you are using an old version of regsvr32 that comes with Windows or Visual Studio then you
can use the command:

regsvr32 scrobj.dll /n /i:Path/component_name.wsc

 Creating Registration Information

214

New versions of regsvr32 that ship with the script component packages can directly register the script
component file:

regsvr32 path/component_name.wsc

You can also add a registration entry into the script component that defines the registration behavior. You can
add the <registration> tag to the component as defined below:

<registration progid="progID" classid="GUID" description="description"
 version="version" [remotable=remoteFlag]>
<script>
 (registration and unregistration script)
</script>
</registration>

Within the <script> tags you can add a Register() and Unregister() event that is fired whenever the component
is registered or unregistered on the system. The progID attribute is optional, but you must have data for either
the classid or progID in order for the component to register. If you leave either classid or progID out then it
will be automatically generated when the component is registered.

All of these methods will properly register a script component file on your system. This is nice, but does not
address the need for remote components. More and more components are moving toward an n−tier
architecture where a component resides on a middle tier server so all applications can access the component.
Microsoft is really practicing what they preach when it comes to the DNA (Distributed interNet Application)
initiative and distributed components because Windows Script Components can be registered remotely. Yes,
you may want to read that last line again − Windows Script Components can be registered remotely.

In order to make the components DCOM−ready, you need to follow these steps:

Determine the progid and clsid of the component. Local components do not need an entry for a clsid
in the object definition section of the script file. The absence of a clsid line tells the component to
create a clsid entry at registration time.

1.

On each local machine that needs to access the component, add an entry into the registry under
HKEY_CLASSES_ROOT\componentProgID. ComponentProgID is the ProgID of the script
component.

2.

Under this entry, create a CLSID key and set the value to the CLSID of the script component.3.
Set remotable=true in the <registration> tags of the component.4.

You can make this process easier by registering the component on the server and exporting the registry key
information through regedit. You can then copy the .reg file that was created from regedit to each machine
that needs the component. Once the file has been copied to the local machine, double−click the .reg file to
merge the data into the registry.

You now have a DCOM−ready script component that can be used throughout the enterprise.

Let's quickly test the component with a short test script. Save the following code as a file called testmath.vbs
and then run it after you've registered your Math component:

dim obj

set obj = wscript.createobject("math.wsc")

msgbox obj.add(2, 7)

 Creating Registration Information

215

set obj = nothing

Creating the Script Component Type Library

Script components can have type libraries generated just as other COM components would. A type library is
used in some environments (such as Visual Basic) for enabling events or for enabling the use of IntelliSense
by programs such as Visual InterDev. Type libraries contain the descriptions of the COM components. They
also help with early binding of objects or using tools such as OLE2VIEW to view the declarations and
constants in a component.

To generate a type library for a script component, simply right−click on the script component file and select
the Generate Type Library option from the popup menu.

That's all there is to generating a type library for a component. Don't you wish everything was this easy?

There is one other way to generate a type library within a script component. Script components can
automatically generate a type library when the Register method is called. When this method is called, the
component uses the information that is set up within <registration> tags. As we saw above, the syntax of the
<registration> tag is as follows:

<registration progid="progID" classid="GUID" description="description"
 version="version" [remotable=remoteFlag]>
 <script>
 (registration and unregistration script)
 </script>
</registration>

Both the progID and classid items are optional, but one of the two must be specified for the tags to be valid.
The progID is the component name and the classid entry is for the GUID of the component. If the classid
entry is left blank, then a GUID will be assigned to the component at registration time. Description and

 Creating the Script Component Type Library

216

version are optional as well. If we used a registration entry with our Math component above, then we would
add the following <registration> tags:

<registration
 description="My Math Component"
 progid="Math.WSC"
 version="1.0"
 classid="{2154c700−9253−11d1−a3ac−0aa0044eb5f}">
 <script language="VBScript">
 <![CDATA[
 Function Register()
 Set oComponent = CreateObject("Scriptlet.GenerateTypeLib")
 oComponent.AddURL "d:\components\Math.wsc"

AddURL allows us to add other component files into the type library. If we used or exposed other components
then we would want to add them into one type library rather than tracking multiple files.

 oComponent.Path = "d:\components\Math.tlb"

We add the path that we plan on writing the component to. If we leave this blank then we will write the type
library to the current location of the script component.

 oComponent.Doc = "Math component typelib" ' Documentation string.
 oComponent.GUID = "{a1e1e3e0−a252−11d1−9fa1−00a0c90fffc0}"
 oComponent.Name = "MathComponent" ' Internal name for tlb.
 oComponent.MajorVersion = 1
 oComponent.MinorVersion = 0
 oComponent.Write

Here we are writing the type library to the disk.

 oComponent.Reset
 End Function
]]>
 </script>
</registration>

If we were planning on using this component through DCOM, then we would add the line:

 remotable=true

This tells the component that it needs to set itself up in the registry for DCOM.

Referencing Other Components

A script component file can have more than one component inside it. You can create a library of components
just like in Visual Basic. You cannot use the Windows Script Component Wizard, though. The script
components use a series of <package></package> tags to create script libraries. For instance, you can define a
series of components within a file:

<package>
 <component id="COMObject1">

 </component>

Creating the Script Component Type Library

217

 <component id="COMObject2">

 </component>
</package>

Within each script you can create your properties, methods, and events for each component along with the
necessary registration information.

You can reference another component within the package by using the CreateComponent function. If we want
to reference COMObject1 in code, we would set a reference to an object using CreateComponent:

Set oComponent = CreateComponent("COMObject1")

This will give us a runtime reference of COMObject1. This allows you to add components that implement
ASP interfaces and DHTML behaviors as well as expose properties and methods to other client applications.
Your ASP and DHTML components can access all of the properties and methods of the COM component and
will reduce your amount of redundant code.

One easy way to create this package is to use the Windows Script Component Wizard to build the individual
objects. Once all of the objects have been created then you can build a package and copy/paste the contents of
the individual files.

Interface Handlers

Windows Script Components can implement two specific interface handlers: ASP and DHTML behaviors.
The ASP interface handler gives the script component a hook into the Active Server Pages library, and the
DHTML behaviors interface can link the script component to specific events within Internet Explorer.

Creating ASP Script Components

ASP script components include the functionality of the Active Server Pages library to allow for web enabled
script components. These script components can be called from within ASP pages and can greatly increase
code reuse of ASP components and business logic. In order to set up a script component to be ASP−enabled,
you add an <implements> tag with a reference to the ASP COM handler.

<implements type="ASP">
</implements>

Once the <implements> tag has been set up, the script component will have a reference to ASP and can make
use of the Response, Request, Session, Application, and Server ASP objects. For instance, we can have a
component that outputs the current date and time to an ASP page. The script component would be created:

<component id="ASPDateTimeObject">
<registration progid="ASPDateTimeObject"/>

<public>
 <method name="OutputDateTime"/>
</public>

<implements type="ASP"/>
<script language="VBScript">
<![CDATA[

 Interface Handlers

218

Sub OutputDateTime()
 Response.Write("Is is currently " & Time & " on " & Date)
End Sub

]]>
</script>
</component>

Our HTML and ASP code would create this object and call the OutputDateTime method:

<HTML>
<HEAD>
<TITLE>Using ASP Script Objects</TITLE>
</HEAD>

<H1>Using ASP Script Objects</H1>
<%

Set objDateTime = CreateObject("ASPDateTimeObject")%>

objDateTime.OutputDateTime()

set objDateTime = nothing

%>

</BODY>
</HTML>

An ASP script component can also contain complex database functions that can be re−used for generic
database output. Since script objects can call other COM components, we have access to all ADO functions,
Office COM libraries, and third party objects.

So, how do ASP script components operate? When the script object is called from an ASP page, the script
object is run in the same namespace (or process space) as the calling page. This gives the script component
direct access to the page, so it can use all of the intrinsic ASP objects and all output back to ASP is directed
back to the page. The script component and the ASP page see exactly the same objects. This is similar to
creating a Visual Basic COM component that implements the OnStartPage method. When a Visual Basic
COM component has this method, ASP will call it automatically and send a reference to the ASP library, thus
giving Visual Basic full control over ASP.

So, why is this better than using #include directives? Whenever you include a library into ASP files, the entire
contents of the file are merged with the source file. Let's say that you have a library with 20 functions that are
relatively complex. A library like this could easily contain several hundred lines of source code. If you only
use one function out of the 20 then you are still forced to add all of the remaining code to the ASP page for
processing. What if you don't happen to use any of the functions due to the way the page is processed? Too
bad, because ASP must still merge all of the included files in order to process the page.

An ASP script component, on the other hand, can contain all of the library functions that you use, but is only
loaded and used when needed. If the page logic does not require a function then the object is never loaded and
the page is smaller and faster. ASP script components are a better design choice for ASP pages because you
can organize individual components with related functions, you're not required to add #include directives for
every page that might need a function, and you can remotely execute complex scripts on middle tier servers.
Included files run directly on the web server and cannot take advantage of n−tier architectures in intranet and
Internet applications.

 Interface Handlers

219

Compile−time Error Checking

When you register your script component the syntax is validated and you will receive error messages if there
are scripting errors or if the XML cannot be validated. The error messages are not very verbose and give you
little more than a position in the file and possibly a snippet of the affected code. As an example, I've added a
semi−colon to my script (let's pretend we were converting the source from JScript):

function Add(X,Y)
 Add = X + Y;
end function

What we get when we register the component are the following dialogs:

The text [67,13] is the approximate location (line, column) of the error in the component. Unfortunately this is
not usually completely accurate, but it's close. For example, the location quoted above is actually pointing to
the plus sign in our code, rather than the semi−colon at the end of our line.

Compile−time error checking is not perfect, but it will point you in the general direction of your errors. When
verifying the source of your component it is handy to have an editor such as the default editor in Visual Studio
that can give you the line and column location of your cursor.

Using VBScript Classes in Script Components

As you saw in the last chapter, VBScript now includes the ability to declare classes and class constructs. You
can integrate a standard VBScript class into a Windows Script Component within the <script></script> tags in
the data portion of the XML file. You still use the standard construct for classes:

class <classname>

 <internal class declaration>

end class

For a full description of the VBScript class constructs refer to Chapter 8.

Limitations of VBScript Classes

There is one key limitation of using VBScript classes in Windows Script Components that you should be
aware of: the class information is not exposed automatically. In essence, script components know nothing
about the structure of an internal class. In order to expose the class to the outside world you must wrap the
class information around methods and properties declared in the script component file.

 Compile−time Error Checking

220

So, why use a class in a script component? Well, classes will not provide a lot of functionality for a small
component, but a complex component can benefit from a class by helping a developer to organize the object
structure in a more meaningful way. Large script components can get very complex due to the reliance on
XML parsing, so your component may become harder to maintain over time. A well−defined class will
always provide a more familiar structure to developers.

As we will see later in this section, you can include external source files. If you have defined many classes
you can simply include the source file and provide a COM wrapper for the class definition. Remember that
VBScript classes cannot be exposed automatically to COM, so you must provide a mechanism for other
objects to access your class.

Using Internal Classes

Internal classes in script components need a class construct and a series of methods and properties that wrap
the internal class. We can take the Math component that we built earlier in the chapter and use it as a class
wrapper. Initially our script component had the following form:

<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="Math"
 progid="Math.Scriptlet"
 version="1.00"
 classid="{b0a847a0−63c2−11d3−aa0e−00a0cc322d8b}"
>
</registration>

<public>
 <method name="Add">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
 <method name="Subtract">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
 <method name="Multiply">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
 <method name="Divide">
 <PARAMETER name="X"/>
 <PARAMETER name="Y"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

function Add(X,Y)
 Add = X + Y
end function

function Subtract(X,Y)

Using VBScript Classes in Script Components

221

 Subtract = X − Y
end function

function Multiply(X,Y)
 Multiply = X * Y
end function

function Divide(X,Y)
 Divide = X / Y
end function

]]>
</script>

</component>

Within our <script> tags we can build a class that handles the methods of the script component.

<script language="VBScript">
<![CDATA[

Class clsMath

 Public Function Add(X, Y)
 Add = X + Y
 End Function

 Public Function Subtract(X, Y)
 Subtract = X − Y
 End Function

 Public Function Multiply(X, Y)
 Multiply = X * Y
 End Function

 Public Function Divide(X, Y)
 Divide = X / Y
 End Function

End Class

Private oMath
set oMath = new clsMath
Function Add(X,Y)
 Add = oMath.Add(X,Y)
End Function

Function Subtract(X,Y)
 Subtract = oMath.Subtract(X,Y)
End Function

Function Multiply(X,Y)
 Multiply = oMath.Multiply(X,Y)
End Function

Function Divide(X,Y)
 Divide = oMath.Divide(X,Y)
End Function

]]>
</script>

Using VBScript Classes in Script Components

222

You can see that we have built a VBScript class and we have wrapped the functionality into the script
component. This can provide a new level of flexibility to a script component, as you will see in the next
section.

Including External Source Files

We are not required to have our class declarations (or our source for that matter) in the file itself. There is a
declaration within the <script> tag that allows us to include an external source file. The src= declaration acts
as an include for another file. This gives us the ability to move our class declarations to a .vbs (or .txt) file for
later use. We can then leverage our external source files across both the Windows Script Host as well as
within Active Server Pages and script components.

We can move the class declaration from our math sample to math.vbs. The text of math.vbs is simply the
entire class declaration:

Class clsMath

 Public Function Add(X, Y)
 Add = X + Y
 End Function

 Public Function Subtract(X, Y)
 Subtract = X − Y
 End Function

 Public Function Multiply(X, Y)
 Multiply = X * Y
 End Function

 Public Function Divide(X, Y)
 Divide = X / Y
 End Function

End Class

We then change the text of the Math component to include the new source file:

<script language="VBScript" src="math.vbs">
<![CDATA[

private oMath
set oMath = new clsMath

When the component is instantiated we parse the script file, add any included files into the <script> tag and
continue processing. As far as COM is concerned, the internal class declaration and the external class
declaration are identical.

Let's look at a more practical example of where we would use this technique. We introduced a class for
gathering folder information in Chapter 8. If we wanted to build a script component out of this file we would
have to add the source of the file into the script component or rebuild the script component through the logic
of the class. Instead we can wrap the functions of the class into the component.

The FolderSummary.vbs file contains the FolderSummary class from Chapter 8. We like this class, but it
requires us to send a reference to the Scripting.FileSystem object. We can build this step into our script
component to further simplify the usage of the object.

Using VBScript Classes in Script Components

223

We use the Script Component Wizard to build our object, containing the properties: FileCount,
SubFolderCount, HasHiddenFiles, OldestFileDate, NewestFileDate, and the method Summarize which takes
the folder path as a parameter. This is a slightly different declaration than our original object. This shows us
that we can extend and simplify the interfaces of other objects through our own custom objects.

The Script Component Wizard returns the following skeleton file:

<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="FolderSummary"
 progid="FolderSummary.WSC"
 version="1.00"
 classid="{4038d41e−7b94−11d3−aa5f−00a0cc322d8b}"
>
</registration>

<public>
 <property name="FileCount">
 <get/>
 </property>
 <property name="SubFolderCount">
 <get/>
 </property>
 <property name="HasHiddenFiles">
 <get/>
 </property>
 <property name="OldestFileDate">
 <get/>
 </property>
 <property name="NewestFileDate">
 <get/>
 </property>
 <method name="Summarize">
 <PARAMETER name="sFolderPath"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

dim FileCount
dim SubFolderCount
dim HasHiddenFiles
dim OldestFileDate
dim NewestFileDate

Function get_FileCount()
 get_FileCount = FileCount
End Function

Function get_SubFolderCount()
 get_SubFolderCount = SubFolderCount
End Function

Function get_HasHiddenFiles()
 get_HasHiddenFiles = HasHiddenFiles

Using VBScript Classes in Script Components

224

End Function

Function get_OldestFileDate()
 get_OldestFileDate = OldestFileDate
End Function

Function get_NewestFileDate()
 get_NewestFileDate = NewestFileDate
End Function

Function Summarize(sFolderPath)
 Summarize = "Temporary Value"
End Function

]]>
</script>

</component>

We now need to include the source file and populate the function and property prototypes with the wrapper
code for our object. Once we add this into our <script> tags we get our complete and ready to run wrapper
object. The shell generated by the Wizard becomes:

<script language="VBScript" src="FolderSummary.vbs">
<![CDATA[

Private FileCount
Private SubFolderCount
Private HasHiddenFiles
Private OldestFileDate
Private NewestFileDate

Private oFolderSummary
Set oFolderSummary = new FolderSummary

Private oFSO
Set oFSO = CreateObject("Scripting.FileSystemObject")

Function get_FileCount()
 get_FileCount = oFolderSummary.FileCount
End Function

Function get_SubFolderCount()
 get_SubFolderCount = oFolderSummary.SubFolderCount
End Function

Function get_HasHiddenFiles()
 get_HasHiddenFiles = oFolderSummary.HasHiddenFiles
End Function

Function get_OldestFileDate()
 get_OldestFileDate = oFolderSummary.OldestFileDate
End Function

Function get_NewestFileDate()
 get_NewestFileDate = oFolderSummary.NewestFileDate
End Function

Function Summarize(sFolderPath)
 Set oFolderSummary.FSO = oFSO

Using VBScript Classes in Script Components

225

 oFolderSummary.FolderPath = sFolderPath
 Summarize = oFolderSummary.Summarize
End Function

]]>
</script>

As you can see, we use our Summarize() method to handle several functions and hide them from the user.
This gives us the power and the flexibility to take complex functions and classes and create easy to use objects
that can be tailored to our needs.

Important Note that in this example it was necessary to change the Wscript.CreateObject statement in the
FolderSummary.vbs file to read simply CreateObject. The presence of the Wscript.CreateObject
statement causes an exception error to occur.

We can test the functionality of our component by using a slightly modified version of the test file from
Chapter 8:

Option Explicit

Dim objFSO
Dim objFoldSumm
Dim strSummary
dim sFolderPath

Set objFoldSumm = CreateObject("FolderSummary.wsc")

sFolderPath = InputBox("Enter the path")

With objFoldSumm
 .Summarize sFolderPath

 strSummary = "Summary for " & sFolderPath & ":" & vbNewLine & vbNewLine
 strSummary = strSummary & "Number of Files: " & .FileCount & vbNewLine
 strSummary = strSummary & "Number of SubFolders: " _
 & .SubFolderCount & vbNewLine
 strSummary = strSummary & "Has Hidden Files: " _
 & .HasHiddenFiles & vbNewLine
 strSummary = strSummary & "Oldest File Date: " _
 & .OldestFileDate & vbNewLine
 strSummary = strSummary & "Newest File Date: " _
 & .NewestFileDate & vbNewLine
End With
Set objFoldSumm = Nothing

MsgBox strSummary

When I ran the test script against C:\WinNT, the same dialog box that we saw in Chapter 8 popped up:

Using VBScript Classes in Script Components

226

So, even though script components do not directly access a VBScript class construct, we can still use
VBScript classes to extend the functionality and maintainability of our script components while leveraging
existing VBScript classes that are used in other areas of our business.

Summary

Windows Script Components provide added flexibility to web pages and can tightly integrate into your ASP
code. You can use these objects as stand alone COM components or you can have them interact directly with
ASP pages. A generous portion of scripting, a dash of XML, some Script Component Wizard, and a quick run
through regsvr32 and you have a perfectly formed and ready−to−run script component!

 Summary

227

Chapter 10: The Windows Script Host

Overview

Perhaps you noticed that the title of this section of the book is "VBScript in Context". You may be
comfortable using VBScript for scripting client−side Web pages; or perhaps for Active Server Pages
development − these are nothing more than contexts where VBScript can be used for problems in need of
scripting solutions. Since VBScript is designed as an ActiveX Scripting engine, it can be used to provide
scripting capability for any ActiveX Scripting host environment. Active Server Pages and Internet Explorer
are two such host environments. However, both of these hosts come with certain limitations. For instance,
Internet Explorer does not provide a capability for interacting with the local computer (such as file system
access, etc.) unless the user explicitly sets permissions for this (doing so can cause a security risk; for this
reason, this is usually done only for trusted sites and Intranets). That's where Windows Script Host (WSH)
comes in. WSH is a scripting language−neutral host interface that works with any ActiveX Scripting Engine,
which means that developers can use VBScript, JScript, PerlScript or any other scripting language that expose
the ActiveX Scripting interfaces. The WSH host interface thus provides Windows platforms with an
easy−to−use yet powerful scripting platform, available from both the Windows GUI and the command
prompt.

In this chapter, we will examine the following aspects of Windows Script Host:

Tools required for WSH development•
What WSH can be used for•
The two execution environments for WSH scripts•
The use of .WSH files to customize script behavior•
The WSH object model•
The .WSF file format, used for creating more advanced scripts•
Using WSH for network administration•

What Tools Do You Need?

In order to begin building solutions using WSH, you need only a few things:

The WSH engine, which comes in both console−style and Windows−based flavors•
A text editor, such as Notepad, although one that is designed with programming in mind may be more
useful

•

If you wish to use a scripting language other than VBScript or JScript, you will also need to download
and install the proper ActiveX Scripting engine (such as PerlScript from ActiveState,
http://www.activestate.com)

•

If your operating system is Windows 98, Windows NT 4.0 with Option Pack 4 installed, or Windows 2000,
then you may already have Windows Script Host (WSH 1.0 is provided as an optional component for Win98
and WinNT). However, you may want to ensure that you have the latest version in order to run the scripts
included in this chapter. You can download it from the Microsoft Scripting Technologies Web site at
http://msdn.microsoft.com/scripting/windowshost/. Version 5.1 of the Windows Script engines for JScript and
VBScript are included with WSH 2.0.

In addition, you may wish to install the WSH references locally; the aforementioned site provides all of the
necessary WSH documentation in a single HTML Help file. When you branch out into using external objects

228

to develop your WSH scripts, you may want to make sure that you have local references for the object
model(s) specific to the area of development. There is a great deal of reference documentation available in the
MSDN Online Library: http://msdn.microsoft.com/library/ (this material is also available on the MSDN
Library CD, which is included with Microsoft's Visual Studio tools and is also available by separate
subscription).

What is the Windows Script Host?

WSH is a technology that exposes some of the underlying functionality of the Microsoft Windows family of
operating systems to script developers. By itself, it provides very little other than potential; however, when
coupled with VBScript or other scripting languages, WSH provides scriptable access to the Component
Object Model (COM) architecture with which many Windows applications are built. This includes
applications such as Internet Explorer and the tools which comprise the Microsoft Office suite − any
application that exposes an Automation interface can be scripted via WSH. Technically this is a COM
IDispatch interface (for those unfamiliar with COM interfaces, IDispatch exposes objects, properties and
methods from one application to be used by other tools or applications). Since it is script
language−independent, WSH also provides the facility to write scripts in JScript, Perl, Python or any other
ActiveX Scripting Language (only VBScript and JScript are available from Microsoft − other ActiveX
Scripting engines are available from third parties).

In addition, WSH provides network administrators with a handy toolkit to use for access to machines scattered
across a network of computers running various flavors of the Windows operating system family. Much of this
access comes through the use of Active Directory Service Interfaces (ADSI) and Windows Management
Instrumentation (WMI). ADSI provides a single set of COM interfaces that can be used with multiple
directory services, such as the Lightweight Directory Access Protocol (LDAP), the Windows NT directory
service, and Novell's Netware and NDS services. WMI is Microsoft's implementation of Web−Based
Enterprise Management (WBEM), a standard method of providing access to management information such as
applications installed on a given client, system memory, and other client information.

By developing WSH scripts that take advantage of ADSI and WMI, administrators can develop scripts that
make it very easy to perform the following tasks and more:

Access and manipulate Web servers•
Identify objects as nodes in a network based on properties of the object in question without
knowledge of the objects name: "List all computers in domain DomainName"

•

Add and remove users or change user passwords•
Add network file shares•

Windows Script Host 2.0 is currently in beta release as of this writing; the final release is scheduled to ship
with Windows 2000. Once completed, WSH 2.0 will be available to download for other 32−bit Windows
platforms as well. WSH 2.0 offers many new features and is a considerable improvement over WSH 1.0. A
few of the new features (many of which were added based on user requests) are:

Support for file inclusion•
Ability to use multiple languages within the same script•
Support for drag−and−drop functionality•
Enhanced access to external objects and type libraries•
Stronger debugging capability•
A mechanism for pausing script execution (useful for sinking events raised by controlled objects)•
Standard input/output and standard error support (only available via console−mode execution with•

 What is the Windows Script Host?

229

cscript.exe)

WSH 1.0 operated by simply associating the file extension for VBScript (.vbs) and JScript (.js) files with the
script host itself, such that if you were to double−click on a script file, it would automatically execute.
However, many developers expressed their frustration that this association model did not allow for the use of
code modules or for intermixing multiple languages in a single script project. In order to remedy these and
other concerns, Microsoft has introduced a new type of script file (.WSF) in WSH 2.0, which utilizes an XML
syntax that provides much of the new functionality listed above. This schema includes the tags <script>,
<object> and <job>, among others. We'll look at the way this all works toward the end of the chapter.

Important Note that the file extension .WSF will not be available until the final release of WSH
2.0, concurrent with the release of Windows 2000. For developers working with the
beta releases of WSH 2.0, the correct file extension to use is .WS. This documentation
will use the extension .WSF exclusively.

Running Scripts with Windows Script Host

WSH provides two interfaces that allow us to execute scripts either on the command line, or from within the
Windows environment. Both cscript.exe and wscript.exe are host programs for the VBScript interpreting
engine. The reason there are two is because cscript.exe is designed for use from a console window (basically,
an MS−DOS box within Windows) while wscript.exe is intended to interface directly with the Windows GUI
itself. There's not much difference between them.

Command−line Execution

The console interface for executing script files, cscript.exe, is called as follows:

Open the Run dialog (Start | Run) or a command window (in Windows 9x, this is done via Start | Programs |
DOS Prompt − or in Windows NT via Start | Programs | Command Prompt in Windows NT)

Execute your script as follows:

cscript c:\folderName\scriptName.vbs

If you run cscript.exe with no arguments directly from an MS−DOS window, you will simply get the usage
notes:

The following command−line options are provided by cscript.exe to allow you to control various settings for
the WSH environment:

 Running Scripts with Windows Script Host

230

//B Batch mode − errors and dialogs will not be displayed

//D Enables debugging for current script

//E:engine Executes script, using engine (VBScript, JScript, etc.) Allows you to use custom
file extensions, while controlling the language engine

//H:CScript Configures CScript.exe as default script host

//H:WScript Configures WScript.exe as default script host (default)

//I Interactive mode (default, opposite of //B)

//Job:xxxx Execute a single job within a .WSF file that defines multiple jobs (see Using .WSF
files for more advanced scripts, near the end of this chapter, for more information
on defining jobs)

//Logo Display version and copyright information for scripts executed via CScript.exe
(default)

//Nologo Prevent logo information from being displayed.

//S Save user−specified command−line options. Overrides default options

//T:nn Set timeout period, where nn is the delay in seconds. Scripts will automatically exit
if timeout period elapses before execution has completed.

//X Launch script in debugger (as opposed to executing within cscript/wscript)

Execution within Windows

The Windows GUI interface for executing script files, wscript.exe, allows us to execute files in several ways:

If the file type is registered to execute within WSH, the script can be run by simply double−clicking
on its icon in any folder−view window.

•

Using the Run command dialog, simply type in the full path and name of the script.•
Also from the Run dialog, we can invoke wscript.exe:

wscript c:\folderName\scriptName.vbs

•

If you run wscript.exe from an MS−DOS window, you'll get no output in the MS−DOS window; instead
you'll see the following dialog box, which provides minimal customization options:

When you click OK, nothing happens − the only way to customize script behavior on a system level is
through the cscript options detailed above. This dialog is used for individual script customization through
.WSH files, which we'll cover next.

Running Scripts with Windows Script Host

231

Important The difference between cscript and wscript becomes important when debugging a
faulty script because sending error messages to a console window can be a lot easier to
deal with than the error pop−ups produced by wscript. Thus, cscript is recommended
for use when debugging scripts, and it is best to use the Echo method of the WScript
object when printing debug output.

Using .WSH Files to Launch Scripts

Perhaps you don't need or want to modify the settings for every script you execute, but you do need to be able
to control individual files. This is made possible by creating control files, which have the extension .WSH,
that allow us to control settings for individual scripts. A .WSH file is a small configuration file roughly
following the .INI file format of past Windows versions. These files are good for customizing the way a script
is started up − you can have several different .WSH files for the one script.

To create a .WSH file, right−click on a file associated with Windows Script Host (i.e., a file with a.js, .vbs, or
.WSF extension), select Properties, and then the Script tab from the dialog box that appears:

This dialog box allows you to change the timeout default setting and whether or not logo information should
be displayed when the script is executed on the command−line. When you apply or accept any changes you
have made, a new file will be created, with the same name as the script in question, but containing the
extension .WSH. This new file will record these custom settings in a format which the host engines use to set
runtime options. Here is what a hypothetical .WSH file created from a script named hello.vbs might look like
(in order to execute the script with these options, you would run the hello.wsh file):

[ScriptFile]
Path=C:\wsh\hello.vbs

[Options]
Timeout=15
DisplayLogo=1
BatchMode=0

Windows Script Host Intrinsic Objects

Every programming environment provides an Object Model that developers can use to implement solutions,
and Windows Script Host is no different. WSH contains a core set of objects, containing properties and
methods, which can be used to access other computers on a network, import external scriptable objects for use

 Using .WSH Files to Launch Scripts

232

within an application, or connect with Windows or the Windows shell.

The WScript Object

The root of the WSH object model is the WScript object. This object provides properties and methods that
allow developers to access name and path information for the script file being executed, determine which
version of the Microsoft Scripting engines is currently installed, work with external objects, provide user
interaction (as we have already seen) and delay or terminate script execution.

WScript Properties

Application

Exposes the WScript object's IDispatch interface, which provides programmatic access to an Automation
server application's internal objects, properties and methods.

Syntax

Set foo = WScript.Application

Arguments

Returns a collection of all arguments passed to the current script either on the command line or in the shortcut
used to access the file.

Syntax

Set collArgs = WScript.Arguments

FullName

Returns a string containing the complete path to the host executable file (wscript.exe or cscript.exe) ,
WshShortcut, or WshUrlShortcut object (more on these later).

Syntax

strExePath = WScript.FullName

Interactive

Sets or retrieves the interaction state (batch or interactive).

Syntax

WScript.Interactive = true
boolInteract = WScript.Interactive

Name

Returns a string containing the friendly name of the WScript object ("Windows Script Host").

Syntax

Windows Script Host Intrinsic Objects

233

strName = WScript.Name

Path

Returns a string containing the parent directory of the active WSH environment (cscript.exe or wscript.exe).

Syntax

strPath = WScript.Path

ScriptFullName

Returns a string containing the complete path to the script currently executing.

Syntax

strFullName = WScript.ScriptFullName

ScriptName

Returns a string containing the file name of the script currently executing.

Syntax

strSrcName = WScript.ScriptName

StdErr

Provides access to scripts error output stream. This stream is write−only. Only available to scripts being
executed from within the command−line host environment cscript.exe.

StdIn

Provides access to scripts input stream. This stream is read−only. Only available to scripts being executed
from within the command−line host environment cscript.exe.

StdOut

Provides access to scripts output stream. This stream is write−only. Only available to scripts being executed
from within the command−line host environment cscript.exe.

Important Note: StdErr, StdIn and StdOut are all implemented as TextStream objects. See Chapter 7 for
properties and methods exposed by the TextStream object. These objects are designed only for
use within cscript, and will result in a runtime error if executed within wscript.

The following example makes use of all three of the built−in stream types to print a list of all files matching a
particular extension. This is implemented by piping the output from the DOS dir command into the filter
script, with an extension string passed as an argument:

' Usage: dir | cscript filter.vbs ext
' ext: file extension to match
'
Dim streamOut, streamIn, streamErr

Windows Script Host Intrinsic Objects

234

Set streamOut = WScript.StdOut
Set streamIn = WScript.StdIn
Set streamErr = WScript.StdErr

Dim strExt, strLineIn
Dim intMatch
strExt = WScript.Arguments(0)
intMatch = 0
Do While Not streamIn.AtEndOfStream
 strLineIn = streamIn.ReadLine
 If 0 = StrComp(strExt, Right(strLineIn, Len(strExt)), _
 vbTextCompare) Then
 streamOut.WriteLine strLineIn
 intMatch = intMatch + 1
 End If
Loop

If 0 = intMatch Then
 streamErr.WriteLine "No files of type '" & strExt & "' found"
End If

Since this example uses StdIn, StdOut and StdErr for all messaging, you could use it to not only print out
matching files to the screen, but also to send output to a text file or another application with redirection or
additional piping. For example, you could create a file containing all .vbs files in an entire directory tree,
including all subdirectories, with the following command:

C:\wsh>dir /s | cscript filter.vbs vbs >> vbsfiles.txt

Timeout

Sets or retrieves current timeout length, nDelay, in seconds.

Syntax

WScript.Timeout = nDelay

Version

Returns a string containing the version number of Windows Script Host.

Syntax

strVer = WScript.ScriptVersion

WScript Methods

ConnectObject

Used to hook into the event model of an object previously created via the CreateObject or GetObject methods
or, if working with the new Windows Script file format, the <object> tag (all of the tags supported by .WSF
files will be covered in detail towards the end of the chapter). The object thus connected is required to provide
enumeration of its event model for external usage.

Syntax

Windows Script Host Intrinsic Objects

235

WScript.ConnectObject strObjName, strPrefix

strObjName Name of object to connect
strPrefix Event function prefix
The following example presumes the existence of a COM object with the progID "MyObj.Object", which
exposes the event MyEvent:

Set obj = WScript.CreateObject("MyObj.Object")
WScript.ConnectObject(obj, "MyObj")

Sub MyObj_MyEvent()
 ' do something to handle event
End Sub

Creates an instance of an Automation object from a passed progID. This instance allows you to access
properties and call methods of the created object. In addition, this method accepts an optional second
argument, which is used as a way to sink events from the object in order to handle them in your own
application.

CreateObject

Syntax

Set objFoo = WScript.CreateObject(strProgID [, strPrefix])

strProgID String containing objects program identifier (ProgID).
strPrefix If specified, strPrefix provides script developers a hook into the event model of the

controlled object. Allows a developer to create event handlers for the internal events
raised by the object. If strPrefix is set to "MyObject_", and if the application fires an
event named "Open", WSH will look for an event handler named "MyObject_Open" in
the script. Optional.

Example (requires Word 97 or greater)

Set objWord = WScript.CreateObject("Word.Application")
objWord.Visible = true;

DisconnectObject

Disconnects event source object from your script. Inverse of ConnectObject. The object itself is not affected.

Syntax

WScript.DisconnectObject objID

objID Reference to active object instance.
Example

...
WScript.DisconnectObject(objWord)

Windows Script Host Intrinsic Objects

236

Echo

Provides host−dependent user feedback. If cscript.exe is host, arguments to Echo are displayed on the
command line. If wscript.exe is host, arguments are displayed in a Windows pop−up dialog.
Comma−separated arguments are displayed as a string with spaces separating the arguments.

Syntax

WScript.Echo arg1 [, ... argN]

arg1 [, ... argN] String or numeric data.
Example

WScript.Echo "foo", "bar", "baz", 123

GetObject

Similar to CreateObject. Retrieves an instance of an Automation object from a file or progID. This gives you
access to an object that already exists somewhere on your computer − like an already running version of some
program, or an application with an unknown automation interface. By passing strProgID, you can access a
specified Automation object from the single call, and by passing strPrefix, you can sink the application's
events for handling on your own, as with ConnectObject and CreateObject.

Syntax

Set obj = WScript.GetObject(strPath [,strProgID] [,strPrefix])

strPath Full path and file name of object to retrieve.
strProgID String containing objects program identifier (ProgID). Optional.
strPrefix See description of strPrefix in CreateObject notes, above. Optional.
Examples (require Word 97 or greater)

' simple example
' retrieves interface through document
Set objDoc = WScript.GetObject("c:\wsh\test.doc")
objDoc.Application.Visible = true

' example using strProgID
' iterates through all built−in properties after
' retrieving the 'Word.Document' exposed interface
Set objWord = WScript.GetObject("c:\test.doc", "Word.Document")
strProps = ""
For Each Prop in objWord.BuiltInDocumentProperties
 strProps = strProps & Prop.Name & vbCrLf
Next
WScript.Echo strProps

Quit

Terminates host execution and returns the argument as an error code. In other words, it kills the cscript or
wscript instance. The optional argument allows you to set an error code for the process' exit. If not included,
the return value is 0.

Windows Script Host Intrinsic Objects

237

Syntax

WScript.Quit [numErrCode]

numErrCode If specified, WSH returns the value as an exit code; otherwise, WSH returns (0) as
the process exit code. Optional.

Example

If Err.Number <> 0 Then
 WScript.Quit 1 ' some failure indicator
Else
 WScript.Quit 0 ' success
End If
WScript.Quit 1

Sleep

Suspends execution of active script for time specified (in milliseconds). After intDelay has passed, control is
returned to the script.

Syntax

WScript.Sleep intDelay

intDelay Delay in milliseconds.
Example

WScript.Sleep 1000 ' wait one second

Some of the previous methods take a unique identifier (a program identifier, or progID) for the object in
question as an input argument and return a reference to an instance of that object, which you can store for later
reference. Finding a list of all of these progIDs and their uses is a bit of a voyage of discovery. We're not
going to go into in the details of the Microsoft Windows component object model (COM) management
facilities as this subject can fill an entire book in itself. Here are two relatively easy methods of discovering
progID values for programs installed on a particular computer:

Run regedit and look at the second half of the long list under the top level item
HKEY_CLASSES_ROOT

•

Get the OLEView tool from Microsoft and become familiar with that. You can obtain it via the web
from http://www.microsoft.com/com/resource/oleview.asp.

•

You'll also need proper documentation on the objects you intend to use, in order to take advantage of the
features offered by scripted objects. Much of this documentation can be found online or on permanent media
(for example, the MSDN Library − both CD and online versions − contains a complete reference for scripting
the individual applications which make up the Microsoft Office 2000 suite). Of course, other Wrox
publications, such as Professional IE4 Programming, ISBN 1861000707, also provide good reference
documentation.

Windows Script Host Intrinsic Objects

238

The WshArguments Object

The use of arguments in programming tasks is a very useful mechanism for providing your script with input
upon which it can act. Consider for a moment what it's like to work at a DOS prompt. Most command−line
executables use arguments in order to determine the right thing to do. For example, navigating within a
directory structure:

c:\>cd wsh

In this instance, cd is the name of a DOS command (for change directory), while wsh is the name of the
directory activated − it is an argument passed to cd.

Creating scripts that work with arguments is a good step towards writing reusable code. Take the sample code
for the description of the WScript.Std* (*=Err,In,Out) properties above. It could have been written to simply
filter for a specific file type, but then would have to be changed in order to be useful for other file types. By
using the WshArguments object, this script provides much more usefulness.

Developers creating scripts designed to execute on the command−line may immediately see the benefits of
working with the Arguments property. However, within WSH, there is another good reason to use this object
− that is how drag−and−drop functionality is implemented.

A final justification for the use of this object is that it allows developers to reuse script code within other
scripts, by running the script in question as if it were executing on the command−line, passing whatever
arguments may be necessary at run−time.

Accessing the WshArguments object

Use WScript.Arguments property:

Set collArgs = WScript.Arguments

WshArguments Properties

Since the WshArguments object returns a collection, it merely exposes all of the properties of the
WshCollection object, which is detailed later in this chapter. All internal collections exposed by Windows
Script Host are implemented as WshCollection objects.

The following sample simply loops through the WshArguments collection, displaying each in turn.

Set collArgs = WScript.Arguments
For inx = 0 To collArgs.Count − 1
 WScript.Echo collArgs(inx)
Next

The interesting thing here is that this works in both cscript and wscript. Try it yourself − save the sample as
echoargs.vbs, then execute on the command line, passing a few arguments:

c:\wsh\echoargs foo bar baz

Here's the output from this simple script:

Windows Script Host Intrinsic Objects

239

Now try opening up your test folder, and dragging a file or two, then dropping them on echoargs.vbs. If you
drag a file named testme.txt onto your echoargs.vbs file, you should see the following:

The WshShell object

Windows Script Host provides a convenient way to gain access to system environment variables, create
shortcuts, access Windows special folders such as the Desktop, and add or remove entries from the registry. In
addition, it is possible to create more customized dialogs for user interaction by using features of the Shell
object.

Accessing the WshShell object

Developers should create an instance of the object WScript.Shell in order to work with the properties listed
below. Further references to the WshShell object will refer to this created instance.

Set WshShell= WScript.CreateObject("WScript.Shell")

WshShell Properties

Environment

Returns a handle to the WshEnvironment object. Usage of this object is described in the section on the
WshEnvironment object, below.

Syntax

Set WshEnvironment = WshShell.Environment [("ENV_VAR")]

Important Note: excluding the parameter returns PROCESS environment variables by default on Windows
9x, and SYSTEM by default on Windows NT 4 / Windows 2000.

Windows Script Host Intrinsic Objects

240

SpecialFolders

Returns a handle to the WshSpecialFolders object. Usage of this object is described in the section on the
WshSpecialFolders object, below.

Syntax

// retrieve entire collection of folders
Set WshFolders = WshShell.SpecialFolders
// retrieve a single folder
objDesktop = WshShell.SpecialFolders("Desktop")

Example

// echo all special folders in collection
Set WshShell = WScript.CreateObject("WScript.Shell")
str = ""
For Each Folder In WshShell.SpecialFolders
 str = str & Folder & vbCrLf
Next
WScript.Echo str

WshShell Methods

AppActivate

Activates an application window, based on passed strTitle. Returns success or failure.

Syntax

' capturing return
retval = WshShell.AppActivate(strTitle)
' not capturing return
WshShell.AppActivate strTitle

strTitle If strTitle exactly matches that of a current running application window, that window will
be activated; otherwise, the title of each active window will be checked to see if it begins
with strTitle. If still no match is found, all windows will be checked again to determine
whether they end with strTitle.

Example

...
WshShell.Run "notepad"
retval = WshShell.AppActivate("Notepad")
If retval Then
 WshShell.SendKeys "Hello, World!"
End If

CreateShortcut

Returns a handle to a WshShortcut or WshUrlShortcut object, depending on the extension of the created
shortcut. Shortcuts created with the extension .LNK become WshShortcut objects, which are intended for
linking files on a local system or LAN. Those created with the extension .URL are WshUrlShortcut objects,
designed to provide links to Web pages on the Internet or a company intranet.

Windows Script Host Intrinsic Objects

241

Syntax

Set objLink = WshShell.CreateShortcut(strPath)

strPath Path and file name of shortcut being created.
Examples of usage will follow in the sections on WshShortcut and WshUrlShortcut objects.

ExpandEnvironmentStrings

Returns a string representing the expanded value of the requested environment string. Variables passed into
the method are surrounded with the % character.

Syntax

str = WshShell.ExpandEnvironmentStrings("%strEnv%")

strEnv Name of desired environment variable.
Example

Set WshShell = CreateObject("WScript.Shell")
strWinDir = WshShell.ExpandEnvironmentStrings("%WinDir%")
WScript.Echo "Your Windows directory is: " & strWinDir

LogEvent

Writes an event to the event log. In Windows NT, this is written to the NT Event log. In Windows 9x, this is
written to the file WSH.log in the %windir% directory.

Syntax

WshShell.LogEvent intType, strMsg [,strTarget]

intType Number corresponding to the type of the event (see next table for possible values).
strMsg Text to be entered into the log.
strTarget Name of system where event should be logged (defaults to local system). Optional.

(Windows NT only, ignored on Windows 9x.)
The following table lists the possible values that can be used as the first argument to LogEvent, along with
their predefined meanings:

0 Success

1 Error

2 Warning

4 Information

8 Audit_success

16 Audit_failure
Example

Set WshShell = WScript.CreateObject("WScript.Shell")
' assume that boolRet contains a return code
' from another application

Windows Script Host Intrinsic Objects

242

If boolRet Then
 WshShell.LogEvent 0, "Application success"
Else
 WshShell.LogEvent 1, "Application failure"
End If

Popup

Shows a modal dialog window containing script−defined settings − message, title and display characteristics.
The button that is clicked in the window determines the return value from Popup. See the Microsoft Scripting
documentation for detailed information regarding return values
(http://msdn.microsoft.com/scripting/windowshost/).

Syntax

intReturn = WshShell.Popup strMsg [,intDelay] [,strTitle] [,intFeatures]

strMsg Message to be displayed.
intDelay The number of seconds to wait before closing the pop−up window. Optional. If

using strTitle and intFeatures, this should be set to zero (0) if you do not want the
window to dismiss itself.

strTitle The text to appear in the windows title bar. Optional.
intFeatures Display features for the window, to include icons and buttons. Optional.
The actual values of features set using intFeatures are determined by comparison to the Windows operating
system internal values. Listed below are a few examples; see Appendix D for a complete list.

0 Button: OK

1 Button: OK and Cancel

3 Button: Yes, No, and Cancel

16 Icon: Stop sign

32 Icon: Question Mark

48 Icon: Exclamation Mark
Example

Set WshShell = WScript.CreateObject("WScript.Shell")
strMsg = "Hello from Windows Script Host!"
strTitle = "WSH Popup dialog"
intReturn = WshShell.Popup(strMsg, 0, strTitle, 48 + 3)
WScript.Echo "Return value: " & intReturn

RegDelete

Removes keys or values from the Windows registry. Under Windows NT and Windows 2000, it is not
possible to delete keys that contain sub−keys.

Syntax

WshShell.RegDelete strKeyValue

strKeyValue Name of key or value to delete.

Windows Script Host Intrinsic Objects

243

RegRead

Reads keys or values from the Windows registry. RegRead is unable to read a key unless its default value is
set; attempting to do so will generate a runtime error number (identical to the error generated if the key doesn't
exist −− checking err.description will yield the difference). In addition, RegRead cannot read valid named
values containing "\" in the value name; the slash is interpreted as delimiting nodes in the key string.

Syntax

WshShell.RegRead(strKeyValue)

strKeyValue Name of key or value to read. Supports the following data types: REG_SZ,
REG_EXPAND_SZ, REG_DWORD, REG_BINARY, and REG_MULTI_SZ;
returns DISP_E_TYPEMISMATCH for other data types.

RegWrite

Writes keys or values to the Windows registry.

Syn tax

WshShell.RegWrite strName, anyValue [,strType]

strName Name of key or value where data should be written.
anyValue Value to write into the key or value.
strType Data type for value being stored in the registry. Optional. Valid values for strType are

REG_SZ, REG_EXPAND_SZ, REG_DWORD, and REG_BINARY, and returns
E_INVALIDARG if other data types are passed.

Example (shows use of all registry methods)

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Popup "Setting registry value"
WshShell.RegWrite "HKCU\WSHTestKey", "WSH test value"
WshShell.Popup "Reading registry value" & vbCrLf & _
 "Value: " & WshShell.RegRead("HKCU\WSHTestKey")
WshShell.Popup "Deleting registry value"
WshShell.RegDelete "HKCU\WSHTestKey"

Important Note: It is important to be very careful when modifying registry settings. Making
incorrect changes to the registry can cause your system to become unstable or unusable.
If you are not familiar with the inner workings of the registry, you are strongly advised to
do some reading on the subject before beginning to experiment on your own.

If we had wanted to set an actual registry key, as opposed to a simple value, we could have done this quite
easily as well, by ending the string passed as an argument to RegWrite with a backslash:

WshShell.RegWrite "HKCU\WSHTestKey\", "WSH test value"

Run

Execute an application in a new process.

Syntax

Windows Script Host Intrinsic Objects

244

WshShell.Run(strCmd [,intWinStyle] [,boolWait])

strCmd String containing the application name and path, or other command (such as a
DOS command) to execute.

intWinStyle Sets window style of program being executed. Optional.
boolWait If not passed, or passed as false, immediately resumes script execution, and returns

0 (zero).

If set to true, the Run method waits for the child process to end and returns any
error code from the application.

Example

Set WshShell = WScript.CreateObject("WScript.Shell")
strScript = WScript.ScriptFullName

' if not capturing return value, call as Sub
WshShell.Run "notepad " & strScript, 1, TRUE

' if capturing return value, call as Function
return = WshShell.Run("%windir%\notepad " & strScript, 1, TRUE)

Note that in the second call (where the return value is captured), Run is executed as a function; the arguments
passed are contained in a set of parentheses. However, when not capturing the return value, Run is called as a
subprocedure, without parentheses. In addition, note that the second example contains an environment string −
this is automatically expanded by the host before execution, so that the call receives a complete argument.

SendKeys

Programmatically sends keystroke sequences to the active application (most likely activated through the
AppActivate method) as if the input were entered from a keyboard. The host will not allow the sequence
'^%{DEL}', which represents CTRL+ALT+DEL, to be sent, so programmatic rebooting of servers is not
possible using this technique.

Syntax

WshShell.SendKeys strKeys

strKeys String representation of keystrokes to send to active application. See WSH
documentation for complete list of specific key codes used.

Example

This example shows the Run, AppActivate and SendKeys methods together.

...
WshShell.Run "Notepad"
WshShell.AppActivate("Notepad")
WScript.Sleep 500
WshShell.SendKeys "Hello, Wodlr!"
WScript.Sleep 500
WshShell.SendKeys "{LEFT 4}"
WScript.Sleep 500
WshShell.SendKeys "{DEL 3}"
WScript.Sleep 500
WshShell.SendKeys "rld"

Windows Script Host Intrinsic Objects

245

The WshNetwork Object

Windows Script Host is commonly used for creating login scripts for computers that are part of a corporate
network. These scripts can make it easier for users to get their important work done by mapping to commonly
used network file servers and connecting to one or more network printers. This is where the WshNetwork
object comes in handy. This object provides important functionality to be used for many network connectivity
needs.

Accessing the WshNetwork Object

Accessed by creating an instance of WScript.Network.

Set WshNetwork = WScript.CreateObject("WScript.Network")

WshNetwork Properties

ComputerName

Returns a string containing the computer name.

Syntax

strCompName = WshNetwork.ComputerName

UserDomain

Returns a string containing the user domain.

Syntax

strDomain = WshNetwork.UserDomain

UserName

Returns a string containing the username. Commonly used in network logon scripts. Under Windows 9x,
logon scripts runs before the user is fully logged on, so scripts should query the UserName property in a loop
until it contains a non−blank string.

Syntax

strName = WshNetwork.UserName

WshNetwork Methods

AddPrinterConnection

Maps a network printer to a printer port on a local computer, allowing you to send print jobs from your
computer to a remote printer. Printers connected using this method are only recognized in DOS (they do not
show up under Settings|Printers from the Start menu).

Syntax

Windows Script Host Intrinsic Objects

246

WshNetwork.AddPrinterConnection strPort, strPrinterName _
 [,boolUpdate] [,strUser] [,strPassword]

strPort Printer port to connect (such as LPT1:)
strPrinterName Network share for remote printer
boolUpdate If true, printer mapping stored in user profile. Optional.
strUser,
strPassword

Used when mapping a shared network resource for someone other than
currently logged−on user. Optional.

Example

WshNetwork.AddPrinterConnection _
 "LPT1:", "\\printserver\printername"

AddWindowsPrinterConnection

Maps a network printer to a printer port on a local computer, allowing you to send print jobs from your
computer to a remote printer. Printers added using this method are available to Windows applications (appear
under Start|Settings|Printers).

Syntax (Windows NT/Windows 2000)

WshNetwork.AddWindowsPrinterConnection(strPrinter)

Example

strPath = "\\printserver\printername"
WshNetwork.AddWindowsPrinterConnection(strPath)

Syntax (Windows 9x)

WshNetwork.AddWindowsPrinterConnection(strPrinter, strDriver [,strPort])

Example

strPath = "\\printserver\printername"
strDriver = "HP DeskJet 890C"
WshNetwork.AddWindowsPrinterConnection(strPath, strPort, "LPT1:")

strPrinter Network share for remote printer
strDriver Name of printer driver. Required on Windows 95/98 (driver must be already

installed); ignored if used on Windows NT/Windows 2000.
strPort Printer port to connect (defaults to LPT1). Ignored if used on Windows NT/Windows

2000. Optional.
EnumNetworkDrives

Returns a collection containing current network drive mappings.

Syntax

collDrives = WshNetwork.EnumNetworkDrives

Windows Script Host Intrinsic Objects

247

EnumPrinterConnections

Returns a collection containing current network printer mappings.

Syntax

collDrives = WshNetwork.EnumNetworkPrinters

Important Note: the two methods EnumNetworkDrives() and EnumPrinterConnections() have somewhat
unusual return values, in that values are returned in pairs. The first is the local resource (drive
letter or port) while the second is the mapped network share. Thus, in the example below,
collNetDrive(0) will contain "Q", and collNetDrive(1)will contain "\\server\share".

MapNetworkDrive

Maps a network shared resource to a local drive letter.

Syntax

WshNetwork.MapNetworkDrive strDrive, strSharePath _
 [,boolUpdate] [,strUser] [,strPassword]

Parameters

strDrive Local drive letter to use for mapping
strSharePath Network share
boolUpdate If true, mapping stored in user profile. Optional.
strUser and
strPassword

Used when mapping a shared network resource for someone

other than currently logged−on user. Optional.
Example

WshNetwork.MapNetworkDrive "Q:", "\\server\share"

RemoveNetworkDrive

Removes a network drive, either mapped to a local drive letter or merely remotely connected.

Syntax

WshNetwork.RemoveNetworkDrive strName [,boolForce] [,boolUpdate]

strName If mapping exists between local name (drive letter) and network share, then strName
is the local name. If no local name (drive letter) mapping exists, strName is the
remote name.

boolForce If true, connection will be removed whether in use or not. Optional.
boolUpdate If true, mapping stored in user profile. Optional.
Example (based on MapNetworkDrive example)

WshNetwork.RemoveNetworkDrive "Q:"

Windows Script Host Intrinsic Objects

248

RemovePrinterConnection

Removes a networked printer connection, either mapped to a local port or remotely connected.

Syntax

WshNetwork.RemovePrinterConnection strName [,boolForce] [,boolUpdate]

strName If mapping exists between local port (such as LPT1) and network share, then
strName is the local name. If no port mapping exists, strName is the remote name.

boolForce If true, connection will be removed whether in use or not. Optional.
boolUpdate If true, mapping stored in user profile. Optional.
Example (based on AddPrinterConnection example)

WshNetwork.RemovePrinterConnection "LPT1:"

SetDefaultPrinter

Establishes printer connection as default printer.

Syntax (based on AddPrinterConnection example)

WshNetwork.SetDefaultPrinter strName

strName Remote printer name or local printer port.
Example (based on AddPrinterConnection example)

WshNetwork.SetDefaultPrinter "LPT1:"

The following example uses all properties and methods of the WshNetwork object:

Important Please note that this example requires an active network connection to work correctly. In
addition, running this script on your computer may end up modifying your existing
settings.

Dim strShare, strPrint
strShare = "\\fileserver\share"
strPrint = "\\printserver\printer"
Dim WshNetwork, collNetDrive, collNetPrint
Set WshNetwork = WScript.CreateObject("WScript.Network")

' map network share, printer, set printer default
WScript.Echo vbCrLf & "Mapping network drive: " & strShare
WshNetwork.MapNetworkDrive "Z:", strShare
WScript.Echo vbCrLf & "Mapping printer share: " & strPrint
WshNetwork.AddWindowsPrinterConnection strPrint
WshNetwork.SetDefaultPrinter strPrint

WScript.Echo vbCrLf & _
 "Computer Name: " & WshNetwork.ComputerName & _
 vbCrLf & "Current User: " & WshNetwork.UserName & _
 vbCrLf & "User Domain: " & WshNetwork.UserDomain

' get network drives and printers collections

Windows Script Host Intrinsic Objects

249

Set collNetDrive = WshNetwork.EnumNetworkDrives
Set collNetPrint = WshNetwork.EnumPrinterConnections

' echo all networked drives and printers
For i = 0 To collNetDrive.Count − 1
 WScript.Echo vbCrLf & collNetDrive(i) & " > " & collNetDrive(i+1)
 i = i + 1
Next
For j = 0 To collNetPrint.Count − 1
 WScript.Echo vbCrLf & collNetPrint(j) & " > " & collNetPrint(j+1)
 j = j + 1
Next

' remove mapped drive and printer
WshNetwork.RemoveNetworkDrive "Z:"
WshNetwork.RemovePrinterConnection "LPT1:"

The WshShortcut Object

The same method of the WshShell object is used for creating both WshShortcut and WshURLShortcut
objects − the primary difference being the file extension given to the actual shortcut file: A WshShortcut
object is created when the extension is .lnk, and a WshURLShortcut object is created when the extension is
.url.

The standard WshShortcut object can be used to create shortcuts to any system resource such as a file or
folder, or even to a Web address.

Accessing the WshShortcut object

To create an instance of the WshShortcut object, use the CreateShortcut method of WshShell. The path
specified must be a complete path to the shortcut location.

WshShortcut Properties

Arguments

Text string of arguments to be passed to the application defined in TargetPath property.

Description

Sets or retrieves descriptive text representing the shortcut.

Syntax

objShortcut.Description = str

str String to assign description value to.
Example

...
Set objShortcut = WshShell.CreateShortcut "foo.lnk"
objShortcut.Description = "This is a link to foo."

Windows Script Host Intrinsic Objects

250

FullName

Returns a read−only string containing the complete path to the file being executed.

Syntax

retval = objShortcut.FullName

Example

...
WScript.Echo objShortcut.FullName

Hotkey

Allows a keyboard shortcut to be created for the WshShortcut object. Hotkeys can only activate shortcuts
which exist on the Windows desktop or the Start menu.

Syntax

objShortcut.Hotkey = strHotkey

Possible values for strHotKey are as follows (Hotkey values are case−sensitive):

Meta Keys Standard Keys

ALT+

CTRL+

SHIFT+

EXT+

A...Z

0...9

Back

Tab

Clear

Return

Escape

Space

Prior

...
Example

objShortcut.Hotkey = "CTRL+SHIFT+Z"

Windows Script Host Intrinsic Objects

251

IconLocation

Assigns an icon to the WshShortcut object.

Syntax

objShortcut.IconLocation = strIconLocation

strIconLocation String in the form location, index as in example below.
Example

...
objShortcut.IconLocation = "C:\explorer.exe, 0"

TargetPath

Assigns path to executable with which the shortcut is associated.

Syntax

objShortcut.TargetPath = strPath

strPath Path to which shortcut should resolve.
Example

objShortcut.TargetPath = "C:\foo.exe"

WindowStyle

Assigns window style to shortcut.

Syntax

objShortcut.WindowStyle = intStyle

Possible values for intStyle are as follows:

1 Sets window active, restoring original size and position if applicable.

3 Maximized window.

7 Minimized window.
Example

objShortcut.WindowStyle = 3

WorkingDirectory

Sets active directory for the shortcut object.

Syntax

objShortcut.WorkingDirectory = strPath

Windows Script Host Intrinsic Objects

252

strPath Initial directory for shortcut.
Example

objShortcut.WorkingDirectory = "c:\"

WshShortcut Method

Save

Saves shortcut object to location specified by argument to CreateShortcut. This method is required to
complete creation of a new shortcut.

Syntax

objShortcut.Save

The following sample makes use of all of the WshShortcut properties as well as its Save method.

Set WshShell = WScript.CreateObject("WScript.Shell")
strLink = WshShell.SpecialFolders("Desktop") + "WSHtest.lnk"
Set WshShortcut = WshShell.CreateShortcut(strLink)
WshShortcut.Description = "Test shortcut created from WSH."
WshShortcut.TargetPath = "notepad.exe"
WshShortcut.IconLocation = "notepad.exe, 0"
WshShortcut.Hotkey = "CTRL+SHIFT+X"
WshShortcut.WindowStyle = 1
WshShortcut.WorkingDirectory = "C:\"
WshShortcut.Save

The WshUrlShortcut Object

This object provides a means to create a special shortcut type: a reference to a Web page on the Internet or a
company Intranet. Remember that creating a URL shortcut is differentiated from creating a regular shortcut by
the different file extension used in the call to CreateShortcut. To create a WshUrlShortcut object, you would
use the extension .URL instead of .LNK. Another difference is that this object exposes far fewer properties
than does the WshShortcut object.

Accessing the WshUrlShortcut object

Same as WshShortcut, above.

WshUrlShortcut Property

TargetPath

See descriptions for these properties under the WshShortcut object, above.

WshUrlShortcut Method

Save

See description for WshShortcut object, above.

Windows Script Host Intrinsic Objects

253

Here's a quick example showing the creation of a URL shortcut on the Desktop, pointing to the Wrox home
page:

Set WshShell = WScript.CreateObject("WScript.Shell")
strURL = WshShell.SpecialFolders("Desktop") + "Wrox Home.url"
Set WshShortcut = WshShell.CreateShortcut(strPath)
WshShortcut.TargetPath = "http://www.wrox.com/"
WshShortcut.Save

The WshCollection Object

This object is the base representation for all collections returned by objects, properties or methods internal to
Windows Script Host.

Accessing the WshCollection object

There are five ways to retrieve collections under WSH:

The Arguments property of WScript•
The EnumNetworkDrives method of WshNetwork•
The EnumPrinterConnections method of WshNetwork•
The SpecialFolders property of WshShell•
The WshEnvironment object.•

WshCollection Properties

Item

Returns an item from a collection, by index. This is the default property for all collections exposed as part of
the Windows Script Host object model.

Length

Returns the number of items in the collection. Return value is identical to return value from Count.
Implemented for JScript compatibility.

Count

Returns the number of items in the collection. Return value is identical to return value from Length.

Set collArgs = WScript.Arguments
For inx = 0 To collArgs.Count − 1
 WScript.Echo collArgs.Item(inx)
Next

The WshEnvironment Object

When a developer needs to access system specifics such as the operating system version or information
pertaining to processor type, the place to look is within the system's environment variables, stored as a
collection of unique name=value pairs.

Windows Script Host Intrinsic Objects

254

Accessing the WshEnvironment Object

WSH provides a method to get this information through the Environment property of the WshShell object:

Set WshEnvironment = WshShell.Environment

There are four sets of Environment variables available: System, User, Volatile, and Process. Accessing a
variable set other than the default is shown in the example below.

Important Note: if you wish to access the default set of environment variables, do not use an
empty set of parentheses after the Environment keyword − doing so will generate a
script error.

WshEnvironment Properties

The WshEnvironment object contains all the properties exposed by WshCollection.

WshEnvironment Methods

Remove

Deletes environment variable specified as argument to method.

Syntax

WshEnvironment.Remove(strEnvVar)

strEnvVar Environment variable
Example

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshEnvironment = WshShell.Environment("process")
WshEnvironment.Remove("Example_Env_Var")

The following is a brief example showing how to access specific process variables:

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshEnvironment = WshShell.Environment("process")
WScript.Echo WshEnvironment("WINDIR")
WScript.Echo WshEnvironment("PATH")

This example shows how to iterate over the entire collection, followed by its output under Windows 2000:

Set WshShell = CreateObject("Wscript.Shell")
Set WshEnvironment = WshShell.Environment
For Each var In WshEnvironment
 strEnv = strEnv & var & vbCrLf
Next
WScript.Echo strEnv

Windows Script Host Intrinsic Objects

255

Important Note: due to the internal structure of Windows NT 4 and Windows 2000, much more information
is available when accessing system environment information under these systems than when
using Windows 95/98.

Windows NT/Windows 2000:

All Environment variable types are available: System, User, Volatile, and Process. If no type is passed, the
default is System.

Windows 95/Windows 98:

Only Environment variables of type Process are available. This will be the default if no value is specified.

The WshSpecialFolders Object

This object provides access to Windows shell folders, which is a group of various folders used by the
operating system for storage of items needed for proper system operation, such as the Start menu, Favorites
folder, and the Windows Desktop. The actual file locations of Windows special folders are dependent on the
operating system and location of the default Windows installation directory, so they may not be in the same
place on one computer that they are on another. The WshSpecialFolders collection helps developers get
around this, making it very easy to access these folders.

Why would you want to use this object? Here's an example: perhaps your company wants to add a standard
set of Favorites to the Favorites menu (exposed by Internet Explorer, among other applications). This is a
perfect use for the WshSpecialFolders object. We can get a reference to the object (shown below), retrieve
from it the path to the Favorites folder, which can then be used in conjunction with the GetFolder method of
the FileSystemObject (features of the Scripting Runtime library, documented in Chapter 7) to get a reference
to the actual folder. Once this reference is attained, you can add URL shortcuts and/or folders to it.

Remember that the file locations to which these shortcuts resolve is dependent upon the actual user profile in
use when the shortcut is created. This is a consideration by default when using Windows NT 4.0 or Windows
2000, and will be an issue if user profiles are active on an installation of Windows 9x.

Accessing the WshSpecialFolders Object

The WshSpecialFolders object is available via the SpecialFolders property of WshShell.

Set WshSpecialFolders = WshShell.SpecialFolders

Windows Script Host Intrinsic Objects

256

WshSpecialFolders Properties

Since the WshSpecialFolders object returns a collection, it exposes all of the properties of the WshCollection
object, which is detailed above.

The following sample prints out all members of the WshSpecialFolders collection:

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshSpecialFolders = WshShell.SpecialFolders
For intx = 0 To WshSpecialFolders.Count − 1
 WScript.Echo WshSpecialFolders.Item(intx)
Next

Here's the output of the above script, when executed using cscript:

Using .WSF Files for More Advanced Scripts

With WSH 1.0, developers were limited to using a single scripting language to access the system − the host
determined the appropriate action based on the extension of the file being executed. Thus, in the case of a
VBScript file, Windows mapped its .vbs extension to WSH, which controlled its execution, passing the
contents of the file off to the VBScript engine for interpretation and execution.

The features available in WSH 2.0 are quite an improvement over version 1.0, primarily due to the fact that, in
addition to JScript and VBScript files, the host now recognizes a new file type: Windows Script (.WSF) file
(remember, .WS is the extension used in beta releases of WSH 2.0).

The Windows Script file provides increased functionality and flexibility over that available from .js and .vbs
files, using a simple XML syntax. The following description of the XML elements available in the WSH
schema assumes some familiarity with tag−based markup and container models such as that used in HTML.

Unless stated otherwise, all of these tags are container tags, meaning that each requires matching opening and
closing tags, as follows:

<tag>
 your content here
</tag>

If you are new to XML, please note one crucial difference from HTML syntax. All empty elements in XML
require a terminating slash in order to be recognized as valid elements by the XML parsing engine:

<element attrib="value"/>

Windows Script Host Intrinsic Objects

257

Empty elements exist in HTML as well − such as and
. Since HTML is not as rigid a syntax as
XML, empty HTML elements do not need the terminating slash. The reason for the difference is that, in the
interest of having a small, clean parsing engine, XML requires that every opening tag have a corresponding
closing tag. In the case of empty elements, the open and close are the same.

<?xml?>

Standard XML declaration − forces WSH to parse the file rigidly as XML, enforcing case−sensitivity. This is
an empty element. This element is optional, and must be the first tag to appear when used. Note, the
standalone attribute is not required, and "yes" is the only valid value for this attribute.

Syntax

<?xml version="1.0" [standalone="yes"]?>

<?job?>

This element is a processing instruction that specifies error−handling attributes. This is an empty element, and
should appear prior to the opening <job> or <package> tag. The error attribute should be set to true to allow
the script to raise error messages, and the debug attribute should be true to enable debugging (setting
otherwise will prevent the script from running in the script debugger).

Syntax

<?job error="true|false|1|0" debug="true|false|1|0"?>

<package>

Provides a way for developers to include the necessary code for multiple jobs within a single file. All
multi−job files must have this element as the root. Optional.

Syntax

<package>
<job id="job1">
 <!−− do something −−>
</job>
<job id="job2">
 <!−− do something else −−>
</job>
</package>

<job>

Provides a method for defining multiple jobs within a single file, used in conjunction with the <package> tag.

Syntax

<job [id="jobID"]>
 <!−− do something −−>
</job>

Windows Script Host Intrinsic Objects

258

<object>

Used to define scriptable external objects without the use of methods such as CreateObject and GetObject.
Objects defined using the <object> tag are available globally. This is an empty element. Optional. Child of
<job>.

Syntax

<object
 id="objID"
 [classid="clsid:GUID" | progid="programID"]/>

<reference>

Provides an inclusion mechanism to be used as a way to access type library information without having to
create an instance of an object. This is an empty element. Optional. Child of <job>.

Syntax

<reference
 [object="progID"|guid="typelibGUID"]
 [version="version"]/>

<resource>

Allows a developer to declare string or numeric data to be used within a WSH application, while keeping this
data separate from the actual script code. Commonly used for strings that require localization. Optional. Child
of <job>. Note; evidently support for <resource> was added as of WSH 2.0 beta 2, and documentation of this
tag was not included in the HTML Help file available for the beta release. This situation will be remedied for
the final release.

Syntax

<job>
 <resource id="resErr">
 An error has occurred in this script.
 </resource>
 <script language="VBScript">
 ' catch an error
 WScript.Echo getResource("resErr")
 </script>
</job>

<script>

Uses the familiar HTML syntax. Can be used for external script inclusion by setting the src attribute to a valid
file or UNC path, or for embedding script code directly into your WSH application. Child of <job>.

Syntax

<script [language="VBScript"] [src="strFilePath"]>
 ' script code here ...
</script>

Windows Script Host Intrinsic Objects

259

When WSH scripts are being developed with strict adherence to XML conventions enabled (due to the
inclusion of the <?xml?> processing instruction), inline script should be wrapped in a CDATA section.
Otherwise special characters within the script code cause trouble when parsing the XML structure, as these
characters may also have specific but conflicting meanings in XML. For example, the less than (<) symbol
may be interpreted as starting a new element, while bitwise or Boolean and operations (& or &&) may be
interpreted as unrecognized external entities. In order to avoid these problems, use this syntax when following
XML−based lexical rules:

<?xml version="1.0"?>
<job>
 <script language="VBScript"><![CDATA[
 ' script code here
]]></script>
</job>

Including the CDATA processing instruction informs the XML parser that all information included within the
CDATA block should be treated as literal Character DATA, not as characters that the parser needs to
recognize. For more information on CDATA, see the World Wide Web Consortium's XML 1.0
Recommendation at http://www.w3.org/TR/1998/REC−xml−19980210.

The following is a brief example of the .WSF format, which shows how this new file type can be used to
combine multiple script languages into a single larger functional script:

<?xml version="1.0" standalone="yes"?>
<job>
 <script language="VBScript">
 <![CDATA[
 Function ShowInputBox(str)
 ShowInputBox = InputBox(str)
 End Function
]]>
 </script>
 <script language="JScript">
 <![CDATA[
 var sMsg = "hello from a VBS InputBox";
 var sInput = ShowInputBox(sMsg);
 WScript.Echo(sInput);
]]>
 </script>
</job>

For additional documentation on the optional attributes of these elements, see the online documentation
available on the Microsoft Scripting Technologies Web site
(http://msdn.microsoft.com/scripting/windowshost/). Full documentation in the HTML Help format is also
available for download from this site.

Network Administration with Windows Script Host

Windows Script Host offers a great deal of power and flexibility for network administrators who wish to
automate routine tasks such as managing user accounts; starting, stopping or pausing Internet Information
Services, or creating and deleting file shares.

Important Note: This section will focus primarily on network administration using Active Directory Service
Interfaces (ADSI) 2.5. If you are interested in using WSH in conjunction with Windows
Management Instrumentation (WMI), please consult the WMI documentation included in the

Windows Script Host Intrinsic Objects

260

MSDN Library (http://msdn.microsoft.com/library/) under the Platform SDK | Management
Services node.

ADSI 2.5 is available as part of a default install of Windows 2000, and the product is available for download
for other 32−bit Windows platforms from the Microsoft Web site
http://www.microsoft.com/ntserver/nts/downloads/other/
adsi25/default.asp along with documentation and SDK.

Before we go too far here, let's get a better understanding of the territory. A directory contains information
about objects in a distributed network, such as printers, databases, and other users. A directory service
contains both the directory and the services that make these objects available to users and network
administrators.

Briefly, ADSI allows you to interact with disparate directory services by providing a common set of interfaces
that can be used for interaction with multiple providers. Consider how a Java compiler translates from Java
code to machine−specific instructions. ADSI works similarly − it allows you to connect to various different
providers with similar code, whereas previously you would have been required to learn many different
techniques for connecting to the namespaces of various providers. Providers included with ADSI 2.5 include
the following − please be aware that these names are case−sensitive, and require the terminating colon:

WinNT: Connection to Windows NT4.0 domain controllers.
LDAP: Connection to Lightweight Directory Access Protocol servers, which include

Windows 2000 Active Directory and Exchange 5.
NDS: Connection to Novell Directory Services servers.
NWCOMPAT: Connection to NetWare servers.
IIS: Connection to Internet Information Services Administration objects.
The rest of this section will briefly cover how to undertake a few common network administration tasks via
provider connections using the WinNT: protocol. This is not intended to be a thorough examination of ADSI,
or even of the WinNT: subset; such an undertaking would require an entire volume unto itself. All of the code
samples presented here are using simple, standard ADSI functionality − there's no WSH magic being
performed. The samples could easily be used in an ASP page or in a Visual Basic application.

The following table covers a few of the connection types available when using the WinNT: binding string:

WinNT://DomainName Binds to root of DomainName
WinNT://ServerName/Users Binds to Users collection on ServerName
WinNT://DomainName/JohnDoe,user Binds to user DomainName\JohnDoe
WinNT://DomainName/DC/GroupName,group Binds to GroupName on the DC domain

controller
WinNT://ComputerName,computer Binds to computer ComputerName
Binding to ADSI objects is accomplished with the GetObject method, as shown here. This example creates a
binding to the group DomainName\Users, and lists all users in the group:

' Enumerate members of group "Users"
Set objGroup = GetObject("WinNT://DomainName/Users")
For Each Member in objGroup.Members
 WScript.Echo Member.Name
Next

Windows Script Host Intrinsic Objects

261

Here are some code snippets for common administrivia.

A simple example of creating a new user in a domain, and adding to the group Users:

Set objDomain = GetObject("WinNT://DomainName")
Set objUser = objDomain.Create("user", "JohnDoe")
 objUser.FullName = "John Q.Doe"
 objUser.SetInfo
Set objGroup = GetObject("WinNT://DomainName/Users")
 objGroup.Add("WinNT://" & strDomain & "/" & strUser)

The following example generates a file containing all the groups in the domain, and all of the users in each
group. Due to the file redirection the script performs, it is designed to only run from cscript.exe executing in a
console window. Rather than 'error out' if running under wscript.exe, the script verifies that it is executing in
the correct environment; if not, it prompts the user, suggesting the proper behavior.

' Usage: ADSI_EnumDomGrp >> GroupList.txt
If 0 = Instr(LCase(WScript.Fullname), "cscript") Then
 Set WshShell = WScript.CreateObject("WScript.Shell")
 strMsg = "This script must be executed in a console window,"
 strMsg = strMsg & "using cscript.exe." & vbCrLf & vbCrLf
 strMsg = strMsg & "To execute, enter the selected text"
 strMsg = strMsg & "at a command prompt."
 strExec = "cscript " & WScript.ScriptFullname
 strExec = strExec & " >> GroupList.txt"
 InputBox strMsg, , strExec
Else
 Dim objDomain
 Set objDomain = GetObject("WinNT://stuartu")
 objDomain.Filter = Array("group")
 For Each Group In objDomain
 WScript.Echo vbCrLf & Group.Name
 For Each User In Group.Members
 WScript.Echo vbTab & User.Name
 Next
 Next
End If

Creating and removing file shares:

' Create a file share
Set objComp = GetObject("WinNT://ComputerName/lanmanserver")
Set objShare = objComp.Create("fileshare","WSH")
 objShare.Path = "c:\projects\wsh"
 objShare.SetInfo
Set objShare = Nothing
Set objComp = Nothing
' Remove a file share
Set objComp = GetObject("WinNT://ComputerName/lanmanserver")
 objComp.Delete("fileshare","WSH")
Set objComp = Nothing

This is obviously a very brief introduction into the world of network administration with Windows Script
Host. There is a great deal of power available to administrators who decide to make WSH a part of their
toolkit. Take the time to experiment and figure out how it all works; there is much more than can be done than
what was presented here.

Windows Script Host Intrinsic Objects

262

Summary

By now, you should realize that Windows Script Host 2.0 is a good technology with which to familiarize
yourself. From the improvements offered over version 1, to the new XML−based file format to the flexibility
provided by automation of COM objects and the use of administration tools such as ADSI, WSH has much to
offer to the scripter who is ready to move beyond client and server development alone.

Here's a recap of the topics covered in this chapter:

The tools needed to get started writing scripts with Windows Script Host•
Ways in which WSH can be used, including the creation of custom solutions which integrate scripting
with COM components

•

The cscript and wscript execution environments, and how they differ•
How to customize the behavior of individual scripts through the use of .WSH configuration files•
A detailed examination of the object model available to WSH developers•
A reference of the elements used in the authoring of the more robust .WSF file format•
A brief introduction to the world of network administration using WSH in conjunction with ADSI•

Additional Resources

Usenet

Microsoft Windows Script Host Newsgroup:

news://msnews.microsoft.com/microsoft.public.scripting.wsh

WWW

WSH FAQ:

http://wsh.glazier.co.nz/

Win32 Scripting:

http://cwashington.netreach.net/

Born's Windows Scripting Host Bazaar:

http://ourworld.compuserve.com/homepages/Guenter_Born/index0.htm

Windows Script Technologies:

http://msdn.microsoft.com/scripting/

OLE/COM Object Viewer:

http://www.microsoft.com/com/resource/oleview.asp

Active Directory Services Interfaces

 Summary

263

http://www.microsoft.com/ntserver/nts/downloads/other/adsi25/

Print

Windows Script Host Programmer's Reference (Wrox Press ISBN 1861002653).

Additional Resources

264

Chapter 11: General Client−Side Web Scripting
Still on the subject of VBScript context, we're going to take a look at the area of client−side web scripting,
where the client's browser interprets the script you write. This chapter will serve as a quick look at some of the
uses of client−side scripting.

What Tools Do You Need?

Creating HTML web pages requires a text editor to type in your HTML and a browser to view it. To check
that visitors to your web site see things the way you intend, you'll need to use the same browser (or browsers)
as your users. This is fairly easy with Netscape Navigator, as you can have different versions installed on the
same machine. But because Internet Explorer (IE) couples so tightly with the operating system you can only
have one version of IE per machine, although IE5 has a compatibility mode which allows you to launch IE5
acting as IE4. To use IE5's IE4 compatibility mode you'll actually need to have IE4 installed on the machine
prior to installing IE5, and choose the IE4 compatibility mode option during the IE5 setup.

To thoroughly test your web pages you need to test using the same operating systems as your users. The same
version of a browser may support different features or behave differently depending on the operating system.
For example, IE4 on the Mac does not support ActiveX.

It's possible to create all your pages using Notepad. This has the advantage of being simple to use and it's free
with Windows. However, scripting a whole web site using just Notepad is unnecessarily complicated when
there are plenty of tools available specifically for web page creation.

Most seasoned web designers have some kind of HTML editor that they swear by. If you're expecting to do a
lot of VBScripting and haven't decided on a tool to use, the sort of features you should look for are syntax
highlighting, automatic code completion, and help with event scripting. Syntax highlighting makes code
easier to read by color−coding language keywords. Automatic code completion gives a list of available
properties and methods associated with a HTML tag or an ActiveX control. Event scripting lists the events
available for a particular tag or ActiveX control and will write the code framework to handle the event.

Some WYSIWYG page design tools also have a tendency to rearrange your carefully hand−crafted tags and
code. Because of this, many developers start by building the web site using a WYSIWYG page design tool,
but then switch back to Notepad to hand−code the script.

How Browser Scripting Works

Client−side scripting allows the web developer to manipulate elements within an HTML page and interact
with the user. It also provides a glue with which to bind and work with ActiveX components embedded in the
page.

Client−side scripting, in the form of JavaScript 1.0, first emerged with the release of Netscape Navigator 2.
Although primitive in comparison to the scripting capabilities of modern browsers, it did mean that an HTML
page was no longer just a set of information passively viewed by the user, but was now active and able to act
more like a conventional program.

Prior to DHTML, the most important use of scripting was in form validation. Forms have been supported
since the very first browsers, back in the days when just having text and images on the same page was
considered exciting.

265

However, there was no way to check that what (if anything) the user had entered on a form was actually valid
until after they had submitted it to the server. On receiving the submit form, we could check the validity of the
data with a server−side component (say a CGI program). It would be more user−friendly, though, to catch as
many form errors as possible before this stage, so that we can notify the user of any mistakes before they
submit the form. With client−side scripting we can do just that.

Scripting in the earlier browsers also enabled simple special effects, such as scrolling text in the status bar and
image rollover. However, once a page was loaded it was essentially static − some reaction to user interaction
with elements in the page was possible, but the elements themselves could not be changed, nor was it possible
to add new elements.

As you will see in the next chapter, all this was to change with DHTML, particularly that supported by
Microsoft's Internet Explorer 4 and 5.

Including script into your page just involves using the <SCRIPT> tag. In theory you can generally put script
anywhere in the page, but it's common to place it inside the <HEAD> tag of a page.

As a very simple example, the following script shows a message box when the page is loaded. Note that we
use the LANGUAGE attribute to tell the browser to interpret the script as VBScript.

<HTML>
<HEAD>

<SCRIPT LANGUAGE="VBScript">
 MsgBox "Hello World"
</SCRIPT>

</HEAD>

<BODY>
<H3>A page with script</H3>
</BODY>

</HTML>

The script is not connected to any event in the browser but fires as the browser reaches it when parsing the
page.

The Various Scripting Languages − What's Best for the Browser

The browser wars between Netscape and Microsoft have left us with a (sometimes confusing) array of
scripting languages and standards.

The table below details which browser supports which languages. (for a more detailed breakdown of what is
supported, see Appendices H and I):

Browser Version Microsoft Netscape

2 None JavaScript 1.0

3 JScript 1, VBScript 1 JavaScript 1.1

4 JScript 3, VBScript 3 JavaScript 1.2

5 JScript 5, VBScript 5

 The Various Scripting Languages − What's Best for the Browser

266

Your choice of scripting language is usually limited by which browsers your pages must be compatible with.
Though it is possible to include different client−side scripting languages in a page, it can quickly become
confusing.

JavaScript, JScript, and ECMAScript

JavaScript was first developed by Netscape and was first supported in Netscape Navigator 2. Although
named JavaScript, it in fact has no connection with the development of the Java language, although its syntax
often resembles Java's. To be honest, one of the reasons they called it JavaScript was because it sounded
cooler than its original name, LiveScript.

Because Netscape owned the name JavaScript, when Microsoft released its version of JavaScript with Internet
Explorer 3 it had to be called something else. Microsoft chose JScript. JScript 1.0 has a similar feature set to
JavaScript 1.0. Microsoft jumped a version to JScript 3, which is very similar to (though not totally
compatible with) JavaScript 1.2. Internet Explorer 5 saw the release of JScript 5, which incorporates some of
the features of JavaScript 1.3. Netscape will release JavaScript 1.3 with Netscape Communicator 5.

All the subtle (and sometimes less subtle) differences between Netscape's and Microsoft's versions of
JavaScript produce headaches for developers who just want to get the job done up to the maximum potential
of the languages available. There's nothing more frustrating than spending a day designing an all−singing,
all−dancing web page, only to find that it needs to be significantly amended to run on browser X, version Y,
and platform Z.

To aid the developer, steps have been made towards compatibility between the various dialects of JavaScript,
in the form of ECMAScript. The European Computer Manufacturers Association (ECMA) have released a
standard for JavaScript ECMA−262, hence ECMAScript. Microsoft's JScript 5 is fully compatible with
ECMA−262, and Netscape's JavaScript 1.2 is almost compliant (how's that headache?). The future promises
an updated ECMAScript (likely to be similar to JavaScript 1.3).

VBScript

Given the existence of JavaScript in all its forms, why use VBScript?

Well, firstly, if you're a Visual Basic or VBA developer then you'll feel right at home with VBScript, which is
a subset of VBA. With such similarity (and this book...), you'll quickly be ready to start creating sophisticated
web applications. JavaScript's syntax is arguably less intuitive than VBScript, and tends to be less forgiving of
'mistakes' such as case sensitivity.

In terms of what VBScript and JavaScript can actually do, there is little to choose between the two. Most of
what can be achieved in one can be achieved in the other, though sometimes a clever workarounds is
necessary. Although not compliant with the ECMA standard at all (because it's a different language),
Microsoft have made clear their intention that VBScript will continue to match JavaScript in terms of
functionality.

There are important differences between VBScript and VBA. VBScript is an untyped language, which means
that all variables are variants and don't have an explicit type (such as integer or string).

In fact, they do have subtypes and you can (and often need to) use conversion functions such
as CLng, CStr, and CInt to make explicit the subtype you're dealing with.

The Various Scripting Languages − What's Best for the Browser

267

You'll also find VBScript's error handling less powerful than VBA's.

Responding to Browser Events

Much of the client−side scripting you do will be to handle events raised by objects in the page. It could be the
onSubmit event of a form, the onClick event of an image, or an event raised by an ActiveX control that you
have embedded in your page. The reference section of the book includes a listing of objects and the events
they support.

Adding an Event Handler

The easiest way to add an event handler in Internet Explorer is to define a Sub or Function to handle it inside
a <SCRIPT> block. The name for the Sub or Function must be of the form elementName_eventname. Also
note in the example below the use of the VBScript Me object, which references the object (for example, an
HTML tag or ActiveX control) that caused the event to fire.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
 Sub cmdFire_onclick
 MsgBox Me.Name & " made me do this"
 End Sub
</SCRIPT>
</HEAD>

<BODY>
<INPUT TYPE="BUTTON" NAME="cmdFire" VALUE="Fire">
</BODY>
</HTML>

An alternative way of doing the same thing is to use the FOR and EVENT properties of the <SCRIPT> tag.
All the code inside the <SCRIPT> tags will execute when the event fires.

<HTML>
<HEAD>
<SCRIPT FOR="cmdFire" EVENT="onclick" LANGUAGE="vbscript">
 MsgBox Me.Name & " made me do this"
</SCRIPT>
</HEAD>

<BODY>
<INPUT TYPE="BUTTON" NAME="cmdFire" VALUE="Fire">
</BODY>
</HTML>

Adding an Event Handler That Passes Parameters

If you want to pass parameters to your event handling subroutine, then you must define a Sub or Function and
call that in your element's onEvent embedded inside the tag. You must not name your Sub routine
elementName_EventName or the browser will get confused with the first way we saw above of defining the
event.

Because we are calling a separate subroutine (and not directly defining an event handler), the Me object if
used inside our subroutine won't point to the element that caused the event to fire. It will, however, behave

 Responding to Browser Events

268

'correctly' in the procedure that calls the function, so from here we can pass Me to our Sub as one of its
parameters.

With Internet Explorer 3 there is no other way of finding out which element fired the Sub
routine. Internet Explorers 4 and above have the Event object which you will find out more
about in the next chapter.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Sub DoSomething(theElement,theNumber)
 MsgBox theElement.Name & " made me fire"
 MsgBox "Today's number is the number " & theNumber
End Sub
</SCRIPT>
</HEAD>

<BODY>
<INPUT TYPE="BUTTON" NAME="cmdFire" VALUE="Fire"
 onClick="DoSomething Me,1">
</BODY>
</HTML>

Here, our subroutine is called DoSomething, and it's called from the onclick event of our INPUT button with
our two parameters. Me works fine in the event handler, but if we were to try to refer directly to Me in the
DoSomething procedure, it would have no meaning since the DoSomething procedure is a stand−alone Sub.

Canceling Events

Certain events, such as those associated with link tags and forms, can be cancelled. If, for example, the user
has entered an invalid value in a form, then we don't want the form to submit because we know that it will
fail. Rather, we want to stop the event and notify the user. To do this we normally need to return a value of
False to cancel the action. As only functions (not subroutines) can have return values, we need to define our
event handler code as a function.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Function form1_onsubmit()
 ' Has something been entered?
 If form1.txtNumber.value = "" Then
 MsgBox "You must enter a value"
 form1_onsubmit = false
 ' Is it a valid number?
 ElseIf Not IsNumeric(form1.txtNumber.value) Then
 MsgBox "You must enter a number"
 form1_onsubmit = false
 ' Is the value in range?
 ElseIf form1.txtNumber.value > 10 Or _
 form1.txtNumber.value < 1 Then
 MsgBox "Invalid number"
 form1_onsubmit = false
 Else
 'Form submit can continue
 MsgBox "Valid Number"
 End If
End Function

Responding to Browser Events

269

</SCRIPT>
</HEAD>

<BODY>
 <FORM action="" method=POST id=form1 name=form1 >
 Enter a number from 1 to 10
 <INPUT type="text" id=txtNumber name=txtNumber>

 <INPUT type="submit" value="Submit" id=submit1 name=submit1>
 </FORM>
</BODY>
</HTML>

The Order of Things

With many events it's obvious when they will fire. You click a button, and the onclick event fires. However,
some events don't fire as a direct response to user interaction. The window_onload event is a good example of
this. Any script in your page outside of a subprocedure or function will fire as the page is parsed by the
browser. But which comes first, the window_onload or the parsed code? Also if you have a frameset and
frames, what will be the order the window_onloads fire?

Let's take a look at a simple example. You'll need to create 3 HTML pages: a page containing the frameset
tags and a page for each of the frames.

First we have the frameset page, which we'll call EventOrder.htm.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBSCRIPT">
Dim sEventTracker
Dim iEventOrder
iEventOrder = 0

window.Parent.iEventOrder = window.Parent.iEventOrder + 1
window.Parent.sEventTracker = window.Parent.sEventTracker _
 & window.Parent.iEventOrder _
 & " Frameset − First code in Page" & Chr(13) & Chr(10)
Sub window_onload
 iEventOrder = iEventOrder + 1
 sEventTracker = sEventTracker & iEventOrder _
 & " Frameset window_onload" & Chr(13) & Chr(10)
End Sub
</SCRIPT>
</HEAD>
<FRAMESET rows=50%,*>
 <FRAME SRC="top.htm" id=fraTop name=fraTop>
 <FRAME SRC="bottom.htm" id=fraBottom name=fraBottom>
</FRAMESET>
</HTML>

Next we create the top frame page. Save this page as top.htm.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
window.Parent.iEventOrder = window.Parent.iEventOrder + 1
window.Parent.sEventTracker = window.Parent.sEventTracker _

Responding to Browser Events

270

 & window.Parent.iEventOrder _
 & " Top frame − First code in Page" & Chr(13) & Chr(10)

Sub cmdCheckForm_onclick
 window.Parent.iEventOrder = window.Parent.iEventOrder + 1
 window.Parent.sEventTracker = window.Parent.sEventTracker _
 & window.Parent.iEventOrder _
 & " Top frame − cmdCheckForm_onclick" & Chr(13) & Chr(10)
 form1.txtEvents.Value = window.Parent.sEventTracker
End Sub

Sub window_onload
 window.Parent.iEventOrder = window.Parent.iEventOrder + 1
 window.Parent.sEventTracker = window.Parent.sEventTracker _
 & window.Parent.iEventOrder _
 & " Top frame − window_onload" & Chr(13) & Chr(10)
End Sub

</SCRIPT>

</HEAD>
<BODY>
<FORM action="myform_handler.asp" method=post id=form1 name=form1>
<TEXTAREA cols=60 name=txtEvents rows=10></TEXTAREA>
<INPUT type="button" value="List Events" name=cmdCheckForm>
</FORM>

<SCRIPT LANGUAGE="VBScript">
window.Parent.iEventOrder = window.Parent.iEventOrder + 1
window.Parent.sEventTracker = window.Parent.sEventTracker _
 & window.Parent.iEventOrder _
 & " Top frame − Second code in Page" & Chr(13) & Chr(10)
</SCRIPT>
</BODY>
</HTML>

Finally, the page for the bottom frame. Save this as bottom.htm.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
window.Parent.iEventOrder = window.Parent.iEventOrder + 1
window.Parent.sEventTracker = window.Parent.sEventTracker _
 & window.Parent.iEventOrder _
 & " bottom frame − First code in Page" & Chr(13) & Chr(10)

Sub window_onload
 window.Parent.iEventOrder = window.Parent.iEventOrder + 1
 window.parent.sEventTracker = window.Parent.sEventTracker _
 & window.Parent.iEventOrder _
 & " bottom frame − window_onload" & Chr(13) & Chr(10)
End Sub
</SCRIPT>

</BODY>
</HTML>

If you load the page containing the frameset, then click the list events button, the text area will be filled with
details of the window_onload events and embedded scripts, listed in the order they fired.

Responding to Browser Events

271

It's perhaps worth noting that the differences between browsers include not just the events each HTML tag has
but the order they fire in. For example, If you try this on IE3 you'll find the order in which events fire is
different from that of IE4 and 5. Though the events we've used in our examples are the same for IE4 and IE5,
you will find other differences between them.

Validating Forms

To obtain information from the user we need to use an HTML form populated with form elements. In
scripting the HTML form can be manipulated and examined using its form object. An HTML page can have
one or more forms which we can either reference by name or using the document object's forms array. In most
cases it's easier just to refer to a form by name.

To insert an HTML form into a page the <FORM> tag is used along with the corresponding
</FORM> close tag.

The most important properties of the <FORM> tag are Action and Method. The Action property is the URL
where the form will post to, for example an ASP page or a CGI script. The Method property can be either post
or get, and determines how the form's data is transmitted to the server when the form is submitted. If the
Method property is set to get, then the data in the form's elements will be appended to the URL that was
specified in the Action property. A form Method of post sends the form's data as a data stream to the server
along with the http header.

Generally speaking the form post method is used, and indeed the get method has been depreciated in HTML
4.0. This is because Get places a limit on how much data can be sent and is actually visible in the URL for
your users to see, something which you may not want.

Having defined our form tags, we can then populate the form with the HTML controls (also referred to as
elements) available. The most common controls are input boxes, radio buttons and select controls. The next
thing we need to worry about is how we make sure what the user submits is valid data.

Validating Numerical Input Box Values

The most common criteria for validation of an input box that's being used for the entry of numerical data are:

that the field has been completed•
that it contains a numeric value•
that the numeric value is within an acceptable range•
that it is an integer•

We saw a simple example of this earlier on. The example below describes another approach. If the value
entered by the user into form1's element text1 is an integer between 1 and 10, then a message box tells us that
it's valid. At this point (in real life...) you would actually submit the form rather than inform the user the way
we do here. The line 'form1.submit' (which is currently commented out) in the code below will do this,
although to use the code as supplied here you'll need to create the page myform_handler.asp yourself.

If the user has entered invalid data then the ValidInteger function returns a message describing the problem.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Function ValidInteger(sNumber, iMin, iMax)

 Validating Forms

272

 Dim iNumber
 ' Is it a number?
 If IsNumeric(sNumber) Then

 ' Is it a whole number (no decimal place)?
 If InStr(sNumber,".") = 0 Then

 ' Is it in range?
 If CLng(sNumber) >= iMin And CLng(sNumber) <= iMax Then
 ValidInteger = ""
 Else
 ValidInteger = "You must enter a number between " _
 & iMin & " and " & iMax
 End If
 Else
 ValidInteger = "You must enter a whole number"
 End If

 Else
 ValidInteger = "You must enter a number"
 End If
End Function
Sub cmdCheckForm_onclick
 Dim sValidity
 sValidity = ValidInteger(form1.text1.value,1,10)
 If sValidity = "" Then
 MsgBox "Valid"
 'form1.submit
 Else
 MsgBox sValidity
 End If

End Sub
</SCRIPT>
</HEAD>

<BODY>
<FORM action="myform_handler.asp" method=POST id=form1 name=form1>
 <INPUT id=text1 name=text1>
 <INPUT type="button" value="Button" id=cmdCheckForm name=cmdCheckForm>
</FORM>
</BODY>
</HTML>

Validating Radio Buttons

The only check for validity you can make with a radio button group is that one element has been selected by
the user. You could define one of the elements to be checked by default, simply by putting CHECKED inside
one of the radio buttons' tags.

Note that to define a group of radio buttons we simply create a number of radio buttons and
give them the same name.

Some things are too important to be left to defaults, though. Take the example of a radio group for selecting a
credit card type. By not using a default, you know that the user has made a positive choice in setting their
credit card type. Otherwise there is a danger that they could have missed the question, and we would end up
with invalid information.

Validating Forms

273

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">

Function RadioGroupValid(radGroup)
 Dim iElement
 RadioGroupValid = False
 ' Loop through the radio buttons in the group
 For iElement = 0 To radGroup.Length − 1
 ' If one is checked then we have validity
 If radGroup(iElement).Checked = True _
 Then RadioGroupValid = True
 Next
End Function

Sub cmdCheckForm_onclick
 Dim sValidity
 If RadioGroupValid(form1.radCreditCard) Then
 MsgBox "Valid"
 'form1.submit
 Else
 MsgBox "Invalid"
 End If
End Sub

</SCRIPT>
</HEAD>
<BODY>
<FORM action="myform_handler.asp" method=post id=form1 name=form1>
 Visa
 <INPUT type="radio" id=radCreditCard name=radCreditCard value="Visa">

 American Express
 <INPUT type="radio" id=radCreditCard name=radCreditCard value="Amex">

 Master Card
 <INPUT type="radio" id=radCreditCard name=radCreditCard value="MasterCard">

 <INPUT type="button" value="Test" id=cmdCheckForm name=cmdCheckForm>
</FORM>
</BODY>
</HTML>

We loop through each of the radio buttons in the group and check if one is selected. We can find out how
many elements there are in a group using the length property. When the form is actually posted the value sent
will only be the value of the selected radio button. So if radio button 3 is selected then radio1=MasterCard
will be submitted to the server.

Validating Select Controls and Dates

An HTML SELECT element can be used like either a Visual Basic combo box or a list box, depending on its
size property. If you set the size property to 1 then it acts like a drop−down combo box, but if its size is set to
more than one then it becomes a list box.

A common use of the select element is to allow the user to enter a date. Its advantage over using a text box for
dates is its clarity for the user. For example, American and British formatting of dates differs and can cause
problems. In Britain 11/07/1999 is the 11th day of July, and in America this is interpreted as the 7th day of
November. Using select controls you can unambiguously pass the date you mean without trusting the user to

Validating Forms

274

get it the right way around.

In the next example we validate the date defined by the user selecting from select boxes. We need to ensure
that they don't select the 31st April or the 29th of Feb in a non−leap year.

I've deliberately not fully populated the select boxes to save space and time. In practice you could use ASP
server−side code to dynamically populate them with day and year values.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">

Function CheckDate(sDay, sMonth, sYear)
 On Error Resume Next
 Dim Date1
 ' If invalid date an error will be raised
 Date1 = CDate(sDay & "/" & sMonth & "/" & sYear)
 ' If error number not 0 then invalid date
 If Err.number <> 0 Then
 Err.Clear
 ' Calc days in month by going to next month then
 ' subtract 1 day
 Date1 = DateAdd("m",1,sMonth & "/" & sYear)
 Date1 = DateAdd("d",−1,Date1)
 CheckDate = "There are only " & Day(Date1) _
 & " days in " & sMonth
 Else
 CheckDate = ""
 End If
End Function

Sub cmdCheckForm_onclick
 sDateValidityMessage = CheckDate(form1.cboDay.Value, _
 form1.cboMonth.Value, form1.cboYear.Value)
 If sDateValidityMessage <> "" Then
 MsgBox sDateValidityMessage
 Else
 MsgBox "That date is valid"
 'form1.submit
 End If
End Sub
</SCRIPT>
</HEAD>

<BODY>
<FORM action="myform_handler.asp" method=post id=form1 name=form1>
<SELECT id=cboDay name=cboDay size=1>
<OPTION value=28>28 <OPTION value=29>29 <OPTION value=30>30 <OPTION value=31>31 </SELECT>

<SELECT id=cboMonth name=cboMonth size=1>
<OPTION value=Jan>Jan<OPTION value=Feb>Feb<OPTION value=Mar>Mar<OPTION value=Apr>Apr</SELECT>

<SELECT id=cboYear name=cboYear size=1>
<OPTION value=1999>1999<OPTION value=2000>2000<OPTION value=2001>2001</SELECT>

<INPUT type="button" value="Test" id=cmdCheckForm name=cmdCheckForm>
</FORM>
</BODY>
</HTML>

Validating Forms

275

Finally, we'll take a look at an important aid to scripting − the Document Object Model, which allows us to
access all the objects and tags in our pages in our script.

The Document Object Model

VBScript doesn't exist in a vacuum. It's a tool with which to manipulate the environment of its current
context, whether that's WSH and the Windows system, ASP and Internet Information Server, or a web
browser and web pages. But what are we actually manipulating? The answer is the Document Object Model.

The Document Object Model (DOM) is an all−encompassing term for the programmatic interface to the
hierarchy of objects available within a browser and the web page it displays. It maps out each object's
associated properties, methods and events. Objects include the browser itself, a frame's window, the document
or web page within that frame, and the HTML and XML tags within the page, as well as any plugins or
embedded ActiveX controls. The DOM also includes a number of collections of objects, such as the forms
collection we have already seen in use.

Every browser version has its own DOM, and they vary considerably between Microsoft's Internet Explorer
and Netscape's Navigator. There is also considerable variation between different versions of the same
browser.

In an effort to bring about a common standard for the DOM, the W3C (the body which deals with Web
standards) has released a number of standards for defining the DOM. The W3C's DOM (Level 0)
approximated to the level supported by version 3 browsers.

Level 1 DOM specifications, released in October 1998, struck a balance between Internet Explorer 4's DOM
and that of Netscape 4's, though IE4's was much closer to the spec. The changes from the Level 0 DOM to
Level 1, particularly those supported by IE4, were quite dramatic. The Level 1 spec makes every element
within a page a programmable object and exposes its attributes as properties. Microsoft's DOM in IE4 went
even further, allowing pages to be updated even after they have been loaded. This puts the 'Dynamic' in
Dynamic HTML. Prior to this (with the exception of images), once the page was loaded into a browser no
further changes were possible.

Level 2 is still a working draft and reflects developments in the latest browsers, as well as looking ahead to
the future. Appendices H and I detail the DOM implementations of Internet Explorer 4 and 5. You can find
the latest information on DOM specification developments on the W3C's web site at
http://www.w3.org/DOM/. Although IE5's version of the DOM is already out, it has been submitted to the
W3C for inclusion in their specification, and it is hoped that Netscape will live up to its promises to
implement the W3C level 2 DOM in its forthcoming Communicator 5.

The new DOM supported by IE5 is a significantly evolutionary move on from that supported by IE4. In IE4
almost all tags were programmable; in IE5 all tags are. Also, new methods introduced in IE5's DOM make
dynamically manipulating the page easier than it was with IE4.

The DOM In Practice

DOM specifications are all well and good, but as programmers it's the practical implementation we're
interested in. Before leaving this chapter it's worth taking a look at the DOM as implemented by IE4 and IE5.
We'll just take a broad overview here; you can find the full object models in the appendices.

 The Document Object Model

276

The Window Object

At the top of the HTML DOM hierarchy is the window object. If your page has no frames then there is just
one window object; if there are frames, then each frame has its own window object.

Each window object within a frameset has a parent window object which is the window object of the page
defining the frames. You can access any of the other window objects from script inside a page by using the
window object's parent property. Once you have a reference to the parent window object you can use that to
access not only the window object's properties and methods, but also those of any HTML tags inside that
window. You can also use it to access any global VBScript variables or functions.

Let's take a look at a simple frameset example. We will create 3 pages, the first defines a frameset, the second
is the left window's page and the third the right window's page.

Save the first page as TopFrame.htm:

<HTML>
<SCRIPT LANGUAGE="VBSCRIPT">
Dim sName
sName = "Top Frame"

Sub SayWhoIsThis()
 MsgBox "This is the top frame's subprocedure " _
 & "window.SayWhoIsThis"
End Sub
</SCRIPT>
<FRAMESET COLS="50%,*">
 <FRAME SRC="LFrame.htm" NAME="LFrame">
 <FRAME SRC="RFrame.htm" NAME="RFrame">
</FRAMESET>
</HTML>

Save this next page as Lframe.htm:

<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBSCRIPT">
Dim sName
sName = "Left Frame"

Sub SayWhoIsThis()
 MsgBox "This is LFrame's subroutine window.SayWhoIsThis"
End Sub
</SCRIPT>
<TITLE>Left</TITLE>
</HEAD>
<BODY>
<H2>LEFT FRAME</H2>
</BODY>
</HTML>

Save the final page as Rframe.htm:

<HTML>
<HEAD>
<META name=VI60_defaultClientScript content=VBScript>
<SCRIPT LANGUAGE="VBSCRIPT">

The Document Object Model

277

Dim sName
sName = "Right Frame"

Sub SayWhoIsThis()
 MsgBox "This is RFrame's subroutine window.SayWhoIsThis"
End Sub

Sub button1_onclick
 MsgBox "window.sName = " & window.sName
 window.SayWhoIsThis
End Sub

Sub button2_onclick
 MsgBox "window.Parent.sName = " & window.parent.sName
 window.Parent.SayWhoIsThis
End Sub

Sub button3_onclick
 MsgBox "window.parent.LFrame.sName = " & window.Parent.LFrame.sName
 window.Parent.LFrame.SayWhoIsThis
End Sub

Sub button4_onclick
 MsgBox "window.Parent.LFrame.sName = " & window.Parent.frames(0).sName
 window.Parent.frames(0).SayWhoIsThis
End Sub
</SCRIPT>
</HEAD>

<BODY>
<H2>RIGHT FRAME</H2>
<INPUT type="button" value="window" name=button1>
<INPUT type="button" value="window.Parent" name=button2>
<INPUT type="button" value="window.Parent.LFrame" name=button3>
<INPUT type="button" value="window.Parent.frames(0)" name=button4>
</BODY>
</HTML>

If you load Topframe.htm into your browser you can try out the buttons in the right frame. These demonstrate
accessing script in the window object of the right frame, its parent's window and the left frame.

In the first button's on_click we are accessing the window of the current frame so we normally don't need to
explicitly say it's the window object we are referring to as this is implied − sName is the same as
window.sName. In some contexts you will need to explicitly state it's the window object you are referring to.

When the second button is clicked, the top frame page (in other words, the right window's parent object), is
referenced. This is very handy for defining global variables and functions when you have a multi−frame page.

For the third button we access the sName and SayWhoIsThis function contained in the left frame. When the
button is clicked we do this by referencing the frame named Lframe contained by the right window's parent
window object. As you can see navigating the DOM can get a little complex.

The fourth button does exactly the same as the third but in a different way to demonstrate another of the
DOM's important features: collections.

The Document Object Model

278

Collections

The window object has not only properties, methods and events, but like many other objects in the DOM it
also has collections. We know from the example above that a window object can have many child window
objects, but where are these contained? The answer is in the frames collection. The frames collection is a
zero−based array containing references to the frames defined by that window. So in button4's code, you see
that the left frame is window.parent.frames(0) which is exactly the same as window.parent.Lframe.

Moving down the DOM hierarchy, we come to the document object. Each window object contains a
document object, which can be referenced using the window object's document property. The document
object acts as a container for all the document objects, such as HTML tags, ActiveX controls, inside your
page. Like the window object it has a large number of collections associated with it.

Let's take a look at an example. Here we create a simple page with a paragraph and a table. Using script we
access collections and properties in the DOM. I have used the document.all collection to set references to
various document objects in the page. An alternative would be to give all the tags names and use them instead,
but you'll find that there are times when you're not in a position to know the name of a tag and need to access
it using collections such as the all collection.

<HTML>
<HEAD>
<TITLE>Navigating the DOM</TITLE>
<SCRIPT LANGUAGE="VBScript">
Sub button1_onclick
 Dim theWindow
 Dim theDocument
 Dim thePara
 Dim theTable
 Dim theRow
 Dim theCell

 Set theWindow = window

 Set theDocument = theWindow.document
 MsgBox theDocument.title

 Set thePara = theDocument.all(5)
 MsgBox thepara.innerText

 Set theTable = theDocument.all(6)
 MsgBox theTable.tagName

 Set theRow = theTable.rows(1)
 MsgBox theRow.name

 Set theCell = theRow.all(1)
 MsgBox theCell.innertext
End Sub</SCRIPT>
</HEAD>
<BODY>
 <P>A Paragraph</P>
 <TABLE BORDER=1 NAME="table1">
 <TR>
 <TD>Cell 1</TD>
 <TD>Cell 2</TD>
 </TR>
 <TR NAME="second_row_in_table1">

The Document Object Model

279

 <TD>Cell 3</TD>
 <TD>Cell 4</TD>
 </TR>
 </TABLE>
<INPUT type="button" value="document.all" name=button1>
</BODY>
</HTML>

First we dimension some variables which we will set to reference document objects. We could reference the
objects directly, but creating variables to reference them does make your code easier to read if you are
accessing the property numerous times. Creating the reference to the window and document object is
unnecessary for this example, but we've done it to emphasize what it is we are referencing in the DOM.

We set the variable theWindow to reference the window object for our page. Then we use object's document
property to set a reference to the document for that page and to display the page's title.

We set the variable thePara to reference our paragraph contained in the document object. Why
document.all(5) and not document.all(0)? Well, the all collection of an object references all objects contained
by that object. Here it's the document and the document includes the html tag, head tags, the script tags, the
body tags and so on. The collection starts at zero and as our paragraph is the sixth tag in the page it is
document.all(5).

We then use the message box to show the innerText property of the paragraph object.

Next, we set theTable to reference the table in the page. It's the next tag after the paragraph, so it corresponds
to document.all(6). We show a message box with the table's tagName property. The tagName is simply the tag
definition, so for <TABLE> it's TABLE, for a <P> it's P, and so on.

Next we set theRow to reference the second row in the table. We do this using the rows collection of the table
object.

Finally we obtain a reference to the second cell in the row by using the all collection of the row object. We
could have used the cells collection, but this example demonstrates that it's not just documents which have the
all collection. In fact all objects have it if they contain other objects.

Hopefully the examples in this section have demonstrated how to access objects in the DOM, and also shown
that the DOM is a hierarchical collection of objects, with each object in the hierarchy being both an object
inside another object and also a container for other objects.

Summary

In this chapter we have taken a brief look at what client−side scripting is for. We saw how to connect events
raised by HTML objects to VBScript code. We noted relationship between VBScript and JavaScript. In reality
neither language is better than the other, it's really determined by what browsers your pages must support and
what your previous programming experience is. VBScript makes an excellent choice for Visual Basic and MS
Office VBA programmers who are writing for Internet Explorer.

Validating forms client−side using VBScript was also demonstrated with various controls and types of data.
Finally, we examined the Document Object Model and the various standards associated with it, including
those laid out by the W3C and implemented by Microsoft and Netscape.

 Summary

280

In the next chapter you'll be shown lots of exciting techniques using the latest technologies available with
Internet Explorer 5.

 Summary

281

Chapter 12: High−Powered Client Scripting
In this chapter, we'll continue looking at client−side scripting. But we'll look at more advanced technologies
that give much needed functionality and extensibility to client−side pages: scriptlets, behaviors, HTML
components, and remote scripting (which allows your client page to execute a method on the server). Each of
these subjects could be (and are) covered in books of their own, so we'll focus on small, well−tested samples
(code examples) that hit all the major techniques required to enable these technologies. In reality, to achieve
maximum gain from these technologies you'd have to read masses of documentation − most of which is very
poor. We'll show you here what is possible and how to go about doing it. We'll have achieved what we set out
to do if, when you finish this chapter, you are able to make any sense of the documentation!
(http://msdn.microsoft.com/scripting)

Technology Requirements

Even though these are advanced applications and tools, you still need a good text editor to manage these
technologies. The following table lists the applications you need to make use of the technologies:

Technology Requirements

Scriptlets IE4 or IE5

Behaviors/HTML Components IE5

Remote Scripting Client Side: IE4 or IE5

Server Side: IIS 4.0

Microsoft Remote Scripting 1.0a

Importance of Browser Security Settings

The browser is a security−aware application. Every component contained within the browser is subject to the
security settings defined for it. For information about security settings refer to the documentation for your
browser(s). Typically, the zone containing the components−server should be Medium (Medium−Low in IE5)
or Low. If the security level is more restrictive the components will not download on the client computer. It is
especially important to verify security settings when distributing an application that uses components.

Scriptlets − Ancestors of Behaviors

Introduced in IE4, the scriptlet mechanism was the first browser technology to permit the design of
components using DHTML. While developing a web or an intranet project, you usually produce a lot of
HTML and scripting functionalities. Without a technology to implement components, you're limited to
reusing your code by cutting it from a source file and pasting it into another file (or you can include external
scripting files using the SRC attribute of the <SCRIPT> tag: a useful facility, not a component−based
technology). Furthermore, to cut and paste code usually requires lot of adaptations to make the code work in
the new context. On the other hand the usage of a component is straightforward. You include it in your
context using its public interface made of properties, methods, and events − the usual stuff expected by an
object oriented programmer.

282

What is a Scriptlet?

Conceptually a scriptlet is a component developed using DHTML. Physically a scriptlet is an HTML file with
a few extensions to allow the definition of properties, methods and events that permit its use as a component.

The Hello World Scriptlet

To quickly show what a scriptlet is, we'll introduce the classic minimal application "Hello World". The
application's task is just to output the "Hello World" message using the technology under examination. To
implement Hello World two files are required:

the component file: HELLO.HTM•
the client file: CLIENT01.HTM•

The following code shows the content of CLIENT01.HTM.

<html>
<head>
<SCRIPT LANGUAGE="VBScript">

Sub Hello()
 Document.All.myScriptlet.Hello
End Sub
</SCRIPT>
</head>

<body onload="Hello()">

<OBJECT ID="myScriptlet"
 TYPE="text/x−scriptlet"
 DATA="hello.htm"
 HEIGHT="0" WIDTH="0">
</OBJECT>

</body>
</html>

The scriptlet is identified by the name myScriptlet. This name has been used as the ID of an OBJECT tag
included in the HTML file. The details of this tag are:

<OBJECT ID="myScriptlet"
 TYPE="text/x−scriptlet"
 DATA="hello.htm"
 HEIGHT="0" WIDTH="0">
</OBJECT>

Important Note: the HEIGHT and WIDTH parameters of the <OBJECT> tag have been set to zero to make
the object invisible. It could make sense to have a visible object if the scriptlet contains visible
objects as well − not the case in this sample.

The following line calls the scriptlet code:

Document.All.myScriptlet.Hello

This line will require a scriptlet that exposes a Hello method. This very simple scriptlet is stored in the
HELLO.HTM file:

Scriptlets − Ancestors of Behaviors

283

<SCRIPT LANGUAGE="VBScript">

Sub public_Hello()
 MsgBox "Hello World!"
End Sub

</SCRIPT>

So, what does our scriptlet comprise? An HTML file encapsulating the scripting code inside a <SCRIPT> tag
− in our case containing just one VBScript function defined as public_Hello.

Points to note from this example:

The <OBJECT> tag permits us to insert a scriptlet into an HTML document using a special object
type defined as "text/x−scriptlet".

•

The scriptlet code is contained in an HTML file specified in the DATA attribute of the <OBJECT>
tag.

•

The scriptlet is accessed for scripting through the ID specified for the <OBJECT> tag (in other words
myScriptlet in the sample).

•

The Prefix "public_" Exposes Scriptlet Members

VBScript offers a very simple way to define which code is exposed by the scriptlet to the container: a naming
convention.

The procedures and functions become public methods of the scriptlet if their names are prefixed with
public_.

•

The global variables in the code become properties of the scriptlet if their names are prefixed with
public_ as well.

Important Note: JScript (JavaScript) offers a further mechanism called "Public Description Object"
to define the public interface of a scriptlet. JScript is outside the scope of this book and,
anyway, we don't need it to implement scriptlets.

•

Further naming conventions:

Prefix: Used to expose:
public_ variables as read/write properties,procedures or functions as

methods
public_get_ functions as readable properties
public_put_ functions as writable properties
When a scriptlet member is exposed, its name in the host application does not have the prefix. Remember that
the Hello function in the HELLO.HTM scriptlet was defined as public_Hello:

Sub public_Hello()

While the public_ prefix has been removed in the method call made by the host file CLIENT01.HTM:

Document.All.myScriptlet.Hello ' and not Document.All.myScriptlet.public_Hello

Scriptlets − Ancestors of Behaviors

284

Scriptlets use prefixes to expose their public interface, but the host applications don't use the prefixes to
access that interface. Quite an ambiguous syntax to declare a public interface.

Packaging Code in a Scriptlet for Reuse

Scriptlets are a good mechanism to package reusable code into one module. The next page sees the start of a
more complex example that exposes a few methods and a property:

The Cookies Manager

The Cookies Manager is a scriptlet that exposes the following interface:

Member Type Name Description

Property KeyExists True if the cookie key exists.

Usually checked after calling GetCookieKey or
RemoveCookieKey.

Method SetCookieKey
(Key, Value)

Stores a value in a cookie, associating it with a specific
key.

Method GetCookieKey
(Key)

Returns the value of a specific key in a cookie.

Method RemoveCookieKey (Key) Removes a specific key from a cookie.
Using this interface, the client can store, read or remove a specific key in a cookie.

Important Note: an HTTP cookie is a small file stored on a client machine. Using cookies, you can
implement persistency among different sessions (so a user returning to the page will still
find the values previously stored in the cookie).

The content of COOKIESMANAGER.HTM (the scriptlet) is:

<SCRIPT LANGUAGE="VBScript">
<!−−

Dim public_KeyExists

Sub public_SetCookieKey(sKey, sValue)
 Dim ck
 ck = sKey & "=" & sValue
 ck = ck & ";Expires=Fri 01−Jan−2010 13:00:00 GMT"
 Document.Cookie = ck
End Sub

Function public_GetCookieKey(sKey)

 public_KeyExists = True

 Dim iLoc
 iLoc = Instr(Document.Cookie, sKey)

 If iLoc = 0 Then
 public_GetCookieKey = ""
 public_KeyExists = False
 Else
 Dim sTemp

Scriptlets − Ancestors of Behaviors

285

 sTemp = Right(Document.Cookie, Len(Document.Cookie) − iLoc + 1)
 Dim iKeyLen
 iKeyLen = Len(sKey)

 If Mid(sTemp, iKeyLen + 1, 1) <> "=" Then
 public_GetCookieKey = ""
 public_KeyExists = False
 Else
 Dim iNextSep
 iNextSep = Instr(sTemp, ";")

 If iNextSep = 0 Then iNextSep = Len(sTemp) + 1
 If iNextSep = (iKeyLen + 2) Then
 public_GetCookieKey = ""
 Else
 Dim iValLen
 iValLen = iNextSep − iKeyLen − 2
 public_GetCookieKey = Mid(sTemp, iKeyLen + 2, iValLen)
 End If
 End If
 End if

End Function

Sub public_RemoveCookieKey(sKey)
 Document.Cookie = sKey & "=NULL;Expires=Fri 01−Jan−1980 13:00:00 GMT"
End Sub

−−>
</SCRIPT>

We need a new host application to display an example of using the Cookies Manager scriptlet. This is the
content of the sample file CLIENT02.HTM:

<html>
<head>
<SCRIPT LANGUAGE="VBScript">
<!−−

 Sub btnGetName_onClick
 Dim sValue
 sValue = InputBox("Enter your name:")
 Document.All.myScriptlet.SetCookieKey "Name", sValue
 Document.All.Message.InnerHTML = "And now reload the page please..."
 End Sub

−−>
</SCRIPT>

<SCRIPT LANGUAGE="VBScript" FOR="window" EVENT="onload">
<!−−
 Dim sValue
 sValue = Document.All.myScriptlet.GetCookieKey("Name")

 If Document.All.myScriptlet.KeyExists Then
 Document.All.Main.InnerHTML = "Hello " & sValue & "!"
 End If
−−>
</SCRIPT>
</head>

Scriptlets − Ancestors of Behaviors

286

<body>

<OBJECT ID="myScriptlet"
 TYPE="text/x−scriptlet"
 DATA="cookiesManager.htm"
 HEIGHT="0" WIDTH="0">
</OBJECT>

<div id="Main">
<input TYPE='BUTTON' NAME='btnGetName' VALUE='Give me your name'>
</div>

<div id="Message">
</div>

</body>
</html>

The first time you load the CLIENT02.HTM file in the browser, you will just see a button:

Pushing the button results in a dialog box asking for your name:

After giving your name, the document will be updated informing you to reload the page:

Reloading the page will demonstrate that you added persistence to the page using the Cookies Manager:

Scriptlets − Ancestors of Behaviors

287

What Has Really Happened?

The first time you load the page there is no cookie storing your name. The following <DIV> tag will show the
button:

<div id="Main">
<input TYPE='BUTTON' NAME='btnGetName' VALUE='Give me your name'>
</div>

Once you've completed the process by giving your name and then reloading the page, the same <DIV> will be
dynamically filled with a different content by the VBScript code:

 sValue = Document.All.myScriptlet.GetCookieKey("Name")

 If Document.All.myScriptlet.KeyExists Then
 Document.All.Main.InnerHTML = "Hello " & sValue & "!"
 End If

Using the Cookies Manager, your name has been stored in a cookie (very originally called "Name").

The Cookies Manager sample extends the "Hello World" sample showing:

How to implement properties (KeyExists)•
How to pass variables to methods (SetCookieKey, GetCookieKey, RemoveCookieKey)•
How to retrieve values from methods (GetCookieKey)

Important Note: the algorithms in the scriptlet can be improved sensibly. The Cookie Manager is
just a sample to show how code can be conveniently packaged into scriptlets.

•

Managing Events

When the scriptlet is used in a host document, the host document can be notified about events raised from the
scriptlet. The scriptlet can raise two types of events:

Standard DHTML events.•
Custom events (not standard events defined by the scriptlet).•

Event Handlers' Relationships

Handlers have a one−to−one relationship with each other: one event handler is in the scriptlet and raises the
event, another event handler is in the host document to capture the event raised by the scriptlet.

Standard Events

The standard DHTML events exposed by the scriptlet are:

onclick•
ondblclick•
onkeydown•
onkeypress•
onkeyup•
onmousedown•

Scriptlets − Ancestors of Behaviors

288

onmousemove•
onmouseup•

The following sample shows the implementation of an event handler in the scriptlet for the onclick event:

<SCRIPT LANGUAGE="VBScript">

Function BubbleOnClick()
 ' do something before raising event in the container object if required
 ' usually check the frozen property to be sure that the container
 ' object is ready to handle events
 Window.External.BubbleEvent
 ' do something after raising the event if required
End Function

</SCRIPT>

The sample shows:

How to access the object container through the External property of the Window object•
How to raise the event in the object container using the BubbleEvent method•

If the scriptlet does not implement an event handler for a standard event using the BubbleEvent method, that
event will not be passed to the host application.

Important Note: in a COM development environment the scriptlet container object will expose all standard
events at design time, even if the scriptlet does not handle all of them.

In this context the scriptlet container object is the HTML document. The Event object is accessed through the
Window.Event property. The Event object properties will give additional information on the specific event.

The following sample shows how to access the event additional information using the Window.Event
property:

<SCRIPT LANGUAGE="VBScript" FOR="document" EVENT="onkeydown">
 Window.Status = "Key code = " & Window.Event.KeyCode
Window.Status = Window.Status & "Shift status = " & Window.Event.ShiftKey
</SCRIPT>

Custom Events

Custom events are used:

to expose more information about a standard event•
to notify the host document about DHTML events that are not among the events handled by the
BubbleEvent method

•

to notify the host document about changes in the internal state of the scriptlet•

The following sample shows how to notify an event in the last case:

<SCRIPT LANGUAGE="VBScript">

Managing Events

289

Function public_put_Title(sNewTitle)
 public_Title = sNewTitle
 Window.External.RaiseEvent ("event_ontitlechange", Window.Document)
End Function

</SCRIPT>

The sample shows that:

to raise an event from the scriptlet the RaiseEvent method is required•
there is a naming convention: the exposed event name is prefixed with event_•
the object involved is passed as an argument to the RaiseEvent method•

A special event is captured in the host document to run the host event handler: onscriptletevent. The following
sample shows the technique:

<SCRIPT LANGUAGE="VBScript" FOR="myScriptlet"
 EVENT=onscriptletevent(EventName, EventData)>
 MsgBox "The scriptlet raised the following event: " & EventName
</SCRIPT>

All the custom events are then handled by the onscriptletevent. As a result, a Select Case structure is usually
used in the onscriptletevent handler to take different actions based on different events.

Determining When the Scriptlet is Ready

To make sure everything works fine, the container object implements the property ReadyState and the event
onreadystatechange to be used to ensure that specific code will be executed only when the scriptlet has been
completely loaded into the container object. The onreadystatechange event is fired multiple times while the
scriptlet is loading. The last time, it indicates that the scriptlet's .htm page is fully loaded and its scripts can be
called. The ReadyState property is used to test the current state. This property is read−only and it is available
only at runtime. The ReadyState property returns an integer value indicating the loading state of the scriptlet:

Value Description

1,2 Still loading

3 Scriptlet has been loaded, but the page might not yet be fully functional.

4 Scriptlet is completely loaded

Scriptlet Model Extensions

Specific extensions have been introduced into the Dynamic HTML Object Model to facilitate the design and
implementation of scriptlets. All these extensions are available in the DHTML Window.External object.

Properties Methods

Frozen BubbleEvent

SelectableContent RaiseEvent

Version SetContextMenu
The above properties and methods are considered in more detail below:

Managing Events

290

Frozen Property

Description Indicates whether the scriptlet container object is ready to handle events.

Syntax Variable = Window.External.Frozen

Remarks While this property is True, events will not be received by the scriptlet container
object. When the container is ready the variable is set to False. The property is
read−only.

SelectableContent Property

Description Specifies whether the user can select the contents of the scriptlet.

Syntax Window.External.SelectableContent = boolean

Remarks By default, the value of this property is False and the user can click the objects in the
scriptlet but not select them. If this property is True, the user can select text or objects
in the scriptlet.

Version Property

Description Returns the version and platform of the scriptlet container object. (sample: "5.0 Win32"
is the value returned by the Version property when the scriptlet is hosted by IE5 for
Windows95/98/NT)

Syntax ver = Window.External.Version

Remarks Version is returned in the format N.nnnn platform where N is an integer representing
the major version number, nnnn is any number of characters (except a space)
representing the minor version number, and platform is the platform (win32, mac,
alpha, and so on). The following is an example version number: 2.0b win32

The version property can be used to determine whether the page is being used as a
scriptlet or as a standalone Web page. The following sample shows the technique:

Mode = (TypeName(Window.External.Version) = "String")

If the value of Mode is True, the page is being used as a scriptlet. Otherwise the page is
being used as a standalone page.

BubbleEvent Method

Description Sends event notification for a standard event to the host document.

Syntax Window.External.BubbleEvent

Remarks Use this method to pass a standard DHTML event (as they have been defined
previously in this chapter) from the scriptlet to the host document

RaiseEvent Method

Description Passes a custom event notification from the scriptlet to the host document.

Syntax Window.External.RaiseEvent EventName, EventObject

Parameters EventName is a string identifying the event that is being passed.

EventObject is a variant type that typically includes a reference to the object on the
scriptlet that triggered the event.

Managing Events

291

Remarks This method is used to notify the host document about a non−standard event. The
onscriptletevents event is strictly related to this method.

SetContextMenu Method

Description Creates a context menu that is displayed when a user right−clicks a scriptlet in the
scriptlet container object.

Syntax Window.External.SetContextMenu MenuDefinition

Parameters MenuDefinition defines the command text and commands contained in the context
menu. A one−dimensional array in which the menu items are defined using sequences
of two elements, n and n+1.

Element n is the command text. Shortcut keys are defined by preceding a letter with
"&".

Element n+1 The method to be called when the command is chosen. You cannot pass
parameters to the method.

For example, the following script defines a context menu with two commands:

<SCRIPT LANGUAGE="VBScript" FOR="Menu" EVENT="onClick">
Dim MenuItems(4)
MenuItems(0) = "&Red Background"
MenuItems(1) = "SetRedBackground"
MenuItems(2) = "&Green Background"
MenuItems(3) = "SetGreenBackground"
Window.External.SetContextMenu MenuItems
</SCRIPT>

Scriptlets are Deprecated in IE5

This chapter shows examples of scriptlets that contain code only (no visible HTML tags). Originally scriptlets
were introduced to contain HTML visible tags as well. You can actually use it adopting the same techniques
we've shown thus far. The only thing to remember is to not set the WIDTH and HEIGHT parameters of the
<OBJECT> tag to zero. If the scriptlet has visible parts then it will occupy a visible place in the layout of the
HTML page that contains the component. The examples display thinking in "behaviors terms". At the end of
1998, Microsoft deprecated the scriptlets technology. You can still use this technology but Microsoft suggests
replacing it in your applications with HTC components (aka behaviors). As we will see later in this chapter,
behaviors have a strong influence during the design of an application, suggesting the separation of the code
that defines the behavior of an HTML tag from the tag itself (that's the reason why they're called behaviors!).
We have presented scriptlets as the original approach; these evolved into behaviors (aka HTML components)
and are still an influent technology. (Behaviors are not supported in IE4.)

Behaviors

Introduced with the advent of Internet Explorer 5.0, behaviors are a fascinating mechanism that have the
potential to bring a new programming paradigm in the DHTML world.

The behaviors technology is based on a concept: the behavior. The previous sentence could appear to be a
truism, but it introduces a major point. As we will see, Microsoft overused the term behavior in different
contexts (to indicate a concept, a technology label, and a keyword). We are now focusing on the first and most

Managing Events

292

important occurrence: the behavior concept.

Unlike scriptlets that were created to group HTML elements and scripts together in an external HTML file,
the behavior concept emphasizes the separation of script from HTML elements.

The behavior concept is implemented as an encapsulated component that is associated to an HTML element
or, more frequently, to a (CSS) class of HTML elements. The following diagrammatically emphasizes this
concept:

Which Technologies Implement Behaviors?

Currently two technologies allow us to implement behaviors:

HTCs − HTML Components•
binary behaviors•

The following diagram represents the relationship between a behavior and an HTC:

While HTML components are text files with an HTC extension containing code scripts (VBScript or JScript),
binary behaviors are built using compiled languages such as C++ or Visual Basic. Binary behaviors do not fall
within the scope of this book; they have been introduced to further clarify the relationship between the
behavior concept and an HTML component: the HTML component is one of the possible implementations of
the behavior concept, binary behaviors are an alternative implementation of the same concept.

When the encapsulated component implementing a behavior is applied to an HTML element, that component
extends the behavior of the HTML element (that's where the term behavior comes from).

Applying a Behavior to an HTML Element

There are two major approaches to apply a behavior to an HTML element:

Statically by using a CSS class•
Dynamically by using scripting•

Behaviors

293

Applying a Behavior Statically

In IE5 you can define a CSS class using a new property: behavior (the property is currently a Microsoft
proposal to W3C). The following code defines a simple CSS class that will be used to apply a behavior to
HTML elements:

<STYLE>
.myClass {
 behavior: url(somebehavior.htc);
}
</STYLE>

After the declaration of such a class, your HTML file could contain different tags, as in:

<UL class="myClass">
 item
 item

<DIV class="myClass">just a div</DIV>

In the last sample a behavior has been applied to two different HTML elements: and <DIV>. The
behavior of both HTML elements will be extended by the code (possibly VBScript code) that is in the
somebehavior.htc file.

The CSS property named behavior can be defined inline using the <STYLE> attribute. In this case the
programmer doesn't even need to declare a CSS class to apply the behavior, furthermore a single specific
element can be addressed. The following sample shows this technique:

<DIV STYLE="behavior: url(somebehavior.htc)">just another div</DIV>

Applying a Behavior Dynamically

A behavior can be applied through scripting in two different ways:

using the AddBehavior method•
modifying the Behavior property of the Style object•

The following code shows both options:

<SCRIPT LANGUAGE="VBSCript">
 Sub ApplyOption1()
 Document.All.oMyDiv.AddBehavior("somebehavior.htc");
 End Sub

 Sub ApplyOption2()
 Document.All.oMyDiv.Style.Behavior = "url(somebehavior.htc)";
 End Sub
</SCRIPT>

..

<DIV ID="oMyDiv">yet another div</DIV>

Important

Behaviors

294

Note: the Behavior property still expects the syntax "url(somebehavior.htc)" while the
AddBehavior method doesn't require it.

Remove a Behavior Attached Dynamically

An interesting point to consider is the lifecycle of the relationship between an attached behavior and the
HTML elements. Behaviors attached employing CSS classes are automatically detached from the elements as
soon as the elements are removed from the document tree. Attaching behaviors using any other method
(including specifying the behavior statically using the inline technique), will require using the
RemoveBehavior method. In all these cases it is not enough to remove the elements from the document tree.
They will still maintain all the style sheet rules defined programmatically or by inline definitions (including
the behavior rule itself).

So far, we have looked at what a behavior is as a concept and in what ways it is used to enhance HTML
elements. We haven't examined any behavior implementation yet. We discovered that behaviors could be
implemented using VBScript through HTML components. It is time to consider HTML components.

HTML Components

Conceptually an HTML component is an encapsulated component, which implements a behavior. Physically
it is a file with an HTC extension. An HTC file contains VBScript code wrapped by a few tags that define the
public interface of the component.

Extending HTML Elements Behavior

It is not too difficult to confuse HTML components with scriptlets. Microsoft recommends replacing scriptlets
with HTML components because they are a better evolution of this technology. HTML components are
evolving into something very different from their ancestor. The behavior concept (discussed earlier) is what
makes the difference − a great difference.

The goal of both scriptlets and HTML components is to facilitate code reuse − this produces the
misconception that HTML components should replace scriptlets. However, they capture different code aspects
and both of them should be used in large projects that are component−based. In contrast to scriptlets, the goal
of HTML components is to extend HTML elements' behavior. Let's examine a few techniques to extend
HTML elements using HTML components:

Adding Properties•
Adding Methods•
Exposing Component's Events•
Handling HTML Element's Events•

Let's start by taking a look at a basic "Hello World" HTML component to get a taste of how this technology
works

The HTML component is stored in the HELLO.HTC file:

<ATTACH EVENT="ondocumentready" ONEVENT="Hello()" />

<SCRIPT LANGUAGE="VBScript">

Function Hello()
 MsgBox "Hello World!"

Behaviors

295

End Function

</SCRIPT>

The component has one line of code more than the analogue scriptlet sample, but perhaps it is more important
to notice that the prefix "public_" is not required (prefix naming conventions are not required for HTML
components).

In the case of this minimal sample, you will certainly find it more interesting to have a look at the HTML file
that uses the component CLIENT03.HTM:

<html>
<head>

<style>

.myClass {
 behavior: url(hello.htc);
}

</style>

</head>

<body class="myClass">

</body>
</html>

As promised previously, there is a total separation between scripting code (on one side) and HTML+CSS (on
the other side). If you think this minimalism was exaggerated, have a look to the following alternative for the
client file (CLIENT04.HTM):

<html>
<body style="behavior: url(hello.htc)">
</body>
</html>

Extreme minimalism! You must be starting to perceive the potential of the behavior paradigm, just looking at
the tiny file above.

Enhancing I: Adding Properties

An HTML component can expose properties to the containing document by using the <PROPERTY>
element.

The following example implements an HTML component which has a public interface made of only one
property called CryptedKey. The example captures the essentials of the technique to exposes properties. The
HTML component is contained in a file named CRYPTED.HTC:

<PROPERTY NAME="CryptedKey" PUT="PutCK" GET="GetCK" />

<SCRIPT LANGUAGE="VBScript">

Dim cKey

HTML Components

296

Function PutCK(ByVal newValue)
 cKey = newValue Xor 43960
End Function

Function GetCK()
 GetCK = cKey Xor 43960
End Function

</SCRIPT>

This sample shows:

How to declare the name of the property through the NAME attribute of the <PROPERTY> tag•
How to declare a function to make the property writable using the PUT attribute•
How to declare a function to make the property readable using the GET attribute•

The example uses the Xor function to crypt/decrypt the value of the property. Applying this crypt/decrypt
transformation the example shows how it is possible to use read/write property functions that actually do
something more than simply give access to an internal variable.

A client sample that uses the HTML component is shown next (CLIENT05.HTM):

<html>
<head>

<STYLE>

.myClass {
 background: red;
 behavior: url(crypted.htc);
}

</STYLE>

<SCRIPT LANGUAGE="VBScript">

Sub WriteProp()
 Dim iKey
 iKey = CInt(InputBox("Enter the a number:"))
 Document.All.myDIV.CryptedKey = iKey
End Sub

Sub ReadProp()
 MsgBox Document.All.myDiv.CryptedKey
End Sub

</SCRIPT>

</head>
<body>

<DIV CLASS="myClass" ID="myDIV">This div has been enhanced with a Crypted property</DIV>

<INPUT TYPE="Button" onclick="VBScript:WriteProp" VALUE="Change Property"></INPUT>
<INPUT TYPE="Button" onclick="VBScript:ReadProp" VALUE="Read Property"></INPUT>

</body>
</html>

HTML Components

297

The sample applies the behavior to a <DIV> element, identified by the "myDIV" ID.

As you can see from the line:

 MsgBox Document.All.myDiv.CryptedKey

The HTML component has actually enhanced the <DIV> adding to it the CryptedKey property that behaves
as implemented. To check this you could generate an error by choice, changing a letter in the same line, as in:

 MsgBox Document.All.myDiv.CryptedKei

If you then push the button labeled Read Property you will see the following error message:

The system is telling you that the CryptedKei property it is not supported by the object: further evidence that
you can actually extend HTML elements using behaviors.

Overriding Standard Properties

It is possible to override the element's default behavior by specifying a name for the property that is the same
as that of a property already defined for the element.

Notify the HTML Element that the Property Value has Changed

When the value of the property has changed, the HTML element can be notified by firing the
onpropertychange event calling the FireChange method:

Function PutCK(ByVal newValue)
 cKey = newValue Xor 43960
 oCryptedKey.FireChange
End Function

The oCryptedKey identifier indicates the ID of the PROPERTY element that has been specified:

<PROPERTY NAME="CryptedKey" PUT="PutCK" GET="GetCK" ID="oCryptedKey" />

To verify that the event has fired effectively, modify the <DIV> definition in the client:

<DIV CLASS="myClass" ID="myDIV" onpropertychange="MsgBox('!')">This div has been enhanced with a Crypted property</DIV>

Enhancing II: Adding Methods

To add new methods to an HTML element using an HTML component is easier than to add properties. Let's
modify the CRYPTED.HTC component to expose a method named DisplayCryptedValue which displays the
internal value of the CryptedKey property in a dialog. A further element named METHOD (!) is available to
expose methods. The resulting CRYPTED.HTC contains the following code:

<PROPERTY NAME="CryptedKey" PUT="PutCK" GET="GetCK" ID="oCryptedKey" />
<METHOD NAME="DisplayCryptedValue" />

HTML Components

298

<SCRIPT LANGUAGE="VBScript">

Dim cKey

Function PutCK(ByVal newValue)
 cKey = newValue Xor 43960
 oCryptedKey.FireChange
End Function

Function GetCK()
 GetCK = cKey Xor 43960
End Function

Sub DisplayCryptedValue()
 MsgBox cKey
End Sub

</SCRIPT>

Obviously the host application requires modification to use the DisplayCryptedValue method. The new host
application is (CLIENT06.HTM):

<html>
<head>

<STYLE>

.myClass {
 background: red;
 behavior: url(crypted.htc);
}

</STYLE>

<SCRIPT LANGUAGE="VBScript">

Sub WriteProp()
 Dim iKey
 iKey = CInt(InputBox("Enter a number:"))
 Document.All.myDIV.CryptedKey = iKey
End Sub

Sub ReadProp()
 MsgBox Document.All.myDiv.CryptedKey
End Sub

Sub DisplayCV()
 Document.All.myDIV.DisplayCryptedValue
End Sub

</SCRIPT>

</head>
<body>

<DIV CLASS="myClass" ID="myDIV">This div has been enhanced with a Crypted property</DIV>

<INPUT TYPE="Button" onclick="VBScript:WriteProp" VALUE="Change Property"></INPUT>
<INPUT TYPE="Button" onclick="VBScript:ReadProp" VALUE="Read Property"></INPUT>

HTML Components

299

<INPUT TYPE="Button" onclick="VBScript:DisplayCV" VALUE="Display Crypted Value"></INPUT>

</body>
</html>

Enhancing III: Exposing Component's Events

An HTML component can define its own events and expose them through the <EVENT> element. This
mechanism of exposing custom events is clearly more powerful than the one offered by scriptlets (previously
described in this chapter). Actually, scriptlets expose only one event (onscriptletevent). With HTML
components you can expose any kind of event you want to the containing document. We are going to enhance
our CRYPTED.HTC sample with an OnReadWarning event, which informs the container that somebody has
accessed the CryptedKey property:

<PROPERTY NAME="CryptedKey" PUT="PutCK" GET="GetCK" ID="oCryptedKey" />
<METHOD NAME="DisplayCryptedValue" />
<EVENT NAME="OnReadWarning" ID="orw" />

<SCRIPT LANGUAGE="VBScript">

Dim cKey

Function PutCK(ByVal newValue)
 cKey = newValue Xor 43960
 oCryptedKey.FireChange
End Function

Function GetCK()
 Dim oEvent
 Set oEvent = CreateEventObject()
 orw.Fire(oEvent)
 GetCK = cKey Xor 43960
End Function

Sub DisplayCryptedValue()
 MsgBox cKey
End Sub

</SCRIPT>

This code shows the technique to fire a component event in:

 Dim oEvent
 Set oEvent = CreateEventObject()
 orw.Fire(oEvent)

The CreateEventObject function is required to create an event object. The event object becomes the parameter
of the Fire method of the <EVENT> element. The <EVENT> element is identified by its ID attribute (orw).
The <EVENT> element defines the name of the exposed event as well:

<EVENT NAME="OnReadWarning" ID="orw" />

It is necessary to modify only one line of code in the CLIENT06.HTM to test this new event:

<DIV CLASS="myClass" ID="myDIV" onreadwarning="MsgBox('Somebody is reading the property')">This div has been enhanced with a Crypted property</DIV>

HTML Components

300

To generate the event we launch the client application, assign a value to the property, and then read that value.

The onreadwarning event will be raised and the application will inform you with the following dialog:

Enhancing IV: Handling HTML Element's Events

HTML components offer a further mechanism to enhance HTML elements: they can attach handlers for the
HTML element's events using the <ATTACH> element. The CRYPTED.HTC sample is going to be enhanced
to handle the onclick event of the HTML elements to which the behavior is attached:

<PROPERTY NAME="CryptedKey" PUT="PutCK" GET="GetCK" ID="oCryptedKey" />
<METHOD NAME="DisplayCryptedValue" />
<EVENT NAME="OnReadWarning" ID="orw" />
<ATTACH EVENT="onclick" ONEVENT="ClickHandler()" />

<SCRIPT LANGUAGE="VBScript">

Dim cKey

Function PutCK(ByVal newValue)
 cKey = newValue Xor 43960
 oCryptedKey.FireChange
End Function

Function GetCK()
 Dim oEvent
 Set oEvent = CreateEventObject()
 orw.Fire(oEvent)
 GetCK = cKey Xor 43960
End Function

Sub DisplayCryptedValue()
 MsgBox cKey
End Sub

Function ClickHandler()
 MsgBox "You clicked on an element enhanced by the CRYPTED behavior"
End Function

</SCRIPT>

The handler for the onclick event is declared in the line:

<ATTACH EVENT="onclick" ONEVENT="ClickHandler()" />

No modifications are required in the host application.

To test the handler, click on the div to run the handler that will produce the following dialog:

HTML Components

301

Note that when the specified event fires on the element, to which the behavior is attached, the behavior's
handler is called after the element's event handler (if any).

Attach Event Handlers Through Scripting

Timing becomes a very critical issue when dealing with event handlers. Sometimes you need to an attach an
event handler responding to specific events. It is possible to attach handlers through scripting using the
AttachEvent method instead of the <ATTACH> element. The general technique to deal with dynamically
attached event handlers is shown in the following lines of code:

<ATTACH EVENT="ondetach" ONEVENT="DetachEvents()" />

<SCRIPT LANGUAGE="VBScript">

Function DetachEvents()
 DetachEvent('onevent1', EvH1)
 DetachEvent('onevent2', EvH2)
End Function

Function EvH1()
 ' do something
End Function

Function EvH2()
 ' do something
End Function

Function SomeTimeInTheBehavior()
 AttachEvent('onevent1', EvH1)
 AttachEvent('onevent2', EvH2)
 ' do something
End Function

</SCRIPT>

A DetachEvent method and an ondetach event are introduced above. Event handlers attached using the
AttachEvent method must call the DetachEvent method to stop receiving notifications. The HTML
component will be notified with the ondetach event from the page to actually detach all the handlers attached
through scripting. The handlers attached the declarative way, using the <ATTACH> element, do not need to
call the detachEvent method.

Multiple Behaviors

It is possible to apply multiple behaviors to an element using the AddBehavior method multiple times or using
the syntax shown in the following sample:

<style>

.myClass {
 behavior: url(bhv−one.htc), url(bhv−two.htc), url(bhv−three.htc);

HTML Components

302

}

</style>

Regarding conflicts resulting from applying multiple behaviors to an element, the following resolution rule is
defined: each succeeding behavior takes precedence over the previous behavior in the order in which the
behavior is applied to the element.

Name Clashing Resolution and the COMPONENT Element

A further element can actually be helpful in the case of multiple behaviors. The <COMPONENT> element
allows us to give a name to the HTML component that can be used to access properties and methods though
scripting (solving name clashing issues whenever multiple behaviors are applied to the same element). Our
sample component CRYPTED.HTC will be completed using the COMPONENT element to encapsulate the
previous code and give a scripting name to the behavior:

<COMPONENT NAME="Crypted">

<PROPERTY NAME="CryptedKey" PUT="PutCK" GET="GetCK" ID="oCryptedKey" />
<METHOD NAME="DisplayCryptedValue" />
<EVENT NAME="OnReadWarning" ID="orw" />
<ATTACH EVENT="onclick" ONEVENT="ClickHandler()" />

<SCRIPT LANGUAGE="VBScript">

Dim cKey

Function PutCK(ByVal newValue)
 cKey = newValue Xor 43960
 oCryptedKey.FireChange
End Function

Function GetCK()
 Dim oEvent
 Set oEvent = CreateEventObject()
 orw.Fire(oEvent)
 GetCK = cKey Xor 43960
End Function

Sub DisplayCryptedValue()
 MsgBox cKey
End Sub

Function ClickHandler()
 MsgBox "You clicked on an element enhanced by the CRYPTED behavior"
End Function

</SCRIPT>

</COMPONENT>

After using the <COMPONENT> element it is possible to access the component properties and methods using
the component name:

Sub ReadProp()
 MsgBox Document.All.myDiv.Crypted.CryptedKey
End Sub

HTML Components

303

This definitively solves the name clashing issue. Suppose we want to apply two behaviors (named, for
example, Bh1 and Bh2) that both define a Description property to the same element (myDiv), it is possible to
access both properties:

 MsgBox Document.All.myDiv.Bh1.Title & Document.All.myDiv.Bh2.Title

The goal of this section was to introduce all the fundamental techniques to start you on your way using
behaviors and HTML components. Experimenting with the code and concepts discussed above can only help
to further your understanding of these topics. OK, let's look at a technology that extends the functionality of
your page beyond the browser.

Remote Scripting

Remote scripting was created to make web applications substantially more powerful and to make them more
closely resemble client/server applications developed using languages like C++, Visual Basic, or Java −
thereby overcoming the inherent limitations of web applications. Without remote scripting, a web browser has
only one way to request new information from the server: to load an entirely new page. With remote scripting
it becomes possible for the client page to execute a method on an ASP page without navigating away from the
page itself. More importantly, the requested data is available as the return value of the remote method called
by the client page.

Combined with DHTML, this technology heavily simplifies all the applications that were forced to use
cookies, hidden HTML input fields or other dirty tricks to rebuild the new page as similar as possible to the
previous one.

Influence of JScript on Remote Scripting

Unfortunately for VBScript users, the current remote scripting (version 1.0a) was created for JavaScript (or
JScript to use its Microsoft equivalent). Microsoft developed remote scripting as part of a larger project called
Microsoft Scripting Library. In fact the current implementation is a library of functions to enable remote
scripting features, plus something more: a Java applet. Three files constitute the implementation of the remote
scripting technology:

RS.HTM (a collection of JScript functions to be used on the client page)•
RS.ASP (a collection of JScript functions to be used on the server ASP page)•
RSPROXY.CLASS (a Java applet that plays the main role)•

These files, along with the official documentation, can be downloaded from the Microsoft Scripting
Technologies Site (http://www.msdn.microsoft.com/scripting/).

 Remote Scripting

304

What is the Role of Remote Scripting Files?

Staying within the scope of this chapter (and this book), let's look at the role of the three files listed above, so
we can get a clearer idea of what is 'under the hood' of remote scripting:

The Java applet RSPROXY.CLASS is inserted automatically in the client page during initialization
by the RSEnableRemoteScripting function. The role of the Java applet is to send the HTTP request to
the server and receive the response.

•

The RS.HTM file implements functions that marshal the remote method name and parameters into a
buffer to be sent "over the wire".

•

RS.ASP implements functions that unmarshal such data from the receiving buffer. In a
complementary way the returned value is marshaled by RS.ASP function and unmarshaled by
RS.HTM functions.

•

The following pictures illustrates the mechanism:

Can Remote Scripting be used by VBScript users?

The answer is obviously positive, otherwise you would not have found this section in a book about VBScript.
The remainder of this chapter provides a few guidelines to permit VBScript developers to use remote scripting
in a profitable way, avoiding features that have been proved to work with JScript only. The guidelines are on
how to:

install the remote scripting files•
enable the remote scripting engine on the server side•
enable the remote scripting engine on the client side•
call a remote method from a client page using VBScript•
fetch the data returned from the remote method call•
transform an ASP page into a VBScript remote object•

Luckily the major benefits of remote scripting are available to VBScript users as well. To achieve them, the
following step should be followed carefully.

Installing Remote Script on the Server

The default location for the remote scripting files is in a directory called _ScriptLibrary that must be located in
the root directory of your Web Server. All the samples in this section will assume that the files using remote
scripting are located in a directory located in the root directory of your Web Server as well. The remote
scripting files can be located elsewhere but then you have to specify which is the location while initializing
the remote scripting engine both on client and server side. To avoid any problem, follow this format while

Remote Scripting

305

building your first remote scripting project:

If the root directory of your Web Server is: c:\inetpub\wwwroot\

The three remote scripting files (rs.htm, rs.asp,
rsproxy.class) should be located in the directory:

c:\inetpub\wwwroot_ScriptLibrary

Any file in your project using remote scripting
should be located in a directory like:

c:\inetpub\wwwroot\YourProject

Enabling Remote Scripting on the Server

On the server your code will be included inside an ASP page. I suggest you use the following skeleton to
encapsulate your server side scripting code and at the same time enable remote scripting:

<%@ LANGUAGE=VBSCRIPT %>
<%

' ...write your VBScript remote methods here...

' remember to call RSDispatch to initialize the remote scripting engine
RSDispatch

%>
<!−− #INCLUDE FILE="../_scriptlibrary/rs.asp" −−>

As you can see, two steps are required:

To invoke the function RSDispatch once in the lifetime of the ASP page to initialize the remote
scripting engine

•

To include the file RS.ASP that contains the implementation of the RSDispatch function.•

Enabling Remote Scripting on the Client

The remote scripting engine must be initialized on every client page that needs to call remote methods. In this
case there is a standard header to be applied just after the <BODY> html element:

..
<BODY>
<SCRIPT language="JavaScript" src="../_ScriptLibrary/rs.htm"></SCRIPT>
<SCRIPT language="JavaScript">RSEnableRemoteScripting("../_ScriptLibrary");</SCRIPT>
..

This is the only place in which we will use JavaScript in this chapter. It is necessary because the file RS.HTM
is a file of Javascript functions despite its .HTM extension. Furthermore, RSEnableRemoteScripting is an
initializing function contained in that file.

Invoking a Remote Method

Once the remote scripting has been properly initialized we can start invoking VBScript remote methods,
entering the sample "Hello (Remote) World!" The sample requires two files that should be located in the same
directory on your Web Server. For example they could be located at:

D:\inetpub\wwwroot\rs\04\rsclient01.htm

Remote Scripting

306

D:\inetpub\wwwroot\rs\04\hello.asp

While the remote scripting library (rs.htm, rs.asp and rsproxy.class) is located in:

D:\inetpub\wwwroot\rs_ScriptLibrary

The ASP page that hosts the remote method is called HELLO.ASP, its source code is:

<%@ LANGUAGE=VBSCRIPT %>
<%

Function HRW()
 HRW = "Hello Remote World!"
End Function

RSDispatch
%>
<!−− #INCLUDE FILE="../_scriptlibrary/rs.asp" −−>

<SCRIPT RUNAT=SERVER LANGUAGE="JavaScript">

 var public_description = new ExposeRemoteMethods();

 function ExposeRemoteMethods()
 {
 this.HRW = Function('return HRW()');
 }

</SCRIPT>

A bit of JavaScript is used to build this sample and make it as simple as possible, for now. But we'll get rid of
this need for JavaScript after introducing VBScript classes. JavaScript is needed to expose the HRW method
as a remote function. VBScript cannot expose remote functions, but it can expose remote objects (with their
methods), that give us more power and flexibility. By the way, the remote method is called HRW (and stands
for "Hello Remote World"):

Function HRW()
 HRW = "Hello Remote World!"
End Function

A client page named RSCLIENT01.HTM calls the remote method. Its source code is:

<HTML>
<HEAD>
<SCRIPT language="VBScript">

Function InvokeHRW()
 Dim retObj
 set retObj = RSExecute("http://me/rs/04/hello.asp", "HRW")
 MsgBox retObj.return_value
End Function

</SCRIPT>
</HEAD>

<BODY onload="InvokeHRW">

<SCRIPT language="JavaScript" src="../_ScriptLibrary/rs.htm"></SCRIPT>

Remote Scripting

307

<SCRIPT language="JavaScript">RSEnableRemoteScripting("../_ScriptLibrary");</SCRIPT>

</BODY>
</HTML>

The remote method is called by the VBScript function:

Function InvokeHRW()
 Dim retObj
 Set retObj = RSExecute("http://me/rs/04/hello.asp", "HRW")
 MsgBox retObj.return_value
End Function

The function RSExecute is implemented in the RS.HTM file and gives the developer the power to invoke
remote methods on the server without leaving the current client page. It returns an object with a very
important property called return_value. This property contains the data retrieved from the server without
loading a new page (!).

The remote method HRW simply returns a constant string "Hello Remote World", but it could be attached to a
database via ADO, or it could have retrieved data on the server by other means, returning more meaningful
and critical information.

We are now going to introduce a technique to get rid of the Javascript public_description object, using
VBScript classes.

Transforming an ASP Page into a VBScript Object

In the former sample code a little JavaScript was required. So, let's get rid of the JavaScript, introduce a fully
VBScript sample, and then discuss the importance and benefits of this approach. Let's call the sample "Hello
(VBScript Remote) World!" Changes are required in both the client and the server page. Using our model
directory structure, the two new files could be located in the directories:

D:\inetpub\wwwroot\rs\05\rsclient02.htm

D:\inetpub\wwwroot\rs\05\vbhello.asp

While the remote scripting library (rs.htm, rs.asp and rsproxy.class) are still located in:

D:\inetpub\wwwroot\rs_ScriptLibrary

Here's the server page, so you can immediately appreciate that there is no more JavaScript. The
VBHELLO.ASP code is:

<%@ LANGUAGE=VBSCRIPT %>
<%

Class clsHello
 Public Function HRW()
 HRW = "Hello Remote World!"
 End Function
End Class

Set public_description = New clsHello

Remote Scripting

308

RSDispatch

%>
<!−− #INCLUDE FILE="../_scriptlibrary/rs.asp" −−>

In this version the HRW remote method has become a method of a VBScript (5!) class named clsHello. The
nice issue is that VBScript classes can be used to define a working public_description object.

Modifications are required in the client page. Now we must invoke a VBScript object and not just a remote
function. The RSCLIENT02.HTM code is:

<HTML>
<HEAD>
<SCRIPT language="VBScript">

Function InvokeHRW()
 Dim aspObj
 Dim retObj
 Set aspObj = RSGetASPObject("vbhello.asp")
 Set retObj = aspObj.HRW()
 MsgBox retObj.return_value
End Function

</SCRIPT>
</HEAD>

<BODY onload="InvokeHRW">

<SCRIPT language="JavaScript" src="../_ScriptLibrary/rs.htm"></SCRIPT>
<SCRIPT language="JavaScript">RSEnableRemoteScripting("../_ScriptLibrary");</SCRIPT>

</BODY>
</HTML>

In this case we are no more using RSExecute but a different function available in the remote scripting engine:
RSGetASPObject. As you can see from the line:

 Set aspObj = RSGetASPObject("vbhello.asp")

The RSGetAspObject function takes only one parameter that is our ASP page. It actually converts an ASP
page into a remote object; in fact, we can call the HRW remote method without using RSExecute:

 Set retObj = aspObj.HRW()

All those who are used to implementing the object oriented model will immediately understand the benefits
coming from this technique. The functionality of an ASP page can be divided in remote methods and
encapsulated inside an object. On the client side all the scripting code will invoke remote methods as if they
were local:

 aspObj.aRemoteMethod

The number of applications of this technique are then just limited by your imagination. Once again,
experimentation is the mother of learning and invention. Enjoy!

Remote Scripting

309

Summary

The goal of this chapter is to give you an understanding of how much farther (than a static web page)
VBScript can take you. There are sufficient code samples for you to reuse or adapt to your own needs. We
have looked at the evolution of scriptlets into behaviors and their use through HTML components. With
regard to scriptlets we saw how to:

implement properties•
pass variables to methods•
retrieve values from methods•
manage events statically•
manage events dynamically•
use custom events•

We then moved on to look at behaviors and saw how to:

apply a behavior statically•
apply a behavior dynamically•
remove attached behaviors•

This led us to learn that the goal of HTML components is to extend HTML elements' behavior. And, with
regard to HTML components, we also looked at:

adding properties•
adding methods•
exposing events•
handling HTML element's events•
enhancement techniques•

Finally, we looked at how to make web applications using VBScript perform like applications developed
using more complicated compiled languages. Specifically, we looked at using remote scripting technologies
and saw how to:

install the remote scripting files•
enable the remote scripting engine on the server side•
enable the remote scripting engine on the client side•
call a remote method from a client page using VBScript•
fetch the data returned from the remote method call•
transform an ASP page into a VBScript remote object•

Again, remember that whole volumes can (and have!) been devoted to the topics we have considered in this
chapter and, so, refer to more specialized sources to further your learning.

 Summary

310

Chapter 13: HTML Applications (HTAs)
The previous chapters focused on web development, but there are times when you don't want your
application to look like a web page with all of the browser components exposed, like toolbars and so on. In the
past, C/C++, Java, and Visual Basic programmers had the market cornered for traditional Windows
applications. With the introduction of HTML applications in Internet Explorer 5, though, that has changed.
Now you can use the knowledge that you already have of DHTML, CSS, and scripting to write Windows
applications.

HTML applications are often referred to as HTAs. This refers to the file extension (.hta) that HTML
applications use. We'll be using both 'HTA' and 'HTML application' interchangeably throughout the chapter.

What Tools Do You Need?

A text editor•
Version 5 of the Script Engines (download free from http://msdn.microsoft.com/scripting)•
Internet Explorer 5 (HTAs are supported automatically when you install Internet Explorer 5. Previous
versions of Internet Explorer do not support HTAs.)

•

What is an HTML Application?

An HTML application is essentially what it sounds like. It is an HTML−based application. The parent process
of mshta.exe (the application that actually runs an HTA) is Internet Explorer 5, so almost anything (we'll talk
about exceptions later) that you can do with Internet Explorer 5, you can do in HTA. That includes scripting,
CSS, behaviors, XML, and XSL.

You can control everything that is shown on the screen with an HTA. You don't have to see Internet Explorer
menus or toolbars if you don't want to. For example, take a look at the simple application that we will use to
help us explore HTAs in this chapter. All it does is navigate to a few select sites, but as you can see, this
application really doesn't look like it's running under IE5 at all. There's no toolbars or menus.

You may be thinking, that's great, but what about the security warnings that come up when you embed other
objects in a browser? The great thing about HTAs is that they are fully trusted applications. All of the
restrictions that you worry about with a web page are not a problem with HTAs. You can even modify the
registry while running an HTA. But keep in mind that if you don't have standard security restrictions, you
need to be aware of the problems that may arise from your code or another site that is used within the HTA.
We'll look into security issues in more depth later in this chapter.

311

Ok, that's all good, but how do we run an HTA? All you need is Internet Explorer 5, and you're ready. Once
you have an HTA, you can simply double−click on the file and the application will run, just like any other
program. HTAs can be run from a server as well as a client machine, as we'll see later on.

I hope that you are now as excited about HTAs as I am. Now let's learn how to make them work.

How to Create a Basic HTA

It's actually very simple. All you need to do is change the file extension of your HTML file to hta. That's
pretty easy, right? Let's look at an example.

Sample HTML File

We'll start with an HTML file that navigates a frame to a web site. Since it's a normal HTML file at the
moment, it'll have the file extension .htm. There are three SPANs that, when clicked, navigate the IFRAME
(which will act as our viewer). The three web sites we'll be using are www.wrox.com, www.microsoft.com,
and msdn.microsoft.com. When the page is loaded, we navigate to MSDN by default.

<HTML>
<HEAD>

<TITLE>Sample HTML Application</TITLE>

<LINK rel="stylesheet" type="text/css" href="HTA.css">
</HEAD>
<BODY>

<SPAN
 onclick="Viewer.document.location.href='http://msdn.microsoft.com'">
 MSDN

<SPAN
 onclick="Viewer.document.location.href='http://www.microsoft.com'">
 Microsoft

<SPAN
 onclick="Viewer.document.location.href='http://www.wrox.com'">
 Wrox

<IFRAME ID=Viewer src="http://msdn.microsoft.com">
</IFRAME>

</BODY>
</HTML>

Now we have to create the HTA.css file. Here's the code:

BODY
{
 FONT−FAMILY: 'Trebuchet MS';
 FONT−SIZE: 18px;
 POSITION: absolute

 How to Create a Basic HTA

312

}
SPAN
{
 CURSOR: hand;
 POSITION: absolute;
 WIDTH: 15%
}
IFRAME
{
 HEIGHT: 95%;
 LEFT: 15%;
 OVERFLOW: scroll;
 POSITION: absolute;
 TOP: 5%;
 WIDTH: 80%
}

Our stylesheet sets the default font as Trebuchet MS with a font size of 18 pixels. We define positioning as
absolute. For our spans, we turn the mouse pointer into a hand.

We refer to a number of size parameters in percentages. This sets the dimension as a percentage of the size of
its parent element. If the length of the parent element changes, the length of the child element will be changed
as well. Say we give the parent element a width of 900px (pixels). If the width of the child element is 10%,
then the absolute width of the child element will be 90px.

Our web page looks like the picture below. Note that we have all of the standard Internet Explorer toolbars
and menus.

Although the script may look correct, we do have a few problems. When an HTML file has a FRAME or
IFRAME, there are some security restrictions that aren't necessarily obvious right away.

If a frame navigates away from the domain in which the original file is located, the properties and methods of
the frame, and the elements within it, are no longer accessible to the parent element. For example, once the
IFRAME has been navigated to another URL, such as the MSDN site, we can't change the document.location
of the IFRAME. In fact the document of the IFRAME is not accessible at all. This caused me quite a few
headaches before I figured it out.

Thus, if I try to click on MSDN or any other link, I receive an error message. This restriction is there to limit
the ability of one site to track your subsequent navigation.

 How to Create a Basic HTA

313

This might not seem reasonable, but let's think about it a little bit more. Let's say that you have search results
in one panel of a page, generated from a search engine. The search panel can know where you are going from
the IFRAME, but once you get to the site in the opposite frame, the search engine can't track anything else. It's
a privacy thing − do you really want Yahoo to know about everything that you do on the Internet?

Making an HTML File into an HTML Application

Let's try renaming our file from HTA.htm to HTA.hta. This small change now gives our application an
entirely different look. By default, we have a title bar and minimize, maximize and restore buttons, but we
don't have any of the Internet Explorer toolbars. The title bar of the application even picked up the title that
we put in. You can also navigate to other sites through the main application. That was a quick fix to some
painful problems.

Now, that's sweet. All we needed to do was change the file extension, and our file is recognized as an
application. We don't have to deal with all the security issues any more. But we might want to get rid of the
title bar, or have the application launch in full screen.... Well, we can solve those problems, too. Let's look at
the HTA:APPLICATION tag.

The <HTA:APPLICATION> Tag

We want to modify the look of our application even further. Fortunately, there is an HTML tag called
HTA:APPLICATION. With this tag we can choose not to display a caption, or to maximize the window, as
well as a few other things. In our sample application, let's try some of these options.

You can embed the HTA:APPLICATION tag anywhere within the document, but for performance reasons,
it's recommended that you embed it within the head of the document. Since the browser parses information in
the order that it is found on the page, if you place the HTA tag at the end of the document, the browser won't
recognize the HTA attributes that you have set until it has completely parsed the document. For example, let's
say that you have sized elements by percentages. The browser will now need to calculate these parameters
over again.

An end tag is not required. We'll set the Caption attribute to no and the windowState attribute of the HTML
tag to maximize. Now our application loads in full screen mode without a title bar. We can close the
application through the Windows task bar.

<HTML>
<HEAD>

How to Create a Basic HTA

314

<TITLE>Sample HTML Application</TITLE>

<HTA:APPLICATION
 Caption="no"
 windowState="maximize">

<LINK rel="stylesheet" type="text/css" href="HTA.css">
</HEAD>
<BODY>

<SPAN
 onclick="Viewer.document.location.href='http://msdn.microsoft.com'">
 MSDN

<SPAN
 onclick="Viewer.document.location.href='http://www.microsoft.com'">
 Microsoft

<SPAN
 onclick="Viewer.document.location.href='http://www.wrox.com'">
 Wrox

<IFRAME ID=Viewer src="http://msdn.microsoft.com">
</IFRAME>

</BODY>
</HTML>

And here's our new look.

Do File Extensions Still Matter?

If you use an .htm file extension, but an HTA tag is embedded, will the application act like an HTML
application? The answer is no. Without the .hta file extension, the HTA:APPLICATION tag is not recognized.
The file extension is the only thing that truly defines an HTML application.

The <HTA:APPLICATION> Tag

315

Changing Parameters from the Command Line

Let's try launching an HTA from the command line. First, we need to have an ID for our HTA to be able to
access attributes of our HTA through script. We are also going to put our caption back in, but we'll talk about
that sort of thing further in the next section.

We'll also create a script that creates an array from our commandLine property. The commandLine property is
only available through scripting. It returns the location of the HTA launched and any other parameters
specified on the command line. It cannot be specified within the HTA:APPLICATION tag. Please note that
this script requires that there are no spaces in the name of the location used to launch the application. You can
use this in your existing HTA if you simply replace the existing HTA tag with the one below, and add the
script under the new HTA tag:

<HTA:APPLICATION
 ID=MySampleHTA
 Caption="yes"
 windowState="maximize">

<SCRIPT LANGUAGE="VBScript">
 Option Explicit

 Sub LoadPage

 Dim cmdLineArray
 Dim WebSite

 ' fill array with elements of commandLine attribute
 cmdLineArray = Split(MySampleHTA.commandLine)

 ' check if first element of array is equal to commandLine attribute
 ' if so, no web site was specified, so go to MSDN.
 If cmdLineArray(0) = MySampleHTA.commandLine Then
 WebSite = "http://msdn.microsoft.com"

 ' Otherwise, there is a specified web site. Need to see
 ' if it's properly formatted. If :// isn't present in
 ' the second element of the array, we add http://
 ElseIf InStr(1, cmdLineArray(1), "://") = 0 Then
 WebSite = cmdLineArray(1)
 WebSite = "http://" & WebSite
 Else
 WebSite = cmdLineArray(1)
 End If

 Viewer.document.location.href = WebSite

 End Sub

</SCRIPT>

You'll also need to change your HTML BODY tag to read:

<BODY onload="LoadPage">

Now, when we launch the application from the command line with:

d:\wrox\hta\hta.hta www.wrox.com

The <HTA:APPLICATION> Tag

316

...the Wrox site will be displayed in the IFRAME. If a specific web site is not specified at the command line,
the default will be MSDN. Let's just see how we did that. First, this line:

cmdLineArray = Split(MySampleHTA.commandLine)

...creates an array that accesses the commandLine attribute of our HTA and splits it into separate pieces
wherever it finds a space. Then, we check to see if the first element of the array is the same as the
commandLine attribute of the HTA. If it is, that means that the string had no spaces, which in turn means that
no web site was specified. So we go to the MSDN site.

If cmdLineArray(0) = MySampleHTA.commandLine Then
 WebSite = "http://msdn.microsoft.com"

Otherwise, we know that a web site has been specified, so we need to see if it is properly formatted. If we
don't find '://' in the second element of the array, we'll add 'http://'.

 ElseIf InStr(1, cmdLineArray(1), "://") = 0 Then
 WebSite = cmdLineArray(1)
 WebSite = "http://" & WebSite

Finally, what if the URL is formed correctly? Here, we assume that if the Else statement is hit, then the
command line must contain a properly formatted URL, so we use that.

 Else
 WebSite = cmdLineArray(1)

After we've done all that, we send the IFRAME to the web site we specified.

Viewer.document.location.href = WebSite

And that's it!

All HTA:APPLICATION Attributes

There are a number of other properties that we can access for the HTA:APPLICATION tag. The full list of
properties for the HTA:APPLICATION tag appears in the table below.

Property Values Description

ID User−defined string ID that can be used to access the HTA through script.

applicationName User−defined string Sets the name of the HTA.

border thick (Default)

thin

none

dialog

The border size for the application. Experiment to see
what they all look like!

borderStyle normal (Default)

static

The style of the border. The static border style is
normally used for windows that don't allow user input.

The <HTA:APPLICATION> Tag

317

raised

sunken

complex

caption yes (Default)

no

Displays a caption in the title bar.

commandLine N/A Path used to launch the HTA. This is a read−only
property.

icon Path to .bmp or.ico file Icon to be displayed in the task bar and title bar when
the application is running.

maximizeButton yes (Default)

no

Displays the maximize button.

minimizeButton yes (Default)

no

Displays the minimize button.

showInTaskBar yes (Default)

no

Shows the application running in the task bar. Even if
this property is set to no, the application is still seen
when using Alt+Tab or Ctrl+Alt+Del.

singleInstance no (Default)

yes

Determines whether more than one instance of the
program can run at a time.

sysMenu yes (Default)

no

System menu is displayed when clicking on the title bar
or by right clicking on the application in the task bar.
The system displays resizing options, such as minimize
and maximize

version User defined Version number. This attribute is available for display,
but has no effect on the application itself

windowState normal (Default)

minimize

maximize

The normal state will size the window to the same size
Internet Explorer starts up at, whatever that may be.

Interdependent Attributes

A number of attributes are dependent upon each other. If the border attribute is not set to thick, the HTA
cannot be resized. If the ID of the application is not specified, other attributes of the HTA cannot be accessed.

If the caption is set to no, then the minimize and maximize buttons aren't displayed, the system menu
is not available, and the program icon is not seen in the title bar.

•

If the system menu is turned off, then the minimize and maximize buttons are not visible. The icon in
the title bar won't be visible either.

•

If you choose not to display a border, there is no title bar, and so the minimize and maximize buttons
(along with the title bar icon in the title bar) are not visible.

•

This may seem a little confusing, but the goal was to match the current Windows user interface.

The <HTA:APPLICATION> Tag

318

Examples of Interdependency

Let's look at a few examples. We'll start by setting the minimize and maximize buttons, add an icon, a caption,
a border, and a system menu. We can also see the system menu from the task bar. This is all done by changing
the HTA:APPLICATION tag as seen next.

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">

<TITLE>Sample HTML Application</TITLE>
<HTA:APPLICATION
 ID=MySampleHTA
 icon="hta.ico"
 caption="yes"
 minimizeButton="yes"
 maximizeButton="yes"
 sysMenu = "yes"
 border="thick"
 windowState="maximize">

<SCRIPT LANGUAGE="VBScript">
 Option Explicit

Now let's try setting the sysMenu property to no, as shown:

<HTA:APPLICATION
 ID=MySampleHTA
 icon="hta.ico"
 caption="yes"
 minimizeButton="yes"
 maximizeButton="yes"
 sysMenu = "no"
 border="thick"
 windowState="maximize">

With this simple change, our HTA no longer displays the icon in the title bar and in the taskbar; we aren't able
to resize our window; and the minimize, maximize and close buttons are no longer visible.

Now let's change the sysMenu attribute back to yes, but set the caption to no. Now we can no longer see the
minimize, maximize and close buttons. This time, since the windowState is also set to maximize, the task bar

The <HTA:APPLICATION> Tag

319

is no longer visible.

<HTA:APPLICATION
 ID=MySampleHTA
 icon="hta.ico"
 caption="no"
 minimizeButton="yes"
 maximizeButton="yes"
 sysMenu = "yes"
 border="thick"
 windowState="maximize">

Finally, we'll set the caption attribute back to yes, and see what happens when we set the border to none. In
fact, we have the same result as if we set the caption attribute to no.

<HTA:APPLICATION
 ID=MySampleHTA
 icon="hta.ico"
 caption="yes"
 minimizeButton="yes"
 maximizeButton="yes"
 sysMenu = "yes"
 border="none"
 windowState="maximize">

There isn't a way to specifically set the close button on the application. Although the minimize and maximize
button can be set to no without losing the close button, if the caption or the system menu are set to no or if the
border is set to none, the close button will not be visible.

This may not seem important at first glance, but if you choose certain options, you will have to close the
application using Ctrl+Alt+Del. You probably don't want all of your users to be required to use this method.
Thus, you will need to provide another method to close your application through scripting, with the
window.close function for example.

Helpful Hints

Some of the references that I found said that yes/no values could be replaced by true or false. I tried this, but
with no success. I recommend using yes or no.

I have read other sources which say the title bar is not immediately loaded, and that the more logic you
perform within a document, the longer it takes the title to appear. A simple solution is to limit the amount of
logic that is performed prior to the onload event firing, although I haven't found this to be a major issue.

The document's location href is not updated until the application is completely loaded. If you try to access this
property before the onload event fires, you will be given the href of the previous frame. It's recommended that
you use the document.URL property if you need access to the location of the document before it is loaded. For
example, you could use document.URL and retrieve the same result you'd have expected from the
document.location.href property.

HTAs and Security

We've already seen that HTAs aren't limited by browser security because the executable file that runs the
HTA (mshta.exe) disables Internet Explorer's standard security. HTAs are considered fully trusted

The <HTA:APPLICATION> Tag

320

applications, and all of the restrictions on the client machine and its file system are removed. The registry of
the client machine is even accessible.

If this seems like a very unsafe thing to you, bear in mind that the same power is available to
standard programs written in C++ and Visual Basic, for example.

ActiveX controls can be embedded without warnings. This is extremely helpful when using even standard
scripting controls such as the FileSystemObject or the XMLDOM. Keep in mind when disabling security
warnings, though, that you should make sure that security issues won't be a problem.

But what if you want to apply some restrictions when navigating to another web site? There are certainly no
guarantees that the site you are navigating to doesn't have a virus or some other problem.

Typically, FRAMEs or IFRAMEs are used to navigate to another site within a document. These tags are
generally used because they can have a source. In fact, frames have their own document object. DIVs, SPANs,
and other frequently used tags do not have this capability. Let's look at security for frames.

Frames Without Trust

In the past, FRAMEs and IFRAMEs have supported an attribute called TRUSTED to indicate if normal
browser security would apply to a frame. With Internet Explorer 5, the TRUSTED attribute is no longer
functional. Although there is still quite a bit of documentation that refers to the TRUSTED attribute, I tried it
out and it doesn't work.

Well, that's great. How are you supposed to change a frame's security options in Internet Explorer 5? First of
all, when you are not using a frame within an HTML application, the answer is that you can't.

Important All FRAMEs and IFRAMEs not in HTML applications are considered untrusted.
Normal browser security applies to the frame.

But what if you are in an HTML application? You may want a frame to be trusted. How are you going to do
that? Well, that's where the APPLICATION attribute of the frames comes in.

APPLICATION Attribute

The APPLICATION attribute has been added to the FRAME and IFRAME tags. The APPLICATION
attribute indicates whether a frame should be treated like an HTML application, disabling security warnings.
The possible values for the attribute are yes, meaning the application is trusted, or no (the default), meaning
that standard security warnings apply.

If, by default, frames are untrusted, how did we avoid the security issues in the example above by simply
changing the file extension? That's because untrusted frames in an HTA are unaware of both the parent
window and the URL that opened the external frame. The untrusted content then can't use that information in
any way. When the document within the untrusted frame tries to access the top element of the document, the
frame's window is returned. That way, there are no access violations that would occur in the HTML file with
frames in different domains.

Important If frames within an html document are in different URL domains, the script for one
domain cannot access the properties and methods in another domain.

HTAs and Security

321

The HTA itself is considered trusted, and does have access to the frame's properties and methods.

Let's take a look at a page that contains an ActiveX control. We'll create a simple VBScript object, the
FileSystemObject. This is just a simple demonstration page, though, and we aren't going to actually use the
FileSystemObject in any way. We'll call this page ActiveXControl.htm.

<HTML>
<HEAD>

<TITLE>ActiveX Control</TITLE>

<LINK rel="stylesheet" type="text/css" href="HTA.css">

<SCRIPT Language="VBSCRIPT">

 Dim FileSystem
 ' Creates the FileSystemObject
 Set FileSystem = CreateObject("Scripting.FileSystemObject")

</SCRIPT>
</HEAD>

<BODY>

This page contains the ActiveX control FileSystemObject.

</BODY>
</HTML>

Let's look at what happens when we try to load this page into the browser. We get a security warning that asks
the user if they want to download the ActiveX control:

After we answer yes, our page looks like the picture below.

Let's try adding this page into our HTA and see what happens. We'll add a fourth span that is linked to our
new page. For now, everything else will stay the same. Just add these lines under the other 3 spans.

HTAs and Security

322

<SPAN
 onclick="Viewer.document.location.href='ActiveXControl.htm'">
 Control

When we click on our new span, we see the same security warning. But now let's set our IFRAME's
APPLICATION attribute to yes.

<IFRAME ID=Viewer APPLICATION="yes">
</IFRAME>

Now when we navigate to our new page, we don't see any security warnings. The resulting HTA should look
like the following picture.

Nested Frames

What if you want to have nested frames? Let's add an IFRAME into the body of ActiveXControl.htm. The
source for the IFRAME will be NestedFrame.htm.

<HTML>
<HEAD>
<TITLE>ActiveX Control</TITLE>

<LINK rel="stylesheet" type="text/css" href="HTA.css">

<SCRIPT Language="VBSCRIPT">

 Dim FileSystem
 ' Creates the FileSystemObject
 Set FileSystem = CreateObject("Scripting.FileSystemObject")

</SCRIPT>
</HEAD>

<BODY>

<IFRAME src="NestedFrame.htm">
</IFRAME>

</BODY>
</HTML>

Let's create NestedFrame.htm. This file also creates the FileSystemObject. The body of the document contains
text. Now when we try to load the file ActiveXControl.htm, we receive two security warnings, one for each
frame.

<HTML>
<HEAD>

HTAs and Security

323

<TITLE>ActiveX Control</TITLE>

<LINK rel="stylesheet" type="text/css" href="HTA.css">

<SCRIPT Language="VBSCRIPT">

 Dim FileSystem
 ' Creates the FileSystemObject
 Set FileSystem = CreateObject("Scripting.FileSystemObject")

</SCRIPT>
</HEAD>

<BODY>
This page contains the ActiveX control FileSystemObject.
</BODY>
</HTML>

Now let's try loading the frame from the HTA. Since we already changed the APPLICATION attributes of the
IFRAME in the HTA to yes, we'll only see one warning; if we hadn't, we'd have seen two.

Interestingly, if we set the APPLICATION attribute of the IFRAME in the HTA to no, and the one in the
ActiveXControl to yes, we still get two sets of security warnings, because the APPLICATION attribute isn't
recognized by Internet Explorer unless the parent element is an APPLICATION.

Important For nested frames, the application attribute will not recognized, and will mean the frame
is untrusted, if its parent window is not trusted.

Now if we set both APPLICATION attributes to yes, we won't have any security warnings at all.

HTA Deployment Models

HTAs are very exciting, but by now you're probably wondering how you can distribute them. It's actually
fairly simple. HTAs can be accessed in a couple of ways: either through the web, or as a package with all of
the referenced files in the HTA (in much the same way that you would install a standard Windows
application). You can even create a combination of the two. Let's look at all these models in more depth.

Web Model

In a web model, an HTA can be referenced just as you might reference any other file with a URL. The user is
asked to verify that they want to download the file, and no further security warnings occur. The application,
and any other relevant files, are downloaded by the browser and cached.

Since the files live on the server, the user will always receive the most recent version when they download it.
If the user elects to run from the current location, they don't even need to install or configure anything. The
browser will do all of the work. The application doesn't even need to be uninstalled.

The server does need to have the MIME type "application:hta" registered for the file to be successfully
downloaded through the http: protocol. Keep in mind that the client machine must also be running Internet
Explorer 5. Currently, this is the only browser that supports HTAs.

 HTA Deployment Models

324

Web Model Issues

When you are thinking about running the application from the server, there are few things to consider:

Since you have to go to the server to retrieve the application, the application isn't available when the
user isn't connected to the Internet. If your network isn't that reliable, that is certainly going to be an
issue.

•

If you aren't on a high−speed network, and particularly if your application is large, the speed of your
application is going to suffer. While DSL and ADSL are starting to replace standard modems, the new
technology hasn't reached everyone yet....

•

Every time the application is run, the user is prompted with a screen about downloading the file. This
can get pretty frustrating if the application is started frequently.

•

However, on a high speed corporate intranet where all users have Internet Explorer 5, the web model is
extremely useful. Changes can be made to code without any of the hassles that are seen with traditional
Windows applications.

Package Model

An HTML application doesn't need to run through the web. In many cases, that's not necessary at all. All that
is required is Internet Explorer 5. Since an HTML application is a set of files, the files can be installed on a
user's local drive or even at a network location. If your application doesn't contain custom ActiveX controls,
you can use a simple zip file to place the files on the client's machine.

If you do have custom Active X controls, you will need to register them. You could use applications such as
Wise or InstallShield to register controls and create an installation process.

The advantages of this model are that you don't need to be online, the application will run faster, and you don't
need to deal with security warnings after the initial installation.

Package Model Issues

The disadvantage of using a package model is that the updates are not automatically transferred to the user
like they are in the web model. You would need to manually update the files on the local machine.

Also, if you do have ActiveX controls to register, you will need to provide a way to uninstall the controls. If
you choose to install controls, you will probably want to use programs that have uninstall utilities, such as
Wise or InstallShield.

Hybrid Model

You can also combine the two models, forming a kind of 'hybrid' model. You can install part of the
application locally, and part of the application on the server. Anything that you want to reference on the
server, such as images, stylesheets, sources for frames, XML data, and so on can be referenced from the
HTML application on the client machine.

Our example application could be seen as a kind of hybrid−model HTA, as it accesses URLs on the Internet,
while the application and corresponding stylesheet are stored locally. Using an approach such as this one may
better meet your needs.

HTA Deployment Models

325

For example, if your concern is speed, you might choose to store larger files locally. If you want to limit the
number of updates that are manually sent to the user, you might choose to make your HTA file fairly simple,
possibly by using frames which have their sources on the server. That way, any content changes can be made
to the frame files in their central location.

What Isn't Supported With HTAs?

Many of the references on HTML applications state that all of the features available in Internet Explorer 5 are
also available in HTAs. This isn't exactly true. For example, the HTA doesn't know anything about the
application or site that launched the HTA. As a result, there are a number of properties and methods of the
window object that aren't available within the HTA. There are also some default behaviors that aren't
supported. I'm not sure if all of these are by design or not. I guess we'll find out in Internet Explorer 6.

The Window Object

The window object's opener property is not available to the user. The external property (which normally
allows the window access to its referring window) is also unavailable, as is the menuArguments property.

Most of the methods that aren't available are those that would give the HTA unreasonable access to other
programs, like Internet Explorer. Since an HTA is in fact an application, it makes sense that the user wouldn't
have access to another application, even Internet Explorer. Here's a list of the unavailable methods in HTAs.

Method Description

AddChannel Presents a dialog box that allows the user to either add the channel
specified, or change the channel URL if it is already installed.

AddDesktopComponent Adds a web site or image to the Microsoft Active Desktop.

AddFavorite Adds a page to the Favorites list.

AutoCompleteSaveForm Saves the form to the auto complete data.

AutoScan Tries to connect to the web server with queries.

ImportExportFavorites Imports or exports Internet Explorer's favorites list.

IsSubscribed Indicates if a user is subscribed to an Active Channel.

NavigateAndFind Opens a web page, and highlights a specific string.

ShowBrowser Opens the browser's dialog box.

Default Behaviors

There are also a few default behaviors in Internet Explorer 5 that are not available within a HTML
application. As in the previous section, they are related to browser modifications and involve data storage by
the browser. They include:

saveFavorite•
saveHistory•
saveSnapshot•
userData•

 What Isn't Supported With HTAs?

326

Summary

I'm sure that you are now quite the expert on HTML applications. They provide a simple way to get the most
out of HTML and script, and they give you even more control over the user interface of your application.

HTML applications are a powerful technique for quickly developing Windows applications. They provide a
great way for HTML and other programming languages to come together. They are also a good way for you to
use your skills on both the server and client machines. The standard security warnings that are usually
encountered with browsers are no longer a problem.

In addition to creating full−blown Windows applications, HTAs are an excellent tool for prototyping.
Application designers can easily build an interface, and demonstrate the interactions that they want built
without having to learn C++ or VB.

Anyway, have fun creating your HTML applications. The next chapter will introduce server−side
programming with Active Server Pages.

 Summary

327

Chapter 14: Server−Side Web Scripting With ASP

Overview

Up until this chapter, we've been focusing mainly on client−side scripting and applications. Now it's time to
take a look at the server side. Creating web sites with only client−side scripting is all well and good, but your
functionality is severely limited. By adding server−side scripting, you gain a huge advantage. You are able to
draw upon the wealth of data available to you on the server and across the enterprise in various databases
(more on databases in Chapter 15). You are able to customize pages to the needs of each different user that
comes to your web site. In addition, by keeping your code on the server−side you can build a library of
functionality. This library can be drawn from again and again to further enhance other web sites. Best of all,
using server−side script libraries will allow your web sites to scale to multi−tier, or distributed, web
applications.

To do this, you'll need a good understanding of the HTTP protocol, and how an HTTP server interacts with a
browser. This model is important to understand when developing web applications that exist on the client and
server side.

Next, we'll introduce you to Active Server Pages, or ASP. ASP is Microsoft's server−side scripting
environment. It can be used to create everything from simple, static web pages, to database−aware dynamic
sites, using HTML and scripting. Its other important use is as a programming "glue". Through the use of ASP,
you can create and manipulate server−side components. These components can perhaps provide data to your
application such as graphic image generation, or maybe link to a mainframe database. The important thing is
that the ASP code does nothing more than facilitate the use of these components on the Web.

ASP comes with some built−in objects that are important to understand before their full potential can be
unleashed. We will cover these objects in depth.

Finally, we'll look at some real−world examples of using ASP on a web site. These should give you some idea
of the power and beauty of server−side scripting with ASP.

The Anatomy of the HTTP Protocol

As you know, surfing the web is as simple as clicking a link on your browser. But do you know what really
goes on beneath the hood of your web browser? It can be quite complex, but isn't too difficult to understand.
More importantly, it will help you to understand the intricacies of client and server side scripting.

Overview

The Hypertext Transfer Protocol, or HTTP, is an application level TCP/IP protocol. An application level
protocol is one that travels on top of another protocol. In this instance, HTTP travels on top of TCP, which is
also a protocol. When two computers communicate over a TCP/IP connection, the data is formatted and
processed in such a manner that it is guaranteed to arrive at its destination. This elaborate mechanism is the
TCP/IP protocol.

HTTP takes for granted, and largely ignores, the entire TCP/IP protocol. It relies instead on text commands
like GET and PUT. Application level protocols are implemented, usually, within an application (as opposed to
at the driver level), hence the name. Some other examples of application level protocols are the File Transfer
Protocol (FTP) and the mail protocols, Standard Mail Transfer Protocol (SMTP) and the Post Office

328

Protocol (POP3). Pure binary data is rarely sent via these protocols, but when it is, it is encoded into an
ASCII format. This is inefficient at best, and future versions of the HTTP protocol will rectify this problem.
The most up−to−date version of HTTP is version 1.1, and almost all web servers available today support this
version.

There is also a new HTTP protocol in the works called HTTP−NG, or HTTP−Next Generation. This newer,
robust protocol will utilize bandwidth more efficiently and improve on many of the original HTTP's
shortcomings. The biggest improvement in the new protocol is that data will be transferred in binary as
opposed to text, thus making transactions quicker. More technical information about HTTP−NG is available
from the W3C at http://www.w3.org/Protocols/HTTP−NG.

The HTTP Server

To carry out an HTTP request, there must be an HTTP or web server running on the target machine. This
server is an application that listens for and responds to HTTP requests on a certain TCP port (by default, port
80). An HTTP request is for a single item from the web server. The item may be anything from a web page to
a sound file. The server, upon receipt of the request, attempts to retrieve the data asked for. If the server finds
the correct information, it formats and returns the data to the client. If the requested information could not be
found, the server will return an error message.

Pulling up a single web page in your browser may cause dozens of HTTP transactions to occur. Each element
on a web page that is not text needs to be requested from the HTTP server individually. The main point of all
this is that each HTTP transaction consists of a request and a response:

And it is in this transaction model that you must place yourself when you are programming web applications.

Protocol Basics

There are four basic states that make up a single HTTP transaction. They are:

The Connection•
The Request•
The Response•
The Disconnection•

A client connects to a server and issues the request. It waits for a response, then disconnects. A connection
typically lasts only for a few seconds. On web sites like Yahoo where the data is not laden with graphics, and
the information is fairly static, requests last less than one second.

The Connection

The client software, a web browser in this case, creates a TCP/IP connection to an HTTP server on a specific
TCP/IP port. Port 80 is used if one is not specified. This is considered the default port for an HTTP server. A
web server may, however, reside on any port allowed. It is completely up to the operator of the web server,

The Anatomy of the HTTP Protocol

329

and port numbers are often deliberately changed as a first line of defense against unauthorized users.

The Request

Once connected, the client sends a request to the server. This request is in ASCII, and must be terminated by a
carriage−return/line−feed pair. Every request must specify a method which tells the server what the client
wants. In HTTP 1.1, there are eight methods: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, and
CONNECT. For more information about the different methods and their use, please check out the HTTP
specification on the W3C web site. For the purpose of this chapter, we are going to focus on the GET method.

The GET method asks the web server to return the specified page. The format of this request is as follows:

GET <URL> <HTTP Version>

You can make HTTP requests yourself with the telnet program. Telnet is a program that is available on most
computer systems and it was originally designed for use on UNIX systems. Since basic UNIX is
character−based, one could log in from a remote site and work with the operating system. Telnet is the
program that allows you to connect to a remote machine and all versions of Windows come with a telnet
program. The figure overleaf shows what it looks like.

Microsoft's telnet program leaves much to be desired. Thankfully, a company called Van
Dyke Technologies (www.vandyke.com) created an excellent telnet program called CRT. In
fact,the above is a screen shot of CRT.

Telnet defaults to TCP/IP port 23. On UNIX systems, in order to telnet into a machine, that machine must be
running a telnet server. This server listens for incoming telnet connections on port 23. However, almost all
telnet programs allow you to specify the port on which to connect. It is this feature that we can utilize to
examine HTTP running under the hood.

If you choose not to download the Van Dyke telnet client, you can test this by running Window's own telnet.
Windows has no predefined menu item for this program, but on NT it can usually be found at
C:\WINNT\system32\Telnet.exe. To run it, press the Start button and select Run. Type in telnet and press
ENTER. You should see a telnet window similar to the one above above.

Select Remote System from the Connect menu and you'll be presented with the following dialog:

The Anatomy of the HTTP Protocol

330

Type in the name of any web server; we chose http://www.mindbuilder.com. Then enter the web server's port.
This is almost always 80.

Once you are connected, the title bar will change to contain the name of the server to which you are
connected. There is no other indication of connection. It is at this point that you need to type in your HTTP
command. Type in the following, all in upper case:

GET / HTTP/1.0

Please note that unless you have turned on Local Echo in the Preferences, you will not see what you type.
After you've entered the command you must send a carriage return (Ctrl−M) followed by a line feed (Ctrl−J).
What is returned is shown as follows, and is the response to your HTTP request.

The Anatomy of the HTTP Protocol

331

The Response

Upon receipt of the request, the web server will answer. This will most likely result in some sort of HTML
data as shown previously. However, you may get an error as in the following example:

Again, the response is in HTML, but the code returned is an error code (404) instead of an OK (200).

HTTP Headers

What was actually returned is a two−part response. The first part consists of HTTP headers. These headers
provide information about the actual response to the request, the most important header being the status
header. In the listing above, it reads HTTP/1.1 404 Object Not Found. This indicates the actual status of the
request.

The other headers that were returned with this request are Server, Date, Content−Length, and Content−Type.
There are many different types of headers, and they are all designed to aid the browser in easily identifying
the type of information that is being returned.

The Anatomy of the HTTP Protocol

332

The Disconnect

After the server has responded to your request, it closes the connection thus disconnecting you. Subsequent
requests require you to re−establish your connection with the server.

Introducing Active Server Pages

With the HTTP architecture laid out in the last section, you can clearly see that the real heart of the HTTP
protocol lies in the request and the response. The client makes a request to the server, and the server provides
the response to the client. What we're looking at here is really the foundations of client/server computing. A
client makes a request from a server and the server fulfills that request. We see this pattern of behavior
throughout the programming world today, not only in Web programming.

Microsoft recognized this pattern and developed a new technology that rendered web programming a much
more accessible technique. This technology is Active Server Pages or ASP for short. ASP is a server−side
scripting environment that comes with Microsoft's Internet Information Services. ASP allows you to embed
scripting commands inside your HTML documents. The scripting commands are interpreted by the server and
translated into the corresponding HTML and sent back to the server. This enables the web developer to create
content that is dynamic and fresh. The beauty of this is that it does not matter which browser your web visitor
is using, because the server returns only pure HTML. Sure you can extend your returned HTML with browser
specific programming, but that is your prerogative. By no means is this all that ASP can do, but we'll cover
more of its capabilities like form validation and data manipulation later on in this chapter.

Although you can use languages such as JavaScript or even Perl, by default the ASP scripting language isyes,
you've guessed it, VBScript.

How the Server Recognizes ASPs

ASP pages do not have an .html or .htm extension; they have a .asp extension instead. The reason for this is
twofold. First, in order for the web server to know to process the scripting in your web page, it needs to know
that there is some in there. Well, by setting the extension of your web page to .asp, the server can assume that
there are scripts in your page.

A nice side effect of naming your ASP pages with the .asp extension is that the ASP processor
knows that it does not need to process your HTML files. It used to be the case, as in ASP 2.0,
that any page with the .asp extension, no matter whether it contained any server side
scripting code or not, was automatically sent to the server, and would thereby take longer to
process. With the introduction of ASP 3.0 in Windows 2000, the server is able to determine
the presence of any server side code and process or not process the page accordingly. This
increases the speed of your HTML file retrieval and makes your web server run more
efficiently.

Secondly, using an .asp extension (forcing interpretation by the ASP processor every time your page is
requested) hides your ASP scripts. If someone requests your .asp file from the web server, all he is going to
get back is the resultant processed HTML. If you put your ASP code in a file called mycode.scr and requested
it from the web server, you'll see all of the code inside.

The Anatomy of the HTTP Protocol

333

ASP Basics

ASP files are really just HTML files with scripting embedded within them. When a browser requests an ASP
file from the server, it is passed on to the ASP processing DLL for execution. After processing, the resulting
file is then sent on to the requesting browser. Any scripting commands embedded from the original HTML
file are executed and then removed from the results. This is excellent in that all of your scripting code is
hidden from the person viewing your web pages. That is why it is so important that files that contain ASP
scripts have an .asp extension.

The Tags of ASP

To distinguish the ASP code from the HTML inside your files, ASP code is placed between <% and %> tags.
This convention should be familiar to you if you have ever worked with any kind of server−side commands
before in HTML. The tag combination implies to the ASP processor that the code within should be executed
by the server and removed from the results. Depending on the default scripting language of your web site, this
code may be VBScript, JScript, or any other language you've installed. Since this book is for the VBScript
programmer, all of our ASP scripts will be in VBScript.

In the following snippet of HTML, you'll see an example of some ASP code between the <% and %> tags:

<TABLE>
<TR>
<TD>
<%
 x = x + 1
 y = y − 1
%>
</TD>
</TR>
</TABLE>

<SCRIPT> Blocks

You may also place your ASP code between <SCRIPT></SCRIPT> blocks. However, unless you direct the
script to run at the server level, code placed between these tags will be executed at the client as normal
client−side scripts. To direct your script block to execute on the server, use the RUNAT command within your
<SCRIPT> block as follows:

<SCRIPT Language="VBScript" RUNAT="Server">
 Your Script
</SCRIPT>

The Default Scripting Language

As stated previously, the default scripting language used by ASP is VBScript. However, you may change it
for your entire site, or just a single web page. Placing a special scripting tag at the beginning of your web page
does this. This tag specifies the scripting language to use for this page only.

<%@ LANGUAGE=ScriptingLanguage %>

"ScriptingLanguage" can be any language for which you have the scripting engine installed. ASP comes with
JScript, as well as VBScript.

Introducing Active Server Pages

334

You can set the default scripting language for the entire application by changing the Default ASP Language
field in the Internet Service Manager on the App Options tab. Though why you would want to do this is
questionable!

Mixing HTML and ASP

You've probably guessed by now that one can easily mix HTML code with ASP scripts. The power of this
feature is phenomenal! VBScript, as you know, has all of the control flow mechanisms like If Then, For Next,
and Do While loops. But with ASP you can selectively include HTML code based on the results of these
operators. Let's look at an example.

Suppose you are creating a web page that greets the viewer with a "Good Morning", "Good Afternoon", or
"Good Evening" depending on the time of day. This can be done as follows:

<HTML>
<BODY>
<P>The time is now <%=Time()%></P>
<%
 Dim iHour

 iHour = Hour(Time())

 If (iHour >= 0 And iHour < 12) Then
%>
Good Morning!
<%
 ElseIf (iHour > 11 And iHour < 5) Then
%>
Good Afternoon!
<%
 Else
%>
Good Evening!
<%
End If
%>
</BODY>
</HTML>

Introducing Active Server Pages

335

First we print out the current time. The <%= notation is shorthand to print out the value of an ASP variable or
the result of a function call. We then move the hour of the current time into a variable called iHour. Based on
the value of this variable we write our normal HTML text.

Notice how the HTML code is outside of the ASP script tags. When the ASP processor executes this page, the
HTML that lies between control flow blocks that aren't executed is discarded, leaving you with only the
correct code. Here is the source of what is returned from our web server after processing this page:

<HTML>
<BODY>
<P>The time is now 7:48:37 PM</P>

Good Evening!

</BODY>
</HTML>

As you can see, the scripting is completely removed leaving only the HTML and text.

The other way to output data to your web page viewer is using one of ASP's built−in objects called Response.
We'll cover this approach in the next section as you learn about the ASP object model.

Commenting Your ASP Code

As with any programming language, it is of the utmost importance to comment your ASP code as much as
possible. However, how many times have you come across a piece of code and said "eh?" Someone once told
me that the only purpose comments served were to amuse the compiler. In some instances, he may have been
correct. However, unclear comments are not worth putting in your code.

Comments in ASP are identical to comments in VBScript. When ASP comes across the single quote character
it will graciously ignore the rest of the line:

<%
Dim iLumberJack

'I'm a comment and I'm O.K.
iLumberJack = iLumberJack + 1
%>

The Active Server Pages Object Model

ASP, like most Microsoft technologies, utilizes the Component Object Model (as discussed in Chapter 5), or
COM, to expose functionality to consumer applications. ASP is actually an extension to your web server that
allows server−side scripting. At the same it also provides a compendium of objects and components, which
manage interaction between the web server and the browser. These objects form the Active Server Pages
Object Model. These 'objects' can be manipulated by scripting languages. Take a look at the following
diagram:

Introducing Active Server Pages

336

ASP neatly divides up into six objects, which manage their own part of the interaction between client and
server. As you can see in the diagram, at the heart of the interaction between client and server are the Request
and Response objects, which deal with the HTTP request and response; but we will be taking a quick tour
through all of the different objects and components that are part of ASP.

Four of the six core objects of the object model (the Request, Response, Application, and Session objects) can
use collections to store data. Before we look at each object in turn we need to take a quick overview of
collections.

Collections

Collections in ASP are very similar to their VBScript namesakes. They act as data containers that store their
data in a manner close to that of an array. The information is stored in the form of name/value pairs.

The Application and the Session objects have a collection property called Contents. This collection of variants
can hold any information you wish to place in it. Using these collections allow you to share information
between web pages.

To place a value into the collection, simply assign it a key and then assign the value:

Application.Contents("Name") = "Evil Knievil"

Or

Session.Contents("Age") = 25

Fortunately for us, Microsoft has made the Contents collection the default property for these two objects.
Therefore the following shorthand usage is perfectly acceptable:

Application("Name") = "Evil Knievil"
Session("Age") = 25

To read values from the Contents collections, just reverse the call:

sName = Application("Name")
sAge = Session("Age")

Iterating the Contents Collection

Because the Contents collections work like regular VBScript collections, they are easily iterated. You can use
the collections Count property, or use the For Each iteration method:

for x = 1 to Application.Contents.Count

The Active Server Pages Object Model

337

next

for each item in Application.Contents

next

Important Please note that the Contents collections are 1 based. That is to say that the first element
in the collection is at position 1, not 0.

To illustrate this, the following ASP script will dump the current contents of the Application and Session
objects' Contents collections:

<HTML>
<BODY>
<P>The Application.Contents</P>
<%
 Dim Item

 For Each Item In Application.Contents
 Response.Write Item & " = [" & Application(Item) & "]
"
 Next
%>
<P>The Session.Contents</P>
<%
 For Each Item In Session.Contents
 Response.Write Item & " = [" & Session(Item) & "]
"
 Next
%>
</BODY>
</HTML>

Removing an Item from the Contents Collection

The Application Object's Contents collection contains two methods, and these are Remove and RemoveAll.
These allow you to remove one or all of the items stored in the Application.Contents collection. At the time of
writing, there is no method to remove an item from the Session.Contents collection.

Let's add an item to the Application.Contents collection, and then remove it.

<%
 Application("MySign") = "Pisces"
 Application.Contents.Remove("MySign")
%>

Or we can just get rid of everything

<%
 Application.Contents.RemoveAll
%>

Not all of the collections of each object work in this way, but the principles remain the same and we will
explain how each differs when we discuss each object.

The Active Server Pages Object Model

338

The Request Object

When your web page is requested, along with the HTTP request, information such as the URL of the web
page request and the format of the data requested is passed. It can also contain feedback from the user such as
the input from a text box or drop down list box. The Request object allows you to get at information passed
along as part of the HTTP request. The corresponding output from the server is returned as part of the
Response. The Request object has several collections to store information that warrant discussion.

The Request Object's Collections

The Request object has five collections. Interestingly, they all act as the default property for the object. That is
to say, you may retrieve information from any of the five collections by using the abbreviated syntax:

ClientIPAddress = Request("REMOTE_ADDR")

The REMOTE_ADDR value lies in the ServerVariables collection. However, through the use of the collection
cascade, it can be retrieved with the above notation. Please note that for ASP to dig through each collection,
especially if they have many values, to retrieve a value from the last collection is inefficient. It is always
recommended to use the fully qualified collection name in your code. Not only is this faster, but it improves
your code in that it is more specific, and less cryptic.

ASP searches through the collections in the following order:

QueryString•
Form•
Cookies•
ClientCertificate•
ServerVariables•

If there are variables with the same name, only the first is returned when you allow ASP to search. This is
another good reason for you to fully qualify your collection.

QueryString

This contains a collection of all the information attached to the end of an URL. When you make an URL
request, the additional information is passed along with the URL to the web page appended with a question
mark. This information takes the following form: URL?item=data[&item=data][]

The clue to the server is the question mark. When the server sees this, it knows that the URL has ended, and
variables are starting. So an example of a URL with a query string might look like this:
http://www.buythisbook.com/book.asp?bookname=VBScriptProgrammersReference

We stated earlier that the collections store information in name/value pairs. Despite this slightly unusual
method of creating the name/value pair, the principle remains the same; bookname is the name and
VBScriptProgrammersReference is the value. When ASP gets hold of this URL request, it breaks apart all of
the name/value pairs and places them into this collection for easy access. This is another excellent feature of
ASP. Query strings are built up using ampersands to delimit each name/value pair so if you wished to pass the
user information along with the book information, you could pass the following:
http://www.buythisbook.com/book.asp?bookname=VBScriptProgrammersReference&buyer=JerryAblan

The Active Server Pages Object Model

339

Query strings can be generated in one of three ways. The first is, as discussed, by a user typed URL. The
second is as part of a URL specified in an Anchor tag.

Go to book buying page

So when you click on the link, the name/value pair is passed along with the URL. The third and final method
is via a form sent to the server with the GET method.

<FORM ACTION="book.asp" METHOD="GET">
Type your name: <INPUT TYPE="TEXT" NAME="buyer">

Type your requested book: <INPUT TYPE="TEXT" NAME="bookname" SIZE=40>

<INPUT TYPE=SUBMIT VALUE=Submit>
</FORM>

You input the information onto the text boxes on the form and the text is submitted when you click on Submit
and two query strings are generated.

Next you need to be able to retrieve information, and you use this technique to retrieve from each of the three
methods used to generate a query string.

Request.QueryString("buyer")
Request.QueryString("bookname")

Please note that these lines won't display anything by themselves, you need to add either the
shorthand notation (equality operator) to display functions in front of a single statement, or
when a number of values need displaying then use Response.Write to separately display each
value in the collection. For example:

<%=Request.QueryString("buyer")%> or Response.Write(Request.QueryString("bookname")
)

The first of the two Request object calls should return the name of Jerry Ablan on the page and the second of
the two should return VBScript Programmers Reference. Of course you could always store this information in
a variable for later access.

sBookName = Request.QueryString("bookname")

Form

Contains a collection of all the form variables posted to the HTTP request by an HTML form. Query strings
aren't very private as they transmit information via a very visible method, the URL. If you want to transmit
information from the form more privately then you can use the form collection to do so which sends its
information as part of the HTTP Request body. The easy access to form variables is one of ASP's best
features.

The Active Server Pages Object Model

340

If we go back to our previous example, the only alteration we need to make to our HTML form code is to
change the METHOD attribute. Forms using this collection must be sent with the POST method and not the
GET method. It is actually this attribute that determines how the information is sent by the form. So if we
change the method of the form as follows:

<FORM ACTION="book.asp" METHOD="POST">
Type your name: <INPUT TYPE="TEXT" NAME="buyer">

Type your requested book: <INPUT TYPE="TEXT" NAME="bookname" SIZE=40>

<INPUT TYPE=SUBMIT VALUE=Submit>
</FORM>

Once the form has been submitted in this style, then we can retrieve and display the information using the
following:

=Request.Form("buyer")

Cookies

Contains a read−only collection of cookies sent by the client browser along with the request. Because the
cookies were sent from the client, they cannot be changed here. You must change them using the
Response.Cookies collection. A discussion of cookies can be found in the discussion of the Response object.

ClientCertificate

When a client makes a connection with a server requiring a high degree of security, either party can confirm
who the sender/receiver is by inspecting their digital certificate. A digital certificate contains a number of
items of information about the sender, such as the holder's name, address and length of time the certificate is
valid for. A third party, known as the Certificate Authority or CA, will have previously verified these details.

The ClientCertificate collection is used access details held in a client side digital certificate sent by the
browser. This collection is only populated if you are running a secure server, and the request was via an
https:// call instead of an http:// call. This is the preferred method to invoke a secure connection.

ServerVariables

When the client sends a request and information is passed across to the server, it's not just the page that is
passed across, but information such as who created the page, the server name, and the port that the request
was sent to. The HTTP header that is sent across together with the HTTP request also contains information of
this nature such as the type of browser, and type of connection. This information is combined into a list of
variables that are predefined by the server as environment variables. Most of them are static and never really
change unless you change the configuration of your web server. The rest are based on the client browser.

These server variables can be accessed in the normal method. For instance, the server variable
HTTP_USER_AGENT, which returns information about the type of browser being used to view the page, can
be displayed as follows:

<%=Request.ServerVariables("HTTP_USER_AGENT")%>

Alternatively you can printout the whole list of server variables and their values with the following code:

For Each key in Request.ServerVariables
 Response.Write "" & (Key) &" "
 Response.Write (Request.ServerVariables(key)) & "
"

The Active Server Pages Object Model

341

Next

This displays each of the ServerVariables collection in bold, and the contents of the key (if any) after it. The
final product looks like this:

Server variables are merely informative, but they do give you the ability to customize page content for
specific browsers, or to avoid script errors that might be generated.

Request Object Properties and Methods

The Request object contains a single property and a single method. They are used together to transfer files
from the client to the server. Uploading is accomplished using HTML forms.

TotalBytes Property

When the request is processed, this property will hold the total number of bytes in the client browser request.
Most likely you'd use it to return the number of bytes in the file you wish to transfer. This information is
important to the BinaryRead method.

BinaryRead Method

This method retrieves the information sent to the web server by the client browser in a POST operation. When
the browser issues a POST, the data is encoded and sent to the server. When the browser issues a GET, there
is no data other than the URL. The BinaryRead method takes one parameter, the number of bytes to read. So
if you want it to read a whole file, you pass it the total number of bytes in the file, generated by the TotalBytes
property.

It's very rarely applied because Request.QueryString and Request.Form are much easier to use. That's because
BinaryRead wraps its answer in a safe array of bytes. For a scripting language that essentially only handles
variants, that makes life a little complicated. However this format is essential for file uploading. You can find
full details on how to upload files and then decode a safe array of bytes in an excellent article at
15seconds.com (http://www.15seconds.com/Issue/981121.htm.)

The Response Object

After you've processed the request information from the client browser, you'll need to be able to send
information back. The Response object is just the ticket. It provides you with the tools necessary to send
anything you need back to the client.

The Active Server Pages Object Model

342

The Response Object's Collection

The Response object contains only one collection: Cookies. This is the version of the Request object's
Cookies collection that can be written to.

If you've not come across them before, cookies are small (limited to 4kb of data) text files stored on the hard
drive of the client that contain information about the user, such as whether they have visited the site before
and what date they last visited the site on. There are lots of misapprehensions about cookies being intrusive as
they allow servers to store information on the user's drive. However you need to remember that firstly the user
has to voluntarily accept cookies or activate an Accept Cookies mechanism on the browser for them to work,
secondly this information is completely benign and cannot be used to determine the user's e−mail address or
such like. They are used to personalize pages that the user might have visited before. Examples of things to
store in cookies are unique user IDs, or user names; then, when the user returns to your web site, a quick
check of cookies will let you know if this is a return visitor or not.

You can create a cookie on the user's machine as follows:

Response.Cookies("BookBought") = "VBScript Programmers Reference"

You can also store multiple values in one cookie using an index value key. The cookie effectively contains a
VBScript Dictionary object and using the key can retrieve individual items. Its functioning is very close to
that of an array.

Response.Cookies("BookBought")("1") = "VBScript Programmers Reference "
Response.Cookies("BookBought")("2") = "Instant HTML"

A cookie will automatically expire − disappear from the user's machine − the moment a user ends their
session. To extend the cookie beyond this natural lifetime, you can specify a date with the Expires property.
The date takes the following format WEEKDAY DD−MON−YY HH:MM:SS

Response.Cookies("BookBought").Expires = #31−Dec−99#

The # sign can be used to delimit dates in ASP (as in VBScript).

Other properties that can be used in conjunction with this collection are:

Domain: a cookie is only sent to page requested within the domain from which it was created•
Path : a cookie is only sent to pages requested within this path•
HasKeys: specifies whether the cookie uses an index/dictionary object or not•
Secure: specifies whether the cookie is secure. A cookie is only deemed secure if sent via the HTTPS
protocol.

•

You can retrieve the cookies information using the Request object cookies collection, mentioned earlier. To
do this you could do the following:

You purchased <%=Request.Cookies("BookBought")%> last time you visited the site.

If there were several cookies in the collection you could iterate through each cookie and display the contents
as follows:

For Each cookie in Request.Cookies
 Response.Write (Request.Cookies(cookie))

The Active Server Pages Object Model

343

Next

The Response Object's Methods

To understand what the Response Object's methods and properties do, we need to examine the workings of
how ASP sends a response in more detail. When an ASP script is run, an HTML output stream is created.
This stream is a receptacle for the web server to store details and create the dynamic/interactive web page in.
As mentioned before, the page has to be created entirely in HTML for the browser to understand it (excluding
client−side scripting, which is ignored by the server).

The stream is initially empty when created. New information is added to the end. If any custom HTML
headers are required then they have to be added at the beginning. Then the HTML contained in the ASP page
is added next to the script, so anything not encompassed by <% %> tags is added. The Response object
provides two ways of writing directly to the output stream, either using the Write method or it's shorthand
technique.

Write

Probably the most used method of all the built−in objects, Write allows you to send information back to the
client browser. You can write text directly to a web page by encasing the text in quotation marks:

Response.Write "Hello World!"

Or to display the contents of a variant you just drop the quotation marks:

sText = "Hello World!"
Response.Write sText

For single portions of dynamic information that only require adding into large portions of HTML, you can use
the equality sign as shorthand for this method, as specified earlier, e.g.

My message is <% =sText %>

This technique reduces the amount of code needed, but at the expense of readability. There is nothing to
choose between these techniques in terms of performance.

AddHeader

This method allows you to add custom headers to the HTTP response. For example, if you were to write a
custom browser application that examined the headers of your HTTP requests for a certain value, you'd use
this method to set that value. Usage is as follows:

Response.AddHeader "CustomServerApp", "BogiePicker/1.0"

This would add the header CustomServerApp to the response with the value of BogiePicker/1.0. There are no
restrictions regarding headers and header value.

AppendToLog

Calling this method allows you to append a string to the web server log file entry for this particular request.
This allows you to add custom log messages to the log file.

The Active Server Pages Object Model

344

BinaryWrite

This method allows you to bypass the normal character conversion that takes place when data is sent back to
the client. Usually, only text is returned, so the web server cleans it up. By calling BinaryWrite to send your
data, the actual binary data is sent back, bypassing that cleaning process.

Clear

This method allows you to delete any data that has been buffered for this page so far. See discussion of the
Buffer property for more details.

End

This method stops processing the ASP file and returns any currently buffered data to the client browser.

Flush

This method returns any currently buffered data to the client browser and then clears the buffer. See
discussion of the Buffer property for more details.

Redirect

This method allows you to relinquish control of the current page to another web page entirely. For example,
you can use this method to redirect users to a login page if they have not yet logged on to your web site:

<%
If (Not Session("LoggedOn")) Then
 Response.Redirect "login.asp"
End If
%>

The Response Object's Properties

Buffer

You may optionally have ASP buffer your output for you. This property tells ASP whether or not to buffer
output. Usually, output is sent to the client as it is generated. If you turn buffering on (by setting this property
to True), output will not be sent until all scripts have been executed for the current page, or the Flush or End
methods are called.

Response.Buffer has to be inserted after the language declaration, but before any HTML is used. If you insert
it outside this scope you will most likely generate an error. A correct use of this method would look like:

<@ LANGUAGE = "VBSCRIPT">
<% Response.Buffer = True %>
<HTML>
...

The Flush method is used in conjunction with the Buffer property. To use it correctly you must set the Buffer
property first and then at places within the script you can flush the buffer to the output stream, while
continuing processing. This is useful for long queries, which might otherwise worry the user that nothing was
being returned.

The Active Server Pages Object Model

345

The Clear method erases everything in the buffer that has been added since the last Response.Flush call. It
erases only the response body however and leaves intact the response header.

CacheControl

Generally when a proxy server retrieves an ASP web page, it does not place a copy of it into its cache. That is
because by their very nature ASP pages are dynamic and, most likely, a page will be stale the next time it is
requested. You may override this feature by changing the value of this property to Public.

Charset

This property will append its contents to the HTTP content−type header that is sent back to the browser.
Every HTTP response has a content−type header that defines the content of the response. Usually the
content−type is "text/html". Setting this property will modify the type sent back to the browser.

ContentType

This property allows you to set the value of the content−type that is sent back to the client browser.

Expires

Most web browsers keep web pages in a local cache. The cache is usually as good as long as you keep your
browser running. Setting this property allows you to limit the time the page stays in the local cache. The value
of the Expires property specifies the length of time in minutes before the page will expire from the local
cache. If you set this to zero, the page will not be cached.

ExpiresAbsolute

Just like the Expires property, this property allows you to specify the exact time and date on which the page
will expire.

IsClientConnected

This read−only property indicates whether or not the client is still connected to the server. Remember that the
client browser makes a request then waits for a response? Well, imagine you're running a lengthy script and
during the middle of processing, the client disconnects because he was waiting too long. Reading this property
will tell you if the client is still connected or not.

Status

This property allows you to set the value returned on the status header with the HTTP response.

The Application and Session Objects

The Application and Session objects like Request and Response work very closely together. Application is
used to tie all of the pages together into one consistent application, while the Session object is used to track
and present a user's series of requests to the web site as a continuous action, rather than an arbitrary set of
requests.

The Active Server Pages Object Model

346

Scope Springs Eternal

Normally, you will declare a variable for use within your web page. You'll use it, manipulate it, then perhaps
print out its value, or whatever. But when your page is reloaded, or the viewer moves to another page, the
variable, with its value, is gone forever. By placing your variable within the Contents collection of the
Application or Session objects, you can extend the life span of your variable!

Any variable or object that you declare has two potential scopes: procedure and page. When you declare a
variable within a procedure, its life span is limited to that procedure. Once the procedure has executed, your
variable is gone. You may also declare a variable at the web page level but like the procedure−defined
variable, once the page is reloaded, the value is reset.

Enter the Application and Session objects. The Contents collections of these two objects allow you to extend
the scope of your variables to session−wide, and application−wide. If you place a value in the Session object,
it will be available to all web pages in your site for the life span of the current session (more on sessions later).
Good session scope variables are user IDs, user names, login time, etc., things that pertain only to the session.
Likewise, if you place your value into the Application object, it will exist until the web site is restarted. This
allows you to place application−wide settings into a conveniently accessible place. Good application scope
variables are font names and sizes, table colors, system constants, etc., things that pertain to the application as
a whole.

The global.asa File

Every ASP application may utilize a special script file. This file is named global.asa and it must reside in the
root directory of your web application. It can contain script code that pertains to the application as a whole, or
each session. You may also create ActiveX objects for later use in this scripting file.

The Application Object

ASP works on the concept that an entire web site is a single web application. Therefore, there is only one
instance of the Application object available for your use in your scripting at all times. Please note that it is
possible to divide up your web site into separate applications, but for the purposes of this discussion we'll
assume there is only one application per web site.

Collections

The Application object contains two collections: Contents and StaticObjects. The Contents collection is
discussed above. The StaticObjects collection is similar to Contents, but only contains the objects that were
created with the <OBJECT> tag in the scope of your application. This collection can be iterated just like the
Contents collection.

You cannot store references to ASP's built−in objects in Application's collections.

Methods

The Application object contains two methods as detailed below.

Lock The Lock method is used to "lock−down" the Contents collection so that it cannot be
modified by other clients. This is useful if you are updating a counter, or perhaps grabbing a
transaction number stored in the Application's Contents collection.

Unlock

The Active Server Pages Object Model

347

The Unlock method "unlocks" the Application object thus allowing others to modify the
Contents collection.

Events

The Application object generates two events: Application_OnStart and Application_OnEnd. The
Application_OnStart event is fired when the first view of your web page occurs. The Application_OnEnd
event is fired when the web server is shut down. If you choose to write scripts for these events they must be
placed in your global.asa file.

The most common use of these events is to initialize application−wide variables. Items such as font names,
table colors, database connection strings, perhaps even writing information to a system log file. The following
is an example global.asa file with script for these events:

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
Sub Application_OnStart
 'Globals
 Application("ErrorPage") = "handleError.asp"
 Application("SiteBanAttemptLimit") = 10
 Application("AccessErrorPage") = "handleError.asp"
 Application("RestrictAccess") = False

 'Keep track of visitors
 Application("NumVisits") = Application("NumVisits") + 1
End Sub
</SCRIPT>

The Session Object

Each time a visitor comes to your web site, a Session object is created for the visitor if the visitor does not
already have one. Therefore, there is an instance of the Session object available to you in your scripting as
well. The Session object is similar to the Application object in that it can contain values. However, the
Session object's values are lost when your visitor leaves the site. The Session object is most useful for
transferring information from web page to web page. Using the Session object, there is no need to pass
information in the URL.

The most common use of the Session object is to store information in its Contents collection. This information
would be session−specific in that it would pertain only to the current user.

Many web sites today offer a "user personalization" service. That is, to customize a web page to their
preference. This is easily done with ASP and the Session object. The user variables are stored in the client
browser for retrieval by the server later. Simply load the user's preferences at the start of the session and then,
as the user browses your site, utilize the information regarding the user's preferences to display information.

Suppose your web site displays stock quotes for users. You could allow users to customize the start page to
display their favorite stock quotes when they visit the site. By storing the stock symbols in your Session
object, you can easily display the correct quotes when you render your web page.

This session management system relies on the use of browser cookies. The cookies allow the user information
to be persisted even after a client leaves the site. Unfortunately, if a visitor to your web site does not allow
cookies to be stored, you will be unable to pass information between web pages within the Session object.

The Active Server Pages Object Model

348

Collections

The Session object contains two collections: Contents and StaticObjects. The Contents collection we
discussed above. The StaticObjects collection is similar to Contents, but only contains the objects that were
created with the <OBJECT> tag in your HTML page. This collection can be iterated just like the Contents
collection.

Properties

Below are the properties that the Session object exposes for your use:

CodePage Setting this property will allow you to change the character set used by ASP when it is
creating output. This property could be used if you were creating a multi−national web
site.

LCID This property sets the internal locale value for the entire web application. By default,
your application's locale is your server's locale. If you server is in the U.S., then your
application will default to the U.S. Much of the formatting functionality of ASP utilizes
this locale setting to display information correctly for the country in question. For
example, the date is displayed differently in Europe versus the U.S. So based on the
locale setting, the date formatting functions will output the date in the correct format.

You can also change this property temporarily to output data in a different format. A
good example is currency. Let's say your web site had a shopping cart and you wanted to
display totals in U.S. dollars for U.S. customers, and Pounds Sterling for U.K. customers.
To do this you'd change the LCID property to the British locale setting, and then call the
currency formatting routine.

SessionID Every session created by ASP has a unique identifier. This identifier is called the
SessionID and is accessible through this property. It can be used for debugging ASP
scripts.

Timeout By default, an ASP session will timeout after 20 minutes of inactivity. Every time a web
page is requested or refreshed by a user, his internal ASP time clock starts ticking. When
the time clock reaches the value set in this property, his session is automatically
destroyed. You can set this property to reduce the timeout period if you wish.

Methods

The Session object contains a single method, Abandon. This instructs ASP to destroy the current Session
object for this user. This method is what you would call when a user logs off your web site.

Events

The Session object generates two events: Session_OnStart and Session_OnEnd. The Session_OnStart event is
fired when the first view of your web page occurs. The Session_OnEnd event is fired when the web server is
shut down. If you choose to write scripts for these events they must be placed in your global.asa file.

The most common use of these events is to initialize session−wide variables. Items like usage counts, login
names, real names, user preferences, etc. The following is an example global.asa file with script for these
events:

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
Sub Session_OnStart
 Session("LoginAttempts") = 0

The Active Server Pages Object Model

349

 Session("LoggedOn") = False
End Sub

Sub Session_OnEnd
 Session("LoggedOn") = False
End Sub
</SCRIPT>

The Server Object

The next object in the ASP object model is the Server object. The Server object enables you to create and
work with ActiveX controls in your web pages. In addition, the Server object exposes methods that help in the
encoding of URLs and HTML text.

Properties

ScriptTimeout

This property sets the time in seconds that a script will be allowed to run. The default value for all scripts on
the system is 90 seconds. That is to say that if a script has run for longer than 90 seconds, the web server will
intervene and let the client browser know something is wrong. If you expect your scripts to run for a long
time, you will want to use this property.

Methods

CreateObject

This method is the equivalent to VBScript's CreateObject, or using the New keyword − it instantiates a new
instance of an object. The result can be placed into the Application or Session Contents collection to lengthen
its life span.

Generally you'll create an object at the time the session is created and place it into the Session.Contents
collection. For example, let's say you've created a killer ActiveX DLL with a really cool class that converts
Fahrenheit to Celsius and vice versa. You could create an instance of this class with the CreateObject method
and store it in the Session.Contents collection like this:

Set Session("MyConverter") = Server.CreateObject("KillerDLL.CDegreeConverter")

This object would be around as long as the session is and will be available for you to call. As you'll see in
later chapters, this method is invaluable when working with database connections.

ASP comes with its own built in set of components that you can create instances of using the CreateObject
method. These are:

Ad Rotator − used to display a random graphic and link every time a user connects to the page.•
Browser Capabilities − manipulates a file browscap.ini contained on the server computer to
determine the capabilities of a particular client's browser.

•

Content Linker − provides a central repository file from where you manage a series of links and their
URLs, and provide appropriate descriptions about them.

•

Content Rotator − a cut down version of the Ad Rotator that provides the same function but without
optional redirection.

•

Page Counter − Counts the number of times a page has been hit.•

The Active Server Pages Object Model

350

Permission Checker − checks to see if a user has permissions before allowing them to access a given
page.

•

Counters − counts any value on an ASP page from anywhere within an ASP application.•
MyInfo − can be used to store personal information about a user within an XML file.•
Status − used to collect server profile information.•
Tools − a set of miscellaneous methods that are grouped under the generic heading of Tools.•
IIS Log − allows you to create an object that allows your applications to write to and otherwise
access the IIS log.

•

Execute

This method executes an ASP file and inserts the results into the response. You can use this call to include
snippets of ASP code, like subroutines.

GetLastError

This method returns an ASPError object that contains all of the information about the last error that has
occurred.

HTMLEncode

This method encodes a string for proper HTML usage. This is useful if you want to actually display HTML
code on your web pages.

MapPath

This method returns a string that contains the actual physical path to the file in question. Subdirectories of
your web site can be virtual. That is to say that they don't physically exist in the hierarchy of your web site. To
find out the true whereabouts of a file, you can call this method.

Transfer

The Transfer method allows you to immediately transfer control of the executing page to another page. This is
similar to the Response.Redirect method except for the fact that the Transfer method makes all variables and
the Request collections available to the called page.

URLEncode

This method, as the title says, encodes a URL for transmission. This encoding includes replacing spaces with
a plus sign (+) and replacing unprintable characters with hexadecimal values. You should always run your
URLs through this method when redirecting.

The ObjectContext Object

The final object we shall consider is the ObjectContext object, which comes into play when you use
transactions in your web page. When an ASP script has initiated a transaction, it can either be committed or
aborted by this object. It has two methods to do this with.

SetAbort

SetAbort is called when the transaction has not been completed and you don't want resources updated.

The Active Server Pages Object Model

351

SetComplete

SetComplete is called when there is no reason for the transaction to fail. If all of the components that form
part of the transaction call SetComplete, then the transaction will complete.

Using Active Server Pages Effectively

Is it true that a little bit of knowledge is a bad thing? In the realm of ASP, I think not. A little bit of knowledge
is probably just piquing your interest. For the final part of this chapter we're going to build a web site to
demonstrate some of the features of ASP. This sample site will demonstrate many of the ASP features and
principles described earlier in this chapter.

Designing the Site

Before we start creating our new web site, we should discuss the design. For your first ASP application, we'll
keep it quite simple. What we want to create is an HTML form that accepts for input the following
information: first name, last name, and e−mail address. After the user submits the form, our ASP page will
reformat the first and last name, and check the e−mail address for proper syntax.

The user will be given three attempts to enter the information correctly or else a warning message will display
at the bottom of the screen:

Creating the global.asa file

The first step in creating a new ASP application is to create your global.asa file. This is the file that houses
your event handlers for the Application and Session objects. In addition, in this file you may set application,
and session−wide variables to their default values. To create this file, in the root of your web server directory
create a file called global.asa. Here is the content of our sample global.asa:

<SCRIPT LANGUAGE=VBScript RUNAT=Server>
Sub Application_OnStart
 Application("AllowedErrorsBeforeWarning") = 3
End Sub

Sub Session_OnStart
 Session("ErrorCount") = 0
End Sub

The Active Server Pages Object Model

352

Sub Session_OnEnd
 'Nothing to do here...
End Sub

Sub Application_OnEnd
 'Nothing to do here...
End Sub
</SCRIPT>

Our file has handlers defined for Application_OnStart, Application_OnEnd, Session_OnStart, and
Session_OnEnd. The Application_OnEnd and Session_OnEnd events are not used in this example, but shown
above for completeness.

We want to set a limit on the number of submissions the user gets before a warning message is shown. Since
this is a feature of the application and affects all users, we will store this constant in the Application.Contents
collection. This is done in the Application_OnStart event. We add to the collection an item named
AllowedErrorsBeforeWarning and set its value to 3.

Now that we know how many times a user can try to get it right, we need a place to store the number of times
the user has tried to get it right. Since this counter is different for each user, we'll place this into the
Session.Contents collection. We initialize our variable to 0. This is done in the Session_OnStart event. We
add to the collection an item named, appropriately, ErrorCount, with a value of 0.

Creating our Main Page

Now that we've laid the groundwork for our ASP application, it's time to build the main page. Since this is a
simple example, we will only utilize a single web page. Let's begin by creating this single page.

Create a new web page on your site and name it default.asp. This is the file name used by IIS as the default
web page. The default web page is the page that is returned by a web server when no web page is specified.
For example, when you call up http://www.wrox.com/, you aren't specifying a web page. The server looks
through its list of default file names and finds the first match in the web site's root directory.

The following shows the contents of your default.asp page:

<%@ Language=VBScript %>
<%
Dim txtFirstName, txtLastName, txtEmailAddr
Dim sMessage

'**
'* Main
'*
'* The main subroutine for this page...
'**

Sub Main()
 'Was this page submitted?
 if (Request("cmdSubmit") = "Submit") Then
 'Reformat the data into a more readable format...
 txtFirstName = InitCap(Request("txtFirstName"))
 txtLastName = InitCap(Request("txtLastName"))
 txtEmailAddr = LCase(Request("txtEmailAddr"))

 'Check the email address for the correct components...

Using Active Server Pages Effectively

353

 if (Instr(1, txtEmailAddr, "@") = 0 _
 or Instr(1, txtEmailAddr, ".") = 0) Then
 sMessage = "The email address you entered does not " _
 & "appear to be valid."
 Else
 'Make sure there is something after the period..
 if (Instr(1, txtEmailAddr, ".") = Len(txtEmailAddr) _
 or Instr(1, txtEmailAddr, "@") = 1 or _
 (Instr(1, txtEmailAddr, ".") = Instr(1, txtEmailAddr, "@") + 1)) Then
 sMessage = "You must enter a complete email address."
 end if
 End If
 'We passed our validation, show that all is good...
 if (sMessage = "") Then
 sMessage = "Thank you for your input. All data has " _
 & "passed verification."
 else
 Session("ErrorCount") = Session("ErrorCount") + 1

 if (Session("ErrorCount") > _
 Application("AllowedErrorsBeforeWarning")) then
 sMessage = sMessage & "<P>You have exceeded " _
 & "the normal number of times it takes to get this right!"
 end if
 End If
 Else
 'First time in here? Set some default values...
 txtFirstName = "Enter Your First Name"
 txtLastName = "Enter Your Last Name"
 txtEmailAddr = "Enter Your Email Address"
 End If
End Sub

'**
'* InitCap
'*
'* Capitalizes the first letter of the string
'**

Function InitCap(sStr)
 InitCap = UCase(Left(sStr, 1)) & LCase(Right(sStr, Len(sStr) − 1))
End Function

'**
'* Call our main subroutine
'**

Call Main()
%>

<html>
<head>
 <meta NAME="GENERATOR" Content="Microsoft FrontPage 3.0">
 <title>My First ASP Application</title>
</head>

<body>

<table border="0" cellPadding="0" cellSpacing="0" width="600">
<tbody>
 <tr>

Using Active Server Pages Effectively

354

 <td width="100"></td>
 <td width="500"><center>My First ASP
Application</center></td>
 </tr>

 <tr>
 <td width="100"> </td>
 <td width="500" align="left">

 Please fill out the following form and press the [Submit] button. The information you enter will be reformatted and the email address will be verified.<form action="default.asp" id="FORM1" method="post" name="frmMain">
 <table border="0" cellPadding="1" cellSpacing="5" width="100%">
 <tr>
 <td width="100" nowrap align="right">First Name:</td>
 <td width="350">
 <input title="Enter your first name here" name="txtFirstName" size="30" value="<%=txtFirstName%>" tabindex="1"></td>
 <td width="50"><div align="right">
 <input type="submit" title="Submit this data for processing..." value="Submit" name="cmdSubmit" tabindex="4"></td>
 </tr>

 <tr>
 <td width="100" nowrap align="right">
 Last Name:</td>
 <td width="400" colspan="2">

 <input title="Enter your last name here" name="txtLastName" size="30" value="<%=txtLastName%>" tabindex="2"></td>
 </tr>

 <tr>
 <td width="100" nowrap align="right">Email Address:</td>
 <td width="400" colspan="2"><input title="Enter your valid email address here" name="txtEmailAddr"
 size="40" value="<%=txtEmailAddr%>" tabindex="3"></td>
 </tr>
 <tr>
 <td nowrap width=500 colspan="3" align="center">

 <%=sMessage%> </td>
 </tr>
 </table>
 </form>
 <p> </td>
 </tr>
</tbody>
</table>
</body>
</html>

As you can see, the page is quite long. But it breaks logically into two distinct sections: the ASP/VBScript
portion, and the HTML portion. Let's examine each section individually.

The ASP/VBScript Section

The top half of our file is where the ASP code lives. This is the code that is executed by the server before the
page is returned to the browser that requested it. Any code, as you've seen, that is to be executed on the server
before returning is enclosed in the special <% and %> tags.

For clarity (and sanity!), the ASP code has been divided into subroutines. This not only makes the code more
readable, but also will aid in its reuse. Our code has two routines: Main, and InitCap.

Before we do anything however, we declare some variables:

Using Active Server Pages Effectively

355

Dim txtFirstName, txtLastName, txtEmailAddr
Dim sMessage

When variables are declared outside of a subroutine in an ASP page, the variables retain their data until the
page is completely processed. This allows you to pass information from your ASP code to your HTML code
as you'll see.

After our variables have been declared, we have our Main routine. This is what is called by our ASP code
every time a browser retrieves the page. The Main subroutine is not called automatically: we must explicitly
call it ourselves.

'**
'* Main
'*
'* The main subroutine for this page...
'**

Sub Main()
 ' Was this page submitted?
 if (Request("cmdSubmit") = "Submit") Then
 ' Reformat the data into a more readable format...
 txtFirstName = InitCap(Request("txtFirstName"))
 txtLastName = InitCap(Request("txtLastName"))
 txtEmailAddr = LCase(Request("txtEmailAddr"))

 ' Check the email address for the correct components...
 if (Instr(1, txtEmailAddr, "@") = 0 or Instr(1, txtEmailAddr, ".") _
 = 0) Then
 sMessage = "The email address you entered does not appear to be valid."
 Else
 ' Make sure there is something after the period..
 if (Instr(1, txtEmailAddr, ".") = Len(txtEmailAddr) & _
 or Instr(1, txtEmailAddr, "@") = 1 or & _
 (Instr(1, txtEmailAddr, ".") = Instr(1, txtEmailAddr, "@") + 1)) _
 Then
 sMessage = "You must enter a complete email address."
 end if
 End If

' We passed our validation, show that all is good...
 if (sMessage = "") Then
 sMessage = "Thank you for your input. All data has " _
 & "passed verification."
 else
 Session("ErrorCount") = Session("ErrorCount") + 1

 if (Session("ErrorCount") > _
 Application("AllowedErrorsBeforeWarning")) then
 sMessage = sMessage & "<P>You have exceeded " _
 & "the normal number of times it takes to get this right!"
 end if
 End If
 Else
 ' First time in here? Set some default values...
 txtFirstName = "Enter Your First Name"
 txtLastName = "Enter Your Last Name"
 txtEmailAddr = "Enter Your Email Address"
 End If

Using Active Server Pages Effectively

356

End Sub

First we see if the form was actually submitted by the user, otherwise we initialize our variables. To determine
if the page has been submitted, we check the value of the cmdSubmit Request variable. This is the button on
our form. When pressed, the form calls this page and sets the value of the cmdSubmit button to Submit. If a
user just loads the page without pressing the button, the value of cmdSubmit is blank (""). There are other
ways to determine if a web page was submitted, but this method is the simplest.

After we have determined that the page was in fact submitted, run the names through the second function on
this page: InitCap. InitCap is a quick little function that will format a word to proper case. That is to say that
the first letter will be capitalized, and the rest of the word will be lowercase. Here is the function:

'**
'* InitCap
'*
'* Capitalizes the first letter of the string
'**

Function InitCap(sStr)
 InitCap = UCase(Left(sStr, 1)) & LCase(Right(sStr, Len(sStr) − 1))
End Function

Now that we've cleaned up the names, we need to check the e−mail address for validity. To do this we ensure
that it contains an "@" sign and a period (.). Once past this check, we make sure that there is data after the
period and that there is data before the "@" sign. This is 'quick and dirty' e−mail validity checking.

If either of these checks fail, we place a failure message into the string sMessage. This will be displayed in our
HTML section after the page processing is complete.

Now, if our e−mail address has passed the test, we set the message (sMessage) to display a thank you note. If
we failed our test, we increment our error counter that we set up in the global.asa file. Here we also check to
see if we have exceeded our limit on errors. If we have, a sterner message is set for display.

Finally, the last thing in our ASP section is our call to Main. This is what is called when the page is loaded:

'**
'* Call our main subroutine
'**

Call Main()

The HTML Section

This section is a regular HTML form with a smattering of ASP thrown in for good measure. The ASP that
we've embedded in the HTML sets default values for the input fields, and displays any messages that our
server side code has generated.

The most important part of the HTML is where the ASP code is embedded. The following snippet illustrates
this:

<input title="Enter your first name here" name="txtFirstName" size="30"
 value="<%=txtFirstName%>" tabindex="1">

Using Active Server Pages Effectively

357

Here we see a normal text input box. However, to set the value of the text box we use the Response.Write
shortcut (<%=) to insert the value of the variable txtFirstName. Remember that we dimensioned this outside
of our ASP functions so that it would have page scope. Now we utilize its value by inserting it into our
HTML.

We do exactly the same thing with the Last Name and Email Address text boxes:

<input title="Enter your last name here" name="txtLastName" size="30"
 value="<%=txtLastName%>" tabindex="2">
<input title="Enter your valid email address here" name="txtEmailAddr"
 size="40" value="<%=txtEmailAddr%>" tabindex="3">
</tr>

The last trick in the HTML section is the display of our failure or success message. This message is stored in
the variable called sMessage. At the bottom of the form, we display the contents of this variable like so:

<td nowrap width=500 colspan="3" align="center">

 <%=sMessage%>

</td>

The beauty of this code is that if sMessage is blank then nothing is shown, otherwise the message is displayed.

Summary

You should have learned much in this chapter. We first learned how HTTP is the transaction system that
sends web pages to requesting clients. It is a very important piece of the puzzle. We then discussed Active
Server Pages, or ASP. You learned how ASP pages are created, and what special HTML tags you need to
include in your files to use ASP. We looked through the ASP object model and saw that the Request and
Response objects are used to manage details of the HTTP request and responses. We saw that the Application
object is used to group pages together into one application and we saw that the Session is used to create the
illusion that the interaction between user and site is one continuous action. Finally we created a small
application that demonstrates two uses for ASP: form validation and data manipulation.

Note that you can find full details of the ASP object model in Appendix J.

 Summary

358

Chapter 15: Talking to Databases: ActiveX Data
Objects
In this chapter, you will be introduced to ADO (ActiveX Data Objects). ADO provides a COM−based way of
accessing data of many kinds, whether or not the data can be considered to be a 'database' in the standard
sense. That said, we'll be concentrating on relational database access in this short introduction. We'll see how
to use the various objects (Connection, Command, Recordset and Error) that ADO exposes.

This chapter won't teach you database access from scratch. Databases are a huge topic, and we'll barely
scratch the surface of ADO as it is. There's too much to learn. If you already know a little about databases,
though, you should be able to see how ADO works at its most basic level.

What Tools Do You Need?

ADO is COM−based, which means that you can use ADO with any development tool that can take advantage
of COM components (also called ActiveX components). These tools include Microsoft Visual Basic,
Microsoft Visual C++, Borland Delphi, and of course you can also use ADO in VBScript, which is why we're
all here.

The Windows Script Host (WSH) can be used to run the samples in this chapter (see Chapter 10 for more
information on this). Microsoft Internet Information Server (IIS) on Windows NT/2000, Microsoft Personal
Web Server (PWS) on Windows 9x, and Microsoft Internet Explorer can also be used as hosts for running the
samples. If you want to experiment with the samples, you can use any text editor, like Notepad, to edit them.

ADO itself is free of charge and the latest version can be downloaded from Microsoft's website,
http://www.microsoft.com/data. We will be talking about ADO version 2.1 in this chapter. Version 2.5 of
ADO is available with Windows 2000 and Appendix K provides detailed reference to the objects, constants
and data types therein.

The Evolution of ADO

Before ADO came along, we had (from a Visual Basic/VBScript developer's perspective) DAO and RDO.
Just for a minute, let's take a short look at these two technologies and see where ADO came from.

DAO

DAO is based on the JET database engine and it is more or less perfect for Access/Jet databases. It lets you
perform any database−related function you can do in Microsoft Access, such as creating a new database,
compacting a database, adding/deleting tables, changing the table structure, and so on.

DAO uses an object model that is based on the DBEngine and WorkSpace objects. This means that all other
objects are related to these objects. ADO, on the other hand, has a 'flatter' object model, where most objects
can be used on their own without having to create their base objects. This means that fewer steps are needed
when you write your code using ADO.

DAO doesn't give you the ability to perform asynchronous operations, to use disconnected recordsets (where
you work with a local copy of the data) or to respond to various events within the object model. There are
other things that DAO is not able to do, like data shaping (hierarchical recordsets) and persistent data (good

359

for the Web).

Even after the arrival of ADO, though, DAO is probably still the best database engine for use with Access/Jet
databases that are placed locally or on a network server in a LAN. This is because DAO has been optimized
for use with the Jet engine, whereas ADO is a database−independent engine. With a little tweaking and
fine−tuning, you can get almost the same and (in some areas better) result with ADO, as of version 2.1. Who
knows, it might actually be that version 2.5, which ships with Windows 2000, is better overall than DAO....

Although DAO can use ODBCDirect to access remote servers and thus skip the overhead of using the Jet
engine, it is largely the same as using RDO, but with a little less functionality.

RDO

RDO (Remote Data Objects) was created as a way of dealing with ODBC data without using the ODBC API
calls. It was created with VB programmers in mind, and it is simple to use compared to using ODBC API
calls. RDO is based on a programming model that is very similar to the DAO one, but it is intended to be used
with intelligent database servers, such as Microsoft SQL Server and Oracle (hence the word Remote). RDO
only ships with Enterprise editions of Visual Basic and Visual Studio, and as such is not a product you can use
as a VBScript developer, unless you are using the script engine with one of these development environments.

ADO

ADO is COM−based and, unlike DAO and RDO, it is not specifically designed to access ISAM or relational
databases. Nor is it specifically designed to use either local or remote data sources. Whatever data source you
are using, you will be able to use the same code and simply change the data provider. This is what makes
ADO so exciting. Mind you, there can be a few minor differences, so keep your eyes open.

What Are ActiveX Data Objects?

ADO is part of Microsoft's UDA (Universal Data Access) strategy. UDA is Microsoft's strategy for access to
information across an enterprise. It gives you access to a variety of relational databases, as ODBC have done
in the past, but also to non−relational information sources, like e−mail and file systems that are normally
organized hierarchically. This, of course, also means that you can access hierarchical databases such as IBM's
IMS and Microsoft Index Server.

In fact, ADO is actually part of MDAC (Microsoft Data Access Components), which is the UDA enabling
technology. MDAC includes the following components: ADO, RDS (Remote Data Services, for use with
disconnected data sources like servers on the Web), various OLEDB providers, ODBC Driver Manager and
various ODBC drivers, and the Jet engine.

If you're not confused enough already, ADO is actually a wrapper around OLEDB, which makes it easier for
application developers to use UDA. ADO is the application−level programming interface, whereas OLEDB is
the system−level programming interface to data access. The diagram shows how this works. As you can see,
some low−level languages (like C++ and Java) can deal directly with OLEDB. As a VBScript programmer,
though, it's highly unlikely that you'd ever want to deal directly with OLEDB. ADO wraps up the
functionality of OLEDB and provides you with an object model that is much easier to use than OLEDB itself.

The Evolution of ADO

360

In order for you to get access to a data store, you will need an OLEDB data provider. A provider is anything
that provides data − not the physical source of the data, but the mechanism that connects to the physical store.

The data consumer is any application or system that needs access to the data, so the data consumer uses the
data provider to retrieve and manipulate the wanted data. In a much more abstract sense, you can say that you
are the consumer using the provider to get to your data. Strictly, ADO itself is actually a consumer as well,
because it uses data provided by OLEDB.

The ADO Objects

The following diagram shows the relationships between the main ADO objects. Although the Connection
object is nominally at the head of the hierarchy, the Command and Recordset objects can actually exist
separately in their own right, without having to create a (permanent) Connection object. That means that you
can create whatever object you really need without having to litter the place with too many extra objects.

In the diagram below, what look like piles of pages represent collections, which contain zero or more
instances of the objects under them. For example, the Errors collection may have a number of Error objects in
it.

For the rest of the chapter, we're going to examine the ADO objects in some detail. We've presented the
examples in Access, mostly because we had to present them in something, and because it was the most likely
'normal' database that you'd have lying around. But ADO is so versatile that we could have chosen practically
anything. The examples are really only designed to give you a brief introduction to ADO, which is a big topic.
If you're serious about getting into ADO in more depth, consider picking up the most recent ADO
Programmer's Reference by Wrox Press − at the time of writing, this was ADO 2.1.

Not all the examples will visibly do something. They're there so you can see how to structure each statement.
Most of these examples connect to the same database in the same way, so much of the code will remain the
same − the changed areas will be highlighted. Let's look at the Connection object first.

 The ADO Objects

361

The Connection Object

What is a Connection object? Well, the Connection object is actually the only object that is always required
in the ADO programming model, and even this is not quite true, as we've seen. It is required that you have a
connection to a data source, but you don't have to have a permanent connection; rather, you can choose to
have a temporary connection that closes when the requested operation has been performed. If you're going to
be using the same connection a lot, it's faster to explicitly create the Connection object than to create a
separate temporary connection each time.

The Connection object itself is created like this:

Dim cnNorthwind

 ' Create the connection object
 Set cnNorthwind = CreateObject("ADODB.Connection")

Note that this isn't actually connected to anything. At this point, we have the object, but we haven't pointed it
at anything yet.

The Connection object can perform the following operations (remember that we're working with an Access
database):

Open or close a connection to a database•
Execute a query•
Cancel a connection•

If you're using SQL Server or another database that supports transactions, you'll also be able to begin, commit,
and rollback transactions using the Connection object.

Opening a Connection

This code opens the connection to the Northwind.mdb database found with Visual Studio and various
versions of Microsoft Office packages. If you're trying this out yourself, make sure the path to the database is
correct. If you don't have this database, you can supply the path to any other Access database and follow on
from there. You'll have to alter the later examples to point to tables in your own database, though.

Don't forget to create the Connection object in your code before trying to execute these lines...

 ' Set the connection string
 cnNorthwind.ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51;" _
 & "User ID=Admin;Data Source=c:\Program Files\Microsoft Visual " _
 & "Studio\VB98\Nwind.mdb"
 ' Open the connection
 cnNorthwind.Open

We'll be using this same code for most of the examples in this chapter.

Note that the connection string could have been specified as an argument of the Open method instead, so the
above code would simply become:

 cnNorthwind.Open("Provider=Microsoft.Jet.OLEDB.3.51;" _
 & "User ID=Admin;Data Source=c:\Program Files\Microsoft Visual" _
 & "Studio\VB98\Nwind.mdb")

The ADO Objects

362

Instead of specifying the name of an OLEDB provider and the name and location of physical storage, you can
also supply the name of an ODBC DSN (Data Source Name) Data Source Names are set up from the Control
Panel, under ODBC Data Sources. Once you've pointed a DSN at a database, you don't have to keep
supplying the full connection string each time, you can simply use:

 cnNorthwind.Open("DSN=Nwind")

...assuming you've created a DSN called Nwind.

Closing a Connection

 ' Close the connection
 cnNorthwind.Close

This will also close any recordsets that have been opened using the connection.

Executing a Query

Dim cnNorthwind
Dim rsCategory

 ' Create the connection object
 Set cnNorthwind = CreateObject("ADODB.Connection")
 ' Set the connection string
 cnNorthwind.ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51;" & _
 "User ID=Admin;Data Source=c:\Program Files\Microsoft Visual " & _
 "Studio\VB98\Nwind.mdb"
 ' Open the connection
 cnNorthwind.Open

 ' Get the recordset returned from a select query
 Set rsCategory = cnNorthwind.Execute("SELECT CategoryName " & _
 & "FROM Categories WHERE CategoryID = 2")

 MsgBox rsCategory.GetString

 ' Close and destroy the connection object
 cnNorthwind.Close
 Set cnNorthwind = Nothing

Note that you can also execute a query that doesn't return any records, which is called an action query. Action
queries include adding and deleting records.

Cancel a Connection While Executing a Query

Dim cnNorthwind

 'Connection info is here

 ' Execute an action query asynchronously
 cnNorthwind.Execute "DELETE FROM Categories " & _
 "WHERE CategoryID = 100", , adAsyncExecute

The ADO Objects

363

 ' Cancel the execution of the action query
 cnNorthwind.Cancel

.

.

.

It's important to note that you can only cancel the Open and Execute methods when they have been executed
asynchronously (at the same time as other commands are running). That's what adAsyncExecute is doing here
− that's how we say that we want to execute the action asynchronously. If we hadn't, we'd have got a run−time
error.

The Command Object

The Command object is used much the same way as the Execute method of the Connection object − it lets
you execute a command against your database. It's easier to work with, though, and the Command object also
has an associated Parameters collection, which you can use for specifying the name, size, direction and value
of the parameters that a stored procedure or query takes. In fact, whenever you use a stored procedure (note
that Access doesn't support stored procedures) or query that takes parameters, you need to be using the
Command object.

The Command object is created like this:

Dim cmNorthwind

 ' Create the command object
 Set cmNorthwind = CreateObject("ADODB.Command")

The Command object can perform the following operations:

Execute the command•
Cancel the command•
Create a parameter•

We won't cover parameters here.

Executing the Command

This first example shows the Command object in its usual habitat. After creating and opening our (by now
familiar) connection, we then create the Command object, assign it to the connection we've opened, and then
set the CommandText property. This is the property that contains the substance of the command itself. When
the Execute method of the Command object is invoked, it's this text that will be run.

Dim cmNorthwind
Dim cnNorthwind

 ' Normal connection code goes here

 ' Create the command object
 Set cmNorthwind = CreateObject("ADODB.Command")
 ' Set the command connection
 cmNorthwind.ActiveConnection = cnNorthwind
 ' Set the command text
 cmNorthwind.CommandText = "DELETE FROM Categories WHERE " & _

The ADO Objects

364

 "CategoryID = 100"
 ' Execute the command
 cmNorthwind.Execute

 ' Destroy the command object
 Set cmNorthwind = Nothing
 ' Close and destroy the connection object
 cnNorthwind.Close
 Set cnNorthwind = Nothing

Our command here specifies the deletion of a certain record in the Northwind Categories table. To try it out,
you should insert a new record into this table, and note down the CategoryID that is assigned to it (it's an
Autonumber field). Then modify your code to delete that record.

Also note that instead of creating a 'full' connection, as we have done above, you can actually supply a
connection string in the line that specifies the ActiveConnection property of the Command, like this:

 cmNorthwind.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.3.51;" _
 & "User ID=Admin;Data Source=c:\Program Files\Microsoft Visual " _
 & "Studio\VB98\Nwind.mdb"

This way a temporary connection is opened and closed again when the command is finished.

If the Execute method performs a row−returning query (the one above simply deleted a record, so no data was
actually returned), you need to specify a Recordset object that can hold the returned rows. We'll see how to
work with Recordset objects later on. This example, though, works in a similar way to the first example we
used when we looked at the Connection object − you Set the Recordset equal to the result of executing the
command.

 ' code to create recordset and command...
 ' Set the command text
 cmNorthwind.CommandText = "SELECT * FROM Categories WHERE " & _
 "CategoryID = 100"
 ' Execute the command
 Set rsCategory = cmNorthwind.Execute
 ' ...

Canceling the command

Dim cmNorthwind
Dim cnNorthwind
Dim rsCategory

 'normal connection code goes here

 ' Create the command object
 Set cmNorthwind = CreateObject("ADODB.Command")
 ' Set the command connection
 cmNorthwind.ActiveConnection = cnNorthwind
 ' Set the command text
 cmNorthwind.CommandText = "SELECT * FROM Categories WHERE " & _
 & "CategoryID = 100"

 ' Execute the command asynchronously
 Set rsCategory = cmNorthwind.Execute(, , adAsyncExecute)

The ADO Objects

365

 ' Check if the command is still executing
 If CBool(cmNorthwind.State And adStateExecuting) Then
 ' Cancel the pending command
 cmNorthwind.Cancel
 End If

 ' Destroy the command object
.
.
.

You can only cancel commands that are executed asynchronously. The Cancel command is ignored if it is
executed after an asynchronous command has completed or if the command wasn't executed asynchronously.
If the command is still executing, the Cancel command works like a rollback feature. This means that if the
query is deleting records, these won't actually be deleted from the database.

Above, we checked whether the command was still executing − if so, we cancelled it. If it was already
finished, it would be too late to cancel it anyway.

The Recordset Object

The Recordset object is a representation of a base table, the result of a query or SELECT statement, or the
result of an executed command (see the Command object). The Recordset object is the object that represents
the actual data you are presented with. For example, if you execute a query that asks for people whose last
names begin with G, you'll get a recordset back containing just those records where that's the case. Then you
can actually get down to manipulating them in some way.

When you want to manipulate similar rows individually, you cannot use a SQL statement, because that will
treat all the selected rows equally. Instead, you use the Recordset object to hold all the similar rows and then
you perform the operations on the individual rows, either by moving sequentially through the recordset or by
searching for a specific row.

Also, you might want to use a disconnected recordset, which means that a recordset is dissociated from the
server, and can be re−associated at a later time. You can also save them locally, make changes, and update the
data source later. This is one of the very valuable new features of ADO, and it is extremely useful for Internet
applications.

The Recordset object is created like this:

Dim rsCategory

 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")

The Recordset object is what you'll use to work with your actual data. Here's a list of what you can do with the
Recordset object:

Open and close the recordset•
Add a new row to the recordset•
Delete from a recordset•
Cancel the recordset•
Save/persist the recordset to a file•
Open a persisted recordset from a file•

The ADO Objects

366

Move to a different record•
Locate a specific record•

Opening a Recordset

Dim cnNorthwind
Dim rsCategory

 ' Create the connection object
 Set cnNorthwind = CreateObject("ADODB.Connection")
 ' Set the connection string
 cnNorthwind.ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51;" _
 & "User ID=Admin;Data Source=c:\Program Files\Microsoft Visual "& _
 & "Studio\VB98\Nwind.mdb"

 ' Open the connection
 cnNorthwind.Open

 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table
 rsCategory.Open "Categories", cnNorthwind, , , adCmdTable

 ' Close and destroy the recordset object
 rsCategory.Close
 Set rsCategory = Nothing
 ' Close and destroy the connection object
 cnNorthwind.Close
 Set cnNorthwind = Nothing

The Open method takes several arguments (source, activeconnection, cursortype, locktype, and options), but
only two of them are needed (source, activeconnection). The last three arguments all have default values, if
you don't specify them.

Take note of the options argument, however, as it might save you some connection time if you do specify it.
The default value for the options argument is adCmdUnknown, which means that ADO needs to make an
extra round trip to the provider, in order to find out if source is a table name, a stored procedure, or an SQL
statement. We've told it in advance that it's a table.

When you open a recordset, the cursor is always placed on the first record, if the recordset is not empty. If it is
empty, the BOF and EOF (beginning and end of file) properties are both set to True.

The Close method takes no arguments. When you close an open recordset, any lock you might have placed on
the data source is released.

Adding a New Row to the Recordset

If you have SQL Server you can connect to that version of the Northwind database to try this out (this
assumes the server is called TESTPC; you should substitute your own machine name here):

Dim cnNorthwind
Dim rsCategory

 ' Create the connection object

The ADO Objects

367

 Set cnNorthwind = CreateObject("ADODB.Connection")
 ' Set the connection string
 cnNorthwind.ConnectionString = "Provider=SQLOLEDB.1;" _
 & "User ID=sa;Initial Catalog=Northwind;Data Source=TESTPC"

 ' Open the connection
 cnNorthwind.Open

 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table
 rsCategory.Open "Categories", cnNorthwind, , , adCmdTable
 ' Add an empty row to the recordset
 rsCategory.AddNew
 ' Update the fields in the empty row
 rsCategory.Fields("CategoryName").Value = "Test"
 rsCategory.Fields("Description").Value = _
 "This is a sample description"
 ' Update/save the row to the recordset
 rsCategory.Update
 ' Close and destroy the Recordset object
.
.
.

If the recordset is disconnected, the update will not happen in the database itself until you reconnect and use
the UpdateBatch method to synchronize the recordsets.

As you can see, we've added an empty row to the recordset, populated the fields, and then saved the row. You
can actually do this in another way:

' Connect to SQL DB as above...
' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table
 rsCategory.Open "Categories", cnNorthwind, , , adCmdTable
 ' Add a new row to the recordset
 rsCategory.AddNew Array("CategoryName", "Description"), _
 Array("Test", "This is sample description")

 ' Close and destroy the recordset object
.
.
.

The AddNew method can only be used on an updateable recordset. You can use the Supports method to check
if you can add new records to an existing recordset:

 ' Is the recordset updateable?
 If rsCategory.Supports(adAddNew) Then
 ' Do your stuff here...
 Else
 MsgBox "This recordset doesn't support that method"
 End If

The ADO Objects

368

Deleting From a Recordset

We're demonstrating it using the SQL Server Northwind database.

Dim cnNorthwind
Dim rsOrderDetails

 ' Connection to SQL DB as above

 ' Create the recordset object
 Set rsOrderDetails = CreateObject("ADODB.Recordset")
 ' Open the Order Details table
 rsOrderDetails.Open "[Order Details]", cnNorthwind, , , adCmdTable
 ' Delete the first row from the recordset
 rsOrderDetails.Delete

 ' Close and destroy the Recordset object
.
.
.

The Delete method can take the affectrecords argument that tells ADO what records to delete. The default
(when the argument is omitted) is to delete the current record. You can also specify to delete all records in the
recordset, delete all records that have been filtered using the Filter property, and to delete all chapter records.
If the recordset is disconnected, the deletion will not happen in the database itself, until you reconnect and use
the UpdateBatch method to synchronize the recordsets.

You should be aware that after you have deleted the current record, it remains active until you move to
another record. This can cause run−time errors, if you forget to move to a different record before you start
inspecting the field values or otherwise manipulate the current record.

Canceling the Recordset

For this example, we've gone back to the Access database.

Dim cnNorthwind
Dim rsCategory

 ' Create the connection object
 Set cnNorthwind = CreateObject("ADODB.Connection")
 ' Set the connection string
 cnNorthwind.ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51;" _
 & "User ID=Admin;Data Source=c:\Program Files\Microsoft Visual " _
 & "Studio\VB98\Nwind.mdb"
 ' Open the connection
 cnNorthwind.Open

 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table asynchronously
 rsCategory.Open "Categories", cnNorthwind, ,, adCmdTable + adAsyncExecute
 ' Cancel the opening of the recordset
 rsCategory.Cancel

 ' Close and destroy the recordset object
.
.

The ADO Objects

369

.

You can only cancel the Open method if it has been executed asynchronously. A run−time error occurs
otherwise.

Save/Persist the Recordset to a File

' Connect as usual
' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table
 rsCategory.Open "Categories", cnNorthwind, , , adCmdTable
 ' Save the recordset
 rsCategory.Save "C:\Category.ado"

 ' Close and destroy the recordset object
.
.
.

The above piece of code saves the recordset to the file C:\Category.ado, in a proprietary format, but you can
also save it in XML format using the adPersistXML constant as the second argument. You can only use the
Save method on an open recordset.

Open a Persisted Recordset from a File

This code opens the saved recordset from the file C:\Category.ado.

 ' Connect as usual
 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")

 ' Open the recordset from file
 rsCategory.Open "C:\Category.ado", , , , adCmdFile
 ' ... Do your other stuff here

 ' Close and destroy the recordset object
.
.
.

Moving to a Different Record

 ' Connect as usual

 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table
 rsCategory.Open "Categories", cnNorthwind, , , adCmdTable
 ' Move to the last record
 rsCategory.MoveLast
 ' Move to the previous record
 rsCategory.MovePrevious
 ' Move to the next record

The ADO Objects

370

 rsCategory.MoveNext
 ' Move to the first record
 rsCategory.MoveFirst
 ' Move five records ahead of the current one
 rsCategory.Move 5

 ' Close and destroy the recordset object
.
.
.

The above piece of code moves the cursor around the recordset. Note that you can use the Move method to
move backwards as well; just supply a negative number as the argument.

Locating a Specific Record

Note that if you've tried out all the previous examples, you may find that the record specified
here has been deleted. If that's the case, either add a new record that satisfies the criteria, or
change the criteria to point to a record that does exist.

 ' Connect as usual

 ' Create the recordset object
 Set rsCategory = CreateObject("ADODB.Recordset")
 ' Open the Categories table
 rsCategory.Open "Categories", cnNorthwind, , , adCmdTable

 ' Locate the record with the category Beverages
 ' starting from the current record searching forwards
 rsCategory.Find "CategoryName='Beverages'"

 ' Use the Filter property to find a specific record using more
 ' than one criterion
 rsCategory.Filter = "CategoryName='Condiments' AND CategoryID=2"
 ' Remove the filter
 rsCategory.Filter = adFilterNone

 ' Close and destroy the recordset object
.
.
.

The above piece of code locates two different records in two different ways. Use the Find method when you
only need to specify one criterion, and use the Filter property if you need to specify more than one criterion.
Setting the Filter property might "return" more than one record. Don't forget to remove the filter once you are
done. There is also the Seek method, which can be used for searching using an index, but this method is not
currently supported by all providers.

Without going into too much detail in this chapter, there are also ways of creating disconnected recordsets that
are useful when the server isn't always available. Disconnected means that the connection to the data store is
"cut", by setting the Connection property to Nothing. You then perform your actions on the data in the
disconnected recordset and use the UpdateBatch method to synchronize once you have reconnected to the data
store.

The ADO Objects

371

The Error Object

The Error object is the place to look if you want to see what (if anything) went wrong with the outcome of an
action you have performed. The Connection object holds an Errors collection, which is made up of Error
objects.

If the operation you perform generates an error, one or more Error objects are placed in the Errors collection.
Note that if there is no valid Connection object, you can still retrieve the error from the VBScript Err object
instead.

You don't have to instantiate the Error object; the Connection object controlling the Errors collection for the
specified provider automatically does that. The key here is the connection, because there is an Errors
collection for each connection you have.

Important If you have more than one connection, you must make sure you examine the correct Errors
collection.

You can perform the following operations on the Errors collection/ Error object:

Inspect the Errors collection•
Clear the Errors collection•

Inspecting the Errors Collection

Dim cnNorthwind
Dim errNorthwind

 'Connect as usual
 '...
 ' Do your other stuff here
 '...
 ' Inspect the Errors collection
 If cnNorthwind.Errors.Count > 0 Then
 ' Loop through the Errors collection
 For Each errNorthwind In cnNorthwind.Errors
 ' Display the error number for the current Error object
 MsgBox "Error number: " & errNorthwind.Number
 Next
 End If

 ' Close and destroy the connection object
 cnNorthwind.Close
 Set cnNorthwind = Nothing

It is important that you check the Errors collection after performing a series of methods on any of the objects
attached to a Connection object. You could create a subprocedure that takes the Collection name as an
argument and then put your error handling code in this procedure. That would make it easier for you to handle
errors and not duplicate the code.

When you inspect the Errors collection and you find some Error objects in it, you should loop through the
collection and examine the Error objects one by one:

Dim cnNorthwind

The ADO Objects

372

Dim errNorthwind

 ' Disable error handling
 On Error Resume Next

 'Connect as usual
 '...
 ' Do your other stuff here
 '...
 ' Inspect the Errors collection
 If cnNorthwind.Errors.Count > 0 Then
 ' Loop through the Errors collection
 For Each errNorthwind In cnNorthwind.Errors
 ' Display all the error properties
 MsgBox "Error description: " & errNorthwind.Description & _
 vbNewLine & "Error number" & errNorthwind.Number & _
 vbNewLine & "Native error (from provider)" & _
 errNorthwind.NativeError & vbNewLine & "Source" & _
 errNorthwind.Source & vbNewLine & "SQL state" & _
 errNorthwind.SQLState
 Next
 End If

 ' Close and destroy the connection object
 cnNorthwind.Close
 Set cnNorthwind = Nothing

We've disabled error handling here so that the program doesn't break when an error is found,
but carries on.

The following properties have been used in the piece of sample code shown above:

Description − returns a brief description of the error that occurred. This is provided by ADO or the
OLEDB provider.

•

Number − returns a number that uniquely identifies an Error object.•
NativeError − returns the provider−specific error code for the Error object.•
Source − returns the name of the object or application that originally generated the Error object.•
SQLState − returns the SQL state for the Error object. This is a five−character string holding the
error code that follows the ANSI SQL standard.

•

Clearing the Errors Collection

Dim cnNorthwind

 ' Disable error handling
 On Error Resume Next

 'Connect as usual
 ' Do your other stuff here
 ...
 ' Inspect the Errors collection
 If cnNorthwind.Errors.Count > 0 Then
 '...
 ' Clear the Errors collection
 cnNorthwind.Errors.Clear
 End If

The ADO Objects

373

 ' Close and destroy the connection object
 cnNorthwind.Close
 Set cnNorthwind = Nothing

If, for example, you had an error logging system that wrote errors to a database file somewhere, you could
clear the Errors collection once the errors had been dealt with.

That concludes our introduction to ADO. Hopefully this short tour has shown you a little bit about how
versatile it can be.

Summary

In this chapter, we have taken a very quick look at the world of ADO. We've looked at how you use the ADO
Connection, Command, Recordset, and Error objects when you manipulate the data in your database.
Hopefully you can start to see how simple ADO is to use. Believe me, whole books have been (and are being)
written on this subject. We've only scratched the surface here, but hopefully you now have a taste for ADO.

In the next chapter, we'll see how to add scripting to Visual Basic programs.

 Summary

374

Chapter 16: Microsoft Script Control
By now, it should be clear that VBScript can be used in pretty much anything that is related to Windows. Not
surprisingly, along with a variety of different technologies, Microsoft provides yet another component capable
of supporting VBScript − the Script Control. Although the name may suggest that 'Script Control' may be a
tool for movie writers that want to control the rights to their script, it couldn't be further from the truth. This
ActiveX control provides a simple way for your application to host a scripting environment, allowing you, or
your users, to further customize your application.

In the past, programmers had to struggle to provide customizability to their projects, or pay through their nose
to license other products such as VBA. In 1997, Microsoft released basic interfaces to scripting engines, and
eventually followed up with Script Control. Although Windows Script Interfaces provide greater control over
the Script Control, they require great C++ skills to accomplish most of the tasks that can easily be carried out
with the Script Control, which we'll discuss throughout this chapter.

Why Script your Application?

Scripting parts of the application can open many opportunities not only to you, the programmer (as you may
not have to go through the standard rewrite, recompile and redistribute routine), but also to the end users, who
will be able to do more with your application. The possibilities of scripting are almost endless, but, as usual,
adding this capability to your application will take a lot more design, testing and occasionally, frustration.
Before you set out to use the Script Control, you should consider simpler alternatives − Script Components,
Windows Script Host and HTML Applications − all of which can provide some form of scripting to your
application.

In its simplest form, the Script Control will allow you to use functionality that is beyond VB, such as the
ability to evaluate expressions entered by users at runtime, as illustrated in the code extract below. Following
this example, you may extend your VB application with few interchangeable routines that can be executed
when a certain events occurs (in some cases it might be easier to use the scripting options mentioned above).
In more advanced cases, you can add the object model of your ActiveX component to the control, and allow
the user to more effectively automate your application, from writing a customizable report to adding a macro
language.

The following example shows just how easy it is to evaluate a mathematical expression in VB with a little
help from the Script Control. Although a step−by−step introduction to the Script Control is available later in
the chapter, the code snippet shows how to calculate a user−entered expression with the use of the Eval
method:

MsgBox objSC.Eval(InputBox$(_
 "Enter Numeric Expression", _
 "Power of Eval", "5 * 3 − 1"))

Important The Script Control supports any ActiveX scripting engine, including the default VBScript and
JScript. Should your competency gear towards other languages, discussion in this chapter will
still be relevant. Additionally, the Script Control can be used with other COM capable
development tools. If, on the other hand, your application requires 'scripting speed', consider
licensing other tools (and paying for them), including Microsoft VBA, Cypress Enable, or Sax
Basic Engine from the respective vendors.

375

What tools do you need?

Microsoft Script Control is provided for free from the Microsoft Scripting Technologies Web Site (you may
have to register prior to downloading the component):

http://msdn.microsoft.com/scripting/scriptcontrol/default.htm

Once you download sct10en.exe (or whatever the current version might be) from the downloads section of the
Script Component site, you may install it and use it with any ActiveX scripting engine available on the
computer. The installation program is not very sophisticated, and once you confirm that you'd like to install
the Script Control, choose the installation directory, and accept the license: it will automatically install and
register the control for you. Note that the Script Control may already be installed with other applications, so
you can perform a search for the component before committing to a download and installation.

Essentially, three files are installed in your Windows' System32 directory, or the directory of your choice
(keep that in mind if you want to find the help files, there are no shortcuts placed in your Program Files
menu). These are

Msscript.cnt the help context file•
Msscript.hlp the help file•
Msscript.ocx the Script Control•

After the installation, you are ready to use the control in any COM enabled language. Help files are rather
chunky (old help format, huge, multiple windows, etc.), and occasionally, short on implementation detail.
We'll use the VB6 IDE as the development environment; but you can search through the scarce resources
available on the Internet that show you how to use the Script Control in other environments (e.g. Delphi).

During installation, familiarize yourself with the licensing agreement, especially if you plan on redistributing
the Script Control with your application. Your application should provide a similar agreement:

Although the component is free, you should be aware of the licensing restrictions placed upon the Script
Control, especially when redistributing this component with your software. Although you should read the
licensing agreement carefully by yourself, the most important points of the agreements are:

You may redistribute msscript.ocx in the form as provided, given that it adds significant functionality
to your application

•

Include a copyright in your application (so that others may not redistribute the control), and indemnify
Microsoft from any legal action

•

You can't use Microsoft trademarks to market your application•

 What tools do you need?

376

You can't export your application to certain countries•

In most circumstances, you'll have to include some licensing agreement, which the user should accept prior to
the installation of the application, and give credit to Microsoft in the About Box of your application.

Since the use of Script Control also depends on the scripting engines (which may already be present as part of
the Internet Explorer), you may also have to redistribute the scripting engines along with the application.
Distribution of the scripting engines may additionally prevent script incompatibilities, especially in cases
where IE 5 is not present on the client computer.

Adding Script Control to VB Application

Script Control can be easily added to a VB project as an ActiveX Control or as an Automation Object. If you
plan on using several instances of the Script Control in a project, you should probably add it as a reference. If
you are not accustomed to working with VBScript, you should remember to account for all of its limitations,
especially the fact that variant is the only data type, that no optional arguments are allowed, and that there are
no built−in collections.

You can add the Script Control as a Component (ActiveX Control) or as a Reference by choosing References
or Components from the Project menu in VB IDE:

When working in other circumstances (such as WSH), or even in VB, you may use the Script Control in a
late−bound mode. This way, you don't need to add it through the VB IDE:

 Set objSC = CreateObject("MSScriptControl.ScriptControl")

When the Script Control is added as a control, it can be used on a form, as seen here, or simply declared and
initialized through VB code, as above.

The control itself is invisible at runtime, and some of the properties that are available through the properties
dialog (Index, Left, Tag, Top) as seen in the screenshot below, are simply not available. Key properties can be
set at both design and run time, but more properties and methods are available at run time.

 Adding Script Control to VB Application

377

Several of the properties should be set before the real use of the Script Control begins, such as Language,
Timeout, AllowUI, and UseSafeSubset. If you are happy with the defaults (as shown here), you can start
scripting and programming:

Note that we use the default properties throughout this chapter.

When adding the Script Control to the form, it acts like any other control sited in a form: it is automatically
instantiated, and is capable of raising events (such as Timeout and Error) to the form. The same functionality
can be achieved when the Script Control, added as a component, is declared WithEvents through code:

Private WithEvents objSC As ScriptControl

There are no strict guidelines for naming your Script Control objects, but it is customary to prefix object
names with obj (hence objSC see Appendix C for notes on Hungarian notation), but when it is added as a
control, a prefix of sc is also common. Both styles are used throughout this chapter.

Once your Script Control is initialized you may use it to evaluate expressions, add the script directly (through
VB code), or load an external script and add it to the Script Control. Other than evaluating expressions, the
Script Control simply requires some form of script in order to be useful to you. First, let's revisit the
evaluation example. After you place a command button on your form (cmdEval), this will be the code
executed as a result of a click (you also need an objSC the Script Control, which is also placed on the form):

Private Sub cmdEval_Click()
 MsgBox objSC.Eval(InputBox$(_
 "Enter Numeric Expression", _
 "Power of Eval", "5 * 3 − 1")), vbOKOnly, "Eval"
End Sub

Although the results are not spectacular, try achieving this in VB alone. Here we have the expression window,
and the results:

 Adding Script Control to VB Application

378

Next, you might want to add some code to the Script Control, in order to do something more fun. The Script
Control object model (which is described later on in the chapter) organizes script code into modules (these are
distinct scripts that do not share namespace) with the default Global module, with the latter being referenced
directly through the Script Control. Modules can be further broken down into procedures you can add
procedures (as well as variables and constants) through the AddCode method. The following code illustrates
how to add procedures and how to execute them:

' Add some procedures to the Global Module.
strCode = "Function Cube(a): Cube = a * a * a"
strCode = strCode & ": End Function"
objSC.AddCode strCode

strCode = "Sub MsgCube(a): MsgBox ""Cube "" & (a * a * a)"
strCode = strCode & " : End Sub"
objSC.AddCode strCode

' Run those procedures
MsgBox objSC.Run("Cube", 5)
objSC.Run "MsgCube", 5

Both procedures calculate 53, but the resulting calls to the procedures are quite different, and are worth
looking at. The first procedure, a function, must be called according to the syntax used to call functions
(brackets used), but you can call it through the Run method of the ScriptControl object (also take a look at
CodeObject, which simplifies calls to procedures, and effectively bypasses the awkward 'Run' syntax). The
first parameter of the Run method is the procedure name, and the remaining parameters (optional) are
arguments that can be passed to the procedure. Hence our call to Cube(5) looks like:

 MsgBox objSC.Run("Cube", 5)

The results are passed to the MsgBox, and then displayed.

The second procedure, MsgCube subroutine, uses VBScript's MsgBox to display the results of its calculation.
In this case, the AllowUI property is set to true, which means that the script can use visual functions such as
MsgBox and InputBox to communicate with the user directly. Note that the calling syntax for subs is a little
different (unless you use Call) since they do not return values, the brackets are not required:

objSC.Run "MsgCube", 5

And the results are almost identical (other than the default window title).

Additional examples are dispersed throughout this chapter, either in the syntax section, or in two projects that
are available at the end of the chapter.

 Adding Script Control to VB Application

379

You may additionally check the mode of the ScriptControl object, and its ability to handle events generated
by objects added through the AddObject method by checking the state property. Support for sinking events for
VB forms and VB's intrinsic controls can be achieved through the class wrapper technique that would handle
encapsulated object events and re−raise them as class events. This is beyond the scope of this chapter.

Macro and Scripting Concepts

Basic use of the Script Control in VB is fairly straightforward; however, it is important to conceptualize the
capacity in which the Script Control can be used inside an application. Before we look at the object model of
the Script Control, let's take a look at the major differences between this and other forms of scripting.

The script is not necessarily executed in−line, as is commonly done in ASP or WSH, and you might be forced
to alter your coding convention to fit the need of the application. Unlike other hosts, which tend to execute the
script from top to bottom, scripting an application will require a different approach. Most likely, you'll be
required to load the code from an external file (or add it dynamically though user interaction), and call script
procedures as results of application−generated events. Because of that, you might have to rethink your
strategy, properly initialize script variables, reset them when required, and avoid calling external components
due to inherent disadvantage of calling them through script slower, more error prone, etc. If you want, you
can create some standard procedures that initialize the script (e.g. Main() or Init()), and keep track of the
changes in the script after all, your ASP or WSH script is (more or less) likely to be run only once.

Evaluation of dynamically generated expressions is one of the most difficult tasks, and thus, custom
calculations (as entered by the user) can become a breeze when used combined with the Script Control.
Examples provided with the chapter provide the foundation for basic communication between the application
and the script. The Scavenger project, which extracts data from an HTML document, provides a very simple
use of the Script Component, feeding, and retrieving the data to and from the application. Another example of
dynamically generated expressions (Customizable Calculator) has been published in the July '99 issue of
Microsoft Internet Developer, Exploring the Microsoft Script Control by Francesco Balena, 2/7/99 (July) Vol.
4, No. 7.

You can download the code for the article from

http://www.microsoft.com/mind/0799/code/mind0799.zip

Finally, a more advanced application will want to open up its object model to the script to provide a
macro−type capability. In order for the application to open its object model, the application must be an
ActiveX DLL or an EXE server, and must provide a mechanism to expose its object model to the script. Most
commonly, this is achieved through direct sharing of a form through the AddObject method of the Script
Control:

objSC.AddObject "Form", frmForm, False

Also, you can use a shared class module that exposes the application's object model through its members, as
shown in the code listing below. This approach allows you to share additional class modules, and may provide
additional functionality that may not be accessible via the VB form alone:

Private m_Form As Form

Public Property Get Form() As Object
 Set Form = m_Form
End Property

 Macro and Scripting Concepts

380

Friend Property Set Form(ByVal newValue As Object)
 Set m_Form = newValue
End Property

Listing above shows how to share a single VB form, and its members, with the Script Control. When the class
is available, you may use the AddObject method of the Script Control to expose the members of the shared
class, as shown below:

Dim objShared As New CShared
objSC.AddObject "objShared", objShared, True

A more complete example of this is provided as a sample project (ComplexSC Project) towards the end of
this chapter, which allows the script to access elements on a VB form.

Still, some difficulties exist. Processing events, adding controls dynamically (from the script) is not an easy
task. Although the complexSC project shows how static events (we know about them at design time) can be
handled by the script, adding controls to the application, and processing of ad−hoc events is simply beyond
the scope of this chapter.

For a more advanced coverage of the Script Control look to Visual Basic Developer's Journal: the February 99
issue contains an advanced example (Write a Macro Language Add−In by R. Mark Tucker) of building a
macro language for VB IDE. Another article is on its way (Late 99, Early 2000), which builds a framework
for script−driven applications, allowing for smooth integration with the host application: creation of new
controls, and easy event trapping for new and existing controls.

The Script Control Object Model

Objects and Collections

ScriptControl

ScriptControl is the main element that enables scripting in an application. It provides a simple interface for
hosting scripting engines such as VBScript or JScript. All of the members depend on an instance of the
ScriptControl. ScriptControl can be instantiated in three different ways:

early bound, on a form (add it through the Components dialog)•
early bound, through code (add it through the References dialog)•
late bound (at any time)•

 The Script Control Object Model

381

Syntax

Early bound (add Microsoft Script Control 1.0 as a reference)

Dim|Private|Public [WithEvents] objSC As [MSScriptControl.]ScriptControl

Set objSC = New [MSScriptControl.]ScriptControl

Late Bound (will not handle events, control does not have to be referenced in the Project)

Dim|Private|Public objSC [As Object|Variant]

Set objSC = CreateObject("[MSScriptControl.]ScriptControl")

Error Object

The Error object provides information about syntax and runtime errors associated with the Script Control.
Although information provided by the Error object is similar to that of the Err object in VB, there are
additional properties (Column, Text, Line) that are invaluable when diagnosing problems associated with the
script. Take a look at Error Trapping with Script Control for additional information about error handling
strategies later in the chapter, as well as Chapter 4 and Appendix E, regarding error handling within VBScript.
You should be aware of the fact that script debuggers (such as Visual InterDev) have a tendency to get in the
way of error handling, which may impact if the error is handled via VB's error handler, or intercepted by the
debugger.

Unlike VB's Err object, the Error object is not global in scope and only handles errors associated with a single
instance of the Script Control. It behaves just like any other object (e.g. ADO Error collection) that is capable
of its own error handling. The Error object is reset each time the Language property of the ScriptControl is
changed, or calls to Reset, AddCode, Eval, ExecuteStatement and Clear methods are made. The Clear method
is used to explicitly reset the Error object properties. Runtime errors handled internally by the script will not
be raised to the application level.

Although it is possible to declare and initialize the Error object in VB, it is common to access members of the
Error object directly through the Script Control.

Module Object

The Module object, a member of the Modules collection, contains procedure, type and data declarations used
in a script. The script control has a default Global module, which is automatically used unless specific
member calls are made to other modules that have been added. You can add code to the module using the
AddCode method. Individual Module objects, on the other hand, are added by using the Add method of the
Modules collection. Code used by other modules is private in scope, and essentially allows you to reuse
variable and procedure names between modules, load separate scripts, and functions as a script namespace
mechanism within the instance of the Script Control object.

Syntax

Dim|Private|Public objModule [As [MSScriptControl.]Module|Object]

Example of non−global Module use:

Set objModule = objSC.Modules.Add("NewModule")

The Script Control Object Model

382

objModule.AddCode "Sub Test(): 'just comment : End Sub"
objModule.Run "Test"

Modules Collection

The Modules collection contains all the Module objects in a Script Control and includes the default Global
module. Calls to the members of the Global module can be made directly through the ScriptControl object
without iterating through the Modules collection. It also has an index of the constant GlobalModule.

Module objects can be added using the Add method (see example above), and specific Module objects
accessed using the default Item method. The Count property provides the number of items in the collection.
The entire collection can be iterated in various ways, most commonly, using the For EachNext loop. Since
there is no way of deleting individual modules, you will have to use the Reset method of the ScriptControl
object to delete unwanted modules, and clear the entire collection.

Example of accessing the Global module directly (can be used with other named modules):

Set objModule = sc.Modules("Global")

Example of iterating through the Modules collection:

For Each objModule In objSC.Modules
 strReport = strReport & vbNewLine & objModule.Name
 For intCounter = 1 To objModule.Procedures.Count
 strReport = strReport & vbNewLine & Space(10)
 strReport = strReport & objModule.Procedures.Item(intCounter).Name
 Next
Next

Procedure Object

The Procedure object defines a logical unit of code, which in case of VBScript can be either a Sub or a
Function. The Procedure object contains a number of useful properties that allow us to inspect a procedure's
name, the number of arguments, and whether or not the procedure returns any values. Entry to the script code
is provided via the Procedure object.

Syntax

Dim|Private|Public objProc [As [MSScriptControl.]Procedure|Object]

Adding procedures, and executing procedure code

When adding code to the Script Control, you should be aware of the fact that the script control resolves
variables, constants and procedures on a 'last one wins' basis, meaning that previously added code with the
same name will not be used. The code below illustrates adding and running procedures (a Function and a
Sub).

Procedure object's properties

Name, HasReturnValue and NumArgs, (discussed later) provide insight into the procedure's interface.

The Script Control Object Model

383

Procedures Collection

The Procedures collection holds all of the procedures in a given Module object (maybe Global module). It
provides a convenient way to iterate all of the procedures; however, individual procedures are added through
the Module object's AddCode method. You can't remove an individual procedure from your code (there is no
Remove method as in other collections), but you may either reset the entire script, or overwrite the procedure
with something else.

Below is an example showing how to iterate through Procedure objects in the Procedures collection:

' Check if objProcedure has a return value and arguments.
strMsg = ""
For Each objProcedure In objModule.Procedures
 intArgCount = objProcedure.NumArgs
 strMsg = strMsg & objProcedure & " requires " & intArgCount

 If intArgCount > 1 Then
 strMsg = strMsg & " arguments."
 Else
 strMsg = strMsg & " argument."
 End If

 If objProcedure.HasReturnValue Then
 strMsg = strMsg & " It has a return Value."
 End If

 strMsg = strMsg & vbCrLf
Next objProcedure

Constants

GlobalModule value = 'Global'

Scripting Engines such as VBScript or JScript that support more than one module use the GlobalModule
constant to identify the index of the Global Module object in the Modules collection. When the language is set
to VBScript or JScript, this value is 'Global' and helps you identify the built−in global module in the Modules
collection.

NoTimeout: value = −1

This constant can be used to set the Timeout property (10000 milliseconds is the default) of the ScriptControl
object, and prevent the execution from timing out. Please refer to the Timeout property for more specifics.

States

These constants define the Script Control states, which can be accessed through the State property of the
ScriptControl object.

Initialized: value = 0

The scripting engine is initialized, and the code will execute but will not sink events generated by shared
objects.

The Script Control Object Model

384

Connected: value = 1

The scripting engine is initialized and the ScriptControl will sink events generated by shared objects. See the
AddObject method for discussion about sharing objects between the application and the script.

Properties

Important Note that although we are able to view the procedure's interface, there are no properties
that allow us to inspect the script code itself.

AllowUI

The AllowUI property sets or returns the value of the ScriptControl, indicating whether or not the
user−interface elements such as Error messages, MsgBox or InputBox can be displayed. When this is set to
False, the only way to notify the user is directly through the application. When designing applications for
unattended execution, it is best to have the application cause an error rather than wait indefinitely for user
input.

Syntax

obj.AllowUI [= booleanexpression]

Name Description

obj This is the ScriptControl object

booleanexpression Boolean expression or value that is true when user interface elements are allowed,
false otherwise.

Dim strCode As String
strCode = "Sub Test: MsgBox ""UI call"": End Sub"

objSC.AllowUI = False
objSC.Language = "VBScript"
objSC.AddCode strCode
On Error Resume Next
objSC.Run "Test"
If objSC.Error.Number = 70 Then
 MsgBox "UI disabled, press OK to continue"
 objSC.AllowUI = True
 objSC.Run "Main"
End If

CodeObject

The CodeObject property returns an object that is used to call the public members of a Module object, or the
Script Control's Global module. This is a late bound object, but it is useful, as it allows direct calls to
procedures in the script, without using the Run method.

Syntax

Dim|Private|Public objCode [As Object]
Set objCode = obj.CodeObject

Name Description

obj This is the ScriptControl or Module object

The Script Control Object Model

385

Retrieving the CodeObject property from the Module object, and calling code members

Note that calling procedures is more natural, and perhaps more readable (procedures act as methods of the
CodeObject) than with using the ScriptControl's Run method.

Set objModule = objSC.Modules.Add("TestMod") ' New module.

objModule.AddCode "Sub Sub1 : MsgBox ""Sub1"": End Sub"
objModule.AddCode "Function Func1(a): Func1 = a*a: End Function"
' Set reference to CodeObject.
Set objCodeObject = objModule.CodeObject

' Run public member of Module1.
objCodeObject.Sub1
lngVal = objCodeObject.Func1(2)

Column

The Column property returns a long value indicating the place where the syntax error has occurred while
adding script code.

Syntax

Error.Column

The Error Trapping section in this chapter contains examples of this property.

Count

The Count property returns a long value representing the number of items in a collection

Syntax

obj.Count

Name Description

obj This is Modules or Procedures collection
objSC.AddCode "Sub Sub1 : MsgBox ""Sub1"": End Sub"
objSC.AddCode "Function Func1(a): Func1 = a*a: End Function"
lngValue = objSC.Procedures.Count

Description

Returns a string associated with the Error object. This is a zero−length string when Err.Number = 0.

Syntax

Error.Description

The Error Trapping section in this chapter contains examples of this property.

The Script Control Object Model

386

Error

The Error property returns an Error object associated with the ScriptControl object. See the Error object
reference, and the Error Trapping section for details.

Syntax

obj.Error

Name Description

obj This is a ScriptControl object
HasReturnValue

HasReturnValue returns a Boolean value indicating whether or not the procedure in question returns any
values. Since JScript only uses 'functions', this is always true when the language property is set to 'JScript'.

Syntax

obj.HasReturnValue

Name Description

obj Name or Reference to Procedure object
Shown below is an example of an iteration through procedures in a Module object, and use of the
HasReturnValue property:

For Each objProcedure In objModule.Procedures
 intArgCount = objProcedure.NumArgs
 strMsg = strMsg & objProcedure.Name

 If objProcedure.HasReturnValue Then
 strMsg = strMsg & " has a return Value."
 End If

 strMsg = strMsg & vbCrLf
Next objProcedure

HelpContext

HelpContext returns the context ID associated with a help topic in a help file. This number can be set by the
script using Err.Raise, or by an ActiveX component (script, or component utilized by the script).

When an error occurs, and a HelpContext and a HelpFile are set by Err.Raise, the user has a chance to open
the help file associated with the error.

Syntax

Error.HelpContext

The Script Control Object Model

387

HelpFile

This returns the file name associated with a help file. This can be set by script using Err.Raise, or by an
ActiveX component (script, or component utilized by the script).

Syntax

Error.HelpFile

Language

This properly sets or returns the name of the scripting language used by the ScriptControl object. 'VBScript'
and 'JScript' can be used by default, and other languages, when they are installed, e.g. 'PerlScript'. Setting this
property resets all members of the ScriptControl.

Syntax

obj.Language [=language]

Name Description

obj This is the ScriptControl object

language String associated with the Scripting Language, e.g. VBScript
Line

The Line property returns a long value indicating the place where the syntax or runtime error has occurred
while adding or executing script code.

Syntax

Error.Line

The Error Trapping section in this chapter contains examples of this property.

Modules

The Modules property returns the Modules collection of the ScriptControl object. The Modules collection
always has a default Global module. For more information, see the Modules collection and Module object.

Syntax

obj.Modules

Name Description

obj This is the ScriptControl object
Name

The Name property returns the name of a module, procedure or ScriptControl object, depending on what it
references. The name of an object must be unique within the namespace in question (procedures, modules),
and is established when the object is added to the Script Control using the Add or the AddCode methods. Host
objects added using the AddObject method are always added to the global namespace. You must be careful

The Script Control Object Model

388

when adding objects and code to your Script Control so as not to overwrite each other. This may be a potential
source of errors, considering that your host application is not aware of the objects that have been added to the
script control.

Syntax

obj.Name

Name Description

obj This can be a ScriptControl, Module or Procedure object
NumArgs

The NumArgs property returns a long number associated with the number of arguments required by a
procedure.

Syntax

obj.NumArgs

Name Description

obj This can be a Procedure object, or its reference
Here is an example of iterating through the Procedures collection, and inspecting the NumArgs property

For Each objProcedure In objModule.Procedures
 intArgCount = objProcedure.NumArgs
 strMsg = strMsg & objProcedure & " requires " & intArgCount

 If intArgCount > 1 Then
 strMsg = strMsg & " arguments."
 Else
 strMsg = strMsg & " argument."
 End If
 strMsg = strMsg & vbCrLf
Next objProcedure

Number

This returns a long number associated with a syntax or runtime error from the script. Number is the default
property of the Error object.

Syntax

Error[.Number]

The Error Trapping section in this chapter contains examples of this property.

Procedures

The Procedures property returns the Procedures collection associated with a Module object, or with
ScriptControl.

The Script Control Object Model

389

Syntax

obj.Procedures

Name Description

obj This can be a Module object, its reference, or ScriptControl (i.e. Global module)
SitehWnd

SitehWnd sets or returns a long pointer to the parent window used by the executing code. When the Script
Control is used as an ActiveX Control, placed on a form, the default value of SitehWnd is the hWnd property
of the container of the control. Otherwise, when ScriptControl is an Automation Object, SitehWnd is 0, which
corresponds to the Desktop. This property may impact on which window (or control) has UI control over the
scripted UI elements. You may change this property to make the Script Control dependent upon a specific
window, rather than, in some cases, the Desktop (for example, you might want the Script Control to freeze a
part of your application, and not the Desktop).

Syntax

obj.SitehWnd [=lptr]

Name Description

obj This is always the ScriptControl object

lptr This can be 0 or a valid hWnd value
Source

Source returns a string specifying the type of error that occurred within the script. This property helps you
distinguish whether a runtime or syntax error has occurred, and additionally provides information about the
scripting language used. Please see the Error Trapping section later in the chapter.

Syntax

Error.Source

State

The State property sets or returns the mode of the ScriptControl object, based on the valid state constant
discussed in the Constants section. For instance, when this value is set to Connected (=1), the ScriptControl
will be able to sink events generated by objects added using the AddObject method. Thus, changing the state
gives you some control over the handling of events.

Syntax

obj.State [=value]

Name Description

obj This is always the ScriptControl object

value This is one of the constants: Initialized or Connected
The code below shows how to toggle the state of the ScriptControl object:

' Toggle ScriptControl's state.

The Script Control Object Model

390

If Not IsObject(objSC) Then
 Set objSC = CreateObject("ScriptControl")
End If
objSC.State = objSC.State Xor 1

Text

The Text property returns a string containing a snippet of code where a script syntax error has occurred. The
Text property only provides a context of the syntax error, and its main use is in reporting errors, and
debugging scripts.

Syntax

Error.Text

An example of this property is provided in the Error Trapping section of this chapter.

Timeout

The Timeout property sets or returns a long number representing time in milliseconds, which serves as a
script break for code execution. This property can be set to a constant NoTimeout (−1) which removes time
restrictions placed on the execution of script code. The default value is 10000 milliseconds (10 seconds).
When the timeout expires, a Timeout event may occur (depending on whether or not the ScriptControl can
handle events), and at that time, if the ScriptControl has the AllowUI property enabled, the user is alerted with
a dialog box, permitting the user to continue execution of the script. Otherwise, the script is terminated and an
error is raised.

When this property is set to 0, a Timeout event occurs as soon as the script stops Windows messaging for
slightly more than 100 milliseconds.

Syntax

obj.Timeout [=value]

Name Description

obj This is always the ScriptControl object

value Long number representing time in milliseconds, or the NoTimeout constant (−1)
UseSafeSubset

The UseSafeSubset property sets or returns a Boolean value indicating whether or not the Script Control may
run components that are not marked as 'Safe for Scripting', such as the FileSystemObject, which is a part of
the scripting engines. You may set this property to true when you are concerned about the ability of the script
to create damage on the client computer. When the Script Control is used in a host that requires that
components are 'Safe for Scripting', this property defaults to True and is read−only.

Syntax

obj.UseSafeSubset [=value]

Name Description

obj This is always the ScriptControl object

The Script Control Object Model

391

value Boolean, indicates if access to components that are not marked as 'Safe for Scripting' is
allowed.

Methods

Add

The Add method is used to add new modules to the Modules collection.

Syntax

obj.Modules.Add (name [,object])

Name Description

obj This is always the ScriptControl object

name This is a string name of the module being added

object This argument is optional it is the name of the object associated with the module, and when
an object is specified, event−handling code can be written for the object and its
subordinates.

Modules allow use of separate scripts, and provide separate namespaces:

Set objModule = objSC.Modules.Add("Maine")
' Add code to modules, use same sub names.
objModule.AddCode "Sub Main : MsgBox ""In Maine"" : End Sub"
Set objModule = objSC.Modules.Add("Ohio")
objModule.AddCode "Sub Main : MsgBox ""In Ohio"" : End Sub"

AddCode

The AddCode method allows us to add code to the Module object or to the ScriptControl object. This is the
primary method of adding script to the Script Control. When adding code for entire procedures and blocks of
code, the code must be added in a single call to the AddCode method. Each statement in the block can be
separated by colons (:) or the new line character variations: vbCr, vbLf, vbCrLf and vbNewLine.

Syntax

obj.AddCode code

Name Description

obj This is the ScriptControl or Module object

code This is a string containing the code to be added.
Variables and procedures can be added in several steps with the AddCode method:

strCode = "Option Explicit" & vbNewLine & "x = 15"
objSC.AddCode strCode
strCode = "y=2"
objSC.AddCode strCode
strCode = "Function getX(): getX = x * y: End Function"
objSC.AddCode strCode

The Script Control Object Model

392

AddObject

The AddObject method allows the script to access the host's runtime object model (including other
components that may be members of your host) exposed by the object being added. Objects added to the
ScriptControl are available globally. An optional addmemebers parameter indicates whether or not the
members of the added object are also available to the ScriptControl. By placing the shared objects in their
own VBClass, you may expose the host's objects in a variety of ways, and by building custom Property
Let/Get/Set procedures, you may easily share variables, constants and methods. Although you may also
directly share a form in an ActiveX EXE project, a shared class can give you greater control, and might
prevent an accidental circular reference (especially when the script would be placed on the same form that
was shared).

See the example application provided at the end of this chapter for an illustration of the use of this method.

Syntax

obj.AddObject (name ,object[, addmembers])

Name Description

obj This is always the ScriptControl object

name This is a string name of the object being added

object This is an actual reference to the object being added

addmembers This is a Boolean value indicating whether object's members are accessible to the
ScriptControl

Here is the code required in a SharedClass (this is a read/write shared form object):

Private m_Form As Form
Public Property Get Form() As Object
 Set Form = m_Form
End Property

Friend Property Set Form(ByVal newValue As Object)
 Set m_Form = newValue
End Property

And here is the code required to add the Form to ScriptControl:

Dim objCS AS ScriptControl
Dim objShare As New CShareClass
Set objSC = New ScriptControl
objCS.Language = "VBScript"
' link it an instance of the shared class
Set objShare.Form = Form
objSC.AddObject "share", objShare, True

Clear

The Clear method resets the Error object. This method should be used after an error is handled. The Error
object is also reset when Reset, AddCode, Eval, or ExecuteStatement methods are called.

The Script Control Object Model

393

Syntax

Error.Clear

Eval

The Eval method evaluates an expression similar to the Eval function in VBScript. This is one of the best
ways to evaluate dynamic expressions provided by the user. When comparing Eval to the ExecuteStatement
method, you should be aware that certain operators, such as '=' will be treated as comparison operators when
used with Eval. Hence, x = y will evaluate to a Boolean subtype when used with Eval, but when used with
ExecuteStatement, the value of y will be assigned to variable x, and nothing will be returned. The Eval
method may be used against the ScriptControl or Module object, and take advantage of its members.

Syntax

obj.Eval (expression)

Name Description

obj This is the ScriptControl or Module object

expression This is a string containing expression to be evaluated
Eval is simple but effective, capable of achieving tasks nearly impossible in VB:

MsgBox objSC.Eval(InputBox$(_
 "Enter Numeric Expression", _
 "Power of Eval", "5 * 3 − 1"))

ExecuteStatement

Unlike the Eval method, ExecuteStatement only executes a statement, and does not return any value.
Additionally, ExecuteStatement will assign values to variables when '=' is used in a statement. The statement
executed can take advantage of any members within scope of the object context. In order to obtain a return
value from a procedure, you should use either the Eval or Run method.

Syntax

obj.ExecuteStatement statement

Name Description

obj This is the ScriptControl or Module object

statement This is a string containing statement to be executed
ExecuteStatement should be used to execute a statement within the context of a given object:

objModule.AddCode "Private x"
objModule.AddCode "x = 1"
objModule.ExecuteStatement("x = 3")
objModule.Eval("x")

The Script Control Object Model

394

Item

The Item method returns a member of a collection either by the index number or the key (name of the
member). The Item method can be used on its own, when the index or key is known, or as part of collection's
enumeration. Individual Procedure and Module objects can be retrieved from their respective collections.

Syntax

obj.Item(index)

Name Description

obj This is the Modules or Procedures collection

index This is either a string representing the key, or long integer representing the index
Reset

The Reset method discards all the members of the ScriptControl object, and initializes them to their default
state. When the Reset method is called, the state property is set to Initialized (0), and should be set to
Connected (1) if required.

Syntax

obj.Reset

Name Description

obj This is always the ScriptControl object
Run

The Run method allows you to run a procedure in the ScriptControl or Module objects. It allows you to
specify the procedure name and its arguments at runtime. A call to the Run method may return a value,
depending on the nature of the procedure called.

Alternatively, procedures whose names and signatures are known ahead of time may be executed directly
using the CodeObject object.

Syntax

obj.Run (procedureName [, paramArray()])

Name Description

obj This is the ScriptControl or Module object

procedureName This is a string name of the procedure being called

paramArray() This is an optional array containing parameters required by the procedure. To find
out the number of parameters required by the procedure, you may use the object's
NumArgs property.

Depending upon the type of a procedure, you may call the Run method in several different ways, depending
on return values and parameters:

strCode = "Sub TwoArg(a,b): MsgBox ""TwoArg "" & CInt(a + b)"
strCode = strCode & " : End Sub"
objSC.AddCode strCode

The Script Control Object Model

395

objSC.Run "TwoArg", 1, 2

strCode = "Function ManyArg(a,b,c,d): ManyArg= a * b + c − d"
strCode = strCode & ": End Function"
objSC.AddCode strCode
MsgBox objSC.Run("ManyArg", 1, 2, 3, 4)

Events

Error

The Error event occurs in response to a syntax or a runtime error, when the ScriptControl is instantiated early
bound and with events (when used as a component).

Syntax

Private|Public Sub obj_Error()

Name Description

obj This is the always the ScriptControl object
Timeout

The Timeout event occurs when script execution exceeds the time allotted in the Timeout property, and the
user decides to stop the execution of the script. When several ScriptControl objects are present, a Timeout
event will occur only for the first ScriptControl object to time out.

Syntax

Private|Public Sub obj_Timeout()

Name Description

obj This is the always the ScriptControl object

Other Scripting Elements

Besides the Script Control, VB (as well as other languages and environments) can easily be enhanced with
other scripting objects, without the necessity of using the Script Control, WSH or Windows Script
Components. Most of these components can be instantiated directly in VB and not only can you gain the
advantage of early binding but also greater programming control through VB IDE. Please refer to other
chapters of this book for their complete documentation. Currently the FileSystemObject as well as regular
expression objects are becoming very popular 'tools' used directly in VB. However, keep in mind that the
following should be referenced directly by VB and properly declared, giving you the speed provided by early
binding, and the additional functionality provided by IntelliSense and direct debugging:

Dictionary object•
FileSystemObject object•
RegExp object•
Objects exposed by WSH except for wscript and cscript objects (objects implemented in wshom.ocx
with Wscript.xxx progids)

•

Some of the elements mentioned above can really simplify development because of the simplicity of their
object models and the functionality they posses. Previously, this was only available through the use of API

The Script Control Object Model

396

functions and through other components.

Important Please note that similar licensing agreements apply to the above components as to the Script
Control. You should include appropriate information regarding the use of these components
when redistributing your application.

Error Trapping with Script Control

Error handling can never be underestimated, especially when dealing with several sources of code. This is
especially true for dynamically generated scripts, and user entered expressions. In order to handle the errors,
you may have to work with both VB's Err object and the Script Control's Error object. If you are working with
several instances of the Script Control, each will have a separate Error object. When an error occurs, and you
have a proper strategy to handle the error, you may always clear the error and continue execution of the
program.

As usual, you should use all possible script error−handling techniques in your scripts (especially the scripts
you load from files), and handle them internally as much as possible (see Chapter 4 and Appendix E for more
information).

Important Note: depending on VB's settings, your error handlers may not work properly in debug
mode (check Break on Unhandled Errors in IDE's General Options tab). Additionally,
error handlers in script will depend on the Disable Script Debugging option set in
Internet Explorer, and on the availability of the debugger. Script errors may
automatically invoke the debugger, bypassing your error handling code. Consult
Chapter 4 for more information.

The Script Control is bound to raise several types of errors when setting global properties:

Error Description

Can't execute; script is running An attempt has been made to modify one of Script Control object's
members while the script is running.

Can't set UseSafeSubset property Application hosting Script Control may force it into safe mode.

Executing script has timed out Script execution has ended because it went over the time allotted in
the Timeout property.

Language property not set Certain properties can only be set after the Language property is set.

Member is not supported by selected
scripting engine

When working with languages other than VBScript or JScript, not
all of the properties and methods may be supported.

Object is no longer valid When Script Control is reset, objects that have been set previously
are released.

These errors can most probably be avoided by careful programming, and should not be a big factor of your
error handling strategy. The two cases when errors will be a major nuisance are when adding the scripting
code to the Script Control (syntax errors), and when executing it. You may inspect both error objects;
however, Script Control's Error object provides additional information about the nature of the error. The
example below shows hypothetical error handling through VB:

 Dim strCode As String
 Dim strValue As String
 sc.Reset
 On Error GoTo SyntaxErrorHandler
 strCode = InputBox("Enter Function (name it Test(a))", _

 Error Trapping with Script Control

397

 "Syntax Error Testing", _
 "Sub Test(a): MsgBox ""Result: "" & CStr(a*a): End Sub")

 sc.AddCode strCode
 On Error GoTo RuntimeErrorHandler
 strValue = InputBox("Enter a Value for Test function", _
 "Runtime Error Testing", _
 "test")
 sc.Run "Test", strValue

 Exit Sub
SyntaxErrorHandler:
 MsgBox "Error # " & Err.Number & ": " & _
 Err.Description, vbCritical, "Syntax Error in Script"

 Exit Sub
RuntimeErrorHandler:
 MsgBox "Error # " & Err.Number & ": " & _
 Err.Description, vbCritical, "Runtime Error in Script"

There are several different ways in which VB can handle errors: through use of the Goto label and, as in
VBScript, through Resume Next, and immediate testing of Err object. The example below illustrates the use
of On Error Resume Next, combined with an inspection of the Err object as well as Script Control's Error
object, which provides us with more information:

On Error Resume Next
 sc.AddCode strCode
 If Err Then
 With sc.Error
 MsgBox "Error # " & .Number & ": " _
 & .Description & vbCrLf _
 & "At Line: " & .Line & " Column: " & .Column _
 & " : " & .Text, vbCritical, "Syntax Error"
 End With
 Else
 MsgBox "No Error, result: " & CStr(sc.Run("Test", _
 strValue))
 If Err Then
 With sc.Error
 MsgBox "Error # " & .Number & ": " _
 & .Description & vbCrLf _
 & "At Line: " & .Line _
 , vbCritical, "Runtime Error"
 End With
 End If
 End If

Finally, you may also use two of the events exposed by the Script Control, Event and Timeout, to handle
some of the errors; however, in some circumstances it may be a nuisance, and the use of the On Error
statement is preferred because:

The Timeout event will only occur for the initial ScriptControl object•
Script Control either has to be used as a VB 'Component', or has to be initialized 'With Events' as a
reference

•

You may lose the granularity required when executing certain 'likely to cause errors' procedures•

You should use the Error event when you do not plan on adding any other error−handling script code to your

 Error Trapping with Script Control

398

application, as the example code shows below:

Private Sub sc_Error()
 Dim strMsg As String

 With sc.Error
 strMsg = "Script error has occurred:" & vbCrLf & vbCrLf
 strMsg = strMsg & .Description & vbCrLf
 strMsg = strMsg & "Line # " & .Line
 ' Syntax errors have additional properties
 If InStr(.Source, "compilation") > 0 Then
 strMsg = strMsg & ", Column# " & .Column
 strMsg = strMsg & ", Text: " & .Text
 End If
 strMsg = strMsg & vbCrLf
 End With

 MsgBox strMsg, vbCritical, "Script Error"
 sc.Error.Clear
End Sub

Important Note: When using the ScriptControl Error event, the error handler is invoked before
any On Error... code. Hence, use of both error−handling techniques may produce
double error messages, and disable any effective error handling.

Help with Debugging

The ability to step through code is one of the most valuable resources made available by Microsoft's IDEs.
Although the debugger can be obnoxious at times (especially when you want the custom error handler to
'kick−in'), there are circumstances where you need it more than anything.

When working with Script Control, and a custom script, you may either invoke the debugger by raising an
error from your script (it might be difficult to find later), or use the Stop command in VBScript to start the
debugger (use Debugger when working with JScript). This technique is an equivalent of placing a breakpoint
in VB or Visual InterDev (for more information on how to use the debugger, please see Chapter 4 where the
basics of debugging are covered).

Sample Applications

The Script Control is unfortunately one of the lesser children of Microsoft examples of its use, other than the
references provided, are scarce. Because of that, I have provided two examples of Script Control use the
scavenger project, and the complexSC project that go beyond the little snippets of code that are usually
provided in a reference manual. Note that these examples can be downloaded from the Wrox web site at
http://www.wrox.com.

Scavenger Project

Data retrieval from a web page can be quite easily achieved by the simple automation of Visual Basic's Inet
Control. Unfortunately web pages tend to change their internal structures, with the result that your carefully
created and compiled data parsing routines produce nothing but garbage.

Error Trapping with Script Control

399

This is where the Script Control can save your life. In this project, the Script Control works in conjunction
with the Inet Control and other elements of the project to retrieve the correct data. The illustration above
shows the target of our interest the Top 50 stocks that can be considered as the input for our application.

The page contains a lot of information but we are only interested in retrieving certain values provided in one
of the tables of the document, to produce our own sample output as shown below:

The entire project, aside from the intricacies of retrieving web documents and parsing, is very simple. Here is
the flow of the program:

Initialize the Script Control1.
Initialize the hidden form with the Inet Control (to receive events, etc)2.
Load the script3.
Initialize values in Script Control4.
Retrieve URL and feed it to the Inet Control5.
Wait until the web file is retrieved6.
Feed the file to the script function7.
The script parses the file according to its own rules8.
The script returns a Variant array9.
Array values are placed on a grid10.

The concepts and the actions carried out are quite simple. Use of the script provides you with the flexibility to
easily change the URL or the parsing routine associated with a particular web document. The project shows a
very simple communication structure between the script and the application, without the unnecessary
complications of shared application objects.

Here are the key actions (omitting the retrieval of the file).

The code below shows how the script can be initialized in a standard EXE application, at the time when the
main form is loaded:

Private Sub Form_Load()

Error Trapping with Script Control

400

 Set objSC = InitScriptControl()
 objSC.ExecuteStatement "Init"
End Sub

Next, a generic routine to load a script from a file (scavenger.scp) that is called by the code above. After the
file is loaded, the reference to the ScriptControl is returned to the form:

Function InitScriptControl() As ScriptControl
 Dim objSC As ScriptControl
 Dim fileName As String, intFnum As Integer

 ' create a new instance of the control
 Set objSC = New ScriptControl
 objSC.Language = "VBScript"

 ' load the code into the script control
 fileName = App.Path & "\scavenger.scp"
 intFnum = FreeFile
 Open fileName For Input As #intFnum
 objSC.AddCode Input$(LOF(intFnum), intFnum)
 Close #intFnum

 ' return to the caller
 Set InitScriptControl = objSC
End Function

The URL is stored in the script, and can be easily retrieved by the application:

strURL = objSC.Run("getURL")

And by the getURL function inside the script:

Function getURL()
 getURL = strURL
End Function

Finally, after the HTML document is retrieved by the Inet Control (as a buffer) it is passed to the parsing
function (getValues()), which returns a Variant array:

arrResults = objSC.Run("getValues", Buffer)

The technical details of the parsing function (shown below) are somewhat complex, but they are obviously
suited to that particular document. After the irrelevant information is stripped from the top and bottom of the
file, the remaining information is split into a table of 50 elements. Afterwards, each single element,
representing data about a single stock, is split into the Matches collection (see the section on regular
expressions in Chapter 7), and individual matching elements entered into table cells.

When the table is built, it is returned back to the application, as shown in the code below:

Function getValues(strHTML)
 Dim arrValues(5,50), i, j, regEx, regMatches, strTmp
 Dim strTmp2, intPos

 ' get rid of all data in front of table
 ' we are only interested in top 50 stocks
 ' top 50 stocks are in the last table on the page,

Error Trapping with Script Control

401

 strTmp2 = "<TABLE BORDER=0 WIDTH=100%>"
 intPos = InStrRev(strHTML, strTmp2)
 strTmp = Right(strHTML, _
 Len(strHTML) − intPos − Len(strTmp2) + 1)

 strTmp2 = "</TR>"
 intPos = InStr(strTmp, strTmp2)
 strTmp = Right(strTmp, Len(strTmp) − _
 intPos − Len(strTmp2) + 1)

 ' get rid of all data after table
 strTmp2 = "</TABLE>"
 intPos = InStr(strTmp, strTmp2)
 strTmp = Left(strTmp, intPos − 1)

 ' split all rows in the table − replace "</tr> with "@"
 ' I'm assuming there are no "@" anywhere, if there were,
 ' replace them with &atsymbol; or something, and replace
 ' &atsymbol; after the split is made
 Set regEx = new RegExp
 regEx.pattern = "</TR>"
 regEx.IgnoreCase = True
 regEx.Global = True
 ' and now each company is in a separate row...
 strTmp = regEx.replace(strTmp, "@")
 arrCompanies = Split(strTmp, "@")

 ' initialize table headings
 arrValues(0,0) = "SYMBOL"
 arrValues(1,0) = "LAST"
 arrValues(2,0) = "CHANGE"
 arrValues(3,0) = "VOLUME"
 arrValues(4,0) = "HIGH"
 arrValues(5,0) = "LOW"

 ' put the values from the HTML file into our two
 ' dimensional table − there are also other values,
 ' but we're ignoring them, choosing 6 columns

 For i = 1 To UBound(arrValues,2)

 ' put the company into a temp string
 strTmp = arrCompanies(i−1)

 ' get the stuff from interesting fields
 ' they all are: words: \w, spaces: \s and "/",
 ' all of them end with)
 regEx.pattern = "[\w\s/,.]+"
 Set regMatches = regEx.execute(strTmp)
 For j = 0 To Ubound(arrValues,1)
 ' now get rid of (7 chars) and trim
 arrValues(j,i) = _
 Trim(Left(regMatches.Item(j), _
 Len(regMatches.Item(j)) −7))
 Next
 Next
 getValues = arrValues

End Function

Error Trapping with Script Control

402

This project shows how simple the script can actually be, and how it can enhance the application. Although
the script will treat all of its values as Variants, passing and retrieving different objects is not difficult. In this
case, we returned a simple array, but we could have used a custom COM component, and XML document, or
even a recordset to return the values to the application. This way you can extend either your application, or
VBScript, almost indefinitely either by providing access to data that is difficult to achieve with VBScript, or
by providing the flexibility of scripting to your application.

Encrypted Scripts and Script Control

In some circumstances, you may not be interested in sharing the source code of your script. Perhaps your
parsing routine may be more high−tech than the one above. Luckily you may use the Script Encoder provided
by Microsoft on the scripting site. After using the encoder (as shown below) we end up with an encoded script
that we can still use provided we make a few changes:

screnc scavenger.scp scavenger.enc /e vbs

One would assume that all we have to do is to change the language property to VBScript.Encode. However,
all that happens is that the file loading routine crashes while reading the encrypted file. Luckily, the FSO (File
System Object) has no problems opening the encrypted file. Only the script loading procedure has to be
altered to accommodate for the encoded script:

Function InitScriptControl() As ScriptControl
 Dim objSC As ScriptControl, fso as Scripting.FileSystemObject
 Dim tsInput, scriptSrc

 ' create a new instance of the control
 Set objSC = New ScriptControl

 Set fso =New Scripting.FileSystemObject
 Set tsInput = fso.OpenTextfile(App.Path & "\scavenger.enc", 1)
 scriptSrc = tsInput.ReadAll
 objSC.Language = "VBScript.Encode"
 objSC.AddCode scriptSrc

 ' return to the caller
 Set InitScriptControl = objSC

End Function

And the encrypted file (scavenger.enc) remains encrypted and relatively protected from prying eyes here are
the first few characters from the file:

#@~^HAoAAA==9b:~kYMjId@#@&@#@&UE8P&xrOv#@#@&7B,qx,^C/�PDtnPi

ComplexSC Connection Registration

The second sample project, ComplexSC, demonstrates how the application can share its objects with the
script, and pass static events because of this requirement, the project is an ActiveX EXE type.

When building database applications that depend on an outside database, we always encounter the problem of
feeding the application the connection string associated with the appropriate database and the appropriate
server. Most commonly, this information is retrieved from the system registry, identifying the software author
and the application, and then by the custom key:

Sample Applications

403

Sample Registry SubPath: SOFTWARE\Company Name\App Name\

Sample Key Name: MyAppConnection

The problem lies with the fact that ordinarily, you'd have to provide a custom application to the end user with
the values hard coded within the application (or try something like WSH and make things complex). Through
the use of Script Control, you can create a basic registration utility that can be distributed along with a
customized script. The script can automate your application providing important values when they are needed,
depending on user input:

The possibilities here are almost endless: by exposing the objects in the application, and passing some of the
events to the script, the script can act as a macro, and adapt to your needs. There are some idiosyncrasies,
especially when it comes to passing events between the form and the script. To make this possible, all of the
controls are placed on the form at design time, some of them in control arrays. The script can easily control all
of the properties and methods of all controls, but when the control arrays (optional connection string tags and
their values) are used, dynamic modification of the form members is simplified. Here, depending on the
choice of connection (OLE DB, ODBC, and DSN) we can display different labels and editable values
associated with the connection type.

Sharing of the form members is easily achieved through the CShared class, which allows us to share the main
Form and all of its members, with a script (shown below). Although we could expose individual elements as
opposed to the entire form, and prevent the script from manipulating any of the elements we want protected,
in the case of this application it is simply not necessary:

Option Explicit

Private m_Form As Form

Public Property Get Form() As Object
 Set Form = m_Form
End Property

Friend Property Set Form(ByVal newValue As Object)
 Set m_Form = newValue
End Property

Sample Applications

404

With the CShared class in place, we need to use the AddObject method of the Script Control to share the
Form with the script. This is done via a slightly modified InitScriptControl procedure, which is executed when
the form is loaded. We are passing the reference to the VB form, which in turn, becomes the Form in the
CShared class:

Private Sub Form_Load()
 Set objScript = InitScriptControl(Me)
 objScript.Run "init"
End Sub

The modified InitScriptControl procedure takes on the additional requirement of setting up the CShared class.
Because we set the third parameter of the AddObject method to true, all of the members of the existing form
are shared too:

Function InitScriptControl(frmForm As Form) As ScriptControl
 Dim objSC As ScriptControl
 Dim fileName As String, intFnum As Integer
 Dim objShare As New CShared

 ' create a new instance of the control
 Set objSC = New ScriptControl
 objSC.Language = "VBScript"
 objSC.AllowUI = True
 Set objShare.Form = frmForm
 objSC.AddObject "share", objShare, True

 ' load the code into the script control
 fileName = App.Path & "\regeditor.scp"
 intFnum = FreeFile
 Open fileName For Input As #intFnum

 objSC.AddCode Input$(LOF(intFnum), intFnum)
 Close #intFnum

 ' return to the caller
 Set InitScriptControl = objSC

End Function

After the script is initialized, we call the Init procedure in the script, which sets up all of the necessary controls
on the form. In actuality, some of the controls are pre−set with certain properties (such as background color,
enabled, etc.), while others are initialized by the script, by accessing the members of the shared Form, as
shown in the code below:

Sub Init()
 Dim i, strTmp
 Form.Caption = "Connection Registration Manager"
 strTmp = "This application saves the database connection"
 strTmp = strTMP & string in the registry. " & vbCrLf
 Form.lblExplanation = strTmp
 Form.lblRegistry.Caption = ""
 ' this information should be reflected in your application
 ' the standard is to store the registry keys in subhives
 ' for different companies and projects
 Form.txtSubpath.Text = "SOFTWARE\Company Name\App Name\"
 ' finally the name of the key
 ' you could similarly extend this application so it would
 ' work like a wizard, and register several keys

Sample Applications

405

 Form.txtKey.Text = "MyAppConnection"
 Form.lblRegistry.Caption = ""
 Form.cmdRegister.Enabled = False
 Form.cmdProcess.Enabled = True
 For i = 0 To 5
 Form.lblLabel(i).Visible = False
 Form.txtText(i).Visible = False
 Next
 Form.cboCombo.Clear
 Form.cboCombo.AddItem "OLE DB"
 Form.cboCombo.AddiTem "ODBC"
 Form.cboCombo.AddItem "DSN"
End Sub

Next, we need to respond to events generated by the application. In this simple case (for a more complex case,
look for an article in VBPJ by Francesco Balena, unpublished at the time of this printing), we simply pass the
events as intercepted by the application directly to the script. Hence, our application may have the following
events passed to the script:

Private Sub cboCombo_Click()
 objScript.Run "cboCombo_Click"
End Sub

Private Sub txtText_KeyPress(Index As Integer, KeyAscii As Integer)
 KeyAscii = objScript.Run("txtText_KeyPress",Index, KeyAscii)
End Sub

As the example shows, we pass the events directly to the script, optionally passing along the parameters
generated by the event. Because in certain cases we might want to modify one of the parameters, we should
treat the event−handling procedure as a function, which would return the modified value. This is probably the
simplest mechanism for modifying such parameters. Although this functionality is not required by our
application, the following function inside the script would capitalize each character entered into one of the
text boxes:

Function txtText_KeyPress(Index , KeyAscii)
 txtText_KeyPress = Asc(Ucase(Chr(KeyAscii)))
End Function

This approach is a little different than what you'd expect in VB code, because even if we pass the value of
KeyAscii by reference (normal VB Code would be KeyAscii = Asc(Ucase(Chr(KeyAscii)))), the script will
not update this value back in VB. Hence, we employ a simple work around using the script Function
procedure.

It is also possible to 'override' the default event handling, or to provide 'optional' event handling in the script.
When the script does not have the member procedure, an error is generated, which provides us with a
possibility of either ignoring events or providing default events, in case the script does not have an
appropriately named procedure. The example below shows the simplest error trapping, which allows us to
create a default event handler. Additionally, when the Error handler is not enabled (as On Error Resume Next
below), the script must contain an appropriately named procedure with the correct number of parameters:

Private Sub cboCombo_Click()
 On Error Resume Next
 objScript.Run "cboCombo_Click"
 If Err = 0 Then Exit Sub
 ' default event handler goes here
End Sub

Sample Applications

406

Details of the application lie in the script itself, so rather than copy the entire code listing, the example below
only shows partial implementation of the cboCombo_Click procedure within the script. After the key controls
are reset, we set up values of the labels and the associated text that would correspond to an OLE DB type
connection string:

Sub cboCombo_Click()
 Dim strComboSelection, strTmp

 ' Clean Up in case this was pressed already
 Form.cmdRegister.Enabled = False
 Form.cmdProcess.Enabled = True
 Form.lblRegistry.Caption = ""
 For i = 0 To 5
 Form.lblLabel(i).Visible = False
 Form.txtText(i).Visible = False
 Next

 strComboSelection = _
 Trim(Form.cboCombo.List(Form.cboCombo.ListIndex))
 Select Case strComboSelection
 Case "OLE DB"
 For i = 0 To 4
 Form.lblLabel(i).Visible = True
 Form.txtText(i).Visible = True
 Next
 Form.lblLabel(0).Caption = "Provider="
 Form.lblLabel(1).Caption = "Data Source="
 Form.lblLabel(2).Caption = "Initial Catalog="
 Form.lblLabel(3).Caption = "User ID="
 Form.lblLabel(4).Caption = "Password="
 Form.txtText(0).Text = "SQLOLEDB"
 Form.txtText(1).Text = "DATABOX"
 Form.txtText(2).Text = "MyAppDB"
 Form.txtText(3).Text = "Student"
 Form.txtText(4).Text = "teacher"

 []
 End Select
 strTmp = "Please Fill In Remaining Values in the available"
 strTmp = strTmp & " text boxes. " & vbCrLf
 strTmp = strTmp & "You may press ""Proceed"" button, or"
 strTmp = strTmp & " change the connection method again. "
 strTmp = strTmp & "Leaving User ID empty will leave out"
 strTmp = strTmp & " user infromation from registry"
 Form.lblExplanation = strTmp
End Sub

The remainder of the application responds to the end−user events, and builds the connection string as required
by the core application, enabling and disabling controls, and modifying values on the form, depending on the
'stage'. The last action is actually carried out directly by the application itself a value is written to the registry
based on the string that is stored in one of the labels on the form.

This little application can be further extended to take advantage of several scripts, and provide wizard−like
functionality that can easily be scripted.

Sample Applications

407

Summary

The Script Control is a free control provided by Microsoft that enables your application to host a scripting
engine. Uses of the script control can range from simple dynamic evaluation of expressions, to a fully−fledged
macro language add−on capable of automating your applications.

We looked at the benefits of scripting, licensing issues, full syntax of the Script Control within the VB
environment, and finally at some sample mini−apps (applications) that utilize the Script Control in different
ways.

You can use the ScriptControl to perform tasks that may be difficult to achieve directly in VB, such as:

Evaluate Dynamic Expressions•
Execute script code from a file, or a database•
Integrate your application with the Script Control, and expose its objects to the script•
You may also encode the script if necessary•
Finally, you may use other scripting objects such as File System Object and Regular Expression
Object through a script, or directly in VB

•

 Summary

408

Appendix A: Visual Basic Functions and Keywords

Overview

This Appendix contains a complete reference of functions and keywords in VBScript 5. You will also find a
list of the VB/VBA functions and keywords that are not supported in VBScript. Where appropriate an
alternative to an unsupported function or keyword is shown.

The function and keyword references are grouped in categories and they include the full syntax, an
explanation, notes, sample code, and a "See also" list. The function references also include a list of named
constants and their values.

Please note that there are a number of VB constructs that are not supported in VBScript. This includes File I/O
(for security reasons), the Debug and Collection objects, some conversion functions, and the complete set of
financial functions. For a complete list, see "Differences Between VB/VBA and VBScript" in Appendix B.

Operators

An operator acts on one or more operands when comparing, assigning, concatenating, calculating, and
performing logical operations.

Say you want to calculate the difference between two variables A and B and save the result in variable C.
These variables are the operands and to find the difference you use the subtraction operator like this:

C = A B

Here we used the assignment operator (=) to assign the difference between A and B, which was found by
using the subtraction operator (−). Operators are one of the single−most important parts of any programming
language. Without them, you would not be able to assign values to variables or perform calculations and
comparisons! It would be a bit like a bicycle without pedals...

There are different types of operators and they each serve a specific purpose, as you will see from the
following.

Assignment Operator

The assignment operator is simply used for assigning a value to a variable or property. See the Set keyword
for an explanation of how to reference and assign objects.

= Name

Description

Syntax

Assignment

Assigns the result of an expression, the value of a constant, or the value of
another variable to a variable or property.

Variable = value

409

Arithmetic Operators

The arithmetic operators are all used to calculate a numeric value, and are normally used in conjunction with
the assignment operator and/or one of the comparison operators; they are listed in order of Operator
Precedence.

^ Name

Description

Syntax

Example

Exponentiation

Raises a number to the power of an exponent.

Result = number ^ exponent

number and exponent is any valid numeric expression.

MsgBox 5 ^ 5

MsgBox displays 3125, which is the result of raising the number 5 to the
exponent 5.

* Name

Description

Syntax

Example

Multiplication

Multiplies two numbers.

Result = number1 * number2

number1 and number2 is any valid numeric expression.

MsgBox 5 * 5

MsgBox displays 25, which is the result of multiplying the number 5 by 5.

/ Name

Description

Syntax

Example

Floating Point Division

Returns a floating point result when dividing two numbers.

Result = number1 / number2

number1 and number2 is any valid numeric expression.

MsgBox 5 / 4

MsgBox displays 1.25, which is the result of dividing the number 5 by 4.

\ Name

Description

Syntax

Integer Division

Returns the integer part of the result when dividing two numbers.

Result = number1 \ number2

number1 and number2 is any valid numeric expression.

MsgBox 5 \ 4

Operators

410

Example

Note

MsgBox displays 1, which is the integer part of the result, when dividing the
number 5 with 4.

The numeric expressions are rounded to Byte, Integer, or Long subtype
expressions, before the integer division is performed. They are rounded to the
smallest possible subtype, i.e. a value of 255 will be rounded to a Byte, and 256
will be rounded to an Integer and so on.

Mod Name

Description

Syntax

Example

Note

Modulus Division

Returns the remainder when dividing two numbers.

Result = number1 Mod number2

number1 and number2 is any valid numeric expression.

MsgBox 5 Mod 4

MsgBox displays 1, which is the remainder part of the result, when
dividing the number 5 with 4.

The numeric expressions are rounded to Byte, Integer, or Long subtype
expressions, before the modulus division is performed. They are rounded
to the smallest possible subtype, i.e. a value of 255 will be rounded to a
Byte, and 256 will be rounded to an Integer and so on.

+ Name

Description

Syntax

Example

Note

Addition

Sums two expressions.

Result = expression1 + expression2

expression1 and expression2 is any valid numeric expression.

MsgBox 5 + 5

MsgBox displays 10, which is the result of adding the expression 5 to 5.

If one or both expressions are numeric, the expressions will be summed, but if
both expressions are strings, they will be concatenated. This is important to
understand, especially if you have a Java background, in order to avoid runtime
errors. In general use the &operator (see under Concatenation Operators), when
concatenating and the + operator when dealing with numbers.

− Name

Description

Syntax (1)

Subtraction

Subtracts one number from another or indicates the negative value of an
expression.

Result = number1 number2

number1 and number2 is any valid numeric expression.

Operators

411

Example (1)

Syntax (2)

Example (2)

MsgBox 5 − 4

MsgBox displays 1, which is the result of subtracting the number 4 from 5.

−number

number is any valid numeric expression.

MsgBox −(5 − 4)

MsgBox displays −1, which is the result of subtracting the number 4 from 5
and using the unary negation operator (−) to indicate a negative value.

Concatenation Operators

Concatenation operators are used for concatenating expressions; they are listed in order of Operator
Precedence.

& Name

Description

Syntax

Example

Note

Ampersand

Concatenates two expressions.

Returns the concatenated expressions:

Result = expression1 & expression2

If expression1 is "WROX " and expression2 is " Press" then the result is "WROX
Press".

The expressions are converted to a String subtype, if they are not already of this
subtype.

+ Name

Description

Syntax

Example

Note

+ Operator

Does the same as the & operator if both expressions are strings.

Returns the concatenated or summed expressions:

Result = expression1 + expression2

1 + "1" = 2

"1" + "1" = "11"

If one or both expressions are numeric, the + operator will work as an arithmetic
+ operator and sum the expressions. A runtime error occurs if one expression is
numeric and the other a string containing no numbers. It is recommended that +
should only be used for numeric addition and never for concatenation purposes
(use & instead).

Operators

412

Comparison Operators

The comparison operators are used for comparing variables and expressions against other variables, constants
or expressions; they are listed in order of Operator Precedence.

One important thing to remember when comparing strings is case sensitivity. You can use the UCase and
LCase functions to make sure that the strings you compare are the same case; the StrComp function offers
another way of dealing with case sensitivity (see under String Functions). In VB/VBA you have the Option
Compare statement, but this is not supported in VBScript. So keep in mind, when using the operators listed
below, that if you compare strings (when both expressions are strings), a binary comparison is performed on
the sequences of characters. A binary comparison is always case sensitive. If only one of the expressions is a
string and the other is numeric, the numeric expression is always less than the string expression.

Null is returned if either expression is Null. If either expression is Empty, it is converted to the value 0 if the
other expression is numeric, and to an empty string ("") if the other expression is a string. In the case where
both expressions are Empty, they are obviously equal.

The Is operator is for dealing with objects and Variants.

= Name

Description

Syntax

Equal to

Returns true if expression1 is equal to expression2; false otherwise.

Result = expression1 = expression2

<> Name

Description

Syntax

Not equal to (different from)

Returns true if expression1 is not equal to expression2; false otherwise.

Result = expression1 <> expression2

< Name

Description

Syntax

Less than

Returns true if expression1 is less than expression2; false otherwise.

Result = expression1 < expression2

> Name

Description

Syntax

Greater than

Returns true if expression1 is greater than expression2; false otherwise.

Result = expression1 > expression2

<= Name

Description

Syntax

Less than or equal to

Returns true if expression1 is less than or equal to expression2; false otherwise.

Result = expression1 <= expression2

Operators

413

>= Name

Description

Syntax

Greater than or equal to

Returns true if expression1 is greater than or equal to expression2; false
otherwise.

Result = expression1 >= expression2

Is Name

Description

Syntax

Note

Compare objects

Returns true if object1 and object2 refers to the same memory location (if they
are in fact the same object).

Result = object1 Is object2

Use the Not operator (see under Logical Operators) with the Is operator to get
the opposite effect:

Result = object1 Not Is object2

Use the Nothing keyword with the Is operator to check if an object reference is
valid. Returns true if object has been destroyed (Set object = Nothing):

Result = object Is Nothing

Be careful, Nothing is NOT the same as Empty. Nothing references an invalid
object reference, whereas Empty is used for any variable, which has been
assigned the value of Empty, or has not yet been assigned a value.

Logical Operators

The logical operators are used for performing logical operations on expressions; they are listed in order of
Operator Precedence. All logical operators can also be used as bitwise operators (see under Bitwise
Operators).

Not Used to

Returns

Syntax

Note

Negate the expression.

Returns the logical negation of an expression.

Result = Not expression

Result will be true if expression is false; and false if expression is true. Null
will be returned if expression is Null.

And Used to

Returns

Syntax

Check if both expressions are true.

Returns true if both expressions evaluate to true; otherwise, false is returned.

Result = expression1 And expression2

Or Used to

Returns

Check if one or both expressions are true.

Returns true if one or both expressions evaluate to true; otherwise, false is

Operators

414

Syntax
returned.

Result = expression1 Or expression2

Xor Used to

Returns

Syntax

Note

Check if one and only one expression is true.

Null will be returned if either expression is Null.

Result = expression1 Xor expression2

Returns true if only one of the expressions evaluates to true; otherwise, false is
returned

Eqv Used to

Returns

Syntax

Note

Check if both expressions evaluate to the same value.

Returns true if both expressions evaluate to the same value (true or false).

Result = expression1 Eqv expression2

Null will be returned if either expression is Null.

Imp Used to

Returns

Syntax

Perform a logical implication.

Returns these values:

true Imp true = true

false Imp true = true

false Imp false = true

false Imp Null = true

Null Imp true = true

true Imp false = false

true Imp Null = Null

Null Imp false = Null

Null Imp Null = Null

Result = expression1 Imp expression2

Bitwise Operators

Bitwise operators are used for comparing binary values bit−by−bit; they are listed in order of Operator
Precedence. All bitwise operators can also be used as logical operators (see under Logical Operators).

Not Used to Invert the bit values.

Operators

415

Returns

Syntax

Returns 1 if bit is 0 and vice versa.

Result = Not expression

If expression is 101 then result is 010.

And Used to

Returns

Syntax

Check if both bits are set to 1.

Returns 1 if both bits are 1; otherwise, 0 is returned.

Result = expression1 And expression2

If expression1 is 101 and expression2 is 100 then result is 100.

Or Used to

Returns

Syntax

Check if one of the bits is set to 1.

Returns 1 if one or both bits are 1; otherwise, 0 is returned.

Result = expression1 Or expression2

If expression1 is 101 and expression2 is 100 then result is 101.

Xor Used to

Returns

Syntax

Checks if one and only one of the bits are set to 1.

Returns 1 if only one bit is 1; otherwise, 0 is returned.

Result = expression1 Xor expression2

If expression1 is 101 and expression2 is 100 then result is 001.

Eqv Used to

Returns

Syntax

Checks if both bits evaluate to the same value.

Returns 1 if both bits have the same value (0 or 1).

Result = expression1 Eqv expression2

If expression1 is 101 and expression2 is 100 then result is 110.

Imp Used to

Returns

Syntax

Performs a logical implication on two bits.

Returns these values:

0 Imp 0 = 1

0 Imp 1 = 1

1 Imp 1 = 1

1 Imp 0 = 0

Result = expression1 Imp expression2

If expression1 is 101 and expression2 is 100 then result is 110.

Operators

416

Operator Precedence

When more than one operation occurs in an expression they are normally performed from left to right.
However, there are several rules.

Operators from the arithmetic group are evaluated first, then concatenation, comparison and logical operators.

This is the complete order in which operations occur (operators in brackets have the same precedence):

^, −, (*, /), \, Mod, (+, −),

&,

=, <>, <, >, <=, >=, Is,

Not, And, Or, Xor, Eqv, Imp

This order can be overridden by using parentheses. Operations in parentheses are evaluated before operations
outside the parentheses, but inside the parentheses, the normal precedence rules apply.

Unsupported Operators

The following VB/VBA operator is not supported in VBScript:

Like

Math Functions

Every now and then, depending on what kind of applications you design, you will need to do some math
calculations and VBScript goes a long way towards helping you here. There are a number of intrinsic
functions, but it is also possible to derive many other math functions from the intrinsic ones. Math functions
are especially helpful when you need to display graphics, charts etc; the listing is in alphabetical order.

Abs Returns the absolute value of a number, i.e. its unsigned magnitude.

Syntax Abs(number)

number is any valid numeric expression.

Note Null will be returned if number contains Null.

Example Abs(−50) ' 50

Abs(50) ' 50

See Also Sgn

Atn Returns the arctangent of a number as Variant subtype Double (5).

Syntax Atn(number)

number is any valid numeric expression.

Note This function takes the ratio of two sides of a right−angled triangle (number) and returns
the corresponding angle in radians. The ratio is the length of the side opposite the angle

Operators

417

divided by the length of the side adjacent to the angle. The range of the result is −pi/2 to
pi/2 radians.

Example Dim dblPi
' Calculate the
' value of Pi
dblPi = 4 * Atn(1)

See Also Cos, Sin and Tan

Cos Returns the cosine of an angle as Variant subtype Double (5).

Syntax Cos(number)

number is any valid numeric expression that expresses an angle in radians.

Note This function takes an angle and returns the ratio of two sides of a right−angled triangle.
The ratio is the length of the side adjacent to the angle divided by the length of the
hypotenuse (dblSecant). The result is within the range −1 to 1, both inclusive.

Example Dim dblAngle, dblSecant
Dim dblLength
 dblLength = 10
 ' Convert 30° to radians
 dblAngle = (30 * 3.14 / 180)
 dblSecant = dblLength / Cos(dblAngle)

Here the Cos function is used to return the cosine of an angle.

See Also Atn, Sin and Tan

Exp Returns a Variant subtype Double (5) specifying e (the base of natural logarithms) raised
to a power.

Syntax Exp(number)

number is any valid numeric expression.

Note A runtime error occurs if number is larger than 709.782712893. e is approximately
2.718282.

Sometimes this function is referred to as the antilogarithm, and complements the action
of the Log function.

Example Dim dblAngle, dblHSin

dblAngle = 1.3
dblHSin = (Exp(dblAngle) − Exp(−1 * dblAngle)) / 2

Here the Exp function is used to return e raised to a power.

See Also Log

Fix Returns the integer part of a number.

Operators

418

Syntax Fix(number)

Note Fix is internationally aware, which means that the return value is based on the locale
settings on the machine.

Null is returned if number contains Null. The data type returned will be decided from
the size of the integer part. Possible return data types in ascending order: Integer, Long,
and Double.

If number is negative, the first negative integer equal to or greater than number is
returned.

Example Dim vntPosValue
Dim vntNegValue

vntPosValue = Fix(5579.56) vntNegValue = Fix(−5579.56)

vntPosValue now holds the value 5579, and vntNegValue the value −5579.

Fix is the equivalent of Int when dealing with non−negative numbers. When you handle
negative numbers, Fix returns the first negative integer, greater than, or equal to the
number supplied.

See Also Int, Round and the

Conversion Functions CInt and CLng

Int Returns the integer part of a number.

Syntax Int(number)

number is any valid numeric expression.

Note Int is internationally aware, which means that the return value is based on the locale
settings on the machine.

Null is returned if number contains Null. The data type returned will be decided from
the size of the integer part. Possible return data types in ascending order: Integer, Long,
and Double.

If number is negative, the first negative integer equal to or less than number is returned.

Example Dim vntPosValue
Dim vntNegValue

vntPosValue = Int(5579.56) vntNegValue = Int(−5579.56)

vntPosValue now holds the value 5579, and vntNegValue the value −5580.

Int is the equivalent of Fix when dealing with non−negative numbers. When you handle
negative numbers, Int returns the first negative integer, less than, or equal to the number
supplied.

See Also Fix, Round and the

Conversion Functions CInt and CLng

Log Returns the natural logarithm of a number.

Operators

419

Syntax Log(number)

number is any valid numeric expression greater than zero.

Example Dim vntValueBase10

vntValueBase10 = Log(5) / Log(10)

The above sample code calculates the base−10 logarithm of the number 5, which is
0.698970004336019.

See Also Exp

Randomize Initilizes the random number generator, by giving it a new seed−value. A seed−value is
an initial value used for generating random numbers.

Syntax Randomize [number]

number is any valid numeric expression.

Note You can repeat a sequence of random numbers, by calling the Rnd function with a
negative number, before using the Randomize statement with a numeric argument.

Example Const LNG_UPPER_BOUND = 20
Const LNG_LOWER_BOUND = 1

Dim intValueDim lngCounterInDim lngCounterOut For lngCounterOut = 1 To 3 Rnd
−1 Randomize 3 For lngCounterIn = 1 To 3 intValue = Int((LNG_UPPER_BOUND −
LNG_LOWER_BOUND + 1) * _
Rnd + LNG_LOWER_BOUND) MsgBox intValue Next Next

The above sample has an inner loop that generates three random numbers and an outer
loop that calls the Rnd function with a negative number, immediately before calling
Randomize with an argument. This makes sure that the random numbers generated in
the inner loop will be the same for every loop the outer loop performs.

See Also Rnd

Rnd Returns a random number, less than 1 but greater than or equal to 0.

Syntax Rnd[(number)]

number (Optional) is any valid numeric expression that determines how the random
number is generated; if number is:

< 0uses same number every time,

> 0 or missinguses next random number in sequence,

= 0uses most recently generated number.

Note Use the Randomize statement, with no argument, to initialize the random−number
generator with a seed based on the system timer, before calling Rnd.

The same number sequence is generated for any given initial seed, because each
successive call to Rnd uses the previous number as the seed for the next number in the
sequence.

Operators

420

Call Rnd with a negative argument immediately before using Randomize with a
numeric argument, in order to repeat sequences of random numbers.

Example Const LNG_UPPER_BOUND = 20
Const LNG_LOWER_BOUND = 1

Dim intValueDim lngCounter For lngCounter = 1 To 10 intValue = Int(_
(LNG_UPPER_BOUND − _
LNG_LOWER_BOUND + 1) * _
Rnd + LNG_LOWER_BOUND)
MsgBox intValue Next

This produces 10 random integers in the range 1−20.

See Also Randomize

Round Returns a number rounded to a specified number of decimal places as a Variant subtype
Double (5).

Syntax Round(number, [numdecimalplaces])

number is any valid numeric expression.

numdecimalplaces, (Optional) indicates how many places to the right of the decimal
separator should be included in the rounding.

Note An integer is returned if numdecimalplaces is missing.

Example Round(10.4) ' Returns 10
Round(10.456) ' Returns 10
Round(−10.456) ' Returns 10
Round(10.4, 1) ' Returns 10.4
Round(10.456, 2) ' Returns 10.46
Round(−10.456, 2) ' Returns 10.46

See Also Int and Fix

Sgn Returns an integer indicating the sign of a number.

Syntax Sgn(number)

number is any valid numeric expression.

Note Sgn returns the following when number is:

< 0 −1

= 0 0

> 0 1

Example Sgn(10.4) ' Returns 1
Sgn(0) ' Returns 0
Sgn(−2) ' Returns −1

See Also Abs

Sin Returns a Variant subtype Double (5) specifying the sine of an angle.

Syntax Sin(number)

number is any valid numeric expression that expresses an angle in radians.

Note

Operators

421

This function takes an angle and returns the ratio of two sides of a right−angled triangle.
The ratio is the length of the side opposite the angle (dblCosecant) divided by the length
of the hypotenuse (dblSecant). The result is within the range −1 to 1, both inclusive.

Example Dim dblAngle, dblCosecant
Dim dblSecant
 dblSecant = 11.545
 ' Convert 30° to radians
 dblAngle = (30 * 3.14 / 180)
 dblCosecant = dblSecant * Sin(dblAngle)

Here the Sin function is used to return the sine of an angle.

See Also Atn, Cos and Tan

Sqr Returns the square root of a number.

Syntax Sqr(number)

number is any valid numeric expression greater than or equal to zero.

Example Sqr(16) ' Returns 4

Tan Returns a Variant subtype Double (5) specifying the tangent of an angle.

Syntax Tan(number)

number is any valid numeric expression that expresses an angle in radians.

Note This function takes an angle and returns the ratio of two sides of a right−angled triangle.
The ratio is the length of the side opposite the angle (dblCosecant) divided by the length
of the side adjacent to the angle (dblLength), − see diagram of Sin function.

The result is within the range −1 to 1, both inclusive.

Example Tan(10.4) ' Returns 1.47566791425166
Tan(0) ' Returns 0
Tan(−2) ' Returns 2.18503986326152

See Also Atn, Cos and Sin

Date and Time Functions and Statements

There are a number of ways to display and represent dates and times. This includes date literals, which are
valid date expression, enclosed in number signs (#). You need to be careful when using date literals because
VBScript only lets you use the US−English date format, mm/dd/yyyy. This is true even if a different locale is
being used on the machine. This might lead to problems when trying to use date literals in other formats,
because in most cases the date will be accepted although converted to a different date. #10/12/1997# will be
interpreted as October 12, 1997, but you might in fact want December 10, 1997, because your locale settings
interprets dates as dd/mm/yyyy. Date literals only accept the forward slash (/) as the date separator.

The data range for a date is January 1, 100 to December 31, 9999, both inclusive. Internally, dates are stored

 Date and Time Functions and Statements

422

as part of real numbers or to be more specific as a Variant subtype Double (5). The digits to the left of the
decimal separator represent the date and the digits to the right of the decimal separator represent the time.
Negative numbers are used internally for representing dates prior to December 30, 1899.

Below is a list of functions used for converting and formatting dates and times.

CDate Returns an expression converted to Variant subtype Date (7).

Syntax CDate(date)

date is any valid date expression.

Note CDate is internationally aware, which means that the return value is based on the locale
settings on the machine. Dates and times will be formatted with the appropriate time and
date separators, and for dates the correct order of year, month and day are applied. Date and
time literals are recognized.

Example Dim dtmValue

 dtmValue = CDate(#12/10/1997#)

dtmValue now holds the value "10−12−97", if your locale settings use the dash () as the date
separator and the short date format is dd/mm/yy.

See Also IsDate

Date Returns a Variant subtype Date (7) indicating the current system date.

Syntax Date

Example MsgBox Date

Assuming that today is July 29 1999, the MsgBox now displays 29−07−99, if your locale
settings use the dash () as the date separator and the short date format is dd/mm/yy.

See Also Now and Time

DateAdd Adds or subtracts a time interval to a specified date and returns the new date.

Syntax DateAdd(interval, number, date)

interval can have these values:

d Day

h Hour

m Month

n Minute

q Quarter

s Second

w Weekday

ww Week of year

y Day of year

 Date and Time Functions and Statements

423

yyyy Year

number is a numeric expression that must be positive if you want to add or negative if you
want to subtract.

number is rounded to the nearest whole number if it's not a Long value.

date must be a Variant or date literal to which interval is added.

Note DateAdd is internationally aware, which means that the return value is based on the locale
settings on the machine. Dates and times will be formatted with the appropriate time and
date separators and for dates the correct order of year, month and day are applied. An error
occurs if the date returned precedes the year 100.

Example MsgBox DateAdd("m", 3, "1−Jan−99")

This will add 3 months to January 1, 1999 and the MsgBox now displays 01−04−99, if your
locale settings use the dash () as the date separator and the short date format is dd/mm/yy.

See Also DateDiff, DatePart

DateDiff Returns the interval between two dates.

Syntax DateDiff(interval, date1, date2, [firstdayofweek], [firstweekofyear])

interval can have these values:

d Day

h Hour

m Month

n Minute

q Quarter

s Second

w Weekday

ww Week of year

y Day of year

yyyy Year

date1 and date2 are date expressions.

firstdayofweek (Optional) specifies the first day of the week. Use one of the following constants:

vbUseSystemDayOfWeek 0 (National Language Support (NLS) API
setting. NLS functions help Win32−based applications support the
differing language−and location−specific needs of users around the world.)

vbSunday 1 (default)
vbMonday 2

 Date and Time Functions and Statements

424

vbTuesday 3
vbWednesday 4
vbThursday 5
vbFriday 6
vbSaturday 7

firstweekofyear (Optional) specifies the first week of the year. Use one of the following constants:

vbUseSystem 0(Use NLS API setting)

vbFirstJan1 1 (default) Week in which January 1 occurs.

vbFirstFourDays 2 First week in the new year with four days.

vbFirstFullWeek 3 First full week of the new year.

Note A negative number is returned if date1 is later in time than date2.

Example MsgBox DateDiff("yyyy", #11−22−1967#, Now)

This will calculate the number of years between 11/22/1967 and now. In 1999, the MsgBox will display 32.

See Also DateAdd, DatePart

DatePart Returns a specified part of a date.

Syntax DatePart(interval, date, [firstdayofweek], [firstweekofyear])

interval can have these values:

d Day

h Hour

m Month

n Minute

q Quarter

s Second

w Weekday

ww Week of year

y Day of year

yyyy Year

date is a date expression.

firstdayofweek (Optional) specifies the first day of the week. Use one of the following
constants:

vbUseSystemDayOfWeek 0 (NLS API setting)

vbSunday 1 (default)

 Date and Time Functions and Statements

425

vbMonday 2

vbTuesday 3

vbWednesday 4

vbThursday 5

vbFriday 6

vbSaturday 7

firstweekofyear (Optional) specifies the first week of the year. Use one of the following
constants:

vbUseSystem 0 (Use NLS API setting)

vbFirstJan1 1 (default) Week in which January occurs.

vbFirstFourDays 2 First week in the new year with at least four days.

vbFirstFullWeek 3 First full week of the new year.

Example MsgBox DatePart("ww", Now, vbMonday, vbFirstFourDays)

This will extract the week number from the current system date. On July 29, 1999 the
MsgBox will display 30.

See Also DateAdd, DateDiff

DateSerial Returns a Variant subtype Date (7) for the specified year, month and day.

Syntax DateSerial(year, month, day)

year is an expression that evaluates to a number between 0 and 9999. Values between 0
and 99, both inclusive, are interpreted as the years 1900 1999.

month is an expression that must evaluate to a number between 1 and 12.

day is an expression that must evaluate to a number between 1 and 31.

Note If an argument is outside the acceptable range for that argument, it increments the next
larger unit. Specifying 13 as the month will automatically increment year by one and
subtract 12 from month leaving a value of 1. The same is true for negative values and a
value of 0. However, instead of incrementing, the next larger unit is decremented.

An error occurs if any of the arguments is outside the Variant subtype Integer range, which
is −32768 +32767. The same is true if the result is later than December 31, 9999. If you
specify the year as 0, and the month and day as 0 or a negative value, the function wrongly
assumes that the year is 100 and decrements this value.

So DateSerial(0, 0, 0) returns 11/30/99.

Example MsgBox DateSerial(1999, 07, 29)

The MsgBox will display 29−07−99, if your locale settings use the dash () as the date
separator and the short date format is dd/mm/yy.

See Also Date, DateValue, Day, Month, Now, TimeSerial, TimeValue, Weekday and Year

 Date and Time Functions and Statements

426

DateValue Returns a Variant subtype Date (7).

Syntax DateValue(date)

date is an expression representing a date, a time, or both, in the range January 1, 100
December 31, 9999.

Note Time information in date is not returned, but invalid time information will result in a
runtime error. DateValue is internationally aware and uses the locale settings on the
machine, when recognizing the order of a date with only numbers and separators. If the
year is omitted from date, it is obtained from the current system date.

Example DateValue("07/29/1999")
DateValue("July 29, 1999")
DateValue("Jul 29, 1999")
DateValue("Jul 29")

All of the above will return the same valid date of 07/29/99.

See Also Date, DateSerial, Day, Month, Now, TimeSerial, TimeValue, Weekday and Year

Day Returns a number between 1 and 31 representing the day of the month.

Syntax Day(date)

date is any valid date expression.

Note A runtime error occurs if date is not a valid date expression. Null will be returned if date
contains Null.

Example MsgBox Day("July 29, 1999")

The MsgBox will display 29.

See Also Date, Hour, Minute, Month, Now, Second, Weekday and Year

FormatDateTime See under String functions

Hour Returns an integer between 0 and 23, representing the hour of the day.

Syntax Hour(time)

time is any valid time expression.

Note A runtime error occurs if time is not a valid time expression. Null will be returned if time
contains Null.

Example MsgBox Hour("12:05:12")

The MsgBox will display 12.

See Also Date, Day, Minute, Month, Now, Second, Weekday and Year

IsDate Returns a Variant subtype Boolean (11) indicating whether an expression can be converted
to a valid date.

Syntax IsDate(expression)

expression is any expression you want to evaluate as a date or time.

Example MsgBox IsDate(Now) ' true
MsgBox IsDate("") ' false
MsgBox IsDate(#7/29/1999#) ' true

See Also CDate, IsArray, IsEmpty, IsNull, IsNumeric, IsObject and VarType

Minute Returns a number between 0 and 59, both inclusive, indicating the minute of the hour.

 Date and Time Functions and Statements

427

Syntax Minute(time)

time is any valid time expression.

Note A runtime error occurs if time is not a valid time expression. Null will be returned if time
contains Null.

Example MsgBox Minute("12:45")

The MsgBox will display 45.

See Also Date, Day, Hour, Month, Now, Second, Weekday and Year

Month Returns a number between 1 and 12, both inclusive, indicating the month of the year.

Syntax Month(date)

date is any valid date expression.

Note A runtime error occurs if date is not a valid date expression. Null will be returned if date
contains Null.

Example MsgBox Month(#7/29/1999#)

The MsgBox will display 7.

See Also Date, Day, Hour, Minute, Now, Second, Weekday and Year

MonthName Returns a Variant subtype String (8) for the specified month.

Syntax MonthName(month, [abbreviate])

month is a number between 1 and 12 for each month of the year beginning with
January.

abbreviate (Optional) is a boolean value indicating if the month name should be
abbreviated or spelled out (default)

Note A runtime error occurs if month is outside the valid range (1−12). MonthName is
internationally aware, which means that the returned strings are localized into the
language specified as part of your locale settings.

Example MsgBox MonthName(2) ' February
MsgBox MonthName(2, true) ' Feb

See Also WeekdayName

Now Returns the system's current date and time.

Syntax Now

Example Dim dtmValue
 dtmValue = Now

dtmValue now holds the current system date and time.

See Also Date, Day, Hour, Month, Minute, Second, Weekday and Year

Second Returns a Variant subtype Date (7) indicating the number of seconds (0−59) in the
specified time.

Syntax Second(time)

time is any valid time expression.

Note A runtime error occurs if time is not a valid time expression. Null will be returned if time
contains Null.

 Date and Time Functions and Statements

428

Example MsgBox Second("12:45:56")

The MsgBox will display 56.

See Also Date, Day, Hour, Minute, Month, Now, Weekday and Year

Time Returns a Variant subtype Date (7) indicating the current system time.

Syntax Time

Example Dim dtmValue
 dtmValue = Time

dtmValue now holds the current system time.

See Also Date, Now

Timer Returns a Variant subtype Single (5) indicating the number of seconds that have elapsed
since midnight. This means that it is "reset" every 24 hours.

Syntax Timer

Example Dim dtmStart, dtmStop

 dtmStart = Timer
 ' Do processing here
 dtmStop = Timer
 ' Display how many
 ' seconds the operation
 ' took
 MsgBox dtmStop − dtmStart

TimeSerial Returns a Variant subtype Date (7) for the specified hour, minute and second.

Syntax TimeSerial(hour, minute, second)

hour is an expression that evaluates to a number between 0 and 23.

minute is an expression that must evaluate to a number between 0 and 59.

second is an expression that must evaluate to a number between 0 and 59.

Note If an argument is outside the acceptable range for that argument, it increments the next
larger unit. Specifying 61 as minute will automatically increment hour by one and subtract
60 from minute leaving a value of 1. The same is true for negative values and a value of 0.
However, instead of incrementing, the next larger unit is decremented.

An error occurs if any of the arguments is outside the Variant subtype Integer range, which
is −32768 +32767.

Example MsgBox TimeSerial(23, 07, 29)

The MsgBox will display 23:07:29.

See Also Date, DateSerial, DateValue, Day, Month, Now, TimeValue, Weekday and Year

TimeValue Returns a Variant subtype Date (7) containing the time.

Syntax TimeValue(time)

time is an expression in the range 0:00:00 23:59:59.

Note Date information in time is not returned, but invalid date information will result in a
runtime error. Null is returned if time contains Null. You can use both 24 and 12−hour

 Date and Time Functions and Statements

429

representations for the time argument.

Example TimeValue("23:59")
TimeValue("11:59 PM")

Both will return the same valid time.

See Also Date, DateSerial, DateValue, Day, Month, Now, TimeSerial, Weekday and Year

Weekday Returns a number indicating the day of the week.

Syntax Weekday(date, [firstdayofweek])

date is any valid date expression.

firstdayofweek (Optional) specifies the first day of the week. Use one of the following
constants:

vbUseSystemDayOfWeek 0 (Use NLS API setting)

vbSunday 1 (Default)

vbMonday 2

vbTuesday 3

vbWednesday 4

vbThursday 5

vbFriday 6

vbSaturday 7

Note Null is returned if date contains Null. A runtime occurs if date is invalid. Possible return
values are:

vbSunday 1

vbMonday 2

vbTuesday 3

vbWednesday 4

vbThursday 5

vbFriday 6

vbSaturday 7

Example Weekday(#July 29, 1999#)

Returns 5 for Thursday.

See Also Date, Day, Month, Now and Year

WeekdayName Returns a Variant subtype String (8) for the specified weekday.

Syntax WeekdayName(weekday, [abbreviate], [firstdayofweek])

 Date and Time Functions and Statements

430

weekday is a number between 1 and 7 for each day of the week. This value depends on
the firstdayofweek setting.

abbreviate (Optional) is a boolean value indicating if the weekday name should be
abbreviated or spelled out (default)

firstdayofweek (Optional) is a numeric value indicating the first day of the week. Use
one of the following constants:
vbUseSystemDayOfWeek 0 (Use NLS API setting)

vbSunday 1 (Default)

vbMonday 2

vbTuesday 3

vbWednesday 4

vbThursday 5

vbFriday 6

vbSaturday 7

Note A runtime error occurs if weekday is outside the valid range (1−7). WeekdayName is
internationally aware, which means that the returned strings are localized into the
language specified as part of your locale settings.

Example WeekdayName(2, , vbSunday) ' Monday
WeekdayName(1, , vbMonday) ' Monday

See Also MonthName

Year Returns a number indicating the year.

Syntax Year(date)

date is any valid date expression.

Note A runtime error occurs if date is not a valid date expression. Null will be returned if date
contains Null.

Example MsgBox Year(#7/29/1999#)

The MsgBox will display 1999.

See Also Date, Day, Month, Now and Weekday

Unsupported Date Functions and Statements

The following VB/VBA statements are not supported in VBScript:

Function/Statement Name Alternative

Date statement Sets the system date, which is not possible in VBScript.

Time statement Sets the system time, which is not possible in VBScript.

Date and Time Functions and Statements

431

Array Functions and Statements

One major difference between VB/VBA and VBScript is the way you can declare your arrays. VBScript does
not support the Option Base statement and you cannot declare arrays that are not zero−based. Below is a list
of functions and statements that you can use for array manipulation in VBScript.

Array Returns a comma−delimited list of values as a Variant subtype Array (8192).

Syntax Array(arglist)

arglist is a comma−delimited list of values that is inserted into the one dimensional array in
the order they appear in the list

Note An array of zero length is created if arglist contains no arguments.

All arrays in VBScript are zero−based, which means that the first element in the list will be
element 0 in the returned array.

Example Dim arrstrTest

 ' Create an array with three elements
 arrstrTest = Array(_
 "Element0", "Element1", "Element2")
 ' Show the first list element
 ' now in the array
 MsgBox arrstrTest(0)

MsgBox displays Element0

See Also Dim

Erase Reinitializes the elements if it is a fixed−size array and de−allocates the memory used if it is
a dynamic array.

Syntax Erase array

array is the array to be reinitialized or erased.

Note You must know if you are using a fixed−size or a dynamic array, because this statement
behaves differently depending on the array type.

Because the memory is de−allocated when using Erase with dynamic arrays, you must
re−declare the array structure with the ReDim statement, before you use it again.

Fixed−size arrays are reinitialized differently depending on the contents of the elements:

Numeric Set to 0.

Strings Set to ""

Objects Set to Nothing.

Example Dim arrstrDynamic()
Dim arrstrFixed(3)

Date and Time Functions and Statements

432

 ' Allocate space for the
 ' dynamic array
 ReDim arrstrDynamic(3)
 ' Free the memory used by
 ' the dynamic array
 Erase arrstrDynamic
 ' Reinitialize the elements
 ' in the fixed−size array
 Erase arrstrFixed

See Also Dim and ReDim

For Each Performs a group of statements repeatedly for each element in a collection or an array.

Syntax For Each element In group

[statements]

[Exit For]

Next [element]

element is a variable used for iterating through the elements in a collection or an array.
group is the name of the object or array.
statements is one or more statements you want to execute on each item in the group.

Note The For Each loop is only entered if there is at least one element in the collection or array.
All the statements in the loop are executed for all the elements in the group. You can
control this by executing the Exit For statement if a certain condition is met. This will exit
the loop and start executing on the first line after the Next statement.
The For Each loops can be nested, but you must make sure that each loop element is
unique.

Example Dim arrstrLoop
Dim strElement

 ' Create the array
 arrstrLoop = Array("Element0", "Element1", "Element2")
 ' Loop through the array
 For Each strElement In arrstrLoop
 ' Display the element content
 MsgBox strElement
 Next

IsArray Returns a Variant subtype Boolean (11) indicating if a variable is an array.

Syntax IsArray(varname)

varname is a variable you want to check is an array.

Note Only returns true if varname is an array.

Example Dim strName
Dim arrstrFixed(3)

 strName = "WROX rocks!"
 MsgBox IsArray(strName) ' false
 MsgBox IsArray(arrstrFixed) ' true

Date and Time Functions and Statements

433

See Also IsDate, IsEmpty, IsNull, IsNumeric, IsObject and VarType

LBound Returns the smallest possible subscript for the dimension indicated.

Syntax LBound(arrayname[, dimension])

arrayname is the name of the array variable.

dimension is an integer indicating the dimension you want to know the smallest possible
subscript for. The dimension starts with 1, which is also the default that will be used if this
argument is omitted.

Note The smallest possible subscript for any array is always 0 in VBScript. LBound will raise a
runtime error if the array has not been initialized.

Example Dim arrstrFixed(3)

 MsgBox LBound(arrstrFixed)

MsgBox displays 0.

See Also Dim, ReDim and UBound

ReDim This statement is used to size or resize a dynamic array.

Syntax ReDim [Preserve] varname(subscripts[, varname(subscripts)]...)

Preserve (Optional) is used to preserve the data in an existing array, when you resize it. The
overhead of using this functionality is quite high and should only be used when necessary.

varname is the name of the array variable.
subscripts is the dimension of the array variable varname. You can declare up to 60 multiple
dimensions. The syntax is:

upper[, upper]...

where you indicate the upper bounds of the subscript. The lower bound is always zero.

Note A dynamic array must already have been declared without dimension subscripts, when you
size or resize it. If you use the Preserve keyword, only the last array dimension can be
resized and the number of dimensions will remain unchanged.

Since an array can be made smaller when resizing, you should take care that you don't lose
any data already in the array.

Example Dim arrstrDynamic()

 ' Size the dimension to
 ' contain one dimension
 ' with 3 elements
 ReDim arrstrDynamic(2)
 ' Put data in the array
 arrstrDynamic(0) = "1"
 arrstrDynamic(1) = "2"
 arrstrDynamic(2) = "3"
 ' Resize the array, but
 ' keep the existing data
 ReDim Preserve arrstrDynamic(5)
 ' Display the 3rd element

Date and Time Functions and Statements

434

 MsgBox arrstrDynamic(2)

MsgBox displays 3.

See Also Dim and Set

UBound Returns the largest possible subscript for the dimension indicated

Syntax UBound(arrayname[, dimension])

arrayname is the name of the array variable.

dimension is an integer indicating the dimension you want to know the largest possible
subscript for. The dimension starts with 1, which is also the default that will be used if this
argument is omitted.

Note UBound will raise a runtime error if the array has not been initialized. If the array is empty,
−1 is returned.

Example Dim arrstrFixed(3)

MsgBox UBound(arrstrFixed)

MsgBox displays 3.

See Also Dim statement, UBound and ReDim statement

Unsupported Array Functions and Statements

The following VB/VBA constructs are not supported in VBScript:

Option Base

String Functions and Statements

Whatever your application does, you are likely to use string manipulation. By string manipulation we mean
things like extracting a name from a string, checking if a particular string is part of another string, formatting
numbers as strings with delimiters, and so on. Below is a list of the various string functions in VBScript.

Some functionality is not exposed as functions, but as methods of objects. For Example, the RegExp object
exposes regular expression support. See Chapter 7 The Built−In and Scripting Runtime Objects.

Format Currency Formats an expression as a currency value with the current currency symbol. The currency
symbol is defined in Regional Settings in the Control Panel

Syntax FormatCurrency(expression [,numdigitsafterdecimal [,includeleadingdigit
[,useparensfornegativenumbers [,groupdigits]]]])

expression is the expression that you want formatted.

numdigitsafterdecimal (Optional) is a numeric value that indicates how many places to the right
of the decimal separator should be displayed. If you omit this argument, the default value (−1)
will be assumed and the settings from Control Panel will be used.

includeleadingdigit (Optional) indicates if a leading zero is displayed for fractional values. Use
one of the following constants:

 Unsupported Array Functions and Statements

435

vbUseDefault 2 (Uses the settings from the Number tab in
Control Panel)

vbtrue −1

vbfalse 0

useparensfornegativenumbers (Optional) indicates if negative numbers are enclosed in
parentheses. Use one of the following constants:

vbUseDefault 2 (Uses the settings from the Regional Settings tab
 in Control Panel)

vbTrue −1

vbFalse 0

groupdigits (Optional) indicates if numbers are grouped using the thousand separator specified
in Control Panel. Use one of the following constants:

vbUseDefault 2 (Uses the settings from the Regional Settings tab
 in Control Panel)

vbtrue −1

vbfalse 0

Note The way the currency symbol is placed in relation to the currency value is determined by the
settings in the Regional Settings tab in Control Panel. (Is the currency symbol placed before the
number, after the number, is there a space between the symbol and the number and so on.)

Example MsgBox FormatCurrency(7500)
MsgBox FormatCurrency(7500, , vbtrue)
MsgBox FormatCurrency(7500, 2, vbtrue)

If the currency symbol is a pound sign (£), the thousand separator a comma (,), and the currency
symbol placed in front of the number with no spaces between, then MsgBox will display
£7,500.00 in all of the above statements.

See Also FormatDateTime, FormatNumber and FormatPercent

FormatDateTime Returns a string formatted as a date and/or time.

Syntax FormatDateTime(date, [namedformat])

date is any valid date expression.

namedformat (Optional) is a numeric value that indicates the date/time format used. Use one of
the following constants:

vbGeneralDate 0 Format date (if present) and time (if present)
 using the short date and long time format
 from the machine's locale settings.

vbLongDate 1 Format date using the long date format from
 the machine's locale settings.

vbShortDate 2 Format date using the short date format from

 Unsupported Array Functions and Statements

436

 the machine's locale settings.

vbLongTime 3 Format time using the long time format from
 the machine's locale settings.

vbShortTime 4 Format time using the short time format from
 the machine's locale settings.

Note A runtime error occurs if date is not a valid date expression. Null will be returned if date
contains Null.

Example MsgBox FormatDateTime(Now, vbShortDate)

On July 29, 1999 the MsgBox will display 07/29/99, if the locale settings use mm/dd/yy as the
short date order and the forward slash (/) as the date separator.

See Also FormatCurrency, FormatNumber, and FormatPercent

FormatNumber Returns a string formatted as a number.

Syntax FormatNumber (expression,

[, numdigitsafterdecimal

[, includeleadingdigit

[, useparensfornegativenumbers [, groupDigits]]]])

expression is the expression that you want formatted.

numdigitsafterdecimal (Optional) is a numeric value that indicates how many places to the right
of the decimal separator should be displayed. If you omit this argument, the default value (−1)
will be assumed and the settings from Control Panel will be used.

includeleadingdigit (Optional) indicates if a leading zero is displayed for fractional values. Use
one of the following constants:

vbUseDefault 2 (Uses the settings from the Number tab in Control

 Panel)

vbtrue −1

vbfalse 0

useparensfornegativenumbers (Optional) indicates if negative numbers are enclosed in
parentheses. Use one of the following constants:

vbUseDefault 2 (Uses the settings from the Regional Settings tab in
Control Panel)

vbtrue −1

vbfalse 0

groupdigits (Optional) indicates if numbers are grouped using the thousand separator specified in
Control Panel. Use one of the following constants:

 Unsupported Array Functions and Statements

437

vbUseDefault 2 (Uses the settings from the Regional Settings tab in
Control Panel)

vbtrue −1

vbfalse 0

Note The Number tab in Regional Settings in Control Panel supplies all the information used for
formatting.

Example MsgBox FormatNumber("50000", 2, vbtrue, vbfalse, vbtrue)
MsgBox FormatNumber("50000")

The MsgBox will display 50,000.00, if the locale settings use a comma (,) as the thousand
separator and a period (.) as the decimal separator.

See Also FormatCurrency, FormatDateTime, and FormatPercent

FormatPercent Returns a string formatted as a percentage, like 50%.

Syntax FormatPercent(expression,

[, numdigitsafterdecimal

[, includeleadingdigit

[, useparensfornegativenumbers [,groupDigits]]]])

expression is any valid expression that you want formatted.

numdigitsafterdecimal (Optional) is a numeric value that indicates how many places to the
right of the decimal separator should be displayed. If you omit this argument, the default
value (−1) will be assumed and the settings from Control Panel will be used.

includeleadingdigit (Optional) indicates if a leading zero is displayed for fractional values.
Use one of the following constants:

vbUseDefault 2 (Uses the settings from the Number tab in Control

 Panel)

vbtrue −1

vbfalse 0

useparensfornegativenumbers (Optional) indicates if negative numbers are enclosed in
parentheses. Use one of the following constants:

vbUseDefault 2 (Uses the settings from the Regional Settings tab in
Control Panel)

vbtrue −1

vbfalse 0

groupdigits (Optional) indicates if numbers are grouped using the thousand separator
specified in Control Panel. Use one of the following constants:

 Unsupported Array Functions and Statements

438

vbUseDefault 2 (Uses the settings from the Regional Settings tab in
Control Panel)

vbtrue −1

vbfalse 0

Note The Number tab in Regional Settings in Control Panel supplies all the information used for
formatting.

Example MsgBox FormatPercent(4 / 45)
MsgBox FormatPercent(4 / 45, 2, vbtrue, vbtrue, vbtrue)

The MsgBox will display 8.89%, if the locale settings use a period (.) as the decimal
separator.

See Also FormatCurrency, FormatDateTime, and FormatNumber

InStr Returns an integer indicating the position for the first occurrence of a sub string within a
string.

Syntax InStr([start,] string1, string2[, compare])

start (Optional) is any valid non−negative expression indicating the starting position for the
search within string1. Non−integer values are rounded. This argument is required if the
compare argument is specified.

string1 is the string you want to search within.

string2 is the sub string you want to search for.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

Syntax vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case
sensitive comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case
sensitive comparison.

Note A runtime error will occur, if start contains Null. If start is larger than the length of string2
(> Len(string2)) 0 will be returned.

Possible return values for different stringx settings:

string1 zero−length 0

string1 Null Null

string2 zero−length start

string2 Null Null

string2 not found 0

string2 found Position

Example Dim lngStartPos
Dim lngFoundPos
Dim strSearchWithin
Dim strSearchFor

 Unsupported Array Functions and Statements

439

 ' Set the start pos
 lngStartPos = 1
 ' Initialize the strings
 strSearchWithin = "This is a test string"
 strSearchFor = "t"
 ' Find the first occurrence
 lngFoundPos = InStr(lngStartPos, strSearchWithin, strSearchFor)
 ' Loop through the string
 Do While lngFoundPos > 0
 ' Display the found position
 MsgBox lngFoundPos
 ' Set the new start pos to
 ' the char after the found position
 lngStartPos = lngFoundPos + 1
 ' Find the next occurrence
 lngFoundPos = InStr(lngStartPos, strSearchWithin, strSearchFor)
 Loop

The above code finds all occurrences of the letter t in string1, at position 11, 14 and 17.
Please note that we use binary comparison here, which means that the uppercase T will not
be "found". If you want to perform a case−insensitive search, you will need to specify the
compare argument as vbTextCompare.

See Also InStrB, InStrRev

InStrB Returns an integer indicating the byte position for the first occurrence of a sub string within a
string containing byte data.

Syntax InStrB([start,] string1, string2[, compare])

start (Optional) is any valid non−negative expression indicating the starting position for the
search within string1. Non−integer values are rounded. This argument is required, if the
compare argument is specified.

string1 is the string containing byte data you want to search within.

string2 is the sub string you want to search for.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case
sensitive comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case sensitive
comparison.

Note A runtime error will occur, if start contains Null. If start is larger than the length of string2
(> Len(string2)) 0 will be returned.

Possible return values for different stringx settings:

string1 zero−length 0

string1 Null Null

 Unsupported Array Functions and Statements

440

string2 zero−length start

string2 Null Null

string2 not found 0

string2 found Position

Example Dim lngStartPos
Dim lngFoundPos
Dim strSearchWithin
Dim strSearchFor

 ' Set the start pos
 lngStartPos = 1
 ' Initialize the strings
 strSearchWithin = "This is a test string"
 strSearchFor = ChrB(0)

 ' Find the first occurrence
 lngFoundPos = InStrB(lngStartPos, strSearchWithin, strSearchFor)
 ' Loop through the string
 Do While lngFoundPos > 0
 ' Display the found position
 MsgBox lngFoundPos
 ' Set the new start pos to
 ' the char after the found position
 lngStartPos = lngFoundPos + 1
 ' Find the next occurrence
 lngFoundPos = InStrB(lngStartPos, strSearchWithin, strSearchFor)
 Loop

The above code finds all occurrences of the byte value 0 in string1, at position 2, 4, 6, ...40
and 42. This is because only the first byte of the Unicode character is used for the character.
If you use a double−byte character set like the Japanese, the second byte will also contain a
non−zero value.

See Also InStr, InStrRev

InStrRev Returns an integer indicating the position of the first occurrence of a sub string within a
string starting from the end of the string. This is the reverse functionality of InStr.

Syntax InStrRev(string1, string2[, start[, compare]])

string1 is the string you want to search within.

string2 is the sub string you want to search for.

start (Optional) is any valid non−negative expression indicating the starting position for the
search within string1; 1 is the default and it will be used if this argument is omitted.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case sensitive
comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case sensitive comparison.

 Unsupported Array Functions and Statements

441

Note A runtime error will occur, if start contains Null. If start is larger than the length if string2 (>
Len(string2)) 0 will be returned.

Possible return values for different stringx settings:

string1 zero−length 0

string1 Null Null

string2 zero−length start

string2 Null Null

string2 not found 0

string2 found Position

InStrRev and InStr do not have same syntax!

Example Dim lngStartPos
Dim lngFoundPos
Dim strSearchWithin
Dim strSearchFor

 ' Set the start pos
 lngStartPos = −1
 ' Initialize the strings
 strSearchWithin = "This is a test string"
 strSearchFor = "t"

 ' Find the first occurrence
 lngFoundPos = InStrRev(strSearchWithin, strSearchFor, lngStartPos)
 ' Loop through the string
 Do While lngFoundPos > 0
 ' Display the found
 ' position
 MsgBox lngFoundPos
 ' Set the new start pos to
 ' the char before the found position
 lngStartPos = lngFoundPos − 1
 ' Find the next occurrence
 lngFoundPos = InStrRev(strSearchWithin, strSearchFor,−
 lngStartPos)
 Loop

The above code finds all occurrences of the letter t in string1, at position 17, 14 and 11.
Please note that we use binary comparison here, which means that the uppercase T will not
be "found". If you want to perform a case−insensitive search, you will need to specify the
compare argument as vbTextCompare.

See Also InStr, InStrB

Join Joins a number of substrings in an array to form the returned string.

Syntax Join(list[, delimiter])

list is a one dimensional array that contains all the substrings that you want to join.

 Unsupported Array Functions and Statements

442

delimiter (Optional) is the character(s) used to separate the substrings. A space character " "
is used as the delimiter if this argument is omitted.

Note All the substrings are concatenated with no delimiter if a zero−length string is used as
delimiter. If any element in the array is empty, a zero−length string will be used as the value.

Example Dim strLights
Dim arrstrColors(3)

 ' Fill the array
 arrstrColors(0) = "Red"
 arrstrColors(1) = "Yellow"
 arrstrColors(2) = "Green"

 ' Join the array into a string
 strLights = Join(arrstrColors, ",")

strLights contains "Red,Yellow,Green".

See Also Split

LCase Converts all alpha characters in a string to lowercase.

Syntax LCase(string)

string is the string you want converted to lowercase.

Note Null is returned if string contains Null. Only uppercase letters are converted.

Example MsgBox LCase("ThisIsLowerCase")

MsgBox displays thisislowercase

See Also UCase

Left Returns length number of leftmost characters from string.

Syntax Left(string, length)

string is the string you want to extract a number of characters from.

length is the number of characters you want to extract starting from the left. The entire string
will be returned if length is equal to or greater than the total number of characters in string.

Note Null is returned if string contains Null.

Example Dim strExtract

 strExtract = "LeftRight"
 MsgBox Left(strExtract, 4)

MsgBox displays Left.

See Also Len, LenB, Mid, MidB and Right

Len Returns the number of characters in a string.

Syntax Len(string)

string is any valid string expression you want the length of.

Note Null is returned if string contains Null.

Example Dim strLength

 Unsupported Array Functions and Statements

443

 strLength = "1 2 3 4 5 6 7 8 9"
 MsgBox Len(strLength)

MsgBox displays 17.

See Also Left, LenB, Mid, MidB and Right

LenB Returns the number of bytes used to represent a string.

Syntax LenB(string)

string is any valid string expression you want the number of bytes for.

Note Null is returned if string contains Null.

Example Dim strLength

 strLength = "123456789"
 MsgBox LenB(strLength)

MsgBox displays 18.

See Also Left, Len, Mid, MidB and Right

LTrim Trims a string of leading spaces; " " or Chr(32).

Syntax LTrim(string)

string is any valid string expression you want to trim leading (leftmost) spaces from.

Note Null is returned if string contains Null.

Example Dim strSpaces

 strSpaces = " Hello again *"
 MsgBox LTrim(strSpaces)

MsgBox displays Hello again *

See Also Left, Mid, Right, RTrim and Trim

Mid Returns a specified number of characters from any position in a string.

Syntax Mid(string, start[, length])

string is any valid string expression you want to extract characters from.

start is the starting position for extracting the characters. A zero−length string is returned if it
is greater than the number of characters in string.

length (Optional) is the number of characters you want to extract. All characters from start to
the end of the string are returned if this argument is omitted or if length is greater than the
number of characters counting from start.

Note Null is returned if string contains Null.

Example Dim strExtract

 strExtract = "Find ME in here"
 MsgBox Mid(strExtract, 6, 2)

 Unsupported Array Functions and Statements

444

MsgBox displays ME

See Also Left, Len, LenB, LTrim, MidB, Right, RTrim and Trim

MidB Returns a specified number of bytes from any position in a string containing byte data.

Syntax MidB(string, start[, length])

string is a string expression containing byte data you want to extract characters from.

start is the starting position for extracting the bytes. A zero−length string is returned if it is
greater than the number of bytes in string.

length (Optional) is the number of bytes you want to extract. All bytes from start to the end
of the string are returned if this argument is omitted or if length is greater than the number of
bytes counting from start.

Note Null is returned if string contains Null.

Example Dim strExtract

 strExtract = "Find ME in here"
 MsgBox MidB(strExtract, 11, 4)

MsgBox displays ME , because VBScript uses 2 bytes to represent a character. The first byte
contains the ANSI character code when dealing with 'normal' ANSI characters like M, and
the next byte is 0. So byte 11 in the string is the first byte for the letter M and then we extract
4 bytes/2 characters.

See Also Left, Len, LTrim, Mid, Right, RTrim and Trim

Replace Replaces a substring within a string with another substring a specified number of times.

Syntax Replace(expression, find, replacewith[, start[, count[, compare]]])

expression is a string expression that contains the substring you want to replace.

find is the substring you want to replace.

replacewith is the substring you want to replace with.

start (Optional) is the starting position within expression for replacing the substring. 1
(default), the first position, will be used if this argument is omitted. You must also specify
the count argument if you want to use start.

count (Optional) is the number of times you want to replace find. −1 (default) will be used if
this argument is omitted, which means all find in the expression. You must also specify the
start argument if you want to use count.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case sensitive
comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case sensitive comparison.

Note

 Unsupported Array Functions and Statements

445

If start and count are specified, the return value will be the original expression, with find
replaced count times with replacewith, from start to the end of the expression, and not the
complete string. A zero−length string is returned if start is greater than the length of
expression (start > Len(expression)). All occurrences of find will be removed if replacewith
is a zero−length string ("")

Possible return values for different argument settings:

expression zero−length zero−length

expression Null Error

find zero−length expression

count 0 expression

Example Dim strReplace

 strReplace = Replace("****I use binary", "I", "You", 5, _
 1, vbBinaryCompare) ' You use binary
 strReplace = Replace("****I use text", "i", "You", , , _
 vbTextCompare) ' ****You use text

See Also Left, Len, LTrim, Mid, Right, RTrim and Trim

Right Returns length number of rightmost characters from string

Syntax Right(string, length)

string is the string you want to extract a number of characters from.

length is the number of characters you want to extract starting from the right. The entire
string will be returned if length is equal to or greater than the total number of characters in
string.

Note Null is returned if string contains Null.

Example Dim strExtract

 strExtract = "LeftRight"
 MsgBox Right(strExtract, 5)

MsgBox displays Right

See Also Left, Len, LenB, Mid and MidB

RTrim Trims a string of trailing spaces; " " or Chr(32).

Syntax RTrim(string)

string is any valid string expression you want to trim trailing (rightmost) spaces from.

Note Null is returned if string contains Null.

Example Dim strSpaces

 strSpaces = "* Hello again "
 MsgBox RTrim(strSpaces)

MsgBox displays * Hello again

 Unsupported Array Functions and Statements

446

See Also Left, LTrim, Mid, Right and Trim

Space Returns a string made up of a specified number of spaces (" ").

Syntax Space(number)

number is the number of spaces you want returned.

Example Dim strSpaces

 strSpaces = "Hello again"
 MsgBox "*" & Space(5) & strSpaces

MsgBox displays * Hello again

See Also String

Split Returns a zero−based one−dimensional array "extracted" from the supplied string
expression.

Syntax Split(expression[, delimiter[, count[, compare]]]))

expression is the string containing substrings and delimiters that you want to split up and put
into a zero−based one−dimensional array.

delimiter (Optional) is the character that separates the substrings. A space character will be
used if this argument is omitted.

count (Optional) indicates the number of substrings to return. −1 (default) means all
substrings will be returned.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case
sensitive comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case
sensitive comparison.

Note An empty array will be returned if expression is a zero−length string. The result of the Split
function cannot be assigned to a variable of Variant subtype Array (8192). A runtime error
occurs if you try to do so.

Example Dim arrstrSplit
Dim strSplit

 ' Initialize the string
 strSplit = "1,2,3,4,5,6,7,8,9,0"
 ' Split the string using comma as the delimiter
 arrstrSplit = Split(strSplit, ",")

The array arrstrSplit now holds 10 elements, 0,1,2...0.

See Also Join

StrComp Performs a string comparison and returns the result.

Syntax StrComp(string1, string2[, compare])

 Unsupported Array Functions and Statements

447

string1 is a valid string expression.

string2 is a valid string expression.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case
sensitive comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case
sensitive comparison.

Note Possible return values for different stringx settings:

string1 < string2 −1

string1 = string2 0

string1 > string2 1

Null is returned if string1 or string2 is Null.

Example Dim intResult

intResult = StrComp("abc", "ABC", vbTextCompare) ' 0
intResult = StrComp("ABC", "abc", vbBinaryCompare) ' 1
intResult = StrComp("abc", "ABC") ' 1

See Also String

String Returns a string with a substring repeated a specified number of times.

Syntax String(number, character)

number indicates the length of the returned string.

character is the character code or string expression for the character used to build the
returned string. Only the first character of a string expression is used.

Note Null is returned if number or character contains Null. The character code will automatically
be converted to a valid character code if it is greater than 255. The formula is: character
Mod 256.

Example Dim strChars

 strChars = "Hello again"
 MsgBox String(5, "*") & strChars

MsgBox displays *****Hello again

See Also Space

StrReverse Returns a string with the character order reversed.

Syntax StrReverse(string)

string is the string expression you want reversed.

 Unsupported Array Functions and Statements

448

Note A runtime error occurs if string is Null. If string is a zero−length string, a zero−length
string will be returned.

The case of the characters is not changed.

Example MsgBox StrReverse("Hello again")

MsgBox displays niaga olleH

Trim Trims a string of leading and trailing spaces; " " or Chr(20).

Syntax Trim(string)

string is any valid string expression you want to trim leading (leftmost) and trailing
(rightmost) spaces from.

Note Null is returned if string contains Null.

Example Dim strSpaces

 strSpaces = " *Hello again* "
 MsgBox Trim(strSpaces)

MsgBox displays *Hello again*

See Also Left, LTrim, Mid, Right and RTrim

UCase Converts all alpha characters in a string to uppercase and returns the result.

Syntax UCase(string)

string is the string you want converted to uppercase.

Note Null is returned if string contains Null. Only lowercase letters are converted.

Example MsgBox UCase("ThisIsUpperCase")

MsgBox displays THISISUPPERCASE

See Also LCase

Unsupported String Functions, Statements and Constructs

The following VB/VBA string functions/statements and constructs are not supported in VBScript:

Function/
Statement Name

Alternative

Format FormatCurrency, FormatDateTime, FormatNumber, FormatPercent

LSet Left, Len and Space functions in conjunction:

Dim strTest
Dim strNewText
 ' strTest is now 5 chars wide
 strTest = "01234"
 ' Assign the text to left align
 strNewText = "<−Test"
 ' Use the VB/VBA LSet (Unsupported)
 LSet strTest = strNewText

 ' Check if the New Text is wider than

 Unsupported String Functions, Statements and Constructs

449

 ' the variable we will align it in
 If Len(strNewText) <= Len(strTest) Then
 ' Copy the text across and pad the
 ' rest with spaces
 strTest = strNewText & Space(Len(strTest) − Len(strNewText))
 Else
 ' Copy as many chars from the new
 ' text as strTest is wide
 strTest = Left(strNewText, Len(strTest))
 End If

In both cases strTest will hold the value "<−Tes", because the original string strTest is
only 5 characters wide and thus cannot hold all of strNewText. Had strTest been larger,
the remaining places would have been filled with spaces.

Mid (statement) Left, Mid and InStr functions, or the Replace function:

Here is how to replace a substring identified by characters using the Replace function:

Dim strText
Dim strFind
Dim strSubstitute
 strText = "This is the text I want to replace a substring in"
 strFind = "want to replace"
 strSubstitute = "have replaced"
 strText = Replace(strText, strFind, strSubstitute)

strText now holds This is the text I have replaced a substring in

Here is how to replace a substring identified by position and length using the InStr, Left
and Mid functions:

Dim strText
Dim strSubstitute
 strText = "This is the text I want to replace a substring in"
 strSubstitute = "have replaced"
 strText = Left$(strText, 19) & strSubstitute & Mid$(strText, _
 35, Len(strText) − 34)

strText now holds This is the text I have replaced a substring in

RSet Left, Len and Space functions in conjunction:

Dim strTest
Dim strNewText
 ' strTest is now 5 chars wide
 strTest = "01234"
 ' Assign the text to right align
 strNewText = "Test−>"
 ' Use the VB/VBA RSet (Unsupported)
 RSet strTest = strNewText

 ' Check if the New Text is wider than
 ' the variable we will asign it in
 If Len(strNewText) <= Len(strTest) Then
 ' Pad with spaces and copy the
 ' text across
 strTest = Space(Len(strTest) − Len(strNewText)) & strNewText

 Unsupported String Functions, Statements and Constructs

450

 Else
 ' Copy as many chars from the new
 ' text as strTest is wide
 strTest = Left(strNewText, Len(strTest))
 End If

In both cases strTest will hold the value "Test−", because the original string strTest is
only 5 characters wide and thus cannot hold all of strNewText. Had strTest been larger,
the remaining places would have been filled with spaces.

StrConv Very unlikely that this will be needed as all variables are Variant and this will be done
implicitly.

Fixed length strings (Dim strMessage As String * 50) are not supported.

String Constants

Constant Value Description

vbCr Chr(13) Carriage Return.

vbCrLf Chr(13) & Chr(10) A combination of Carriage Return and linefeed.

vbFormFeed Chr(12) Form Feed*

vbLf Chr(10) Line Feed

vbNewLine Chr(13) & Chr(10)

or Chr(10)

New line character. This is platform−specific,
meaning whatever is appropriate for the current
platform.

vbNullChar Chr(0) Character with the value of 0.

vbNullString String with the value of 0 This is not the same as a zero−length string ("").
Mainly used for calling external procedures.

vbTab Chr(9) Tab (horizontal)

vbVerticalTab Chr(11) Tab (vertical)*
* = Not useful in Microsoft Windows.

Conversion Functions

Normally you don't need to convert values in VBScript, because there is only one data type, the Variant.

Implicit conversion is generally applied when needed, but when you pass a value to a non−variant procedure
in a COM object that needs the value passed ByRef, you will have to pass the value with the precise data
subtype. This can be done by placing the argument in it's own set of parentheses, which forces a temporary
evaluation of the argument as an expression:

Dim objByRefSample
Dim intTest
 ' Initialize the variable
 intTest = "5"
 ' Create the object
 Set objByRefSample = CreateObject("MyObject.ByRefSample")
 ' Call the method
 objByRefSample.PassIntegerByReference (intTest)
 ' Destroy the object
 Set objByRefSample = Nothing

 String Constants

451

The PassIntegerByReference method is a VB sub−procedure with just one argument of type integer that is
passed ByRef.

What happens is that the value 5 stored in the intTest variable is actually explicitly coerced into a variable of
subtype Integer, so that it conforms to the methods argument type. If you remove the parentheses, you will get
a runtime error, because the implicit coercion will treat the string value as a double.

This is just one way of solving the problem. Another way is to use the CInt conversion function (listed
below) when calling the method.

At some point however, you might need to convert a value of one data subtype to another data subtype. This
can be necessary for various reasons:

You need to present a number in hexadecimal notation instead of decimal•
You need the corresponding character code for a character or vice versa•
You need to pass values to a non−variant property procedure or as a function parameter in a COM
object

•

You need to save data in a database•

See Chapter 2 Variables and Data Types for an explanation of the different data types.

Asc Returns the ANSI character code for the first character in a string.

Syntax Asc(string)

string is any valid string expression.

Note A runtime error occurs if string doesn't contain any characters. string is converted to a String
subtype if it's a numeric subtype.

Example intCharCode = Asc("WROX")

intCharCode now holds the value 87, which is the ANSI character code for "W".

See Also AscB, AscW, Chr, ChrB and ChrW

AscB Returns the ANSI character code for the first byte in a string containing byte data.

Syntax AscB(string)

string is any valid string expression.

Note A runtime error occurs if string doesn't contain any characters. For normal ANSI strings
this function will return the same as the Asc function. Only if the string is in Unicode
format will it be different from Asc. Unicode characters are represented by two bytes as
opposed to ANSI characters that only need one.

Example intCharCode = AscB("WROX")

intCharCode now holds the value 87, which is the ANSI character code for "W".

See Also Asc, AscW, Chr, ChrB and ChrW

AscW Returns the Unicode character code for the first character in a string.

Syntax AscW(string)

string is any valid string expression.

Note A runtime error occurs if string doesn't contain any characters. string is converted to a

 String Constants

452

String subtype if it's a numeric subtype. For use on 32−bit Unicode enabled platforms
only, to avoid conversion from Unicode to ANSI.

Example intCharCode = AscW("WROX")

intCharCode now holds the value 87, which is the Unicode character code for "W".

See Also Asc, AscB, Chr, ChrB and ChrW

CBool Returns a Boolean value (Variant subtype 11) corresponding to the value of an expression.

Syntax CBool(expression)

expression is any valid expression.

Note A runtime error occurs if expression can't be evaluated to a numeric value.

If expression evaluates to zero then false is returned; otherwise, true is returned.

Example Dim intCounter, blnValue
 intCounter = 5
 blnValue = CBool(intCounter)

blnValue now holds the value true, because intCounter holds a non−zero value.

See Also CByte, CCur, CDbl, CInt, CLng, CSng and CStr

CByte Returns an expression converted to Variant subtype Byte (17).

Syntax CByte(expression)

expression is any valid numeric expression.

Note A runtime error occurs if expression can't be evaluated to a numeric value or if expression
evaluates to a value outside the acceptable range for a Byte (0−255). Fractional values are
rounded.

Example Dim dblValue, bytValue
 dblValue = 5.456
 bytValue = CByte(dblValue)

bytValue now holds the value 5, because dblValue is rounded.

See Also CBool, CCur, CDbl, CInt, CLng, CSng and CStr

CCur Returns an expression converted to Variant subtype Currency (6).

Syntax CCur(expression)

expression is any valid expression.

Note CCur is internationally aware, which means that the return value is based on the locale
settings on the machine. Numbers will be formatted with the appropriate decimal separator
and the fourth digit to the right of the separator is rounded up if the fifth digit is 5 or higher.

Example Dim dblValue, curValue
 dblValue = 724.555789
 curValue = CCur(dblValue)

curValue now holds the value 724.5558 or 724,5558, depending on the separator.

See Also CBool, CByte, CDbl, CInt, CLng, CSng and CStr

CDate See under Date & Time functions

CDbl Returns an expression converted to Variant subtype Double (5).

Syntax CDbl(expression)

 String Constants

453

expression is any valid expression.

Note CDbl is internationally aware, which means that the return value is based on the locale
settings on the machine. Numbers will be formatted with the appropriate decimal separator.
A runtime error occurs if expression lies outside the range (−1.79769313486232E308 to
−4.94065645841247E−324 for negative values, and 4.94065645841247E−324 to
1.79769313486232E308 for positive values) applicable to a Double.

Example Dim dblValue
 dblValue = CDbl("5,579.56")

dblValue now holds the value 5579.56 or 5,57956, depending on the thousand and decimal
separators in use.

See Also CBool, CByte, CCur, CInt, CLng, CSng and CStr

Chr Returns the ANSI character corresponding to charactercode.

Syntax Chr(charactercode)

charactercode is a numeric value that indicates the character you want.

Note Supplying a charactercode from 0 to 31 will return a standard non−printable ASCII
character.

Example Dim strChar
 strChar = Chr(89)

strChar now holds the character Y which is number 89 in the ANSI character table.

See Also Asc, AscB, AscW, ChrB and ChrW

ChrB Returns the ANSI character corresponding to charactercode.

Syntax ChrB(charactercode)

charactercode is a numeric value that indicates the character you want.

Note Supplying a charactercode from 0 to 31 will return a standard non−printable ASCII
character. This function is used instead of the Chr (returns a two−byte character)
function when you only want the first byte of the character returned.

Example Dim strChar
 strChar = ChrB(89)

strChar now holds the character Y which is number 89 in the ANSI character table.

See Also Asc, AscB, AscW, Chr and ChrW

ChrW Returns the Unicode character corresponding to charactercode.

Syntax ChrW(charactercode)

charactercode is a numeric value that indicates the character you want.

Note Supplying a charactercode from 0 to 31 will return a standard non−printable ASCII
character. This function is used instead of the Chr function when you want to return a
double byte character. For use on 32−bit Unicode enabled platforms only, to avoid
conversion from Unicode to ANSI.

Example Dim strChar
 strChar = ChrW(89)

strChar now holds the character Y which is number 89 in the Unicode character table.

See Also Asc, AscB, AscW, Chr and ChrB

 String Constants

454

CInt Returns an expression converted to Variant subtype Integer (2).

Syntax CInt(expression)

expression is any valid expression.

Note CInt is internationally aware, which means that the return value is based on the locale
settings on the machine. Please note that decimal values are rounded, before the fractional
part is discarded. A runtime error occurs if expression lies outside the range (−32,768 to
32,767) applicable to an Integer.

Example Dim intValue
 intValue = CInt("5,579.56")

intValue now holds the value 5580 or 6, depending on the thousand and decimal separators
in use.

See Also CBool, CByte, CCur, CDbl, CLng, CSng, CStr and the Math Functions Fix and Int

CLng Returns an expression converted to Variant subtype Long (3).

Syntax CLng(expression)

expression is any valid expression.

Note CLng is internationally aware, which means that the return value is based on the locale
settings on the machine. Please note that decimal values are rounded, before the fractional
part is discarded. A runtime error occurs if expression lies outside the range
(−2,147,483,648 to 2,147,483,647) applicable to a Long.

Example Dim lngValue
 lngValue = CLng("5,579.56")

lngValue now holds the value 5580 or 6, depending on the thousand and decimal separators
in use.

See Also CBool, CByte, CCur, CDbl, CInt, CSng, CStr, and the Math Functions Fix and Int

CSng Returns an expression converted to Variant subtype Single (4).

Syntax CSng(expression)

expression is any valid expression.

Note CSng is internationally aware, which means that the return value is based on the locale
settings on the machine. A runtime error occurs if expression lies outside the range
(−3.402823E38 to −1.401298E−45 for negative values, and 1.401298E−45 to 3.402823E38
for positive values) applicable to a Single.

Example Dim sngValue
 sngValue = CSng("5,579.56")

sngValue now holds the value 5579.56 or 5,57956, depending on the thousand and decimal
separators in use.

See Also CBool, CByte, CCur, CDbl, CInt, CLng, CStr and the Math Functions Fix and Int

CStr Returns an expression converted to Variant subtype String (8).

Syntax CStr(expression)

expression is any valid expression.

Note CStr is internationally aware, which means that the return value is based on the locale
settings on the machine. A runtime error occurs if expression is Null. Numeric and Err

 String Constants

455

values are returned as numbers, Boolean values as true or false, and Date values as a short
date.

Example Dim strValue
 strValue = CStr("5,579.56")

strValue now holds the value 5,579.56.

See Also CBool, CByte, CCur, CDbl, CInt, CLng, CSng and the Math Functions Fix and Int

Fix See under Math functions

Hex Returns the hexadecimal representation (up to 8 characters) of a number as a Variant
subtype String (8).

Syntax Hex(number)

number is any valid expression.

Note number is rounded to nearest even number before it is evaluated. Null will be returned if
number is Null.

Example Dim strValue
 strValue = Hex(5579.56)

strValue now holds the value 15CC.

See Also Oct

Int See under Math functions

Oct Returns the octal representation (up to 11 characters) of a number as a Variant subtype
String (8).

Syntax Oct(number)

expression is any valid expression.

Note number is rounded to nearest whole number before it is evaluated. Null will be returned if
number is Null.

Example Dim strValue

strValue = Oct(5579.56)

strValue now holds the value 12714.

See Also Hex

Unsupported conversion functions

The following VB/VBA conversion functions are not supported in VBScript:

Function Name Alternative

CVar Not needed since conversion to a Variant is implicit.

CVDate CDate, Date

Str CStr

Val CDbl, CInt, CLng and CSng

 Unsupported conversion functions

456

Miscellaneous Functions, Statements and Keywords

Some functionality does not fit under any of the other categories, and so they have been gathered here. Below
you will find descriptions of various functions for handling objects, user input, variable checks, output on
screen, etc.

Create
Object

Returns a reference to an Automation/COM/ActiveX object. The object is created using COM
object creation services.

Syntax CreateObject(servername.typename[, location])

servername is the name of the application that provides the object.

typename is the object's type or class that you want to create.

location (Optional) is the name of the network server you want the object created on. If
missing the object is created on the local machine.

Note An Automation/COM/ActiveX object always contains at least one type or class, but usually
several types or classes are contained within. servername and typename are often referred to
as progid. Please note that a progid is not always a two part one, like servername.typename. It
can have several parts, like servername.typename.version.

Example Dim objRemote
Dim objLocal

 ' Create an object from class
 ' MyClass contained in the
 ' COM object MyApp on a
 ' remote server named FileSrv
 Set objRemote = CreateObject("MyApp.MyClass", "FileSrv")

 ' Create an object from class
 ' LocalClass contained in the
 ' COM object LocalApp on the
 ' local macine
 Set objLocal = CreateObject("LocalApp.LocalClass)

See Also GetObject

Dim Declares a variable of type Variant and allocates storage space.

Syntax Dim varname[([subscripts])][, varname[([subscripts])]]...

varname is the name of the variable

subscripts (Optional) indicates the dimensions when you declare an array variable. You can
declare up to 60 multiple dimensions using the following syntax:

upperbound[, upperbound]...

upperbound specifies the upper bounds of the array. Since the lower bound of an array in
VBScript is always zero, upperbound is one less than the number of elements in the array.

If you declare an array with empty subscripts, you can later resize it with ReDim; this is called
a dynamic array.

 Miscellaneous Functions, Statements and Keywords

457

Note This statement is scope specific, i.e. you need to consider when and where you want to
declare your variables. Variables that are only used in a specific procedure should be declared
in this procedure. This will make the variable invisible and inaccessible outside the procedure.
You can also declare your variables with script scope. This means that the variables will be
accessible to all procedures within the script. This is one way of sharing data between
different procedures.

Dim statements should be put at the top of a procedure to make the procedure easier to read.

Example ' Declare a dynamic array
Dim arrstrDynamic()
' Declare a fixed size array
' with 5 elements
Dim arrstrFixed(4)
' Declare a non−array variable
Dim vntTest

See Also ReDim and Set

Eval Evaluates and returns the result of an expression.

Syntax result = Eval(expression)

result (Optional) is the variable you want to assign the result of the evaluation to. Although
result is optional, you should consider using the Execute statement, if you don't want to
specify it.

expression is a string containing a valid VBScript expression.

Note Because the assignment operator and the comparison operator is the same in VBScript, you
need to be careful when using them with Eval. Eval always uses the equal sign (=) as a
comparison operator, so if you need to use it as an assignment operator, you should use the
Execute statement instead.

Example Dim blnResult
Dim lngX, lngY

 ' Initialize the variables
 lngX = 15: lngY = 10
 ' Evaluate the expression
 blnResult = Eval("lngX = lngY")

blnResult holds the value false, because 15 is not equal to 10.

See Also Execute statement

Execute Executes one or more statements in the local namespace.

Syntax Execute statement

statement is a string containing the statement(s) you want executed. If you include more than
one statement, you must separate them using colons or embedded line breaks.

Note Because the assignment operator and the comparison operator is the same in VBScript, you
need to be careful when using them with Execute. Execute always uses the equal sign (=) as
an assignment operator, so if you need to use it as a comparison operator, you should use the
Eval function instead.

All in−scope variables and objects are available to the statement(s) being executed, but you
need to be aware of the special case when your statements create a procedure:

 Miscellaneous Functions, Statements and Keywords

458

Execute "Sub ExecProc: MsgBox ""In here"": End Sub"

The ExecProc's scope is global and thus everything from the global scope is inherited. The
context of the procedure itself is only available within the scope it is created. This means that
if you execute the above shown Execute statement in a procedure, the ExecProc procedure
will only be accessible within the procedure where the Execute statement is called. You can
get around this by simply moving the Execute statement to the script level or using the
ExecuteGlobal statement.

Example Dim lngResult
Dim lngX, lngY

 ' Initialize the variables
 lngX = 15: lngY = 10
 ' Execute the statement
 Execute("lngResult = lngX + lngY")

lngResult holds the value 25.

See Also Eval and ExecuteGlobal statement

ExecuteGlobal Executes one or more statements in the global namespace.

Syntax ExecuteGlobal statement

statement is a string containing the statement(s) you want executed. If you include
more than one statement, you must separate them using colons or embedded line
breaks.

Note Because the assignment operator and the comparison operator is the same in VBScript,
you need to be careful when using them with ExecuteGlobal. ExecuteGlobal always
uses the equal sign (=) as an assignment operator, so if you need to use it as a
comparison operator, you should use the Eval function instead.

All variables and objects are available to the statement(s) being executed.

Example Dim lngResult
Dim lngX, lngY

 ' Initialize the variables
 lngX = 15: lngY = 10
 ' Execute the statement
 ExecuteGlobal("lngResult = lngX + lngY")

lngResult holds the value 25.

See Also Eval and Execute

Filter Returns an array that contains a subset of an array of strings. The array is zero−based as are
all arrays in VBScript and it holds as many elements as are found in the filtering process The
subset is determined by specifying a criteria.

Syntax Filter(inputstrings, value[, include[, compare]])

inputstrings is a one dimensional string array that you want to search.

value is the string you want to search for.

 Miscellaneous Functions, Statements and Keywords

459

include (Optional) is a boolean value indicating if you want to include (true) or exclude (false)
elements in inputstrings that contains value.

compare (Optional) indicates the comparison method used when evaluating. Use one of the
following constants:

vbBinaryCompare 0 (Default) Performs a binary comparison, i.e. a case
sensitive comparison.
vbTextCompare 1 Performs a textual comparison, i.e. a non−case sensitive
comparison.

Note An empty array is returned if no matches are found. A runtime error occurs if inputstrings is
not a one−dimensional array or if it is Null.

Example Dim arrstrColors(3)
Dim arrstrFilteredColors

 ' Fill the array
 arrstrColors(0) = "Red"
 arrstrColors(1) = "Green"
 arrstrColors(2) = "Blue"

 ' Filter the array
 arrstrFilteredColors = Filter(arrstrColors, "Red")

arrstrFilteredColors now holds one element (0) which has the value Red.

See Also See the String Function Replace

GetObject Returns a reference to an Automation object.

Syntax GetObject([pathname][, class]])

pathname (Optional) is a string specifying the full path and name of the file that contains
the object you want to retrieve. You need to specify class if you omit this argument.

class (Optional) is a string that indicates the class of the object. You need to specify
pathname if you omit this argument. The following syntax is used for class:

appname.objecttype

appname is a string indicating the application that provides the object.

objecttype is a string specifying the object's type or class that you want created.

Note You can use this function to start the application associated with pathname and
activate/return the object specified in the pathname. A new object is returned if pathname is
a zero−length string ("") and the currently active object of the specified type is returned if
pathname is omitted. Please note, that if the object you want returned has been compiled
with Visual Basic, you cannot obtain a reference to an existing object by omitting the
pathname argument. A new object will be returned instead. The opposite is true for objects
that are registered as single−instance objects; the same instance will always be returned.
However, you should note the above−mentioned problems with ActiveX DLL's compiled
using Visual Basic.

 Miscellaneous Functions, Statements and Keywords

460

Some applications allow you to activate part of a file and you can do this by suffixing
pathname with an exclamation mark (!) and a string that identifies the part of the object you
want.

You should only use this function when there is a current instance of the object you want to
create, or when you want the object to open up a specific document. Use CreateObject to
create a new instance of an object.

Example Dim objAutomation

 ' Create a reference to an
 ' existing instance of an
 ' Excel application (this
 ' call will raise an error
 ' if no Excel.Application
 ' objects already exists)
 Set objAutomation = GetObject(, "Excel.Application")

 ' Create a reference to a
 ' specific workbook in a new
 ' instance of an Excel
 ' application
 Set objAutomation = GetObject("C:\Test.xls ")

See Also CreateObject

GetRef Returns a reference to a procedure. This reference can be bound to an object event. This will
let you bind a VBScript procedure to a DHTML event.

Syntax Set object.eventname = GetRef(procname)

object is the name of the object in which eventname is placed.

eventname is the name of the event to which the procedure is to be bound.

procname is the name of the procedure you want to bind to eventname.

Example Sub NewOnFocus()
 ' Do your stuff here
End Sub

 ' Bind the NewOnFocus
 ' procedure to the
 ' Window. OnFocus event
 Set Window.OnFocus = GetRef("NewOnFocus ")

InputBox Displays a dialog box with a custom prompt and a text box. The content of the text box is
returned when the user clicks OK.

Syntax InputBox(prompt[, title][, default][, xpos][, ypos][, helpfile, context])

prompt is the message you want displayed in the dialog box. The string can contain up to
1024 characters, depending on the width of the characters you use. You can separate the
lines using one of these VBScript constants:

vbCr, vbCrLf, vbLf or vbNewLine

 Miscellaneous Functions, Statements and Keywords

461

title (Optional) is the text you want displayed in the dialog box title bar. The application
name will be displayed, if this argument is omitted.

default is the default text that will be returned, if the user doesn't type in any data. The text
box will be empty if you omit this argument.

xpos (Optional) is a numeric expression that indicates the horizontal distance of the left edge
of the dialog box measured in twips (1/20 of a printer's point, which is 1/72 of an inch) from
the left edge of the screen. The dialog box will be horizontally centered if you omit this
argument.

ypos (Optional) is a numeric expression that indicates the vertical distance of the upper edge
of the dialog box measured in twips from the upper edge of the screen. The dialog box will
be vertically positioned approximately one−third of the way down the screen, if you omit
this argument.

helpfile (Optional) is a string expression that indicates the help file to use when providing
context−sensitive help for the dialog box. This argument must be used in conjunction with
context. This is not available on 16−bit platforms.

context (Optional) is a numeric expression that indicates the help context number that makes
sure that the right help topic is displayed. This argument must be used in conjunction with
helpfile. This is not available on 16−bit platforms.

Note A zero−length string will be returned if the user clicks Cancel or presses ESC.

Example Dim strInput
 strInput = InputBox("Enter User Name:", "Test")
 MsgBox strInput

The MsgBox will display either an empty string or whatever the user entered into the text
box.

See Also MsgBox

IsEmpty Returns a boolean value indicating if a variable has been initialized.

Syntax IsEmpty(expression)

expression is the variable you want to check has been initialized.

Note You can use more than one variable as expression. If for Example, you concatenate two
Variants and one of them is empty, the IsEmpty function will return false, because the
expression is not empty.

Example Dim strTest
Dim strInput
 strInput = "Test"
 MsgBox IsEmpty(strTest) ' true
 MsgBox IsEmpty(strInput & strTest) ' false

See Also IsArray, IsDate, IsNull, IsNumeric, IsObject and VarType

IsNull Returns a boolean value indicating if a variable contains Null or valid data.

IsNull(expression)

expression is any expression.

Syntax This function returns true if the whole of expression evaluates to Null. If you have more than

 Miscellaneous Functions, Statements and Keywords

462

one variable in expression, all of them must be Null for the function to return true.

Please be aware that Null is not the same as empty (a variable that hasn't been initialized) or
a zero−length string (""). Null means no valid value!

You should always use the IsNull function when checking for Null values, because using the
normal operators will return false even if one variable is Null.

Example Dim strInput
 strInput = "Test"
 MsgBox IsNull(strInput & Null) ' false
 MsgBox IsNull(Null) ' true

See Also IsArray, IsDate, IsEmpty, IsNumeric, IsObject and VarType

IsNumeric Returns a boolean value indicating if an expression can be evaluated as a number.

Syntax IsNumeric(expression)

expression is any expression.

Note This function returns true if the whole expression evaluates to a number. A Date
expression is not considered a numeric expression.

Example MsgBox IsNumeric(55.55) ' true
MsgBox IsNumeric("55.55") ' true
MsgBox IsNumeric("55.55aaa") ' false
MsgBox IsNumeric("March 1, 1999") ' false
MsgBox IsNumeric(vbNullChar) ' false

See Also IsArray, IsDate, IsEmpty, IsNull, IsObject and VarType

IsObject Returns a boolean value indicating if an expression is a reference to a valid Automation
object.

Syntax IsObject(expression)

expression is any expression.

Note This function returns true only if expression is in fact a variable of Variant subtype Object
(9) or a user−defined object.

Example Dim objTest

 MsgBox IsObject(objTest) ' false
 Set objTest = CreateObject("Excel.Application")
 MsgBox IsObject(objTest) ' true

See Also IsArray, IsDate, IsEmpty, IsNull, IsNumeric, Set and VarType

LoadPicture Returns a picture object.

Syntax LoadPicture(picturename)

picturename is a string expression that indicates the file name of the picture you want
loaded.

Note This function is only available on 32−bit platforms. The following graphic formats are
supported:

Bitmap .bmp

Icon .ico

Run−length encoded .rle

 Miscellaneous Functions, Statements and Keywords

463

Windows metafile .wmf

Enhanced metafile .emf

GIF .gif

JPEG .jpg

A runtime error occurs if picturename doesn't exist or if it is not a valid picture file. Use
LoadPicture("") to return an "empty" picture object in order to clear a particular picture.

Example Dim objPicture

 ' Load a picture into objPicture
 objPicture = LoadPicture("C:\Test.bmp")
 ' Clear objPicture
 objPicture = LoadPicture("")

MsgBoxDisplays a dialog box with a custom message and a custom set
of command buttons. The value of the button the user clicks is
returned as the result of this function.

SyntaxMsgBox(prompt[, buttons][, title [, helpfile, context])

prompt is the message you want displayed in the dialog box. The
string can contain up to 1024 characters, depending on the width of
the characters you use. You can separate the lines using one of
these VBScript constants:
vbCr, vbCrLf, vbLf or vbNewLine

buttons (Optional) is the sum of values indicating the number and
type of button(s) to display, which icon style to use, which button
is the default and if the MsgBox is modal. The settings for this argument are:

vbOKOnly

vbOKCancel

vbAbortRetryIgnore

vbYesNoCancel

0

1

2

3

Displays OK button.

Displays OK and Cancel buttons.

Displays Abort, Retry, and Ignore
buttons.

Displays Yes, No, and Cancel buttons

vbYesNo

vbRetryCancel

4

5

Displays Yes and No buttons.

Displays Retry and Cancel buttons.

Displays critical icon.

Displays query icon.

 Miscellaneous Functions, Statements and Keywords

464

vbCritical

vbQuestion

vbExclamation

vbInformation

vbDefaultButton1

vbDefaultButton2

vbDefaultButton3

vbDefaultButton4

vbApplicationModal

vbSystemModal

16

32

48

64

0

256

512

768

0

4096

Displays warning icon.

Displays information icon.

Makes the first button the default one.

Makes the second button the default one.

Makes the third button the default one.

Makes the fourth button the default one

When the MsgBox is application modal,
the user must respond to the message
box, before he/she can continue.

The same effect as vbApplicationModal.
Presumably this is a "left−over" from the
good old 16−bit Windows days. The
dialog box will stay on top of other
windows though.

Please note how the values are grouped:

Buttons (values 0−5)

Icon (values 16, 32, 48 and 64)

Default button (values 0, 256, 512 and 768)

Modal (values 0 and 4096)

 Miscellaneous Functions, Statements and Keywords

465

You should only pick one value from each group when creating your MsgBox.

title (Optional) is the text you want displayed in the dialog box title bar. The application name
will be displayed if this argument is omitted.

helpfile (Optional) is a string expression that indicates the help file to use when providing
context−sensitive help for the dialog box. This argument must be used in conjunction with
context. This is not available on 16−bit platforms.

context (Optional) is a numeric expression that indicates the help context number that makes
sure that the right help topic is displayed. This argument must be used in conjunction with
helpfile.

Note The following values can be returned:
vbOK (1)
vbCancel(2)
vbAbort (3)
vbRetry (4)
vbIgnore (5)
vbYes (6)
vbNo (7)

The ESC key has the same effect as the Cancel button. Clicking the Help or pressing F1 will
not close the MsgBox.

Example Dim intReturn

 intReturn = MsgBox("Exit the application?", vbYesNoCancel + _
 vbQuestion)

The MsgBox will display the message "Exit the application?", the buttons Yes, No and Cancel,
and the question mark icon. This MsgBox will be application modal.

See Also InputBox

RGB Returns an integer that represents an RGB color value. The RGB color value specifies the
relative intensity of red, green, and blue to cause a specific color to be displayed.

Syntax RGB(red, green, blue)

red is the red part of the color. Must be in the range 0−255.

green is the green part of the color. Must be in the range 0−255.

blue is the blue part of the color. Must be in the range 0−255.

Note 255 will be used, if the value for any of the arguments is larger than 255. A runtime error
occurs if any of the arguments cannot be evaluated to a numeric value.

Example ' Returns the RGB number for white
RGB(255, 255, 255)

ScriptEngine Returns a string indicating the scripting language being used.

Syntax ScriptEngine

Note The following scripting engine values can be returned:

VBScript MS VBScript

 Miscellaneous Functions, Statements and Keywords

466

JScript MS JScript

VBA MS Visual Basic for Applications

Other third−party ActiveX Scripting Engines can also be returned, if you have installed
one.

See Also ScriptEngineBuildVersion, ScriptEngineMajorVersion and ScriptEngineMinorVersion

ScriptEngineBuildVersion Returns the build version of the script engine being used.

Syntax ScriptEngineBuildVersion

Note This function gets the information from the DLL for the current scripting
language.

See Also ScriptEngine, ScriptEngineMajorVersion and
ScriptEngineMinorVersion

ScriptEngineMajorVersion Returns the major version number of the script engine being used. The
major version number is the part before the decimal separator, e.g. 5 if
the version is 5.1.

Syntax ScriptEngineMajorVersion

Note This function gets the information from the DLL for the current scripting
language.

See Also ScriptEngine, ScriptEngineBuildVersion and
ScriptEngineMinorVersion

ScriptEngineMinorVersion Returns the minor version number of the script engine
being used. The minor version number is the part after
the decimal separator, e.g. 1 if the version is 5.1.

Syntax ScriptEngineMinorVersion

Note This function gets the information from the DLL for the current scripting language.

See Also ScriptEngine, ScriptEngineBuildVersion and ScriptEngineMajorVersion

Set Returns an object reference, which must be assigned to a variable or property, or returns a
procedure reference that must be associated with an event.

Syntax Set objectvar = {objectexpression | New classname | Nothing}

objectvar is the name of a variable or property.

objectexpression (Optional) is the name of an existing object or another variable of the
same object type. It can also be a method or function that returns either.

classname (Optional) is the name of the class you want to create.

Set object.eventname = GetRef(procname)

object is the name of the object that eventname is associated with.

eventname is the name of the event you want to bind procname to.

procname is the name of the procedure you want to associate with eventname.

Note objectvar must be an empty variable or an object type consistent with objectexpression
being assigned.

 Miscellaneous Functions, Statements and Keywords

467

Set is used to create a reference to an object and not a copy of it. This means that if you use
the Set statement more than once on the same object, you will have more than one reference
to the same object. Any changes made to the object will be "visible" to all references.

New, is only used in conjunction with classname, when you want to create a new instance
of a class.

If you use the Nothing keyword, you release the reference to an object, but if you have more
than one reference to an object, the system resources are only released when all references
have been destroyed (by setting them to Nothing) or they go out of scope.

Example Dim objTest1
Dim objTest2
Dim objNewClass

 ' Create a new dictionary object
 Set objTest1 = CreateObject("Scripting.Dictionary")
 ' Create a reference to the
 ' newly created dictionary object
 Set objTest2 = objTest1

 ' Destroy the object reference
 Set objTest1 = Nothing
 ' Although objTest2 was set
 ' to refer to objTest1, you can
 ' still refer to objTest2,
 ' because the system resources
 ' will not be released before
 ' all references have been
 ' destroyed. So let's add a key
 ' and an item
 objTest2.Add "TestKey", "Test"
 ' Destroy the object reference
 Set objTest2 = Nothing

 ' Create an instance of the
 ' class clsTest (created with
 ' the Class keyword)
 Set objNewClass = New clsTest
 ' ...
 ' Destroy the class instance
 Set objNewClass = Nothing

See Also Class (Chapter 8: Classes in VBScript) and GetRef

TypeName Returns the Variant subtype information for an expression as a Variant subtype String
(8).

Syntax TypeName(expression)

expression is the variable or constant you want subtype information for.

Note This function has the following return values (strings):

Byte Byte

Integer Integer

 Miscellaneous Functions, Statements and Keywords

468

Long Long integer

Single Single−precision floating−point

Double Double−precision floating−point

Currency Currency

Decimal Decimal

Date Date and/or time

String Character string

Boolean true or false

Empty Unitialized

Null No valid data

<object type> Actual type name of an object

Object Generic object

Unknown Unknown object type

Nothing Object variable that doesn't refer to an object instance

Error Error

Example Dim arrstrTest(10)

 MsgBox TypeName(10) ' Integer
 MsgBox TypeName("Test") ' String
 MsgBox TypeName(arrstrTest) ' Variant()
 MsgBox TypeName(Null) ' Null

See Also IsArray, IsDate, IsEmpty, IsNull, IsNumeric, IsObject and VarType

VarType Returns an integer indicating the subtype of a variable or constant.

Syntax VarType(expression)

expression is the variable or constant you want subtype information for.

Note This function has the following return values:

vbEmpty 0 uninitialized
vbNull 1 no valid data
vbInteger 2 Integer
vbLong 3 Long integer
vbSingle 4 Single−precision floating−point
 number
vbDouble 5 Double−precision floating−point
 number
vbCurrency 6 Currency
vbDate 7 Date
vbString 8 String
vbObject 9 Automation object

 Miscellaneous Functions, Statements and Keywords

469

vbError 10 Error
vbBoolean 11 Boolean
vbVariant 12 Variant (only used only with
 arrays of Variants)
vbDataObject 13 A data−access object
vbByte 17 Byte
vbArray 8192 Array

Example Dim arrstrTest(10)

 MsgBox VarType(10) ' 2
 MsgBox VarType("Test") ' 8
 MsgBox VarType(arrstrTest) ' 8204
 MsgBox VarType(Null) ' 1

See Also IsArray, IsDate, IsEmpty, IsNull, IsNumeric, IsObject and TypeName

 Miscellaneous Functions, Statements and Keywords

470

Appendix B: Differences between VB/VBA and
VBScript5

VB/VBA Language Features not in VBScript5

Category Omitted Feature/Keyword

Array Handling Option Base

Declaring arrays with lower bound <> 0

Collection Add, Count, Item, Remove

Access to collections using ! character

(e.g. MyCollection!Foo) [use . instead of !]

Conditional Compilation #Const

#If...Then...#Else

Control Flow DoEvents

GoSub...Return, GoTo

On Error GoTo

On...GoSub, On...GoTo

Line numbers, Line labels

Conversion CVar, CVDate

Str [use CStr instead], Val [use CDbl instead]

Data Types All intrinsic data types except Variant

Type...End Type

Date/Time Date statement, Time statement

Timer

Dynamic Data Exchange (DDE) LinkExecute, LinkPoke,

LinkRequest, LinkSend

Debugging Debug.Print

End

Declaration Declare (for declaring DLLs)

Optional

ParamArray

471

Static

Error Handling Erl

Error

Resume, Resume Next

File Input/Output All traditional Basic file I/O [use Scripting.FileSystemObject]

Financial All financial functions

Miscellaneous Option Explicit is checked at runtime instead of compile time.

Named constants [either include the .inc files distributed with the object
or create a .wsc file and a <reference> element]

Object Manipulation TypeOf

Objects Clipboard

Collection [use Scripting.Dictionary Object instead]

Operators Like [RegExp object provides similar functionality]

Options Deftype

Option Base

Option Compare

Option Private Module

Select Case Expressions containing Is keyword or any comparison operators

Expressions containing a range of values using the To keyword

Strings Fixed−length strings

LSet, RSet statements

Mid statement [use Right, then Left statements to pull what you want]

StrConv [loop through a string using Asc, adding or subtracting 32 to
convert case]

Using Objects Collection access using ! [use . instead of !]

VBScript5 Features not in VB/VBA

Category Feature/Keyword

Declarations Class [creates a class module]

Miscellaneous Eval

Execute

Script Engine Identification ScriptEngine

ScriptEngineBuildVersion

Appendix B: Differences between VB/VBA andVBScript5

472

ScriptEngineMajorVersion

ScriptEngineMinorVersion

Appendix B: Differences between VB/VBA andVBScript5

473

Appendix C: Code Conventions
This appendix covers coding conventions that will help us to produce code that is easily readable and
understandable, minimize errors, and speed up the inevitable debugging process.

Variable Naming Conventions

To make our variables describe themselves and their purpose, we should choose a name that describes what
the variable contains, e.g. dailyincome is better than dollars or x. This can be helped by the use of mixed case,
and by the use of Hungarian Notation where the variable name is prefixed with a notation based on the data
type that that variable is supposed to contain, e.g. dblDailyIncome is much clearer than dailyincome.
Consistency is also important, e.g. if you use Cnt as a variable in one part of the script and Count in another,
you're likely to introduce runtime errors by confusing the variables.

Hungarian Notation

Data Type Hungarian Prefix Example VarType()

Boolean bln (or bool) blnValidated 11

Byte byt bytColor 17

Currency cur curAmount 6

Date or Time dtm dtmBirthday 7

Double dbl dblBalance 5

Error err errInvalidName 10

Integer int intCount 2

Long lng lngWidth 3

Object obj objRS 9 or 13

Single sng sngHeight 4

String str strName 8

Variant var varNumber 12

Control Type Hungarian Prefix Example

Animated Button ani aniMonkey

Check Box chk chkYes

Combo List Box cbo cboLanguage

Command Button cmd cmdSubmit

Common Dialog dlg dlgOpen

Frame fra fraOptions

Horizontal Scroll Bar hsb hsbBalance

Image Control img imgBackground

Label lbl lblCaption

Line lin linDivider

List Box lst lstShipBy

3D Panel pnl pnlEffect

Pop−up Menu mnu mnuSelection

474

Radio/Option Button opt optIncludeCement

Slider sld sldSetLevel

Spin Button spn spnCounter

Tab Strip tab tabOptionPages

Text Box txt txtName

Vertical Scroll Bar vsb vsbVolume

Constants

Constants should be clearly identifiable in any code we write by either using capitals or a con prefix, e.g.
EXCHANGE_RATE or conExchangeRate.

Arrays

Arrays should be prefixed with the letter a or letters arr, depending on preference, as well as adhering to the
conventions already detailed above, e.g. astrName or arrstrName.

Scope

It is also useful to include the scope of a variable by prefixing with g for global, or l for local (to a
subprocedure), e.g. gstrCompanyName, lDepartmentRating.

Procedure Naming

Another key to writing easy−to−read code is to descriptively name your procedures. A trick to this is to start
your procedure names with a verb, e.g. InitValues, ReadData, CloseWindow, etc. Mixed case and consistency
of use between different routines should also be used.

Indentation

The proper indentation of code is probably the greatest way of enhancing its clarity. After a procedure
declaration, opening loop statement, or conditional test, we indent by 2 (or 4) spaces, or use tabs; the closing
statements follow the reverse indentation. By doing this, you can easily follow the flow of your program, as
this example demonstrates:

Sub ShowIndentation()
 Dim intCount
 Dim strMessage
 For intCount = 1 to 5
 strMessage = strMessage & & intCount
 If strMessage = 1 2 then
 strMessage = strMessage &
 End If
 Next
 MsgBox(strMessage)
End Sub

Variable Naming Conventions

475

Commenting

Comments are a must, especially when multiple people are in a project and you are writing functions to be
used by other team members. Even if you are writing code that only you will ever see, we can guarantee that
after a few months of not dealing with it (or even just certain parts of it), you will forget what it does or
exactly how it works. This is where commenting comes in handy. By commenting your procedures
(describing what they do, pre and post conditions, return values, etc), important variables (ones that are
changed in the procedure or passed by reference) and other parts of your code, not only will you then be able
to remember what it does six months down the line, but another programmer will be able to easily follow your
logic when they take over the maintenance of your code after your promotion!

 Commenting

476

Appendix D: Visual Basic Constants Supported in
VBScript
This appendix covers all of the Visual Basic constants that are supported in VBScript. Constants are useful
because they allow us to use a specific value without explicitly writing it. They are divided up into the
following sections: Color, Comparison, Date and Time, Date Format, Miscellaneous, MsgBox, String,
Tristate, and VarType.

Color Constants

These constants are used within code to specify colors.

Constant Value Description

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

vbCyan &hFFFF00 Cyan

vbWhite &hFFFFFF White

Comparison Constants

These constants are used to switch between binary or textual comparisons (see also String Functions of
Appendix A).

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Date and Time Constants

These constants are used to format dates (see also Date & Time Functions of Appendix A).

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbUseSystem 0 Use the date format specified for your computer.

vbUseSystemDayOfWeek 0 Use the day of the week specified for your computer

477

as the first day of the week.

vbFirstJan1 1 Use the week in which January 1 occurs as the first
week of the year (default).

vbFirstFourDays 2 Use the week that has at least 4 days in the new year.

vbFirstFullWeek 3 Use the first full week of the year.

Date Format Constants

These constants determine how a date is displayed (see also Date & Time Functions of Appendix A).

Constant Value Description

vbGeneralDate 0 Displays a date and/or time. The format is determined
by your system settings.

vbLongDate 1 Display a date using your system's long date format.

vbShortDate 2 Display a date using your systems short date format.

vbLongTime 3 Display a time using your system's long time format.

vbShortTime 4 Display a time using your system's short time format.

Miscellaneous Constants

Constant Value Description

vbObjectError −2147221504 Used as the base for user−defined error numbers
(see also Chapter 4 and Appendix E).

MsgBox Constants

These constants specify what buttons and icons appear on the message box, and which button is the default.
Some of the constants also determine the modality of the MsgBox (see also MsgBox under Miscellaneous
Functions, Statements and Keywords of Appendix A).

Constant Value Description

vbOKOnly 0 Display the OK button only.

vbOKCancel 1 Display the OK and Cancel buttons.

vbAbortRetryIgnore 2 Display the Abort, Retry and Ignore buttons.

vbYesNoCancel 3 Display the Yes, No and Cancel buttons.

vbYesNo 4 Display the Yes and No buttons.

vbRetryCancel 5 Display the Retry and Cancel buttons.

vbCritical 16 Display the Critical Message icon.

vbQuestion 32 Display the Warning Query icon.

vbExclamation 48 Display the Warning Message icon.

vbInformation 64 Display the Information Message icon.

vbDefaultButton1 0 The first displayed button is the default.

vbDefaultButton2 256 The second displayed button is the default.

vbDefaultButton3 512 The third displayed button is the default.

vbDefaultButton4 768 The fourth displayed button is the default.

vbApplicationModal 0 The user must respond to the message box.

 Date Format Constants

478

vbSystemModal 4096 The user must respond to the message box. The
message box is always on top.

The following determine which MsgBox button the user has selected. Note that these constants must be
explicitly declared within your code before they can be used (see also MsgBox under Miscellaneous
Functions, Statements and Keywords of Appendix A).

Constant Value Description

vbOK 1 The OK button was clicked.

vbCancel 2 The Cancel button was clicked.

vbAbort 3 The Abort button was clicked.

vbRetry 4 The Retry button was clicked.

vbIgnore 5 The Ignore button was clicked.

vbYes 6 The Yes button was clicked.

vbNo 7 The No button was clicked.

String Constants

These constants allow non−visible characters to be easily inserted into strings.

Constant Value Description

vbCr Chr(13) Carriage return.

vbCrLf Chr(13) & Chr(10) Carriage return and linefeed combination.

vbFormFeed Chr(12) Form feed not useful in Windows.

vbLf Chr(10) Line feed.

vbNewLine Chr(13) & Chr(10)
or Chr(10)

Platform−specific newline character.

vbNullChar Chr(0) Character having the value 0.

vbNullString String having value 0 Not the same as a zero−length string ("") used
for calling external procedures.

vbTab Chr(9) Horizontal tab.

vbVerticalTab Chr(11) Vertical tab not useful in Windows.

Tristate Constants

These constants are used to switch arguments on or off, or to use the default setting (see also String
Functions of Appendix A).

Constant Value Description

vbUseDefault −2 Use default from computer's regional settings.

vbTrue −1 True

vbFalse 0 False

VarType Constants

The VarType constants determine the subtype of a Variant. Note that these constants must be explicitly
declared within your code before they can be used.

Constant Value Description

 String Constants

479

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer subtype

vbLong 3 Long subtype

vbSingle 4 Single subtype

vbDouble 5 Double subtype

vbCurrency 6 Currency subtype

vbDate 7 Date subtype

vbString 8 String subtype

vbObject 9 Object

vbError 10 Error subtype

vbBoolean 11 Boolean subtype

vbVariant 12 Variant (used only for arrays of Variants)

vbDataObject 13 Data access object

vbDecimal 14 Decimal subtype

vbByte 17 Byte subtype

vbArray 8192 Array

 String Constants

480

Appendix E: VBScript Error Codes and the Err Object

Runtime Errors

Runtime errors occur wherever your script attempts to perform an invalid action. Note that the vast majority
of these errors should be caught during the debugging and testing stage. VBScript contains 65 runtime errors,
which are listed below with their decimal and hexadecimal representations:

Decimal Hexadecimal Description

5 800A0005 Invalid procedure call or argument

6 800A0006 Overflow

7 800A0007 Out of memory

9 800A0009 Subscript out of range

10 800A000A This array is fixed or temporarily locked

11 800A000B Division by zero

13 800A000D Type mismatch

14 800A000E Out of string space

17 800A0011 Can't perform requested operation

28 800A001C Out of stack space

35 800A0023 Sub or Function not defined

48 800A0030 Err in loading DLL

51 800A0033 Internal error

52 800A0034 Bad file name or number

53 800A0035 File not found

54 800A0036 Bad file mode

55 800A0037 File already open

57 800A0039 Device I/O error

58 800A003A File already exists

61 800A003D Disk full

62 800A003E Input past end of file

67 800A0043 Too many files

68 800A0044 Device unavailable

70 800A0046 Permission denied

71 800A0047 Disk not ready

74 800A004A Can't rename with different drive

75 800A004B Path/File access error

76 800A004C Path not found

91 800A005B Object variable not set

92 800A005C For loop not initialized

94 800A005E Invalid use of Null

322 800A0142 Can't create necessary temporary file

424 800A01A8 Object required

481

429 800A01AD ActiveX component can't create object

430 800A01AE Class doesn't support Automation

432 800A01B0 File name or class name not found during Automation
operation

438 800A01B6 Object doesn't support this property or method

440 800A01B8 Automation error

445 800A01BD Object doesn't support this action

446 800A01BE Object doesn't support named arguments

447 800A01BF Object doesn't support current locale setting

448 800A01C0 Named argument not found

449 800A01C1 Argument not optional

450 800A01C2 Wrong number of arguments or invalid property
assignment

451 800A01C3 Object not a collection

453 800A01C5 Specified DLL function not found

455 800A01C7 Code resource lock error

457 800A01C9 This key is already associated with an element of this
collection

458 800A01CA Variable uses an Automation type not supported in
VBScript

462 800A01CE The remote server machine does not exist or is
unavailable

481 800A01E1 Invalid picture

500 800A01F4 Variable is undefined

501 800A01F5 Illegal assignment

502 800A01F6 Object not safe for scripting

503 800A01F7 Object not safe for initializing

504 800A01F8 Object not safe for creating

505 800A01F9 Invalid or unqualified reference

506 800A01FA Class not defined

5016 800A1398 Regular Expression object expected

5017 800A1399 Syntax error in regular expression

5018 800A139A Unexpected quantifier

5019 800A139B Expected ']' in regular expression

5020 800A139C Expected ')' in regular expression

5021 800A139D Invalid range in character set

32811 800A802B Element not found

Syntax Errors

Syntax errors occur where ever your script contains statements that do not follow the pre−defined rules for
that language. Note that this type of error should be caught during development. VBScript contains 53 syntax
errors, listed below with their decimal and hexadecimal representations:

 Syntax Errors

482

Decimal Hexadecimal Description

1001 800A03E9 Out of memory

1002 800A03EA Syntax error

1003 800A03EB Expected ':'

1005 800A03ED Expected '('

1006 800A03EE Expected ')'

1007 800A03EF Expected ']'

1010 800A03F2 Expected identifier

1011 800A03F3 Expected '='

1012 800A03F4 Expected 'If'

1013 800A03F5 Expected 'To'

1014 800A03F6 Expected 'End'

1015 800A03F7 Expected 'Function'

1016 800A03F8 Expected 'Sub'

1017 800A03F9 Expected 'Then'

1018 800A03FA Expected 'Wend'

1019 800A03FB Expected 'Loop'

1020 800A03FC Expected 'Next'

1021 800A03FD Expected 'Case'

1022 800A03FE Expected 'Select'

1023 800A03FF Expected expression

1024 800A0400 Expected statement

1025 800A0401 Expected end of statement

1026 800A0402 Expected integer constant

1027 800A0403 Expected 'While' or 'Until'

1028 800A0404 Expected 'While', 'Until' or end of statement

1029 800A0405 Expected 'With'

1030 800A0406 Identifier too long

1031 800A0407 Invalid number

1032 800A0408 Invalid character

1033 800A0409 Unterminated string constant

1034 800A040A Unterminated comment

1037 800A040D Invalid use of 'Me' keyword

1038 800A040E 'loop' without 'do'

1039 800A040F Invalid 'exit' statement

1040 800A0410 Invalid 'for' loop control variable

1041 800A0411 Name redefined

1042 800A0412 Must be first statement on the line

1043 800A0413 Cannot assign to non−ByVal argument

1044 800A0414 Cannot use parentheses when calling a Sub

1045 800A0415 Expected literal constant

1046 800A0416 Expected 'In'

 Syntax Errors

483

1047 800A0417 Expected 'Class'

1048 800A0418 Must be defined inside a Class

1049 800A0419 Expected Let or Set or Get in property declaration

1050 800A041A Expected 'Property'

1051 800A041B Number of arguments must be consistent across properties
specification

1052 800A041C Cannot have multiple default property/method in a Class

1053 800A041D Class initialize or terminate do not have arguments

1054 800A041E Property Set or Let must have at least one argument

1055 800A041F Unexpected 'Next'

1056 800A0420 'Default' can be specified only on 'Property' or 'Function' or
'Sub'

1057 800A0421 'Default' specification must also specify 'Public')

1058 800A0422 'Default' specification can only be on Property Get

Err Object and On Err statement

Err Object

The Err object is the heart and soul of error handling in VBScript, and exposes information about runtime
errors through its properties. Unlike other objects in VBScript, it is an intrinsic object with global scope;
hence, there is no need to declare and initialize the Err object.

Initially the Err properties are either zero−length strings or 0, and when a runtime error occurs the properties
of the Err object get populated by the generator of the error (e.g. VBScript, an Automation object, or by the
programmer). Err.Number contains an integer, and Number is the default property of the Err object. It is easy
to test whether the error actually occurred with an If Err Then statement because of automatic conversion
between integer and Boolean subtypes: the integer 0 (no error) converts to Boolean False, and all other
numbers evaluate to true.

The following example illustrates a partial IE VBScript (although it could just as easily be from a .ws(f), .wsc,
or .hta file) in which the programmer raises one of the predefined VBScript errors. Note that the Err object is
not declared, and it cannot be created as a separate object:

<SCRIPT LANGUAGE=vbscript>
On Error Resume Next
Err.Raise 11 ' Division by Zero
MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
</SCRIPT>

Err Object Properties

Description

The Description property returns or sets a descriptive string associated with an error. By default this is a
zero−length string until the property is set by the programmer, or by the generator of an error. The description
is useful when displaying or logging errors, and when raising custom errors. If the programmer raises one of
the default runtime errors, the Description property contains the string associated with the error.

 Err Object and On Err statement

484

Syntax

Err.Description [= stringexpression]

Name Subtype Description

Err Err Object This is always the Err Object

stringexpression String A string expression containing a description of the error
Example Usage

<SCRIPT LANGUAGE=vbscript>
Option Explicit
On Error Resume Next

IntTest = 5
MsgBox ("Error Description: " & Err.Description)
</SCRIPT>

This sample script will produce Variable is undefined inside a message box.

HelpContext

The HelpContext property is used to automatically display the Help topic specified in the HelpFile property.
This property either sets or retrieves the value of the help context. If both HelpFile and HelpContext are
empty, the value of Number is checked. If Number corresponds to a VBScript runtime error value, then the
VBScript help context ID for the error is used.

This property is rarely used, and requires coordination between the person authoring the Help system and the
scripter. Finally, use of the HelpFile and of HelpContext only make sense in a non−IE setting with the older
.hlp system. Newer HTML help simply uses HTML documents, which may be displayed under most
circumstances using techniques discussed in HTML Help manuals. The following sample illustrates the use of
the traditional .hlp files with the Windows Script Host.

Syntax

Err.HelpContext [= contextID]

Name Subtype Description

Err Err Object This always is the Err Object

contextID Integer Optional. A valid identifier for a Help topic within the Help file.
Example Usage

On Error Resume Next
Dim Msg
Err.Clear
Err.Raise 6 ' Generate "Overflow" error.
Err.Helpfile = "c:\yourHelp.hlp"
Err.HelpContext = 21
If Err.Number <> 0 Then
 Msg = "Press Help to see " & Err.Helpfile & " topic for" & _
 " the following HelpContext: " & Err.HelpContext
 MsgBox Msg, , "error: " & Err.Description, Err.Helpfile, Err.HelpContext
End If

Err Object and On Err statement

485

HelpFile

The HelpFile property is used to set and retrieve a fully qualified path to a programmer−authored Help File.
Often it is used in conjunction with the HelpContext property see the notes and the example above. The most
common way of setting the value is through the Err.Raise method.

Syntax

Err.HelpFile [= filepath]

Name Subtype Description

Err Err Object This always is the Err Object

filepath String Optional. Fully qualified path to the Help File.
Number

This is the default property of the Err object, and returns or sets a numeric value specifying an error. Custom
error handling functions utilize the Number property to diagnose the runtime error. When setting or retrieving
a custom error, the vbObjectErr constant is used to ensure custom errors do not conflict with VBScript and
common Automation Errs.

Syntax

Err.Number [= errornumber]

Name Subtype Description

Err Err Object This is always the Err Object

errornumber Integer An integer representing a VBScript error number or an SCODE
error value. SCODE is a long integer value that is used to pass
detailed information to the caller of an interface member or API
function.

Example Usage

On Error Resume Next
Err.Raise vbObjectError + 16, ,"CustomObject Error" ' Raise Custom Error #16.
If Err.Number <> 0 Then ' (If Err Then) can be used too
 MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
End If

The sample code above sets a custom error number in Err.Number through the Err.Raise method, and then
displays the return value through a Message Box (MsgBox).

Source

The Source property sets or returns the name of the object or application that reported the error. Most
commonly the source is the class name or ProgID of the object generating the error. Most of the time the
Source property will show 'Microsoft VBScript', but in cases where the error occurs while accessing a
property or method of an Automation object, the source property will show the component's class name. This
is not only useful because it allows for a greater degree of granularity (or visibility) in error handling, but it
also allows for better error display and logging possibilities. This property can be set through the Err.Raise
method in both VBScript and in custom COM components.

Err Object and On Err statement

486

Syntax

Err.Source [= stringexpression]

Name Subtype Description

Err Err Object This always is the Err Object

stringexpression Integer A string expression representing the application that
generated the error.

Example Usage

On Error Resume Next
Err.Raise vbObjectError + 1, "cTestClass", "CustomObject Error"
If Err.Number <> 0 Then ' (If Err Then) can be used too
 MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description & " Source: " & Err.Source)
End If

Err Object Methods

Clear

The Clear method resets all of the properties of the Err object to either 0 or a zero−length string. The Err
object should ideally be reset after an error has been handled because of the deferred nature of error handling
in VBScript, to avoid the potential mistake of handling the same error twice.

The Err object is additionally cleared by any of the following statements:

On Error Resume Next•
On Error Goto 0•
Exit Sub•
Exit Function•

Therefore, error−handling functions must be called before any of the above statements are executed.

Syntax

Err.Clear

Name Subtype Description

Err Err Object This always is the Err Object
Example Usage

On Error Resume Next ' The Err Object is Reset
Err.Raise 5
Err.Clear
If Err.Number = 0 Then ' (If Err Then) can be used too
 MsgBox ("Error has been reset: Err.Number − " & CStr(Err.Number))
End If

Err Object and On Err statement

487

Raise

The Raise method generates a runtime error. All of the parameters of the Raise method, except for its number,
are optional. When optional parameters are not specified, and the Err object has not been cleared, old values
may appear. The best practice is to use Err.Clear after error handling, and to inspect the Err object before
using Err.Raise (in case an error has occurred in the meantime). When raising custom error numbers, the
vbObjectErr constant should be added.

The HelpFile and HelpContext parameters are used with the traditional .hlp help, and not with the HTML help
systems.

Raising errors is a popular technique to stop the execution of a procedure, and handle it via some error
handling function. You may raise errors when data is invalid, and when you want to pass an error up the call
stack. This is a popular technique when you want to change one error into another, so that it can be handled
properly.

Syntax

Err.Raise (number, source, description, helpfile, helpcontext)

Name Subtype Description

Err Err Object This is always the Err object

number Long This identifies the nature of the error. All VBScript (predefined and
user−defined) error numbers are in the range 065535.

source String This identifies the name of the object or application that generates
the error. When setting this property for Windows Script
Components, use the ProgID form. If nothing is specified, the
current ID of the project is used; often, it just defaults to 'Microsoft
VBScript'

description String This is the description of the error. If unspecified, the value in
number is examined. If it can be mapped to a VBScript runtime
error code, a string provided by VBScript is used as the description.
If there is no VBScript error corresponding to number, a generic
error message is used.

helpfile String This is the fully qualified path to a customized help file in which
help on this error can be found. If unspecified, VBScript uses the
fully qualified drive, path, and file name of the VBScript help file.

helpcontext Integer This is the context ID identifying a topic within helpfile that
provides help for the error. If omitted, the VBScript help file context
ID for the error corresponding to the number property is used, if it
exists.

Example Usage

Dim strMsg
On Error Resume Next
Err.Raise vbObjectError + 1, "prjProject.clsClass", "Custom Error", "c:\helpfile.hlp", 1
If Err.Number <> 0 Then
 strMsg = "Error Number: " & CStr(Err.Number) & vbCrLf
 strMsg = strMsg & "Description: " & Err.Description & vbCrLf
 strMsg = strMsg & "Source: " & Err.Source
 If Err.HelpFile <> "" Then

Err Object and On Err statement

488

 strMsg = strMsg & vbCrLf & "Press Help to see the help file"
 MsgBox strMsg, , "Error: " & Err.Description, Err.Helpfile, Err.HelpContext
 End If
 MsgBox strMsg ' No Help file available here
 Err.Clear
End If

This example shows a common way of raising an error in Windows Script Host, where the help file is readily
available.

vbObjectError Constant

This is a built−in constant that can be used in conjunction with programmer−defined errors and Err.Raise. It
does not have to be declared or initialized; its decimal value is 2147221504 (or 0x8004000 in hexadecimal).
Whereas previous examples have shown how to use the vbObjectError constant with the Err.Raise method,
the example following shows a skeleton of a centralized error handler that combines Select Case with custom
errors.

Example Usage

If Err.Number <> 0 Then ' this should call separate subs
 Select Case Err.Number
 Case vbObjectError + 1
 ' call sub handling error 1
 Case vbObjectError + 3
 ' call sub handling error 3
 Case Else
 ' call reporting sub to display errors
 End Select
End If

On Error Resume Next

Syntax

On Error Resume Next

This statement enables error handling within the scope of a script or a procedure. Without the On Error
Resume Next statement, the default runtime error handler displays the error and stops the execution of the
script.

On Error Resume Next continues the execution of the script on the next line following the error. The error
handling routine has to exist within the same scope as this statement. The statement becomes inactive with a
call to another procedure or when an On Error Goto 0 statement is used. Please see the discussion below
regarding the scope of this statement.

Important When Internet Explorer's advanced option Disable Script Debugging is not selected and the
Script Debugger is installed on the same system, On Error Resume Next does not go into effect;
instead, the browser automatically goes into the 'debug' mode. Thus, when testing the
effectiveness of your error handler through Internet Explorer, make sure that this option is
selected.

Err Object and On Err statement

489

On Error Goto 0

Syntax

On Error Goto 0

The On Error Goto 0 statement disables the error handling that was enabled by On Error Resume Next. This
statement is especially useful in the testing stage, when there is a need to identify certain errors and yet handle
others. On Error Goto 0 can be placed immediately after the error handling procedure is called. Like On Error
Resume Next, this statement is also scope dependent.

Scope of On Error Statement and Differences Between VBScript's and VB's (or VBA's) Error Handling

It is important to understand the scope of the On Error statement; otherwise, your error handling procedures
may never execute. VBScript unlike its parent language does not support labels, and it does not support the
VB On Error Goto label. Thus, VBScript provides support only for in−line error handlers that can cause
understandable grief. Basically, in order to mimic a block of code in VB that would respond to an On Error
Goto label statement you might be inclined to use several If Err Then statements in order to check for an error
with each single line of execution. However, with a little bit of programming, this can easily be achieved by
enabling an error handler around a given procedure. Should one of the lines in the procedure fail, the error can
be thrown up the calling stack. Of course, there is no Resume statement, which complicates some of the
scripting. This can only be circumvented by trying to correct the problem that generated the error, and
attempting to call the procedure again.

Before we look at some error handling techniques, let's examine the scope of error handling. The script below
illustrates an important concept behind the scope of the error−enabling and error−disabling statements, as well
as showing the differences in scope, and the importance in clearing of errors:

Sub TestError()
 On Error Resume Next
 Err.Raise 6 ' Execution will continue
 MsgBox ("TestError: Error # " & CStr(Err.Number) & " " & Err.Description)
 Err.Clear
End Sub

Sub TestError2()
 Err.Raise 6 ' Execution stops, moves up in scope
 MsgBox ("TestError2: This will never Show Up")
End Sub

' Main body of the script
' TestError() has local Error Handler no need for global Handler
On Error Resume Next
Call TestError()
If Err.Number <> 0 Then
 MsgBox ("Global: Error # " & CStr(Err.Number) & " " & Err.Description)
 Err Clear
Else
 MsgBox ("Global: No Error, It was handled locally and cleared")
End If

' TestError2 has no local error handler
Call TestError2()
If Err.Number <> 0 Then
 MsgBox ("Global: Error # " & CStr(Err.Number) & " " & Err.Description)
 Err.Clear

Err Object and On Err statement

490

End If
' Global script Error handling is turned off, cause crash
On Error goto 0
Call TestError2()

Upon execution, the error is first handled locally, and after it is cleared, it is ignored. Next, the calls to the
TestError2() subroutine are first handled by the global error handler and, after it is disabled on the second−last
line, a runtime error appears.

Now, to consider the importance of clearing errors and the scope of On Error Resume Next, we make two
adjustments, commenting out certain code:

Sub TestError()
 On Error Resume Next
 Err.Raise 6 ' Execution will continue
 MsgBox ("TestError: Error # " & CStr(Err.Number) & " " & Err.Description)
 REM Err.Clear
End Sub

Sub TestError2()
 Err.Raise 6 ' Execution stops, moves up in scope
 MsgBox ("TestError2: This will never Show Up")
End Sub

' Main body of the script
' TestError() has local Error Handler no need for global Handler
REM On Error Resume Next

With these changes, an error message is still displayed after the call to TestError(), but the first call to the
TestError2() subprocedure results in an invocation of the default error handler, and stoppage of the script
immediately after the call, i.e. the On Error Resume Next statement was local in scope to the TestError()
subprocedure.

The code below illustrates the possibility of mimicking the On Error Goto label statement by encompassing a
block of code in a procedure, rather than trapping errors inline, as in VB. Here the scripter can invoke an error
handler at a higher level rather than at the level where the error occurred (in this case, a procedure without a
local error handler):

Option Explicit
Dim intZero, intNonZero, intResult
intZero = 0
intNonZero = 1

Sub TestError()
 ' Statements that will execute
 MsgBox ("This will always execute")
 ' now cause an error
 intResult = intNonZero / intZero ' causes error 11
 ' Statements that will not execute if error occurs
 MsgBox ("Finally executed, Result = " & CStr(intResult))
End Sub

' simulate On Error Goto Label by having a block of code in a sub
On Error Resume Next
Call TestError()
If Err.Number = 11 Then
 MsgBox "Division By Zero − may still continue" & vbCrLf & Err.Description

Err Object and On Err statement

491

 Err.Clear
 intZero = 1
 TestError()
End If
On Error Goto 0 'kill other error handling

Error Handling in IE

Besides VBScript itself, some web authors might also turn to DHTML events. IE's DHTML object model
supports a variety of events, including events occurring as a result of an error. Essentially, this allows for a
different degree of control when authoring scripts for IE. Thanks to the GetRef() function, which returns a
pointer to a function, it is now possible to bind VBScript procedures to an event. For instance, the line below
will execute the RunMySub procedure in response to the Window.Onload event in IE:

Set Window.Onload = GetRef("RunMySub")

Similarly, you can write procedures that will execute when the OnError event is fired, either for an element, or
for the window object.

There are two additional techniques for error handling in IE:

centralized, through the use of the window.onerror event•
decentralized, through the use of the element.onerror event•

The following code snippets illustrate the old and the new syntax for handling DHTML errors:

Old Syntax

Function element_onerror (message, url, line)

element is the name of the element or window:

<SCRIPT language="VBScript">
Function window_onerror (message, url, line)
 ' handle error here
 window_onerror = true
End Function
</SCRIPT>

New syntax

Set element.onerror = GetRef("functionName")

The new syntax allows us to bind functions to events, just like in JScript. Again, element is the name of the
element or window, and functionName is an actual function or a sub:

<SCRIPT language=VBScript>
Function onErrorHandler (message, url, line)
 ' handle error here
 onErrorHandler = True
End Function
set window.onerror = GetRef("onErrorHandler")
</SCRIPT>

Err Object and On Err statement

492

There are a few important differences between the VBScript's error handling and the use of the onerror event
in IE. Listed below is a summary of the onerror IE handlers:

Execution does not resume on the next line. The script may resume with the next user action or
handled event e.g. user 'clicks' on another element. If you want greater error−handling control in
individual procedures executed in the browser, the On Error Resume Next statement should be used.

•

All errors pertaining to the element (or window) are handled by the event unless handled via
VBScript's On Error Resume Next technique.

•

Errors can be passed to a higher level element via event bubbling. Please refer to Chapter 12 to learn
more about high powered scripting in IE.

•

Custom errors cannot be created; there is no Err.Raise counterpart in the DHTML object model.•

Considering the broader appeal of JScript (or ECMA Script and JavaScript), the majority of DHTML scripting
and error handling is not done in VBScript (VBScript is not supported in Mac and Windows CE versions of
IE).

Err Object and On Err statement

493

Appendix F: The Scripting Runtime Library Objects
Reference
The default scripting languages installed with Windows Office 2000 and ASP 3.0 provide a scripting runtime
library in the file scrrun.dll, which implements a series of objects that can be used in ASP on the server and in
client−side code running on the client:

The Dictionary object provides a useful storage object that we can use to store values, accessed and
referenced by their name rather than by index as would be the case in a normal array it's ideal for
storing the name/value pairs that we retrieve from the ASP Request object, for example.

•

The FileSystemObject object provides us with access to the underlying file system on the server (or
on the client in IE5 when used in conjunction with a special type of page named an HTML
Application or HTA) we can use the FileSystemObject object to iterate through the machine's local
and networked drives, folders and files.

•

The TextStream object provides access to files stored on disk, and is used in conjunction with the
FileSystemObject object it can read from or write to text (sequential) files.

•

The Scripting.Dictionary Object

The Dictionary object provides a useful storage object that we can use to store values, accessed and referenced
by their name rather than by index as would be the case in a normal array. The properties and methods
exposed by the Dictionary object are:

Property Description

CompareMode Sets or returns the string comparison mode for the keys. Values are
vbBinaryCompare (0) to perform a binary comparison and vbTextCompare (1) to
perform a textual comparison.

Count Returns the number of key/item pairs in the Dictionary (read only).

Item(key) Sets or returns the value of the item for the specified key.

Key(key) Sets or returns the value of a key.

Method Description

Add(key, item) Adds the key/item pair to the Dictionary. You can also add items with a simple
assignment, and in fact, you must use this syntax in order to store object references
in a dictionary:

Set objDict(keyname) = objMyObject

Exists(key) Returns true if the specified key exists or false if not.

Items() Returns an array containing all the items in a Dictionary object.

Keys() Returns an array containing all the keys in a Dictionary object.

Remove(key) Removes a single key/item pair specified by key.

RemoveAll() Removes all the key/item pairs.
Important An error will occur if we try to add a key/item pair when that key already exists,

remove a key/item pair that doesn't exist, or change the CompareMode of a Dictionary
object that already contains data.

494

The Scripting.FileSystemObject Object

The FileSystemObject object provides us with access to the underlying file system on the server (or on the
client in IE5 when used in conjunction with a special type of page named an HTML Application or HTA).
The FileSystemObject object exposes a series of properties and methods of its own, some of which return
other objects that are specific to objects within the file system. These subsidiary objects are:

the Drive object provides access to all the drives available on the machine•
the Folder object provides access to the folders on a drive•
the File object provides access to the files within each folder•

While these three objects form a neat hierarchy, the FileSystemObject object also provides methods that can
bridge the hierarchy by creating instances of the subsidiary objects directly. The diagram opposite shows the
way that you can navigate the file system of the machine using the various objects:

The FileSystemObject Object

The FileSystemObject object provides overall access to the underlying file system and is used as a starting
point when navigating the file system. The properties and methods exposed by the FileSystemObject are:

Property Description

Drives Returns a collection of Drive objects that are available from the local
machine. This includes network drives that are mapped from this machine.

Method Description

BuildPath (path, name) Adds the file or folder specified in name to the existing path, adding a path
separator character ('\') if required. Doesn't check for valid or existing path.

CopyFile (source, destination,
overwrite)

Copies the file or files specified in source (wildcards can be included) to the
folder specified in destination. If source contains wildcards or destination
ends with a path separator character ('\') then destination is assumed to be a
folder; otherwise, it is assumed to be a full path and name for the new file.
Note that leaving off the last '\' when the source doesn't contain wildcards
throws a Permission denied error since the name (assumed to be a filename
without an extension) exists as a folder name. An error will occur if the
destination file already exists and the optional overwrite parameter is set to
false. The default for overwrite is true.

 The Scripting.FileSystemObject Object

495

CopyFolder (source,
destination, overwrite)

Copies the folder or folders specified in source (wildcards can be included)
to the folder specified in destination, including all the files contained in the
source folder(s). If source contains wildcards or destination ends with a path
separator character ('\') then destination is assumed to be a folder into which
the copied folder(s) will be placed; otherwise, it is assumed to be a full path
and name for a new folder to be created. An error will occur if the
destination folder already exists and the optional overwrite parameter is set
to false. The default for overwrite is true.

CreateFolder (foldername) Creates and returns a reference to a new folder which has the path and name
specified in foldername. Only the last folder in the path is created all parent
folders must exist. An error occurs if the specified folder already exists.

CreateTextFile (filename,
overwrite, unicode)

Creates a new text file on disk with the specified filename and returns a
TextStream object that refers to it. If the optional overwrite parameter is set
to true any existing file with the same path and name will be overwritten.
The default for overwrite is false. If the optional unicode parameter is set to
true, the content of the file will be stored as Unicode text. The default for
unicode is false for an ASCII file.

DeleteFile (filespec, force) Deletes the file or files specified in filespec (wildcards can be included). If
the optional force parameter is set to true the file(s) will be deleted even if
the read−only attribute is set. The default for force is false.

DeleteFolder (folderspec,
force)

Deletes the folder or folders specified in folderspec (wildcards can be
included in the final component of the path) together with all their contents.
If the optional force parameter is set to true, the folders will be deleted even
if their, or any contained files', read−only attribute is set. The default for
force is false.

DriveExists (drivespec) Returns true if the drive specified in drivespec exists, or false if not. The
drivespec parameter can be a drive letter as a string or a full absolute path
for a folder or file.

FileExists (filespec) Returns true if the file specified in filespec exists, or false if not. The
filespec parameter can contain an absolute or relative path for the file, or just
the file name to look in the current folder.

FolderExists (folderspec) Returns true if the folder specified in folderspec exists, or false if not. The
folderspec parameter can contain an absolute or relative path for the folder,
or just the folder name to look in the current folder.

GetAbsolutePathName
(pathspec)

Takes a path that unambiguously identifies a folder and, taking into account
the current folder's path, returns a full unambigous path specification for the
pathspec folder. For example, if the current folder is "c:\docs\sales\" and
pathspec is "jan" the returned value is "c:\docs\sales\jan". Wildcards and the
".", ".." and "\\" path operators are accepted.

GetBaseName (filespec) Returns just the name of a file or folder specified in filespec, i.e. with the
path and file extension removed.

GetDrive (drivespec) Returns a Drive object corresponding to the drive specified in drivespec.
The format for drivespec can include the colon, path separator or be a
network share, i.e. "c", "c:", "c:\" or "\\machine\sharename".

GetDriveName (drivespec) Returns the name of the drive specified in drivespec as a string. The
drivespec parameter must be an absolute path to a file or folder, or just the
drive letter such as "c:" or just "c".

GetExtensionName (filespec)

 The Scripting.FileSystemObject Object

496

Returns just the extension of a file or folder specified in filespec, i.e. with
the path and file name removed.

GetFile (filespec) Returns a File object corresponding to the file specified in filespec. This can
be a relative or absolute path to the required file.

GetFileName (pathspec) Returns the name part (i.e. without the path or file extension) of the path and
filename specified in pathspec, or the last folder name of there is no file
name. Does not check for existence of the file or folder.

GetFileVersion(filespec) Returns the version information from a file in Windows 2000 and Windows
Script Host 2.0.

GetFolder (folderspec) Returns a Folder object corresponding to the folder specified in folderspec.
This can be a relative or absolute path to the required folder.

GetParentFolderName
(pathspec)

Returns the name of the parent folder of the file or folder specified in
pathspec. Does not check for existence of the folder.

GetSpecialFolder (folderspec)Returns a Folder object corresponding to one of the special Windows
folders. The permissible values for folderspec are WindowsFolder (0),
SystemFolder (1) and TemporaryFolder (2).

GetTempName() Returns a randomly generated file name that can be used for performing
operations that require a temporary file or folder.

MoveFile (source, destination)Moves the file or files specified in source to the folder specified in
destination. Wildcards can be included in source but not in destination. If
source contains wildcards or destination ends with a path separator
character ('\') then destination is assumed to be a folder; otherwise, it is
assumed to be a full path and name for the new file. Note that leaving off
the last '\' when the source doesn't contain wildcards throws a Permission
denied error since the name (assumed to be a filename without an extension)
exists as a folder name. An error will occur if the destination file already
exists.

MoveFolder (source,
destination)

Moves the folder or folders specified in source to the folder specified in
destination. Wildcards can be included in source but not in destination. If
source contains wildcards or destination ends with a path separator
character ('\') then destination is assumed to be the folder in which to place
the moved folders; otherwise, it is assumed to be a full path and name for a
new folder. An error will occur if the destination folder already exists.

OpenTextFile (filename,
iomode, create, format)

Creates a file named filename, or opens an existing file named filename, and
returns a TextStream object that refers to it. The filename parameter can
contain an absolute or relative path. The iomode parameter specifies the type
of access required. The permissible values are ForReading (1), the default),
ForWriting (2), and ForAppending (8). If the create parameter is set to true
when writing or appending to a file that does not exist, a new file will be
created. The default for create is false. The format parameter specifies the
format of the data to be read from or written to the file. Permissible values
are TristateFalse (0), the default) to open it as ASCII, TristateTrue (−1) to
open it as Unicode, and TristateUseDefault (−2) to open it using the system
default format.

 The Scripting.FileSystemObject Object

497

The Drive Object

The Drive object provides access to all the drives available on the machine. The properties (note that it has no
methods) exposed by the Drive object are:

Property Description

AvailableSpace Returns the amount of space in bytes available to this user on the drive, taking into
account quotas and/or other restrictions.

DriveLetter Returns the drive letter of the drive.

DriveType Returns the type of the drive. The values are: Unknown (0), Removable (1), Fixed
(2), Network (3), CDRom (4), and RamDisk (5). However, note that the current
version of scrrun.dll does not include the pre−defined constant for Network, so you
must use the decimal value 3 instead.

FileSystem Returns the type of file system for the drive. The values include "FAT", "NTFS"
and "CDFS".

FreeSpace Returns the actual amount of free space in bytes available on the drive.

IsReady Returns a Boolean value indicating if drive is ready (true) or not (false).

Path Returns the path for the drive as a drive letter and colon, i.e. "C:".

RootFolder Returns a Folder object representing the root folder of the drive.

SerialNumber Returns a decimal serial number used to uniquely identify a disk volume.

ShareName Returns the network share name for the drive if it is a networked drive.

TotalSize Returns the total size in bytes of the drive.

VolumeName Sets or returns the volume name of the drive if it is a local drive.

The Folder Object

The Folder object provides access to the folders on a drive. The properties and methods exposed by the Folder
object are:

Property Description

Attributes Returns the attributes of the folder. Can be a combination of any of the values:
Normal (0), ReadOnly (1), Hidden (2), System (4), Volume (name) (8), Directory
(folder) (16), Archive (32), Alias (64) and Compressed (2048). Can also be used to
set the ReadOnly, Hidden, System and Archive attributes.

DateCreated Returns the date and time that the folder was created where available.

DateLastAccessed Returns the date and time that the folder was last accessed.

DateLastModified Returns the date and time that the folder was last modified.

Drive Returns the drive letter of the drive on which the folder resides.

Files Returns a Files collection containing File objects representing all the files within
this folder.

IsRootFolder Returns a Boolean value indicating if the folder is the root folder of the current
drive.

Name Sets or returns the name of the folder.

ParentFolder Returns the Folder object for the parent folder of this folder.

Path Returns the absolute path of the folder using long file names where appropriate.

ShortName Returns the DOS−style 8.3 version of the folder name.

The Scripting.FileSystemObject Object

498

ShortPath Returns the DOS−style 8.3 version of the absolute path of this folder.

Size Returns the total combined size of all files and subfolders contained in the folder.

SubFolders Returns a Folders collection consisting of all folders contained in the folder,
including hidden and system folders.

Type Returns a string that is a description of the folder type (such as "Recycle Bin") if
available.

Method Description

Copy (destination, overwrite) Copies this folder and all its contents to the folder specified in
destination, including all the files contained in this folder. If
destination ends with a path separator character ('\') then
destination is assumed to be a folder into which the copied
folder will be placed; otherwise, it is assumed to be a full path
and name for a new folder to be created. An error will occur if
the destination folder already exists and the optional overwrite
parameter is set to false. The default for overwrite is true.

Delete (force) Deletes this folder and all its contents. If the optional force
parameter is set to true the folder will be deleted even if the
read−only attribute is set on it or on any contained files. The
default for force is false.

Move(destination) Moves this folder and all its contents to the folder specified in
destination. If destination ends with a path separator character
('\') then destination is assumed to be the folder in which to
place the moved folder; otherwise, it is assumed to be a full path
and name for a new folder. An error will occur if the destination
folder already exists.

CreateTextFile (filename, overwrite,
unicode)

Creates a new text file within this folder with the specified
filename and returns a TextStream object that refers to it. If the
optional overwrite parameter is set to true any existing file with
the same name will be overwritten. The default for overwrite is
false. If the optional unicode parameter is set to true, the content
of the file will be stored as Unicoded text. The default for
unicode is false.

The File Object

The File object provides access to the files within each folder. The properties and methods exposed by the File
object are:

Property Description

Attributes Sets or returns the attributes of the file. Can be a combination of any of the
values: Normal (0), ReadOnly (1), Hidden (2), System (4), Volume (name) (8),
Directory (folder) (16), Archive (32), Alias (64) and Compressed (2048). Can
also be used to set the ReadOnly, Hidden, System and Archive attributes.

DateCreated Returns the date and time that the file was created where available.

DateLastAccessed Returns the date and time that the file was last accessed.

DateLastModified Returns the date and time that the file was last modified.

Drive Returns the drive letter of the drive on which the file resides.

Name Sets or returns the name of the file.

The Scripting.FileSystemObject Object

499

ParentFolder Returns the Folder object for the parent folder of this file.

Path Returns the absolute path of the file using long file names where appropriate.

ShortName Returns the DOS−style 8.3 version of the file name.

ShortPath Returns the DOS−style 8.3 version of the absolute path of this file.

Size Returns the size of the file in bytes

Type Returns a string that is a description of the file type (such as "Text Document" for
a .txt file) if available.

Method Description

Copy (destination,
overwrite)

Copies this file to the folder specified in destination. If destination ends with a
path separator character ('\') then destination is assumed to be a folder into which
the copied file will be placed; otherwise, it is assumed to be a full path and name
for a new file to be created. Note that leaving off the last '\' when the source doesn't
contain wildcards throws a Permission denied error since the name (assumed to be
a filename without an extension) exists as a folder name. An error will occur if the
destination file already exists and the optional overwrite parameter is set to false.
The default for overwrite is true.

Delete (force) Deletes this file. If the optional force parameter is set to true the file will be deleted
even if the read−only attribute is set. The default for force is false.

Move(destination) Moves this file to the folder specified in destination. If destination ends with a path
separator character ('\') then destination is assumed to be the folder in which to
place the moved file; otherwise, it is assumed to be a full path and name for a new
file. An error will occur if the destination file already exists.

OpenAsTextStream
(iomode, format)

Opens a specified file and returns a TextStream object that can be used to read
from, write to, or append to the file. The iomode parameter specifies the type of
access required. The permissible values are ForReading (1, the default),
ForWriting (2), and ForAppending (8). If the create parameter is set to true when
writing or appending to a file that does not exist, a new file will be created. The
default for create is false. The format parameter specifies the format of the data to
be read from or written to the file. Permissible values are TristateFalse (0, the
default) to open it as ASCII, TristateTrue (−1) to open it as Unicode, and
TristateUseDefault (−2) to open it using the system default format.

The Scripting.TextStream Object

The TextStream object provides access to files stored on disk, and is used in conjunction with the
FileSystemObject object. The properties and methods exposed by the TextStream object are:

Property Description

AtEndOfLine Returns true if the file pointer is at the end of a line in the file.

AtEndOfStream Returns true if the file pointer is at the end of the file.

Column Returns the column number of the current character in the file starting from 1.

Line Returns the current line number in the file starting from 1.
Note that the AtEndOfLine and AtEndOfStream properties are only available for a file that is opened with the
iomode parameter set with the value ForReading. Referring to them otherwise causes an error to occur.

Method Description

Close() Closes an open file.

 The Scripting.TextStream Object

500

Read(numchars) Reads numchars characters from the file.

ReadAll() Reads the entire file as a single string.

ReadLine() Reads a line from the file as a string.

Skip(numchars) Skips and discards numchars characters when reading
from the file.

SkipLine() Skips and discards the next line when reading from the
file.

Write(string) Writes string to the file.

WriteLine(string) Writes string (optional) and a newline character to the
file.

WriteBlankLines(n) Writes n newline characters to the file.

 The Scripting.TextStream Object

501

Appendix G: Windows Script Host 2.0
This appendix contains a summary of the objects that make up the Windows Script Host object model and the
XML−based tags used for creating Windows Script (.WSF) files.

Windows Script Host Object Model Reference

The Windows Script Host object model consists of nine objects:

The WScript object contains properties and methods that allow developers to access name and path
information for the script file being executed, determine which version of the Microsoft Scripting engines is
currently installed, work with external objects, provide user interaction and delay or terminate script
execution. In addition, this object provides access to the standard input, output and error streams.

The WshArguments object provides access to command−line arguments passed to the WSH scripts, and is
used to implement drag−and−drop functionality.

The WshShell object provides a convenient way to gain access to system environment variables, create
shortcuts, access Windows special folders such as the Desktop, and add or remove entries from the registry. In
addition, this object offers more customized user interaction through its Popup method than offered by the
WScript object itself.

The WshNetwork object provides connectivity to networked printer and file share resources, as well as
information pertaining to the user currently logged on to the computer.

The WshShortcut object and WshUrlShortcut objects allow for the creation of redirection links to resources
on the local file system, network file shares and Web pages on the Internet or local Intranet.

The WshCollection object is the base representation for all collections returned by objects, properties or
methods internal to Windows Script Host, exposing properties which make enumeration of the collection
possible, as well as referencing individual items within the collection.

The WshEnvironment object accesses system specifics including execution path and root directory for
Windows files. Windows NT and Windows 2000 provide access to far more information from this object,
including operating system version, processor type and number of processors. Under Windows NT and
Windows 2000, this defaults to returning system variables. With Windows 95/98, only process variables are
available.

The WshSpecialFolders object provides access to Windows shell folders, including the Start menu, Favorites
folder, and the Windows Desktop.

The WScript object

Entry point for accessing the complete WSH object model; all other WSH objects are eventually accessed
through this one in some form.

WScript properties

Property Description

502

Application Exposes the WScript object's IDispatch interface, which provides programmatic
access to an application's internal objects, properties and methods. Read−only.
Returns Object.

Arguments Returns a collection of all arguments passed to the current script either on the
command line or in the shortcut used to access the file. Read−only.

BuildVersion Returns specific build version of Windows Script Host, as Long. Read−only.

FullName Returns a String containing the complete path to the file being executed.
Read−only.

Interactive Sets or returns a Boolean containing the current interactivity state. False
corresponds to the console−mode switch //B, and True corresponds to switch
//I. Read/Write.

Name Returns a String containing the friendly name of the WScript object.
Read−only.

Path Returns a String containing the parent directory of the active WSH environment
(cscript.exe or wscript.exe). Read−only.

ScriptFullName Returns a String containing the complete path to the script currently executing.
Read−only.

ScriptName Returns a String containing the file name of the script currently executing.
Read−only.

StdErr Provides access to script's error output stream. Only available to scripts being
executed from within the command−line host environment. Write−only.
Implemented as a TextStream object from the Scripting Runtime library.

StdIn Provides access to script's input stream. Only available to scripts being
executed from within the command−line host environment. Read−only.
Implemented as a TextStream object from the Scripting Runtime library.

StdOut Provides access to script's output stream. Only available to scripts being
executed from within the command−line host environment. Write−only.
Implemented as a TextStream object from the Scripting Runtime library.

Timeout Returns a Long containing the current timeout value in seconds. Corresponds to
console−mode switch //T: nn. Read/Write.

Version Returns a string containing the version number of Windows Script Host.

WScript methods

Method Description

Sub ConnectObject (objName As Object,
strPrefix As String)

Used to hook into the event model of an object previously
created via the CreateObject method or <object> tag.
objName refers to object to connect, strPrefix is string used
for naming event handlers in script.

Function CreateObject
(strProgID As String, [strPrefix As String]) As
Object

Creates an instance of an Automation object from a passed
strProgID and provides your script with an optional hook
strPrefix which allows you to access properties and call
methods of the created object.

Sub DisconnectObject
(objName As Object)

Disconnects event source object objName from your script.
Inverse of ConnectObject. The object itself is not affected.

Sub Echo
(arg1 [,argN] As Variant)

Provides host−dependent user feedback. If cscript.exe is host,
arguments are displayed on the command line. If wscript.exe

Appendix G: Windows Script Host 2.0

503

is host, arguments are displayed in a Windows popup dialog.
Comma−separated arguments are displayed as a string with
spaces separating the arguments.

Function GetObject(strPath As String,
[strProgID As String], [strPrefix As String])
As Object

Similar to CreateObject. Creates an instance of an
Automation object from a file strPath and optional programID
strProgID. This gives you access to an object that already
exists somewhere on your computer − like an already running
instance of a program which has registered in the Running
Objects Table, or an application with an unknown automation
interface. Can be used with optional strPrefix to sink events
from object to script.

Sub Quit([nCode As Long]) Terminates host execution and returns argument as error code.
In other words, it kills the cscript or wscript instance. The
optional argument nCode allows you to set an error code for
the process' exit. If not included, the return value is 0.

Sub Sleep(nDelay As Long) Suspends execution of active script for time specified (in
milliseconds). After nDelay has passed, control is returned to
the script.

WshArguments object

Provides access to command−line arguments and basic drag−and−drop functionality (files/folders dropped
onto the script, or passed to the file from the Send To menu. Advanced drag−and−drop such as the capability
to drop fragments of a Word document onto a WSH script is not implemented.

Accessing the WshArguments object

Accessed via the Arguments property of the WScript object.

Set WshArguments = WScript.CreateObject("WScript.Arguments")

WshArguments properties

Exposes the Count and length properties contained in the WshCollection object. See following section on
WshCollection for details.

WshArguments methods

Exposes the Item method of the WshCollection object. See following section on WshCollection for details.
Item is the default member of the WshCollection interface.

WshShell object

Provides access to shell functionality such as creating shortcuts, interacting with the registry, and executing
arbitrary applications.

Accessing the WshShell object

Accessed via the Shell property of the WScript object.

Appendix G: Windows Script Host 2.0

504

Set WshShell = WScript.CreateObject("WScript.Shell")

WshShell Properties

Property Description

Environment Returns a WshEnvironment Object. Read−only.

SpecialFolders Returns a WshSpecialFolders Object. Read−only.

WshShell Methods

Method Description

Function AppActivate
(strTitle) As Boolean

Activates an application window, based on passed strTitle,
which corresponds to a full or partial window title.

Function CreateShortcut
(strPath As String) As Object

Returns a WshShortcut or WshUrlShortcut object at location
referred to by String strPath, depending on the extension of
the created shortcut. Shortcuts created with the extension
.LNK become WshShortcut objects. Those created with the
extension .URL are WshUrlShortcut objects.

Function ExpandEnvironmentStrings
(strSrc As String) As String

Returns a String representing the expanded value of the
requested environment string strSrc. Variables passed into the
method are surrounded with the '%' character (e.g.:
%windir%).

Function LogEvent
(intType, strMessage As String, [strTarget As
String]) As Boolean

Writes an event of type intType, containing text strMessage to
the event log. In Windows NT, this is written to the NT Event
log, defaulting to local system; strTarget can be used to
determine to which system the event should be logged. In
Windows 9x, this is written to the file WSH.log in the
%windir% directory.

Function Popup
(strText As String, [nDelay], [strTitle],
[nType]) As Long

Shows a modal dialog window containing script−defined
settings message strText, optional title strTitle and display
characteristics nType. Optional parameter nDelay sets delay
before dialog should self−dismiss (defaults to 0, meaning
remain until script times out)The return value from Popup is
determined by the button that is clicked in the window.

Sub RegDelete
(strName As String)

Removes key or value strName from the Windows registry.
Note that Windows NT 4.0 and Windows 2000 do not allow
the deletion of registry keys which contain subkeys, only keys
which contain just values.

Function RegRead
(strName As String) As Variant

Reads key or value strName from the Windows registry.

Sub RegWrite
(strName As String, varValue, [varType])

Writes key or value strName to the Windows registry, with
value varValue and optional data type varType.

Function Run
(strCmd As String, [intWindowStyle],
[bWait]) As Long

Executes an application or command−line statement strCmd
in a new process, with optional window style intWindowStyle
and optional Boolean bWait to indicate whether the calling
script should wait for the return from execution.

Sub SendKeys(strKeys As String) Programmatically sends keystroke sequences strKeys to an
application as if the input were entered from a keyboard.

Appendix G: Windows Script Host 2.0

505

The WshNetwork Object

Used to connect to resources such as file servers and network printers.

Accessing the Wsh object

Access via the Network property of the WScript object.

Set WshNetwork = WScript.CreateObject("Wscript.Network")

WshNetwork Properties

Property Description

ComputerName Returns a String containing the computer name. Read−only.

UserDomain Returns a String containing the user domain. Read−only.

UserName Returns a String containing the username. Read−only.

WshNetwork Methods

Method Description

Sub AddPrinterConnection
(strLocalName As String, strRemoteName As String,
[bUpdate], [strUserName], [strPassword])

Maps a network printer strRemoteName to a local port
strLocalName. Optional bUpdate causes mapping to be
stored in user profile; optional strUserName and
strPassword allow mapping user network credentials of
user other than currently logged on.

Sub AddWindowsPrinterConnection
(strPrinterName As String, [strDriver As String],
[strPort As String = "LPT1"])

Maps a network printer strPrinterName. Optional
strPort defines which local resource should be mapped
to network resource (defaults to LPT1:). strDriver
contains a printer driver name; required for Windows
9x, ignored on Windows NT4/Windows2000.

Function EnumNetworkDrives()
As IWshCollection_Class

Returns a standard WSH collection containing current
network drive mappings.

Function EnumPrinterConnections()
As IWshCollection_Class

Returns a standard WSH collection containing current
network printer mappings.

Sub MapNetworkDrive
(strLocalName As String, strRemoteName As String,
[bUpdate], [strUserName], [strPassword])

Maps a shared network resource strRemoteName to a
local drive letter strLocalName. Optional bUpdate
causes mapping to be stored in user profile; optional
strUserName and strPassword allow mapping user
network credentials of user other than currently logged
on.

Sub RemoveNetworkDrive
(strName As String, [bForce], [bUpdate])

Removes a network drive strName, whether mapped to
a local drive letter or remotely connected. If set to
True, optional bForce removes resource whether used
or not. Optional bUpdate causes mapping to be stored
in user profile.

Sub RemovePrinterConnection
(strName As String, [bForce], [bUpdate])

Removes a networked printer connection strName,
whether mapped to a local port or remotely connected.
If set to True, optional bForce removes resource

Appendix G: Windows Script Host 2.0

506

whether used or not. Optional bUpdate causes mapping
to be stored in user profile.

Sub SetDefaultPrinter
(strName As String)

Establishes printer connection strName as default
printer.

The WshShortcut Object

The same method of the WshShell object is used for creating both WshShortcut and WshURLShortcut objects
(or reading/modifying existing objects) the primary difference being the file extension given to the actual
shortcut file: A WshShortcut object is created when the extension is .lnk, and a WshURLShortcut object is
created when the extension is .url.

Accessing the WshShortcut object

Access via the CreateShortcut method of the WshShell object.

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshShortcut = WshShell.CreateShortcut(strPath)

WshShortcut Properties

Property Description

Arguments Sets or retrieves a String containing the arguments passed to the
WshShortcut object. Read/Write.

Description Sets or retrieves descriptive test representing the WshShortcut object.
Read/Write.

FullName Returns a string containing the complete path to the WshShortcut object.
Read−only.

Hotkey Allows a keyboard shortcut to be created for the WshShortcut object.
Hotkeys can only activate shortcuts which exist on the Windows desktop
or the Start menu. Read/Write.

IconLocation Assigns an icon to the WshShortcut object by passing a String containing
the path to the icon. Can also be used to retrieve the icon path. Read/Write.

TargetPath Assigns/retrieves path of executable , or document with a registered file
association to which the WshShortcut object.is attached. Read/Write.

WindowStyle Assigns/retrieves a Long containing window style of the WshShortcut
object. Read/Write.

WorkingDirectory Sets/retrieves a String containing active directory path for the WshShortcut
object. Read/Write.

WshShortcut Methods

Method Description

Sub Save() Saves shortcut object to location specified by argument to CreateShortcut.
This method is required to complete creation of a new shortcut.

Appendix G: Windows Script Host 2.0

507

The WshUrlShortcut Object

This object provides a means to create a special shortcut type: a reference to a Web page on the Internet or a
company Intranet.

Accessing the WshUrlShortcut object

Access via the CreateShortcut method of the WshShell object.

Set WshShell = WScript.Createobject("WScript.Shell")
Set WshShortcut = WshShell.CreateShortcut(strPath)

WshUrlShortcut Properties

Property Description

FullName Returns a read−only String containing the complete path to the WshUrlShortcut
object.

TargetPath Assigns/retrieves a String containing path to HTML page (locally or on a corporate
Intranet or the Intenet) with which the WshUrlShortcut object is associated.

WshUrlShortcut Methods

Method Description

Sub Save() Saves shortcut object to location specified by argument to CreateShortcut. This
method is required to complete creation of a new shortcut.

The WshCollection Object

This object is the base representation for all collections returned by objects, properties or methods internal to
Windows Script Host.

Accessing the WshCollection object

There are five ways to access collections in WSH:

the Arguments property of WScript,•
(Note: this is not technically implemented as a WshCollection object it implements the
IArguments_Class interface, whereas WshCollection objects implement the IWshCollection_Class
interface. However, it is noted here, as the properties and method of these two interfaces are
identical.)

•

the EnumNetworkDrives method of WshNetwork,•
the EnumPrinterConnections method of WshNetwork,•
(Note: these two collections, while implemented as WshCollection objects, have a different internal
structure. See Chapter 10 for more details.)

•

the SpecialFolders property of WshShell,•
the WshEnvironment object.

' Init vars
Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshNetwork = WScript.CreateObject("WScript.Network")
Set collArgs = WScript.Arguments
Set collDrives = WshNetwork.EnumNetworkDrives

•

Appendix G: Windows Script Host 2.0

508

Set collPrinters = WshNetwork.EnumPrinterConnections
Set collFolders = WshShell.SpecialFolders
Set collEnvVars = WshShell.Environment

WshCollection Properties

Property Description

Item Retrieves an item from a collection, by index (as Long). This is the default property for
all collections exposed as part of the Windows Script Host object model.

Length Returns the number of items in the collection as Long. Return value is identical to return
value from Count. Implemented for JScript compatibility.

Count Returns the number of items in the collection as Long.

WshCollection Methods

None.

The WshEnvironment Object

When a developer needs to access system specifics such as the operating system version or information
pertaining to processor type, the place to look is within the system's environment variables.

Accessing the WshEnvironment object

Use the Environment property of the WshShell object.

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshEnvironment = WshShell.Environment

WshEnvironment Properties

Exposes all properties contained in the WshCollection object.

WshEnvironment Methods

Method Description

Sub Remove
(strName As String)

Deletes environment variable strName.

The WshSpecialFolders Object

This object returns strings containing the pathnames to Windows shell folders, including the Start menu,
Favorites folder, and the Windows Desktop. The actual file location of Windows special folders is dependent
on the operating system and location of the default Windows installation directory, so they may not be in the
same place on one computer that they are on another. The WshSpecialFolders collection helps developers get
around this, making it very easy to access these folders.

Accessing the WshSpecialFolders object

Use the SpecialFolders property of WshShell.

Appendix G: Windows Script Host 2.0

509

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshSpecialFolders = WshShell.SpecialFolders

WshSpecialFolders Properties

Exposes all properties contained in the WshCollection object.

WshSpecialFolders Methods

None.

Windows Script File Element Reference

There are nine XML−based elements supported by the Windows Script (.WSF) file format, as follows.

<?xml?>

Standard XML declaration − forces WSH to parse the file according to XML syntax rules, enforcing
case−sensitivity. This is an empty element. This element is optional, and must be the first tag to appear when
used. When used, all <script> blocks should have their contents wrapped inside a CDATA declaration, as
described along with the <script> entry.

<?job?>

This element is a processing instruction that specifies error−handling attributes. This is an empty element, and
should appear prior to the opening <job> tag.

<comment>

Allows developers to include comment blocks within script file. Container element. Optional. Child of either
<package> or <job>.

<package>

Provides a way for developers to include multiple jobs within a single file. Container element. Optional if
only one <job> is defined; required if multiple <job>s are defined.

<job>

Allows for definition of multiple jobs within a single file. Container element. Required. If multiple jobs are
defined in a single .WSF file, this element must be a child of the <package> element.

<object>

Used to define scriptable external objects without the use of methods such as CreateObject or GetObject.
Objects defined using the <object> tag are available globally. Empty element. Optional. Child of <job>.

<reference>

Provides an inclusion mechanism to be used as a way to access type library information such as constants

Appendix G: Windows Script Host 2.0

510

defined in the library. Empty element. Optional. Child of <job>.

<resource>

Allows a developer to declare string or numeric data to be used within a WSH application, while keeping this
data separate from the actual script code. Commonly used for strings that require localization. Container
element. Optional. Child of <job>.

<script>

Uses the familiar HTML syntax. Can be used for external script inclusion by setting the src attribute to a valid
file or UNC path, or for embedding script code directly into your WSH application. Container element. Child
of <job>. In order to achieve correct interpretation, script code should be enclosed in a CDATA section if the
<?xml?> processing instruction is declared, as in the following example:

<?xml version="1.0"?>
<job>
 <script language="VBScript">
 <![CDATA[
 ' code here
]]>
 </script>
</job>

Using this syntax forces the XML parser to ignore the content of the script itself, so that no characters in the
code itself are interpreted as characters which have special meaning to XML.

<?xml?> Element Attributes

Note: all instances where Boolean values are defined using 'True' could also use the values 'yes', 1 or 'on',
while all 'False' values could be assigned as 'no', 0 or 'off'.

Attribute Description

version="1.0" A string in the form majorver.minorver specifying the XML level of
the file. Use the value 1.0 (the only existing version of XML
specification at this time).

standalone = "yes" Denotes whether file includes reference to external Document Type
Definition (DTD). WSF files do not use such a reference, so this
always has the value "yes." Optional.

<?job?> Element Attributes

Attribute Description

error="true|false" Set to 'true' to enable error message reporting. Defaults to 'false'.

debug="true|false" Set to 'true' to enable debugging. Defaults to 'false'. If this value is
not set, or is set to 'False', debugging of .WSF files will not occur
even if the console−mode //D and //X switches are set.

Appendix G: Windows Script Host 2.0

511

<comment> Element Attributes

None.

<package> Element Attributes

None.

<job> Element Attributes

Attribute Description

id="strID" Identifier string; must be unique to file.

<object> Element Attributes

Attribute Description

id="strID" Identifier string; must be unique to file.

classid="clsid:guid" Reference to the globally unique class ID registration string
(GUID) for the object.

progID="progID" The program ID of the object.
You must specify either a classid or a progid attribute.

<reference> Element Attributes

Attribute Description

version="version" The version number of the type library to use. Should be declared in
"majorVer.minorVer" format, and is only vald when used with the
object attribute.

object="progID" The program ID of the object.

guid="typelibGUID" The GUID of the type library to reference.
You must specify either an object or a GUID attribute.

<resource> Element Attributes

Attribute Description

id Identifier string; must be unique to file.
To retrieve a stored <resource>, use the getResource method, as in the following example:

<?xml version="1.0"?>
<job>
 <resource id="resHello">Hello, World!</resource>
 <script language="VBScript">
 WScript.Echo getResource("resHello")
 </script>
</job>

Appendix G: Windows Script Host 2.0

512

<script> Element Attributes

Attribute Description

language="strLang" Name of scripting language used in script block, such as "VBScript" or
"JScript". Optional. Defaults to "JScript" Also supports "VBS", "JS",
"VBScript.Encode", and "JScript.Encode".

src="strPath" Path to external script file to include into WSF file.

Appendix G: Windows Script Host 2.0

513

Appendix H: The Browser Object Model IE4
The Dynamic HTML Object Model contains 12 objects and 15 collections. Most of these are organized into a
strict hierarchy that allows HTML authors to access all the parts of the browser, and the pages that are loaded,
from a scripting language like JavaScript or VBScript.

The Object Model In Outline

The diagram below shows the object hierarchy in graphical form. It is followed by a list of the objects and
collection, with a brief description. Then, each object is documented in detail, showing the properties,
methods, and events it supports.

Note that not all the objects and collections are included in the diagram. Some are not part of the overall
object model, but are used to access other items such as dialogs or HTML elements.

Object Name Description

Document An object that exposes the contents of the HTML document through a number of
collections and properties.

Event A global object that exposes properties that represent the parameters of all events
as they occur.

History Exposes information about the URLs that the client has previously visited.

Location Exposes information about the currently displayed document's URL.

MimeType An object that provides information about a MIME type.

Navigator Exposes properties that provide information about the browser, or user agent.

Selection Represents the currently active selection on the screen in the document.

Style Represents an individual style element within a style sheet.

TextRange Represents sections of the text stream making up the HTML document.

Screen Exposes information about the client's monitor screen and system rendering
abilities.

Window Exposes properties, methods and events connected to the browser window or a
frame.

514

StyleSheet Exposes all the styles within a single style sheet in the styleSheets collection.

Collection Name Description

all Collection of all the tags and elements in the body of the document.

anchors Collection of all the anchors in the document.

applets Collection of all the objects in the document, including intrinsic controls, images,
applets, embeds, and other objects.

areas Collection of all the areas that make up the image map.

cells Collection of all the <TH> and <TD> cells in the row of a table.

elements Collection of all controls and elements in the form.

embeds Collection of all the embed tags in the document.

forms Collection of all the forms in the page.

frames Collection of all the frames defined within a <FRAMESET> tag.

images Collection of all the images in the page.

links Collection of all the links and <AREA> blocks in the page.

options Collection of all the items in a <SELECT> element.

plugins An alias for collection of all the embeds in the page.

rows Collection of all the rows in the table, including <THEAD>, <TBODY>, and
<TFOOT>.

scripts Collection of all the <SCRIPT> sections in the page.

filters Collection of all the filter objects for an element.

imports Collection of all the imported style sheets defined for a stylesheet object.

stylesheets Collection of all the individual style property objects defined for a document.

mimeTypes Collection of all the document and file types supported by the browser.

The Objects in Detail

This section documents all the properties, methods and events available for each object in the browser
hierarchy.

The Document Object

Exposes the entire HTML content through its own collections and properties, and provides a range of events
and methods to work with documents.

Property Name Attribute Name CSS Name Description

activeElement Identifies the element that has the
focus.

alinkColor ALINK The color for active links in the page
− i.e. while the mouse button is held
down.

bgColor BGCOLOR background−color Specifies the background color to be
used for an element.

body Read−only reference to the
document's implicit body object, as
defined by the <BODY> tag.

cookie

The Object Model In Outline

515

The string value of a cookie stored by
the browser.

domain Sets or returns the domain of the
document for use in cookies and
security.

fgColor TEXT Sets the color of the document
foreground text.

lastModified The date that the source file for the
page was last modified, as a string,
where available.

linkColor LINK The color for unvisited links in the
page.

location The full URL of the document.

parentWindow Returns the parent window that
contains the document.

readyState Specifies the current state of an
object being downloaded.

referrer The URL of the page that referenced
(loaded) the current page.

selection Read−only reference to the
document's selection object.

title TITLE Provides advisory information about
the element, such as when loading or
as a tooltip.

url URL Uniform Resource Locator (address)
for the current document or in a
<META> tag.

vlinkColor VLINK The color for visited links in the
page.

Collections Description

all Collection of all the tags and elements in the body of the document.

anchors Collection of all the anchors in the document.

applets Collection of all the objects in the document, including intrinsic controls,
images, applets, embeds, and other objects.

embeds Collection of all the embed tags in the document.

forms Collection of all the forms in the page.

frames Collection of all the frames defined within a <FRAMESET> tag.

images Collection of all the images in the page.

links Collection of all the links and <AREA> blocks in the page.

plugins An alias for collection of all the embeds in the page.

scripts Collection of all the <SCRIPT> sections in the page.

styleSheets Collection of all the individual style property objects defined for a document.

Method Name Description

clear Clears the contents of a selection or document object.

close

The Object Model In Outline

516

Closes a document forcing written data to be displayed, or closes the
browser window.

createElement Creates an instance of an image or option element object.

elementFromPoint Returns the element at the specified x and y coordinates with respect to the
window.

execCommand Executes a command over the document selection or range.

open Opens the document as a stream to collect output of write or writeln
methods.

queryCommandEnabled Denotes if the specified command is available for a document or TextRange.

queryCommandIndeterm Denotes if the specified command is in the indeterminate state.

queryCommandState Returns the current state of the command for a document or TextRange
object.

queryCommandSupported Denotes if the specified command is supported for a document or
TextRange object.

queryCommandText Returns the string associated with a command for a document or TextRange
object.

queryCommandValue Returns the value of the command specified for a document or TextRange
object.

write Writes text and HTML to a document in the specified window.

writeln Writes text and HTML to a document in the specified window, followed by
a carriage return.

Event Name Description

onafterupdate Occurs when transfer of data from the element to the data provider is
complete.

onbeforeupdate Occurs before transfer of changed data to the data provider when an
element loses focus or the page is unloaded.

onclick Occurs when the user clicks the mouse button on an element, or
when the value of a control is changed.

ondblclick Occurs when the user double−clicks on an element.

ondragstart Occurs when the user first starts to drag an element or selection.

onerror Occurs when an error loading a document or image arises.

onhelp Occurs when the user presses the F1 or Help key.

onkeydown Occurs when the user presses a key.

onkeypress Occurs when the user presses a key and a character is available.

onkeyup Occurs when the user releases a key.

onload Occurs when the element has completed loading.

onmousedown Occurs when the user presses a mouse button.

onmousemove Occurs when the user moves the mouse.

onmouseout Occurs when the mouse pointer leaves the element.

onmouseover Occurs when the mouse pointer first enters the element.

onmouseup Occurs when the user releases a mouse button.

onreadystatechange Occurs when the readyState for an object has changed.

onselectstart Occurs when the user first starts to select contents of an element.

The Object Model In Outline

517

The Event Object

The global object provided to allow the scripting language to access an event's parameters. It provides the
following properties:

Property Name Description

altKey Returns the state of the Alt key when an event occurs.

button The mouse button, if any, that was pressed to fire the event.

cancelBubble Set to prevent the current event from bubbling up the hierarchy.

clientX Returns the x coordinate of the element, excluding borders, margins,
padding, scrollbars, etc.

clientY Returns the y coordinate of the element, excluding borders, margins,
padding, scrollbars, etc.

ctrlKey Returns the state of the Ctrl key when an event occurs.

fromElement Returns the element being moved from for an onmouseover or
onmouseout event.

keyCode ASCII code of the key being pressed. Changing it sends a different
character to the object.

offsetX Returns the x coordinate of the mouse pointer when an event occurs,
relative to the containing element.

offsetY Returns the y coordinate position of the mouse pointer when an event
occurs, relative to the containing element.

reason Indicates whether data transfer to an element was successful, or why it
failed.

returnValue Allows a return value to be specified for the event or a dialog window.

screenX Returns the x coordinate of the mouse pointer when an event occurs, in
relation to the screen.

screenY Returns the y coordinate of the mouse pointer when an event occurs, in
relation to the screen.

shiftKey Returns the state of the Shift key when an event occurs.

srcElement Returns the element deepest in the object hierarchy that a specified event
occurred over.

srcFilter Returns the filter that caused the element to produce an onfilterchange
event.

toElement Returns the element being moved to for an onmouseover or onmouseout
event.

type Returns the name of the event as a string, without the 'on' prefix, such as
'click' instead of 'onclick'.

x Returns the x coordinate of the mouse pointer relative to a positioned
parent, or otherwise to the window.

y Returns the y coordinate of the mouse pointer relative to a positioned
parent, or otherwise to the window.

The Object Model In Outline

518

The History Object

Contains information about the URLs that the client has visited, as stored in the browser's History list, and
allows the script to move through the list.

Properties Description

length Returns the number of elements in a collection.

Methods Description

back Loads the previous URL in the browser's History list.

forward Loads the next URL in the browser's History list.

go Loads a specified URL from the browser's History list.
The Location Object

Contains information on the current URL. It also provides methods that will reload a page.

PropertyName AttributeName Description

hash The string following the # symbol in the URL.

host The hostname:port part of the location or URL.

hostname The hostname part of the location or URL.

href HREF The entire URL as a string.

pathname The file or object path name following the third slash in
a URL.

port The port number in a URL.

protocol The initial substring up to and including the first colon,
indicating the URL's access method.

search The contents of the query string or form data following
the ? (question mark) in the complete URL.

MethodName Description

assign Loads another page. Equivalent to changing the window.location.href property.

reload Reloads the current page.

replace Loads a document, replacing the current document's session history entry with its
URL.

The MimeType Object

Provides information about the page's MIME data type.

Properties Attribute Description

description Returns a description of the MimeType.

enabledPlugin Returns the plug−in that can handle the specified MimeType.

name NAME Specifies the name of the element, control, bookmark, or
applet.

suffixes A list of filename suffixes suitable for use with the specified
MimeType.

The Object Model In Outline

519

The Navigator Object

This object represents the browser application itself, providing information about it's manufacturer, version,
and capabilities.

Property Name Description

appCodeName The code name of the browser.

appName The product name of the browser.

appVersion The version of the browser.

cookieEnabled Indicates if client−side cookies are enabled in the browser.

userAgent The user−agent (browser name) header sent in the HTTP protocol from the client
to the server.

Collection Description

mimeTypes Collection of all the document and file types supported by the browser.

plugins An alias for collection of all the embeds in the page.

Method Name Description

javaEnabled Returns True or False, depending on whether a Java VM is installed and enabled.

taintEnabled Returns False, included for compatibility with Netscape Navigator
The Screen Object

The screen object provides information to the scripting language about the client's screen resolution and
rendering abilities.

Property Name Description

bufferDepth Specifies if and how an off−screen bitmap buffer should be used.

colorDepth Returns the number of bits per pixel of the user's display device or screen buffer.

height Returns the height of the user's display screen in pixels.

updateInterval Sets or returns the interval between screen updates on the client.

width Returns the width of the user's display screen in pixels.
The Selection Object

Returns the active selection on the screen, allowing access to all the selected elements including the plain text
in the page.

Properties Attribute Description

type TYPE The type of the selection, i.e. a control, text, a table, or none.

Methods Description

clear Clears the contents of the selection.

createRange Returns a copy of the currently selected range.

empty Deselects the current selection and sets selection type to none.
The Style Object

This provides access to the individual style properties for an element. These could have been previously set by
a style sheet, or by an inline style tag within the page.

The Object Model In Outline

520

Property Name Attribute Name CSS Name Description

background BACKGROUND background Specifies a background
picture that is tiled
behind text and
graphics.

backgroundAttachment background−attachmentDefines if a background
image should be fixed
on the page or scroll
with the content.

backgroundColor background−color Specifies the
background color of the
page or element.

backgroundImage background−image Specifies a URL for the
background image for
the page or element.

backgroundPosition background−position The initial position of a
background image on
the page.

backgroundPositionX The x coordinate of the
background image in
relation to the
containing window.

backgroundPositionY The y coordinate of the
background image in
relation to the
containing window.

BackgroundRepeat background−repeat Defines if and how a
background image is
repeated on the page.

border BORDER border Specifies the border to
be drawn around the
element.

borderBottom border−bottom Used to specify several
attributes of the bottom
border of an element.

borderBottomColor The color of the bottom
border for an element.

borderBottomStyle The style of the bottom
border for an element.

borderBottomWidth border−bottom−width The width of the bottom
border for an element.

borderColor BORDERCOLOR border−color The color of all or some
of the borders for an
element.

borderLeft border−left Used to specify several
attributes of the left
border of an element.

The Object Model In Outline

521

borderLeftColor The color of the left
border for an element.

borderLeftStyle The style of the left
border for an element.

borderLeftWidth border−left−width The width of the left
border for an element.

borderRight border−right Used to specify several
attributes of the right
border of an element.

BorderRightColor The color of the right
border for an element.

BorderRightStyle The style of the right
border for an element.

BorderRightWidth border−right−width The width of the right
border for an element.

borderStyle border−style Used to specify the style
of one or more borders
of an element.

borderTop border−top Used to specify several
attributes of the top
border of an element.

borderTopColor The color of the top
border for an element.

borderTopStyle The style of the top
border for an element.

borderTopWidth border−top−width The width of the top
border for an element.

borderWidth border−width Used to specify the
width of one or more
borders of an element.

clear CLEAR clear Causes the next element
or text to be displayed
below left−aligned or
right−aligned images.

clip clip Specifies how an
element's contents
should be displayed if
larger that the available
client area.

color COLOR color The text or foreground
color of an element.

cssText The text value of the
element's entire STYLE
attribute.

cursor cursor Specifies the type of
cursor to display when
the mouse pointer is

The Object Model In Outline

522

over the element.

display display Specifies if the element
will be visible
(displayed) in the page.

filter filter Sets or returns an array
of all the filters
specified in the
element's style property.

font font, @font−face Defines various
attributes of the font for
an element, or imports a
font.

fontFamily font−family Specifies the name of
the typeface, or 'font
family'.

fontSize font−size Specifies the font size.

fontStyle font−style Specifies the style of the
font, i.e. normal or
italic.

fontVariant font−variant Specifies the use of
small capitals for the
text.

fontWeight font−weight Specifies the weight
(boldness) of the text.

height HEIGHT height Specifies the height at
which the element is to
be drawn, and sets the
posHeight property.

left left Specifies the position of
the left of the element,
and sets the posLeft
property.

letterSpacing letter−spacing Indicates the additional
space to be placed
between characters in
the text.

lineHeight line−height The distance between
the baselines of two
adjacent lines of text.

listStyle list−style Allows several style
properties of a list
element to be set in one
operation.

listStyleImage list−style−image Defines the image used
as a background for a
list element.

listStylePosition list−style−position Defines the position of

The Object Model In Outline

523

the bullets used in a list
element.

Property Name Attribute Name CSS Name Description

listStyleType list−style−type Defines the design of the
bullets used in a list
element.

margin margin Allows all four margins
to be specified with a
single attribute.

marginBottom margin−bottom Specifies the bottom
margin for the page or
text block.

marginLeft margin−left Specifies the left margin
for the page or text block.

marginRight margin−right Specifies the right margin
for the page or text block.

marginTop margin−top Specifies the top margin
for the page or text block.

overflow overflow Defines how text that
overflows the element is
handled.

paddingBottom padding−bottom Sets the amount of space
between the bottom
border and content of an
element.

paddingLeft padding−left Sets the amount of space
between the left border
and content of an
element.

paddingRight padding−right Sets the amount of space
between the right border
and content of an
element.

paddingTop padding−top Sets the amount of space
between the top border
and content of an
element.

pageBreakAfter page−break−after Specifies if a page break
should occur after the
element.

pageBreakBefore page−break−before Specifies if a page break
should occur after the
element.

pixelHeight Sets or returns the height
style property of the
element in pixels, as a
pure number, rather than

The Object Model In Outline

524

a string.

pixelLeft Sets or returns the left
style property of the
element in pixels, as a
pure number, rather than
a string.

pixelTop Sets or returns the top
style property of the
element in pixels, as a
pure number, rather than
a string.

Property Name Attribute Name CSS Name Description

pixelWidth Sets or returns the width style
property of the element in pixels,
as a pure number, rather than a
string.

posHeight Returns the value of the height
style property in its last specified
units, as a pure number rather than
a string.

position position Returns the value of the position
style property, defining whether
the element can be positioned.

posLeft Returns the value of the left style
property in its last specified units,
as a pure number rather than a
string.

posTop Returns the value of the top style
property in its last specified units,
as a pure number rather than a
string.

posWidth Returns the value of the width
style property in its last specified
units, as a pure number rather than
a string.

styleFloat float Specifies if the element will float
above the other elements in the
page, or cause them to flow round
it.

textAlign text−align Indicates how text should be
aligned within the element.

Property Name Attribute Name CSS Name Description

textDecoration text−decoration Specifies several font
decorations (underline, overline,
strikethrough) added to the text
of an element.

textDecorationBlink Specifies if the font should blink

The Object Model In Outline

525

or flash. Has no effect in IE4.

textDecorationLineThrough Specifies if the text is displayed
as strikethrough, i.e. with a
horizontal line through it.

textDecorationNone Specifies if the text is displayed
with no additional decoration.

textDecorationOverline Denotes if the text is displayed as
overline, i.e. with a horizontal
line above it.

textDecorationUnderline Denotes if the text is displayed as
underline, i.e. with a horizontal
line below it.

textIndent text−indent Specifies the indent for the first
line of text in an element, and
may be negative.

textTransform text−transform Specifies how the text for the
element should be capitalized.

top top Position of the top of the
element, sets the posTop
property. Also returns topmost
window object.

verticalAlign vertical−align Sets or returns the vertical
alignment style property for an
element.

visibility visibility Indicates if the element or
contents are visible on the page.

width WIDTH width Specifies the width at which the
element is to be drawn, and sets
the posWidth property.

zIndex z−index Sets or returns the z−index for
the element, indicating whether it
appears above or below other
elements.

MethodName Description

getAttribute Returns the value of an attribute defined in an HTML tag.

removeAttribute Causes the specified attribute to be removed from the HTML element and the
current page.

setAttribute Adds and/or sets the value of an attribute in a HTML tag.
The StyleSheet Object

This object exposes all the styles within a single style sheet in the styleSheets collection

Property Name Attribute Name Description

disabled DISABLED Sets or returns whether an element is disabled.

href HREF The entire URL as a string.

id ID Identifier or name for an element in a page or

The Object Model In Outline

526

style sheet, or as the target for hypertext links.

owningElement Returns the style sheet that imported or
referenced the current style sheet, usually
through a <LINK> tag.

parentStyleSheet Returns the style sheet that imported the current
style sheet, or null for a non−imported style
sheet.

readOnly READONLY Indicates that an element's contents are read
only, or that a rule in a style sheet cannot be
changed.

type TYPE Specifies the type of list style, link, selection,
control, button, MIME−type, rel, or the CSS
language.

Collection Description

imports Collection of all the imported style sheets defined for a stylesheet object.
The TextRange Object

This object represents the text stream of the HTML document. It can be used to set and retrieve the text within
the page.

Property Name Description

htmlText Returns the contents of a TextRange as text and HTML source.

text The plain text contained within a block element, a TextRange or an
<OPTION> tag.

Method Name Description

collapse Shrinks a TextRange to either the start or end of the current range.

compareEndPoints Compares two text ranges and returns a value indicating the result.

duplicate Returns a duplicate of a TextRange object.

execCommand Executes a command over the document selection or range.

expand Expands the range by a character, word, sentence or story so that partial
units are completely contained.

findText Sets the range start and end points to cover the text if found within the
current document.

getBookmark Sets String to a unique bookmark value to identify that position in the
document.

inRange Denotes if the specified range is within or equal to the current range.

isEqual Denotes if the specified range is equal to the current range.

move Changes the start and end points of a TextRange to cover different text.

moveEnd Causes the range to grow or shrink from the end of the range.

moveStart Causes the range to grow or shrink from the beginning of the range.

moveToBookmark Moves range to encompass the range with a bookmark value previously
defined in String.

moveToElementText Moves range to encompass the text in the element specified.

moveToPoint Moves and collapses range to the point specified in x and y relative to the
document.

The Object Model In Outline

527

parentElement Returns the parent element that completely encloses the current range.

pasteHTML Pastes HTML and/or plain text into the current range.

queryCommandEnabled Denotes if the specified command is available for a document or TextRange.

queryCommandIndeterm Denotes if the specified command is in the indeterminate state.

queryCommandState Returns the current state of the command for a document or TextRange
object.

queryCommandSupported Denotes if the specified command is supported for a document or
TextRange object.

queryCommandText Returns the string associated with a command for a document or TextRange
object.

queryCommandValue Returns the value of the command specified for a document or TextRange
object.

scrollIntoView Scrolls the element or TextRange into view in the browser, optionally at the
top of the window.

select Makes the active selection equal to the current object, or highlights the input
area of a form element.

setEndPoint Sets the end point of the range based on the end point of another range.
The Window Object

The window object refers to the current window. This can be a top−level window, or a window that is within
a frame created by a <FRAMESET> in another document.

Property Name AttributeName CSS Name Description

client A reference that returns the
navigator object for the browser.

closed Indicates if a window is closed.

defaultStatus The default message displayed in
the status bar at the bottom of the
window.

dialogArguments Returns the arguments that were
passed into a dialog window, as an
array.

dialogHeight Sets or returns the height of a
dialog window.

dialogLeft Sets or returns the x coordinate of a
dialog window.

dialogTop Sets or returns the y coordinate of a
dialog window.

dialogWidth Sets or returns the width of a dialog
window.

document Read−only reference to the
window's document object.

event EVENT Read−only reference to the global
event object.

history Read−only reference to the
window's history object.

The Object Model In Outline

528

length Returns the number of elements in
a collection.

name NAME Specifies the name of the window,
frame, element, control, bookmark,
or applet.

navigator Read−only reference to the
window's navigator object.

offScreenBuffering Specifies whether to use off−screen
buffering for the document.

opener Returns a reference to the window
that created the current window.

parent Returns the parent window or
frame in the window/frame
hierarchy.

returnValue Allows a return value to be
specified for the event or a dialog
window.

screen Read−only reference to the global
screen object.

self Provides a reference to the current
window.

Property Name AttributeName CSS Name Description

status Text displayed in the window's
status bar, or an alias for the
value of an option button.

top top Position of the top of the
element, sets the posTop
property. Also returns topmost
window object.

window Read−only reference to the
current window object, same as
_self.

MethodName Description

alert Displays an Alert dialog box with a message and an OK button.

blur Causes a control to lose focus and fire its onblur event.

clearInterval Cancels an interval timer that was set with the setInterval method.

clearTimeout Cancels a timeout that was set with the setTimeout method.

close Closes a document forcing written data to be displayed, or closes the browser
window.

confirm Displays a Confirm dialog box with a message and OK and Cancel buttons.

execScript Executes a script. The default language is JScript.

focus Causes a control to receive the focus and fires its onfocus event.

navigate Loads another page (VBScript only). Equivalent to changing the
window.location.href property.

open Opens the document as a stream to collect output of write or writeln methods.

The Object Model In Outline

529

prompt Displays a Prompt dialog box with a message and an input field.

scroll Scrolls the window to the specified x and y offset relative to the entire
document.

setInterval Denotes a code routine to execute repeatedly every specified number of
milliseconds.

setTimeout Denotes a code routine to execute a specified number of milliseconds after
loading the page.

showHelp Opens a window to display a Help file.

showModalDialog Displays a HTML dialog window, and returns the returnValue property of its
document when closed.

EventName Description

onbeforeunload Occurs just before the page is unloaded, allowing the unload event to be
cancelled.

onblur Occurs when the control loses the input focus.

onerror Occurs when an error loading a document or image arises.

onfocus Occurs when a control receives the input focus.

onhelp Occurs when the user presses the F1 or Help key.

onload Occurs when the element has completed loading.

onresize Occurs when the element or object is resized by the user.

onscroll Occurs when the user scrolls a page or element.

onunload Occurs immediately before the page is unloaded.

Collections Description

frames Collection of all the frames defined within a <FRAMESET> tag.

HTML and Form Controls Cross Reference

Dynamic HTML provides the same integral control types as HTML 3.2. However, there are many more
different properties, methods and events available now for all the controls.

The following tables show those that are most relevant to controls

Control
Properties

checked dataFlddataFormatAsdataSrcdefaultCheckeddefaultValuemaxLengthreadOnlyrecordNumberselectedIndexsizestatustypevalue

HTML
button

N Y Y Y N N N Y Y N N N Y Y

HTML
checkbox

Y Y N Y Y N N Y Y N Y Y Y Y

HTML file N N N N N Y N Y Y N N N Y Y

HTML
hidden

N Y N Y N N N N N N N N Y Y

HTML
image

N N N N N N N N Y N N N Y N

HTML
password

N Y N Y N Y Y Y N N Y N Y Y

HTML radio Y Y N Y Y N N Y Y N Y N Y Y

 HTML and Form Controls Cross Reference

530

HTML reset N N N N N N N N Y N N N Y Y

HTML
submit

N N N N N N N N Y N N N Y Y

HTML text N Y N Y N Y Y Y Y N Y N Y Y

BUTTON
tag

N Y Y Y N N N N N N N Y Y Y

FIELDSET
tag

N N N N N N N N Y N N N N N

LABEL tag N N N N N N N N N N N N N N

LEGEND
tag

N N N N N N N N Y N N N N N

SELECT tagN Y N Y N N N N Y Y N N Y Y

TEXTAREA
tag

N Y N Y N N N Y N N N Y Y Y

Control Methods add blur click createTextRangefocus item remove select

HTML button N Y Y N Y N N Y

HTML checkbox N Y Y N Y N N Y

HTML file N Y Y N Y N N Y

HTML hidden N N N N N N N N

HTML image N Y Y N Y N N Y

HTML password N Y Y N Y N N Y

HTML radio N Y Y N Y N N Y

HTML reset N Y Y N Y N N Y

HTML submit N Y Y N Y N N Y

HTML text N Y Y Y Y N N Y

BUTTON tag N Y v Y Y N N Y

FIELDSET tag N Y Y N Y N N N

LABEL tag N N Y N N N N N

LEGEND tag N Y Y N Y N N N

SELECT tag Y Y Y N Y Y Y N

TEXTAREA tag N Y Y Y Y N N Y

Control
Events

onafterupdateonbeforeupdateonblur onchangeonclick ondblclick onfocus onrowenter onrowexit onselect

HTML
button

N N Y N Y Y Y N N Y

HTML
checkbox

Y Y Y Y Y Y Y N N Y

HTML file N N Y Y Y Y Y N N Y

HTML
hidden

N N N N N N N N N N

HTML
image

N N Y Y N Y Y N N Y

HTML
password

N N Y Y Y Y Y N N Y

 HTML and Form Controls Cross Reference

531

HTML radio Y Y Y Y Y Y Y N N Y

HTML reset N N Y N Y Y Y N N Y

HTML
submit

N N Y N Y Y Y N N Y

HTML text Y Y Y Y Y Y Y N N Y

BUTTON
tag

Y Y Y N Y Y Y Y Y N

FIELDSET
tag

Y Y Y N Y Y Y Y Y N

LABEL tag N N N N Y Y N N N N

LEGEND
tag

Y Y Y N Y Y Y Y Y N

SELECT tagY Y Y Y Y Y Y Y Y N

TEXTAREA
tag

Y Y Y Y Y Y Y Y Y Y

 HTML and Form Controls Cross Reference

532

Appendix I: The Browser Object Model IE5
The IE5 Dynamic HTML object model contains 23 objects and 29 collections. Most of these are organized
into a strict hierarchy that allows HTML authors to access all the parts of the browser, and the pages that are
loaded, from a scripting language like JavaScript or VBScript.

The Object Model In Outline

The diagram (overleaf) shows the object hierarchy in graphical form. It is followed by a list of the objects and
collection, with a brief description. Then, each object is documented in detail, showing the properties,
methods, and events it supports.

Note that we haven't included all of the objects and collections in the diagram. Some are not part of the overall
object model, but are used to access other items such as dialogs and HTML elements.

Object Name Description

Attribute An object−representation of an attribute or property.

clipboardData Used with editing operations to provide access to data contained on the
clipboard.

currentStyle Represents the cascaded format and style of its parent object.

custom A user−defined element.

dataTransfer Used with drag−and−drop operations to provide access to data contained on the
clipboard.

document An object that exposes the contents of the HTML document through a number of
collections and properties.

event A global object that exposes properties that represent the parameters of all events
as they occur.

external Allows access to the object model of any application hosting Internet Explorer
components.

history Exposes information about the URLs that the client has previously visited.

location Exposes information about the currently displayed document's URL.

mimeType An object that provides information about a MIME type.

navigator Exposes properties that provide information about the browser, or user agent.

rule A style (i.e. a selector and one or more declarations) within a cascading style
sheet (CSS).

533

runtimeStyle Represents the cascaded format and style of its parent object, overriding global
stylesheets, inline styles and HTML attributes. Overwrites the values of the
currentStyle object but not the style object.

screen Exposes information about the client's monitor screen and system rendering
abilities.

selection Represents the currently active selection on the screen in the document.

style Represents an individual style element within a style sheet.

styleSheet Exposes all the styles within a single style sheet in the styleSheets collection.

textNode A string of text, represented as a node on the document hierarchy.

textRange Represents sections of the text stream making up the HTML document.

textRectangle A set of the four coordinates that represent the rectangle containing a line of text
of TextRange object.

userProfile Allows a script to request read access to and perform read actions on a user's
profile.

window Exposes properties, methods and events connected to the browser window or a
frame.

Collection Name Description

all Collection of all the tags and elements in the body of the document.

anchors Collection of all the anchors in the document.

applets Collection of all the objects in the document, including intrinsic controls,
images, applets, embeds, and other objects.

areas Collection of all the areas that make up the image map.

attributes Collection of all the attributes of the object.

behaviorUrns Collection of all the behaviors attached to the element (as a set of URN strings).

bookmarks Collection of all the ADO bookmarks tied to the rows affected by the current
event.

boundElements Collection of all the elements on the page that are bound to a dataset.

cells Collection of all the <TH> and <TD> cells in the row of a table.

childNodes Collection of all the object's children.

children Collection of all the object's direct descendents.

controlRange Collection of the BODY's elements.

elements Collection of all controls and elements in the form.

embeds Collection of all the embed tags in the document.

filters Collection of all the filter objects for an element.

forms Collection of all the forms in the page.

frames Collection of all the frames defined within a <FRAMESET> tag.

images Collection of all the images in the page.

imports Collection of all the imported style sheets defined for a stylesheet object.

links Collection of all the links and <AREA> blocks in the page.

mimeTypes Collection of all the document and file types supported by the browser.

options Collection of all the items in a <SELECT> element.

plugins An alias for collection of all the embeds in the page.

rows

 Appendix I: The Browser Object Model IE5

534

Collection of all the rows in the table, including <THEAD>, <TBODY>, and
<TFOOT>.

rules Collection of all the rule objects defined in a styleSheet.

scripts Collection of all the <SCRIPT> sections in the page.

stylesheets Collection of all the individual style property objects defined for a document.

tBodies Collection of all TBODY objects in the table.

TextRectangle Collection of all the TextRectangle objects in the object.

The Objects in Detail

This section lists all the properties, methods and events available for each object in the browser hierarchy.

It's worth noting that there's a set of attributes that are common to almost all of the DHTML elements. These
attributes provide properties, methods, and events for manipulating the specific object. This commonality
makes it simpler to use the exact same scripting style and techniques to deal with nearly every element in the
document object model. Thus, you'll see a certain amount of repetition in these lists.

The Attribute Object

An object−representation of an attribute or property.

Properties nodeName nodeType nodeValue specified

Methods None

Events None

Collections None
The clipboardData Object

Used with editing operations to provide access to data contained on the clipboard.

Properties None

Methods None

Events None

Collections None
The currentStyle Object

Represents the cascaded format and style of its parent object.

Properties backgroundAttachment
backgroundColor
backgroundImage
backgroundPositionX
backgroundPositionY
backgroundRepeat
borderBottomColor
borderBottomStyle
borderBottomWidth
borderColor
borderLeftColor

layoutGridLine
layoutGridMode
layoutGridType
left
letterSpacing
lineHeight
listStyleImage
listStylePosition
listStyleType
margin
marginBottom

The Object Model In Outline

535

borderLeftStyle
borderLeftWidth
borderRightColor
borderRightStyle
borderRightWidth
borderStyle
borderTopColor
borderTopStyle
borderTopWidth
borderWidth bottom

marginLeft
marginRight
marginTop
overflow
overflowX
overflowY
padding
paddingBottom
paddingLeft

Properties clear
clipBottom
clipLeft
clipRight
clipTop
color
cursor
direction
display
fontFamily
fontSize
fontStyle
fontVariant
fontWeight
height
layoutGrid
layoutGridChar
layoutGridCharSpacing

paddingRight
paddingTop
pageBreakAfter
pageBreakBefore
position
right
styleFloat
tableLayout
textAlign
textDecoration
textIndent
textTransform
top
unicodeBidi
verticalAlign
visibility
width
zIndex

Methods None

Events None

Collections None
The custom Object

A user−defined element.

Properties accessKey
canHaveChildren
className
clientHeight
clientLeft
clientTop
clientWidth
currentStyle
dir
document
id
innerHTML
innerText
isTextEdit

offsetWidth
outerHTML
outerText
parentElement
parentTextEdit
readyState
recordNumber
runtimeStyle
scopeName
scrollHeight
scrollLeft
scrollTop
scrollWidth
sourceIndex

The Object Model In Outline

536

lang
language
offsetHeight
offsetLeft
offsetParent
offsetTop

style
tabIndex
tagName
tagUrn
title

Methods addBehavior
applyElement
attachEvent
blur
clearAttributes
click
componentFromPoint
contains
createControlRange
detachEvent
doScroll
focus
getAdjacentText
getAttribute
getBoundingClientRect

getClientRects
getElementsByTagName
getExpression
insertAdjacentHTML
insertAdjacentText
mergeAttributes
releaseCapture
removeAttribute
removeBehavior
removeExpression
replaceAdjacentText
scrollIntoView
setAttribute
setCapture
setExpression

Events onafterupdate
onbeforecopy
onbeforecut
onbeforeeditfocus
onbeforepaste
onbeforeupdate
onblur
onclick
oncontextmenu
oncopy
oncut
ondblclick
ondrag
ondragend
ondragenter
ondragleave
ondragover
ondragstart
ondrop

onerrorupdate
onfilterchange
onfocus
onhelp
onkeydown
onkeypress
onkeyup
onlosecapture
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
onpaste
onpropertychange
onreadystatechange
onresize
onscroll
onselectstart

Collections all behaviorUrns children filters
The dataTransfer Object

Used with drag−and−drop operations to provide access to data contained on the clipboard.

Properties dropEffect effectAllowed

Methods clearData getData setData

Events None

Collections None

The Object Model In Outline

537

The document Object

An object that exposes the contents of the HTML document through a number of collections and properties.

Properties activeElement
aLinkColor
bgColor
cookie
defaultCharset
designMode
documentElement
domain
expando
fgColor
fileCreatedDate
fileModifiedDate

fileSize
lastModified
linkColor
location
parentWindow
protocol
readyState
referrer
selection
uniqueID
URL
vlinkColor

Methods attachEvent
clear
clearAttributes
close
createElement
createStyleSheet
createTextNode
detachEvent
elementFromPoint
execCommand
getElementById
getElementsByName

getElementsByTagName
mergeAttributes
open
queryCommandEnabled
queryCommandIndeterm
queryCommandState
queryCommandSupported
queryCommandValue
recalc
releaseCapture
write
writeln

Events onbeforecut
onbeforeeditfocus
onbeforepaste
onclick
oncontextmenu
oncut
ondblclick
ondrag
ondragend
ondragenter
ondragleave
ondragover
ondragstart
ondrop

onhelp
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
onpaste
onpropertychange
onreadystatechange
onstop

Collections all
anchors
applets
childNodes
children
embeds

forms
frames
images
links
scripts
styleSheets

The Object Model In Outline

538

The event Object

A global object that exposes properties that represent the parameters of all events as they occur.

Properties altKey
button
cancelBubble
clientX
clientY
ctrlKey
dataFld
dataTransfer
fromElement
keyCode
offsetX
offsetY
propertyName
qualifier

reason
recordset
repeat
returnValue
screenX
screenY
shiftKey
srcElement
srcFilter
srcUrn
toElement
type
x
y

Methods None

Events None

Collections bookmarks boundElements
The external Object

Allows access to the object model of any application hosting Internet Explorer components.

Properties menuArguments

Methods AddChannel
AddDesktopComponent
AddFavorite
AutoCompleteSaveForm
AutoScan

ImportExportFavorites
IsSubscribed
NavigateAndFind
ShowBrowserUI

Events None

Collections None
The history Object

Exposes information about the URLs that the client has previously visited.

Properties length

Methods back forward go

Events None

Collections None
The location Object

Exposes information about the currently displayed document's URL.

Properties hash host hostname href pathname port protocol search

Methods assign reload replace

The Object Model In Outline

539

Events None

Collections None
The mimeType

An object that provides information about a MIME type.

Properties description enabledPlugin name

Methods None

Events None

Collections suffixes
The navigator Object

Exposes properties that provide information about the browser, or user agent.

Properties appCodeName
appMinorVersion
appName
appVersion
browserLanguage
cookieEnabled
cpuClass

onLine
platform
systemLanguage
userAgent
userLanguage
userProfile

Methods javaEnabled taintEnabled

Events None

Collections plugins
The rule Object

A style (i.e. a selector and one or more declarations) within a cascading style sheet (CSS).

Properties readOnly runtimeStyle selectorText style

Methods None

Events None

Collections None
The runtimeStyle Object

Represents the cascaded format and style of its parent object, overriding global stylesheets, inline styles and
HTML attributes. Overwrites the values of the currentStyle object but not the style object.

Properties background
backgroundAttachment
backgroundColor
backgroundImage
backgroundPosition
backgroundPositionX
backgroundPositionY
backgroundRepeat
border
borderBottom

unicodeBidi
verticalAlign
visibility
width
zIndex
borderTopStyle
borderTopWidth
borderWidth
bottom
clear

The Object Model In Outline

540

borderBottomColor
borderBottomStyle
borderBottomWidth
borderColor
borderLeft
borderLeftColor
borderLeftStyle
borderLeftWidth
borderRight
borderRightColor
borderRightStyle
borderRightWidth
borderStyle
borderTop
borderTopColor
pixelBottom
pixelHeight
pixelLeft
pixelRight
pixelTop
pixelWidth
posBottom
posHeight
position
posLeft
posRight
posTop
posWidth
right
styleFloat
tableLayout
textAlign
textDecoration
textDecorationBlink
textDecorationLineThrough
textDecorationNone
textDecorationOverline
textDecorationUnderline
textIndent
textTransform
top

clip
color
cssText
cursor
direction
display
filter
font
fontFamily
fontSize
fontStyle
fontVariant
fontWeight
height
layoutGrid
layoutGridChar
layoutGridCharSpacing
layoutGridLine
layoutGridMode
layoutGridType
left
letterSpacing
lineHeight
listStyle
listStyleImage
listStylePosition
listStyleType
margin
marginBottom
marginLeft
marginRight
marginTop
overflow
overflowX
overflowY
padding
paddingBottom
paddingLeft
paddingRight
paddingTop
pageBreakAfter
pageBreakBefore

Methods None

Events None

Collections None
The screen Object

Exposes information about the client's monitor screen and system rendering abilities.

Properties

The Object Model In Outline

541

availHeight
availWidth
bufferDepth
colorDepth

fontSmoothingEnabled
height
updateInterval
width

Methods None

Events None

Collections None
The selection Object

Represents the currently active selection on the screen in the document.

Properties type

Methods clear createRange empty

Events None

Collections None
The style Object

Represents an individual style element within a style sheet.

Properties background
backgroundAttachment
backgroundColor
backgroundImage
backgroundPosition
backgroundPositionX
backgroundPositionY
backgroundRepeat
border
borderBottom
borderBottomColor
borderBottomStyle
borderBottomWidth
borderColor
borderLeft
borderLeftColor
borderLeftStyle

lineHeight
listStyle
listStyleImage
listStylePosition
listStyleType
margin
marginBottom
marginLeft
marginRight
marginTop
overflow
overflowX
overflowY
padding
paddingBottom
paddingLeft
paddingRight

Properties borderLeftWidth
borderRight
borderRightColor
borderRightStyle
borderRightWidth
borderStyle
borderTop
borderTopColor
borderTopStyle
borderTopWidth
borderWidth
bottom
clear

paddingTop
pageBreakAfter
pageBreakBefore
pixelBottom
pixelHeight
pixelLeft
pixelRight
pixelTop
pixelWidth
posBottom
posHeight
position
posLeft

The Object Model In Outline

542

clip
color
cssText
cursor
direction
display
filter
font
fontFamily
fontSize
fontStyle
fontVariant
fontWeight
height
layoutGrid
layoutGridChar
layoutGridCharSpacing
layoutGridLine
layoutGridMode
layoutGridType
left
letterSpacing

posRight
posTop
posWidth
right
styleFloat
tableLayout
textAlign
textDecoration
textDecorationBlink
textDecorationLineThrough
textDecorationNone
textDecorationOverline
textDecorationUnderline
textIndent
textTransform
top
unicodeBidi
verticalAlign
visibility
width
zIndex

Methods getExpression removeExpression setExpression

Events None

Collections None
The styleSheet Object

Exposes all the styles within a single style sheet in the styleSheets collection.

Properties disabled id owningElement parentStyleSheet readOnly type

Methods addImport addRule removeRule

Events None

Collections imports rules
The textNode Object

A string of text, represented as a node on the document hierarchy.

Properties data length nextSibling nodeName nodeType nodeValue previousSibling

Methods splitText

Events None

Collections None
The textRange Object

Represents sections of the text stream making up the HTML document.

Properties boundingHeight
boundingLeft
boundingTop

htmlText
offsetLeft
offsetTop

The Object Model In Outline

543

boundingWidth text

Methods collapse
compareEndPoints
duplicate
execCommand
expand
findText
getBookmark
getBoundingClientRect
getClientRects
inRange
isEqual
move
moveEnd

moveStart
moveToBookmark
moveToElementText
moveToPoint
parentElement
pasteHTML
queryCommandEnabled
queryCommandIndeterm
queryCommandState
queryCommandSupported
queryCommandValue
scrollIntoView
select
setEndPoint

Events None

Collections None
The textRectangle Object

A set of the four coordinates that represent the rectangle containing a line of text of TextRange object.

Properties bottom left right top

Methods None

Events None

Collections None
The userProfile Object

Allows a script to request read access to and perform read actions on a user's profile.

Properties None

Methods addReadRequest clearRequest doReadRequest getAttribute

Events None

Collections None
The window Object

Exposes properties, methods and events connected to the browser window or a frame.

Properties clientInformation
clipboardData
closed
defaultStatus
dialogArguments
dialogHeight
dialogLeft
dialogTop
dialogWidth
document
event

location
name
navigator
offscreenBuffering
opener
parent
returnValue
screen
screenLeft
screenTop
self

The Object Model In Outline

544

external
history
length

status
top

Methods alert
attachEvent
blur
clearInterval
clearTimeout
close
confirm
detachEvent
execScript
focus
moveBy
moveTo
navigate

open
print
prompt
resizeBy
resizeTo
scroll
scrollBy
scrollTo
setInterval
setTimeout
showHelp
showModalDialog
showModelessDialog

Events onafterprint
onbeforeprint
onbeforeunload
onblur
onerror

onfocus
onhelp
onload
onresize
onunload

Collections Frames

HTML and Form Controls Cross Reference

Dynamic HTML provides the same integral control types as HTML 3.2. However, there are many more
different properties, methods and events available now for all the controls.

The following tables show those that are most relevant to controls.

Control
Properties

checked dataFld dataFormatAsdataSrc defaultCheckeddefaultValue maxLength readOnly recordNumberselectedIndexsize status type value

HTML
button

N Y Y Y N Y N N Y N Y N Y Y

HTML
checkbox

Y Y N Y Y Y N N Y N Y Y Y Y

HTML file N Y N Y N Y N N Y N Y N Y Y

HTML
hidden

N Y N Y N Y N N Y N N N Y Y

HTML
image

N Y N Y N Y N N Y N Y N Y Y

HTML
password

N Y N Y N Y Y Y Y N Y N Y Y

HTML radio Y Y N Y Y Y N N Y N Y Y Y Y

HTML reset N Y N Y N Y N N Y N Y N Y Y

HTML
submit

N Y N Y N Y N N Y N Y N Y Y

HTML text N Y N Y N Y Y Y Y N Y N Y Y

 HTML and Form Controls Cross Reference

545

APPLET tagN Y N Y N N N N Y N N N N N

BUTTON
tag

N Y Y Y N N N N Y N N N Y Y

FIELD
SET tag

N N N N N N N N Y N N N N N

LABEL tag N Y Y Y N N N N Y N N N N N

LEGEND
tag

N N N N N N N N N N N N N N

SELECT tagN Y N Y N N N N Y Y Y N Y N

TEXTAREA
tag

N Y N Y N Y N Y N N N N Y Y

XML tag N N N N N N N N N N N N N N

Control Methods add blur click createTextRangefocus item remove select

HTML button N Y Y Y Y N N Y

HTML checkbox N Y Y N Y N N Y

HTML file N Y Y N Y N N Y

HTML hidden N N N Y N N N N

HTML image N Y Y N Y N N Y

HTML password N Y Y Y Y N N Y

HTML radio N Y Y N Y N N Y

HTML reset N Y Y Y Y N N Y

HTML submit N Y Y Y Y N N Y

HTML text N Y Y Y Y N N Y

APPLET tag N Y Y N Y N N N

BUTTON tag N Y Y Y Y N N N

FIELDSET tag N Y Y N Y N N N

LABEL tag N Y Y N Y N N N

LEGEND tag N Y Y N Y N N N

SELECT tag N Y Y N Y N N N

TEXTAREA tag N Y Y Y Y N N Y

XML tag N N N N N N N N

Control
Events

onafterupdateonbeforeupdateonblur onchangeonclick ondblclick onfocus onrowenter onrowexit onselect

HTML
button

N N Y N Y Y Y N N N

HTML
checkbox

Y Y Y N Y Y Y N N N

HTML file N N Y N Y Y Y N N N

HTML
hidden

N N N N N N Y N N N

HTML
image

N N Y N Y Y Y N N N

HTML N N Y N Y Y Y N N N

 HTML and Form Controls Cross Reference

546

password

HTML radio N N Y N Y Y Y N N N

HTML reset N N Y N Y Y Y N N N

HTML
submit

N N Y N Y Y Y N N N

HTML text N N Y Y Y Y Y N N Y

APPLET tagN N Y N Y Y Y Y Y N

BUTTON
tag

N N Y N Y Y Y N N N

FIELDSET
tag

N N Y N Y Y Y N N N

LABEL tag N N Y N Y Y Y N N N

LEGEND
tag

N N Y N Y Y Y N N N

SELECT tagN N Y Y Y Y Y N N N

TEXTAREA
tag

Y Y Y Y Y Y Y N N Y

XML tag N N N N N N N Y Y N

 HTML and Form Controls Cross Reference

547

Appendix J: The Integral ASP Objects
This appendix summarizes the objects that make up the ASP object model, listing and describing all the
members of each object.

The ASP Object Model

The ASP object model is made up of six objects:

The Application object is created when the ASP DLL is loaded in response to the first request for an
ASP page from a virtual application. It provides a repository for storing variables and object
references that are available to all the pages that all visitors open.

•

The ASPError object is a new object in ASP 3.0, and is available through the GetLastError method
of the Server object. It provides a range of detailed information about the last error that occurred in
ASP.

•

The Request object makes available to the script all the information that the client provides when
requesting a page, or submitting a form. This includes the HTTP variables that identify the browser
and the user, cookies that are stored on the browser for this domain, and any values appended to the
URL as a query string or in HTML controls in a <FORM> section of the page. It also provides access
to a range of server environment variables, the contents of any certificate that the client may be using
through Secure Sockets Layer (SSL) or other encrypted communication protocol, and properties that
help to manage the connection.

•

The Response object is used to access and generate the response that is being created to send back to
the client. It makes available information about the content being sent to the browser, and any new
cookies that will be stored on the browser for this domain. It also provides a series of methods that are
used to create the returned page.

•

The Server object provides a series of methods and properties that are useful in scripting with ASP.
The most obvious is the Server.CreateObject method, which properly instantiates other COM objects
within the context of the current page or session. There are also methods to translate strings into the
correct format for use in URLs and in HTML, by converting non−legal characters to the correct legal
equivalent.

•

The Session object is created for each visitor when they first request an ASP page from a virtual
application, and remains available until the default timeout period (or the timeout period determined
by the script) expires or the session is explicitly ended with the Abandon method. It provides a
repository for storing variables and object references that are available just to the pages that this
visitor opens during the lifetime of this session.

•

The following diagram shows conceptually how these objects relate to the client and the server, and the
requests made by the client and the responses sent back to them from the server:

548

The Application Object

Provides a repository for storing variables and object references that are available to all the pages that all
visitors open.

The Application Collections

The Application object provides two collections that are used to access the variables and objects that are
stored in the global application space:

Collection Name Description

Contents A collection of all of the variables and their values that are stored in the
Application object, and are not defined using an <OBJECT> element. This
includes Variant arrays and Variant−type object instance references.

StaticObjects A collection of all of the variables that are stored in the Application object by
using an <OBJECT> element.

The Application Methods

The Application methods are used to remove values from the global application space, and control concurrent
accesses to variables within the space:

Method Description
Contents.Remove(variable_name) Removes a named variable from the

Application.Contents collection.
Contents.RemoveAll() Removes all variables from the Application.Contents

collection.
Lock() Locks the Application object so that only the current

ASP page has access to the contents. Used to ensure
that concurrency issues do not corrupt the contents by
allowing two users to simultaneously read and update
the values.

Unlock() Releases this ASP page's lock on the Application
object.

 The Application Object

549

* You cannot remove variables from the Application.StaticObjects collection at runtime.

The Application Events

The Application object exposes two events that occur when an application starts and ends:

Event Description
onStart Occurs when the ASP application starts, before the page that the user requests is

executed. Used to initialize variables, create objects, or run other code.
onEnd Occurs when the ASP application ends. This is after the last user session has ended, and

after any code in the onEnd event for that session has executed. All variables existing in
the application are destroyed when it ends.

The ASPError Object

Provides a range of detailed information about the last error that occurred in ASP.

The ASPError Properties

The ASPError object provides nine properties that describe the error that occurred, the nature and source of
the error, and (where possible) return the actual code that caused it:

Property Description
ASPCode Integer. The error number generated by IIS.
ASPDescription String. A detailed description of the error if it is ASP−related.
Category String. The source of the error, i.e. internal to ASP, the scripting language, or

an object.
Column Integer. The character position within the file that generated the error.
Description String. A short description of the error.
File String. The name of the file that was being processed when the error

occurred.
Line Integer. The number of the line within the file that generated the error.
Number Integer. A standard COM error code.
Source String. The actual code, where available, of the line that caused the error.

The Request Object

Makes available all the information that the client provides when requesting a page, or submitting a form.

The Request Collections

The Request object provides five collections that we can use to access all kinds of information about the
client's request to the Web server:

Collection Name Description
ClientCertificate A collection of the values of all the fields or entries in the client

certificate that the user presented to the server when accessing a page or
resource. Each member is read−only.

The Application Object

550

Cookies A collection of the values of all the cookies sent from the user's system
along with their request. Only cookies valid for the domain containing
the resource are sent to the server.

Form A collection of the values of all the HTML control elements in the
<FORM> section that was submitted as the request, where the value of
the METHOD attribute is "POST". Each member is read−only.

QueryString A collection of all the name/value pairs appended to the URL in the
user's request, or the values of all the HTML control elements in the
<FORM> section that was submitted as the request where the value of
the METHOD attribute is "GET" or the attribute is omitted. Each
member is read−only.

ServerVariables A collection of all the HTTP header values sent from the client with their
request, plus the values of several environment variables for the Web
server. Each member is read−only.

The Request Property

The single property of the Request object provides information about the number of bytes in the user's
request:

Property Description
TotalBytes Read−only. Returns the total number of bytes in the body of the request sent by the

client.

The Request Method

The single method of the Request object provides access to the complete content of the part of a user's request
that is POSTed to the server from a <FORM> section of a web page:

Method Description
BinaryRead(count) Retrieves count bytes of data from the client's request when the data is

sent to the server as part of a POST request. It returns as a Variant array
(or SafeArray). This method cannot be used successfully if the ASP code
has already referenced the Request.Form collection. Likewise, the
Request.Form collection cannot be successfully accessed if you have
used the BinaryRead method.

The Response Object

Used to access the response that is being creating to send back to the client.

The Response Collection

The Response object provides a single collection that is used to set the values of any cookies that will be
placed on the client system:

Collection Name Description
Cookies A collection containing the values of all the cookies this will be sent back to the

client in the current response. Each member is write only.

The Request Object

551

The Response Properties

The Response object provides a range of properties that can be read (in most cases) and modified to tailor the
response:

\Property Description
Buffer = true|false Read/write. Boolean. Specifies if the output created by an ASP page

will be held in the IIS buffer until all of the server scripts in the
current page have been processed, or until the Flush or End method
is called. It must be set before any output is sent to IIS, including
HTTP header information, so it should be the first line of the .asp
file after the <%@LANGUAGE=..%> statement. Buffering is on
(true) by default in ASP 3.0, whereas it was off (false) by default in
earlier versions.

CacheControl = "setting" Read/write. String. Set this property to Public to allow proxy servers
to cache the page, or Private to prevent proxy caching taking place.

Charset("value") Read/write. String. Appends the name of the character set (for
example, ISO−LATIN−7) to the HTTP Content−Type header
created by the server for each response.

ContentType "MIME−type" Read/write. String. Specifies the HTTP content type for the
response, as a standard MIME−type (such as "text/xml" or
"image/gif"). If omitted the MIME−type "text/html" is used. The
content type tells the browser what type of content to expect.

Expires = minutes Read/write. Number. Specifies the length of time in minutes that a
page is valid for. If the user returns to the same page before it
expires, the cached version is displayed. After that period it expires,
and should not be held in a private (user) or public (proxy) cache.

ExpiresAbsolute = #date[time]# Read/write. Date/Time. Specifies the absolute date and time when a
page will expire and no longer be valid. If the user returns to the
same page before it expires, the cached version is displayed. After
that time it expires, and should not be held in a private (user) or
public (proxy) cache.

IsClientConnected() Read−only. Boolean. Returns an indication of whether the client is
still connected to and loading the page from the server. Can be used
to end processing (with the Response.End method) if a client moves
to another page before the current one has finished executing.

PICS("PICS−label−string") Write only. String. Create a PICS header and adds it to the HTTP
headers in the response. PICS headers define the content of the page
in terms of violence, sex, bad language, etc.

Status = "code message" Read/write. String. Specifies the status value and message that will
be sent to the client in the HTTP headers of the response to indicate
an error or successful processing of the page. Examples are "200
OK" and "404 Not Found".

The Response Methods

The Response object provides a set of methods that directly manipulate the content of the page being created
on the server for return to the client:

The Response Object

552

Method Description

AddHeader("name", "content") Creates a custom HTTP header using the name and content values
and adds it to the response. Will not replace an existing header of the
same name. Once a header has been added, it cannot be removed.
Must be used before any page content (i.e. text and HTML) is sent
to the client.

AppendToLog("string") Adds a string to the end of the Web server log entry for this request
when W3C Extended Log File Format is in use. Requires at least the
URI Stem value to be selected in the Extended Properties page for
the site containing the page.

BinaryWrite(SafeArray) Writes the content of a Variant−type SafeArray to the current HTTP
output stream without any character conversion. Useful for writing
non−string information such as binary data required by a custom
application or the bytes to make up an image file.

Clear() Erases any existing buffered page content from the IIS response
buffer when Response.Buffer is true. Does not erase HTTP response
headers. Can be used to abort a partly completed page.

End() Stops ASP from processing the page script and returns the currently
created content, then aborts any further processing of this page.

Flush() Sends all currently buffered page content in the IIS buffer to the
client when Response.Buffer is true. Can be used to send parts of a
long page to the client individually.

Redirect("url") Instructs the browser to load the page in the string url parameter by
sending a "302 Object Moved" HTTP header in the response.

Write("string") Writes the specified string to the current HTTP response stream and
IIS buffer so that it becomes part of the returned page.

The Server Object

Provides a series of methods and properties that are useful in scripting with ASP and creating instances of
other objects.

The Server Property

The single property of the Server object provides access to the script timeout value for an executing ASP
page:

Property Description
ScriptTimeout Integer. Default = 90. Sets or returns the number of seconds that script in the

page can execute for before the server aborts page execution and reports an
error. This automatically halts and removes from memory pages that contain
errors that may lock execution into a loop or those that stall while waiting for a
resource to become available. This prevents the server becoming overloaded
with badly behaved pages. You may need to increase this value if your pages
take a long time to run.

 The Server Object

553

The Server Methods

The methods of the Server object provide ways to format data, manage page execution, and create instances
of other objects:

Method Description
CreateObject("identifier") Creates an instance of the object (a component, application or

scripting object) that is identified by "identifier", and returns a
reference to it that can be used in our code. Can be used in the
global.asa page of a virtual application to create objects with
session−level or application−level scope. The object can be
identified by its ClassID (i.e. "{CLSID:FDC8−...−37A9}")
value or by a ProgID string such as "ADODB.Connection".

Execute("url") Stops execution of the current page and transfers control to the
page specified in "url". The user's current environment (i.e.
session state and any current transaction state) is carried over to
the new page. After that page has finished execution, control
passes back to the original page and execution resumes at the
statement after the Execute method call.

GetLastError() Returns a reference to an ASPError object that holds details of
the last error that occurred within the ASP processing, i.e.
within asp.dll. The information exposed by the ASPError object
includes the file name, line number, error code, etc.

HTMLEncode("string") Returns a string that is a copy of the input value "string" but
with all non−legal HTML characters such as '<', '>', '&' and
double quotes converted into the equivalent HTML entityi.e.
<, >, &, ", etc.

MapPath("url") Returns the full physical path and filename of the file or
resource specified in "url".

Transfer("url") Stops execution of the current page and transfers control to the
page specified in "url". The user's current environment (i.e.
session state and any current transaction state) is carried over to
the new page. Unlike the Execute method, execution does not
resume in the original page, but ends when the new page has
completed executing.

URLEncode("string") Returns a string that is a copy of the input value "string" but
with all characters that are not valid in a URL, such as '?', '&'
and spaces, converted into the equivalent URL entityi.e. '%3F',
'%26', and '+'.

The Session Object

Provides a repository for storing variables and object references that are available just to the pages that this
visitor opens during the lifetime of this session.

The Session Collections

The Session object provides two collections that can be used to access the variables and objects that are stored
in the user's local session space:

The Server Object

554

Collection Name Description
Contents A collection of all of the variables and their values that are stored in this

particular Session object, and are not defined using an <OBJECT> element.
This includes Variant arrays and Variant−type object instance references.

StaticObjects A collection of all of the variables that are stored in this particular Session
object by using an <OBJECT> element.

The Session Properties

The Session object provides four properties that expose details of the session:

Property Description
CodePage Read/write. Integer. Defines the code page that will be used to display the page content

in the browser. The code page is the numeric value of the character set, and different
languages and locales may use different code pages. For example, ANSI code page
1252 is used for American English and most European languages. Code page 932 is
used for Japanese Kanji.

LCID Read/write. Integer. Defines the locale identifier (LCID) of the page that is sent to the
browser. The LCID is a standard international abbreviation that uniquely identifies the
locale; for instance 2057 defines a locale where the currency symbol used is '£'. This
LCID can also be used in statements such as FormatCurrency, where there is an
optional LCID argument. The LCID for a page can also be set in the opening
<%@..%> ASP processing directive and overrides the setting in the LCID property of
the session.

SessionID Read only. Long. Returns the session identifier for this session, which is generated by
the server when the session is created. Unique only for the duration of the parent
Application object and so may be re−used when a new application is started.

Timeout Read/write. Integer. Defines the timeout period in minutes for this Session object. If
the user does not refresh or request a page within the timeout period, the session ends.
Can be changed in individual pages as required.

The Session Methods

The Session methods are used to remove values from the user−level session space, and terminate sessions on
demand:

Method Description

Contents.Remove("variable_name") Removes a named variable from the
Session.Contents collection.

Contents.RemoveAll() Removes all variables from the Session.Contents
collection.

Abandon() Ends the current user session and destroys the
current Session object once execution of this page is
complete. You can still access the current session's
variables in this page, even after calling the Abandon
method. However the next ASP page that is
requested by this user will start a new session, and
create a new Session object with only the default
values defined in global.asa (if any exist).

* You cannot remove variables from the Session.StaticObjects collection at runtime.

The Session Object

555

The Session Events

The Session object exposes two events that occur when a user session starts and ends:

Event Description
onStart Occurs when an ASP user session starts, before the page that the user requests is

executed. Used to initialize variables, create objects, or run other code.
onEnd Occurs when an ASP user session ends. This is when the predetermined session timeout

period has elapsed since that user's last page request from the application. All variables
existing in the session are destroyed when it ends. It is also possible to end ASP user
sessions explicitly in code using the Session.Abandon method, and this event occurs
when that happens.

The Session Object

556

Appendix K: ADO Object Summary, Constants, and
Data Types

Microsoft ActiveX Data Objects 2.5 Library Reference

Properties or methods new to version 2.5 are shown italicized.

Important All properties are read/write unless otherwise
stated.

Objects

Name Description

Command A Command object is a definition of a specific command that you intend to execute
against a data source.

Connection A Connection object represents an open connection to a data store.

Error An Error object contains the details about data access errors pertaining to a single
operation involving the provider.

Errors The Errors collection contains all of the Error objects created in response to a single failure
involving the provider.

Field A Field object represents a column of data within a common data type.

Fields A Fields collection contains all of the Field objects of a Recordset object.

Parameter A Parameter object represents a parameter or argument associated with a Command object
based on a parameterized query or stored procedure.

Parameters A Parameters collection contains all the Parameter objects of a Command object.

Properties A Properties collection contains all the Property objects for a specific instance of an
object.

Property A Property object represents a dynamic characteristic of an ADO object that is defined by
the provider.

Record A Record object represents a row in a recordset, or a file or directory in a file sytem or
Web resource.

Recordset A Recordset object represents the entire set of records from a base table or the results of an
executed command. At any time, the Recordset object only refers to a single record within
the set as the current record.

Stream A Stream object represents a stream of text or binary data.

Command Object

Methods

Name Returns Description

Cancel Cancels execution of a pending Execute or Open call.

CreateParameter Parameter Creates a new Parameter object.

Execute Recordset Executes the query, SQL statement, or stored procedure specified in
the CommandText property.

557

Properties

Name Returns Description

ActiveConnection Variant Indicates to which Connection object the command
currently belongs.

CommandText String Contains the text of a command to be issued against a data
provider.

CommandTimeout Long Indicates how long to wait, in seconds, while executing a
command before terminating the command and generating
an error. Default is 30.

CommandType CommandTypeEnum Indicates the type of Command object.

Name String Indicates the name of the Command object.

Parameters Parameters Contains all of the Parameter objects for a Command
object.

Prepared Boolean Indicates whether or not to save a compiled version of a
command before execution.

Properties Properties Contains all of the Property objects for a Command object.

State Long Describes whether the Command object is open or closed.
Read only.

Connection Object

Methods

Name Returns Description

BeginTrans Integer Begins a new transaction.

Cancel Cancels the execution of a pending, asynchronous Execute or Open
operation.

Close Closes an open connection and any dependant objects.

CommitTrans Saves any changes and ends the current transaction.

Execute Recordset Executes the query, SQL statement, stored procedure, or
provider−specific text.

Open Opens a connection to a data source, so that commands can be
executed against it.

OpenSchema Recordset Obtains database schema information from the provider.

RollbackTrans Cancels any changes made during the current transaction and ends the
transaction.

Properties

Name Returns Description

Attributes Long Indicates one or more characteristics of a Connection
object. Default is 0.

CommandTimeout Long Indicates how long, in seconds, to wait while
executing a command before terminating the
command and generating an error. The default is 30.

ConnectionString String Contains the information used to establish a
connection to a data source.

Microsoft ActiveX Data Objects 2.5 Library Reference

558

ConnectionTimeout Long Indicates how long, in seconds, to wait while
establishing a connection before terminating the
attempt and generating an error. Default is 15.

CursorLocation CursorLocationEnum Sets or returns the location of the cursor engine.

DefaultDatabase String Indicates the default database for a Connection
object.

Errors Errors Contains all of the Error objects created in response
to a single failure involving the provider.

IsolationLevel IsolationLevelEnum Indicates the level of transaction isolation for a
Connection object. Write only.

Mode ConnectModeEnum Indicates the available permissions for modifying
data in a Connection.

Properties Properties Contains all of the Property objects for a Connection
object.

Provider String Indicates the name of the provider for a Connection
object.

State Long Describes whether the Connection object is open or
closed. Read only.

Version String Indicates the ADO version number. Read only.
Events

Name Description

BeginTransComplete Fired after a BeginTrans operation finishes executing.

CommitTransComplete Fired after a CommitTrans operation finishes executing.

ConnectComplete Fired after a connection starts.

Disconnect Fired after a connection ends.

ExecuteComplete Fired after a command has finished executing.

InfoMessage Fired whenever a ConnectionEvent operation completes successfully and
additional information is returned by the provider.

RollbackTransComplete Fired after a RollbackTrans operation has finished executing.

WillConnect Fired before a connection starts.

WillExecute Fired before a pending command executes on the connection.

Error Object

Properties

Name Returns Description

Description String A description string associated with the error. Read only.

HelpContext Integer Indicates the ContextID in the help file for the associated error. Read only.

HelpFile String Indicates the name of the help file. Read only.

NativeError Long Indicates the provider−specific error code for the associated error. Read only.

Number Long Indicates the number that uniquely identifies an Error object. Read only.

Source String Indicates the name of the object or application that originally generated the
error. Read only.

Microsoft ActiveX Data Objects 2.5 Library Reference

559

SQLState String Indicates the SQL state for a given Error object. It is a five−character string
that follows the ANSI SQL standard. Read only.

Errors Collection

Methods

Name Returns Description

Clear Removes all of the Error objects from the Errors collection.

Refresh Updates the Error objects with information from the provider.
Properties

Name Returns Description

Count Long Indicates the number of Error objects in the Errors collection. Read
only.

Item Error Allows indexing into the Errors collection to reference a specific Error
object. Read only.

Field Object

Methods

Name Returns Description

AppendChunk Appends data to a large or binary Field object.

GetChunk Variant Returns all or a portion of the contents of a large or binary Field
object.

Properties

Name Returns Description

ActualSize Long Indicates the actual length of a field's value. Read only.

Attributes Long Indicates one or more characteristics of a Field object.

DataFormat Variant Identifies the format that the data should be display in.

DefinedSize Long Indicates the defined size of the Field object. Write only.

Name String Indicates the name of the Field object.

NumericScale Byte Indicates the scale of numeric values for the Field object. Write only.

OriginalValue Variant Indicates the value of a Field object that existed in the record before
any changes were made. Read only.

Precision Byte Indicates the degree of precision for numeric values in the Field
object. Read only.

Properties Properties Contains all of the Property objects for a Field object.

Type DataTypeEnumIndicates the data type of the Field object.

UnderlyingValue Variant Indicates a Field object's current value in the database. Read only.

Value Variant Indicates the value assigned to the Field object.

Microsoft ActiveX Data Objects 2.5 Library Reference

560

Fields Collection

Methods

Name Returns Description

Append Appends a Field object to the Fields collection.

CancelUpdate Cancels any changes made to the Fields collection.

Delete Deletes a Field object from the Fields collection.

Refresh Updates the Field objects in the Fields collection.

Resync Resynchronizes the data in the Field objects.

Update Saves any changes made to the Fields collection.
Properties

Name Returns Description

Count Long Indicates the number of Field objects in the Fields collection. Read only.

Item Field Allows indexing into the Fields collection to reference a specific Field object.
Read only.

Parameter Object

Methods

Name Returns Description

AppendChunk Appends data to a large or binary Parameter object.
Properties

Name Returns Description

Attributes Long Indicates one or more characteristics of a Parameter
object.

Direction ParameterDirectionEnum Indicates whether the Parameter object represents an
input parameter, an output parameter, or both, or if
the parameter is a return value from a stored
procedure.

Name String Indicates the name of the Parameter object.

NumericScale Byte Indicates the scale of numeric values for the
Parameter object.

Precision Byte Indicates the degree of precision for numeric values
in the Parameter object.

Properties Properties Contains all of the Property objects for a Parameter
object.

Size Long Indicates the maximum size, in bytes or characters,
of a Parameter object.

Type DataTypeEnum Indicates the data type of the Parameter object.

Value Variant Indicates the value assigned to the Parameter object.

Microsoft ActiveX Data Objects 2.5 Library Reference

561

Parameters Collection

Methods

Name Returns Description

Append Appends a Parameter object to the Parameters collection.

Delete Deletes a Parameter object from the Parameters collection.

Refresh Updates the Parameter objects in the Parameters collection.
Properties

Name Returns Description

Count Long Indicates the number of Parameter objects in the Parameters
collection. Read only.

Item Parameter Allows indexing into the Parameters collection to reference a specific
Parameter object. Read only.

Properties

Methods

Name Returns Description

Refresh Updates the Property objects in the Properties collection with the details
from the provider.

Properties

Name Returns Description

Count Long Indicates the number of Property objects in the Properties collection.
Read only.

Item Property Allows indexing into the Properties collection to reference a specific
Property object. Read only.

Property Object

Properties

Name Returns Description

Attributes Long Indicates one or more characteristics of a Property object.

Name String Indicates the name of the Property object. Read only.

Type DataTypeEnum Indicates the data type of the Property object.

Value Variant Indicates the value assigned to the Property object.

Record

Methods

Name Returns Description

Cancel Cancels the execution of an asynchronous Execute or Open.

Close Closes the open record.

Microsoft ActiveX Data Objects 2.5 Library Reference

562

CopyRecord String Copies the object the Record represents, or a file or directory, from
one location to another.

DeleteRecord Deletes the object the Record represents, or a file or directory.

GetChildren Recordset Returns a Recordset containing the files and folders in the directory
that the Record represents.

MoveRecord String Moves the object the Record represents, or a file or directory, from
one location to another.

Open Opens, or creates a new, existing file or directory.
Properties

Name Returns Description

ActiveConnection Variant Indicates to which Connection object the specified Recordset
object currently belongs.

Fields Fields Contains all of the Field objects for the current Recordset
object. Read only

Mode ConnectModeEnumIndicates the available permissions for modifying data in a
Connection.

ParentURL String Indicates the absolute URL of the parent Record of the current
Record. Read only

Properties Properties Contains all of the Property objects for the current Recordset
object. Read only

RecordType RecordTypeEnum Indicates whether the record is a simple record, a structured
document, or a collection. Read only

Source Variant Indicates what the Record represents − a URL or a reference to
an open Recordset.

State ObjectStateEnum Indicates whether the Record is open or closed, and if open the
state of asynchronous actions. Read only

Recordset Object

Methods

Name Returns Description

AddNew Creates a new record for an updateable Recordset object.

Cancel Cancels execution of a pending asynchronous Open
operation.

CancelBatch Cancels a pending batch update.

CancelUpdate Cancels any changes made to the current record, or to a
new record prior to calling the Update method.

Clone Recordset Creates a duplicate Recordset object from and existing
Recordset object.

Close Closes the Recordset object and any dependent objects.

CompareBookmarks CompareEnum Compares two bookmarks and returns an indication of the
relative values.

Delete Deletes the current record or group of records.

Find Searches the Recordset for a record that matches the

Microsoft ActiveX Data Objects 2.5 Library Reference

563

specified criteria.

GetRows Variant Retrieves multiple records of a Recordset object into an
array.

GetString String Returns a Recordset as a string.

Move Moves the position of the current record in a Recordset.

MoveFirst Moves the position of the current record to the first record
in the Recordset.

MoveLast Moves the position of the current record to the last record
in the Recordset.

MoveNext Moves the position of the current record to the next record
in the Recordset.

MovePrevious Moves the position of the current record to the previous
record in the Recordset.

NextRecordset Recordset Clears the current Recordset object and returns the next
Recordset by advancing through a series of commands.

Open Opens a Recordset.

Requery Updates the data in a Recordset object by re−executing the
query on which the object is based.

Resync Refreshes the data in the current Recordset object from the
underlying database.

Save Saves the Recordset to a file.

Seek Searches the recordset index to locate a value

Supports Boolean Determines whether a specified Recordset object supports
particular functionality.

Update Saves any changes made to the current Recordset object.

UpdateBatch Writes all pending batch updates to disk.
Properties

Name Returns Description

AbsolutePage PositionEnum Specifies in which page the current record resides.

AbsolutePosition PositionEnum Specifies the ordinal position of a Recordset object's
current record.

ActiveCommand Object Indicates the Command object that created the
associated Recordset object. Read only.

ActiveConnection Variant Indicates to which Connection object the specified
Recordset object currently belongs.

BOF Boolean Indicates whether the current record is before the first
record in a Recordset object. Read only.

Bookmark Variant Returns a bookmark that uniquely identifies the current
record in a Recordset object, or sets the current record
to the record identified by a valid bookmark.

CacheSize Long Indicates the number of records from a Recordset
object that are cached locally in memory.

CursorLocation CursorLocationEnum Sets or returns the location of the cursor engine.

CursorType CursorTypeEnum Indicates the type of cursor used in a Recordset object.

Microsoft ActiveX Data Objects 2.5 Library Reference

564

DataMember String Specifies the name of the data member to retrieve from
the object referenced by the DataSource property.
Write only.

DataSource Object Specifies an object containing data to be represented as
a Recordset object. Write only.

EditMode EditModeEnum Indicates the editing status of the current record. Read
only.

EOF Boolean Indicates whether the current record is after the last
record in a Recordset object. Read only.

Fields Fields Contains all of the Field objects for the current
Recordset object.

Filter Variant Indicates a filter for data in the Recordset.

Index String Identifies the name of the index currently being used.

LockType LockTypeEnum Indicates the type of locks placed on records during
editing.

MarshalOptions MarshalOptionsEnum Indicates which records are to be marshaled back to the
server.

MaxRecords Long Indicates the maximum number of records to return to
a Recordset object from a query. Default is zero (no
limit).

PageCount Long Indicates how many pages of data the Recordset object
contains. Read only.

PageSize Long Indicates how many records constitute one page in the
Recordset.

Properties Properties Contains all of the Property objects for the current
Recordset object.

RecordCount Long Indicates the current number of records in the
Recordset object. Read only.

Sort String Specifies one or more field names the Recordset is
sorted on, and the direction of the sort.

Source String Indicates the source for the data in a Recordset object.

State Long Indicates whether the recordset is open, closed, or
whether it is executing an asynchronous operation.
Read only.

Status Integer Indicates the status of the current record with respect to
match updates or other bulk operations. Read only.

StayInSync Boolean Indicates, in a hierarchical Recordset object, whether
the parent row should change when the set of
underlying child records changes. Read only.

Events

Name Description

EndOfRecordset Fired when there is an attempt to move to a row past the end of the
Recordset.

FetchComplete Fired after all the records in an asynchronous operation have been
retrieved into the Recordset.

Microsoft ActiveX Data Objects 2.5 Library Reference

565

FetchProgress Fired periodically during a length asynchronous operation, to report
how many rows have currently been retrieved.

FieldChangeComplete Fired after the value of one or more Field object has been changed.

MoveComplete Fired after the current position in the Recordset changes.

RecordChangeComplete Fired after one or more records change.

RecordsetChangeComplete Fired after the Recordset has changed.

WillChangeField Fired before a pending operation changes the value of one or more Field
objects.

WillChangeRecord Fired before one or more rows in the Recordset change.

WillChangeRecordset Fired before a pending operation changes the Recordset.

WillMove Fired before a pending operation changes the current position in the
Recordset.

Stream

Methods

Name Returns Description

Cancel Cancels execution of a pending asynchronous Open operation.

Close Closes an open Stream.

CopyTo Copies characters or bytes from one Stream to another.

Flush Flushes the contents of the Stream to the underlying object.

LoadFromFile Loads a stream from a file.

Open Opens a Stream object from a URL or an existing Record, or creates a
blank Stream.

Read Variant Reads a number of bytes from the Stream.

ReadText String Reads a number of characters from a text Stream.

SaveToFile Saves an open Stream to a file.

SetEOS Sets the current position to be the end of the Stream.

SkipLine Skips a line when reading from a text Stream.

Write Writes binary data to a Stream.

WriteText Writes text data to a Stream.
Properties

Name Returns Description

Charset String Identifies the character set used by the Stream.

EOS Boolean Is set to True if the current position is the end of the
Stream. Read only

LineSeparator LineSeparatorEnum Indicates the character used to separate lines in a text
Stream. The default is vbCrLf.

Mode ConnectModeEnum Indicates the available permissions for modifying data in
a Connection.

Position Long Specifies the current position in the Stream.

Size Long Indicates the length, in bytes, of the Stream. Read only

State ObjectStateEnum

Microsoft ActiveX Data Objects 2.5 Library Reference

566

Indicates whether the Stream is open or closed, and if
open the state of asynchronous actions. Read only Read
only

Type StreamTypeEnum Indicates whether the Stream contains text or binary data.

Method Calls

Command

Command.Cancel

Parameter = Command.CreateParameter([Name As String], [Type As DataTypeEnu]m, _

[Direction As ParameterDirectionEnum], [Size As Long], [Value As Variant])

Recordset = Command.Execute([RecordsAffected As Variant], [Parameters As Varian]t, _

[Options As Long])

Connection

Long = Connection.BeginTrans

Connection.Cancel

Connection.Close

Connection.CommitTrans

Recordset = Connection.Execute(CommandText As String, [RecordsAffected As Variant], _

[Options As Long])

Connection.Open([ConnectionString As String], [UserID As String], [Password As String], _

[Options As Long])

Recordset = Connection.OpenSchema(Schema As SchemaEnum, [Restrictions As Variant], _

[SchemaID As Variant])

Connection.RollbackTrans

Errors

Errors.Clear

Errors.Refresh

Microsoft ActiveX Data Objects 2.5 Library Reference

567

Field

Field.AppendChunk(Data As Variant)

Variant = Field.GetChunk(Length As Long)

Fields

Fields.Append(Name As String, Type As DataTypeEnum, [DefinedSize As Long], _

[Attrib As FieldAttributeEnum], [FieldValue As Variant])

Fields.CancelUpdate

Fields.Delete(Index As Variant)

Fields.Refresh

Fields.Resync(ResyncValues As ResyncEnum)

Fields.Update

Parameter

Parameter.AppendChunk(Val As Variant)

Parameters

Parameters.Append(Object As Object)

Parameters.Delete(Index As Variant)

Parameters.Refresh

Properties

Properties.Refresh

Record

Record.Cancel

Record.Close

String = Record.CopyRecord([Source As String], Destination As String, [UserName As String], _

[Password As String], [Options As CopyRecordOptionsEnum], [Async As Boolean])

Record.DeleteRecord(Source As String, Async As Boolean)

Recordset = Record.GetChildren

Microsoft ActiveX Data Objects 2.5 Library Reference

568

String = Record.MoveRecord([Source As String], Destination As String, [UserName As String], _

[Password As String], [Options As MoveRecordOptionsEnum], [Async As Boolean])

Record.Open([Source As Variant], [ActiveConnection As Variant], [Mode As ConnectModeEnum], _

[CreateOptions As RecordCreateOptionsEnum], [Options As RecordOpenOptionsEnum], _

[UserName As String], [Password As String])

Recordset

Recordset.AddNew([FieldList As Variant], [Values As Variant])

Recordset.Cancel

Recordset.CancelBatch([AffectRecords As AffectEnum])

Recordset.CancelUpdate

Recordset = Recordset.Clone([LockType As LockTypeEnum])

Recordset.Close

CompareEnum = Recordset.CompareBookmarks(Bookmark1 As Variant, _

Bookmark2 As Variant)

Recordset.Delete(AffectRecords As AffectEnum)

Recordset.Find(Criteria As String, [SkipRecords As Long], _

[SearchDirection As SearchDirectionEnum], [Start As Variant])

Variant = Recordset.GetRows(Rows As Long, [Start As Variant], [Fields As Variant])

String = Recordset.GetString(StringFormat As StringFormatEnum, [NumRows As Long], _

[ColumnDelimeter As String], [RowDelimeter As String], [NullExpr As String])

Recordset.Move(NumRecords As Long, [Start As Variant])

Recordset.MoveFirst

Recordset.MoveLast

Recordset.MoveNext

Recordset.MovePrevious

Recordset = Recordset.NextRecordset([RecordsAffected As Variant])

Microsoft ActiveX Data Objects 2.5 Library Reference

569

Recordset.Open([Source As Variant], [ActiveConnection As Variant],_

[CursorType As CursorTypeEnum], [LockType As LockTypeEnum], [Options As Long])

Recordset.Requery([Options As Long])

Recordset.Resync([AffectRecords As AffectEnum], [ResyncValues As ResyncEnum])

Recordset.Save([Destination As Variant], [PersistFormat As PersistFormatEnum])

Recordset.Seek(KeyValues As Variant, SeekOption As SeekEnum)

Boolean = Recordset.Supports(CursorOptions As CursorOptionEnum)

Recordset.Update([Fields As Variant], [Values As Variant])

Recordset.UpdateBatch([AffectRecords As AffectEnum])

Stream

Stream.Cancel

Stream.Close

Stream.CopyTo(DestStream As Stream, [CharNumber As Long])

Stream.Flush

Stream.LoadFromFile(FileName As String)

Stream.Open([Source As Variant], [Mode As ConnectModeEnum],_

[Options As StreamOpenOptionsEnum], [UserName As String], [Password As String])

Variant = Stream.Read([NumBytes As Long])

String = Stream.ReadText([NumChars As Long])

Stream.SaveToFile(FileName As String, Options As SaveOptionsEnum)

Stream.SetEOS

Stream.SkipLine

Stream.Write(Buffer As Variant)

Stream.WriteText(Data As String, [Options As StreamWriteEnum])

Microsoft ActiveX Data Objects 2.5 Library Reference

570

ADO Constants

Standard Constants

The following constants are predefined by ADO. For scripting languages these are included in adovbs.inc or
adojava.inc, which can be found in the Program Files\Common Files\System\ado directory. For ASP you can
either include the .inc file, or set a reference to the type library with a METADATA tag:

<!−− METADATA TYPE="typelib" FILE="C:\Program Files\Common Files\System\ADO\msado15.dll" −−>

For Visual Basic these constants are automatically included when you reference the ADO library.

Constants new to ADO 2.5 are shown italicized.

AffectEnum

Name Value Description

adAffectAll 3 Operation affects all records in the recordset.

adAffectAllChapters 4 Operation affects all child (chapter) records.

adAffectCurrent 1 Operation affects only the current record.

adAffectGroup 2 Operation affects records that satisfy the current Filter
property.

BookmarkEnum

Name Value Description

adBookmarkCurrent 0 Default. Start at the current record.

adBookmarkFirst 1 Start at the first record.

adBookmarkLast 2 Start at the last record.
CEResyncEnum

Name Value Description

adResyncAll 15 Resynchronizes the data for each pending row.

adResyncAutoIncrement 1 Resynchronizes the auto−increment values for all
successfully inserted rows. This is the default.

adResyncConflicts 2 Resynchronizes all rows for which an update or delete
operation failed due to concurrency conflicts.

adResyncInserts 8 Resynchronizes all successfully inserted rows, including
the values of their identity columns.

adResyncNone 0 No resynchronization is performed.

adResyncUpdates 4 Resynchronizes all successfully updated rows.
CommandTypeEnum

Name Value Description

adCmdFile 256 Indicates that the provider should evaluate CommandText as a
previously persisted file.

adCmdStoredProc 4

 ADO Constants

571

Indicates that the provider should evaluate CommandText as a
stored procedure.

adCmdTable 2 Indicates that the provider should generate a SQL query to
return all rows from the table named in CommandText.

adCmdTableDirect 512 Indicates that the provider should return all rows from the table
named in CommandText.

adCmdText 1 Indicates that the provider should evaluate CommandText as a
textual definition of a command, such as a SQL statement.

adCmdUnknown 8 Indicates that the type of command in CommandText is
unknown.

adCmdUnspecified −1 The command type is unspecified.
CompareEnum

Name Value Description

adCompareEqual 1 The bookmarks are equal.

adCompareGreaterThan 2 The first bookmark is after the second.

adCompareLessThan 0 The first bookmark is before the second.

adCompareNotComparable 4 The bookmarks cannot be compared.

adCompareNotEqual 3 The bookmarks are not equal and not ordered.
ConnectModeEnum

Name Value Description

adModeRead 1 Indicates read−only permissions.

adModeReadWrite 3 Indicates read/write permissions.

adModeRecursive 32 Used in conjunction with the ShareDeny values to
propogate sharing restrictions.

adModeShareDenyNone 16 Prevents others from opening connection with any
permissions.

adModeShareDenyRead 4 Prevents others from opening connection with read
permissions.

adModeShareDenyWrite 8 Prevents others from opening connection with write
permissions.

adModeShareExclusive 12 Prevents others from opening connection.

adModeUnknown 0 Default. Indicates that the permissions have not yet been
set or cannot be determined.

adModeWrite 2 Indicates write−only permissions.
ConnectOptionEnum

Name Value Description

adAsyncConnect 16 Open the connection asynchronously.

adConnectUnspecified −1 The connection mode is unspecified.

ADO Constants

572

ConnectPromptEnum

Name Value Description

adPromptAlways 1 Always prompt for connection information.

adPromptComplete 2 Only prompt if not enough information was supplied.

adPromptCompleteRequired 3 Only prompt if not enough information was supplied, but
disable any options not directly applicable to the
connection.

adPromptNever 4 Default. Never prompt for connection information.
CopyRecordOptionsEnum

Name Value Description

adCopyAllowEmulation 4 If the CopyRecord method fails, simulate it using a file
download and upload mechanism.

adCopyNonRecursive 2 Copy the current directory, but not sub−directories.

adCopyOverWrite 1 Overwrite the existing file or directory.

adCopyUnspecified −1 No copy behavior specified.
CursorLocationEnum

Name Value Description

adUseClient 3 Use client−side cursors supplied by the local cursor library.

adUseClientBatch 3 Use client−side cursors supplied by the local cursor library.

adUseNone 1 No cursor services are used.

adUseServer 2 Default. Uses data−provider driver supplied cursors.
CursorOptionEnum

Name Value Description

adAddNew 16778240 You can use the AddNew method to add new records.

adApproxPosition 16384 You can read and set the AbsolutePosition and AbsolutePage
properties.

adBookmark 8192 You can use the Bookmark property to access specific records.

adDelete 16779264 You can use the Delete method to delete records.

adFind 524288 You can use the Find method to find records.

adHoldRecords 256 You can retrieve more records or change the next retrieve position
without committing all pending changes.

adIndex 8388608 You can use the Index property to set the current index.

adMovePrevious 512 You can use the ModeFirst, MovePrevious, Move and GetRows
methods.

adNotify 262144 The recordset supports Notifications.

adResync 131072 You can update the cursor with the data visible in the underlying
database with the Resync method.

adSeek 4194304 You can use the Seek method to find records by an index.

adUpdate 16809984 You can use the Update method to modify existing records.

adUpdateBatch 65536 You can use the UpdateBatch or CancelBatch methods to transfer

ADO Constants

573

changes to the provider in groups.
CursorTypeEnum

Name Value Description

adOpenDynamic 2 Opens a dynamic type cursor.

adOpenForwardOnly 0 Default. Opens a forward−only type cursor

adOpenKeyset 1 Opens a keyset type cursor.

adOpenStatic 3 Opens a static type cursor.

adOpenUnspecified −1 Indicates as unspecified value for cursor type.
DataTypeEnum

Name Value Description

adBigInt 20 An 8−byte signed integer.

adBinary 128 A binary value.

adBoolean 11 A Boolean value.

adBSTR 8 A null−terminated character string.

adChapter 136 A chapter type, indicating a child recordset.

adChar 129 A String value.

adCurrency 6 A currency value. An 8−byte signed integer scaled by 10,000, with
4 digits to the right of the decimal point.

adDate 7 A Date value. A Double where the whole part is the number of
days since December 30 1899, and the fractional part is a fraction
of the day.

adDBDate 133 A date value (yyyymmdd).

adDBFileTime 137 A database file time.

adDBTime 134 A time value (hhmmss).

adDBTimeStamp 135 A date−time stamp (yyyymmddhhmmss plus a fraction in
billionths).

adDecimal 14 An exact numeric value with fixed precision and scale.

adDouble 5 A double−precision floating point value.

adEmpty 0 No value was specified.

adError 10 A 32−bit error code.

adFileTime 64 A DOS/Win32 file time. The number of 100 nanosecond intervals
since Jan 1 1601.

adGUID 72 A globally unique identifier.

adIDispatch 9 A pointer to an IDispatch interface on an OLE object.

adInteger 3 A 4−byte signed integer.

adIUnknown 13 A pointer to an IUnknown interface on an OLE object.

adLongVarBinary 205 A long binary value.

adLongVarChar 201 A long String value.

adLongVarWChar 203 A long null−terminated String value.

adNumeric 131 An exact numeric value with a fixed precision and scale.

adPropVariant 138 A variant that is not equivalent to an Automation variant.

ADO Constants

574

adSingle 4 A single−precision floating point value.

adSmallInt 2 A 2−byte signed integer.

adTinyInt 16 A 1−byte signed integer.

adUnsignedBigInt 21 An 8−byte unsigned integer.

adUnsignedInt 19 An 4−byte unsigned integer.

adUnsignedSmallInt 18 An 2−byte unsigned integer.

adUnsignedTinyInt 17 An 1−byte unsigned integer.

adUserDefined 132 A user−defined variable.

adVarBinary 204 A binary value.

adVarChar 200 A String value.

adVariant 12 An Automation Variant.

adVarNumeric 139 A variable width exact numeric, with a signed scale value.

adVarWChar 202 A null−terminated Unicode character string.

adWChar 130 A null−terminated Unicode character string.
EditModeEnum

Name Value Description

adEditAdd 2 Indicates that the AddNew method has been invoked and the current
record in the buffer is a new record that hasn't been saved to the
database.

adEditDelete 4 Indicates that the Delete method has been invoked.

adEditInProgress 1 Indicates that data in the current record has been modified but not
saved.

adEditNone 0 Indicates that no editing is in progress.
ErrorValueEnum

Name Value Description

adErrBoundToCommand 3707 The application cannot change the ActiveConnection
property of a Recordset object with a Command object as
its source.

adErrCannotComplete 3732 The action could not be completed.

adErrCantChangeConnection 3748 The connection cannot be changed.

adErrCantChangeProvider 3220 The provider cannot be changed.

adErrCantConvertvalue 3724 The value cannot be converted .

adErrCantCreate 3725 The resource cannot be created.

adErrCatalogNotSet 3747 The action could not be completed because the catalog is
not set.

adErrColumnNotOnThisRow 3726

adErrDataConversion 3421 The application is using a value of the wrong type for the
current application.

adErrDataOverflow 3721 The data was too large for the supplied data type.

adErrDelResOutOfScope 3738 The resource cannot be deleted because it is out of the
allowed scope.

adErrDenyNotSupported 3750

ADO Constants

575

adErrDenyTypeNotSupported 3751

adErrFeatureNotAvailable 3251 The provider does not support the operation requested by
the application.

adErrFieldsUpdateFailed 3749 The Update method of the Fields collection failed.

adErrIllegalOperation 3219 The operation requested by the application is not allowed in
this context.

adErrIntegrityViolation 3719 The action failed due to a violation of data integrity.

adErrInTransaction 3246 The application cannot explicitly close a Connection object
while in the middle of a transaction.

adErrInvalidArgument 3001 The application is using arguments that are the wrong type,
are out of the acceptable range, or are in conflict with one
another.

adErrInvalidConnection 3709 The application requested an operation on an object with a
reference to a closed or invalid Connection object.

adErrInvalidParamInfo 3708 The application has improperly defined a Parameter object.

adErrInvalidTransaction 3714 Th transaction is invalid.

adErrInvalidURL 3729 The supplied URL is invalid.

adErrItemNotFound 3265 ADO could not find the object in the collection.

adErrNoCurrentRecord 3021 Either BOF or EOF is True, or the current record has been
deleted. The operation requested by the application requires
a current record.

adErrNotExecuting 3715 The operation is not executing.

adErrNotReentrant 3710 The operation is not reentrant.

adErrObjectClosed 3704 The operation requested by the application is not allowed if
the object is closed.

adErrObjectInCollection 3367 Can't append. Object already in collection.

adErrObjectNotSet 3420 The object referenced by the application no longer points to
a valid object.

adErrObjectOpen 3705 The operation requested by the application is not allowed if
the object is open.

adErrOpeningFile 3002 An error occurred whilst opening the requested file.

adErrOperationCancelled 3712 The operation was cancelled.

adErrOutOfSpace 3734 The operation failed because the server could not obtain
enough space to complete the operation.

Name Value Description

adErrPermissionDenied 3720 The action failed because you do not have
sufficient permission to complete the operation.

adErrPropConflicting 3742

adErrPropInvalidColumn 3739

adErrPropInvalidOption 3740

adErrPropInvalidValue 3741

adErrPropNotAllSettable 3743

adErrPropNotSet 3744

adErrPropNotSettable 3745

ADO Constants

576

adErrPropNotSupported 3746

adErrProviderFailed 3000

adErrProviderNotFound 3706 ADO could not find the specified provider.

adErrReadFile 3003

adErrResourceExists 3731 The resource already exists.

adErrResourceLocked 3730 The resource is locked.

adErrResourceOutOfScope 3735 The resource is out of scope.

adErrSchemaViolation 3722 The action caused a violation of the schema.

adErrSignMismatch 3723

adErrStillConnecting 3713 The operation is still connecting.

adErrStillExecuting 3711 The operation is still executing.

adErrTreePermissionDenied 3728

adErrUnavailable 3736

adErrUnsafeOperation 3716 The operation is unsafe under these
circumstances.

adErrURLDoesNotExist 3727 The URL does not exist.

adErrURLNamedRowDoesNotExist 3737 The URL in the named row does not exist.

adErrVolumeNotFound 3733 The file volume was not found.

adErrWriteFile 3004

adwrnSecurityDialog 3717

adwrnSecurityDialogHeader 3718
EventReasonEnum

Name Value Description

adRsnAddNew 1 A new record is to be added.

adRsnClose 9 The object is being closed.

adRsnDelete 2 The record is being deleted.

adRsnFirstChange 11 The record has been changed for the first time.

adRsnMove 10 A Move has been invoked and the current record pointer is being
moved.

adRsnMoveFirst 12 A MoveFirst has been invoked and the current record pointer is
being moved.

adRsnMoveLast 15 A MoveLast has been invoked and the current record pointer is
being moved.

adRsnMoveNext 13 A MoveNext has been invoked and the current record pointer is
being moved.

adRsnMovePrevious 14 A MovePrevious has been invoked and the current record pointer is
being moved.

adRsnRequery 7 The recordset was requeried.

adRsnResynch 8 The recordset was resynchronized.

adRsnUndoAddNew 5 The addition of a new record has been cancelled.

adRsnUndoDelete 6 The deletion of a record has been cancelled.

adRsnUndoUpdate 4 The update of a record has been cancelled.

ADO Constants

577

adRsnUpdate 3 The record is being updated.
EventStatusEnum

Name Value Description

adStatusCancel 4 Request cancellation of the operation that is about to occur.

adStatusCantDeny 3 A Will event cannot request cancellation of the operation about
to occur.

adStatusErrorsOccurred 2 The operation completed unsuccessfully, or a Will event
cancelled the operation.

adStatusOK 1 The operation completed successfully.

adStatusUnwantedEvent 5 Events for this operation are no longer required.
ExecuteOptionEnum

Name Value Description

adAsyncExecute 16 The operation is executed asynchronously.

adAsyncFetch 32 The records are fetched asynchronously.

adAsyncFetchNonBlocking 64 The records are fetched asynchronously without blocking
subsequent operations.

adExecuteNoRecords 128 Indicates CommandText is a command or stored procedure
that does not return rows. Always combined with
adCmdText or adCmdStoreProc.

FieldAttributeEnum

Name Value Description

adFldCacheDeferred 4096 Indicates that the provider caches field values and that subsequent
reads are done from the cache.

adFldFixed 16 Indicates that the field contains fixed−length data.

adFldIsChapter 8192 The field is a chapter field, and contains a rowset.

adFldIsCollection 262144 The field is a collection.

adFldIsDefaultStream 131072 The fields is the default Stream.

adFldIsNullable 32 Indicates that the field accepts Null values.

adFldIsRowURL 65536 The fields is a URL.

adFldKeyColumn 32768 The field is part of a key column.

adFldLong 128 Indicates that the field is a long binary field, and that the
AppendChunk and GetChunk methods can be used.

adFldMayBeNull 64 Indicates that you can read Null values from the field.

adFldMayDefer 2 Indicates that the field is deferred, that is, the field values are not
retrieved from the data source with the whole record, but only
when you access them.

adFldNegativeScale 16384 The field has a negative scale.

adFldRowID 256 Indicates that the field has a record ID.

adFldRowVersion 512 Indicates that the field time or date stamp used to track updates.

adFldUnknownUpdatable 8 Indicates that the provider cannot determine if you can write to the
field.

ADO Constants

578

adFldUnspecified −1 Attributes of the field are unspecified.

adFldUpdatable 4 Indicates that you can write to the field.
FieldEnum

Name Value Description

adDefaultStream −1 When used as the index into the Fields collection of a record, returns
the default Stream for the Record.

adRecordURL −2 When used as the index into the Fields collection of a record, returns
the absolute URL for the Record.

FieldStatusEnum

Name Value Description

adFieldAlreadyExists 26 The field already exists.

adFieldBadStatus 12 The field has a bad Status value.

adFieldCannotComplete 20 The action cannot be completed.

adFieldCannotDeleteSource 23 The field cannot delete the source of the field.

adFieldCantConvertValue 2 The field cannot convert the value.

adFieldCantCreate 7 The field cannot be created.

adFieldDataOverflow 6 The data is too long to fit in the field.

adFieldDefault 13

adFieldDoesNotExist 16 The field does not exist.

adFieldIgnore 15

adFieldIntegrityViolation 10 The field update failed with a data integrity violation.

adFieldInvalidURL 17 The field contains an invalid URL.

adFieldIsNull 3 The field is null.

adFieldOK 0 The field is OK.

adFieldOutOfSpace 22 The field ran out of space for storage.

adFieldPendingChange 262144 The field has been changed, but the provider has not yet
been updated.

adFieldPendingDelete 131072 The field has been deleted, but the provider has not yet been
updated.

adFieldPendingInsert 65536 The field has been inserted, but the provider has not yet
been updated.

adFieldPendingUnknown 524288

adFieldPendingUnknownDelete 1048576

adFieldPermissionDenied 9 Permission to modify the field failed due to access
permissions.

adFieldReadOnly 24 The field is read only.

adFieldResourceExists 19 The resource specified by the field already exists.

adFieldResourceLocked 18 The resource specified by the field is locked.

adFieldResourceOutOfScope 25 The resource specified by the field is out of scope.

adFieldSchemaViolation 11 The field update failed due to a schema violation.

adFieldSignMismatch 5

ADO Constants

579

adFieldTruncated 4 The field value was truncated.

adFieldUnavailable 8 The field is unavailable.

adFieldVolumeNotFound 21 The volume specified by the field was not found.
FilterGroupEnum

Name Value Description

adFilterAffectedRecords 2 Allows you to view only records affected by the last Delete,
Resync, UpdateBatch, or CancelBatch method.

adFilterConflictingRecords 5 Allows you to view the records that failed the last batch
update attempt.

adFilterFetchedRecords 3 Allows you to view records in the current cache.

adFilterNone 0 Removes the current filter and restores all records to view.

adFilterPendingRecords 1 Allows you to view only the records that have changed but
have not been sent to the server. Only applicable for batch
update mode.

adFilterPredicate 4 Allows you to view records that failed the last batch update
attempt.

GetRowsOptionEnum

Name Value Description

adGetRowsRest −1 Retrieves the remainder of the rows in the recordset.
IsolationLevelEnum

Name Value Description

adXactBrowse 256 Indicates that from one transaction you can view
uncommitted changes in other transactions.

adXactChaos 16 Default. Indicates that you cannot overwrite pending
changes from more highly isolated transactions.

adXactCursorStability 4096 Default. Indicates that from one transaction you can view
changes in other transactions only after they have been
committed.

adXactIsolated 1048576 Indicates that transactions are conducted in isolation of other
transactions.

adXactReadCommitted 4096 Same as adXactCursorStability.

adXactReadUncommitted 256 Same as adXactBrowse.

adXactRepeatableRead 65536 Indicates that from one transaction you cannot see changes
made in other transactions, but that requerying can bring
new recordsets.

adXactSerializable 1048576 Same as adXactIsolated.

adXactUnspecified −1 Indicates that the provider is using a different IsolationLevel
than specified, but that the level cannot be identified.

LineSeparatorEnum

Name Value Description

adCR 13 The carriage return character.

ADO Constants

580

adCRLF −1 The carriage return and line feed characters.

adLF 10 The line feed character.
LockTypeEnum

Name Value Description

adLockBatchOptimistic 4 Optimistic batch updates.

adLockOptimistic 3 Optimistic locking, record by record. The provider locks records
when Update is called.

adLockPessimistic 2 Pessimistic locking, record by record. The provider locks the
record immediately upon editing.

adLockReadOnly 1 Default. Read only, data cannot be modified.

adLockUnspecified −1 The clone is created with the same lock type as the original.
MarshalOptionsEnum

Name Value Description

adMarshalAll 0 Default. Indicates that all rows are returned to the server.

adMarshalModifiedOnly 1 Indicates that only modified rows are returned to the server.
MoveRecordOptionsEnum

Name Value Description

adMoveAllowEmulation 4 If the attempt to move the record fails, allow the move to be
performed using a download, upload and delete set of
operations.

adMoveDontUpdateLinks 2 Do not update hyperlinks of the source Record.

adMoveOverWrite 1 Overwrite the target if it already exists.
ObjectStateEnum

Name Value Description

adStateClosed 0 Default. Indicates that the object is closed.

adStateConnecting 2 Indicates that the object is connecting.

adStateExecuting 4 Indicates that the object is executing a command.

adStateFetching 8 Indicates that the rows of the recordset are being fetched.

adStateOpen 1 Indicates that the object is open.
ParameterAttributesEnum

Name Value Description

adParamLong 128 Indicates that the parameter accepts long binary data.

adParamNullable 64 Indicates that the parameter accepts Null values.

adParamSigned 16 Default. Indicates that the parameter accepts signed values.
ParameterDirectionEnum

Name Value Description

adParamInput 1 Default. Indicates an input parameter.

adParamInputOutput 3 Indicates both an input and output parameter.

ADO Constants

581

adParamOutput 2 Indicates an output parameter.

adParamReturnValue 4 Indicates a return value.

adParamUnknown 0 Indicates parameter direction is unknown.
PersistFormatEnum

Name Value Description

adPersistADTG 0 Default. Persist data in Advanced Data Table Gram format.

adPersistXML 1 Persist data in XML format.
PositionEnum

Name Value Description

adPosBOF −2 The current record pointer is at BOF.

adPosEOF −3 The current record pointer is at EOF.

adPosUnknown −1 The Recordset is empty, the current position is unknown, or the provider
does not support the AbsolutePage property.

PropertyAttributesEnum

Name Value Description

adPropNotSupported 0 Indicates that the property is not supported by the provider.

adPropOptional 2 Indicates that the user does not need to specify a value for this
property before the data source is initialized.

adPropRead 512 Indicates that the user can read the property.

adPropRequired 1 Indicates that the user must specify a value for this property before
the data source is initialized.

adPropWrite 1024 Indicates that the user can set the property.
RecordCreateOptionsEnum

Name Value Description

adCreateCollection 8192 Create a new collection record (directory) at the specified
URL.

adCreateNonCollection 0 Create a new record at the specified URL.

adCreateOverwrite 67108864 Overwrite any existing record at the specified URL.

adCreateStructDoc −2147483648 Create a new structured document record at the specified
URL.

adFailIfNotExists −1 Fail if the URL does not exist.

adOpenIfExists 33554432 Open the record at the specified URL if it exists.
RecordOpenOptionsEnum

Name Value Description

adDelayFetchFields 32768 Delay fetching fields until they are requested.

adDelayFetchStream 16384 Delay fetching the Stream until it is requested.

adOpenAsync 4096 Open the Record asynchronously.

adOpenSource 8388608 Open the source document at the URL, rather than the executed
contents.

ADO Constants

582

adOpenURLBind 1024 Indicates the connection string contains a URL.
RecordStatusEnum

Name Value Description

adRecCanceled 256 The record was not saved because the operation was
cancelled.

adRecCantRelease 1024 The new record was not saved because of existing record
locks.

adRecConcurrencyViolation 2048 The record was not saved because optimistic concurrency
was in use.

adRecDBDeleted 262144 The record has already been deleted from the data source.

adRecDeleted 4 The record was deleted.

adRecIntegrityViolation 4096 The record was not saved because the user violated
integrity constraints.

adRecInvalid 16 The record was not saved because its bookmark is invalid.

adRecMaxChangesExceeded 8192 The record was not saved because there were too many
pending changes.

adRecModified 2 The record was modified.

adRecMultipleChanges 64 The record was not saved because it would have affected
multiple records.

adRecNew 1 The record is new.

adRecObjectOpen 16384 The record was not saved because of a conflict with an
open storage object.

adRecOK 0 The record was successfully updated.

adRecOutOfMemory 32768 The record was not saved because the computer has run out
of memory.

adRecPendingChanges 128 The record was not saved because it refers to a pending
insert.

adRecPermissionDenied 65536 The record was not saved because the user has insufficient
permissions.

adRecSchemaViolation 131072 The record was not saved because it violates the structure
of the underlying database.

adRecUnmodified 8 The record was not modified.
RecordTypeEnum

Name Value Description

adCollectionRecord 1 The record is a collection type (directory)

adSimpleRecord 0 The record is a simple file.

adStructDoc 2 The record is a structured document.
ResyncEnum

Name Value Description

adResyncAllValues 2 Default. Data is overwritten and pending updates are
cancelled.

adResyncUnderlyingValues 1

ADO Constants

583

Data is not overwritten and pending updates are not
cancelled.

SaveOptionsEnum

Name Value Description

adSaveCreateNotExist 1 Create a new file if the file does not already exist.

adSaveCreateOverWrite 2 Overwrite any existing file if it exists.
SchemaEnum

Name Value Description

adSchemaAsserts 0 Request assert information.

adSchemaCatalogs 1 Request catalog information.

adSchemaCharacterSets 2 Request character set information.

adSchemaCheckConstraints 5 Request check constraint information.

adSchemaCollations 3 Request collation information.

adSchemaColumnPrivileges 13 Request column privilege information.

adSchemaColumns 4 Request column information.

adSchemaColumnsDomainUsage 11 Request column domain usage information.

adSchemaConstraintColumnUsage 6 Request column constraint usage information.

adSchemaConstraintTableUsage 7 Request table constraint usage information.

adSchemaCubes 32 For multi−dimensional data, view the Cubes schema.

adSchemaDBInfoKeywords 30 Request the keywords from the provider.

adSchemaDBInfoLiterals 31 Request the literals from the provider.

adSchemaDimensions 33 For multi−dimensional data, view the Dimensions
schema.

adSchemaForeignKeys 27 Request foreign key information.

adSchemaHierarchies 34 For multi−dimensional data, view the Hierarchies
schema.

adSchemaIndexes 12 Request index information.

adSchemaKeyColumnUsage 8 Request key column usage information.

adSchemaLevels 35 For multi−dimensional data, view the Levels schema.

adSchemaMeasures 36 For multi−dimensional data, view the Measures schema.

adSchemaMembers 38 For multi−dimensional data, view the Members schema.

adSchemaPrimaryKeys 28 Request primary key information.

adSchemaProcedureColumns 29 Request stored procedure column information.

adSchemaProcedureParameters 26 Request stored procedure parameter information.

adSchemaProcedures 16 Request stored procedure information.

adSchemaProperties 37 For multi−dimensional data, view the Properties schema.

adSchemaProviderSpecific −1 Request provider specific information.

adSchemaProviderTypes 22 Request provider type information.

adSchemaReferentialContraints 9 Request referential constraint information.

adSchemaReferentialConstraints 9 Request referential constraint information.

adSchemaSchemata 17 Request schema information.

ADO Constants

584

adSchemaSQLLanguages 18 Request SQL language support information.

adSchemaStatistics 19 Request statistics information.

adSchemaTableConstraints 10 Request table constraint information.

adSchemaTablePrivileges 14 Request table privilege information.

adSchemaTables 20 Request information about the tables.

adSchemaTranslations 21 Request character set translation information.

adSchemaTrustees 39 Request trustee information.

adSchemaUsagePrivileges 15 Request user privilege information.

adSchemaViewColumnUsage 24 Request column usage in views information.

adSchemaViews 23 Request view information.

adSchemaViewTableUsage 25 Request table usage in views information.
Important Due to a misspelling in the type library, adSchemaReferentialConstraints is included twice �

once for the original spelling and once for the corrected spelling.
SearchDirectionEnum

Name Value Description

adSearchBackward −1 Search backward from the current record.

adSearchForward 1 Search forward from the current record.
SeekEnum

Name Value Description

adSeekAfter 8 Seek the key just after the match.

adSeekAfterEQ 4 Seek the key equal to or just after the match.

adSeekBefore 32 See the key just before the match.

adSeekBeforeEQ 16 Seek the key equal to or just before the match.

adSeekFirstEQ 1 Seek the first key equal to the match.

adSeekLastEQ 2 Seek the last key equal to the match.
StreamOpenOptionsEnum

Name Value Description

adOpenStreamAsync 1 Opens the Stream asynchronously.

adOpenStreamFromRecord 4 Opens the Stream using an existing Record as the source.

adOpenStreamFromURL 8 Opens the Stream using a URL as the source.
StreamReadEnum

Name Value Description

adReadAll −1 Reads all bytes from the Stream, from the current position to the end of the
stream.

adReadLine −2 Reads the next line from the Stream. Uses the LineSeparator property to
identify the end of the line.

StreamTypeEnum

Name Value Description

adTypeBinary 1 The Stream contains binary data.

ADO Constants

585

adTypeText 2 The Stream contains text data.
StreamWriteEnum

Name Value Description

adWriteChar 0 Writes the specified string to the Stream.

adWriteLine 1 Writes the specified string and a line separator to the Stream.

stWriteChar 0 Writes the specified string to the Stream.

stWriteLine 1 Writes the specified string and a line separator to the Stream.
StringFormatEnum

Name Value Description

adClipString 2 Rows are delimited by user defined values.
XactAttributeEnum

Name Value Description

adXactAbortRetaining 262144 The provider will automatically start a new transaction after a
RollbackTrans method call.

adXactAsyncPhaseOne 524288 Perform an asynchronous commit.

adXactCommitRetaining 131072 The provider will automatically start a new transaction after a
CommitTrans method call.

adXactSyncPhaseOne 1048576 Performs an synchronous commit.

Miscellaneous Constants

These values are not included in the standard adovbs.inc include file (and are not automatically supplied when
using Visual Basic), but can be found in adocon.inc (for ASP) and adocon.bas (for Visual Basic) from the
supporting web site, http://webdev.wrox.co.uk/books/2750.

Many of these may not be necessary to you as an ADO programmer, but they are included here for
completeness, and are only really useful as bitmask values for entries in the Properties collection.

DB_COLLATION

Name Value Description

DB_COLLATION_ASC 1 The sort sequence for the column is ascending.

DB_COLLATION_DESC 2 The sort sequence for the column is descending.
DB_IMP_LEVEL

Name Value Description

DB_IMP_LEVEL_ANONYMOUS 0 The client is anonymous to the server, and the server
process cannot obtain identification information about the
client and cannot impersonate the client.

DB_IMP_LEVEL_DELEGATE 3 The process can impersonate the client's security context
while acting on behalf of the client. The server process
can also make outgoing calls to other servers while acting
on behalf of the client.

DB_IMP_LEVEL_IDENTIFY 1 The server can obtain the client's identity, and can

ADO Constants

586

impersonate the client for ACL checking, but cannot
access system objects as the client.

DB_IMP_LEVEL_IMPERSONATE 2 The server process can impersonate the client's security
context whilst acting on behalf of the client. This
information is obtained upon connection and not on every
call.

DB_MODE

Name Value Description

DB_MODE_READ 1 Read only.

DB_MODE_READWRITE 3 Read/Write (DB_MODE_READ +
DB_MODE_WRITE).

DB_MODE_SHARE_DENY_NONE 16 Neither read nor write access can be denied to others.

DB_MODE_SHARE_DENY_READ 4 Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE 8 Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE 12 Prevents others from opening in read/write mode
(DB_MODE_SHARE_DENY_READ +
DB_MODE_SHARE_DENY_WRITE).

DB_MODE_WRITE 2 Write only.
DB_PROT_LEVEL

Name Value Description

DB_PROT_LEVEL_CALL 2 Authenticates the source of the data at the beginning
of each request from the client to the server.

DB_PROT_LEVEL_CONNECT 1 Authenticates only when the client establishes the
connection with the server.

DB_PROT_LEVEL_NONE 0 Performs no authentification of data sent to the
server.

DB_PROT_LEVEL_PKT 3 Authenticates that all data received is from the client.

DB_PROT_LEVEL_PKT_INTEGRITY 4 Authenticates that all data received is from the client
and that it has not been changed in transit.

DB_PROT_LEVEL_PKT_PRIVACY 5 Authenticates that all data received is from the client,
that it has not been changed in transit, and protects
the privacy of the data by encrypting it.

DB_PT

Name Value Description

DB_PT_FUNCTION 3 Function; there is a returned value.

DB_PT_PROCEDURE 2 Procedure; there is no returned value.

DB_PT_UNKNOWN 1 It is not known whether there is a returned value.
DB_SEARCHABLE

Name Value Description

DB_ALL_EXCEPT_LIKE 3 The data type can be used in a WHERE clause with
all comparison operators except LIKE.

DB_LIKE_ONLY 2

ADO Constants

587

The data type can be used in a WHERE clause only
with the LIKE predicate.

DB_SEARCHABLE 4 The data type can be used in a WHERE clause with
any comparison operator.

DB_UNSEARCHABLE 1 The data type cannot be used in a WHERE clause.
DBCOLUMNDESCFLAG

Name Value Description

DBCOLUMNDESCFLAG_CLSID 8 The CLSID portion of the column description
can be changed when altering the column.

DBCOLUMNDESCFLAG_COLSIZE 16 The column size portion of the column
description can be changed when altering the
column.

DBCOLUMNDESCFLAG_DBCID 32 The DBCID portion of the column description
can be changed when altering the column.

DBCOLUMNDESCFLAG_ITYPEINFO 2 The type information portion of the column
description can be changed when altering the
column.

DBCOLUMNDESCFLAG_PRECISION 128 The precision portion of the column description
can be changed when altering the column.

DBCOLUMNDESCFLAG_PROPERTIES 4 The property sets portion of the column
description can be changed when altering the
column.

DBCOLUMNDESCFLAG_SCALE 256 The numeric scale portion of the column
description can be changed when altering the
column.

DBCOLUMNDESCFLAG_TYPENAME 1 The type name portion of the column
description can be changed when altering the
column.

DBCOLUMNDESCFLAG_WTYPE 64 The data type portion of the column description
can be changed when altering the column.

DBCOLUMNFLAGS

Name Value Description

DBCOLUMNFLAGS_CACHEDEFERRED 4096 Indicates that the value of a deferred
column is cached when it is first read.

DBCOLUMNFLAGS_ISCHAPTER 8192 The column contains a Chapter value.

DBCOLUMNFLAGS_ISFIXEDLENGTH 16 All of the data in the column is of a
fixed length.

DBCOLUMNFLAGS_ISLONG 128 The column contains a BLOB value
that contains long data.

DBCOLUMNFLAGS_ISNULLABLE 32 The column can be set to NULL, or the
provider cannot determine whether the
column can be set to NULL.

DBCOLUMNFLAGS_ISROWID 256 The column contains a persistent row
identifier.

ADO Constants

588

DBCOLUMNFLAGS_ISROWVER 512 The column contains a timestamp or
other row versioning data type.

DBCOLUMNFLAGS_MAYBENULL 64 NULLs can be got from the column.

DBCOLUMNFLAGS_MAYDEFER 2 The column is deferred.

DBCOLUMNFLAGS_WRITE 4 The column may be updated.

DBCOLUMNFLAGS_WRITEUNKNOWN 8 It is not know if the column can be
updated.

DBCOMPUTEMODE

Name Value Description

DBCOMPUTEMODE_COMPUTED 1 The column is a computed column.

DBCOMPUTEMODE_DYNAMIC 2 The column is computed and always
returns the value based upon the
computation.

DBCOMPUTEMODE_NOTCOMPUTED 3 The column is not a computed column.
DBLITERAL

Name Value Description

DBLITERAL_INVALID 0 An invalid value.

DBLITERAL_BINARY_LITERAL 1 A binary literal in a text command.

DBLITERAL_CATALOG_NAME 2 A catalog name in a text command.

DBLITERAL_CATALOG_SEPARATOR 3 The character that separates the catalog
name from the rest of the identifier in a text
command.

DBLITERAL_CHAR_LITERAL 4 A character literal in a text command.

DBLITERAL_COLUMN_ALIAS 5 A column alias in a text command.

DBLITERAL_COLUMN_NAME 6 A column name used in a text command or
in a data−definition interface.

DBLITERAL_CORRELATION_NAME 7 A correlation name (table alias) in a text
command.

DBLITERAL_CURSOR_NAME 8 A cursor name in a text command.

DBLITERAL_ESCAPE_PERCENT

DBLITERAL_ESCAPE_PERCENT_PREFIX

9 The character used in a LIKE clause to
escape the character returned for the
DBLITERAL_LIKE_PERCENT literal.

DBLITERAL_ESCAPE_PERCENT_SUFFIX 29 The escape character, if any, used to suffix
the character returned for the
DBLITERAL_LIKE_PERCENT literal.

DBLITERAL_ESCAPE_UNDERSCORE

DBLITERAL_ESCAPE_UNDERSCORE_PREFIX

10 The character used in a LIKE clause to
escape the character returned for the
DBLITERAL_LIKE_UNDERSCORE
literal.

DBLITERAL_ESCAPE_UNDERSCORE_SUFFIX 30 The escape character, if any, used to suffix
the character returned for the
DBLITERAL_LIKE_UNDERSCORE
literal.

DBLITERAL_INDEX_NAME 11

ADO Constants

589

An index name used in a text command or in
a data−definition interface.

DBLITERAL_LIKE_PERCENT 12 The character used in a LIKE clause to
match zero or more characters.

DBLITERAL_LIKE_UNDERSCORE 13 The character used in a LIKE clause to
match exactly one character.

DBLITERAL_PROCEDURE_NAME 14 A procedure name in a text command.

DBLITERAL_SCHEMA_NAME 16 A schema name in a text command.

DBLITERAL_SCHEMA_SEPARATOR 27 The character that separates the schema
name from the rest of the identifier in a text
command.

DBLITERAL_TABLE_NAME 17 A table name used in a text command or in a
data−definition interface.

DBLITERAL_TEXT_COMMAND 18 A text command, such as an SQL statement.

DBLITERAL_USER_NAME 19 A user name in a text command.

DBLITERAL_VIEW_NAME 20 A view name in a text command.

DBLITERAL_QUOTE

DBLITERAL_QUOTE_PREFIX

15 The character used in a text command as the
opening quote for quoting identifiers that
contain special characters.

DBLITERAL_QUOTE_SUFFIX 28 The character used in a text command as the
closing quote for quoting identifiers that
contain special characters.

DBPARAMTYPE

Name Value Description

DBPARAMTYPE_INPUT 1 The parameter is an input parameter.

DBPARAMTYPE_INPUTOUTPUT 2 The parameter is both an input and an output
parameter.

DBPARAMTYPE_OUTPUT 3 The parameter is an output parameter.

DBPARAMTYPE_RETURNVALUE 4 The parameter is a return value.
DBPROMPT

Name Value Description

DBPROMPT_COMPLETE 2 Prompt the user only if more information is
needed.

DBPROMPT_COMPLETEREQUIRED 3 Prompt the user only if more information is
required. Do not allow the user to enter
optional information.

DBPROMPT_NOPROMPT 4 Do not prompt the user.

DBPROMPT_PROMPT 1 Always prompt the user for initialization
information.

DBPROPVAL_AO

Name Value Description

DBPROPVAL_AO_RANDOM 2 Columns can be accessed in any
order.

ADO Constants

590

DBPROPVAL_AO_SEQUENTIAL 0 All columns must be accessed in
sequential order determined by
the column ordinal.

DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS 1 Columns bound as storage
objects can only be accessed in
sequential order as determined
by the column ordinal.

DBPROPVAL_ASYNCH

Name Value Description

DBPROPVAL_ASYNCH_
BACKGROUNDPOPULATION

8 The rowset is populated asynchronously
in the background.

DBPROPVAL_ASYNCH_INITIALIZE 1 Initialization is performed
asynchronously.

DBPROPVAL_ASYNCH_
POPULATEONDEMAND

32 The consumer prefers to optimize for
getting each individual request for data
returned as quickly as possible.

DBPROPVAL_ASYNCH_
PREPOPULATE

16 The consumer prefers to optimize for
retrieving all data when the row set is
materialized.

DBPROPVAL_ASYNCH_
RANDOMPOPULATION

4 Rowset population is performed
asynchronously in a random manner.

DBPROPVAL_ASYNCH_
SEQUENTIALPOPULATION

2 Rowset population is performed
asynchronously in a sequential manner.

DBPROPVAL_BG

Name Value Description

DBPROPVAL_GB_COLLATE 16 A COLLATE clause can be specified at the end
of each grouping column.

DBPROPVAL_GB_
CONTAINS_SELECT

4 The GROUP BY clause must contain all
non−aggregated columns in the select list. It
can contain columns that are not in the select
list.

DBPROPVAL_GB_EQUALS_
SELECT

2 The GROUP BY clause must contain all
non−aggregated columns in the select list. It
cannot contain any other columns.

DBPROPVAL_GB_NO_
RELATION

8 The columns in the GROUP BY clause and the
select list are not related. The meaning on
non−grouped, non−aggregated columns in the
select list is data source dependent.

DBPROPVAL_GB_NOT_
SUPPORTED

1 GROUP BY clauses are not supported.

DBPROPVAL_BI

Name Value Description

DBPROPVAL_BI_
CROSSROWSET

1 Bookmark values are valid across all rowsets generated on
this table.

ADO Constants

591

DBPROPVAL_BMK

Name Value Description

DBPROPVAL_BMK_KEY 2 The bookmark type is key.

DBPROPVAL_BMK_NUMERIC 1 The bookmark type is numeric.
DBPROPVAL_BO

Name Value Description

DBPROPVAL_BO_
NOINDEXUPDATE

1 The provider is not required to update indexes
based on inserts or changes to the rowset. Any
indexes need to be re−created following changes
made through the rowset.

DBPROPVAL_BO_NOLOG 0 The provider is not required to log inserts or
changes to the rowset.

DBPROPVAL_BO_
REFINTEGRITY

2 Referential integrity constraints do not need to be
checked or enforced for changes made through the
rowset.

DBPROPVAL_BT

Name Value Description

DBPROPVAL_BT_DEFAULT 0 Use the value defined in the dynamic property Jet
OLEDB:Global Bulk Transactions

DBPROPVAL_BT_
NOBULKTRANSACTIONS

1 Bulk operations are not transacted.

DBPROPVAL_BT_
BULKTRANSACTION

2 Bulk operations are transacted.

DBPROPVAL_CB

Name Value Description

DBPROPVAL_CB_NON_
NULL

2 The result is the concatenation of the non−NULL
valued column or columns.

DBPROPVAL_CB_NULL 1 The result is NULL valued.
DBPROPVAL_CB

Name Value Description

DBPROPVAL_CB_DELETE 1 Aborting a transaction deletes prepared
commands.

DBPROPVAL_CB_PRESERVE 2 Aborting a transaction preserves prepared
commands.

DBPROPVAL_CD

Name Value Description

DBPROPVAL_CD_NOTNULL 1 Columns can be created non−nullable.

ADO Constants

592

DBPROPVAL_CL

Name Value Description

DBPROPVAL_CL_END 2 The catalog name appears at the end of the fully
qualified name.

DBPROPVAL_CL_START 1 The catalog name appears at the start of the fully
qualified name.

DBPROPVAL_CO

Name Value Description

DBPROPVAL_CO_BEGINSWITH 32 Provider supports the BEGINSWITH and
NOTBEGINSWITH operators.

DBPROPVAL_CO_CASEINSENSITIVE 8 Provider supports the CASEINSENSITIVE
operator.

DBPROPVAL_CO_CASESENSITIVE 4 Provider supports the CASESENSITIVE
operator.

DBPROPVAL_CO_CONTAINS 16 Provider supports the CONTAINS and
NOTCONTAINS operators.

DBPROPVAL_CO_EQUALITY 1 Provider supports the following operators:
LT, LE, EQ, GE, GT, NE.

DBPROPVAL_CO_STRING 2 Provider supports the BEGINSWITH
operator.

DBPROPVAL_CS

Name Value Description

DBPROPVAL_CS_
COMMUNICATIONFAILURE

2 The DSO is unable to communicate with
the data store.

DBPROPVAL_CS_INITIALIZED 1 The DSO is in an initialized state and able
to communicate with the data store.

DBPROPVAL_CS_UNINITIALIZED 0 The DSO is in an uninitialized state.
DBPROPVAL_CU

Name Value Description

DBPROPVAL_CU_DML_
STATEMENTS

1 Catalog names are supported in all Data
Manipulation Language statements.

DBPROPVAL_CU_INDEX_
DEFINITION

4 Catalog names are supported in all index
definition statements.

DBPROPVAL_CU_PRIVILEGE_
DEFINITION

8 Catalog names are supported in all privilege
definition statements.

DBPROPVAL_CU_TABLE_
DEFINITION

2 Catalog names are supported in all table
definition statements.

DBPROPVAL_DF

Name Value Description

DBPROPVAL_DF_INITIALLY_
DEFERRED

1 The foreign key is initially deferred.

ADO Constants

593

DBPROPVAL_DF_INITIALLY_
IMMEDIATE

2 The foreign key is initially immediate.

DBPROPVAL_DF_NOT_
DEFERRABLE

3 The foreign key is not deferrable.

DBPROPVAL_DL

Name Value Description

DBPROPVAL_DL_OLDMODE 0 Mode used in previous versions of the Jet
database.

DBPROPVAL_DL_ALCATRAZ 1 Use new method, allowing row level locking.
DBPROPVAL_DST

Name Value Description

DBPROPVAL_DST_MDP 2 The provider is a multidimensional provider
(MD).

DBPROPVAL_DST_TDP 1 The provider is a tabular data provider
(TDP).

DBPROPVAL_DST_TDPANDMDP 3 The provider is both a TDP and a MD
provider.

DBPROPVAL_DST_DOCSOURCE 4 The provider is a document source (Internet
Publishing Provider)

DBPROPVAL_GU

Name Value Description

DBPROPVAL_GU_
NOTSUPPORTED

1 URL suffixes are not supported. This is the only option supported by
the Internet Publishing Provider in this version of ADO.

DBPROPVAL_GU_
SUFFIX

2 URL suffixes are generated by the Internet Publishing Provider.

DBPROPVAL_HT

Name Value Description

DBPROPVAL_HT_DIFFERENT_
CATALOGS

1 The provider supports heterogeneous joins
between catalogs.

DBPROPVAL_HT_DIFFERE2NT_
PROVIDERS

2 The provider supports heterogeneous joins
between providers.

DBPROPVAL_IC

Name Value Description

DBPROPVAL_IC_
LOWER

2 Identifiers in SQL are case insensitive and are stored in lower case
in system catalog.

DBPROPVAL_IC_
MIXED

8 Identifiers in SQL are case insensitive and are stored in mixed
case in system catalog.

DBPROPVAL_IC_
SENSITIVE

4 Identifiers in SQL are case sensitive and are stored in mixed case
in system catalog.

DBPROPVAL_IC_
UPPER

1 Identifiers in SQL are case insensitive and are stored in upper case
in system catalog.

ADO Constants

594

DBPROPVAL_IN

Name Value Description

DBPROPVAL_IN_
ALLOWNULL

0 The index allows NULL values to be inserted.

DBPROPVAL_IN_
DISALLOWNULL

1 The index does not allow entries where the key columns are NULL.
An error will be generated if the consumer attempts to insert a NULL
value into a key column.

DBPROPVAL_IN_
IGNOREANYNULL

4 The index does not insert entries containing NULL keys.

DBPROPVAL_IN_
IGNORENULL

2 The index does not insert entries where some column key has a NULL
value.

DBPROPVAL_IT

Name Value Description

DBPROPVAL_IT_BTREE 1 The index is a B+ tree.

DBPROPVAL_IT_CONTENT 3 The index is a content index.

DBPROPVAL_IT_HASH 2 The index is a hash file using linear or extensible
hashing.

DBPROPVAL_IT_OTHER 4 The index is some other type of index.
DBPROPVAL_JCC

Name Value Description

DBPROPVAL_JCC_
PASSIVESHUTDOWN

1 New connections to the database are disallowed.

DBPROPVAL_JCC_
NORMAL

2 Users are allowed to connect to the database.

DBPROPVAL_LG

Name Value Description

DBPROPVAL_LG_PAGE 1 Use page locking.

DBPROPVAL_LG_ALCATRAZ 2 Use row−level locking.
DBPROPVAL_LM

Name Value Description

DBPROPVAL_LM_I
NTENT

4 The provider uses the maximum level of locking to ensure
that changes will not fail due to a concurrency violation.

DBPROPVAL_LM_
NONE

1 The provider is not required to lock rows at any time to
ensure successful updates.

DBPROPVAL_LM_READ 2 The provider uses the minimum level of locking to ensure
that changes will not fail due to a concurrency violation.

DBPROPVAL_LM_RITE 8

DBPROPVAL_LM_
SINGLEROW

2 The provider uses the minimum level of locking to ensure
that changes will not fail due to a concurrency violation.

ADO Constants

595

DBPROPVAL_MR

Name Value Description

DBPROPVAL_MR_
CONCURRENT

2 More than one rowset created by the same multiple results object
can exist concurrently.

DBPROPVAL_MR_
NOTSUPPORTED

0 Multiple results objects are not supported.

DBPROPVAL_MR_
SUPPORTED

1 The provider supports multiple results objects.

DBPROPVAL_NC

Name Value Description

DBPROPVAL_NC_END 1 NULLs are sorted at the end of the list, regardless of the
sort order.

DBPROPVAL_NC_HIGH 2 NULLs are sorted at the high end of the list.

DBPROPVAL_NC_LOW 4 NULLs are sorted at the low end of the list.

DBPROPVAL_NC_START 8 NULLs are sorted at the start of the list, regardless of the
sort order.

DBPROPVAL_NP

Name Value Description

DBPROPVAL_NP_ABOUTTODO 2 The consumer will be notified before an action (i.e.
the Will event).

DBPROPVAL_NP_DIDEVENT 16 The consumer will be notified after an action (i.e.
the Complete event).

DBPROPVAL_NP_FAILEDTODO 8 The consumer will be notified if an action failed
(i.e. a Will or Complete event).

DBPROPVAL_NP_OKTODO 1 The consumer will be notified of events.

DBPROPVAL_NP_SYNCHAFTER 4 The consumer will be notified when the rowset is
resynchronized.

DBPROPVAL_NT

Name Value Description

DBPROPVAL_NT_
MULTIPLEROWS

2 For methods that operate on multiple rows, and generate
multiphased notifications (events), then the provider calls
OnRowChange once for all rows that succeed and once for all
rows that fail.

DBPROPVAL_NT_
SINGLEROW

1 For methods that operate on multiple rows, and generate
multiphased notifications (events), then the provider calls
OnRowChange separately for each phase for each row.

DBPROPVAL_OA

Name Value Description

DBPROPVAL_OA_
ATEXECUTE

2 Output parameter data is available immediately after the
Command.Execute returns.

4

ADO Constants

596

DBPROPVAL_OA_
ATROWRELEASE

Output parameter data is available when the rowset is release.
For a single rowset operation this is when the rowset is
completely released (closed) and for a multiple rowset
operation this is when the next rowset if fetched. The
consumer's bound memory is in an indeterminate state before
the parameter data becomes available.

DBPROPVAL_OA_
NOTSUPPORTED

1 Output parameters are not supported.

DBPROPVAL_OO

Name Value Description

DBPROPVAL_OO_
BLOB

1 The provider supports access to BLOBs as structured storage
objects.

DBPROPVAL_OO_
DIRECTBIND

16 The provider supports direct binding to BLOBs.

DBPROPVAL_OO_
IPERSIST

2 The provider supports access to OLE objects through OLE.

DBPROPVAL_OO_
SCOPED

8 The provider supports objects that have scoped operations.

DBPROPVAL_ORS

Name Value Description

DBPROPVAL_ORS_TABLE 1 The provider supports opening tables.

DBPROPVAL_ORS_INDEX 2 The provider supports opening indexes.

DBPROPVAL_ORS_
INTEGRATEDINDEX

16 The provider supports both the table and index in the
same open method.

DBPROPVAL_ORS_
STOREDPROPC

4 The provider supports opening rowsets over stored
procedures.

DBPROPVAL_OS

Name Value Description

DBPROPVAL_OS_
ENABLEALL

−1 All services should be invoked. This is the default.

DBPROPVAL_OS_
RESOURCEPOOLING

1 Resources should be pooled.

DBPROPVAL_OS_
TXNENLISTMENT

2 Sessions in an MTS environment should automatically be
enlisted in a global transaction where required.

DBPROPVAL_OS_
CLIENT_CURSOR

4 Disable client cursor.

DBPROPVAL_OS_
DISABLEALL

0 All services should be disabled.

DBPROPVAL_PT

Name Value Description

DBPROPVAL_PT_GUID 8 The GUID is used as the persistent ID type.

1 The GUID NAME is used as the persistent ID type.

ADO Constants

597

DBPROPVAL_PT_GUID_
NAME

DBPROPVAL_PT_GUID_
PROPID

2 The GUID Property ID is used as the persistent ID type.

DBPROPVAL_PT_NAME 4 The NAME is used as the persistent ID type.

DBPROPVAL_PT_PGUID_
NAME

32 The Property GUID NAME is used as the persistent ID
type.

DBPROPVAL_PT_PGUID_
PROPID

64 The Property GUID Property ID is used as the persistent
ID type.

DBPROPVAL_PT_PROPID 16 The Property ID is used as the persistent ID type.
DBPROPVAL_RD

Name Value Description

DBPROPVAL_RD_
RESETALL

−1 The provider should reset all states associated with the data
source, with the exception that any open object is not released.

DBPROPVAL_RT

Name Value Description

DBPROPVAL_RT_APTMTTHREAD 2 The DSO is apartment threaded.

DBPROPVAL_RT_FREETHREAD 1 The DSO is free threaded.

DBPROPVAL_RT_SINGLETHREAD 4 The DSO is single threaded.
DBPROPVAL_SQ

Name Value Description

DBPROPVAL_SQ_
COMPARISON

2 All predicates that support subqueries support
comparison subqueries.

DBPROPVAL_SQ_
CORRELATEDSUBQUERIES

1 All predicates that support subqueries support correlated
subqueries.

DBPROPVAL_SQ_
EXISTS

4 All predicates that support subqueries support EXISTS
subqueries.

DBPROPVAL_SQ_IN 8 All predicates that support subqueries support IN
subqueries.

DBPROPVAL_SQ_
QUANTIFIED

16 All predicates that support subqueries support quantified
subqueries.

DBPROPVAL_SQL

Name Value Description

DBPROPVAL_SQL_ANDI89_IEF 8 The provider supports the ANSI SQL89
IEF level.

DBPROPVAL_SQL_ANSI92_ENTRY 16 The provider supports the ANSI SQL92
ENTRY level.

DBPROPVAL_SQL_ANSI92_FULL 128 The provider supports the ANSI SQL92
FULL level.

Name Value Description

DBPROPVAL_SQL_ANSI92_
INTERMEDIATE

64 The provider supports the ANSI SQL92
INTERMEDIATE level.

ADO Constants

598

DBPROPVAL_SQL_CORE 2 The provider supports the ODBC 2.5 CORE SQL
level.

DBPROPVAL_SQL_
ESCAPECLAUSES

256 The provider supports the ODBC
ESCAPECLAUSES syntax.

DBPROPVAL_SQL_
EXTENDED

4 The provider supports the ODBC 2.5 EXTENDED
SQL level.

DBPROPVAL_SQL_FIPS_
TRANSITIONAL

32 The provider supports the ANSI SQL92
TRANSITIONAL level.

DBPROPVAL_SQL_
MINIMUM

1 The provider supports the ODBC 2.5 MINIMUM
SQL level.

DBPROPVAL_SQL_NONE 0 SQL is not supported.

DBPROPVAL_SQL_ODBC_
CORE

2 The provider supports the ODBC 2.5 CORE SQL
level.

DBPROPVAL_SQL_ODBC_
EXTENDED

4 The provider supports the ODBC 2.5 EXTENDED
SQL level.

DBPROPVAL_SQL_ODBC_
MINIMUM

1 The provider supports the ODBC 2.5 MINIMUM
SQL level.

DBPROPVAL_SQL_
SUBMINIMUM

512 The provider supports the DBGUID_SQL dialect
and parses the command text according to SQL rules,
but does not support wither the minimum ODBC
level nor the ANSI SQL92 ENTRY level.

DBPROPVAL_SS

Name Value Description

DBPROPVAL_SS_ILOCKBYTES 8 The provider supports IlockBytes.

DBPROPVAL_SS_
ISEQUENTIALSTREAM

1 The provider supports IsequentialStream.

DBPROPVAL_SS_ISTORAGE 4 The provider supports Istorage.

DBPROPVAL_SS_ISTREAM 2 The provider supports IStream.
DBPROPVAL_SU

Name Value Description

DBPROPVAL_SU_DML_
STATEMENTS

1 Schema names are supported in all Data Manipulation
Language statements.

DBPROPVAL_SU_INDEX_
DEFINITION

4 Schema names are supported in all index definition
statements.

DBPROPVAL_SU_
PRIIVILEGE_DEFINITION

8 Schema names are supported in all privilege definition
statements.

DBPROPVAL_SU_TABLE_
DEFINITION

2 Schema names are supported in all table definition
statements.

DBPROPVAL_TC

Name Value Description

DBPROPVAL_TC_ALL 8 Transactions can contain DDL and DML statements in
any order.

2

ADO Constants

599

DBPROPVAL_TC_DDL_
COMMIT

Transactions can contain DML statements. DDL
statements within a transaction cause the transaction to
be committed.

DBPROPVAL_TC_DDL_
IGNORE

4 Transactions can only contain DML statements. DDL
statements within a transaction are ignored.

DBPROPVAL_TC_DDL_
LOCK

16 Transactions can contain both DML and table or index
modifications, but the table or index will be locked until
the transaction completes.

DBPROPVAL_TC_DML 1 Transactions can only contain Data Manipulation
(DML) statements. DDL statements within a transaction
cause an error.

DBPROPVAL_TC_NONE 0 Transactions are not supported.
DBPROPVAL_TI

Name Value Description

DBPROPVAL_TI_BROWSE 256 Changes made by other transactions are visible
before they are committed.

DBPROPVAL_TI_CHAOS 16 Transactions cannot overwrite pending changes from
more highly isolated transactions. This is the default.

DBPROPVAL_TI_
CURSORSTABILITY

4096 Changes made by other transactions are not visible
until those transactions are committed.

DBPROPVAL_TI_
ISOLATED

1048576 All concurrent transactions will interact only in ways
that produce the same effect as if each transaction
were entirely executed one after the other.

DBPROPVAL_TI_
READCOMMITTED

4096 Changes made by other transactions are not visible
until those transactions are committed.

DBPROPVAL_TI_
READUNCOMMITTED

256 Changes made by other transactions are visible
before they are committed.

DBPROPVAL_TI_
REPEATABLEREAD

65536 Changes made by other transactions are not visible.

DBPROPVAL_TI_
SERIALIZABLE

1048576 All concurrent transactions will interact only in ways
that produce the same effect as if each transaction
were entirely executed one after the other.

DBPROPVAL_TR

Name Value Description

DBPROPVAL_TR_
ABORT

16 The transaction preserves its isolation context (i.e., it preserves its
locks if that is how isolation is implemented) across the retaining
abort.

DBPROPVAL_TR_
ABORT_DC

8 The transaction may either preserve or dispose of isolation context
across a retaining abort.

DBPROPVAL_TR_
ABORT_NO

32 The transaction is explicitly not to preserve its isolation across a
retaining abort.

DBPROPVAL_TR_
BOTH

128 Isolation is preserved across both a retaining commit and a
retaining abort.

DBPROPVAL_TR_ 2 The transaction preserves its isolation context (i.e., it preserves its

ADO Constants

600

COMMIT locks if that is how isolation is implemented) across the retaining
commit.

DBPROPVAL_TR_
COMMIT_DC

1 The transaction may either preserve or dispose of isolation context
across a retaining commit.

DBPROPVAL_TR_
COMMIT_NO

4 The transaction is explicitly not to preserve its isolation across a
retaining commit.

DBPROPVAL_TR_
DONTCARE

64 The transaction may either preserve or dispose of isolation context
across a retaining commit or abort. This is the default.

DBPROPVAL_TR_
NONE

256 Isolation is explicitly not to be retained across either a retaining
commit or abort.

DBPROPVAL_TR_
OPTIMISTIC

512 Optimistic concurrency control is to be used.

DBPROPVAL_UP

Name Value Description

DBPROPVAL_UP_CHANGE 1 Indicates that SetData is supported.

DBPROPVAL_UP_DELETE 2 Indicates that DeleteRows is supported.

DBPROPVAL_UP_INSERT 4 Indicates that InsertRow is supported.
DBPROPVAL_BP

Name Value Description

DBPROPVAL_BP_
NOPARTIAL

2 Fail the bulk operation if there is a single error.

DBPROPVAL_BP_
PARTIAL

1 Allow the bulk operation to partially complete, possibly resulting
in inconsistent data.

JET_ENGINETYPE

Name Value Description

JET_ENGINETYPE_UNKNOWN 0 The database type is unknown.

JET_ENGINETYPE_JET10 1 Jet 1.0

JET_ENGINETYPE_JET11 2 Jet 1.1

JET_ENGINETYPE_JET2X 3 Jet 2.x

JET_ENGINETYPE_JET3X 4 Jet 3.x

JET_ENGINETYPE_JET4X 5 Jet 4.x

JET_ENGINETYPE_DBASE3 10 DBase III

JET_ENGINETYPE_DBASE4 11 DBase IV

JET_ENGINETYPE_DBASE5 12 DBase V

JET_ENGINETYPE_EXCEL30 20 Excel 3

JET_ENGINETYPE_EXCEL40 21 Excel 4

JET_ENGINETYPE_EXCEL50 22 Excel 5 (Excel 95)

JET_ENGINETYPE_EXCEL80 23 Excel 8 (Excel 97)

JET_ENGINETYPE_EXCEL90 24 Excel 9 (Excel 2000)

JET_ENGINETYPE_EXCHANGE4 30 Exchange Server

JET_ENGINETYPE_LOTUSWK1 40 Lotus 1

ADO Constants

601

JET_ENGINETYPE_LOTUSWK3 41 Lotus 3

JET_ENGINETYPE_LOTUSWK4 42 Lotus 4

JET_ENGINETYPE_PARADOX3X 50 Paradox 3.x

JET_ENGINETYPE_PARADOX4X 51 Paradox 4.5

JET_ENGINETYPE_PARADOX5X 52 Paradox 5.x

JET_ENGINETYPE_PARADOX7X 53 Paradox 7.x

JET_ENGINETYPE_TEXT1X 60 Text

JET_ENGINETYPE_HTML1X 70 HTML
MD_DIMTYPE

Name Value Description

MD_DIMTYPE_MEASURE 2 A measure dimension.

MD_DIMTYPE_OTHER 3 The dimension is neither a time nor a measure
dimension.

MD_DIMTYPE_TIME 1 A time dimension.

MD_DIMTYPE_UNKNOWN 0 The provider is unable to classify the dimension.
SQL_FN_NUM

Name Value Description

SQL_FN_NUM_ABS 1 The ABS function is supported by the data source.

SQL_FN_NUM_ACOS 2 The ACOS function is supported by the data source.

SQL_FN_NUM_ASIN 4 The ASIN function is supported by the data source.

SQL_FN_NUM_ATAN 8 The ATAN function is supported by the data source.

SQL_FN_NUM_ATAN2 16 The ATAN2 function is supported by the data source.

SQL_FN_NUM_CEILING 32 The CEILING function is supported by the data
source.

SQL_FN_NUM_COS 64 The COS function is supported by the data source.

SQL_FN_NUM_COT 128 The COT function is supported by the data source.

SQL_FN_NUM_DEGREES 262144 The DEGREES function is supported by the data
source.

SQL_FN_NUM_EXP 256 The EXP function is supported by the data source.

SQL_FN_NUM_FLOOR 512 The FLOOR function is supported by the data source.

SQL_FN_NUM_LOG 1024 The LOG function is supported by the data source.

SQL_FN_NUM_LOG10 524288 The LOG10 function is supported by the data source.

SQL_FN_NUM_MOD 2048 The MOD function is supported by the data source.

SQL_FN_NUM_PI 65536 The PI function is supported by the data source.

SQL_FN_NUM_POWER 1048576 The POWER function is supported by the data source.

SQL_FN_NUM_RADIANS 2097152 The RADIANS function is supported by the data
source.

SQL_FN_NUM_RAND 131072 The RAND function is supported by the data source.

SQL_FN_NUM_ROUND 4194304 The ROUND function is supported by the data source.

SQL_FN_NUM_SIGN 4096 The SIGN function is supported by the data source.

SQL_FN_NUM_SIN 8192 The SIN function is supported by the data source.

ADO Constants

602

SQL_FN_NUM_SQRT 10384 The SQRT function is supported by the data source.

SQL_FN_NUM_TAN 32768 The TAN function is supported by the data source.

SQL_FN_NUM_TRUNCATE 8388608 The TRUNCATE function is supported by the data
source.

SQL_FN_STR

Name Value Description

SQL_FN_STR_ASCII 8192 The ASCII function is supported by the data
source.

SQL_FN_STR_BIT_LENGTH 524288 The BIT_LENGTH function is supported by the
data source.

SQL_FN_STR_CHAR 16384 The CHAR function is supported by the data
source.

SQL_FN_STR_CHAR_LENGTH 1048576The CHAR_LENGTH function is supported by
the data source.

SQL_FN_STR_CHARACTER_LENGTH 2097152The CHARACTER_LENGTH function is
supported by the data source.

SQL_FN_STR_CONCAT 1 The CONCAT function is supported by the data
source.

SQL_FN_STR_DIFFERENCE 32768 The DIFFERENCE function is supported by the
data source.

SQL_FN_STR_INSERT 2 The INSERT function is supported by the data
source.

SQL_FN_STR_LCASE 64 The LCASE function is supported by the data
source.

SQL_FN_STR_LEFT 4 The LEFT function is supported by the data
source.

SQL_FN_STR_LENGTH 16 The LENGTH function is supported by the data
source.

SQL_FN_STR_LOCATE 32 The LOCATE function is supported by the data
source.

SQL_FN_STR_LOCATE_2 65536 The LOCATE_2 function is supported by the data
source.

SQL_FN_STR_LTRIM 8 The LTRIM function is supported by the data
source.

SQL_FN_STR_OCTET_LENGTH 4194304The OCTET_LENGTH function is supported by
the data source.

SQL_FN_STR_POSITION 8388608The POSITION function is supported by the data
source.

SQL_FN_STR_REPEAT 128 The REPEAT function is supported by the data
source.

SQL_FN_STR_REPLACE 256 The REPLACE function is supported by the data
source.

SQL_FN_STR_RIGHT 512 The RIGHT function is supported by the data
source.

SQL_FN_STR_RTRIM 1024

ADO Constants

603

The RTRIM function is supported by the data
source.

SQL_FN_STR_SOUNDEX 131072 The SOUNDEX function is supported by the data
source.

SQL_FN_STR_SPACE 262144 The SPACE function is supported by the data
source.

SQL_FN_STR_SUBSTRING 2048 The SUBSTRING function is supported by the
data source.

SQL_FN_STR_UCASE 4096 The UCASE function is supported by the data
source.

SQL_FN_SYS

Name Value Description

SQL_FN_SYS_DBNAME 2 The DBNAME system function is supported.

SQL_FN_SYS_IFNULL 4 The IFNULL system function is supported.

SQL_FN_SYS_USERNAME 1 The USERNAME system function is supported.
SQL_OJ

Name Value Description

SQL_OJ_ALL_COMPARISON_OPS 64 The comparison operator in the ON clause can be any of
the ODBC comparison operators. If this is not set, only
the equals (=) comparison operator can be used in an
outer join.

SQL_OJ_FULL 4 Full outer joins are supported.

SQL_OJ_INNER 32 The inner table (the right table in a left outer join or the
left table in a right outer join) can also be used in an
inner join. This does not apply to full outer joins, which
do not have an inner table.

SQL_OJ_LEFT 1 Left outer joins are supported.

SQL_OJ_NESTED 8 Nested outer joins are supported.

SQL_OJ_NOT_ORDERED 16 The column names in the ON clause of the outer join do
not have to be in the same order as their respective table
names in the OUTER JOIN clause.

SQL_OJ_RIGHT 2 Right outer joins are supported.
SQL_SDF_CURRENT

Name Value Description

SQL_SDF_CURRENT_DATE 1 The CURRENT_DATE system function is supported.

SQL_SDF_CURRENT_TIME 2 The CURRENT_TIME system function is supported.

SQL_SDF_CURRENT_TIMESTAMP 4 The CURRENT_TIMESTAMP system function is
supported.

SSPROP_CONCUR

Name Value Description

SSPROP_CONCUR_
LOCK

4 Use row locking to prevent concurrent access.

ADO Constants

604

SSPROP_CONCUR_
READ_ONLY

8 The rowset is read−only. Full concurrency is supported.

SSPROP_CONCUR_
ROWVER

1 Use row versioning to determining concurrent access
violations. The SQL Table or tables must contain a
timestamp column.

SSPROP_CONCUR_
VALUES

2 Use the values of the columns in the rowset row.

SSPROPVAL_USEPROCFORPREP

Name Value Description

SSPROPVAL_
USEPROCFORPREP_OFF

0 A temporary stored procedure is not created when a
command is prepared.

SSPROPVAL_
USEPROCFORPREP_ON

1 A temporary stored procedure is created when a command is
prepared. Temporary stored procedures are dropped when
the session is released.

SSPROPVAL_
USEPROCFORPREP_
ON_DROP

2 A temporary stored procedure is created when a command is
prepared. The procedure is dropped when the command is
unprepared, or a new command text is set, or when all
application references to the command are released.

ADO Data Types

You might find the large array of data types supported by ADO confusing, especially since your language or
database might not support them all. This appendix details the DataTypeEnum constants and how they map to
SQL and Access data types.

ODBC to Access 97

Database Type ADO Type

Text adVarChar

Memo adLongVarChar

Number (Byte) adUnsignedTinyInt

Number (Integer) adSmallInt

Number (Long Integer) adInteger

Number (Single) adSingle

Number (Double) adDouble

Number (Replication ID) adGUID

Date/Time adDBTimeStamp

Currency adCurrency

Long Integer adInteger

Yes/No adBoolean

OLE Object adLongVarBinary

Hyperlink adLongVarChar

ADO Constants

605

ODBC to Access 2000

Database Type ADO Type

Text adVarWChar

Memo adLongVarWChar

Number (Byte) adUnsignedTinyInt

Number (Integer) adSmallInt

Number (Long Integer) adInteger

Number (Single) adSingle

Number (Double) adDouble

Number (Replication ID) adGUID

Number (Decimal) adNumeric

Date/Time adDBTimeStamp

Currency adCurrency

AutoNumber adInteger

Yes/No adBoolean

OLE Object adLongVarBinary

Hyperlink adLongVarWChar

ODBC to SQL 6.5

Database Type ADO Type

binary adBinary

bit adBoolean

char adChar

datetime adDBTimeStamp

decimal adNumeric

float adDouble

image adLongVarBinary

int adInteger

money adCurrency

numeric adNumeric

real adSingle

smalldatetime adDBTimeStamp

smallint adSmallInt

smallmoney adCurrency

sysname adVarChar

text adLongVarChar

timestamp adBinary

tinyint adUnsignedTinyInt

varbinary adVarBinary

varchar adVarChar

ADO Data Types

606

ODBC to SQL 7.0

Database Type ADO Type

binary adBinary

bit adBoolean

char adChar

datetime adDBTimeStamp

decimal adNumeric

float adDouble

image adLongVarBinary

int adInteger

money adCurrency

nchar adWChar

ntext adLongVarWChar

numeric adNumeric

nvarchar adVarWChar

real adSingle

smalldatetime adDBTimeStamp

smallint adSmallInt

smallmoney adCurrency

text adLongVarChar

timestamp adBinary

tinyint adUnsignedTinyInt

uniqueidentifier adGUID

varbinary adVarBinary

varchar adVarChar

Native Jet Provider to Access 97

Database Type ADO Type

Text adVarWChar

Memo adLongVarWChar

Number (Byte) adUnsignedTinyInt

Number (Integer) adSmallInt

Number (Long Integer) adInteger

Number (Single) adSingle

Number (Double) adDouble

Number (Replication ID) adGUID

Date/Time adDate

Currency adCurrency

Long Integer adInteger

Yes/No adBoolean

OLE Object adLongVarBinary

ADO Data Types

607

Hyperlink adLongVarWChar

Native Jet Provider to Access 2000

Database Type ADO Type

Text adVarWChar

Memo adLongVarWChar

Number (Byte) adUnsignedTinyInt

Number (Integer) adSmallInt

Number (Long Integer) adInteger

Number (Single) adSingle

Number (Double) adDouble

Number (Replication ID) adGUID

Number (Decimal) adNumeric

Date/Time adDate

Currency adCurrency

AutoNumber adInteger

Yes/No adBoolean

OLE Object adLongVarBinary

Hyperlink adLongVarWChar

Native SQL Provider to SQL Server 6.5

Database Type ADO Type

binary adBinary

bit adBoolean

char adChar

datetime adDBTimeStamp

decimal adNumeric

float adDouble

image adLongVarBinary

int adInteger

money adCurrency

numeric adNumeric

real adSingle

smalldatetime adDBTimeStamp

smallint adSmallInt

smallmoney adCurrency

sysname adVarChar

text adLongVarChar

timestamp adBinary

tinyint adUnsignedTinyInt

varbinary adVarBinary

varchar adVarChar

ADO Data Types

608

Native SQL Provider to SQL Server 7.0

Database Type ADO Type

binary adBinary

bit adBoolean

char adChar

datetime adDBTimeStamp

decimal adNumeric

float adDouble

image adLongVarBinary

int adInteger

money adCurrency

nchar adWChar

ntext adLongVarWChar

numeric adNumeric

nvarchar adVarWChar

real adSingle

smalldatetime adDBTimeStamp

smallint adSmallInt

smallmoney adCurrency

text adLongVarChar

timestamp adBinary

tinyint adUnsignedTinyInt

uniqueidentifier adGUID

varbinary adVarBinary

varchar adVarChar

Language Types

The following table lists the data types you should use in your programming language.

A blank value indicates that the language does not natively support the data type, although there may be
support in other libraries, or other data types might be used instead. For example, the com.ms.wfc.data import
library for J++ has support for dates and timestamp types, amongst others, but these are not supported by J++
natively.

Constant Visual Basic Visual C++ Visual J++

adBinary Variant

adBoolean Boolean bool boolean

adChar String char[] String

adCurrency Currency

adDate Date

adDBTimeStamp Variant

adDouble Double double double

ADO Data Types

609

adGUID char[] String, char[]

adInteger Long int int

adLongVarBinary Variant

adLongVarChar String

adNumeric

adSingle Single float float

adSmallInt Integer short short

adUnsignedTinyInt Byte char byte

adVarBinary char[] byte[]

adVarChar String char[] String, byte[]

adVarWChar String char[] String, byte[]

ADO Data Types

610

Appendix L: The Microsoft Script Encoder
The Microsoft Script Encoder is a simple command−line tool that lets you encode your scripts to deter
people from viewing or modifying your source. However, the Script Encoder will not prevent a determined
hacker from viewing your code. The Script Encoder can be used to encode the following file types: asa, asp,
cdx, htm, html, js, sct, and vbs. Only the scripting code within those files is encoded all of the other content is
left as plain text. You can use the encoding marker, '**Start Encode**, to determine where in the script block
encoding starts:

<SCRIPT LANGUAGE="VBScript">
'Copyright 1999 by John Doe
'**Start Encode**
code
</SCRIPT>

Instead of the whole script block being encoded, only the content below the '**Start Encode** line is
encoded. By using the encoding marker, you can specify a copyright or a description of the script, while
protecting the code itself. Once this file has been encoded, the script block would be changed to look like this:

<SCRIPT LANGUAGE="VBScript.Encode">
'Copyright 1999 by John Doe
'**Start Encode**
encoded code
</SCRIPT>

Script Encoder Syntax

This section describes how to use the Script Encoder executable, screnc.exe, to encode your scripts.

Syntax

SCRENC [/s] [/f] [/xl] [/l defLanguage] [/e defExtension]
inputfile outputfile

Parameter Description

/s Optional. This switch instructs Script Encoder to not produce any screen output.

/f Optional. This switch specifies that the input file is to be overwritten by the output
file. This option will destroy your source file, so be careful when using it.

/xl Optional. This switch specifies that the @language directive is not to be added at
the top of .asp files.

/l defLanguage Optional. This switch specifies the default scripting language to use during
encoding. Any script blocks encountered that do not contain a language attribute
are assumed to be of this specified language. If this parameter is omitted, JScript is
used as the default language for HTML and scriptlets; VBScript is the default for
Active Server Pages. For plain text files, the default language is determined by the
file extension (.js or .vbs).

/e defExtension Optional. This switch associates the input file with a specific file type. Use this
switch when the input file's extension is not one of the recognized extensions, or to
override the existing extension. If you don't specify this parameter and use an input
file with an unrecognized extension, Script Encoder will fail for that file.

611

inputfile Required. The name of the file to be encoded.

outputfile Required. The name of the output file to be produced.
The following table shows what the Script Encoder will encode for the file types:

File Extension Encodes

.asp, .asa, .cdx <SCRIPT> . . . </SCRIPT> and/or <% . . . %>

.htm, .html <SCRIPT> . . . </SCRIPT>

.js, .vbs The whole file. Extension is changed to .jse or .vbe, respectively

.sct, .wsh <SCRIPT> . . . </SCRIPT>

Examples

To encode testsrc.asp into test.asp, use:

screnc testsrc.asp test.asp

To encode testsrc.asp into testsrc.asp, use:

screnc /f testscr.asp

To encode all of the html files in the c:\inetpub\test directory and put them in the c:\inetpub\wwwroot
directory, use:

screnc c:\inetpub\test*.html c:\inetpub\wwwroot

To encode all files in the current directory as .vbs files silently and then put the output files in the directory
c:\temp, use:

screnc /s /e vbs *.* c:\temp

To encode testsrc.html to test.html and specifying VBScript as the default language, use:

screnc /l vbscript testsrc.html test.html

Important Note: the Script Encoder can't handle empty <script src=blah.vbs/> elements. Even
with explicit opening and closing elements (with no content but a src attribute), the
external file isn't encoded. This is a known and acknowledged problem and you need
to fix these by hand as needed. For file types .ws(f), .wsc, and .hta, you have to use the
/e html switch and use an explicit encode file name, like:

srcenc /e html mytest.hta mytest_encode.hta

since the entire file isn't encoded (just the <script> elements).

Appendix L: The Microsoft Script Encoder

612

	VBScript Programmer's Reference
	Table of Contents
	Introduction
	 Who is this Book For?
	 How to Use this Book
	 What is VBScript?
	 What Can You Do With VBScript?
	 What Tools Do You Need to Use VBScript?
	 What's New in VBScript 5?
	 Code Conventions
	 Tell Us What You Think
	 Customer Support

	 Chapter 1: A (Very) Short Introduction to Programming
	 Overview
	 Variables and Data Types
	 Control of Flow
	 Operators
	 Organizing and Reusing Code
	 Top-Down vs. Event Driven
	 Some Guidelines to Keep in Mind
	 Suggestions for Further Reading

	 Chapter 2: Variables and Data Types
	 The Visual Basic Data Types
	 The Variant: VBScript's Only Data Type
	 Variables in VBScript
	 Literals and Named Constants
	 Complex Data Types

	 Chapter 3: Control of Flow
	 Branching Constructs
	 Loop Constructs

	 Chapter 4: Error Handling, Prevention and Debugging
	 Overview
	 Introduction
	 Seeing the Error of your Ways
	 Different Types of Errors
	 What Can We Do About Errors?
	 Debugging
	 Common Errors and How To Avoid Them
	 Summary

	 Chapter 5: Using COM Components and Objects
	 Overview
	 Introduction to COM components and Objects
	 Object and Object Interfaces
	 What COM Components and Objects are Available?
	 Objects and the Variant data type
	 Properties and Methods
	 Object Scope, Lifetime and References
	 Using the With Statement with Objects
	 Create your own COM Objects
	 Summary

	 Chapter 6: Using COM Components with MTS
	 Overview
	 A Quick Introduction to MTS
	 Advantages of using MTS
	 Next Step: COM+
	 Summary

	 Chapter 7: The Built-In and Scripting Runtime Objects
	 Overview
	 Runtime vs. Built-In - What's the Difference?
	 Built-In Objects
	 Regular Expressions
	 Scripting Runtime Objects
	 Summary

	 Chapter 8: Classes in VBScript (Writing Your Own COM Objects)
	 Classes vs. Objects vs. Components

	 Chapter 9: Windows Script Components
	 What Are Windows Script Components?
	 What Tools Do You Need?
	 The Script Component Runtime
	 Script Component Files
	 Exposing Properties, Methods, and Events
	 Creating Registration Information
	 Creating the Script Component Type Library
	 Interface Handlers
	 Compile-time Error Checking
	 Using VBScript Classes in Script Components
	 Summary

	 Chapter 10: The Windows Script Host
	 Overview
	 What Tools Do You Need?
	 What is the Windows Script Host?
	 Running Scripts with Windows Script Host
	 Using .WSH Files to Launch Scripts
	 Windows Script Host Intrinsic Objects
	 Summary
	 Additional Resources

	 Chapter 11: General Client-Side Web Scripting
	 What Tools Do You Need?
	 How Browser Scripting Works
	 The Various Scripting Languages - What's Best for the Browser
	 Responding to Browser Events
	 Validating Forms
	 The Document Object Model
	 Summary

	 Chapter 12: High-Powered Client Scripting
	 Technology Requirements
	 Importance of Browser Security Settings
	 Scriptlets - Ancestors of Behaviors
	 Managing Events
	 Behaviors
	 HTML Components
	 Remote Scripting
	 Summary

	 Chapter 13: HTML Applications (HTAs)
	 What Tools Do You Need?
	 What is an HTML Application?
	 How to Create a Basic HTA
	 The <HTA:APPLICATION> Tag
	 HTAs and Security
	 HTA Deployment Models
	 What Isn't Supported With HTAs?
	 Summary

	 Chapter 14: Server-Side Web Scripting With ASP
	 Overview
	 The Anatomy of the HTTP Protocol
	 Introducing Active Server Pages
	 The Active Server Pages Object Model
	 Using Active Server Pages Effectively
	 Summary

	 Chapter 15: Talking to Databases: ActiveX Data Objects
	 What Tools Do You Need?
	 The Evolution of ADO
	 What Are ActiveX Data Objects?
	 The ADO Objects
	 Summary

	 Chapter 16: Microsoft Script Control
	 Why Script your Application?
	 What tools do you need?
	 Adding Script Control to VB Application
	 Macro and Scripting Concepts
	 The Script Control Object Model
	 Other Scripting Elements
	 Error Trapping with Script Control
	 Sample Applications
	 Summary

	Appendices
	 Appendix A: Visual Basic Functions and Keywords
	 Overview
	 Operators
	 Math Functions
	 Date and Time Functions and Statements
	 Unsupported Array Functions and Statements
	 Unsupported String Functions, Statements and Constructs
	 String Constants
	 Conversion Functions
	 Unsupported conversion functions
	 Miscellaneous Functions, Statements and Keywords

	 Appendix B: Differences between VB/VBA and VBScript5
	 Appendix C: Code Conventions
	 Variable Naming Conventions
	 Procedure Naming
	 Indentation
	 Commenting

	 Appendix D: Visual Basic Constants Supported in VBScript
	 Color Constants
	 Date and Time Constants
	 Date Format Constants
	 Miscellaneous Constants
	 MsgBox Constants
	 String Constants
	 Tristate Constants
	 VarType Constants

	 Appendix E: VBScript Error Codes and the Err Object
	 Runtime Errors
	 Syntax Errors
	 Err Object and On Err statement

	 Appendix F: The Scripting Runtime Library Objects Reference
	 The Scripting.Dictionary Object
	 The Scripting.FileSystemObject Object
	 The Scripting.TextStream Object

	 Appendix G: Windows Script Host 2.0
	 Appendix H: The Browser Object Model IE4
	 The Object Model In Outline
	 HTML and Form Controls Cross Reference

	 Appendix I: The Browser Object Model IE5
	 The Object Model In Outline
	 HTML and Form Controls Cross Reference

	 Appendix J: The Integral ASP Objects
	 The ASP Object Model
	 The Application Object
	 The ASPError Object
	 The Request Object
	 The Response Object
	 The Server Object
	 The Session Object

	 Appendix K: ADO Object Summary, Constants, and Data Types
	 Microsoft ActiveX Data Objects 2.5 Library Reference
	 ADO Constants
	 ADO Data Types

	 Appendix L: The Microsoft Script Encoder

